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Abstract 
 

 Computational study of the structural, thermodynamic and transport properties of 

polymeric materials at equilibrium requires multi-scale modeling techniques due to processes 

occurring across a broad spectrum of time and length scales. Classical molecular-level 

simulation, such as Molecular Dynamics (MD), has proved very useful in the study of polymeric 

oligomers or short chains. However, there is a strong, nonlinear dependence of relaxation time 

with respect to chain length that requires the use of less computationally demanding techniques 

to describe the behavior of longer chains. As one of the mesoscale modeling techniques, Coarse-

grained (CG) procedure has been developed recently to extend the molecular simulation to larger 

time and length scales. With a CG model, structural and dynamics of long chain polymeric 

systems can be directly studied though CG level simulation. In the CG simulations, the 

generation of the CG potential is an area of current research activity. 

 The work in this dissertation focused on both the development of techniques for 

generating CG potentials as well as the application of CG potentials in Coarse-grained Molecular 

Dynamics (CGMD) simulations to describe structural, thermodynamic and transport properties 

of various polymer systems. First, an improved procedure for generated CG potentials from 

structural data obtained from atomistic simulation of short chains was developed.  The Ornstein-

Zernike integral equation with the Percus Yevick approximation was invoked to solve this 

inverse problem (OZPY-1).  Then the OZPY-1 method was applied to CG modeling of 

polyethylene terephthalate (PET) and polyethylene glycol (PEG). Finally, CG procedure was 

applied to a model of sulfonated and cross-linked Poly (1, 3-cyclohexadiene) (sxPCHD) polymer 

that is designed for future application as a proton exchange membrane material used in fuel cell. 

 Through above efforts, we developed an understanding of the strengths and limitations of 

various procedures for generating CG potentials. We were able to simulate entangled polymer 

chains for PET and study the structure and dynamics as a function of chain length. The work 

here also provides the first glimpses of the nanoscale morphology of the hydrated sxPCHD 

membrane.  An understanding of this structure is important in the prediction of proton 

conductivity in the membrane. 
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 Polymeric materials like plastics, rubbers and fibers play an important role in our 

everyday life. Their unique physical and chemical properties like flexibility, transparency, 

conductivity, roughness and durability can be found in various applications in the modern world. 

The common feature of this type of polymeric material is the long chain molecular structure. For 

many years, physicists and chemists have made tremendous efforts to understand and improve 

the structure and properties of polymeric materials based on understanding at the molecular-

level.  When the length scale goes down to the nanoscale (molecular level), the experimental 

study becomes more difficult and unreliable. 

 With the continued development of computer technology, computer simulation has 

become a valuable tool in polymer science. When the length scale is less than 10 nm and time 

scale is less than 100 ns roughly, classical molecular simulation techniques like Molecular 

Dynamics (MD) or Monte Carlo (MC) simulations are widely used in the study of the structural, 

thermodynamic and transport properties of polymeric oligomers at equilibrium. MD is based on 

the time evolution of the molecular system, providing the actual trajectories of each particle in 

the system. One of the main advantages of MD simulation is the generation of transport 

properties, such as self-diffusivity, zero-shear-rate viscosity and thermal conductivity. We 

implemented MD simulations in this work. In molecular simulation (either MC or MD), the force 

field plays an important role in generating accurate results. An atomistically detailed model is 

usually used with interaction potential parameters determined from parameterization to either 

quantum mechanic calculations or experimental data. Many force fields have been developed for 

polyatomic molecules.1-5 These force fields generate accurate simulation results that are in good 

agreements with experiments. 

 The classical molecular simulation study of structures and properties polymeric materials 

is limited to short chain oligomers. One of the major reasons is that the longest relaxation time of 

a polymer is strongly dependent on the chain length. When chain length is small, the molecular 

simulation is still tractable since the relaxation time is generally less than 100 ns. When chain 

length increases, the relaxation time increases exponentially. It could easily exceed 1000 ns for 

long chain polymeric systems. This makes the study of structural and dynamic properties very 

difficult through classical molecular simulations. Another reason is different simulation 

techniques have their own advantages and limitations. The major limitation of applying a 
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molecular model to polymers is the number of degree of freedoms in the atomistically detailed 

model. The high resolution model generates accurate simulation results but impacts the 

computational efficiency. Many local interactions like bond stretching, bending and torsion have 

to be calculated to obtain the total potential energy. Meanwhile, a small step size has to be used 

for these high frequency modes. For these reasons, the time and length scales used in molecular 

simulation are far below that of real long chain polymer systems. With finite computational 

resources, it remains beyond current computational capabilities to use an atomistically detailed 

simulation technique to obtain long time trajectory of long chains. To study polymer physics at 

different time and length scales, one has to rely multi-scale modeling, which is actually a 

combination of different simulation techniques. 

 The coarse-grained (CG) procedure lifts these computational limitations by eliminating 

some degrees of freedom in the simulation in exchange for computational efficiency. The 

reduction in the degrees of freedom is accomplished by grouping atoms in certain fragments of 

the chain into “beads”, which interact with their own CG potential.6-8   Since the degrees of 

freedom are greatly reduced in the CG model, many local interactions are neglected.8  Larger 

length and time scales can be reached in the CG level simulation. Structural and transport 

properties can be calculated directly by CG simulation.9  Furthermore, the CG level properties 

can be mapped back to molecular level through the use of scaling factors.8,10,11  

 Similar to atomistic simulation, obtaining reliable nonbonded interaction potentials is the 

important and challenging part of the CG procedure. Three common methods have been adopted 

in the literatures: (1): adjusting power law type potential parameters (Lennard-Jones 12-6, 7-6, 7-

4, 7-5),6-8,12 (2): iterative Boltzmann inversion (IBI) method13,14 and (3): method based on 

integral equation (IE) theory.15,16 In the first method, the parameters of an analytical potential can 

be obtained by fitting to either theory or experimental data, which makes the method 

computationally efficient. Potentials from this method can closely reproduce the atomistic 

structure. However, depending on the CG model and force fields used in atomistic sampling, 

complicated nonbonded CG pair correlation functions (PCFs) can be generated. When dealing 

with complicated nonbonded PCFs, it can be difficult to reproduce the structures of atomistic 

simulation using this method. As a comparison, the IBI method is designed to reproduce the 

structure of atomistic sampling. The effective potential is iteratively refined until the structure 
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from CG level simulation matches the target one from atomistic level simulation.  As an 

iterative method, it negatively impacts computational efficiency obtained from coarse-graining. 

It may not work for multi-components system like polymer solution or complicated CG models 

where potentials of different CG beads affect with each other.  In the method based on the 

Ornstein-Zernike (OZ) integral equation theory, the relationship between structure (PCFs) and 

interaction potentials is expressed in either Percus-Yevick (PY) or hypernetted-chain (HNC) 

approximations for the direct correlation function in OZ integral. The IE theory is normally used 

to generate structural properties like PCFs given the interaction potential. It is revisited by 

researchers recently on CG procedure to obtain nonbonded potential parameters17  or tabulated 

potentials coupled with liquid state theory.10,11,18  This method is based on sound statistical 

mechanics. Once derived, it is straightforward, fast and generalized to different systems. The 

difficult part is to solve the integral equation with PY or HNC approximations. Due to these 

approximations, it may cause problems when applied to high density liquids, where the PY and 

HNC approximations fail. 

 In the CG procedure, atomistic simulation normally is first conducted on small systems 

with polymer oligomers, from which structural distributions for the CG beads are extracted. 

Then the CG force field is parameterized using one of above methods according to the problems 

of interests. The CG potential is validated by performing CGMD simulations of the same short 

chains and directly comparing the results with those from atomistic simulations.  Finally, 

structures and dynamics of large system can be studied though CG level simulation using the CG 

force field. The CG based multi-scale modeling technique has been used in the study of structure 

and dynamics of biomacromolecules,19,20   polymer chain molecules (polysterene (PS),7,8,12  

polymethyl methacrylate (PMMA),9  polyethylene oxide (PEO),21 bisphenol-A polycarbonate 

(BPA-PC)22  and azobenzene liquid crystal6 ), and recently proton exchange membrane (PEM) 

polymers. 23,24  

 Polyethylene terephthalate (PET) is one of the important engineering plastic used in 

everyday life. Although the molecular simulation of polyethylene PET has a long history,25-29  

the CG simulation of PET is less prevalent in the literature. Kamio et al.13  performed CG end-

bridging MC simulations of PET melts, generating equilibrium structural and entanglement 

properties. Dynamic properties are not reported in this work. This current work is aimed at 
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conducting CGMD simulations to investigate the structural and dynamic properties of PET 

chains with a DP up to 50. Longer chain length is not used, considering the balance on study of 

both structures and dynamics. This range of DP is also relevant because PET leaving an 

industrial finishing reactor possesses a DP in the 30 to 50 range.30  

 The study of polymer electrolytes in PEM fuel cells has become of particular interest. 

Recently, researchers have been trying to find PEM material that can retain moisture at higher 

operating temperatures in the fuel cell, in order to reduce the amount of expensive noble metal 

catalyst required in the device. Mays’ group at the University of Tennessee, Knoxville, has 

synthesized a set of novel non-fluoropolymer based, potentially low cost and high temperature 

fuel cell membranes based on poly(1,3-cyclohexadiene) (PCHD).31-33 The sulfonated and cross-

linked PCHD (sxPCHD) based PEM materials include homopolymer (sxPCHD), polymer blend 

(sxPCHD/Polyethylene glycol (PEG)) and block copolymer (sxPCHD-PEG).  At high humidity, 

the conductivity of some membranes is about 10 times that of a Nafion based membrane.34  The 

researchers believe that the morphology of this type of PEM accounts for the high conductivity. 

Information on the molecular level structure will help people understand the mechanism of high 

proton conductivity of this material.  

            In this work, we aimed to study polymeric materials structure and properties at different 

time and length scales. Atomistic and CG MD simulations are applied to different polymeric 

systems with different emphasis. These systems include: bulk PET, bulk PEG, bulk sxPCHD and 

hydrated sxPCHD membrane. All the CG procedures for these systems start with atomistic MD 

simulations. The main tasks of this work are summarized in the following paragraphs 

 In Chapter 2, the OZPY theory is used to generate interaction potentials from PCFs of 

monatomic and diatomic Lennard-Jones fluids. The aim of the work is to derive a CG potential 

generation method that can compromise both the computational efficiency and accuracy.  The 

test on simple Lennard-Jones fluids is a self-consistency test before applying to polymer melts. 

 In Chapter 3, MD simulations of PET oligomers are performed in the isobaric-isothermal 

(NpT) ensemble at a state point typical of a finishing reactor. The oligomer size ranges from one 

to ten repeat units. Structural, thermodynamic and transport properties are calculated for systems 

with different oligomer size. The chain length dependence of these quantities are studied and 
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compared to experiments and theories. Furthermore, all structural information are obtained and 

analyzed for the next stage CG procedure. 

 In Chapter 4, a CG model of PET was developed and implemented in CGMD simulations 

of PET chains with degree of polymerization up to 50.  The CG potential is parameterized to 

structural distribution functions obtained from atomistic simulations using OZPY-1. Average 

chain end-to-end distance and radius of gyration, relaxation time, self-diffusivity and zero-shear-

rate-viscosity’s dependence on DP is reported. Scaling exponents have been extracted and 

compared with Rouse and Reptation models. Entanglement analysis is conducted to further study 

the Reptation behavior. 

 In Chapter 5, a CG model of PEG was developed and implemented in CGMD simulations 

of PEG chains with degree of polymerization (DP) 20 and 40. In the model, two repeat units of 

PEG are grouped as one CG bead. Atomistic MD simulation of PEG chains with DP = 20 was 

first conducted to obtain the bonded structural probability distribution functions (PDFs) and 

nonbonded PCFs of the CG beads. The CG nonbonded potential is parameterized to the PCF 

using both OZPY-1 and a combination of OZPY-1 with the IBI method (OZPY-1+IBI). 

Performances of different CG potentials generation methods are compared. The new CG model 

and CG potentials from OZPY-1+IBI method was further tested through CGMD simulation of 

PEG with DP = 40 system.  

            In Chapter 6, atomistic and CG models of sxPCHD were developed and implemented in 

MD simulations of sxPCHD chains with different architectures, which are specifically aimed for 

application as a PEM used in fuel cells. An atomistic force field for the architectures was tested 

and applied in the atomistic MD simulation of sxPCHD for the first time. CG potentials are 

generated by IBI method. Structural distribution functions from CGMD simulations of sxPCHD 

melt with different architectures is presented.  

            In Chapter 7, atomistic and coarse-grained (CG) models of sxPCHD are further tested in 

the hydrated sxPCHD membrane system. The system includes water, hydronium ions and 

sxPCHD polymer. The atomistic level simulation generates PCFs for all possible pairs. Water 

and hydronium ion distribution and transport in hydrated sxPCHD membrane are studied. The 

structure of the polymer under melt and hydrated conditions are compared. To apply the IBI 

method to obtain the effective potentials for PCHD polymer in the hydrated membrane, water 
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molecules and hydronium ions are made implicit at the CG level. A comparison on structures 

from two level simulations is also presented. 

 Finally, in Chapter 8, the main conclusions from each work described in this dissertation 

are summarized, and overall impact of the current achievement and views on future work are 

discussed. 
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Abstract 

 In this work, we test the ability of the Ornstein-Zernike equation in the Percus Yevick 

approximation (OZPY) to generate interaction potentials from pair correlation functions (PCFs) 

of monatomic and diatomic Lennard-Jones fluids. The PCFs are generated by solving OZPY 

equation (monatomic fluid) and Molecular Dynamics (MD) simulations (diatomic fluid). Since 

the interaction potentials are inputs in the OZPY method and the MD simulation, the extraction 

of the potential from the PCFs using OZPY is a test of self-consistency.  This test is necessary if 

the procedure is to be used to generate coarse-grained (CG) potentials from PCFs.  We find that 

the procedure is completely self-consistent for the monatomic fluid in the whole range of 

densities studied (reduced density up to 0.55, under reduced temperature 2.0). In the diatomic 

case, we find that the procedure is generally self-consistent under both low and high densities, 

although there is a systematic deviation at high densities. The method is able to reproduce the 

two parameters (ε and σ) of the input Lennard-Jones potential model to within about 1%. This 

CG potential generating procedure can be straightforwardly extended to more complicated 

molecules. 
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2.1 INTRODUCTION 

 In the development of coarse-grained (CG) potentials for polymers, one can perform the 

complete atomistic molecular dynamics (MD) simulation (for which the interaction potentials are 

known) for a system of short chains and, based on the mapping of CG particles to the center of 

mass of polymer fragments, generate pair correlation functions (PCFs) for stretching, bending, 

torsion and nonbonded interactions between CG particles.  One then must extract the CG 

interaction potential for each mode from each PCF.  For the stretching, bending and torsion 

modes, there are straightforward approximations that relate the interaction potential directly to 

the PCF.  For example, for the stretching mode, via, the interaction energy between a particle of 

type α and a particle of type β, Sαβ,ϕ , as a function of the separation between particles, r, can 

(with proper validation) be related to the stretching pair correlation function, ( )rSαβ,g , via 

      ( ) ( )( ) Sαβ,Sαβ,BSαβ, cglnTk +−= rrϕ     (1) 
where kB is Boltzmann’s constant, T is temperature and Sαβ,c  is a constant.  Similar expressions 

apply to the bending and torsion modes 1-3 . 

           For the nonbonded interactions, this level of approximation is inadequate because the 

pair-wise potential can give rise to large higher order correlations.  Thus there is a need to 

develop a rigorous way to extract a CG nonbonded potential from the PCF. 

      There are two major methods currently used to extract the nonbonded CG potentials.  

First, the parameters of an analytic potential such as Lennard-Jones are adjusted to closely 

reproduce the target PCF in the atomistic liquid/melt. Work from Harmandaris et al.1,2,4  on 

coarse-grained modeling of polystyrene represents this approach in which target chain molecules 

are separated into fragments so that the nonbonded interaction between different fragment types, 

{ }Kβα ,  is based on the fragment corresponding PCF, gα,β. A problem with this method is that 

the difference of conformations and orientations between fragment molecules and target 

molecules may not be reflected correctly on the corresponding coarse-grained potentials.3,5  For 

example, the conformations of phenol rings in liquid benzene and that in PS melt where the rings 

are embedded into a long chain may be different. Consequently, these conformations would be 

misrepresented in the CG potential.  
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       In the second method, a tabulated potential is numerically determined by iterative 

Boltzmann inversion6 .  The interaction potential is refined iteratively via  

 
( ) ( ) ( )
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                                         (2) 

 where ( )'gα r,rβ  is the target PCF. The convergence of the procedure is guaranteed by the fact 

that there is a unique functional relationship between the PCF and the pairwise-additive 

potential. Potentials obtained from this procedure will closely reproduce the CG atomistic liquid 

PCFs. Using this method, Kamio et al.7  performed CG end bridging Monte Carlo simulations of 

poly(ethylene terephthalate) melt and obtained CG melt density, characteristic ratio and other 

conformational properties that agree with experiment. The challenging part of this method is 

obtaining PCFs from simulations in each iteration. As mentioned by Guenza8 , those simulations 

have to be performed on length scales and timescales large enough to ensure a reliable numerical 

predictions of the potential at the length scale characteristic of the coarse-graining procedure. 

This could strongly limit the computational gain of CG procedure.  Thus, extraction of the 

nonbonded interaction potential for CG models remains an important problem. 

      We present an alternative procedure based on the Ornstein-Zernike equation with the 

Percus-Yevick approximation (OZPY) to extract the CG nonbonded potential from the PCFs.  

This method is approximate only because of the approximate nature of the PY assumption for the 

direct correlation function.  On the other hand, it is simple and fast compared to methods of 

comparable accuracy.  It is a step forward from Eqn. 1 in theoretical rigor; it acknowledges the 

influence of interactions with surrounding particles that should be present in the determination of 

pairwise potentials from the PCF.   

      The OZPY equation is typically used to generate PCFs given the interaction potential. We 

refer to this as the OZPY procedure.  The use of the OZPY equation to extract the interaction 

potential from the PCFs, we will call inverse OZPY or OZPY-1. Before the OZPY-1 procedure 

can be applied to the development of CG potentials, it must first demonstrate the capability to 

reproduce known results. To this end, we apply it to two fluids: a monatomic Lennard-Jones 

fluid and a flexible diatomic Lennard-Jones fluid. We point out that while the OZPY is nonlinear 
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in the PCF, it is linear in the exponential of the interaction potential, making the inverse OZPY 

equation relatively straightforward to solve.  

       The OZPY theory is well established for simple fluids, both pure and in mixtures.  The 

challenging part of OZPY-1 is formulating the OZPY theory to account for the presence of a 

stretching potential between some of the atoms. The OZ integral has been under study for several 

decades in the fields of monatomic, diatomic and polyatomic fluids theories. Most of the 

research focuses on the calculation of structural properties of the fluids. A literature survey 

shows that OZPY gives results that match well the PCFs from molecular simulation of low 

density monatomic fluids but deviate at high density9 . For this reason, Verlet and Weis10  

proposed several empirical corrections. Tang and Lu11  and Yuste et al.12  developed improved 

expressions that can reproduce the simulation data. These expressions are somewhat more 

cumbersome that the PY approximation. In the diatomic case, a numerical procedure13  and 

sophisticated models14,15 , have been developed to solve the OZ equation to exactly reproduce the 

structural properties of diatomic Lennard-Jones13,15  and hard dumbbell fluids14 .  

       The application of integral equation theories to polymers has a long history16,17 , and 

continues to be used in the development of modern multiscale models of polymers18,19 .  The 

Polymer Reference Interaction Site Model (PRISM)20,21  has become the most fully developed 

and widely used integral equation approach22 , with areas of application that include polymer 

solutions23 , colloid-polymer suspensions24  and CG procedures8,21,22,25 . Most of these 

applications are related to the calculation of structural properties like PCFs21,22  or other 

correlation functions8,25 .  

       In the application to CG potentials, Zhao et al.22  adopted an approach similar to iterative 

Boltzmann inversion method to obtain the two optimized parameters of a CG Lennard-Jones 

potential model of atactic polystyrene (PS) melt, using PRISM to calculate intermolecular PCFs 

with intramolecular PCFs with atomistic MD simulation as input. Since it is still a numerical 

procedure, it suffers the same disadvantage as the iterative Boltzmann inversion method.   

       The OZPY equation26  used here is relatively simple and can be easily inverted. The use 

of OZPY-1 method27  to obtain the interaction potential is currently limited to monatomic 
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systems28-31 . In this paper, we demonstrate that this method can also be applied to the diatomic 

Lennard-Jones fluid. 

       To this end, using known atomistic interaction potentials, we generated PCFs for two 

systems, a monatomic Lennard-Jones fluid and a flexible diatomic Lennard-Jones fluid, in which 

each atom interacts with other nonbonded atoms via the Lennard-Jones interaction potential.  For 

each system we use the OZPY-1 procedure to regenerate the nonbonded interaction potential.  

Given that the nonbonded interaction potential is known a self-consistency test is provided, 

establishing the reliability of the procedure for generating CG potentials.  Note that we are not 

generating a CG potential in this work; rather we are reproducing atomistic potentials via the 

same OZPY-1 procedure that could be used to generate a CG potential.  The procedure is 

illustrated in Figure 2.1.  

2.2 SIMULATION 

      For the monatomic fluid, PCFs can be generated either from MD simulation or from 

solution of the OZPY equation. Using the PCFs from OZPY can provide a cleaner test of the 

OZPY-1 procedure than using them from simulation. Therefore, PCFs used here for monatomic 

fluid were generated by solving the OZPY integral equation, using an established method and 

code developed by Lee.32  Different state points were investigated for the monatomic fluid, the 

corresponding states varies from low-density gas to high density liquid.  The dimensionless 

temperature of the simulation was T* = 2.00  and the dimensionless densities were ρ* = 0.005, 

0.15, 0.25, 0.35, 0.45 and 0.55.  Classical MD simulations were also run at some of these state 

points in order to compare the PCFs from simulation and integral equation theory.  As a point of 

reference, the critical point for the Lennard-Jones fluid lies at a reduced temperature of 1.293 and 

reduced density of 0.313 33 .  

      For the diatomic fluid, PCFs were generated from classical MD simulations rather than 

from the OZPY integral equation, because of the additional complexity introduced by the 

internal structure of the molecule.  For both the monatomic and diatomic fluids, the MD 

simulations were performed on an in-house code, using a two-time step reversible RESPA 

algorithm34 .  The diatomic molecules are fully flexible.  The stretching potential is a Hookian 

spring for molecular nitrogen taken from ref. 35 , with equilibrium bond distance req = 1.09 Å and 
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force constant kS = 3185.788 kcal/mole/Å2.  The nonbonded interactions between atoms on 

neighboring molecules employ a Lennard-Jones potential with ε/kB = 36 K and σ = 3.31 Å35 .  

The nonbonded interactions were truncated at 15 Å.  The time steps for integration were 0.2 fs 

for the stretching mode and 2 fs for the nonbonded interactions.  The simulations were run in the 

canonical ensemble using the Nosé-Hoover thermostat34 .  The simulations consisted of 1000 

molecules and were equilibrated for 1 ns followed by 2 ns of data production.  The low density 

simulations of the diatomic system were run at T* = 8.3333 and ρ* = 0.07341. The high density 

simulations were run at T* = 5.5556 and ρ* = 0.5057. ρ* is the reduced molecular density. 

 

2.3 THEORY 

       The Ornstein-Zernike Integral Equation for a mixture of simple fluids is26  

( ) ( ) ( ) ( ) ( )[ ]∑∫ −+=−
γ

3
γβγαγαβα d1gncc1'g r''r'',r'r''r,r''r,r'r,rβ                 (3) 

where the pair correlation function between particles of type α and β located respectively at r  

and r′ , ( )'gα r,rβ ,  is related to the direct correlation, ( )'cα r,rβ , and an integral including the 

interactions of the α and β particles with a third particle, γ, located at r''  with a singlet density, 

( )r''γn .   There is a summation over γ spanning all types of particles.  This equation in its present 

form implicitly allows for a different interaction potential between each pair of types of particles.  

In essence, the summation over γ is a summation over interaction potentials. 

        For the diatomic fluid, we need to modify the OZ equation so that it can account for 

some particles interacting via a stretching potential and some particles interacting via a 

nonbonded potential.   In the case of the single-component diatomic fluid investigated here, the 

summation over γ becomes explicitly a summation over interaction potentials.  In order to 

emphasize this, we rewrite the OZ equation, replacing the αβ subscripts, with iϕ  subscripts,     

( ) ( ) ( ) ( ) ( )[ ]∑∑∫ −+=−
2 3

3211

3d1gncc1'g
ϕ ϕ

ϕφϕϕ r''r'',r'r''r,r''r,r'r,r                (4) 

There is some ambiguity associated with the PCF of a given potential, when the same particle 

can interact via different potentials (e.g. stretching or nonbonded).  We shall address this shortly. 



 

 

 

18

       For the purposes of our work here, we will use this equation to solve for the nonbonded 

potential, assuming the stretching potential is obtained from equation (1).  As such  1ϕ  is always 

the nonbonded potential, while the summations of 2ϕ  and 3ϕ  include both nonbonded and 

stretching potentials.  Some combinations of 2ϕ  and 3ϕ  are not permitted.  For the case of a 

homonuclear diatomic fluid, the three possible combinations are illustrated in Figure 2.2.  The 

third particle can interact (1) with the first via a nonbonded interaction and the second via a 

nonbonded interation, (2) with the first via a stretching interaction and the second via a 

nonbonded interation, and (3) with the first via a nonbonded interaction and the second via a 

stretching interation.  The fourth combination, that of the third particle interacting with both the 

first and second particles via a stretching interaction, does not exist in a diatomic fluid, where 

each particle has a stretching interaction with one and only one other particle.  

       The Percus-Yevick approximation expresses the direct correlation function as 

( ) ( ) ( )
⎥⎦
⎤

⎢⎣
⎡ ⎟

⎠
⎞⎜

⎝
⎛−=

TBk
r,r'r,rr,r'

ii
iexp1'gc ϕ

ϕϕ                    (5) 

We follow convention in defining the cavity function36  and total correlation function 

( ) ( ) ( ) ⎟
⎠
⎞⎜

⎝
⎛=

TBk

r,r'r,rr,r'
ii

iexp'gy ϕ
ϕϕ                     (6) 

( ) ( ) 1'gh −= r,rr,r'
ii ϕϕ                      (7) 

Substitution of equations (5) through (7) into equation (4) yields the Ornstein-Zernike equation 

with the Percus-Yevick Approximation or the OZPY equation 

( ) ( ) ( ) ( )∑∑∫ ′+=
2 3

321

3dnc1'y
ϕ ϕ

ϕφϕ r'',r''rhr''r,r''r,r                  (8) 

If the fluid is homogeneous in space, the positions can be replaced by displacements 

rrtrrsrrr ′′−′=′′−=′−= , ,                     (9) 

and equation (8) rewritten as  

( ) ( ) ( )∑∑∫+=
2 3

321
dnc1y

ϕ ϕ
ϕφϕ Vthsr                    (10) 

where the integral is over all volume.  Following Lee32 , it is convenient to convert the volume 

integral to bipolar coordinates, which yields 
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( ) ( ) ( )∑∑ ∫ ∫
∞ +

−
+=

2 3

321 0
dttcdssn21y

ϕ ϕ
ϕφϕ

π sr

sr
ths

r
r                                        (11) 

Substitution of the PY approximation into the integrand yields 

 ( ) ( ) ( )[ ] ( )∑∑ ∫ ∫
∞ +

−
+−+=

2 3

3221 0
dtt1yhdssn21y

ϕ ϕ
ϕφφϕ

π sr

sr
thss

r
r     (12) 

       Conceptually, then we measure all ( )th
iϕ  in the simulation and we solve equation (12) 

numerically for ( )r
1

yϕ  from which the potential can be directly extracted.  

       We now resolve the ambiguity of the PCF for a given potential, which was introduced 

above.  The PCF for an arbitrary interaction potential is equal to the number of pairs of particles 

of type α and β interacting via that potential at a distance r, averaged over all α particles  and 

normalized by the average density of the β particles,     

 ( ) ( )
( )

( )
( )

i

i nrN
rN

r
V

NN
rN

r pairspairs

ϕβα

ϕ

βα

ϕ
ϕαβ

,

,,
,

1
VV

g ii ⋅=⋅≡                  (13) 

where V is the system volume and Nα and Nβ are the number of particles involved in interaction 

iϕ in the system and we define a component density as 
V
N

n
i

β
ϕβ =, , which itself now is tied to a 

given potential.  In a mixture of simple fluids all of the quantities in equation (13) are completely 

unambiguous; the number of particles of type α and β are independent of the potential.  

However, when one looks even at a single-component homonuclear diatomic fluid, the number 

of α particles is well defined, but the density of β particles interacting only with a single given 

potential is unclear, since all β particles interact with both stretching and nonbonded potentials.  

We define an unambiguous pair correlation function, the local density of particles interacting via 

interaction potential iϕ , ( )r
iϕαβ ,g′ , which is directly calculated in an MD simulation, 

 ( ) ( ) ( )
( )rN

rN
rnr pairs

iii V
gg ,

,,,
i

α

ϕ
ϕαβϕβϕαβ ==′        (14) 

where V(r) is the volume of the spherical shell.  Now the PCF has units of density and there is no 

ambiguity in the meaning or evaluation of this quantity because 
i

n ϕβ ,  has been eliminated.  This 
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is the local density of particles of type β around particles of type α, interacting via iϕ . We 

define analogous variables for the cavity, total and direct correlation functions. 

 ( ) ( ) ( ) ( ) ⎟
⎠
⎞⎜

⎝
⎛′==′

TBk
rrrnr

iiii
i

,,,, expgyy ϕ
ϕαβϕαβϕβϕαβ   (15) 

 ( ) ( ) ( )
iiiii

nrrnr ϕβϕαβϕαβϕβϕαβ ,,,,, ghh −′==′   (16) 

( ) ( ) ( ) ( )
⎥⎦
⎤

⎢⎣
⎡ ⎟

⎠
⎞⎜

⎝
⎛−′==′

TBk
rrrnr

iiii
i

,,,, exp1gcc ϕ
ϕαβϕαβϕβϕαβ                   (17) 

We then recast the OZPY equation in terms of these new variables, where we drop the 

extraneous αβ subscripts used in the derivation, since in this work we only have one type of 

particle. 

