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Abstract 

 

Chromatin insulators play an important role in gene transcription regulation by 

defining chromatin boundaries. Genome-wide studies in Drosophila have shown 

that a large proportion of insulator sites are found in intergenic DNA sequences, 

supporting a role for these elements as boundaries. However, approximately 40% 

of insulator sites are also found in intragenic sequences, where they can 

potentially perform as yet unidentified functions. Here we show that multiple 

Su(Hw) insulator sites map within the 110 kb sequence of the muscleblind gene 

(mbl), which forms a highly condensed chromatin structure in polytene 

chromosomes. Chromosome Conformation Capture assays indicate that Su(Hw) 

insulators mediate the organization of higher-order chromatin structures at the 

mbl locus, resulting in the formation of a barrier for the progression of RNA 

polymeraseII (PolII), and producing a repressive effect on basal and active 

transcription. The interference of intragenic insulators in PolII progression 

suggests a role for insulators in the elongation process. Supporting this 

interpretation, we found that mutations in su(Hw) and mod(mdg4) also result in 

changes in the relative abundance of the mblD isoform, by promoting early 

transcription termination. These results provide experimental evidence for a new 

role of intragenic Su(Hw) insulators in higher-order chromatin organization, 

repression of transcription, and RNA processing.   
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CHAPTER I 

Introduction 

Chromatin organization and gene regulation in the nucleus 

The genome size of eukaryotes has increased dramatically as a result of evolution 

over millions of years. A question accompanied with this is how the large amount of 

genes present in the genome can be expressed efficiently with proper order during 

the development of a particular organism (Anatskaya and Vinogradov, 2007; Deato 

and Tjian, 2007; Xiao et al., 2006). Growing evidence suggests that nuclear 

organization may play an essential role in gene regulation by modulating 

accessibility of transcription machinery and varying the location of genes (Kosak 

et al., 2002; Muller et al., 2001; Schubeler et al., 2000).  

 

In the eukaryotic cells，chromosomal DNA is packaged into chromatin, which in 

humans, for example, compacts two meters of DNA into approximately 

5-μm-diameter nucleus. The basic unit of chromatin is the nucleosome. 

Nucleosomes are composed of a core histone octamer (containing two subunits 

each of four histones: H2A, H2B, H3 and H4), wrapped around DNA. All four 

histones contain lysine-rich tails at their amino termini, which undergo 

post-translational modifications including acetylation, methylation, ubiquitinylation 
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and phosphorylation (Goll and Bestor, 2002; Shindo, 2009). Histone modifications 

affect interactions of histones with DNA and nuclear proteins and subsequently 

act in diverse biological process such as DNA repair, mitosis and transcription 

regulation (Biancotto et al., 2010; Lo et al., 2004). The combination of histone 

modifications is thus thought to constitute a ‘histone code’ (Imhof and Becker, 

2001; Jenuwein and Allis, 2001). The core histone octamer wraps 146 base pairs 

of DNA. In addition, linker hitone H1 or H5 wraps another 20 base pairs, forming 

two full turns of DNA around histone proteins (Luger and Hansen, 2005; Wong et 

al., 2007; Woodcock, 2006).  Nucleosomes are regularly spaced along the 

genome. Repeating nucleosomes together with "linker" DNA form a 10-nm 

chromatin fiber, referred to as the "beads on a string" structure, which provides the 

first level of compaction of DNA into the nucleus. A chain of this structure is 

arranged into higher-order 30-nm fibers, which further coil into 80-100 nm 

chromatin fibers (Felsenfeld and McGhee, 1986; Ostashevsky and Lange, 1994). 

The chromatin structure beyond 30 nm fiber is not fully understood, but it is 

traditionally thought that the 30 nm fiber is assembled into loops along a central 

protein scaffold to form euchromatin. This arrangement of chromatin is considered 

to further condense DNA and form heterochromatin. Higher levels of compaction 

ultimately results in the highly condensed metaphase chromosome.  

 

The terms euchromatin and heterochromatin were originally defined by their 
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distinct staining properties with a variety of chemical dyes: euchromain is lightly 

stained while heterochromatin stains darkly due to its highly condensed structure. 

In general, heterochromatin is frequently located at the nuclear periphery. It can 

be subdivided into constitutive and facultative heterochromatin. Constitutive 

heterochromatin refers to heterochromatin that remains compact in all cell types 

and tends to locate at repetitive sequences found in centromeres and telomeres 

of chromosomes. Facultative heterochromatin is defined as heterochromatin that 

can become decondensed during cellular development (Grewal and Jia, 2007; 

Tamaru, 2010).   

 

The non-uniform compaction of the interphase chromosome is thought to be 

important for genome function. Such non-uniformity is easily observed in the 

banding pattern of polytene chromosomes in Drosophila. Polytene chromosomes 

form when certain specialized cells undergo multiple rounds of DNA replication 

without cell division, and the sister chromatids remain synapsed together to form a 

giant chromosome. The banding pattern of Polytene chromosomes is caused by 

alternation of highly condensed chromatin regions, which form bands, with less 

condensed chromatin regions, which form interbands. Interestingly, actively 

transcribed genes are mostly associated with decondensed interbands, whereas 

transcriptionally inactive genes are frequently located in compacted chromatin 

bands (Weintraub and Groudine, 1976; Zhimulev et al., 2004). It was also noted 
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that instead of randomly distributed on the chromosomes, genes with similar 

expression patterns are clustered in higher eukaryotes (Chen and Stein, 2006; 

Lercher et al., 2002; Mezey et al., 2008; Prieto et al., 2008; Roy et al., 2002). 

Therefore, it has been suggested that eukaryotic chromosomes are divided into 

distinct chromatin domains and that this organization of chromatin structure may 

function as the first level of regulation to control appropriate tissue-specific 

expression (Kuhn and Geyer, 2003). 

 

Position-effect variegation in Drosophila 

The phenomenon of position-effect variegation is one of the best known examples 

reflecting presence of structurally and functionally distinct chromatin states. The 

proper expression of the white gene is essential for normal red pigmentation of 

the fly's eye. The white gene locates in the euchromatin region of the X 

chromosome in wild type. A chromosomal inversion induced by X-ray places the 

white gene near the boundary between euchromatin and heterochromatin. As a 

result, the same white gene is expressed in some cells, in which is exposed to 

euchromatin, and is silenced in other cells, in which is exposed to 

heterochromatin. This patched distribution of pigmented cells finally leads to a 

phenotype that is known as variegated eyes (Grewal and Elgin, 2002). It has been 

suggested that a barrier exists in normal chromosomes to prevent spreading of 

 4



heterochromatin into euchromatic regions. In the absence of such barrier, genes 

such as white, which are placed close to heterochromatin may be silenced. The 

candidates to perform the barrier function are insulators or boundary elements. 

 

Chromatin insulators or Boundary elements in the eukaryotic genome 

Insulators or boundary elements are specialized DNA sequences bound by 

proteins that participate in chromatin organization and gene regulation by 

establishing and delimiting domains of gene expression and thus set up 

independent territories of gene activity (Labrador and Corces, 2002; Parnell et al., 

2003). Insulators have two characteristic effects on gene expression: First, they 

block the interaction between enhancers and promoters when located between 

these elements. Second, they protect the expression of transgenes inserted into 

heterochromatin by preventing the spread of heterochromatin, and therefore 

separate active and inactive chromatin domains (Chung et al., 1993; Gaszner and 

Felsenfeld, 2006; Gerasimova and Corces, 2001; Kellum and Schedl, 1991; 

Roseman et al., 1995).  

 

During the past few years, insulators have been found in a variety of organisms 

including yeast, Drosophila, and vertebrates (Barges et al., 2000; Engel and 

Bartolomei, 2003; Gerasimova and Corces, 2001; Pryde and Louis, 1999). In 
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yeast, the subtelomeric anti-silencing regions (STARs) can protect a reporter 

gene from being repressed by the neighboring silencing elements when located 

between them, which suggest the presence of insulators elements (Fourel et al., 

1999). The first insulator identified in vertebrate is the 5’ boundary of the chicken 

β-globin locus (cHS4), which posses both enhancer blocking and barrier activities 

in transgenic assays (Chung et al., 1993). The CCCTC-binding factor (CTCF), 

which associates with the 5’HS4 sequence in vivo, plays an important role in its 

insulator activity (Bell et al., 1999; Yusufzai and Felsenfeld, 2004). The 82-kDa 

CTCF protein, originally identified as a transcription factor, is an 11 zinc finger 

DNA-binding protein which recognizes diverse DNA regulatory sequences using 

different combinations of zinc fingers (Dunn and Davie, 2003; Parelho et al., 2008; 

Renda et al., 2007). CTCF has been shown to be evolutionarily conserved from 

frog, chicken, and rabbit to humans and appears to be the major insulator protein 

in vertebrates (Burgess-Beusse et al., 2002; Hore et al., 2008; Moon et al., 2005). 

The enhancer-blocking activity of CTCF has been studied in detail on the 

imprinted Igf2/H19 locus (Chen et al., 2009; Engel and Bartolomei, 2003; Szabo 

et al., 2004; Yang et al., 2003).  

 

Genomic imprinting is an epigenetic phenomenon which ensures that imprinted 

genes are expressed from only one allele in a parent-of-origin-dependent manner 

(Bartolomei and Tilghman, 1997; Ferguson-Smith and Surani, 2001; Kacem and 
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Feil, 2009). In mice and humans, the insulin-like growth factor 2 (Igf2), encoding 

an embryonic mitogen and H19, a putative tumor suppressor are reciprocally 

imprinted. Igf2 is located 90 kb upstream from H19 with a boundary element 

named differentially methylated domain (DMD) [also known as imprinting control 

region (ICR)] positioned between two genes. Both genes share the same 

enhancer downstream of H19, while the DMD/ICR contains multiple binding sites 

for CTCF. In addition, the DMD/ICR is differentially methylated: in the paternal 

chromosome the DMD/ICR is methylated, preventing the binding of CTCF. In the 

maternal chromosome however the DMD/ICR is unmethylated, which allows 

binding of CTCF. CTCF bound DMR/ICR functions as an insulator to block 

communication between enhancer and Igf2. In this case, enhancer is restricted to 

activate nearby H19. In the paternal allele, methylation of DMD/ICR prevents 

binding of CTCF and allows downstream enchanter to activate Igf2 gene.  

 

Chromatin insulators in Drosophila 

In Drosophila, at least five types of insulators have been identified. One of the 

best-characterized insulators is scs (specialized chromatin structure) and scs’ 

flanking Drosophila hsp70 heat-shock genes (Udvardy et al., 1985). The scs 

element interacts with the eight zinc-fingers protein Zeste-white5 (Zw5), which is 

required for cell proliferation and differentiation. Homozygous mutations in zw5 
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gene are lethal. Male flies with hypomorphic alleles are viable but sterile, and 

display a series of developmental defects in bristle, eye and wings (Gaszner et al., 

1999). The protein component that binds to scs’ sequences and is required for 

their insulator functions is the boundary-element-associated factor 32 (BEAF 32) 

(Cuvier et al., 1998; Zhao et al., 1995). The BEAF-32 gene encodes two different 

protein isoforms, BEAF-32A and BEAF-32B. These two proteins differ by about 80 

amino acids at their N-termini but share common C-terminal region which are 

required for interaction between two BEAF isoforms (Aravind, 2000). 

Immunostaining on polytene chromosomes of Drosophila shows that BEAF binds 

to hundreds of sites independent of scs’ element, and some of these binding 

sequences also have insulator properties (Cuvier et al., 1998; Zhao et al., 1995), 

However, the mechanism by which BEAF functions as insulator protein is not 

known in detail. 

 

Several other insulators have been identified within the Bithorax complex (BX-C). 

The BX-C locus contains a cluster of homeotic genes, including Ultrabithorax 

(Ubx), abdominal-A (abd-A) and Abdominal-B (Abd-B) that regulate Drosophila 

body segmentation pattern. The regulatory region of BX-C is further subdivided 

into nine regulatory sub regions, and expression of Abd-B is specifically controlled 

by the subregulatory domains infraabdominal-5 (iab-5), iab-6, iab-7, iab-8 and 

iab9. Three boundary elements are found within the Abd-B locus: Miscadastral 
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Pigmentation (MCP), Frontabdominal-7 (Fab-7) and Fab-8. Proper insulator 

function of Fab-7 and Fab-8 is required to prevent interaction between regulatory 

sequences in adjacent iab subdivisions (Barges et al., 2000). Fab-7 interacts with 

the DNA-binding protein GAGA factor (GAF), which is also a component of the 

insulator SF1 found in the Antennapedia complex (Belozerov et al., 2003). The 

Fab-8 insulator contains binding sites for the Drosophila ortholog of vertebrate 

CTCF protein (dCTCF) (Kyrchanova et al., 2010; Moon et al., 2005). dCTCF 

colocalizes at several hundred sites on polytene chromosomes with Centrosomal 

protein 190 (CP190), another Drosophila insulator protein found in different 

insulators. Mutations in the CP190 gene have been shown to affect insulator 

activity of Fab-8, suggesting that CP190 plays an important role in Fab-8 insulator 

function (Gerasimova et al., 2007; Mohan et al., 2007).  

 

Gypsy insulators in Drosophila genome 

Another insulator that has been studied in detail is a 340-bp DNA fragment 

located in the 5’ untranslated region of the gypsy retrotransposon (Geyer and 

Corces, 1992). The gypsy retrotransposon, also known as mdg4, belongs to a 

large class of mobile elements, which are widespread among species (Lee and 

Langley, 2010; Lorenc and Makalowski, 2003; Pimpinelli et al., 1995; van de 

Lagemaat et al., 2003). The 7.5 kb gypsy retrotransposon is flanked by two long 
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terminal repeats and encodes three retroviral genes: gag, pol and env (Figure 1.1 

A). Insertion of gypsy into Drosophila genes such as yellow (y), cut, the BX-C and 

the achaete-scute complex produces a variety of mutations throughout the 

genome (Corces and Geyer, 1991; Geyer et al., 1988; Mizrokhi et al., 1985).  

The effect of a gypsy insertion on the expression of the yellow gene has been 

studied in detail. yellow is regulated by a series of tissue-specific enhancers 

during development for blackish-brown pigmentation of larval tissues, wing blade, 

body cuticle, bristles and tarsal claws (Wittkopp et al., 2002). In the y2 allele, gypsy 

is inserted at -700 bp from the transcription start site. The insertion of gypsy 

prevents interactions of upstream wing and body cuticle enhancers with the 

promoter, resulting in flies with yellow wing and yellow body phenotype, whereas 

the downstream enhancer is not affected, producing flies with black bristles 

(Corces and Geyer, 1991).  

 

Genetic studies have identified a DNA fragment of 430 bp as responsible for 

gypsy mutagenesis. This fragment contains 12 reiterated binding sites for the 

Suppressor of Hairy wing (Su[Hw]) protein. Presence of this fragment in the 

original gypsy insertion site can reproduce the y2 phenotype, suggesting that the 

Su(Hw) binding sequence alone is sufficient to recapitulate gypsy-induced 

phenotypic effects (Geyer and Corces, 1992; Spana and Corces, 1990). Mutations  
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Figure 1.1 Diagrammatic representations of gypsy retrotransposon and 

protein components of gypsy insulators in Drosophila 

 

 

 

 

 

 

 

 

 

 

 

(A). The 7.5-kb gypsy retrotransposon has two long terminal repeats of 482 

nucleotides and three open reading frames : gag, pol and env which encode 

gag-specific protease, reverse transcriptase and endonuclease. The region 

containing 12 Su(Hw) binding sites is shown in red. (B). Su(Hw) has a 12 zinc 

finger domains necessary for DNA binding. Other domains include: NTAD, 

amino-terminal acidic domain; LZ, leucine zipper; CTAD, carboxy-terminal acidic 

domain. The BTB domains found in Mod(mdg4) 67.2 and CP190 are responsible 

for interacting with Su(Hw) and recruitment to gypsy insulator sequences.  
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in the suppressor of Hairy wing gene [su(Hw)] completely rescue gypsy-induced 

mutations, indicating that Su(Hw) is a fundamental component of gypsy insulator 

and is required to elicit gypsy-induced mutant phenotypes (Modolell et al., 1983). 

The 110- kD Su(Hw) is a nuclear protein that is ubiquitously expressed in the 

nuclei of cells throughout developmental stages (Geyer and Corces, 1992; 

Roseman et al., 1993; Spana and Corces, 1990). Null mutations in su(Hw) are 

viable but cause female sterility (Harrison et al., 1993). The Su(Hw) protein has 

two highly acidic domains at both N-terminal and C-terminal regions (Figure 1.1 B). 

Comparison of the amino acid sequence of Su(Hw) in three different Drosophila 

species (D. melanogaster, D. ananassae and D. virilis) indicates that the central 

region (residues from 219 to 623) is highly conserved during evolution (with 80% 

identity and 95% similarity). This region contains 12 zinc finger motives, through 

which Su(Hw) binds directly to the octamer motif in the gypsy insulator (Parkhurst 

et al., 1988; Spana et al., 1988) . 

 

Modifier of mdg4 (Mod[mdg4]), is another essential protein component of the 

gypsy insulator complex (Georgiev and Kozycina, 1996; Gerasimova et al., 1995). 

The mod(mdg4) gene encodes at least 29 different isoforms generated by 

alternative splicing. All the isoforms share the common amino-terminal domain 

containing a BTB/POZ motif (Gerasimova et al., 1995). Only one of these 

isoforms, Mod(mdg4)67.2 (also known as Mod[mdg4] 2.2) is involved in the 
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insulator function. Mod(mdg4)67.2 can interact with each other through its 

N-terminal BTB domain, while its C-terminal domain mediates interaction with 

Su(Hw) protein (Figure 1.1 B) (Gause et al., 2001; Ghosh et al., 2001). 

Mod(mdg4)67.2 does not bind to the gypsy insulator DNA directly, instead, it is 

recruited to insulator sequences through direct protein-protein interaction with 

Su(Hw) (Gause et al., 2001; Ghosh et al., 2001; Pai et al., 2004). Null mutations in 

mod(mdg4) are lethal, whereas mutations affecting only the Mod(mdg4)67.2 

isoform are viable. One of such mutations, Mod(mdg4)u1  is caused by the 

insertion of a Stalker retrotransposon into an exon unique to the Mod(mdg4) 67.2 

isoform, resulting in the production of a truncated protein that cannot interact with 

Su(Hw) (Gerasimova et al., 1995; Mongelard et al., 2002).  

 

Centrosomal Protein 190 (CP190) is the third identified component of gypsy 

chromatin insulator in Drosophila (Pai et al., 2004). This protein was originally 

isolated as a microtubule associated protein and has been shown to regulate 

myosin functions in Drosophila embryos (Chodagam et al., 2005; Kellogg et al., 

1989). Further studies suggest that CP190 interact with many other insulator 

proteins and serves as a common protein component of multiple insulator 

complexes including BEAF insulators, the insulators at the Bithorax complex and 

the Fab-8 insulator (Gerasimova et al., 2007; Mohan et al., 2007; Negre et al., 

2010). Null mutations in cp190 are lethal, suggesting that CP190 plays an 
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essential role in general insulator function. The gypsy insulator function is partially 

disrupted in a viable CP190 mutant, which only encodes the first 755 N-termianl 

amino acids (Oliver et al., 2010; Pai et al., 2004). CP190 contains a BTB domain 

at its N-terminal end, three copies of C2H2 zinc fingers in the central region, and a 

Glu-rich motif at C-terminal end (Figure 1.1 B) (Pai et al., 2004). Like Mod (mdg4) 

67.2, CP190 is recruited to gypsy insulator sequences through interactions with 

Su(Hw). The BTB domain, which is also found in all Mod(mdg4) isoforms, is 

necessary for interaction between insulator proteins and has been shown to be 

required for fly viability (Oliver et al., 2010). 

 

Endogenous gypsy insulators and insulator bodies 

Immunostaining analysis on the polytene chromosomes of Drosophila salivary 

glands reveals that the gypsy insulator proteins Su(Hw) and Mod(mdg4) 

co-localize at hundreds of sites independent of Gypsy sites (Figure 1.2 A, B) 

(Gerasimova and Corces, 1998, 2001; Pai et al., 2004). These observations  
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Figure 1.2 Immunostaining on the polytene chromomome and diploid cells 

showing distribution of gypsy retrotransposon, endogenous gypsy 

insulators as well as ‘insulator bodies’ 

 

 

 

 

 

 

 

(A). Distribution of gypsy retrotransposons on polytene chromosomes of 

Drosophila (red). (B). Su(Hw) (red) and Mod(mdg4) 67.2 (green) co-localize at 

several hundred sites on the polytene chromosomes (Blue: DAPI stained DNA). 

(C)-(E). Hundreds of binding sites for Su(Hw) (red) and Mod(mdg4) (green) 

coalesce into large discrete speckles in the nuclei of diploid cells. 
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suggest the presence of endogenous Su(Hw) insulators independent of gypsy 

retrotransposon. The first identified endogenous Su(Hw) insulator is a 520 bp 

fragment resided in the1A-2 cytological location on the X chromosome. The 1A-2 

insulator containing two Su(Hw) binding sites was demonstrated to posses 

enhancer-blocking activity in a transgenic assay (Golovnin et al., 2003; Parnell et 

al., 2003). Several other Su(Hw) insulators were determined in later experiments 

(Kuhn-Parnell et al., 2008). However, the function of these in vivo Su(Hw) binding 

sites remains largely unknown. 

 

In contrast to the distribution pattern of endogenous gypsy insulators in polytene 

chromosomes, Su(Hw) and Mod(mdg4) have been shown to coalesce into around 

20-25 large discrete foci in the nuclei of diploid cells, named ‘insulator bodies’. 

These ‘insulator bodies’ are though to represent higher order nuclear organization 

structures formed by multiple individual insulator elements that come together and 

held by interactions between insulator proteins as well as interactions with the 

nuclear matrix (Gerasimova et al., 2000; Lei and Corces, 2006; Pai et al., 2004).  

 

Predictive models to explain insulating effects of insulators or boundary 

elements 

Up to date, the detailed mechanisms by which chromatin insulators elicit their 
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functions are unknown. However, several models have been proposed to explain 

how insulators or boundary elements exert insulation effects (Gaszner and 

Felsenfeld, 2006; Wallace and Felsenfeld, 2007). The first set of models focus on 

interactions between insulators and the transcriptional activation machinery. The 

processive model is consistent with the tracking model of enhancer action. 

