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Abstract

While rheological and microstructural complexities have posed tremendous challenges

to researchers in developing first principles models and simulation techniques that can

accurately and robustly predict the dynamical behaviour of polymeric flows, the past

two decades have offered several significant advances towards accomplishing this goal.

These accomplishments include: (1). Stable and accurate formulation of continuum-

level viscoelastic constitutive models and their efficient implementation using operator

splitting methods to explore steady and transient flows in complex geometries, (2).

Prediction of rheology of polymer solutions and melts based on micromechanical

models as well as highly parallel self-consistent multiscale simulations of non-

homogeneous flows. The main objective of this study is to leverage and build upon the

aforementioned advances to develop a quantitative understanding of the flow-micro-

structure coupling mechanisms in viscoelastic polymeric fluids and in turn predict,

consistent with experiments, their essential macroscopic flow properties e.g. frictional

drag, interface shape, etc. To this end, we have performed extensive continuum and

multiscale flow simulations in several industrially relevant bulk and free surface flows.

The primary motivation for the selection of the specific flow problems is based on

their ability to represent different deformation types, and the ability to experimentally

verify the simulation results as well as their scientific and industrial significance.
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Chapter 1

Introduction

Polymer and polymer matrix composite industries represent a significant portion (i.e.,

15%) of the manufacturing segment of Gross Domestic Product (GDP) [Gilmore

et al. (2011)]. These industries produce a variety of products ranging from household

utilities to flexible packaging, and from state-of-the-art electronic components to high

performance composites used in aeronautical and biomedical applications. Economic

projections indicate that these industries can grow by 35% over the next ten years by

improving existing products, developing new products for future markets, as well as

creating more efficient and environmentally friendly processes [BASF (2010)].

A large percentage of the cost of polymeric materials can be attributed to the

expensive fabrication step in processing/manufacturing of these materials [Thayer

(1990)]. This is primarily because of the large lead-time from design to production

that consists of several expensive experimental trials to estimate the right design

and operating conditions that can yield a product with the desired microstructure

and solid-state properties [Yourdon (1989)]. Hence, if reliable process models that

can describe the inter-relationship between macroscopic processing parameters (e.g.

temperature, die geometry, flow rate) and microstructure evolution during processing

(that ultimately determines the final solid-state product properties) can be developed,

they will greatly facilitate rapid and economical process design leading to significant
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reduction in the lead-time and cost associated with product development. Recognition

of this fact has led to a number of research initiatives among academia and industry

focusing on model-based design of polymeric materials processing [Gupta et al. (2004);

Baaijens et al. (1994); Schoonen et al. (1998); Kommu et al. (1998); Keunings (1997)].

However, to date such efforts have been primarily focused on development of the

continuum-level process simulation software where macroscopic mass, momentum,

and energy conservation laws are coupled with a closed from constitutive equation

for prediction of polymer stresses. Although, the use of these simulation tools has

aided in process design and optimization, their utility is limited as continuum-level

simulation models are inadequate in providing quantitative predictions of critical

parameters in design and optimization of the process (e.g., pressure drop in complex

shaped dies, residual stresses, onset conditions for hydrodynamic, thermal or thermo-

elastic instabilities etc.) [Abedijaberi and Khomami (2011); Baaijens et al. (1994);

Beraudo et al. (1998)]. More importantly, the approximations involved in derivation

of continuum-level constitutive equations often sacrifice details of microstructure

development for the sake of reducing the model/computational complexity. Hence,

while such models are excellent exploratory tools, they are incapable of predicting

the processing-structure-solid state property/performance relationships that are

indispensable for the modern product development and design practice. This

motivates the use of multiscale models.

Multiscale engineering, i.e., engineering of systems or processes in which the

properties of the final product depend on phenomena that occur at different

length and time scales, has emerged as a paradigm for engineering practice for

the 21st century. Development of faithful, predictive models of such complex

phenomena has been a central goal of the scientific pursuit. Phenomenology

and empiricism, traditionally employed to quantify cause-effect relationships, lack

predictive capabilities and provide little mechanistic insight. In principle, the most

detailed description of a system can be obtained from simulations that track the

evolution of a large ensemble of its smallest mutually interacting constituents.
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However, due to prohibitively large computational overhead, it is impractical to use

such simulations to span the length and/or time scales of interest to practical polymer

processing applications. We envision a multiscale simulation as the optimal simulator

that accurately and self-consistently links the essential information from different

scales required to predict system/process-level features. While the emerging role of

multiscale modeling and simulations (MMS) has been reshaping R&D in several areas

of materials processing and manufacturing [e.g. see excellent reviews by Vvedensky

(2004),Nieminen (2002) and Maroudas (2000)] and influencing graduate curricula

in science and engineering [Hung et al. (2004)], it has not yet been systematically

pursued for process/system-level design/control in the polymer processing industry.

The main objective of this study is to leverage and build upon the aforementioned

advances to develop a quantitative understanding of the flow-microstructure coupling

mechanisms in viscoelastic polymeric fluids and in turn predict, consistent with

experiments, their essential macroscopic flow properties e.g. frictional drag, interface

shape, etc. To this end, we have performed extensive continuum and multiscale flow

simulations in several industrially relevant bulk and free surface flows. The primary

motivation for the selection of the specific flow problems is based on their ability

to represent different deformation types, and the ability to experimentally verify the

simulation results as well as their scientific and industrial significance. The thesis is

organized as follows. The governing equations and computational techniques used in

this study are described in chapter 2. In chapters 3 to 7 the results of our extensive

continuum and multiscale simulation of polymeric flow in the cross-slot geometry, flow

past bluff objects and the dip coating and wet plunging flows are summarized. To

put into context our own studies, in each chapter a basic introduction to the problem

as well as a brief overview of the state-of-the art in understanding of the flow-micro-

structure coupling mechanisms is provided. Finally in chapter 8 an overall summary

of aforementioned studies as will as future work directions are presented.
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Chapter 2

Problem Formulation

The equations of motion and continuity for creeping steady flow of an incompressible

fluid in the absence of body forces are:

− ~∇P + ~∇.τ = 0 (2.1)

~∇.~u = 0 (2.2)

where ~u, P , and τ are the velocity vector, isotropic pressure and the deviatoric stress

tensor, respectively. The governing equations are non-dimensionalized with respect to

the halved channel width, H, and average inflow velocity, V , in the case of cross-slot

flow, the sphere radius, a, and the terminal velocity of the sphere, Us in the case

of sphere sedimentation in a tube, cylinder radius, a, and the mean velocity in the

channel, Uave, in the case of flow past a cylinder in a channel and the halved channel

width, b, and wall velocity, Uw, in free surface displacement flows. In this study, the

deviatoric stress is split into a polymeric and a solvent contribution:

τ = τs + τp (2.3)

where the solvent contribution is assumed to be Newtonian described by Newton law:
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τs = 2βγ̇ (2.4)

In the above equation, β = ηs/η0 is the ratio of the solvent to the total viscosity and

γ̇ is the rate of deformation tensor, which is defined as

γ̇ =
1

2

(
~∇~u+ (~∇~u)t

)
(2.5)

The system of equations is closed by selecting an appropriate constitutive equation

or a micromechanical model for the polymeric stress. The constitutive models that

have been developed to date can be broadly classified as the differential or integral

type models with a closed form expression for the polymeric stress, and kinetic theory

or atomistic based models in which the polymeric stress is predicted from ensemble-

averaged microstructural quantities. In this thesis both closed form constitutive

equations and kinetic theory based elastic models have been used to describe the

polymeric contribution to the deviatoric stress.

2.1 Constitutive Equations

In Newtonian fluid mechanics the constitutive law is the same for all fluids. However,

there is no universal constitutive model for polymer solutions and melts which can

accurately describe the relation between the polymeric stress and deformation caused

by fluid motion. Many constitutive models have been developed through the use of

kinetic theory. The selection of an appropriate constitutive model for the polymer

solution/melt under study is critical as it greatly impacts the fidelity of the final

solution to a given problem, since the accuracy of the computed results is highly

dependent on the ability of the constitutive model to realistically model the rheology

of the fluid under consideration.
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2.1.1 Oldroyd-B model

The Oldroyd-B model is derived using the kinetic theory of dilute polymeric solutions

[Bird et al. (1987)]. The polymer molecules are modeled as Hookean elastic dumbbells

in a Newtonian solvent:

τp +Weτp(1) = 2(1− β)γ̇ (2.6)

where We is the Weissenberg number defined as We = λV/H, λ is the polymer

molecule relaxation time, V is the characteristic velocity, H is the characteristic

length and subscript (1) denotes to the upper-convective derivative defined as:

τp(1) =
∂τp
∂t

+ ~u.~∇τp − (~∇~u)t.τp − τp.(~∇~u) (2.7)

It has been shown that the Oldroyd-B model provides a reasonable description

of the rheological behavior of dilute polymeric solutions in shearing flows. However,

in elongational flows Oldroyd-B model predict infinite elongational viscosity at finite

strain-rates which is obviously aphysical.

2.1.2 FENE-P Model

In order to remedy the aforementioned deficiency of linear Hookean dumbbell model

in elongational flows, the dumbbell spring models are formulated based on finitely

extensible non-linear elastic (FENE) spring force law instead of the Hookean force

law. The commonly used FENE spring force was proposed by Warner [Warner (1972)]:

~F =
H ~Q

1−Q2/b
(2.8)

In the above equation, H is the spring constant, ~Q is the dumbbell connectivity

vector, Q is the length of the connector vector and b is the maximum extensibility

of the spring. Using this force law, a closed form constitutive equation can not be

derived; hence, to arrive at a Constitutive equation a closure approximation has to be
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involved. The Peterlin approximation is the most commonly used approximation in

driving a closed form constitutive equation for dilute polymeric solutions [Bird et al.

(1987)]:

~F ∼=
~Q

1− 〈Q2〉 /b
(2.9)

where 〈Q2〉 is the ensemble average square of the end-to-end distance. Utilizing this

form of the force law, an evolution equation for the conformation tensor, A =
〈
~Q~Q
〉

,

and the corresponding polymeric stress can be obtained,

DA

Dt
= κ.A+A.κt − 1

We

A

1− Tr(A)
+

δ

We
(2.10)

τp =

(
1− β
We

)(
b+ 3

b

)(
A

1− Tr(A)/b
− δ
)

(2.11)

where δ is the unit tensor Tr(.) is the tensor trace operation.

2.1.3 FENE-CR Model

It has been shown that the FENE-P model gives rise to a shear rate dependent

viscosity [Bird et al. (1987)]. Since many experimental studies make use of Boger fluid

which has practically a shear rate independent viscosity while being highly elastic,

Chilcott and Ralison [Chilcott and Rallison (1988)] have developed a constitutive

model which is still based on the FENE-P description but gives rise to a constant

shear viscosity. The polymeric stress contribution to deviatoric stress for this model

(CR) is given by

τp =
1− β
We

f(R)(A− δ) (2.12)

where, similar to FENE-P model, A is the configuration tensor obeying the following

evolution equation

7



WeA(1) = f(R)(δ −A) (2.13)

where f(R) is the connector force. Upon elimination of tensor A from the above

equations, we obtain the following equation to describe the polymeric stress

τp +We(τp/f)(1) = 2(1− β)γ̇ (2.14)

where

f =
(b+ 1−β

We
Tr(τp))

(b− 3)
(2.15)

2.1.4 Giesekus Model

Up to now we have described constitutive equations that have been mainly developed

to describe the rheological properties of dilute polymeric solutions. However, The

Giesekus model [Giesekus (1982)] which is also derived from an elastic dumbbell

theory, is capable of describing the behavior of concentrated polymer solutions and

melts. Because of the large polydispersity of the LDPE melt used in the cross-

slot study (see chapter 3), a multi-mode Giesekus model has been used to model

the system. In this model the polymeric contribution to the total deviatoric stress

associated with each mode i (1 6 i 6M) is described by

τpi + λiτpi(1) +
αiλi
ηi

(τpi · τpi) = 2ηiγ̇ (2.16)

and the total polymeric stress is given by

τp =
M∑
i=1

τpi (2.17)

The parameter αi in Eq. (2.16) is the mobility parameter and satisfies 0 6 αi 6 1.

In chapter 3, The values of αi are set less than 0.5 to ensure monotonic increase of

shear stress with shear rate. The origin of this term is associated with the anisotropic
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hydrodynamic drag observed in concentrated solutions and melts. For each mode,

we introduce the dimensionless relaxation time Λi = λi/λ and the dimensionless

polymeric viscosity βi = ηi/η0 so that Eq. (2.16) can be rewritten in dimensionless

form as

τpi +WeΛiτpi(1) +
αiWeΛi

βi
(τpi · τpi) = 2βiγ̇, (2.18)

2.2 Kinetic Theory Based Elastic Models

In kinetic theory based description of the polymer molecules, the polymer dynamics

at the mesoscopic level is described by a FENE dumbbell or a bead-spring chain and

τ p is evaluated using the Kramers’ expression [Bird et al. (1987)]:

τp =

(
1− β
We

)(
bs + 5

bs

) N∑
i=1

(〈
~Fi ~Qi

〉
−
〈
~Fi ~Qi

〉
eqbm

)
(2.19)

where, N is the number of segments in the bead-spring chain, bs = NHQ2
0/kBT ,

Q0 is the maximum extensibility of each segment, H is the spring constant, ~Qi

is the segmental connectivity vector which is non-dimensionalized with respect to

its equilibrium length
√
kbT/H,

〈
~Fi ~Qi

〉
eqlb

= δ and 〈.〉 is the average (or the

expectation) over the entire ensemble, and ~Fi is the nonlinear FENE force law for the

ith segment given by:

~Fi =
~Qi

1− (NQ2
i /bs)

(2.20)

Where Qi is the length of ith segment.

The temporal evolution of the segmental connectivity vector ~Qi of ith segment

of the FENE bead-spring model under flow is determined using the BCF approach

[Hulsen et al. (1997); Somasi and Khomami (2000)] since it is ideally suitable for

implementation in the finite element context. The BCF evolution equation for the

segmental connectivity is given as:
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d ~Qi(x, t) =
[
−~u(x, t).~∇ ~Qi(x, t) + κ(x, t). ~Qi(x, t)−

~FE
i

4We

]
dt

+
√

1
2We

[
d ~Wi+1(t)− d ~Wi(t)

] (2.21)

where

~FE
i =


−2~Fi + ~Fi+1; i = 1,

~Fi−1 − 2~Fi + ~Fi+1; 1 < i < N,

~Fi−1 − 2~Fi; i = N

(2.22)

and κ is the transpose of the velocity gradient (i.e. κ = (~∇~u)t), and d ~Wi(t) is the

Wiener process which accounts for the Brownian force experienced by the ith beads.

The Wiener process is mathematically represented by a Gaussian random vector with

zero mean and variance dt, the time step in the problem.

2.3 Computational Technique

We have used the DEVSS-G (Discrete Elastic Viscous Split Stress - Gradient of

velocity) finite element method to solve the set of governing equations [Khomami et al.

(1994); Koppol et al. (2007); Somasi et al. (2002); Talwar et al. (1994); Talwar and

Khomami (1992)]. As has been shown in previous studies [Szady et al. (1995)], this

is an efficient and robust technique to solve steady and time-dependent viscoelastic

flow problems. The weak forms of the momentum and mass conservation equations

using the Galerkin procedure is given below:

[
(~∇~v) :

(
~∇~u+ (~∇~u)t − Pδ + τp − (1− β)

(
G+Gt

))]
= [~v : ~σ]Γ (2.23)

[
q; ~∇.~u

]
= 0 (2.24)
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[
g : (G− ~∇~u)

]
= 0 (2.25)

In the above equations G is the discrete interpolant for the velocity gradient (~∇~u).

[a : b] (or [a; b]) and [a : b]Γ are the standard inner products of (a, b) in the

domain Ω and on the boundary Γ , respectively; ~σ is the traction vector on the

boundary. Standard polynomials based on the Legendre functions are used as the

weighting functions [Szabo and Babuska (1987)]. Specifically, we have used continuous

biquadratic polynomials for the velocities and continuous bilinear polynomial for

pressure and the velocity gradient [Szabo and Babuska (1987)].

The closed form constitutive equation, FENE-P for example, and the segmental

connectivity vector equations are discretized using the SUPG technique [Brooks and

Hughes (1982)]:

[(
τp +We (τpz)(1) + (1− β) (Iz)(1)

)
: Y
]

= 0 (2.26)

 d~Qi −
(
−~u.~∇ ~Qi + κ. ~Qi + 1

4We
~FE
i

)
dt

−
√

1
2We

(
d ~Wi+1(t)− d ~Wi(t)

)
 : Y = 0 (2.27)

where Y is selected from the bilinear continuous polynomial space (p=1).

For the FENE dumbbell or the bead-spring chain, τp is evaluated using the

Kramers’ expression via a Galerkin projection method:

[(
τp −

(1− β)

We∗

N∑
i=1

(〈
~Fi ~Qi

〉
− δ
))

: m

]
= 0 (2.28)

where m is chosen from the bilinear continuous polynomial space (p=1).
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Chapter 3

Flow of branched polymer melts in

a lubricated cross-slot channel: a

combined computational and

experimental study

3.1 Introduction

The non-Newtonian flow characteristics of polymer melts strongly impact the vast

majority of processing operations used to manufacture polymeric products such

as mixing, extrusion, fiber spinning, film blowing or injection molding [Dealy and

Wissbrun (1990)]. Quantitative prediction of velocity and stress distributions in

complex flows of polymers is a challenging goal which offers the promise of more

effective processing operations and designs. Advances in computational algorithms

have largely resolved the long-standing Weissenberg or Deborah number problem

that had limited numerical simulations to weakly elastic conditions for many years

[Keunings (2001)]. The steady growth of computational power has made it possible to

employ multiple-mode differential or integral constitutive equations that accurately
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reflect the distribution of relaxation times of real polymers and to perform time-

dependent calculations in complex geometries. To date, stress distributions from

flow birefringence measurements together with finite element (FE) computational

studies in stagnation flows have shown to provide effective critical tests of constitutive

model performances in complex flows [Li et al. (1998, 2000); Burghardt et al. (1999a);

Feigl and Ottinger (1996)]. In this context, it has become highly relevant to derive

constitutive models which can not only predict the linear and non-linear flow behavior

of polymeric fluids in shear or extension but also be proven effective in describing non-

homogeneous flows involving mixed shear and extensional deformations. In recent

years, coordinated experimental/computational studies of polymeric systems have

typically employed multiple-mode versions of various differential (Giesekus, Phan-

Thien Tanner, Bird-DeAguiar) or integral (Wagner, Papanstasiou-Macosko-Scriven)

constitutive equations [Bird et al. (1987)]. Such models have had reasonable but

not universal success in predicting the behavior of polymer melts and solutions.

Specifically, it has been established that the multimode Giesekus model performs

exceptionally well in predicting the flow kinematics and stress field of moderately

concentrated polymeric solutions under steady state conditions up to moderate

Weissenberg numbers [Li et al. (1998, 2000); Burghardt et al. (1999a)]. In cross-slot

geometries for instance, the Giesekus model has been used by Schoonen [Schoonen

et al. (1998)] to perform a three-dimensional (3D) analysis of the stagnation flow of a

polyisobutylene solution. However, the presence of end effects close to the stagnation

point led to experimental birefringence optical data up to three times higher than the

numerical simulation predictions. In a flow channel similar to Schoonen et al., Peters

[Peters et al. (1999)] studied the performances of the Giesekus model in predicting

the complex flow of a polyethylene melt using birefringence isochromatic fringe

pattern measurements. Large deviations between the 2D viscoelastic simulations

and the experimental results were located downstream of the stagnation point and

mainly attributed to end effects and beam deflections. In the same cross-slot device,

Verbeeten [Verbeeten et al. (2002)] further compared the extended Pom-Pom and
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Giesekus model predictions with experimental results along the channel symmetry

line and observed an over predicted maximum stress in the vicinity of the stagnation

point due to possible end effects in the stagnation region of the flow cell. To date,

end effects in flow birefringence experiments have largely prevented from a rigorous

evaluation of the Giesekus model predictions in complex mixed flows of polymeric

systems. In this study, we aim at assessing the performances of the multi-mode

Giesekus model in describing the flow behavior of a LDPE melt flowing in an actual

2D flow channel recently developed by Soulages [Soulages (2007)].

