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Abstract 

 
As nontoxic biobased surfactants derived from plant oils and cellulose or starch, 

saccharide-fatty acid esters are widely used in cosmetics, food, and pharmaceutical 

industries due to their biocompatibility, biodegradability as well as antimicrobial activity. 

Generally, saccharide-fatty acid esters are synthesized chemically under high pressure, 

temperature and the presence of alkaline or acid catalysts leading to low-quality products 

(chemo-degradation of double bonds and oxygenated moieties) and large amounts of 

byproducts. In contrast, biocatalytic synthesis enhances sustainability: near-ambient 

pressure and temperature, the absence of toxic, acids and bases catalysts, and improved 

selectivity of products. For lipase-catalyzed synthesis under nearly anhydrous conditions, 

the major hurdle to be overcome is the poor miscibility of the acyl donor and acceptor 

substrates, resulting in slow reaction rates. Although several approaches such as, the 

employments of organic solvents, complexation agents, and ionic liquids, have been 

reported in the literature, a robust solution is desperately needed. This study focused on 

employing immobilized lipases under completely solvent-free conditions to synthesize 

saccharide-fatty acid esters using the ester products to enhance miscibility. 

Experimentally, metastable saccharide particles with a diameter of 10-100 micron-sized 

suspensions of saccharide were formed in oleic acid-rich ester mixtures initially for 

synthesis of saccharide-fatty acid esters in packed bed bioreactor containing immobilized 

lipases. Water, a by-product that limits ester yield by promoting hydrolysis, was removed 

via free evaporation. In this dissertation, a bioreactor system was developed for the eco-

friendly solvent-free, immobilized lipase-catalyzed synthesis of biobasaed surfactants 

utilizing suspensions as reaction medium with 88 wt% in 6 days; the performance of the 

bioreactor systems developed for Objective 1 was optimized through water concentration 

control and interval time with 91 wt% in 4.8 days; and to improve design of bioreactor 

system developed in Objective 1 by in-line filter and  derive a mathematical model to 
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describe the production of esters by the bioreactor systems developed. Finally, 84 wt% 

ester content was achieved in 8.4 days. 

 

Keywords:  biocatalysis, lipase, saccharides-fatty acid esters, biobased surfactant, 

solvent-free, bioreactor, water control, fructose-oleic acid ester 
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CHAPTER 1 

INTRODUCTION & OBJECTIVES 



 

 
 

2

 

1.1 Motivation of Enzymatic Synthesis of Biobased Surfactant 

 
Surfactants are amphiphilic compounds employed for the decrease of surface and 

interfacial tensions and improvement of the solubility and mobility of hydrophobic or 

insoluble organic compounds by accumulating at the interface of immiscible fluids [1]. 

Specially, surfactants consist of polar and non-polar groups.  The polar group or 

“head” interacts with hydrophilic molecules such as water. In contrast, the non-polar 

group or “tail” has affinity for lipophilic molecules, for instance, oil [1]. Generally, 

surfactants are classified into two major categories: ionic and non-ionic surfactants 

based on head group chemistry. More specially, an ionic surfactant dissociates in 

water releasing cation, anion or zwitterion. In contrast, a non-ionic surfactant with a 

polarization of electrostatic charges dissolves in water by formation of hydrogen 

bonds [1].  

 

Due to their ability to co-solubilize water and oil, they are widely used in the laundry, 

personal care product, and dishwashing detergents industries. However, the majority 

of surfactants consumed in daily life are petroleum-based. With a high degree of price 

fluctuations for petroleum, scientists are making efforts on the development of a 

substitute from renewable and natural sources, such as seed oils and sugars from 

feedstocks and biomass. Although fats / seed oils are more expensive currently, this 

situation will change.   

 

In this project, enzymatic synthesis of nontoxic, biodegradable and environmentally-

friendly biobased surfactants is focused upon due to advantages compared with 

chemical synthesis. First, enzymatic methods provide lower energy consumption, for 

instance lower temperature and ambient pressure and lower amounts of reactants due 

to employment of near-stoichiometric ratios. Second, utilization of enzyme can offer 
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the safer and more environmentally-friendly operation conditions due to the absence 

of toxic metal or acidic/basic catalysts. Third, a narrower production distribution is 

often yielded by enzyme synthesis.   