Tracking model suggests that enhancers activate promoters by launching an 

activating signal, which travels to the promoter and that could be either histone 

modifications or the RNA polymerase itself (Courey et al., 1986). Activating 

signals travel from enhancer towards promoter and therefore could be blocked by 

insulators located between enhancer and promoter. Supporting this model is the 

fact that insertion of theβ-globin 5’ HS4 insulator between enhancers and 

promoters leads to the accumulation of RNA polymerase Ⅱ at the insulator site 

and prevents spreading of histone H3 and H4 acetylation (Zhao and Dean, 2004). 

The decoy model is an alternative model that assumes that enhancers activate 

promoters through direct interaction (Li et al., 1991; Petrascheck et al., 2005; Wu 

et al., 2004). In this model, the insulation function is explained by the ability of 

insulators to compete with the promoter for interaction with enhancer. In this view, 

the enhancer is trapped by a direct interaction with the insulator and thus fails to 

interact with the promoter (Gaszner and Felsenfeld, 2006). 

However, neither the tracking model nor the decoy model can explain the 

phenomenon observed when two gypsy insulators are introduced between an 

 19



enhancer and a promoter, in which case their insulator activities are neutralized 

(Cai and Shen, 2001; Muravyova et al., 2001). The yellow gene is required for the 

normal pigmentation of the fly’s cuticle structures, and is regulated by a series of 

tissue-specific enhancers including wing, body and bristle enhancers (Figure 

1.3A). Wild type flies have black wings, body and bristles since all enhancers are 

able to activate the yellow promoter (Figure 1.3 A upper panel). A single insertion 

of gypsy insulator can efficiently block communications between upstream wing 

enhancer and promoter, without affecting downstream body and bristle enhancers. 

In this case, flies display a yellow wing phenotype (Figure 1.3 A middle panel).  

However, the insulator activity of gypsy insulators can be overcome by introducing 

a second insulator between body enhancer and yellow promoter. As a result, wing 

enhancer bypasses the paired gypsy insulators to activate the promoter, whereas 

the body enhancer is still blocked, determining a yellow body phenotype (Figure 

1.3A bottom panel). As the BTB domain of CP190 protein, one of the major 

protein component of gypsy insulator, can interact with each other (Oliver et al., 

2010), the loss of insulator activity described above has been proposed to result 

from the formation of a chromatin loop between the two adjacent gypsy insulators. 

The looping model suggests that interactions between gypsy insulators create 

topologically isolated domains, such that communication between enhancers and 

promoters can only occur within the same chromatin domain. According to the 

looping model, the formation of a chromatin loop brings wing enhancer and yellow 
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promoter in close proximity. As a result, instead of disrupting enhancer-promoter 

communication, the chromatin loop may facilitate their interaction. On the other 

hand, the body enhancer is isolated in a separate gypsy-insulator-defined domain, 

which restricts its interaction with the yellow promoter. In this model, insulators 

function primarily by partitioning promoter and enhancer into distinct chromatin 

loops and the insulating effects result from higher order chromatin organization 

mediated by insulators.    

 

By extension, the structural model suggests that the chromatin loops formed by 

inter- or intra- chromosomal interactions may further interact with the nuclear 

matrix, forming in turn super insulator complexes called ‘insulator bodies’ (Figure 

1.3 B). Experimental evidence supporting this assumption comes from the 

observation that Su(Hw) and Mod(mdg4) co-localize at ~500 sites on polytene 

chromosomes, but coalesce just into approximately 25 large speckles in diploid 

cells (Brasset and Vaury, 2005; Gerasimova and Corces, 1998; Spana et al., 

1988). Insulator bodies may be the consequence of a particular type of nuclear 

organization that leads to the partition of the genome into topologically 

independent domains, and play an essential role in global gene regulation (Figure 

1.3 C) (Gurudatta and Corces, 2009; Labrador and Corces, 2002).  
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Figure 1.3 Looping model showing function of gypsy insulators in yellow 

gene expression and nuclear organization   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(A) Left: Schematic representation of regulatory region of yellow gene and 

positions of gypsy insertion. (W: wing enhancer, B: body enhancer, Br: bristle 

enhancer, golden bar with arrow: yellow promoter). In the wild type, all the three 

enhancers are able to activate yellow promoter (upper panel). A single gypsy 

insertion blocks wing enhancer from activating yellow promoter (middle panel). 

The second gypsy insertion neutralizes the insulator activities and allows 

interaction between wing enhancer and yellow promoter. Right: Proposed model 

to explain gypsy insulator function. Chromatin loop formed by paired gypsy 

insulators facilitates interactions between wing enhancer and promoter while 

looping out body enhancer. (B)-(C). Predictive interactions between insulators 

and nuclear matrix that form topological chromatin domains. In this model, 

insulators (blue) organize chromatin fiber (golden) into independent loops 

through attachment to nuclear lamina. Communication between enhancer and 

promoter can only occur when they are located in the same loop.    
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General transcriptional machinery in Eukaryotes and assembly and 

recruitment of RNA polymerase (Pol) II to promoters  

In general, the transcription process in eukaryotes can be divided into three major 

steps: initiation, elongation, and termination (Dynlacht, 1997; Krajewska, 1992). 

Transcriptional regulation can occur at each of three steps, which involve direct 

interactions between transcription machinery and a large number of regulatory 

factors (Kadonaga, 2004; Ptashne, 2005). This dissertation mainly focuses on the 

regulation of gene transcription during the initiation and elongation steps. Three 

different forms of RNA polymerase (Pol I, Pol II and Pol III) exist in eukaryotic cells. 

Pol II is primarily involved in transcription of protein-coding genes. The other two 

RNA polymerases, Pol I and Pol III, are responsible for transcription of non-coding 

RNAs such as ribosomal RNAs and tRNAs. Initiation of transcription by Pol II 

requires assembly of general transcription machinery, composed of general 

transcription factors (GTFs), mediator and Pol II. GTFs include a group of protein 

components TFII A, TFII B, TFII D, TFII E, TFII F and TFII H, which function 

corporately in the transcription initiation step. For example, the existing model for 

the recruitment of the general machinery to promoter DNA suggests that binding 

of TBP (TATA box-binding protein), a subunit of TFIID to the TATA box plays a 

crucial role in the reorganization of the core promoter. This process is facilitated 

by TFII A and TFII B (Kobayashi et al., 1995; Roberts et al., 1993; Wu et al., 1996) 
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and followed by recruitment of TFII F together with Pol II. Binding of remaining 

TFII E and TFII H leads to formation of the preinitiation complex (Langelier et al., 

2001; Robert et al., 1996). Transcription is then initiated in the presence of ATP, 

which turns the preinitiation complex from a closed state into an open state (Jiang 

et al., 1993).  

 

Transcriptional regulation at the initiation step  

Regulation of transcription at the initiation step can be achieved via multiple 

mechanisms. Much of the regulation is dependent on function of a group of small 

modular proteins termed activators and repressors, which are required for the 

correct assembly of the transcriptional machinery on the core promoters (Biggar 

and Crabtree, 2000; Jiang et al., 1997). The precise mechanism by which 

activators can increase levels of gene transcription is not fully understood. 

However, it is generally accepted that activators function by anchoring to 

regulatory sequences called enhancers by their DNA binding domain, while 

interacting with components of the general transcriptional machinery on the 

promoter using their activation domain (Klemm et al., 1995; Stringer et al., 1990; 

Wu et al., 1996; Xiao et al., 1994). Binding of activators stabilizes the interaction 

between the transcriptional machinery and the promoter. Upon binding, activators 

increase the rate and extent of transcription machinery assembly and initiate 
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various subsequent events, together with additional positive factors named 

coactivators, which ultimately results in gene activation (Aoyagi and Archer, 2008; 

Paal et al., 1997; Vorobyeva et al., 2009).    

 

Since DNA in eukaryotic cells is wrapped around histone to form nucleosomes, a 

structure unfavorable for transcription initiation, chromatin remodeling of the 

promoter is frequently required and precedes gene activation (Kadonaga, 1998; 

Roux-Rouquie et al., 1999). Transcriptional activators also recruit various histone 

acetyltransferases (HATs) and ATP-dependent remodeling enzymes. The 

combination of histone acetylation plus chromatin remodeling destabilizes local 

higher-order chromatin structures and permits binding of the transcription 

machinery on the promoter (Brodolin et al., 2005; Dilworth and Chambon, 2001; 

Sheldon et al., 1999). Thus transcriptional activators may facilitate transcription 

initiation by evicting nucleosomes from the target chromatin and thus 

counteracting repressive chromatin structures associated with the promoter 

region.  

 

Transcriptional regulation during elongation 

After initiation, transcription forwards into the elongation stage. Before entering 

productive elongation, Pol II complex transcribes only a short DNA sequence until 
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reaching an intrinsic pausing site, between +20 and +50 relative to transcription 

start site, where Pol II is halted by two factors: negative elongation factor (NELF) 

and DRB sensitivity-inducing factor (DSIF). The promoter-proximal pausing of Pol 

II may serve as an essential checkpoint during the early stage of elongation. 

Stalled Pol II is ultimately released upon recruitment of the positive transcription 

elongation factor pTEF-b, which phosphorylates NELF, DSIF and the C-terminal 

domain (CTD) of the Rpb1 subunit of Pol II. The phosphorylation of negative 

elongation factors as well as Pol II CTD at Ser2 residues facilitates transition of 

transcription from stalling of early elongation state to productive elongation state.  

 

Although much emphasis has been laid on gene activation and repression during 

the transcription initiation step during the last decades, recent studies suggest 

that regulation of transcription may be particularly prevalent at the elongation 

stage (Anderson et al., 2011; D'Orso and Frankel, 2010; Gilchrist et al., 2009; Min 

et al., 2011). The process of transcription elongation is surprisingly complicated, 

and could be regulated at multiple levels. Since promoter-proximal pausing of 

RNA Pol II is a rate-limiting step during early elongation, one might predict that 

transcription elongation may be regulated by controlling transition of RNA Pol II 

from a non-processive state to a processive state. Indeed, it was reported that 

binding of heat shock factor (HSF) to heat shock elements stimulates the 

promoter-proximal paused polymerase release in Drosophila (Giardina et al., 
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1992; Tang et al., 2000). Some other factors such as HIV Tat, VP16 and E1a have 

also been suggested to exert their effects by stimulating the processivity of 

elongating RNA polymerase (Kao et al., 1987; Marciniak and Sharp, 1991; 

Yankulov et al., 1994).   

 

While these factors participate in transcriptional regulation by acting on the 

paused RNA Pol II itself, other factors may regulate transcription elongation by 

modulation of the chromatin environment. Nucleosomes are one of the major 

obstacles to RNA polymerase elongation in vivo when compared with naked DNA. 

It has been shown that the transcription rate is higher in the body of the gene 

compared with the promoter region, even though the former region contains a 

higher density of nucleosomes (Workman, 2006). This observation suggests that 

nucleosomes are evicted as the RNA polymerase moves forward. It also implies 

that factors responsible for the removal and replacement of histones can affect 

transcription rates during elongation. Indeed, it has been reported that 

nucleosome disassembly/reassembly factors such as FACT, Spt6 and Asf1 

promote transcription both in vitro and in vivo by removing histones from 

nucleosomes (Adkins et al., 2004; Endoh et al., 2004; Kaplan et al., 2000; Pavri et 

al., 2006; Schwabish and Struhl, 2006).      

 

Transcriptional regulation occurring at the elongation step appears to be much 

 28



more efficient than that occurring in the initiation step, since the formation of the 

preinitiation complex step is skipped, and therefore may provide a much faster 

response to the activation signal. In support of this idea, Chip-on-chip studies 

have revealed that RNA Pol II is frequently located within inactive genes (Radonjic 

et al., 2005). Occupation of silenced genes by RNA Pol II is suggested to provide 

potential advantages for maintaining developmentally important genes ready for 

activation (Kim et al., 2005; Lee et al., 2006; Radonjic et al., 2005).   

  

Research questions addressed in this dissertation  

Recently, Chip-on-chip experiments that have determined the in vivo binding sites 

of insulator proteins Su(Hw), dCTCF, BEAF and CP190 indicate that these 

insulator proteins are frequently located within the transcribed region of genes 

(Bushey et al., 2009). In addition, the previous immunostaining analysis of the 

56F–58A cytogenetic location in our laboratory has shown that most of the strong 

Su(Hw) immunostaining signals correspond to Su(Hw) binding sites within long 

genes, which in turn are frequenty located in highly condensed chromatin regions. 

Interestingly, all the genes with a size larger than 20kb contain at least one Su(Hw) 

binding site, although the function of these endogenous Su(Hw) insulators is 

poorly understood.  
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In this dissertation, I have investigated the role of intragenic Su(Hw) insulators in 

the organization of higher order chromatin structure and in the regulation of gene 

expression.  

 

 

               CHAPTER II 

Materials and methods 

Drosophila stocks and crosses 

Flies were raised on standard cornmeal medium and maintained at 25℃. All the 

fly stocks described in text were obtained from the Drosophila Bloomington Stock 

Center at Indiana University unless otherwise indicated. The lines bearing 

mod(mdg4)u1 mutations were obtained from V. Corces. Drosophila strains w1118; 

PBac{RB}su(Hw)e04061/TM6B, Tb1 and y2ct6;mod(mdg4)u1 /TM6B, Tb1were used 

for studying the effects of loss of Su(Hw) and Mod(mdg4) 67.2 insulator proteins 

on gene expression. Driver lines: y1 w*; P{Act5C-GAL4}17bFO1/TM6B, Tb1 were 

used to ectopically activate transcription of mbl and Sdc gene by crossing with 

y1w67c23;p{w+mcy+mDint2=EPgy2}mblEY04602 and 

y1w67c23;p{w+mcy+mDint2=EPgy2}SdcEY04602 respectively . Another driver line 

gal4hsp/CyO; MKRS/TM6 Tb was used to specifically drive expression of mbl and 
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Sdc at third instar larval stage. 

 

In situ hybridization combined with immunostaining on polytene 

chromosomes 

Salivary glands were dissected from third-instar larvae in 0.7% Saline Solution 

and fixed in 1:2:3 mixture of lactic acid:water:glacial acetic. Chromosomes were 

squashed and slides were submerged in liquid nitrogen until bubbling was over. 

After removal of coverslip, slides were transferd into chilled ethanol and slowly 

warmed up to room temperature (2-3 hours). Slides were air dried and kept at 4°C 

before hybridization. Probes with an average size of 1 kb were amplified by 

primers flanking the predictive Su(Hw) binding sites and labeled using Biotin 

High-Prime random priming kit (Roche). Labeled DNA was ethanol precipitated 

and resuspended in hybridization buffer to a final concentration of 4ng/μl. Prior to 

hybridization, slides were washed in 2×SSC at 65°C for 30 minutes, dehydrated in 

a series of ethanol at 65°C and denatured in 0.1 M NaOH. For hybridization, 

denatured probes were applied to pretreated slides and incubated at 37°C 

overnight in a moist chamber. Immunostaining was performed after in situ 

hybridization. Slides were washed three times in 2×SSC，1× PBS and one time in 

1× blocking solution. Antibodies used for immunostaining were rabbit-anti Su(Hw) 

primary antibody and FITC-conjugated goat anti-rabbit IgG (Jackson 
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Laboratories). Following incubation, the slides were washed 5 minutes in 

PBS+0.1% Igepal and stained 25 seconds in 0.1μg/ml 4′,6-diamidino- 

2-phenylindole (DAPI). Stained polytene chromosome spreads were examined 

with a Leica DM6000B fluorescence microscope. 

 

Chromatin immunoprecipitation  

12-16 hour old Drosophila melanogaster embryos were collected from fly 

population cages supplied with grape-juice agar plates. The embryos were 

dechorionated with 50% bleach for 90 seconds at room temperature and 

immediately washed with 1 liter of Embryo Wash Solution (0.12 M NaCl, 0.04% 

Triton-X100). Embryos were fixed with 1.8% formaldehyde and homogenized in 

buffer A1 (60 mM KCl, 15 mM NaCl, 4 mM MgCl2, 15 mM HEPES (pH 7.6), 0.5% 

Triton X-100, 0.5 mM DTT, 10 mM sodium butyrate, and 1× EDTA-free protease 

inhibitor cocktail (Roche). A final concentration of 225mM of glycine was then 

added to terminate the cross-link reaction. The homogenate was washed three 

times in washing buffer and resuspended in lysis buffer (140 mM NaCl , 15 mM 

HEPES pH 7.6, 1 mM EDTA, 0.5mM EGTA, 1% Triton X-100, 0.5 mM DTT, 0.1% 

sodium deoxycholate, 0.05% SDS, 10 mM sodium butyrate, protease inhibitors). 

Chromatin was sonicated using sonifier (10 s continuous pulses with 20 s 

intervals on ice) yielding DNA fragments mostly between 500 and 700 bp. 
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Sonicated chromatin were then centrifuged at maximum speed for 10 min at room 

temperature. The supernatant was collected and incubated with slurry of Protein 

A-Sepharose beads to block non-specific binding. After removal of the Sepharose 

beads, a control sample was set aside for the ‘input’. The rest of the sample was 

immunoprecipitated with either Su(Hw) antibody or normal rabbit IgG. 50 ul of 

Protein A-Sepharose beads were added and incubated on a head to head rotating 

wheel overnight. The next day, Sepharose beads were washed four times in lysis 

buffer followed by two times wash in TE before elution. Reverse cross-link was 

performed at 65°C for 6 hours followed by addition of Proteinase K solution and 

incubation at 50°C for another 2 hours. After phenol/chloroform extraction, the 

DNA was ethanol-precipitated and used for real-time PCR with appropriate 

primers.  

 

Immunostaining of polytene chromosomes 

Salivary glands were dissected out from wandering third-instar larvae in 0.7% 

NaCl, passed to a drop of solution I (3.7% formaldehyde in 45% acetic acid). 

Chromosomes were squashed after 2 to 4 minutes incubation, slides were 

immersed in liquid nitrogen and the cover slips were removed. The chromosomes 

were incubated with primary antibody diluted in PBS containing 0.1% Igepal and 

1% milk overnight at 4°C in a humid chamber. The slides were washed 5 minutes 
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with PBS containing 0.1% Igepal and incubated with secondary antibody for two 

hours at room temperature. After washing in PBS+0.1% Igepal, slides were 

stained with 0.5μg/ml of DAPI for 25 seconds and mounted in Vectashield medium. 

Slides were observed under Leica DM6000B fluorescence microscope. The 

antibodies used for immunostaining were: rabbit anti-Su(Hw), mouse anti-H14 

(RNA Pol II) (Covance (Princeton, New Jersey)), FITC-conjugated goat anti-rabbit 

IgG, Texas red donkey anti-mouse IgM (Jackson Laboratory (Bar Harbor, ME)). 

 

 

Over expression of Su(Hw), total RNA isolation and quantitative RT-PCR 

To over express Su(Hw), full length Su(Hw) coding sequence was cloned into the 

pBS-actTAP vector. The expression vector was then co-transfected into S2 cells 

with pBS-PURO which contains a puromycin resistant gene. Stable cell lines were 

established after three-week selection with 10μg/ml puromycin. TRIzol reagent 

(Invitrogen) was used to extract total RNA from S2 cells or third-instar larvae. One 

microgram of total RNA was reverse-transcribed to cDNA in a final volume of 20μl 

by using the iScript Select cDNA Synthesis Kit (Bio-Rad). Three independent 

biological RNA samples were prepared for each specific genotype and three 

parallel technical replicates were performed for each RNA sample. The 

enrichment of each individual was generated from the mean of nine total 
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replicates. The transcriptional level of rp49, which encodes a ribosomal protein, 

was used as an internal control. All the primers used in real-time PCR were 

optimized before use. Real-time PCR was performed by using iQ SYBR Green 

Supermix and BioRad iQ5 Multicolor Real-Time PCR Detection System. Melting 

curve was monitored to ensure the specificity of PCR product. The transcript 

abundance was determined using relative quantitative method (∆∆Ct value). 

 

 

Quantitative chromatin conformation capture assay 

108 Drosophila S2 cells were cross-linked with formaldehyde (1%) for 10 minutes 

at room temperature. The reaction was terminated with addition of 2.5ml glycine 

(2.5M). Nuclei were then isolated from cross-linked cells and resuspended in 

0.5ml of EcoR I digestion buffer containing 1% SDS. After 10 minutes incubation 

at 65 °C, 10% Triton X-100 was added and mixed gently. EcoR I digestion was 

carried out at 37 °C for 16 hours. Following digestion, 10% SDS was added to 

reaction and enzymes were heat inactivated at 65°C for 30 minutes. Digested 

samples were diluted with T4 DNA ligase buffer containing 1% triton X-100 and 

incubated with 4,000 unites T4 DNA ligase for two hours at 16 °C. Proteinase 

K(10mg/ml) was added to ligated samples and incubated overnight at 65°C to 

reverse cross-linking. DNA was purified by phenol/chloroform extraction and 
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resolved in TE buffer. RNA was removed by incubation samples with DNAse-free 

RNase A (10mg/ml) at 37°C for 15 minutes. Enrichment of 3C products was then 

analyzed by quantitative real-time PCR with primer pairs across the restriction 

sites. Primer sequences are available upon request. Two minimally overlapping 

bacterial artificial chromosome (BAC) clones spanning region of interest 

(RP98-48A11 and RP98-28012) were obtained from Children’s Hospital Oakland 

Research Insitute(CHORI) and used to generate a control library. Interaction 

frequency between different genome sites were determined by the ratio of the 

amount of PCR product obtained from 3C library and the amount of PCR product 

obtained from control library.  

 

DNase I sensitivity assays 

Third instar Drosophila larvae were collected, frozen in liquid nitrogen and stored 

at -80°C before use. Isolation of nuclei was performed according to (ElGIN, 1998). 

Isolated nuclei were resuspended in 1 ml of DNase I digestion buffer (60 mM KCl, 

15mM NaCl, 15 mM Tris- HCl, pH 7.4, 0.25 M sucrose, 3 mM Mgcl2, 0.5 mM DTT). 