3.2 Flow birefringence of polymer melts

Stress distribution measurements using flow birefringence in mixed kinematics flows

of polymer melts provide a stringent test of the predictive capabilities of constitutive

equations. Flow-induced birefringence is one of the most prevalent non-invasive

techniques which allow a complete mapping of stress fields in polymeric systems

under flow. In flow birefringence experiments, the direct relationship between the

optical and molecular anisotropy expressed by the stress-optical rule is exploited

to measure the flow induced polymeric stresses [Fuller (1995)]. Most methods

for measuring flow birefringence involve passing a light beam through a flowing

birefringent medium in order to capture the resulting optical anisotropy averaged

along the optical path. Thus, the flow should be 2D in order to guarantee that

the optical properties do not vary along the light path. In reality however, the

confining walls of the experimental geometry inevitably lead to end effects. That is

why many researchers have resorted to utilizing large aspect ratio flow channels to

minimize the influence of the parasitic shear gradients near the sidewalls. Indeed,

they commonly refer to the study of Wales generally considered as an experimental

evidence that end effects become negligible in channels having an aspect ratio greater

than 10 [Wales (1976)]. Contrary to this generally accepted view, working with

a large aspect ratio is not sufficient to guarantee 2D flows. Recently, systematic
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studies have conclusively shown that the stress gradients along the beam path near

the confining walls cause uncertainties in the effective extinction angle measurement

which can impossibly be eliminated working with large aspect ratios [McHugh et al.

(1987); Ottinger (1999)]. To circumvent the difficulties associated with creating

2D flows, a few researchers have used axisymmetric geometries and compared the

integrated optical measurements with numerical simulation predictions to assess the

performances of various constitutive models [Li et al. (1998, 2000); Burghardt et al.

(1999a)]. Although the computational demands in such studies are equivalent to those

encountered for simulating 2D flows, accurate experimental measurements are very

challenging due to parasitic wall effects or laser beam spread. Alternatively, one can

perform 3D simulations and compare the integrated stresses along the light path with

experimental data. However, the computational burden associated with performing

3D simulations in complex flow geometries with realistic multimode constitutive

equations is orders of magnitude higher than 2D simulations and requires significant

super computing resources. In addition, end effects in 3D flows prevent from a

reliable measurement of the extinction angle as the small retardance approximation

is not valid for polymer melts exhibiting multiple orders of retardation. Those

difficulties have motivated a recent work by Soulages [Soulages et al. (2008)] based on

a novel optical cross-slot channel rheometer whose front and back viewing widows are

lubricated so that a complex two-dimensional isothermal flow is created. Lubricating

sidewalls not only eliminates the stress gradients near the walls and subsequently the

end effects but also makes it possible to use small aspect ratios. This latter property

presents the advantage of working with a perfectly collimated beam over the entire

channel depth and offers a better control of the temperature in the flow cell.
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3.3 Problem formulation

The test fluid in this study is described using multimode Giesekus model and the

numerical technique used in this study is the higher-order-discrete-elastic-viscous-

stress (hp-DEVSS) finite element method , see chapter 2. Both slip and symmetry

boundary conditions have been used. In particular, we introduce a slip velocity uslip

so that the velocities on the sidewalls verify ~u · ~t = uslip and ~u · ~n = 0 where ~t and

~n represent unit vectors respectively tangent and normal to the boundary walls in

the laboratory frame defined in figure 3.1. In addition, the in- and outflow channel

centerline velocities together with the ~τxy component of the stress tensor are set to

zero due to symmetry. At the channel inlet, the velocity profile (uy = uy(x) and

ux = 0) and the necessary components of the stress tensor are specified by assuming

a fully developed flow. At the exit, a fully developed velocity profile (ux = ux(y)

and uy = 0) is also specified. For most nonlinear constitutive equations such as

the Giesekus model, analytical solutions are not available even under fully developed

conditions. Thus, the fully developed inlet and outlet boundary conditions were

generated numerically in a mesh with the same number of nodes and node locations

as the mesh used in the inflow and outflow channels of the flow computations. Due

to the inherent symmetry of the flow channel, the computational domain is restricted

to one quarter of the flow domain as shown in figure 3.1. It is divided into a number

of quadrilateral elements to obtain an approximation to the exact solution. In order

to check the accuracy of the calculations, we have selected three structured meshes

based on the same topology and illustrated in figure 3.2. The mesh with the lowest

discretization in figure 3.2a was chosen according to the results from meshes used to

generate the fully developed inlet and outlet boundary conditions. In all meshes, the

nodes were pushed towards the experimental geometry walls in order to capture the

sharp velocity and stress gradients close to these boundary layers. The other node

positions were calculated in order to guarantee a satisfactory number of nodes near

the stagnation point while avoiding drastic size differences between nearby elements.
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The finest meshes in figures 3.2b–c were designed to provide refinements in the regions

where oscillations in stresses were observed. The full system of discretized equations

is solved using a frontal solver Newton-Raphson iteration method. Details of this

method can be found in [Talwar and Khomami (1992)]. In the Newton-Raphson

method, convergence is ensured if the initial guess is sufficiently close to the exact

solution. To ensure a good initial guess, we have used the Weissenberg number,

We as the continuation parameter in our calculation. To do so, We was first set to

zero and the linear Newtonian flow problem was solved. Next, the solution of this

calculation was used as a guess for the next We. Increments of 0.01 to 0.25 were

used to capture the solution up to We equals 29. The convergence criterion used in

the Newton-Raphson scheme is
∑e

i=1 ∆a2
i ≤ 10−6 where ∆a2

i = (ak+1
i − aki )2 and aki

represents the value of the unknown expansion coefficients at the kth iteration.

Figure 3.1: Schematic view of the computational domain of the cross-slot flow
channel.
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a)         b)                                             c)

Figure 3.2: Finite element meshes with a) 3492 b) 4500, and c) 6400 elements.
(cross-slot flow channel).

3.4 Experiment

3.4.1 Experimental Setup

A complete description of the flow geometry and lubrication technique can be found

in [Soulages et al. (2008)]. The experimental geometry is shown in figure 3.3. The

channel consists of four transparent arms of length 50 mm, which are made visible

using flush-mounted glass viewing windows. The width and height of the flow cell

equal 12 and 6 mm so that its aspect ratio is 0.5. In the vicinity of the stagnation

point, rounded corners with a radius of 3 mm ensure a smooth transition between

the channel in and outlets. At each arm entrance, a set of two opposite oil slits

delivers the lubricant (silicone oil) at a constant volumetric flow rate. The lubricant

flow rate can be optimized at any time during an experiment using birefringence and

particle tracking velocimetry measurements and the oil pressure is monitored so that

planar conditions can effectively be reached. The lubricant is dragged along the glass

windows by the incoming polymer streams, resulting in an oil film whose thickness

is of the order of several microns. The two opposed polymer melts impinge in the

middle of the flow cell and exit the channel through its two horizontal arms. The

entire channel is fixed to a computer-controlled XY-translation stage so that flow

birefringence can be measured in the channel transparent section.
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Figure 3.3: Experimental setup: the cross-slot flow channel is attached to an
XYtranslation stage whereas the flow-induced birefringence optical elements are
mounted on a fixed stone support plate.

In our study, the stress field is obtained from pointwise flow-induced birefringence

measurements [Fuller (1995)]. The optical rail is visible in figure 3.3 and is identical

to [Galante (1991)]. This technique is based on a polarization modulation method

which is thoroughly described in [Soulages (2007)]. It allows a direct measurement

of the retardation δ and extinction angle χ of the birefringent polymer melt within

the laser beam diameter of 120 µm. The dc component (Idc) of the modulated light

intensity collected at the detector is measured by means of a low pass filter whilst

the first and second Fourier components (Iω and I2ω) are sampled using two lock-in

amplifiers. After the experimental determination of the calibration constants (J1 and

J2), the ratios of the Fourier components to the dc intensity make it possible to define

optical signals which directly relate the optical properties to the sample retardation

δ and extinction angle χ and read

Rω = − Iω
2J1Idc

= sin(δ) cos(2χ),

R2ω =
I2ω

2J2Idc

= sin2

(
δ

2

)
sin(4χ). (3.1)
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Eq. (3.1) only involves trigonometric functions of χ and δ. In practice, polymer melts

show very large levels of birefringence with retardations δ often exceeding 2π. Except

in the fully developed region, we could not easily spatially determine the number

of multiples of 2π for the retardation in the entire flow cell. That is why we have

restricted our analysis to the optical data of Eq. (3.1) in which χ and δ could be

numerically computed from the stress tensor simulation predictions using the stress-

optical rule and according to

χ =
1

2
tan−1

(
2τxy

τxx − τyy

)
, δ =

4πdC

λ

τxy
sin(2χ)

, (3.2)

where the x-axis is associated to the flow direction in figure 3.1, λ is the wavelength

of the light beam, d is the channel thickness and C is the stress-optical coefficient.

This coefficient was set to C = 1.7 × 10−9 Pa−1 as determined in [Soulages (2007)].

For polymer melts, the validity of the stress-optical rule has extensively been shown

in shear flows [Janeschitz-Kriegl (1983); Wales (1976); Rajagopalan et al. (1992)].

In uniaxial elongational flows, it has recently been proven for applied stresses not

exceeding 1 MPa [Venerus et al. (1999); Luap et al. (2005, 2006)]. Beyond this value,

the failure of the rule is often associated to the chain finite extensibility [Kroger

(2004)] but the critical stress levels are generally not accessible in practice [Kroger

et al. (1997)].

In this work, the velocity field in the fully developed inflow region of the flow cell

is obtained from particle tracking velocimetry measurements to allow us to determine

the slip velocity at the channel lateral walls in Section 3.5.1. The experimental

technique is extensively described in [Soulages (2007)]. Tracer particles mixed with

the polymer melt are illuminated from the front so that the marker displacements

can be tracked as a function of time and imaged onto a CCD camera. Anywhere else

in this work, the velocity field is directly derived from the finite element calculations

and used to compute the predicted optical results.
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3.4.2 Fluids and its Rheological Characterization

Our test fluid is a commercial grade of low density polyethylene (LDPE 1810H

from Basell). In this study we have used 11-mode Giesekus model as it provides

a good fit to the rheological measurements. The parameters of this model (i.e.

λi, ηi, αi) associated with each mode can be determined from the linear and nonlinear

rheological characterization of test fluid. Specifically, the relaxation spectrum can

be determined from linear viscoelastic measurements via regression analysis and

the nonlinear parameters (i.e. αi) can be determined from shear and elongation

characterizations. The linear viscoelastic data with the model fit of the parameters

is shown in figure 3.4. The solid lines in figure 3.4 represent the 11-mode fit

to the linear viscoelastic properties; the linear viscoelastic parameters are given in

Table 3.1. After obtaining the relaxation time and viscosity spectrum by fitting the

linear viscoelastic properties, the nonlinear model parameters, α, are determined as

follows; first considering the same value of α for all modes, the optimum α value

is obtained by fitting the model predictions to the steady shear data, namely the

shear viscosity and the first normal stress difference N1 (see figure 3.5). This is done

by minimizing the weighted least squares of the deviations of the model predictions

from the N1 and shear viscosity experimental data. Next, the α for each mode is

individually fine-tuned to fit the uniaxial extensional viscosity data, figure 3.6. The

nonlinear parameters calculated in this way are also given in Table 3.1. Overall the

Giesekus model is capable of providing a good description of shear (i.e., viscosity and

first and second normal (figure 3.5) stresses) and elongation rheology (figure 3.6)

for a branched entangled polymer, LDPE.
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Figure 3.4: Storage (open symbols) and loss (full symbols) module at 170◦C together
with the calculated spectrum predictions (full lines).

Figure 3.5: Steady shear viscosity (open circle symbols), first (full circle symbols)
and second (full square symbols) normal stress difference at 170◦C together with
the Giesekus model predictions (open square symbols for the second normal stress
difference and full lines for the shear viscosity and the first normal stress difference).
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Figure 3.6: Uniaxial extensional viscosity (open symbols) measured at 170◦C
together with the Giesekus model predictions (full lines). Hencky strain rate range:
0.88, 0.25, 0.1, 0.028, and 0.00971 [s−1].

Table 3.1: Giesekus parameters: ηi, λi, obtained from linear viscoelasticity data
and αi from steady shear and transient uniaxial extensional data.

Mode (i) 1 2 3 4 5 6
ηi (Pa.s) 60.900 62.213 159.691 496.439 711.020 1333.339
λi (s) 0.0005 0.0016 0.0051 0.0166 0.0534 0.1718
αi 0.3 0.3 0.3 0.3 0.3 0.3

Mode (i) 7 8 9 10 11 Mean
ηi (Pa.s) 2462.8 3471.9 5545.3 3310.3 5111.1
λi (s) 0.5522 1.7750 5.7080 18.3500 59.0000 16.5
αi 0.3 0.3 0.25 0.2 0.05 –
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3.5 Results

In this section, we recall that the Weissenberg number is defined as We = λV/H,

where V represents the mean inflow velocity and H denotes the halved channel width

(H = 6 mm).

3.5.1 Determination of the Slip Velocity

The computational results with no-slip boundary conditions at the channel lateral

walls did not compare favorably with the experimental results even in the fully

developed region as shown in figure 3.7a. Upon further examination of the

experimental cross-slot flow, it was determined that some of the lubricant used to

coat the transparent windows of the flow cell had migrated towards the brass solid

walls giving rise to a fully developed encapsulated polymer flow. Hence, all solid

surfaces in the experimental setup are lubricated with a very thin lubricant layer

in the order of several microns. Therefore, we had to incorporate this effect into

our computations in order to better capture the experimental flow conditions. The

simplest way to do so was to introduce a slip velocity uslip at the channel sidewalls.

a)                                                   b)                                                      c) 

Figure 3.7: a) Velocity profile, b) shear stress profile, and c) normal stress profile
at We = 21 in the channel fully developed inflow region: experimental data (open
circles), computational results using no-slip (solid line) and slip (dotted line) boundary
conditions with a slip velocity of uslip = 5.6 mm/s.
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In the fully developed region of the flow cell, the polymer kinematics were derived

from particle tracking velocimetry measurements. However, it was especially difficult

to obtain reliable results close to the channel solid boundaries because of parasitic

light reflections at the brass sidewalls perturbing the marker recognition. Hence,

the slip velocity could not experimentally be obtained at the channel lateral walls.

Therefore, we have numerically simulated results for different slip velocities in order

to determine its optimum value for each Weissenberg number. The best slip velocity

was obtained via a regression analysis by minimizing the overall differences between

the computed and measured velocity (figure 3.7a) and stress fields (figures 3.7b–c)

in the channel fully developed region. Indicated by solid lines in figures 3.7a–c, the

numerical results corresponding to no-slip boundary conditions at We = 21 are also

given for comparison. Following this procedure, the best agreement was found for

a slip velocity of 5.6 and 6.1 mm/s at We = 21 and 29, respectively. It should be

noted that the assumption of a uniform slip velocity in the fully developed region is

quite reasonable as the thickness of the lubricant layer is expected to remain nearly

constant. However, one would expect variations in the lubricant thickness around

the rounded corners next to the stagnation region. Since the lubricant reflections

prevent us from measuring a reliable slip velocity at the channel lateral walls, we

have used a unique slip velocity all along the sidewalls. As a regression technique

has been used to obtain the optimum slip velocity uslip, it is highly relevant to assess

the influence of small changes in the slip velocity on the predicted stress and velocity

profiles. Figures 3.8a–c show the different velocity and stress profiles for variations of

the slip velocity of the order of ±0.001, 0.005, 0.01 and 0.5 mm/s at a Weissenberg

number of We = 21. It can clearly be seen in these figures that differences in the

velocity and stress profiles in the fully developed region of the flow cell become visible

for variations in the slip velocity of the order of 0.005 mm/s. However, variations of

the order of 0.001 mm/s do not give rise to observable changes in the kinematics and

stress profiles.
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a)                                                  b)                                        c) 

Figure 3.8: a) Velocity profile, b) shear stress profile, and c) normal stress profile
in the fully developed region at We = 21 for different imposed slip velocities uslip at
the channel lateral walls.

3.5.2 Results at Moderate Weissenberg Numbers (We = 21)

In order to evaluate the Giesekus model capabilities in predicting the complex flow

of our test fluid, we have focused our data analysis on various locations in the inflow

(y/H = 0.2, 1.5, and 5) and outflow (x/H = 0.2, 1.5, and 5) channel as represented by

the cross-slot schematic view in figures 3.9 and 3.10. These locations have been chosen

to assess the ability of the Giesekus model to capture the flow behavior in simple shear,

mixed shear and extensional kinematics and planar extension. Figure 3.9a shows the

experimental and computational optical results in the inflow channel arm. Because

of the lubricant light reflections leading to unreliable experimental optical results at

the channel edges, the data presented in figures . 3.9 and 3.10 are restricted to the

range −0.6 6 x/H 6 0.6 and −0.6 6 y/H 6 0.6.

At y/H = 5 (open triangle symbols), the model provides a good prediction of both

the Rω and R2ω optical signals of Eq. (3.1). This result was quite expected as the slip

velocity has been chosen by matching the stress and velocity profiles in this region of

the flow cell. The slight differences observed between the predicted and experimental

values are due to the fact that the slip velocity was obtained by minimizing the

overall deviations between the measured and computed velocity and stress fields. At

y/H = 1.5 (filled square symbols), a good agreement is also found between the optical
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and model data. Thus, in the region of mixed kinematics where the polymer melt

extensional thickening is not very pronounced, the Giesekus model is successful in

predicting the flow behavior. However, in the region of planar extensional flow at

y/H = 0.2 (open circle symbols), the model predictions although reasonable are not

quantitative. Specifically, the R2ω optical signal is under predicted by the model.

This discrepancy becomes more pronounced as one approaches the stagnation point.

However, it should be noted that the quality of the experimental data in this region of

the channel is not very good. In particular, oil film reflections together with multiple

orders of retardation occurring within the laser beam make the experimental results

questionable close to the stagnation point where the lubricant tends to accumulate

and large stress variations take place within the beam width. In the outflow channel

in figure 3.9b, although the simulations are successful in qualitatively predicting the

flow behavior at x/H = 0.2, the predictions along the channel centerline are not very

accurate. Specifically, they show the same number of peaks for Rω as experimentally

observed but their location and magnitude are not exactly reproduced. The R2ω

optical data predictions in the outflow channel are in qualitative agreement with the

experimental data.

3.5.3 Results at Large Weissenberg Numbers (We = 29)

Figures 3.10a–b present the experimentally measured and computed optical signal

distribution at a Weissenberg number of We = 29 in the inflow and outflow channels,

respectively. The quality of the predictions in the inflow channel is very similar to

the one obtained at We = 21, except for y/H = 0.2. At this location, the model

predictions are not as accurate as their We = 21 counterpart. If the experimental

R2ω optical signal is qualitatively well captured by the model, large discrepancies are

observed for the Rω optical data. The Giesekus model deficiency in predicting the

experimental data at high We numbers becomes even more evident in the outflow

channel. In figure 3.10b, the experimental data predictions are poor at x/H = 0.2. In
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particular, the number of peaks in the measured optical signals is not well predicted by

the Giesekus model. This discrepancy is not observed at x/H = 1.5 where the number

of peaks is the same as experimentally observed. The Rω predictions at x/H = 5 are

as good as in figure 3.9b at We = 21. It should be mentioned here that the effect

of multiple retardation orders at length scale of the beam diameter becomes even

more visible at large Weissenberg numbers in the presence of high stress boundary

layers. That is why the averaged optical properties measured using the existing

experimental setup are again questionable. Therefore, the disagreement observed

between the measured and computed quantities at We = 29 cannot be inferred to

the constitutive model only and might also be due to experimental uncertainties.

