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ABSTRACT 

 

The evolution of the MOSFET technology has been driven by the aggressive 

shrinkage of the device size to improve the device performance and to increase the 

circuit density. Currently, many research demonstrated that the continuous 

polycrystalline silicon film in the floating-gate dielectric could be replaced with 

nanocrystal (nc) embedded high-k thin film to minimize the charge loss due to the 

defective thin tunnel dielectric layer. 

 This research deals with both the statistical aspect of reliability and electrical 

aspect of reliability characterization as well. In this study, the Zr-doped HfO2 (ZrHfO) 

high-k MOS capacitors, which separately contain the nanocrystalline zinc oxide (nc-

ZnO), silicon (nc-Si), Indium Tin Oxide (nc-ITO) and ruthenium (nc-Ru) are studied 

on their memory properties, charge transportation mechanism, ramp-relax test, 

accelerated life tests, failure rate estimation and thermal effect on the above reliability 

properties. 

 C-V hysteresis result show that the amount of charges trapped in nanocrystal 

embedded films is in the order of nc-ZnO>nc-Ru>nc-Si~nc-ITO, which might 

probably be influenced by the EOT of each sample. In addition, all the results show 

that the nc-ZnO embedded ZrHfO non-volatile memory capacitor has the best 

memory property and reliability. In this study, the optimal burn-in time for this kind 

of device has been also investigated with nonparametric Bayesian analysis. The 

results show the optimal burn-in period for nc-ZnO embedded high-k device is 5470s 

with the maximum one-year mission reliability. 
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CHAPTER 1 
 
 

INTRODUCTION 

As the channel length and gate oxide thickness of MOSFETs scale down, the 

thickness of the silicon dioxide (SiO2) gate dielectric has to be decreased accordingly. 

When the thickness of SiO2 is below 1.2 nm, its leakage current becomes 

unacceptably high and the device’s reliability is a major concern. The schematic 

diagram of a MOSFET is shown in Figure 1. A proper high-k dielectric material can 

solve these problems. In addition, high-k materials have also been used to in the 

nanocrystal embedded high-density nonvolatile flash memory, the next generation for 

the memory devices, to improve the programming efficiency [1-4]. One concern is 

that tight reliability margins may limit the miniaturization of nano-scale IC products. 

Therefore, there is an urgent need to investigate the reliability of nano devices in the 

early design stages. A brief description of some critical issues in the present 

semiconductor industry is presented in the next sections. 

1.1 Challenges in the Nano Era 

Recently, the technologies for today’s design and manufacturing tend to move 

from the realm of micro- to nano-scale. The scaled technology raises new challenges 

for reliability analysis. Kuo [5] pointed out that there appear to be four major 

challenges related to nano electronics that currently face the field of reliability: 

(1) Identification of the failure mechanisms 

(2) Enhancement of the low yield in nano products 

(3) Management of the scarcity and secrecy of available data 

(4) Preparation of reliability practitioners and researchers for keeping up with the 

nano era. 
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Figure 1. Schematic diagram of a MOSFET 

 

The second challenge makes production extremely expensive. Thus, how to 

improve the efficiency and reduce cost of burn-in process will still be one of the 

major key research topics in the future. Another new challenging issue of burn-in 

process is the scarcity of data. This phenomenon makes it almost impossible to use 

traditional reliability analysis tools and statistical inference to make accurate 

predictions. To deal with this situation, Kuo [5-6] pointed out that Bayesian approach 

will be applied more widely than ever before.  

To deal with limited data, Chien and Kuo [7] used Dirichlet distribution, one 

of the famous models for non-parametric Bayesian analysis, to establish a non-

parametric Bayes approach to decide system burn-in time. Arjas and Gasbarra [8] 

proposed a non-parametric Gibbs sampler model to estimate the hazard rate function. 

This technique will be most beneficial to the following cases: (1) sampling is 

expensive, (2) the burn-in cost is high, and (3) only limited knowledge is available 

about the device under test (DUT); all the three cases often happen in the 

semiconductor industry. A Bayesian burn-in procedure was developed by Kwon and 

Keats [9] for limited failure populations. Meanwhile, Tseng and Peng [10] and Tseng 
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et al. [11] proposed an integrated Wiener process to obtain the optimal burn-in policy 

without sufficient amount of time-to-failure data.  

 

1.2 Nanocrystal Embedded High-k Dielectric Thin Film 

When the CMOS device is scaled down to the nano size, the thickness of the 

silicon dioxide (SiO2) gate dielectric layer must be reduced drastically, e.g., to 1.2 nm 

with the channel length below 45 nm [12]. With this kind of thin film, the leakage 

current becomes very high and the dopant is easily diffused to the channel region to 

deteriorate the device performance and reliability [12-14]. The above problems can be 

solved by using a high-k dielectric film to replace the SiO2 film. However, the 

conventional high-k materials, such as ZrO2 and HfO2 have potential reliability 

problems because of their low crystallization temperatures, e.g., <600˚C [1]. The Zr-

doped HfO2 (ZrHfO) high-k film has been proved to have better bulk and interface 

layer properties, such as a higher crystallization temperature, a larger effective k value, 

and a lower interface state density [15-18]. The Zr-doped HfO2 film has been 

prepared into sub 1 nm EOT thickness film [15, 19]. The high-k film has also been 

used as a great dielectric material in memory devices [1]. For example, the 

conventional poly-Si floating-gate nonvolatile memory (NVM) includes a continuous 

poly-Si thin film in the SiO2 gate dielectric as the charge-retaining medium. However, 

it is prone to lose all charges with the formation of a single leakage path in the tunnel 

oxide layer. The nanocrytals embedded SiO2 structure can eliminate the above 

problem because one leaky path in the tunnel oxide can only drain charges stored in a 

few nanodots [20]. When the SiO2 layer is replaced with a high-k film, the 

opportunity of forming a leaky path is reduced because a physically thick layer can be 
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used. Nanocrystalline Si, SiGe, Ru, ITO, ZnO have been dispersed in high-k as the 

electron- or hole-trapping media [1, 4, 21]. Most of the studies on the nanocrystals 

embedded high-k memory devices are focused on how to increase the charge trapping 

density with various types of materials [22-23]. There is little understanding on the 

reliability of this kind of device, which is critical to the practical application. In this 

paper, authors investigated failure mechanism using the current relaxation 

measurements and breakdown phenomena. The MOS capacitors including the nc-ZnO, 

-Ru, -Si, -ITO (Indium Tin Oxide) embedded ZrHfO high-k dielectric are used as the 

example for the study. 

 

1.3 Fabrication of the Nanocrystal Embedded ZrHfO Nonvolatile Memories 

In this paper, the Zr-doped HfO2 (ZrHfO) dielectric was used because of its 

excellent dielectric properties, such as the low leakage current, high crystal 

temperature, thin interface layer, and low interface density of states. Figure 2 shows 

the basic structure of the single- and dual-layer nanocrystals embedded high-k thin 

film. All samples were deposited on the HF pre-cleaned p-type Si (100) wafer (doping 

concentration at 1015 cm-3) and the ZrHfO2 film was deposited by reactive sputtering 

using a Hf/Zr (88:12 wt%) composite target in an Ar/O2 (1:1) mixture at 5m Torr and 

room temperature. For the single-layer nanocrystal embedded samples, the sputter 

powers of ZrHfO2 film and nanocrystal for nc-Ru, -ITO, -Si and -ZnO embedded 

capacitors were (100, 80), (100, 80), (100, 100) and (60, 60) respectively. The as-

deposited embedded layers were amorphous. However, they were crystallized into the 

nanocrystalline form after the post-deposition annealing (PDA). The detail 

preparation conditions are shown in Table 1. 
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   (a)                                                       (b)             

Figure 2. Cross-sectional views of (a) single- and (b) dual-layer nanocrystal 
embedded ZrHfO capacitors 
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Sample 

Post-deposition 

annealing temperature 

(°C)/gas 

Post-metal annealing 

temperature 

(°C)/gas 

Equivalent oxide 

thickness (EOT) 

(nm) 

nc-Ru embedded 950/(N2/O2 1:1) 250/(N2/H2) 9 

nc-ITO embedded 950/(N2/O2 1:1) 250/(N2/H2) 8.6 

control sample for nc-Ru 

and nc-ITO 
950/(N2/O2 1:1) 250/(N2/H2) 10 

nc-Si embedded 950/(N2) 300/(N2/H2) 10 

control sample for nc-Si 950/(N2) 300/(N2/H2) 10 

nc-ZnO embedded 800/(N2) 200/(N2/H2) 7.8 

control sample for nc-

ZnO 
800/(N2) 200/(N2/H2) 6 

Table 1. Gate structures and fabrication conditions 
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1.4 Burn-In Procedure  

Burn-in is the most widely used technique to improve the reliability of 

products before they are sold to the consumers. However, it is well known that burn-

in process is costly. How to determine the optimal burn-in period and improve the 

burn-in procedure have been intensively studied during the past 20 years. Moreover, 

in the last decade, we can see that excitement and interest in smaller and lighter 

consumer products has driven the need to reduce package size. That is, to find the 

optimal burn-in environment conditions for each IC generation is another important 

issue. 

1.4.1 Infant Mortality 

The purpose of the burn-in process is to weed out the “infant mortalities” and 

improve the reliability of products. Typically, during the burn-in process, the 

temperature will be chosen at 110Co  and supply voltage is 30% higher than normal 

condition [24]. Burn-in process can be performed under three different levels: die-

level burn-in, wafer-level burn-in and package burn-in. In this section, we will discuss 

several definitions of infant mortality and some new burn-in process. 

It is widely believed that many products, particularly silicon integrated circuits, 

exhibit bathtub-shape failure rate function. In the literature, properties of the optimal 

burn-in time have been studied under this assumption. The traditional bathtub-shape 

failure rate function is defined as follows: 

 

( )








≤
≤≤

≤≤
=

tt

ttt

tt

tr

2

21

1

 if increases,strictly 

 if constant, a

0 if decreases,strictly 

                                    (1) 
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where 1t  and 2t  are the change points of ( )tr . An example of bathtub-shape failure 

rate function is presented in Figure 3. Traditional bathtub-shape curve divided the 

component life into three stages. The first stage is known as infant mortality period. In 

this stage, we have a decreasing failure rate (DFR). The second stage is called the 

normal operating life. In this stage, we have a constant failure-rate period (CFR). The 

last stage is a period of wearout with an increasing failure rate (IFR) because of aging.  

