
University of Tennessee, Knoxville
Trace: Tennessee Research and Creative
Exchange

Doctoral Dissertations Graduate School

8-2011

Magnetic Field Dependent Electroluminescence
and Charge Transport in Organic Semiconductors
Ming Shao
mshao2@utk.edu

This Dissertation is brought to you for free and open access by the Graduate School at Trace: Tennessee Research and Creative Exchange. It has been
accepted for inclusion in Doctoral Dissertations by an authorized administrator of Trace: Tennessee Research and Creative Exchange. For more
information, please contact trace@utk.edu.

Recommended Citation
Shao, Ming, "Magnetic Field Dependent Electroluminescence and Charge Transport in Organic Semiconductors. " PhD diss.,
University of Tennessee, 2011.
https://trace.tennessee.edu/utk_graddiss/1124

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Tennessee, Knoxville: Trace

https://core.ac.uk/display/268765147?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://trace.tennessee.edu
https://trace.tennessee.edu
https://trace.tennessee.edu/utk_graddiss
https://trace.tennessee.edu/utk-grad
mailto:trace@utk.edu


To the Graduate Council:

I am submitting herewith a dissertation written by Ming Shao entitled "Magnetic Field Dependent
Electroluminescence and Charge Transport in Organic Semiconductors." I have examined the final
electronic copy of this dissertation for form and content and recommend that it be accepted in partial
fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Materials Science
and Engineering.

Bin Hu, Major Professor

We have read this dissertation and recommend its acceptance:

Roberto S. Benson, Syed Islam, Shanfeng Wang, Ilia N. Ivanov

Accepted for the Council:
Dixie L. Thompson

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)



 

 

 

Magnetic Field Dependent Electroluminescence and Charge 

Transport in Organic Semiconductors 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A Dissertation Presented for  

the Doctor of Philosophy Degree 

The University of Tennessee, Knoxville 

 

 

 

 

 

 

 

 

 

 

Ming Shao 

August 2011 

 
 



ii 
 

 
 

 

 

Dedication To My Parents 

& 

My Wife Huiming Yu 

I dedicate my work to you. 

 

 

 
 



iii 
 

ACKNOWLEDGEMENTS 
 
 

First, I am deeply thankful to my advisor, Dr. Bin Hu for his five years guidance 

and valuable suggestions about my research work and dissertation. I acquired my 

theoretical and practical laboratory knowledge from him. Without his guidance and 

support, I could not finish my thesis. Also I would like to thank my committee members, 

Dr. Roberto Benson, Dr. Shanfeng Wang, Dr. Syed Islam and Dr. Ilia N. Ivanov, for their 

instructive advice and great support. 

I must thank my collaborators at the Oak Ridge National Laboratory (ORNL) for 

their help in providing facilities and many helpful discussions. They are Dr. David B. 

Geohegan, Dr. Ilia Ivanov, Dr. Kai Xiao, Dr. Matthew Gartett, Dr. Chengjun Sun. 

I would also like to thank my present and former colleagues in our lab. Liang Yan , 

Huidong  Zang, Lili Wu, Jaime Sullivan, Dr. Yue Wu, Dr. Zhihua Xu, Dr. Youzhi Wu,   

Dr. Tho Nguyen, Dr. Xinjun Xu and Dr. Lianbin Niu have given numerous contributions 

and help to my research work. 

Finally, I particularly thank my wife Huiming Yu, my parents and parents in law 

for their great understanding, support and encouragements to me during these years.  

 

 
 
 



iv 
 

ABSTRACT 

 
 It has been found that a small magnetic field (<300 mT) can substantial change 

the electroluminescence, photoluminescence, photocurrent, electrical injection current in 

nonmagnetic organic semiconductors. It is generally believed that these magnetic field 

effects (MFE) are related to the spin dependent processes in organic semiconductor. 

However, the origin of MFE is still not well understood. In this dissertation, we 

investigate the underlying mechanism for magnetic field effects on electroluminescence 

(MFEEL) and magnetoresistance (MR) and demonstrate the complete tuning of MFEEL 

and MR based on our theoretical understanding. 

We consider MFE arising from magnetic field sensitive intersystem crossing (ISC) 

and triplet charge reaction. Magnetic field can increase the singlet ratios through ISC, 

accounting for positive MFEEL. Magnetic field modulated ISC strongly depends on the 

electron-hole pair separation distance. MFE can be enhanced by increasing the electron 

hole pair distance through material mixing and interplaying the electric dipole-dipole 

interaction. Meanwhile, two possible mechanisms corresponding for negative MFEEL: 

triplet-triplet annihilation and triplet charge reaction are also discussed. The negative 

MFEEL is achieved through adjusting triplet density charge confinement and 

exciton/charge ratio, which indicates that triplet charge reaction is a dominate process 

accountable for negative MFEEL. 

Significant MR and MFEEL are observed in strong spin orbital coupling iridium 

complex based OLED device after introducing the non-magnetic insulating blocking 

PVA layer. A possible mechanism for this new interface induced MR and MFEEL is 
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proposed based on magnetic field perturbed spin-spin interaction at short capture distance 

of inter-charge carriers. The comparative study of two strong spin orbital coupling 

materials Ir(ppy)3 and Ir(ppy)2(acac) with different electrical dipole moments indicate the 

electric dipole-dipole interaction can change  MR and MFEEL from short distance capture 

based regime  to long distance intersystem-crossing regime. 

At last, we demonstrate the fully tuning sign of magnetic field effect on the 

fluorescence (MFEFEL) and phosphorescence (MFEPEL) by using the ISC, energy transfer 

and spin-spin interaction. In addition, we demonstrate a giant MFEEL (400%) in 

electrochemical cells and attribute this giant MFEEL to Lorentz force driven ion transport 

and Lorentz force dependent diffusion layer thickness through convection.  
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CHAPTER1 INTRODUCTION  
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1.1 Organic semiconductor 

 
Organic materials, such as plastic and rubber, are usually considered as electrical 

insulating materials due to a wide band gap. However, this traditional view point was 

totally challenged by the discovery of the conducting polymer. A. J. Heeger, Alan 

MacDiarm and Hideki Shirakawa changed the conductivity of polymer over the full 

range from insulator to metal by chemical doping or by electrochemical doping on 1970s 

and thus won the Nobel prize in Chemistry 2000. In general, organic semiconducting 

materials can be divided into two categories based on its molecular weight, namely small 

molecular and conjugated polymer. Both small molecular and polymer contain the 

conjugated structure. 

 

Figure 1.1 (a) Schematic view of electronic orbital of conjugated polymer backbone (b) 

Band structure of organic semiconductor  

 
Due to the configuration of alternating single and double bonds along the backbone of 

organic molecular, the Pz orbital of each carbon atom, which is perpendicular to the 

backbone, will overlap each other and form  bond, leading to the delocalized electron 

bond

bond
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cloud with a periodic alternating density over the whole molecule. The overlap of Pz 

orbital forms the bonding  orbitals and antibonding * orbitals, namely the highest 

occupied molecular orbitals (HOMO) and lowest unoccupied orbitals (LUMO)
1,2

.  

 To analog with traditional inorganic semiconductor, the HOMO and LUMO are also 

named as low-energy valence band (VB) and high energy conduction bands (CB). The 

new generation of organic semiconducting materials do not only exhibit the electrical and 

optical properties of metals or semiconductors but also keep the advantage of organic 

material such as light weight and flexible. Therefore, the discovery and development of 

organic semiconductor opens a new area for organic electronics and organic 

optoelectronics, aiming to produce low cost, large scale, flexible semiconductor device, 

such as the organic light emitting diode (OLED)
3,4

, organic photovoltaic (OPV)
5,6

 and 

organic thin film transistor (OTFT)
7,8

etc al.  

  

1.2 Organic light emitting diode (OLED)    

OLED was one of the extensive studied organic semiconductor devices and the first 

successful commercialized organic semiconductor device in flat panel display. Many 

companies such as Kodak, Dupont, Philips, SONY, LG, Samsung et al have 

demonstrated their OLED applications in mobile phone and TV. Recently, Samsung has 

claimed that the OLED will be the trend of next generation display technology. First, let 

us briefly review the history of OLED development. Organic electroluminescence 

phenomenon was first observed in organic single crystal in 1960s. The OLED research 

was initially stimulated by the pioneer work of C. W. Tang
3
 in Kodak, who first achieved 
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the low voltage driving and luminescence efficiency by evaporating appropriate small 

molecules to introduce a novel double-layer structure. Short after, the Cambridge group 

of Friend also demonstrate the first semiconducting polymer: poly (p-phenylene 

vinylene) (PPV) based OLED in 1990
9
. To overcome the insolubility issue of PPV, the 

Heeger group synthesized the soluble PPV derivative, poly (2-methoxy-5-(2’-ethyl-

hexoxy)-p-phenylene vinylene) (MEH-PPV), and form the polymer based OLED by 

using the solution based spin-coating method
10

.  

 

1.2.1 Device structure of OLED 

Next, we introduce the basic device structure of OLED as shown in Figure 1.2. The 

simplest OLED has a sandwiched structure: a light emitting layer suited between two 

electrodes. The transparent indium tin oxide (ITO) film is used as anode for the hole 

injection and light output. Different low work function metals or alloy such as Ca, 

LiF/Al, Mg/Ag are employed as cathode to facilitate the electron injection into light 

emission layer. However, the single layer OLED usually do not exhibit high efficiency. 

The reason is due to the unbalanced electron and hole injection and transport. Therefore, 

people usually construct multilayer device structures to facilitate the electron and hole 

injection, and balance the electron hole recombination, aiming to improve the device 

efficiency.  
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Figure 1.2 Device structure of a typical OLED 

 

1.2.2 Working principle of OLED 

 
In general, the working mechanism of OLED can be divided into four separate steps 

shown in Figure 1.3: (1) charge carrier injection from the electrode (2) charge carrier 

transport under the applied voltage (3) the recombination of electron and hole followed 

by radiative and non-radiative decay of excited states. 

Anode (ITO) 

 
Organic 

Semiconductor 

 

Cathode 



6 
 

 

Figure 1.3 The working principles of OLED. Three different steps: charge injection, 

charge transport and charge recombination 

1.2.2.1 Charge injection 

The typical thickness of OLED is on the order of 100 hundred nm. The electric field 

across the OLED is very high ~10
6 

V/cm even applying several volts bias. Under this 

high electrical field, the holes can overcome the energy barrier between the workfunction 

of ITO and the HOMO of the organic semiconductor, and inject into the HOMO of 

middle organic semiconductor. Similarly, the electron can overcome the energy barrier 

near the cathode and inject into the LUMO of the organic semiconductor material. In 

general, the thermionic injection model or Fowler Nordheim tunneling theory are used to 

quantitively describe the charge injection in OLED. In thermionic injection, the injected 

current can be expressed by Equation 1.1
11

. 

LUM
O

HOM
O

InjectionTransp
ort

Recombine

Emission

h

Anode

Cathode
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                                               )1(0 
TnK

qV

b

F

eJJ                                          (Equation 1.1) 

Where q is the electron charge, V applied voltage, n the ideality factor, and kb the 

Boltzman constant. In Fowler Nordheim tunneling theory, the injection current can be 

calculated by Equation 1.2
12 

                                 






 










dV

B

d

Vc
J B

B /
exp)(

5.1


                                       (Equation 1.2) 

Where C=q
3
/8πh, B=8π(2m

*
)

1/2
/3hq, m

* 
is the relative effective mass, V is applied 

voltage and d is the thickness of the organic film. However, neither thermionic injection 

or Fowler Nordheim tunneling injection are sufficient to describe the current-voltage 

characteristics in OLED. Thus, we still need to consider the charge carrier transport 

process in organic semiconductor film.  

 

1.2.2.2 Charge transport 

After injection, the injected electron and hole will drift under the applied electrical field 

along the HOMO and LUMO of organic light emitting molecules, separately. In contrast 

to the inorganic semiconductor, the mobility of organic semiconductor is usually low <20 

cm
2
V

-1
s

-1
.
 13

 The reason for the low mobility of organic material is due to the distinct 

charge transport mechanism. In inorganic semiconductor, the electron and hole can freely 

move in the conducting band (CB) and valence band (VB) according to band theory. 

However, the charge carriers in organic semiconductor are not free but localized. Charge 

carriers can only consecutively hops among small molecule sites or polymer segment in 

organic semiconductor. Besides, the chemical impurities and structural defects in the 
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organic film can introduce additional energy level and act as different types of charge 

traps, which further reduce the charge carrier mobility in organic film. In disordered 

small molecular systems and polymers, the mobilities are typically between 10
-5 

to 10
-3

 

cm
2
V

-1
s

-1
. Due to the low mobility of organic semiconductor, the current in OLED is 

space charge limited current (SCLC). According to Mott-Gurney principle, the current 

density can be proportional to the square of the applied voltage shown in Equation 1.3
14

 

                                     
3

2

0
8

9

d

V
J                                                        (Equation 1.3) 

Where ε and εo are the relative and absolute permittivity, μ is overall effective charge 

carrier mobility, V is the applied voltage and d is the thickness of the device. 

1.2.2.3 Charge recombination 

Among various types of recombination process, the Langevin type bimolecular 

recombination is dominant in low mobility organic materials. It occurs when the mean 

free path for optical phonon emission λ is much smaller than rC = (e
2
/4πεε0kT) 

Coulombic capture radius. The Langevin bimolecular recombination coefficient can be 

calculated by Equation 1.4
2 

                                 
0

)(






pnq 
                                                         (Equation 1.4) 

where q is the electron charge, μn and μp are the respective mobility of electron and hole, 

ε and εo are the relative and absolute permittivity. Due to the Coulombic attraction, the 

electron and hole will first capture together to form a neutral bounded electron hole pair, 

also namely polaron pair. When the electron and hole are getting closer and locate in a 
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same molecule, they will eventually form a closely bound electron hole pair, namely 

exciton. Due to the larger e-h separation distance, the polaron pairs usually have lower 

binding energy than exciton. It should be noted that the each polaron (electron or hole) 

has a half integer spin, either spin up or spin down. Therefore, there are four possible spin 

configurations for a bounded polaron pair and exciton: S0 (↑↓),, T1(↑↑), T0(↑↓), T-1(↓↓). 

 

Figure 1.4  Schematic representation of the singlet and triplet states 

 

From the above schematic, we can see the singlet exciton has an anti-parallel spin 

configuration while the triplet has a parallel configuration. In most stable organic 

molecules, the HOMO is complete filled and consequently have the singlet character 

(spin 0) in the ground state. Thus, only the transition from the singlet excited states to 

singlet ground state is spin allowed according to the Pauli exclude principle, while the 

transition from triplet excited states to singlet ground state is spin forbidden. The 

relaxation of singlet exciton from high energy excited states to the low energy ground 

state will give the radiative emission and generate the fluorescence. Meanwhile, the 

triplet excitons decay non-radiatively and the released energy will convert into heat 

B B B B

Sm=0 Tm=0 Tm=1
Tm=-1

eh
e

h e

h

h

e
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instead of light emission. According to simple spin statistic, it is generally accepted the 

singlet and triplet exciton ratio is 1:3 under electrical excitation
2,15

. However, the singlet 

triplet ratio is still in controversy since theoretical and experimental studies suggest that 

the singlet/triplet ratio may be beyond 1:3 in some conjugate polymer based 

OLEDs
16,17,18,19

. 

1.2.3  Efficiency of OLED 

Based on above discussed light emission processes, the internal and external quantum 

efficiency of OLED can be given by Equation 1.5 and Equation 1.6 

                                          qst int
                                                        (Equation 1.5) 

            cext  int                                                    (Equation 1.6) 

Where γ is exciton formation fraction of electron hole recombination, χst is the singlet 

exciton fraction, q is the efficiency of radiative emission from the singlet exciton and ηc 

is the light outcoupling fraction. Therefore, the internal quantum efficiency ηint of 

fluorescence based OLED is less than 25% limited by spin conservation. Without the use 

of any light out-coupling structure, the ηc is around 20% estimated by Fresenl loss(1/2n
2
), 

assuming reflect indices of organic materials n is 1.6. By multiplying all the factor 

together, the external quantum efficiency of fluorescence OLED is no more than 5%. 

Based on the equation, it should be noted that singlet fraction is the most critical factor to 

limit the final efficiency of OLED. In order to get high efficiency OLED, researchers are 

trying to make full use of the 75% triplet, which is usually wasted by the non-radiative 

emission due to strong exciton-phonon coupling. As we pointed out before, the decay of a 

triplet exciton is generally spin forbidden because of the spin conservation requirement. 
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However, this spin forbidden transition is partially allowed by introducing heavy metal 

complex due to its strong spin orbital coupling strength. In this case, although the decay 

of the triplet state is still slow, the triplet can emit the phosphorescence. Baldo et al. 

successfully use this concept and demonstrated the high efficiency phosphorescence 

based OLED by doping the heavy metal complex PtOEP into a charge transport host
20

. 

Further studies shows that the internal quantum efficiency of phosphorescence OLED can 

reach nearly 100% with balanced electron hole injection and exciton confinement 

structure
21,22

. Except utilizing phosphorescent materials, investigators are trying to use 

alternative methods to control the singlet and triplet ratio in OLED. One exciting idea is 

to inject spin polarized electrons and holes from ferromagnetic electrodes to form singlet 

or triplet preferentially, which expect to get  50 % singlet excitons compared to 25% in a 

normal OLED
23

.  

 

1.3 Organic spintronics and magnetic field effects in organic 

semiconductors 

In fact, how to control spin injection and spin transport is also the fundamental issues for 

spintronics. In comparison with traditional electrons, spintronics do not only control the 

charge to store or transport information, but also manipulate the electron spin degree of 

freedom.  

1.3.1 Spin orbital coupling and hyperfine interaction 

In general, there are two important spin flipping mechanisms to change the electron spin 

configuration in solid state films. One is the spin orbital coupling (SOC). SOC describes 
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the interaction between the electron’s spin and its orbital motion around the nucleus 

shown as in Figure 1.5. The magnetic moment μcan interact with the magnetic field B 

generated by the orbital motion.  

 

Figure 1.5  Schematic representation of the spin orbital coupling and hyperfine 

interaction 

 
The spin orbital Hamiltonian can be expressed by Equation 1.7 
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Where ln , is the SOC constant, n is the principle quantum number, l is the orbital angular 

momentum, L is the orbital momentum operator, S is the electron spin operator, βe is the 

Bohr magneton, Z is the nuclear charge and r is the radius between electron and nucleus 

It should be noted that SOC strength is proportional to the power 4 of atomic number of 

the nucleus in hydrogen like atoms. Therefore, the heavy atom can lead to strong SOC. 

NucleusElectron

NucleusElectron

N

S

N

S

N

S

N

S

Spin orbital coupling Hyperfine interaction 



13 
 

The other spin flip channel is hyperfine interaction as shown in Figure 1.5.  Hyperfine 

interaction is the interaction between proton nuclear spin and electron spin.  The hyper 

fine Hamiltonian is defined as Equation 1.8: 

SIaH HFI



                                            (Equation 1.8) 

Where a is the hyperfine interaction constant, I is the nuclear spin operator and S is the 

electron spin operator. Many efforts have been put into seeking new materials for 

spintronics. Compared with commonly used inorganic materials in spintronics, organic 

semiconductor material appeals to be a promising candidate because the organic material 

theoretically has long spin relaxation times and long spin diffusion length compared with 

other semiconductor materials. The reason for this long spin diffusion length is because 

most organic materials are composed of light weight atoms such as H, O with weak spin 

orbital coupling (SOC) strength. Lighter atoms have weaker spin orbital coupling. 

Consequently, the electron spin orientation can be sustained in organic semiconductor 

material. The combination of organic electronics and spintronics also open a new 

research field: organic spintronics
24,25

.  

1.3.2  Magnetic field effect in device with magnetic electrode 

Organic spintronics normally employ ferromagnetic electrodes for spin-injection. Xiong 

et al first demonstrated the giant magnetoresistance (GMR) in vertical organic spin valves 

device
26

. They employed two ferromagnetic electrodes La0.67Sr0.33MnO3 (LSMO), Cobalt 

and organic material Alq3 as space layer. The thickness of middle organic spacer is over 

100 nm. They observed the large device resistance change when switching the orientation 
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of the magnetization of two ferroelectrodes. The GMR result gives direct experimental 

evidence that the organic semiconductor materials have long spin diffusion length.  

1.3.3  Magnetic field effects in device with nonmagnetic electrode 

In fact, even before using ferromagnetic electrodes to inject spin polarized charge carriers 

into organic semiconductors, investigators have already carried a lot of studies on 

magnetic field effects on kinetics of chemical reactions
27,28

. Recently, there are growing 

interests in the magnetic field effects in organic semiconductor devices with nonmagnetic 

electrodes. Frankevich found that the photocurrent in PPV can be enhanced to a few 

percentages under an external magnetic field
29,30

. Ito studied the magnetic field effects on 

the charge transfer transient photocurrent and fluorescence in a doped photoconductive 

polymer films
31

. Kalinowski reported that the electroluminescence intensity and current 

of tris-(8-hydroxyquinolinato) aluminum (III) (Alq3) based OLED can be increased up to 

5% and 3% respectively by increasing the magnetic field to 300 mT
32

. Almost at the 

same time, Wohlgenannt group discovered a new large room temperature 

magnetoresistance phenomenon, namely as organic magnetoresistance (OMAR), both in 

the polymer and small molecule based organic semiconductor
33,34,35

. Further extensive 

studies show that OMAR is controlled by the voltage, temperature, the thickness of the 

semiconducting layer and the device structure
36,37

. Different with the organic spin valve 

device, OMAR does not require the ferromagnetic electrode and can be easily observed at 

room temperature and high voltage bias. The question naturally arises “why a low 

magnetic field can change the photocurrent, photoluminescence, electroluminescence and 

electrical injection current in nonmagnetic organic semiconducting materials with 
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nonmagnetic electrode.” It is generally believed that these magnetic field effects (MFE) 

are related to the spin dependent processes in organic semiconductor. However, there are 

still many controversies about the origin of these magnetic field effects. Many different 

models have been proposed to explain these MFE results. 