Four aliquots of 250μl of nuclear suspension were incubated with 0,1,2,4 units of 

DNase I (Sigma) respectively on ice for three minutes and digestion was 

terminated with 5μl of 0.4 M EDTA. Digested nuclei were collected and 

resuspended in 250μl of sarcosyl lysis buffer (50 mM Tris-HCl, pH 8.0, 100 mM 

 36



EDTA 0.5% (w/v) sodium laurylsarcosine), followed by incubation with 3μl of 

proteinase K at 37°C overnight. DNA was extracted from nuclei with phenol : 

chloroform : isoamyl alcohol (24:12:1) and treated with RNase A for one hour at 

37 °C. After ethanol precipitation, the pellets were resuspended in 100μl of TE 

buffer. Quantification of remaining DNA after DNase I digestion was carried out by 

real-time quantitative PCR. DNase I sensitivity of each site tested was determined 

by plotting the percentage of copies of remaining DNA against units of DNaseI 

used for nuclei digestion. Three independent biological replicates were prepared 

for DNase I treatment and three technical replicates were performed in real-time 

PCR for each DNase I treament. The final digestion profiles were generated form 

a total of nine replicates.     

 

Oligonucleotides 

To perform in situ hybridization assays, the following oligonucleotides were 

synthesized:  

Probe 1: 

Sense: AATCTGCAGCGATGCCCGAAGTT 

Antisense: GCCTGTGTTAGCTCCAGCGAATT 

 

Probe 2: 
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Sense: AATCTGCAGCGATGCCCGAAGTT 

Antisense: GCCTGTGTTAGCTCCAGCGAATT 

 

Probe 3: 

Sense: AATCTGCAGCGATGCCCGAAGTT 

Antisense: GCCTGTGTTAGCTCCAGCGAATT 

 

Probe 4: 

Sense: AATCTGCAGCGATGCCCGAAGTT 

Antisense: GCCTGTGTTAGCTCCAGCGAATT 

 

For the chromatin immunoprecipitation experiment, the following oligonucleotides 

were synthesized: 

Mbl12859494: 

Sense: AATAAACACGGCAATGCAAGC 

Antisense: CACGAAGCGGGCAAACTGGAG 

Mbl12854990: 

Sense: GCACATGCCGCACACAGAATCG 

Antisense: CAGTTATTGCGCAGCTGTCTGATGT 

Mbl12826430: 

Sense: CGACGAACTTCCCGAAACCTAT 

Antisense: CTGCGGTCAGGCTTCGTATT 
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Mbl12812914: 

Sense: TATCCCTTTACTTCCTGCCACGCCT 

Antisense: AGTAGTCGGAAAATGCTGTTGTTGC 

For the transcription analysis, the following oligonucleotides were synthesized: 

CG18469: 

Sense: GTCATTTGGGTCAAGTTGCGTG  

Antisense: CTGCCTCAGAGCCAGATTCATT   

CG12699: 

Sense: GGCGAAGCAGTCTAAGCCCT 

Antisense: GCTGCATCTTCGACTTGGGG 

mbl: 

 

Sense: GTTCCAGCGCAACAAATGCT 

Antisense: CACGGCGGTTTATCACGATT 

Sip1: 

Sense: GAATGAAGTCCGCTTGCTGC 

Antisense: TCTCCTGTTTGGTGCCCTCG 

CG6568: 

Sense: CAAACATACCCCACTGAACTACCG 

Antisense: ACTTATAGCTGCCGCTGCCC 

cnk: 
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Sense: TGGAGCCGTAGGCAATGGAG 

Antisense: GGTATCGGGGCCGAGTTCTT 

Sdc: 

Sense: GAACGTGAATAGCCAGCCCTCC 

Antisense: CGCCAATGACAGCAGCCAGAA 

Sara: 

Sense: CCAACGGCATAGATGTCCCA  

Antisense: TGCTGTCCAGTTCGGTGTCC 

Fkbp13: 

Sense: AGGTGTGCGAACAAAAGTCCAAG 

Antisense: CGCTTCTCACCCACGCACAT 

EfSec: 

Sense: CTGCTGGAGCGTGGAATCAT 

Antisense: GGAAGTTGTGCCGTCCGTAT 

Acox57D-d: 

Sense: GGAAATGTATGCCCAGACGG 

Antisense: ATAGATGTTGCTCAAGTTGGCGG 

mbl-RA: 

Sense: AATACCAATTCCAAGGGGCAAGTAC 

Antisense: TAGTGGTTAGAGCCGATACAGATGC  

mbl-RB: 
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Sense: CACAATCACAGCACGAGCACA 

Antisense: AGCGTCAGAGGCGAAAGCAA 

mbl-RC: 

Sense: TGACCTGATATTAAATCTTGT 

Antisense: TTAGTTTGCTACACTTCTTCT 

mbl-RD: 

Sense: CCAGGCGACGCCGTTCATCT 

Antisense: CCCATCTGCGTCTGGTAGT 

Su(Hw): 

Sense: ATTCACATACGCACTCATACGG 

Antisense: TGTGACGATTGAGCACTTCCTTTAC 

Treh: 

Sense: CGTTTAGCAAGGACAGGCAC 

Antisense: CTTGCTCAGCCACTCGATG 

For the DNase I sensitivity assays, the following oligonucleotides were 

synthesized: 

Gap: 

TGCCAATATCAAATCCCAGTTCC 

GTATGCGTCACAATCGTCAGAGT 

Mbl promo: 

CGGAAAAGTGAATTATACCAGAGCC 
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GATTATTTCTGTTTGCGGTGACTGA 

Mbl nonSu:  

TTTCCACTTGATGTGCGGCAACTTT 

TTTACAACTCGTCTGTCGCTCA 

mbl12854990: 

GCACATGCCGCACACAGAATCG 

CAGTTATTGCGCAGCTGTCTGATGT 

Mbl12859494: 

AATAAACACGGCAATGCAAGC 

CACGAAGCGGGCAAACTGGAG 

 

For the Chromatin conformation capture assays, the following oligonucleotides 

were synthesized: 

Anchor A: 

TTAATTTTACGCTGGCCAAACGGGA 

Anchor B: 

AAATGTCTGTTTGGGACTCTGCGGA 

Other primers except anchor A and B used (From left to right in both figure 3.15 A 

and 2.22 B) 

primer1 (13051995): 

CCATTCCCTGTTAGTGTTTGTGCTT 
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primer2 (13088545): 

TTGTTTTGCTTGGGGAATCTGCTGG 

primer3 (13145839): 

ATGCTGTGCACGGTGAAAATTCACA 

primer4 (13173110): 

CACAAATTCCAATGAACTGGCAACT 

primer5 (13192748): 

TATGTGTTTTTGCTGGCCGTCCGAC 

primer6 (13203359): 

GTAAGCGAGATGACAAATAAGGGGA  

primer7 (13216672): 

AGATTGATGATGCTAGTTTCTGGCG 

primer8 (13220748): 

TGGGCCTGGGAAAATAATAGAAAAG 

primer9 (13233056): 

AAATGTGGCCTAGAATATGGCGAAC 

primer10 (13239296): 

ATTTACGTTTGGATGGGGATAGGCC 

primer11 (13244438): 

GAGGAAGGGATAAAATCAGCTAACA 

primer12 (13271445): 
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GCGTTCTCAGCCGCAATGGAATAAA 

primer13 (13294005): 

CTTGATGAACACAGCTTGGCGCACG 

 

     

CHAPTER III                    

Results 

Intragenic Su(Hw) insulators reduce basal expression levels of mature mbl 

and Sdc mRNAs 

Previous work in our laboratory established a correlation between the distribution 

of endogenous Su(Hw) insulators and the structure of polytene chromosomes in 

Drosophila (Wallace et al., 2010). Remarkably, it was found that endogenous 

Su(Hw) insulators mapping to intragenic regions of long genes were generally 

found to form condensed polytene chromosome bands. One exception is the 

Trehalase gene (Treh), which also contains intragenic Su(Hw) insulators, but is 

found in an open chromatin structure associated to an interband (Wallace et al., 

2010).  

 

To gain insight into the role that intragenic Su(Hw) endogenous insulators play in 
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these genes, I have analyzed the transcription levels of Syndecan (Sdc), 

muscleblind (mbl) and Treh in su(Hw) e04061 and mod(mdg4)u1 mutant 

backgrounds. All three genes are long genes (approximately, mbl is 110kb, Sdc is 

90kb and Treh is 15kb) and are decorated with intragenic insulator sites (Bushey 

et al., 2009; Negre et al., 2010). The Drosophila mbl gene encodes an alternative 

splicing factor whose proper function is required for terminal muscle and neural 

differentiation (Goers et al., 2008; Vicente-Crespo et al., 2008). In contrast to 

human and mice, which have three muscleblind-like homologs (MBNL 1-3), the 

Drosophila genome contains only one mbl gene, encoding four different protein 

isoforms (mbl A-D) generated by alternative splicing (Fernandez-Costa et al., 

2011; Holt et al., 2009). Recent studies show that expression of the four isoforms 

is developmentally regulated and that they are not functionally redundant (Vicente 

et al., 2007). Syndecan belongs to a conserved family of type-I transmembrane 

proteins, which functions in various biological processes including lipid 

metabolism and regulation of growth factor pathways (Rapraeger, 2002; Williams, 

2001). In Drosophila, Syndecan has been shown to play an important role in the 

regulation of the Slit signaling pathway during muscle pattern formation. Axons 

and muscle fibers are found to cross the ventral midline of the embryo after loss of 

Sdc function, a typical phenotype induced by failure of Slit signaling (Johnson et 

al., 2004; Steigemann et al., 2004).     

Before testing the effects of Su(Hw) insulators on gene expression, we first 
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examined the binding of Su(Hw) protein to the targeting sequences in vivo. We 

have picked four out of fourteen Su(Hw) binding sites determined in the chip-chip 

assay and performed Chromatin Immunoprecipitation assays (Figure 3.1). 

Chromatin was isolated from 12-16 hour old Drosophila embryos and  

immunoprecipitated with Su(Hw) antibody. The level of DNA enrichment after 

immunoprecipitation was determined by real-time PCR using primers flanking a 

subset of predictive Su(Hw) binding sites. Primers designed to target gypsy 

insulator and coding region of Rp49 were used as positive and negative controls 

respectively. ChIP assay indicated that all of these sequences are positively 

bound by Su(Hw) proteins compared with the negative control even though they 

do not have the same affinity for Su(Hw) binding. The strength of Su(Hw) binding 

in our Chip assay agrees well with the previous Chip-chip data (Bushey et al., 

2009). The su(Hw)e04061 allele originated by the insertion of a piggyBac transposon 

in the second exon of su(Hw) (see materials and methods). Su(Hw) mRNA and 

protein levels are severely reduced in su(Hw)e04061 homozygous flies, and gypsy 

induced mutations y2 and ct6 are completely rescued in the su(Hw)e04061 

background (Figure 3.2). The mutation Mod (mdg4)U1 is caused by insertion of 

Stalker transposon into the exon unique to Mod(mdg4)-67.2 isoform, producing a 

truncated protein, which does not interact with Su(Hw) (Gause et al., 2001; Ghosh 

et al., 2001).  The (mdg4)U1 mutation has been shown to reduce 
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Figure 3.1 Chromatin immunoprecipitation assays, coupled to detection by 

real-time RT-PCR, confirmed binding of Su(HW) proteins to endogenous 

gypsy insulators within mbl. 

ChIP assays were performed with chromatin isolated from 0-12 hour Drosophila 

embryos using antibody against Su(Hw) protein. The Y axis represents the 

amount of chromatin immunoprecipitated with Su(Hw) antibody plotted as a 

percentage of chromatin from total cell lysate. Primer pairs designed to target 

gypsy retrotransposon and RpL32 gene (Rp49) were used as positive and 

negative controls respectively. The results represent average of two independent 

experiments. Quantification of precipitated DNA as performed in triplicate for each 

chip ssay. Error bars represent the standard error of the mean. Insulator sites 1 to 

4 correspond to the following genomic positions (in kb) 1: 13185476; 2: 

13199029; 3: 13227557; 4: 13232041. 
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enhancer-blocking activities of Su(Hw) insulators (Georgiev and Kozycina, 1996) 

and induce bidirectional silencing in some other cases (Gdula and Corces, 1997). 

However, the mechanisms of Mod(mdg4) function in the Su(Hw) complex remains 

unclear. Since Mod(mdg4) 67.2 is required for proper function of Su(Hw) insulator, 

we also examined the binding of Su(Hw) to insulator sites in Mod(mdg4)U1 

background. Immunostaining experiments using Su(Hw) antibody show that 

Su(Hw) proteins are capable of interacting with DNA in the absence of Mod(mdg4) 

67.2 (Figure 3.3), reinforcing the idea that binding of Su(Hw) to DNA is not 

dependent on Mod(mdg4). Nevertheless, enrichment of Su(Hw) on the polytene 

chromosomes is dramatically decreased in the Mod(mdg4)U1 mutant, indicating 

that the presence of Mod(mdg4) 67.2 facilitates the interaction of Su(Hw) protein 

with its target sites.  

 

We next extracted total RNA from both wild type third-instar larvae (su(Hw)e04061 / 

Tb su(Hw)+ and mod(md4)u1 / Tb mod(mdg4)+) as well as su(Hw)e04061 and 

mod(mdg4)u1 homozygous mutant larvae. To ensure that we were analyzing 

mature mRNA, total RNA was reverse-transcribed into cDNA with oligo(dT) using 

the iScript select cDNA synthesis kit (Bio-Rad). Using real-time PCR, we analyzed 

the transcription levels of mbl, Sdc and Treh in the above mentioned genotypes. 

Enrichment of transcripts was normalized to ribosomal protein 49 (rp49) mRNA 

levels, which displays no change in su(Hw)e04061 or mod(mdg4)u1 mutations  
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Figure 3.2 su(Hw)e04061 is a null allele of su(Hw) 

 

 

 

 

 

 

 

 

 

 

 

 

 

A-B.  Immunostaining of polytene chromosomes using anti-Su(Hw) antibodies 

in su(Hw)e04061 homozygous (A) and in heterozygous (B) su(Hw)e04061 / TM6b 

larvae . C. mRNA expression levels of su(Hw) in wild-type larvae (su(Hw)e04061 / 

TM6b) compared with homozygous mutant larvae (su(Hw)e04061) using 

quantitative real time PCR. D-E. The su(Hw)e04061 allele rescues the gypsy 

induced phenotypes of y2 and ct6. Heterozygous flies su(Hw)e04061 / TM6b 

carrying y2 and ct6  mutations show y2 and ct6  phenotypes (D), whereas 

homozygous su(Hw)e04061 (E) and heterozygous (F) su(Hw)e04061/ su(Hw)v, 

carrying y2 and ct6  mutations have wild-type phenotype.  
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compared with wild type (Figure 3.4). Primers used to target cDNAs were 

described in the materials and methods section. Analysis of real-time PCR data 

revealed that the transcriptional levels of mbl and Sdc significantly increased by 

more than 1.5-fold in the absence of Su(Hw) or Mod(mdg4) proteins, whereas the 

levels of Treh were unchanged (Figure 3.5). The most significant effect of the loss 

of Su(Hw) was found in mbl, which displayed a 2.53-fold increase in Su(Hw)e04061 

(p = 0.0034), and 2.2-fold in mod(mdg4)u1 (p = 0.0068).  

 

The increase in transcription levels of mbl and Sdc after loss of Su(Hw) 

protein suggests that intragenic Su(Hw) sites have a repressive effect on 

transcription. If this is true, over-expressing Su(Hw), should result in an even 

higher level of transcriptional repression. To further determine the function of 

intragenic Su(Hw) insulators, we analyzed expression of mbl, Sdc and Treh in 

Schneider S2 Drosophila tissue culture cells overexpressing Su(Hw). To 

overexpress Su(Hw), we transfected S2 cells with pBS-actSu(Hw)TAP-tag 

plasmid in which full length su(Hw) cDNA was placed under control of an Actin 

promoter. The plasmid was stably transfected into S2 cells, and expression of 

Su(Hw)TAP-tag plasmid was monitored by western blot and immunostaining 

using specific anti-Su(Hw) and anti-Calmodulin antibodies, which recognize 

Su(Hw) and the calmodulin peptide fused to Su(Hw) in the overexpressed 

Su(Hw)TAP-tag protein, respectively. Results show that the overexpressed  
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Figure 3.3 Presence of Mod(mdg4) 67.2 facilitates the interaction of Su(Hw) 

protein and its target sites on chromosomes. 

Immunostaining was performed using polytene chromosomes dissected from 

heterozygous mod(mdg4)U1 / TM6b larvae (A) and mod(mdg4)U1 / 

mod(mdg4)U1 (B) larvae. Green color represents Su(Hw) binding sites. Blue 

color represents DAPI stained DNA.   
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Figure 3.4 Transcriptional level of rp49 is not changed in the absence of 

either Su(Hw) (A) or Mod (mdg4) (B) protein compared with wild type. 

Total RNA was extracted from third-instar larvae. The concentration of RNA was 

measured with NanoDrop machine and 1μg of total RNA was 

reverse-transcribed into cDNA. Same amount of cDNA was used from each 

genotype. The results represent average of three independent experiments. 

Error bars represent the standard error of the mean. 

 

 54



 

 

 55



 

 

Figure 3.5 Loss of insulator proteins increases basal transcription levels of 

mbl and Sdc 

Changes in transcriptional level of Treh, Sdc and mbl in third instar larval stage 

in mod(mdg4)u1 mutant (A) and su(Hw)e04061 mutant (B) are compared side by 

side. (C)-(E). Overexpression of Su(Hw) in Drosophila S2 cells suppress 

transcription of mbl and Sdc. Overexpressed Su(Hw) protein colocalizes with 

endogenous Su(Hw) foci in the nucleus (C). Immunostaining was performed 

using anti-Calmodulin (red) and anti-Su(Hw) (green) and DNA was stained with 

DAPI. Transcription levels of Su(Hw) increased by 4.6-fold in Su(Hw) 

Overexpression cell lines (E). Transcription level of mbl and Sdc was reduced 

by approximately 28 and 27 percent, respectively, due to Overexpression of 

Su(Hw). Note that no obvious change was detected in the expression of Treh 
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Su(Hw) protein colocalizes in the cell with endogenous Su(Hw) protein, forming 

distinctive foci, which are characteristic of insulator bodies (Figure 3.5 C). To test 

the expression levels of genes in cells overexpressing Su(Hw), RNA was purified 

from harvested cells and reverse-transcribed into cDNA. Real-time PCR analysis 

of mRNA levels indicated that overall transcription of su(Hw) was increased by 

more than four times in this cell line (Figure 3.5 D). As predicted, real time PCR 

data showed that expression of mbl and Sdc declined by 30% in Su(Hw) 

overexpressing cells, whereas expression of Treh did not change significantly  

(Figure 3.5 E). This result further supports the previous observation that Su(Hw) 

insulators suppress expression of mbl and Sdc, which form condensed chromatin 

bands and that possess endogenous insulators in their intragenic sequences. 

However, loss of insulator proteins did not influence basal expression of Treh, 

which unlike mbl and Sdc, is an inducible gene that is located in a decondensed 

interband region of the chromosome (Wallace et al., 2010). Taken together, these 

data suggest that intragenic Su(Hw) insulators might play a repressive role in 

regulating basal gene expression in mbl and Sdc and that this repressive effect 

might be mediated by higher order organization of chromatin into condensed 

chomatin. 
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In addition to basal mRNA expression levels, intragenic Su(Hw) insulators 

also reduce active transcription levels of mbl and Sdc 

To further confirm that intragenic insulators directly influence active transcription 

levels in mbl and Sdc, we took advantage of two existing EP lines that carry 

insertions of a P element in the promoter region of both mbl and Sdc, which allow 

ectopic activation of these genes using the UAS-GAL4 binary system (Bellen et al., 

2004) . Transgenic lines mblEY01972 and SdcEY04602 carry a P element with an 

upstream activating sequence (UAS) followed by an hsp70 promoter inserted to 

the 5’ end of mbl and Sdc, respectively (Berkeley Drosophila Genome Project 

(BDGP)). Overexpression of mbl and Sdc was separately induced by crossing 

each transgenic line with a GAL4 expression line carrying an Act5C-GAL4 

transgene (actin-gal4), which drives expression of GAL4 ubiquitously throughout 

all developmental stages. We first compared the change in mbl and Sdc 

transcriptional levels after GAL4 ectopic activation in wild type with that in the 

mod(mdg4)u1 mutant background. Figure 3.6 A shows that transcription activation 

by GAL4 induces an approximately 7-fold (p<0.01) increase in transcription of mbl 

in wild type. Loss of Mod(mdg4)67.2 protein renders mbl more sensitive to GAL4 

activation, given that a 35-fold (p<0.01) increase in transcription levels was 

observed in mod(mdg4)u1 compared to wild type (Figure 3.6 A). A similar result 

was obtained for Sdc, in which an approximately 5-fold (p<0.01) increase in 
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transcription levels was observed in mod(mdg4)u1 compared to wild type (Figure 

3.6 B). Differences in normal transcriptional levels in mbl compared to Sdc may 

explain why there is a 7-fold increase observed in the transcription of mbl after 

ectopic activation, and only a slight increase for Sdc transcription after ectopic 

activation in wild type. The normal transcription level of Sdc is in fact much higher 

than mbl (Figure 3.7), making Sdc less sensitive to GAL4 activation than mbl. 

However, the loss of Mod(mdg4)67.2 induced an approximately 5-fold (p<0.01) 

increase in the expression level of both mbl and Sdc after GAL4 activation, 

suggesting that Mod(mdg4) 67.2 plays a repressive role also in active 

transcription of both genes. 

 

We next examined expression levels of mbl and Sdc in a su(Hw)e04061 

homozygous mutant background in combination with ectopic activation of mbl. 