Another famous failure rate model is called the modified bathtub-shape failure 

rate function, defined as follows: 

 

( )












≤
≤≤

≤≤
≤≤

=

tt

ttt

ttt

tt

tr

2

21

10

0

 if increases,strictly 

 if constant, a

 if decreases,strictly 

0 if increases,strictly 

                                      (2) 

 

where 1t , 2t  and 3t  are the change points of ( )tr . An example of the modified 

bathtub-shape failure rate function is presented in Figure 4. The modified bathtub-

shape failure rate function can be obtained from the mixture of strong component 

(main distribution) and that of weak component (freak distribution) [25]. Recently, 

there have been many burn-in researches based on the concept of the mixture of 

distributions. However, Klutke et al. [26] pointed out that the assumption of 

traditional or modified bathtub-shape failure rate function is restrictive for burn-in 

research. 
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Infant Mortality  
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Figure 3. Traditional bathtub curve 

t1 t t2 

r(t) 
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Figure 4. Modified bathtub curve 

t0 
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A new concept of eventually IFR was introduced by Mi [27], and the optimal 

burn-in time for various objectives was studied, such as [28-32] and [33]. A failure 

rate function ( )xr  is called eventually IFR if there exists ∞<≤ 00 x  such that ( )xr  is 

strictly increasing in 0xt > . For the eventually increasing failure rate function ( )xr , 

the definitions of the first and second wear-out points *t and **t  are as follows:  

 

( ){ }
( ){ }txxrttt

txxrtt

≥≥=
≥≥=

in  increasesstrictly  is :inf

in  ingnondecreas is :0inf
***

*

                       (3) 

 

Obviously, ∞<≤≤≤ 0
***0 xtt ; the traditional and modified bathtub-shape 

failure rate functions are both the special cases of the eventually IFR. An example of 

the eventually IFR function is shown in Figure 5. 

In fact, some underlying lifetime distributions have a unimodal (hump) failure 

rate function [34], for example, lognormal distribution, or inverse Gaussian 

distribution. Among all the different failure rate functions, Baskin [35] suggested the 

Akaike Information Criterion (AIC) or the root-mean-square criterion for selection of 

the best model. 
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1.4.2 Cases and Physical Experimental Results 

Generally, the silicon integrated circuits have extremely high rate of infant 

mortality. Burn-in has been the most popular technique to recognize and partially 

eliminate the infant mortality failures. During the last five years, engineers have been 

trying new materials to replace the traditional silicon based device that have better 

results after burn-in test and looking for the optimal burn-in environment conditions 

for each generation. In order to improve the competitiveness with other opponents, 

lots of research work has been focus on the burn-in cost reduction techniques. 

 

(a) New Materials 

Besides the traditional silicon based device, InGaP/GaAs heterojunction 

bipolar transistors (HBTs) have attracted much attention because they have better 

uniformity and reliability after the burn-in procedure. InGaP/GaAs HBTs are widely 

used in high frequency and mid power application. In the early stage of developing 

t*  x 

r(x) 

0 

Figure 5. Eventually increasing failure rate function 

t**  
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InGaP/GaAs HBTs, beryllium (Be) was a very popular candidate for doping the base 

layer because of its high hole concentration. However, Be diffusion under the current 

stress will cause the rapid degradation of Be-doped HBTs. In recent research, HBTs 

with carbon-doped base layers are very popular due to its lower diffusivity with 

respect to beryllium. And it allows carbon-doped HBTs to avoid the base dopant 

outdiffusion leading to better reliability properties. The early increase of the dc 

current gain β  (burn-in effect) due to the electrical stress of carbon-doped 

InGaP/GaAs HBTs has been intensively studied recently for example [36-40]. 

InGaP/GaAs HBTs featuring a carbon doped base material grown by 

metalorganic chemical vapor deposition show the so-called burn-in effect, which 

consists of an initial increase in the current gain when the device is normally biased at 

room temperature [41]. Mimila-Arroyo [41] has shown that the burn-in effect 

observed in InGaP/GaAs HBTs can be explained by the following two processes: (1) 

a bias dependent passivation of recombination centers located in the emitter region 

resulting in a decrease of the base diffusion current that is stable at room temperature, 

and (2) an increase of the emitter-base recombination current that will be adjusted 

permanently as a function of the emitter-base bias. 

It has been proved in Chong et al. [42] that the current gain (β ) increases at 

the opposite extremes of base-emitter voltage (beV ) greater than 1.75 V. To 

substantially suppress the burn-in effect observed in InGaP/GaAs HBTs, a constant 

period of voltage stress (CPVS) with VVbe  0.2=  and VVce  0.3=  (collector-emitter 

voltage) for 5 minutes is proposed as shown in Figure 6 [43]. 

 To eliminate the burn-in effect in carbon-doped InGaP/GaAs HBTs, Su et al. 

[44] proposed the Hydrogen lateral diffusion by annealing at low temperature. After 
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the thermal annealing has been applied at 480 Co for 30 minutes, the current gain 

variation caused by the electrical stress decreased from 42.7% to 2.6%. 

 

 

 

 

 

(b) Burn-In Environment 

To achieve high-performance microprocessor and memories, transistor scaling 

is a very primary key. Each 30% reduction in CMOS IC technology node scaling has: 

(1) reduced the gate delay by 30% which increases the maximum clock frequency of 

43% (2) doubled the device density (3) reduced the parasitic capacitance by 30% (4) 

reduced energy and active power per transition by 65% and 50 %, Vassighi et al. [45]. 

However, Semenov et al. [46] showed that under normal operating condition, 

the increase in junction temperature is estimated as 1.45 X/generation and this may 

result in positive feedback leading to thermal runaway during the burn-in process. 

Vassighi et al. [47] and Semenov et al. [46, 48] have shown the optimal stressed 

temperature in a burn-in environment is significantly reduced with technology scaling. 

Vassighi et al. [47] and Semenov et al. [46] have also shown that to maintain a 

Figure 6. Current gain versus base-emitter voltage ( beV ) with the collector emitter 
( VVce  0.3= ) for the same sample before and after CPVS [43] 
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constant post burn-in yield loss, the optimal burn-in temperature should be decreased 

at least by 10Co  for each technology generation and the optimal burn-in temperature 

for each generation is shown in Figure 7 [46]. 

 

 

 

 

 

 

 

 

(c) Burn-In Test Cost Reduction Techniques 

In this section, how to improve burn-in procedure will be discussed. Burn-in 

process is costly so how to reduce to the cost generated during burn-in process is one 

of the key research topics. Lee et al. [49] and Sabade & Walker [50] tried to find out 

the defective chips before burn-in process. Therefore, the more defective chips they 

find out, the less chips will be sent to the burn-in test. Sabade and Walker [50] 

proposed the median of absolute deviations (MAD) of the IDDQ as the criterion to 

Figure 7. Optimized burn-in temperature for constant burn-in loss [46] 
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weed out the defective chips. Rosen et al. [51] developed a simulate model and robust 

design can be performed to optimized the burn-in procedure. Another burn-in 

reduction screen, presented by [52], was based on the subset of measurements from 

the wafer sort data. This subset was identified by the Principal Component Analysis 

using the die that passed all the tests. 

Intel Corporation proposed the new criterion: unit level predict yield (ULPY) 

and showed that it is approximately twice as efficient as wafer level methods at 

highlighting die with high defect latent density. Moreover, most of the dies with low 

ULPY scores will fail at sort and those do not are shown to have higher failure rates at 

burn-in. This simple measure is defined as  

 

LocalYieldxyYieldULPY ×=                                            (4) 

 

where xyYield is the yield of the specific x-y die location within the lot and localYield 

is the neighbouring die yield. How to find the optimal schedule of the burn-in oven is 

another research topic to reduce the burn-in procedure. Sung et al. [54] considered the 

problem of scheduling a single burn-in oven in the final test. In this paper, they 

assumed each job belongs to one of a fixed number of families and the release time of 

the jobs are different from one another. The authors proposed a dynamic 

programming algorithm to find the optimal schedule, which can minimize the 

maximum completion time. Monch et al. [55] consider the schedule problem for a 

single burn-in oven which is a batch processing machine with restricted capacity. The 

due dates of all jobs are assumed the same and the objective is to minimize the sum of 

the absolute deviations of completion times from the due date. Deng et al. [56] present 
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a polynomial time approximation scheme to minimize the total completion time for 

the burn-in scheduling problem. 

 

1.4.3 Optimal Burn-In Model 

 Burn-in is a wildly used approach to improve the quality of products pre-sale. 

However, burn-in is usually costly and increases the manufacturing cost, so how to 

determine the optimal length of the burn-in procedure is a major issue. In this section, 

several methods to obtain the optimal burn-in time with different objective functions 

will be discussed. 

(a) Minimize Cost 

In the business world, money is everything. This is why in the study of burn-in 

the cost criterion is often used to obtain the optimal burn-in time. Recently, several 

cost models are presented. 

 

Model 1 

In many burn-in research, system failures have been divided into two types: 

one is Type I failure (or minor failure), which can be easily removed during burn-in 

process, and the other is Type II failure (or catastrophic failure), which can only be 

removed by a complete repair and the burn-in process has to be stopped. Let p and 1-p 

be the probability of Type II failure and Type I failure when the unit fails respectively. 

The average cost during the burn-in time b, ( )bC , can be expressed by [57] 
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where 0c , fc , mc , sc  and smc  denote the cost-rate for operating the burn-in procedure, 

replacement cost, minimal repair cost, shop complete repair cost and shop minimal 

repair cost respectively. ( )tG  and ( )tG  denote the CDF and the survival function of 

the waiting time until the first type II failure of a new unit. 

Some research, such as [58-61] pointed out that to determine the optimal burn-in 

time, we should also consider the warranty policy when the product is sold. Sheu and 

Chien [60] proposed three cost models under different warranty policies, presented as 

Model 2-4. 