1.4 Possible mechanisms of magnetic field effects 

In general, there are three major models for the observed MFE. The first one is magnetic 

field sensitive intersystem crossing (ISC) in the polaron pair before the exciton 

formation
32,37,38

. The second model considers the spin dependent exciton reaction after 

the exciton formation. These magnetic field sensitive processes include the exciton 

exciton reaction and exciton charge reaction
39,40,41

. It should be noted both magnetic field 

sensitive ISC and reaction occurs at the excited states. The third model is bipolaron 

model
42,43,44

. In contrast to other two models, the bipolaron model attribute the MFE to 

the spin dependent transport, which does not necessarily require the presence of the 

excited states.  

1.4.1 Magnetic field sensitive ISC 

First, we introduce magnetic sensitive intersystem crossing process. When injected 

electron and hole reach the Coulombic capture radius, the free electron and hole first 

proceed through a Coulombic correlated polaron pair. Both spin orbital coupling (SOC) 

and the hyperfine interaction (HFI) can flip the electron spin orientation, and causes the 

ISC between singlet state and triplet polaron pair. At zero magnetic field, the singlet and 

triplet polaron pairs are degenerate because of the negligible exchange energy between 
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the singlet and triplet polaron pair due to large electron hole separation distance. When an 

external magnetic field is comparable to the internal magnetic interaction (SOC and 

hyperfine interaction) strength, triplet polaron pair can be split into three states(
3
PP+, 

3
PP0, 

3
PP0) due to the external Zeeman effect. In this case, only 

3
PP0 is convertible with singlet 

1
PP0, and consequently reduce the spin mixing between singlet states and triplet states. 

Since the conversion from the singlet to triplet polaron pair is partially blocked, magnetic 

field can enhance the singlet / triplet polaron pair ratio and subsequent final singlet 

exciton population, leading to a positive magnetic field on the electroluminescence 

(MFEEL)
32

.  Furthermore, this positive MFEEL also indicates a new method to improve the 

fluorescence efficiency of OLED. 

 

Figure 1.6  Magnetic field sensitive ISC at the polaron pair state 

 
It has been also known that singlet states have larger dissociation rate compared to triplet 

states because of its ionic nature
19,32,45

. Therefore, the increased singlet state density, 

caused by the magnetic field modulated ISC, will lead to the increase of device current, 
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generating negative (- MR). Similarly, magnetic field sensitive ISC can also explain the 

enhancement of photocurrent very well, namely MFP. 

1.4.2 Spin dependent exciton reaction 

 
Next, we discuss the spin dependent exciton reaction. After electrons and holes condense 

into tightly bounded exciton, exciton will migrate in organic semiconductor describe by a 

diffusion controlled process. During this process, Exciton will evitably collide with each 

other, or with the free electron and trapped charge, leading to exciton-exciton interaction 

and exciton charge interaction. In principle, both singlet and triplet can be involved in the 

exciton reaction. Due to the longer lifetime of triplet exciton, the triplet-triplet 

annihilation (TTA) and triplet charge reaction (TCR) are dominant processes in organic 

semiconductor. In fact, these two annihilation mechanisms are known as major energy 

loss channels in limiting the final efficiency of OLED and organic laser working at high 

excitation densities. Moreover, it was reported that TTA and TCR are spin dependent 

processes in which the reaction constant can be modulated by the external magnetic 

field
46-49

. TTA can be described by the following Equation 1.9:  

                                                                                                     (Equation 1.9) 

Two triplet exciton collide with each other, and fuse into a singlet S at the excited states 

and a S0 in ground state. Experimentally, the creation of singlet S will exhibit delayed 

fluorescence. Here, k1 is the formation rate of a intermediate (T..T) pair state and k2 is the 

TTA rate generating delayed fluorescence. Accordingly, k-1 and k-2 are their dissociation 

rates. Depending on the relative spin orientation, intermediate pair state (T..T) will have 

T + T (T..T) S +S0+ h
k1 k2

k-2k-1
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nine possible spin states, a pure singlet, two triplet and five quintet. An external magnetic 

field can mix or split these possible spin states, and consequently change the annihilation 

rate constant. Since delayed fluorescence is proportional to γTTA, this magnetic field 

modulated rate constant can be well reflected from the intensity change of delayed 

fluorescence. Recently, Belaid and Xiong et al use this theory the explain the observed 

magnetic field effect on electroluminescence in OLED
50,51

.  

Similarly, triplet charge reaction can be expressed by Equation 1.10 as follows: 

                                                                                                               (Equation 1.10)    

 Triplet can interact with paramagnetic centers with spin ±1/2 (doublet) such as free 

charge or trapped charge to annihilate a singlet (S0) at the ground state and releasing a 

new free charge from trapped charge. Here, k1 is the formation rate of a intermediate 

singlet doublet (T..D) pair complex, k2 is the dissociation rate into a new singlet doublet 

pair and k-1 is the dissociation rate back into original singlet doublet pair. Only the 

intermediate pair with doublet spin configuration can undergo this reaction. An external 

magnetic field can modify the singlet fraction in the intermediate pair, and consequently 

change the overall reaction constant. The reaction constant is suppressed with the 

increasing magnetic field. This theory was first proposed by Merrifield
47

. Recently, Desai 

et al use this model to explain the OMAR in organic semiconductor
39

. He considered the 

quenching of the triplet states or scattering of the free carrier caused by triplet charge 

reaction can lead to the reduction of carrier mobility, and consequently generate 

positive(+MR). Combined with magnetic field sensitive ISC theory, magnetic field can 

T + D ±1/2

k1

k-1

(T..D±1/2)
k2

S0
* + D±1/2
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reduce the triplet concentration and thus increase the mobility of charge carriers, 

generating negative (-MR). 

1.4.3 Bipolaron model 

The last bipolaron theory is proposed by the Bobbert and Wohlgenannt
42,43

. When charge 

carriers hops form site to site in disordered organic semiconductor, the electron and hole 

can also form the same polarity electron-electron (e-e) pair or hole-hole (h-h) pair, 

namely bipolaron, because of strong electron-phonon coupling and energy penalty for 

having a doubly occupied sites. If two charges have the same spin, they can not occupy 

the same site due to strong on-site exchange effects, which is also called as spin blocking. 

Oppositely, two charges with different spins can form bipolaron, allowing carrier to pass 

as shown in Figure 1.7.  

 

Figure 1.7  Schematic representation of bipolaron model 

 
In the absence of magnetic field, the bipolaron with triplet configuration can partially mix 

the singlet character induced by the local hyperfine interaction. As an external magnetic 

Spin allowed (Singlet)
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field is applied, the triplet pair is spilted into three different states (T0, T+, T-) due to larger 

Zeeman energy compared to hyperfine interaction. In this case, the spin blocking is 

increased, which gives positive (+MR). On the other hand, when the bipolarons are 

formed, there are less free charges to carry the current. The reduction of bipolaron can 

correspond to a increase in the charge carrier mobility, which gives a negative (-MR). 

Whether MR shows positive or negative depends on the density of free electrons and 

holes and the branching ratio, which describe the ability of a charge go through the 

blocking site.  

1.5 Outline of this dissertation 

 
So far, no one existing theory can explain all the observed magnetic field effects very 

well. For example, the origin of magnetic field effects on resistance is still highly 

debated. Therefore, it needs re-examine these magnetic field sensitive processes and 

indentify the underlying mechanism of magnetic field effect on the electroluminescence 

and magnetoresistance. Moreover, the observed magnetic field effects may be composed 

of multiple components, which come from different contributions from separate 

mechanisms
52

. My research will further elucidate the critical factors that determine the 

magnetic field effect on the electroluminescence and current in non-magnetic OLED. 

Understanding these magnetic effects can form a unique experimental tool to investigate 

various excitonic processes, the charge injection and transport involved in the OLED and 

organic photovoltaic, which delivers the critical understanding to develop advanced 

OLED, solar cell materials and devices. Furthermore, based on the understanding of 
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magnetic field phenomenon, we can intentionally control the amplitude and sign of 

MFEEL and MR, leading to a new branch of organic spintronics: organic magneto-

optoelectronics with nonmagnetic active material and nonmagnetic electrode.  

Based on the research progress in this field, my work will focus on the following issues. 

(1) Examining the e-h pair role in magnetic field effects on photoluminescence (MFEPL) 

and electroluminescence (MFEEL) (2) Investigating the origin of negative magnetic field 

effect on the electroluminescence in OLED (3) Studying interface related MFEEL and MR 

(4) Electrical dipole-dipole interaction effect on MFEEL and MR (5) Simultaneously 

tuning the magnetic field effect on the fluorescence and phosphorescence (6) Exploring 

the large magnetic field effect in organic semiconductors. 

This dissertation includes eight chapters. Chapter 1 introduces the fundamentals for 

organic semiconductor materials and organic light emitting diodes devices, organic 

spintronics, various magnetic field effects in organic semiconductors and the review on 

existing major models for these magnetic field effects. Chapter 2 covers the organic 

semiconductor devices fabrication and magnetic field measurement on the 

photoluminescence (MFEPL), electroluminescence (MFEEL), injection current (MR or 

MC) and photocurrent (MFP) in detail. Chapter 3 presents our new understanding of 

MFEPL and MFEEL on a selected exciplex system based on magnetic field dependent 

intersystem crossing (ISC). The relationship between positive magnetic field effect and 

electron-hole pair separation distance will be addressed. Based on the theoretical 

prediction of magnetic field sensitive ISC, we experimental enhance the positive MFEPL 

and MFEEL by increasing the electron-hole pair separation distance. Chapter 4 explores 
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the possible mechanism for negative MFEEL observed in organic semiconductor devices. 

There are two existing mechanisms: triplet-triplet annihilation (TTA) and triplet charge 

reaction (TCR) to explain negative MFEEL. MFEEL can be tuned to negative by increasing 

the triplet density, confining the charge carrier and adjusting the balance degree of 

bipolar injection. Our experimental results and theoretical calculation support that TCR 

accounts for negative MFEEL. Chapter 5 reports the significant interface induced MFEEL 

and MR in strong spin orbital coupling iridium complex based OLED devices by 

introducing the non-magnetic insulating PVA layer. A possible model will be proposed to 

explain this interface based MC and MFEEL based on magnetic field perturbed spin-spin 

interaction of inter-charge carriers at short capture distance. Chapter 6 compares the 

distinct MFEEL and MR from two heavy metal complex Ir(ppy)3 and Ir(ppy)2(acac), 

which have strong spin-orbital coupling but different electrical dipole moments. The 

electrical dipole-dipole interaction effect on the MFEEL and MR will be further 

investigated in this chapter. Chapter 7 presents the tuning of magnetic field effect on the 

fluorescence (MFEFEL) and phosphorescence (MFEPEL) simultaneously by adjusting the 

device structures. The sign of MFEFEL and MFEPEL can be either in the same direction or 

in the opposite direction, which is against previous proposed formation based MFE. The 

possible mechanism to explain the relative sign of MFEFEL and MFEPEL will be discussed. 

Chapter 8 reports the giant magnetic field effects (400 %) on the electroluminescence in 

electrochemical cells. The mechanism correspond to this giant magnetic field effect will 

be elucidated. Chapter 9 will summarize the whole dissertation. 
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CHAPTER 2 

DEVICE FABRIACTION AND MAGNETIC FIELD EFFECTS 

MEASUREMENT 
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In this chapter, we introduce the detailed fabrication procedures of organic semiconductor 

devices. The magnetic field effects measurement on the device injection current, 

photoluminescence, electroluminescence and photocurrent were also described in detail. 

At last, we show a series of universal magnetic field effects curves from a widely used 

semiconductor  polymer:  polyfluorene (PFO) system. 

2.1  Device fabrication  

 
The organic semiconductor materials used in our experimental are purchased 

commercially and used as received. All organic materials were carefully sealed in the 

desiccators to avoid the degration caused by the oxygen and humidity.  Before the every 

experiment, we weigh the materials by using high precision balance (Ohas Analytical 

plus) and store them in clean vials. Our magnetic field sensitive organic semiconductor 

devices have the similar sandwiched structures like normal OLED. The device fabrication 

follows the standard procedures of OLED device fabrication including the substrate 

cleaning, organic active film formation and electrode deposition. 
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Figure 2.1  Procedures for device fabrication and characterization 

 

2.1.1 ITO substrate preparation and cleaning 

We used the customized patterned ITO glass substrate with the dimension 15 mm × 15 

mm in our experiment. ITO glass is a layer of transparent conductive indium tin oxide 

film (In2O3 90%:SnO210%) coated on the thin glass, which is normally used as the device 

anode. The thickness of ITO film is around 200 nm with the average roughness 2 nm. 

The electrical and optical measurement shows the electrical square resistance is about 15 
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Ω/□ and the optical transmission is over 85 %. To facilitate electrical connection in 

further magnetic field measurement, we first bond the copper wires to the ITO substrate 

with the thermosetting silver paste after heating the substrate 20 minutes at 160 ℃. The 

prepared ITO substrate is shown in Figure 2.2 (a) 

 

Figure 2.2 (a) ITO substrate with copper wiring (b) ITO coated with organic thin film (c) 

A completed device with metal electrode 

 
Next, ITO substrate is cleaned by detergent for 15 minutes ultrasonic bath, followed by 

deionized water, acetone, 2-Propanol and Chloroform ultrasonic cleaning for 15 minutes 

for every step.  After the solvent cleaning, the ITO was dried in the vacuum oven. UV-

Ozone surface treatment is performed to clean the substrate from the remaining organic 

solvent. Careful ITO cleaning and surface treatment is very critical to the device 

performance. If the ITO substrate is not clean, the device is very easy to be electrical 

short circuit due to the formation of pinholes and filaments in the film. 

(a) (b) (c) 
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2.1.2 Active organic thin film formation 

We deposited functional polymeric thin film and small molecular thin film by spin 

coating and vacuum thermal evaporation, respectively. First, we weighed the 

semiconductor polymer based on designed solution concentration. Then, polymer 

materials were dissolved in chosen organic solvent to form uniform solution. Figure 2.3 

shows the different semiconductor polymer solutions used in our experiments. 

 

Figure 2.3  Semiconductor polymer solutions with different energy bandgap 

Further, the solution was dropped on the pre-cleaned ITO substrate. When we start the 

spin coating recipe, the spin coater will rotate at high speed and the solution will spread 

to form a uniform thin film due to centrifugal force. The formed organic thin film was 

shown as Figure 2.2 (b).  Depending on the solution concentration, acceleration time, 

spin speed, spin time and solvent selected, we can get desired thickness organic thin 

films. In general, the higher concentration of solution, the shorter accelerate time and spin 

time, the lower spin speed, lower boiling point solvent will give thicker film. The film 

thicknesses were measured by utilizing Veeco diCaliber (004-1001-000) Atomic Force 

Microscope (AFM). The whole spin coating process was done in a glove box under 

nitrogen protection. 
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Small molecular materials cannot be directly spin cast as normal polymer materials due 

to its low viscosity. We either blend small molecular materials into some inert polymer, 

and then do the spin coating as well as polymer materials. Or, we directly put the small 

molecular powers in the evaporation boat and transferred into the vacuum chamber of 

evaporating system for thermal evaporation. The ITO substrates were fixed on the 

substrate holder, which is above the evaporation boat. When the vacuum of chamber was 

pumped below 2×10
-6 

Torr, we gradually increase the current driven through the boat 

slowly while monitoring the thickness monitors. As a steady evaporation rate (1-3 

Angstroms/s) is achieved, we open the substrate shutter and start deposition process. 

After the desired thickness is achieved, we close the shutter and shut off the current. We 

repeat this step until finish multi-layer organic films evaporation. 

2.1.3 Deposition metal electrodes 

After we finished active organic film deposition, we use a shadow mask to define the 

electrode pattern. The defined device area is 0.05 cm
2
. We transfer assembled substrates 

holder and put the high purity metals (aluminum wires, calcium power) into the 

evaporator boat for thermal evaporation. The thermal evaporation of electrode is similar 

to the organic film deposition, except that much higher temperatures are required. A 

typical 50 nm thick of aluminum electrode was capped on top of the electrode to finish 

the whole device fabrication processes. A completed device is shown as Figure 2.2 (c). 
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2.2  Magnetic field effect measurements  

After the device fabrication is finished, we need to take a series of measurement to test 

optical, electrical, magnetic properties of devices. Except the normal characterizations of 

organic semiconductors such as absorption, spectra, current-voltage-light intensity and 

efficiency measurements, we build the novel magnetic field measurement setup. With 

this setup, we are able to investigate the magnetic field sensitive photoluminescence, 

photocurrent, electroluminescence and current in organic semiconductor devices such as 

OLED and organic photovoltaic (OPV). The setup of magnetic field measurement is 

shown in Figure 2.4. 

 

Figure 2.4  A schematic of magnetic field effects measurement setup 

 

The devices were positioned in the middle of two poles of an electrical magnet for 

magnetic measurement. The magnetic field direction was parallel to the device plane. The 
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magnetic field strength was controlled by the current driven by a Sorensen DLM80-7.5 

power supply. The magnetic field strength is proportional to the provided current and the 

exact value was measured by a Hall gaussmeter placed close to the sample. 

In this thesis, the magnetic field effect on the photoluminescence, electroluminescence, 

injection current and photocurrent is defined as MFEPL, MFEEL, MR (also namely MC) 

and MFP, respectively, shown in Equation 2.1-2.4. 
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Where EL, PL, R, I, PC are electroluminescence intensity, photoluminescence intensity, 

resistance, injection current, photocurrent, respectively. B and 0 represent with and 

without an external magnetic field.  

In MFEEL measurement, we operate the device at constant current mode in which a 

constant current was applied on the device by a Keithley 2400 Source meter. The 

electroluminescence was conducted through an optical fiber to a SPEX Fluorog 3 PMT 

detector when both the intensities and spectra can be recorded. We monitor the 

electroluminescence intensity change of organic semiconductor devices under different 

magnetic field. In MFEPL and MFP measurement, the mono wavelength excitation light 



31 
 

was supplied by the SPEX Fluorog 3 spectrometer. Meanwhile, we recorded the 

photoluminescence intensity by using the PMT detector and measured the photocurrent 

by using the Keithley 2400 Source meter. For MR or MC measurement, the devices were 

measured at dark condition which can remove the potential MFP influence. MR or MC 

measurement was usually operated at constant voltage mode in which a constant voltage 

was applied on the device. Similar to MFEEL measurement, we use the Keithley 2400 to 

monitor the current change under different magnetic field. 

We investigated magnetic field responses for many widely used non- magnetic organic 

semiconductor materials including both polymers and small molecules. Most of organic 

semiconductors show the significant magnetic field response, which indicates that 

magnetic field response is a universal phenomenon, not limited to a specific material. As 

an example, Figure 2.5 shows the magnetic field effects on a polyfluorene (PFO) polymer. 

 

Figure 2.5 Magnetic field response of ITO/PEDOT/PFO/Al OLED 
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MFEEL was measured at constant current density (20 mA/cm
2
) and MR was measured at 

constant voltage 12 V targeting at 20 mA/cm
2
. We note that the electroluminescence 

intensity increases dramatically at low magnetic field (<50 mT) and then slowly saturates 

after the 50 mT. Meanwhile, MR decreases at low magnetic field followed by the slow 

saturation at higher magnetic field. Similarly, the MFP exhibits the same trend as well. 

Therefore, it is natural to consider that these magnetic field responses may share the same 

origin. Meanwhile, we should also note the difference between them. In investigated 

systems, positive MFEEL were frequently found. No sign change was observed when we 

adjust the applied voltages.  While, MR can easily change its sign from the negative and 

positive value, depending on the driving voltage, measurement temperatures and device 

structures. In addition, it should be noted that the photoluminescence intensity is not 

sensitive to applied magnetic field shown in Figure 2.5. We will further discuss the 

reason for this negligible MFEPL in next chapter. 
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CHAPTER 3 

THE ROLE OF ELECTRON-HOLE PAIR IN MAGNETIC FIELD 

EFFECTS 
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3.1 Abstract 

 
In this chapter, we investigate the magnetic field effect on the photoluminescence 

(MFEPL) and electroluminescence (MFEEL) in a TPD/BBOT exciplex system. The 

TPD/BBOT exciplex show the significant MFEPL , while pristine organic semiconductor 

materials normally exhibit negligible MFEPL. The experimental results indicate the 

electron-hole pair distance is crucial to the magnetic field effects through magnetic field 

sensitive intersystem crossing. Moreover, MFEPL and MFEEL can be enhanced by 

increasing the electron-hole separation distance through convenient materials mixing and 

adjusting the electrical dipole-dipole interaction in the organic semiconductor films.  