Here, we used a heat-shock GAL4 (hsgal4) activator to drive expression of mbl 

specifically in the third instar larval stage. Heat-shock was carried out at 37℃ for 

30 minutes followed by one hour recovery. Real-time PCR data indicates that 

transcription of mbl induced by hsgal4 is more efficient than the actin-gal4 driver, 

since hsgal4 activation in su(Hw) wild type larvae increases mbl transcription by 

15-fold (p<0.01), compared with only a 7-fold (p<0.01) increase obtained by 

actin-gal4 activation (Figure 3.6 A compared to 3.6 C). In addition, results show 

that hsgal4 activation in homozygous su(Hw)e04061 is only 2.5-fold (p<0.01) that of 
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Figure 3.6 Loss of insulator proteins increases active transcription levels of 

mbl and Sdc 

A. Transcriptional level of mbl in wild type (yellow), after ectopic activation in 

wild type (green), and after ectopic activation in Mod(mdg4)u1 mutant 

background (orange). B. Transcriptional level of Sdc in wild type (yellow), after 

ectopic activation in wild type (green) and after ectopic activation in 

Mod(mdg4)u1 mutant background (orange). C. Transcriptional level of mbl in 

wild type (yellow), after ectopic activation in wild type (green) and after ectopic 

activation in su(Hw)e04061 mutant background (orange). Transcriptional level of 

mbl and Sdc in wild type was set as 1. 
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Figure 3.7 Expression level of Sdc is around 400-fold higher than that of mbl 

in wild type 

 

 

 

 

 

 

 
 

Total RNA was extracted from third-instar larvae and reverse-transcribed into 

cDNA. Transcriptional level of each gene was normalized to that of rp49. The 

relative transcriptional level of mbl after correction was arbitrarily defined to be 

1. The results represent average of three independent experiments. Error bars 

represent the standard error of the mean. 

 63



wild type (Figure 3.6 C), whereas the mod(mdg4)u1 mutation induces a 7-fold 

(p<0.01) increase in transcription of mbl after its activation (Figure 3.6 

A).Therefore, even though the fold increase in su(Hw)e04061 compared to wild type 

is different from the fold increase detected in activated mbl in a mod(mdg4)u1 

background, the overall level of transcription in activated mbl, compared to 

non-activated mbl, is around 35-fold (p<0.01) in both cases. Together, these 

results suggest that intragenic insulator function reduces both basal transcription 

and transcriptional activation in mbl and Sdc by a yet unknown mechanism that is 

likely independent of the transcriptional activation mechanism.  

 

Loss of insulator proteins leads to changes in mbl RNA processing in 

Drosophila 

In addition to transcriptional levels, intragenic insulators may influence mRNA 

processing in a manner similar to that of other chromatin proteins found 

downstream of Pol II start sites (Wada et al., 2009). The mbl gene encodes at 

least four protein isoforms (mblA, mblB, mblC and mblD) generated by alternative 

splicing (Figure 3.8 A), each with a distinct function (Begemann et al., 1997). We 

asked whether the relative frequency of these mbl splice variants increased 

equally in su(Hw)e04061 and mod(mdg4)u1 mutant backgrounds. To answer this 

question, transcription of mblEY01972 was ectopically activated as mentioned earlier, 

 64



and the abundance of transcripts corresponding to each specific isoform was 

determined using isoform-specific primers in su(Hw)e04061 and mod(mdg4)u1 

mutants, as well as in wild type (see primers in the materials and methods 

sections). In order to focus on the role of Su(Hw) and Mod(mdg4) 67.2 proteins, 

we arbitrarily defined the enrichment of each transcript after ectopic activation of 

mblEY01972 in the presence of insulator proteins to be 1, and compared transcript 

changes caused by loss of Su(Hw) and Mod(mdg4)67.2 proteins. Data show that 

loss of Mod(mdg4)67.2 protein led to an overall increase in the enrichment of all 

mbl isoforms (Figure 3.8 C). Specifically, mblA, mblB and mblC transcripts 

displayed 2.1 (p=0.017)-, 2.0 (p=0.057)- and 1.4 (p=0.3)-fold increases, 

respectively, in the absence of the Mod(mdg4)67.2 protein. Interestingly, results 

also show that the abundance of mblD increased by almost 8-fold (p<0.01) due to 

loss of Mod(mdg4)67.2, which is significantly more than fold of increase detected 

for all other mbl isoforms. In su(Hw)e04061, enrichment of mblA, mblB and mblC 

transcripts displayed a pattern very similar to that observed in mod(mdg4)u1 

(Figure 3.8 B compared to 3.8 C). However, a different pattern was observed for 

mblD, for which a slight decrease was observed in su(Hw)e04061 mutant compared 

with wild type (Figure 3.8 B). Taken together, these results show that the ratio of 

mblD to other mbl isoforms was increased significantly in mod(mdg4)u1 but 

decreased in su(Hw)e04061. Interestingly, we noticed that the exon unique to mblD 

contains a  
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Figure 3.8 Loss of insulator proteins changes the ratio between mbl 

isoforms after induction of transcription at the mbl promoter 

A. Schematic representation of the mbl gene showing its genomic position and 

four splicing variants. Su(Hw) binding sites within this region are shown as blue 

peaks based on modENCODE ChIP-on-chip data. B. Relative enrichment of mbl 

isoforms after ectopic activation in wild type (green bars) and in su(Hw)e04061 

mutant (gray bars). C. Relative enrichment of mbl isoforms after ectopic 

activation in wild type (green bars) and in mod(mdg4)u1 background (gray bars). 
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strong Su(Hw) binding site close to the alternative termination site necessary to 

produce mblD. Such sites are absent in all other isoform-specific exons, 

suggesting that endogenous gypsy insulators may play a role in regulating the 

alternative splicing or termination sites in Drosophila mbl pre-mRNA (Figure 3.8 

A).  

Su(Hw) insulators may help define chromatin domains of gene expression  

The current paradigm on insulator function, predicts that insulator disruption 

should lead to alterations in transcription patterns along contiguous chromatin 

domains due to malfunction of their boundaries. A detailed look at the distribution 

of chromatin insulators at the mbl locus shows that mbl, as well as a large region 

upstream of the mbl promoter, contains a low abundance of BEAF and CP190 

insulator proteins, whereas it is very rich in Su(Hw) and Mod(mdg4) proteins 

(Figure 3.9 C). Conversely, the relative abundance of insulator proteins is inverted 

downstream of the mbl transcription termination site. Downstream of mbl, the last 

significant peak of Su(Hw) appears upstream of the promoter of the Sip1 gene 

(Figure 3.9 C). Downstream of Sip1, a large number of genes associate to 

abundant BEAF and CP190 proteins, without a significant presence of Su(Hw) 

proteins (Figure 3.9 C ).  This can also be observed in polytene chromosomes, 

where CP190 bands are found clearly flanking the outer side of the Su(Hw) 

signals that flank the mbl locus (see figure 3.17D). This distribution of insulator  
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Figure 3.9 Real-time RT-PCR analysis of expression of mbl and neighboring 

genes in third-instar larvae in (A) Su(Hw) mutant and (B) Mod(mdg4)U1 

mutant compared with wild type 

 

 

 

 

 

 

 

 

 

 

Transcriptional level of each gene in wild type was set as 1. (C). Schematic 

representation of mbl locus on the gene map as well as distribution of four 

different insulator proteins in this region. The number above each gene indicates 

the genes analyzed in real-time RT PCR. From let to right, 1:CG18469, 

2:CG12699, 3: mbl, 4: Sip1 and 5: cnk.   
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proteins suggests that Su(Hw) insulator sequences in mbl and upstream mbl 

define a chromatin domain that is differentiated from the adjacent chromatin 

domain downstream the Sip1 promoter, which is characterized by high levels of 

BEAF and Cp190.  

 

We previously suggested that this type of discontinuity in the distribution of 

insulator proteins could represent the landmarks for distinct chromatin domains 

(Wallace et al., 2010). Here we have tested whether transcription of genes 

adjacent to mbl, and lacking Su(Hw) insulator sites, would be also influenced by 

mutations in insulator proteins, likely resulting from changes in boundary function. 

Results indicate that genes upstream the mbl promoter do not show a significant 

change in transcription levels in the genetic background of mod(mg4)u1 or su(Hw) 

e04061 homozygous mutants (Figure 3.9 A-B). However, genes downstream mbl, 

including Sip1, appear to undergo significant changes of approximately 2-fold in 

their basal transcription levels, which parallel changes observed in mbl (Figure 3.9 

A-B). Since none of these genes, with the exception of Sip1, have a significant 

presence of Su(Hw) binding sites, these results suggest that derrepression of 

transcription after loss of insulator proteins may be a consequence of changes in 

the genome architecture mediated by Su(Hw) activity. 

 

We next asked whether changes in transcriptional activity of neighboring genes  
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Figure 3.10 Real-time RT-PCR analysis of expression of Sdc and 

neighboring genes in whole larvae in (A) Su(Hw) mutant and (B) 

Mod(mdg4)U1 mutant compared with wild type 

 

 

 

 

 

 

 

 

 

 

Transcriptional level of each gene in wild type was set as 1. (C) Schematic 

representation of mbl locus on the gene map as well as distribution of four different 

insulator proteins in this region. The number above each gene indicates the genes 

analyzed in real-time RT PCR. From let to right, 1: Efsec, 2: Acox57D-d, 3: sdc, 4: 

Sara and 5: Fkbp13.   
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could also be observed in a chromosome region where differences in the 

proposed landmarks of chromatin domains are not as well defined as in mbl. To 

this end, we analyzed the expression of genes neighboring Sdc, in which insu

proteins are distributed in a more uniform manner along the chromatin fiber 

(Figure 3.10 C). Result show that changes in transcriptional activity are still 

significant in genes both downstream and upstream of Sdc (Figure 3.10 

3.10 B). Results show that changes in genes adjacent to Sdc are more 

unpredictable and do not respond equally to mutations in su(Hw) or mod(mdg4), 

as they did in mbl. For example, genes Efsec1 and Fkbp13 are not significantly 

activated after mutations in su(Hw), but transcription increased almost 2-fold in 

the background of mod(mdg4)u1, whereas the opposite is true for the Acox57

gene (Figure 3.10 A and 3.10 B). The molecular mechanism responsible for 

changes in transcription levels of genes neighboring mdl and Sdc is still unkn

and it cannot be ruled out that they respond to pleiotropic effects induced by 

changes in genes elsewhere in the genome. However, taken together these 

results support the notion that chromatin insulators function by creating 

domains and that disruption of insulator funct

lator 

A and 

D-d 

own 

chromatin 

ion may change levels of 

transcription of genes within the domains.   
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Su (Hw) insulators regulate gene expression differently in brain and Salivary 

gland tissues  

Comparison of gene expression profiles in Su(Hw) e04061 and mod(mdg4)u1 

mutants background with the wild type in whole larvae provides an overview of 

insulator function in gene regulation. However, regulation of many genes occurs in 

a tissue-specific manner, and analyzing gene expression in whole larvae may not 

reveal effects of the genetic background. To test whether Su(Hw) insulators 

function differently in distinct Drosophila tissues, we performed real-time RT PCR 

using RNA extracted from brain and salivary glands. Real time PCR results show 

that transcription of mbl increased in both tissues in the absence of Su(Hw) 

proteins compared with the wild type (Figure 3.11 and Figure 3.12), which is 

consistent with the results observed in the whole larvae (Figure 3.9 A-B). However, 

the change in mbl transcription appears to be more significant in salivary glands 

than that is in brain (Figure 3.11 and 3.12). These differences are probably due to 

the lower transcriptional level of mbl in salivary glands in wild type compared with 

that of the brain (data not shown). This observation is also true for the gene 

CG18469, whose transcription was obviously increased more in brain than in 

salivary glands. Interestingly, transcription of the gene CG12699 was reduced in 

brain while slightly increased in salivary glands. These observations suggest that 

Su(Hw) affects transcription of these genes differently in different tissues.  
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Figure 3.11 Real-time RT-PCR analysis of expression of mbl and 

neighboring genes in brain in Su(Hw)e04061 mutant background compared 

with wild type 

 

 

(A). Transcriptional level of each gene in wild type was set as 1. (B). Schematic 

representation of distribution of genes and insulator proteins near mbl locus 
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Figure 3 .12 Real-time RT-PCR analysis of expression of mbl and 

neighboring genes in salivary glands in Su(Hw)e04061 mutant compared with 

wild type. 

 

 

 

 

(A). Transcriptional level of each gene in wild type was set as 1. (B). 

Schematic representation of distribution of genes and insulator proteins near 

mbl locus 
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Figure 3. 13 Real-time RT-PCR analysis of expression of Sdc and 

neighboring genes in brain in Su(Hw)e04061 mutant background compared 

with wild type. 

 

 

 

(A). Transcriptional level of each gene in wild type was set as 1. (B). Schematic 

representation of distribution of genes and insulator proteins near Sdc locus 
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Figure 3. 14 Real-time RT-PCR analysis of expression of Sdc and 

neighboring genes in salivary glands in Su(Hw)e04061 mutant background 

compared with wild type.    

 

 

 

(A). Transcriptional level of each gene in wild type was set as 1. (B). 

Schematic representation of distribution of genes and insulator proteins near 

Sdc locus 
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However, in striking contrast to genes upstream mbl, genes located downstream 

of mbl displayed a very similar expression pattern in brain and salivary glands in 

the absence of Su(Hw) proteins, reinforcing the idea that insulator proteins may 

define a chromatin domain in mbl, and that the region comprising mbl and the 

genes upstream of mbl is differentiated from the region downstream the 

termination site of mbl (Figure 3.11 B).  

 

We next performed the same analysis with genes neighboring Sdc. Results show 

that in brain, transcription of most of the genes adjacent to Sdc displayed less 

than 2-fold increase with the exception of two predicted genes (CG10494 and 

CG30288), which showed a slight decrease in the Su(Hw) e04061 mutant 

background compared with wild type (Figure 3.13). Again, a different expression 

pattern was obtained in salivary glands. The most apparent difference between 

the above two tissues is observed in the expression of the gene Sara, which 

displayed a 7-fold (p=0.032) increase in salivary glands and only slight increase in 

brain due to absence of Su(Hw) (Figure 3.13 and 3.14). Transcription of the gene 

Acox57D-d was also increased 2.7- fold (p=0.033) in salivary glands, twice as 

much as the increase observed in brain. Although the mechanisms that cause 

these differences remains to be understood, these observation suggests that 

regulation of gene expression by Su(Hw) insulators occurs in a tissue and 

gene-specific manner.  
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Figure 3. 15 Real-time RT-PCR analysis of expression of mbl and 

neighboring genes in brain in mod(mdg4)U1 mutant background compared 

with wild type. 

 

 

 

 

(A). Transcriptional level of each gene in wild type was set as 1. (B). Schematic 

representation of distribution of genes and insulator proteins near mbl locus 
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Figure 3. 16 Real-time RT-PCR analysis of expression of mbl and 

neighboring genes in salivary glands in mod(mdg4)U1 mutant background 

compared with wild type.    

 

 

 

 

(A). Transcriptional level of each gene in wild type was set as 1. (B). 

Schematic representation of distribution of genes and insulator proteins 

near mbl locus 
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Since changes in gene expression due to mutations in su(Hw) and mod(mdg4) 

showed different patterns in the third-instar larvae, we next asked whether these 

differences are also reflected in specific tissues. Comparison of expression 

profiles of mbl and neighboring genes in Su(Hw) e04061 and mod(mdg4)u1 mutant 

backgrounds in brain and salivary glands also suggest a different role of Su(Hw) 

and Mod(mdg4) proteins in the regulation of several genes. For example, in brain,  

transcription of CG12699 and cnk was increased in Su(Hw)e04061 mutant 

background (Figure 3.15 A), and was reduced in mod(mdg4)u1 mutant background 

(Figure 3.11 A). In salivary glands, although transcriptional level of mbl gene was 

increased in both Su(Hw)e04061 and mod(mdg4)u1 mutants,  mutation of Su(Hw) 

has an obviously more dramatic effect in expression of mbl gene than 

mod(mdg4)u1 mutation (compare figure 3.12 A and 3.16 A). The different effect of 

Su(Hw) and Mod(mdg4) 67.2 proteins on gene regulation may result from their 

different role in the insulator complex. Because Su(Hw) mediates the binding of 

insulator complex to DNA, the loss of Su(Hw) results in the dissociation of the 

entire insulator complex. On the other hand, loss of Mod(mdg4) 67.2 would likely 

only disrupt interactions between insulators, leaving other insulator proteins such 

as Su(Hw) and CP190 still bound to DNA. These observations also underline the 

complexity of Su(Hw) insulators in the regulation of gene expression.    
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The mbl locus forms a condensed chromatin structure associated to Su(Hw) 

intragenic insulators in polytene chromosomes  

We next asked how chromatin is organized at the mbl locus. In previous work in 

our laboratory, it has been shown that Sdc intragenic insulators map to a highly 

condensed chromatin band in polytene chromosomes, and suggested that 

insulators could contribute to the organization of chromatin by their ability to 

establish long-range interactions along the chromatin fiber (Wallace et al., 2010). 

Here, we have focused our attention on the mbl locus, given that previous reports 

using electron microscopy (EM) and in situ hybridization have shown that most 

intragenic sequences of mbl lie within the large 54B1-2 band in polytene 

chromosome arm 2R (Semeshin et al., 1998). We used fluorescence in situ 

hybridization (FISH) combined with immunostaining to determine the position of 

mbl in relation to endogenous intragenic insulators (Figure 3.17). In order to 

identify the cytological location of these Su(Hw) insulator sequences, we designed 

FISH probes targeted to Su(Hw) binding sites within mbl as previously identified 

(Bushey et al., 2009; Negre et al., 2010). We first used two probes containing 

Su(Hw) binding sites that we predicted will flank the highly condensed chromatin 

associated with mbl (Figure 3.17 A probe1 and probe 4). FISH combined with 

immunostaining using antibodies against Su(Hw) revealed that both probes 

containing insulator sequences colocalized with insulator signals at the edge of  
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Figure 3.17 The mbl locus is organized into a highly condensed chromatin 

band 

(A). Mapping of endogenous Su(Hw) insulators within mbl by FISH combined 

with immunostaining on polytene chromosomes of Drosophila third instar 

larvae. A Su(Hw) binding site within gene mbl (probe 4) localized within band 

54B1-2, whereas a second binding site near gene cg10950 (probe 1) 

localized to the edge of a highly condensed chromatin band 54A1-2. (B). 

FISH probes 2 and 3 map within mbl and contain Su(Hw) binding sites 

located more than 30kb apart show colocalization on polytene chromosomes. 

(C). Distribution of Su(Hw) and Cp190 proteins in the mbl locus, showing a 

schematic representation of mbl, with its position in the chromosome in kb as 

well as structure of the gene and the relative position of the FISH probes 

used in (A) and (B). (D). Immunostaining of polytene chromosomes showing 

the distribution of Su(Hw) and CP190 proteins near the mbl locus. 
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the highly condensed DAPI bands, corresponding to cytological regions 54A1-2 

and 54B1-2 (Figure 3.17 A). We next used FISH to combine two probes (probe 2 

and probe 3) containing Su(Hw) binding sites mapping within the intragenic 

sequences of mbl (see Figure 3.17 C). As expected, results showed that these 

sites localized within the 54B1-2 band (Figure 3.17 C and D). Together, these 

results confirm that mbl is organized into a condensed chromosome band and that 

this band is associated to Su(Hw) insulator sequences. 

 

Ectopic activation of mbl disrupts chromatin organization 

A general correlation between transcriptional activity and banding pattern in  

polytene chromosomes has been established for many years. Thus, areas with 

low transcriptional activity are associated with highly compact bands, whereas 

actively transcribed genes are localized to decondensed interbands (Zhimulev et 

al., 2004). Genes such as mbl are embedded in bands of condensed chromatin. It 

is likely that packing of chromatin into bands is mediated by mechanisms involving 

the formation of higher-order chromatin structures to ensure low basal 

transcriptional activity in tissues where the gene is off. To directly observe under 

the fluorescence microscope the changes in chromatin organization that 

accompany transcriptional activation in genes embedded in condensed chromatin, 

we took advantage of the mblEY01972 line (Figure 3.18). Our results so far have  
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Figure 3.18 Condensed chromatin at the mbl locus is disorganized following 

ectopic activation of mbl in polytene chromosomes 

(A). In wild type, mbl appears as highly condensed chromatin flanked by 

Su(Hw). (B). Following ectopic activation of heterozygous mblEY01972 by 

Act5C-GAL4 activator, one side of the chromatin becomes noticeably 

disrupted. (C). Bands 54A1-2 and 54B1-2 were strongly disorganized after 

transcription was induced at mbl on both chromosomes. (A-C). DNA was 

stained with DAPI (Red) and Su(Hw) is shown in green. (D). mbl was 

ectopically activated using a heat shock GAL4 driver at third instar larval 

stage. Chromosomes were immunostained with antibodies against Pol II 

(green) and Su(Hw) (red). PolII greatly accumulated at mbl locus and 

neighboring regions. (E). Distribution of Su(Hw) proteins in the mbl locus, 

showing a schematic representation of mbl and neighboring regions. 
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shown that a large fraction of the mbl locus is organized as highly condensed 

chromatin in a compact DAPI band flanked by two strong Su(Hw) signals (Figure 

3.17 A-B and Figure 3.18 A). After activation of transcription at the mblEY01972 

promoter by actin-gal4 in mblEY01972 heterozygous flies, half of the mbl condensed 

54B1-2 band, as well as the adjacent 54A1-2 band, appear disrupted, and Su(Hw) 

immunostaining signals are broken into disorganized fragments (Figure 3.18 B). 

However, since we used an actin driven GAL4 transgene, and the actin promoter 

stays active throughout development, it is possible that the chromatin 

disorganization observed is not the result of transcription activation of mbl at the 

condensed mbl chromatin. Instead, chromatin disorganization might be the 

consequence of a failure to form condensed chromatin early during development, 

when the actin promoter is already producing GAL4 and activating transcription at 

mbl.  

 

To determine whether activation of transcription at a condensed band formed by a 

large gene leads to chromatin disorganization, we used an hsgal4 transgene to 

activate transcription of mblEY01972 only after the complete development of 

polytene chromosomes has taken place. Third- instar larvae carrying both 

mblEY01972 and hsgal4 activator were collected, and heat shock was carried out at 

37 °C for 30 minutes, followed by 1 hour recovery at room temperature. Results 

show that activation of transcription in third-instar larvae had an even more  
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Figure 3.19 Ectopic activation of mbl gene leads to disorganization of 

chromatin structure spanning around 300 bp region 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(A). The chromatin of mbl region is significantly disrupted after induction of 

mbl transcription. (B). The region of disorganization is roughly located 

between two strong Su(Hw) binding sites. By using FISH combined with 

immunostaining, the upstream Su(Hw) binding site is mapped near gene 

CG10950, and the downstream Su(Hw) binding is found near gene 

CG30134. C. Schematic representation of mbl and neighboring regions with 

its position in the chromosome in kb. 
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dramatic effect on chromatin organization than in the previous experiments using 

actin-gal4. In hsgal4 mblEY01972 homozygous heat shocked larvae, the 54B1-2 and 

54A1-2 bands, as well as adjacent regions, appear largely disrupted (Figure 3.18 

C). Interestingly, both DAPI bands appear fragmented into DAPI dots, and only a 

certain residual amount of Su(Hw) protein remains associated to these DAPI 

signals. These results show that mbl can be activated after chromatin has been 

condensed to form bands in polytene chromosomes. Activation of mbl induces 

important effects on chromosome structure, which are not limited to the mbl locus 

and spread to adjacent regions, suggesting that activation of genes, especially 

large genes, could potentially influence transcriptional activity of neighboring 

genes. 