 

Model 2 

This model contains five costs: C0 = the manufacturing cost per unit without 

burn-in; C1 = the fixed setup cost of burn-in per unit; C2 = the cost per unit time of 

burn-in per unit; C3 = the minimal repair cost per Type I failure during burn-in, and 

C4 = the extra cost incurred when a failure occurs during the warranty, regardless of 

the failure type. Let ( )τ,TC  denote the expected total cost per unit sold, for a general 

repairable product with burn-in time τ  and warranty period T. In the failure-free 

policy, the manufacturer is responsible for all the repair and replacement costs during 

the warranty interval [0, T]. Then for the failure-free policies with renewing, the 

expected total manufacturing cost per unit for products with burn-in time τ  can be 

expressed by 
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where p denotes the probability the Type II failure occurs and ( )tG  is defined as the 

survival function of the time to the first Type II failure of the product without burn-in.  

The expected total warranty cost per unit sold with burn-in time τ  and warranty 

period T, ( )τ,Tw , is given by  
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and ( ) ( ) ( )τττ ,, TwvTC += . 

 

Model 3 

 In this model, we consider the failure-free non-renewing policy. The expected 

total cost per unit sold ( )τ,TC  and the expected total manufacturing cost per unit for 

products ( )τv  is the same as in Model 2. But the expected total warranty cost per unit 

sold ( )τ,Tw  is now defined as 

( ) ( )[ ] ( ) ( )TV
P

CCvCTw τττ















 −+++= 1
1

, 434                          (8) 

 

where ( )TVτ  denotes the number of replacement during [0,T]. 

 

Model 4 

 Besides the failure-free-policy cases, Sheu and Chien [60] also proposed a cost 

model under the rebate policy and the assumption that the amount of rebate is a linear 

function of the Type II failure time t. Again, the expected total cost per unit sold 
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( )τ,TC  and the expected total manufacturing cost per unit for products ( )τv  is the 

same as in Model 2. The only part of this model different from Model 2 is the 

expected total warranty cost per unit sold ( )τ,Tw , defined as 
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where Cp denotes the sales price and α  is a constant between [0,1] 

 

Model 5 

 The total expected cost during the burn-in time tb and the warranty period tw 

given by 

 

( ) ( ) ( ) ( )[ ]bwbbbb tFttFNCtNFCNtCCtCost −++++= 4321                    (10) 

 

was considered by Perlstein [59] as the objective function to obtain the optimal burn-

in time by Bayesian method. In this cost model, C1 is the fixed setup cost per batch of 

N products; C2 the time dependent cost for burn-in per unit per unit time; C3 lost 

opportunity cost of products which failed through burn-in and C4 is the cost of field 

repairs that occur during the warranty period of the system. In the Bayesian paradigm, 

uncertainty with respect to the distribution parameters is modelled using a 

multivariate prior probability distribution, ( )θg . In the last two terms of this model, 

( ) ( ) ( ) θθθ
θ

dgtFtF   ∫= , where ( )θtF  denotes the CDF of products in the batch and θ  

represents the parameters of the life distribution. 
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(b) Maximize Reliability 

Yield and reliability are two primary factors in semiconductor manufacturing. 

By using yield and reliability modeling as the foundation for developing effective 

stress burn-in, semiconductor manufacturers can provide high-quality products to 

customers. Therefore, some reliability models have been applied to obtain optimal 

burn-in time. 

Model 1 

Kim et al. [62] proposed yield loss and yield gain expressions; related them with 

the reliability model of semiconductor devices in order to determine the burn-in time. 

They assumed that the gate-oxide damage is the leading defect mechanism. The 

proposed expressions of yield loss, yield gain and reliability are as shown in the 

equations below: 

 














−= −υ

υ
11 YYYloss  and ( )( )( )[ ]111/1 2

−= −−Φ− υYYYgain                          (11) 

( ) 11

1
2−−= uYR                                                                                  (12) 

where υ is the damage incurred during burn-in, u is the damage incurred during 

operation, Φ  is the ratio of the critical area to the total area and Y is the yield before 

burn-in. 

 

Model 2 

 

 Barnett and Singh [63-64] identified another two important indicators to 

optimize yield during burn-in: (1) local region yield of the die (2) the number of 
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repairs performed on the die. Let ( )tLλ  be the average number of latent defects per 

chip, and α  be the defect clustering parameter. Then the post-burn-in reliability yield 

can be modelled as follows: 

( ) ( ) α

α
λ −






 += t
tR L1                                                  (13) 

 Defining Kλ  as the average number of killer defects per chip and γ  as a 

constant on the order of 0.01-0.02, one can express the wafer probe yield, KY (the 

probability that a chip has zero killer defects), and the reliability yield, LY  (the 

probability that a chip survives burn-in given that it passed wafer probe testing), as 

follows [65]: 

  

α

α
λ −






 += K
KY 1  and ( )[ ] ααγ −

−+= /111 KL YY                             (14) 

 

Barnett et al. [66] verified the above integrated yield-reliability model by using 

burn-in data from 77,000 microprocessor unit manufactured by IBM Microelectronics. 

In addition, Barnett et al. [67] extended the above yield-reliability model to estimate 

the burn-in fall-out of repaired and un-repaired memory die. 

Traditionally, reliability modelling is separate from yield modelling. However, 

for new technologies, it is important to find the relationship between reliability and 

yield to predict and improve the reliability during the early production stage [68]. 

Unfortunately, it is impossible to obtain the explicit expression for the relationship 

between reliability and yield unless the defect density distribution is selected. Kim & 

Kuo [69-70] derived the following explicit yield-reliability relationship under 5 

different defect density distributions: 
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                               (15) 

where α  is the defect clustering parameter, yλ  is the mean number of fatal defects in 

a device and γλ  is the average number of reliability defects per device. 

(c) Maximize The Percentile Life 

Reliability is often defined as the probability a system operates without failure 

under the expected environment conditions for a predetermined mission time. 

However, sometimes we would like to continuous to use the system beyond the 

specific time. That is, the system is expected to be operational as long as it functions. 

For example, artificial satellites or space explorers are used for as long as they 

function without major failure [71]. Therefore, the objective of this situation is to 

maximize a measure of the system durability without a specific time period. 

There are two appropriate criteria for this purpose: (1) average life and (2) 

percentile life. However, when the variance of a system is high, using the average life 

as the measure will be considerably limited [71]. Kim and Kuo [72] showed that the 

optimal system design for maximizing the system reliability for a mission time is, in 

fact, the same as the one for the maximizing the percentile life at some failure 

probability. 
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(d) Maximize The Steady State Availability 

In some cases, like power supplies for a hospital or an electric security system, 

there are some reliability characteristics such as system availability, probability of 

accomplishing a mission, which are much more important than the economic 

consideration. The steady state availability of the system under the burn-in time b, is 

given by [73] 
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where ( )tGb  and ( )tr denote the survival function of the time length from 0 to the first 

Type II failure of a burn-in system and the failure rate of a system respectively. 1υ  

and 2υ  are the means of a minimal repair time and unplanned replacement caused by 

the Type II failure. 

 

(e) New Indicators 

Besides all the objective functions mentioned above, some studies tried to 

develop new criteria to determine the optimal burn-in time. Block et al. [74] 

considered a residual coefficient of variation that balances mean residual life with 

residual variance. Let Xt be the residual lifetime of the component which has survived 

for t units of time. ( )tµ  and ( )tσ  denote the expected value and standard deviation of 

Xt. Then the optimal burn-in time can be obtained by minimizing the coefficient of 

variation defined as ( ) ( )
( )t
t

tCV
µ
σ= . 



24 
 

1.4.4  Summary 

Burn-in is a wildly used tool to weed out the early failure. This section 

provides the review of the published work concerning burn-ins during these years. It 

is believed that there are some unpublished research performed by the industry and 

some published work not included because they are inadvertently overlooked or not 

strongly related to the topics of this review. 

In the predictable future, scarcity of available data for the nano products is going 

to be the major issue to the statistical inference of burn-in procedure. Most of methods 

to determine the optimal burn-in policy in the literature nowadays are efficient only if 

a sufficient amount of time-to-failure data is available. Kuo [5] predicted that the 

Bayesian approach will be even more frequently applied in the nano era as product 

life cycles based on new technologies become even shorter and it is almost impossible 

to obtain enough data before a new product requires reliability assessment. The other 

way to deal with this problem is to predict reliability using the computer-aided tools, 

based on the physical properties of the nano systems. 
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CHAPTER 2 

 

CHARGE TRAPPING AND DETRAPPING MECHENISMS FOR 

NANOCRYSTAL EMBEDDED HIGH-K NONVOLATILE 

MEMORIES 

 

2.1 Capacitance-Voltage Characteristics 

The capacitance-voltage (C-V) characteristics of the nanocrystals embedded 

samples are shown in Figure 8. The C-V curves were measured from the 

accumulation region to the inversion region and back to the accumulation region in 

the range of (-6V, 6V, -6V). They all show counterclockwise hysteresis behavior, 

which means net charges trapping in the gate dielectric structure. It is obvious that the 

charge storage capacity is influenced by the type of the embedded nanocrytalline 

material. However, the charges injection and trapping efficiencies are also related to 

the gate stack’s physical thickness or EOT. The results show that the amount of 

charges trapped in nanocrystal embedded films is in the order of nc-ZnO>nc-Ru>nc-

Si~nc-ITO, which was influenced by the embedded nanocrystal and the EOT of each 

sample, but the effects of nanocrystal and EOT cannot be directly distinguished from 

one to the other from Figure 8. In other words, the charge-trapping ability of each 

nanocrystal cannot be compared only depends on the C-V curves. To further 

investigate the strength of trapping charges, the relaxation behavior needs to be 

discussed. 

 

 



26 
 

 

 

 

 

 

 

 

 
 
 

 

 

 

 

 

 

 

 

Figure 8. C-V curves for nanocrystals embedded ZrHfO films at -6 to 6V sweep range 
[103] 
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2.2 Relaxation Current 

The leakage current (I leakage) in this paper is defined as the current leaking 

through the capacitor when a gate voltage (Vg) is applied. The relaxation current (Irelax) 

is the current leaking through the capacitor after the release of an applied Vg. I leakage 

and Irelax are of opposite directions provided the dielectric film is intact. The reversible 

charge trapping at the energetically shallow site is much more pronounced in the 

high-k dielectric than in SiO2 [75]. The Irelax is contributed by two mechanisms: 

detrapping of trapped charges and dielectric polarization/relaxation, which occur 

simultaneously and are difficult to differentiate [75-76].  