 

3.2 Introduction 

 
Although different models have been proposed to explain newly observed organic 

magnetoresistance (MR) phenomenon, the origin of MR is still in puzzle. The key 

difference between e-h pair, exciton reaction and bipolaron model is first two models 

require the formation of singlet and triplet electron-hole pair and subsequent exciton 

formation, while, the bipolaron model is a single carrier model in nature, which doesn’t 

require the formation of e-h pair. Thus, indentifying the e-h pair role in magnetic field 

effects is necessary to distinguish the different MR models.  

In order to distinguish the bipolaron with other two models, a straightforward way is to 

construct single carrier device by modifying the device architecture. Gärditz et al. built 

the Alq3 based electron only device in which no significant MR is observed
53

. Further, 
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Desai also found that the MR was only observed above the light turn on voltage of the 

Alq3 based device
40

. Before the light turn on voltage, the device can be regarded as 

unipolar in which only one type of carrier exists. After the turn on voltage, bipolar 

injection occurs in the device and injected electron hole will recombine into exciton 

indicated by the light emission. Recently, Yusoff built the single carrier device for 

electron only and holy only device, making use of the n-type silicon and p-type silicon to 

filter the electron and hole, respectively
54

. MR was absent in those two single carrier 

devices. Those experiment results strongly support that the recombination of electron-

hole pair is the necessary condition for the presence of MR. However, Nguyen also built 

the single carrier device by modifying the injection electrodes of the device
55

. No MR 

was observed in electron only device, but a clear MR is observed in hole only device with 

Au as the cathode. Meanwhile, the largest MR is observed in the well balanced bipolar 

injection device. The experiment results from different groups seem contradict to each 

other, which makes it difficult to draw a convincing conclusion. The question behind 

these results is whether these devices are true single carrier devices as expected. Due to 

the electrode surface energy reduction caused by surface dipole moment, some minority 

carriers can still be unexpected injected into device.  

Except for constructing the unipolar device, another alternative way is to use magnetic 

field effect on the photoluminescence (MFEPL) to investigate the electron-hole pair role 

in the magnetic field effects. Under photoillumination, the singlet exciton is directly 

formed followed by the various decay channels such as the intersystem crossing between 

singlet and triplet state, dissociation into free electron and hole, radiative and non-
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radiative emission to the ground state. In contrast to electroluminescence process, 

photoluminescence process do not experience charge transport process and lacks the 

evolution from loosely bounded electron hole pair state to the final closely bounded 

exciton state, which can exclude the influence of charge transport. We have investigated 

the MFEPL for a variety of pure organic semiconductor materials. In all these systems, no 

significant MFEPL was observed compared to the significant magnetic field effect on the 

electroluminescence (MFEEL). This experimental result gives us an intuitional hint that 

magnetic field effect is closely correlated to the electron hole pair. In order to test this 

assumption, we introduce a specific type of inter-molecular excited states: exciplex. 

Unlike the Frenkel exciton that electron and hole are located in the same molecular, an 

exciplex is formed by inter-molecular electron transfer between ground donor (D) and 

excited acceptor (A) located at different molecular sites.  

3.3 Experimental 

 
Organic semiconductor materials N, N’-diphenyl- N, N’-bis (3-methylphenyl) -1, 1’-

biphenyl-4,4’- diamine (TPD) and 2,5-bis(5-tertbutyl-2-benzoxazolyl) thiophene (BBOT) 

are selected to serve as donor (D) and acceptor (A). TPD is a commonly used hole 

transporting material in OLED, with the LUMO 2.2 eV and HOMO 5.4 eV. BBOT is a 

green emitter with good electron transport ability with the LUMO 3 eV and HOMO 5.8 

eV. The insulating polymers poly(methyl methacrylate) (PMMA) and polystyrene (PS)are 

used as a matrix to facilitate the formation of the thin film. High polar camphoric 

anhydride (CA) molecule with permanent dipole moment of 11D is used to introduce 
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intermolecular dipole-dipole interaction. All molecular structures of TPD and BBOT are 

shown in Figure 3. 1. Those materials TPD, BBOT, CA and PMMA or PS are blended in 

desired molar ratio and then dissolved in chloroform solvent. Subsequently, blended 

solutions are spin cast on the precleaned ITO glass to form the films about 100 nm 

thicknness. Final Al electrode of 40 nm was deposited by using high-vacuum thermal 

evaporation (10
-6

 Torr).The photoluminescence and electroluminescence of organic films 

ware characterized by a Jobin Yvon Fluorolog-3 spectrometer with an optical fiber 

connection to the OLED placed in a magnetic field generated by an electromagnet. The 

MFEEL was measured at constant current condition 20 mA/cm
2
.  

  

Figure 3.1  Chemical structures of materials used in the experiment 
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3.4 Results and Discussions 

 

3.4.1 Magnetic field effect on the photoluminescence (MFEPL) of Exciplex 

We measure the photoluminescence spectra of TPD, BBOT and TPD:BBOT composite 

film as shown in Figure 3.2. The photoluminescence from TPD and BBOT is located at 

400 nm and 440 nm, respectively. However, the TPD: BBOT composite film shows a 

new broad spectrum with the peak emission at 525 nm, which is apparently different with 

the emission from TPD and BBOT single component.  

 

Figure 3.2  (a) Photoluminescence spectra of TPD, BBOT, and TPD/BBOT exciplex 
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and BBOT
56

. The formation mechanism of exciplex can be understood by the energy 

diagram shown in the Figure 3.3.  

 

Figure 3.3 (a) Energy band diagram and TPD/BBOT exciplex formation at the interface 

 
The injected electron is blocked by the high LUMO of TPD at TPD/BBOT interface. The 

exited BBOT molecule will interact with the ground TPD molecule to form 

intermolecular excited states: exciplex. Furthermore, we show the magnetic field 

measurement on the photoluminescence of exciplex in Figure 3.4.  Interestingly, the 

TPD:BBOT exciplex system shows a clear positive MFEPL with the amplitude of 1.5 %. 

In contrast, both TPD and BBOT pristine film show a negligible MFEPL. The question 

naturally arises why MFEPL can only be observed in exciplex system. It should be noted 

that the exciplex is one type of intermolecular excited states. In this case, the electron and 

hole are located in two neighboring molecules and consequently the electron-hole 

separation distance is larger than the intramolecular excited states, in which the electron 

and hole are located in a single molecule. 
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Figure 3.4  Magnetic field effect on the photoluminescence intensity (MFEPL) of pure 

TPD, BBOT and TPD/BBOT exciplex with different blend ratio 

 

As shown in Figure 3.4, the MFEPL of exciplex (TPD: BBOT 1:1) can be further 

increased from 1.5 % to 2% by reducing the exciplex:PMMA ratio from 1:1:2 to 1:1:4. 

Here, PMMA also act as a spacer to separate the TPD and BBOT molecules. Reducing 

the exciplex concentration in PMMA matrix is equivalent to increase the intermolecular 

distance of exciplex. Therefore, we can consider that the large electron hole separation 

distance is helpful to generate magnetic field effect in organic semiconductor. 
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3.4.2 Electron hole separation distance dependent ISC crossing  

Next, we investigate why adjusting the electron-hole separation distance can significantly 

impact the magnetic field response from organic semiconductor. In principal, polaron 

pair, exciplex (or charge transfer state) and exciton can be treated as the electron hole 

pairs with different electron hole separation distance. In exciton state, the electron and 

hole is usually located in a single molecule with the smallest electron hole separation 

distance, typical less than 1 nm. The electron and hole is closely bounded together 

through strong Coulombic attraction. In exciplex state, the electron hole is located at 

neighboring molecules and can be took as close contact pair with medium electron hole 

separation distance. In polaron pair state, the electron and hole is usually located in 

different molecules. Electron hole separation distance can be several times the nearest-

neighbor intermolecular distance (4nm-10nm). Therefore, different electron-hole 

separation distance can lead to two major differences in molecular interaction. The first 

one is the binding energy generated by long range Coulombic attraction . The Coulombic 

attraction is expressed by e
2
/4πεr, which is reciprocal proportional to the electron hole 

separation distance. Therefore, the exciton has typical large binding energy around 1 eV 

57
, compared to small binding energy 0.1 eV

58 
of polaron pair. The second is the energy 

difference ΔEST between singlet and triplet state caused by short range spin exchange 

interaction. Spin exchange interaction J 
59

is defined as equation 3.1 

                                                    L

r

eJJ 2
0



                                        (Equation 3.1) 

where J0 is the coupling matrix, r and L are electron-hole separation distance and charge 

location radius, respectively. Spin exchange interaction exponentially decays with the 
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increasing electron-hole separation distance. In excition state, ΔEST can be as large as 0.7 

eV
60

 when electron and hole are closely located in a single molecule. In polaron pair 

state, ΔEST becomes negligible with the increasing electron-hole separation distance
29

.  

It has already been known that an external magnetic field can change the singlet and 

triplet ratio by modifying intersystem crossing (ISC). In order to make magnetic field 

sensitive ISC happen, two necessary conditions 
61

should be satisfied shown in Figure 3.5. 

 

Figure 3.5 Schematic representation two  preconditions of magnetic field dependent  

Intersystem crossing (ISC) 
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the second condition, an external magnetic field is larger than negligible ΔEST in polaron 

pair state, but much smaller than the large ΔEST in excitonic state. Consequently, an 

external magnetic field can change the ISC in polaron pair state, while has little influence 

on the ISC in excitonic state. This theoretical prediction is consistent with our 

experimental observation that significant magnetic field effect on electroluminescence 

(MFEEL) is easily observed in many organic semiconductors, while it is difficult to 

observe MFEPL because polaron pair state with negligible ΔEST is absent under photo 

excitation. Moreover, magnetic field sensitive ISC also explains well why we can observe 

clear MFEPL in exciplex system. The electron-hole separation distance in the exciplex is 

larger than that of the exciton, and consequently has smaller ΔEST. In this case, a 

sufficient external magnetic field is able to reduce the energy gap between singlet and 

triplet, and initiate the ISC. Specifically, reducing the singlet and triplet energy gap ΔEST 

will facilitate the transition from triplet to singlet state, and consequently increases the 

singlet ratio. Correspondingly, the increased singlet excited states density will contribute 

to more fluorescence emission. As a result, magnetic field sensitive ISC can increase the 

photoluminescence intensity, exhibiting a positive MFEPL of exciplex.  
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Figure 3.6 Magnetic field effect on the electroluminescence intensity (MFEEL) of 

ITO/PEDOT/TPD:BBOT:PMMA/Al at different exciplex blend ratio 

 
Similarly as we observed in Figure 3.4 that the MFEPL can be enhanced with the 

increasing electron-hole separation distance. Figure 3.6 shows the positive magnetic field 

effect on the electroluminescence intensity (MFEEL) of the exciplex can be enhanced 

from 2.8 % to 4.6 % as well as we increase the exciplex to inert PMMA spacer ratio from 

1:1:2  to 1:1:6.  Both increased MFEPL and MFEEL strongly support that the electron-hole 

separation distance dependent ISC is crucial to the observed positive magnetic field 

response. 
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3.4.3 Electrical Dipole-dipole interaction on the MFE 

We have already demonstrated that adjusting the electron-hole separation distance 

through material mixing as a convenient method to tune the MFE of photoluminescence. 

We further consider other alternative ways to tune the magnetic field response. In 

principal, the Columbic attraction between intermolecular excited states arises from 

intermolecular electrical dipole-dipole interaction. The internal electrical polarization 

field can significantly influence the formation of exciplex by perturbing the 

intermolecular Columbic attraction. More importantly, the intermolecular dipole-dipole 

interaction can change the electron-hole capture distance through local field, and 

consequently provide an effective method to modify the magnetic field response. 

Previous photochemistry studies of radical-ion pair formation in liquid solution have 

found that the distance between donor and acceptor is very critical to influence the 

magnetic field effects on the fluorescence emission of exciplex. This conclusion is 

experimentally supported by changing the distance of donor and acceptor in chain linked 

electron donor (N-N-dimethylanilin) DMA and electron acceptor pyrene system
62,63

. In 

liquid solution, the donor and acceptor distance of radical-ion pair strongly depends on 

the solvent polarity. A maximum magnetic field effect on the fluorescence intensity of an 

intermolecular DMA/pyrene exciplex can be achieved by optimizing the dielectric 

constant solvent
64

. Similarly, we want to apply this concept into solid organic 

semiconductor thin film to tune the magnetic field responses in solid film. In order to 

investigate the electrical dipole-dipole interaction, we dispersed the high polar camphoric 

anhydride (CA) molecules, which has a large ground state dipole moment (μ=6 D)
65

, into 
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the TPD/BBOT exciplex system to increase the local electrical field around the 

intermolecular exciplex. Figure 3.7 (a) shows the photoluminescence (PL) spectra after 

doping different concentration CA molecules. Dispersing polar CA molecules can largely 

quench the intensity of exciplex emission. High polar CA can induce molecular 

polarization by interacting with molecular dipoles, generating local electric fields in 

organic materials. When an intermolecular exciplex is considered as an electrical dipole, 

the strong local electric field induced by the high polar CA molecules can dissociate the 

intermolecular excited states and consequently quenches the PL intensity of exciplex. It is 

further noted that dispersing the polar CA molecules causes a significant red shift on the 

PL of TPD/BBOT exciplex emission as shown in Figure 3.7 (b). The PL red shift reaches 

30 nm at the CA concentration of 30 %.  
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Figure 3.7 (a) Photoluminescence quenching of TPD/BBOT exciplex film with different 

CA concentration (b) Photoluminescence spectra shift of TPD/BBOT exciplex with 

different CA concentration. 
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known as solid state solvation. Therefore, this PL spectra shift further indicates that the 

inter-molecular dipole-dipole interaction indeed occurs between the light-emitting inter 

molecules TPD/BBOT exciplex and the polar CA molecules in the TPD/BBOT:CA: PS 

composite.  

 

Figure 3.8 Photoluminescence spectra of TPD (a) and BBOT (b) with different CA 

doping concentration  
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On contrast, we also investigate the PL spectra of single component TPD and BBOT with 

different CA concentration, respectively. In Figure 3.8 (a) and (b), no significant PL 

spectra shift is observed. These experiment results clearly indicate that there is no strong 

electric dipole-dipole interaction between TPD or BBOT and CA molecules. 

Intramolecular excited state like Frenkel exciton has strong binding energy
57

because of 

its small electron-hole separation distance. The local electrical field generated by the CA 

molecules cannot affect the strong Columbic attraction in exciton, but is sufficient to 

destroy the comparable smaller Columbic attraction in exciplex through dipole-dipole 

interaction. Thus, we cannot observe the clear spectra shift in pure TPD film by 

increasing the CA concentration.  

We now discuss the effects of inter-molecular dipole-dipole interaction on MFEEL in 

organic semiconducting materials. In general, an external magnetic field can change the 

singlet and triplet ratios from two different ways either by perturbing the inter-charge 

spin-spin interaction during electron-hole capture at short distance, or by modifying the 

intersystem crossing (ISC) after electron-hole capture at long distance through 

intersystem crossing. Because the singlets and triplets have different lifetimes, spin 

configurations, and ionic natures, changing singlet and triplet ratios can affect the 

electroluminescence, electrical current, photocurrent, and photoluminescence based on 

charge recombination and dissociation, generating capture-based MFE and intersystem 

crossing (ISC)-based MFE in organic semiconducting materials. Specifically, in capture-

based MFE, the electron-hole capture experiences inter-charge spin-spin interaction at 

short distance. When this spin-spin interaction exists, the electron-hole capture favors the 
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formation of singlet states due to strong exchange energy. An external magnetic field can 

perturb this spin-spin interaction and consequently changes the inter-charge spin 

configuration, leading to a decrease in singlet formation and an increase in triplet 

formation during the capture at short distance. Reflected from the electroluminescence, 

we will observe a negative MFEEL. On contrast, in ISC-based MFE, the electron-hole 

capture experiences negligible spin interaction at long distance and undergoes a spin-

random formation of singlet and triplet states with the ratio of 1:3. In this case, an 

external magnetic field can not perturb the singlet and triplet ratio through the capture. 

However, at long electron-hole capture distance, the Zeeman splitting induced by 

external magnetic field is comparable to the singlet-triplet energy difference caused by 

exchange interaction in polaron pair states. As a consequence, an external magnetic field 

can increase singlet ratio but decrease the triplet ratio by modifying the intersystem 

crossing based on Zeeman splitting, generating a positive MFEEL. Increasing the electron-

hole separation distance can shift the MFE from capture-based MFE occurring at short 

capture distance to ISC based MFE occurring at long capture distance. 
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Figure 3.9 Magnetic field effect on the electroluminescence of  

ITO/PEDOT/TPD:BBOT:PS +CA(x wt %)/Al at different CA concentration 

 
Figure 3.9 shows the magnetic field effect on the electroluminescence (MFEEL) of the 

TPD:BBOT exciplex. When we disperse 10% CA into TPD/BBOT:PS composite, the 

MFEEL increase from the initial 2.8% to 3.2%. The maximum MFEEL around 4.5% is 

achieved at 20% CA doping. Further increasing the CA concentration up to 30%, MFEEL 

of exciplex emission decreases to 2%.  It is known that electric dipole-dipole interaction 

can enhance molecular electrical polarization and consequently increase the electron-hole 

separation distance, which will change the MFEEL from capture based regime to ISC 

based regime. Increasing the CA molecule concentration up to 20% can essentially 

increase the electron-hole capture distance, and consequently enhance the MFEEL. Similar 

to the finding in liquid radical-ion solution, the maximum MFEEL on the exciplex is only 

observed when the separation distance between donor and acceptor is in an optimum 
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range, not too small or not too long. At the optimum electron-hole separation distance, 

the singlet and triplet energy difference caused by exchange interaction should be small 

enough to allow hyperfine interaction inducing spin mixing and ISC. If the electron-hole 

separation distance is too small, the external Zeeman splitting caused by applied 

magnetic field is negligible compared to large singlet and triplet energy and consequently 

cannot change the ISC, leading to negligible MFE. On the other hand, as the electron-

hole separation distance enlarges too much, the electron hole pairs can easily dissociate 

into free charge carriers through Onsager process. In this case, the coherence between 

electron and hole will get lost, and consequently magnetic field effect will be reduced. 

This is consistent with the experimental finding that MFEEL decreases at the heavy 30 % 

CA loading.  

 

3.5 Conclusion 

In conclusion, most organic semiconductor materials show the negligible MFEPL, 

however, the significant MFEPL is observed in the intermolecular excited state: 

TPD/BBOT exciplex. After comparing the distinct MFEPL of intramolecular and 

intermolecular excited states, and different magnetic field response under photoexcitation 

and electrical excitation, we consider that electron-hole separation distance is critical to 

determine the magnetic field response in organic semiconductor. Therefore, we propose 

the electron-hole distance dependent ISC crossing mechanism to explain our experiment 

findings. Moreover, we experimentally tune the MFEPL and MFEEL by modifying the 

electron-hole separation distance through the simply material mixing and electrical 
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dipole-dipole interaction, respectively. This find has both theoretical and practical 

impotance. On one hand, our experiment results further support that magnetic field 

sensitive ISC corresponds to the magnetic response of organic semiconductor. On the 

other hand, changing the electron-hole capture distance through materials mixing and 

inter-molecular dipole-dipole interaction presents a new methodology to tune the 

magnetic responses of organic semiconductor devices. 
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CHAPTER 4 

NEGATIVE MAGNETIC FIELD EFFECTS ON 

ELECTROLUMINESCENCE GENERATED BY TRIPLET-CHARGE 

ANNIHILATION IN ORGANIC SEMICONDUCTORS 
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 4.1 Abstract 

A magnetic field can usually increase electroluminescence intensity by perturbing 

singlet-triplet intersystem crossing in polaron-pair states through spin-momentum 

conservation, leading to positive magnetic field effects on electroluminescence (MFEEL) 

in organic semiconductors. Recent studies have found that a magnetic field can also 

decrease electroluminescence intensity and generates negative MFEEL. However, the 

origin of negative MFEEL has been a controversial issue between triplet-charge 

annihilation (TCA) and triplet-triplet annihilation (TTA). Here, we demonstrate that the 

TCA is a dominant process accountable for negative MFEEL by adjusting triplet density, 

charge confinement, and exciton/charge ratio in organic light-emitting diodes with dual 

electro-fluorescence and electro-phosphorescence. Specifically, the electro-fluorescence 

can clearly show negative MFEEL when both interfacial confinement and unbalanced 

exciton/charge ratio exist to enhance the TCA. However, the electro-fluorescence only 

exhibits positive MFEEL when interfacial confinement exists without unbalanced 

exciton/charge ratio to enhance the TTA. As a result, it can be concluded that negative 

MFEEL comes from the TCA but not the TTA in organic semiconductors due to their 

different Coulomb interaction radii. Clearly, our experimental studies of negative MFEEL 

indicate the TCA is a major process that forms non-useful and useful processes in organic 

light-emitting diodes and solar cells. 
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4.2 Introduction 

It has been found that an external magnetic field can substantially change the 

electroluminescence intensity in organic semiconductors, leading to MFEEL in organic 

light-emitting diodes (OLEDs)
32,33,36,39,66

. Elucidating the MFEEL has become a high 

interest based on following two possible impacts. First, the MFEEL can form effective 

mechanism for organic semiconductors to be used in magneto-optoelectronic devices
67

. 