 ( ) ( ) ( )∑∑ ∫ ∫
∞ +

−
′′+=′

2 3

3211 0, dttdss2y
ϕ ϕ

ϕϕϕβϕ
π sr

sr
thsc

r
nr      (18) 

 

In this rearrangement, we have introduced 
i

n ϕβ ,  into equations (16) and (18).  For the monatomic 

case where only nonbonded interactions are present, this density is the density of atoms in the 

system.   For the stretching potential, we used the following function, 

 ( ) max,min,

max,

min,

,

0
/1

0

SS

S

S

S

S rrrfor
rrfor

V
rrfor

rn ≤≤
⎪
⎩

⎪
⎨

⎧

>

<
=β     (19) 

where min,Sr  is the smallest value for which )(gS r′ is non-zero,  max,Sr  is the largest value for 

which )(gS r′ is non-zero, and the volume accessible to the stretching molecules is the volume of 

the spherical shell bound between min,Sr  and max,Sr .  This is an empirical definition of the density 

of particles interacting via stretching, but it mimics the common definition used for particles 

interacting via nonbonded interactions, the number of neighbors over the available volume.  The 

value of the stretching potential at max,Sr  is 11.5 kBT, so the occupancy is negligible (exp(-11) ~ 

10-5). 

       We also note that because equation (1) is assumed true for the stretching mode, the cavity 

and direct correlation functions for the stretching mode become  



 

 

 

21

 ( ) ( )rnr SS ,y β=′   (20) 

 ( ) ( ) ( )rnrr,r' SSS ,gc β−′=′   (21) 

            In the monatomic case, we solved the OZPY equation, which is linear in ( )r
1

yϕ′ . We 

discretize the radial dimension in increments of 0.05 Å and use the trapezoidal rule to evaluate 

the integrals.  We then solve the system of linear algebraic equations for ( )r
1

yϕ′  from which the 

nonbonded potential is easily obtained from equation (15).   

 

2.4 RESULTS 
2.4.1 Simple Fluids  monatomic molecule 

      For the monatomic case, we can obtain the PCF either from MD simulation or from 

solution of the OZPY equation directly.  In Figure 2.3, we compare the PCFs from these two 

methods at reduced densities of 0.55 and 0.9.  At the higher density, there is a visible 

discrepancy between the two methods, attributed to the Percus-Yevick approximation.  Up to a 

density of 0.55 the agreement between simulation and integral equation theory is very good.  

Similar simulation results are available in ref.15 .  For the monatomic case, we choose to use the 

PCF from the OZPY equation as the input into the potential generating procedure.  This is the 

preferred approach because it avoids errors due to disagreements between PY-theory and 

simulation and provides a test of self-consistency for the procedure.  

     For the monatomic case, we solved the OZPY equation directly to obtain the PCF for 

reduced densities from 0.005 to 0.55 and a reduced temperature of 2.0.  The PCFs are shown in 

Figure 2.4.  They are shifted by increments of 0.25 on the y-axis for visual clarity.  We see the 

low-density PCF reflect a single peak feature that is typical for a low-density monatomic gas. 

The high density PCF has two peaks with a more pronounced first peak.  

     These PCFs were input into the OZPY-1 procedure to obtain the interaction potentials.  

The interaction potentials are compared with the original Lennard-Jones 12-6 potential in Figure 

2.5.  The potentials are shifted by increments of 0.25 on the y-axis for clarity. As expected, 

excellent agreement is shown in Figure 2.5 for low density cases.  As the density increases there 

is a small but growing discrepancy between the original potential and the potential from the 

OZPY-1 procedure, which we attribute to numerical approximations in the evaluation of the 
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integrals.  Generally, we see that the OZPY-1 procedure is able to satisfactorily reproduce the 

interaction potential.   

     It is of interest to see where a simple approximation of the nonbonded potential, such as 

that given in equation (1), is valid.  In Figure 2.6, we compared the potential obtained from 

equation (1), using the PCF from the OZPY method, with the input Lennard-Jones potential.  As 

expected, the two potentials match very well at low density but deviate at high densities.  A 

simple expression like equation (1) fails dramatically at high loading because it introduces one or 

more longer ranged repulsive components to the potential that are not part of the repulsive core.  

If one assumes that there is no three-body interactions in the system, then these repulsive regions 

in the potential are required to generate the observed structure in the PCF. 

     Figure 2.7 shows the cavity function, ( )ryN , obtained from the OZPY-1 procedure. ( )ryN  

is an important property in the OZPY-1 algorithm since it is directly related to the interaction 

potential. The OZPY-1 is very sensitive to this function. A small error in ( )ryN  may cause a 

significant deviation in the potential. Notice that when ( )rgN  goes to zero, the definition of 

( )ryN  becomes ambiguous since the corresponding potential goes to infinity. Approximations 

from both simulation and theory have been applied to get ( )ryN  at short range. Our results for 

the short range ( )ryN  are similar to those of Law et al.27 , who used a two dimensional predictor-

corrector method to obtain the interaction potential of a colloidal monolayer, in which ( )ryN  for 

small r was approximated by hard sphere fluid theory. The similarity indicates that the short 

range ( )ryN  is fairly insensitive to the interaction potential, as noted elsewhere37 . The results 

for ( )ryN  here were calculated directly by the OZPY-1, in which ( )ryN  is the unknown variable. 

This reduces the extra computational work on the approximation of ( )ryN  in short range. 

2.4.2 Diatomic fluid at low density 
      In the diatomic case, the stretching and nonbonded Radial Density Functions (RDFs), 

)(gN r′  and )(gS r′ , were generated via MD simulation (of N2).  At low density (T* = 8.3333 and 

ρ* = 0.07341), the nonbonded RDF has a single peak (Figure 2.8.).  Note that the plateau for the 

nonbonded RDF is twice the reduced density, since we are examining a diatomic molecule. The 

stretching RDF shows a sharp peak around its equilibrium bond distance (req). We note that there 
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are relatively few non-zero points in the stretching RDF, due to the fact that it is resolved on the 

same discretization as the nonbonded RDF.  The smooth curve is a Gaussian, which is the 

theoretical expectation if the stretching mode is independent of the nonbonded interaction, as 

assumed in equation (1).  The fit between the data and the Gaussian curve is good.  We use these 

RDFs as input for the diatomic OZPY-1 algorithm.   We note that the stretching RDF obtained 

from MD simulation satisfies equation (1), when the input stretching potential is inserted.  Thus, 

the validity of equation (1) is established. 

     In Figure 2.9, we compare the nonbonded interaction potential extracted from the OZPY-1 

procedure.  It matches well with the original Lennard-Jones potential, although there is some 

noise in the data.  If we eliminate the noise by fitting the data to a Lennard-Jones potential and 

extracting the  ε and σ parameters, we see that the fit is excellent.  The percent error between the 

estimated and original values for ε and σ are respectively 1.1% and 1.0%. Thus, we see that the 

OZPY-1 procedure can extract a highly accurate nonbonded potential from the simulation data of 

a diatomic fluid, at least at low density. 

 
2.4.3 Diatomic fluid at high density 

     The PCFs generated from MD simulations at high density for (T* = 5.5556 and ρ* = 

0.5057) are shown in Figure 2.10.   The nonbonded RDF shows four peaks within a distance of 

5σ.  Similar structural features under both low and high densities can be found in the work of 

Lue and Blankschtein38  in Monte Carlo simulation of a flexible diatomic Lennard-Jones fluid, 

indicating that our MD simulation correctly captured the structure of the fluid. The peak of 

)(gS r′ is much higher than at low density.  We compare the potential from the OZPY-1 procedure 

with the input potential in Figure 2.11.  The potentials agree well at distances below 1.2 and 

above 1.7. From 1.2 to 1.3, the extracted potential is slightly low and from 1.4 to 1.7, it is 

significantly high.  Again, for the stretching interaction, the smooth curve is a Gaussian, which is 

expected if the stretching mode is independent of the nonbonded interaction. 

     We now discuss the possible sources of error and their impact.  A potential source of error 

is that we have assumed that equation (1) is true for the stretching potential. Equation (1) implies 

the stretching distribution is independent of the nonbonded distribution. This error can be 
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determined to be small in this case, since the stretching potential extracted from equation (1) 

matches the stretching potential used in the MD simulation.   

     The error could be due to the fact that the MD simulation and the OZPY description of the 

diatomic fluid are not the same.  In other words, the error is a manifestation of the approximation 

in the integral equation theory.  Such errors have been noted before.  For example, using the 

Hyper-Netted Chain (HNC) closure, Bresme et al.13  has proven that the bond length and 

stretching interaction potential could affect the comparison of structural properties of diatomic 

Lennard-Jones fluids calculated by OZ integral theory with simulation data.  This is because 

solving the OZ integral with HNC closure using a central force model cannot satisfy the 

condition that the number of bonds per atom is unity, compared with the real diatomic Lennard-

Jones fluid. In our inverse procedure, we use the PCFs from MD simulation of the Lennard-

Jones fluid and we carefully checked the above mentioned condition by integrating the PCFs 

over space. The average number of bonds per atom is about 1.05 for both low and high density 

cases. (The error is due to the small number of points in which the stretching distribution is non-

zero and the approximate numerical integration.)  So, while we do have the correct number of 

stretching modes per atom, we may still be subject to other impacts of the PY approximation27 .   

      In Figure 2.11, we fit a Lennard-Jones potential to the interaction potential extracted from 

the OZPY-1 procedure in the range from r = 0 to 1.3, which yields errors between the estimated 

and original values for ε and σ of respectively 1.1% and 1.0%. We do not know the 

generalizability of the value of r = 1.3, however, we report it here in order to indicate, at least in 

this case, where the reliable portion of the potential was located. This excellent agreement shows 

that the OZPY-1 procedure can be used to generate a potential, containing at least a portion of the 

original potential that is quantitatively the same.  In the context of developing coarse-grained 

potentials molecules this degree of quantitative agreement should represent an improvement.  

Specifically, this procedure delivers a highly accurate value of ε, compared to other polymer 

course-graining procedures that assign a value of kBT to ε1 .  The procedure can be easily 

extended to obtain the CG nonbonded interaction potential parameters for a polymer system, by 

including allowable bending and torsion interactions in the potential summation in equation (18).   

      In this work, we have demonstrated that the inverse application of the OZPY equation is 

capable of reproducing known interaction potentials, establishing the validity of the method, at 
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least for the simple systems studied here.  The future application of this procedure to the 

development of coarse grain potentials for nanoparticles or polymers or other materials can be 

pursued with some confidence based on these results, although there are certainly differences in 

the relative complexity of these systems.  The choice of Percus-Yevick closure is not mandatory 

for this inverse method and may not be the best closure for all applications.  The PY closure 

yields accurate results for systems that have a short-range, hard-core potentials, while the HNC 

closure is more accurate for systems that have soft-core, long-range interactions8 .  In the 

application to the coarse-graining of polymers, as the extent of coarse-graining increases, the 

number of configurations averaged into the CG bead increases and consequently the interaction 

potentials become softer, perhaps indicating that HNC is more appropriate.  As the systems 

become more complex, the limitations of the method may also become more pronounced. 

 

2.5 CONCLUSIONS 
     We have demonstrated that the OZPY equation can be used to extract interaction 

potentials given distribution functions for monatomic and diatomic fluids.  In the monatomic 

fluid case, the procedure is able to reliably reproduce the original Lennard-Jones 12-6 potential 

up to moderate densities. In the diatomic case, we first obtained the density distributions for 

stretching and nonbonded interaction sites from classical equilibrium MD simulation of nitrogen 

under low and high density cases.  By incorporating the stretching potential into the OZPY 

equation, we extracted a nonbonded interaction potential which matched the original Lennard-

Jones 12-6 potential at low densities.  At higher densities, there was a systematic difference 

between the original potential and that extracted from the OZPY-1 procedure, which we attribute 

to the PY approximation.  However, the short-range portion of the potential is reproduced 

sufficiently well that the ε and σ parameters can be reproduced to within 1.1% and 1.0% 

respectively.    This level of accuracy would represent an improvement in the development of 

coarse-grained potentials.  Application to polymeric systems is underway. 
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Table 2.1. Necessary combinations for single component diatomic case. 

 

α β γ αβ αγ γβ αγβ Allowed 
A A A N N N NN YES 
A A A N S N SN YES 
A A A N N S NS YES 
A A A N S S SS No, not in a diatomic system 
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Figure 2.1. Schematic of the validation procedure.
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Figure 2.2. Schematic of allowed interaction combinations of diatomic case.  The three 

choices for particle three are shown for a diatomic molecule.  The “red” springs represent an 

interaction via stretching.  The “black” bars represent an interaction via the nonbonded 

potential. Additional atoms are shown for completeness, although they do not appear in the 

OZPY equation. 
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Figure 2.3. Comparison of Pair Correlation Functions (PCFs) obtained by solving OZPY 

equation directly and MD simulation of a Lennard-Jones fluid at T* = 2.0, ρ* = 0.55 and 

0.90, here T* = T/ε; ρ* = ρ σ 3.  The data has been shifted in the vertical direction for clarity. 
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Figure 2.4. PCFs obtained by solving OZPY equation directly, under T* = 2.0, ρ* from 

0.005 to 0.55. The data has been shifted in the vertical direction for clarity.
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Figure 2.5. Comparison of nonbonded interaction potentials obtained by solving the OZPY 

equation inversely (symbol) and the input Lennard-Jones potential (line), under the same 

conditions as Figure 3.  The data has been shifted in the vertical direction for clarity. 



 

 

 

37

r/σ

1.0 1.5 2.0 2.5 3.0 3.5

u(
r)

-1

0

1

2

3

4

ρ∗ = 0.55

ρ∗ = 0.35

ρ∗ = 0.15

ρ∗ = 0.005

 
 

Figure 2.6. Comparison of nonbonded interaction potentials obtained by eqn (1) (dashed 

line) and the input Lennard-Jones potential (solid line), under T* = 2.0, ρ* = 0.005, 0.15, 

0.35 and 0.55. The data has been shifted in the vertical direction for clarity. 
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Figure 2.7. Cavity function ( )ryN  calculated by solving the OZPY equation inversely 

(monatomic), under T* = 2.0, ρ* = 0.005, 0.15, 0.35 and 0.55. 
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Figure 2.8. Bonded and nonbonded Radial Density Functions (RDFs) obtained from MD 

simulation of the diatomic fluid at T* = 8.3333, ρ* = 0.07341. 
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Figure 2.9. Comparison of nonbonded potentials for the diatomic fluid at T* = 8.3333 and 

ρ* = 0.07341. We show the input Lennard-Jones potential, the data from the OZPY-1 

procedure, and a L-J fit to the data.
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Figure 2.10. Bonded and nonbonded RDFs obtained from MD simulation of the diatomic 

fluid at T* = 5.5556 and ρ* = 0.5057. 
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Figure 2.11. Comparison of nonbonded potentials for the diatomic fluid under T* = 5.5556 

and ρ* = 0.5057. We show the input Lennard-Jones potential, the data from the OZPY-1 

procedure, and a L-J fit to the data. 
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Abstract 

 Molecular Dynamics simulations of polyethylene terephthalate (PET) oligomers are 

performed in the isobaric-isothermal (NpT) ensemble at a state point typical of a finishing 

reactor. The oligomer size ranges from one to ten repeat units.  We report thermodynamic 

properties (density, potential energy, enthalpy, heat capacity, isothermal compressibility, and 

thermal expansivity), transport properties (self-diffusivity, zero-shear-rate viscosity, thermal 

conductivity), and structural properties (pair correlation functions, hydrogen bonding network, 

chain radius of gyration, chain end-to-end distance) as a function of oligomer size. We compare 

the results with existing molecular-level theories and experimental data. Scaling exponents as a 

function of degree of polymerization are extracted. The distribution of the end-to-end distance is 

bimodal for the dimer and gradually shifts to a single peak as the degree of polymerization (DP) 

increases. The scaling exponents for the average chain radius of gyration and end to end distance 

are 0.594 and 0.571, respectively. The values of the heat capacity, isothermal compressibility, 

and thermal expansivity agree well with the available experimental data, which are of much 

longer PET chains. The scaling exponents for the self-diffusivity and zero-shear-rate viscosity 

are respectively -2.01 and 0.96, the later one is close to the theoretical predictions 1.0 for short 

chain polymers. 
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3.1 INTRODUCTION 

    Polyethylene Terephthalate (PET) is one of the most important engineering plastics and is 

widely used in bottles, fibers, and packaging films.  Industrially, one way to produce PET is 

through the polycondensation of ethylene glycol (EG) and pure terephthalic acid (PTA), the 

production process includes two steps: First, PTA is esterified with EG to form a prepolymer 

consisting of the monomer bis-hydroxy ethylene terephthalate (BHET) and short-chain 

oligomers (dimer, trimer etc.). Second, the prepolymer is condensed into PET in the melt phase 

by polycondensation. Clearly, the prepolymer is the bridge between the two steps. Therefore, 

understanding the thermodynamic and transport properties of the monomer and oligomers will 

help in the modeling of finishing reactors. For example, to understand the temperature profile in 

the reactor it is necessary to know the heat capacities and thermal conductivities of the 

components.  However, these physical properties are not available currently and could be 

obtained either by experiments or by computer simulation techniques. 

   The macroscopic structure/property relationships of PET and their composites have been 

well understood by researchers through experiments, while the experimental work on that of PET 

monomers and oligomers is rare1,2 .  One reason for scarcity of oligomer data is that,  

experimentally, it is difficult to trace the initial polymerization process and separate the 

oligomers under reaction state point and often unsafe for sampling during reaction3,4 .  An 

alternative way to generate these physical properties is through molecular simulation.   

   The bulk properties of polymers have molecular origins, which can be revealed through 

molecular simulation.  In addition to simply providing a property data point as a function of 

polymer architecture, molecular simulations can also provide insight into the structural changes 

ultimately responsible for the behavior.  For example, molecular simulations have shown how 

polyethylene molecular weight impacts shear and extensional viscosities5-7 .  As another 

example, molecular simulations have shown how changes in the backbone architecture of 

perfluoropolyethers impact rheological properties8,9 .  In addition , molecular simulation is able 

to provide insights on the formation of intermolecular and intramolecular hydrogen bonding 

though corresponding pair correlation functions10 ,11 , which is helpful in understanding the 

microstructure and macroscopic properties of materials.  Consequently, molecular simulation can 

provide a useful path for the determination of the physical properties (thermodynamic, transport 



 

 

 

46

and structural) of PET oligomers as a function of degree of polymerization.  A detailed and 

systematic atomistic understanding of PET oligomers can contribute to the optimization of the 

operation of finishing reactors. 

   PET has previously been studied via molecular simulation. Hedenqvist et al.12  developed 

an atomistic model for PET (hereafter referred to as the HBB model) and studied the PVT and 

structure behavior of PET chains. The specific volume, solubility parameters and dipolar 

correlation factors obtained from Molecular Dynamics (MD) simulation are in good agreement 

with the experimental results.  Implementing the HBB model for PET in MD simulations, 

Bharadwaj13  further studied the diffusion of methane in amorphous PET and other two aromatic 

polyesters and investigated the  diffusion coefficients of PET in the temperature ranges of 450–

625 K.  Boyd et al. modified the torsion component of the HBB potential to satisfy chain 

dynamics and relaxation14 . Using the modified HBB model, Kamio et al.15  performed atomistic 

simulations of PET dimers and decamers to derive a coarse grained model for long PET chain 

molecule. Other models used in the molecular simulation of PET include the Polymer-Consistent 

Force Field (PCFF) model to study the structural, conformational, dynamic, and barrier 

properties of the amorphous (glassy and melt) phases PET and PEI [poly(ethylene isophthalate)] 

by Karayiannis et al. 16 . The Open.Force-Field (OFF) model to study diffusion of O2 and CO2 in 

PET and related alkylene and isomeric polyesters reported by Shanks and Pavel17 . The 

Rotational Isomeric State (RIS) conformational model was used to study PET chain conformation 

and relaxation by Cail et al.18 , conformational and elastic behavior of PET network by Saunders 

et al.19 and conformational characteristics of PET and PEI by Tonelli20 . 

    Compared to long chains of PET, the simulation work on PET oligomers is limited. Cho21  

studied the formation of cyclic oligomers by ester interchange reaction in PET through Monte 

Carlo method on the basis of rotational isomeric state (RIS) model. Using the same model, 

Aoki22  reported that neighboring phenyl-phenyl ring interactions enhance the probability of 

small end-to-end distances based on the conformational analysis of a linear trimer of PET. 

Recently, West et al.2  did a similar conformational analysis on the PET dimer and justified the 

presence of a low energy conformation involving hydrogen bonding between the terminal 

hydroxyl and the carbonyl, which is given as the reason for low reactivity of the dimer compared 

with other oligomers.  
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   In this work, we performed a systematic set of molecular dynamic simulations of PET 

oligomers in the isobaric-isothermal (NpT) ensemble. We studied thermodynamic properties 

(density, potential energy, enthalpy, heat capacity, isothermal compressibility, and thermal 

expansivity), transport properties (self-diffusivity, zero-shear-rate viscosity, thermal 

conductivity), and structural properties (pair correlation functions, hydrogen bonding network, 

end-to-end chain distance) as a function of degree of polymerization from one to ten repeat units. 

This paper is organized as follows. The details on the potential and simulation techniques are 

given in section 2. The results and discussion are presented in section 3. The conclusions are 

listed in section 4. 

 

3.2 SIMULATION METHOD 

   We use the anisotropic united atom HBB potential model developed by Hedenqvist, 

Bharadwaj and Boyd12,14  for PET to describe the intramolecular and intermolecular potential of 

BHET and oligomers molecules. All atoms of the PET oligomer molecule are explicitly 

represented expect for the hydrogen bound to carbon. The intramolecular interaction includes 

bond stretching, bond bending, bond torsion, bond out-of-plane bending and electrostatic and 

Lennard–Jones interactions, intramolecular electrostatic and Lennard–Jones interactions are 

counted for sites separated by at least four bonds. Intermolecular interactions are described by 

electrostatic and Lennard–Jones potentials. All the parameters are from Hedenqvist et al. except 

for the partial charges for the end -OH group, which are thus taken from the alcohol work of 

Chen et al.23   The hydrogen in the –OH group is the only explicit hydrogen in the model.  It is 

important to have an explicit O and H in the alcohol group in order to observe hydrogen bonding. 

See Figure 1 for a schematic of the molecule. 

    For the evaluation of the electrostatic energy, we use the spherically truncated charge-

neutralized method developed by Wolf et al.24   The electrostatic and Lennard-Jones interactions 

are truncated at a cut-off distance of 15 Å. 

     We simulated in the isobaric-isothermal (NpT) ensemble since the industrially relevant 

state points of interest are defined by pressure (p) and temperature (T).  We implemented the 

Hamiltonian-based thermostat and barostat of Keffer et al.25,26 .  Both the thermostat and barostat 

frequencies were set to 10-4 fs. We used the XI-RESPA NPT algorithm developed by Tuckerman 
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et al.27  to solve the equation of motion.  The large time step is 2 fs and the small timestep is 0.2 

fs. 

    The parallel code we used was built in-house and is written in FORTRAN-90, using MPI 

for interprocessor communication.  It has been tested rigorously across a variety of applications.  

For the simulations in this work, we verified conservation of the Hamiltonian in order to validate 

our choices of time step, cut-off distance and to minimize the possibility of bugs in the potential. 

The simulations are executed on 16 nodes. The wall-clock time required for the execution of 1 ns 

of simulation is about a day for DP=1 (216 molecules) and a week for DP=10 (125 molecules) 

systems. Thus, to finish a run of 30 ns for DP equals 10, it took roughly 6 months. 

    For degrees of polymerization (DP) of 1, 2 and 3, we simulated 216 molecules.  For DP 

from 4 to 10, we simulated 125 molecules.  The state point was set at 0.13 kPa and 563 K, as this 

corresponds to conditions within a finishing reactor28 .  As for the initial conditions, we estimated 

the initial density and placed the particles in the simulation volume, avoiding significant overlap.  

We equilibrated the particle positions first, keeping the density and temperature constant.  Then 

we performed a second equilibration in which the thermostat and barostat were activated and the 

system equilibrated to the correct density.  Typically, this equilibration lasted for 1 ns.  Data 

production followed and lasted from 1 ns for the monomer to over 30 ns for the octamer and 

decamer.  These lengths of data production were chosen to be greater than the longest rotational 

relaxation time as determined in the simulation. 

 

3.3  RESULTS AND DISCUSSIONS 

    In this section, we present the results of the MD simulations for the full set of degrees of 

polymerization, DP = 1, 2, 3, 4, 6, 8, and 10, in three sections:  structural properties, equilibrium 

thermodynamic properties, and transport properties.  A summary of the properties generated 

from the simulations is presented in Table 3.1.   

3.3.1. Structural Properties 

    In Figure 3.2, we show snapshots from the MD simulations.  All of the simulated systems 

correspond to dense liquids.  For the purposes of visualization of the individual chain 

conformations, we render all but a few of the chains invisible in the snapshots (b) through (f).  

Compare for example, the monomer snapshots in Figure 3.2(a), in which all molecules are 
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shown, and Figure 3.2(b) in which only a few are shown.  We will refer back to this figure in 

the discussion of the structural properties below. 

    In Figure 3.3, we show the distribution of chain end-to-end distance for the full set of DPs 

studied in this work, DP = 1, 2, 3, 4, 6, 8, and 10.  The end-to-end distance is defined as the 

distance between the carbons attached to the terminal alcohol groups.  The end-to-end distance 

for the monomer shows a single peak centered at 9.8 Å, as expected since the monomer is 

relatively inflexible.  In Figure 3.2(b), we show a snapshot of selected monomer molecules, all of 

which have very similar end-to-end distances.  The end-to-end curve of the dimer displays two 

peaks, one on either side of the monomer peak.  The peak centered at 4.5 Å corresponds to a 

folded configuration, as shown in Figure 3.2(c).  The broader peak extending from 7 to 22 Å, 

with a maximum at 16.2 Å corresponds to the unfolded conformation. These two peaks in the 

end-to-end distance distribution of the PET dimer molecule have also been reported by West2 . 

As the DP of polymerization increases, the qualitative two-peak behavior of the dimer is still 

observed, but the magnitude of the first peak diminishes. Also, the distance at which the 

maximum in the second peak occurs increases with DP and the breadth of the curve increases 

with DP.  The average end-to-end distance increases with DP, as can be seen in Table 3.1. 

    In Figure 3.4, we plot the average end-to-end distance and the average radius of gyration 

as a function of DP on a log-log plot.  In order to determine scaling exponents, we fit these data 

to an equation of the form,  

 ( )bDPaX =             (1) 

where X is a property related to DP via the scaling exponent, b.  Both structural measures can be 

well fitted by equation (1). The scaling exponents for the radius of gyration and the chain end-to-

end distance are 0.594 and 0.571 respectively.  These exponents are close to 0.589, which is the 

scaling exponent for characteristic polymer size in the case of a dilute solution of chains in a 

good solvent, where the chains behave as self-avoiding walks (SAWs)29 . In a melt of sufficiently 

long PET chains, chains should behave as random walks and the exponent should be close to 0.5 

as shown by Kamio et al.15 .  That our chains display scaling behavior closer to the dilute 

solution limit is an indication of the fact that our chains are too short to display the behavior of 

an entangled polymer melt.  Furthermore, Laso and Karayiannis30,31  studied scaling laws of  

freely joint chain systems under various packing densities. Very similar values (0.58-0.60) for 
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scaling exponents are obtained for short chains in the whole range of volume fractions from 

dilute up to very dense samples and the departure from the Gaussian coil concept is attributed to 

the short chain length studied, suggesting a universal character in the scaling behavior of 

oligomers. 

     In addition to the distribution of the chain end-to-end distance, we can extract useful 

information from the dynamics of the end-to-end vector auto correlation function.  In Figure 3.5, 

we plot the end-to-end vector auto correlation function as a function of elapsed time for all DPs 

studied. Each curve is normalized such that it is unity at the origin.  By fitting this data to the 

Rouse model (a simple exponential) or the KWW model32   (a stretched exponential), one can 

extract chain relaxation times, τR and τkww respectively. These times correspond to the longest 

rotational relaxation time.  The relaxation times are reported in Table 3.1.  The stretching 

exponent, βKWW, is also reported in Table 3.1.  The fits are reasonably good.  When viewed on a 

log axis (see the Supplementary Information), there is evidence of deviation from the fits at very 

short times, which may hint at a different mechanism for the initial relaxation, corresponding to 

decorrelation events specific to PET chemistry.  The relaxation times from the Rouse and the 

KWW model agree relatively well.  The relaxation times increase strongly with DP.  The scaling 

exponent b for τkww  is 2.78.  We note that our oligomers are too short to be entangled and our 

simulation time is not long enough to see a Rouse scaling32 , for which b=2. 

    The relaxation times determined above were used to set the duration of the MD 

simulations.  Ideally, we would like the MD simulation to be run for some time significantly 

longer than the longest relaxation time, in order to average out fluctuations that occur at that 

longest period.  For the simulation of the monomer, when we simulated 1 ns, we were simulating 

about 8 times longer than the longest relaxation time.  As the DP increased, we had to also 

increase the duration of the simulation.  For the octamer and decamer we simulated 30 ns, which 

is slightly longer than the relaxation time for DP=8 and slightly shorter than the relaxation time 

for DP =10.  This limitation imposed by finite computational resources renders the estimation of 

τkww less accurate for the longer chains.  

    Another structural property investigated in this work is the extent of hydrogen bonding.  

We characterized the hydrogen bonding of the system in terms of the oxygen-hydrogen pair 

correlation function (PCF) for DP=1, 2, 3, 4, 6, 8, and 10, as shown in Figure 3.6.  In Figure 3.6, 
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there are two characteristic peaks of hydrogen bonding; the first is located at approximately 1.8 

Å and the second at about 3.3 Å.  The first peak corresponds to the distance between the O of 

one alcohol group and the H in another alcohol group participating in the hydrogen bond.  The 

second peak corresponds to the H and O in each of the alcohol groups that are not participating 

directly in the hydrogen bond. While it is clear that the number of alcohol groups per repeat unit 

decreases with DP, the intensity of the peaks increases with DP. This is because the PCF is 

normalized by the average density of alcohol groups. In other words, the number of alcohol 

groups decreases with DP, but on a per alcohol basis, the tendency to form hydrogen bonds 

increases. In Table 3.1, we report some statistics describing the hydrogen bonding network as a 

function of DP. The hydrogen bond fraction is the percentage of OH groups involved in 

hydrogen bonding, being calculated through the integration of the oxygen-hydrogen pair 

correlation functions (Figure 3.6), we see that the percentage of OH involved in hydrogen 

bonding decreases with DP, which is mainly because the number density of OH groups decreases 

with increasing chain length. . 