Figures 9-11 shows the decay of the relaxation current with time of various 

nanocrystals embedded and control samples. Each sample was stressed at a Vg of -6V 

for 120 seconds and the Irelax was measured immediately after the removal of Vg. The 

Irelax-t curve of each nanocrystal embedded sample was compared with that of the 

corresponding control sample, since these embedded samples were prepared under 

different conditions. Several conclusions can be summarized from Figure 9-11. First, 

initial relaxation currents of nc-Ru -ITO and -Si embedded films are larger than that 

of their corresponding control film. However, the initial relaxation current of nc-ZnO 

embedded capacitor does not show the same property because of its excellent ability 

to trap charges deeply. Second, the Irelax decay rate is dependent on the embedded 

nanocrystalline material. Third, it takes a longer time for the Irelax of the embedded 

films (except the nc-ZnO embedded sample) to reach the final value than their 

corresponding control film. For nc-Ru, -ITO and -Si embedded capacitors, the charge 

storage capacity are much larger than that of the control samples [1, 4, 77], so the 

extra Irelax must be released from the embedded nanocrystals. However, the high Irelax 
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of the embedded film is not directly related to the amount of charges stored in the 

nanocrystals. For example, the initial Irelax’s of the nc-Ru, -ITO and -Si embedded 

samples were only 1.98, 1.78 and 2.04 times those of their corresponding control 

samples. However, their Irelax decay rates are not related to the initial Irelax’s. Figure 9-

10 shows that the times required for the Irelax’s of the nc-Ru, -ITO and -Si embedded 

films to reach the same Irelax’s of their corresponding control samples are about 6s, 8s, 

30s, respectively. Therefore, charges can be trapped to the embedded nanocrystals 

deeply or loosely depending on the material properties.  
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Figure 9. Relaxation current decay with time of nc-Ru and nc-ITO embedded ZrHfO films 

and the corresponding control sample [103-104] 

Figure 10. Relaxation current decay with time of nc-Si embedded ZrHfO films and the 

corresponding control sample [103-104] 
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2.3 Relaxation Current Decay Rate 

The relaxation current decay rate of a dielectric layer can be expressed by the 

Curie-von Schweidler Law [78]:  

 
natPJ −=/                                                                         (17) 

 
where J is the relaxation current density (A/cm2), P is the total polarization or surface 

charge density (V‧nF/ cm2), t is time in second, a is a constant, and n is a real 

number between 0 and 1. Figure 12 shows the log (J/P) vs. log t of 4 kinds of 

nanocrystals embedded ZrHfO films as well as the non-embedded ZrHfO, SiO2, HfOx 

and TaOx films [79]. In Figure 12, the n values of nanocystals embedded samples are 

much lower than 1, e.g., 0.77, 0.58, 0.54 and 0.64 for nc-Ru, -ITO, -ZnO and -Si 

embedded samples, respectively. These n values are not consistent with the prediction 

in refs. [80] and [81], which should be close to 1. In fact, the n value represents the 

Figure 11. Relaxation current decay with time of nc-ZnO embedded ZrHfO films and the 

corresponding control sample [103-104] 
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decreasing rate of the relaxation current. The small n values observed in nanocsrytal 

embedded capacitors indicate that the Irelax decreases slowly with time because the 

charges trapped by the embedded nanocrystals are probably stronger than those 

trapped by the bulk high-k film does. By assuming that all ZrHfO films in the 

embedded samples of Figure 12 have the same charge decay rate, the strength of 

charge holding of the nanocrystalline material decreases in the order of nc-ZnO > nc-

ITO > nc-Si > nc-Ru. 
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By using the approximation of a two-dimensional oxide sheet charge located 

away from the interface, the number of initial trapped charges can be estimated by [82] 

 

( ) ( )FBox VqCN ∆−××= /γ                                         (18) 

 

where oxC  is the capacitance at accumulation, q is the electron charge, FBV∆  is the 

flatband voltage shift, and γ  is a correction factor, which can be estimated by the 

ratio of the sum of control and tunnel oxide equivalent oxide thickness (EOT) to the 

control oxide EOT [20]. In addition, the equations obtained in Figure 12 can be used 

to calculate the number of those loosely trapped charges released during a certain time 

period. The difference between the initial trapped and loosely trapped charges would 

be considered as the deeply trapped charges. Table 2 shows the percentages of deeply 

trapped and loosely trapped charges for 4 kinds of nanocrystal embedded samples 

Figure 12. Relaxation current normalized to polarization vs. gate voltage release 

time of various embedded and non-embedded dielectrics (log-log scale) [103-104] 
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after the first 20 seconds. The ability to strongly hold charges is in the order of nc-

ZnO > nc-Si > nc-Ru > nc-ITO. 
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nanocrystal deeply trapped % loosely trapped % 

Ru 78.5% 21.5% 

ITO 57.5% 42.5% 

Si 85.8% 14.2% 

ZnO 93.6% 6.4% 

 
 
 

 

 

 

 

 

 

 

 

Table 2. Percentages of deeply trapped and loosely trapped charges for nanocrystal 

embedded samples after the first 20 seconds [103] 
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CHAPTER 3 

 

BREAKDOWN MECHAISMS  

  

3.1 Ramp-Relax Measurement 

The breakdown mechanism of these embedded films can be investigated by 

using a ramp-relax measurement method proposed by [81]. To perform this 

experiment, a negative gate voltage (-Vg) is applied to the high-k MOS capacitor on a 

p-type silicon wafer. The leakage current density, Jramp, is detected with the increase 

of -Vg and the applied voltage is released for a short time and the relaxation current 

density Jrelax is measured at a very small Vg, e.g., 0.1V. Repeat this procedure until the 

dielectric layer breaks at a large -Vg (Jramp increases abruptly). For a metal oxide high-

k film, due to the polar structure of the high-k film, the polarity of the Jrelax should be 

opposite to that of the Jramp before the high-k film is broken. However, after the high-k 

stack is totally broken, the Jrelax shows the same polarity as the Jramp [83]. The polarity 

change of the Jrelax was successfully used to detect the breakdown sequence of the 

ultra thin high-k stack. In this study, the ramp-relax method was used to investigate 

the breakdown phenomenon of the four nanocrystals embedded ZrHfO samples. 

 

3.2 Breakdown Mechanism of Single-Layer Nanocrystal Embedded ZrHfO Thin 

Film 

Figure 13 shows the Jramp-Vg and Jrelax-Vg curves of these capacitors. The Jramp-

Vg curve of each sample is composed of three sections. The first section starts from 

0V to ~ -5V. In this section, the Jramp increases with -Vg very slightly and smoothly 
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because charges gradually stack in the bulk high-k to form a spot-connected 

breakdown path [84]. Once the spot-connected path is realized, the curve enters the 

quasi-breakdown section. In this section, the Jramp increases with -Vg faster and the 

leakage current gradually increases due to the existence of a small number of the 

connected paths. When the Jramp jumps abruptly and becomes very large afterward 

because the film becomes conductive, the Jramp-Vg curve comes to the third section, 

complete breakdown. However, the polarity of Jrelax did not change with the 

breakdown of the sample, which is different from the breakdown phenomenon of the 

non-embedded high-k film [83]. This means the relaxation current still exists even 

after the high-k part of the sample becomes conductive. Since the embedded 

nanocrystals are conductors or semiconductors, they are more difficult to breakdown 

than the surrounding dielectric material. Therefore, the failure of the nanocrystals 

embedded high-k film results from the ZrHfO film. Figure 13 shows that the 

breakdown voltage (VBD) increases in the order of nc-ITO ~ nc-Si < nc-Ru < nc-ZnO. 

Since these samples were prepared from different process conditions, they contain 

different bulk and interface layer thicknesses and properties. It is difficult to compare 

contributions of different nanocrystals to the breakdown strengths. 
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Figure 13. Ramp-relax test curves of various nanocrystals embedded high-k 
films [103] 
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Figure 14 shows the time-dependent dielectric breakdown (TDDB) of nc-ZnO 

embedded capacitors under constant voltage stress (CVS) at Vg = -9V, -8.5V, and -8V 

and room temperature. These capacitors break at 38s, 135s and 707s, respectively. In 

each test, the leakage current decreases quickly first and then very slowly. The 

decrease of leakage current at the beginning can be attributed to the Coulomb 

blockade effect due to charges trapped to nc-ZnO sites. With the increase of the stress 

time, charges are gradually stacked to form the spot-connected path. Eventually a 

conductive path is established and the leakage current increases abruptly. For the non-

embedded high-k films, the capacitors fail much faster than the nanocrystals 

embedded capacitors, e.g., at 6s, 32s, and 80s under Vg= -9V, -8.5V, and -8V bias 

conditions, respectively. Here, only Vg=-8V curve is shown in Figure 5. The leakage 

current does not drop quickly at the beginning of the stress time, which shows the lack 

of the Coulomb blockade effect 
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Figure 14. Time-dependent dielectric breakdown curves of nc-ZnO embedded ZrHfO 

high-k film stressed at different Vg’s [104] 
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3.3 Breakdown Mechanism of Dual-Layer nc-ITO Embedded ZrHfO Thin Film 

The single nc-ITO embedded ZrHfO capacitor, i.e., the tri-layer structure 

(ZrHfO/nc-ITO/ZrHfO) has been successfully demonstrated to have excellent holes 

trapping/retention characteristic. Lin and Kuo [85] also showed that the charge 

trapping capacity of the dual-layer nc-ITO embedded ZrHfO was more than doubled 

that of the dual-layer nc-ITO embedded ZrHfO. The second embedded nc-ITO layer 

could also improve the data programming speed. In this section, we investigated the 

failure mechanism of the single- and dual-layer nc-ITO embedded Zr-doped HfO2 

thin films. 

The breakdown mechanism for the nc-ITO embedded high-k thin film can also 

be examined by using the ramp-relax measurement method. The two-step breakdown 

phenomenon was obtained in both single- and dual-layer nc-ITO embedded ZrHfO 

thin films. To investigate the breakdown mechanism of the nc-ITO embedded high-k 

dielectric in detail, the authors applied the ramp-relax method and performed a two-

step ramp-relax measurement. First, the measurement was performed until the first 

breakdown was observed.  Second, the measurement was repeated until a larger Vg 

was reached.    