 

The overall goal of this research is to design an enzymatic bioreactor system for 

solvent-free lipase-catalyzed synthesis of saccharide-fatty acid esters, biobased 

surfactant. Attempts and efforts will be made toward solving two major problems that 

occur: slow reaction rate and control of water concentration.  The poor miscibility of 

the lipophilic acyl donor and hydrophilic acyl acceptor is the primary reason resulting 

in the slow reaction rate. Some methods have been employed to overcome this 

problem, such as, employing polar organic solvents and ionic liquids (reviewed in 

Chapter 2). In this dissertation, metastable 10-100 micron-sized suspensions of 

saccharide were formed in oleic acid and ester mixtures (75/25 w/w) for synthesis of 

saccharide-fatty acid esters in packed bed bioreactor containing immobilized lipases 

(Objective 1). ( described in Chapter 3).  Water is a by-product that inhibits the ester 

yield by enhancing hydrolysis of ester. Therefore, water removal is required from 

bioreactor system via some approaches, for instance, free evaporation, molecular 

sieves, and vacuum pressure (described in Chapter 4). Additionally, optimization of 

the bioreactor system developed for Objective 1 was performed through the water 

control and reformation of suspensions media (described in Chapter 4). Different 

common acyl donors and acyl acceptors were used to examine the universality of the 

bioreactor system developed by Objective1and the relationship between 

concentrations of acyl acceptors and the initial rates was investigated in Chapter 5. 

Further, an on-line filter was developed and applied into the bioreactor system 

combining with the selected water removal method for the operation of a continuous 

process under the optimal condition (described in Chapter 6).  In Chapter 7,  some 

recommendations for future work were provided.  
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1.2 Objectives                                                                                                          
 

The overall objective of research was to design and develop enzymatic bioreactors to 

produce saccharide fatty acid esters in solvent-free media. Currently, enhancing the 

reaction rate and conversion yield under solvent-free conditions is the first major 

hurdle to be cleared. Accordingly, achieving the overall objective requires fulfillment 

of three sub-objectives: 

 

1. Investigate the optimal the conditions required to form metastable 10-500 micron-

sized suspensions of saccharide crystals and their utilization in solvent-free 

bioreactor systems to produce saccharide-fatty acid esters 

2. Optimize the water content and water removal approach in the bioreactor system 

of Objective1 to efficiently maximize the conversion of desirable products 

3. Improve the design of the bioreactor system developed by Objectives 1 and 2 

through incorporating of an on-line filter and derive a mathematical model to 

simulate the time course of reaction.  
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2.1 Introduction 

 
As mentioned in Chapter 1, the overall objective of this proposal is to design an 

enzymatic bioreactor system for solvent-free lipase-catalyzed synthesis of saccharide-

fatty acid ester biobased surfactant. To understand the current state-of-the-art, some 

relevant topics in the literature will be covered in this chapter, such as lipase-catalyzed 

reactions in nonaqueous media, chemical synthesis of saccharide-fatty acid esters, and 

application of saccharide-fatty acid esters. Also, kinetic model of bioreactors for 

lipase-catalyzed synthesis of saccharide-fatty acid esters will be described. For the 

section of enzymatic synthesis of saccharide-fatty acid esters in nonaqueous media, 

several sub-topics covered include organic solvent, supercritical carbon dioxide, ionic 

liquids, eutectic mixtures and solvent-free media. 

 

2.2 Lipase-Catalyzed Reactions in Nonaqueous Media 
 

Nonaqueous bioprocessing is attractive for several different reasons. Since the free 

energy of substrate dissolution relies on the physicochemical properties of solvents, 

the substrate specificity of an enzyme is solvent-dependent [1]. The employment of 

enzymes in nonaqueous media enhances their catalytic synthetic capability by 

allowing for a wider range of substrates that can be utilized [2]. In addition, low water 

content in nonaqueous media shifts ester or amide formation at equilibrium toward 

product synthesis. Moreover, organic solvents also reduce microbial contamination [3]. 

Furthermore, enzymes in nonaqueous media often possess improved thermostability 

due to the low water content in their microenvironment.  Also, the downstream 

purification of product is simplified since solvents are often easily evaporated away 

[4-6].  
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Enzymes catalyze reactions in nonaqueous media under mild operational conditions 

and yield a narrow distribution of products and relatively high reaction rates compared 

to the absence of biocatalysts [7]. However, most benign solvents are relatively 

hydrophobic. Some enzymes will lose their inherent activity in the presence of organic 

solvent-based media. For instance, polar organic solvents can alter chemical and 

physical structure of an enzyme’s active site of by removing its water molecules of 

hydration. The resultant conformational change will lead to the loss of enzyme activity. 

Secondly, since enzymes are typically insoluble suspensions in nonaqueous solvents, 

in contrast to aqueous media, this leads to diffusional mass transfer limitations 

between substrates and enzymes’ active sites.  Hence, a decrease of enzyme activity 

will occur. However, many organic solvents interact relatively benignly with many 

enzymes. There are small amount of water in such solvents allowing for the enzyme 

activity to remain activity since the solvents extract away minimal water used in 

formation of bonds with polar amino acids on the enzyme surface [2,3, 8,9].  

 

Lipases (triacylglycerol ester hydrolases, EC 3.1.1.3) are enzymes which exhibit the 

ability of modifying of oils and fats by formation and breakage of ester bonds [10-11]. 