Second, the MFEEL can be used as a powerful tool to reveal spin-dependent useful and 

non-useful processes in organic light-emitting and photovoltaic systems
50,68,69

. In general, 

the MFEEL can include both positive
 
and negative components in a low magnetic field (< 

100 mT). Obviously, the positive and negative MFEEL reflect the increase and decrease in 

singlet/triplet ratio, respectively, in an organic semiconductor upon applying magnetic 

field. It should be noted that the increase in singlet/triplet ratio responsible for the 

positive MFEEL has been commonly attributed to the magnetic field-sensitive intersystem 

crossing (ISC) in polaron-pair states
32,38,39,70

. Specifically, the ISC must undergo both 

energy and spin-momentum conservations. The relatively large electron-hole separation 

distance leads to small singlet-triplet energy difference and weak spin interaction in 

polaron pairs
29,32,59

, which can be easily compensated by a low magnetic field through 

energy and spin-momentum conservations. As a result, the ISC in polaron-pair states 

becomes sensitive to a low magnetic field. Specifically, through energy conservation the 

Zeeman splitting from a low magnetic field can be comparable to the singlet-triplet 

energy difference in polaron-pair states, increasing the ISC rate by contributing to the 

energy conservation. Through spin-momentum conservation a low magnetic field can 
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compete with weak spin interaction in polaron-pair states, increasing the ISC rate by 

contributing to the spin-momentum conservation
37, 61

. As a consequence, a low magnetic 

field can increase the ISC from triplets to singlets in polaron-pair states and then boosts 

the ratio of singlet polaron pairs. The increase in singlet polaron pairs can essentially 

reflect as an increase in singlet excitons after the polaron pairs relax into excitons, 

generating positive MFEEL in electro-fluorescence through magnetic field-dependent ISC. 

However, the magnetic field-dependent ISC in polaron pairs can not decrease singlet 

ratio to generate negative MFEEL in electro-fluorescence. In general, there are two 

possibilities: triplet-charge annihilation: TCA and triplet-triplet annihilation: TTA that 

can be responsible for the decrease in the singlet ratio when applied magnetic field 

decreases TCA and TTA rate-constants
46-49

. The TCA can dissociate the triplet excitons 

through Coulomb scattering and generate free charge carriers
49,37

. The dissociated charge 

carriers can recombine into singlet and triplet excitons with the statistic ratio of 1:3 

through a random capture
1,15

. On contrast, the TTA can directly generate singlet excitons 

in organic materials
46,71,72

. Therefore, when a low magnetic field decreases the singlet 

ratio by reducing the TCA and TTA rate constants, negative MFEEL in electro-

fluorescence can then be observed. It should be pointed out that the TCA
 
and TTA have 

been proposed based on different experiments: chemical dynamics and delayed 

fluorescence. However, whether the negative MFEEL comes from TCA or TTA is still a 

controversial issue
50,73,74

. Clearly, clarifying the origin of negative MFEEL can not only 

increase the understanding on the mechanisms of magnetic field effects but also forms 

effective experimental tool to study triplet-related useful and non-useful processes 
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involved in light-emitting and photovoltaic responses. In this work we use dual electro-

fluorescence and electro-phosphorescence to investigate the mechanisms of negative 

MFEEL by controlling triplet density, charge confinement, and exciton/charge ratio. 

4.3 Experimental  

The organic semiconducting materials used here include PFO, PEDOT:PSS,  Ir(mppy)3, 

Alq3, CBP, and BCP. The chemical structures of materials are shown in figure 4.1.  

 

Figure 4.1  Chemical structures of materials used in the experiment 
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nitromethane to spin casting the insulating PMMA layer on the PFO underlayer. The 

double layer PFO/CBP and PFO/BCP OLEDs were prepared by spin coating PFO 

underlayer followed by high vacuum thermal evaporation of CBP and BCP as the 

blocking layer. The thickness of the films was measured by a DekTek surface profiler. 

The magnetic field effects were measured by positioning the OLEDs in an electromagnet. 

The electroluminescence was characterized by a Jobin Yvon Fluorolog-3 spectrometer 

with an optical fiber connection. The magnetic effect on electroluminescence (MFEEL) is 

defined as the electroluminescence change 
0

0 )(

EL

ELELB   under the influence of a 

magnetic field. The ELB and EL0 are the electroluminescence with and without an applied 

magnetic field, respectively. 

 

4.4 Results and Discussion 

4.4.1 Introducing triplet charge reaction by adjusting triplet density 

 
Figure 4.2 (a) shows that increasing triplet exciton density can lead to a negative 

component in the electro-fluorescence based MFEEL when the heavy-metal complex 

Ir(mppy)3 molecules are dispersed into fluorescent polyfluorene (PFO) matrix.  
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Figure 4.2 (a) MFEEL for both electro-fluorescence (F-EL) and electro-phosphorescence 

(P-EL) observed from the PFO matrix in ITO/PFO+Ir(mppy)3 (1wt%)/Al OLED. (b) 

Schematic energy-transfer processes between dispersed Ir(mppy)3 molecules and PFO 

matrix in Ir(mppy)3:PFO composite. (c) EL spectra from ITO/PFO/Al and 

ITO/PFO+Ir(mppy)3 (1wt%)/Al OLEDs. (d) Schematic diagram for TCA occurring at 

molecule/chain interface in Ir(mppy)3:PFO composite. 
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We should note that the Ir(mppy)3:PFO composite can exhibit dual electro-fluorescence 

and electro-phosphorescence from the PFO matrix due to introduced inter-molecular 

SOC between Ir(mppy)3 and PFO chains. Specifically, the dispersed Ir(mppy)3 molecules 

can function as traps for charge carriers to form high-density triplet excitons with almost 

100 % fraction
75

 in the dispersed Ir(mppy)3 molecules. The high-density triplet excitons 

formed in the dispersed Ir(mppy)3 molecules can efficiently transfer to the PFO matrix 

through Dexter process 
76,77

(schematically shown in Figure 4.2 (b)). As a result, the PFO 

matrix can have high-density triplet excitons in the Ir(mppy)3:PFO composite. On the 

other hand, theoretical studies have shown that delocalized  electrons can enter the 

magnetic field generated by adjacent orbital current and consequently enhances the SOC 

in organic materials
78

. As a result, the inter-molecular SOC can be introduced between 

the Ir(mppy)3 molecules and the PFO chains in the PFO:Ir(mppy)3 composite
79,80

. In 

particular, the introduced inter-molecular SOC can generate electro-phosphorescence 

from the PFO matrix. It can be seen in Figure 4.2 (c) that the electroluminescence (EL) 

from the Ir(mppy)3:PFO composite consists of the short-wavelength portion peaked at 

420 nm and the long-wavelength portion peaked at 590 nm. The short-wavelength EL 

peaked at 420 nm is known as the electro-fluorescence from the PFO
81

. Obviously, the 

long-wavelength EL peaked at 590 nm is different from the phosphorescence (510 nm
82

) 

of Ir(mppy)3 molecules but matches the triplet energy (2.15 eV
83

) of PFO. Therefore, the 

long-wave-length EL peaked at 590 nm can be attributed to the electro-phosphorescence 

from the PFO matrix in the Ir(mppy)3:PFO composite. This electro-phosphorescence 

implies that the dispersed Ir(mppy)3 molecules can largely increase the SOC of PFO 
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matrix through inter-molecular magnetic interaction, namely inter-molecular SOC, where 

the delocalized  electrons of PFO matrix can enter into the large magnetic field 

generated by the orbital current of Ir(mppy)3 molecules in the Ir(mppy)3:PFO composite. 

In addition, it has been already found that the dispersed Ir(mppy)3 molecules do not emit 

phosphorescence because the dispersed Ir(mppy)3 molecules can transfer the triplet 

excitons to the PFO matrix through efficient Dexter process in the Ir(mppy)3:PFO 

composite. Nevertheless, the PFO matrix can exhibit dual electro-fluorescence and 

electro-phosphorescence due to (i) high-density of triplet excitons transferred from the 

charge trapping Ir(mppy)3 molecules and (ii) the introduced inter-molecular SOC 

between the Ir(mppy)3 molecules and the PFO chains. More importantly, in the PFO-

alone OLED the electro-fluorescence peaked at 420 nm only shows positive MFEEL 

through magnetic field-sensitive ISC in polaron-pair states. But, in the Ir(mppy)3:PFO 

composite OLED the electro-fluorescence exhibits a clear negative component in the 

MFEEL from the PFO matrix. Clearly, this negative MFEEL component is generated by 

the increased triplet density in the PFO matrix upon dispersing the Ir(mppy)3 molecules. 

In particular, we should note the following two consequences in the Ir(mppy)3:PFO 

composite. First, the triplet excitons are largely located in the PFO matrix due to the 

efficient Dexter transfer from the Ir(mppy)3 molecules to the PFO chains while the 

excessive charges are confined in the Ir(mppy)3 molecules due to the potential-well 

effects. Second, the PFO chains and Ir(mppy)3 molecules have close-interfacial contacts 

confirmed by the efficient Dexter transfer. As a result, the triplet excitons can 

Coulombically interact with the excessive charges at the Ir(mppy)3/PFO interfaces, 
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generating TCA in the Ir(mppy)3:PFO composite. In principle, when organic molecules 

are dispersed in a semiconducting polymer matrix with band offsets, the molecule/chain 

interfaces can generate potential wells for charge and exciton traps
84,85

. We should further 

note that the chain/molecule interfaces can often function as effective trapping locations 

to initiate the TCA because interfacial Coulomb interactions due to their different 

electron negativities can Coulombically trap the triplets and charges (schematically 

shown in Figure 4.2 (d)). As a consequence, the chain/molecule interfaces can facilitate 

the TCA in the Ir(mppy)3:PFO composite.  

As the comparation, we also investigate the magnetic field effect on the fluorescence 

emission of PFO when fluorescent dye Alq3 is dispersed in PFO system. In Figure 4.3 (a),  

1% Alq3 doping in PFO matrix exhibits a positive electro-fluorescence based MFEEL 

from PFO emission, which is the same as the pure PFO system. Although the value of 

positive MFEEL decrease from 4% to 1.5% after 1% Alq3 doping, insignificant MFEEL 

decrease component could be observed even further increasing the Alq3 doping 

concentration up to 5%. The distinct MFEEL difference between Ir(mppy)3 and Alq3 can 

be attributed to different properties and excitonic processes involved in two composite 

systems. First, it should be noted that phosphorescent Ir(mppy)3 dye have much stronger 

spin orbital coupling strength than fluorescent Alq3 material. As a result, the inter-

molecular SOC between the Alq3 molecules and the PFO chains should be weaker. 

Second, the different triplet energy level between Ir(mppy)3 and Alq3 will lead to 

different energy processes in host-guest system. 
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Figure 4.3 (a) MFEEL for electro-fluorescence  observed from the PFO matrix in 

ITO/PFO+Alq3 (x wt%)/Al OLED. (b) Schematic energy-transfer processes between 

dispersed Alq3 molecules and PFO matrix in Alq3:PFO composite. (c) EL spectra from 

ITO/PFO/Al and ITO/PFO+ Alq3  (0.5, 1wt%)/Al OLEDs.  
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As shown in Figure 4.3 (b), the triplet level of dopant Alq3 is comparable to the triplet 

level of matrix PFO.  The triplet exciton located on the Alq3 can not be efficiently back 

transferred to the host PFO due to energy unfavorable. Due to the weak SOC and 

insufficient energy transfer between PFO and Alq3 molecules, we cannot sufficiently 

increase the triplet densities in the PFO matrix as in the Ir(mppy)3: PFO system. It can be 

further supported by Figure 4.3 (c) that electro-fluorescence spectra from the Alq3:PFO 

composite only show the short-wavelength portion peaked at 420 nm. No 

phosphorescence emission peaked at 590 nm can be observed.  

 
In general, there are two possibilities that can change the singlet/triplet ratio in the 

generation of electro-fluorescence and electro-phosphorescence based MFEEL in the 

Ir(mppy)3:PFO composite. First, applied magnetic field can increase the singlet exciton 

ratio in the PFO matrix by enhancing the ISC in the polaron-pair states of PFO matrix. 

Second, applied magnetic field can reduce the TCA rate constant, leading to a decrease 

component in the singlet exciton ratio and an increase component in the triplet exciton 

ratio in the PFO matrix. Therefore, the electro-fluorescence and electro-phosphorescence 

based MFEEL can be given by the changes in singlet and triplet densities as shown in 

Equation 4.1 and 4.2  

0
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                                             (Equation 4.1) 
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                                    (Equation 4.2) 

where the MFEFEL and MFEPEL are electro-fluorescence and electro-phosphorescence 

based magnetic field effects, the SP0 and TP0 are the singlet and triplet densities formed at 
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polymer matrix, the TM0 is the triplet density formed in dispersed molecules, the SP-ISC 

and STCA are the changes in singlet density caused by B-dependent ISC and B-

dependent TCA rate constant, the TP-ISC and TTCA are the changes in triplet density 

caused by B-dependent ISC and B-dependent TCA rate constant. It can be seen in 

Equation 4.1 that the SP-ISC and STCA can generate positive and negative MFEEL in 

electro-fluorescence. Clearly, based on the assumption that (i) the TCA dissociates triplet 

excitons and (ii) the dissociated charge carriers recombine to form both singlets and 

triplets, a negative component in the electro-fluorescence-based MFEFEL can be expected 

when applied magnetic field reduces the TCA rate constant. It should be pointed out that 

the triplets (TM0) in the dispersed Ir(mppy)3 molecules are formed with largely high 

density due to charge trapping effects. Especially, the high-density triplets formed in the 

dispersed Ir(mppy)3 molecules can transfer to the PFO matrix through Dexter process. As 

a consequence, the singlets and triplets in the PFO matrix have very-low and very-high 

densities, respectively. Furthermore, the change in triplet density 
)(

)(

00 MP

TCAISCP

TT

TT



   

reflected in the Equation 4.2 becomes negligible as compared to the change in singlet 

density 
0

)(

P

TCAISCP

S

SS    reflected in Equation 4.1 upon applying magnetic field. 

Therefore, we can theoretically argue that the electro-fluorescence and electro-

phosphorescence from the PFO matrix have appreciable and negligible MFEEL values in 

the Ir(mppy)3:PFO composite. Experimentally, we can see from the Figure 4.2 (a) that the 

electro-fluorescence peaked at 420 nm and electro-phosphorescence peaked at 590 nm 

from the PFO matrix show appreciable and un-appreciable MFEFEL and MFEPEL in the 
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Ir(mppy)3:PFO composite, respectively. It should be further noted that the electro-

phosphorescence from heavy-metal complexes does not exhibit appreciable MFEEL in a 

low field (< 1 T)
53,79

. This is because heavy-metal complex molecules can have a very 

strong SOC (~100 eV
86

) with almost 100 % ISC and a low magnetic field (< 1 T) can 

not disturb SOC-assisted spin momentum conservation involved in the ISC. As a result, 

the strong SOC can significantly quench the electro-phosphorescence based MFEPEL in 

heavy-metal complex molecules. However, the early published results indicate that 

electro-phosphorescence can exhibit a positive MFEPEL in heavy-metal complex 

molecules dispersed in fluorescent polymer matrices
87

. We found that this positive 

MFEPEL based on electro-phosphorescence is indeed caused by the Förster energy 

transfer
79

. Specifically, a magnetic field can increase the singlet ratio in the fluorescent 

polymer matrix by increasing the ISC in polaron-pair states. The increase of singlet ratio 

in the fluorescent matrix can be transferred to the singlet states in the phosphorescent 

molecules through efficient Förster transfer. Eventually, the increase of singlet ratio in 

the phosphorescent molecules can lead to an increase in triplet ratio through efficient ISC 

generated by the strong SOC of heavy-metal complex, generating a positive MFEPEL in 

electro-phosphorescence. Nevertheless, the MFEEL observed in electro-fluorescence and 

electro-phosphorescence from the PFO matrix reflect the changes in singlet and triplet 

densities that are essentially determined by the magnetic field-dependent ISC in polaron-

pair states, magnetic field-dependent TCA, and Förster and Dexter transfer in the 

Ir(mppy)3:PFO composite. 
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4.4.2 Introducing the triplet charge reaction by confining the charge at interface 

 
Now we further investigate the negative MFEEL component by using charge confinement 

at film-interface in OLEDs. It is known that the interface in multilayer OLEDs can 

confine injected charge carriers and excitons, which are essential to initiate the TCA. 

Here, we use the PFO as a common light-emitting layer with two different charge-

transport layers to form double-layer OLEDs with significant and negligible confinement, 

respectively. The charge-transporting materials are 4,4'-N, N' -dicarbazole-biphenyl 

(CBP) (LUMO=2.0 eV and HOMO=5.5eV
88

) and 2,9-dimethyl-4,7-diphenyl-1,10- 

phenanthroline (BCP) (LUMO=3.2 eV and HOMO=6.7 eV
89

). It can be seen from the 

band diagrams in Figure 4.4 (a) that the PFO/CBP interface can largely confine injected 

charge carriers and excitons due to the band offsets in the ITO/PFO/CBP/Al OLED. On 

contrast, the PFO/BCP interface does not exhibit a confinement to trap injected charge 

carriers and formed excitons in the ITO/PFO/BCP/Al OLED due to the absence of band 

offsets. Figure 4.4 (b) shows that the interfacial confinement generates a clear negative 

component in the MFEEL from the PFO in the ITO/PFO/BCP/Al OLED. The magnitude 

of negative MFEEL is around - 2 % at the constant current density of 20 mA/cm
2
. In 

contrast, the MFEEL does not show negative component in the ITO/PFO/CBP/Al OLED 

where the interfacial confinement is absent. 
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Figure 4.4 (a) Band diagrams for double-layer PFO/BCP and PFO/CBP OLEDs with ITO 

and Al electrodes. (b) Positive and negative MFEEL for double-layer PFO/CBP and 

PFO/BCP OLEDs, respectively. (c) Negative MFEEL from double-layer PFO/BCP OLED 

at different injection current densities. 
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current density can largely change the TTA by modifying triplet density in the 

ITO/PFO/BCP/Al OLED where interfacial traps exist. If the TTA is a dominate process 

accountable for negative MFEEL, we would observe that changing injection current can 

essentially determine whether the MFEEL shows a negative component. However, we can 

see in Figure 4.4 (c) that increasing the injection current from 2 mA/cm
2
 to 60 mA/cm

2
 

does not appreciably change the negative MFEEL. The MFEEL amplitudes are -2.8 % and 

-2.5 % for the injection current densities of 2 mA/cm
2
 and 60 mA/cm

2
. Therefore, the 

injection current dependence of MFEEL does not suggest that the TTA is a dominate 

process accountable for the negative component in the MFEEL. 

4.4.3 Bipolar injection effect on triplet charge reaction 

 
Now we further confirm that the TCA is a dominant process in the generation of negative 

MFEEL. It is known that the TCA can be generated when triplets and charges exist within 

close proximity in organic materials. The charge injection can, in principle, generate 

large amount of triplets with the singlet/triplet ratio of 1:3 in OLEDs through spin-

random capture. However, the TCA requires excessive charges available within close 

proximity with triplets. Therefore, excessive charges are a necessary condition to 

generate TCA in OLEDs. We know that injected electrons and holes can be maximally 

paired up to form excitons when they are balanced. On the other hand, un-balanced 

electron and hole injection can produce excessive charges with reduced exciton 

formation. The spatial confinement of excessive charges and triplet excitons can then 

generate TCA. As a result, balanced bipolar injection can increase the electron-hole 
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pairing ratio and therefore suppress the TCA
90

. However, unbalanced bipolar injection 

reduces the electron-hole pairing ratio and thereby enhances the TCA when spatial 

confinement exists. Here, we use insulating thin film of poly(methyl methacrylate) 

(PMMA) to introduce both spatial confinement and un-balanced bipolar injection in the 

double-layer ITO/PFO/PMMA/Al OLED (Figure 4.5 (a)). We can then expect TCA and 

negative MFEEL at the PFO/PMMA interface when the PMMA film introduces un-

balanced electrons and holes by reducing electron injection. It can be seen in Figure 4.5 

(b) that increasing the PMMA film thickness from 7 nm to 14 nm can clearly generate 

negative MFEEL in the ITO/PFO/PMMA/Al OLED at the constant current of 20 mA/cm
2
. 

Figure 4.5 (c) shows that the EL intensity increasing rate with injection current largely 

decreases as the PMMA film thickness increases. This decrease in EL/current rate 

indicates that increasing PMMA film thickness can indeed lead to un-balanced electron 

and hole injection and consequently generates excessive carriers available for TCA. As a 

result, the un-balanced charge injection confirms that the TCA is a dominant process 

accountable for negative MFEEL in OLEDs. 
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Figure 4.5 (a) Band diagram for double-layer PFO/PMMA OLED with ITO and Al 

electrode. (b) Changing positive MFEEL to negative MFEEL by increasing the PMMA 

film thickness to 7 nm and 14 nm in ITO/PFO/PMMA/Al OLED. (c) EL-current 

characteristics for double-layer ITO/PFO/PMMA (x nm)/Al OLEDs with different 

PMMA film thicknesses. 
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Now we discuss why the TCA is a dominant process in the generation of negative MFEEL 

as compared to the TTA in organic materials reflected. We know that both TCA and TTA 

occur through Coulomb interaction. Specifically, when a triplet and charge 

Coulombically interact with a nearby triplet to generate TTA and TCA, this nearby triplet 

must be located within the Coulomb-interaction radii of a triplet and a charge, 

respectively. Here, we consider the electric fields generated by a triplet and a charge 

required for TTA and TCA (Figure 4.6 (a)). When a triplet exciton is treated as a dipole 

in a simplified two-dimensional x-y system, its electric field 
DxE at x axis can be 

expressed by Equation 4.3. Integrating the
DxE from 0 to  2 gives the average 

electric field DxE at x axis for a triplet exciton (Equation 4.4).  
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Figure 4.6 (b) shows the electric field generated by a triplet as compared to the electric 

field generated by a charge. It can be seen that a triplet and a charge have substantially 

different Coulomb-interaction scales: small and large interaction radii, respectively, with 

a nearby triplet. It has been determined that the TTA interaction radius is about 0.5 nm
91

. 