Current experimental limitations in terms of lubricant reflections and multiple

orders of retardation within the laser beam diameter do not allow to fully appreciating

the Giesekus model predictions in the region of planar extension close to the

stagnation point. Even though the model seems to accurately capture the flow

behavior in the inflow region of mixed kinematics, the Giesekus model predictions

in the outflow region of planar extension cannot be distinctively attributed to the

constitutive modeling or to experimental artifacts, especially at large Weissenberg

numbers where the experimental constraints are enhanced. We are currently working

on possible improvements of the actual experimental setup in order to try to minimize

the experimental artifacts. These would involve a new oil delivery design together

with a reduction of the laser beam dimensions.

3.6 Conclusion

Numerical simulations of a well-characterized, branched, low-density polyethylene

melt in a lubricated cross-slot channel geometry have been performed for a range

of Weissenberg numbers. Due to the fact that all the side walls of the cross-

clot rheometer are lubricated, comparison of the experimental flow birefringence

measurements had to be made with self-consistent 2D flow simulation with an
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a) inflow
Wi = 21

b) outflow
Wi = 21

Figure 3.9: Comparison between the birefringence data and the viscoelastic flow
simulation using the Giesekus model in the a) inflow and b) outflow channels at
We = 21.
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a) inflow
Wi = 29

b) outflow
Wi = 29

Figure 3.10: Comparison between the birefringence data and the viscoelastic flow
simulation using the Giesekus model in the a) inflow and b) outflow channels at
We = 29.
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optimum slip velocity. Based on these comparisons, it can be concluded that the

Giesekus model can accurately predict the flow characteristics at We = 21. However,

the model predictions We = 29 remain qualitative at best. The discrepancy between

the numerically predicted and experimentally measured optical properties cannot

be solely attributed to the inadequacy of the constitutive model, as the current

experimental protocol is ineffective near the stagnation point, as well as along the

plane of symmetry in the outlet channel. The limitation of the current experimental

technique stems from multiple orders of retardation within the cross section of the

laser beam and oil film reflections occurring close to the stagnation point. Overall, this

study has clearly demonstrated the potential of this approach to accurately determine

the kinematics and stresses in a 2D flow geometry that can be used to evaluate the

fidelity of constitutive equations or mesoscopic models of polymer dynamics in mixed

kinematic flows. To make this promise a reality, improvements in the experimental

method are required. These would involve a new oil delivery design together with

a reduction of the laser beam dimensions, as well as more advanced data analysis

strategies.
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Chapter 4

Continuum and multi-scale

simulation of mixed kinematics

polymeric flows with stagnation

points: closure approximation and

the high Weissenberg number

problem

4.1 Introduction

Polymer dynamics in strong flows typically encountered downstream of stagnation

points in complex kinematics flows play a central role in determination of many

essential fluid dynamics quantities. Examples include, frictional drag on particle and

particle-particle interactions [Grillet et al. (1999b)], drop and bubble shape evolution

and dynamics [Milliken and Leal (1991); Tiefenbruck and Leal (1982); Arigo et al.

(1995)], film thickness in coating flows [Lee et al. (2002)] and a host of internal and
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free surface instabilities [Li et al. (2000, 1998); Somasi and Khomami (2000, 2001); Lee

et al. (2005, 2002); Bhatara et al. (2004b, 2005a)]. To this end, the non-Newtonian

fluid community has developed a number of benchmark problems, namely, flow past

a cylinder confined in a channel [Baaijens et al. (1994, 1995)] and sedimentation

of sphere in a tube [Yang and Khomami (1999); Arigo et al. (1995)] to examine

flow micro-structure coupling downstream of stagnation points on the flow properties

including hydrodynamics drag on the objects as well as flow transitions.

Most of the aforementioned studies have had as their focus continuum level

computations based on well known constitutive equations for dilute polymeric

solutions such as the Oldroyd-B (OLD- B) and Upper Convected Maxwell (UCM)

models. However, recently, computations of flow past a cylinder in a channel with the

OLD-B constitutive equation has provided evidence of divergent normal stresses in the

wake of the cylinder at Weissenberg numbers (We, defined as the product of the mean

polymer relaxation time and a characteristic shear rate) of order 1 [Bajaj et al. (2008)].

Specifically, it has been suggested that this divergence is linked to the unbounded

extensional viscosity in the wake of the cylinder. These recent observations based

on self-consistent continuum level simulations support earlier assertions by Rallison

and Hinch [Rallison and Hinch (1988)] that Hookean dumbbell based constitutive

equations such as the UCM, and OLD-B can give rise to unbounded or very large

stresses in strong straining flows. Specifically, it was suggested that in presence

of unbounded stresses, if the stress tensor is either divergent free or has infinite

divergence that is highly spatially localized, there is a negligible effect on the flow,

i.e., the flow will not adapt to inhibit infinite stresses or stress gradients.

The influence of finite extensibility of macromolecules on the stress singularity in

internal stagnation flows that exhibit divergent free stresses has also been a subject

of a number of studies in the past decade. Renardy [Renardy (2006)] utilizing

an idealized planar extensional Newtonian flow kinematics has shown that for the

Giesekus model, which limits the growth of extensional stresses, although the stress

profiles remain finite, the stress gradients can become infinite if α, the Giesekus
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mobility parameter, is less than (2−
√

3)/4. Similar behavior has also been observed

in idealized uniaxial extensional Newtonian flow kinematics [Becherer et al. (2008,

2009)]. Specifically, it has been shown that although the FENE-P model predicts finite

stresses at any We, for sufficiently large bs, i.e. square of the maximum molecular

extension, there exist a range of We for which the stress gradients become infinite.

Although to date, observation of infinite stress gradients in strong straining flows

with constitutive models that bound extensional stresses has been based on idealized

Newtonian kinematics in flows that exhibit divergent free stresses (e.g., flow generated

near internal stagnation points in cross-slot and four-roll mill flows), the existence of

infinite stress gradients in strong straining flows in a specific parameter range that

correspond to highly strain hardening fluids is very intriguing. In fact, one might

question the relevance of this interesting finding to the strong dependence of the

upper We limit on the finite extensibility parameter in careful flow computations of

dilute polymeric solutions with constitutive equations that bound extensional stresses

(e.g., Chilcott-Rallison [Chilcott and Rallison (1988)], FENE-P [Yang and Khomami

(1999); Arigo et al. (1995)], the multimode version of the Verhoef et al. model [Verhoef

et al. (1999); Arigo et al. (1995)] in geometries with internal stagnation points on solid

surfaces (e.g., flow past a cylinder in a channel or sedimentation of a sphere in a tube).

Currently, the cause of the upper We limit in computation of flows with internal

stagnation points on solid surfaces is not known. Clearly, if there is a connection

between the aforementioned infinite extensional stresses and the computed stresses

in the wake of the cylinder or sphere then one can correlate the existence of an

upper bound in We with appearance of infinite stress gradients in this region.

On the other hand the breakdown of the numerical solution at high We could

be solely due to deficiency of numerical techniques [Bajaj et al. (2008)]. To this

end, Fattal, [R. Fattal (2004, 2005)] have suggested that the high We limit could

be the result of a numerical instability that can be overcome by use of a variable

transformation, namely, a logarithmic transformation of the stresses. However,

careful numerical computations of flow past a cylinder in a channel by Hulsen
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[Hulsen et al. (2005)] produced converged results with the same upper bound in

We with or without use of this transformation. Finally, it should be noted that the

multiscale Brownian Configuration Fields method (BCF) does not suffer from the

aforementioned numerical instability. However, one can not correlate the robustness

of this simulation technique and its ability to produce converged numerical results at

high We [Hulsen et al. (1997); Laso and Ottinger (1993); Koppol et al. (2009)] solely

to this fact since in the BCF formulation a vector field, namely, the connectivity

vector of the micromechanical model is convected by the fluid motion (for example

in the FENE model) as oppose to a tensor field, namely, the conformation of the

macromolecule in the corresponding closed form constitutive equation, i.e., the FENE-

P model [Mangoubi et al. (2009)].

To provide further insight into the high We limitations in continuum level

computations of flows with internal stagnation points on solid surfaces, we have

performed extensive continuum and multiscale flow simulations in two benchmark

flow problems, namely sedimentation of sphere in a tube and flow past a cylinder in

a channel, utilizing the FENE-P (continuum and BCF) and Giesekus (continuum)

constitutive equations as well as the FENE (BCF) dumbbell micromechanical model.

Extremely large stress gradients in the axial normal stress along the plane of symmetry

in the wake of the cylinder and sphere are observed in both FENE-P and Giesekus

predictions using both multiscale and continuum numerical techniques at We of

O(1) where the numerical simulations begin to breakdown for significantly strain

hardening fluids, i.e., b > 300, α < 0.005. These very large stress gradients (nearly

singular) are a direct consequence of significant over prediction of macromolecular

extension by the closed form constitutive equations in the extensionally dominated

region of the flow. The inability of the aforementioned constitutive equations to

accurately describe the flow microstructure coupling downstream of stagnation points

in complex kinematics flows should motivate use of regularization techniques for the

stresses [Bhave et al. (1993); Woo et al. (2004a,b)] or utilization of more sophisticated
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constitutive equations [Keunings (1997); Lielens et al. (1998); Ghosh et al. (2002)] in

flows with strong straining components.

4.2 Problem formulation

We consider sedimentation of a sphere along the centerline of a tube and flow past

a cylinder mounted in the center of a channel, where both tube and channel are

assumed to be filled with a dilute polymeric solution as depicted in figure 4.1 -(a)

and (b) respectively. Specifically, we consider two geometries with the sphere-to-

tube radius ratios of a/R = 0.121 and cylinder-to-channel radius of a/R = 0.5. The

choice of these two geometries has been motivated by the fact that there is a wealth of

experimental data on the drag coefficient and the flow kinematics of well characterized

dilute polymeric solution in these two geometries. These systems have been modeled

by solving the conservation equations while we have used closed form constitutive

equations and a kinetic theory based elastic dumbbell model to describe the polymer’s

contribution to the total stress, see chapter 2. The simulation parameters have been

chosen based on the rheological properties of the same test fluid discussed in chapter

5.

4.2.1 Domain discretization and boundary conditions

To find an approximation to the exact solution, the domain Ω is divided into a

number of four-sided elements, in which the basis functions are defined. Figure 4.2

depict typical domain discretizations used in this study. Mesh refinement has been

performed with the criteria that upon each refinement the size of the smallest element

near the front and rear stagnation points is reduced by an order of magnitude (see

tables 4.1 and 4.2 for details).

The boundary conditions are no-slip and symmetry conditions. Specifically in the

case of sedimentation of sphere in a tube, at the tube walls, ur = 0 and uz = −Us,
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Figure 4.1: Schematic of the sedimentation of a sphere in a tube and flow past a
cylinder in a channel.
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while on the surface of the sphere, ur = uz = 0. In the case of flow past a cylinder

confined in a channel, the velocities are set to zero on both channel walls and cylinder

surface and fully developed velocity and stress profiles are assumed in the inlet and

outlet of the channel. Moreover, at the centerline of both problems ur = τrz = 0.

4.3 Results and discussion

4.3.1 Solution Accuracy

The smallest domain discretization used in this study, i.e. 3022 elements, has been

shown to provide accurate solutions in prior continuum level simulation with the

FENE-P constitutive equation [Yang and Khomami (1999)]. To demonstrate the

accuracy of the self-consistent multiscale simulations, the self-consistently computed

stress profiles have been compared with those obtained based on a combined

Lagrangian/Brownian Dynamics (BD) technique. This approach for establishing

the solution accuracy has been adopted since the conventional method of comparing

solutions from multiple meshes is highly computationally intensive in the case of

multiscale simulations, as evinced by the large number of degrees of freedom at each

time step reported in tables 4.1 and 4.2. Specifically, the comparisons are based on

the τp,zz component of the polymeric stress because it exhibits large variation with

We along the surface of the sphere and cylinder and near the wake stagnation point,

and it greatly influences the total drag on the sphere and cylinder [Arigo et al. (1995);

Harlen et al. (1990); Baaijens et al. (1994, 1995)].

Similar to our earlier studies [Koppol et al. (2009)] the Lagrangian determination

of the stress involves two steps. First, particle paths are determined via integration

of the local self-consistent velocity vector (~u) using the fourth-order Runge-Kutta

method. In turn, for the FENE model the BD simulations are conducted along

selected streamlines utilizing the semi-implicit predictor scheme of Somasi [Somasi

et al. (2002)] with the ensemble size Nt = 1024. The integrations are carried out
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(a) (b)

(c) (d)

(e) (f)

Figure 4.2: The computational domain near the surface of the sphere for meshes
with 3022 elements, (a), 7500 elements (b) and 18898 elements, (c) , χ = 0.128;
Computational domain near the surface of cylinder for meshes with 2428 elements,
(d), 4280 elements, (e) and 17763 elements, (f), χ = 0.5.
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Variable 3022 elements 7577 elements 18898 elements
DOF: ~u 40,535 100,443 232,678

DOF:G&τ 25,288 62,344 144,128

DOF: ~Q; Nf = 960 28,657,626 177,142,683 1,021,399,104
Aspect ratio of smallest element 0.01 0.001 0.0001

Table 4.1: Degrees of freedom (DOF) for each variable and the ratio of the width
of the smallest element of each mesh to the sphere radius.

Variable 2428 elements 4280 elements 17378 elements
DOF: ~u 32,567 46,736 213,963

DOF:G&τ 20,317 35,216 132,535

DOF: ~Q; Nf = 960 23,024,724 100,062,120 939,246,144
Aspect ratio of smallest element 0.01 0.001 0.0001

Table 4.2: Degrees of freedom (DOF) for each variable and the ratio of the width
of the smallest element of each mesh to the cylinder radius.

by varying δt such that the magnitude of ~uδt is fixed to a constant, 4 × 10−4 ≤

A ≤ 2 × 10−2. Specifically, the constant is set to A when z ∈ [20, 40], 5A when

z ∈ [10, 20] and [40, 50], and 25A when z ∈ [0, 10] and [50, 60]. With 1 × 10−4 ≥ A,

converged results in the We range of interest are obtained. At this level of refinement,

highly spatially resolved polymer stresses are obtained. Hence, the computed stresses

utilizing the Lagrangian/BD procedure should provide a stringent test of the self-

consistent computed stresses.

To investigate the effect of Peterlin approximation on the polymer segmental

connectivity distribution function, the distribution functions predicted by FENE

and FENE-P models are compared. To this end, we have also used the stochastic

description of the FENE-P dumbbell model. In our first approach, the kinematics

is calculated from self consistent continuum level flow simulation using the closed

form FENE-P model. These kinematics are in turn used to calculate the flow

streamlines using Lagrangian integration. By solving the stochastic equation with

known kinematics, the polymer configurations and stresses along specified streamlines
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are obtained. The BD simulation for the FENE-P model is performed with a similar

algorithm used for the FENE model, except, due to the presence of the term
〈
~Q~Q
〉

,

which depends on ~Q values of all the dumbbells, the second step upon rearrangement

results in a set of highly nonlinear system of equations [Koppol et al. (2009)]. In

order to solve this set of equations, we split the term
〈
~Q~Qn+1

〉
into

〈
~Q~Qn+1

〉
for the

dumbbell for which | ~Q| is being solved and
〈
~Q~Qn

〉
for the rest of the dumbbells.

This again leads to a cubic equation that can be easily solved [Li et al. (2006)]. Once

every
〈
~Qn+1

〉
is known, the residual ε is calculated as the difference between the

solutions ~̄Q and
〈
~Qn+1

〉
according to the following equation:

ε =

√√√√ Ns∑
i=1

(
~Qn+1
i − ~̄Qi

)2

(4.1)

where Ns is the number of dumbbells. The corrector step is repeated until numerical

convergence is achieved. Once all the ~Qs have been evaluated, the polymeric stress τp

is obtained using the Kramer’s expression. Finally, this algorithm is used to perform

self consistent BCF simulations with the FENE-P model.

Figures 4.3-(a) and (c) depict comparison of prototypical steady state τpzz profiles

along streamlines near the centerline of the channel in the vicinity of the sphere and

cylinder respectively, at We = 2 and finite chain extensibility, b = 900. Overall,

the excellent agreement between the self-consistent simulations with 18898 and 17378

elements and the Lagrangian-based results clearly demonstrate the accuracy of the

self-consistent multiscale simulation results.

Figures 4.3-(b) and (d) also depict a comparison between the Eulerian (contin-

uum), multiscale (BCF) and Lagrangian FENE-P results for the sphere and cylinder

cases respectively. The agreement between the self-consistent continuum simulations,

the Lagrangian-based and the BCF results (10 % maximum deviation), justifies the

use of the Lagrangian/BD simulation to construct accurate (in comparison to BCF

due to smaller number of fields to make computations tractable) probability density

function of the segmental connectivity vector of the FENE-P model.
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Figure 4.3: Comparison of prototypical steady state τpzz profiles for the FENE,
(a) and (c), and the FENE-P, (b) and (d), models predicted using self-consistent
simulations, solid line, Lagrangian-based integration, circles, and FENE-P BCF,
dotted line, along streamlines shown in (e) and (f) the surface of the sphere ( (a)
and (b) and cylinder ((c) and (d)).
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4.3.2 Simulation results

It has been suggested that the use of OLD-B constitutive equation (Hookean dumbbell

model) in simulations of flow past a cylinder confined in a channel will lead to solution

divergence in the wake of the cylinder, at We ≈ 1.1 [Bajaj et al. (2008)]. The solution

divergence has been linked to the prediction of an unbounded extensional viscosity

in the planar extensional flow region downstream of the cylinder. It has also been

conjectured that using models that bound the extensibility of polymer molecules such

as the FENE-P constitutive equation, should enable numerical simulations at much

higher We. However, our simulations in the two aforementioned flow geometries

with a typical mesh; one with a uniaxially (sedimentation of sphere) dominated

wake regime and the other with a planar extensional (flow past a cylinder confined

in a channel) dominated wake flow regime begin to breakdown for b > 300 at

We ≈ 2.0 and We ≈ 1.0 respectively. To investigate the possible numerical and

physical underpinning of this divergence, the calculations were repeated with much

more refined meshes. Specifically, computations with highly refined meshes near the

stagnation points of these flows for a vast range of chain maximum extensibilities have

been performed. The results of our hi-fidelity computations are summarized below.

Flow past a cylinder confined in a channel

Our continuum (DEVSS-SUPG; 2428 to 17378 elements) and multiscale (BCF; 4280

elements) FENE-P simulations of flow of a dilute polymeric solution past a cylinder

with b = 900 breakdown at We = 1.1. However computations with b < 300 could

be continued until they were stopped at We ≈ 5. Moreover, simulations with the

FENE micromechanical model could also be continued well beyond We of 1 for b =

900. Specifically, we were able to find converged solutions up to We ≈ 3 where the

simulations were stopped.

The origin of the failure of computations with the FENE-P model at O(1) We

with b > 300 is the rapid increase in the axial polymeric stresses and their gradients
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as a function of We in the wake of cylinder as depicted in figures 4.4-(a), (b) and (d).

The existence of very high stress and stress gradients for strain hardening fluids at the

We where the solution begins to breakdown is further demonstrated in figure 4.4-(c)

where the τpzz profile along the channel center line and the surface of the cylinder

using meshes with different level of refinement is shown. The lack of mesh converged

axial stresses near the point of the maximum stresses is attributed to the exponential

growth of stress gradients near the stagnation point for b > 300. It should also be

noted that the FENE-P stress gradients computed based on continuum and BCF

techniques are at least an order of magnitude greater than the FENE stress gradients

at the same b (see figure 4.4-(e) and 6-(a)). To ascertain the origin of this very large

localized stresses and stress gradients in FENE-P computations, we have examined

the details of the macromolecular configuration at various We for both models.