 

We have used in situ hybridization data and distribution data of Su(Hw) insulators 

to map the extent of chromatin disorganization induced by ectopic activation of 

mbl in polytene chromosomes (Figure 3.19). Results show that immunostaining 

signals of Su(Hw) and the structure of the chromosome appear disorganized in a 

region spanning approximately 300 kb, which is much larger than the 110kb mbl 

DNA that is actively transcribed (Figure 3.18 B-C). To determine whether the 

extent of chromatin disorganization is encompassed by Pol II activity, we 

performed immunostaining using a phosphoserine 5-specific H14 antibody 

(Covance), which specifically recognizes the active form of RNA Polymerase II  
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Figure 3.20 Real-time RT-PCR analysis of mbl and neighboring genes’ 

expression after ectopic activation of mbl in the third-instar larvae 

 

 

 

 

 

 

 

 

 

(A) Transcriptional level of each gene before mbl activation was set as 1. 

Enrichment of mRNA was normalized to rp49 internal control. (B) Schematic 

representation of mbl locus on the gene map as well as distribution of four different 

insulator proteins in this region. The number above each gene indicates the genes 

analyzed in real-time RT PCR. From let to right, 1:CG18469, 2:CG12699, 3: mbl, 

4: Sip1 and 5: cnk.   
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(Pol II). Results show that a large amount of Pol II accumulated at one half of the  

mbl locus where the DAPI band was broken as a consequence of GAL4 activation, 

indicating occurrence of robust transcription (Figure 3.18 D). 

Ectopic activation of mbl affects transcription of adjacent genes in a 

tissue-and gene-specific manner 

Since in the previous experiments, Pol II signals as well as disrupted chromatin  

structures appeared to expand beyond the boundaries of mbl (Figure 3.18 B-C), 

we asked whether overexpression of a large gene such as mbl could potentially 

influence chromatin organization and possibly the transcriptional activity of 

adjacent genes, and whether chromatin insulators may have a role preventing 

changes in chromatin structure from having an effect on transcription of adjacent 

genes. FISH combined with immunostaining experiments show that mbl ectopic 

activation has noticeable effects in a region flanked between two strong Su(Hw) 

binding sites. An upstream Su(Hw) binding sites is mapped near gene CG10950, 

whereas a downstream site is located near gene CG30134 (Figure 3.19). In order 

to test whether induced decondensation of chromatin at mbl would result in higher 

transcriptional activity of neighboring genes, we extracted total RNA from third- 

instar larvae carrying both mblEY01972 and actin-gal4 activator. RNA obtained from 

mblEY01972 heterozygous flies without actin-gal4 activator was used as control. A 

total of four mbl neighboring genes located between genes CG10950 and 
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CG30134 were selected and their transcriptional levels were determined using 

real-time RT PCR before and after mbl activation respectively. Two out of four 

genes (CG18469 and CG12699) are located upstream of mbl and the other two 

genes (Sip1 and cnk) are located downstream of mbl (Figure 3.20 B). Our real 

time PCR analysis reveals that mbl gene displayed about seven-fold (p<0.01) 

increase in the expression level (Figure 3.20 A). A slight increase was also 

observed in the transcription of two genes CG18469 and CG12699 located 

upstream of mbl. In contrast, no obvious changes in transcription were detected 

for mbl downstream neighboring genes. However, the RNA samples used in our 

real-time RT PCR experiments were obtained from whole larvae, which do not 

allow discrimination of transcriptional changes in different tissues. For this reason, 

we next extracted RNA from both brain and salivary glands before and after mbl 

activation respectively, and examined the transcriptional level of five genes 

mentioned above. Real-time PCR results show that transcriptional levels of mbl 

displayed a much more significant increase in both tissues than the average 

transcription level observed in the whole larvae (Figure 3.21). Specifically, 

transcription of mbl was boosted by 18.8-fold (p<0.01) in brain and 41.4-fold 

(p<0.001) in salivary glands. The dramatic increase in the transcription of mbl 

detected in salivary glands is also consistent with the abundant accumulation of 

RNA Pol II on the polytene chromosomes at the mbl locus observed using 

immunosgaining experiments. The upstream gene CG18469 displayed 1.8-fold  
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Figure 3.21 Real-time RT-PCR analysis of mbl and neighboring genes’ 

expression after ectopic activation of mbl in brain  

RNA was extracted from brain (A) and salibary glands (B). Transcriptional 

level of each gene before mbl activation was set as 1. Enrichment of mRNA 

was normalized to rp49 internal control. (C) Schematic representation of mbl 

locus on the gene map as well as distribution of four different insulator 

proteins in this region.  

 

 

 

 

 98



 

 99



(p=0.07) increase in brain and 5-fold (p=0.051) increase in salivary glands. 

Transcription of gene CG12699, located upstream mbl, was also increased by 

3.4-fold (p=0.004) and 3.3 –fold (p=0.072) in brain and salivary glands 

respectively. In contrast to the significant increase observed in the genes 

upstream of mbl, the downstream genes show much less significant changes. For 

example, only about 1.2- fold (p=0.14) increase in transcription is detected for the 

gene cnk in brain and the transcription of Sip1 was even decreased by 

approximate 20% in brain (p=0.11). This observation is somehow unexpected 

considering the fact that an ‘open’ chromatin conformation and a significant 

accumulation of RNA Pol II caused by mbl activation were also found both 

upstream and downstream mbl. However, this result is consistent with previous 

observations that several regions with rather low transcriptional activities are 

located at interbands (Demakov et al., 2004), suggesting that the decondensed 

state of chromatin and transcriptional activity could be uncoupled. Taken together, 

here we show that although the maintenance of a condensed chromatin structure 

is concomitant with a continuous low expression of associated genes, 

decondensation of chromatin structure does not necessarily lead to high gene 

expression levels. In addition, our results also suggest that insulators may have a 

role preventing the spreading of changes in local chromatin structure to adjacent 

genes.  
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Endogenous Su(Hw) insulators have a stronger repressive effect on 

transcription of mbl and its upstream neighboring genes after mbl activation 

than before activation 

We next asked why genes downstream of mbl are less affected by mbl activation 

than those located upstream of mbl. Considering that there is a strong Su(Hw) 

binding site right upstream of Sip1 promoter, one may expect that this insulator 

could function as a boundary to protect downstream genes form ectopic activation. 

In order to test this possibility, we compared the expression of genes after 

induction of mbl transcription in both presence and absence of insulator proteins 

in the third-instar larvae. As mention above (Figure 3.20 A), when we activated 

mbl transcription using actin-gal4 activator, no obvious change was detected in 

the transcription of Sip1 gene. We found that removal of Mod(mdg4) 67.2 protein 

in a mod(mdg4)u1 genetic background did not lead to any significant change in 

Sip1 transcription (Figure 3.22 A). We did observed about two-fold (p=0.063) 

increase in the transcription of cnk in the absence of Mod(mdg4) 67.2 protein 

compared with wild type. However, the two-fold increase is not likely caused by 

mbl activation, since removal of Mod(mdg4) 67.2 protein itself could almost 

double the transcription of the Sip1 gene (Figure 3.9 B). These results do not 

support a role of Su(Hw) insulators upstream of Sip1 in isolating downstream 

genes from mbl activation. Interestingly, we found that transcription of CG18469 

and CG12699 was significantly increased after mbl activation without Mod(mdg4)  
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Figure 3.22 Real-time RT-PCR analysis of effects of mbl gene activation on 

the transcription of neighboring genes in the absence insulator proteins 

(A). Expression of mbl was ectopically activated with actin-gal4 activator, 

transcriptional level of mbl adjacent genes were analyzed using gene specific 

primers. Purple and green colors represent transcriptional levels of these 

genes before and after mbl activation respectively in the presence of 

Mod(mdg4) 67.2 protein, orange color represents gene expression after mbl 

activation without Mod(mdg4) 67.2 protein. (B) Gene mbl was activated with 

heat shock activator. Transcriptional levels of the same set of genes were 

determined. Purple: before heat shock treatment in the presence of Su(Hw) 

protein. Green: after heat shock treatment in the presence of Su(Hw) protein. 

Orange: after heat shock treatment in the absence of Su(Hw) protein. (C). 

Schematic representation of genes tested on the gene map and distribution 

of insulator proteins in this region. 1: CG18469, 2: CG12699, 3: Sip1 4: cnk 
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67.2. It appears that these increases are not caused by absence of Mod(mdg4) 

67.2 protein since our real-time PCR shows that Mod(mdg4)u1 mutation did not 

induce obvious change in transcription of CG12699 and CG18469 (Figure 3.9B). 

A very similar result was also observed in the transcription of mbl as described 

above. mbl activation in a Mod(mdg4)u1 mutant background induces about 5-fold 

(P<0.01) increase in mbl transcription, compared with only 2.2-fold (p<0.01) 

increase before mbl activation (compare figure 3.6 A with figure 3.5 A).   

 

In order to further validate this result, we also activated mbl transcription using 

heat shock Gal4 as mentioned above. We arbitrarily defined the transcriptional 

level of each gene after mbl activation to be 1 (yellow bar in figure 3.22 B) and 

compared the change in gene transcription due to lack of Su(Hw) protein (orange 

bar in figure 3.22 B). The relative transcriptional level before mbl activation in wild 

type (light blue bar in figure 3.22 B) or su(Hw) e04061 mutant (dark blue in figure 

3.22 B) is listed in figure 3.16. Results show that Su(Hw) has little boundary effect 

in the transcription of genes downstream mbl (Sip1 and cnk) after ectopic 

activation of mbl (compare the blue bar with the orange bar). This result further 

suggests that the Su(Hw) insulator site upstream the Sip1 promoter does not 

function to prevent changes in chromatin structure from spreading from mbl into 

downstream genes. On the other hand, lack of Su(Hw) proteins caused a 

significant increase in the transcription of genes CG18469 and CG12699 
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(upstream mbl) after ectopic activation of mbl. Specifically, the gene CG12699 

underwent a 1.5-fold (p=0.098) increase in transcription in a su(Hw) e04061 mutant 

background compared with wild type, but the same gene produced a 2.6-fold 

(p=0.011) increase in transcription levels after mbl activation in the same  

su(Hw) e04061 mutant background (arrow in figure 3.22 B). A larger difference was 

observed in the transcription of gene CG18469, which displayed 1.2 (0.078) -and 

4.5-fold (p=0.033) increase respectively before and after mbl activation in  

su(Hw) e04061 mutants. One possibility to explain these results is that Su(Hw) 

functions as the only insulator in a chromatin domain formed by mbl plus the 

region upstream mbl promoter, and therefore lack of Su(Hw) protein allows 

spreading of changes in chromatin structure such as those taking place during 

mbl activation. The region downstream the mbl termination site constitutes a 

different chromatin domain where other insulator proteins such as CP190, BEAF 

or CTCF are more abundant than Su(Hw), and likely function to prevent spreading 

of changes in chromatin structure. Under this assumption, the effect of the lack of 

Su(Hw) in this domain is negligible, since the barrier function is provided by the 

other insulator proteins.  
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Figure 3.23 Establishment of highly condensed or less condensed 

chromatin confirmation at the mbl locus is a dynamic process 

(A). In wild type, mbl locus appears as highly condensed chromatin band 

flanked by Su(Hw) insulator signals. (B). Following ectopic activation of 

heterozygous mblEY01972 by Act5C-GAL4 activator, one side of the chromatin 

becomes noticeably disrupted. C. The chromatin structure near mbl locus is 

largely recovered upon expression of GAL80. (D). Accumulation of PolⅡ at 

mbl locus is greatly reduced due to effect of GAL80. E. Distribution of Su(Hw) 

proteins in the mbl locus, showing a schematic representation of mbl and 

neighboring regions. 
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Establishment of banding pattern of polytene chromosomes is a dynamic 

process 

Since ectopic activation of mbl transcription is able to disrupt the highly 

condensed chromatin band, we questioned whether the condensed chromatin 

structure found in bands could be rebuilt once transcription activation is turned off. 

To test this possibility, we utilized a transgenic line carrying heat shock GAL80 

transgene to further control the expression of the mbl allele driven by GAL4/UAS 

system. GAL80 has been shown to be a transcriptional repressor. Upon 

expression, GAL80 directly acts on GAL4 by binding to its transactivation domain, 

which blocks the activity of GAL4 (Lue et al., 1987; Suster et al., 2004). To 

activate expression of GAL80,third-instar larvae carrying mblEY1972 ,actin-gal4 as 

well as hs-gal80 were incubated at 37℃ for 30 minutes followed by 1 hour 

recovery. Flies carrying mblEY1972; actin-gal4 or mblEY1972/hsgal4 without hs-gal80 

were used as control. Immunostaining with rabbit anti-Su(Hw) antibodies 

combined with mouse anti-H14 (RNA Pol II) antibodies (Covance; Princeton, New 

Jersey) shows that, expression of GAL80 largely repressed expression mbl, as 

evidenced by significantly reducing accumulation of RNA Pol II at mbl, compared 

with control (Figure 3.23D). As a result, the disrupted condensed chromatin band 

at the mbl locus as well as two strong Su(Hw) signal bands flanking the DAPI 

stained DNA band was largely recovered (Figure 3.23 A-C).  These observations 
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suggest that formation of highly condensed chromatin in bands is a dynamic 

process, which may depend on the transcriptional activity of associated genes.  

 

Loss of endogenous Su(Hw) insulator function reduces DNase I 

accessibility along the mbl locus 

Immunostaining of polytene chromosomes using antibodies against Pol II showed 

that the DAPI band 54B1-2 (mbl DNA) had a more open structure and contained a 

distinct level of transcriptionally active Pol II staining when compared with the 

adjacent band 54A1-2, which appears significantly more condensed and 

completely lacks Pol II staining (Figure 3.24). These differences at the polytene 

chromosome level led us to ask whether intragenic insulators at the mbl locus 

function by causing changes in chromatin structure that influence DNA 

accessibility, and therefore determine the levels of accessibility and initiation of 

transcription by Pol II. Since further analysis using polytene chromosomes from 

su(Hw) and mod(mdg4) mutant larvae did not reveal any significant differences 

(data not shown), we performed a DNase I-sensitivity assay. For this assay, nuclei 

were first isolated from third-instar larvae and then digested with increasing 

concentrations of DNase I. A 107 bp fragment located upstream of the yellow 

gene, which shows no detectable digestion under similar conditions (Chen and 

Corces, 2001), served as an internal control for equal loading of DNA in different  
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Figure 3.24 Phosphorylated RNA polymerase II is found associated to mbl in 
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Immunostaining of polytene chromosomes using antibodies anti-Su(Hw) 

reen) and anti-CTD-Ser2P (red). Arrowheads point to the 54B1-2, showing 

a different level of DAPI staining when com
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pared with the 54A1-2 band 

rrows), which mostly contains intergenic DNA. PolII and Su(Hw) associate 

ith 54B1-2 and are missing from 54A1-2. 
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Figure 3.25 Removal of gypsy insulator proteins reduces chromatin 

accessibility to DNase I digestion in mbl chromatin. 

 

DNase I accessibility assays were performed with nuclei isolated from wild 

type, su(Hw)e04061 and mod(mdg4)u1 backgrounds. Graphs were generated by 

plotting the percentage of remaining DNA copies, corrected for DNA content, 

against the number of units of DNase I used in the reaction. The digestion 

profiles were based on three independent experiments each performed in 

triplicate. The position in the mbl locus for every site analyzed is indicated to 

the left of the graph (parenthesis indicate the position in kbs in the 

chromosome).  
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reactions. The degree of digestion was analyzed by real-time PCR as described 

previously (McArthur et al., 2001). Before testing the effect of endogenous gypsy 

insulators on chromatin structure within mbl gene, we first examined the 

chromatin accessibility to DNase I of a gene-free region located about 16 kb 

upstream of mbl, which is also embedded in a condensed band but lacking 

endogenous gypsy insulators. As expected, no obvious change in chromatin 

accessibility was observed in mutant larvae, after removal of either Su(Hw) or 

Mod(mdg4)67.2 proteins, compared with wild type (Figure 3.25). Then we 

determined accessibility to DNase I digestion at four regions downstream of the 

promoter of mbl: promoter region, two Su(Hw) binding sites and one non-Su(Hw) 

binding site. Results indicate that DNase I sensitivity of all these regions declines 

significantly in the absence of Su(Hw) protein (Figure 3.25). A similar pattern was 

also observed in the mod(mdg4)u1 mutant. This result is consistent with previous 

observations indicating that the presence of the gypsy insulator is able to increase 

accessibility of chromatin to DNase I digestion (Chen and Corces, 2001). To 

compare these changes among different sites along mbl locus, we employed the 

method of McArthur and Bibb (McArthur and Bibb, 2006), which estimates the 

DNaseI sensitivity at a given site by the percent loss of DNA copies after nuclei 

digestion with 4 units of DNase I. In this way, higher DNase I sensitivity of 

chromatin is reflected by more loss of DNA at a specific site after DNase I 

digestion. Figure 3.26 shows that gypsy insulator proteins have little effect on the  
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reflected by more loss of DNA at a specific site after DNase I digestion. Figure 

3.20 shows that gypsy insulator proteins have little effect on the DNase I 

sensitivity upstream of mbl gene: 4 units of DNase I digestion induces about 30% 

loss of DNA in the presence or absence of gypsy insulator proteins. In contrast,  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.26 Relative DNAseI sensitivity in mbl significantly decreases in 

su(Hw) and mod(mdg4) mutants 

 

 

 

 

DNAseI sensitivity for each site was estimated by the percent loss of DNA 

copies (Y axis) after digestion of chromatin with 4 units DNase I for 3 minutes 

on ice. Numbers on X axis represent genomic distance (in kb) of each site 

tested to mbl transcription start site (position 0). 
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DNase I sensitivity upstream of mbl gene: 4 units of DNase I digestion induces 

about 30 percent loss of DNA in the presence or absence of gypsy insulator 

proteins. In contrast, DNase I sensitivity within the intragenic region of mbl was 

clearly reduced due to loss of Su(Hw) or Mod(mdg4)67.2 proteins. For example, 

loss of DNA was reduced by 9.7, 14.4, 16.7 percent respectively, at the three sites 

located at the 5’ end of mbl, including the promoter region, in su(Hw)e04061 

compared with wild type. A more dramatic effect was detected in mod(mdg4)u1 

mutants, where loss of DNA declined by 24.9, 18.2 and 21.8 respectively. 

Surprisingly, at the most 3’ end site, where the strongest Su(Hw) binding was 

found, reduction of DNA loss was only 2.6 percent in su(Hw)e04061and 7.1 percent 

in mod(mdg4)u1. We draw the following conclusion from the above results: first, 

the removal of gypsy insulator proteins makes chromatin at the mbl locus less 

accessible to DNase I, but has minor effects upstream of the transcription start 

site where insulators are absent. Second, the decrease in the DNase I 

accessibility of at the mbl locus in su(Hw)e04061 and mod(mdg4)u1 is not limited to 

insulator protein binding sites.  

Chromosome Conformation Capture assays show that Su(Hw) insulators 

mediate the formation of chromatin loops in intragenic sequences of mbl  

Some of the phenomena described here, such as formation of condensed 

chromatin in bands, broad changes in chromatin organization after induction of  
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Figure 3.27 Intragenic mbl Su(Hw) insulators form higher-order chromatin 

structures 

 

A schematic representation of the 280 kb genomic region including mbl is 

shown at the bottom of each panel. Su(Hw) binding sites from Kc cells 

(Bushey et al., 2009) are shown as blue peaks. X axis indicates relative 

distance (in kb) of each site to transcription start site of mbl (position 0). The 

Y axis represents interaction frequencies between two EcoRI fragments 

obtained from the 3C library relative to the interaction frequencies obtained 

from BAC clones. Red asterisks indicate positions of anchor primer regions in 

each experiment (A and B). Black asterisks in the ChIP-on-chip profile 

indicate all sites tested for potential interactions. The two anchor fragments 

are 40 kb apart. Asterisks in the curve represent elements that coincide with 

Su(Hw) insulator peaks. In each graph, the lowest cross-linking frequency 

was defined to be 1. Error bars represent standard errors after three real-time 

PCR measurements for each point.  
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transcription, and DNAseI accessibility cannot be simply explained by classic 

mechanisms of gene transcription regulation in cis-. Such phenomena could be 

the response to mechanisms involving higher-order chromatin structure mediated 

by long-range interactions within the chromatin fiber (Labrador and Corces, 2002; 

West et al., 2002). To address the possibility that endogenous Su(Hw) insulators 

are directly involved in the three-dimensional organization of mbl, a 

high-resolution chromosome conformation capture (3C) assay was performed. 3C  

assays provide a powerful tool to detect interactions between two distant 

chromosomal regions (Kruithof et al., 2009; Wong et al., 2007). To investigate the  

potential long-range interactions between Su(Hw) binding sites at mbl, we have 

generated a 3C library from Drosophila S2 cells prepared from ligation products of 

an EcoRI digestion performed in nuclei. We first used a primer located 30 kb 

downstream of the promoter region of mbl, which contains a strong Su(Hw) 

binding site, as an ‘anchor’ and assessed interactions of this anchor with other 

DNA segments throughout the mbl locus (Figure 3.27 A). To control for the 

efficiency of different primer sets, we have also used a library generated using two 

minimally overlapping bacterial artificial chromosome (BAC) clones (RP98-48A11 

and RP98-28012) spanning mbl plus neighboring loci, and mixed in equimolar 

amounts. The interaction frequency between two genomic sites was calculated by 

dividing the amount of PCR product obtained from the 3C library by that obtained 

from the control library. As shown in Figure 3.27 A, we have detected frequent 
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interactions between the anchor region and five other genomic locations (located 

at 39.7, 67.7 80.0, 91.4 and 118.4 kb downstream of the 5’ end of mbl), as 

evidenced by local peaks in interaction frequencies. Four out of five sites 

analyzed are found within mbl, and one of them is located between mbl and Sip1. 