Eq. (4) indicates that the electric field generated by a triplet at 0.5 nm is equivalent to the 

electric field generated by a charge at 2.9 nm (Figure 4.6 (b)). 
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Figure 4.6 (a) Schematic to show electrical field at x axis generated by an electrical 

dipole assumed from a triplet exciton. ex and hx are the electric fields at x axis generated 

by electron and hole in an dipole. (b) Electric fields for triplet and charge as a function of 

distance. The effective field-interaction radii (rTTA and rTCA) are 0.5 nm and 2.9 nm for a 

triplet and a charge, respectively 
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polymer chain
92

. As a result, the TCA becomes a dominate process in organic light-

emitting and photovoltaic systems when excessive charges are available within close 

proximity from charge injection or exciton dissociation. This TCA is accountable for 

negative MFEEL in organic semiconducting materials. It should be also noted that the 

TTA can be a dominant process in photoluminescence generated by Frankel excitons 

when triplets are confined within close proximity. This is because the photoluminescence 

lacks excessive carriers in light-emitting materials under photoexcitation. The time-

resolved PL measurement indicates that this TTA-induced delay fluorescence can 

generate a negative component in magnetic field effects on photoluminescence (MFEPL). 

However, the steady-state fluorescence only shows negligible MFEPL in organic materials 

under photoexcitation because this delayed fluorescence is only a limited component as 

compared to prompt fluorescence from excitonic states. We should also note that, when 

prompt fluorescence is removed by directly exciting triplets, the TTA can be observed in 

steady-state from delayed fluorescence with negative MFEPL under photoexcitation. 

Nevertheless, our experimental studies indicate that the TCA is a dominate process in 

organic light-emitting and photovoltaic systems where excessive charge carriers are 

available. Combining magnetic field-dependent ISC and TCA can lead to both positive 

and negative MFEEL as schematically shown in Figure 4.7.  
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Figure 4.7 Schematic diagrams to show positive and negative MFEEL generated by 

magnetic field-increasing ISC and magnetic field-decreasing TCA.  
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process. In addition, confining triplet excitons and charges by using double-layer 

structure can clearly generate a negative MFEEL in electro-fluorescence. However, 

increasing triplet exciton density by increasing injection current density does not 

appreciably change the negative MFEEL in electro-fluorescence. Finally, we adjusted 

balancing degree between injected electrons and holes to change the exciton/charge ratio 

to enhance the TCA. We found that enhancing the TCA can directly generate negative 

MFEEL in the ITO/PFO/PMMA/Al OLED. We can therefore conclude that the TCA is a 

dominant process as compared to the TTA in organic semiconducting materials. In 

particular, the TCA generates a negative component in MFEEL in organic 

electroluminescence. As a result, the negative MFEEL form a principle to experimentally 

reveal triplet-related useful and non-useful processes in organic light-emitting and 

photovoltaic devices. 
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CHAPTER 5 

SPIN-SPIN INTERACTION IN ORGANIC SEMICONDUCTORS 
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 5.1 Abstract 

 
In this chapter, we report that both significant magnetic field effect on the 

electroluminescence (MFEEL) and current (MC) were induced in  strong spin orbital 

coupling iridium complex based OLED device after introducing the non-magnetic 

insulating blocking PVA layer. This experimental result indicates the importance of 

interface in generating magnetic responses. Capacitance-voltage studies indicate that 

sufficient charge accumulation at the interface can generate the short distance carrier 

capture to initiate spin-spin interaction of charge carriers, leading to capture based MFEEL 

and MC. Moreover, MC and MFEEL can be tuned between positive and negative values 

by changing the interplay of spin-spin interaction. As a result, changing spin-spin  

interaction of inter-charge carriers presents a new pathway to tune magnetic field effects 

in organic semiconductors. 

 

5.2 Introduction 

 
In organic semiconductor devices, it has been found that external magnetic field can 

generate significant magnetic responses in electroluminescence, photoluminescence, 

photocurrent and electric current
29,30,32,33

. These magnetic responses are caused by the 

change of singlet/triplet ratio in intermolecular electron-hole pairs. It is generally 

accepted that based on the statistics of spin multiplicities, the theoretical limit of singlet 

ratio is 25% under the electrical excitation, although this ratio may be higher in some 

conjugated polymers. The external magnetic field can affect the spin-dependent processes 
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during electron-hole pairs and consequently change the singlet/triplet ratio. In organic 

semiconductors, two important spin-dependent processes can be affected by external 

magnetic field, intersystem crossing (ISC)
29,32,

37
,38

 in intermolecular electron-hole pair 

states and short range inter-charge spin-spin interaction
42,43,44, 93

. The intermolecular 

electron-hole pairs are loosely bonded, with relatively longer distance compared to 

intramolecular electron-hole pairs. The relative long separation distance will lead to small 

exchange energy between singlet and triplet states. This makes the magnetic interaction 

possible to affect the spin-dependent process in intermolecular electron-hole pairs. It 

should be noted that spin-dependent processes must require both energy and spin 

momentum conservation to occur. The spin-momentum conservation can be satisfied by 

internal magnetic interaction, such as hyperfine interaction and spin-orbital coupling. 

When an external magnetic field is comparable to internal magnetic interaction, the spin-

momentum conservation can be partially broken. Breaking the spin-momentum 

conservation can essentially affect the spin-dependent processes of intermolecular 

electron-hole pairs and change the singlet/triplet ratio of intermolecular electron-hole 

pairs. Due to the different dissociation
19,32

and recombination properties of singlet and 

triplet electron-hole pairs, it consequently generates those magnetic responses. Spin-spin 

interaction can generate the magnetic response in either in excited states or in charge 

transport process. In excited states, strong spin-spin interaction prefers the formation of 

singlet excited states at short electron-hole capture distance
94

. An external magnetic field 

can disturb the spin-spin interaction and consequently change the singlet to triplet excited 

states ratio. In charge transport process, inter-charge spin-spin interaction also favor 
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singlet spin configuration to triplet spin configuration due to strong on-site exchange 

energy. Because anti-parallel singlet states and spin parallel triplet states have different 

magnetic dipole moment, triplet states experience stronger magnetic scattering and thus 

have lower mobility than the singlet states. External magnetic field can perturb this inter-

charge spin-spin interaction and generate more triplet states, leading to a change in 

charge mobility and a mobility based MC.   

In this letter, we selected a heavy metal iridium complex, bis [2-(2’-benzothienyl)- 

pyridinato-N,C3’] iridium (III) (acetylacetonatonate) [Btp2Ir(acac)], which shows 

negligible magnetic response in bulk material because of its strong spin orbital coupling 

(SOC) strength, to study spin-spin interaction at the organic layer interface. In order to 

enhance the spin-spin interaction, the double layer architecture of organic light emitting 

devices (OLEDs), ITO/light emitting layer/blocking layer/Al, was employed to confine 

the charge carriers at the interface. Both organic insulating and semiconducting materials 

are tested as blocking layers. We found that the remarkable magnetic field effects on the 

electrical current (MC) and electroluminescence (MFEEL) were induced by the interface 

between non-magnetic organic semiconducting light emitting layer and non-magnetic 

organic insulating blocking layer. In contrast, insignificant magnetic field response was 

observed in the device with the interface between non-magnetic organic semiconducting 

light emitting layer and non-magnetic organic semiconducting blocking layer. Moreover, 

the MC and MFEEL could be tuned by adjusting the thickness of blocking layer to control 

the spin-spin interaction through changing the electron hole capture distance. As a result, 
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changing the inter-charge spin-spin interaction provide a new methodology to control the 

magnetic responses in organic semiconducting materials. 

5.3 Experimental  

 
The organic phosphorescent material, Btp2Ir(acac) (Ir67), was purchased from American 

Dye Source, and poly(methyl methacrylate) (PMMA), poly(vinyl alcohol) (PVA), 2,9-

Dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP), 4,4′-Bis(9-carbazolyl) -1,1′-biphenyl 

(CBP), and Copper(II) phthalocyanine (CuPc) were purchased from Sigma-Aldrich. All 

materials are used as received. The molecular structure of materials used in this 

experiment is shown in Figure 5.1  

 

Figure 5.1  Chemical structures of Btp2Ir(acac) and CuPc 

The Ir67 molecules were dissolved with the inert polymer matrix PMMA by a weight 

ratio of 4:2.5 in chloroform. The 80 nm thick films of the Ir67:PMMA composite were 

spin casted on the pre-cleaned indium tin oxide (ITO) glass substrates from the above 
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chloroform solution as the light emitting layer. And different concentration of PVA 

aqueous solution were spin cast on the top of already formed Ir67/PMMA composite 

layer as thin insulating blocking layers. All of these organic films were prepared under 

the nitrogen atmosphere protection. The double layer Ir67:PMMA/CBP, Ir67:PMMA 

/BCP and Ir67:PMMA/CuPc OLEDs were formed by spin coating Ir67:PMMA 

composite underlayer followed with thermal evaporation of CBP, BCP, CuPc at a high 

vacuum of no less than 2×10
-6

 torr. Finally, 50 nm Al electrode was thermal deposited at 

the vacuum of 2×10
-6 

torr. The thickness of the films was measured by a Veeco AFM 

profiler. The magnetic field effects were measured by positioning the OLEDs in the gap 

of two poles of an electromagnet. The electroluminescence was characterized by a Jobin 

Yvon Fluorolog-3 spectrometer with an optical fiber connection. The magnetocurrent 

was targeted to the injection current of 20 mA/cm
2
 for the OLED. The magnetocurrent 

(MC) refers to the current change 
00 /)( IIIB   caused by the magnetic field, where IB and 

I0 are the injection current with and without an applied magnetic field. The magnetic 

effect on electroluminescence (MFEEL) is defined as the electroluminescence change 

00 /)( ELELELB   under the influence of a magnetic field. The ELB and EL0 are the 

electroluminescence with and without an applied magnetic field, respectively. The 

capacitance-voltage (C-V) characteristics were measured by an Agilent E4980A LCR 

meter. A 50 mV alternating current (AC) signal superimposed on direct current (DC) bias 

was used to measure the device capacitance at low frequency 300 Hz.  
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5.4 Results and Discussion 

 
In Figure 5.2, negligible MC was observed from the single layer Ir67:PMMA composite 

device within our measurement accuracy. However, it is interesting to observe a clear 

MC after spin casting a second insulating PVA blocking layer. It should be noted that the 

aqueous PVA solution does not dissolve the Ir67/ PMMA underlayer, it only adds an 

interface between PVA and Ir67:PMMA composite without changing electrical and 

optical properties in the bulk. This result clearly indicates that the interface between 

Ir67:PMMA composite layer and PVA layer is correspondent to the observed MC 

because the Ir67:PMMA composite itself doesn’t show clear MC in bulk. It has been 

experimentally showed that pure iridium complexes do not show appreciable magnetic 

field response because of its strong spin orbital coupling (SOC) strength. An external 

magnetic field cannot compete with the strong internal magnetic interaction generated by 

the spin orbital coupling, and subsequently cannot effectively change the singlet/triplet 

ratio through ISC or spin-spin interaction. Therefore, negligible magnetic field response 

would be observed in the single layer Ir67: PMMA composite. 
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Figure 5.2 MC of single layer device and double layer device with insulating blocking 

layer. 

 
In Figure 5.3 (a), we found the increasing thickness of second insulating layer PVA can 

further tune the MC from positive to negative value. The MC is about +0.2 % for a 1 nm 

thin PVA second layer. The MC gradually changes to around -0.5 % when the PVA 

thickness increases up to 3 nm. Further increasing the PVA film thickness to 5 nm can 

increase the negative MC up to -1.2 %. It is known that inserting the insulating blocking 

layer PVA will yield a large injection potential barrier due to large energy band gap of 

insulating material. At a low forward bias, electron carriers are difficult to be injected 

from the cathode and majority holes injected from ITO side will be accumulated at the 

interface between Ir67: PMMA composite and PVA. When more and more charge carries 

are confined at a small region of the interface, the inter-charge distance become smaller 

due to the spatial proximity. As a result, spin-spin interaction would be likely occur at 
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short inter-charge capture distance. Here, we propose the observed MC may be due to the 

change of singlet and triplet ratio through magnetically perturbing spin-spin interaction at 

the interface between strong spin orbital coupling organic semiconductor Ir67 and 

organic insulating material PVA. 

 

Figure 5.3 (a) MC and (b) MFEEL of ITO/Ir67: PMMA/PVA (x nm)/Al at different PVA 

thickness. 
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Specifically, an external magnetic field will reduce the singlet formation and increase the 

triplet formation. The MC generated by spin-spin interaction can be further confirmed by 

examining the MFEEL as shown in Figure 5.3 (b). Similarly with MC result, a significant 

positive MFEEL from the triplet emission of Ir67 is induced after inserting the PVA layer. 

The positive phosphorescence MFEEL increases with the thickness of PVA layer. The 

maximum MFEEL is around 14% for the double layer device with 5 nm PVA. The 

positive phosphorescence MFEEL result clearly reflects the increased formation of triplet 

excited states under an external magnetic field, which is in good accordance with the 

prediction by magnetically perturbing spin-spin interaction of intermolecular electron-

hole pairs. 

In order to probe what has happened at the double layer interface, we carried out the 

capacitance–voltage (C-V) measurement for the single layer devices and PVA based 

double layer devices with different PVA thickness, as shown in Figure 5.4. In the single 

layer Ir67:PMMA composite device, the capacitance of device almost remains constant at 

low voltage which is equal to the geometrical capacitance followed by a sharp decrease at 

relative high voltage regime. The capacitance essentially reflects the capability of charge 

storage in the device. Thus, the decrease of the capacitance is attributed to the 

recombination of injected electrons and holes
95

, which consequently reduces the amount 

of charge stored in the device. In contrast, the capacitance of double layer device shows a 

significant increase regime before the capacitance decrease dramatically with the applied 

voltage. The increase of the capacitance provides a clear evidence for the presence of 

interfacial charge at the IR67: PMMA/PVA organic-organic interface. It should be also 
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noted that the C-V peak position goes to higher voltage with increasing the PVA 

thickness. 

 

Figure 5.4 Thickness dependent C-V measurement of ITO/Ir67:PMMA/PVA (x nm)/Al 

 
C-V curve of the double layer device with 1 nm PVA shows a small but apparent increase 

compared with the single layer device. Further increasing the PVA thickness up to 3 nm, 

the capacitance can increase almost seven times as much as the geometrical capacitance. 

This result indicates that a number of charge carriers are accumulated at the Ir67/PVA 
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confined at the interface near the cathode. 
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MC and density based MC. The reason is that the current density J through the device 

could be simply expressed by qEnJ  , where n is the charge density, μ is the carrier 

mobility, n is the electron charge and E is the applied electric field. In the mobility based 

MC, the charge mobility is sensitive to magnetic field when the inter-charge spin-spin 

interaction exists at short inter-charge distance. It is known that singlet and triplet 

experience different spin scattering strength during charge transport and consequently 

have different mobility. Spin-spin interaction favors the singlet formation at short inter-

charge capture distance. An external magnetic field can perturb the inter-charge spin 

interaction and subsequently changes the spin configuration of inter-charge, leading to a 

change in charge mobility and a mobility based MC. In the density based MC, an external 

magnetic field can modify the singlet and triplet excited states ratio through magnetic 

field sensitive intersystem crossing (ISC) in the intermolecular electron-hole pairs 

(polaron pairs) or interrupt the spin-spin interaction in short range intermolecular 

electron-hole pairs. Specifically, the increasing singlet ratio through ISC leads to an 

increase in the charge density due to the relatively larger dissociation rate of singlet 

intermolecular electron-hole pair states. It should be noted that the molecular 

environment and electronic properties of the interface are distinct from the case in the 

bulk. It is likely that the interface might modify the magnetic interaction at the interface 

and thus contributes to the different magnetic response. Three possible mechanisms are 

discussed as below: (1) Intermolecular spin orbital coupling, (2) Spin-spin interaction, (3) 

Hyperfine interaction.  

First, the SOC interaction is strong in the bulk due to the heavy metal effect of iridium 
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atom. An external magnetic field cannot compete with the strong internal magnetic field 

caused by spin orbital coupling and hyperfine interaction, leading to negligible MC and 

MFEEL
38,53,66,79

. However, the PVA used as the second layer only contains light atoms and 

consequently has the weak SOC strength. The intermolecular spin-orbital coupling 

formed between Ir67 and PVA can weaken the effective spin orbital coupling strength at 

the interface and this may open the channel for the intersystem crossing based MC and 

MFEEL. Specifically, an external magnetic field can increase the singlet but decrease the 

triplet formation at the polaron pair states by enhancing the intersystem crossing through 

spin momentum conservation. The increase of the singlet formation essentially leads to a 

positive MC（+MC） because the singlet has relatively large dissociation rate than the 

triplet due to its ionic nature. Second, we have already shown that a large amount of 

charge carriers are accumulated at the interface of Ir67:PMMA/PVA. At the interface, the 

electrons and holes capture at very short distance and experience the spin-spin interaction. 

The spin-spin interaction favors the singlet formation. An external magnetic field can 

perturb the spin-spin interaction and consequently reduce the singlet ratio and increase 

triplet ratio during electron-hole capture. As a consequence, a negative MC can be 

observed because singlets and triplets have high and low dissociation rate, respectively. It 

should be noted that at the Ir67:PMMA/PVA interface the spin-spin interaction between 

same polar charge carriers is also possible, because a large amount of charge carriers 

accumulated at the interface. Inter-charge spin-spin interaction favors the singlet 

formation at short inter-charge capture distance. An external magnetic field can perturb 

the inter-charge spin interaction and subsequently increase the triplet spin configuration 



91 
 

of inter-charge, leading to a decrease in charge mobility and causing mobility based 

negative MC due to that triplet experience stronger spin scattering during charge 

transport and consequently have lower mobility than singlet. Third, it has been recently 

reported that hyperfine interaction (HFI)
96,97,98

 between the spin of charge carrier and spin 

of nuclear can generate the magnetic response in organic semiconductor by affecting the 

spin mixing of the singlet and triplet states. It is believed that strong hyperfine interaction 

is a prerequisite for the observation of MC. Therefore, it is reasonable to consider 

whether the distinct MC response from the interface is due to the different hyperfine 

interaction strength between the bulk and interface. Since we consider that the observed 

MC and MFEEL are closely related to the interface, we can further examine this 

proposition by modifying interface to identify the origin of MC. Figure 5.5 (a) shows the 

MC and MFEEL from the ITO/Ir67:PMMA/Semiconducting layer/Al devices by 

evaporating different organic semiconductor materials as the blocking layer instead of 

insulating PVA layer. BCP, CBP and CuPc were selected because they can form different 

band offsets relative to bulk material Ir67 as shown inset of Figure 5.5 (a). As seen from 

the energy diagram, the HOMO of BCP is higher than the Ir67 while the LUMO keeps 

the same with Ir67. This type of band diagram can block the hole injection from the Ir67 

side. Ir67: PMMA/CBP structure can confine both injected electrons and holes at the 

interface, which is in analog to the energy structure of Ir67:PMMA/PVA. 
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Figure 5.5 (a) MC and (b) C-V measurement of single layer device and double layer 

device with semiconducting blocking layer, BCP, CBP, and CuPC, the inset in (a) is the 

energy band diagram. 
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energy diagram exhibits the clear MC, which is distinct from the case in insulating 

material based-double layer device. First, it should be noted that both organic 

semiconducting material and organic insulating material used as the blocking layer 

contain the hydrogen atoms in which have strong hyperfine coupling strength. In 

comparison of different MC behaviors between semiconducting based-double layer and 

insulating based-double layer, we can exclude the possibility that the observed interface 

induced-MC originated from the hyperfine interaction. Second, it is known that magnetic 

field response can be tuned by changing the balance degree of bipolar injection for the 

bulk material
37

. By introducing the insulating layer PVA, the balance degree of bipolar 

injection of the device could be greatly changed because PVA can reduce the minority 

electron injection from the cathode due to its wide energy bandgap. Nevertheless, we 

observe the negligible magnetic field response no matter how we adjust the bipolar 

injection by using different device structures as shown in Figure 5.5 (a). Upon further 

consideration, modification of the balancing degree of bipolar injection can be also 

excluded as the reason of the MC. Furthermore, we consider the major difference 

between organic insulating material and semiconductor material. One significant 

difference should be particularly noted that organic insulating material and 

semiconductor material have different conduction mechanisms. In organic semiconductor, 

the charge carriers are transported through hopping process among organic 

semiconductor molecules. However, the charge carriers are conducted through one step 

or multi-step tunneling process in organic insulating materials. It is generally accepted 

that insulating material PVA cannot hold the charge carriers injected from the cathode as 
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well as organic semiconductors. Therefore, the charge carries confined at the interface of 

insulating-based double layer device are spatially closer in proximity than in 

semiconducting-based double layer device. In this case, the spin-spin interaction between 

same polar or opposite polar charge carriers is more likely to occur. To probe the charge 

accumulation and possible spin-spin interaction at the interface, we also carried the C-V 

measurements for the organic semiconducting based double layer device. Figure 5.5 (b) 

compares the C-V curve for three devices: single layer device ITO/Ir67:PMMA/Al, 

insulating based-double layer device ITO/Ir67:PMMA/PVA (5nm)/Al and 

semiconducting based-double layer device ITO/Ir67:PMMA/BCP (5nm)/Al. It should be 

also noted that the increase of the capacitance of insulating based double layer device is 

more pronounced than semiconducting based double layer device. This results indicates 

that more injected charge carriers are confined at Ir67:PMMA/PVA interface. Due to 

strong confinement effect, the accumulated charge carriers at the insulating interface are 

more closed to each other and the electron-hole pairs are also in short capture distance. At 

very short inter-charge distance or capture distance, the spin-spin interaction becomes 

dominant, which facilitates the formation of singlet states. When applying external 

magnetic field, the spin-spin interaction would be disturbed to generate fewer singlet but 

more triplet excited states. This could be directly supported by the positive MFEEL of the 

triplet emission from Ir67. Thus, the spin-spin interaction of electron-hole pair is more 

likely respond to the observed magnetic responses while the spin-spin interaction of same 

polar charge pair is also possible. However, when we introduce semiconducting material 

as the second layer, there is no strong confinement for the charge carrier at organic 



95 
 

hetero-layer interface and corresponding inter-charge distance or capture distance 

becomes larger. In this case, the short range spin-spin interaction could be ignored. The 

absence of spin-spin interaction would lead to negligible magnetic response in 

semiconducting based double layer device. 