Using the aforementioned combined Lagrangian/BD techniques and the BCF

simulation of FENE and FENE-P models, the probability distribution function of

the dumbbell connectivity vector along selected streamlines, shown in figure 4.3-f, is

examined. A close inspection the PDF of | ~Q| at the point where τpzz is maximum

downstream of the stagnation point (see figures 4.4-(f)), demonstrates that a large

fraction of the total stress, up to 65%, are due to configurations with | ~Q| larger than

the maximum extensibility of the polymer molecule. Although extended states have

been previously observed in the turbulent channel flow and uniaxial channel flow of

dilute polymeric solutions, [Keunings (1997); Gupta et al. (2004)], their influence on

flow micro-structure coupling in complex kinematics flows has not been examined.

The occurrence of the over-extended states and the corresponding large localized

polymeric stresses and stress gradients at the critical We where both continuum and

multiscale FENE-P calculations begin to breakdown is not observed in multiscale

FENE simulations (see figure 4.5).
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Sedimentation of a sphere in a tube

In the wake region of the sphere at the We ≈ 2 when the computations with the

FENE-P model for b > 300 begins to breakdown, we observe very similar behavior in

axial stresses to that of flow past a cylinder, namely, very large and highly localized

stresses as well as very large stress gradients (see figure 4.6). We also observe the

over-extended states and in this flow problem their contribution to the total stress is

≈ 70%. Moreover, the BCF multiscale FENE-P simulations could only be continued

up to We = 1.95 for b = 900 with a 7577 elements mesh and b = 900. As expected,

the probability distribution function of the dumbbell connectivity vector computed

with both BCF and the Eulerian/Lagrangian method based on continuum level self

consistent velocities are very similar. Moreover, the predicted kinematics and stresses

by BCF and continuum simulations with the FENE-P model are similar (see figure

4.7). Hence, it is reasonable to assume that the breakdown of continuum and multi-

scale computations with the FENE-P model is directly related to the highly localized

and large polymeric stresses and stress gradients in the wake of the sphere.

To further examine the relationship between large polymeric stresses and stress

gradients and the upper We limitations in complex kinematics flows with stagnation
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points on solid surfaces, we have performed continuum level simulations with the

Giesekus model with various mobility parameters and have found that for α < 0.006

the computations begin to breakdown at We ≈ 2 (see figure 4.6) due to existence of

very large axial stresses and stress gradients in the wake of the sphere. Interestingly,

the Giesekus model with α of 0.006 gives rise to the same steady elongational viscosity

as the FENE-P model with b = 333 in the limit of high extension rates (b ≈ 2
α

in this

limit). Once again, the large stress and stress gradients computed with commonly

used closed form constitutive equations for dilute polymeric solutions in the wake

of the solid object for highly strain hardening fluids is not observed in multiscale

simulations with the FENE model. Specifically, the computed axial stress and its

gradient is at least an order of magnitude smaller than the FENE-P and Giesekus

model for fluids with similar strain hardening characteristics. (see figure 4.6-(e)).

Moreover, we were able to find converged solutions with the FENE micromechanical

model well beyond We of 2 for b = 900.

To this point, a strong correlation between significant contribution of over

stretched states to the total polymeric stress and its gradient, and divergence of

numerical simulations in both benchmark problems with the FENE-P and Giesekus

models for highly strain hardening fluids, irrespective of the numerical method, i.e.

continuum (DEVSS-SUPG) or multiscale (BCF) has been established. Clearly, in

this class of flows the macromolecules are pre-stretched before entering the wake of

the solid object. To ascertain the degree of molecular stretch computed in the shear

dominated region of the flow near the solid surface and its implications on the rapid

stress growth observed in the wake of the solid objects, we have computed the PDF

of the polymer molecules along selected streamlines very close to the surface of the

cylinder. Sample PDFs for both the FENE and FENE-P models at various locations

along a typical streamline are shown in figure 4.8. Clearly, a higher polymer stretch

is observed near the surface of the sphere with the closed form constitutive equation.

Once these stretched polymers are convected into the wake of the sphere where the

flow is extensionally dominated, a very large jump in the axial polymeric stresses
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is observed. Moreover, this jump in stresses is much more significant for the closed

form constitutive equation due to a large pre-stretch. This finding further supports

the existence of large localized polymeric stresses and stress gradients downstream of

the stagnation point in computations with FENE-P model.

To examine the consequence of the over prediction of polymeric stresses and stress

gradients by the FENE-P model on the kinematics in the wake of the sphere, we have

carefully examined the axial velocity downstream of the sphere at the centerline. For

highly strain hardening fluids, i.e., b = 900, a transition in the velocity profile at

We 1.95 is observed. Specifically, very near the stagnation point a small region with

a high strain rate is observed (see figure 4.9-a). In fact, the strain rate in this region

is at least twice that of the region further downstream of the sphere. This finding

is consistent with observation of highly localized large stresses and nearly infinite

stress gradients downstream of the stagnation point predicted by the closed form

constitutive equations. This phenomenon is not observed in FENE simulations at a

similar b and We (see figure 4.9-c). Moreover, this localized high strain rate region is

not observed in FENE-P computations with b < 300. Despite this fact, the kinematics

downstream of the sphere computed with the FENE-P model with b < 300 could be

qualitatively different than those computed by FENE simulations. For example, at

b = 100, FENE-P computations show a separated flow regime close to the stagnation

point downstream of the sphere (see figures 4.9-(b) and 4.10) while FENE simulations

do not exhibit a recirculation regime (see figures 4.10). Therefore, the fidelity of

FENE-P model predictions at We where a significant portion of the polymeric stress

arises due to over-stretched states is questionable. Since, over-stretched states exist

in all strong straining flows irrespective of b values, regularization techniques for

polymeric stresses should be considered where utilizing the FENE-P and Giesekus

constitutive equations in flows with strong straining components.
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Figure 4.6: (a):τpzz vs. We, (b): dτpzz/ds vs. We, (c): τpzz along the sphere surface
and tube center line. (d): dτpzz/ds vs. b (e): dτpzz/ds, along the sphere surface and
tube center line. (f) Probability density function (PDF) of nondimensionalized end-

to-end distance | ~Q|/b. (All the results are at We = 2.0 and from the mesh E = 18898
unless otherwise noted.)
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4.4 Conclusion

We have performed extensive continuum and multiscale flow simulations in two

benchmark flow problems, namely sedimentation of sphere in a tube and flow

past a cylinder in a channel, utilizing the FENE-P (continuum and BCF) and

Giesekus (continuum) constitutive equations as well as the FENE (BCF) dumbbell

micromechanical model to provide insight into the dependence of the upper We limit

encountered in continuum level viscoelastic flow simulations with typical constitutive

equations for dilute polymeric solutions that predict bounded extensional viscosities

in geometries with internal stagnation points on solid surfaces. To this end, a

strong correlation between significant contribution of over-stretched states to the

total polymeric stress and existence of very large and localized polymeric stress

gradients and divergence of numerical simulations in both benchmark problems with

the FENE-P and Giesekus models for highly strain hardening has been established.

The consequence of the over prediction of polymeric stresses and stress gradients by

the FENE-P model in comparison to the FENE model on the kinematics in the wake

of the solid objects has also been examined. In general, closed from constitutive

equations can either give rise to very highly localized region of high strain rate or

recirculation regions downstream of the object that are absent in the corresponding

multiscale simulations with the FENE model. Hence, the accuracy of FENE-P model

predictions at We and b values where a significant portion of the polymeric stress

arises due to over-stretched states is questionable. Hence, regularization techniques

for polymeric stresses should be used in FENE-P computation of flows with strong

straining components.
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Chapter 5

Sedimentation of a sphere in a

viscoelastic fluid: a multiscale

simulation approach

5.1 Introduction

One of the principal concerns of fluid mechanics is to develop a fundamental and

quantitative understanding of global variables such as pressure drop, hydrodynamic

drag and dissipation as functions of flow rate, geometry and boundary conditions.

The technological importance of such knowledge cannot be overemphasized. For

Newtonian flows, especially under laminar flow conditions, these relationships can be

easily determined using either well established analytical techniques or with the aid of

readily available commercial software packages. However for polymeric flows, despite

the tremendous progress in development of numerical techniques and constitutive

theories in the past decade, continuum level computations are still incapable of

quantitatively predicting macroscopic variables such as frictional resistance enhance-

ment (FRE) in prototypical extension-dominated, mixed kinematics creeping flows

of dilute polymeric solutions such as contraction/expansion flows [Quinzani et al.
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(1994); Rothstein and McKinley (1999, 2001); Koppol et al. (2009)], and flow past

bluff objects [Li et al. (1998, 2000); Baaijens et al. (1994, 1995); Arigo et al. (1995);

Yang and Khomami (1999)].

In the past two decades, coordinated experimental/computational studies of dilute

polymeric solutions in a number of benchmark problems have clearly demonstrated

that the aforementioned lack of quantitative prediction of FRE is due to the

inability of constitutive equations to quantitatively capture the polymeric body forces

that result from the configurational complexity of the macromolecules in mixed

kinematics flows with strong straining components [Abedijaberi and Khomami (2011);

Abedijaberi et al. (2008); Burghardt et al. (1999b); Li et al. (1998, 2000); Perkins

et al. (1997); McKinley (2001); Lunsmann et al. (1993); Satrape and Crochet (1994);

Arigo et al. (1995); Rasmussen and Hassager (1996); Yang and Khomami (1999);

Grillet et al. (1999b); Talwar and Khomami (1995)]. In fact this realization has been

the main motivating factor for development of multiscale simulation techniques that

couple kinetic theory based micromechanical models for polymer dynamics at the

mesoscopic level with macroscopic equations of change to self consistently capture

the intricate coupling between flow deformation and macromolecular configuration

during flow [Laso and Ottinger (1993); Ottinger et al. (1997); Hulsen et al. (1997);

Halin et al. (1998); Somasi and Khomami (2000, 2001); Wapperom et al. (2000);

Gigras and Khomami (2002)]. However, despite significant algorithmic advances

in the past several years, multiscale flow simulation techniques still remain highly

computationally intensive in comparison to their continuum level counterpart. Hence,

to date most of the large scale complex kinematics multiscale flow simulations of dilute

polymeric solutions have been performed with the simplest micromechanical model

for polymer molecules, namely, the elastic dumbbell model. Although this class of

simulations have provided significant insight in understanding the influence of closure

approximations on prediction of polymeric stresses in mixed kinematics flows of dilute

polymeric solutions, they are still unable to quantitatively predict FRE and other

important flow quantities such as vortex dynamics, velocity wake and stress wake
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structure in creeping flow benchmark problems such as contraction/expansions flows

or flow past bluff objects [Wapperom et al. (2000); Rothstein and McKinley (1999,

2001)].

The inability of multiscale simulations with single segment kinetic theory based

models to provide quantitative prediction of macroscopic flow quantities in exten-

sion dominated complex kinematics flows can be rationalized in terms of recent

fluorescence microscopy studies of model macromolecules, namely DNA, under flow

that have clearly demonstrated the necessity of multi-segment micromechanical

models such as bead rod and bead spring chains for quantitative prediction of

macromolecular dynamics [Doyle et al. (1998); Shaqfeh (2005); Larson (2005); Somasi

and Khomami (2000, 2001)]. These findings clearly underscore the fact that a multi-

segment description of the macromolecule or reduced order coarse grained models

capable of retaining the essential physics associated with the internal degrees of

freedom of the macromolecule are required for accurate modeling of dilute polymer

solutions under flow [Venkataramani et al. (2008a,b)].To this end, we have recently

performed multiscale simulations of flow of a highly elastic dilute polymeric solution

through a 4:1:4 axisymmetric contraction and expansion geometry and for the first

time demonstrated that the pressure drop evolution as a function of flow rate can

be accurately predicted when the chain dynamics is described by multi-segment

bead spring micromechanical models that closely captures the transient extensional

viscosity of the experimental fluid. Specifically, for the first time the experimentally

observed doubling of the dimensionless excess pressure drop at intermediate flow rates

was predicted [Koppol et al. (2009)].

Motivated by the aforementioned success in quantitatively describing the frictional

resistance enhancement in flow of dilute polymeric solutions in contraction/expansion

flows, we have turned our attention to flow of dilute polymeric solutions past bluff

objects. This choice has been motivated by the fact that in creeping viscoelastic

flows past objects such as cylinders or spheres the relationship between FRE and

the flow rate and the wake structure (velocity and stresses) cannot be accurately
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predicted by continuum level or multiscale simulations with simple micromechanical

models [Baaijens et al. (1994, 1995); Lunsmann et al. (1993); Satrape and Crochet

(1994); Arigo et al. (1995); Rasmussen and Hassager (1996); Yang and Khomami

(1999); McKinley (2001)]. Specifically, in the case of the two well known benchmark

flow problems, namely, flow past a cylinder in a channel and sedimentation of a

sphere in a tube, utilization of commonly used constitutive equations such as FENE-P

and Giesekus models for significantly strain hardening fluids leads to unrealistically

large localized polymeric stresses and stress gradients in the wake of the object,

thereby preventing accurate prediction of FRE and the wake structure [Abedijaberi

and Khomami (2011); Baaijens et al. (1994); Somasi (2001); Baaijens et al. (1995)]. To

this end, results of a self consistent multiscale flow simulation for sedimentation of a

sphere in a tube filled with a Boger fluid composed of 0.21 wt% polyisobutylene (PIB),

4.83 wt.% tetradecane (C14), and 94.86 wt% polybutene (PB), is presented that for

the first time provides a quantitative prediction of the enhanced drag coefficient and

the extended wake structure observed experimentally at high We.

5.2 Problem Formulation

We consider sedimentation of a sphere along the centerline of a tube filled with a dilute

polymeric solution as depicted in figure 5.1. Specifically, we consider two geometries

with the sphere-to-tube radius ratio of χ = a/R = 0.121 and χ = 0.243. This choice

has been motivated by the fact that there is a wealth of experimental data on the drag

coefficient and the flow kinematics of well characterized dilute polymeric solution in

these two geometries [Arigo et al. (1995)].

5.2.1 Domain discretization and boundary conditions

To find an approximation to the exact solution, the domain Ω is divided into a

number of four-sided elements, in which the basis functions are defined. Figure 5.2
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depict typical domain discretizations used in this study. Mesh refinement has been

performed with the criteria that upon each refinement the size of the smallest element

near the front and rear stagnation points of the sphere is reduced by an order of

magnitude (see tables 5.1 for details).

The boundary conditions are the standard no slip boundary condition (uz = ur =

0) along the wall, symmetry boundary condition (uz = 0, ∂uz/∂r = 0) along the

centerline (r = 0). Fully developed unidirectional velocity profile and stresses are

enforced at the entrance and exit. The reference value for P is also set to zero at the

exit.

Variable 3022 elements 7577 elements 18898 elements
DOF: ~u 40,535 100,443 232,678

DOF:G&τ 25,288 62,344 144,128

DOF: ~Q; Nf = 960 28,657,626 177,142,683 1,021,399,104
Aspect ratio of smallest element 0.01 0.001 0.0001

Table 5.1: Degrees of freedom (DOF) for each variable and the ratio of the width
of the smallest element of each mesh to the sphere radius.

Figure 5.1: Schematic of the sedimentation of a sphere in a tube; χ = a/R.
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(a) (b) (c)

Figure 5.2: The computational domain near the surface of the sphere for meshes
with 3022 elements, (a), 7500 elements (b) and 18898 elements, (c).

5.3 Fluid Rheology

Figure 5.3 depicts the experimentally measured steady shear viscosity (η) and first

normal stress coefficient (ψ1) as a function of the shear rate (γ̇). The test fluid which

is a Boger fluid composed of 0.21 wt.% polyisobutylene (PIB), 4.83 wt.% tetradecane

(C14), and 94.86 wt.% polybutene (PB), has a zero shear rate viscosity of η0 =

13.76Pa.s and a solvent viscosity of ηs = 8.12Pa.s. The zero shear rate first normal

stress coefficient ψ1,0 = 8.96pa.s2. The ratio of the solvent viscosity to fluid zero shear

viscosity defined as β = ηs/η0 = 0.59 [Arigo et al. (1995)].

In addition, the small amplitude oscillatory shear flow properties of this fluid, i.e.,

the dynamic viscosity (η′) and rigidity (η
′′
/ω) versus the frequency of oscillation (ω),

as well as its transient extensional viscosity (ηE), at various strain rates (ε̇) [Arigo

et al. (1995)] are also shown in Figure 5.3. Various models, namely, FENE bead-spring

chain, FENE dumbbell, and the FENE-P closed form constitutive equation have been

used to describe the rheological behavior of the test fluid. Linear viscoelastic fits for

η′ and η
′′
/ω demonstrate that three modes are required to quantitatively describe the

small amplitude oscillatory shear flow behavior of the polymer molecules (see table

5.2). The mean relaxation time of the polymer molecule (λm) based on these three

modes is found to be 0.7925 s.
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To determine the model time constant, λH , for the FENE dumbbell and the

FENE-P constitutive equation a standard technique, namely matching of the mean

relaxation time of the solution, λm, to the characteristic zero shear relaxation time

(ψ10/2ηp0) of the model has been adopted [Somasi et al. (2002)]. In the case of the

FENE bead-spring chains, λH , has been evaluated using the following expression

[Wiest and Tanner (1989)]

λH =
λm
d
, d =

(
b+ 7

15N

)(
1

b/N + 5

)((
2(N + 1)2 + 7

)
− 12 ((N + 1)2 + 1)

(N + 1) (b/N + 7)

)
(5.1)

In the above expression, N is the number of segments in the chain and b is the

maximum chain or dumbbell extensibility. b of the FENE models has been selected

based on two criteria, firstly to reproduce closely the steady shear and the transient

extensional rheology of the fluid and secondly to be in the range of the molecular

estimates for the maximum extensibility of the specific PB used in the test fluid

(b ≈ 5000 − 10000 [McKinley et al. (1993)]). However, it should be noted that as

the predictions of the steady shear and the transient extensional rheology of the test

fluid do not significantly change for 4000 < b < 10000, hence, b = 4000 has been

chosen to facilitate computational expenses of capturing steep stress boundary layers

associated with very high b values in the wake of the sphere.

In case of the multi-mode FENE model, b = 4000 was assigned to the mode

with the longest relaxation time and other b’s were chosen to optimize the fit of the

transient extensional rheology of the test fluid, i.e. b = 10 and b = 100. We have

also performed calculations with single mode FENE dumbbell model with b = 10 and

b = 100 for comparison with the multi-mode description.

It should be noted that the rheological predictions of the FENE based models have

been obtained via Brownian dynamics simulations using a semi-implicit predictor-

corrector scheme [Somasi et al. (2002); Koppol et al. (2007, 2009)] with the ensemble

size Nt = 960, while those of the FENE-P closed form constitutive model has been
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obtained using the Newton-Raphson scheme described in detail in our earlier studies

[Yang and Khomami (1999); Li et al. (1998, 2000); Talwar et al. (1994); Talwar and

Khomami (1992)].

b ηi (Pa.s) λi (s)
10 3.5315 0.1
100 1.1084 1.1520
4000 1.0002 2.8395

λm =
∑2

i=1 ηiλi/
∑2

i=1 ηi = 0.7925s

Table 5.2: Linear viscoelastic properties of the Boger fluid composed of 0.21 wt.%
polyisobutylene (PIB), 4.83 wt.% tetradecane (C14), and 94.86 wt.% polybutene
(PB).