Figure 15 (a) shows the Jramp-Vg curves of single-layer nc-ITO embedded 

capacitors under room temperature on the logarithm scale. The Jramp-Vg curve from 

the first measurement can be composed of three sections. The first section starts from 

0V to ~ -4V. In this section, the Jramp increases slowly and smoothly with the increase 

of -Vg, because charges start to trap to the embedded high-k stack and the spot-

connected breakdown path gradually forms [84]. Once the spot-connected path is 

formed, the curve enters the quasi-breakdown section [84, 86]. In this section, the 
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leakage current increases faster with the increase of -Vg due to the existence of a small 

number of the connected paths. The breakdown of the high-k stack occurs when the 

Jramp jumps abruptly and becomes very large afterward because the film becomes 

conductive [84]. The leakage current became much larger in the second measurement. 

This is because after the first breakdown, there existed a certain number of conductive 

paths in the capacitor, which resulted in the large leakage current in the second 

measurement. The Jramp-Vg curve from the first measurement breaks at -9.5V, and 

there is no obvious breakdown phenomenon observed in the Jramp-Vg curve from the 

second measurement. The Jramp-Vg curve for the non-embedded sample is very similar 

to Figure 15 (a) with a larger breakdown voltage, i.e., at -11.8 V. 

Figure 15 (a) and (b) are the Jramp-Vg and Jrelax-Vg curves from the two-step 

ramp-relax measurement, respectively. During the first measurement, when the 

breakdown occurs in the Jramp-Vg curve, the Jrelax-Vg curve drops abruptly. However, 

the relaxation does not change its polarity after the first and second breakdown, which 

is different from the breakdown phenomenon of the non-embedded high-k film [83]. 

This means the relaxation current still exists even after the high-k part of the sample 

becomes conductive. Since the embedded nc-ITO is a conductor, it’s more difficult to 

breakdown than the surrounding ZrHfO dielectric material. Therefore, the failure of 

the nc-ITO embedded high-k film is due to the breakdown of the ZrHfO portion. For 

the non-embedded sample, Jrelax changes its polarity from positive to negative after 

the first breakdown and keeps negative during the second measurement.  
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(a) 

 

 

(b) 

 

Figure 15. (a) Jramp-Vg and (b) Jrelax-Vg curves of a single-layer nc-ITO embedded 

ZrHfO capacitor measured with the two-step ramp-relax method [87] 
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The same two-step ramp-relax method was applied to the dual-layer nc-ITO 

embedded sample as shown in Figure 16 (a) and (b). The Jramp-Vg curves are very 

similar to those in Fig. 16 (a) except a smaller breakdown strength, i.e., at -7.2 V. 

Before the first breakdown, the Jramp of the dual-layer nc-ITO embedded sample is 

higher than that of the single-layer nc-ITO embedded sample. In other words, the 

addition of the extra nc-ITO layer increased the leakage current and decreased the 

breakdown strength because charges can pass through the dielectric portion easier.  

The Jrelax-Vg curves of Fig. 16 (b) are similar to those of Fig. 15 (b), i.e., the 

Jrelax dropped sharply when the first breakdown occurred. However, the polarity did 

not change. The existence of the relaxation current is contributed by the nc-ITO and 

its interfaces. 
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(a) 

 

 

(b) 

 
Figure 16. (a) Jramp-Vg and (b) Jrelax-Vg curves of a dual-layer nc-ITO embedded ZrHfO 

capacitor measured with the two-step ramp-relax method [87] 
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Figure 17 shows the C-V curves of the nc-ITO embedded samples under 

different breakdown situations. First, a fresh C-V curve was measured in a small 

voltage sweep range, i.e., from -2V to 1V at 1MHz. After the first and second 

breakdowns were detected with the two-step ramp-relax method, the corresponding 

C-V curves were measured from -3V to 1V at 1MHz. After the first breakdown, both 

the single- and dual-layer nc-ITO embedded samples still showed the dielectric 

characteristics except smaller capacitances than those of the fresh sample’s 

capacitances. The existence of the dielectric property indicates that the high-k 

dielectric was not totally broken after the first breakdown. However, after the second 

breakdown, the whole nc-ITO embedded film became conductive and lost the 

capacitor’s characteristics.  For both nc-ITO embedded capacitors, the C-V curves 

shifted to the negative Vg direction after the first breakdown. This can be attributed to 

a large amount of holes trapped in the embedded nc-ITO site. 
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(a) 

 

 

 

    

 

(b) 

 

Figure 17. C-V curves of (a) single- and (b) dual-layer nc-ITO embedded ZrHfO 

capacitors before and after first and second breakdowns [87] 
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Figure 18 shows the time-dependent dielectric breakdown (TDDB) of nc-ITO 

embedded capacitors under constant voltage stress (CVS) at Vg = -6V and room 

temperature. The leakage current increases with the increase of the layer number of 

the embedded nc-ITO. The dual-layer nc-ITO embedded capacitor breaks at 4142s 

while the control sample and single-layer nc-ITO embedded sample does not break 

after 10 hours. Therefore, the accumulation of charges in the nc-ITO related sites may 

be responsible for the breakdown of the high-k stack. 
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Figure 18. Time-dependent dielectric breakdown curves of single- and dual-layer nc-

ITO embedded ZrHfO high-k film stressed at -6V [87] 
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CHAPTER 4 

 

TEMPERATURE INFLUENCE ON CHARGE 

TRAPPING/DETRAPPING MECHANISM OF NANOCRYSTAL 

ZINC OXIDE EMBEEDED HIGH-K THIN FILM 

 

The results shown in previous sections have been demonstrated that both 

ZrHfO/nc-ZnO /ZrHfO and ZrHfO/nc-ITO /ZrHfO tri-layer structures can trap a large 

number of charges with a long retention time. In addition, the nc-ZnO and nc-ITO 

embedded ZrHfO film had a large charge holding capability with large breakdown 

strength. However, most reliability studies on nonvolatile memories are done at room 

temperature. The influence of temperature on the memory function is important. In 

this chapter, authors investigated the temperature influence on some of the important 

reliability issues of the nc-ZnO and nc-ITO embedded ZrHfO MOS capacitor. 

 

4.1 Temperature Influence on I-V Characteristics 

4.1.1 nc-ZnO Embedded ZrHfO Capacitor 

Figure 19 shows the J-Vg (leakage current density vs. gate voltage) curves of 

the nc-ZnO embedded ZrHfO capacitors measured from -5V to +5V at 25°C, 75°C, 

and 125°C, separately. The 25°C curve contains an obvious negative differential 

resistance (NDR) peak due to the Coulomb blockade effect [4], which can be reduced 

at high temperature [88-89]. In addition, Figure 19 shows the leakage current 

increases with the increase of the temperature when +/-Vg is large. However, the 75°C 

and 125°C curves do not show NDR peaks. Figure 19 also shows that for each curve, 
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there is a transition Vg above which the leakage current is positive and below which 

the current is negative. This is due to the competitive hole-trapping and -detrapping 

mechanism. At the large -Vg, holes are injected and retained at the nc-ZnO site while 

at the small -Vg, they are released back to the Si substrate [90]. The magnitude of 

transition Vg decreases with the increase of the temperature, i.e., -4.65V, -4V and -

3.7V at 25°C, 75°C and 125°C, respectively. For the p-type wafer, it is easier to 

accumulate a larger number of high energy holes at the Si/dielectric interface and to 

inject them to the nc-ZnO site at the high temperature than at the low temperature, 

which shows up as the former’s larger transition -Vg than the latter.  

Figure 20 shows J-V curves of the nc-ZnO embedded capacitor under different 

temperatures in the log-lin scale. The gate voltage was swept from 0 to -6V in Figure 

20 (a) and 0 to +6V in Figure 20 (b). Below -1.5V, a hole accumulation is formed; 

above 1.5V, an electron-rich inversion layer is established. The tunneling current 

rapidly increases at a large gate voltage (Vg). Both figures show the leakage current is 

not strongly dependent on the temperature. Figure 20 (a) exhibits more temperature 

dependence than Figure 20 (b). 
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Figure 19. J-V curves of MOS capacitors with nc-ZnO embedded ZrHfO at 25°C, 

75°C and 125°C, respectively [91] 
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(a) 

 

(b) 

Figure 20. I-V curve of the nc-ZnO embedded MOS capacitor measured (a) from 0V 

to -5V and (b) from 0V to +5V [91] 
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4.1.2 nc-ITO Embedded ZrHfO Capacitor 

The thermal effect of the charge transport mechanism of the nc-ITO embedded 

sample was also studied. Figure 21 shows the J–V curves of the nc-ITO embedded 

capacitor under different temperatures in the log-lin scale. The gate voltage was swept 

from 0 to +6V in Fig. 21(a) and 0 to -6V in Fig. 21(b). Above +2V, an electron-rich 

inversion layer is formed; below -3V, a hole accumulation layer is established. 

However, under positive gate voltage, the increase of the leakage current will be 

constrained by the minority carrier concentration in the inversion region for p-type Si 

substrate. This is because at high positive Vg, the inversion region becomes almost 

intrinsic and the leakage current cannot significantly increase with the increase of the 

gate voltage. Fig. 21(a) also shows that the increase of the leakage current will be 

constrained at higher Vg under higher temperature, i.e., 1.9V, 2.2V and 2.3V at 25°C, 

75°C and 125°C, respectively. 
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(a) 

 

 

(b) 

 

Figure 21. J-V curve of the nc-ITO embedded MOS capacitor measured (a) from 0V 

to +6V and (b) from 0V to -6V [92] 
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4.2 Temperature Influence on Charge Transportation Mechanisms 

4.2.1 nc-ZnO Embedded ZrHfO Capacitor 

For the nanocrystal embedded HfO thin film, one of the major charge 

transport mechanisms is Fowler–Nordheim (F–N) tunneling [99-100], which can be 

expressed by the following equation [101]: 
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where Ei is the electric field, m is the effective mass, BΦ  is the barrier height, q is the 

charge of one electron and h is the Plank constant. From the above equation, F-N 

tunneling is considered as temperature independent. Moreover, the F-N tunneling 

takes place in much lower programming voltage in ZrHfO than SiO2. The onset of the 

F-N tunneling depends on the electron barrier height [99-100], and the barrier height 

between ZrHfO and Si is 1.5 eV, much smaller than that of SiO2 (3.5 eV). That is, the 

leakage current shows little temperature dependence under positive gate voltage 

because the major charge transport mechanism is F-N tunneling. During the “erase 

state,” the barrier height becomes larger, i.e., 3.4 eV, which makes the leakage current 

smaller than that in the writing state. The higher barrier height can effectively 

suppress the charge transport with the F-N tunneling mechanism and the leakage 

current becomes temperature dependent earlier and more obvious than that of the 

writing state. In other words, under negative gate voltages, leakage current exhibits 

more temperature dependence since more charges will transport with the Frenkel-

Poole or Schottky emission mechanism. 
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4.2.2 nc-ITO Embedded ZrHfO Capacitor 

Both Figure 21(a) and (b) show that the leakage current density increases with 

the increase of temperature, which is consistent with the Frenkel-Poole or Schottky 

emission mechanism. In addition, the magnitude of the leakage current under negative 

bias is smaller than that of the positive bias. Since the barrier height of the hole 

between HfSiOx and Si is larger than that of the electron, i.e., 3.4 eV vs. 1.5 eV, the 

leakage current density in Fig. 21(a) is higher than that in Fig. 21(b) under the same 

magnitude of Vg. Previously, it was reported that the charge transports through the 

HfO2 film may follow the Frenkel-Poole (F-P) mechanism or the Schottky emission 

as well [108-109], as shown in equation (20) and (21), respectively.  