Interestingly, all five regions contain Su(Hw) binding sites. In contrast, genomic 

sites located at 50.3, 60.6 and 86.4 kb downstream of mbl promoter, do not 

contain Su(Hw) binding sites, and clearly show significantly lower interactions with 

the anchor region (Figure 3.27 A).  

 

To further validate this result, we selected a region, located at 70 kb 

downstream of mbl promoter, which also contains a Su(Hw) binding site, as a 

second anchor. A strong interaction with this anchor was observed at a 

downstream Su(Hw) binding site located at 6.9 kb. The high interaction frequency 

between these two regions cannot be simply explained by the short distance 

between them (6.9kb) , since a site with similar distance located upstream of the 

anchor region, which does not contain a Su(Hw) binding site, displayed a much 

lower interaction frequency (Figure 3.27 B). Strong interaction with this anchor 

was also found at three other downstream regions containing a cluster of Su(Hw) 

binding sites (Figure 3.27 B). Taken together, these results show that, even 

though relative crosslinking efficiencies between anchor regions and other 

chromosomal regions are inversely proportional to their distances, local peaks  
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Figure 3.28 Su(Hw) insulators mediate physical interaction between distinct 

genomic sites, while looping out intervening DNA sequences 

(A). Florescence in-situ hybridization using different combinations of probes with 

mbl gene. Left figure: Dig-labeled probe 1 contains a strong Su(Hw) binding site 

located near 5’ end of mbl gene. Biotin-labeled probe 2 is located approximately 

30.9kb downstream of proble 1, which contains no Su(Hw) binding site. Probe 1 

and probe 2 were detected with anti-dig-fluorescein (green) and 

anti-avidin-rhodamin (red) respectively. Right figure: the same probe 1 is used as 

in left figure. Biotin-labeled probe 3 containing a strong Su(Hw) binding site is 

located 40.9kb downstream of probe 1. The probes are detected with same set 

of secondary antibody as in left figure. Note that the in-situ signals of probe 1and 

probe 3 colocalize very well (right), whereas those signals of probe 1 and probe 

2 separates from each other (left).  (B). Schematic representation of mbl locus 

on gene map and distribution of insulator proteins in this region. The number 

below insulator protein distribution map indicates relative position of probes on 

the gene map used in figure A.  
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can always be detected at Su(Hw) binding sites. These results strongly support 

the hypothesis that Su(Hw) insulators regulate higher-order chromatin 

organization through formation of multiple chromatin loops at the mbl locus. 

 

 If the above model is correct, we expect that the interacting Su(Hw) 

binding sites which serve as ‘nodes’ in the chromatin loops would colocalize on 

the polytene chromosomes. In contrast, genomic sites located in the middle of the 

chromatin loop which do not contain endogenous Su(Hw) insulators could 

potentially be distinguishable from those Su(Hw) binding sites. In order to test this 

possibility, we performed fluorescence in-situ hybridization assays with 3 different 

probes (probe 1-3, figure 3.28 C) containing the EcoRI reorganization sites used 

in the 3C experiments. Both probe 1 and probe 3 contain strong Su(Hw) binding 

sites. In the 3C assay these two sites were used as anchor sequences, and 

showed the highest interaction frequency (Figure 3.27 A). Probe 1 is labeled with 

digoxin and detected by anti-dig-fluorescein (green). Probe 3 is labeled with biotin 

and detected by anti-avidin-rhodamin (red). As shown in figure 3.28, even though 

the linear distance between probe 1 and probe 3 is more than 40 kb, their in-situ 

hybridization signals colocalized very well on the polytene chromosomes. The 

biotin-labeled probe 2, on the other hand, does not contain any Su(Hw) binding 

sites but has a shorter linear genomic distance (approximately 30kb) with probe 1. 

3C results show that probe1 and probe 2 displayed an apparently lower 
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interaction frequency. Correspondingly, the in-situ signal of probe 2 does not 

overlap with probe 1 as much as probe 3. This result provides an additional 

experimental evidence that Su(Hw) insulators mediate physical interaction 

between distinct genomic sites, while looping out intervening DNA sequences.  

PolⅡ is enriched at intragenic insulator sites in mbl 

Together, above data suggest that insulators may form higher-order chromatin 

structures that prevent the free passage of PolII, therefore decreasing the 

transcription levels of mbl. To test this hypothesis we analyzed previously 

published wide-genome ChIp-on-Chip data (GEO accession code GSE6714) 

containing the position of both, serine 2 phosphorylated PolII and Rbp3, a subunit 

of PolII , from Drosophila S2 cells (Walker and Sikorska, 1987a). This analysis 

shows that independently of the antibody used (anti-CTD-Ser2P or anti-Rpb3)  

PolII is significantly enriched at Su(Hw) insulator sites along mbl (Figure 3.29 and 

figure 3.30 A). Interestingly, it does not appear that the any of the insulator sites 

contributes more importantly as a barrier against PolⅡ passage, suggesting that 

PolⅡis only temporarily stall at each insulator site. These sites are the same that 

are involved in long-range interactions in 3C experiments shown in Figure 3.27, 

and suggest a model in which the coalescence of insulators is necessary in order 

to prevent free passage of elongating polymerase (Figure 3.30 B).           
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Figure 3.29 Distribution of PolII in the mbl gene 

 

 

 

 

 

 

 

 

 

Accumulation of PolII at intragenic Su(Hw) insulator sites is observed 

with antibodies anti- phosphorylated PolⅡand with antibodies anti- 

Rpb3. Data points correspond to IP values representing the relative 

enrichment log2 IP/WCE obtained from ChIP-on-Chip data GEO 

accession GSE6714 (Muse et al. 2007).Contiguous lines represent the 

moving average calculated using overlapping sets of 10 data point 

intervals. 

 

 

 

 

 

 

 

 124



 

 

 

 

 

 125



 

Figure 3.30 Intragenic Su(Hw) insulator sites are enriched with RNA 

polymerase II 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A. Ten points moving average of the distribution of Pol II, anti-Rpb3 (green 

line) and anti-CTD-Ser2P (orange line), using ChIP-chip data (GEO 

accession GSE6714). RNA PolII peaks at all intragenic insulator sites, 

except the most 5’ site (arrow head). B. An interpretation of the data 

suggesting that insulators form higher-order chromatin structures mediated 

by protein interactions that prevent free passage of PolII , and reducing the 

amount of basal transcription. Mutations in insulator proteins (Su(Hw)-) 

eliminate chromatin loops and allow a higher level of transcription. Green 

and orange ovals are insulator proteins. Red ovals represent RNA pol II.  
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              Chapter IV 

Discussion 

Chromatin insulators are traditionally viewed as elements that function by blocking 

enhancer activity and spreading of heterochromatin. However, evidence directly 

addressing endogenous insulator function is very limited, and derives mostly from 

transgenic assays, leaving open the possibility that insulators could perform 

functions that are not directly predicted from the well- established properties 

mentioned above. In addition, whereas most evidence supporting that 

endogenous insulators function as enhancer-blockers and heterochromatin 

barriers comes from studies of CTCF in vertebrates, evidence from Drosophila, 

where as many as 6 different insulator proteins are known, is lacking. Although it 

has been shown that loss of insulator proteins in Drosophila has important 

positive and negative effects on transcription, the specific function and role of 

particular insulator sites in the Drosophila genome remains speculative (Muller et 

al., 2001; Parnell et al., 2006; Soshnev et al., 2008).  

 

 In this work, we have analyzed the effect of the loss of insulator proteins on 

the transcription levels of long Drosophila genes containing intragenic insulator 

sites. The following conclusions can be drawn from our results: 1) Su(Hw) 
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intragenic insulators repress basal and active transcription levels of mbl and Sdc, 

two long Drosophila genes that contain more than 10 intragenic insulator sites, but 

do not affect transcription levels of Treh, an inducible gene that contains two 

Su(Hw) intragenic insulators. Repression of transcription in mbl and Sdc by 

Su(Hw) should be independent of the enhancer-blocking activity of the insulators, 

since it is observed also when mbl transcription is induced ectopically using 

GAL4-UAS binary system. 2) Su(Hw) intragenic insulators could play a role in 

pre-mRNA processing during transcription, given that the mblD isoform resulting 

from an early termination site is enriched up to 8-fold after loss of Mod(mdg4)67.2. 

The same isoform is depleted by more than 20% after loss of Su(Hw). 3) mbl DNA 

is organized into a condensed chromatin domain that is defined along the 

chromatin fiber with differentially distributed insulator proteins. 4) Intragenic 

Su(Hw) insulators help maintain high accessibility to chromatin in the mbl locus, 

given that loss of insulator proteins systematically reduces accessibility to 

DNAase I in mbl intragenic sequences. Interestingly, accessibility correlates 

negatively with transcriptional activity of mbl. 5) Intragenic Su(Hw) insulators 

participate in long range interactions, mediating the formation of higher-order 

chromatin structures both within and outside of the mbl gene. 6) Serine2 

phosphorylated PolII accumulates at insulator sites, suggesting that insulators 

function as barriers that interrupt passage of RNA polymerase and slow down 

transcriptional elongation. 
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Repression of transcription and higher-order chromatin structure.  

Insulators can potentially perform different functions, depending on their location 

relative to genes. Here we have shown that intragenic insulators have a 

repressive effect on transcription of mbl and Sdc, but have no effect on Treh. 

These differences likely correspond to structural and regulatory peculiarities of 

these genes: for example, whereas mbl and Sdc are extremely long, highly 

regulated tissue-specific genes that form condensed bands in tissues where their 

expression is off, Treh is an inducible gene with shorter introns that is located in 

an interband . In addition, Treh has multiple transcription initiation sites that are 

separated by Su(Hw) insulator sites, which unlike in mbl are also occupied by 

Cp190, and CTCF proteins, suggesting that these insulator sites may have an 

alternative role in promoter selection or mRNA processing with no consequences 

on transcription levels. 

 

Several possibilities may explain the repressive effects of Su(Hw) 

insulators on the expression of mbl and Sdc, but perhaps the most likely derives 

from the insulator boundary activity. Insulators can potentially interfere with the 

progression of PolII and therefore obstruct elongation, reducing the overall 

transcription rate of a sequence. For example, in the B-Globin locus, insulators 
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have the ability to block PolII when it progresses from the LCR to the promoters of 

the globin genes (Zhao and Dean, 2004). In addition, it has been shown that PolII 

is systematically stalled at intragenic CTCF sites in transcribing inducible long 

mammalian genes (Wada et al., 2009). More interestingly, a recent finding 

describing the molecular mechanisms regulating expression of PUMA, a gene 

that triggers apoptosis in mammals and is activated by p53, shows that intragenic 

CTCF insulators block PolII elongation, preventing high levels of basal 

transcription in the absence of p53 activation. Our results suggest that mbl is likely 

regulated by a related mechanism, in which intragenic Su(Hw) insulators would 

modulate PolII elongation, repressing basal transcription by approximately 2-fold, 

and reducing active transcription by a factor of up to 5-fold. 

 

mbl, as well as Sdc, are found within condensed chromatin bands in 

polytene chromosomes, in which transcription is highly repressed. Remarkably, 

our results show that, contrary to what it is normally assumed, the mechanism of 

transcriptional repression at mbl by Su(Hw) insulators appears to be independent 

of accessibility to DNA. DNAseI accessibility experiments performed in this work 

have shown that chromatin at mbl is actually more accessible to DNAseI in wild 

type, when transcription is strongly repressed, than in the background of su(Hw) 

and mod(mdg4)67.2 mutants, when transcription can be up to 5-fold stronger. 

This result suggests that in mbl accessibility to DNA is uncoupled from 
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transcriptional activity, and also points to a mechanism consisting of interference 

of PolII elongation, rather than a mechanism preventing accessibility and PolII 

initiation events. In PUMA, the first 6 kb of the gene is under continuous 

transcriptional activity, and chromatin does not appear to oppose particular 

resistance to transcription initiation in the absence of p53. Transcription in PUMA 

is actually suppressed by an intragenic CTCF insulator that prevents elongation 

(Gomes and Espinosa, 2010). Our results suggest that intragenic Su(Hw) 

insulators in mbl and Sdc could play a role in Drosophila that may be analogous to 

that of CTCF in PUMA. 

 

Our data indicate that Su(Hw) does not have a direct role in the formation 

of bands of condensed chromatin in polytene chromosomes. In fact, insulators are 

not required for the maintenance of condensed bands in chromosomes, given that 

condensation of chromatin in these bands appears normal at the fluorescence 

microscope level in su(Hw)e04061 and mod(mdg4)u1 mutant larvae in salivary 

glands. Since insulators exert a strong repressive effect on transcription of mbl, 

and given our data suggesting that repression is independent of accessibility, it 

can be argued that the higher-order chromatin structures mediated by insulators 

are independent of the chromatin condensation at the chromatin band and are 

responsible for the repression of transcription (Figure 3.17). The lack of 

correlation between accessibility and transcription, as well as the accumulation of 
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PolII at intragenic insulator sites, suggest that elongation is the rate limiting step 

by which insulators repress transcription at mbl, and that long-range interactions 

between insulator sites might be required to prevent Pol II from engaging in 

productive elongation. Figure 3.30 B illustrates a model in which insulators 

function as repressors of elongating polymerases. In this model, higher-order 

structures mediated by insulators block polymerases, reducing basal transcription 

rate, which is increased after the loss of insulator proteins. 

 

Su(Hw) insulators and mRNA processing 

A major question related to the association of insulators to intragenic sequences is 

the specific role that they play during elongation. Evidence that Su(Hw) can have 

a role in the regulation of cotranscriptional processes in mbl is revealed by our 

observation in this study that loss of Su(Hw) insulator proteins changed the ratio 

between different mbl isoforms. Remarkably, the frequency of mblD increased by 

8-fold in the absence of the Mod(mdg4)67.2 protein, but decreased more than 

20% after loss of Su(Hw). The mechanism by which Su(Hw) controls the relative 

frequency of mbl isoforms remains unknown, and a mechanism involving mRNA 

stability cannot be discarded with our data. However, given that factors controlling 

PolII elongation can potentially increase the frequency of termination of 

transcription (de la Mata et al., 2003), the simplest mechanism to explain our 
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observations is that stalling or slowing down of PolII at insulator sites increases 

the chances of transcription termination at nearby termination sites. This 

hypothesis is supported by the observation that, in su(Hw) mutants, in which the 

insulator activity is missing, the frequency of early termination events producing 

mblD is significantly reduced. We cannot disregard the possibility, however, that 

direct or indirect interactions between transcription termination machinery and 

components of the gypsy insulator, such as Mod(mdg4) 67.2, could have 

inhibitory effects on the process of transciption termination. This possibility is 

strongly supported by previous results describing genetic interactions between 

gypsy insulators and suppressor of forked [su(f)] (Depken and Schiessel, 2009; 

Hoover et al., 1992; Kosak et al., 2002; Routh et al., 2008; Rutledge et al., 1988). 

su(f) is the Drosophila homolog of the human Cleavage stimulation Factor-77 

(CstF-77), which is required for cleavage and subsequent polyadenylation of 

pre-mRNA in eukaryotes (Hockert et al.; Luger and Hansen, 2005). Genetic 

interactions between CstF-77 and Su(Hw) were uncovered after analyzing 

mutational insertions of the gypsy retrotransposon into introns of genes such as 

forked (f), which led to the conclusion that insertions were disrupting normal 

transcription by inducing early termination events at polyA sites located at the 

LTRs of the retrotransposon (Benoit et al., 2002; Pan et al., 2006; Rutledge et al., 

1988). Termination events at these sites were suppressed either by mutations in 

su(f) or su(Hw) by a mechanism that is still unclear, but is linked to the presence of 
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binding sites for the Su(Hw) insulator protein in the gypsy insulator (Kepper et al., 

2008). Interestingly, a strong Su(Hw) binding site exist near the mblD specific 

early termination site (Figure 3.8 A). This site was independently identified by 

ModEncode and the Corces laboratory using ChIP-on-chip and was confirmed by 

us using ChIP (Figure 3.1). Such interactions could explain our observation of a 

significant enrichment of mblD in the absence of Mod(mdg4) 67.2. These 

mechanisms are not mutually exclusive, and changes in the ratio among mbl 

isoforms may occur in response to changes in the function of Su(Hw) due to a 

combination of PolII stalling effects, as well as in response to possible interactions 

between insulator proteins and elements of the transcription termination 

machinery. 

 

 Recent findings that more than 40% of endogenous insulators occur in 

intragenic sequences (Bushey et al., 2009; Negre et al., 2010), suggests the 

possibility that insulators can be strongly involved in processes directly related 

with transcription elongation and/or mRNA maturation. We previously reported 

that in polytene chromosomes the majority of DAPI bands correspond to long 

genes containing intragenic Su(Hw) insulator sites, which suggests that Su(Hw) 

may have a role in the repression of transcription of a large number of genes in 

the Drosophila genome that share similar characteristics (di Bari et al., 2006). 

Data presented here provides evidence suggesting that chromatin organization 
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mediated by insulators in these genes may function by actively repressing and 

modulating the elongation process. Our data is particularly interesting in light of 

the increasing evidence revealing the importance of the role of elongation in 

transcriptional regulation (Dorigo et al., 2004). For example, in humans and in 

Drosophila, more than 30% of the genes have paused polymerases in the 

promoter region, and bivalent genes in mouse ES cells are transcriptionally 

engaged by PolII, which is paused in the middle of the gene (Fan et al., 2004; 

Mergell et al., 2004; Mozziconacci and Victor, 2003; Walker and Sikorska, 1987a, 

b). Many of these genes are important developmental genes in which 

transcriptional activation depends on the activation of elongation, rather than 

activation of initiation, as seems to be the case in PUMA and perhaps mbl and 

Sdc.  

 

Transcription in eukaryotes requires numerous processes, including 

capping, splicing, cleavage/polyadenylation as well as chromatin remodeling, 

histone modifications, and mRNA transport, taking place in a cotranscriptional 

manner that depends on interactions of a multitude of factors with PolII 

(Woodcock, 1994). Many of these factors correspond to classic chromatin 

remodeling complexes such as SWI/SNF, which in addition to a role in regulating 

chromatin accessibility in promoters, is also involved in elongation and regulation 

of splicing (Baudy and Bram, 1978; Horowitz et al., 1997; McBryant et al., 2008). 
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Findings in this work provide evidence for the first time connecting chromosome 

structure, insulators and higher-order chromatin organization, as new intragenic 

factors that play a role in the regulation of gene transcription and mRNA 

maturation in Drosophila. This prospect is supported by the recent observation 

that Enhancer of Yellow 2 (ENY2), which was previously shown to interact with 

Su(Hw), is a component of the TOH complex, which is in turn involved in 

transcription elongation, mRNA biogenesis, and mRNA export (Yao et al., 1993). 

Connections between factors such as chromosome structure, higher-order 

chromatin organization and insulators with elements of transcription elongation 

such as histone modifications, nucleosome remodeling, splicing, termination and 

export are currently very vague, making further analysis of the relationship 

between all these factors necessary to fully understand the complexity of 

transcription in eukaryotes. 

 

 

 

 

 

 

 

 

 137



List of References 

Adkins, M.W., Howar, S.R., and Tyler, J.K. (2004). Chromatin disassembly 

mediated by the histone chaperone Asf1 is essential for transcriptional 

activation of the yeast PHO5 and PHO8 genes. Mol Cell 14, 657-666. 

Anatskaya, O.V., and Vinogradov, A.E. (2007). Genome multiplication as 

adaptation to tissue survival: evidence from gene expression in mammalian 

heart and liver. Genomics 89, 70-80. 

Anderson, S.J., Sikes, M.L., Zhang, Y., French, S.L., Salgia, S., Beyer, A.L., 

Nomura, M., and Schneider, D.A. (2011). The transcription elongation factor 

Spt5 influences transcription by RNA polymerase I positively and negatively. 

J Biol Chem. 

Aoyagi, S., and Archer, T.K. (2008). Dynamics of coactivator recruitment and 

chromatin modifications during nuclear receptor mediated transcription. Mol 

Cell Endocrinol 280, 1-5. 

Aravind, L. (2000). The BED finger, a novel DNA-binding domain in 

chromatin-boundary-element-binding proteins and transposases. Trends 

Biochem Sci 25, 421-423. 

Barges, S., Mihaly, J., Galloni, M., Hagstrom, K., Muller, M., Shanower, G., Schedl, 

P., Gyurkovics, H., and Karch, F. (2000). The Fab-8 boundary defines the 

distal limit of the bithorax complex iab-7 domain and insulates iab-7 from 

 138



initiation elements and a PRE in the adjacent iab-8 domain. Development 

127, 779-790. 

Bartolomei, M.S., and Tilghman, S.M. (1997). Genomic imprinting in mammals. 

Annu Rev Genet 31, 493-525. 

Baudy, P., and Bram, S. (1978). Chromatin fiber dimensions and nucleosome 

orientation: a neutron scattering investigation. Nucleic Acids Res 5, 

3697-3714. 

Begemann, G., Paricio, N., Artero, R., Kiss, I., Perez-Alonso, M., and Mlodzik, M. 

(1997). muscleblind, a gene required for photoreceptor differentiation in 

Drosophila, encodes novel nuclear Cys3His-type zinc-finger-containing 

proteins. Development 124, 4321-4331. 

Bell, A.C., West, A.G., and Felsenfeld, G. (1999). The protein CTCF is required for 

the enhancer blocking activity of vertebrate insulators. Cell 98, 387-396. 

Bellen, H.J., Levis, R.W., Liao, G., He, Y., Carlson, J.W., Tsang, G., Evans-Holm, 

M., Hiesinger, P.R., Schulze, K.L., Rubin, G.M., et al. (2004). The BDGP 

gene disruption project: single transposon insertions associated with 40% of 

Drosophila genes. Genetics 167, 761-781. 