62



10-1 100 101 102

Shear Rate, Frequency [1/s.rad/s]

10-2

10-1

100

101

M
at

er
ia

lP
ro

pe
rt

ie
s

10-1

100

101

102

103

ψ
1

ψ1

2η///ω

η
(a)

0.5 1 1.5 2 2.5
0

10

20

30

0 2 4 6 8
Time [s]

0

100

200

300

400

500

600

700

T
ro

ut
on

R
at

io
(η

ε
/η

0
)

ε=1.5
.

s-1

(b)

0 1 2 3
0

50

100

150

200

0 2 4 6
Time [s]

0

100

200

300

400

500

600

700

800

900

T
ro

ut
on

R
at

io
(η

ε
/η

0)

ε=2.17
.

s
-1

(c)

0 0.5 1
0

20

40

2 4 6 8
Time [s]

0

100

200

300

400

500

600

700

800

900

1000

T
ro

ut
on

R
at

io
(η

ε
/η

0
)

ε=3.72
.

s-1

(d)

Figure 5.3: The fluid rheology of the Boger fluid composed of 0.21 wt.%
polyisobutylene (PIB), 4.83 wt.% tetradecane (C14), and 94.86 wt.% polybutene
(PB) at 25oC including (a) η vs γ̇, ψ1 vs γ̇, η′ vs ω, and η

′′
/ω vs ω., (b) ηE/η0 vs

ε at ε̇ = 1.53s−1,(c) ηE/η0 vs ε at ε̇ = 2.17s−1 and (d) ηE/η0 vs ε at ε̇ = 3.72s−1.
Black circles represent the experimental results and solid, dashed and dasheddotdot
lines represent the 3-segment FENE bead spring chain (b=4000), Multi-mode FENE
dumbbells and the FENE dumbbell (b=100) respectively.
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5.4 Results and discussion

5.4.1 Solution accuracy

The smallest domain discretization used in this study contains 3022 elements. This

level of discretization has been previously shown to provide converged solutions up

to We ≈ 2 at χ = 0.121 and χ = 0.243 in continuum level simulation with the

FENE-P constitutive equation with b’s in the range of 10 to 900 [Yang and Khomami

(1999)]. Hence, The self-consistent multiscale simulations have been performed in

three different meshes with 3022, 7577 and 18898 elements respectively and all the

reported results are based on the most refined mesh. Comparisons with different

discretization levels are based on the τpzz component of the polymeric stress because

it exhibits large variation with We along the surface of the sphere and near the

wake stagnation point, and it greatly influences the total drag on the sphere [Arigo

et al. (1995); Harlen et al. (1990); Baaijens et al. (1994, 1995)]. To demonstrate

the accuracy of multiscale simulations, the self-consistently computed stress profiles

with the 18898 elements mesh have been compared with those obtained based on

a combined Lagrangian/Brownian Dynamics (BD) technique. This approach for

establishing the solution accuracy has been adopted since the conventional way of

comparing solutions from multiple meshes is highly computationally intensive in the

case of multiscale simulations, which is evident from the large number of degrees of

freedom at each time step reported in table 5.1.

Similar to our earlier studies [Koppol et al. (2009)] the Lagrangian determination

of the stress involves two steps. First, particle paths are determined via integration

of the local self-consistent velocity vector (~u) using the fourth-order Runge-Kutta

method. In turn, for the FENE model the BD simulations are conducted along

selected streamlines utilizing the semi-implicit predictor scheme of Somasi et al. (2002)

with the ensemble size Nt = 1024. The integrations are carried out by varying δt such

that the magnitude of ~uδt is fixed to a constant. Specifically, the constant is set to
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A when z ∈ [20, 40], 5A when z ∈ [10, 20] and [40, 50], and 25A when z ∈ [0, 10]

and [50, 60]. With A ≈ 1 × 10−4, converged results in the We range of interest

are obtained. At this level of refinement, highly spatially resolved polymer stresses

are obtained. Hence, the computed stresses utilizing this Lagrangian/BD procedure

should provide a stringent test of the self-consistent computed stresses.

Figures 5.4 depict comparison of prototypical steady state τpzz profiles along

streamlines near the centerline of the tube in the vicinity of the sphere calculated using

the mesh with 18898 elements, with finite chain extensibility, b = 4000. Overall, the

excellent agreement between the self-consistent simulations and the Lagrangian-based

results clearly demonstrate the accuracy of the self-consistent multiscale simulation

results.

5.4.2 Comparison of computed and experimentally measured

drag correction factor

Consistent with prior experimental findings, in this study the drag correction factor

K is defined such that the steady state drag force on the sphere is given by

FD = 6πη0aUsK (5.2)

where the drag correction factor K ≡ K(We, χ). In the limit of We→ 0, K can be

described by the well-known Faxen correction KN(χ) for creeping motion of a sphere

through a Newtonian liquid [Happel and Brenner (1973)]:

KN(χ) ≡ 1

1− f(χ)
(5.3)

with

f(χ) =
[
2.10444(χ)− 2.08877(χ)3 + 0.94813(χ)5 + 1.372(χ)6 − ...

]
(5.4)
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Figure 5.4: Comparison of prototypical steady state τpzz profiles for FENE model
predicted using self-consistent simulations, solid line, Lagrangian-based integration,
circles, near streamlines shown in (e) and (f) along the surface of the sphere.
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For (χ) = 0.243 one obtains KN = 1.932 and for (χ) = 0.121, KN = 1.335 [Happel

and Brenner (1973); Arigo et al. (1995)]. These results are in good agreement with

our simulated drag correction factors. Hence, they have been used to compute the

normalized drag correction factor K/KN where K is the computed drag correction

factor. Care must be taken in comparing the results of numerical calculations with

the experimentally measured values [Arigo et al. (1995)]. In purely experimental or

purely numerical studies, the data are usually reduced to a plot of the drag correction

factor K(We, χ) vs. Weissenberg number, We. However as noted by Arigo et al.

(1995) such a presentation is not very helpful when one is interested in comparing the

experimental steady settling velocity of a sphere of given density though a viscoelastic

fluid of known properties with steady state numerical simulation since the unknown

velocity appears in both the abscissa and the ordinate. In the experiments, spheres

of varying densities are dropped in the fluid and the terminal velocity of the sphere is

established when the reduced weight of the sphere (Fw) is exactly balanced by the drag

force (FD) exerted by the fluid. By contrast, in the simulations, the steady terminal

velocity of the sphere and the relaxation time of the fluid (and hence the We) are

specified a priori, and the force exerted by the fluid on the sphere in steady motion is

calculated. Since this force must be balanced by the weight of the sphere, numerical

calculations implicitly determine the density of the settling sphere required to attain

a given We. The nonlinear variation in the drag correction factor with respect to the

aspect ratio and Weissenberg number preclude simple interconversion between the

two approaches. To resolve this issue, following earlier studies [Arigo et al. (1995)],

we have defined the dimensionless effective weight of the sphere in the experiment

as 2a(ρs − ρf )gλ/9η0 which is equivalent to We × K(We, χ) in the simulation. In

turn, the flow properties computed in numerical simulations are compared with the

experimental measurements at the We∗ which gives the same value of the product

We∗ ×K(We∗, χ) as the experiment, i.e., Weexp ×Kexp(We, χ). In our calculations,

the calculated and measured dimensionless weight match at multiple We where the

difference between We∗ and Weexp is less than 1%. Therefore we are confident that
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a direct comparison of drag correction factor between our numerical predictions and

experimental results can be performed.

As mentioned earlier, prior studies [Lunsmann et al. (1993); Satrape and Crochet

(1994); Arigo et al. (1995); Rasmussen and Hassager (1996); Yang and Khomami

(1999); McKinley (2001)] have shown that simulations of a sphere sedimenting in a

viscoelastic fluid with closed form constitutive equations, for example the FENE-P

model, are limited to We < 3.0 for highly strain hardening fluids and even in the

range where converged numerical solutions can be obtained the predicted drag on

the sphere as a function of We and χ are at best qualitative [Yang and Khomami

(1999); McKinley (2001)]. In a recent study [Abedijaberi and Khomami (2011)] the

deficiencies of closed form constitutive equations in providing realistic macroscopic

flow properties predictions in flows past bluff objects has been thoroughly investigated

and it has been shown that extremely large stress gradients along the plane of

symmetry in the wake of the sphere observed in FENE-P based computations leads

to breakdown of numerical simulations at We ≈ 1 for significantly strain hardening

fluids, i.e. b > 300. Consequently, in earlier studies aimed at simulating the

aforementioned experiments, unphysically low values of b (not consistent with the

molecular parameters of PB used in the test fluid) were used in order to obtain

converged results in a region where significant drag enhancement in the experiments

was observed. Hence, the simulations were unable to capture the drag enhancement

quantitatively. In this study for the first time we have computed the drag on the

sphere at high We with b values that are consistent with molecular parameters of the

macromolecule used in the test fluid [McKinley et al. (1993)]. To do so we have used

the FENE model in appropriately refined meshes where the mesh is refined near both

stagnation points of the sphere. Specifically, beside the commonly observed steep

stress boundary layer for highly strain hardening fluids near the rear stagnation point

which forms at We ≈ 1, one also observes a stress boundary layer close to the front

stagnation point at We ≈ 3 for b = 4000 which needs to be resolved or it would lead
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to breakdown of numerical simulation irrespective of how refined the mesh is near the

rear stagnation point.

The normalized drag correction factor predicted by FENE dumbbell model as well

as the experimentally measured values [Arigo et al. (1995)] are plotted as a function

of the We in figures 5.5 and 5.6 for χ = 0.121 and χ = 0.243 respectively. The drag

correction factor for b = 10, decreases monotically while for b = 100 and b = 4000,

FENE dumbbell model predicts a slight decrease followed by monotic increase in

drag correction factor. This difference in the trend in the computed drag correction

factor vs We for small and large b values is consistent with earlier studies [Yang and

Khomami (1999); McKinley (2001)]. However, as can be seen in in figures 5.5 and 5.6,

the FENE dumbbell model with the appropriate finite extensibility (b = 4000) that

can faithfully capture the experimentally measured ηE at high strain rates, provide a

good prediction of the drag on the sphere at higher We.

Although the FENE dumbbell model with small b can predict the small decrease

observed in experimental measurements of drag correction factor at small We it fails

to predict the significant increase in the drag at high We, while simulations with

large b show the opposite trend. To this end we have performed simulations with

a three modes model (see table 5.2 for more details). The results of these multi-

mode FENE dumbbell simulations are also shown in figures 5.5 and 5.6. Clearly, the

drag correction factor predicted by the multi-mode FENE dumbbell model using the

parameters given in table 5.2, increases monotically as a function of We, for both

χ’s. In fact, the predicted drag is significantly higher than both the experimentally

measured values and computations based on a single dumbbell model. To elucidate

the physical underpinning of this observation, we have plotted the probability density

function (PDF) of polymer molecules end-to-end distance predicted by single and

multi-mode FENE model using different b values at the point of maximum stress

downstream of the rear stagnation point. As can be seen in figures 5.7 and 5.8 smaller

polymer molecules get stretched at lowerWe. Specifically, in a single mode calculation

with b = 10, the molecules are already stretched at We ≈ 0.5 while at b = 100 and
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and FENE-P calculations at χ = 0.121.
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b = 4000 the molecules are near their equilibrium configuration for We ≤ 1. On the

other hand, due to the way that Wemean = Uλmean/a is defined in the multi-mode

calculations (see table 5.2) , the polymer molecules of the modes with λi/λmean > 1

experience Weeff which is larger than Wemean and consequently get fully stretched

at lower Wemean compared to single mode calculations. Consequently, even at small

We the mode with the longest relaxation time dominates the contribution of various

modes to the polymeric stresses, hence, the system effectively behaves as a single

dumbbell with b = 4000 and λ = 2.84. In fact the drag correction factor predicted

with a dumbbell model with b = 4000 is reproduced closely by shifting the multi-

mode calculation results with a factor of 2.84/0.7925. To this end, the PDF of

polymer molecules of each mode in a multi-mode calculation is compared with single

mode calculation with the same b (see figure 5.9). The comparison is done at Wemean

where the Weeff the polymer molecules are experiencing is close to We of single mode

calculations. The similarity between the PDFs clearly suggest that different modes

more or less function independently of each other in the multi-mode simulations.

Based on the above discussions it is not surprising that multi mode FENE dumbbell

model predictions over predict the experimentally measured drag at both χs. This is

due to the fact that in strong straining flows the coupling of polymer dynamics with

momentum equations does not give rise to significant mode-mode interaction through

modifications of the flow kinematics. This observation has motivated examination

of micromechanical models that allow implicit mode-mode coupling. The simplest

model with these features is the bead-spring chain model composed of N beads and

N-1 springs obeying the FENE force law. Specifically, the use of this model allows

both configurational diversity and mode-mode coupling that has been shown to be

essential in quantitatively describing macromolecular dynamics in simple kinematics

flows [Doyle et al. (1998); Shaqfeh (2005); Larson (2005)].

The normalized drag correction factor predicted by three segment FENE bead-

spring chain model as a function of We and χ are also shown in figures 5.5 and 5.6.

Overall, the predicted drag at high We is slightly higher than the single segment
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Figure 5.7: Probability density function (PDF) of nondimensionalized end-to-end

distance | ~Q|/b at the point of maximum stress near the rear stagnation point of sphere
predicted by single mode FENE dumbbell model.
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Figure 5.8: Probability density function (PDF) of nondimensionalized end-to-end

distance | ~Q|/b at the point of maximum stress near the rear stagnation point of sphere
predicted by multi-mode FENE dumbbell model.
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Figure 5.9: Probability density function (PDF) of nondimensionalized end-to-end

distance | ~Q|/b at the point of maximum stress near the rear stagnation point of sphere
predicted by FENE model.
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model and somewhat larger at lower We, (more aligned with the experimental

measurements). To more closely examine the differences between the predictions

of the single segment dumbbell and the multi-segment chain models, the PDF of

the end-to-end distance for both models is shown in figure 5.9. Clearly, the polymer

molecules near the rear stagnation point of the sphere described by FENE bead-spring

chain model get more stretched as compared to the FENE dumbbell model, which

clearly suggests the existence of distinct flow microstructure coupling at different level

of Coarse graining (see figure 5.9). This intricate coupling also influence the total

traction on the sphere and its components, i.e. purely elastic and viscous stresses

as well as the pressure. Hence, the total traction along the surface of the sphere

shows significant localization near the rear stagnation point (see figures 5.10 and

5.11). Consequently, the effect of distinct flow microstructure couplings predicted by

various FENE dumbbell and chain models on the drag is mainly limited to the region

near the rear stagnation point of the sphere. Since the drag is obtained by integration

of the traction over the entire surface of the sphere, this measure cannot accurately

capture the overall effect of fluid elasticity on the flow dynamics predicted by the

FENE dumbbell and three-segment chain models. However, as it will be shown later,

the aforementioned flow microstructure coupling has a very significant effect on the

wake structure formed downstream of the rear stagnation point.

In order to better understand the mechanism of the drag enhancement we have

examined the contribution of purely elastic and viscous stresses as well as the pressure

to the computed drag [Yang and Khomami (1999)]. Overall, elastic effects tend

to give rise to a reduction in the drag coefficient while viscous effects give rise to

an increase in the drag coefficient. However, the trend in the variation of drag

coefficient as a function of We more or less follows the variations observed in the

pressure contribution to the drag, particularly at high We. This clearly indicate

that the pressure particularly near the rear stagnation point is the dominant factor

in determining the overall drag on the sphere at high We (see figures 5.10-(d) and

5.11-(d)).
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Figure 5.10: The contribution of purely elastic and viscous stresses as well as the
pressure to the traction on the surface of the sphere (a,b,c) and total drag on the
sphere (d)at χ = 0.121.
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Figure 5.11: The contribution of purely elastic and viscous stresses as well as the
pressure to the traction on the surface of the sphere (a,b,c) and total drag on the
sphere (d)at χ = 0.243.
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5.4.3 Elastic Effects on the Structure of the Wake

In addition to an integrated property such as the drag on the sphere which has been

shown not to be a very sensitive measure of elastic effects on the overall flow [McKinley

(2001)], a number of studies have investigated the influence of flow elasticity on the

velocity and stresses in the wake of bluff objects. Specifically, experiments show that

the axial extent of this elastic wake depends on both We and χ and decays slowly

over a distance of 30 radii for the highest reported We, i.e. We = 9.092 for χ = 0.243

and We = 7.557 for χ = 0.121 [Arigo et al. (1995); McKinley (2001)]. It has also

been shown that continuum calculations with dumbbell based models can capture

qualitatively the wake structure but the predicted effect is much more localized (2-3

radii) in comparison with experimental observations [Arigo et al. (1995); McKinley

(2001)].

In figure 5.12 the axial centerline velocity upstream and downstream of the

spheres calculated by FENE dumbbell and chain models is depicted for both χ’s. As

expected at low We the velocity field in the downstream wake of the sphere is fore/aft

symmetric with the velocity measured in the quiescent fluid upstream of the sphere

and as strain rates in the fluid increase at higher We, the velocity field progressively

loses its fore/aft symmetry and a viscoelastic wake develops. The FENE chain model

predicts a slower decay than the dumbbell model. Specifically the distances predicted

by FENE dumbbell and chain models for the velocity to decay to its equilibrium value

is approximately 15 & 25 and 8 & 15 for χ = 0.121 and χ = 0.243 at We = 8.0,

respectively. The superior predictions of the chain models can be rationalized by

its more accurate description of the macromolecular dynamics in the fast transient

extensional flows in the wake of the sphere. This in turn, leads to a more accurate

description of the polymer body force that gives rise to the extended velocity wake.

Birefringence measurements can also be used to study elastic effects on the wake

structure behind bluff objects. In fact, presence of high level of molecular orientations

in the wake of a cylinder confined in a channel up to 10 radii downstream of the
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Figure 5.12: Predicted velocity along the centerline of the tube and surface of sphere
at (a) χ = 0.121 and (b) χ = 0.243; b = 4000.

cylinder have been observed for polymeric solutions at We ≈ 2 [Baaijens et al.

(1995)]. To examine the extent of the birefringent strand in the sedimenting sphere

problem, we have examined the stress contours in the wake of the sphere (see

figure 5.13). Clearly, the bead-spring chain FENE model predicts strands which

extend dramatically with increasing We at both χ’s and even reaches the end of

computational domain ,i.e., 60 radii, for We > 8.

It should be noted that even though the distance from the sphere where the

velocity decay to its equilibrium value predicted by the 3 segment bead-spring model

is significantly larger than that predicted by continuum constitutive equations or

the mesoscale dumbbell model, it still is somewhat smaller than the experimentally

measured value. However, our simulations clearly suggest that a better description

of the experimental data can be obtained with chain models with larger number of

segments. Considering the computational requirements of such simulations, the use

of more sophisticated Coarse grained models such as the configuration based Coarse

grained model [Venkataramani et al. (2008a)] should also be considered.
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Figure 5.13: Stress contour plots in the wake of the sedimenting sphere (multi-
segment bead spring FENE model with (b = 4000)). To facilitate the comparison all
the results are plotted at the same range and number of contour levels, i.e. 50 levels
in 1-10 range.
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5.5 Conclusion

Self-consistent multiscale flow simulations of a highly elastic dilute polymeric

solution, described by first principles micromechanical models for sedimentation of

a sphere in a tube filled with a dilute polymeric solution has been investigated.