 

                                           (20) 
 

                  

                                           (21) 
             

where E is the electric field, T is the temperature, ε is the insulator dynamic 

permittivity, m is the effective mass, BΦ  is the barrier height, and q is the charge of 

one electron. From the above equations, Schottky emission mechanism is more 

dependent on the temperature than F-P conduction mechanism. Figure 21 (a) shows 

that the Schottky emission is suitable for the leakage of current under the positive Vg 

bias condition. Figure 21(b) shows that the F-P conduction mechanism is applicable 

for the negative Vg bias condition. The ln(J/T2) vs. E1/2 curves (Schottky emission 

fitting plot) and ln (J/E) vs. E1/2 curves (F-P fitting plot) are shown in Figure 22. The 

result shows that the onset of the Schottky emission dominates the charge 

transportation mechanism at Vg > 2.5V. Since the Si/HfSiOx conduction band offset is 
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much smaller than the valence band offset, i.e., 1.5V vs. 3.4V, the Schottky emission 

mechanism is more pronounced than the F-P conduction mechanism under positive Vg 

[108]. However, under the negative Vg, the Schottky emission mechanism is 

overwhelmed by the F-P conduction due to the large valence band offset between Si 

and HfSiOx. 
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(a) 

 

 

 

(b) 

Figure 22. (a) Fitting of Schottky relationship under the positive Vg condition and (b) fitting 

of the Frenkel-Poole relationship under the negative Vg condition at 25°C, 75°C, and 125°C 

[92] 
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4.3 Temperature Influence on C-V Hysteresis Characteristics 

Figure 23 shows the C-V hysteresis curves of (a) the control sample at 25°C 

and the nc-ZnO embedded sample at (b) 25°C, (c) 75°C, and (d) 125°C, separately. 

All samples were measured from -6V to +6V, i.e., the forward sweep, and then back 

to -6V, i.e., the backward sweep. The control sample has a very small hysteresis, 

which indicates the negligible charge trapping capacity of the ZrHfO film in this 

sweep range. However, the nc-ZnO embedded sample shows a much larger C-V 

hysteresis. The flat band voltage difference (∆VFB) between the forward curve and the 

backward curve can be used as a reference of the memory window. ∆VFB’s of Figure 

23 (b), (c), and (d) curves are 1.24V, 1.45V, and 1.61V at 25°C, 75°C, and 125°C, 

separately. The corresponding charge trapping densities (Qot’s) are 3.24x1012, 

3.87x1012, and 4.3x1012cm-2, respectively, estimated from the following equation:15 

q

VC
Q FBFB

ot

∆×
=                                             (20) 

where q is the electron charge and CFB is the flatband capacitance. It has been 

observed that the retention efficiency of the nc-ZnO embedded ZrHfO thin film 

decreases with the increase of the temperature [93]. The capacitor lost 22.8%, 28.1% 

and 38% of originally stored charges at 25°C, 75°C and 125°C, respectively after 

release the stress Vg for 10,000s. These lost charges were probably loosely trapped in 

the embedded high-k layer. Otherwise, the remaining charges, which were strongly 

trapped, were difficult to lose unless the temperature is high. 

In general, the Fermi level and the interface properties of the MOS structure 

are sensitive to the temperature [94]. Figure 23 (b) and (c) show that in the forward 

sweep direction, the C-V curve at 25°C almost overlaps with that at 75°C. Since the 

substrate is p-type, the location and shape of the forward sweep curve are determined 
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by the amount of holes trapped in the gate dielectric at the starting Vg, i.e., -6V, and 

the subsequent hole-release mechanism during the reduction of -Vg. The overlap of 

these two curves means both above processes were not affected by temperature 

between 25°C and 75°C. However, the slope of the C-V curve of the nc-ZnO 

embedded sample in the depletion region is less sharp than that of the control sample. 

This may be contributed by the larger interface states between the embedded ncZnO 

layer and the surrounded high-k dielectric material [95]. On the other hand, in the 

backward sweep direction, the 75°C curve shifts to the more positive Vg direction than 

the 25°C curve, which means the increase of electron trapping in the gate dielectric 

layer with the increase of the temperature. The high substrate temperature favours the 

formation of the electron-rich inversion layer and increases the kinetic energy. Both 

factors favour electron injection into the gate dielectric layer. Therefore, the large 

∆VFB of the 75°C sample compared with the 25°C sample is contributed by the 

increase of electron trap not hole trapping.  

When the temperature is raised from 75°C to 125°C, both the forward and 

backward C-V sweep curves shift toward the negative Vg direction, as shown in Figure 

23 (c) and (d). The negative shift of VFB in the forward sweep direction is due to the 

increase of the number of hole trapped in the gate dielectric layer at Vg = -6V. In the 

backward sweep direction, the VFB at 125°C is less positive than that at 75°C. This 

indicates the amount of electrons trapped in the gate dielectric decreases from 75°C to 

125°C. It is due to the deterioration of the dielectric layer. Since all the backward 

curves of the ZnO embedded sample shift toward the positive Vg direction compared 

with that of the control sample, electrons were trapped to the gate dielectric layer at Vg 

= 6V independent of the previous hole trapping history during forward sweep. 
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Therefore, the large ∆VFB of the 125°C sample is contributed by both electron and 

hole trapping mechanisms. Separately, the backward sweep curve of the 125°C 

sample in Figure 23 (d) shows an obvious shoulder from Vg = -0.4V to -1.6V in the 

region of weak accumulation. This is due to the existence of a set of near interface 

traps (NITs) whose lifetime and capture cross-section do not respond to the 1MHz 

measurement frequency at the lower temperature [94]. These NITs are located close 

to the conduction band edge and have strong influence on the mobility of the carrier 

in the inversion layer [94, 96]. 

Figure 23 (b), (c), and (d) shows that in the backward sweep direction, the 

capacitance of the nc-ZnO embedded sample decreases with the increase of the 

magnitude of -Vg. At Vg = -6V, the capacitances are 3.51×10-11, 3.46×10-11, and 2.7

×10-11 at 25°C, 75°C and 125°C, separately. This is due to the increase of the leakage 

current of the gate dielectric with the increase of temperature, as shown in Figure 19, 

which has been discussed in detail in ref. 97.     
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(a) (b)  

  

(c) (d)  

Figure 23. C-V hysteresis curves for (a) control sample at 25°C, (b) nc-ZnO 

embedded ZrHfO at 25°C, (c) nc-ZnO embedded ZrHfO at 75°C, and (d) nc-ZnO 

embedded ZrHfO at 125°C [91] 
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4.4 Temperature Influence on G-V Characteristics 

  The C-V curve shape in the depletion region is greatly influenced by the 

interface states, which are sensitive to the temperature. Figure 24 shows the G-Vg 

(conductance-gate voltage) curves corresponding to the backward C-V curves in 

Figure 23 (b), (c), and (d). The peak conductance is located at the voltage near the flat 

band voltage in the depletion region [98]. The peak in the conductance curve is due to 

the slow carrier capture rate of the embedded nc-ZnO, which comes from the 

reduction of the minority carrier density at the Si/tunnel ZrHfO interface. The 

embedded nc-ZnO cannot keep pace with the measurement frequency of 1MHz, 

which results in the energy loss. Thus, the conductance peak and the largest energy 

loss occur at the flat band voltage. For the 125°C C-V curve, there is a valley at Vg = -

0.75V, which corresponds to the lowest conductance point. It does not occur in the 

lower temperature curves because the NITs are more responsive to the measurement 

frequency at the high temperature [98]. The hump at Vg = 0.8 V in the 125°C G-Vg 

curve is contributed by the interface states. Figure 24 also shows that when the Vg is 

lower than VFB, the conductance of the capacitor increases with the temperature. This 

is consistent with the trend of leakage current change with temperature in Figure 19.  
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Figure 24. G-V curves of capacitors in the backward sweep direction at 25°C, 75°C 

and 125°C, respectively [91] 
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4.5 Temperature Influence on Charge Retention Efficiency 

4.5.1 nc-ZnO Embedded ZrHfO Capacitor 

The charge retention efficiency of the nc-ZnO embedded capacitor was 

studied with the following method. First, a Vg was applied to the capacitor for a period 

of time to trap charges to the dielectric structure. Second, after releasing the Vg, the C-

V curve was measured in a small Vg range, i.e., -2V to +1V. Third, the C-V 

measurement step was repeated every 1000s. Only negligible charges were injected 

into or removed from the capacitor during the C-V measurements because of the small 

Vg range. The flat band voltage, VFB, calculated from the C-V curve reflects the 

capacitor’s charge retention state      

The flat band voltage shift can be expressed as a function of the retention time 

(t), as shown in Figure 25 (a). The electron charge-retention characteristics of the nc-

ZnO embedded capacitor were measured at different temperatures after +6V, 90s 

“write” stress. The magnitude of the charge storage decreased with the increase of 

temperature. This can be attributed to electron-trapping possibilities at the nc-ZnO 

layer reduces due to the increased electron thermal energy at elevated temperature 

[102]. In addition, the dielectric’s conductance increases with the increase of 

temperature, which also can contribute to the leakage of the stored charges to the Si 

wafer. After 10,000 s, the capacitor lost 22.8%, 28.1% and 38% of originally stored 

charges at 25°C, 75°C and 125°C, respectively. Figure 25 (b) shows the same figure 

as Figure 25 (a) but the time is on the logarithm scale. The result shows that the nc-

ZnO embedded ZrHfO high-k film will gradually lose the nonvolatile property as the 

temperature increases. In other words, the electron-trapping capability for the 

embedded nc-ZnO decreases with the increase of the temperature.  
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(a) 

 

 

(b) 

Figure 25. (a) Charge retention characteristic of ZnO embedded high-k thin film under 

different temperatures, (b) same as (a) with time on the logarithm scale [93] 
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4.5.2 nc-ITO Embedded ZrHfO Capacitor 

The temperature effect on the charge retention efficiency of the nc-ITO 

embedded capacitor was studied with the following method. First, a gate bias (Vg) was 

applied to the capacitor for a period of time to trap charges to the dielectric structure. 