At last, we give the possible explanation for the observed MC and MFEEL in the PVA 

based double layer device based on electron-hole pair mechanism. In general, the external 

magnetic field can change the singlet and triplet ratios either by perturbing electron-hole 

pair spin-spin interaction during the short distance electron-hole capture or by changing 

the intersystem crossing after electron-hole capture, generating capture based MFE and 

intersystem-crossing based MFE. The capture-based MFEs require short-distance 

electron-hole capture through charge confinement to introduce spin-spin interaction. The 

intersystem crossing-based MFEs occur when the electrons and holes are captured at long 

distances without experiencing inter-charge spin-spin interaction. The observed MC is 

the sum of positive and negative component: -MC from the spin-spin interaction and 

+MC from the intersystem crossing. Therefore, we can tune the MC by adjusting the 

relative contributions from the spin-spin interaction and intersystem crossing in organic 

semiconductors. As shown in Figure 5.3, MC and MFEEL can be tuned by changing the 

thickness of second insulating PVA layer. It is known that changing the thickness of PVA 

layer can affect the confinement of charge carriers at the electrode interface and 

subsequently change the electron-hole distance. The double layer device with 1nm thin 

PVA second layer cannot effectively accumulate the appreciable charge carriers at the 

interface. The charge density at the interface is low and thus the electron-hole capture 
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distance is comparable large. Therefore, capture based MFE is negligible and the 

intersystem crossing based MFE is dominant, leading to positive MC. However, thick 

PVA layer, such as 3nm and 5nm, can spatially confine a large amount of charge carriers 

at short distance range and may greatly enhance the spin-spin interaction, yielding 

negative MC and positive MFEEL. 

 

5.5 Conclusion 

 
In conclusion, we found that both MC and MFEEL were observed from the strong spin 

orbital coupling iridium complex after introducing the insulating blocking layer PVA. 

This result indicates the importance of interface in generating magnetic responses (MFE 

and MC). However, introducing organic semiconductor/semiconductor interface did not 

show any appreciable magnetic response. The reason is explained as only 

semiconductor/insulating interface can provide efficient charge accumulation to generate 

the short distance carrier capture to initiate spin-spin interaction of charge carriers. It 

should be noted that spin-spin interaction is responsible to the observed magnetic 

response but spin-spin interaction happens between same polar charges carriers or 

electron-hole pairs is not clear at this moment. Furthermore, we found that MC and MFE 

can be tuned between positive and negative values by changing the interplay of spin-spin 

interaction. As a consequence, controlling the spin-spin interaction at the interface opens 

us a new way to generate the magnetic responses in organic semiconductors. 
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CHAPTER 6 

ELECTRICAL DIPOLE-DIPOLE INTERACTION EFFECTS ON 

MAGNETOCURRENT IN ORGANIC PHOSPHORESCENT 

MATERIALS 
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6.1 Abstract 

 
This chapter reports the experimental studies on electrical dipole-dipole interaction 

effects on magnetocurrent (MC) and magneto-electroluminescence (MFEEL) based on 

two phosphorescent dyes: heavy-metal complex Ir(ppy)3 and Ir(ppy)2(acac) with strong 

spin-orbital coupling but different electrical dipole moments. We find that the Ir(ppy)3 

with strong electrical dipole moment shows negligible MC and MFEEL. However, the 

Ir(ppy)2(acac) with weak dipole moment exhibits appreciable MC and MFEEL. The 

experimental results suggest that the electrical dipole-dipole interaction can change the 

MC and MFEEL from capture-based regime, where charge carriers are captured through 

spin-dependent process at short distance, to intersystem crossing-based regime, where 

charge carriers are captured through spin random process at long distance. As a result, 

changing electrical dipole-dipole interaction presents a new pathway to tune magnetic 

field effects in organic semiconductors. 

 

6.2 Introduction 

 
It has been experimentally discovered that an external magnetic field can change the 

electrical injection current, generating magnetocurrent (MC)
32,33,38,39,66

, in the organic 

semiconducting materials. In essence, the MC originates from magnetic field-dependent 

singlet and triplet ratios. This is because the singlets and triplets have different 

contributions to the generation of charge carriers through dissociation and charge reaction
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due to their different ionic natures and lifetimes. In general, the singlets and triplets can 

dominate dissociation and charge reaction, respectively, in the generation of charge 

carriers. Therefore, changing the singlet and triplet ratios can affect the electrical 

injection current through dissociation
32,38

 and charge-reaction
37,39,40

channels. In principle, 

an external magnetic field can change the singlet and triplet ratios through two different 

ways either by perturbing the inter-charge spin-spin interaction
42,43,93

 during electron-hole 

capture at short distance, or by modifying the intersystem crossing (ISC)
32,36,37,38,40 

after 

electron-hole capture at long distance. As a result, the MC can generally consist of 

capture-based and ISC-based components. Specifically, in capture-based MC, the 

electron-hole capture experiences inter-charge spin-spin interaction at short distance. 

When this spin-spin interaction exists, the electron-hole capture favors the formation of 

singlet states due to exchange energy
94

. An external magnetic field can perturb this spin-

spin interaction and consequently changes the inter-charge spin configuration, leading to 

a decrease in singlet formation and an increase in triplet formation during the capture at 

short distance. On contrast, in ISC-based MC, the electron-hole capture experiences 

negligible spin interaction at long distance and undergoes a spin-random formation of 

singlet and triplet states with the ratio of 1:3. An external magnetic field can not affect 

the capture but can change the ISC with the consequence of increasing the singlet ratio 

and decreasing triplet ratio in polaron-pair states after the capture at long distance. More 

importantly, the inter-molecular dipole-dipole interaction can change the inter-charge 

capture distance, switching charge capture between spin-dependent and spin-random 

regimes. Specifically, increasing the inter-molecular dipole-dipole interaction can enlarge 
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the capture distance and changes the MC from capture-based regime occurring at short 

capture distance to ISC-based regime occurring at long capture distance. It is noted that, 

in ISC-based regime, spin-orbital coupling (SOC) is accountable for the spin momentum 

conservation necessarily required for ISC. When an external magnetic field is stronger 

than SOC, the spin momentum conservation involved in ISC can be modified, changing 

the singlet and triplet ratios in polaron-pair states. The change in singlet and triplet ratios 

in polaron-pair states can be essentially reflected as the change in singlet and triplet ratios 

in excitonic states when polarons are evolved into excitons, leading to MFEEL and MC in 

ISC-based regime. However, for the heavy-metal complex molecules with the strong 

SOC strength, an external magnetic field has little influence on the ISC in polaron-pair 

states and consequently generates un-appreciable change in singlet and triplet ratios 

through ISC. As a result, phosphorescent materials with strong SOC can usually show 

negligible ISC-based MC
38,66,79

. However, when the spin–spin interaction exists in the 

organic phosphorescent materials, an external magnetic field can change the singlet and 

triplet ratio during spin-dependent capture at short distance by perturbing the inter-charge 

spin-spin interaction. It should be noted that changing the singlet and triplet ratios can 

lead to MC through two different channels: dissociation dominated by singlet 

excitons
32,45

 and charge reaction dominated by triplet excitons
37,39,40

. The dissociation can 

directly separate excitons into free charge carriers through Onsager process
99,100

. The 

charge reaction can break excitons through Coulomb interaction when an exciton 

Coulombically interact with a charge in close proximity. Although both singlet and triplet 

excitons can involve in dissociation and charge reaction, the singlet and triplet excitons 
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can dominate dissociation and charge reaction, respectively, in the generation of charge 

carriers. This is because singlet excitons have stronger ionic natures in their 

wavefunctions and can largely dissociate into polaron pairs and then free charge 

carriers
19,32,45

. Triplet excitons can have sufficient Coulomb contact-time with charges 

due to their long lifetimes and largely contribute to charge reaction to generate free 

charge carriers. Therefore, decreasing singlet ratio can yield a negative MC through 

dissociation but increasing triplet ratio can lead to a positive MC through charge reaction. 

In this letter, we report the effects of inter-molecular dipole-dipole interaction on MC and 

MFEEL by using select two phosphorescent dyes: fac-tris(2-phenylpyridine)iridium 

[Ir(ppy)3] and bis(2-phenylpyridine)iridium acetylacetonate [Ir(ppy)2(acac)] with strong 

and weak electrical dipole moments.  

6.3 Experimental 

 
The Ir(ppy)3 and Ir(ppy)2(acac) are used as the emitting layers (EML) with the thickness 

of 30 nm in the multilayer OLEDs with indium-tin-oxide (ITO) as anode and aluminum 

(Al) as cathode. The device structure is ITO/HIL/HTL/EML/ ETL/EIL/Al. The HTL is 

the hole transport layer of N,N’-diphenyl-N,N’-bis(1-naphthylphenyl)-1,1’-biphenyl-

4,4’-diamine (NPB) with the film thickness 40 nm. The ETL is the electron transport 

layer of 1, 3, 5-tris(N-phenylbenzimidazole-2-yl)benzene (TPBI) with the film thickness 

20 nm.  The HIL and EIL are hole and electron injection layers, respectively, from 

Molybdenum trioxide (MoO3) with the film thickness of 8 nm and LiF with the film 

thickness of 1 nm to facilitate the hole and electron injection from corresponding 
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electrodes. This structure allows the excitons well confined in the iridium-complex based 

emitting layer. The chemical structures of material used in the experiment are listed in 

Figure 6.1  

 

Figure 6.1  Chemical structures of Ir(ppy)3, (ppy)2Ir(acac), NPB and TPBI 

 
The devices were prepared on pre-cleaned ITO substrates. All molecular layers and Al 

electrodes were thermally evaporated in a high vacuum of 5×10
-4

 Pa. The current-voltage 

characterist ics were measured by using a Keithley 2400 source meter. The 

electroluminescence was characterized by a Jobin Yvon Fluorolog-3 spectrometer with 

an optical fiber connection to the OLED placed in a magnetic field generated by an 

electromagnet. The MC was measured at constant voltage condition with the injection 
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current of 20 mA/cm
2
. The MFEEL was measured at constant current condition. The 

experimental errors for MC and MFEEL are within 0.02 % and 0.2 %, respectively. 

 

6.4 Results and Discussion 

 
Figure 6.2 shows MC characteristics for the Ir(ppy)3 and Ir(ppy)2(acac) based OLEDs. A 

clear positive MC is observed from the Ir(ppy)2(acac) based OLED with weak electric 

dipole moment (1.91D)
101

. The magnitude of MC is around 0.1 % measured at constant 

voltage 7 V. However, the Ir(ppy)3 based OLED with large electric dipole moment (6.26 

D)
101

 exhibits a negligible MC. Because both Ir(ppy)3 and Ir(ppy)2(acac) have strong 

SOC, the different MC characteristics can be attributed to the different electrical dipole 

moments of these two iridium-complex molecules. Specifically, inter-molecular dipole-

dipole interaction can form an effective dielectric background and thus influences the 

charge-capture distance through electric screening effect
102

. Photochemistry studies have 

found that varying the dielectric constant of solvents can modify the average distance 

between the radical ions within radical pairs, and consequently change the magnetic 

effect on fluorescence intensity
62,64

. 
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Figure 6.2  MC characteristics are shown for Ir(ppy)2(acac) based OLED with weak 

electric dipole moment (1.91 D) and Ir(ppy)3 based OLED with strong electric dipole 

moment (6.26 D). 

 

Here, we suggest that strong electrical dipole-dipole interaction between Ir(ppy)3 

molecules can enlarge the charge-capture distance and consequently leads to negligible 

inter-charge spin-spin interaction. We should note that negligible spin-spin interaction at 

long distance removes capture-based MC. In addition, strong SOC can make ISC-based 

MC un-appreciable. Clearly, capture-based MC is a possible channel to develop MC for 

phosphorescent materials with strong SOC. Therefore, whether inter-molecular dipole-

dipole interaction can induce inter-charge spin-spin interaction during capture can 

essentially determine whether MC can be observed in iridium-complex molecules. For 

the Ir(ppy)3 with strong electrical dipole moment, the overall MC becomes negligible 

(Figure 6.2) because of absence of inter-charge spin-spin interaction. In contrast, the 
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Ir(ppy)2(acac) has weak electric dipole-dipole interaction in ground states. The weak 

dipole-dipole interaction in ground states forms a weak dielectric background for the 

excited states in the Ir(ppy)2(acac). Therefore, the weak dipole-dipole interaction can lead 

to a short distance for electron-hole capture and consequently generates inter-charge spin-

spin interaction during capture. This can enable capture-based MC through inter-charge 

spin-spin interaction. In capture-based MC it should be further pointed out that the spin-

spin interaction favors the singlet formation in polaron pairs during charge capture. An 

external magnetic field can decrease singlet formation but increase triplet formation in 

polaron pairs by disturbing this spin-spin interaction during capture. Again, the decrease 

in singlets and the increase in triplets in polaron pairs can eventually reflect as the 

decrease in singlets and the increase in triplets in excitonic states when polaron pairs are 

relaxed into excitons. It should be noted that the decrease in singlets and increase in 

triplets in excitonic states should correspond to negative and positive MC through singlet 

dominated dissociation and triplet-dominated charge reaction, respectively. Therefore, the 

observed positive MC from the Ir(ppy)2(acac) clearly indicates that the triplet-dominated 

charge reaction is a main mechanism to generate MC in capture-based regime for 

phosphorescent materials. 
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Figure 6.3 MFEEL characteristics are shown at constant current density 20 mA/cm
2 

for 

Ir(ppy)2(acac) and Ir(ppy)3 based OLEDs. 

 

To further confirm capture-based MC through inter-charge spin-spin interaction, we 

investigate the MFEEL from both Ir(ppy)3 and Ir(ppy)2(acac)-based OLEDs. It can be seen 

in Figure 6.3 that the Ir(ppy)3 based-phosphorescent OLED with strong electrical dipole 

moment shows un-appreciable MFEEL. On contrast, the Ir(ppy)2(acac)-based 

phosphorescent OLED with weak electrical dipole moment shows a clear positive MFEEL. 

The magnitude of MFEEL is about 3% measured at constant current density of 20 mA/cm
2
 

in the ITO/Ir(ppy)2(acac)/Al OLED. Obviously, this positive MFEEL indicates that an 

external magnetic field increases the triplet ratio in excitonic states in the phosphorescent 

Ir(ppy)2(acac). It is known that in heavy-metal complex materials an applied magnetic 

field less than 1 T is much weaker than internal SOC
86

. As a consequence, an applied 

external magnetic field cannot compete with internal strong SOC to affect the ISC. This 
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means that the ISC becomes insensitive to applied magnetic field in strong SOC materials, 

leading to negligible ISC-based MFEEL. Therefore, our observed positive MFEEL from 

the Ir(ppy)2(acac) must come from capture-based channel. This confirms that with 

weaker electrical dipole-dipole interaction an applied magnetic field can still change the 

singlet and triplet ratios in phosphorescent materials by disturbing the spin-spin 

interaction during electron-hole capture at short distance. Specifically, an applied 

magnetic field perturbs the spin-spin interaction during electron-hole capture and 

essentially decreases the singlet formation but increases the triplet formation, leading to 

positive MFEEL in the Ir(ppy)2(acac) with weaker electrical dipole-dipole interaction. On 

contrast, a stronger electrical dipole-dipole interaction can correspond to a long electron-

hole capture distance without inter-charge spin-spin interaction, removing spin-spin 

interaction and capture-based MFEEL. Therefore, changing electrical dipole-dipole 

interaction presents a convenient methodology to generate capture-based MFEEL in 

organic phosphorescent materials with strong SOC. 

Furthermore, we use an external electrical field to modify the electron-hole capture 

distance in Ir(ppy)2(acac) based OLED with weak electric dipole moment. Figure 6.4 (a) 

shows the MFEEL at different applied voltages for ITO/Ir(ppy)2(acac)/Al OLED. The 

MFEEL amplitude decreases with the increasing of applied voltage. At a low voltage of 3 

V, the maximum MFEEL is around 6 %. When the applied voltage increases up to 11 V, 

the magnitude of MFEEL drops to 1.5 %. Further increasing the voltage will diminish the 

MFEEL. The experimental studies on electric field-modulated photoluminescence 

quenching have suggested that excitons can be converted into polaron pairs at 1MV/cm
103

. 



108 
 

 

Figure 6.4  MFEEL (a) and MC (b) characteristics are shown for Ir(ppy)2(acac) based 

OLED at different voltages. 

 

This result indicates that the electron-hole capture distance can be enlarged by applying 

strong electrical field.  As the electron-hole capture distance enlarges, the electron-hole 

pairs can dissociate into free charge carriers through Onsager process
99,104

. This can 

decrease the MFEEL by reducing the density of polaron pairs with increasing applied 

voltage. In addition, we should note the following possibility that can also contribute to 
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the MFEEL reduction upon increasing applied voltage. When the electron-hole capture 

distance increases with the increasing electrical field, the inter-charge spin interaction can 

decrease rapidly. This can remove capture-based MFEEL in the Ir(ppy)2(acac). On the 

other hand, the strong SOC from the Ir(ppy)2(acac) molecules inhibits the redistribution 

of singlet and triplet ratios through ISC. Therefore, the overall MFEEL can gradually 

decrease upon increasing applied voltage. As a result, we can observe a reduction in 

MFEEL at higher voltages in the Ir(ppy)2(acac) based OLED. Moreover, the MC of 

Ir(ppy)2(acac) based OLED shows the similar voltage dependence as compared to MFEEL. 

Clearly, this MC result further suggests that increasing applied voltage can decrease 

MFEEL and MC through two possible channels: decreasing the density of electron-hole 

pairs through dissociation and weakening the spin-spin interaction through capture 

distance in phosphorescent materials. 

6.4 Conclusion 

In conclusion, our MC and MFEEL studies have shown that the heavy-metal complex 

Ir(ppy)3 with the strong electric dipole moment exhibits the negligible MC and MFEEL. 

However, the heavy-metal complex Ir(ppy)2(acac) with weak electric dipole moment 

gives both MC and MFEEL. The MFEEL and MC comparison between Ir(ppy)3 and 

Ir(ppy)2(acac) suggests that inter-molecular dipole-dipole interaction can be used to tune 

the magnetic responses in organic phosphorescent materials.
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CHAPTER 7 

TUNING THE MAGNETIC FIELD EFFECT ON THE 

FLUORESCENCE AND PHOSPHORESCENCE IN OLED  
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7.1 Abstract 

 
In this chapter, we simultaneously monitor the magnetic field effect on the electro-

fluorescence and electro-phosphorescence in OLED. The sign of fluorescence based 

MFEFEL and phosphorescence based MFEPEL can be tuned either in the same direction 

(both positive or both negative) or in opposite direction (one is positive and the other is 

negative) by controlling the intersystem crossing, energy transfer and spin-spin 

interaction processes. Theoretically, the opposite MFEEL on the fluorescence and 

phosphorescence result clearly exclude the formation based MFEEL which claims that 

magnetic field can increase the formation rate of both singlet and triplet while their spin 

polarization are conserved. Practically, the fully tuning magnetic field effect on 

fluorescence and phosphorescence at the same time provide a potential application for 

novel magnetic field controlled organic optoelectronics devices.  