Many lipases possess a helical oligopeptide lid that protects the active site and 

interacts with a hydrophobic interface. The active site generally includes a catalytic 

triad composed of serine, histidine, aspartate; and, an α/β-hydrolase fold forms the 

catalytic features of lipase. Also, lipases require no cofactor or coenzymes. 

Furthermore, lipases are well studied, inexpensive and commercially available [10-12].  

 

The numerous applications of lipase-catalyzed reactions in industry and research are 

related to the several different reactions it can catalyze, including hydrolysis, 

esterification, alcoholysis, acidolysis and transesterification (Fig. 2.1) [13]. Fatty acids, 

employed in soap production, are produced by lipase-catalyzed hydrolysis of 

triacylglycerols [14] or they could be obtained through environmental sewage disposal  

treatment from  digestion of oil-rich waste liquids [15-17]. The ability of lipases to 
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hydrolyze lipids has led to their use in laundry detergents [18-22]. Lipases are 

important for the food industry [23-24]  For example, the enhancement of flavors in 

cheese products and acceleration of cheese ripening require lipases [25]. Lipases assist 

in the formation of fruit-enhancing flavors such as apple and strawberry for beverage 

production [26]. Also, lipases can modify animal fat as an alternative to butter. Akoh 

and co-workers utilized Rhizomucor miehei lipase to generate a inexpensive 

replacement for cocoa butter through acidolysis of beef tallow by stearic acid due to 

an increase in cost of coca butter, producing a “structured lipid” which is generally 

defined as a lipid structurally modified and reconstructed to obtain a desired 

nutritional, physical, and chemical function [27]. This approach potentially reduced 

production costs due to the use of an inexpensive animal by-product (tallow) [27]. 

Lipases also are employed in the chocolate industry as coffee whiteners [27-29]. In the 

pharmaceutical industry, lipases are used in the preparation of single-isomer chiral 

drugs by hydrolysis and transesterification reactions conducted in organic solvents 

[30-31]. Both asymmetric synthesis of racemic alcohols, acids, esters or amines [32] 

and the desymmetrization of prochiral compounds [33] depend on lipases as a highly 

stereoselective biocatalyst to accomplish. In addition, lipase-catalyzed synthesis  is 

employed to produce esters as cosmetic ingredients that retain moisture [34]. Recently, 

hexyl laurate,  an ingredient applied widely in cosmetics, was synthesized by 

esterification in a solvent-free system in the presence of immobilized R. miehei lipase 

[35]. Also recently, fatty chlorogenate esters, which possess high antioxidant capacity, 

were obtained at 93% yield through employment of Candida antarctica B lipase [36]. 
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Fig. 2.1. Lipase-catalyzed reactions [13]. 
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2.2 Chemical Production of Saccharide-Fatty Acid Esters  
 

In general, saccharide-fatty acid esters are synthesized by chemical methods under 

extreme conditions, such as high temperature and pressure, and/or the presence of 

alkaline or acid catalyst [37, 38]. For example, the synthesis of sorbitan-fatty acid 

esters involves a two-stage process that consists of dehydration of sorbitol in the 

presence of acid (e.g. NaH2PO3) at 150-200°C, followed by alkali (e.g., Na2CO3
-)-

catalyzed esterification with fatty acids at 200-250°C [39]. In addition, sucrose esters 

are synthesized by base- (K2CO3
-) catalyzed transesterification with fatty acid methyl 

ester (R’COOMe) serving as acyl donor in dimethyl formamide (DMF) at 90 °C  [39, 

40]. 

 

2.3 Applications of Saccharide-Fatty Acid Esters 
 

Due to their amphiphilicity, nontoxic and biodegradability, saccharide-fatty acid esters 

are widely utilized biobased nonionic surfactants or emulsifiers in foods, 

pharmaceuticals and cosmetics [41]. These esters are being increasingly employed 

since they are harmless to the environment, compatible with eyes and skin, and utilize 

low-cost renewable feedstocks [42-43]. Typical applications include baked goods, 

fruit coatings, and confectionery foods [44-46]. Sucrose-fatty acid esters also are 

applied in detergents industry [47]. Emulsifiers are useful functional additives widely 

employed in food processing involving multiphase systems. They enable two distinct 

phases to form a stable quasi-homogeneous material that remains stable for a 

significantly long time. Also, emulsifiers modify and improve the physical property of 

the continuous phase in a food product. Similar to other emulsifiers, sucrose-fatty acid 

esters possess both lipophilic and hydrophilic functional groups. The relative 

proportion of hydrophilic and lipophilic behavior for surfactants and emulsifiers is 

often expressed as the hydrophilic-lipophilic balance, or HLB. The HLB value occurs 
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within the range of 0 to 20, with low numbers (<9) indicative of more lipophilic 

behavior and high numbers (>11) reflecting more hydrophilic preference. Saccharide-

fatty acid esters can be tailored through the number of fatty acyl groups per molecule 

and the length of the fatty acyl chain to cover almost the entire HLB range. 