Belozerov, V.E., Majumder, P., Shen, P., and Cai, H.N. (2003). A novel boundary 

element may facilitate independent gene regulation in the Antennapedia 

complex of Drosophila. EMBO J 22, 3113-3121. 

Benoit, B., Juge, F., Iral, F., Audibert, A., and Simonelig, M. (2002). Chimeric 

 139



human CstF-77/Drosophila Suppressor of forked proteins rescue suppressor 

of forked mutant lethality and mRNA 3' end processing in Drosophila. Proc 

Natl Acad Sci U S A 99, 10593-10598. 

Biancotto, C., Frige, G., and Minucci, S. (2010). Histone modification therapy of 

cancer. Adv Genet 70, 341-386. 

Biggar, S.R., and Crabtree, G.R. (2000). Chemically regulated transcription 

factors reveal the persistence of repressor-resistant transcription after 

disrupting activator function. J Biol Chem 275, 25381-25390. 

Brasset, E., and Vaury, C. (2005). Insulators are fundamental components of the 

eukaryotic genomes. Heredity 94, 571-576. 

Brodolin, K., Zenkin, N., and Severinov, K. (2005). Remodeling of the sigma70 

subunit non-template DNA strand contacts during the final step of 

transcription initiation. J Mol Biol 350, 930-937. 

Burgess-Beusse, B., Farrell, C., Gaszner, M., Litt, M., Mutskov, V., Recillas-Targa, 

F., Simpson, M., West, A., and Felsenfeld, G. (2002). The insulation of genes 

from external enhancers and silencing chromatin. Proc Natl Acad Sci U S A 

99 Suppl 4, 16433-16437. 

Bushey, A.M., Ramos, E., and Corces, V.G. (2009). Three subclasses of a 

Drosophila insulator show distinct and cell type-specific genomic 

distributions. Genes Dev 23, 1338-1350. 

Cai, H.N., and Shen, P. (2001). Effects of cis arrangement of chromatin insulators 

 140



on enhancer-blocking activity. Science 291, 493-495. 

Chen, N., and Stein, L.D. (2006). Conservation and functional significance of gene 

topology in the genome of Caenorhabditis elegans. Genome Res 16, 

606-617. 

Chen, S., and Corces, V.G. (2001). The gypsy insulator of Drosophila affects 

chromatin structure in a directional manner. Genetics 159, 1649-1658. 

Chen, Y., Dhupelia, A., and Schoenherr, C.J. (2009). The Igf2/H19 imprinting 

control region exhibits sequence-specific and cell-type-dependent DNA 

methylation-mediated repression. Nucleic Acids Res 37, 793-803. 

Chodagam, S., Royou, A., Whitfield, W., Karess, R., and Raff, J.W. (2005). The 

centrosomal protein CP190 regulates myosin function during early 

Drosophila development. Curr Biol 15, 1308-1313. 

Chung, J.H., Whiteley, M., and Felsenfeld, G. (1993). A 5' element of the chicken 

beta-globin domain serves as an insulator in human erythroid cells and 

protects against position effect in Drosophila. Cell 74, 505-514. 

Corces, V.G., and Geyer, P.K. (1991). Interactions of retrotransposons with the 

host genome: the case of the gypsy element of Drosophila. Trends Genet 7, 

86-90. 

Courey, A.J., Plon, S.E., and Wang, J.C. (1986). The use of psoralen-modified 

DNA to probe the mechanism of enhancer action. Cell 45, 567-574. 

Cuvier, O., Hart, C.M., and Laemmli, U.K. (1998). Identification of a class of 

 141



chromatin boundary elements. Mol Cell Biol 18, 7478-7486. 

D'Orso, I., and Frankel, A.D. (2010). RNA-mediated displacement of an inhibitory 

snRNP complex activates transcription elongation. Nat Struct Mol Biol 17, 

815-821. 

de la Mata, M., Alonso, C.R., Kadener, S., Fededa, J.P., Blaustein, M., Pelisch, F., 

Cramer, P., Bentley, D., and Kornblihtt, A.R. (2003). A slow RNA polymerase 

II affects alternative splicing in vivo. Mol Cell 12, 525-532. 

Deato, M.D., and Tjian, R. (2007). Switching of the core transcription machinery 

during myogenesis. Genes Dev 21, 2137-2149. 

Demakov, S., Gortchakov, A., Schwartz, Y., Semeshin, V., Campuzano, S., 

Modolell, J., and Zhimulev, I. (2004). Molecular and genetic organization of 

Drosophila melanogaster polytene chromosomes: evidence for two types of 

interband regions. Genetica 122, 311-324. 

Depken, M., and Schiessel, H. (2009). Nucleosome shape dictates chromatin 

fiber structure. Biophys J 96, 777-784. 

di Bari, M.G., Ciuffini, L., Mingardi, M., Testi, R., Soddu, S., and Barila, D. (2006). 

c-Abl acetylation by histone acetyltransferases regulates its 

nuclear-cytoplasmic localization. EMBO Rep 7, 727-733. 

Dilworth, F.J., and Chambon, P. (2001). Nuclear receptors coordinate the activities 

of chromatin remodeling complexes and coactivators to facilitate initiation of 

transcription. Oncogene 20, 3047-3054. 

 142



Dorigo, B., Schalch, T., Kulangara, A., Duda, S., Schroeder, R.R., and Richmond, 

T.J. (2004). Nucleosome arrays reveal the two-start organization of the 

chromatin fiber. Science 306, 1571-1573. 

Dunn, K.L., and Davie, J.R. (2003). The many roles of the transcriptional regulator 

CTCF. Biochem Cell Biol 81, 161-167. 

Dynlacht, B.D. (1997). Regulation of transcription by proteins that control the cell 

cycle. Nature 389, 149-152. 

ElGIN, L.L.W.M.J.S.S.C.R. (1998). Mapping chromatin structure in Drosophila 

(Oxford, Oxford University Press). 

Endoh, M., Zhu, W., Hasegawa, J., Watanabe, H., Kim, D.K., Aida, M., Inukai, N., 

Narita, T., Yamada, T., Furuya, A., et al. (2004). Human Spt6 stimulates 

transcription elongation by RNA polymerase II in vitro. Mol Cell Biol 24, 

3324-3336. 

Engel, N., and Bartolomei, M.S. (2003). Mechanisms of insulator function in gene 

regulation and genomic imprinting. Int Rev Cytol 232, 89-127. 

Fan, J.Y., Rangasamy, D., Luger, K., and Tremethick, D.J. (2004). H2A.Z alters 

the nucleosome surface to promote HP1alpha-mediated chromatin fiber 

folding. Mol Cell 16, 655-661. 

Felsenfeld, G., and McGhee, J.D. (1986). Structure of the 30 nm chromatin fiber. 

Cell 44, 375-377. 

Ferguson-Smith, A.C., and Surani, M.A. (2001). Imprinting and the epigenetic 

 143



asymmetry between parental genomes. Science 293, 1086-1089. 

Fernandez-Costa, J.M., Llamusi, M.B., Garcia-Lopez, A., and Artero, R. (2011). 

Alternative splicing regulation by Muscleblind proteins: from development to 

disease. Biol Rev Camb Philos Soc. 

Fourel, G., Revardel, E., Koering, C.E., and Gilson, E. (1999). Cohabitation of 

insulators and silencing elements in yeast subtelomeric regions. EMBO J 18, 

2522-2537. 

Gaszner, M., and Felsenfeld, G. (2006). Insulators: exploiting transcriptional and 

epigenetic mechanisms. Nat Rev Genet 7, 703-713. 

Gaszner, M., Vazquez, J., and Schedl, P. (1999). The Zw5 protein, a component 

of the scs chromatin domain boundary, is able to block enhancer-promoter 

interaction. Genes Dev 13, 2098-2107. 

Gause, M., Morcillo, P., and Dorsett, D. (2001). Insulation of enhancer-promoter 

communication by a gypsy transposon insert in the Drosophila cut gene: 

cooperation between suppressor of hairy-wing and modifier of mdg4 proteins. 

Mol Cell Biol 21, 4807-4817. 

Gdula, D.A., and Corces, V.G. (1997). Characterization of functional domains of 

the su(Hw) protein that mediate the silencing effect of mod(mdg4) mutations. 

Genetics 145, 153-161. 

Georgiev, P., and Kozycina, M. (1996). Interaction between mutations in the 

suppressor of Hairy wing and modifier of mdg4 genes of Drosophila 

 144



melanogaster affecting the phenotype of gypsy-induced mutations. Genetics 

142, 425-436. 

Gerasimova, T.I., Byrd, K., and Corces, V.G. (2000). A chromatin insulator 

determines the nuclear localization of DNA. Mol Cell 6, 1025-1035. 

Gerasimova, T.I., and Corces, V.G. (1998). Polycomb and trithorax group proteins 

mediate the function of a chromatin insulator. Cell 92, 511-521. 

Gerasimova, T.I., and Corces, V.G. (2001). Chromatin insulators and boundaries: 

effects on transcription and nuclear organization. Annu Rev Genet 35, 

193-208. 

Gerasimova, T.I., Gdula, D.A., Gerasimov, D.V., Simonova, O., and Corces, V.G. 

(1995). A Drosophila protein that imparts directionality on a chromatin 

insulator is an enhancer of position-effect variegation. Cell 82, 587-597. 

Gerasimova, T.I., Lei, E.P., Bushey, A.M., and Corces, V.G. (2007). Coordinated 

control of dCTCF and gypsy chromatin insulators in Drosophila. Mol Cell 28, 

761-772. 

Geyer, P.K., and Corces, V.G. (1992). DNA position-specific repression of 

transcription by a Drosophila zinc finger protein. Genes Dev 6, 1865-1873. 

Geyer, P.K., Green, M.M., and Corces, V.G. (1988). Mutant gene phenotypes 

mediated by a Drosophila melanogaster retrotransposon require sequences 

homologous to mammalian enhancers. Proc Natl Acad Sci U S A 85, 

8593-8597. 

 145



Ghosh, D., Gerasimova, T.I., and Corces, V.G. (2001). Interactions between the 

Su(Hw) and Mod(mdg4) proteins required for gypsy insulator function. 

EMBO J 20, 2518-2527. 

Giardina, C., Perez-Riba, M., and Lis, J.T. (1992). Promoter melting and TFIID 

complexes on Drosophila genes in vivo. Genes Dev 6, 2190-2200. 

Gilchrist, D.A., Fargo, D.C., and Adelman, K. (2009). Using ChIP-chip and 

ChIP-seq to study the regulation of gene expression: genome-wide 

localization studies reveal widespread regulation of transcription elongation. 

Methods 48, 398-408. 

Goers, E.S., Voelker, R.B., Gates, D.P., and Berglund, J.A. (2008). RNA binding 

specificity of Drosophila muscleblind. Biochemistry 47, 7284-7294. 

Goll, M.G., and Bestor, T.H. (2002). Histone modification and replacement in 

chromatin activation. Genes Dev 16, 1739-1742. 

Golovnin, A., Biryukova, I., Romanova, O., Silicheva, M., Parshikov, A., 

Savitskaya, E., Pirrotta, V., and Georgiev, P. (2003). An endogenous Su(Hw) 

insulator separates the yellow gene from the Achaete-scute gene complex in 

Drosophila. Development 130, 3249-3258. 

Gomes, N.P., and Espinosa, J.M. (2010). Gene-specific repression of the p53 

target gene PUMA via intragenic CTCF-Cohesin binding. Genes Dev 24, 

1022-1034. 

Grewal, S.I., and Elgin, S.C. (2002). Heterochromatin: new possibilities for the 

 146



inheritance of structure. Curr Opin Genet Dev 12, 178-187. 

Grewal, S.I., and Jia, S. (2007). Heterochromatin revisited. Nat Rev Genet 8, 

35-46. 

Gurudatta, B.V., and Corces, V.G. (2009). Chromatin insulators: lessons from the 

fly. Brief Funct Genomic Proteomic 8, 276-282. 

Harrison, D.A., Gdula, D.A., Coyne, R.S., and Corces, V.G. (1993). A leucine 

zipper domain of the suppressor of Hairy-wing protein mediates its 

repressive effect on enhancer function. Genes Dev 7, 1966-1978. 

Hockert, J.A., Yeh, H.J., and MacDonald, C.C. The hinge domain of the cleavage 

stimulation factor protein CstF-64 is essential for CstF-77 interaction, nuclear 

localization, and polyadenylation. J Biol Chem 285, 695-704. 

Holt, I., Jacquemin, V., Fardaei, M., Sewry, C.A., Butler-Browne, G.S., Furling, D., 

Brook, J.D., and Morris, G.E. (2009). Muscleblind-like proteins: similarities 

and differences in normal and myotonic dystrophy muscle. Am J Pathol 174, 

216-227. 

Hoover, K.K., Gerasimova, T.I., Chien, A.J., and Corces, V.G. (1992). Dominant 

effects of suppressor of Hairy-wing mutations on gypsy-induced alleles of 

forked and cut in Drosophila melanogaster. Genetics 132, 691-697. 

Hore, T.A., Deakin, J.E., and Marshall Graves, J.A. (2008). The evolution of 

epigenetic regulators CTCF and BORIS/CTCFL in amniotes. PLoS Genet 4, 

e1000169. 

 147



Horowitz, R.A., Koster, A.J., Walz, J., and Woodcock, C.L. (1997). Automated 

electron microscope tomography of frozen-hydrated chromatin: the irregular 

three-dimensional zigzag architecture persists in compact, isolated fibers. J 

Struct Biol 120, 353-362. 

Imhof, A., and Becker, P.B. (2001). Modifications of the histone N-terminal 

domains. Evidence for an "epigenetic code"? Mol Biotechnol 17, 1-13. 

Jenuwein, T., and Allis, C.D. (2001). Translating the histone code. Science 293, 

1074-1080. 

Jiang, F., Mannervik, B., and Bergman, B. (1997). Evidence for redox regulation of 

the transcription factor NtcA, acting both as an activator and a repressor, in 

the cyanobacterium Anabaena PCC 7120. Biochem J 327 ( Pt 2), 513-517. 

Jiang, Y., Smale, S.T., and Gralla, J.D. (1993). A common ATP requirement for 

open complex formation and transcription at promoters containing initiator or 

TATA elements. J Biol Chem 268, 6535-6540. 

Johnson, K.G., Ghose, A., Epstein, E., Lincecum, J., O'Connor, M.B., and Van 

Vactor, D. (2004). Axonal heparan sulfate proteoglycans regulate the 

distribution and efficiency of the repellent slit during midline axon guidance. 

Curr Biol 14, 499-504. 

Kacem, S., and Feil, R. (2009). Chromatin mechanisms in genomic imprinting. 

Mamm Genome 20, 544-556. 

Kadonaga, J.T. (1998). Eukaryotic transcription: an interlaced network of 

 148



transcription factors and chromatin-modifying machines. Cell 92, 307-313. 

Kadonaga, J.T. (2004). Regulation of RNA polymerase II transcription by 

sequence-specific DNA binding factors. Cell 116, 247-257. 

Kao, S.Y., Calman, A.F., Luciw, P.A., and Peterlin, B.M. (1987). Anti-termination of 

transcription within the long terminal repeat of HIV-1 by tat gene product. 

Nature 330, 489-493. 

Kaplan, C.D., Morris, J.R., Wu, C., and Winston, F. (2000). Spt5 and spt6 are 

associated with active transcription and have characteristics of general 

elongation factors in D. melanogaster. Genes Dev 14, 2623-2634. 

Kellogg, D.R., Field, C.M., and Alberts, B.M. (1989). Identification of 

microtubule-associated proteins in the centrosome, spindle, and kinetochore 

of the early Drosophila embryo. J Cell Biol 109, 2977-2991. 

Kellum, R., and Schedl, P. (1991). A position-effect assay for boundaries of higher 

order chromosomal domains. Cell 64, 941-950. 

Kepper, N., Foethke, D., Stehr, R., Wedemann, G., and Rippe, K. (2008). 

Nucleosome geometry and internucleosomal interactions control the 

chromatin fiber conformation. Biophys J 95, 3692-3705. 

Kim, T.H., Barrera, L.O., Zheng, M., Qu, C., Singer, M.A., Richmond, T.A., Wu, Y., 

Green, R.D., and Ren, B. (2005). A high-resolution map of active promoters 

in the human genome. Nature 436, 876-880. 

Klemm, R.D., Goodrich, J.A., Zhou, S., and Tjian, R. (1995). Molecular cloning 

 149



and expression of the 32-kDa subunit of human TFIID reveals interactions 

with VP16 and TFIIB that mediate transcriptional activation. Proc Natl Acad 

Sci U S A 92, 5788-5792. 

Kobayashi, N., Boyer, T.G., and Berk, A.J. (1995). A class of activation domains 

interacts directly with TFIIA and stimulates TFIIA-TFIID-promoter complex 

assembly. Mol Cell Biol 15, 6465-6473. 

Kosak, S.T., Skok, J.A., Medina, K.L., Riblet, R., Le Beau, M.M., Fisher, A.G., and 

Singh, H. (2002). Subnuclear compartmentalization of immunoglobulin loci 

during lymphocyte development. Science 296, 158-162. 

Krajewska, W.M. (1992). Regulation of transcription in eukaryotes by 

DNA-binding proteins. Int J Biochem 24, 1885-1898. 

Kruithof, M., Chien, F.T., Routh, A., Logie, C., Rhodes, D., and van Noort, J. 

(2009). Single-molecule force spectroscopy reveals a highly compliant 

helical folding for the 30-nm chromatin fiber. Nat Struct Mol Biol 16, 534-540. 

Kuhn-Parnell, E.J., Helou, C., Marion, D.J., Gilmore, B.L., Parnell, T.J., Wold, M.S., 

and Geyer, P.K. (2008). Investigation of the properties of non-gypsy 

suppressor of hairy-wing-binding sites. Genetics 179, 1263-1273. 

Kuhn, E.J., and Geyer, P.K. (2003). Genomic insulators: connecting properties to 

mechanism. Curr Opin Cell Biol 15, 259-265. 

Kyrchanova, O., Ivlieva, T., Toshchakov, S., Parshikov, A., Maksimenko, O., and 

Georgiev, P. (2010). Selective interactions of boundaries with upstream 

 150



region of Abd-B promoter in Drosophila bithorax complex and role of dCTCF 

in this process. Nucleic Acids Res. 

Labrador, M., and Corces, V.G. (2002). Setting the boundaries of chromatin 

domains and nuclear organization. Cell 111, 151-154. 

Langelier, M.F., Forget, D., Rojas, A., Porlier, Y., Burton, Z.F., and Coulombe, B. 

(2001). Structural and functional interactions of transcription factor (TF) IIA 

with TFIIE and TFIIF in transcription initiation by RNA polymerase II. J Biol 

Chem 276, 38652-38657. 

Lee, T.I., Jenner, R.G., Boyer, L.A., Guenther, M.G., Levine, S.S., Kumar, R.M., 

Chevalier, B., Johnstone, S.E., Cole, M.F., Isono, K., et al. (2006). Control of 

developmental regulators by Polycomb in human embryonic stem cells. Cell 

125, 301-313. 

Lee, Y.C., and Langley, C.H. (2010). Transposable elements in natural 

populations of Drosophila melanogaster. Philos Trans R Soc Lond B Biol Sci 

365, 1219-1228. 

Lei, E.P., and Corces, V.G. (2006). RNA interference machinery influences the 

nuclear organization of a chromatin insulator. Nat Genet 38, 936-941. 

Lercher, M.J., Urrutia, A.O., and Hurst, L.D. (2002). Clustering of housekeeping 

genes provides a unified model of gene order in the human genome. Nat 

Genet 31, 180-183. 

Li, R., Knight, J.D., Jackson, S.P., Tjian, R., and Botchan, M.R. (1991). Direct 

 151



interaction between Sp1 and the BPV enhancer E2 protein mediates 

synergistic activation of transcription. Cell 65, 493-505. 

Lo, W.S., Henry, K.W., Schwartz, M.F., and Berger, S.L. (2004). Histone 

modification patterns during gene activation. Methods Enzymol 377, 

130-153. 

Lorenc, A., and Makalowski, W. (2003). Transposable elements and vertebrate 

protein diversity. Genetica 118, 183-191. 

Lue, N.F., Chasman, D.I., Buchman, A.R., and Kornberg, R.D. (1987). Interaction 

of GAL4 and GAL80 gene regulatory proteins in vitro. Mol Cell Biol 7, 

3446-3451. 

Luger, K., and Hansen, J.C. (2005). Nucleosome and chromatin fiber dynamics. 

Curr Opin Struct Biol 15, 188-196. 

Marciniak, R.A., and Sharp, P.A. (1991). HIV-1 Tat protein promotes formation of 

more-processive elongation complexes. EMBO J 10, 4189-4196. 

McArthur, M., and Bibb, M. (2006). In vivo DNase I sensitivity of the Streptomyces 

coelicolor chromosome correlates with gene expression: implications for 

bacterial chromosome structure. Nucleic Acids Res 34, 5395-5401. 

McArthur, M., Gerum, S., and Stamatoyannopoulos, G. (2001). Quantification of 

DNaseI-sensitivity by real-time PCR: quantitative analysis of 

DNaseI-hypersensitivity of the mouse beta-globin LCR. J Mol Biol 313, 

27-34. 

 152



McBryant, S.J., Krause, C., Woodcock, C.L., and Hansen, J.C. (2008). The silent 

information regulator 3 protein, SIR3p, binds to chromatin fibers and 

assembles a hypercondensed chromatin architecture in the presence of salt. 

Mol Cell Biol 28, 3563-3572. 

Mergell, B., Everaers, R., and Schiessel, H. (2004). Nucleosome interactions in 

chromatin: fiber stiffening and hairpin formation. Phys Rev E Stat Nonlin Soft 

Matter Phys 70, 011915. 

Mezey, J.G., Nuzhdin, S.V., Ye, F., and Jones, C.D. (2008). Coordinated evolution 

of co-expressed gene clusters in the Drosophila transcriptome. BMC Evol 

Biol 8, 2. 

Min, I.M., Waterfall, J.J., Core, L.J., Munroe, R.J., Schimenti, J., and Lis, J.T. 

(2011). Regulating RNA polymerase pausing and transcription elongation in 

embryonic stem cells. Genes Dev 25, 742-754. 