Through comparisons with experimental measurements, we have demonstrated

that the evolution of the drag coefficient as a function of fluid elasticity can be

accurately predicted when the macromolecular dynamics is described by realistic

micromechanical models that closely capture the transient extensional viscosity of

the experimental fluid at high extension rates. Specifically, for the first time we have

computed the drag coefficient on the sphere at high We utilizing multi-segment bead-

spring chain models with appropriate molecular parameters and have demonstrated

that hi-fidelity multiscale numerical simulations are not only capable of quantitatively

describing the drag on the sphere as a function of We at various sphere to tube

diameter ratios but also they can faithfully reproduce the experimentally observed

velocity and the stresses in the wake of the sphere.
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Chapter 6

A computational study of the

influence of viscoelasticity on the

interfacial dynamics of dip coating

flow

6.1 Introduction

Free surface displacement flows of Newtonian and viscoelastic fluids plays an

important role in several industrial applications such as polymer processing, coating

technology, gas-assisted injection molding and enhanced oil recovery [Taylor (1960);

Bretherton (1961); Ruschak (1985); Bonn et al. (1995); Coyle et al. (1990); Poslinski

et al. (1995)]. Consequently, numerous researchers have focused their attention

on modeling Newtonian displacement flows in a variety of geometries to better

understand the interfacial dynamics of free surface flows [Coyle et al. (1990); Pearson

(1959); Pitts and Greiller (1961); Sullivan and Middleman (1979); Rabaud et al.

(1990); Saffman and Taylor (1958)]. However, the number of studies dealing with
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viscoelastic displacement flows is limited [Linder et al. (2002); Huzyak and Koelling

(1997); Lee et al. (2005, 2002); Bhatara et al. (2004a); Ruschak (1985)].

Turning to the literature on experimental studies of free surface displacement

flows of viscoelastic fluids, we again find a relatively small body of work. Bonn

[Bonn et al. (1995)] using solutions of polyethylene oxide (PEO) reported an increase

in the film thickness over that found for Newtonian fluids. Lidner [Linder et al.

(2002)] carried out experiments in a Hele-Shaw cell geometry and observed a film

thickness increase over that found for Newtonian fluids using solutions of PEO,

and a film thickness decrease using xanthane solutions. They attributed the film

thickening effect for PEO to the high elongational viscosity and large normal stresses

that PEO exhibits, although no clear correlations were developed as a function of

the Weissenberg number, We, that provides a measure of the elasticity of the flow

through the relaxation time of the polymer (i.e., We = λU
b

, where λ is the relaxation

time of the polymer, U is the mean fluid velocity and b is the gap separation between

the plates). Huzyak [Huzyak and Koelling (1997)] reported strong film thickening

effects using highly elastic, non-shear thinning, polyisobutene-polybutene (PIB-PB)

based Boger fluids. Lee [Lee et al. (2005)] in a study of free surface displacement flow

of PIB-PB Boger fluids under gravity stabilization in an eccentric cylinder geometry,

found significant film thickening due to presence of elasticity.

Recently, a number of numerical simulation of the steady-state displacement of

viscoelastic fluids by an air bubble in long narrow tubes have been performed [Bhatara

et al. (2004a); Gauri and Koelling (1999a,b); Giavedoni and Saita (1997); Pasquali

and Scriven (2002); Lee et al. (2002, 2005); Bhatara et al. (2005b)]. Specifically,

Pasquali and Scriven [Pasquali and Scriven (2002)] examined the flow dynamics

of air displacing fluid for a slot coating flow using dilute and semi-dilute polymer

solutions. They observed the formation of layers of molecular stretch under the

free surface downstream of the stagnation point, in the capillary transition region.

Furthermore, they demonstrated that the layers of molecular stretch are largest for

the extensible and semi-extensible molecules and effectively smaller for more rigid
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molecules. Lee [Lee et al. (2002, 2005)], examined both the Hele-Shaw and slot

coating geometries for dilute polymer solutions using the Oldroyd-B, FENE-CR and

FENE-P constitutive equations. In the Capillary number regime considered in their

study (i.e., Ca < 1.0), the flow is characterized by a recirculation pattern and elastic

normal stress boundary layers in the capillary transition region at moderate values of

We are observed. Furthermore, this study demonstrated that the formation of these

stress boundary layers generates a strong positive normal stress gradient in the flow

direction in the capillary transition region that results in film thickening. Bhatara

and Lee [Bhatara et al. (2004a); Lee et al. (2002, 2005)] extended the FENE-CR

simulations to a much larger range of Ca and We and also incorporated the effect

of gravity. These authors identified the presence of two distinct flow regimes, (in the

absence of gravity) a recirculation flow at low Ca (Ca < 1.0) and a bypass flow at

high Ca (Ca > 1.0). In the recirculation flow, in addition to the film thickening

effect, the authors observe a meniscus invasion phenomenon when the stresses in

the boundary layer created by planar extensional flow near the free surface, become

very large. In a separate study Romero [Romero et al. (2004)] have experimentally

demonstrated that the viscoelastic nature of the fluid significantly reduces the contact

angle due to meniscus invasion, leading to a non-uniform coating. In addition,

Bhatara [Bhatara et al. (2004a)] demonstrated that the formation of the elastic normal

stress boundary layer is a local phenomenon, largely independent of geometrical

considerations. Moreover, these authors considered the effect of concentration and

chain architecture on the viscoelastic displacement flow dynamics, by modeling semi-

dilute, concentrated solutions and polymeric melts. In turn, they established that

the interfacial dynamics depend on the extensional hardening and shear thinning

characteristics of the fluid [Bhatara et al. (2005b)]. Specifically, they demonstrated

that the coating film thickness is mainly governed by two forces, shear stress gradients

at the wall that have a film thickening effect, and normal stress gradients in the flow

direction that, if positive, have a film thickening effect [Lee et al. (2002); Bhatara

et al. (2005b); Ro and Homsy (1995)].
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In addition to the prototype flow problem involving air-fluid displacement in a

capillary tube or in a gap between two closely spaced parallel plates i.e., the Hele-

Shaw cell flow, the dip coating problem [White and Tallmadge (1965); Spiers et al.

(1975); Adachi et al. (1978)], in which a thin liquid film is formed on a flat plate

drawn vertically at a constant speed from a liquid bath (see 6.1-(a) ) is also a classic

problem in free surface displacement flows. The withdrawal of a Newtonian fluid

under dominant capillary forces was considered by Landau and Levich [Landau and

Levich (1942)] in their pioneering work. In the case where the effect of viscous forces is

negligible in comparison to surface tension forces (i.e., low values of Ca), the authors

determined the steady state dimensional film thickness, tf , to be,

tf = 0.994
(µU)2/3

σ1/6(ρg)1/2
(6.1)

where µ is the fluid viscosity, U is the speed of the plate, σ is the fluid surface

tension, ρ is the fluid density and g is the acceleration due to gravity. This equation

can be recast as,

tf
(σ/(ρg))1/2

= 0.994Ca2/3 (6.2)

An inspection of this equation indicates that the film thickness scales with Ca2/3,

if the film thickness is made dimensionless with a characteristic length scale l, where

l = ( σ
ρg

)1/2, i.e. the capillary length [Landau and Levich (1942)]. Other significant

contributions have been made by White [White and Tallmadge (1965)], who compared

the theoretical results of Landau and Levich with experimental measurements of film

thickness and found good agreement at low Ca, and by Esmail [Esmail and Hummel

(1975)] who included the contributions of fluid inertia.

The corresponding problem for non-Newtonian fluids, i.e., fluids with a shear

dependent viscosity, has been treated by Spiers [Spiers et al. (1975)], and by Gutfinger

[Gutfinger and Tallmadge (1965)]. However, inertial effects were not included, nor was

fluid elasticity. Spiers [Spiers et al. (1975)] compared the results of their experiments
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with the theories for the Bingham, Ellis and power-law models. However, only a small

number of their experimental results were in good agreement with their theoretical

predictions. Adachi [Adachi et al. (1978)] used a modified four-constant Oldroyd

model to predict non-Newtonian effects on the film thickness concluded that the

inclusion of viscoelasticity reduces the film thickness in comparison to predictions

from purely viscous theory. Ro and Homsy [Ro and Homsy (1995)] extended their

Hele-Shaw flow theory to dip coating in the weak elasticity regime, i.e., We <<

Ca1/3 << 1. Specifically, the authors determined that the characteristic length scale

in the outer region (Region III in figure 6.1-(a)) is the capillary length l, as proposed

by Landau and Levich [Landau and Levich (1942)]. Furthermore, by neglecting the

influence of gravity in the inner region (Region II in figure 6.1-(a)), they determined

that in this weak elastic regime fluid elasticity gives rise to film thinning and obtained

the following expression for the dimensionless film thickness (h),

h =
tf
l

= 0.9454Ca2/3 − 0.09454WeCa1/3 + ... (6.3)

Figure 6.2 shows the cross-section of the flow interface created for a fluid film as it

is pulled out from a liquid bath. This problem was first analyzed by Mysels [Mysels

and Frankel (1978)] for the case of flexible and inextensible soap films drawn from a

bath of Newtonian soap solution. The authors regarded the pulling of the film out

of the solution as a liquid entrained by two inextensible surfaces and analyzed the

hydrodynamics where the velocity gradient is zero at the centerline. In effect, a fluid

film, as depicted in figure 6.2, is equivalent to the film formed in dip coating (see

figure 6.1-(a))) plus its mirror image, i.e., a liquid layer of twice the thickness. Hence,

the solution of this problem is identical to that of the dip coating with the thickness

of the pulled film being twice that of the dip coating film. Therefore, an analysis

of the interfacial dynamics of the dip coating flow can be extended in a straight

forward manner to examine the interfacial dynamics of inextensible fluid films pulled

from a viscoelastic solution. The purpose of this study is to illustrate an approach
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by which Hele-Shaw type flow simulations can be extended to simulate dip coating

flows by appropriate rescaling of the governing equations in the Hele-Shaw problem

formulation and increasing the Bo until the dip coating flow limit is reached.
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Figure 6.1: Problem formulation: (a) Cross-section of the flow interface created in
dip coating, (b) Schematic of the Hele-Shaw flow.

6.2 Problem Formulation

To formulate dip coating free surface displacement flow of a single vertical plane

pulled out of a liquid bath, as depicted in figure 6.2, we consider the flow between

two parallel vertical plane pulled simultaneously out of a liquid at the same speed. In

turn, the distance between the planes, i.e. the gap width, is progressively increased to

minimize the effect of the presence of the second plane on the flow properties. In the

other words, the flow near a single plane pulled out of a liquid bath, is similar to the

flow between parallel planes pulled out of liquid bath in the limit of large gap width,
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Figure 6.2: Cross-section of the flow interface of a soap film.

where the appropriate length scale of the problem, namely the capillary length scale

becomes much smaller than the gap width. In this limit, the problem formulation

for the steady free surface displacement flow represented in figure 6.1-(a) becomes

identical to the problem formulation for the Hele-Shaw flow [Bhatara et al. (2004a)].

As illustrated in figure 6.1-(b), the cross-sections of the flow interface created in both

the dip coating flow and the Hele-Shaw flow are similar. In both flows, a thin film

region is connected to a parallel flow region by a transition region. The difference

in the two problems is the direction of the gravity force in the dip coating flow as

compared to the Hele Shaw flow.

In the other words one could think of dip coating problem as a Hele-Shaw problem

in the limit of infinite gap width, where the relevant length scale is the capillary length

(l) instead of the half gap width (b). Hence, the ratio of the characteristic length scales

for the Hele-Shaw flow and the dip coating flow is given by the Bond number, i.e.,
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Bo =
ρgb2

σ
=
b2

l2
, (6.4)

where ρ is the fluid density, g is the acceleration due to gravity, b is the gap width

and σ is the fluid surface tension. Therefore, in order to reach the dip coating limit,

the Hele-Shaw simulations have to be performed at high values of Bo, i.e., when the

gap width between the parallel planes becomes much larger than the length scale of

the problem, i.e., the capillary length. To further illustrate this basic approach, a

scaling analysis of the governing equations in the limit of large Bo is performed.

Specifically, the equations of continuity and motion are considered:

~∇.~u = 0, (6.5)

− ~∇P + ~∇.τ + ρg ~Ix = 0, (6.6)

where ~u is the velocity vector, ~Ix is the unit vector in the x direction, (vertical direction

in figure 6.1-(a)), P is the pressure and τ is the total stress tensor formed by the sum

of the Newtonian solvent stress, τ s, and the polymer stress, τ p.

In turn, the equations are non-dimensionalized as

(x, y)[=](b, b), (~u,~v)[=]U, P [=]
σ

b
, τ [=]

ηU

b
, (6.7)

where η is the total viscosity of the fluid at zero shear rate and U is the

characteristic velocity of the problem.

With the gap width as the length scale, the dimensionless form of Equation 6.6 is

given by,

− ~∇ P

Ca
+ ~∇.τ +

Bo

Ca
~Ix = 0, (6.8)
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Now in the limit of Bo → ∞, i.e. b → ∞ , the last term on the left hand side

of this equation becomes large, indicating that in order to recover the correct form

of the equation of motion in this limit, we must rescale the problem. As mentioned

earlier in this limit, the appropriate length scale is the capillary length. Specifically

with the capillary length as the length scale, the dimensionless form for Equation 6.6

becomes,

− ~∇ P

Ca
+ ~∇.τ +

1

Ca
~Ix = 0, (6.9)

This equation illustrates that choosing the appropriate length scale (i.e., scaling

with the capillary length) one can model dip coating flows using Hele-Shaw

simulations in the limit of large Bo.

To model the dynamics of the dilute polymeric solution, the FENE-CR [Chilcott

and Rallison (1988); Bird et al. (1980)] model is used, as it provides a good description

of the rheology of Boger fluids (non shear thinning, bounded extensibility) [Boger and

Mackay (1991)], that have been widely used in experimental studies of viscoelastic

free surface coating flows [Huzyak and Koelling (1997); Lee et al. (2002); Grillet et al.

(1999a)]. Under steady flow conditions, the constitutive equation for a FENE-CR

model is given by

~u.~∇C = C.~∇~u+ ~∇ ~uT .C − f(R)

We
(C − I), (6.10)

where C is the polymer conformation tensor and represents an ensemble average of

the dyadic product ~R~R of the dumbell end to end vector ~R and f(R) is the spring

force law, given by

f(R) =
1

1− Tr(C)
L2

, (6.11)

where L is the finite extensibility parameter. In the limit L → ∞, the FENE-CR

model reduces to the Oldroyd-B model. The total stress is written as the sum of the
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viscous stress and the polymer stress

τ = 2Sγ̇ +
(1− S)

We
f(R)(C − I), (6.12)

where S is the ratio of the solvent viscosity to the total viscosity.

6.2.1 Boundary Conditions

The boundary conditions applied on the free surface are the kinematics condition

~u.~n = 0, (6.13)

the normal stress balance

~n.(τ − IP ).~n =
~∇s.~n

Ca
, (6.14)

and the vanishing of shear stresses

~n.τ .~t = 0, (6.15)

where ~n and ~t are the unit vectors normal and tangent to the free surface respectively

and ~∇s denotes the surface divergence operator. The governing equations are solved

by considering a coordinate system that moves at the same speed as the interface tip.

In this reference frame, the corresponding boundary conditions are :

On the solid wall, no slip condition applies

u = 1, v = 0; y = 0, 0 ≤ x ≤ ∞. (6.16)

At the centerline, symmetry conditions apply

τsy = 0, v = 0; y =
1

2
, 0 ≤ x ≤ xc (6.17)

xc, ~u = 0, (6.18)
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where xc refers to the x coordinate of the interface tip.

At the outflow, a fully developed velocity profile is assumed in the thin film, i.e.,

∂2u

∂y2
=
Bo

Ca
, (6.19)

while far from the air fluid interface the velocity profile takes on the following form

[Lee et al. (2002); Reinelt and Saffman (1985)],

u = 6(1− 2h∞(1− (h∞)2 Bo

3Ca
))y(y − 1) + 1; v = 0. (6.20)

The quantity h∞ is the dimensional thickness of the hydrodynamic coating left on

the moving plane, and its value is determined as part of the solution.

At the inflow, we assume a unidirectional shear flow (u = F (y)) and evaluate the

conformation tensors using Eqn.(6).

f(Cxx) =
L2

L2 − Cxx − 2
, (6.21)

Cxx = 1 +
2We2

f(Cxx)2
(
du

dy
)2, (6.22)

Cxy =
We

f(Cxx)

du

dy
, (6.23)

Cyy = Czz = 1, (6.24)

Cxz = Cyz = 0. (6.25)

All the boundary conditions specified above are essential boundary conditions

i.e. they replace the respective governing equations at the boundary nodes, with the

exception of ~n.σ.~n which is imposed naturally.
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6.2.2 Finite Element Formulation of the Governing Equa-

tions

The FEM formulation is essentially the same scheme employed by Lee et al. and

Bhatara [Lee et al. (2002); Bhatara et al. (2004a)] and we present a brief account of

it here. For further details refer to [Lee et al. (2002); Bhatara et al. (2004a)]. The

DEVSS formulation proposed by Guenette and Fortin [Guenette and Fortin (1995);

Yurun and Crochet (1995); Szady et al. (1995); Talwar and Khomami (1992)], is

used to discretize the fluid governing equations. Hierarchic shape functions, Nk,

formed by linear combination of Legendre polynomials are used to approximate the

variables of the problem [Talwar and Khomami (1992); Talwar et al. (1994); Khomami

et al. (1994)]. Since the flow is incompressible, the velocity and pressure fields must

satisfy the Ladyzhenskaya-Babuska-Brezzi (LBB) condition that requires the velocity

interpolant to be of higher order than the pressure interpolant. Hence the basis

functions are quadratic for velocity and bilinear for other variables.

~u =
9∑
i=1

~uiNi γ̇ =
4∑
i=1

γ̇iNi P =
4∑
i=1

P iNi τ p =
4∑
i=1

τ ipNi (6.26)

~x =
Mx∑
i=1

( ~Xi + ~di)Ni (6.27)

where ~Xi is the initial fixed nodal position and ~d is the unknown displacement

vector that contains information about the flow domain deformation. No constraint

analogous to the LBB condition exists for the mesh displacement vector since a

compressible pseudo-solid approach is used to model the mesh deformation.

A standard Galerkin formulation is used to discretize the momentum and

continuity equations. We use the Streamline Upwind Petrov-Galerkin method

(SUPG) proposed by Brooks and Hughes [Brooks and Hughes (1982)] to integrate

the constitutive equation. To avoid excessive discretization error all second-order

derivatives are integrated by parts using the divergence theorem. In addition, the
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strain rate is discretized in order to provide numerical stabilization [Guenette and

Fortin (1995)].

6.2.3 Free Boundary Formulation

A computational mesh that conforms to the fluid domain is used to perform the

simulations. The edges of the mesh conform to both the free and fixed boundaries of

the domain. Hence, the mesh must deform as the fluid surfaces deform. This section

briefly describes the methodology used to generate the mesh deformation. We employ

the pseudo-solid domain mapping technique developed by Sackinger [Sackinger et al.

(1996)]. We treat the mesh as a fictitious elastic solid, which deforms in response

to boundary loads. As the mesh boundary conforms to the domain occupied by the

fluid, the mesh interior adjusts as though it were a compressible elastic solid. The

advantages of using this method are that it can be easily applied to unstructured

meshes, and it is easily implemented in an Eularian finite element framework for

analysis of non-linear problems. The basic premise of pseudo-solid deformation is

that the internal mesh is a stress free state of the fictitious solid, X. Then as the

mesh boundaries get distorted, the mesh deforms to a new stressed state, x. The

relationship between the stressed state and the stress-free state is the deformation

field

~x = ~X + d, (6.28)

where d is the displacement field that represents how the material points in the

pseudo-solid have deformed to accommodate fictitious elastic stresses. A central

objective of the problem is, hence, to determine the mapping d. The deformation of

the pseudo-solid in the interior of the mesh is governed by a quasi-static momentum

equation

~∇.S = 0, (6.29)
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where S is the Cauchy stress in the pseudo-solid. The pseudo-solid stress S is related

to the deformation field through a constitutive equation. We are using a Hookean

elasticity formulation, which has been previously shown to provide acceptable mesh

deformation behavior [Lee et al. (2002); Sackinger et al. (1996)]

S = tr(E)I + 2E, (6.30)

where I is the identity matrix and E is the Eulerian strain tensor. Previous attempts

at pseudo-solid mesh deformation utilized a small deformation, linear strain tensor

[Lee et al. (2002); Sackinger et al. (1996)]. We employ a non-linear form for E

E =
1

2
[~∇~d+ ~∇~dT − ~∇~d.~∇~dT ]. (6.31)

The use of the finite strain form is important for flows in which the domain

experiences large deformation, as it can alleviate undesirable mesh deformation by

eliminating artificially induced stresses [Cairncross et al. (2000)]. This non-linear

form for the strain rate tensor does not greatly affect the computational cost as the

set of discretized equations for fluid flow are non-linear and hence additional increase

in computational memory and time due to an introduction of non-linearity in the

pseudo solid deformation is not significant.