 

Utilization of sugar esters as additives for drug formulations has been investigated. 

Some studies indicated sucrose-fatty esters significantly enhance the percutaneous 

permeation of ionized and unionized drug species by in vitro experiments using 

excised hairless mouse skin, demonstrating their potential application in transdermal 

drug delivery [48]. Sugar-fatty acid esters also exhibited some antitumoral properties. 

6, 6′-Diestertrehaloses of fatty acids (C8, C10, and C12) and n-dodecyl-β-D-maltoside 

have been identified as a new class of anti-cancer agents due to their inhibitory effects 

on tumor necrosis factor gene expression [49].  

 

Sugar-fatty acid esters are potentially useful as food preservation agents to prevent 

food spoilage since they have antimicrobial activity, especially toward Gram-positive 

bacteria (spore-formers). In addition, yeasts and moulds also suffer growth retardation 

through sucrose-fatty acids ester treatments [50].  6-O-lauroyl sucrose and maltose 

when present at 0.8 mg/ml and 4 mg/ml, respectively, are capable of inhibiting the 

growth of Bacillus sp. and Lactobacillus plantarum, respectively. However, sucrose 

dilaurates and 6-O-lauroylglucose did not show antimicrobial activity because of their 

low aqueous solubility [51].  In addition, commercial sucrose esters are widely used in 

canned beverages for inhibitory function on the germination of spore-forming 

bacterium, especially in Japan (Mitsubishi-Kagaku Foods Corporation, Japan). 

Bacillus may lead to food poisoning once the concentration of B. cereus reaches 

106 g/g in foods.  It produces two types of food-borne intoxications in humans: the 

emetic form (causing vomiting) and the diarrheal form. The minimal inhibitory 

concentration (MIC) of sucrose laurate against B. cereus food poisoning bacteria is 

9.375 mg/ml [52]. Maltose and maltotriose esters inhibited the growth of 
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Streptococcus sobrinus and galactose laurate, fructose laurate and 6-O-

lauroylmannose showed the highest inhibitory effect against S. mutans. Both bacteria 

have been intensively implicated as causative organisms of dental cavities caries. 

Hence, the esters are potentially useful oral-hygiene product additive [53-54]. 

 

Since sugar-fatty acid esters are fully biodegradable and totally nontoxic to humans, 

higher animals, and crops, they appear to be good candidate for insecticides. Some 

related researches have been reported. Twelve synthetic sucrose ester (SE) products 

with C7-C10 chain length and various degrees of esterification were examined for 

their capability to inhibiy seed germination of prosomillet and velvetleaf. Most of the 

sucrose esters tested resulted in virtually total inhibition of germination at low 

concentration (100 ppm). Among them, sucrose esters with seven and eight carbon 

acyl groups were the most active; and, nonanoyl and decanoyl esters were not 

effective. Di-, tri-, and tetraacyl esters were also highly effective [55]. Another 

research group found a sucrose octanoate mixture containing a large fraction of 

monoester yielded the highest activity against arthropod pests, with additional esters 

tested consisting of sorbitol octanoate, sorbitol decanoate, sorbitol caproate, xylitol 

octanoate, xylitol decanoate and xylitol dodecanoate in the range from 1200 to 2400 

ppm [56]. Moreover, sucrose octanoate (4,000 ppm) exhibited high pesticide activity 

against nymph and adult whiteflies [57].  

 

The combination of antimicrobial activity with other functional properties such as 

emulsification and stabilization emphasizes the potential value of sucrose esters in the 

manufacture of foods, cosmetics and pharmaceuticals. But, care must be taken that 

other ingredients in a formulation do not impair their activity [50]. 
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2.4 Lipase Catalyzed Synthesis of Saccharide-Fatty Acid 

Esters in Organic Solvent 
 

Solvents are usually employed for the lipase catalyzed synthesis of saccharide-fatty 

acid esters on a laboratory scale to help co-solubilize saccharide and acyl donor. The 

solvent type has various effects on the lipase-catalyzed production of sugar-fatty acid 

esters. Table 2.1 lists common organic solvents employed for the lipase-catalyzed 

synthesis of saccharide-fatty acid esters. Many literature examples also compare 

different types of solvents and sources of lipases to optimize reaction rate and yield. 

Recently, different lipases (from Pseudomonas cepacia, R. miehei, Candida antarctica 

and Thermomyces lanuginosus)  and solvents (2-methyl-2-butanol, acetone, and 

methyl ethyl ketone, or MEK) were compared in lipase-catalyzed synthesis of lactose 

monolaurate and sucrose monolaurate using response surface methodology [58]. The 

optimal synthesis conditions occurred at 61 °C using in 2-methyl-2-butanol, R. miehei 

lipase (Lipozyme IM, Novozymes, Inc, Franklinton, NC USA, abbreviated “RML” in 

this dissertation), and vinyl laurate and lactose at molar ratio of 3.8:1 initially, yielding 

99.3% conversion.   