3.3.2 Thermodynamic Properties  

     The melt density, potential energy, enthalpy, heat capacity, isothermal compressibility, 

and thermal expansivity at 0.13 kPa and 563 K have been calculated from the MD simulations. 

All of these thermodynamic properties are listed in Table.3.1. In this section, we discuss the 

properties individually and compare to experiment, where possible. 

   Figure 3.7 shows the density changing as a function of DP. The densities of PET 

oligomers obtained from the simulations are near 1.3 g/cm3.  There is a literature value for the 

monomer density, but it is at the state point of 293 K and 1 atm, rather than the state point chosen 

to model the interior of the finishing reactor.  Therefore, we also ran a simulation of the 

monomer at 293 K and 1 atm to provide a validation of the density predictions of our model.  

The density of the monomer at 293 K and 1 atm from simulation is 1.313±0.02 g/cm3, which can 

be compared with the reported value of 1.315±0.06 g/cm3 from the CAS database (#959-26-2). 

The difference is within 0.2%.   

   We observe that the simulation value of the oligomers is higher than that of PET and it is 

not sensitively changing with DP, because of the hydrogen bonding in the oligomer system.For 

reference, we show the melt density of PET is around 1.2 g/cm3 (under p = 1 atm, T = 563 K)33 .  
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    In Figure 3.8, the non-bonded contributions to the potential energy are plotted as a 

function of DP on a per DP basis. (The number of non-bonded contributions fluctuates during the 

simulation and makes reporting on a per mode basis less useful.) All non-bonded interactions are 

negative (attractive) as the reference state (zero energy) for these interactions is infinite 

separation, and the pressure is not sufficiently high to force repulsive energies. Intuitively, as the 

chain length increases, one expects intramolecular interactions to increase in magnitude and 

intermolecular interactions to decrease in magnitude since a given atom will be on average 

interacting with a greater fraction of molecules of its chain.  The total intermolecular interaction 

does indeed follow the intuitive understanding that, as DP increases, the magnitude decreases.  

However, the total intramolecular interaction also decreases, which is somewhat counterintuitive 

until one considers hydrogen bonding.  The end groups of the chain form hydrogen bonds.  As 

the chain length increases, the relative number of end groups per DP decrease.  Therefore, we see 

a decrease in the electrostatic contribution to the potential energy on a per DP basis.  Some 

portion of the electrostatic energy is due to intramolecular interactions.  Apparently, the loss of 

intramolecular electrostatic interactions is sufficient to overwhelm the other gains in 

intramolecular interactions, resulting in a total intramolecular interaction that decreases in 

magnitude with DP, but not quite as quickly as the electrostatic term. 

    The enthalpy is composed of a kinetic energy term, a potential energy term (which 

together constitute the internal energy) and a pV term.  In Figure 3.9, we plot the enthalpy per 

molecule as a function of DP on both a per molecule basis and on a per DP basis (inset). The 

enthalpy approaches a linear behavior with respect to DP at large DPs, as expected since the 

kinetic energy and potential energy should scale roughly linearly with DP when the change in 

density, accounted for by the pV term, is relatively small. The pronounced deviation from 

linearity at low DP is due to the fact that the end groups are slightly different than the repeat 

units in the interior of the chain.  The slight deviation from linearity at high DP is better seen on 

a per DP basis and is largely accounted for by the non-bonded contributions to the potential 

energy shown in Figure 3.9.  

    Thermodynamic properties that correspond to partial derivatives, such as the constant-

pressure heat capacity, pC , the isothermal compressibility, β, and the thermal expansivity, α, can 
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be calculated from statistical thermodynamics based on fluctuations in the NpT ensemble34 . 

The constant pressure heat capacity is proportional to the variance of the enthalpy 

><= 2
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H
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p TVk

C σ                                (2.a) 

The isothermal compressibility is obtained through the variance of volume,  
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The thermal expansion coefficient is based on the covariance of volume and enthalpy of the  
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BTVk
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where V is the volume, T is the temperature of the system and kB is Boltzmann’s constant.  The 

angled brackets indicate an ensemble average. These fluctuations provide an elegant method to 

obtain these thermodynamic properties, since we can obtain all these three properties from one 

single MD simulation at the desired state point.  

    For reasons that will be made clear shortly, we also calculated pC , β, and α using a 

second procedure, namely centered finite difference. In this approach, one runs three simulations 

for each thermodynamic property.  For example, for the heat capacity, one runs a simulation at 

the statepoint defined by (p,T), then two other simulations at (p,T+ε) and (p,T-ε).  The choice of 

ε is made so that one can observe statistically valid differences in the enthalpy between the state 

points.  Thus the heat capacity can be determined as  
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Similarly, the isothermal compressibility and thermal expansivity can be expressed as  
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     In Table 3.2, we report pC , β, and α for the monomer at a state point of 10 MPa and 563 

K35 .  We choose this state point rather than the one corresponding to the interior of the finishing 

reactor, which has been used in all other simulations, in order to compare with experimental data.  
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We see that using the finite difference approach yields better mean values in agreement with 

experimental data for PET35,36  and yields much smaller uncertainties, showing the simulation 

results are reasonable (exact agreement with experimental data was not expected due to the 

difference in DP) and the method is statistical reliable.  The uncertainties from the quantities 

obtained from the fluctuations in some cases approach 100%.  These uncertainties were 

calculated by dividing the simulation into 10 blocks of time, computing the average heat 

property in each block, and the corresponding standard error in the block average.  In Table 3.1, 

we report the values of pC , β, and α using the centered finite difference formulae as a function 

of DP at the finishing reactor state point.  The uncertainties for β are larger than the uncertainties 

for pC and α because, β is based upon simulations run at different pressures, whereas pC  and α 

are based upon simulations run at different temperatures, and the greater fluctuations in the 

pressure increase the uncertainty of the resulting finite difference. 

     In Figure 3.10, we show the dependence of pC  and α on DP on a log-log plot.  The heat 

capacity on a per mass basis decreases with DP.  The thermal expansivity also decreases with 

DP.  Both of these trends have been observed experimentally37 . We extracted scaling exponents 

for Cp and α of -0.081 and -0.218 respectively.  We do not report a scaling exponent for β due to 

increased uncertainty in this property for reasons mentioned above. 

     In the simulations, the hydrogens attached to the carbon are not modeled explicitly.  Thus 

the contributions to the thermodynamic properties, including the heat capacity, due to the high-

frequency C-H vibrations are not included.  Thus we under-estimate the heat capacity. For 

methane at room temperature, the vibrational modes contribute less than 10% to the heat 

capacity and this serves as an extreme limit on the under estimation38 . 

 
3.3.3  Transport Properties 
    One can obtain transport properties from equilibrium simulations using Green-Kubo 

relations39-41 .  In this work, we report the self-diffusivity (D), zero-shear rate viscosity (η) and 

thermal conductivity (λ) as a function of DP.  The self-diffusivity is obtained from the mean-

square displacements (MSD) through Einstein’s equation given as 

  [ ]2

t
(0)(t)

t
1lim

6
1

cmcm rrD −=
∞→
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where rcm is the center of mass position of the molecule. 

   For the case of the self-diffusivity, this integral can also be expressed in terms of the mean 

square displacement via the Einstein Relation.  In Figure 3.11, we plot the mean square 

displacement versus observation time on a log-log plot.  In order to satisfy the infinite time limit, 

the slopes of the curves must be unity.  These slopes are reported in the legend of Figure 3.11 

and are all very close to unity.  This is evidence that the simulations have been run sufficiently 

long to achieve valid self-diffusivities.  The numerical values of the self-diffusivities are reported 

in Table 3.1 and plotted in Figure 3.12 as a function of DP.  The self-diffusivity decreases with 

DP as expected. The scaling exponent for the self-diffusivity is -2.01.  

    The zero-shear-rate viscosity is based on time integration of the momentum auto-

correlation function  

 ( ) ( ) dtt
TVk xyxy

B
xy ><= ∫

∞

01

0

σση                                                                                       (5) 

where σxy is the xy component of the stress tensor defined to have a potential and kinetic 

contribution, 
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where rijx and Fijx are respectively the separation and force between particles i and j in the x 

dimension, mi is the mass of particle i. 

    The momentum auto-correlation functions are shown in Figure 3.13.  The auto-correlation 

functions decay to zero in an oscillatory manner.  There is one interesting feature in Figure 3.13, 

as is clear in the inset, the magnitude of the oscillations decreases as DP increases.  While the 

correlations may appear to have died out in less than 4 ps, we will see that this is not the case. 

    In Figure 3.14, we plot the zero-shear-rate viscosity as a function of the upper limit of 

integration in equation (5). Following a previously tested procedure42 , we then average the 

values of the viscosity that occur on the plateau.  The arrows in Figure 3.14 indicate where we 

decided the plateau began.  In general, the start of the plateau increases with DP.  For some DP, 

the plateau begins long after the 4 ps period in which the auto-correlation functions appear to 

have died out based on visual inspection of Figure 3.13. Therefore, fluctuations in the auto-

correlation functions beyond about 4 ps are not statistical noise. Nevertheless, for bigger DP, we 
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do see the beginning of the plateau well before an observation time of τKWW. (We cannot 

evaluate the auto-correlation function for observation times up to τKWW for long chains due to the 

decreasing statistical reliability with increase in observation time.) The implication is that long 

time-scale relaxation modes impact the zero-shear-rate viscosity only nominally. The numerical 

values of the zero-shear-rate viscosities are given in Table 3.1.  The scaling exponent for the 

zero-shear-rate viscosity is 0.96, which is in agreement with the theoretical value of 1 for short 

chains29 .  

With both the self-diffusivity and zero-shear-rate viscosity in hand, we can test the Stokes-

Einstein (SE) relation43,44 , which according to hydrodynamic theory applies well to the diffusion 

of large spherical molecules in solvent of low molecular weight,  

 
SEB RTk

D
π

η
4

1
=            (7) 

where RSE is the particle size.  We can use the SE relation to calculate particle size based upon 

the self-diffusivity and zero-shear-rate viscosity reported above.  In Figure 3.15, we plot on a 

log-log scale the radius from the SE relation and the radius of gyration from MD.  We find that 

for small molecules (monomer and dimer) there is excellent agreement between the particle size 

predicted by the SE relation and the radius of gyration.  For larger molecules, there is a 

significant variation, presumably because (i) the longer chains violate the assumption of a 

spherical particle and (ii) the longer chains violate the assumption of a low molecular weight 

solvent. More details and generalized equations on the relationship between the effective 

particle’s shape and the translational  diffusion coefficient can be found in the work of  Kröger et 

al.45 .  The scaling exponent for the SE radius is found to be 1.00, which is dictated by the fact 

that is it determined from the self-diffusivity and zero-shear-rate viscosity with scaling exponents 

respectively of -2.01 and 0.96. The fluctuations around this best fit are presumably due to 

statistical noise. 

     The last transport property obtained in this work is the thermal conductivity, λ, which via 

a Green-Kubo integral can be expressed as a function of an auto-correlation of the heat flux, J,  

∫
∞

>•<=
0

23
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TVk
λ

B

J(0)J(t)                                                               (8) 

where the heat flux J is defined as  
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to have contributions from energy carried by a mass flux (the first term) and intermolecular 

interactions (the second term).  The energy carried by a particle is composed of kinetic and 

potential contributions. 
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     The above atomic heat flux expression has been successfully applied to the systems 

governed by pair potentials as reported in many articles41,46-48 , in which the Green-Kubo integral 

is used to obtain thermal conductivity of small molecules (methane47  and SiH4
41 ). These 

molecules can be treated as particles by ignoring the intramolecular bond stretching, bond 

bending and bond torsion interactions so there will be only intermolecular Lennard-Jones 

interaction potential contributing to the heat flux. The simulation results based on this procedure 

are in good agreements with the experimental data. For larger molecules (butane49 , alkanes50 ), 

the heat flux expression is often taken as molecular based in order to calculate the molecular heat 

flux, a heat flux whose description is based on the view that the individual atomic contributions 

to the local energy density are localized at the molecular centers of mass51 . This expression 

applies well to polyatomic molecules with moderate chain length. When the chain length 

increases, this center of mass based heat flux will be problematic52 . If the chain is very long, the 

energy transport along each chain is not ignorable. Therefore, the atomic heat flux expression is 

needed for prediction of thermal conductivity of polymer chain molecules. Marechal and 

Ryckaert53  derived the atomic heat flux expression for polyatomic molecules (n-butane), in 

which only bond torsion was included, but the thermal conductivity obtained is too large based 

on experimental comparison with alkanes. An alternative way for faithful prediction of thermal 

conductivity is to modify the force field or molecular dynamic model. Lussetti et al.52  

transformed the molecule model for Polyamide-6,6 by grouping some atoms in the chain together 

to have less quantum degree of freedoms in the system as they assume that the high value of 

thermal conductivity obtained from the MD simulation is due to the incorrect treatment of these 

fast quantum degrees of freedom in molecular dynamics. They compared the NEMD simulation 

results of thermal conductivity from different force fields and found that the united atom model 
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with complete rigid bond generated the best result for comparison with the experimental data. 

Based on the collective conclusions of the work above, we only included non-bonded 

interactions in the heat flux of our PET oligomer molecules.  These non-bonded interactions 

include both intramolecular and intermolecular Lennard-Jones and electrostatic interactions. 

Thus, we neglect stretching, bending and torsion contributions. The heat flux autocorrelation 

function as a function of DP is shown in Figure 3.16. 

     In Figure 3.17, we plot the thermal conductivity as a function of the upper limit of 

integration in equation (8).  Again, we look for a plateau and report an average beyond the 

plateau.  The data is relatively noisy.  We report the numerical values of the thermal 

conductivities as a function of DP in Table 3.1.  The thermal conductivities of the oligomers 

fluctuate from 0.12 to 0.30 (W/m/K), which is the reported experimental value range of  thermal 

conductivity for commercial PETs with different crystallinity and molecular weight under 1 atm 

and 300 K33 . We plot the thermal conductivity as a function of DP in Figure 3.18. There is not 

sufficient statistical reliability in these values to report a scaling exponent (the R2 measure of fit 

is 0.04), which in any event would be close to zero.  

     An alternative approach to obtaining the thermal conductivity is to use Bridgman’s theory 

of energy transport in pure liquids54,55 .  

 ( ) sBvkVN 3/2/3=λ          (11) 

where vs is the speed of sound in the liquid, given by  
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where vC  is the constant volume heat capacity and ρ is the mass density. The partial derivative 
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 is contained with the isothermal compressibility, which we have already reported. 

Typically, the ratio of constant-pressure and constant-volume heat capacities is close to unity for 

liquids. In order to test this assumption, we ran some additional MD simulations on the monomer 

at constant volume (NVT ensemble) to obtain Cv. We found the ratio to be 1.15 and this is what 

we used in equation (12) for all DP. The calculated data for velocity of sound is listed in Table 

3.1. It is noted that empirically, a coefficient of 2.8 gives a better fit to experimental data than 3 
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in equation (10)54 , so we used 2.8. The experiments of Bridgman were based on small 

molecules. Therefore, in equation (11), we used the number density not of chains but of repeat 

units, which taken independently constitute relatively small molecules. This prediction of the 

thermal conductivity is also shown in Figure 3.18.  On average the Bridgman thermal 

conductivity is 26% low.  The Bridgman thermal conductivity shows almost a constant with DP 

(scaling exponent of -0.11), which is similar in the thermal conductivity obtained from the 

Green-Kubo integral. 

 

3.4  CONCLUSIONS 

     We obtained structural, thermodynamic and transport properties for PET oligomers with 

degrees of polymerization from 1 to 10 at the industrially relevant state point (T = 563 K, p = 

0.13 kPa) by molecular dynamics simulation using a modified HBB model. 

     The end-to-end distance distribution for oligomers larger than the monomer shows a 

bimodal distribution in which the chains are either folded or extended.  The presence of the 

folded peak diminishes with DP.  The extended peak broadens with DP.  The degree of hydrogen 

bonding, as judged by the fraction of alcohol groups engaged in hydrogen bonding, decreases 

with DP. The longest rotational relaxation time, radius of gyration and average end-to-end 

distance scale with exponents of 2.78, 0.594 and 0.571 respectively. 

     We generated a suite of thermodynamic properties.  We found that both the 

intramolecular (unexpectedly) and intermolecular (expectedly) non-bonded contributions to the 

potential energy decrease in magnitude with increasing DP, due to the diminished role of 

hydrogen bonding in the system. All other contributions on a per mode basis are relatively 

unaffected by DP. 

     We compared two methods for obtaining properties based on thermodynamic partial 

derivatives, such as the heat capacity, isothermal compressibility and thermal expansivity. The 

fluctuation method yielded greater statistical uncertainty and poorer agreement with experiment 

than a method based on using centered finite difference across three simulations. We extracted 

scaling exponents for Cp and α of -0.081 and -0.218 respectively. 

     We obtained the self-diffusivity, zero-shear-rate viscosity and thermal conductivity as a 

function of DP.  The scaling exponents for the self-diffusivity and zero-shear rate viscosity are 



 

 

 

60

respectively -2.01 and 0.96. The evaluation of the thermal conductivity from both the Green-

Kubo integral and Bridgman theory are both approximate, but yield results that fall in the range 

of experimental data.  

     Work is in progress to fit the structural and dynamic information obtained from these 

atomistic simulations to a coarse-grained model of PET, capable of simulating much larger PET 

oligomers and polymers. 
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Table 3.1. Simulation data for DP = 1, 2, 3, 4, 6, 8 and 10 at p = 0.13 kPa, T = 563 K. 

 
DP 1 2 3 4 6 8 10 
N  216 216  216  125  125  125 125 

V (105 Å3) 0.70 ± 0.04 1.21 ± 0.06 1.71 ± 0.03 1.28 ± 0.01 1.87 ± 0.01 2.46 ± 0.01 3.06 ± 0.01 
ρ (g/cm3) 1.30 ± 0.01 1.26 ± 0.01 1.28 ± 0.02 1.29 ± 0.01 1.29 ± 0.01  1.29 ± 0.01 1.29 ± 0.01 
U (102 aJ) -0.15 ±0.01 0.20 ± 0.05 1.26± 0.03 1.39± 0.05 3.38 ± 0.17 5.44± 2.03 7.43± 4.06 
H (102 aJ) -0.15 ±0.01 0.20 ± 0.05 1.26± 0.03 1.38± 0.05 3.38± 0.17 5.44± 2.03 7.43± 4.06 

Cp (103 J/K/kg) 2.73 ± 0.09 2.56 ± 0.06 2.47 ± 0.06 2.45 ± 0.07 2.35 ± 0.05 2.29 ± 0.04 2.25 ± 0.05 
β (10-1 GPa-1) 2.17 ± 0.77 3.02 ± 1.12 4.70 ± 3.27 4.51 ± 1.65 3.44 ± 0.44 6.40 ± 3.06 5.21 ± 4.43 
α (10-4 K-1) 6.73 ± 1.02 5.26± 0.38 4.81± 0.55 4.80± 0.17 4.53± 0.27 4.28± 0.16 3.75± 0.79 

D (10-10 m2/sec) 5.68 ± 1.14 2.05 ± 0.23 0.71 ± 0.14 0.40 ± 0.09 0.17 ± 0.02 0.10 ± 0.03 0.07 ± 0.01 
η (10-2 Pa.s) 0.27 ± 0.01 0.55 ± 0.08 0.58 ± 0.09 0.65 ± 0.07 1.95± 0.65 2.23± 0.60 3.03± 0.80 

vS (103 m/sec) 2.01 1.75 1.39 1.41 1.62 1.18 1.31 
λGK (W/m/K) 0.16 0.16 0.13 0.14 0.16 0.12 0.13 
λB (W/m/K) 0.21 ± 0.02 0.20 ± 0.05 0.31 ± 0.02 0.13 ± 0.11 0.12 ± 0.07 0.22 ± 0.03 0.18 ± 0.01 

H-bond  
(2.0 Å)(%) 54.22 42.72 42.57 38.84 28.55 22.25 20.55 

H-bond 
(2.5 Å)(%) 69.50 57.16 55.11 51.02 38.01 30.18 27.44 

<Rete> (Å) 9.8 ± 1.0 13.6 ± 4.9 18.3 ± 6.6 21.1 ± 7.5 26.8 ± 10.2 28.6 ± 11.2 34.2 ± 9.4 
<Rg> (Å) 4.0 ± 0.7 5.6 ± 2.8 7.6 ± 2.7 8.9 ± 5.2 11.2 ± 4.4 12.5 ± 5.3 13.2 ± 3.8 
RSE (Å) 4.06 5.54 14.96 23.70 19.23 28.02 31.9 
τR (ns) 0.128 0.552 2.42 5.59 15.26 27.8 37.5 
τKWW (ns) 0.129 0.502 2.81 5.59 15.78 25.3 38.6 

βKWW 0.98 0.92 0.76 0.76 0.77 0.77 0.74 
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Table 3.2. Comparison of thermodynamic properties from finite difference and fluctuation 

methods for the monomer at T = 563 K and p = 100 atm. As a reference point, experimental 

values for PET are also provided. 

 
Thermodynamic 

properties 
MD 

(fluctuation) 
MD 

(finite difference) 
Experimental data 

(PET) 
Heat capacity  
( 103 J K-1 kg-1) 1.41 ± 1.38 2.68 ± 0.08 2.6635 

Isothermal 
compressibility (10-1 

GPa-1) 
17.61 ± 10.20 3.14 ± 0.06 3.2436 

Thermal expansion 
coefficient (10-4 K-1) 21.40 ± 19.71 6.42 ± 0.96 6.5535 
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Figure 3.1. Model of the PET hexamer molecule, showing a repeat unit. The only explicit 

hydrogens are those in the terminal alcohol group. 

one repeat unit 

OH 

OH 
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Figure 3.2. Snapshots of equilibrium configurations from simulations at T = 563 K, p= 0.13 kPa.  

(a) monomer, all molecules shown; (b)-(h) oligomers, selected molecules; (b) monomer; (c) 

dimer; (d) trimer; (e) tetramer; (f) hexamer; (g) octamer; (h) decamer. 
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Figure 3.3. Chain end-to-end distance distributions as a function of degree of polymerization 

(DP). 
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Figure 3.4. Average chain end-to-end distance (Rete) and chain radius of gyration (Rg) as a 

function of DP.
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Figure 3.5. Chain end-to-end distance (Rete) auto correlation functions as a function of 

observation time for all DPs studied. 
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Figure 3.6. Intermolecular oxygen-hydrogen pair correlation function as a function of DP. 
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Figure 3.7. Mass density (ρ) as a function of DP. 
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Figure 3.8. Individual non-bonded contributions to the potential energy as a function of DP.  

ES=electrostatic; LJ = Lennard-Jones; intra = intramolecular; inter = intermolecular.  These 

contributions are normalized by the degree of polymerization. 
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Figure 3.9. Enthalpy as a function of DP.  The main figure is plotted on a molecular basis.  The 

inset is normalized by DP. 
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Figure 3.10. Heat capacity (Cp) and thermal expansivity (α) as a function of DP.  The fits are to 

equation (1).  The R2 measure of fit is also reported in the legend. 
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Figure 3.11. The mean square displacement of chain center of mass as a function of observation 

time for all DPs.  The slope reported in the legend should be unity to satisfy the long-time limit 

of the Einstein relation. 
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Figure 3.12. Self-diffusivity (D) as a function of DP.
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Figure 3.13. Momentum auto correlation functions as a function of observation time for all DP.  

The inset is a close-up of short time behavior. 
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Figure 3.14. Zero-shear-rate viscosity (η) as a function of the upper limit of integration in 

equation (5).  The arrows indicate the observation time at which a plateau begins.
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Figure 3.15. Radius of gyration (Rg) and particle radius from the Stokes Einstein relation (RSE) 

as a function of DP.  
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Figure 3.16. Heat flux auto correlation functions as a function of observation time for all DP. 

The inset is a close-up of short time behavior. 
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Figure 3.17. Thermal conductivity (λ) as a function of the upper limit of integration in equation 

(8).  The arrows indicate the observation time at which a plateau begins. 
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Figure 3.18. Thermal conductivity obtained from the Green-Kubo integral (λGK) and the 

Bridgman equation (λB) as a function of DP. 
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Coarse-grained Molecular Dynamics Simulation of Polyethylene 

Terephthalate (PET) 
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Abstract 

 A coarse-grained (CG) model of Polyethylene Terephthalate (PET) was developed and 

implemented in CG Molecular Dynamics (MD) simulations of PET chains with degree of 

polymerization up to 50.  The CG potential is parameterized to structural distribution functions 

obtained from atomistic simulations [Wang et al. J. Phys. Chem. B 2010, 114, 786] using an 

inversion procedure based on the Ornstein-Zernike equation with the Percus Yevick 

approximation (OZPY) [Wang et al. Phys. Rev. E 2010, 81, 061204].  The CGMD simulation of 

PET chains satisfactorily reproduces the structural and dynamic properties from atomistic MD 

simulation of the same systems.  We report the average chain end-to-end distance and radius of 

gyration, relaxation time, self-diffusivity and zero-shear-rate-viscosity’s dependence on degree 

of polymerization.  For the longest chains, we find the scaling exponents of 0.51, 0.50 and -2.00 

for average chain end-to-end distance, radius of gyration and self-diffusivity respectively. The 

exponents are very close to the theoretical values of entangled polymer melt systems (0.50, 0.50 

and -2.0). The study of entanglement in the longer chains shows that the tube diameter, number 

of monomers between entanglement points and interentanglement strand length are in close 

agreement with the reported values for an entangled PET melt. 
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4.1 INTRODUCTION 

 Polyethylene Terephthalate (PET) is one of the most important engineering plastics and is 

widely used in packaging industry as bottles, fibers, and packaging films. The macroscopic 

structural and dynamic properties of PET have been widely studied through experiments.  The 

computational studies of structural and dynamic properties of PET are limited due to the fact that 

the polymer’s physical properties depend on several time and length scales,1  which require 

multi-scale modeling techniques. 

       Molecular-level simulation has proved to be a useful computational technique to study 

structural, physical and transport properties of polymers of short length.  The structural and 

transport properties have been studied via molecular simulation with different force fields.  

Hedenqvist et al.2  developed an atomistic model for PET (hereafter referred to as the HBB 

model). The specific volume, solubility parameters and dipolar correlation factors obtained from 

(MD) simulation using this model are in good agreement with the experimental results. 

Implementing the HBB model for PET in MD simulations of a single chain with 60 monomers, 

Bharadwaj3  further studied the diffusion of methane in amorphous PET.  Boyd et al. modified 

the torsion component of the HBB potential to satisfy chain dynamics and relaxation.4  Using a 

modified HBB model, Wang et al.5  studied the structural, thermodynamic and transport 

properties of PET oligomers of 125 chains with degree of polymerization (DP) varying from 1 to 

10 each. Kamio et al.6  generated structural properties needed to obtain the CG potentials. Other 

models used in the molecular simulation of PET include the Polymer-Consistent Force Field 

(PCFF) model,7  the Open Force-Field (OFF) model,8  the Rotational Isomeric State (RIS) 

conformational model,9-11  and a more recently developed model.12  All of these studies involve 

either a single chain or chains with a degree of polymerization (DP) less than or equal to 20.  

However, the time and length scales used in molecular simulation are far below that of real long 

chain polymer systems. With finite computational resources, it is beyond current computational 

capabilities to use an atomistically detailed simulation technique to obtain long time trajectories 

of long chains.  For example, to determine the self-diffusivity of long polymer chains, the 

simulation must reach the long-time limit required by the Einstein relation.  The simulation time 

can easily be on the order of microseconds or milliseconds and the corresponding real time for 

the computation is on the order of years or decades. 
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      The motivation behind a coarse-grained (CG) procedure is to lift these computational 

limitations by eliminating some degrees of freedom in the simulation in exchange for 

computational efficiency. The reduction in the degrees of freedom is accomplished by grouping 

atoms in certain fragments of the chain into “superatoms”, which interact with their own CG 

potential.6,13   Since the degrees of freedom are greatly reduced in the CG model and softer CG 

potentials are often obtained13 , larger length and time scales can be reached in the CG level 

simulation. Structural and transport properties can be calculated directly by CG simulation14 . 

Furthermore, the CG level properties can be mapped back to the molecular level through the use 

of scaling factors.13-15  This multi-scale modeling technique has been used in the study of 

structure and dynamics of biomacromolecules16,17  and polymer chain molecules (polysterene 

(PS),13,18,19  polymethyl methacrylate (PMMA),14  polyethylene (PE),20  polyethylene oxide 

(PEO),14,21,22  polyisoprene/polystyrene blend,23,24  bisphenol-A polycarbonate (BPA-PC)25  and 

azobenzene liquid crystal26 ). Although the molecular simulation of PET has a long history, the 

CG simulation of PET is less prevalent in the literature. Kamio et al.6  performed CG end-

bridging Monte Carlo simulations of PET melts, generating equilibrium structural and 

entanglement properties.  This current work is aimed at conducting CGMD simulations to 

investigate the structural and dynamic properties of PET chains with a DP up to 50.  This range 

of DP is relevant because PET leaving an industrial finishing reactor possesses a DP in the 30 to 

50 range.   

      There is an up front price that must be paid for the computational efficiency of the CG 

procedure; the price is the development of an accurate interaction potential for the CG 

superatoms.  Obtaining reliable nonbonded interaction potentials is particularly challenging.  

Two common methods have been adopted to obtain nonbonded CG potentials, namely adjusting 

power law type potential parameters (Lennard-Jones 12-6, 7-6, 7-4, 7-5),13,18,19,26  and iterative 

Boltzmann inversion method.6,27   CG level simulations have been conducted using CG potentials 

from both of the above methods.  Using CGMD simulation with power law type of nonbonded 

potential, Harmandaris et al.13,18,19  studied structural and dynamic properties of long chain 

Polystyrene (PS) systems. A scaling factor is reported for the speed up of chain dynamics based 

on the difference on mean square displacements. Using potentials from the iterative Boltzmann 

inversion27  method, Kamio et al.6  performed CG end-bridging Monte Carlo simulations of PET 
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melt. Both methods used to obtain CG potentials need improvements with respect to 

computational accuracy and efficiency.16,26,28,29  

      Alternative methods have been developed recently to improve computational accuracy 

and efficiency of the CG procedure.  Fritz et al. 30 recently present a new approach that obtains 

both the bonded and nonbonded interactions of the CG model of PS from the sampling of 

isolated atomistic chains and pairs of oligomers in vacuum. The method is computationally 

inexpensive. The CG model of PS using the calculated CG potentials reproduces the melt 

packing, the density and local chain conformations of atactic as well as stereoregular PS.  