 

7.2 Introduction 

 
Under electrical excitation, only 25% singlet exciton can be formed in organic 

semiconductors and subsequently give the radiative emission
1,2

. Almost 75% triplet 

exicton are wasted through non-radiative emission because the triplet transition to ground 

state is spin forbidden, which limits the efficiency of organic material based light 

emitting devices (OLED) . To fully use the rest of 75% triplet, Baldo et al successfully 

activate the phosphorescence emission channel by introducing the strong spin orbital 
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coupling heavy metal complex PtOEP into a fluorescent host
20

. After that, most highly 

efficient OLED are based on the electrophosphorescence emission
105,106

. Magnetic field 

measurement has been used as a powerful tool to understand the formation and decay of 

excited states in OLED. Till now, most magnetic field studies focus on the fluorescence 

emission in OLED.. However, few attentions were paid on the magnetic field effect on 

the phosphorescence in OLED. Therefore, it is very important to investigate magnetic 

field effect on electrophosphorescence and relationship between magnetic field 

dependent fluorescence and phosphorescence. Kalinowski compared the magnetic field 

effect on the electrophosphorescence of idiridium and plantinum based heavy metal 

complex and contribute the different value of MFEEL for the two phosphors comes from 

their different molecular structures
87

.  Lupton monitored the magnetic field effect on the 

fluorescence and phosphorescence in a ladder–type poly(p-phenylene) (PhPPP)
103

. 

External magnetic field can increase both fluorescence and phosphorescence intensity at 

the same time, leading to positive fluorescence based MFEFEL and phosphorescence 

based MFEFEL. Consequently, it was concluded that magnetic field can increase the both 

singlet and triplet formation rate while the spin polarization was conserved during the 

carrier recombination. Furthermore, Lupton also exclude the magnetic field dependent 

intersystem crossing between singlet and triplet during the carrier recombination, which 

usually predicts the increased singlet exciton formation together with decreased triplet 

formation. However, we should note that internal energy transfer between polymer 

segments may exists in this ladder polymer. If the energy transfer processes is involved, 

the increased phosphorescence may comes from the efficient Forest energy transfer from 
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the increase of singlet formation in the fluorescent segment followed by intersystem 

crossing from singlet to triplet on the heavy metal complex site.  Our experimental results 

also showed that both positive MFE on the fluorescence and phosphorescence can be 

observed in a polymer fluorescent host and phosphorescent guest system where sufficient 

energy transfer occurs between fluorescent host and phosphorescent dopant
79

. Therefore, 

we need to re-examine the conclusion proposed by the Lupton that magnetic field 

increase the singlet and triplet formation at the same time. 

 

7.3 Experimental  

 
The organic phosphorescent material bis [2-(2’-benzothienyl)- pyridinato-N,C3’] iridium 

(III) (acetylacetonatonate) [Btp2Ir(acac)] (Ir67) and fluorescent polyfluorene (PFO) was 

purchased from American Dye Source, and poly(9- vinylcarbazole) (PVK), poly(vinyl 

alcohol) (PVA), 2,9-Dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP), were purchased 

from Sigma-Aldrich. All materials are used as received. Low weight  concentration 1% 

Btp2Ir(acac) were mixed with PVK and PFO in chloroform, forming PVK: Btp2Ir(acac) 

and PFO: Btp2Ir(acac) composite solution. The composite films around 80 nm were spin 

cast on the pre-cleaned ITO substrates from the respective chloroform solution. PVA was 

first dissolved in deionized water facilitated by the heating solution at 70 ℃. To built 

double layer device, the PVA water solution were spin cast on the composite film with 

high spin coating speed 4000 rpm/sec to form thin second layer. PVA water solution 

cannot  dissolve the PVK: Btp2Ir(acac) and PFO: Btp2Ir(acac) composite underlayer. The 
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aluminum (Al) electrode was prepared by thermal evaporation at a vacuum of 2×10
-6

 

Torr. The magnetic field effect on the fluorescence and phosphorescence was measured 

at constant current mode (current density 20 mA/cm
2
) for the OLED in liquid nitrogen 

temperature. 

 

7.4 Results and Discussion  

 
Before investigating the magnetic field effect on fluorescence and phosphorescence 

emission at the same time, we need to construct the fluorescence and phosphorescence 

coexisting system. One convenient method is to dope the appropriate concentration 

phosphorescent dye into fluorescent host matrix. If the concentration of phosphorescent 

dye is too high, most of exciton formed in the host matrix will be transferred to the 

dopant and thus we can only observe the fluorescence emission from the host. Otherwise, 

If the doping concentration of phosphorescent dye is too low, we cannot get the sufficient 

phosphorescence emission from the heavy metal complex. Here, we dope 1 wt % 

phosphorescent dye Btp2Ir(acac) into fluorescent polymer matrix PVK and PFO, from 

which we can observe decent the fluorescence from the host and phosphorescence from 

the dopant. 

7.4.1 Both positive fluorescence and phosphorescence MFE 

Figure 7. 1 (a) shows the electroluminescence spectrum from ITO/PVK+ Btp2Ir(acac) (1 

wt %) /Al OLED.  The short wavelength peaked at 400 nm is known as the fluorescence 
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emission from the PVK matrix. The long wavelength peaked at 617 nm is the 

characteristic phosphorescence emission from the heavy metal complex Btp2Ir(acac). 

 

Figure 7.1  (a) Electroluminescence spectrum of ITO/PVK+ Btp2Ir(acac) (1 wt%)/ Al 

OLED (b) Fluorescence and phosphorescence based MFE from pure PVK , pure 

Btp2Ir(acac) and PVK+ Btp2Ir(acac) (1 wt%) composite  

  
It can be seen in Figure 7.1 (b) that the fluorescence MFEFEL from the PVK emission 

decreases from 7.6 % to 4.5 % after dispersing 1 wt % Btp2Ir(acac) into PVK polymer. 

This experimental result suggests that heavy metal complex Btp2Ir(acac) can enhance the 

spin orbital coupling of PVK: Btp2Ir(acac) composite. Subsequently, the enhanced spin 

orbital coupling can reduce the magnetic field sensitive ISC and cause the reduction of 

fluorescence based MFEFEL from the PVK matrix. It is known that pure Btp2Ir(acac) 

complex doesn’t show any magnetic field effect on the phosphorescence emission due to 

its strong spin orbital coupling. However, when 1 wt % Btp2Ir(acac) are dispersed into  

PVK matrix, a clear positive MFEPEL about 3 % can be observed from  the Btp2Ir(acac) 
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dopant. This positive MFEPEL indicates that magnetic field increased triplet exciton in the 

Btp2Ir(acac) dopant comes from the magnetic field increased singlet in the PVK matrix 

through long range Forster energy transfer process. 

7.4.2 Positive fluorescence and negative phosphorescence MFE 

We built a double layer ITO/PFO+Btp2Ir(acac) (1 wt%)/PVA (x nm)/Al device by 

inserting  a second PVA layer between organic semiconductor layer and Al cathode. 

Figure 7.2 shows the magnetic field effect on the fluorescence from PFO matrix in 

double layer with different PVA thickness. After inserting a ultra-thin PVA layer x= 0.5 

nm, the MFEFEL on the fluorescence shows a significant increase from the 2.6% to 4.3 %  

compared to the single layer device. Further increasing the PVA thickness to 1 nm can 

enhance the MFEFEL to a maximum value 8 %, which is almost three times as large as the  

MFEFEL  from single layer device. Next, we discuss the possibility for this observed large 

MFE. On one hand, the use of PVA layer can effectively reduce the heavy metal 

electrode effects on the spin orbital coupling strength near the cathode interface. As a 

result, external Zeeman splitting  can overwhelm the internal magnetic interaction raised 

by spin orbital coupling and consequently facilitate the ISC from triplet states to singlet 

states, leading to a enhanced positive MFEFEL. Another possibility for this sharp increase 

of MFEFEL maybe come from the  increased electron-hole pair radius caused by inserting 

this thin PVA layer. Inserting a ultrathin PVA layer will modify the morphology near the 

electrode interface and hence tune the  local electronic structure around the interface
107

. It 

is highly possible ulta-thin PVA can separate the correlated electron and hole as the 

spacer, and therefore enlarge the average electron-hole pair radius. 
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Figure 7.2   Magnetic field effect on the fluorescence (MFEFEL) and the phosphorescence 

(MFEPEL) from double layer ITO/PFO+ Btp2Ir(acac) (1 wt%)/ PVA (x nm)/Al devices 

with ultra-thin  PVA film thickness.  

 
When the average electron-hole pair radius is enlarged by the insertion of thin  PVA, the 

exchange energy J will decrease dramatically with the increasing average radius, and 

promote the spin conversion from triplet to singlet excited states, and thus increase the 

singlet excited states population, leading to a increased positive MFEFEL. Meanwhile, we 

monitor the magnetic field effect on the phosphorescence emission  shown in Figure 7.2.  

Compared  with MFEFEL,  magnetic field effect on the phosphorescence shows a negative 

MFEPEL when the PVA thickness is 0.5 nm and 1 nm. This opposite sign of MFEFEL and 

MFEPEL is against the formation based MFEEL  theory which anticipate that magnetic 

field increase both the single and triplet formation rate. Nevertheless, the positive 
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MFEFEL and negative MFEFEL seems in a good accordance with magnetic field dependent 

ISC which predicts the magnetic field increase the singlet and decrease the triplet 

formation. 

7.4.3 Negative fluorescence and positive phosphorescence MFE 

In order to get the negative fluorescence and positive phosphorescence, we fabricate the  

multi-layer device with the  structure ITO/PFO (60 nm)/BCP (15 nm)/Btp2Ir(acac) (30 

nm)/PVA (3 nm)/ Al. In this type of device structure, we use 15 nm BCP layer to  separate 

the PFO fluorescence emission with Btp2Ir(acac) phosphorescence emission. The 

interaction distance of Forster  energy transfer is typical less than 10nm. Thus, 15 nm 

BCP is thick enough to remove the energy transfer influence between PFO layer and  

Btp2Ir(acac). Figure 7.3 (a) shows the electroluminescence spectrum in which the short 

wavelength regime from 400 nm to 600 nm is the fluorescence emission from PFO layer 

and longer wavelength peaked at 617 nm is the phosphorescence emission from 

Btp2Ir(acac) layer. We observe a negative fluorescence MFEFEL and positive 

phosphorescence MFEPEL measured at the constant current density 20 mA/cm
2
 shown in 

Figure 7.3 (b). It should be noted that two emission layer PFO and Btp2Ir(acac) have 

different emission zone. The emission zone of PFO is close to the PFO/BCP interface, 

while the emission zone of Btp2Ir(acac) is located at Btp2Ir(acac)/PVA interface. 
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Figure 7.3  (a) Electroluminescence spectrum of multilayer ITO/PFO (60 nm)/BCP (15 

nm)/Btp2Ir(acac) (30 nm)/PVA (3 nm)/Al device (b) Magnetic field effect on the 

fluorescence MFEFEL and phosphorescence MFEPEL from multi-layer device (c) Band 

diagram of ITO/PFO (60 nm)/BCP (15 nm)/Btp2Ir(acac) (30 nm)/PVA (3 nm)/Al 

 

As seen from the band diagram shown in Figure 7.3 (c), there is a large energy offset 

between the HOMO of PFO and BCP. A large amount of holes will be confined at the 

PFO/BCP interface.  As we discussed in previous Chapter 4, charge confinement at the 

interface will initiate significant triplet charge reaction. It is known that triplet charge 

reaction can dissociate the triplet excitons through Coulomb scattering and generate 
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secondary free charge carriers. The dissociated charge carriers can recombine into singlet 

and triplet through random capture. An external magnetic field can reduce the triplet 

charge reaction rate and subsequently reduce the singlet ratio, generating negative 

fluorescence MFEPEL.  However, the positive phosphorescence MFEPEL may originate 

from the interface induced spin-spin interaction, which was  discussed in Chapter  5. The 

inter-charge carriers spin-spin interaction at the short capture distance is  in favor of the 

singlet spin configuration formation due to strong on site exchange energy.  An external 

magnetic field can disturb the spin-spin interaction and generate more triplet excited 

states, leading to positive phosphorescence MFEPEL. 

7.4.4 Both negative fluorescence and phosphorescence MFE 

In Figure 7.2, we have found that the insertion of  a very thin insulating PVA layer can 

generate a  positive MFEFEL and negative MFEPEL from the double layer device 

ITO/PFO+Btp2Ir(acac) (1 wt%)/PVA (x nm)/Al. It is interesting to find that both MFEFEL 

and MFEPEL will become negative after increasing PVA thickness up to 3 nm and 5 nm in 

Figure 7.4. This is the first time to observe both negative MFE for fluorescence and 

phosphorescence. Now, we discuss possible explanations for this dual negative MFEFEL 

and MFEPEL.  Insulating PVA layer with wide energy bandgap can effectively act as a 

large energy barrier at the cathode interface and reduce the minority carrier injection. 

Increasing the PVA layer thickness will  increase  the injection potential barrier, which 

turn the bipolar injection toward a more unbalanced injection condition. 
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Figure 7.4   Magnetic field effect on the fluorescence (MFEFEL) and the phosphorescence 

(MFEPEL) from double layer ITO/PFO+ Btp2Ir(acac) (1 wt%)/ PVA (x nm)/Al devices at 

thicker PVA film thickness.  

 
Unbalanced bipolar injection will facilitate the triplet charge reaction. Correspondingly,  

an external magnetic field can reduce the triplet charge reaction rate and redistribute the 

singlet and triplet ratio, leading to negative fluorescence based MFEFEL. Similarly, the 

negative fluorescence based MFEFEL can be then reflected as a negative phosphorescence 

based in the  Btp2Ir(acac) dopant through dominant Forester energy transfer from PFO 

matrix to the Btp2Ir(acac) molecules.  Another possible explanation for both negative 

MFEFEL and MFEPEL is that an external magnetic field can increase the population of 

quenchers such as polaron or bipolaron which essentially contribute to the nonradiative 

quenching of fluorescence and phosphorescence emission. As a result, increased 

quenchers population can leads to the reduction of overall electroluminescence, leading 
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to both negative MFEFEL and MFEPEL. 

 

7.5 Conclusion  

 
In conclusion, we investigated the magnetic field effect on the fluorescence and 

phosphorescence  emission by constructing the OLEDs which emit the fluorescence and 

phosphorescence at the same time. The fluorescence based MFEFEL and phosphorescence 

based MFEPEL  can show the same sign or the opposite sign depending on the device 

structure. It was found that energy transfer and interface induced spin-spin interaction 

play an important role in tuning the sign of MFEFEL and MFEPEL. Nevertheless, different 

sign of MFEFEL and MFEPEL are clearly against the formation based MFE that both 

singlet and triplet formation increases with the applied magnetic field. The 

simultaneously  tuning  fluorescence based MFEFEL and phosphorescence based MFEPEL 

provide the feasibility of magnetic field controllable  high efficient optoelectronic devices.   
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CHAPTER 8 

GIANT MAGNETIC FIELD EFFECTS ON 

ELECTROLUMINESCENCE IN ELECTROCHEMICAL CELLS 
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 8.1 Abstract 

 
Magnetic field effects occurring in functional materials are important experimental 

phenomena. Using magnetic field effects can lead to the development of magnetically 

controllable electronic, optic, and optoelectronic materials and devices. Here we report 

the giant magnetic field effects on the electroluminescence (MFEEL) (> 400 %) in liquid 

states by using the triplet tris(2, 2’-bipyridyl) ruthenium(II)–tripropylamine based 

electrogenerated chemiluminescence system based on facile-controllable electrochemical 

co-reaction. We find that Lorentz force effects is, as a primary mechanism, mainly 

accountable for the observed giant MFEEL through magnetic field-sensitive ion transport 

and magnetic field-sensitive diffusion-layer thickness based on angle, voltage, and 

concentration dependences. Furthermore, our experimental results suggest that magnetic 

body force due to magnetization of paramagnetic radicals and triplet-charge reaction due 

to interaction between triplet excited states and radicals are counted as a secondary 

mechanism in the observed giant MFEEL. Clearly, our experimental results present a new 

methodology to develop giant magnetic field effects in liquid states by combining 

Lorentz force effects and electrochemical reaction. 

8.2 Introduction 

 
Recently, there has been growing interests to the magnetic field effects that an external 

magnetic field can substantially change photoluminescence
31

, electroluminescence
32

, 

photocurrent
29,30

, and electrical current
32,33

in nonmagnetic organic semiconducting 
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materials with potential applications for magneto-electronics, magneto-optics, and 

magneto-optoelectronics. In general, three types of magnetic field effects can be observed 

based on inter-charge spin-spin interaction, spin-dependent excited processes, and 

Lorentz force effects. First, when inter-charge spin-spin interaction occurs, an external 

magnetic field can perturb the spin-spin interaction and consequently changes singlet and 

triplet formation ratios in excited states
 61

and carrier mobilities
42,44

in charge transport. 

Second, an external magnetic field can affect spin-dependent excited processes such as 

singlet-triplet intersystem crossing, triplet-charge reaction, and triplet-triplet annihilation 

after the formation of excited states by involving in spin moment conservation required 

for those excited processes and essentially changes both singlet and triplet ratios in 

excited states and carrier densities in charge transport. Third, an external magnetic field 

can introduce a Lorentz force exerted on moving charged species and changes charge 

transport and consequently generates magnetocurrent (MC)
108,109

. In principle, magnetic 

field effects can occur in both solid and liquid states. In liquid states early experimental 

studies have found that electrochemical reaction can show considerable magnetic field 

effect on the electroluminescent intensity (MFEEL) with the amplitude less than 30 % 

110
with suggested mechanism of triplet-charge reaction and triplet-triplet annihilation

111-

114
. In this paper, we report giant MFEEL with the magnitude larger than 400 % in liquid 

states by using conveniently controllable electrochemical co-reaction in aqueous solution 

based on Lorentz force effects. 

8.3 Experimental  
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 The cyclic voltammograms measurements were performed by using a Basi Epsilon 

electrochemical work station with three-electrode configuration. The two planar platinum 

(Pt) foil plates with the area of 7 mm×10 mm were used as working and auxiliary 

electrodes. The working and counter electrodes are glassy carbon electrodes. The 

Ag/AgCl was used as the reference electrode. The chemicals including Tris(2-2’-

bipyridly) dichlororuthenium(II) hexahydrate (Ru(bpy)3Cl2 · 6H2O), Rubrene, and 

coreactant tripropylamine (TPrA) used in this work were purchased from Aldrich.  

Ru(bpy)3 based energy-deficient electrochemical system contains Ru(bpy)3
2+

 (1mM), 

TPrA (0.1 M), and phosphate buffer solution (0.2 M) dissovled in deionized water. 

Rubrene based energy-sufficient electrochemical system contains  Rubrene (1mM), TPrA 

(0.1 M), and (0.1 M) TBAPF6 as the working electrolyte dissolved in DMF solution.  The 

liquid solutions were degassed by using nitrogen gas before the measurements. The 

magnetic field effects were measured with two planar-electrode configuration for 

convenient angle dependence studies. Specifically, the electrochemical cell was placed in 

a magnetic field generated by an electrical magnet. The MFEEL and MC are defined as a 

relative change in intensity in electroluminescence and current caused by applied 

magnetic field. The magnitude of magnetic field effects is given by the relative change in 

percentage: MFE= %100
0

0 


S

SSB , where SB and S0 are the signal intensities with and 

without the magnetic field. The electroluminescence and electrical current were recorded 

by using Jobin Yvon Fluorolog III spectrometer equipped with an optical fiber 

connection and electrometer Keithley 2400. It should be noted that the Lorentz force-

driven convection effects can be accumulated in the measurements of magnetic field 
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effects, which can significantly enhance the MFEEL. In this work, the MFEEL and MC 

were measured within the initial stable period with the corresponding experimental errors 

of about 10 % and 1 % for MFEEL and MC, respectively. 

8.4 Results and discussion 

 
Figure 8.1 (a) shows the electrogenerated chemiluminescence spectrum based on the 

triplet emission from the tris(2-2’-bipyridyl) ruthenium(II) (Ru(bpy)3
2+

) molecules. The 

spectral peak at 610nm is the characteristic of phosphorescence from the triplet states of 

the Ru(bpy)3
2+ 

through electrochemical reaction
115

 shown in Equation 8.1.
 
 

                productsRu(bpy)TPrARu(bpy)
*2

3

3

3 


                 (Equation 8.1) 

 The Ru(bpy)3
2+

 metal chelate complex has been widely studied for electrogenerated 

chemiluminescence due to its high luminescence efficiency and electrochemical stability 

in aqueous solvents
116,117

. The tripropylamine (TPrA) works as an efficient coreactant 

with Ru(bpy)3
2+

 upon electrochemical oxidation via a catalytic route. In general, the 

electrogenerated chemiluminescence can be divided into energy-deficient and energy-

sufficient systems through triplet and singlet route emission
118

, respectively. The early 

studies have indicated that the oxidation of TPrA by electrogenerated Ru(bpy)3
3+

 is the 

dominant process in the generation of chemiluminescence
119

. The free energy released 

from ion annihilation is insufficient to generate singlet excited states but enough to 

populate the triplet excited states of the Ru(bpy)3
2+*

, which is so called energy-deficient 

system.
118
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Figure 8.1 Electrogenerated chemiluminescence (ECL) characteristics for triplet 

Ru(bpy)3 based energy-deficient electrochemical system with three-electrode 

configuration. a: ECL spectrum. b: Cyclic voltammograms at different scan rates. c: ECL 

intensity-voltage characteristic. 
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It should be noted that the radical ions are effective quenchers to the generated excited 

states through triplet-charge reaction
 
in electrochemical reaction.