Second, after releasing the Vg, the C-V curve was measured in a small Vg range, i.e., -

2V to +1V. Third, the C-V measurement step was repeated every 1800s. Only 

negligible charges were injected into or removed from the capacitor during the C-V 

measurement because of the small Vg range. The flat band voltage, VFB, was 

calculated from the C-V curve to reflect the capacitor’s charging state. The flat band 

voltage shift (∆VFB ), which is defined as VFB (after stress release for a period of time) 

-  VFB (before stress), is expressed as a function of the time (t), as shown in Figure 26 

(a) after releasing the 1s Vg = -8V stress conditions at  different temperatures. First, 

the magnitude of the memory window increases with the increase of the temperature, 

i.e., 0.64V, 1.14V, and 1.21V at 25°C, 75°C, and 125°C, respectively. In contrast, the 

control sample has negligible memory windows, e.g., ∆VFB =0.03V and 0.3V at 25°C 

and 75°C, respectively under the same sweeping conditions. All trapped charges in 

the control sample were lost after 28 hours at 75°C. The initial increase of the 

memory window in the nc-ITO embedded sample is mainly due to the change in the 

Fermi level and the interface properties.  Compared with the room temperature stress 

condition, the elevated temperature provides the additional energy to holes to 

overcome the barrier height for easier reaching the nc-ITO site. The ∆VFB - t curves in 

Fig. 26 (a) is consisted of two sections: quick loss of charges at t < 3600 seconds 

followed by the slow loss of the remaining charges after a long period of time. The 

first section is due to the detraping of the loosely trapped charges; the second section 
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is due to the release of the strongly trapped charges. The initial charge decay rate and 

the loss of the trapped charges increase with the increase of temperature, i.e., 27.6%, 

45.7% and 71.5% at 25°C, 75°C and 125°C, respectively after one hour. After 10 

hours, the capacitor lost 34.8%, 64% and 92% of the total trapped charges at 25°C, 

75°C and 125°C, respectively. This is because the conductance of the dielectric 

material increases with the increase of the temperature, which facilitates the leakage 

of the charges to the Si wafer. Therefore, temperature not only influences those 

loosely-trapped but also strongly-trapped charges. Figure 26 (b) shows the same data 

as Fig. 26 (a) but with the time on the logarithm scale extrapolated lifetime. At 25°C, 

61% of the stored charges were lost after 10 years. However, at high temperatures, the 

loss of the charge increased drastically. For example, at 75°C, all stored charges were 

lost after 270 days and at 125°C the time was shortened to 1.67 days.   
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Figure 26. (a) Charge retention characteristic of nc-ITO embedded high-k thin film 

under different temperatures, (b) same as (a) with time on the logarithm scale [92] 
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4.6Temperature Influence on the Breakdown Mechanism 

The thermal effect of breakdown mechanism for the nc-ZnO embedded high-k 

thin film can also be examined with the ramp-relax measurement method. Here, 

authors applied the same ramp-relax method to investigate the breakdown phenomena 

of nc-ZnO embedded high-k capacitors at different temperatures. Figure 27 shows the 

Jramp-Vg and Jrelax-Vg curves of capacitors at 25°C, 75°C, 125°C and 175°C. The 25°C 

Jramp-Vg curve is composed of three sections. First, the Jramp increases slowly and 

smoothly with the increase of -Vg from 0V to -5V. In this region, charges start to trap 

to the embedded high-k stack and at the same time, the spot-connected breakdown 

path gradually forms [84]. In the second section, the quasi-breakdown initiates where 

spot-connected paths begin to be realized [84, 86]. In this section, the leakage current 

increases faster with the increase of -Vg due to the existence of a small number of the 

connected paths. In the third section, the complete breakdown occurs after the film 

becomes conductive and the Jramp becomes very large. Compared with the 25°C Jramp-

Vg curve, the smooth transition of the curve in section 1 at 75°C or 125°C is not 

obvious, i.e., ends before -2 volt. The short period of the smooth section shows that 

the increase of temperature provides enough energy for charges to form the spot-

connected path fast.  

The breakdown strength, VBD, of the capacitor can be identified with the 

abrupt jump of the Jramp. Nc-ZnO embedded ZrHfO high-k thin film has been 

demonstrated to have a larger VBD than the non-embedded ZrHfO sample [103-104]. 

Moreover, the breakdown strength of the nc-ZnO embedded sample is dependent on 

the temperature, e.g., in the order of 25°C, 75°C, 125°C, and 175°C. The Jramp– V 

curves exhibit no temperature dependence at small gate voltages because a hole 
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accumulation layer is formed. At higher gate voltages, more charges transport through 

the Frenkel-Poole or Schottky emission, which makes the leakage current more 

temperature dependent. Since ZnO is semiconductor, it is more difficult to breakdown 

than the surrounding dielectric material. Therefore, the failure of the nc-ZnO 

embedded high-k film at room temperature is from the breakdown of the bulk ZrHfO 

[103-104]. 

The change of the polarity in Jrelax is dependent on the temperature. This is 

different from the breakdown phenomenon of the non-embedded high-k film. When 

the non-embedded ZrHfO stack breaks down, the polarity of Jrelax will change 

immediately. However, the polarity of the Jrelax does not change after breakdown of 

the nc-ZnO embedded high-k film, which means the nc-ZnO is not broken. This 

phenomenon occurs at 25°C. At 75°C, the Jramp-Vg curve breaks at -10.1 V while the 

polarity change in the Jrelax-Vg curve occurs at -18.3 V. At 125°C, the Jramp-Vg curve 

breaks at -9.2 V while the polarity change in the Jrelax-Vg curve occurs at -12.7 V.  

Eventually, at 175°C, the Jramp-Vg curve breaks at the same Vg as that of the polarity 

change in the Jrelax-Vg curve, i.e., -6.8 V. Therefore, the nc-ZnO breakdown requires a 

much larger Vg than that of the bulk high-k film. The difference between the two 

breakdown Vg’s decreases with the increase of the temperature. When the temperature 

is high enough, e.g., 175°C, the nc-ZnO and the bulk high-k break at the same Vg. 
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Figure 27. Jramp-Vg and Jrelax-Vg curves at different temperatures [93] 
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CHAPTER 5 

OPTIMAL BURN-IN TIME 

In this section, the optimal burn-in time of the nc-ZnO embedded high-k 

device is obtained. Burn-in is a widely used method to weed out the defect items 

before the product is shipped to the customer.  To perform the burn-in process, items 

are put on an accelerated life test for a certain time period b, called the burn-in period. 

Those that survive the burn-in process can be released for field use. The burn-in time 

b can be determined by some criterion. Many researches applied different objective 

functions for optimization and then showed that an optimal burn-in time, b*, indeed 

existed. Minimal cost is the most widely used objective function to determine the 

optimal burn-in time for IC devices, and more and more cost factors have been 

considered, such as repair cost, replacement cost and warranty policies. However, in 

the nano era, the calculation of these cost factors will become more difficult because 

of the short product life cycle and limited data. Yield and reliability, on the other hand, 

are two primary factors in semiconductor manufacturing. By using yield and 

reliability modeling as the foundation for developing effective stress burn-in, 

semiconductor manufacturers can provide high-quality products to customers. 

Therefore, some reliability concepts have been applied to obtain optimal burn-in time. 

In this study, the optimal burn-in times were obtained under two objective functions: 

1. maximize the reliability with a given mission time, proposed by Mi [105], and 2. 

achieve the mission reliability. 
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5.1 Hazard Rate Function Estimation 

It is widely believed that many products, particularly silicon integrated circuits, 

exhibit bathtub-shape failure rate function. Traditional bathtub-shape curve divided 

the component life into three stages. The first stage is known as infant mortality 

period. In this stage, we have a decreasing failure rate (DFR). The second stage is 

called the normal operating life. In this stage, we have a constant failure-rate period 

(CFR). The last stage is a period of wearout with an increasing failure rate (IFR) 

because of aging. 

 

Consider the simple n right censored survival data ( ){ }njX jj ≤≤1  ; , δ , 

where jX is the time that the jth individual was last seen and 






=
censored   ,0

failed    ,1
jδ . To 

find the approximation of the hazard rate function, the non-parametric Bayesian 

approaches proposed by Arjas and Gasbarra [8] was applied: 

The hazard rate function, { }0;  ≥ttλ , was defined as a simple jump process 

structure: 

( ) { }∑
≥

≤< +
=

0
1

1
i

iTtT ii
t λλ                                             (21) 

 

where { }1  is the indicator function, ...0 21 <<< TT  is an increasing sequence of jump 

times and 0>iλ  are the corresponding levels of the piecewise constant hazard rate. T1, 

T2, … form a time-homogeneous Poisson process with parameter µ, 

( )000  ,~ βαλ Gamma  and ( )
1

 , ,~
−
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iii Gamma
λ
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Let ( ){ }i
i
k

i
k mkT ≤≤0  ,  , λ  be the value of ( )mT kk  , ,λ  after the ith iteration, 

where m is the number of jumps in the hazard rate. Then we can sample from the 

following distributions [8]: 
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where ( ) { }∑
=

<−=
n

j
tX j

ntY
1

1  is the number of the individuals at risk at time t, #A denotes 

the cardinality of set A, and ∑
+

+ <<

=
i
kj

i
k TXT

jkr
1

1

δ . Then a good approximation of the hazard 

rate function can be obtained from the above algorithm. 
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5.2 Accelerated Life Test 

The modern products nowadays are designed to operate for years without 

failure. Estimating the time-to-failure distribution or long-term performance of the 

component becomes very difficult. Only few units will fail during the test at normal 

use conditions. Thus, accelerated life tests (ALTs) are used wildly in industries to 

obtain the reliability data of the product. ALTs are usually performed under high 

levels of stress, such as high temperature, voltage or pressure. The burn-in process in 

this study was a voltage stress accelerated life test. To collect the time-to-failure data, 

the constant voltage stress tests were performed on the nc-ZnO embedded ZrHfO 

capacitor. The accelerated voltage stress was 7.5V. In the CVS tests, the jump of 

leakage current at the moment of breakdown can be clearly identified. To estimate the 

lifetime of the product with the accelerated life test, the acceleration factor needs to be 

obtained. Assuming that voltage dependence of the device lifetime follows 

exponential law, the voltage acceleration factor (AFv) can be expressed by Qin and 

Bernstein [106]: 

 

( )[ ]OA VV
v eAF −= γ                                                       (24) 

 
 

where γ   is the acceleration coefficient, VA is the accelerated voltage and VO is the 

operating voltage. In this research, 7=γ  is chosen based on the results from Qin [106] 

and Wu [107]. Then the acceleration factor can be calculated as  

( )[ ] 5.3631565.77 == −eAFv . In other words, one hour in the burn-in process equals 

36315.5 hours under normal operation conditions. 