      The Ornstein-Zernike integral equation (IE) theory31,32  is also widely used to study the 

structural properties of polymer systems.28,33-36  In most cases, the IE theory is used to generate 

structural properties like pair correlation functions (PCFs) given the interaction potential.  

Although, it has been used to obtain the nonbonded potential parameters,37  the iterative nature of 

the procedure limits the computational gain from coarse-graining.  Non-iterative procedures also 

exist in which structural properties and interaction potentials can also be obtained from the 

theory and a description of the atomistic system.34-36  

      An alternative procedure based on the Ornstein-Zernike equation with the Percus-Yevick 

approximation (OZPY equation)38,39  is to extract the CG nonbonded potential from the PCFs, 

which is referred as inverse OZPY or OZPY-1. The use of OZPY-1 method40  to obtain the 

interaction potential has been reported in the study of monatomic systems.41-44  The OZPY-1 

method is approximate only because of the approximate nature of the PY assumption for the 

direct correlation function.  On the other hand, it is simple and fast compared to the current 

methods of comparable accuracy. Wang et al.29  demonstrated that this method can be applied to 

systems that have intramolecular degrees of freedom, such as the diatomic Lennard-Jones fluid. 

Here, we apply the OZPY-1 method to extract nonbonded CG potential for PET chains with PCFs 

from atomistic MD simulations.  

        In previous work,5  atomistic simulations of PET oligomers of degree of polymerization 1, 

2, 3, 4, 6, 8 and 10, using the HBB model were performed. For the tetramer, hexamer, octamer 

and decamer, PCFs (based on center of mass position of the CG beads), relaxation times and 

diffusion coefficients from these simulations were obtained. In this work, we use the structural 
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results from the atomistic simulations of PET as input into the OZPY-1 method to generate a CG 

potential of PET. We perform CGMD simulations of longer chain PET with DP equal to 4, 6, 8, 

10, 20, 30, 40 and 50. Structural and transport properties are studied at the CG level and mapped 

back to molecular level. Finally, the entanglement of long chain systems are studied by the Z 

algorithm.45  This paper is organized as follows. The details of the potential and simulation 

techniques are given in section 2. The results and discussion are presented in section 3. The 

conclusions are listed in section 4. 

 

4.2  SIMULATION METHOD 

4.2.1 Atomistic simulation of PET tetramer, hexamer, octamer and decamer. 

   Although no additional atomistic simulations were performed for this work beyond those 

previously reported,5  this work does present new properties from the atomistic simulations.  

Therefore, we briefly review the simulation procedure that was used in the previous work,5  

where a more detailed description is provided.  We use the modified anisotropic united atom 

HBB potential model developed by Hedenqvist, Bharadwaj and Boyd2,4  for PET to describe the 

intra-molecular and inter-molecular potential of oligomers molecules. We simulated in the 

isobaric-isothermal (NpT) ensemble and implemented the Hamiltonian-based thermostat and 

barostat of Keffer et al.46  with controller frequencies set to 10-4 fs. The XI-RESPA NPT 

algorithm developed by Tuckerman et al.47  was used to integrate the equations of motion.  The 

large time step was 2 fs and the small time step was 0.2 fs. The parallel code we used was built 

in-house and is written in FORTRAN-90, using MPI for inter-processor communication.  It has 

been tested rigorously across a variety of applications. For the simulations in this work, we 

verified conservation of the Hamiltonian in order to validate our choices of time step, cut-off 

distance and to minimize the possibility of bugs in the potential.  For DP from 4 to 10, we 

simulated 125 molecules.  The state point was set at 0.13 kPa and 563 K, as this corresponds to 

conditions within a finishing reactor.48   As for the initial conditions, we estimated the initial 

density and placed the particles in the simulation volume, avoiding significant overlap. To 

accelerate equilibration, we started with a higher temperature. Then we gradually decreased the 

temperature of the system and equilibrated to the correct density. Typically, each equilibration 

stage lasted for 1 ns. The details of the equilibration procedure can be found in elsewhere.2,5,6   
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Data production followed and lasted over 30 ns for the octamer and decamer.  These lengths of 

data production were chosen to be greater than the longest rotational relaxation time as 

determined in the simulation. 

 

4.2.2 CGMD simulations of longer PET chains with DP = 4, 6, 8, 10, 20, 30, 40 and 50. 

      We propose that PET can be modeled at a coarse-grained level with two spherical beads 

of type A and B.  The A bead corresponds to the benzene fragment, C6H4, and the B bead 

corresponds to all of the atoms between benzene fragments, C4H4O4. In the construction of the 

PCFs involving A and B from the atomistic simulations, the A and B beads are placed at the 

center-of-mass of the atoms in the corresponding fragment, as shown in Figure 4.1.  This 

definition introduces a small error due to end effects in the B beads terminating each chain, 

which in the atomistic simulation are actually C3H5O3. This mapping scheme contains a 

reduction in the number of degrees of freedom that enhances computational efficiency making 

the study of the dynamics of longer-chains tractable, while at the same time keeping sufficient 

structural details to reproduce the atomistic chain conformations.  The validation of this choice 

of mapping scheme is given in the Results and Discussion section. 

      The CG potential includes bond stretching (BA), bond bending (BAB and ABA), bond 

torsion (BABA), intra-molecular nonbonded interactions (for beads over four bonds) and inter-

molecular nonbonded interactions (BB, BA and AA). Probability distribution functions (PDFs) 

for stretching, bending, torsion and nonbonded interactions between CG particles were generated 

from the atomistic simulations.  In the development of coarse-grained (CG) potentials, for the 

stretching, bending and torsion modes, there are straightforward approximations that relate the 

interaction potential directly to the PDFs.13   The effective interaction potential between a particle 

of type α and a particle of type β, αβϕ , as a function of the separation between particles, r, can  

be related to the probability distribution function, ( )rαβg , via 

 ( ) ( )( ) αβαβBαβ cglnTk +−= rrϕ    (1) 

where kB is Boltzmann’s constant, T is temperature and αβc  is a constant.  Note here coordinates 

need to be changed for the bending (from r to θ (bending angle)) and torsion (from r to φ (torsion 

angle)) modes.13,18,26  
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      To extract the nonbonded CG potentials, there are two major methods currently used.  

First, the parameters of an analytic potential such as Lennard-Jones are adjusted to closely 

reproduce the target PCF in the atomistic liquid/melt. A problem with this method is that the 

difference of conformations and orientations between fragment molecules and target molecules 

may not be reflected correctly on the corresponding coarse-grained potentials.16,26  For example, 

the conformations of phenol rings in liquid benzene and that in PS melt where the rings are 

embedded into a long chain may be different. Consequently, these conformations would be 

misrepresented in the CG potential. The calculated potentials cannot be used under ambient 

pressure condition or be applied to study the formation of ordered structures driven by enthalpic 

interactions.30  Fritz et al.30  recently developed a new method that addresses these drawbacks. 

The method derives nonbonded potentials from constraint dynamics with the all–atom model of 

two trimers (or tetramers) of PS in vacuum. In this way, the atomistic melt properties are not 

used in the parameterization while the potential can still be used in the condensed melt phase. To 

some extent, the multibody contributions to the effective potential are taken into account. 

      In the second method, a tabulated potential is numerically determined by simulation 

iteration.  The interaction potential is refined iteratively via  

 
( ) ( ) ( )

( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+=+ r

r
rr

αβ

iαβ,
Biαβ,1iαβ, g

g
lnTkϕϕ

                (2) 

where ( )rβαg  is the target PCF. Potentials obtained from this procedure will closely reproduce 

the CG atomistic liquid PCFs. The challenging part of this method is obtaining PCFs from 

simulations in each iteration. As mentioned by Guenza28 , those simulations have to be 

performed on length scales and timescales large enough to ensure a reliable numerical 

predictions of the potential at the length scale characteristic of the coarse-graining procedure. 

This could strongly limit the computational gain of CG procedure. 
 

      In this work, we use the form of the bonded potentials from eqn. 1 and nonbonded 

potentials from the OZPY-1 method to describe both the intra-molecular and inter-molecular 

potential of CG PET chains. The Ornstein-Zernike Integral Equation for a mixture of simple 

fluids38  is 
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( ) ( ) ( ) ( ) ( )[ ]∑∫ −+=−
γ

3
γβγαγαβα d1gncc1'g r''r'',r'r''r,r''r,r'r,rβ              (3) 

where the pair correlation function between particles of type α and β located respectively at r  

and r′ , ( )'gα r,rβ ,  is related to the direct correlation, ( )'cα r,rβ , and an integral including the 

interactions of the α and β particles with a third particle, γ, located at r''  with a singlet density, 

( )r''γn .   There is a summation over γ spanning all types of particles.  This equation in its present 

form implicitly allows for a different interaction potential between each pair of types of particles.  

In essence, the summation over γ is a summation over interaction potentials. To emphasize this, 

the Percus-Yevick approximation of the direct correlation function can be written as 

 ( ) ( ) ( )
⎥⎦
⎤

⎢⎣
⎡ ⎟

⎠
⎞⎜

⎝
⎛−=

TBk
r,r'r,rr,r'

ii
iexp1'gc ϕ

ϕϕ                    (4) 

Substitute this to OZ equation yields the OZPY equation29  
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With the definition of cavity function49  and total correlation function respectively as 

( ) ( ) ( ) ⎟
⎠
⎞⎜

⎝
⎛=

TBk

r,r'r,rr,r'
ii

iexp'gy ϕ
ϕϕ                     (6) 

 ( ) ( ) 1'gh −= r,rr,r'
ii ϕϕ                      (7) 

where 1ϕ  is always the unknown nonbonded potential, while the summations of 2ϕ  and 3ϕ  

include both nonbonded and bonded potentials. Conceptually, then we measure all ( )th
iϕ  in the 

simulation and we solve eqn. (5) numerically for ( )r
1

yϕ  from which the potential can be directly 

extracted. The details of the application of the OZPY-1 method to polyatomic fluid is given as 

supplementary information of this paper.  The method requires a meticulous accounting of the 

allowable combinations of interaction potentials in the summations of 2ϕ  and 3ϕ , which are 

dependent on the connectivity of the polymer chain.  For example, for the diatomic molecule, 

there were three combinations of 2ϕ  and 3ϕ  (stretching-nonbonded, nonbonded-stretching, and 

nonbonded-nonbonded).  One can’t have stretching-stretching in a diatomic system.  For PET, 
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there are 34 such combinations.  All the calculated potentials are presented in the discussion 

section. 

    In addition to CG model and potentials, we also require reliable initial configurations to 

start the CGMD simulation. For DP = 4, 6, 8 and 10, the initial configurations of CG chains are 

based on center of mass positions of the fragments from the atomistic simulations. For DP = 20, 

30, 40 and 50, we estimated the initial density and placed the particles in the simulation volume 

carefully with proper bond length and angles, then gradually introduced the nonbonded 

interactions to avoid overlap.  

    We again simulated in the isobaric-isothermal (NpT) ensemble under the same pressure 

and temperature as the atomistic simulation. The time steps of CGMD simulation are 10 times 

larger than those used in the atomistic MD simulation. The simulation method is similar to that 

used in the atomistic MD. After an equilibrium stage, the systems reach the equilibrium 

densities. The equilibrium densities of different systems are in the range of 1.18 to 1.29 g/cm3, 

which is close to the finding of Kamio et al.6  by a different method. End effects exist but 

become smaller with increasing chain length.  

    Apparent speed up is observed in CG level simulation. Based on wall-clock time, the 

CGMD simulations are about 50 times faster than the atomistic simulations.  Note here that in 

our atomistic simulations, a united-atom model was used for hydrogen bound to carbon, already 

eliminating some degrees of freedom. The speed up factor would be larger if the hydrogens were 

explicitly accounted for in the atomistic simulation. The procedure is still computationally 

intensive, to finish a run of 4300 ns for a system of chains with DP of 50, it took roughly 3 

months on 16 processors. However, such a run would have been infeasible with atomistic 

simulation. The duration of data production was chosen to be 4 or 5 times the longest rotational 

relaxation time as determined in the simulation for DP from 4 to 30. These simulations ran as 

long as 1600 ns. For DP equals 40 and 50, the simulation times were 2800 ns and 4300 ns 

respectively, which are roughly equal to the longest relaxation times of these systems, which 

represents a compromise based on finite computational resources. 

 

4.3  RESULTS AND DISCUSSION 
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     In this section, we present the results of the CGMD simulations for PET with DP = 4, 6, 

8, 10, 20, 30, 40 and 50.  For the four shortest chains, we compare the results with those of the 

corresponding atomistic simulations.  The results are broken into three parts:  structural 

properties, transport properties and entanglement analysis. A summary of raw properties 

generated from the CGMD simulations is presented in Table 1. Note that these properties have 

not been adjusted by any time or length scaling factors.  When mapping the CGMD simulation 

results back to the molecular level, scaling factors based on the time scale difference of the two 

level simulations are used.13,25   A comparison of structural and dynamic properties from 

atomistic MD simulation and corresponding scaled values from CGMD simulation for DP equals 

4, 6, 8 and 10 are listed in Table 2. All the time related properties in the figures (end-to-end 

autocorrelation functions, self-diffusivity, mean square displacement and zero-shear-rate 

viscosity) are scaled with the appropriate time-scaling factor. A detailed explanation of each 

scaling factor is contained in the discussion of its related property.  In the sections below, our 

discussion is largely confined to comparison between the atomistic MD and CGMD simulations, 

as well as comparison of the observed results with the Rouse and reptation theories.  Comparison 

of the results of the atomistic simulations with experimental measurements, which was in general 

quantitative, is available elsewhere.5  

 

4.3.1 Structural Properties  

     In Figure 4.2, we show the distributions of bonded and nonbonded CG beads obtained 

from atomistic simulations. These distribution functions are based on the analysis of 

configurations from atomistic MD of the tetramer, hexamer, octamer and decamer. As shown in 

Figure 4.1, these distribution functions are calculated according to the center of mass position of 

CG beads. In our CG model, there is only one type of stretching mode (BA), two types of 

bending modes (BAB and ABA) and three types of nonbonded modes (BB, BA and AA). The 

stretching mode shows a Gaussian type distribution with the equilibrium bond distance around 

5.0 Å. The bending BAB shows single peak centered at 150˚, while the bending ABA displays 

bimodal distribution with one peak centered at 110˚, the other centered at 170˚. The torsional 

mode distribution is similar to that of Kamio et al.6 ‘s work, although they used a different CG 

model. Similar features for stretching and bending distributions are also reported in the work of 
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Hamandaris et al.18  on polystyrene. We believe this similarity is due to a common treatment of 

phenol rings in the three CG models. The nonbonded BB, BA and AA distributions show 

multiple peaks with the first peak centered at 5.0 Å. Figure 4.2 also shows that both bonded and 

nonbonded distributions are not significantly changing with DP, which indicates that our 

proposed CG model is able to capture the structural features of PET chains with different chain 

lengths. Any discrepancy based on chain length is probably due to end effects, which will 

diminish as we explore longer chains.  We obtained the bonded stretching, bending and torsion 

CG potentials through eqn. 1, based on the bonded distribution functions of the decamer.  The 

distribution functions of the decamer from atomistic simulation also serve as the target 

distributions, which we will compare later with the distribution functions from CGMD 

simulations of the decamer. 

     In Figure 4.3, we plot the bonded and nonbonded CG potentials of different interaction 

modes extracted from the PCFs of the atomistic simulation of the decamer.  The bonded 

potentials are generated via eqn. 1 and the nonbonded potentials are generated using the OZPY-1 

procedure. The bonded potentials are shifted to have zero energy at the minima.   The three 

nonbonded interaction potentials obtained from OZPY-1 method are shown in Figure 4.3.  These 

nonbonded potentials are close to Lennard-Jones 7-6 potential.  Therefore, the calculated 

potentials were fit to a LJ 7-6 form to avoid (i) numerical noise and (ii) deficiencies due to the 

approximate nature of the Percus-Yevick equation.  These deficiencies include a softer repulsive 

potential resulting in greater overlap than observed in the atomistic simulations and an 

overestimation of the rate at which the potential rises at separations immediately beyond the first 

minimum. The specific procedure to obtain these nonbonded interaction potentials are presented 

in the supplementary information. Note here that the nonbonded potentials are used in both intra-

molecular and inter-molecular parts.  Clearly, the nonbonded potential indicates the strongest 

interaction between two B beads, and the weakest interaction between two A beads.  We can 

attribute this to the polar nature of the fragments in the B beads and the nonpolar nature of the 

benzene ring in the A bead. 

     Because we have simulated the chains with DP = 4, 6, 8 and 10 using both atomistic and 

CG simulations, there are a variety of properties that can be evaluated to determine the validity 

of the coarse-graining procedure.  First, the equipartition of energy was checked.  In both the 
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atomistic and CG simulations, the average system temperature of a MD simulation is calculated 

based on the equipartition theorem, but it can also be computed by measuring the velocity 

distribution and fitting it to a Maxwell-Boltzmann distribution.  For the CG simulation of the 

decamer, we computed the temperature of the A and B beads in the simulation in the x, y, and z 

dimensions using both procedures.  The results are shown in Table 3 and Figure 4.4. The CG 

simulation results show that the average temperature equals to the set temperature with 0.2% 

standard deviation. The Figure 4.3 shows the velocity distribution of CG beads B and A in the x 

direction, compared to the expected Maxwell-Boltzmann distribution based on the target 

temperature and fragments masses. Thus, in our CG simulations, we confirm both the 

equipartition of energy and the Maxwell-Boltzmann distribution of velocities.  Consequently, the 

temperature of these CG simulations is well established.  In fact, the equipartition theorem could 

be violated in CGMD simulations when the mass ratio of CG beads is very large. The mass ratio 

of the two CG beads (B/A) in our PET model is 1.45, closer to 1 than that in the polystyrene 

models (6.5 and 2.8) of Harmandaris et al. ,13,18  in which the mass was assumed to be evenly 

distributed between two CG beads to use a larger step size. Their later work shows that this 

assumption affects the scaling factor of dynamic properties.13  Based on the above analysis, we 

avoided this assumption. 

    The second check between the atomistic and CG simulations that can be done is based on 

a comparison of the bonded PDFs.  Equation 1, which is used to generate the bonded potentials, 

is subject to the assumption that all the interactions are independent of each other. The above 

potentials can only correctly reproduce the conformational sampling of atomistic description if 

all degrees of freedom are uncorrelated.16  Villa et al.16 and Harmandaris et al.13,18  discuss the 

validation of this assumption.  In Figure 4.5, we present the comparisons of all the bonded PDFs 

from atomistic MD and CGMD simulations of the decamer. The stretching, bending and torsion 

PDFs agree reasonably well between the two techniques.  All of the peaks are present.  The 

largest discrepancy occurs in the ABA bending distribution, in which the CGMD results under-

predict the population of the smaller peak at about 170○. We have validated the assumption of 

independence of the bonded modes through direct comparison of the distribution from the 

atomistic and CG simulations.  Further understanding of the statistical interdependencies of 
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different interaction modes could be achieved through additional analysis described in the 

literature.13,16,30  

     The third check between the atomistic and CG simulations that can be done is based on a 

comparison of the nonbonded PCFs and is a validation of the OZPY-1 coarse-graining procedure. 

The nonbonded distributions BB, BA and AA from CGMD also match the targets well. This 

indicates that the calculated CG potentials are able to reproduce the structural features of PET 

chain at CG level.  To further test this, we also compared the distributions of hexamer and 

octamer from CGMD with the atomistic PCFs, and found equivalent agreement (not shown). As 

presented elsewhere in most CG level simulation work6,13,18,27 , one of the most important points 

of validation of the CG process is the reproduction of conformations from atomistic sampling. 

Having done this, we can further investigate the other physical properties from the CG 

simulations. 

     In Figure 4.6, we show snapshots from the CGMD simulations.  All of these snapshots 

are taken from the equilibrium ensemble.  In Figure 4.6(a) all molecules are shown to make it 

clear that we are simulating a dense melt.  In Figures 4.6(b) through 6(f), all but five chains are 

rendered invisible to better indicate the shape of the chains.  These structures are available to 

view and download at an archived site. 50  

     In Figure 4.7, we show the distribution of chain end-to-end distance for DP = 10, 20, 30, 

40 and 50.  The end-to-end distance is defined as the distance between the two end BB groups. 

The end-to-end curve of the decamer displays two peaks.  The peak centered at 4.5 Å 

corresponds to a folded configuration, as shown in Figure 4.6(b).  The folded structure in PET 

oligomers has been reported by the other simulation work of PET5,51 . The broader peak 

extending from 7 to 50 Å, with a maximum at 28.3 Å corresponds to the unfolded conformation. 

The end-to-end distribution of the decamer from atomistic MD simulation is also presented in 

Figure 4.7 (solid black line). The comparison is excellent. As DP increases, the qualitative two-

peak behavior of the decamer disappears and the distribution becomes more Gaussian-like6 , as 

shown for DP =50. As expected, the position of the maximum in the peak increases with DP and 

the breadth of the curve increases with DP.  The average end-to-end distance increases with DP, 

as can be seen in Table 4.1. 
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     Figure 4.8 shows that the average chain end-to-end distance and radius of gyration as a 

function of DP in a log-log plot. Note here the results for tetramer, hexamer, octamer and 

decamer from atomistic MD simulations are also shown (open circle with back error bar). The 

lengths associated with the GCMD simulations are consistently slightly smaller than those of the 

atomistic MD simulations, because the beads are located at fragment center-of-masses.  The 

polymer’s structure and dynamic properties have the following chain length or molecular weight 

dependence. 

 ( )bDPaX =           (8) 

where X is a property related to DP via the scaling exponent, b.  The values of b for various 

properties as a function of chain length and degree of model resolution are listed in table 4.4.  

Both structural measures can be well fit by equation (8). The scaling exponents for the radius of 

gyration and the chain end-to-end distance are 0.594 and 0.571 respectively for DP up to 10 and 

0.510 and 0.501 for DP from 20 to 40.  Laso and Karayiannis 52,53  studied the scaling behaviors 

of oligomer systems, and found very similar values (0.58-0.60) for the scaling exponents are 

obtained in the whole range of volume fractions from dilute up to very dense samples suggesting 

universal character in the scaling behavior of oligomers. Indeed the value of 0.59 corresponds to 

specific folded (ring-like) and extended chain configurations that, because of their small size, 

markedly deviate from Gaussian coils. In a melt of sufficiently long PET chains, chains should 

behave as random walks and the exponent should be close to 0.5 as shown by Kamio et al.6  Our 

scaling exponents of Rete and Rg for longer chain systems (for DP greater than 20) are close to 

0.5, which indicates that for DP greater than 20, the systems become entangled. Indeed, the 

critical entangled molecular weight (Me) of PET (3500 g/mole)54  is between the molecular 

weight of decamer (1901 g/mole) and DP = 20 (3802 g/mole). The molecular weight of the 

highest DP (DP = 50) system is (9505 g/mole) 2.7 times of Me.  Therefore, a transition from 

Rouse like behavior to reptation behavior is possible. We will refer this issue back during the 

discussion of entanglement analysis. 

     Figure 4.9 (a) and (b) shows the normalized chain end-to-end vector autocorrelation 

functions changing with observation time for the tetramer, hexamer, octamer and decamer 

systems. In Figure 4.9(a), the black lines represent data from atomistic MD simulation using the 

molecular model, while the red lines represent values scaled from CGMD simulations using our 
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CG model. The autocorrelation functions all decay to zero, which means the chains are fully 

relaxed.  The atomistic simulations do not extend out as far as the CGMD simulations simply 

due to restrictions in computational resources.  Thus the benefits of applying the CG procedure 

are evident. Note here the observation time was scaled. 

     We can extract useful information from the end-to-end vector autocorrelation function. 

By fitting this data to the exponential model or the KWW model55   (a stretched exponential), one 

can extract chain relaxation times, τR
* and  τkww

* respectively. These times correspond to the 

longest rotational relaxation time.  The relaxation times and the stretching exponent, βKWW
*, are 

reported in Table 4.1. As shown in Figure 4.9(b), the fits to KWW model are reasonably good 

for DP equals 20, 30, 40 and 50.  The relaxation times from the Rouse and the KWW model 

deviate at short chain length but agree relatively well for long chain length.  The relaxation times 

increase strongly with DP.  Based on chains with DP of 20, 30, 40 and 50, the scaling exponent b 

for τkww
* is 3.7.  The scaling exponent obtained for the DP = 1 to 10 from the atomistic 

simulations was 2.78.  Since there is a statistically significant change in the exponent from short 

to long chains, it is possible that this is a consequence of moving from an unentangled to an 

entangled regime. As a point of reference, the Rouse model predicts a scaling exponent of 2 and 

reptation theory predicts a scaling exponent of 3.56  

    Another important issue investigated on the analysis of end-to-end vector autocorrelation 

functions is the scaling factor of relaxation times from atomistic MD and CGMD simulation of 

the tetramer, hexamer, octamer and decamer. We obtained two sets of relaxation times, τkww 

(from atomistic MD), which are listed in Table 4.2, and τkww
* (from CGMD), which are listed in 

Table 4.1. The average of the ratio of τkww / τkww
* of tetramer, hexamer, octamer and decamer is 

7.5. In other words, the polymers relax on average 7.5 times faster in the CGMD simulation than 

they do in the atomistic simulation.  This is because fewer degrees of freedom are used in the CG 

model, which accordingly causes faster dynamics in the CGMD simulation than the full 

atomistic MD simulation.13  This scaling factor is reported in the top row of Table 4.2.  As a 

point of clarification, note that we now have scaling exponents relating the behavior of a property 

to degree of polymerization and scaling factors, providing proportionalities between properties 

of the CGMD simulations to those of the atomistic MD simulations. 
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    We also report the kinetic, bonded potential (stretching, bending and torsion) and 

nonbonded potential (intramolecular and intermolecular) energies in Table 4.1 (raw data) and 

Table 4.2 (scaled data).  These energies are reported in units of aJ/bead.  The scaling factors 

reported in Table 4.2 were generated by calculating the average ratio of the property from 

CGMD and atomistic simulations.  The use of a single constant for scaling the kinetic energy 

across all DP is excellent, as can be judged by comparison of the scaled energies from atomistic 

and CGMD simulation in Table 4.2.  The scaling for the potential energies is reasonably good 

with an average error of 6.2% and 2.2% for the bonded and nonbonded terms respectively.  

These scaling factors for the energies allow one to compute thermodynamic properties, such as 

the internal energy, of the atomistic chain from the CGMD simulation. 

 

4.3.2 Transport Properties 

     In this section, we report the self-diffusivity (D) and zero-shear rate viscosity (η) as a 

function of DP.  The self-diffusivity is obtained from the mean-square displacements (MSD) 

through Einstein’s equation given as 

 [ ]2

t
(0)(t)
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1lim
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1

cmcm rrD −=
∞→

        (9) 

where rcm is the center of mass position of the chain. 
    In Figure 4.10, we plot the mean square displacement versus observation time on a log-

log plot.  In order to satisfy the infinite time limit, the slopes of the curves must be unity.  These 

slopes are reported in the legend of Figure 4.10 and are all very close to unity.  This is evidence 

that the simulations have been run sufficiently long to achieve valid self-diffusivities.  The 

numerical values of the self-diffusivities from CGMD simulation are reported in Table 4.1.  We 

acknowledge that it is likely that the statistical accuracy of the estimate diminishes as the chain 

length increases due to the fact that we have not been able to simulate for as many relaxation 

times with the long chains as we did with the short chains.  This is reflected in the uncertainties 

reported in Table 4.1 where the standard deviation is 19% for DP=10 and 40% for DP=50.  

Scaled values are plotted in Figure 4.11 as a function of DP.  The self-diffusivity decreases with 

DP as expected. The scaling exponent for the self-diffusivity for DP = 20 to 50 is -2.00.  The 

scaling exponent obtained for DP = 4 to 10 is -1.91, which can be compared to the DP = 1 to 10 
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from the atomistic simulations, which was -2.01.5   Since this exponent changes very little from 

short to long chains, it is not a useful measure of degree of entanglement.  As a point of 

reference, the theoretical prediction of the scaling exponent from reptation theory for entangled 

polymer melts is -2. We do not observe any behavior predicted by the Rouse model (for which b 

= -1.0) for any chain lengths. Indeed, it has been reported in the literature that the dynamic 

properties deviate from the Rouse model for short-chain unentangled polymer systems.57  This is 

attributed to the presence of chain stiffness, nonbonded interactions, and chain uncrossability, 

which are not accounted for by the Rouse model.57  

    If we compare the numerical values of the diffusivities from atomistic simulations (Table 

4.2) and CGMD simulations (Table 4.1) for chains with DP of 4, 6, 8 and 10, we find that the 

average ratio of diffusivities (CG over atomistic) is 0.186.  (The diffusivities in Figure 4.11 are 

scaled by this number.)  The inverse of this is 5.38.  In other words, diffusion is occuring 5.38 

times faster in the CGMD simulation than in the atomistic MD simulation.  Recall that the 

polymer relaxed 7.5 times faster in the CGMD simulation based on an analogous comparison of 

τkww.  One might have expected these numbers to be the same.  At this point, we do not have a 

complete explanation for the discrepancy.  The use of a time scaling constant has only an 

empirical basis.  The different dynamic properties (relaxation time, diffusivity, viscosity) 

represent mechanisms of entropy generation.  Because the entropy of the atomistic and coarse-

grained models are different, it may well turn out that the use of a single time-scaling constant 

gives only a first order approximation of the diverse effects of a more complicated issue.  

However, in Table 4.2, when we provide the scaled properties from the CGMD simulations to 

compare with the atomistic MD simulations, we provide all of the scaling factors in the top row 

of the table. 

     The zero-shear-rate viscosity is based on time integration of the momentum auto-

correlation function  

 ( ) ( ) dtt
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where σxy is the xy component of the stress tensor defined to have a potential and kinetic 

contribution, 
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where rijx and Fijx are respectively the separation and force between particles i and j in the x 

dimension, mi is the mass of particle i. 

    Following a previously tested procedure,5,58  we obtained numerical values of the zero-

shear-rate viscosities from the CGMD simulations, which are given in Table 4.1.  Scaled values 

are plotted in Figure 4.12 as a function of DP.  The scaling exponent for the zero shear rate 

viscosity for DP = 20 to 50 is 2.0.  The scaling exponent obtained for DP = 4 to 10 is 1.6, which 

can be compared to the DP = 1 to 10 from the atomistic simulations, which was 0.96.5   The 

values deviate from the theoretical prediction (b = 1 for the Rouse model and b = 3.0 for the 

reptation model). The deviation from Rouse model is expected57,59  due to the reasons mentioned 

above. The exponent for short chains b = 1.6 is close to the finding of other simulation work (b = 

1.860  and b = 1.557 ). For entangled long chain systems, the exponents b = 3.660  and b = 3.257  

have been observed. 