6.2.4 Boundary conditions on mesh deformation

The body of the pseudo-solid mesh deforms in response to boundary deformation.

Hence, the boundary conditions on the mesh dictate the solution of the mesh

deformation. There are two main types of conditions applied on mesh surfaces.

Dirichlet conditions and distinguishing conditions. Dirichlet conditions specify the

value of the displacement field at each node along a specified boundary; hence

they specify both boundary shape and the distribution of nodes on the boundary.

Distinguishing conditions are equations that prescribe the shape of the free surface
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but not the distribution of nodes along the free surface, hence allowing the nodes to

redistribute tangentially to minimize the pseudo-solid shear stresses on the boundary,

i.e.

~tn : S = 0, (6.32)

where t is the tangent to the surface and n is the normal. This procedure yields

acceptable mesh deformation [Lee et al. (2002); Sackinger et al. (1996)].

The kinematics boundary condition is also a distinguishing condition on the mesh

deformation, i.e., the boundary deforms to make the normal component of fluid

velocity equal to zero,

~n.(~u− ~̇
fxs) = 0. (6.33)

This condition makes the free surface a material surface in the normal direction,

i.e., no mass crosses the surface. Similar to geometric distinguishing conditions

it is convenient to allow the nodes on a free surface to redistribute to minimize

pseudo-solid stresses. Attention has to be paid to special points like corners, which

are the junctions or intersections of two or more boundaries, and at which it is

mathematically impossible to impose a tangential traction free constraint or define

a unique normal vector. Hence, multiple distinct constraints apply at the corner

points and the deformation of the point is determined by using the corresponding set

of distinguishing conditions. The normal hierarchy is that Dirichlet conditions take

precedence over distinguishing conditions, and geometric conditions take precedence

over free boundary conditions. However, care must be taken not to lose valuable

boundary data. For instance, in order to correctly detect the deformation of the

corner, we enforce the interfacial force balance in the x direction as the last boundary

condition.

The boundary conditions on the pseudo-solid momentum equations are often

difficult to apply because these distinguishing conditions are usually applied on

arbitrarily oriented surfaces. Spurious mesh stresses can appear if the surface

projection of the distinguishing condition is non-zero. Hence, it is important that the
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distinguishing condition constrains only the normal deformation of the boundary and

permits the nodes to redistribute freely in the tangential direction. So, it is convenient

to express the pseudo-solid equations in normal and tangential components. The

normal component is replaced by the distinguishing condition and the tangential

components allow shear-free distribution of the nodes.

6.2.5 Mesh Convergence

The residual equations obtained via the FEM formulation [Lee et al. (2002)] are

solved via the Newton’s iteration method, with first order continuation in both Ca

and We. In the earlier study conducted by Lee [Lee et al. (2002)], the authors tested

their convergence for a FENE-CR model, with L = 10. With their finest mesh,

convergence up to a We of 0.61 (at a Ca of 0.2), was attained. The convergence was

limited because of stress oscillations in the capillary transition region that could not

be resolved given the level of discretization and the choice of polynomial spaces. So

for comparison purposes we have used the aforementioned choice of the parameters.

In addition, this choice of parameters is motivated by the prior experimental studies

[Lee et al. (2005)].

To resolve the resolution issue, meshes should have sufficient discretization. Hence,

the mesh design strategy employed in this study, is to maximize the number of

elements in the capillary transition region, where the stress boundary layers develop,

while minimizing the number of elements in the rest of the fluid domain. The

numerical solution has been tested for convergence by varying the mesh density, as

depicted in figure 6.3. Two different meshes with numbers of elements equal to 16123

and 17136 respectively have been used. Although the number of elements in these

two discretizations are not very different, using the above strategy we have been able

to reduced the size of the elements in the capillary region by a factor of approximately

2.5 (see figure 6.4 for details). The convergence criterion adopted requires the norm

between two consecutive iterations to be equal or smaller than 10−5. We performed
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a convergence study similar to what has been performed by Lee [Lee et al. (2002)].

The numerical scheme is very robust in terms of the mesh deformation and capturing

the boundary layer stresses. In case of recirculation flow (low Ca, low Bo), the

convergence is limited by the resolution of the stress boundary layers. We quantify

this by conducting a normal stress and a normal stress gradient probe along various

heights in the flow domain. At higher We oscillations in the polymer stresses start

to appear (see figure 6.5). These sharp stress gradients cannot be captured given our

mesh sizes and choice of polynomial spaces. The value of We to which convergence

can be attained increases with increasing Ca or decreasing Bo (refer to Table 6.1).

This is to be expected since increasing Ca or decreasing Bo results in lower strain

rates and subsequently leads to lower stresses in the stress boundary layer in the

capillary transition region.

Ca 0.01 0.05 0.1 0.2
Bo 60 60 160 200
We 0.57 0.63 0.72 0.79

Table 6.1: Convergence studies: Maximum We attained for fixed Ca and Bo

6.3 Results

6.3.1 Low Ca

In the absence of gravity, the meniscus is almost circular at the tip of the air-liquid

interface near the plane of symmetry while the circular shape of the interface in the

capillary transition region is deformed by viscous and elastic forces [Ro and Homsy

(1995)]. At high Bo, the meniscus at the tip of the air-liquid interface near the

plane of symmetry and the interface in the capillary transition region are flattened

because of the presence of gravity (see figure 6.6). The amount of compression of the

air-liquid interface in the capillary transition region and subsequent flattening of the
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Figure 6.3: Convergence studies,τxx, for two different meshes, for low and high Ca
flows.
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Figure 6.4: Details of the computational grids. The design philosophy is to have
fine discretization in the capillary transition region and near the tip of the air-liquid
interface close to the plane of symmetry. The average width of smallest element in
Capillary transition region is within range of 0.0096 to 0.0250 for meshes with 17136
and 16123 elements, respectively. The computational domain is 14 non-dimensional
unit long and 0.5 wide. The position of air-liquid interface near the plane of the
symmetry is located at x = 5, and the flow properties are independent of x for x < 3
and x > 7. The results with a computational domain which is 10 non-dimensional
unit long are exactly the same as the computations performed with the longer domain
(i.e. 14 non-dimensional unit long).
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interface increase with increasing Bo. The flow streamlines and the effective strain

rate (defined as the second invariant of the strain rate tensor [Bhatara et al. (2005b)])

are illustrated in figure 6.7 for representative values of Ca, We and Bo. Figure 6.7-(a)

corresponds to Ca = 0.01, Bo = 40 and We = 0.5, while figure 6.7-(b) corresponds

to Ca = 0.01, Bo = 60 and We = 0.5. The flow is characterized by a recirculation

pattern and an interfacial stagnation point, in addition to the stagnation point at the

tip of the air-liquid interface near the plane of symmetry. The strain rates are highest

adjacent to the wall under the thin film region and at the interface in the capillary

transition region. The flow near the wall is predominantly a shear flow, while under

the free surface is a planar extensional flow [Bhatara et al. (2004a); Lee et al. (2005);

Bhatara et al. (2005b)]. A close examination of the streamlines and the strain rates

indicates a strengthening of the recirculation region and an increase in the maximum

effective strain rate with increasing Bo.

Figure 6.8 depicts contours of the elastic normal stress (τxx) at Ca = 0.01 and

We = 0.5, for a variety of Bo. As in the Hele-Shaw flow, formation of a normal

stress boundary layer at the free surface downstream of the interfacial stagnation

point is observed at high values of We [Bhatara et al. (2004a); Lee et al. (2005);

Bhatara et al. (2005b)]. It has been ascertained previously that these normal stress

boundary layers occur because of the local extensional flow at the interface [Bhatara

et al. (2004a, 2005b)]. In addition to the normal stresses formed at the interface,

high strain rates at the wall result in an increase in the normal stresses at the wall

under the thin film (see figure 6.8). For fixed We, as the value of Bo is increased,

there is an increase in the magnitude of the maximum normal stress in the stress

boundary layer (see figures 6.8 and 6.9). However, despite of the increase in the

normal stresses and their gradients that have been shown to lead to film thickening

[Bhatara et al. (2004a, 2005b)], the film thickness is reduced with increasing Bo (see

figure 6.12), as gravitational force resists the passage of fluid elements in the thin film

region and becomes dominant at high Bo. The interplay of various forces responsible

for determination of the film thickness are the same as in the Hele-Shaw flow, i.e.,

103



viscous stresses at the wall ∂τxy
∂x

have a film thickening effect, normal stress gradients

∂τxx
∂x

have a film thickening effect if positive in the direction of flow, and gravity has a

film thinning effect [Bhatara et al. (2004a, 2005b)]. This is illustrated schematically

in figure 6.10. This can be clearly ascertained by examining the line plots of the stress

gradients,∂τxx
∂x

and ∂τxy
∂y

, in figure 6.8. The two vertical lines indicate the location of the

interfacial stagnation point A and the point at which the gradient of the free surface

variation falls below 10−5. The line plots of the stress gradients indicate that, once

the stress boundary layer forms, the normal stress gradient ∂τxx
∂x

near the interface is

much larger than the shear stress gradient ∂τxy
∂y

near the wall. Furthermore, a close

examination of the stress gradients shows the presence of a net positive normal stress

gradient that results in a film thickening effect.

In order to separate the effects of normal stress gradients and gravity on film

thickness, we plot the percentage deviation from the Newtonian film thickness as a

function of We in figures 6.11-(a) and (b) as well as figures 6.12-(a) and (b), where

the film thickness, h, has been made dimensionless with the gap half width b. For the

same Ca and We, increasing Bo results in thinner films, while for the same Ca and

Bo, increasing We results in thicker films. Figures 6.12-(a) and (b) also indicate that

the film thickness made dimensionless with the gap width is a function of both Ca and

Bo. Furthermore, as in the Hele-Shaw flow, a film thinning effect is observed at low

We followed by a film thickening effect at high We. The onset of the film thickening

effect occurs at the same value of We at which the formation of the normal stress

boundary layer occurs. It has been shown previously that in the Hele-Shaw flow, in

the limit of low Ca and We, the film thinning occurs due to the presence of negative

normal stress gradients in the flow direction, i.e.,(∂τxx
∂x

< 0), that are greater than

the shear stress gradients. The onset of the normal stress boundary layer results in

positive normal stress gradients (∂τxx
∂x

> 0) that triggers film thickening [Bhatara et al.

(2004a)].

To examine the flow characteristics in the dip coating flow limit, the film thickness

scaled with the Bond number (i.e., hBo1/2) as a function of We is plotted in figures
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6.13-(a) and (b). It can clearly be seen that the film thickness nearly collapses onto

a single curve at high Bo, indicating that the film thickness scaled with the correct

characteristic length, i.e. the capillary length, l, is independent of Bo and it only is a

function of only Ca and We. This result shows that at small Ca and for Bo > 10 the

flow near one of the plane is not effected by the presence of the other plane, hence, the

dip coating flow limit has been reached. Furthermore, at low values of We the scaled

film thickness shows good agreement with the Ro and Homsy expression (see Equation

6.3 which is valid in limit of small We). However as expected a significant departure

is seen between the result of our simulations and the Ro and Homsy expression as

the value of We is increased. This is due to the fact that the Ro and Homsy used

an asymptotic expansion that is valid in the limit of low We to obtain Equation

6.3. Hence, their expression can only capture film thinning observed at low We.

Moreover, given the fact that our simulations for low values of We agree with the Ro

and Homsy expression for the dip coating flow further underscores that the capillary

length is indeed the appropriate length scale at sufficiently high Bo, i.e., the dip

coating flow limit.

6.3.2 Moderate Ca

Similar to the observations for interface shapes at low values of Ca, the meniscus

at the tip of the air-liquid interface near the plane of symmetry and the interface

in the capillary transition region are flattened because of the presence of gravity

at high values of Bo (see figure 6.14). However, at Bo = 80 (for both Ca = 0.1

and Ca = 0.2), even though there is a flattening of the interface in the capillary

transition region, the shape still resembles the interface shape at Bo = 0, indicating

that viscous and elastic forces are still important in determining the interface shape.

For higher values of Bo (Bo = 140 and 160 at Ca = 0.1, and Bo = 160 and 200 at

Ca = 0.2), a pronounced difference in the interface shapes is observed. Specifically,

the meniscus is highly flattened indicating that gravity is now the dominant force.
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stagnation point. Also corresponding to each figure line plots of stress and stress
gradients along the interface are shown. A represents the location of the stagnation
point and B represents the point where the film thickness variation (dh

dx
) falls below

10−5.
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Figure 6.10: Schematic illustrating the interplay between various forces that
determine the overall film thickness.

This also demonstrates that in order to reach the dip coating flow limit (i.e., gravity

dominated regime) at higher Ca, the corresponding Bo has to be increased. We plot

the streamlines and the effective strain rate at Ca = 0.2 and We = 0.5 for a variety

of Bo values in figure 6.15. The results are very similar to those observed at lower

Ca (see figure 6.7). Specifically, as Bo is increased, the strength of the recirculation

region and the maximum effective strain rate increase.

Contour plots of the normal stress (τxx) and line plots of stress and stress gradients,

are shown in figure 6.16 for Ca = 0.2 and We = 0.5 for a variety of Bo. As Bo

is increased, the magnitude of the maximum normal stress in the stress boundary

layer in the capillary transition region is increased. Furthermore, the development of

normal stresses at the wall under the thin film region at high Bo can be clearly seen

(see figure 6.16-(c)). As reported for lower values of Ca, the maximum normal stress

in the stress boundary layer increases with both Bo and We (see figure 6.17).

The percentage deviation from the Newtonian film thickness as a function of We

is plotted in figures 6.18-(a) and (b), while the dimensionless film thickness as a
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function of We is plotted in figures 6.19-(a) and (b). As in the case of lower values

of Ca, it is clear that increasing Bo has a film thinning effect, while increasing We

results in a film thinning effect followed by a film thickening effect. The mechanism

for film thickening is the same as in the low Ca regime. Plots of the film thickness

scaled with the Bond number show that at Ca = 0.1, the film thickness is nearly

independent of the value of Bo at high Bo (see figure 6.20-(a)). The scaled film

thickness at Bo = 140 and Bo = 160 show good agreement with the Ro and Homsy

asymptotic results at low values of We while the same is not true for the scaled film

thickness at Bo = 80. Similarly at Ca = 0.2, where the scaled film thickness at

Bo = 80 shows significant deviations from the Ro and Homsy correlation at low We,

a good agreement is obtained in this limit between the numerical predictions and

the analytical results for Bo = 160 and Bo = 200 (see figure 6.20-(b)). In the other

words, the magnitude of Bo at which the flow near each plane corresponds to dip

coating flow increases with an increase in Ca. Overall, at Ca = 0.2 the dip coating

flow regime has been reached at Bo ≈ 200.

6.4 Conclusion

In this study we have performed numerical simulations to illustrate that Hele-Shaw

simulations can be extended to understand the effects of elasticity on the interfacial

dynamics of dip coating flows. Specifically, we have shown that the film thickness

scaled with the capillary length, as a function of We, at low Ca and high Bo collapses

onto a single curve, and agrees with the Ro and Homsy [Ro and Homsy (1995)]

correlation for small values of We. For a fixed Ca and We, an increase in Bo

results in a decrease in the film thickness, an increase in the size of the recirculation

region and an increase in the strain rates subsequently leading to an increase in the

normal stresses. At low We, there is a film thinning effect and as the value of We is

increased, there is a film thickening effect that accompanies the formation of a normal

stress boundary layer at the free surface in the capillary transition region. Both the
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magnitude of the film thickness and the maximum stress in the stress boundary layer

increase with increasing We. Furthermore, the normal stress boundary layer at the

free surface is a result of the local planar extensional flow at the interface. These

calculations provide a simple way of examining the wealth of interfacial phenomena

that are present in dip coating flows.
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Figure 6.14: Interface shapes as a function of Bo: (a) Ca = 0.1,We = 0.5, (b)
Ca = 0.2,We = 0.5.
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Chapter 7

Plunging of solid surfaces into

Newtonian and viscoelastic fluids:

an experimental/numerical study

7.1 Introduction

As mentioned in the previous chapter, free surface flows are ubiquitous in nature,

consequently they are of great fundamental and industrial importance. In one of

the most comprehensive studies on influence of fluid elasticity on the interfacial

dynamics of coating flows [Lee et al. (2005)], an eccentric-cylinder device was used

to examine the dynamics of air-liquid interfaces during immiscible displacement

flows. Specifically in this study it was clearly demonstrated that in the eccentric-

cylinder forward-roll coating flow with gravity stabilization the elastic liquid free

surface readily evolves into stable, two-dimensional sharp interfaces and there is a

dramatic increase in coating film thickness with an increase in the flow We. However,

the investigations in this study were mainly focused on the dynamics of the air-

liquid interface at the front of coater, assuming that the front interface dynamics is
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independent of flow kinematics and interfacial dynamics near the air-liquid interface

at the back of coater.

This study constitutes a continuation of an ongoing numerical/experimental

investigation of the effect of fluid elasticity on free surface displacement flows in

our research group. Specifically, it is focused on the air-liquid interface dynamics in

the back of the coater and its impact on the overall flow dynamics. In the back of the

coater, the flow is that of wet substrate being plunged into a bath liquid, hence, we

have dubbed this flow, the ”wet plunge flow”. The wet plunging flow problem is the

opposite of the dip coating problem discussed in the previous chapter where a thin

liquid film is formed on a flat plate drawn vertically from a liquid bath [Landau and

Levich (1942); White and Tallmadge (1965); Esmail and Hummel (1975); Adachi et al.

(1978); Abedijaberi et al. (2011)]. Hence, studying the influence of flow elasticity on

the wet plunging flow is of fundamental importance not only because of its scientific

significance but also due to its potential impact on the interfacial dynamics of various

industrial coating processes.

7.2 Experiment

The experimental apparatus used in this study was developed in our research group

by Lee [Lee et al. (2005)] and it consists of two horizontal cylinders of different radii

with one placed inside the other (see Figure 7.1). The device is designed in a way

that the eccentricity between cylinders and the rotation speed of each cylinder can

be accurately controlled and the shape of the interface can be recorded using a laser

sheet. More details about this apparatus can be found in [Lee et al. (2005)].

In this study we have focused our attention on the wet plunging flow in the back of

the eccentric-cylinder forward-roll coating device (see figure 7.2). The experimental

fluid is H-40 Indopol polybutene polymer (Ineos Oligomers) which is a Newtonian

fluid with a viscosity of 60 P and surface tension of 30 dyncm−1.
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Figure 7.1: Eccentric-cylinder coating apparatus: Plexiglas outer cylinder (a) and
acrylic end plate (b) for direct visualization of interfacial dynamics.

7.3 Problem formulation and numerical technique

We consider the plunging of two parallel pre-wetted vertical planes into a bath of

liquid as depicted in Figure 7.2. The problem formulation is identical to dip coating

flow (see chapter 6) with the only difference being the direction of motion of the

substrate with respect to gravity. Specifically the direction of the wall movement in

the wet plunging flow is opposite of the direction of the wall movement in the dip

coating flow. It should also be noted that in the wet plunging flow the film thickness

on the substrate is prescribed rather than being determined as part of the solution,

as it is in the simulation of the dip coating flow. The numerical technique used to

solve the set of governing differential equations are described in details in chapter 6.