 

A Slovenian research group [59] investigated the influence of organic solvents (2-

methyl 2-butanol, ert-butanol, acetone and MEK) on the synthesis of fructose 

palmitate. A conversion of 82% was obtained for MEK in 72 h at 40 °C using 10 % 

(w/w) molecular sieves for removal of the reaction product, water. In addition, 

Candida antarctica B immobilized lipase products (SP 435 and SP 382 from 

Novozymes, abbreviated “CALB” in this proposal) successfully catalyzed fructose-

palmitic acid esterification to obtain 53% and 44% fructose palmitate in 2-methyl 2-

butanol at 40°C under stirring at 600 rpm with molecular sieves. Under the same 

condition, 30% final yield was achieved by RML-catalyzed esterification. The initial 
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rate of esterification achieved using CALB  was higher than achieved using RML  for 

a common concentration of biocatalyst [59].  
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Table.2.1. Lipase-catalyzed synthesis of saccharide-fatty acid esters in different organic 
solvent systems 

 
 

 
Solvents 

 
Acyl acceptor 

 
Lipase 

 
Product 

 
Yield (%) 

Diisopropylether 

Arabinose 
 

                 PPL a 

 
5-OAcetylarabinofuranoside 
 

68 [61] 

Glucose 
 

 
6-O-Acetylglucopyranoside 
 

62 [61] 

Fructose 1-O-Acetylfructoside 70 [61] 

Acetone 
 

Xylitol                 CALB b 
Xylitoyl laurate 70 [62] 

Xylitoyl myristate 70 [62] 

Glucose                 CALB b Xylitoyl palmitate 98 [63] 

Methyl-α-D-glucoside        CALB b and RMLc 
6-lauroyl glucose ester 

41 [64] 
methyl-A-D-glucopyranoside 

α-D(+)-glucose                 CALBb D(+)-glucose palmitate 86 [65] 

Dioxane D(+)-glucose                 CALBb D(+)-glucose stearic 95 [65] 

2-methyl-2-butanol Sucrose Pseudomonas cepacia lipase d Sucrose monolaurate 34.2 ± 1.66 
[58] 
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Table.2.1.  Continued 
 

 
Solvents 

 
Acyl acceptor 

 
Lipase 

 
Product 

 
Yield (%) 

 
Ethyl methylketone 

Lactose 

 
                 RMLc 

Lactose monolaurate 52.4 ± 1.88 
[58] 

D-fructose Fructose oleate 83 [66] 

fructose fructose palmitate 73.4 [67] 

α-Butylglucoside                CALB b α-Butylglucoside Oleate 95 [68] 

Gulcose                 CALB b glucose stearate 93 [70] 

Galactopyranose 
 
               CALB  b 
 

galactopyranose sophorolipid 60 [71] 

Tetrahydrofuran D-psicose                 CALB b   D-psicose dilaurate 90 [72] 

 
Dimethylformamide 

D-psicose 
1,2-O -isopropylidene-D -
xylofuranose 

 
 
                RML c 
 

D-psicose dicaprate 86 [72] 

 
 
D-Glucose 

xylose 5-arachidonate 85 [73] 

 
1- or 6-O-stearate glucose 83 [73] 

 
Heptane 

 
n-Butanol                 CALB b  

n-Butyl acetoacetate 24 [74] 



 

 
 

17

 
         Table.2.1.  Continued 

 

 

a PPL= porcine pancreatic lipase   
Immobilized onto Accurel nylon beads, Novozymes, Inc., Franklinton, NC, USA 
b Lipase B from CALB (lipase B, Candida antarctica lipase immobilized on Accurel EP-
100) Novozymes, Inc., Franklinton, NC, USA 
c  Lipozyme IM (Mucor miehei lipase immobilized on an macroporous anion exchange 
resin) Novo Nordisk A/S, Bagsvaerd, Denmark 
d Amano Lipase PS-C I (from P. cepacia (Lot# 07703EE)) Sigma–Aldrich ,St. Louis, MO, 
USA 
e Lipozyme TL IM from  Thermomyces lanuginosus immobilized on silica.,  Novo 
Nordisk A/S, Bagsvaerd, Denmark 

 
Solvents 

 
Acyl acceptor 

 
Lipase 

 
Product 

 
Yield (%) 

 
Toluene 

 
Glucose                 CALB b  

 6-O-Vinylacetyl glucose 25 [75] 

 
Acetonitrile 

 
Mannose 

                RML c  
 
 
    6-O-Lauroyl mannose 

15 [75] 
Thermomyces lanuginosus  
 lipase e 74 [76] 

 
                CALB b  
 

60[77] 

  
D(+)-Mannose 

                  
  