    To map zero-shear-rate viscosity from CGMD simulation back to the molecular level, we 

again calculate an average scaling factor between the viscosities of the CGMD and atomistic MD 

simulations for DP = 4, 6, 8 and 10.  The average ratio is 6.62.  If we invoke the Stokes-Einstein 

(SE) relation,61,62  which according to hydrodynamic theory applies well to the diffusion of large 

spherical molecules in solvent of low molecular weight (admittedly not the system here), then 

 
SEB RTk

D
π

η
4

1
=           (12) 

where RSE is the particle size. RSE can also be represented by the chain radius of gyration (Rg).  

Thus, according to the Stokes-Einstein relation, the scaling factor for viscosity is simply the 

inverse of the scaling factor the diffusivity (since we have assumed a scaling of 1 for the radius 

of gyration), which is 5.38.  The values of the viscosity in Table 4.2 and Figure 4.12 have been 

scaled by 5.38.  There is relatively good agreement between the viscosities from the CGMD and 

atomistic MD simulations.  There is scatter in the data, (as is typical for zero shear rate 

viscosities obtained in this way), but no systematic discrepancy. 

      We would like to better understand the degree of entanglement in these systems.  As we 

mentioned above, the actual molecular weight of DP = 20 systems has exceeded the 
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entanglement molecular weight of PET.  The scaling exponents for the end-to-end distance, 

radius of gyration and the slowest relaxation time showed a statistically significant decrease 

when moving from short chains (DP ≤ 10) to longer chains (DP ≥ 20).  However, the scaling 

exponent for the self-diffusivity did not show any statistically significant change between short 

and long chains. 

 

4.3.3 Entanglement Analysis 

      A clearer understanding of entanglement can emerge from a more geometric approach in 

which one extracts entanglement information directly from configurations of the chains. To this 

end, we analyzed snapshots of DP = 10, 20, 30, 40 and 50 systems using the Z-code45 . The Z-

code and CReTA package63  are two common algorithms to study the entanglements in 

polymeric systems. Kamio et al.6  studied the entanglements of long chain PET using the above 

two algorithms. The calculated quantities like primitive path length and entanglement spacing 

are in good agreement. In this work, we implement only the Z-code to study the entanglements in 

longer chain systems.  The details of the Z-code and its application can be found 

elsewhere.45,64,65  The calculated mean contour length of primitive path (<Lpp>), tube diameter 

(d), number of monomers between entanglement points (Ne) and number of entanglements (Z) 

for PET with DP from 10 to 50 are listed in Table 4.5.  These values were generated by 

averaging over 1000 snapshots distributed through-out the simulation, each containing 125 

chains.  The value of tube diameter is in good agreements with rheological data reported in the 

literature66-68  for DP from 20 to 50. The average value is 35.42 (Å), which can be compared with 

the reported value of 35 (Å).68  The difference is within 1.2%.  The tube diameter for the DP = 10 

system deviates from that of the other simulations and from reports in the literature, which may 

results from it being unentangled. The values of <Lpp> for entangled systems are lower than that 

reported by Kamio et al.6 .  This is probably because a longer chain length used in their work. It 

has been shown that the value of <Lpp> increases with chain length.64   To further compare our 

results with the literature, we also reported the values of interentanglement strand length (NES) in 

Table 4.4. NES is defined as6  
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where N is the number of beads in a chain. The average value for DP from 20 to 50 is 13.59 ± 

1.63 , which is in agreements with that reported in the literature,6  in which the value from 

CReTA is 13.87 and from Z is 14.9. The slight dependence of NES on DP may be due to 

differences in the densities. The agreement of the tube diameter and NES comparisons also 

indicates that good equilibration of the melt topological structure has been achieved, which is 

further verified by the fact that no significant difference is observed on these the statistical 

properties from the analysis of multiple configurations taken at different times. 

 

4.4  CONCLUSIONS 

     A coarse-grained (CG) model of Polyethylene Terephthalate (PET) was developed and 

implemented in CG Molecular Dynamics (MD) simulations of PET chains with degree of 

polymerization up to 50.  The CG potential is parameterized to structural distribution functions 

obtained from atomistic simulations5  using an inversion procedure based on the Ornstein-

Zernike equation with the Percus Yevick approximation (OZPY).29   The CGMD simulation of 

PET chains satisfactorily reproduces the structural and dynamic properties from atomistic MD 

simulation of the same systems. From the CGMD simulations, we obtained structural and 

transport properties for PET with degrees of polymerization from 4 to 50 at the industrially 

relevant state point (T = 563 K, p = 0.13 kPa). 

      Scaling exponents are reported for five properties as a function of DP:  the end-to-end 

distance, the radius of gyration, longest rotational relaxation time, the self-diffusivity and the 

zero shear rate viscosity.  We calculated scaling exponents for both short chains (DP ≤ 10) and 

longer chains (DP ≥ 20).  We observed that the scaling exponents for the end-to-end distance, the 

radius of gyration, longest rotational relaxation time and the zero shear rate viscosity show a 

statistically significant different between short and long chains.  However, the scaling exponent 

for the self-diffusivity did not show any statistically significant change between short and long 

chains.  The exponents for long chains for the end-to-end distance, the radius of gyration and the 

self-diffusivity are in good agreement with predictions from reptation theory.  The exponents for 

the viscosity fall between the Rouse model and reptation theory for both short and long chains.  

The exponents for the longest rotational relaxation time exceed the Rouse model and reptation 

theory for both short and long chains respectively. 
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       In an effort to understand how dynamic properties from CGMD simulations can be 

scaled, we compared CGMD and atomistic MD simulations of PET for DP up to 10.  

Comparison of structural properties, such as end-to-end distance or radius of gyration, show that 

no length scaling is necessary.  Using the longest rotational relaxation time as a standard, we find 

that the time scaling factor in the CGMD simulations is 7.5.  However, using the self-diffusivity 

as the standard, the time scaling factor is 5.38.  The viscosity yields a scaling factor of 6.22. 

     The entanglement analysis, using the Z-code,45  shows that for DP = 20 to 50, tube 

diameter (d), number of monomers between entanglement points (Ne) and interentanglement 

strand length (NES) are very close to the reported values for entangled PET melts.  For DP=50, 

there are on average 6 entanglements per chain.  Thus we have at least a partially entangled 

system for the longer chains, explaining some of the intermediate scaling exponents observed in 

the simulations. 
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Table 4.1. Unscaled structural, thermodynamic and transport properties of PET with different DP from CGMD simulations (for DP = 

4, 6, 8, 10, 20, 30, 40 and 50) at p = 0.13 kPa, T = 563 K. 

 
DP 4 6 8 10 20 30 40 50 

N 125 125 125 125 125 125 125 125 

ρ* 
 (g/cm3) 1.22 ± 0.03 1.29 ± 0.01 1.29 ± 0.01 1.29 ± 0.01 1.18 ± 0.02 1.20 ± 0.01 1.25 ± 0.02 1.24 ± 0.01 

D* (10-10 

m2/sec) 2.71 ± 0.2 0.76 ± 0.15 0.47 ± 0.13 0.32 ± 0.06 0.16 ± 0.03 0.08 ± 0.02 0.045 ± 0.022 0.025 ± 0.01 

η* (10-2 Pa.s) 0.1 ± 0.01 0.26 ± 0.09 0.41 ± 0.09 0.43 ± 0.04 0.44± 0.03 0.65 ± 0.13 1.50 ± 0.17 2.31 ± 0.40 

<Rete>* (Å) 17.5 ± 6.2 22.1± 7.8 24.7± 9.1 28.3 ± 10.2 44.2 ± 15.9 56.6 ± 21.0 63.0 ± 23.0 69.8 ± 22.7 

<Rg>* (Å) 8.1 ± 1.7 9.5 ± 5.4 10.5 ± 6.3 12.2 ± 6.4 19.6 ± 7.0 24.7 ± 9.1 28.0 ± 7.7 30.9 ±10.6 

τR* (ns) 0.96 3.04 4.69 10.33 51.28 128.20 476.25 909.10 

τKWW* (ns) 0.56 2.34 3.99 7.88 34.39 95.05 491.21 1006.81 

βKWW* 0.92 0.84 0.86 0.81 0.75 0.70 0.61 0.58 

kinetic 
energy* 

(aJ/bead)*10-

2 

1.16 ± 0.04 1.16 ± 0.02 1.17 ± 0.02 1.17 ± 0.02 1.17 ± 0.02 1.17 ± 0.02 1.17 ± 0.03 1.16 ± 0.06 

bonded 
energy* 

(aJ/bead)*10-

2 

0.92 ± 0.03 1.06 ± 0.02 1.11 ± 0.02 1.14 ± 0.02 1.19 ± 0.01 1.21 ± 0.02 1.22 ± 0.01 1.22 ± 0.04 

nonbonded 
energy* 

(aJ/bead)*10-

3 

-1.24 ± 0.03 -1.23 ± 0.06 -1.18 ± 0.09 -1.18 ± 0.04 -1.25 ± 0.04 -1.21 ± 0.03 -1.20 ± 0.03 -1.21 ± 0.03 
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Table 4.2. Comparison of structural, thermodynamic and transport properties of PET from atomistic MD simulation DP = 4, 6, 8 

and 10 and CGMD simulations for all DP at p = 0.13 kPa, T = 563 K.  Properties from CGMD simulation have been scaled with 

scaling factors listed for each property in the second row. 

 

ρ 
 (g/cm3) 

D (10-10 

m2/sec) 
η  

(10-2 Pa.s) 
<Rete>  

(Å) 
<Rg> 
 (Å) 

τKWW 

 (ns) 

kinetic 
energy 

(aJ/bead) 
*10-2 

bonded 
energy 

(aJ/bead) 
*10-2 

nonbonded 
energy  

(aJ/bead) 
*10-2 DP Simulation 

method 

1.0 0.186 5.38 1.0 1.0 7.5 1.0 1.09 16.35 

Atomistic 
MD 1.29 ± 0.01 0.40 ± 0.09 0.65 ± 0.07 21.1 ± 7.5 8.9 ± 5.2 5.6 1.17 ± 0.01 1.14 ± 0.01 -2.12 ± 0.01 

4 
CGMD-
scaled 1.22 ± 0.03 0.50 ± 0.02 0.54 ± 0.06 17.5 ± 6.2 8.1 ± 1.7 5.5 1.17 ± 0.04 1.00 ± 0.04 -2.05 ± 0.04 

Atomistic 
MD 1.29 ± 0.01 0.17 ± 0.02 1.95± 0.65 26.8 ± 10.2 11.2 ± 4.4 15.8 1.16 ± 0.01 1.15 ± 0.01 -2.00 ± 0.01 

6 
CGMD-
scaled 1.29 ± 0.01 0.14 ± 0.01 1.40 ± 0.48 22.1±7.8 9.48 ± 5.4 17.4 1.16 ± 0.03 1.15 ± 0.03 -2.05 ± 0.11 

Atomistic 
MD 1.29 ± 0.01 0.10 ± 0.03 2.23± 0.60 28.6 ± 11.2 12.5 ± 5.3 25.3 1.17 ± 0.07 1.15 ± 0.07 -1.94 ± 0.02 

8 
CGMD-
scaled 1.29 ± 0.01 0.09 ± 0.01 2.21 ± 0.48 24.7± 9.1 10.49 ± 6.3 26.8 1.17 ± 0.02 1.21 ± 0.02 -1.91 ± 0.12 

Atomistic 
MD 1.29 ± 0.01 0.07 ± 0.01 3.03± 0.80 34.2 ± 9.4 13.2 ± 3.8 38.6 1.17 ± 0.06 1.15 ± 0.06 -1.90 ± 0.01 

10 
CGMD-
scaled 1.29 ± 0.01 0.06 ± 0.01 2.31± 0.16 28.3 ± 10.2 12.18 ± 6.4 59.1 1.16 ± 0.02 1.24 ± 0.02 -1.93 ± 0.08 

20 CGMD-
scaled 1.18 ± 0.02 0.030 ± 0.006 2.37± 0.16 44.2 ± 15.9 19.6 ± 7.0 257.9 1.17 ± 0.02 1.30 ± 0.01 -2.04 ± 0.07 

30 CGMD-
scaled 1.20 ± 0.01 0.015 ± 0.004 3.50 ± 0.70 56.6 ± 21.0 24.7 ± 9.1 712.9 1.17 ± 0.02 1.32± 0.02 -1.98 ± 0.05 

40 CGMD-
scaled 1.25± 0.02 0.008 ± 0.004 8.07 ± 0.91 63.0 ± 23.0 28.0 ± 7.7 3684.0 1.17 ± 0.03 1.33 ± 0.01 -1.96 ± 0.05 

50 CGMD-
scaled 1.24 ± 0.01 0.005 ± 0.002 13.37 ± 2.2 69.8 ± 22.7 30.9 ±10.6 7551.0 1.16 ± 0.06 1.33 ± 0.04 -1.98 ± 0.05 
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Table 4.3. Comparison of structural, thermodynamic and transport properties of PET from atomistic MD simulation DP = 4, 6, 8 

and 10 and CGMD simulations for all DP at p = 0.13 kPa, T = 563 K.  Properties from CGMD simulation have been scaled with 

scaling factors listed for each property in the second row. 

 
species (Tx)ET (Tx

)MB (Tx)Diff (Ty)ET (Ty
)MB (Ty)Diff (Tz)ET (Tz

)MB (Tz)Diff (Tavg)ET (Tavg)MB (Tavg)Diff  (Tavg)total 

A 563 563 0.00% 566 564 0.35% 566 571 0.88% 565 566 0.18% 
B 562 564 0.36% 562 563 0.18% 563 563 0.00% 562 563 0.18% 

563.603 
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Table 4.4. Scaling exponents for various properties as a function of chain length and degree of 

model resolution. 

 

 DP Simulation 
method D  η  τKWW <Rete>  <Rg> 

1~10 Atomistic 
MD -2.01 0.96 2.78 0.594 0.571 

4~10 Atomistic 
MD -1.91 1.6 2.81 0.59 0.57 

20~50 CGMD -2.0 2.0 3.7 0.51 0.50 

Rouse 
model N/A -1 1 2 0.59 0.59 

Reptation 
model N/A -2 3 3 0.50 0.50 
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Table 4.5. Calculated properties from Z algorithm for DP = 10, 20, 30, 40 and 50 systems at p = 

0.13 kPa, T = 563 K. 

 

 DP <Lpp> (Å) d (Å) Ne Z NES 

10 31.99 19.07 8.82 1.87 7.19 

20 62.08 33.08 14.60 2.44 11.16 

30 92.17 35.38 18.67 3.51 13.48 

40 110.22 38.49 22.16 4.34 15.13 

50 133.23 34.74 22.60 6.02 14.37 

rheology 
models N/A 3568,  

38-4366 

30.268, 
24.266, 
25.067 

N/A N/A 
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Figure 4.1. Molecular and CG Models of the PET hexamer molecule. Molecular model and 

center of mass (com) position of CG beads are shown the left. CG model is shown on the right. 
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Figure 4.2. Bonded (stretching, bending and torsion) CG probability distribution functions 

(PDFs) and nonbonded CG pair correlation functions (PCFs) of tetramer, hexamer, octamer and 

decamer. PCFs are based on the center of mass position of the CG beads, obtained by analyzing 

the atomistic MD simulations of these oligomers. 
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Figure 4.3. Bonded (stretching, bending and torsion) and nonbonded CG potentials. 
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Figure 4.4. Comparison of x-direction velocity distribution of CG beads from CGMD simulation 

(data points) and the fitting of velocity distribution data to the Maxwell-Boltzmann distribution 

(line). The temperature can be extracted and compared with that of CGMD.  Temperatures for all 

directions are shown in Table 4.1. 
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Figure 4.5. Comparisons of bonded (stretching, bending and torsion) CG probability distribution 

functions (PDFs) and nonbonded CG pair correlation functions (PCFs) of decamer from 

atomistic MD simulation (target) and CGMD simulation. 
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Figure 4.6. Snapshots of equilibrium configurations from CGMD simulations at T = 563 K, p = 

0.13 kPa.  (a) DP = 10, all molecules shown; (b)-(f) PET with different chain length (DP), 

selected molecules; (b) DP = 10; (c) DP = 20; (d) DP = 30; (e) DP = 40; (f) DP = 50. 
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Figure 4.7. Comparisons of the chain end-to-end distance probability distributions for DP = 10, 

20, 30, 40 and 50 from CGMD.  For DP = 10, the solid line represents the distribution from 

atomistic MD simulation; For DP = 50, the dash line represents the distribution predicted by 

Gaussian function. 
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Figure 4.8. The average chain end-to-end distance (Rete, circles) and radius of gyration (Rg, 

diamonds) as a function of DP from atomistic MD (open symbols) and CGMD (solid symbols).  

The error bars are one standard deviation.  Linear regressions of the MD data (short chains) and 

CGMD data (long chains) are shown with the slope reported. 
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Figure 4.9. (a) Comparison of the end-to-end distance auto-correlation functions for the 

tetramer, hexamer, octamer and decamer from atomistic MD and CGMD simulations (with time 

scaled). 
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Figure 4.9. (b) The end-to-end distance auto-correlation function and its fitting to the KWW 

model for DP = 20, 30, 40 and 50 from the CGMD simulations. 

 

 



 

 

 

129

 

log(time (fs))
8.0 8.5 9.0 9.5

lo
g(

<(
R

cm
(t)

-R
cm

(0
))2 >)

 (A
ng

st
ro

m
s2 )

2.0

2.2

2.4

2.6

2.8

3.0
DP = 4 (slope: 1.01)
DP = 6 (slope: 1.01)
DP = 8 (slope: 1.00)
DP = 10 (slope: 1.01)
DP = 20 (slope: 1.00)
DP = 30 (slope: 1.01)
DP = 40 (slope: 1.00
DP = 50 (slope: 1.01)

 
 

Figure 4.10. The mean square displacement of chain center of mass as a function of observation 

time for all DPs.  The slope reported in the legend should be unity to satisfy the long-time limit 

of the Einstein relation. 
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Figure 4.11. The average self-diffusivity (D) as a function of DP from atomistic MD (open 

symbols) and CGMD (solid symbols).  The error bars are one standard deviation.  Linear 

regressions of the MD data (short chains) and CGMD data (long chains) are shown with the 

slope reported. 
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Figure 4.12. The average zero-shear-rate-viscosity (η) as a function of DP from atomistic MD 

(open symbols) and CGMD (solid symbols).  The error bars are one standard deviation.  Linear 

regressions of the MD data (short chains) and CGMD data (long chains) are shown with the 

slope reported. 
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This chapter is a revised version of a paper (minor revisions to reflect its inclusion as a chapter 

in the dissertation) by the same title in preparation for a journal by Qifei Wang, David J. Keffer, 

and Donald M. Nicholson: 

 

The use of “we” in this part refers to the co-authors and the author of this dissertation. My 

primary contributions to this paper include (1) all of the simulation work (2) analysis of data, and 

(3) most of the writing. 

 

 

Abstract 

 A coarse-grained (CG) model of Polyethylene Glycol (PEG) was developed and 

implemented in CG Molecular Dynamics (MD) simulations of PEG chains with degree of 

polymerization (DP) 20 and 40. In the model, two repeat units of PEG are grouped as one CG 

bead. Atomistic MD simulation of PEG chains with DP = 20 was first conducted to obtain the 

bonded structural probability distribution functions (PDFs) and nonbonded pair correlation 

function (PCF) of the CG beads. The bonded CG potentials are obtained by simple inversion of 

the corresponding PDFs. The CG nonbonded potential is parameterized to the PCF using both an 

inversion procedure based on the Ornstein-Zernike equation with the Percus Yevick 

approximation (OZPY-1) and a combination of OZPY-1 with the iterative Boltzmann inversion 

(IBI) method (OZPY-1+IBI). As a simple one step method, the OZPY-1 method possesses an 

advantage in computational efficiency. Using the potential from OZPY-1 as an initial guess, the 

IBI method shows fast convergence.  The CGMD simulations of PEG chains with DP = 20 using 

potentials from both methods satisfactorily reproduce the structural properties from atomistic 

MD simulation of the same systems. The OZPY-1+IBI method yields better agreement than the 

OZPY-1 method alone. The new CG model and CG potentials from OZPY-1+IBI method was 

further tested through CGMD simulation of PEG with DP = 40 system. No significant changes 

are observed in the comparison of PCFs from CGMD simulations of PEG with DP = 20 and 40 

systems, indicating that the potential is independent of chain length. 
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5.1 INTRODUCTION 

      Polyethylene Glycol (PEG, formula: HO-(CH2-CH2-O)n-H) is one of the most important 

polymers widely used in biotechnology and the life science industry in applications of peptide 

drugs,1,2  biodegradable hydrogels,3  dendrimers,4,5  protein crystallization6  and drug delivery.7  

Due to the fact that the polymer’s physical properties depend on chain length, there is interest in 

understanding the structural and dynamic properties of PEG at all length scales in order to better 

target new applications.  The macroscopic structural and dynamic properties of PEG and its 

family member Polyethylene Oxide (PEO, formula: H3C-O-(CH2-CH2-O)n-CH3)  have been well 

studied through both experiment and theoretical computation.  The structural, physical and 

transport properties of short-chain PEG and PEO have been previously studied through 

molecular-level simulation using different force fields,8-19  in which the degree of polymerization 

is less than 40.  In order to simulate longer chains, one must overcome the computational 

limitations imposed by exclusively using an atomically detail model through the introduction of 

multi-scale modeling techniques, which incorporate coarse-grained (CG) interaction potentials.  

       The CG technique removes computational limitations by eliminating some degrees of 

freedom in the atomistic model.  To perform the CG procedure, a fully atomistic (or united atom 

(UA)) simulation of short chains is conducted first in order to obtain the CG structural 

distribution functions for different interactions modes assigned in the CG model. The CG 

potentials are then generated to correspond to these distribution functions.  Since the degrees of 

freedom are greatly reduced in the CG model, structural and transport properties of long chain 

polymers can be calculated directly by CG simulation.  This multi-scale modeling technique has 

been used in the study of structure and dynamics of biomacromolecules and polymer chain 

molecules.20-27  

            Using this approach, CG models and force fields of PEG and PEO have been developed. 

The MARTINI CG force field 28,29  has been successfully applied to study conformation and 

hydrodynamics of  PEG and PEO,30  in which  united-atom C-O-C and O-C-C are treated as CG 

beads of PEO and PEG respectively.  There are also CG studies of the interfacial properties of 

PEG surfactant/water 31,32  and PEG lipid 33  systems, in which united-atom C-O-C of the PEG 

chain was treated as one CG bead. The same mapping scheme was used by Fischer et al. 34  in 

their mesoscale simulation of PEO solution and by Bendov et al. 35  in their multi-scale modeling 
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approach for simulation of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) 

(PEO-PPO-PEO) triblock copolymer micelles in aqueous solution. In these models, the coarse-

graining levels are limited within one repeat unit of PEG or PEO chain. Although using rather 

small degrees of coarsening leads to better potential transferability to temperature or chain 

length, 34  it limits the computational gain from CG procedure.  A greater degree of coarse-

graining was applied in a model of PEO developed by Chen et al. 36  In this model, united-atom 

O-C-C-O-C-C of the PEO chain are treated as one CG bead. Analytical potentials are used for 

bond stretching, bending and nonbonded interactions while the torsion potential is not included 

since the CG torsional mode distribution is featureless. 36  The dynamic observables in the CG 

model are in excellent agreement with their UA counterparts. 36   However, there was no 

indication of its transferability to longer chains.  

      In the CG procedure, obtaining reliable nonbonded interaction potential is particularly 

challenging since the effective potential is of no particular form. Two common methods have 

been adopted to obtain nonbonded CG potentials, namely adjusting power law type potential 

parameters (Lennard-Jones 12-6, 7-6, 7-4, 7-5, 8-6), 21,22,30,33,36,37  and iterative Boltzmann 

inversion (IBI) method. 25,34,35  The parameters of an analytical potential can be obtained by 

fitting to either theory or experimental data, which makes the first method computationally 

efficient. Potentials from this method can closely reproduce the atomistic structure.  Depending 

on the CG model and force fields used in atomistic sampling, complicated nonbonded CG pair 

correlation functions (PCFs) can be generated. When dealing with complicated nonbonded PCFs, 

it can be difficult to reproduce the structures of atomistic simulation. The IBI method is designed 

to reproduce the structure of atomistic sampling, however the iterative nature of the method 

negatively impacts computational efficiency since the PCFs may not be very sensitive to changes 

in the CG potentials and the CG simulation has to run sufficiently long to obtain a reliable PCF.   

       Alternative methods have been developed recently to improve computational accuracy 

and efficiency of the CG procedure.  Fritz et al. 38  recently presented an approach that obtains 

both the bonded and nonbonded interactions of the CG model of Polystyrene (PS) from the 

sampling of isolated atomistic chains and pairs of oligomers in vacuum.  The CG model of PS 

using the calculated CG potentials reproduces local chain conformations of atactic as well as 

stereoregular PS. The Ornstein-Zernike integral equation (IE) theory is also widely used to 
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obtain nonbonded CG potentials.27,39-41  Guenza 39  presented a procedure in which CG 

potentials can be obtained from a combination of liquid state and IE theories. The procedure has 

been successfully applied in higher level of CG models of polymers. 39,40,42  Wang et al. 43  

recently developed an inverse procedure based on the Ornstein-Zernike equation with the Percus-

Yevick approximation (OZPY-1). In this method, the CG nonbonded potentials are extracted 

directly from the PCFs obtained from atomistic simulation of the short chain in a single 

calculation. The method has been applied to monatomic and diatomic fluids 43  as well as to PET 

polymer melts.27   The OZPY-1 method is approximate only because of the approximate nature of 

the PY assumption for the direct correlation function.  As a one step method, it is simple and fast 

compared to the current methods of comparable accuracy.  

       In the application to monatomic and diatomic fluids 43 , the OZPY-1 was applied to beads 

without any coarse-graining and was shown to self-consistently reproduce the interaction 

potentials input into the atomistic MD simulation for low and intermediate densities.  As density 

increases, the PY approximation becomes less accurate.  Thus we observe in these cases that the 

OZPY-1 is generating potentials that are independent of the thermodynamic state (temperature 

and density) at which the simulations are performed.    

        Here, the aim of this work is to develop a highly coarse-grained model of PEG, in which 

each bead is composed of two monomer units.  First, atomistic MD simulations of PEG chains 

with a degree of polymerization (DP) of 20 were conducted, from which bonded probability 

distribution functions (PDFs) and nonbonded pair correlation function (PCF) were obtained.  

Second, these structural results from the atomistic simulations were used to generate CG 

potentials, using both the OZPY-1 method alone and the OZPY-1 + IBI methods together.  Third, 

the CG potentials are implemented in CGMD simulations of the same system (PEG with DP = 

20), from which the bonded PDFs and nonbonded PCFs can be obtained and directly compared 

with those from the atomistic simulation.  Finally, we performed CGMD simulations of longer 

chain PEG with DP of 40 to test the transferability of the proposed model in terms of chain 

length.  

 

5.2  SIMULATION METHOD 

5.2.1 Atomistic simulation of PEG with DP = 20. 
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   We use the modified UA potential model based on the force field developed by 

Tritopoulou and Economou12  for PEG to describe the intra-molecular and inter-molecular 

potential of PEG molecules. In the modified potential model, all the parameters for bond 

bending, bond torsion and nonbonded potentials are taken from work of Tritopoulou and 

Economou, while the potential forms are transformed to that of OPLS-AA.44  The bond 

stretching of OPLS-AA force field is included here with parameters from the work of Fern et al. 
45  for the O-H bond and Fischer et al. 11  for C-O and C-C bonds. The spherically truncated 

charge-neutralized method developed by Wolf et al. 46  is used to evaluate the electrostatic 

energy. We simulated in the isobaric-isothermal (NpT) ensemble and implemented the 

Hamiltonian-based thermostat and barostat with controller frequencies set to 10-4 fs-1. 47  The XI-

RESPA NPT algorithm developed by Tuckerman et al. 48  was used to integrate the equations of 

motion.  The large time step was 2 fs and the small time step was 0.2 fs. The parallel code was 

built in-house and was written in FORTRAN-90, using MPI for inter-processor communication.  

It has been tested rigorously across a variety of applications. For the simulations in this work, we 

verified conservation of the Hamiltonian in order to validate our choices of time step, cut-off 

distance and to minimize the possibility of bugs in the potential.  For all the simulations in this 

work, we used 125 chains.  The state point was set at 1 atm and 353 K.  Following the procedure 

described elsewhere,49  we estimated the initial density and placed the particles in the simulation 

volume, avoiding significant overlap. We started with a higher temperature then gradually 

decreased the temperature and equilibrated to the correct density.24,27,49  Data production 

followed and lasted over 40 ns.  

5.2.2 CGMD simulations of longer PEG chains with DP = 20 and 40. 

      We propose that PEG can be modeled at a coarse-grained level with one spherical bead, 

which corresponds to two monomer units of PEG, C4H8O2. In the construction of the PCFs from 

the atomistic simulations, the bead is placed at the center-of-mass of the atoms in the 

corresponding fragment, a convention that is adopted in most CG mapping schemes. Chain end 

sites are treated as being identical to sites in the middle. This mapping scheme introduces a small 

error due to end effects terminating each chain, which in the atomistic simulation are actually 

two OHs. This error is reduced as chain length increases.  This model contains a greater 

reduction in the number of degrees of freedom compared with existing CG models while at the 
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same time it does not lose too many of the structural details of the atomistic chain 

conformations compared with much higher level coarse-graining models. This enhances 

computational efficiency, making the study of the dynamics of longer, entangled chains 

tractable.27  

      In this model, the CG interaction modes include bond stretching, bond bending, bond 

torsion, and nonbonded interactions for both intra-molecular (for beads separated by at least four 

bonds) and inter-molecular pairs. The same CG nonbonded potential is used for both intra-

molecular and inter-molecular interactions. Probability distribution functions for stretching, 

bending, torsion and nonbonded interactions between CG beads were generated from the 

atomistic simulations.  In the development of coarse-grained (CG) potentials, for the stretching, 

bending and torsion modes, there are straightforward approximations that relate the interaction 

potential directly to the PDFs. 22  The effective bonded  interaction potential between a particle of 

type α and a particle of type β, αβϕ , as a function of the separation between particles, r, can  be 

related to the PDF, ( )rαβg , via 

 ( ) ( )( ) αβαβBαβ cglnTk +−= rrϕ                                                                                              (1) 

where kB is Boltzmann’s constant, T is temperature and αβc  is a constant to set the potential 

minimum to zero.  Note here that the coordinates need to be changed for the bending (from r to 

θ (bending angle)) and torsion (from r to φ (torsion angle)) modes. In this work, we use the form 

of the bonded potentials from eqn. 1. Note here eqn. 1 is subject to the assumption that all the 

interactions are independent of each other. 22  One straightforward way to show this 

independence is simply to show that the CG simulations using the CG potentials generate PDFs 

that agree with those obtained from the atomistic simulations. 