7.3.1 Mesh Convergence

The residual equations obtained via the FEM formulation are solved using the

Newton’s iteration method, with first order continuation in Ca and We. The

numerical solution has been tested for convergence by varying the mesh density.

Specifically, two different meshes with numbers of elements equal to 5074 and 19515

respectively have been used (see figure 7.3). With both meshes converged solutions

are obtained for 0.1 ≤ Ca ≤ 5. Although it is possible to continue the calculations to
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a wider range of Ca, most of the interesting interfacial dynamics are observed in this

range of Ca. It should also be noted that the results presented in the remainder of

this chapter are based on the mesh with 5074 elements and are mesh converged (see

figure 7.4).

0=v

air

x

y
0,1 == vu

fluid

Solid wall

b

Figure 7.2: Schematic of wet plunging flow.

7.4 Results and discussion

As mentioned earlier, prior experimental and numerical investigations have elucidated

the effects of Ca, We and gravity on the front air-liquid interface in the cylindrical

coater [Bhatara et al. (2004a); Lee et al. (2005)]. Specifically it has been shown that

in the absence of gravity, a recirculation flow occurs near the tip of the air bubble at

low Ca (Ca < 1.0) and a bypass flow is observed at high Ca (Ca > 1.0). As fluid

elasticity is enhanced an increase in the hydrodynamic film thickness and meniscus

invasion (formation of a sharp interface) is observed. Gravity has a film thinning

effect [Bhatara et al. (2004a); Lee et al. (2005)]. In this study we have examined

the effect of these key variables on the dynamics of the air-liquid interface at the

125



(a) (b)

Figure 7.3: The computational domain near the air-liquid interface for meshes with
(a) 5074 elements and (b) 19515 elements.
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Figure 7.4: Convergence studies for two different meshes used in the wet plunging
flow simulations.
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back of the eccentric cylindrical coater for Newtonian fluids. In addition, preliminary

computations to examine the influence of fluid elasticity on the interfacial dynamics

of the wet plunging flow have been performed.

7.4.1 Newtonian wet plunging flow

Simulation results

At steady state, the air-liquid interface is in mechanical equilibrium, i.e. there is

no motion of any part relative to any other part. As in mechanical equilibrium the

state of stress is isotropic, the only force exerted by the liquid on the interface is

the equilibrium pressure, which locally acts normal to the interface. The equilibrium

interfacial normal force in liquid phase is the sum of hydrostatic pressure, which

develops due to the body forces, hydrodynamic pressure and stresses created due

to the fluid motion. The local difference in the pressures exerted on the interface

by the air and liquid force exerted normal to the interface must be balanced by the

capillary force. Earlier studies [Brown (1979)] have clearly shown that for complex

non-linear interface shapes various solution families can be obtained for the Young-

Laplace equation. Consequently, if the Capillary force is the dominant force near

the air-liquid interface, for instance in the absence of gravity in the flow direction,

one could obtain multiple equilibrium interface shapes, many of which have been

observed experimentally [Brown (1979)]. For example, various equilibrium shapes, i.e.

axisymmetric, C-shaped, two-lobed and annular shapes, could form when a rotating

liquid drop is attached to a rod and immersed in a liquid of equal density where the

drop is held together solely by surface tension [Brown (1979)]. Therefore, in this

study we have carefully investigated the existence of multiple steady state solutions

under condition of no gravity and minimal flow force near the air fluid interface at

the plane of symmetry.

The simulations indeed exhibit multiple solutions for the shape of the interface;

moreover it is shown that the thickness of the liquid on the surface that is being
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plunged and Ca determine which solution family is attained. Specifically, different

families of solutions with a given initial film thickness is observed depending on

whether Ca is ramped up or down. In fact, complex bifurcations are observed in

the intermediate Ca regime, i.e. Ca ≈ 1. Moreover, the initial guess used to

start the computations at small or high Ca (i.e., ramp up or ramp down modes)

influences the solution family that is approached. Hence, to capture all possible

families of solutions we have performed an extensive set of numerical simulations

with 5 initial film thicknesses, namely hinitial = 0.025, 0.05, 0.075, 0.1 and 0.125 (see

figure 7.5). Clearly in the absence of gravity in the flow direction multiple steady

state solutions are observed in the range of Ca studied (see figure 7.6). To quantify

the difference between different solution families we have chosen the film thickness

as the characteristics parameter. Steady state value of this parameter in the absence

of gravity as a function of Ca is shown in figure 7.7. Clearly, significant hysteric

behavior in the film thickness as a function of Ca is observed at Ca ≈ 1.0. Moreover,

at any given Ca the film thickness obtained via continuously ramping up the Ca is

larger than those obtained with a continuous ramping down of the Ca, i.e. starting

the simulation at a high Ca. Overall, there are two distinct branches of solution at

high and low Ca, however the Ca dependence of the film thickness exhibits complex

behavior at Ca ≈ 1 due to aforementioned solution bifurcations. It should also be

noted that the interface shapes are significantly different for the two solution families

(see figure 7.6). Specifically, for the case where we observe sharp interfaces the film

thickness variations are a direct consequence of the interface shape in the Capillary

transition region while in the case where the interface has a smooth shape, the film

thickness is mainly determined by the initial film thickness.

Introducing gravity in the flow direction causes different branches of solution to

collapse into a single solution for the interface shape and hence a single film thickness

as a function of Ca is obtained (see figure 7.8). This is due to the fact that with

the gravity in the flow direction, the interface shape is no longer mainly determined

by the Capillary pressure as gravitational forces favor the solution with the sharp
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interface shape. To shed some light into the mechanism by which gravity influences

the flow, we have carefully examined the influence of gravity on the interface shape

and normal forces along the free surface at various Ca (see figure 7.9 for the results at

Ca = 1.0). Overall, gravity tends to pull liquid out of the thin film region which leads

to development of a significant normal stresses boundary layer on the free surface near

the tip of the bubble (see figure7.9). In turn this effect leads to formation of a sharp

interface. Consequently solution family with sharper interface is favored in presence

of gravity in the flow direction. In fact, between the two branches of solutions, the

force balance at the free surface in the one obtained with the small film thickness

on the substrate as the initial guess is much more similar to the solutions obtained

with finite Bo. This is due to the fact that with a small initial film thickness on

the substrate ”viscous effects”’ are much higher when the plate is plunged in the

liquid bath, consequently the normal stress boundary layer which forms near the air

interface is similar to that observed in finite Bo simulations.
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Figure 7.5: The computational domain near the air-liquid interface for the meshes
used as the initial guess for the simulation.
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Figure 7.6: The interface shape near the air-liquid interface in the two steady state
solution families (i.e. sharp and smooth curve) observed in the absence of gravity in
the flow direction.
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Figure 7.8: Film thickness as a function of Ca predicted by mesh with hinitial =
0.025. f means that the solution was calculated with a positive step in Ca and b
means the opposite.

Experimental results

As mentioned earlier the experiment apparatus is designed to allow precise control

of cylinder eccentricity and the rotation speed of each cylinder. The entire set up

can be rotated 90 degrees which allows investigation of the effect of gravity on flow

properties (i.e. both in the flow direction and perpendicular to it, see figure 7.10). In

addition, the initial film thickness on the wetted wall can be controlled by changing

the eccentricity between cylinders at a desired Ca. This is due to the fact that the

film thickness on the substrate plunging in the liquid bath is determined by the film

thickness in the front of the cylinder and earlier studies have shown that the film

thickness in the front of the coater will increase with a decrease in b (width of the

channel at the meniscus) at a constant Ca [Lee et al. (2005)]. It should also be noted

that even though the film thicknesses on both cylinders in the front are equal, the

film thickness on the inner cylinder in the back of the coater is larger than the one on
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Figure 7.9: The interface shape near the air-liquid interface at Ca = 1.0 with and
without inclusion of gravitational force in the flow direction. The line plot shows the
normal forces along the free surface for three cases whose interface have been shown
in parts a to c.
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the outer cylinder as the liquid on the outer cylinder drains easier compared to inner

cylinder. All the experiments reported in this section have been performed with a

Newtonian fluid at 6 different eccentricity, both with the vertical and horizontal device

setup modes (see 7.11). In all experiments the interface shapes have been recorded

using the image of the cross section of the flow generated via a laser sheet (see figure

7.12 for a sample laser).

The interface shapes at various Ca for representative eccentricities have been

depicted in figure 7.13. Two general classes of air-liquid interface shapes (i.e. sharp

or smooth curve) are observed depending on the direction of the gravity. Specifically,

when the gravity is in the flow direction, only sharp interfaces are observed and the

interface gets sharper with increasing Ca. However, when the gravity is perpendicular

to the flow direction, both sharp and smooth interface shapes are observed. For

instance at b/R1 = 0.27 and b/R1 = 0.14 (see figure 7.13-(b)) and Ca ≈ 8.0, the

air-liquid interface shapes at similar azimuthal positions are significantly different.

The difference between these two experiments is the initial thickness of the liquid

film on the wet substrate before plunging in the liquid. Consequently, with slight

change in the initial parameters of the wet plunging flow, significant changes occur in

the interface shapes at this Ca. This suggests the existence of multiple steady state

interface shapes in the absence of gravity in the flow direction which is consistent

with our simulation results discussed earlier. It should also be noted that for large

eccentricity and in the vertical setup mode, where the gap width between the cylinders

is very small (b/R1 = 0.06), a different trend in the evolution of the interface

shape as a function of Ca is observed. Specifically, the air-liquid interfaces form

at similar azimuthal positions around the cylinder for all ranges of Ca. This is due to

large lubrication pressure formed in the small gap region which pushes the air-liquid

interface back.

Clearly the interface shapes observed experimentally are somewhat sharper than

their numerical counterparts. This is due to the fact that with current formulation the

equations can be solved only for small Bo, i.e. Bo ≈ 0.001 to Bo ≈ 0.1, which is much
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smaller than the experimental Bo, i.e. Bo ≈ 10. As mentioned before gravitational

forces tend to make the interface shaper due to formation of significant normal stress

boundary layer near the tip of the bubble and that is why the experimental interfaces

are much sharper. In order to do a one-to-one comparison between simulation results

and experimental measurements, the simulations should be continued to higher Bo.

To accomplish this task one needs to rescale the equations with the Capillary length

instead of gap width as it was done for dip coating flow (see previous chapter for

more details) as well as using much more refined meshes to capture the steep normal

stress boundary layers formed at high Bo.

Figure 7.10: Schematic view of two positions of the eccentric coater, i.e. (a)
horizontal and (b) vertical .

7.4.2 Effect of fluid elasticity

In this section preliminary numerical simulations of the influence of fluid elasticity

on the interfacial dynamics of the wet plunging flow are presented. Specifically, the

interface shape and resulting film thickness as a function of We are depicted in figures

7.14 and 7.15. In contrast to the Newtonian flow at Ca = 1.0 and Bo = 0.0 in addition

to the stagnation point at the tip of the bubble, another stagnation point in the

Capillary transition region is observed. This stagnation point continuously migrates
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Figure 7.11: Schematic view of eccentricities examined at (a) the horizontal and
(b) the vertical positions.
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Figure 7.12: The air-liquid interface shape recorded by a laser sheet at Ca = 1.0.

towards the plane of symmetry as We is increased. There is also a recirculation region

between these two stagnation points whose strength decreases with an increase in

We. Clearly fluid elasticity leads to sharper interfaces near the plane of symmetry

and significant modification of the interface shape (in comparison to the Newtonian

flow) is observed in capillary transition region at high We.

The variation in the film thickness as a function of We has also been examined and

typical results are depicted in figure 7.16-(a) for Ca = 0.7 and Ca = 1.0. Elasticity

at both Ca has a film thinning effect due to the presence of positive normal stresses

in the flow direction, i.e. ∂τxx/∂x > 0, that pulls liquid out of the thin film region

(see figure 7.17). Consequently, fluid elasticity leads to formation of a normal stress

boundary layers near the air interface similar to those observed for Newtonian fluids

at finite Bo (see figure 7.16-(b)). It should also be noted that fluid elasticity influences

the wet plunging flow in a different manner than the dip coating flow where there

is a film thinning effect for weakly elastic solutions followed by thickening effect at

higher We. In order to investigate the possibility of formation of multiple steady
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Figure 7.13: The shape of air-liquid interface at different eccentricities at (a) the
horizontal and (b) the vertical positions. The interface shapes have been depicted
at the azimuthal positions around the cylinder that they are formed and if several
interfaces are formed at the similar angles, they have been shown side by side.
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state solutions and the effect of gravity on it in the case of viscoelastic fluids, more

simulations at finite Bo and over a wide range of Ca and We is required, however

we believe that due to formation of the normal stress boundary layer near the air

interface, existence of different solution branches is highly unlikely even at relatively

small We (see figure 7.16-(b)).

7.5 Conclusion

The flow properties near the air-liquid interface on the back of an eccentric-cylinder

coating device, where a wet substrate is plunged into a liquid bath, has been

investigated. It has been shown both numerically and experimentally that for

Newtonian fluids, two major branches of steady state solution exist in the absence

of gravity in the flow direction. It is also shown numerically that fluid elasticity

has a film thinning effect in the wet plunging flow for all ranges of We. In order

to comprehensively investigate the fluid elasticity effects on interfacial dynamics

of the wet plunging flow, simulations over a broad range of We and Bo need to

be performed. In turn, the simulation results should be compared with the wet

plunging flow experiments at least with several Boger fluids with elasticity number,

i.e. N = We/Ca, ranging from 0.2 to 2.0.
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Figure 7.14: The interface shape near the air-liquid interface at Ca = 1.0.

141



We=0.0 We=0.1

We=0.6 We=1.2

Figure 7.15: The streamlines near the air-liquid interface at Ca = 1.0.
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Figure 7.16: (a) Film thickness as a function of We, (b) the normal forces along
the free surface.

142



0 0.05 0.1 0.15 0.2
S

1.5

2

2.5

3

3.5

4

dT
xx

/d
x

We=0.1
We=1.0
We=2.2

Ca=0.7

0 0.05 0.1 0.15 0.2
S

1.5

2

2.5

3

3.5

4

4.5

5

dT
xx

/d
x

We=0.1
We=0.6
We=1.2

Ca=1.0

dTXX/dx
0.1000
0.0714
0.0429
0.0143

-0.0143
-0.0429
-0.0714
-0.1000

We = 2.2
Ca = 0.7 dTXX/dx

0.1000
0.0714
0.0429
0.0143

-0.0143
-0.0429
-0.0714
-0.1000

We = 1.2
Ca = 1.0

Figure 7.17: Line and contour plots of stress gradient, i.e. ∂τxx/∂x. The line plots
are along the line shown in the last contour plot, where zero is on the wall.

143



Chapter 8

Summary and future work

In order to develop a quantitative understanding of the flow-micro-structure coupling

mechanisms in viscoelastic polymeric fluids and in turn predict, consistent with

experiments, their essential macroscopic flow properties e.g. frictional drag, interface

shape, etc., extensive continuum and multiscale flow simulations in several industrially

relevant bulk and free surface flows have been performed. The primary motivation

for the selection of the specific flow problems is based on their ability to represent

different deformation types, and the ability to experimentally verify the simulation

results as well as their scientific and industrial significance. Specifically, finite element

simulations of a well characterized branched low density polyethylene melt in a

lubricated cross-slot channel geometry have been performed for a wide range of We.

The comparison between the 2D experimental and computed optical birefringence

data shows that the multimode Giesekus model can accurately predict the flow

characteristics at moderate We in the region of the flow cell of mixed kinematics.

However, the model predictions at large We (We = 29) remain qualitative in the

channel outlet. In particular, experimental limitations in the stagnation region of the

channel do not allow an effective assessment of the constitutive model performance.

The experimental interpretation issues have been shown to mainly arise from multiple

order of retardations within the laser beam diameter and oil film reflections occurring
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close to the stagnation point. Ongoing work by our collaborators involves developing

an improved experimental design and a better data analysis technique to try to solve

the aforementioned issues [Sadati et al. (2010)].

We have also performed extensive continuum and multiscale flow simulations

in two benchmark flow problems, namely sedimentation of sphere in a tube and

flow past a cylinder in a channel, utilizing the FENE-P (continuum and BCF) and

Giesekus (continuum) constitutive equations as well as the FENE (BCF) dumbbell

micromechanical model to provide insight into the dependence of the upper We limit

encountered in continuum level viscoelastic flow simulations with typical constitutive

equations for dilute polymeric solutions that predict bounded extensional viscosities

in geometries with internal stagnation points on solid surfaces. To this end, a

strong correlation between significant contribution of over-stretched states to the

total polymeric stress and existence of very large and localized polymeric stress

gradients and divergence of numerical simulations in both benchmark problems with

the FENE-P and Giesekus models for highly strain hardening has been established.

The consequence of the over prediction of polymeric stresses and stress gradients by

the FENE-P model in comparison to the FENE model on the kinematics in the wake

of the solid objects has also been examined. In general, closed from constitutive

equations can either give rise to very highly localized region of high strain rate or

recirculation regions downstream of the object that are absent in the corresponding

multiscale simulations with the FENE model. Hence, the accuracy of FENE-P model

predictions at We and b values where a significant portion of the polymeric stress

arises due to over-stretched states is questionable. Hence, regularization techniques

for polymeric stresses should be used in FENE-P computation of flows with strong

straining components.

Self-consistent multiscale flow simulations of a highly elastic dilute polymeric

solution, described by first principles micromechanical models for sedimentation

of a sphere in a tube filled with a dilute polymeric solution has been performed.

Through comparisons with experimental measurements, we have demonstrated
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that the evolution of the drag coefficient as a function of fluid elasticity can be

accurately predicted when the macromolecular dynamics is described by realistic

micromechanical models that closely capture the transient extensional viscosity of

the experimental fluid at high extension rates. Specifically, for the first time we have

computed the drag coefficient on the sphere at high We with multi-segment bead-

spring chain models with appropriate molecular parameters and have demonstrated

that this class of hi fidelity multiscale numerical simulation is not only capable of

describing the drag on the sphere as a function of We at various sphere to tube

diameter ratios quantitatively but also it can faithfully reproduce the experimentally

measured velocity and stresses in the wake of the sphere.

We have also performed numerical simulations to elucidate the effects of elasticity

on the interfacial dynamics of dip coating flows. Specifically, we have shown that

the film thickness scaled with the capillary length, as a function of We, at low Ca

and high Bo collapses onto a single curve, and agrees with the Ro and Homsy [Ro

and Homsy (1995)] correlation for small values of We. For a fixed Ca and We, an

increase in Bo results in a decrease in the film thickness, an increase in the size of

the recirculation region and an increase in the strain rates subsequently leading to

an increase in the normal stresses. At low We, there is a film thinning effect and

as the value of We is increased, there is a film thickening effect that accompanies

the formation of a normal stress boundary layer at the free surface in the capillary

transition region. Both the magnitude of the film thickness and the maximum stress

in the stress boundary layer increase with increasing We. Furthermore, the normal

stress boundary layer at the free surface is a result of the local planar extensional flow

at the interface. These calculations provide a simple way of examining the wealth of

interfacial phenomena that are present in dip coating flows.

Finally, the flow properties near the air-liquid interface on the back of an eccentric-

cylinder coating device, where a wet substrate is plunged into a liquid bath, has

been investigated. It has been shown both numerically and experimentally that for

Newtonian fluids, two major branches of steady state solution exist in the absence
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of gravity in the flow direction. It is also shown numerically that fluid elasticity

has a film thinning effect in the wet plunging flow for all ranges of We. In order

to comprehensively investigate the fluid elasticity effects on interfacial dynamics of

the wet plunging flow, simulations over a broad range of We and Bo need to be

performed. In turn, the simulation results should be compared with the wet plunging

flow experiments at least with several Boger fluids with elasticity number, i.e. N =

We/Ca, ranging from 0.2 to 2.0.
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