                CALB b 

 
   acyl mannoses 70 [78] 

 
2-Methyl-2-propanol 
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The logarithm of a solvent’s water/ octanol partition coefficient (log P), which 

is generally seen as a critical measure of solvent polarity, is also a significant 

parameter for enzyme activity and stability associated with lipase catalyzed 

synthesis of sugar-fatty acid esters in nonaqueous media [42,79]. Log P values 

for several common solvents are given in Table 2.2.  Higher enzyme activities 

and stabilities are achieved using nonpolar solvents possessing log P values > 3 

[80-82], which are also suitable for the lipase catalyzed interesterification of 

oils and fats [79].  However, the solubility of sugar in organic solvents with 

high log P values is very poor. Table. 2.2 provides the activity and stability of 

lipase and glucose solubility in common organic solvents for the esterification 

of glucose and myristic acid. Although organic solvents have benefited many 

lipase-catalyzed reactions in laboratory-scale experiments as described in the 

literature, there are a limited number of organic solvents listed in Table. 2.2 

which performed adequately for lipase catalyzed synthesis of sugar-fatty acid 

esters, all of which possessed log P values between 0 and 1.5: tert-butanol, 

tert-pentanol, acetone, and tetrahydrofuran, or THF. More polar solvents with 

Log P values < 0 in general performed poorly, despite their ability to solubilize 

glucose.  Polar solvents  usually lead to the loss of enzyme activity by their 

ability to remove water molecules of hydration from the enzyme’s 

microenvironment and by promoting the hydrolysis of ester products resulting 

in the decrease of product yield and formation of by-product [13, 60, 64]. In 

addition to improving substrate solubilization in the absence of enzyme 

inactivation, an ideal organic medium will be environmentally-friendly and 

easily recovered and recycled after completion of the reaction [9, 41, 60]. Of 

the moderately polar solvents listed above that performed best for lipase-

catalyzed saccharide-fatty acid esterification,  acetone, a solvent accepted by 

European economic community directives (88-344-CEE) as an extraction 

solvent in the manufacture of food products and additives [83], ranks highest in 

its achievement of the ideal solvent conditions .  
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Solvent-systems that combine two or more organic solvents have been useful.  

One binary solvent system (2-methyl-2-butanol: dimethyl sulfoxide, or DMSO, 

4:1 v/v) was applied for the esterification of maltose, sucrose, and glucose by 

lipases from T. lanuginosus and CALB by combining a small fraction of 

solvent which greatly enhances saccharide solubilization at the expense of 

enzyme stability (DMSO) with a larger fraction of a solvent the allows for high 

enzyme activity but poorly solubilizes acyl acceptor (2-methyl-2-butanol).  

Using this approach, the conversion of sucrose monolaurate was > 80% using T. 

lanuginosus lipase [51].  Myristic acid esters of fructose, α-D-

methylglucopyranoside  and maltose was also synthesized successfully in a 

mixture of tert-butanol: pyridine 55/45 v/v) using immobilized CALB, 

achieving productivity values of 22.3 μmol min−1 g−1, 26.9 μmol min−1 g−1, and 

1.9 μmol min−1 g−1, respectively, even though neat pyridine denatures many 

lipases [84]. 

 

Although the utilization of organic solvents in enzymatic synthesis has some 

benefits, there are several substantial disadvantages for their employment for 

large-scale synthesis, such as the loss of enzyme activity they often cause and 

the concern for their impact on environmental and personal safety. Therefore, 

other alternative approaches are desirable. 
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Table 2.2. Activity of Lipase (Immobilized CALB lipase, Novozymes, Inc, 
Franklinton, NC USA), Glucose Solubility, and Enzyme Stability for the 
Esterification of Glucose and Myristic Acid as a Function of Solvent 
Hydrophobicity [66] 
 
 
 
    
      Solvents 

 
Solvent 
hydrophobicitya 
(log P) 

 
Enzyme         
activityb  
(imol/min 
g) 

 
   Glucose 
   
Solubilityc 
    (mM) 

 
Residual   
activityd 

(%) 

 Dimethylsulfoxide        -1.3       0       29 0 
 Dioxane        -1.1      1.1       7.5 53 
Dimethylformamide        -1.0      0       12 0 
Acetonitrile        -0.33      0       1.1 27 
Acetone          0.23      3.0       2.6 46 
Tetrahydrofuran         0.49      1.6       2.1 46 
Pyridine         0.69      0       134 0 
tert-Butanol          0.80      3.7       12 75 
tert-Pentanol          1.4      3.6       10 71 
Toluene          2.5      0        0.6 54 
Hexane          3.5      0        0 80 

 
a After decanting the solvent, the immobilized enzyme preparation and the 
molecular sieves were washed 4 times with warm (45°C) tert-butanol followed 
by drying in vacuo for 2h. Additional molecular sieve (500 mg) was added 
before reuse.  
from [79] 
b The enzymes were recovered after 24 h of reaction to determine their residual 
activity.    
c Determined after the initial 24 h of incubation at 45°C, before enzyme 
addition. 
d Measured by reacting 150 mg glucose x 1H2O and 750 mg myristic acid in 5 
ml of solvent in the presence of 35 mg lipase and 0.5g molecular sieves at 
45°C and rotary shaking  (250 rpm) for 24 h. The reaction was carried out at 
45°C (250 rpm). 
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2.5 Lipase Catalyzed Synthesis of Saccharide-Fatty 