       The nonbonded potential for intra-molecular (for beads over four bonds) and inter-

molecular interactions is first calculated through the OZPY-1 method. The Ornstein-Zernike 

Integral Equation for a mixture of simple fluids50  is 

( ) ( ) ( ) ( ) ( )[ ]∑∫ −+=−
γ

3
γβγαγαβα d1gncc1'g r''r'',r'r''r,r''r,r'r,rβ                    (2) 

where the PCF between particles of type α and β located respectively at r  and r′ , ( )'g α r,rβ ,  is 

related to the direct correlation, ( )'cα r,rβ , and an integral including the interactions of the α and 
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β particles with a third particle, γ, located at r''  with a singlet density, ( )r''γn .   There is a 

summation over γ spanning all types of particles. The OZ equation describes the relationship 

between PCF and effective potential through its different closures. As one of the closures, the 

Percus-Yevick approximation of the direct correlation function is written as 
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Substitution of the PY approximation into the OZ equation yields the OZPY equation 
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with the definition of cavity function and total correlation function respectively as 
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( ) ( ) 1'gh αα −= r,rr,r' ββ                            (6) 

The OZPY equation as written here assumes a homogeneous system and has been expressed in 

bipolar coordinates following Lee. 50  We have previously shown how the summation over 

components can be converted to a summation over potentials, so that stretching, bending and 

torsion modes can be includes in the OZPY equation.43   Further details of the OZPY-1 method43  

and its application to polymers27  can be found elsewhere. The method requires a meticulous 

accounting of the allowable combinations of interaction potentials involving αγ and γβ pairs,  

which are dependent on the connectivity of the polymer chain.  For PEG, there are 13 such 

combinations.  The allowable combinations are summarized in Table 5.1.   

           The nonbonded potential can also be generated by the IBI method for comparison. In the 

IBI method, a tabulated potential is numerically determined by simulation iteration.  The 

interaction potential is refined iteratively 25  via  
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where ( )rβαg  is the target PCF, which is from atomistic simulation. The challenging part of this 

method is obtaining PCFs from CG simulations iteratively, which could strongly limit the 

computational gain of CG procedure. 39  In this work, we combined this iterative method with the 

non-iterative method (OZPY-1) by using the output from the OZPY-1 method as the source of the 

initial guess for the IBI method, rather than eqn 8.  The combined method, the OZPY-1+IBI 

method, is investigated to determine whether this new approach can improve the performance of 

the two methods alone.  

      After obtaining all the CG potentials, we performed CGMD simulations for PEG with DP 

= 20 and 40.  In the CGMD simulations, we estimated the initial density and placed the particles 

in the simulation volume carefully with proper bond length and angles, then gradually introduced 

the nonbonded interactions to avoid overlap, as has been done before. 27  We again simulated in 

the isobaric-isothermal (NpT) ensemble under the same pressure and temperature as the 

atomistic simulation. The time steps of CGMD simulation are the same as those used in the 

atomistic MD simulation. Using bigger time steps impacts the conservation of Hamiltonian. In 

this case, the computational speed up is due strictly to the reduction in degrees of freedom. Based 

on wall-clock time, the CGMD simulations are approximately 200 times faster than the atomistic 

simulations.  (Note here that in the atomistic simulations, a united-atom model was used for 

hydrogen bound to carbon, already eliminating some degrees of freedom even in the “atomistic” 

model.) The CGMD simulation code is the same as that used in the atomistic MD simulations.   

 

5.3  RESULTS AND DISCUSSION  

     In this section, we present (1) the results of the atomistic MD simulation of PEG with DP 

= 20, (2) CG potentials from the OZPY-1 and OZPY-1+IBI methods and (3) CGMD simulation 

results for PEG with DP = 20 and 40. Finally, we compare the structural distribution functions 

from CGMD simulations with that of atomistic simulation.  

       Because the atomistic and CG simulations were run in the NpT ensemble, the density is 

an output.  The output equilibrium densities of the CG simulations of PEG with DP = 20 and 40 

are respectively 1.093 to 1.099 g/cm3, which are close to the experimental finding of 1.094 g/cm3 

(1atm, 333K) by Li et al. 51 . The equilibrium density of the DP = 20 system is the same as that in 

the atomistic simulation. 
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      In Figure 5.1, we show equilibrated snapshots from both the atomistic and the CGMD 

simulations.  In Figure 5.1(b), (d) and (f), all molecules are shown to make it clear that we are 

simulating a dense melt.  In Figures 5.1(a), (c) and (e), all but five chains are rendered invisible 

to better indicate the shape of the chains. Note here two repeat units in the atomistic model are 

grouped as one CG bead in the CG model. 

5.3.1 Atomistic MD simulation of DP = 20 chains 

      In Figure 5.2, we show the bonded distributions of the CG beads obtained from atomistic 

simulation. These distribution functions are based on the analysis of configurations from 

atomistic MD simulation. As shown in Figure 5.1, these distribution functions are calculated 

according to the center of mass position of CG beads. The stretching mode displays a bimodal 

distribution with the major peak centered at 7.15 Å and a much smaller centered at 7.8 Å. The 

bending angle distribution shows a single asymmetric peak centered at 163˚. The torsion angle 

distribution shows a single symmetric peak centered at 0˚.  This feature is similar to other 

simulation work for PEO.34,35  The features of the stretching and bending distributions are 

different from those reported by Chen et al. for PEO, 36  in which a similar CG model but a 

different mapping scheme was adopted. In their mapping scheme, every other oxygen atom is 

considered a CG center and six united atoms are replaced by a CG bead. This mapping scheme 

caused a featureless torsion angle distribution. In this work, we use the center of mass of six 

united atoms as a CG center. The difference of mapping schemes and chemical structure on the 

end groups of PEG and PEO may be responsible for the variation in the bonded CG PDFs. 

     The nonbonded PCF of the CG beads obtained from the atomistic simulations is shown in 

Figure 5.3.  The PCF shows multiple peaks with the first three peaks centered at 4.7 Å, 9.0 Å and 

13.10 Å respectively.  Similar features can be found in the intermolecular nonbonded PCF by 

Chen et al. 36 work on PEO, in which peak positions are almost the same as that reported here 

while the intensity of the peaks are weaker. Note here the nonbonded PCF in this work includes 

both intramolecular (for CG beads separated by at least four bonds) and intermolecular parts. 

5.3.2 Generation of CG potentials and CGMD simulation of chains with DP = 20 

      Based on the bonded distribution functions, we obtained the bonded stretching, bending 

and torsion CG potentials (not shown) through eqn. 1. As noted above, eqn. 1 is subject to the 

assumption that all the interactions are independent of each other.  We have validated the 
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assumption of independence of the bonded modes through direct comparison of the PDFs from 

the atomistic and CG simulations.  Further understanding of the statistical interdependencies of 

different bonded interaction modes can be found in the literature.20-22    

       In Figure 5.2, we also report the bonded PDFs from the CGMD simulations of PEG with 

DP = 20.  The stretching distribution from the atomistic and CG descriptions is virtually 

identical, capturing the position and magnitude of both peaks as well as the long interior shoulder 

of the larger peak.  The comparison of the bending distribution is also very good, although there 

is a small error as one approaches 180˚.  A similar discrepancy was observed for the comparison 

of atomistic and CG simulations of PET. 27  There is a steep slope leading to a minimum at 180˚.  

It is possible that the discrepancy is due to the curve fitting and interpolation scheme used to 

generate smooth, continuous energies and forces across this point of symmetry.   The comparison 

of the torsion distribution between the atomistic and CG simulations is also very good.  In short, 

the bonded PDFs from the two levels of simulation match relatively well, providing evidence 

that the assumption of independence between the modes invoked for eqn. 1 is well-founded.  

       The agreement between the PDFs of the bonded modes is not impacted by the procedures 

used here to generate the nonbonded potential (OZPY-1 or OZPY-1+IBI).  The distributions for 

all iterations (not shown) are virtually the same as those presented in Figure 5.2.  In Figure 5.2, 

we show the results using the last CG potential from the last iteration of OZPY-1+IBI method. 

     We explored three ways of generating the nonbonded CG potential.  First, the OZPY-1 

procedure alone was used based on the structural properties (bonded PDFs and nonbonded PCF) 

from the atomistic simulation as input.  With the four distributions in hand, it takes only a couple 

of seconds on a laptop to calculate the CG nonbonded potential using the OZPY-1 procedure.  

The CG nonbonded interaction potential for PEG obtained from the OZPY-1 method is shown in 

Figure 5.4.  There are multiple minima in the potential. The positions of these minima are 

slightly different from that of the peaks on the corresponding PCF.  Note that none of the local 

maxima in the potential are actually repulsive; the energy is always less than zero beyond the 

repulsion of the core.   

     In Figure 5.5, we compare the PCF from the CGMD simulations of PEG (DP = 20) using 

the nonbonded potential from OZPY-1 with that of atomistic MD simulation. Generally, the 

CGMD simulation can reproduce all the peaks of the target PCF.  However, the first peak is 
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over-estimated and the first trough is under-estimated.  The error diminishes as the separation 

increases.  It is important to remember that the PCF is not a particularly sensitive variable.  Small 

changes in the quantitative structure of the PCF can correspond to large changes in 

thermodynamic properties.  Thus, while the agreement between the PCF is fairly good and at 

least semi-quantitative, it is nevertheless of interest to explore the source of the error and 

potential means by which it might be eliminated.   

     In integral equation theory, the PY closure yields accurate results for systems that have 

short-range, hard-core potentials.39  In the coarse-graining process, soft potentials have been 

reported as effective potentials for different CG models.22,36,40  In these models, the coarse-

graining is kept to the monomer scale. When the coarse-graining level increases, the effective 

potential may become even softer. Previous work shows that when the coarse-graining level is 

low (within monomer scale), the OZPY-1 works well on reproducing the structures of atomistic 

sampling although a soft type nonbonded CG potential is observed.27  In this work, we increased 

the degree of coarse-graining by grouping two monomers as one CG bead.  Thus, the degree of 

coarse-graining could be one source of error.   

      However, if we wish to maintain this CG model, we remain interested in improving the 

accuracy of the CG non-bonded potential using other potential generating methods.  The OZPY-1 

method is not iterative.  It takes as inputs structural information from the atomistic simulation 

and generates a CG potential.  We can however, use the OZPY-1 method to provide the first 

estimate of the CG potential to an iterative method, like the Iterative Boltzmann Inversion 

method.  The IBI is developed based on the fact that there is a unique functional relationship 

between PCF and effective potential.39  Using the IBI method compromises the computational 

efficiency of the approach since each iteration requires a new CGMD simulation.  However, if 

the iteration is done on relatively short chains, the exercise is still tractable.  For example in this 

work, to obtain the PCF from CGMD simulation of the PEG (DP = 20) system, each IBI iteration 

required 32 processor-hours on a cluster (2 hours using 16 processors). 

     In Figure 5.6, we show the CG potential from the first four iterations of the IBI method 

for PEG (DP=20), using the CG potential from the OZPY-1 procedure as an initial guess.  There 

are significant changes in the shape of the CG potential.  The first well becomes shallower and 

the first peak becomes smaller.  Interestingly, the second peak continues to grow until it becomes 
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repulsive (greater than zero).  We shall postpone discussion on this feature until after we have 

presented the corresponding PCFs. 

     In Figure 5.7, the PCFs from CGMD simulation of PEG (DP=20) are shown as a function 

of iteration step in the IBI procedure.  There are modest changes in the PCF due to the iterative 

procedure, indicating that the initial guess provided by the OZPY-1 procedure was relatively 

good.  In Figure 5.7(a), we observe that the changes in the PCF induced by the IBI procedure are 

qualitatively correct.  The height of the first peak diminishes monotonically as the iteration step 

increases.  The depth of the first trough rises monotonically as the iteration step increases.  These 

trends should be expected based on the comparison of the CG PCF from OZPY-1 procedure and 

the atomistic (target) PCF shown in Figure 5.3. 

     In Figure 5.7(b), the CG nonbonded PCFs from the last two iterations of the IBI 

procedure are compared to the atomistic PCF.  The difference between the third and fourth 

iterations is negligible.  However, there is still a much larger error between the fourth iteration 

and the atomistic PCF.  This indicates that either (1) the IBI method is converging to the wrong 

solution or (2) further convergence is extremely slow.  Previous investigations have revealed that 

there are elements of both causes.24,25,39,52  Convergence is slow but small statistical noise in the 

procedure results in practical difficulties in converging to the solution within in an arbitrary 

tolerance.  One consequence of these practical issues is that, while theoretically there is a unique 

relationship between interaction potential and PCF, practically (because of statistical noise and 

truncations of the interactions), there are multiple potentials that effectively yield the same 

PCF.25,34,35,53  

     To illustrate this point, we applied the original IBI method with eqn. 8 as the initial guess. 

The potentials from IBI method are presented in Figure 5.8 while the nonbonded PCFs from 

CGMD using these potentials are shown in Figure 5.9.  The potentials in Figure 5.8 change 

dramatically for the first three iterations but change relatively little after the fifth iteration.  In 

Figure 5.9, the changes on nonbonded PCFs are invisible to the eye from the fifth to the sixth 

iteration.  The same phenomena are observed at the seventh iteration (not shown here), which 

means further convergence is extremely slow.  

           The comparison of potentials from the three methods and corresponding nonbonded PCFs 

from CGMD simulations using these potentials are shown in Figure 5.10 and 5.11 respectively. 
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Figure 5.11 shows that the nonbonded PCFs from CGMD simulation using potentials OZPY-

1+IBI and IBI methods are almost identical while the potentials deviate substantially. This 

illustrates the practical issues involved in coarse-graining that effectively undermine the unique 

relationship between interaction potential and PCF.    

     The OZPY-1+IBI method generates PCFs that more accurately reproduce the atomistic 

PCFs than does the OZPY-1 method alone.  It requires a significant change in the interaction 

potential, including non-core repulsive regions in the potential.  In nonbonded potentials used in 

atomistic simulations one typically does not observe repulsion beyond that which is known at 

short-distances due to electron-electron repulsion and which originates in the Pauli exclusion 

principle.  In this regard, the CG potential obtained from the OZPY-1+IBI is unphysical.  It may 

seem contradictory to speak of an unphysical potential when discussing coarse-grained beads, 

which themselves do not exist, but the Ornstein-Zernike equation is not an approximation and is 

based on sound statistical physics.  The Percus-Yevick approximation is based on a reasoning of 

the effects of molecular correlations.  Therefore, it is worth pondering the question whether the 

introduction of unphysical traits to a CG potential in exchange for quantitative improvement in 

the potential is either necessary or productive.   

     We have previously shown that in the absence of any coarse-graining, the OZPY-1 

procedure can reproduce the physically meaningful interaction potentials used in the atomistic 

simulation that generated the PCFs.43   These potentials have the advantage that they are 

independent of the thermodynamic state at which the PCF was generated.  If we abandon, and tie 

the interaction potentials too closely to the PCFs, which themselves are functions of the 

thermodynamics state, then perhaps this feature of an interaction potential independent of 

thermodynamic state will be lost.   

      Alternatively, if a CG potential is a practical tool only, intended to reproduce strictly the 

target PCF, then the shape of the CG potential and its possession of unphysical traits is 

irrelevant.  However, in such a case, we have a potential that is clearly tied to the thermodynamic 

state at which the PCF was generated.  It has lost its transferability.   

      The PCFs shown in this work, such as those in Figure 5.3 have multiple peaks with 

diminishing magnitude as the separation increases.  Such PCFs can be qualitatively generated 

from physically meaningful potentials, such as a LJ 12-6 potential, where the repulsion term 
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represents electron-electron repulsion and the attractive term represents induced-dipole-

induced-dipole interactions.  The pairwise potential gives rise directly to the first peak in the 

PCF.  Subsequent peaks arise due to pairwise interactions involving two particles that are not the 

central particle.  The CG potential obtained from the OZPY-1 approach generates such a PCF.   

      As noted above the PCFs are not extremely sensitive measures of changes in the system.  

This lack of sensitivity impacts convergence.  The simulations have to be run sufficiently long to 

obtain PCFs that are reliable to more significant figures than are required for other applications.  

If there is slight statistical noise in the PCFs, the resulting change in the potential is large and 

spurious.   

      Another interesting aspect on the speed of converging is the number of iterations taken to 

reach convergence. The number of iterations taken on obtaining the converged nonbonded CG 

potential using accelerated IBI methods has been reported in the literature.  Eight iterations has 

been reported by Bedrov et al. 35  in the CG modeling work of PEO-PPO-PEO triblock 

copolymer using a modified IBI method, in which a Lennard-Jones type potential is used as 

initial guess. Ten iterations is reported by Fischer et al.34  on the development of CG model of 

PEO by keeping the starting potential as short-ranged as possible to accelerate the IBI method. In 

this work, it took three iterations using the OZPY-1 + IBI method to reach the convergence as 

indicated in Figure 5.6, compared with five iterations using the original IBI method as shown in 

Figure 5.9. Thus the use of the OZPY-1 method to initialize the IBI method presents some 

computational advantage. 

5.3.3 Structural Properties from CGMD simulations of PEG with DP = 20 and 40 

       At this point, both bonded CG potentials (from eqn. 1) and the nonbonded CG potential 

(from OZPY-1+IBI method) are ready to be used. With all of the above CG potentials, we 

simulated PEG chains with DP = 20 and 40. The snapshots are shown in Figure 5.1(c) to (f). The 

bonded PDFs and nonbonded PCFs along with those of atomistic MD simulation are shown in 

Figure 5.2(a) to (c) and Figure 5.3 . For the three bonded modes (stretching, bending and 

torsion), the distribution function of CGMD simulation of DP = 20 and DP = 40 systems are 

almost identical and match very well with that of atomistic simulation. In Figure 5.3, the 

nonbonded PCF from CGMD simulation matches well with that of atomistic simulation and also 

shows no apparent chain length dependence. A small discrepancy exists on the comparison of 
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PCFs from the two levels of simulation. To this end, we have shown that newly proposed CG 

model of PEG can be used to study the structures of PEG with much longer chain length. As 

presented elsewhere in most CG level simulation work, one of the most important points of 

validation of the CG process is the reproduction of conformations from atomistic sampling.27  

Having done this, we can further investigate the other physical properties from CG simulation of 

long chain PEG by using this model. In Figure 5.12, we show the distribution of chain end-to-

end distance for DP = 20 and 40 from CGMD simulation (data points). The end-to-end distance 

is defined as the distance between the two end EE groups. The end-to-end curves of the DP = 20 

and DP = 40 in Figure 5.12 roughly show Gaussian like distribution.  For DP = 20, there is a 

small deviation from the Gaussian distribution in the short range, which is believed due to the 

formation of folded structures when short chain length (small DP) is used, as observed in the 

literatrues.27,30  As DP increases, the distribution becomes more Gaussian-like, as shown for DP = 

40. The position of the maximum in the peak and the breadth of the curve also increase with DP, 

as expected. The end-to-end distribution of the DP = 20 from atomistic MD simulation is also 

presented in Figure 5.12 (solid red line). The comparison is very good. This is a further evidence 

that the CG model is able to capture the chain conformation of the atomistic description. 

 

5.4  CONCLUSIONS 

     A coarse-grained (CG) model of Polyethylene Glycol (PEG) was developed and 

implemented in CG Molecular Dynamics (MD) simulations of PEG chains with degree of 

polymerization (DP) 20 and 40. To obtain the CG potentials for different interaction modes, 

atomistic MD simulation of PEG chains with DP = 20 was first conducted to obtain the structural 

distribution functions of CG beads. Analysis on the structural distribution functions shows that 

this level of coarse-graining generates complicated nonbonded PCF. The CG nonbonded 

potential is parameterized to PCF obtained using both an inversion procedure based on the 

Ornstein-Zernike equation with the Percus Yevick approximation (OZPY-1), a combination of 

OZPY-1 and IBI method (OZPY-1+IBI) and the original IBI method. All the three methods yield 

different non-bonded interaction potentials, but generate similar PCFs. The CGMD simulation of 

PEG chains with DP = 20 using potentials from both the three methods satisfactorily reproduces 

the structures from atomistic MD simulation of the same systems. The new CG model and CG 
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potentials from OZPY-1+IBI method was further tested through CGMD simulation of PEG with 

DP = 40 system. No significant changes are observed on the comparison of PCFs from CGMD 

simulations of PEG with DP = 40 and 20 systems, which means the potentials are transferable to 

chain length. The new CG model can be further applied to study the structure and dynamics of 

PEG longer chain system through CG simulations.  
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Table 5.1. Necessary Combinations for CG PEG chain, with symbols E: CG bead; N: 

nonbonded interaction; S: stretching interaction; B: bending interaction; T: torsion interaction. 

 

No. particle type potential type potentials in 
summation 

No. α β γ αβ αγ γβ αγβ 
1 E E E NEE SEE TEE SEETEE 
2 E E E NEE SEE NEE SEENEE 
3 E E E NEE BEE BEE BEEBEE 
4 E E E NEE BEE TEE BEETEE 
5 E E E NEE BEE NEE BEENEE 
6 E E E NEE TEE SEE TEESEE 
7 E E E NEE TEE BEE TEEBEE 
8 E E E NEE TEE TEE TEETEE 
9 E E E NEE TEE NEE TEENEE 
10 E E E NEE NEE SEE NEESEE 
11 E E E NEE NEE BEE NEEBEE 
12 E E E NEE NEE TEE NEETEE 
13 E E E NEE NEE NEE NEENEE 
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Figure 5.1. Snapshots of equilibrium configurations from atomistic ((a) and (b)) and CGMD 

((c)-(f)) simulations at T = 353 K, p = 1 atm.  (a) and (b): DP = 20; (c) and (d) DP = 20; (e) and 

(f): DP = 40. The atomistic and CG representations of PEG chains are shown in (a), (c) and (f), 

in which 5 molecules are taken from (b), (d) and (f) respectively. 
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Figure 5.2. Bonded  probability distribution functions for CG beads of PEG from atomistic MD 

simulations (DP=20) and CGMD simulations (DP=20 and 40).  (a) Stretching.  The GCMD 

simulations used the potentials from the OZPY-1+IBI method. 
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Figure 5.2. Bonded probability distribution functions for CG beads of PEG from atomistic MD 

simulations (DP=20) and CGMD simulations (DP=20 and 40).  (b) Bending.  The GCMD 

simulations used the potentials from the OZPY-1+IBI method. 
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Figure 5.2. Bonded probability distribution functions for CG beads of PEG from atomistic MD 

simulations (DP=20) and CGMD simulations (DP=20 and 40).  (c) Torsion.  The GCMD 

simulations used the potentials from the OZPY-1+IBI method. 
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Figure 5.3. Nonbonded  pair correlation functions for CG beads of PEG from atomistic MD 

simulations (DP=20) and CGMD simulations (DP=20 and 40).  The GCMD simulations used the 

potentials from the OZPY-1+IBI method. 
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Figure 5.4. Coarse-grained nonbonded potential from the OZPY-1 method. 
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Figure 5.5. Comparison of CG nonbonded pair correlation functions for PEG (DP = 20) from 

atomistic and CGMD simulations, using the potential from the OZPY-1 method. 
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Figure 5.6. Coarse-grained nonbonded potentials for PEG (DP=20) from the OZPY-1+IBI 

method.  The potential from OZPY-1 (Figure 4) serves as initial guess for the IBI method. 
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Figure 5.7. Comparison of CG nonbonded pair correlation functions for PEG (DP = 20) from 

atomistic and CGMD simulations.  (a)  There are substantial changes in the PCF for the first 

three iterations of the OZPY-1+IBI method.  
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Figure 5.7. Comparison of CG nonbonded pair correlation functions for PEG (DP = 20) from 

atomistic and CGMD simulations.  (b)  The third and fourth iteration change little, although there 

is still discrepancy with the target PCF from atomistic simulation. 
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Figure 5.8. Coarse-grained nonbonded potentials for PEG (DP=20) from the IBI method.  The 

potential from eqn.8 serves as initial guess for the IBI method. 
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Figure 5.9. Comparison of CG nonbonded pair correlation functions for PEG (DP = 20) from 

atomistic and CGMD simulations.  (a)  There are substantial changes in the PCF for the first five 

iterations of the IBI method.  (b)  The fifth and sixth iteration change little, although there is still 

discrepancy with the target PCF from atomistic simulation. 



 

 

 

167

 

r (Angstroms)

0 5 10 15 20

u(
r)

 (k
ca

l/m
ol

e)

-0.2

0.0

0.2

0.4

0.6

OZPY-1

IBI

OZPY-1 + IBI

 
 

Figure 5.10. Comparison of potentials from OZPY-1, IBI (the fifth iteration) and OZPY-1 + IBI 

(the third iteration) methods. 
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Figure 5.11. Comparison of Comparison of nonbonded pair correlation functions for PEG (DP = 

20) system from atomistic and CGMD simulation using potentials from OZPY-1, IBI (the fifth 

iteration) and OZPY-1 + IBI (the third iteration) methods. 
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Figure 5.12. Comparisons of the chain end-to-end distance probability distributions for PEG 

with DP = 20 and 40 from CGMD. For DP = 20, the solid line represents the distribution from 

atomistic MD simulation. 
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CHAPTER 6 
 

 

Multi-scale Models for Sulfonated Cross-linked Poly (1, 3-cyclohexadiene) 

(PCHD) Polymer 
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This chapter is a revised version of a paper (minor revisions to reflect its inclusion as a chapter 

in the dissertation) by the same title in preparation for a journal by Qifei Wang, David J. Keffer, 

Suxiang Deng  and Jimmy Mays: 

 

The use of “we” in this part refers to the co-authors and the author of this dissertation. My 

primary contributions to this paper include (1) all of the simulation work (2) analysis of data, and 

(3) most of the writing. 

 

 

Abstract 

 Atomistic and coarse-grained (CG) models of Sulfonated Cross-linked Poly (1, 3-

cyclohexadiene) (sxPCHD) were developed and implemented in Molecular Dynamics (MD) 

simulations of sxPCHD chains with different architectures. In the atomistic model, sxPCHD 

chains are cross linked by a sulfur-sulfur bond. Sulfonic acid groups are evenly distributed along 

the chain. The architecture is specifically aimed for application as a proton exchange membrane 

used in fuel cells. An atomistic force field for this architecture was tested and applied in the 

atomistic MD simulation of sxPCHD for the first time. The atomistic simulations generate the 

density and chain end-to-end distance distribution.  To further study the structural properties of 

longer chain systems, a CG model was proposed. The bonded structural probability distribution 

functions (PDFs) and nonbonded pair correlation function (PCF) of the CG beads were obtained 

from the atomistic simulation results. The bonded CG potentials are obtained by simple inversion 

of the corresponding PDFs. The CG nonbonded potential is parameterized to the PCF using the 

Iterative Boltzmann Inversion (IBI) method. The CGMD simulations of sxPCHD chains using 

potentials from above method satisfactorily reproduce the structural properties from atomistic 

MD simulation of the same system.  The transferability of the CG potentials has been further 

tested through CGMD simulation of sxPCHD melt with different architectures. 
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6.1 INTRODUCTION 
       Poly (1,3-Cyclohexdiene) (PCHD) polymers and their derivatives are of interest due to 

their unique chemical structure: the six-member rings and the isolated double bond in the main 

chain. The PCHD homopolymer has better thermal and chemical stability, mechanical strength 

and photochemical properties as compared to other common vinyl polymers.1-5 PCHD block 

copolymers have shown unusual phase separation behavior.6  This unique property has been 

further investigated through the recent development of PCHD-based proton exchange 

membranes.7-9 The unique phase separation behavior of the PCHD homopolymer, PCHD/PEG 

(polyethylene glycol) blend and PCHD-PEG block copolymer membranes generate higher 

proton conductivity than that of the common Nafion membrane at high temperatures.9  Such 

phase behavior and many other properties strongly depend on the conformation of the polymer in 

solution or bulk.2,10 The experimental study of the conformation of PCHD is rare probably due to 

the lack of well-defined and well-characterized samples.2  The computational study of polymer 

chain’s conformation in solution or bulk is easy to be implemented with respect to the simplicity 

of defining a sample (in this case a molecule). However, due to problems at different length 

scales (10 to 100 nm approximately) in the membrane systems, a multi-scaling modeling 

technique is needed.  

      Molecular simulation has proved to be useful in the study of chain conformation when the 

length scale is less that 10 nm roughly.11,12 In molecular simulation (either Molecular Dynamics 

or Monte Carlo simulation), the most important thing is a reliable force field. For common vinyl 

polymers, different force fields have been successfully applied in the molecular simulation.13 For 

PCHD, no atomistic force filed has been developed and tested probably due to the complexity of 

the chain architecture. 

          An atomistic-level force field provides accurate simulation results but impairs the 

computation efficiency due to the number of degree of freedoms in the model. For example, 

many local interactions like bond stretching, bending and torsion have to be calculated to obtain 

the total potential energy. Meanwhile, a small step size has to be used for these high frequency 

modes. On the other hand, a polymer’s relaxation time has strong chain length dependence. 

When chain length is small, the atomistic simulation is still tractable since the relaxation time is 

generally less than 100 ns. When chain length increases, the relaxation time increases 
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exponentially. The relaxation time of a long chain polymeric system could be in order of 1000 

ns or longer. As a consequence, the atomistic simulation of long chain polymeric systems is no 

longer computationally feasible. Therefore, the application of classic molecular simulation 

technique is limited and integration with a coarser model is needed to break these limitations. 

           The coarse-grained (CG) technique removes computational limitations by eliminating 

some degrees of freedom in the atomistic model.  This is done by grouping some atoms in the 

atomistic model together to “super atoms”. These super atoms interact with their own potentials. 

Since the degrees of freedom are greatly reduced in the CG model, structural and transport 

properties of long chain polymers can be calculated directly by CG simulation at length scale 

from 10 to 100 nm. In the CG procedure, normally a fully atomistic (or united atom (UA)) 

simulation of short chains are conducted first. From the atomistic simulation, the CG structural 

distribution functions for different interactions modes assigned in the CG model are obtained. 