 



77 
 

5.3 Optimal Burn-In Time 

In this section, the hazard rate function will be estimated based on the model 

discussed in the previous section. The lifetime data were obtained from the nc-ZnO 

embedded ZrHfO nonvolatile memory prepared by Thin Film Nano & 

Microelectronics Research Laboratory. The memory device was stressed under a 

constant voltage stress i.e., 7.5V for 15,000 seconds and the leakage current was 

measured every second. The failure was defined as the abrupt increase of the leakage 

current. The typical J-t curve of the lifetime test is shown in Figure 28. In each 

lifetime test, the leakage current decreased quickly first and became stable. The 

phenomenon was discussed in Chapter 2. The decrease of leakage current at the 

beginning can be attributed to the Coulomb blockade effect due to charges trapped to 

nc-ZnO sites. With the increase of the stress time, charges are gradually stacked to 

form the spot-connected path. Eventually a conductive path is established and the 

leakage current increases abruptly. The lifetime data collected from this kind of 

device are listed in Table 3.  
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Figure 28. The J-t curve example for the lifetime test 

 

 

 

 

 

 

 

 

 



79 
 

 

 

 

No. 

stress level =7.5V 

time to failure 

1 2 

2 2 

3 8 

4 82 

5 95 

6 182 

7 196 

8 198 

9 920 

10 1369 

11 15000 

12 15000 

 
 
 

 

 

Table 3. The lifetime data (time to failure) set for the nc-ZnO embedded ZrHfO 

capacitor 
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The estimated hazard rate function is plotted in Figure 29. The DFR was 

observed before 1500s and the hazard rate becomes almost constant afterwards. To 

determine the optimal burn-in time, Mi [105] proposed the maximizing the reliability 

of a burn-in item to survive a mission time. Let the hazard rate function of a 

component be h(t) and the component is required to accomplish a mission time, τ . 

Then the reliability of completing the mission is )(τS , where S is the survival 

function of the component. After the burn-in process, the conditional reliability of 

accomplishing the mission can be expressed by 

 

( )
( )

( )∫
=+

+

−
τ

τ
b

b

dtth

e
bS

bS
                                           (25) 
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Figure 29. Estimated hazard rate function  
 

 

 

The optimal burn-in time of the nc-ZnO embedded ZrHfO memory device can 

be obtained such that the above conditional reliability will be maximized.   

The numerical results are shown in Figure 30.  When τ =6 months, 1 year or 2 

years, the conditional reliability will reach its maximum at t = 5867s, 5470s and 

5206s with maximal reliability = 99.7%, 99.4% and 98.7%, respectively. The optimal 

burn-in time can be estimated to achieve the mission reliability [108-109]. Let the 

mission reliability be Rm, we have ( ) ( )ττ hbhRm −+= . Figure 31 shows the optimal 

burn-in time under different mission reliabilities with τ =1 year. When Rm=99%, 95% 

or 90%, the mission reliability will be reached at t = 2597s, 1077s and 533s, 

respectively. 
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Figure 30. Conditional reliability of accomplishing different mission time 
 

 

 

 

 
Figure 31. Achieving different mission reliabilities for mission time = 1 year 
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CHAPTER 6 

SUMMARY AND CONCLUSIONS 

Nanocrystal embedded high-k stack can successfully replace the conventional 

poly-Si floating-gate nonvolatile memory. Different charge storage media, i.e., nc-

ZnO, nc-ITO, nc-Ru, and nc-Si have been studied and compared in this research. The 

nanocrystal embedded ZrHfO high-k thin film was prepared with RF sputtering 

process in the one-pump down process without breaking the vacuum. In this study, 

the reliability issues of this kind of dielectric structure have been investigated through 

monitoring the C-V hysteresis characteristics, current relaxation process, breakdown 

phenomena, charge transportation mechanisms, retention properties, temperature 

effect and lifetime analysis.  

Large C-V hysteresis was detected in four different kinds of nanocrystals, i.e., 

nc-Si, - ITO, -Ru, and -ZnO, embedded ZrHfO high-k films. It is difficult to compare 

the charge storage capacities of these samples because they have different physical 

thicknesses or EOTs. Relaxation currents of the nanocrystals embedded high-k 

dielectric films were measured and compared. A larger gate voltage provides a higher 

initial relaxation current than the lower gate voltage does. The relaxation behavior 

does not seem to be influenced by the initial applied gate voltage. Different 

nanocrystals held charges at different strengths, i.e., in the order of nc-ZnO > nc-Si > 

nc-Ru > nc-ITO. The inconsistence between the magnitude in the hysteresis and 

charge holding strength show that the charge trapping strength of a nanocrystal 

material cannot be compared only by C-V curves. That is, to investigate the charge 

holding capability in the nc-embedded films with different EOTs, C-V curves and 

relaxation behavior are both required; the former is used to calculate the total number 
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of initially trapped charges and the number of loosely trapped charges can be obtained 

from the latter. The relaxation current was contributed by the loosely trapped charges, 

which is less than half of the originally trapped charges. The nanocrystal material 

influences not only the charge storage capacity but also the charge holding time. 

For the single-layer nanocrystal embedded ZrHfO capacitor, the breakdown 

phenomenon can be investigated by using the ramp-relax method or time-dependent 

dielectric breakdown method. The result of the ramp-relax method shows that the 

breakdown of the sample was due to the breakdown of the bulk high-k film instead of 

the nanocrystals, which was demonstrated from the lack of polarity change of the 

relaxation current. The breakdown mechanisms of the single- and dual-layer nc-ITO 

embedded ZrHfO capacitors have also been investigated using the two-step ramp-

relax and the time-dependent dielectric breakdown methods. The hole trapping 

capacity became more than double with the addition of the extra nc-ITO layer. The 

charge transport mechanism of the nc-ITO embedded ZrHfO stack followed the F-N 

tunneling relationship. The Jramp-Vg, Jrelax-Vg, and C-V curves of the nc-ITO embedded 

capacitors before and after the first breakdown step were measured. The complete 

breakdown of the capacitor cannot be simply identified from the abrupt jump of the 

leakage current. The addition of the nc-ITO increased the leakage current and made 

the complete high-k stack easier to break down. 

The temperature effects on memory functions of the nc-ZnO and nc-ITO 

embedded ZrHfO capacitor have been studied. For the nc-ZnO embedded ZrHfO 

capacitor, the high temperature suppressed the Coulomb blockage effect in the J-V 

curve. The C-V hysteresis phenomenon became obvious with the increase of 

temperature from 25°C to 125°C. For the p-type wafer, in the accumulation region, 
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the hole trapping efficiency became obvious at the high temperature, e.g., 125°C. 

However, in the inversion region, the electron trapping effect was detected at 25°C. 

The interface quality is sensitive to temperature. In the depletion region, the C-V 

curve slope decreased with the increase of temperature. A valley in the G-V curve 

was observed at 125°C but not at 25°C or 75°C due to the former’s interface states. 

The NITs are responsible for the low conductance in the 125°C curve. Therefore, the 

sample temperature affects the memory functions through changes of carrier 

generation, carrier kinetic energy, and dielectric conductance. The results of the 

retention efficiency test show that after releasing the gate stress, i.e., at +6V for 90s, 

for 10,000s, about 22.8%, 28.1% and 38% of the originally trapped charges were lost 

at 25°C, 75°C, and 125°C, respectively. Moreover, under room temperature, the nc-

ZnO embedded ZrHfO high-k sample can retain charges for more than 10 years with 

memory window = 0.3V. However, the charge retention capability decreases with the 

increase of the temperature i.e., the lifetime decreased to 2 years at 75°C and 1.5 

months at 125°C, separately. Therefore, the retention efficiency for the nc-ZnO 

decreases with the increase of the temperature. In addition, the capacitor’s breakdown 

strength decreased with the increase of the temperature in the order of 25°C, 75°C, 

125°C and 175°C. For the nc-ITO embedded sample, the initial memory window 

increased with the increase of temperature. However, the charge storage capacity 

decreased with the increase of temperature. After releasing the stress for 10 hours, the 

loss of the trapped charges were 34.8%, 64% and 92% at 25°C, 75°C and 125°C, 

respectively due to the increase of thermal energy of the trapped charge and the 

electric conductivity of the high-k film. The charge retention capability decreased 

with the increase of temperature, i.e., ∆VFB = 0.25V after 10 years at 25°C, 0V after 
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270 days at 75°C, and 1.67 days at 125°C. The charge transportation mechanism 

follows the Schottky emission mechanism in the positive Vg range and the and F-P 

conduction mechanism in the negative Vg range due to the different conduction and 

valence band offsets between Si and HfSiOx.  

Finally, the lifetime analysis of the nc-ZnO embedded high-k nonvolatile 

memory device was performed with non-parametric Bayesian approach. This research 

applied the nonparametric Bayesian method to estimate the hazard rate function of the 

nc-ZnO embedded high-k device. The optimal burn-in time was determined with two 

different objective functions. The 99% mission reliability after one year can be 

achieved with a 2597s burn-in procedure. In addition, the maximal reliability, 99.4%, 

after one year can be achieved with the 5470s burn-in time. 
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