Acid Ester Reactions Using Eutectic Mixtures  
 

Another approach invented for lipase-catalyzed synthesis of saccharide fatty 

acid is to employ a mainly solid-phase system composed of  saccharide, fatty 

acid and product in the presence of a small amount of organic solvent (e.g. tert-

butanol or acetone) acting as adjuvants to create small catalytic liquid phases at 

near-ambient conditon [85]. Compared with reactions in organic solvent media, 

the initial reaction rate and overall productivity of reaction in “solid-phase” 

systems are often improved several-fold [65]. As shown in Fig. 2.2 A&B, the 

success of this approach can be attributed to the solid-phase substrate acting as 

a “reservoir” to replenish liquid-phase substrate converted to product.  Also, 

the precipitation of product simplifies downstream product purification and can 

enhance product selectivity.  For instance, saccharide-fatty acid monoester 

product formed in “solid-phase media” readily precipitates, lessening the 

ability of lipase to catalyze diester formation. In Fig. 2.2.C, the eutectic 

mixture consisting of solid and liquid phase provides a method which 

decreases the melting point of a mixture, even lower than the melting point of 

each pure compound in the mixture [86]. An organic solvent usually decreases 

the melting point resulting in a eutectic mixture at room temperature or below 

[86]. The eutectic mixture contains mostly substrate molecules and a small 

amount (5–30%, gram-solvent per gram-total substrate mixtures) of organic 

solvent in Fig. 2.2.C. Eutectic media displays a stable biocatalytic liquid phase 

with extremely high concentration of substrates. The lowest melting point, 

called the eutectic point, can be identified at a specific composition of the 

mixture. Due to the utilization of small amounts of organic solvents in eutectic 

media, they can be considered to be more biocompatible and environment 

friendly for enzymatic reactions than in pure organic phase media [87-88]. 

Although acyl acceptors are almost insoluble in the catalytic liquid phase of 
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system, final products in high yield composed of most monoesters were 

obtained due to crystallization of monoesters in the catalytic liquid phase. The 

final conversion of β-D(+)-glucose with palmitic acid was up to 86% at 48 h 

[65]. The reaction rate for the esterification of β -D(+)-glucose with stearic acid 

was equal to 0.4 mmol saccharide fatty acid ester per gram CALB lipase per 

hour [89]. The acylation of β-D (+)-glucose with palmitic acid in tert-butanol 

by CALB was synthesized in a solid-phase system with highest selectivity 

(98% monoacylation). The selectivity in the acylation of fructose has the 

significantly relationship with fatty acid chain length and the type of organic 

solvent. Monoacylation was created in the presence of less hydrophobic 

solvents (e.g. tert-butanol) [90]. In the solid-phase system, the polarity of the 

biocatalytic phase has essential relationship with the fatty acid. In contrast, the 

organic solvent is insignificant for the polarity of the reaction phase. The 

influence of the saccharide or saccharide-fatty acid ester (desirable products) 

on lipase stability can be neglected due to their low solubility in the system 

[91].  

 

Although the synthesis of fatty acid ester in the solid phase system exhibits 

high reaction rate, quantitative saccharide-fatty acid ester yield and high 

selectivity, they are organic solvent based reactions leading to the increase of 

the cost of process and its inherently batch nature has a negative effect on 

continuity of the process [60]. 
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Fig.2.2. Schemes of substrate mixtures in organic solvent media (A), solid 

phase media (B), and eutectic media (C); S: substrate; P: product; E: 

enzyme [85] 

 

2.6 Synthesis of Saccharide Fatty Acid Ester in Two-

Phase Supercritical Carbon Dioxide Systems  
 

 

The supercritical carbon dioxide, as an interesting alternative medium for 

synthesis of saccharide-fatty acid esters, exhibits several advantages over 

organic solvents as reaction media due to its nontoxicity, low flammability, 

low cost operating condition (temperature > 31°C; pressure > 7.3 MPa) 

compared with traditional chemical synthesis approaches. The solvent power 

of supercritical CO2 is controlled through adjusting temperature and pressure. 

The simple recovery process for products and enzyme particles from reaction 

media through a series of depressurization steps is an additional benefit [93]. 

Experiments demonstrate the stability of enzymes in supercritical carbon 

dioxide is satisfactory and comparable with enzyme stability in organic 

solvents [94].  
 