The CG potentials are then parameterized to these distribution functions. This part is challenging 

since the CG potentials are of no particular form. For bonded CG potentials, a simple Boltzmann 

inversion has been proved sufficient to generate potentials that reproduce the atomistic 

description of local structures if different CG bonded interaction modes are not correlated with 

each other. 14,15 For nonbonded CG interactions, different methods have been proposed to obtain 

the CG potentials. For example, adjusting power law type potential parameters (Lennard-Jones 

12-6, 7-6, 7-4, 7-5, 8-6),14-16  Ornstein-Zernike integral equation (IE) theory12,17-20  and iterative 

Boltzmann inversion (IBI) method21-25  are reported in the literatures of CG modeling of 

polymeric systems. Different methods have their advantages in the systems to which they are 

applied. Overall, the IBI method has the advantage to reproduce the structure of atomistic 

sampling compared to the other two methods especially when complicated nonbonded structures 

are obtained from the atomistic simulation. 

           Here, the aim of this work is to develop an atomistic and coarse-grained model of the 

PCHD homopolymer. In the CG model, CG beads are assigned with respect to its application as 

a proton exchange membrane material. The multi-scale modeling procedure is summarized as 

follows:  first, atomistic MD simulations of a short-chain sulfonated cross-linked PCHD 

(sxPCHD) system is performed, from which bonded probability distribution functions (PDFs) 

and nonbonded pair correlation function (PCF) were obtained.  Second, these structural results 
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from the atomistic simulations were used to generate CG potentials, using Boltzmann inversion 

for bonded modes and the IBI method for nonbonded modes. Third, the CG potentials are 

implemented in CGMD simulations of the same system, from which the bonded PDFs and 

nonbonded PCFs can be obtained and directly compared with those from the atomistic 

simulation.  Finally, we performed CGMD simulations of longer-chain cross-linked PCHD 

systems to test transferability of the proposed model.  

 

6.2  SIMULATION METHOD 

6.2.1 Atomistic simulation of sxPCHD with two chains cross-linked. 

   We combined the OPLS-AA26,27  and the OPLS-UA28  (for hydrocarbon groups CH2 and 

CH) force field to describe the intra-molecular and inter-molecular potential of sxPCHD 

molecules. In the combined potential model, OPLS-AA potential forms are used with most of the 

force field parameters are taken from either the OPLS-UA or OPLS-AA force fields for 

hydrocarbons.  When necessary, some of the parameters for bond bending, bond torsion and 

nonbonded potentials are taken from the simulation work of Nafion,29-31 poly(ethylene oxide) 

sulfonic acid anion,32  polyvinyl chloride (PVC)33  and C3H7SO3H,34  while the potential forms 

are transformed to that of the OPLS-AA. The complete details of the force field parameters can 

be found in the supplementary information document. The spherically truncated charge-

neutralized method developed by Wolf et al.35  is used to evaluate the electrostatic energy. We 

simulated in the isobaric-isothermal (NpT) ensemble and implemented the Hamiltonian-based 

thermostat and barostat36 with controller frequencies set to 10-4 fs-1.  The XI-RESPA NPT 

algorithm developed by Tuckerman et al.37 was used to integrate the equations of motion.  The 

large time step was 2 fs and the small time step was 0.2 fs. The parallel code was built in-house 

and was written in FORTRAN-90, using MPI for inter-processor communication.  It has been 

tested rigorously across a variety of applications. The cut-off distance used was 15 Å for the 

atomistic simulation. For all the simulations in this work, we used 64 chains.  The state point was 

set at 1 atm and 353 K, corresponding to future fuel cell application. Following the equilibration 

procedure described elsewhere,12,22  we estimated the initial density and placed the particles in 

the simulation volume, avoiding significant overlap. We started with a higher temperature then 
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gradually decreased the temperature and equilibrated to the correct density.  Data production 

followed and lasted for at least 10 ns.  

6.2.2 CGMD simulations of sxPCHD with two chains and three chains cross-linked. 

      We propose that PCHD can be modeled at a coarse-grained level with assignments of CG 

beads shown in Figure 6.1, which corresponds to three monomer units of PCHD chains (bead A, 

B and C) and two cross-linkers (D) at the two ends. The stoichiometry of the A, B, C and D 

components corresponds to PCHD that has been experimentally synthesized in the laboratory.9  

The molecular fragments of each CG bead is shown in Figure 6.1. The mapping to CG bead is 

based on center of mass positions of the molecular fragments. 

       In order to construct PCFs for the coarse-grained beads from the short-chain atomistic 

simulations, the bead is placed at the center-of-mass of the atoms in the corresponding fragment, 

a convention that is adopted in most CG mapping schemes.12,25  This model contains a great 

reduction in the number of degrees of freedom while at the same time it does not lose too many 

of the structural details of the atomistic chain conformations. The detailed structure is important 

for future study on the application of proton exchange membrane. In the CGMD simulations, two 

kinds of molecular architectures (two chains and three chains cross-linked) are investigated as 

shown in Figure 6.1. 

       In this model, the CG interaction modes include bond stretching, bond bending, bond 

torsion, and nonbonded interactions for both intra-molecular (for beads separated by at least four 

bonds) and inter-molecular pairs. The same CG nonbonded potential is used for both intra-

molecular and inter-molecular interactions. Probability distribution functions (PDFs) for 

stretching, bending, torsion and nonbonded pair correlation functions (PCFs) between CG beads 

were generated from the atomistic simulations.  In the development of coarse-grained (CG) 

bonded potentials, there are straightforward approximations that relate the interaction potential 

directly to the PDFs through eqn. 1.  The effective bonded interaction potential between a 

particle of type α and a particle of type β, αβϕ , as a function of the separation between particles, 

r, can  be related to the PDF, ( )rαβg , via12,14,15  

 ( ) ( )( ) αβαβBαβ cglnTk +−= rrϕ                                                                                              (1) 
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where kB is Boltzmann’s constant, T is temperature and αβc  is a constant to set the potential 

minimum to zero.  Note here that the coordinates need to be changed for the bending (from r to 

θ  (bending angle)) and torsion (from r to φ  (torsion angle)) modes. In this work, we use the 

form of the bonded potentials from eqn. 1. Note here eqn. 1 is subject to the assumption that all 

the bonded interactions are independent of each other and of the nonbonded potential.15   One 

straightforward way to show this independence is simply to show that the CG simulations using 

the CG potentials generate PDFs that agree with those obtained from the atomistic simulations.   

       The nonbonded potential for intra-molecular (for beads over four bonds) and inter-

molecular interactions is generated by the IBI method.21  In the IBI method, a tabulated potential 

is numerically determined by simulation iteration.  The interaction potential is refined iteratively  

via  

      
( ) ( ) ( )

( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+=+ r

r
rr

αβ

iαβ,
Biαβ,1iαβ, g

g
lnTkϕϕ                          (2) 

with initial guess
 

     ( ) ( )( )rr αβB0αβ, glnTk−=ϕ                            (3)
 

where ( )rβαg  is the target PCF, which is from atomistic simulation. The challenging part of this 

method is obtaining PCFs from CG simulations iteratively. Convergence is slow especially in the 

CG models that include different CG beads. In this work, there are 10 nonbonded interactions 

modes (AA, AB, AC, AD, BB, BC, BD, CC, CD and DD). Generally, each mode takes 3 to 5 

iterations to reproduce the structure of atomistic sampling, which is chosen to stop the iteration 

cycle. Each iteration takes 5 to 6 hours to obtain reliable PCFs. The whole procedure took about 

3 weeks.  

      We also explored using the inverse Ornstein-Zernike equation with the Percus-Yevick 

approximation (OZPY-1) procedure to obtain the CG potentials.12,19 This method, which works 

well for –(A-B)n- architecture (like PET), had difficulty in finding a “mean” potential for a given 

bead type.  For example in PCHD, beads of type C, are found in multiple local environments: (i) 

bound to two A beads, (ii) bound to one A and one B bead, or (iii) bound to one B and one D 

bead.  (See Figure 6.1.)  The OZPY-1 procedure did not easily handle these multiple 
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environments for a given bead type.  The IBI procedure was able to deliver a reasonable 

potential, despite this additional level of disorder within the chain.  

      After obtaining all the CG potentials, we performed CGMD simulations for PCHD 

systems with two chains and three chains cross-linked and compared the structures from these 

simulations with that of atomistic simulation.  In the CGMD simulations of the shor chain cross-

linked system, we used the same density and number of chains as that used in the atomistic 

simulation of the same polymer. For the longer chain cross-linked system, we estimated the 

initial density and placed the particles in the simulation volume carefully with proper bond 

length and angles, then gradually introduced the nonbonded interactions to avoid overlap, as has 

been done before.12 We again simulated in the isobaric-isothermal (NpT) ensemble under the 

same pressure and temperature as the atomistic simulation. The cut-off distance used is 25 Å for 

this level simulation compared with 15 Å used in atomistic level simulation due to some features 

on the PCFs in the long range. The time steps of CGMD simulation are the same as those used in 

the atomistic MD simulation. Using bigger time steps impacts the conservation of Hamiltonian. 

In this case, the computational speed up is due strictly to the reduction in degrees of freedom. 

Based on wall-clock time, the CGMD simulations are approximately 300 times faster than the 

atomistic simulations. (We note that the atomistic simulations are not completely atomistic since 

we did employ a united atom description of CHx groups.  Had we done so, the speed-up would 

have been even greater.) 

 

6.3  RESULTS AND DISCUSSION  

            In this section, we discuss (1) the results of the atomistic MD simulation of PCHD with 

two chains cross-linked system, (2) CG potentials from the IBI methods and (3) CGMD 

simulation results for PCHD with short chains and long chains. Finally, we compare the 

structural distribution functions from CGMD simulations with that of atomistic simulation.  

           In Figure 6.2, we show equilibrated snapshots from both the atomistic and the CGMD 

simulations.  In Figure 6.2(b), (d) and (f), all molecules are shown to make it clear that we are 

simulating a dense melt.  In Figures 6.2(a), (c) and (e), all but five chains are rendered invisible 

to better indicate the conformation of the individual chains. Because the atomistic simulation of 

the short chain cross-linked system and CG simulations of the long chain cross-linked systems 
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were run in the NpT ensemble, the density is an output.  The output equilibrium densities of the 

two chains and three chains systems are respectively 1.195 and 1.192 g/cm3. There is no 

experimental value reported for cross-linked or bulk PCHD polymers. The above densities 

generated are close to the findings of other polymeric systems with phenol ring embedded in the 

main chain.12,22 Further comparison with the experimental density can be done when 

experimental density data is available. 

6.3.1 Atomistic MD simulation of short chain cross-linked sxPCHD 

           In Figure 6.3, we show the bonded stretching distributions of the CG beads obtained from 

atomistic simulation. These distribution functions are based on the analysis of configurations 

from atomistic MD simulation. As shown in Figure 6.1, these distribution functions are 

calculated according to the center of mass position of CG beads. The stretching mode displays a 

bimodal distribution for modes AC and BC, with the major peak centered at 4.2 Å and 4.4 Å 

respectively, and the smaller peak centered at 5.4 Å and 5.3 Å respectively. The smaller peaks 

are probably caused by the asymmetric nature of the AC and BC stretching modes. Beads A and 

B are much heavier than C. For modes DD and CD, we observe a single peak behavior.  

    The bending angle distributions are shown in Figure 6.4. The bending angle distributions 

BCD, ACA and ACB shows a single asymmetric peak centered at 157˚, 155˚ and 150˚ 

respectively. The bending mode CAC shown a symmetric peak centered at 110˚. The mode CBC 

shows a bimodal distribution with two peaks centered at 100˚ and 130˚. The mode CDD shows 

an asymmetric distribution with center at 90˚.  

     In Figure 6.5, the torsion angle distributions ACAC, CBCD and CDDC show a single 

symmetric peak centered at 0˚ while the distributions of ACBC, BCDD and BCAC show 

multiple peaks. The features of these CG bonded distributions imply the complexity of structures 

of cross-linked PCHD systems, even at the CG level where some of the local atomistic structures 

have been neglected. 

           The nonbonded PCFs of the CG beads obtained from the atomistic simulations are shown 

in Figure 6.6.  The PCFs shows multiple peaks with the first peaks centered between 6 Å and 8 

Å. In the CG model proposed in this work, bead A has a sulfonic acid group while bead B has 

both sulfonic acid and hydroxyl groups on it. The existence of these side groups caused more 

correlations at short range for AA, AB, BB and BD pairs, which are reflected in the higher 
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intensities of these peaks. Note here the nonbonded PCF in this work include both 

intramolecular (for CG beads over four bonds) and intermolecular parts, where the CG 

nonbonded potentials based on these PCFs will be used. In this way, to a large extent we mimic 

the way nonbonded potentials are modeled at the atomistic level. 

6.3.2 Generation of CG potentials and CGMD simulation of short chain cross-linked 

sxPCHD  

       Based on the bonded distribution functions obtained from the analysis of configurations 

from atomistic simulation, we obtained the bonded stretching, bending and torsion CG potentials 

through eqn. 1. These potentials are shown in the supplementary information document.  As 

noted above, eqn. 1 is subject to the assumption that all the interactions are independent of each 

other.  Validation of the assumption can be done through direct comparison of the PDFs from the 

atomistic and CG simulations, as shown below. Further understanding of the statistical 

interdependencies of the different bonded interaction modes can be found in the literature.15  

Note here that the IBI method can also be applied for the bonded modes. although that procedure 

was not used in this work.21,25  The following results on the comparison of the PDFs from the 

atomistic and CG simulations were deemed sufficiently acceptable to proceed without further 

iteration. 

       In Figures 6.3 through 6.5, we compare the bonded PDFs from the CGMD simulations of 

short chains cross-linked PCHD with that of the atomistic simulation.  The agreement in the 

stretching distribution from the atomistic and CG descriptions is relatively good, capturing the 

position and magnitude of all the major peaks. The comparison of the bending and torsion 

distribution is also very good capturing the correct position and magnitude of the peaks. This is 

indicates that there is no strong interdependencies between the bonded CG modes.  In short, the 

bonded PDFs from the two level simulations match relatively well, providing evidence that the 

assumption of independence between the modes invoked for eqn. 1 is well-founded.  

      The nonbonded potentials are generated through the IBI method. Compared to the other 

methods of obtaining the nonbonded CG potentials, the IBI procedure has the advantage of 

reproducing the atomistic simulation structures. It impacts computational efficiency since each 

iteration requires a new CGMD simulation. However, if the iteration is done on relatively short 

chains, the exercise is still tractable.  For example in this work, to obtain the PCF from CGMD 
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simulation of the PCHD (short chains cross-linked) system, each IBI iteration required 96 

processor-hours on a cluster (6 hours using 16 processors) to finish a run of 5 ns.  During the IBI 

procedure, the agreement between the PDFs of the bonded modes is not impacted by the 

procedures used here to generate the nonbonded potential.  The bonded distributions for all 

iterations (not shown) are virtually the same as those presented above. This implies that there is 

no significant correlation between the bonded modes and nonbonded modes.  

      The nonbonded PCFs from CGMD simulation using CG potentials from last iteration of 

the IBI method along with that from atomistic simulation are shown in Figure 6.6. A good match 

is observed for all PCFs from the two level simulations. For some modes like AA, BC and CC, 

the agreements are nearly perfect. A small discrepancy exists on the comparison of PCFs for 

some modes (DD and CD). As has been noted previously, the PCF is not extraordinarily 

sensitive to changes in the potential.17 Therefore, the inverse procedure suffers from some 

insensitivity to features with signal strengths commensurate with the statistical noise of the 

simulation.  Another possible reason could be the existence of weak correlations between some 

of the nonbonded modes.38 Further iterations will not significantly help improve the agreement 

between the PCFs obtained from the atomistic and CG simulations. 

            In Figure 6.7, we show the non-bonded interaction potentials from the last iteration of IBI 

method. The potentials are shifted to reach zero at cut-off distance. These potentials have 

multiple minima due to the features of corresponding PCFs. It is interesting to compare these 

potentials from the one used in atomistic simulation. In nonbonded potentials used in atomistic 

simulations one typically does not observe repulsion beyond that which is known at short-

distances due to electron-electron repulsion. The PCFs can be qualitatively generated from 

physically meaningful potentials, such as a LJ 12-6 potential, where the repulsion term 

represents electron-electron repulsion and the attractive term represents induced-dipole-induced-

dipole interactions. The pairwise potential gives rise directly to the first peak in the PCF.  

Subsequent peaks arise due to pairwise interactions involving two particles that are not the 

central particle. In this case, the potentials generated through IBI method are only effective 

potentials to reproduce the structure from atomistic sampling at the thermodynamic state 

specified. Their transferability to different thermodynamic states needs to be further tested. 

Recently, there are more interests on testing the transferability of CG potential to mixtures24,25,39  
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or different chain length.25 In this work, the test of transferability of CG potential to different 

chain length (or density) is necessary since the objective of this project is to study the structure 

of long chain PCHD systems. We will address this issue in the following section. 

6.3.3 Structural Properties of short and long chain cross-linked sxPCHD  

      One of the major tasks of this work is to generate a CG force field that can be used to 

study the structure of long chain systems. To test the transferability of CG models proposed for 

cross-linked PCHD system, we apply this model to a different network structure, namely three 

PCHD chains cross-linked. (See Figure 6.1.)  We notice here this molecular architecture is 

relatively simple compared to the real polymer network structure. The simplicity nevertheless 

captures the effect of an increase in chain length. Since nothing but the total chain length is 

increased, significant changes in the structures from short chains and long chain cross-linked 

systems are not expected.   

          With the above CG potentials, we simulated short chain and long chain cross-linked 

PCHD. The snapshots are shown in Figure 6.1(c) to (f). The bonded PDFs and nonbonded PCFs 

along with those of atomistic MD simulation are shown in Figures 6.3 through 6.6. For the three 

bonded modes, the distribution function of CGMD simulation of two chains and three chains 

cross-linked systems match very well with that of atomistic simulation.  

      In Figure 6.6, the nonbonded PCFS from CGMD simulation match well with that of 

atomistic simulation and also shows no apparent chain length dependence. To this end, we have 

shown that newly proposed CG model of sxPCHD can be used to study the structures of 

sxPCHD with different network structures.  

            Having done the validation of the CG model on the reproduction of conformations from 

atomistic sampling, we can further investigate other physical properties from CG simulation of 

cross-linked PCHD system by using this model. In Figure 6.8, we show the distribution of chain 

end-to-end distance for two chains (black line) and three chains cross-linked (data points) 

systems from CGMD simulation. The chain end-to-end distance distribution from atomistic 

sampling (red line) is also presented in Figure 6.8. The end-to-end distance is defined as the 

distance between the two cross-linkers DD groups at the two ends of a single chain. The end-to-

end curves in Figure 6.8 roughly show a Gaussian-like distribution. For the short chain cross-

lined system, the comparison of end-to-end distance distributions from the two level (Atomistic 
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and CG) simulations is relatively good. This is further evidence that the CG model is able to 

capture the chain conformation of the atomistic description (at the end-to-end level). On the 

comparison end-to-end curves of two chains and three chains cross-linked systems, no significant 

change is observed, as expected. As shown in Figure 6.1, nothing changed between the two 

cross-linkers for two chain and three chains cross-linked systems. 

 

6.4  CONCLUSIONS 

      Atomistic and coarse-grained (CG) models of Sulfonated Cross-linked Poly (1, 3-

cyclohexadiene) (sxPCHD) were developed and implemented in Molecular Dynamics (MD) 

simulations of PCHD chains with different architectures. In the atomistic model, two PCHD 

chains are cross linked by sulfur-sulfur bonds. Sulfonic acid groups are evenly distributed along 

the chain. An atomistic force field for this architecture was tested and applied in the atomistic 

MD simulation of bulk PCHD for the first time. Meanwhile a CG model was proposed. The 

bonded structural probability distribution functions (PDFs) and nonbonded pair correlation 

function (PCF) of the CG beads were obtained by analyzing the atomistic simulation results. The 

bonded CG potentials are obtained by simple inversion of the corresponding PDFs. The CG 

nonbonded potential is parameterized to the PCF using the Iterative Boltzmann inversion (IBI) 

method. The CGMD simulations of the cross-linked PCHD system using potentials from the 

above method satisfactorily reproduce the structural properties from atomistic MD simulation of 

the same system. The new CG model was further tested through CGMD simulation of a long 

chain cross-linked PCHD system. No significant changes are observed on the comparison of 

PDFs and PCFs from CGMD simulations of two chains and three cross-linked systems, which 

means the potentials are transferable to other chain lengths. The new CG model can be further 

applied to study the structure and dynamics of PCHD longer chain network system through CG 

simulations. The study of structure of hydrated PCHD membrane is underway.   
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Figure 6.1. Molecular and CG model of sxPCHD polymer. 
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Figure 6.2. Snapshots of equilibrium configurations from atomistic ((a) and (b)) and CGMD 

((c)-(f)) simulations at T = 353 K, p = 1 atm.  (a) and (b): two chains cross-linked; (c) and (d) 

two chains cross-linked; (e) and (f): three chains cross-linked. The atomistic and CG 

representations of sxPCHD chains are shown in (a), (c) and (f), in which 5 molecules are taken 

from (b), (d) and (f) respectively. 
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Figure 6.3. Bond stretching probability distribution functions for CG beads of sxPCHD from 

atomistic MD simulations (two chains cross-linked system: red line) and CGMD simulations 

(two chains cross-linked system: black line; three chains cross-linked: blue line). Same color 

representations are used in Figures 6.4. to 6.7.  The GCMD simulations used the potentials from 

the IBI method. 
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Figure 6.4. Bond bending probability distribution functions for CG beads of sxPCHD.  
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Figure 6.5. Bond torsion probability distribution functions for CG beads of sxPCHD. 
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Figure 6.6. Comparison of CG nonbonded pair correlation functions for sxPCHD. 
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Figure 6.7. Coarse-grained nonbonded potentials for sxPCHD.  
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Figure 6.8. Comparisons of the chain end-to-end distance probability distributions for sxPCHD 

systems from atomistic MD (two chains cross-linked system: red line) and CGMD (two chains 

cross-linked system: black line, three chains cross-linked system: data points) simulations. 
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CHAPTER 7 
 

 

Atomistic and Coarse-grained Molecular Dynamics Simulation of a 

Sulfonated Cross-linked Poly (1, 3-cyclohexadiene)-based Proton Exchange 

Membrane 
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This chapter is a revised version of a paper (minor revisions to reflect its inclusion as a chapter 

in the dissertation) by the same title in preparation for a journal by Qifei Wang, David J. Keffer, 

Suxiang Deng and Jimmy Mays: 

 

The use of “we” in this part refers to the co-authors and the author of this dissertation. My 

primary contributions to this paper include (1) all of the simulation work (2) analysis of data, and 

(3) most of the writing. 

 

 

Abstract 

 Atomistic and coarse-grained (CG) Molecular Dynamics (MD) simulations were 

conducted for a sulfonated and cross-linked Poly (1, 3-cyclohexadiene) (sxPCHD) hydrated 

membrane with λ = 10 H2O/HSO3.  The bonded structural probability distribution functions 

(PDFs) and nonbonded pair correlation functions (PCFs) of the CG beads were obtained from the 

atomistic simulation of hydrated sxPCHD membrane. The PCFs include water-water, water-

H3O+ ion, H3O+-H3O+, polymer-water, polymer-H3O+ ion and polymer-polymer pairs. The water 

self-diffusivity and H3O+ vehicular self-diffusivity are also obtained and compared with that in 

Nafion membrane under similar conditions. The study provides an understanding of water and 

H3O+ ion distribution and transport in the membrane. The bonded PDFs and polymer-polymer 

PCFs are compared with that of atomistic simulation of a dry sxPCHD melt.  No significant 

changes are observed for the bonded PDFs. Since there are great changes in the nonbonded PCFs 

between the dry and hydrated state, the CG nonbonded potentials are then parameterized to the 

PCFs using the Iterative Boltzmann inversion (IBI) method. The CGMD simulations of sxPCHD 

chains using potentials from above method satisfactorily reproduce the polymer-polymer PCFs 

from atomistic MD simulation of hydrated membrane system. The potentials are used to study 

the membrane structure with different hydration levels. 
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7.1  INTRODUCTION 

      The unique phase separation behavior of sulfonated and cross-linked Poly (1,3-

Cyclohexdiene) (sxPCHD) polymer in sxPCHD homopolymer, sxPCHD/PEG (polyethylene 

glycol) blend and sxPCHD-PEG block copolymer membranes generates higher proton 

conductivity than that of Nafion membrane at high temperatures.1  Such phase behavior and 

many other properties strongly depend on the conformation of the polymer in solution or bulk.2,3  

Information on the molecular level (10 to 100 nm) membrane structures furthers the 

understanding of the mechanism of high proton conductivity in these systems. Classical 

molecular simulation has proved to be useful in the study of chain conformation when the length 

scale is less that 10 nm roughly.4,5 To reach higher length scales, a multi-scaling modeling 

technique is needed. 

           The coarse-grained (CG) based multi-scaling modeling technique has been developed to 

study the structural and transport properties of long chain polymers at length scale that are larger 

than the classical molecular simulation can reach. In the CG procedure, normally a fully 

atomistic (or united atom (UA)) simulation of a short-chain (oligomer) system are conducted 

first. From the atomistic simulation, the CG structural distribution functions for different 

interactions modes assigned in the CG model are obtained. The CG potentials are then 

parameterized to these distribution functions. There are a variety of methods used to obtain the 

effective potentials. The iterative Boltzmann inversion (IBI) method6  is widely used because of 

its advantage to reproduce the structure of atomistic sampling compared to the existing methods, 

especially when complicated nonbonded structures are obtained from the atomistic simulation. 

            The CG modeling work on polymer solutions, suspensions or hydrated proton exchange 

membranes (PEMs) shows that the solvent plays an important role in determining the polymer 

structure.7-11  However, there is no well established method to obtain the CG effective potentials 

for solvent-polymer and solvent-solvent interactions to reproduce the structures from atomistic 

sampling when the solvent is treated explicitly in these systems. One may easily encounter 

convergence problems when apply the IBI to these inhomogeneous systems since interactions 

between beads of the same type may change with the local environment.    
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           Alternatively, a successful way to deal with solvent in these works is by treating the 

solvent explicitly at the atomistic scale while treating it implicitly at the CG scale. Since the 

polymer structure at the atomistic level is reproduced using the IBI method at CG level, the 

effect of the solvent on the polymers structure is still accounted for in the  CG simulation. Using 

this method, Fischer et al.10 developed an implicit CG model for polyoxylethylene solution and 

studied the potential transferability to different chain length and mixture concentrations.  The 

same method is adopted by Bedrov et al.11 in their CG modeling work on poly(ethylene oxide)-

poly(propylene oxide)-poly(ethylene oxide) triblock copolymer in solution. 

           In this work, we studied the structures of hydrated sxPCHD membrane at the atomistic 

and CG level. Previously, a multi-scale model for sulfonated cross-linked sxPCHD 

homopolymer was developed for the unhydrated (melt) state. The same model is used here but a 

CG force field for sxPCHD in hydrated membrane needed to be derived. To do so, we adopted 

the same multi-scale modeling procedure that was used for the sxPCHD polymer melt. First, an 

atomistic MD simulation of the hydrated short-chain sxPCHD system at low water content was 

conducted, from which bonded probability distribution functions (PDFs) and nonbonded pair 

correlation functions (PCFs) for all types of polymer beads were obtained. Water and H3O+ ion 

distribution and transport in the membrane are also studied at the atomistic level. Additionally, 

the bonded PDFs and nonbonded PCFs for sxPCHD polymer from the atomistic simulations 

hydrated membrane were compared with that of atomistic MD simulation of bulk sxPCHD at the 

same temperature to study the solvent effect on polymer’s structure. Second, the nonbonded 

PCFs for sxPCHD polymer from the atomistic simulations were used to generate CG potentials, 

using the IBI method. Third, the CG potentials are implemented in CGMD simulations of the 

same system while water and H3O+ ion are treated implicitly. Finally, the nonbonded PCFs for 

sxPCHD polymer from CG level simulation are compared with those from the atomistic level 

simulation in order to validate the CG model. 

 

7.2  SIMULATION METHOD 

7.2.1 Atomistic simulation of hydrated sxPCHD membrane with λ = 10 

    The force field used for sxPCHD polymer,12  which invoked potentials from the literature 

for each of the components in the polymer,13-22  was used again here. The model is fully atomistic 
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with the exception of hydrogen atoms bonded to carbons, which are modeled as CHx groups, as 

shown in Figure 7.1(a).  The atomistic model includes bond-stretching, bond-bending, bond-

torsion and intramolecular and intermolecular non-bonded interactions via both Lennard-Jones 

and Coulombic potentials.  The only difference between the atomistic potential used in the 

simulation of the melt and that used in the simulation of the hydrated polymer is that the SO3H 

group in the melt is dissociated into SO3
- and H3O+ ions in the hydrated system.  The SPC/Fw 

model by Wu et al.23  was used for water and a fully flexible model of H3O+ used in hydrated 

Nafion simulations by Cui et al.19 work was used. The simulation system includes 40 sxPCHD 

cross-linked chains, 720 H3O+ molecules and 6480 water molecules, corresponding to λ = 10 

condition (1 H3O+ and 9 water  molecules per sulfonic acid group). The spherically truncated 

charge-neutralized method developed by Wolf et al.24 was used to evaluate the electrostatic 

energy. We simulated in the isobaric-isothermal (NpT) ensemble and implemented the 

Hamiltonian-based thermostat and barostat25  with controller frequencies set to 10-4 fs-1.  The XI-

RESPA NPT algorithm developed by Tuckerman et al.26 was used to integrate the equations of 

motion.  The large time step was 1 fs and the small time step was 0.1 fs. The cut-off distance 

used was 15 Å for this level simulation. The state point was set at 1 atm and 353 K, 

corresponding to future fuel cell applications. Following the equilibration procedure described 

elsewhere,5,27  we gradually equilibrated to the correct density. Data production lasted for 10 ns. 

The equilibrium configuration is shown in Figure 7.2. To compare the water-water distribution, 

atomistic simulation of bulk water was also conducted.  The same water model and simulation 

method was used. Data production lasted for 5 ns. 

7.2.2 CGMD simulations of hydrated sxPCHD membrane with λ = 10. 

      As shown in Table 7.1 and Figure 7.1(b), the CG model for sxPCHD proposed in previous 

work is used here although the hydrogen on SO3H is transferred to H3O+. There are three CG 

beads on sxPCHD chains (bead A, B and C) and two cross-linkers (D) at the two ends. The bead 

is placed at the center-of-mass of the atoms in the corresponding fragment. In this model, the CG 

interaction modes include bond stretching, bond bending, bond torsion, and nonbonded 

interactions for both intra-molecular (for beads separated by at least four bonds) and inter-

molecular pairs. The same CG nonbonded potential is used for both intra-molecular and inter-

molecular interactions. Probability distribution functions (PDFs) for stretching, bending, torsion 
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and nonbonded pair correlation functions (PCFs) between CG beads were generated from the 

atomistic simulations of hydrated sxPCHD membrane.  As will be shown in detail below, a 

comparison of bonded PDFs from atomistic simulations of both melt and hydrated sxPCHD 

systems shows that there are no significant changes in the bonded PDFs.  Consequently, the 

bonded CG potentials for the sxPCHD melt are directly used in the CG simulation of hydrated 

sxPCHD membrane. 