Mizrokhi, L.J., Obolenkova, L.A., Priimagi, A.F., Ilyin, Y.V., Gerasimova, T.I., and 

Georgiev, G.P. (1985). The nature of unstable insertion mutations and 

reversions in the locus cut of Drosophila melanogaster: molecular 

mechanism of transposition memory. EMBO J 4, 3781-3787. 

Modolell, J., Bender, W., and Meselson, M. (1983). Drosophila melanogaster 

mutations suppressible by the suppressor of Hairy-wing are insertions of a 

7.3-kilobase mobile element. Proc Natl Acad Sci U S A 80, 1678-1682. 

Mohan, M., Bartkuhn, M., Herold, M., Philippen, A., Heinl, N., Bardenhagen, I., 

 153



Leers, J., White, R.A., Renkawitz-Pohl, R., Saumweber, H., et al. (2007). The 

Drosophila insulator proteins CTCF and CP190 link enhancer blocking to 

body patterning. EMBO J 26, 4203-4214. 

Mongelard, F., Labrador, M., Baxter, E.M., Gerasimova, T.I., and Corces, V.G. 

(2002). Trans-splicing as a novel mechanism to explain interallelic 

complementation in Drosophila. Genetics 160, 1481-1487. 

Moon, H., Filippova, G., Loukinov, D., Pugacheva, E., Chen, Q., Smith, S.T., 

Munhall, A., Grewe, B., Bartkuhn, M., Arnold, R., et al. (2005). CTCF is 

conserved from Drosophila to humans and confers enhancer blocking of the 

Fab-8 insulator. EMBO Rep 6, 165-170. 

Mozziconacci, J., and Victor, J.M. (2003). Nucleosome gaping supports a 

functional structure for the 30nm chromatin fiber. J Struct Biol 143, 72-76. 

Muller, W.G., Walker, D., Hager, G.L., and McNally, J.G. (2001). Large-scale 

chromatin decondensation and recondensation regulated by transcription 

from a natural promoter. J Cell Biol 154, 33-48. 

Muravyova, E., Golovnin, A., Gracheva, E., Parshikov, A., Belenkaya, T., Pirrotta, 

V., and Georgiev, P. (2001). Loss of insulator activity by paired Su(Hw) 

chromatin insulators. Science 291, 495-498. 

Negre, N., Brown, C.D., Shah, P.K., Kheradpour, P., Morrison, C.A., Henikoff, J.G., 

Feng, X., Ahmad, K., Russell, S., White, R.A., et al. (2010). A comprehensive 

map of insulator elements for the Drosophila genome. PLoS Genet 6, 

 154



e1000814. 

Oliver, D., Sheehan, B., South, H., Akbari, O., and Pai, C.Y. (2010). The 

chromosomal association/dissociation of the chromatin insulator protein 

Cp190 of Drosophila melanogaster is mediated by the BTB/POZ domain and 

two acidic regions. BMC Cell Biol 11, 101. 

Ostashevsky, J.Y., and Lange, C.S. (1994). The 30 nm chromatin fiber as a 

flexible polymer. J Biomol Struct Dyn 11, 813-820. 

Paal, K., Baeuerle, P.A., and Schmitz, M.L. (1997). Basal transcription factors 

TBP and TFIIB and the viral coactivator E1A 13S bind with distinct affinities 

and kinetics to the transactivation domain of NF-kappaB p65. Nucleic Acids 

Res 25, 1050-1055. 

Pai, C.Y., Lei, E.P., Ghosh, D., and Corces, V.G. (2004). The centrosomal protein 

CP190 is a component of the gypsy chromatin insulator. Mol Cell 16, 

737-748. 

Pan, Z., Zhang, H., Hague, L.K., Lee, J.Y., Lutz, C.S., and Tian, B. (2006). An 

intronic polyadenylation site in human and mouse CstF-77 genes suggests 

an evolutionarily conserved regulatory mechanism. Gene 366, 325-334. 

Parelho, V., Hadjur, S., Spivakov, M., Leleu, M., Sauer, S., Gregson, H.C., Jarmuz, 

A., Canzonetta, C., Webster, Z., Nesterova, T., et al. (2008). Cohesins 

functionally associate with CTCF on mammalian chromosome arms. Cell 

132, 422-433. 

 155



Parkhurst, S.M., Harrison, D.A., Remington, M.P., Spana, C., Kelley, R.L., Coyne, 

R.S., and Corces, V.G. (1988). The Drosophila su(Hw) gene, which controls 

the phenotypic effect of the gypsy transposable element, encodes a putative 

DNA-binding protein. Genes Dev 2, 1205-1215. 

Parnell, T.J., Kuhn, E.J., Gilmore, B.L., Helou, C., Wold, M.S., and Geyer, P.K. 

(2006). Identification of genomic sites that bind the Drosophila suppressor of 

Hairy-wing insulator protein. Mol Cell Biol 26, 5983-5993. 

Parnell, T.J., Viering, M.M., Skjesol, A., Helou, C., Kuhn, E.J., and Geyer, P.K. 

(2003). An endogenous suppressor of hairy-wing insulator separates 

regulatory domains in Drosophila. Proc Natl Acad Sci U S A 100, 

13436-13441. 

Pavri, R., Zhu, B., Li, G., Trojer, P., Mandal, S., Shilatifard, A., and Reinberg, D. 

(2006). Histone H2B monoubiquitination functions cooperatively with FACT 

to regulate elongation by RNA polymerase II. Cell 125, 703-717. 

Petrascheck, M., Escher, D., Mahmoudi, T., Verrijzer, C.P., Schaffner, W., and 

Barberis, A. (2005). DNA looping induced by a transcriptional enhancer in 

vivo. Nucleic Acids Res 33, 3743-3750. 

Pimpinelli, S., Berloco, M., Fanti, L., Dimitri, P., Bonaccorsi, S., Marchetti, E., 

Caizzi, R., Caggese, C., and Gatti, M. (1995). Transposable elements are 

stable structural components of Drosophila melanogaster heterochromatin. 

Proc Natl Acad Sci U S A 92, 3804-3808. 

 156



Prieto, C., Risueno, A., Fontanillo, C., and De las Rivas, J. (2008). Human gene 

coexpression landscape: confident network derived from tissue 

transcriptomic profiles. PLoS One 3, e3911. 

Pryde, F.E., and Louis, E.J. (1999). Limitations of silencing at native yeast 

telomeres. EMBO J 18, 2538-2550. 

Ptashne, M. (2005). Regulation of transcription: from lambda to eukaryotes. 

Trends Biochem Sci 30, 275-279. 

Radonjic, M., Andrau, J.C., Lijnzaad, P., Kemmeren, P., Kockelkorn, T.T., van 

Leenen, D., van Berkum, N.L., and Holstege, F.C. (2005). Genome-wide 

analyses reveal RNA polymerase II located upstream of genes poised for 

rapid response upon S. cerevisiae stationary phase exit. Mol Cell 18, 

171-183. 

Rapraeger, A.C. (2002). Heparan sulfate-growth factor interactions. Methods Cell 

Biol 69, 83-109. 

Renda, M., Baglivo, I., Burgess-Beusse, B., Esposito, S., Fattorusso, R., 

Felsenfeld, G., and Pedone, P.V. (2007). Critical DNA binding interactions of 

the insulator protein CTCF: a small number of zinc fingers mediate strong 

binding, and a single finger-DNA interaction controls binding at imprinted loci. 

J Biol Chem 282, 33336-33345. 

Robert, F., Forget, D., Li, J., Greenblatt, J., and Coulombe, B. (1996). Localization 

of subunits of transcription factors IIE and IIF immediately upstream of the 

 157



transcriptional initiation site of the adenovirus major late promoter. J Biol 

Chem 271, 8517-8520. 

Roberts, S.G., Ha, I., Maldonado, E., Reinberg, D., and Green, M.R. (1993). 

Interaction between an acidic activator and transcription factor TFIIB is 

required for transcriptional activation. Nature 363, 741-744. 

Roseman, R.R., Johnson, E.A., Rodesch, C.K., Bjerke, M., Nagoshi, R.N., and 

Geyer, P.K. (1995). A P element containing suppressor of hairy-wing binding 

regions has novel properties for mutagenesis in Drosophila melanogaster. 

Genetics 141, 1061-1074. 

Roseman, R.R., Pirrotta, V., and Geyer, P.K. (1993). The su(Hw) protein insulates 

expression of the Drosophila melanogaster white gene from chromosomal 

position-effects. EMBO J 12, 435-442. 

Routh, A., Sandin, S., and Rhodes, D. (2008). Nucleosome repeat length and 

linker histone stoichiometry determine chromatin fiber structure. Proc Natl 

Acad Sci U S A 105, 8872-8877. 

Roux-Rouquie, M., Chauvet, M.L., Munnich, A., and Frezal, J. (1999). Human 

genes involved in chromatin remodeling in transcription initiation, and 

associated diseases: An overview using the GENATLAS database. Mol 

Genet Metab 67, 261-277. 

Roy, P.J., Stuart, J.M., Lund, J., and Kim, S.K. (2002). Chromosomal clustering of 

muscle-expressed genes in Caenorhabditis elegans. Nature 418, 975-979. 

 158



Rutledge, B.J., Mortin, M.A., Schwarz, E., Thierry-Mieg, D., and Meselson, M. 

(1988). Genetic interactions of modifier genes and modifiable alleles in 

Drosophila melanogaster. Genetics 119, 391-397. 

Schubeler, D., Francastel, C., Cimbora, D.M., Reik, A., Martin, D.I., and Groudine, 

M. (2000). Nuclear localization and histone acetylation: a pathway for 

chromatin opening and transcriptional activation of the human beta-globin 

locus. Genes Dev 14, 940-950. 

Schwabish, M.A., and Struhl, K. (2006). Asf1 mediates histone eviction and 

deposition during elongation by RNA polymerase II. Mol Cell 22, 415-422. 

Semeshin, V.F., Artero, R., Perez-Alonso, M., and Shloma, V.V. (1998). Electron 

microscopic in situ hybridization of digoxigenin-dUTP-labelled DNA probes 

with Drosophila melanogaster polytene chromosomes. Chromosome Res 6, 

405-410. 

Sheldon, L.A., Smith, C.L., Bodwell, J.E., Munck, A.U., and Hager, G.L. (1999). A 

ligand binding domain mutation in the mouse glucocorticoid receptor 

functionally links chromatin remodeling and transcription initiation. Mol Cell 

Biol 19, 8146-8157. 

Shindo, N. (2009). [Histone modification: a new era of targeting epigenetics]. 

Rinsho Ketsueki 50, 282-288. 

Soshnev, A.A., Li, X., Wehling, M.D., and Geyer, P.K. (2008). Context differences 

reveal insulator and activator functions of a Su(Hw) binding region. PLoS 

 159



Genet 4, e1000159. 

Spana, C., and Corces, V.G. (1990). DNA bending is a determinant of binding 

specificity for a Drosophila zinc finger protein. Genes Dev 4, 1505-1515. 

Spana, C., Harrison, D.A., and Corces, V.G. (1988). The Drosophila melanogaster 

suppressor of Hairy-wing protein binds to specific sequences of the gypsy 

retrotransposon. Genes Dev 2, 1414-1423. 

Steigemann, P., Molitor, A., Fellert, S., Jackle, H., and Vorbruggen, G. (2004). 

Heparan sulfate proteoglycan syndecan promotes axonal and myotube 

guidance by slit/robo signaling. Curr Biol 14, 225-230. 

Stringer, K.F., Ingles, C.J., and Greenblatt, J. (1990). Direct and selective binding 

of an acidic transcriptional activation domain to the TATA-box factor TFIID. 

Nature 345, 783-786. 

Suster, M.L., Seugnet, L., Bate, M., and Sokolowski, M.B. (2004). Refining 

GAL4-driven transgene expression in Drosophila with a GAL80 

enhancer-trap. Genesis 39, 240-245. 

Szabo, P.E., Tang, S.H., Silva, F.J., Tsark, W.M., and Mann, J.R. (2004). Role of 

CTCF binding sites in the Igf2/H19 imprinting control region. Mol Cell Biol 24, 

4791-4800. 

Tamaru, H. (2010). Confining euchromatin/heterochromatin territory: jumonji 

crosses the line. Genes Dev 24, 1465-1478. 

Tang, H., Liu, Y., Madabusi, L., and Gilmour, D.S. (2000). Promoter-proximal 

 160



pausing on the hsp70 promoter in Drosophila melanogaster depends on the 

upstream regulator. Mol Cell Biol 20, 2569-2580. 

Udvardy, A., Maine, E., and Schedl, P. (1985). The 87A7 chromomere. 

Identification of novel chromatin structures flanking the heat shock locus that 

may define the boundaries of higher order domains. J Mol Biol 185, 341-358. 

van de Lagemaat, L.N., Landry, J.R., Mager, D.L., and Medstrand, P. (2003). 

Transposable elements in mammals promote regulatory variation and 

diversification of genes with specialized functions. Trends Genet 19, 

530-536. 

Vicente-Crespo, M., Pascual, M., Fernandez-Costa, J.M., Garcia-Lopez, A., 

Monferrer, L., Miranda, M.E., Zhou, L., and Artero, R.D. (2008). Drosophila 

muscleblind is involved in troponin T alternative splicing and apoptosis. PLoS 

One 3, e1613. 

Vicente, M., Monferrer, L., Poulos, M.G., Houseley, J., Monckton, D.G., O'Dell K, 

M., Swanson, M.S., and Artero, R.D. (2007). Muscleblind isoforms are 

functionally distinct and regulate alpha-actinin splicing. Differentiation 75, 

427-440. 

Vorobyeva, N.E., Soshnikova, N.V., Nikolenko, J.V., Kuzmina, J.L., Nabirochkina, 

E.N., Georgieva, S.G., and Shidlovskii, Y.V. (2009). Transcription coactivator 

SAYP combines chromatin remodeler Brahma and transcription initiation 

factor TFIID into a single supercomplex. Proc Natl Acad Sci U S A 106, 

 161



11049-11054. 

Wada, Y., Ohta, Y., Xu, M., Tsutsumi, S., Minami, T., Inoue, K., Komura, D., 

Kitakami, J., Oshida, N., Papantonis, A., et al. (2009). A wave of nascent 

transcription on activated human genes. Proc Natl Acad Sci U S A 106, 

18357-18361. 

Walker, P.R., and Sikorska, M. (1987a). Chromatin structure. Evidence that the 

30-nm fiber is a helical coil with 12 nucleosomes/turn. J Biol Chem 262, 

12223-12227. 

Walker, P.R., and Sikorska, M. (1987b). Chromatin structure. Further evidence 

against the existence of a beaded subunit for the 30-nm fiber. J Biol Chem 

262, 12218-12222. 

Wallace, H.A., Plata, M.P., Kang, H.J., Ross, M., and Labrador, M. Chromatin 

insulators specifically associate with different levels of higher-order 

chromatin organization in Drosophila. Chromosoma 119, 177-194. 

Wallace, H.A., Plata, M.P., Kang, H.J., Ross, M., and Labrador, M. (2010). 

Chromatin insulators specifically associate with different levels of 

higher-order chromatin organization in Drosophila. Chromosoma 119, 

177-194. 

Wallace, J.A., and Felsenfeld, G. (2007). We gather together: insulators and 

genome organization. Curr Opin Genet Dev 17, 400-407. 

Weintraub, H., and Groudine, M. (1976). Chromosomal subunits in active genes 

 162



have an altered conformation. Science 193, 848-856. 

West, A.G., Gaszner, M., and Felsenfeld, G. (2002). Insulators: many functions, 

many mechanisms. Genes Dev 16, 271-288. 

Williams, K.J. (2001). Interactions of lipoproteins with proteoglycans. Methods Mol 

Biol 171, 457-477. 

Wittkopp, P.J., Vaccaro, K., and Carroll, S.B. (2002). Evolution of yellow gene 

regulation and pigmentation in Drosophila. Curr Biol 12, 1547-1556. 

Wong, H., Victor, J.M., and Mozziconacci, J. (2007). An all-atom model of the 

chromatin fiber containing linker histones reveals a versatile structure tuned 

by the nucleosomal repeat length. PLoS One 2, e877. 

Woodcock, C.L. (1994). Chromatin fibers observed in situ in frozen hydrated 

sections. Native fiber diameter is not correlated with nucleosome repeat 

length. J Cell Biol 125, 11-19. 

Woodcock, C.L. (2006). Chromatin architecture. Curr Opin Struct Biol 16, 

213-220. 

Workman, J.L. (2006). Nucleosome displacement in transcription. Genes Dev 20, 

2009-2017. 

Wu, F.Y., Wang, S.E., Chen, H., Wang, L., Hayward, S.D., and Hayward, G.S. 

(2004). CCAAT/enhancer binding protein alpha binds to the Epstein-Barr 

virus (EBV) ZTA protein through oligomeric interactions and contributes to 

cooperative transcriptional activation of the ZTA promoter through direct 

 163



binding to the ZII and ZIIIB motifs during induction of the EBV lytic cycle. J 

Virol 78, 4847-4865. 

Wu, Y., Reece, R.J., and Ptashne, M. (1996). Quantitation of putative 

activator-target affinities predicts transcriptional activating potentials. EMBO 

J 15, 3951-3963. 

Xiao, H., Friesen, J.D., and Lis, J.T. (1994). A highly conserved domain of RNA 

polymerase II shares a functional element with acidic activation domains of 

upstream transcription factors. Mol Cell Biol 14, 7507-7516. 

Xiao, L., Kim, M., and DeJong, J. (2006). Developmental and cell type-specific 

regulation of core promoter transcription factors in germ cells of frogs and 

mice. Gene Expr Patterns 6, 409-419. 

Yang, Y., Hu, J.F., Ulaner, G.A., Li, T., Yao, X., Vu, T.H., and Hoffman, A.R. (2003). 

Epigenetic regulation of Igf2/H19 imprinting at CTCF insulator binding sites. 

J Cell Biochem 90, 1038-1055. 

Yankulov, K., Blau, J., Purton, T., Roberts, S., and Bentley, D.L. (1994). 

Transcriptional elongation by RNA polymerase II is stimulated by 

transactivators. Cell 77, 749-759. 

Yao, J., Lowary, P.T., and Widom, J. (1993). Twist constraints on linker DNA in the 

30-nm chromatin fiber: implications for nucleosome phasing. Proc Natl Acad 

Sci U S A 90, 9364-9368. 

Yusufzai, T.M., and Felsenfeld, G. (2004). The 5'-HS4 chicken beta-globin 

 164



insulator is a CTCF-dependent nuclear matrix-associated element. Proc Natl 

Acad Sci U S A 101, 8620-8624. 

Zhao, H., and Dean, A. (2004). An insulator blocks spreading of histone 

acetylation and interferes with RNA polymerase II transfer between an 

enhancer and gene. Nucleic Acids Res 32, 4903-4919. 

Zhao, K., Hart, C.M., and Laemmli, U.K. (1995). Visualization of chromosomal 

domains with boundary element-associated factor BEAF-32. Cell 81, 

879-889. 

Zhimulev, I.F., Belyaeva, E.S., Semeshin, V.F., Koryakov, D.E., Demakov, S.A., 

Demakova, O.V., Pokholkova, G.V., and Andreyeva, E.N. (2004). Polytene 

chromosomes: 70 years of genetic research. Int Rev Cytol 241, 203-275. 

 

 

 

 

 

 

 

 

 

 

 165



 166

 

VITA 

Shaofei Zhang was born in Baotou, Inner Mongolia, China. He entered University of Science 

and Technology of China (USTC) in 2001 after graduated from high school. Shaofei received 

his Bachelor’s degree with a major of Biochemistry and Molecular Biology in 2005. In August 

2005, he enrolled in the Biochemistry, Cellular and Molecular Biology program as a graduate 

research assistant. Shaofei was awarded the Wright Research Award in May, 2011. He will 

start his post-doc research in National Institutes of Health (NIH) from September, 2011.  

 

 

 

 

 

 

 


	Endogenous gypsy insulators mediate higher order chromatin organization and repress gene expression in Drosophila
	Recommended Citation

	CHAPTER I
	Introduction
	Chromatin organization and gene regulation in the nucleus
	Position-effect variegation in Drosophila
	Chromatin insulators or Boundary elements in the eukaryotic genome
	Chromatin insulators in Drosophila
	Gypsy insulators in Drosophila genome
	Endogenous gypsy insulators and insulator bodies
	Predictive models to explain insulating effects of insulators or boundary elements
	General transcriptional machinery in Eukaryotes and assembly and recruitment of RNA polymerase (Pol) II to promoters 
	Transcriptional regulation at the initiation step 
	Transcriptional regulation during elongation
	Research questions addressed in this dissertation 


	               CHAPTER II
	Materials and methods
	Drosophila stocks and crosses
	In situ hybridization combined with immunostaining on polytene chromosomes
	Chromatin immunoprecipitation 
	Immunostaining of polytene chromosomes
	Over expression of Su(Hw), total RNA isolation and quantitative RT-PCR
	Quantitative chromatin conformation capture assay
	DNase I sensitivity assays
	Oligonucleotides

	CHAPTER III                   
	Results
	Intragenic Su(Hw) insulators reduce basal expression levels of mature mbl and Sdc mRNAs
	In addition to basal mRNA expression levels, intragenic Su(Hw) insulators also reduce active transcription levels of mbl and Sdc
	Loss of insulator proteins leads to changes in mbl RNA processing in Drosophila
	Su(Hw) insulators may help define chromatin domains of gene expression 
	Su (Hw) insulators regulate gene expression differently in brain and Salivary gland tissues 
	The mbl locus forms a condensed chromatin structure associated to Su(Hw) intragenic insulators in polytene chromosomes 
	Ectopic activation of mbl disrupts chromatin organization
	Ectopic activation of mbl affects transcription of adjacent genes in a tissue-and gene-specific manner
	Endogenous Su(Hw) insulators have a stronger repressive effect on transcription of mbl and its upstream neighboring genes after mbl activation than before activation
	Establishment of banding pattern of polytene chromosomes is a dynamic process
	Loss of endogenous Su(Hw) insulator function reduces DNase I accessibility along the mbl locus
	Chromosome Conformation Capture assays show that Su(Hw) insulators mediate the formation of chromatin loops in intragenic sequences of mbl 
	PolⅡ is enriched at intragenic insulator sites in mbl


	              Chapter IV
	Discussion
	Repression of transcription and higher-order chromatin structure. 
	Su(Hw) insulators and mRNA processing


	List of References
	VITA