120
 Therefore, the triplet 

excited states of Ru(bpy)3
2+*

 can be quenched through triplet-charge reaction due to the 

long lifetime to generate non-radiative emission instead of the radiative emission as 

described in Equation 8.2.  


 

2

3

Quench*2

3 Ru(bpy)Ru(bpy) ingion                       (Equation 8.2) 

The cyclic voltammograms measurements indicate two separated oxidation peaks at 

different scan rates with three-electrode configuration as shown in Figure 8.1 (b), which 

confirms the required electrochemical reaction occurring in the electrogenerated 

chemiluminescence. The first peak corresponds to the direct oxidation of TPrA at the 

electrode at a potential of about 0.75 V vs the reference electrode: Ag/AgCl. The second 

peak has a potential of 1.15 V where Ru(bpy)3
2+

 is oxidized at the electrode at a scan rate 

of 10 mV/s. As the scan rate increases, both oxidation current and cyclic voltammogram 

peaks increase to higher values. It has been also found that the increase in scan rate can 

reduce the diffusion-layer thickness and subsequently increases the electrical current
121

. It 

can be seen from the voltage-electroluminescence characteristics (Figure 8.1 (c)) that the 

electroluminescence intensity clearly increases and then decreases with increasing the 

electrical potential voltage. This result implies that the generation of electroluminescence 

is a mass transport-limited process in the electrochemical reaction. In mass transport-

limited process the reaction species are required to diffuse to the reaction interface 

around the positive electrode to produce the precursors for the generation of 

electrogenerated chemiluminescence. These precursors subsequently react in a spatially 
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restricted emission zone within the diffusion layer near the electrode. The observed 

electroluminescence intensity is essentially determined by mass transport of reactive 

species at given reaction rate to produce the light. Therefore, the electroluminescence 

intensity increases when mass transport can provide enough reaction species for light 

generation near the electrode. However, the electroluminescence intensity drops down 

when the mass transport is limited. With the two-electrode electrochemical configuration 

in an external magnetic field (Figure 8.2 a), the Ru(bpy)3 based electrochemical reaction 

generates giant MFEEL at different electrical biases. The MFEEL reaches 400 % at 3.3 V 

in the magnetic field of 700 mT (Figure 8.2 b), which is the largest MFEEL so far for any 

electroluminescent system. No significant magnetic response appears below 100 mT. We 

can see that the sign and magnitude of MFEEL depend on the applied potential bias. At the 

2.2 V bias, the electroluminescence intensity is monotonically quenched by an external 

magnetic field and no clear saturation was found at the higher magnetic field. The 

magnitude of MFEEL drops down to a negative value of - 17% at external magnetic fields 

of 700 mT. We should note that the two-electrode setup, specially designed to 

conveniently measure magnetic field effects, requires the turn-voltage of 1.9 V to initiate 

the electrochemiluminescence while the three-electrode setup needs the turn-on voltage 

of 0.8 V. However, this difference should not affect the mechanisms of magnetic field 

effects in the electrochemical co-reaction. 
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Figure 7.2  Electrogenerated chemiluminescence (ECL) characteristics for singlet 

Ru(bpy)3 -based energy-deficient electrochemical system. a: Experimental setup with 

two-electrode configuration for electrochemical cell placed in magnetic field. b: MFEEL  

at different voltages. c: MC at different voltages. 
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the electroluminescence intensity in electrochemical reaction
110,111

 and this positive 

MFEEL was attributed to the magnetic field-sensitive triplet-charge reaction
112,114

. The 

spin physics in solid states indicates that an external magnetic field can perturb the spin 

interaction between a triplet excited state and a charge, and consequently reduce the 

triplet-charge reaction-rate constant. In the absence of magnetic field, the triplet excited 

states: Ru(bpy)3
2+*

 are partially quenched by the excess radical ions through triplet-

charge reaction. With applied magnetic field, this quenching process is reduced by 

decreasing the reaction-rate constant
47,49

, and subsequently increases the triplet light 

emission in the electrochemical reaction. As a result, a positive MFEEL can be observed 

in triplet energy-deficient electrochemical system based on triplet-charge reaction. 

However, magnetic field-sensitive triplet-charge reaction only contributes to a few tenth 

of a percent MFEEL
110,112

 in liquid states, as reported previously. In addition, it has been 

also observed in solid states that an external magnetic field can only change triplet-charge 

reaction by a few percents indicated by the studies of magnetic field effects of 

photocurrent
68,122

. Clearly, the triplet-charge reaction is not sufficient to generate the 

giant MFEEL observed from our Ru(bpy)3
2+

 system. Here, we suggest that Lorentz force 

effects to be a dominant process accountable for the observed giant positive and negative 

MFEEL. It is known that the liquid solution flux containing charged species can 

experience the Lorentz force, which is given by the cross product of current and magnetic 

field: F = I×B. This Lorentz force can result in a convection for reactive species around 

the diffusion layer in the liquid solution through momentum transfer between reactive 

ions and solvent molecules
123,124

, as shown in Figure 8.3 a. As a consequence, the Lorentz 
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force can generate two effects through convection: increasing ion penetration through 

diffusion layer and decreasing the diffusion-layer thickness in the electrochemical 

reaction. On one hand, increasing ion penetration can enhance the electrochemical 

reaction and thus increase the electroluminescence intensity, leading to a positive MFEEL, 

namely transport-based positive MFEEL. On the other hand, decreasing the diffusion-

layer thickness can reduce the entire electrochemical reaction volume. Since the light-

emitting zone occurs within the diffusion layer, the reduction of diffusion-layer thickness 

can decrease the electroluminescence intensity and essentially generate a negative 

MFEEL, namely volume-based negative MFEEL. At high voltage, the high density of 

reactive species generates a thicker diffusion layer. With a thicker diffusion layer, the 

reduction in diffusion-layer thickness due to Lorentz force effects can be limited as 

compared to the entire diffusion-layer thickness, minimizing volume-based negative 

MFEEL. On the other hand, at high voltage with higher ion concentration the increase in 

ion penetration caused by Lorentz force through mass transport can be more significant 

(as suggested by larger MC at high voltage), which leads to a dominant transport-based 

positive MFEEL. As a result, a high voltage can generate an overall positive MFEEL 

(Figure 8.2 b). At low voltage, the low density of reactive species produces a thinner 

diffusion layer. With a thinner diffusion layer, the reduction in diffusion-layer thickness 

due to Lorentz force effects can be significant relative to entire diffusion-layer thickness, 

maximizing volume-based negative MFEEL. On the other hand, at low voltage with lower 

ion concentration the increase in ion penetration caused by Lorentz force trough mass 

transport is less significant (as suggested by lower MC at low voltage), which minimizes 



134 
 

transport-based positive MFEEL. Therefore, a low voltage can lead to an overall giant 

negative MFEEL (Figure 8.2 b). Furthermore, it should be noted that the mass transport 

driven by Lorentz force can generate magnetocurrent (MC) in electrochemical reaction. 

This is because, when a magnetic field is applied, the Lorentz force (I×B) exerting on the 

charged reaction species yields a momentum transfer to the solvent molecules and 

enhances the charge transport and the electrical current in the electrochemical reaction. It 

should be further noted that changing electrical potential can affect the density of reactive 

ions and consequently changes the total mass transport based on Lorentz force effects, 

leading to a modification on MC amplitude. At high voltage, high-density reactive ions 

can more significantly increase electrical current, as compared to low-density reactive 

ions at low voltage, due to Lorentz force-driven mass transport. It can be clearly seen in 

Figure 8.2 c that the MC reaches 16 % at 3.3 V and 5 % at 2.2 V in the magnetic field of 

700 mT. This voltage dependence of MC further suggests that the Lorentz force effects 

are mainly accountable for the observed magnetic field effects. To verify Lorentz force 

effects in observed MFEEL, we investigate the angle dependence of MFEEL in the 

electrochemical reaction with two-planar electrodes by changing the angle from 0 , 

where the I and B are parallel, to 180 , where the I and B are anti-parallel. Figure 8.3 

b shows a significant angle dependence of MFEEL when the current direction is changed 

relevant to the orientation of applied magnetic field. Clearly, the maximal positive 

MFEEL is observed at
90 . The maximal MC is also shown at

90 . In general, 

angle dependence of magnetic field effects can be attributed to Lorentz force effects. It is 

clear that the Lorentz force (I×B) can largely changes its value at different angles ( ) 
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and therefore affects the ion transport in the generation of electroluminescence through 

convection in the electrochemical reaction cell (Figure 8.3 a). As a result, applied 

magnetic field can cause different responses in electroluminescence and electrical current 

as the angle   changes. This phenomenon has been observed in the magnetic field 

dependence of electrical current in electrochemical reaction reported in early publications. 

To further confirm the Lorentz effects, we studied the effects of concentration of reactive 

species on the MFEEL in the electrochemical co-reaction. Figure 8.3 c shows the MFEEL 

from triplet Ru(bpy)
2+*

 emission as a function of co-reactant TPrA concentration from 

0.01 M to 0.3 M. We can see that the MFEEL largely increases with increasing the co-

reactant TPrA concentration. In addition, increasing TPrA concentration can also enhance 

the electrogenerated chemiluminescence intensity (inset in Figure 8.3 c). These 

concentration results indicate that the Lorentz force can generate larger mass transport 

through convection and consequently enhances the MFEEL as the reactive mass increases. 

As a result, the experimental results from voltage, angle, and concentration dependences 

indicate that the Lorentz force effects can generate giant MFEEL in liquid states based on 

electrochemical reaction. In addition, we should note that, if applied magnetic field is 

considerably non uniform within electrochemical cell, the magnetic field gradient 

associated with this non-uniformity can generate magnetic field effects on 

electrochemical reaction and consequently change electrochemiluminescence intensity. 

 

 

 



136 
 

 

Figure 8.3 Schematic for Lorentz force effects and angle dependence results for magnetic 

field effects. a: Schematic for Lorentz force effects: liquid convection and ion penetration 

in electrochemical cell placed in a magnetic field (700 mT).  b: Angle dependence of 

MFEEL and MC in triplet Ru(bpy)3 based electrochemical system c: MFEEL at different 

TPrA molar concentrations for 
 90 . Inset shows ECL intensity versus TPrA molar 

concentration. 
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We have examined this issue by manually changing the non-uniformity through adjusting 

the distances (2 mm and 5 mm) between two platinum electrodes with our setup (two 

magnetic poles with diameter of 65 mm and distance of 20 mm; two platinum electrodes 

with size of 7 mm x10 mm and adjustable distance from 2 mm to 5 mm). We observed 

that changing the distance between two platinum electrodes does not appreciably change 

the angle dependence of magnetic field effects. This means that the non-uniformity of 

magnetic field does not have considerable contribution to the observed magnetic field 

effects. 

Now we discuss the remaining MFEEL at 0  and 180. It is noted that considerable 

MFEEL remains when I and B are parallel or anti-parallel (Figure 8.3 b). In principle, this 

remaining MFEEL can be due to two different possibilities: magnetic body force due to 

magnetization of paramagnetic ions
125

 and triplet-charge reaction due to interaction 

between triplet excited states and radicals. First, applied magnetic field can magnetize 

paramagnetic radicals
 
and generate magnetic body force at 0 and 180. This 

magnetic body force can contribute to mass transport through momentum transfer 

between solvent molecules and paramagnetic radicals, leading to a remaining MFEEL at 

0  and 180. In particular, this magnetic body force can push paramagnetic radicals 

away and toward the diffusion layer when the I and B are parallel and anti-parallel, 

respectively, generating a relatively smaller and larger remaining MFEEL at 
0  and 

180, as supported by the experimental results shown in Figure 3 b. Second, triplet 

excited states can react with radicals to produce triplet-charge reaction with the 

consequence of quenching light emission from triplet excited states.
 
This triplet-charge 
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reaction can lead to a positive MFEEL on triplet emission at 0  and 180 when 

applied magnetic field reduces the triplet-charge reaction. Early studies have suggested 

that the triplet-charge reaction can generate a positive MFEEL with the amplitude less 

than 30 %. As a result, it can be suggested that magnetic body force-based mass transport 

and triplet-charge reaction can generate the remaining MFEEL at  0 and 180. It 

should be further noted that magnetic force-based mass transport and triplet-charge 

reaction can also generate the remaining MC at  0 and 180. This is because 

magnetic force-driven mass transport and triplet-charge reaction can increase ion 

transport within diffusion layer and generate a positive MC. Nevertheless, our 

experimental studies indicate that the Lorentz force effects function as a main mechanism 

to generate giant positive and negative MFEEL in electrochemical reaction. The magnetic 

body force and triplet-charge reaction play a secondary role in the generation of giant 

MFEEL. 

Besides the energy-deficient system containing triplet Ru(bpy)3 and TPrA, we also 

expanded the MEFEL study to a singlet electrochemical system, namely energy-sufficient 

system based on Rubrene and coreactant TPrA to further investigate the origin of MFEEL 

in the electroluminescence generated by electrochemical reaction. Figure 4 a shows the 

electroluminescence spectrum of singlet Rubrene-based system. The electroluminescence 

peak at 572 nm was observed, which is the characteristic fluorescence from the singlet 

excited states of Rubrene
126

. The cyclic voltammograms measured with three electrode 

configuration are shown as an inset in Figure 8.4 a.  
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Figure 8.4 Electrogenerated chemiluminescence (ECL) characteristics for singlet 

Rubrene-based energy-sufficient electrochemical system. a: ECL spectrum (inset: Cyclic 

voltammograms). b: MFEEL at different voltages. 
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sufficient to generate the singlet states of the Rubrene and produce the fluorescence via 

the S route. Early studies have indicated that negligible magnetic field effects should be 

observed through S route in the energy-sufficient system because of lacking significant 

triplet-charge reaction and triplet-triplet annihilation in singlet systems. Surprisingly, our 

singlet Rubrene-based system shows a giant MFEEL in the electroluminescence generated 

by electrochemical reaction with two planar-electrode electrochemical configuration 

(Figure 8.4 b). At 5 V, the electroluminescence intensity monotonically increases with 

applied magnetic field, leading to giant MFEEL of about 400% at the magnetic field of 

700 mT. This result indicates that the transport-based positive MFEEL is a dominant 

mechanism in the overall magnetic field effects at relative higher voltage (5 V) with 

higher ion concentration and thicker diffusion layer. At a lower voltage (4 V), the 

electroluminescence intensity slightly increases from 100 mT to 450 mT and then rapidly 

decreases. The maximal negative MFEEL reaches - 100 % at 700 mT where the 

electroluminescence intensity is completely quenched by applied magnetic field. This 

result implies that the volume-based negative MFEEL is a major mechanism in the overall 

magnetic field effects at relatively low voltage with lower ion concentration and thinner 

diffusion layer. In general, the observed MFEEL can reflect the combination of transport-

based positive MFEEL and volume-based negative MFEEL components based on Lorentz 

force-driven convection in electrochemical reaction. Because liquid viscosity can also 

affect the convection and then changes the interplay between transport-based positive 

MFEEL and volume-based negative MFEEL, singlet and triplet systems may exhibit 

slightly different behavior in MFEEL. Here, we note that the singlet MFEEL from the 
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Rubrene (Figure 8.4 b) follows a similar trend in voltage dependence as compared to the 

triplet MFEEL from the Ru(bpy)3 (Figure 8.2 b). Therefore, this giant singlet MFEEL can 

exclude the possibility that the triplet-charge reaction and triplet-triplet annihilation play 

an important role in the observed MFEEL in the liquid-state electroluminescence 

generated by electrochemical reaction. 

8.5 Conclusion 

 
In summary, we experimentally demonstrate giant magnetic field effects (> 400 %) in 

electrogenerated chemiluminescence based on co-reaction. The angle, voltage, and 

concentration dependences of magnetic field effect suggest that the Lorentz force-driven 

ion transport and the Lorentz force-dependent diffusion-layer thickness through liquid 

convection are mainly accountable for the observed giant MFEEL, respectively. In 

addition, we find that the magnetic body force due to magnetization of paramagnetic 

radicals and the triplet-charge reaction due to interaction between triplet excited states 

and radicals can also contribute to giant magnetic field effects as a secondary mechanism. 

Furthermore, our experimental results indicate that the MFEEL observed at different 

angles, concentrations, and voltages can be used to elucidate magnetic field-dependent 

mass transport, magnetization of paramagnetic radicals, and magnetic field-dependent 

triplet-charge reaction in electrochemical reaction. Moreover, rationally adjusting Lorentz 

force effects presents a new path way to develop giant magnetic field effects in liquid 

states based on electrochemical reaction.  
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CHAPTER 9 CONCLUSION 
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It has been found that an external magnetic field can substantially change the 

injection current, photoluminescence and electroluminescence intensity in organic 

semiconductors, leading to MR (MC), MFEPL and MFEEL. However, the origin of 

magnetic field effects still remains puzzling. Therefore, it requires careful discrimination 

of existing spin dependent processes in organic semiconductors and discovers the 

underlying mechanism for MFEEL and MR. 

We have investigated MFEPL and MFEEL from TPD:BBOT exciplex, which is one 

type of intermolecular excited states. Exciplex exhibits a clear positive MFEPL, while 

MFEPL is usually absent in intramolecular excited states. MFEPL measurement indicates 

that magnetic field can only influence the intersystem crossing (ISC) at polaron pairs and 

exciplex state, but cannot affect the ISC in exciton state. The reason is because magnetic 

field sensitive ISC strongly depends on the electron-hole separation distance, which 

determine the exchange energy between singlet and triplet excited states. We successfully 

enhance the magnitude of MFEPL and MFEEL by increasing the electron-hole separation 

distance through material mixing and introducing electrical dipole-dipole interaction in 

TPD:BBOT exciplex composite film. These experimental results further support that 

magnetic field sensitive ISC contribute to the positive MFEPL and MFEEL. 

The mechanism of negative MFEEL has been studied through modifying the triplet 

density on PFO matrix by using Dexter energy transfer, charge confinement by using 

band offsets and exciton charge ratio by unbalanced bipolar injection in OLEDs. Two 

possible mechanisms TTA and TCR in the generation of negative MFEEL were 

considered. We found that increasing triplet exciton density can lead to a negative MFEEL 
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in electro-fluorescence in the PFO matrix by transferring the high-density triplets formed 

in the charge-trapping Ir(mppy)3 molecules to the PFO matrix through Dexter process. In 

addition, confining triplet excitons and charges by using double-layer structure can 

clearly generate a negative MFEEL in electro-fluorescence. Finally, we found that 

enhancing the TCA can directly generate negative MFEEL by unbalancing the bipolar 

injection of ITO/PFO/PMMA/Al OLED. Therefore TCA can be attributed to a dominant 

process for negative MFEEL in organic semiconducting materials. 

We found that both MC and MFEEL were observed from the strong spin orbital 

coupling iridium complex after introducing the insulating blocking layer PVA. However, 

introducing organic semiconductor/semiconductor interface didn’t show any appreciable 

magnetic response. This interface induced MC and MFEEL can be attributed to magnetic 

field perturbed spin-spin interaction of inter-charge carriers confined at 

semiconductor/insulating interface. 

We compared the MC and MFEEL from two similar heavy metal dyes: Ir(ppy)3 and 

Ir(ppy)2(acac) with strong spin-orbital coupling but different electrical dipole moments.  

Ir(ppy)3 with strong electrical dipole moment shows negligible MC and MFEEL. However, 

Ir(ppy)2(acac) with weak dipole moment exhibits appreciate MC and MFEEL. The 

experimental results suggest that the electrical dipole-dipole interaction can change the 

MC and MFEEL from capture-based regime, where charge carriers are captured through 

spin-dependent process at short distance, to intersystem crossing-based regime, where 

charge carriers are captured through spin random process at long distance. 
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Not limited to the studies of magnetic effect on fluorescence (MFEPEL), we also 

extend our investigation to magnetic effect on the phosphorescence (MFEFEL) in OLED 

at the same time. The sign of MFEFEL and MFEPEL can be tuned either in the same 

direction or in opposite direction by controlling the intersystem crossing, energy transfer, 

triplet charge reaction and spin-spin interaction. The opposite MFEEL on the fluorescence 

and phosphorescence result clearly exclude the formation based MFEEL which claims that 

magnetic field can increase the formation rate of both singlet and triplet while their spin 

polarization are conserved. Fully tuning MFEPEL and MFEFEL provide the feasibility of 

novel high efficient magneto-optoelectronic devices.   

At last, we discovered the giant MFEEL (over 400 %) in electrochemical cells. The 

Lorentz force is mainly accountable for the observed giant MFEEL through magnetic 

field-sensitive ion transport and magnetic field-sensitive diffusion-layer thickness based 

on angle, voltage, and concentration dependences. Furthermore, our experimental results 

suggest that magnetic body force due to magnetization of paramagnetic radicals and 

triplet-charge reaction due to interaction between triplet excited states and radicals are 

counted as a secondary mechanism in the observed giant MFEEL. 

Therefore, our research works elucidate the underlying mechanism of MFEEL and 

MR in organic semiconductors. Theoretical understanding of these magnetic field effects 

can provide us a powerful tool to reveal critical spin-dependent useful and non-useful 

progresses in organic light emitting and photovoltaic systems, leading to the development 

of high efficient organic light emitting diode and photovoltaics. Practically, we 

successfully realized the complete tuning of both sign and amplitude of MFEEL and MR, 
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leading to the development of novel multifunctional organic magneto-optoelectronics 

devices. 
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