       The nonbonded potential for intra-molecular (for beads over four bonds) and inter-

molecular interactions is generated by the IBI method.6  In the IBI method, a tabulated potential 

is numerically determined by simulation iteration.  The interaction potential is refined iteratively 

via  

             
( ) ( ) ( )

( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+=+ r

r
rr

αβ

iαβ,
Biαβ,1iαβ, g

g
lnTkϕϕ                                    (1) 

with initial guess
 

          ( ) ( )( )rr αβB0αβ, glnTk−=ϕ                          (2)
 

where ( )rβαg  is the target PCF, which is from atomistic simulation. In CG level simulation, 

water and H3O+ ion are treated implicitly, as commonly adopted in the CG modeling work of 

polymer solutions.10,11 Due to the complexity of CG model, there are still 10 nonbonded 

interactions modes (AA, AB, AC, AD, BB, BC, BD, CC, CD and DD) that need to be refined. 

First two iterations were done on all interactions modes simultaneously then additional 1 to 3 

iterations were done on each mode individually. The number of iterations used for each mode 

depends on the complexity of the PCF. Generally, each mode took 3 to 5 iterations to reproduce 

the structure of atomistic sampling, which is chosen to stop the iteration cycle.  

       In the CGMD simulations, we use the same density as that used in the atomistic 

simulation.  Sixty-four chains are used at this level of simulation. We again simulated in the 

NVT ensemble under the same temperature as the atomistic simulation. The cut-off distance used 

is 25 Å for the CG simulation. The time step of the CGMD simulation is twice that used in the 

atomistic MD simulation. Based on wall-clock time, the CGMD simulations are approximately 

400 times faster than the atomistic simulations.  
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7.3  RESULTS AND DISCUSSION 

           In this section, we discuss (1) the results of the atomistic MD simulation of hydrated 

sxPCHD system, (2) comparison of structures from atomistic simulation of hydrated membrane 

with that of the sxPCHD melt, (3) generation of nonbonded CG potentials for hydrated sxPCHD 

from the IBI method, and comparison of the structural distribution functions from CGMD 

simulations of hydrated sxPCHD with that from atomistic simulation.  

           In Figure 7.2, we show equilibrated snapshots from both the atomistic and the CGMD 

simulations.  In Figure 7.2(a), all molecules are shown to make it clear that we are simulating a 

multi-components system.  In Figure 7.2(b), all polymer chains are rendered invisible to better 

indicate the shape of the aqueous domain. In Figure 7.2(c), all water molecules and H3O+ ions 

are rendered invisible to better show the shape of the polymer domain. In Figure 7.2(d), the 

sxPCHD structure at the CG level is shown..More information is available on the website.28  

    One of the features that is clearly visible in these snapshots is the segregation at the 

nanoscale into hydrophobic (polymer) and hydrophilic (aqueous) domains.  The sulfonate ions 

are located at the interface between the hydrophobic and hydrophilic domains.  This sort of 

nanophase segregation has been observed for Nafion by many researchers using molecular 

simulation.29  Characterization of the volume of the aqueous domain, the interfacial surface area 

and the connectivity of the aqueous domain depicted qualitatively in these snapshots has been 

shown to have direct impact on the mobility of water and protons in the membrane.30   

    Experimental studies of sxPCHD have shown that water channels are visibly connected at 

a 10 nm scale while the polymer domain is at 10 nm to 100 nm length scale.1   Our simulations 

have a dimension of 10-15 nm.  Therefore, they are capable of capturing the structure of the 

aqueous domain but not of the polymer domain.  Work with Nafion has shown that, MD 

simulation of these smaller systems can still yield quantitive agreement with experimental 

measurements of water and charge self-diffusivities.30  We would not expect simulations of this 

size to capture any crystallinity effects (as exist in Nafion) in the polymer phase, which are likely 

present at longer length scales. 

7.3.1 Atomistic MD simulation of hydrated sxPCHD membrane with λ = 10. 

            In Figure 7.3, we show the water-water, H3O+-H3O+ and water-H3O+ PCFs of the CG 

beads obtained from atomistic simulation. These distribution functions are based on the analysis 
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of configurations from atomistic MD simulation. Although the aqueous phase will be treated 

implicitly at the CG level, these PCFs provide useful information on water and H3O+ 

distributions in the membrane. The following PCFs are based on positions of the center-of-mass 

of water molecules and hydronium ions. 

     In Figure 7.3(a), the water-water PCF for the hydrated membrane is compared to that of 

bulk water.  There is significant difference in the water-water structure, including an enhanced 

first peak and the presence of a small second at about 4 Å.  These same features are present in 

the water-water PCF in hydrated Nafion at λ = 9,19 in which similar nanoscale segregation 

occurs.  It is worth noting that, following standard convention, the PCFs are normalized by the 

bulk density.  In a homogeneous system, like bulk water, there is no ambiguity associated with 

the bulk density.  In an inhomogeneous system, such as the hydrated sxPCHD membrane, we 

have normalized by a density that includes the total system volume (since that is unambiguously 

available).  Consequently, some of the discrepancy between these PCFs is due to the definition 

of the PCF. We notice here the CG level is low for water. We can observe this type of local 

structures. When CG level increases, the feature will disappear.31  

     In Figure 7.3(b), the H3O+-H3O+ PCF is shown.  There is very little structure in the PCF, 

commensurate with the fact that two cations in solution will not aggregate, due to Columbic 

repulsion.  What little structure there is can be attributed to the fact that the anions are fixed in 

close proximity to each other due to their covalent bonds to the polymer backbone.  Since there 

may be association between the cation and anion, some weak cation-cation association may be 

evident.   

        In Figure 7.3(c), the water-H3O+ ion PCF is shown. We observe two peaks in this PCF. 

The first, larger peak occurs at about 2.60 Å, and the second peak occurs at a distance of 4.95 Å.  

The same feature has been found in the atomistic simulation work of Nafion at different water 

contents,19 in which the PCF between oxygen of water and oxygen of H3O+ is used to represent 

water-H3O+ ion PCF. The first peak is much higher that the second one because of the tighter 

binding of water molecule with H3O+ ion at short distance. This feature is also in agreement with 

above atomistic modeling work of hydrated Nafion.  

      In Figure 7.4, we examine the PCFs obtained from atomistic simulations between the 

center-of-mass of various CG beads with water molecules and hydronium ions.  Figure 7.4(a) 
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shows the PCFs between the beads on the polymer and a water molecule. We see the strong 

correlations with beads of type A and B, because these beads contain SO3
- ions, which interact 

strongly with water molecules.  Both A and B beads show a first peak around 5.0 Å, a second 

peaks around 7.0 Å and a third peak around 14.0 Å.  Since beads A and B have very similar 

chemical structures, as shown in Table 7.1, we expect the correlation with water to be similar.  

The presence of the hydroxide group on the B bead lowers the correlation. We see the weakest 

correlation with particles of type D, which contain the cross-linking groups and are consequently 

surrounded by more polymer than water.   

      In Figure 7.4(b), we show the PCFs for polymer-H3O+ ion pairs.  For all bead types, the 

peak heights are greater for the hydronium ion than they are for water molecules in Figure 7.4(a). 

This indicates that H3O+ ions are more strongly bound to polymer than are the water molecules, 

due to the stronger Columbic attraction between the hydronium ion and the sulfonate anion.  In 

Figure 7.4(b), there is an apparent difference between the PCFs of A and B. The major peak 

around 5 Å is split into two peaks in the B PCF. We believe this is due to the existence of a 

hydroxyl group on bead B. The orientations of some H3O+ ions are likely altered due to 

hydrogen bonding with the hydroxyl group. Experimental results indicate that the presence of 

hydroxyl groups positively impacts the proton conductivity of the membrane.1  

     While the atomistic simulations are too short to capture relaxation times of the polymer, 

they may be capable of capturing relaxation of the solvent, which is much faster. The MSD is 

plotted in Figure 7.5 as a function of observation time for both water and the vehicular 

contribution of the hydronium ion.  (Note that in these simulations we do not include a proton-

hopping mechanism and thus are limited to measuring only one component of the overall charge 

self-diffusivity.)  In the long-time limit of the Einstein relation, there should be a linear 

relationship between the MSD and the observation time.  In the log-log plot, we show the slope 

is indeed unity at long time, indicating that we have simulated sufficiently long (10 ns) to obtain 

reliable self-diffusivities of the water molecules and hydronium ions.  Invoking the Einstein 

relation then yields diffusivities of 1.18*10-9 m2/s for water and 2.57*10-10 m2/s for the vehicular 

component of the hydronium ion. Using the same method, a value of 9.24*10-9m2/s is obtained 

for bulk water at the same temperature and pressure. The self-diffusivity of water in sxPCHD 

membrane is 12.8% of that in bulk water. For comparison, the self-diffusivity of water in Nafion 
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membrane with similar hydration level is 9.7% of that in bulk water at 300 K.19  In both cases, 

the water diffusion coefficient is significantly smaller than in bulk water, due to increased 

acidity, increased confinement and decreased connectivity in the membrane.30  

7.3.2 Comparison of sxPCHD polymer structures from atomistic simulation of hydrated 

membrane with that of melt. 

           To understand the effect of hydration on polymer structure, we compare the structures of 

sxPCHD in the hydrated membrane with that in the melt. The CG bonded stretching, bending 

and torsion PDFs are shown in Figures 7.6 to 7.8, while the CG nonbonded PCFs are shown in 

Figure 7.9.  In all cases, these distribution functions were generated from atomistic simulations 

of short chains.  It is important to remember that while the C and D beads are identical in the 

hydrated and melt systems, the A and B beads are not identical.  In the melt, the A and B beads 

contain the complete sulfonic acid group, HSO3, while in the hydrated state, the A and B beads 

contain the dissociated sulfonate ion, SO3
-. 

    In Figure 7.6, we compare the PDFs for each of the four stretching modes.  These modes 

are generally the same for both the melt and the hydrated membrane.  The peak positions and 

peak heights are largely reproduced.  We do observe a slight change in the peak position of the 

second peak in the AC bond stretching PDF to shorter distances in the hydrated system.   

     In Figure 7.7, we compare the PDFs for each of the six bending modes.  Again, these 

modes are generally the same for both the melt and the hydrated membrane.  The peak positions 

and peak heights are largely reproduced.   We observe small population shifts from the large 

peak at 150-160° in the ACA and ACB bending PDFs  to the small peak at 80-90°, due to the 

presence of the water and hydronium around the A and B beads.   

     In Figure 7.8, we compare the PDFs for each of the six torsion modes.  Again, these 

modes are largely the same for both the melt and the hydrated membrane.  The peak positions 

and peak heights are largely reproduced.   To the level of approximation in the CG simulations, 

these potentials can be considered to be the same.   

     In Figure 7.9, we compare the PCFs for each of the ten polymer-polymer nonbonded 

modes.  For those modes that involve ions in the hydrated state (AA, AB and BB) there are 

significant differences in the PCFs.  The first peak in the melt is reduced significantly in 

magnitude and pushed to slightly larger distances in the hydrated system, due to electrostatic 
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repulsion.  Some modes are relatively unchanged by the introduction of water, including the 

AC, AD, BC, and CC modes.  However, the structure around the D bead has changed 

significantly, resulting in very different PCFs for BD, CD and DD.  The nonbonded interaction 

modes are correlated with each other. A change in the distribution of one mode may cause the 

changes in the distributions of the other modes. 

     Interactions between water and polymer, or H3O+ and polymer could possibly make a 

great contribution on the packing of polymer chains. The findings from the literature give some 

hints on this issue. In the study of homogeneous polymer melts, previous work shows that these 

distributions functions have no apparent chain length dependence. 5,27  In the CG modeling work 

of aqueous poly(oxyethylene) solutions, Fischer et al.10  show that the nonbonded PCFs have 

similar trends but apparent differences at different concentrations. It depends very much on the 

mixture and CG model used. A better understanding of sxPCHD structure changes with water 

content can be obtained through the study of these distribution functions as a function of 

hydration level (λ). 

7.3.3 Generation of CG potentials for hydrated sxPCHD membrane with λ = 10. 

       One aim of this research is to derive a CG force field for sxPCHD in a hydrated 

membrane. Previously, we derived a CG model for sxPCHD in the melt using the IBI method.  

First and foremost, we cannot use the CG potential form the melt for the hydrated state due to the 

fact that A and B are now charged beads in the hydrated state.  These beads are fundamentally 

difference.  Second, the effective potentials obtained from the IBI method are dependent on 

thermodynamic state (density and temperature).6 Its transferability to temperatures or chain 

length needs to be tested, even for homogeneous polymer melts.27  In this work, we simulated the 

sxPCHD hydrated membrane at the same temperature as that of bulk sxPCHD simulation. 

However, the density changed for sxPCHD in hydrated membrane because we maintained a 

constant pressure of one atm. In the previous section, we compared the bonded and nonbonded 

structures for sxPCHD in the melt and in the hydrated membrane. Since there were no significant 

changes, we chose to use the bonded CG potentials from the sxPCHD melt. However, there were 

great changes on nonbonded PCFs. Therefore, we have to generate the nonbonded CG potentials 

for hydrated sxPCHD. To do so, we made the aqueous phase implicit at the CG level as 

mentioned above. Thus, ten polymer-polymer non-bonded modes were iteratively refined to 



 

 

 

206

reproduce the PCFs from atomistic simulation. Effective potentials from the last iterations are 

shown in Figure 7.10.  For comparison, also shown are the CG potentials from the sxPCHD melt.  

The first obvious observation is that there is significant change in the CG potentials between the 

hydrated and melt states.  The most distinctive difference occur for AA, AB and BB, modes in 

which the beads have become charged in the hydrated state.  In these cases the depth of the 

attractive well has been greatly reduced and the position of the minima has been pushed to larger 

distances.  For interactions between non-ionic beads, such as CC, the well depth has increased in 

the hydrated state.  This can be explained by remembering that the water is treated implicitly.  In 

an atomistic simulation, we observe phase segregation into hydrophobic and hydrophilic regions 

because the water-water interaction is much stronger than any other interaction.  However, in the 

CG simulation where water is not present, we observe phase segregation due to the attraction of 

hydrophobic beads, like C.  This observation is also observed for the strictly uncharged CD and 

DD modes.  For modes involving one charged bead and one uncharged bead, no uniform 

difference between the potentials of the hydrated and melt states is observed.      

   To further understand the features of these potentials, we can revisit the PCFs from which 

the potentials were extracted. In Figure 7.9, the first peaks of the CC, CD and DD (uncharged-

uncharged) modes are sharper than that of the other modes for the hydrated system. 

Correspondingly, the potentials of CC, CD, and DD show deep first minima in Figure 7.10.   As 

noted above, the PCFs of the charged-charged modes (AA, AB and BB) shows much smaller and 

more distant first peaks, which corresponds to the observed changes in the CG potential.  The 

PCFs of the charged-uncharged modes (AC, AD, BC, and BD) modes are relatively unchanged 

by the introduction of water, with the exception of BD.  However, the CG potentials may be 

significantly changed even in the absence of strong changes in the PCF, e.g. AD.  

      In order to validate the CG potential, one should compare structures obtained from the 

atomistic and CG simulations of the same system.  That validation has been performed here.  The 

comparisons of the distributions of the stretching, bending and torsion modes are provided in the 

supplementary information.  In general, the agreement is very good.  

      We also can validate the CG model through comparison of the non-bonded PCFs.  In 

Figure 7.11, a comparison of PCFs from the atomistic and CG simulations of the hydrated 

membrane is provided. In general, good agreement is obtained for all modes. All peaks present in 
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the atomistic simulation are also present in the CG simulation.  For the PCFs in which multiple 

peaks are present, the relative magnitude of the peaks observed in the atomistic simulations is 

reproduced by the CG simulations in all cases except for the CC mode.  There is admittedly some 

quantitative discrepancy for a few of the modes (AC, CC and CD).  However, we believe that 

this level of agreement is sufficient to allow the CG simulations of hydrated sxPCHD to capture 

the essential structures of the atomistic simulations.    

 

7.4  CONCLUSIONS 

       Atomistic and coarse-grained (CG) Molecular Dynamics (MD) simulations were 

conducted for sulfonated and cross-linked Poly (1, 3-cyclohexadiene) (sxPCHD) in a hydrated 

state with λ = 10.  From the atomistic simulation of hydrated sxPCHD membrane, the bonded 

structural probability distribution functions (PDFs) and nonbonded pair correlation functions 

(PCFs) of the CG beads were obtained and compared favorably with that of the sxPCHD melt. 

The CG PCFs for water-water, water-H3O+ ion, H3O+-H3O+, polymer-water, polymer-H3O+ ion 

and polymer-polymer pairs provide an understanding of water and H3O+ the nature of the 

interface in the hydrated membrane. The water and H3O+ ion diffusivities are also obtained and 

compared with that in Nafion membrane under similar condition. No significant changes in the 

stretching, bending and torsion distributions of the sxPCHD were observed between the melt and 

hydrated state.  Some of the non-bonded PCFs changed dramatically due to dissociation of the 

sulfonic acid group leading to a charged bead in the hydrated system.  The CG nonbonded 

potentials were generated using the Iterative Boltzmann inversion (IBI) method, with the 

aqueous phase being treated implicitly.  The CGMD simulations of hydrated sxPCHD using 

potentials from the above method satisfactorily reproduce the polymer-polymer PCFs from 

atomistic MD simulation of the same system. The study of transferability of derived CG 

potentials to different hydration level and a predictive understanding of water and proton 

transport in the sxPCHD based membrane are underway.  
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Table 7.1. CG beads representations in the hydrated sxPCHD membrane. The same symbols A 

and B in bulk CG sxPCHD model are still used while H atom in SO3H is dissociated in these 

beads. 

 

CG bead Molecular fragments 

A (C6H9SO3
-) 

B (C6H10OHSO3
-) 

C (C6H10) 

D (C6H10SCl) 
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Figure 7.1.  Atomistic (a) and CG (b) representations of sxPCHD polymer. 
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a b

c d

a b

c d

 
 

 

Figure 7.2. Snapshots of equilibrium configurations from atomistic ((a), (b) and (c) ) and CGMD 

((d)) simulations of sxPCHD membrane at T = 353 K, p = 1 atm. In atomistic simulation, water 

and hydronium ion are treated explicitly (a). From (a), water and hydronium ion (b), and 

sxPCHD polymer (c) are taken respectively. In CG simulation, water and hydronium ion are 

treated implicitly. 
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Figure 7.3. Pair correlation functions (PCFs) for CG beads involved in (a): water-water, (b): 

H3O+-H3O+ and (c): water-H3O+ interactions. 
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Figure 7.4. PCFs for CG beads involved in (a): polymer-water interactions and (b): polymer- 

H3O+ interactions. 
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Figure 7.5. Mean square displacement (MSD) for water and hydronium ion as a function of 

observation time. The diffusion coefficient (D) for each component is also shown.  
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Figure 7.6. Comparison of stretching probability distribution functions (PDFs) from atomistic 

simulation of sxPCHD under melt (red line) and hydrated (black line) conditions. No significant 

change is observed. 
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Figure 7.7. Comparison of bending probability distribution functions (PDFs) from atomistic 

simulation of sxPCHD under melt (red line) and hydrated (black line) conditions. No significant 

change is observed. 
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Figure 7.8. Comparison of torsion probability distribution functions (PDFs) from atomistic 

simulation of sxPCHD under melt (red line) and hydrated (black line) conditions. No significant 

change is observed. 
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Figure 7.9. Comparison of PCFs from atomistic simulation of sxPCHD under bulk (red line) and 

hydrated (black line) conditions. Great changes are observed. 
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Figure 7.10. Comparison of CG potentials from IBI method for sxPCHD under melt (red line) 

and hydrated (black line) conditions. Great changes are observed. 
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Figure 7.11. Comparison of PCFs from atomistic (red line) and CG simulation (black line) using 

effective potential from the IBI method. 
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           In this final part, the conclusions from each chapter are summarized, followed by the 

overall impact on current work and some future proposed work. 

 

8.1. CHAPTER SUMMARIES 

In this work, a CG based multi-scale modeling technique was applied to different 

polymeric systems. These systems include: bulk PET, bulk PEG, bulk sxPCHD and hydrated 

sxPCHD. Both OZPY-1 and IBI method have been explored to parameterize the CG force fields. 

The structural, thermodynamic and transport properties of the polymers at different time and 

length scales were studied though CG level simulation. The main conclusions from each chapter 

are summarized in the following paragraphs. 

    In Chapter 2, the OZPY theory was used to generate interaction potentials from PCFs for 

monatomic and diatomic Lennard-Jones fluids. The OZPY-1 procedure is completely self-

consistent for the monatomic fluid in the whole range of densities studied (reduced density up to 

0.55, under reduced temperature 2.0). In the diatomic case, we find that the procedure is 

generally self-consistent under both low and high densities, although there is a systematic 

deviation at high densities. The method is able to reproduce the two parameters (ε and σ) of the 

input Lennard-Jones potential model to within about 1%. 

In Chapter 3, MD simulations of PET oligomers were performed in the isobaric-

isothermal (NpT) ensemble at a state point typical of a finishing reactor. The oligomer size 

ranged from one to ten repeat units. Structural, thermodynamic and transport properties were 

calculated for systems with different oligomer size. The distribution of the end-to-end distance is 

bimodal for the dimer and gradually shifts to a single peak as the degree of polymerization (DP) 

increases. The scaling exponents for the average chain radius of gyration and end to end distance 

are 0.594 and 0.571, respectively. The values of the heat capacity, isothermal compressibility, 

and thermal expansivity agree well with the available experimental data, which are of much 

longer PET chains. The scaling exponents for the self-diffusivity and zero-shear-rate viscosity 

are respectively -2.01 and 0.96; the latter one is close to the theoretical predictions 1.0 for short 

chain polymers. 

In Chapter 4, a CG model of PET was developed and implemented in CGMD simulations 

of PET chains with degree of polymerization up to 50.  The CG potential was parameterized to 
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structural distribution functions obtained from atomistic simulations using OZPY-1. The CGMD 

simulation of PET chains satisfactorily reproduced the structural and dynamic properties from 

atomistic MD simulation of the same systems.  For the longest chains, we found the scaling 

exponents of 0.51, 0.50 and -2.00 for average chain end-to-end distance, radius of gyration and 

self-diffusivity respectively. The exponents are very close to the theoretical values of entangled 

polymer melt systems (0.50, 0.50 and -2.0). The study of entanglement in the longer chains 

shows that the tube diameter, number of monomers between entanglement points and 

interentanglement strand length are in close agreement with the reported values for entangled 

PET melt.1  

    In Chapter 5, a CG model of PEG was developed and implemented in CGMD simulations 

of PEG chains with degree of polymerization (DP) 20 and 40. The CG nonbonded potential was 

parameterized to the PCF using both OZPY-1 and a combination of OZPY-1 with the IBI method 

(OZPY-1+IBI). As a simple one step method, the OZPY-1 method possesses an advantage in 

computational efficiency. Using the potential from OZPY-1 as an initial guess, the IBI method 

showed fast convergence.  The CGMD simulations of PEG chains with DP = 20 using potentials 

from both methods satisfactorily reproduced the structural properties from atomistic MD 

simulation of the same systems. The OZPY-1+IBI method yielded better agreement than the 

OZPY-1 method alone. The new CG model and CG potentials from OZPY-1+IBI method were 

further tested through CGMD simulation of PEG with DP = 40 system. No significant changes 

were observed in the comparison of PCFs from CGMD simulations of PEG with DP = 20 and 40 

systems, indicating that the potential was independent of chain length.  

    In Chapter 6, atomistic and CG models of sxPCHD were developed and implemented in 

MD simulations of sxPCHD chains with architectures that are specifically aimed for application 

as a proton exchange membrane used in fuel cells. An atomistic force field for the architectures 

was tested and applied in the atomistic MD simulation of sxPCHD for the first time. The CG 

nonbonded potential was parameterized to the PCF using the IBI method. The CGMD 

simulations of cross-linked sxPCHD system using potentials from above method satisfactorily 

reproduced the structural properties from atomistic MD simulation of the same system. The new 

CG model and CG potentials was further tested through CGMD simulation of sxPCHD with 

three chains cross-linked system. No significant changes were observed on the comparison of 
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PDFs and PCFs from CGMD simulations of two chains and three cross-linked systems.  

    In Chapter 7, atomistic and CG models of sxPCHD were further applied in hydrated 

sxPCHD membrane system. The atomistic level simulation generated sxPCHD structures in an 

aqueous environment. The effective potentials obtained from IBI method for sxPCHD polymer in 

hydrated membrane, where water and hydronium ion were made implicit, satisfactorily reproduce 

the structural properties from atomistic MD simulation of the same system, where water and 

hydronium ion was explicit. Both the structures and potentials are greatly different from that of 

bulk sxPCHD. 

 

8.2. SIGNIFICANCE 

            In this work, both atomistic MD and CGMD simulation approaches have been used to 

study the structural, thermodynamic and transport properties of polymeric systems at 

equilibrium. The atomistic MD was used to parameterize the CG effective potentials. The 

dissertation focused on both the development of techniques for generating CG potentials as well 

as the application of CG potentials in CGMD simulations. It is approached through three 

categories of efforts. The first effort was to develop an improved procedure for generated CG 

potentials from structural data obtained from atomistic simulation of short chains. An inverse 

procedure based on the Ornstein-Zernike integral equation with the Percus Yevick 

approximation (OZPY-1) was developed to meet this purpose. The applications on monatomic 

and diatomic Lennard-Jones fluid, showed that the OZPY-1 method is simple, fast and 

straightforward, compared with existing methods on obtaining the effective potentials. Since it is 

based sound statistical mechanics, the method also has an advantage on computational accuracy. 

Moreover, it can be generalized to different systems of interests since the only input needed is 

structural distributions (PCFs).  

           The second effort was to apply the OZPY-1 to CG modeling of PET and PEG. In the case 

of PET, we performed a thorough analysis of structural, thermodynamic and transport properties 

from the monomer to a DP of 50.  The information can help modeling of finishing reactor of 

PET production. We were able to study these properties’ chain length dependence and extract the 

scaling exponents. The information can be used to study polymer physics. For example, by 

studying the scaling exponents from polymer physics, we were able to show for each property 
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where they obeyed Rouse-like behavior at short chain lengths, where they obeyed reptation 

theory at long chain lengths, and where deviations from these theoretical expectations occurred. 

In the case of PEG, we developed an understanding of the strengths and limitations of various 

procedures for generating CG potentials. In a CG model that have only one or two types of CG 

beads, both OZPY-1 and IBI methods can satisfactorily reproduce the structural properties from 

atomistic MD simulation while the OZPY-1 method has advantage on computation efficiency. As 

the complexity of the CG model increases, the traditional IBI method begins to show its 

advantage on generating effective CG potentials. As the local environment becomes 

heterogeneous around each bead, the traditional IBI method may also fail. This understanding 

will eventually help the future application of CG procedure to different polymeric systems. 

           The third effort was to apply the CG procedure to a model sulfonated and cross-linked 

Poly (1, 3-cyclohexadiene) (sxPCHD) polymer that is designed for future application as a proton 

exchange membrane material used in fuel cell. The traditional IBI method proved successful for 

the homogeneous sxPCHD melt, which had four types of beads. Using the effective potentials 

from the IBI method, the CGMD simulations generate structures of sxPCHD melt with different 

architecture, which will help understanding the properties of this membrane material.  Even the 

traditional IBI method failed for the heterogeneous hydrated sxPCHD membrane, which had six 

types of beads. There the solution involved the implicit incorporation of some bead types into the 

CG potentials of the remaining beads. Using the derived potentials, the CGMD simulation 

provides the first glimpses of the nanoscale morphology of the hydrated membrane.  An 

understanding of this structure is important in the prediction of proton conductivity in the 

membrane.  Subsequent design of membranes can be guided by the understanding of this 

structure/property relationship. 

           All these efforts will eventually provide understanding on (i) polymer physics at different 

time and length scales, (ii) strengths and limitations of various CG effective potential generation 

methods, and (iii) polymer structures in melt and solution under effective CG level interactions. 

These understandings will help on new polymer product development, polymer processing 

technology improvement and new application design.       

       

8.3. FUTURE WORK 
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           The findings based on current work enable us to foresee some future work. First, the 

OZPY-1 method can be applied to various CG modeling systems, including polymer melt, 

polymer solutions, simple fluid either pure or mixture. It has been successfully applied to obtain 

the effective potentials for the nanoparticles in suspension.2 Since density is a key issue in the 

OZPY theory, an iterative method can be developed in the future to improve the performance of 

the OZPY-1 method on high density liquid.  

      Second, the dynamic properties for long chain polymeric systems can be further studied 

with a better understanding of the artificially accelerated dynamics in CG level simulation. Some 

efforts have been made towards this direction by the other groups.3,4  For both the Rouse and 

reptation model, the local motion is governed by a scalar friction coefficient. For modeling of a 

polymer melt, the bead friction depends on the specific model used to represent the polymer. 

Compared with atomistic model, softer potentials result in a reduced friction coefficient and 

faster dynamics in the CG model. The problem can be solved by introducing a time scaling 

factor based on mapping of mean squared displacement (MSD) from CGMD simulation to that 

of atomistic MD simulation. All dynamic properties (D, η) can be scaled using this single time 

scaling factor. 

      Third, Since the CG force fields for sxPCHD and PEG have been parameterized, 

Molecular level structures at large length scales can be studied using the proposed CG models. 

Then water and proton transport can be further studied using a procedure developed by the 

group.5-7 An analytical model for water and charge transport in highly acidic and highly confined 

systems such as proton exchange membranes of fuel cells was developed in that work. The 

model accounts for three factors in the system including acidity, confinement, and connectivity. 

The model uses the concentration of H3O+ ion to characterize acidity, interfacial surface area per 

water molecule to characterize confinement, and percolation theory to describe connectivity. 

Once the system is defined, the acidity is known. The CGMD simulation can provide 

information on confinement and connectivity. This procedure and the transferability of the 

obtained CG potentials can be further tested through the applications on CG simulation 

sxPCHD/PEG blends and sxPCHD-PEG copolymers, using procedures described in the 

literature.8  
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