A supercritical carbon dioxide batch-stirred-tank device (Fig. 2.3) was created 

to catalyze fructose-palmitic acid esterification in the presence of lipase from 

CALB (Novozym 435, Novozymes, Inc.). Sixty percent conversion was 

obtained at 60 °C and 10 MPa after 24 h [95]. Since only palmitic acid is 

soluble in the supercritical phase, the downstream isolation  of the fructose 

palmitate was easily achieved [95].  Furthermore, silica gel used as saccharide 

solid support material was introduced into lipase-catalyzed reaction with 50-

60% yield and high selectivity of final product (most monoester) [93].  
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Fig. 2.3. Schematic diagram of the supercritical-CO2 bioreactor apparatus 

employed for lipase-catalyzed synthesis of saccharide-fatty acid esters: (1) 

magnetic stirrer and heater; (2) bioreactor; (P) high-pressure pump; (PI) 

pressure indicator [95] . 
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A high-pressure acetone–CO2 supercritical phase system has been employed as 

a medium for glucose palmitate ester synthesis catalyzed by CALB (at 65 bar 

and 50 °C using 3% (v/v) acetone [92]. The reaction mechanism for the 

esterification of palmitic acid and glucose in a high-pressure acetone–CO2 

system, shown in Fig. 2.4, consists of glucose particles suspended in the 

reaction mixture [92]. A pseudo- dynamic equilibrium was assumed between 

glucose, palmitic acid, glucose palmitate, acetone, CO2, and H2O, as depicted 

in Fig. 2.4. The top or “light” phase consisted mostly of acetone and CO2, with 

substrates and products present at small concentration, served as the reaction 

phase utilized by lipase. Solid glucose in the “heavy” phase served as a 

reservoir, with glucose molecules diffusing to the light phase to replace light-

phase glucose molecules converted to ester. Glucose palmitate and water 

precipitate as a solid and liquid, respectively, into the heavy phase which 

contains only small amounts of acetone and CO2. Excess water as a by-product 

from esterification can be removed without applying water removal methods 

since water is transferred to the heavy phase when its concentration increases 

beyond the solvent capacity of the light phase. The apparatus for this 

experimental approach, shown in Fig. 2.5 is composed of a CO2 cylinder, a 

cooler for cooling of CO2, a pump for delivery of pre-cooled carbon dioxide, 

several pressure gauges, a high pressure pump, and a stirred tank with a 

thermal controller, an indicator and a heating jacket. The reaction was started 

when all reactants, solvents and lipases were introduced into the reactor at the 

desired temperature and pressure with pre-cooled carbon dioxide. 

 

Although supercritical carbon dioxide is a useful and promising substitute for 

synthesis of saccharide fatty acid, two main unavoidable disadvantages of must 

be overcome: the low solubility of non-polar compounds and the high capital 

and operating costs [96]. 
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Fig.2.4. Reaction mechanism for the esterification of palmitic acid and 

glucose in a high-pressure acetone–CO2 system [92] 
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Fig. 2.5. Schematic diagram of the reactor unit for the esterification of 

palmitic acid and glucose in a high-pressure acetone–CO2 system. V-1: 

pressure valve;  V-2: pressure valve;   V-3: pressure valve; PI: pressure 

unit meter; T1: thermal controller [94] 
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2.7 Synthesis of Saccharide-Fatty Acid Esters in Ionic 

Liquids 
 

Ionic liquids (ILs), consisting of organic salts that are liquid-phase at 

temperatures near ambient, represent a unique class of non-aqueous and polar 

solvents media receiving increasing attention for  organic synthesis and 

biotransformations due to their  absence of vapor pressure and excellent 

chemical and thermal stability [96-98]. Because of low melting points and non-

volatile nature, ionic liquids, called “room-temperature environmental” or 

“green” solvents are attractive alternative for volatile organic solvents [48, 99]. 

More importantly, their widely tunable properties with regard to polarity, 

hydrophobicity and solvent miscibility behavior can be modified by selecting 

the chemical structure of their cation and anion moieties [100].   

 

For most nonaqueous enzymology studies, relatively nonpolar ILs such as 1-

butyl-3-methyl imidazolium hexafluorophosphate or 1-butyl-3-methyl 

imidazolium tetrafluoroborate (Bmim][PF6], [Bmim][BF4] respectively) can be 

used as the replacement of organic solvents. For an investigation of 

thermolysine and CALB, are no difference for the stability and selectivity of 

the enzymes in ILs compared to hexane, THF and acetonitrile, for biocatalytic 

reactions [98,177]. Many studies have been done on stability of enzymes in ILs, 

especially for lipase. For synthesis of saccharide-fatty acid esters, lipase 

activity and operational stability in [Bmim] [PF6] was comparable to hexane 

and superior to other ILs, toluene, and THF [101-102]. The balance between 

kosmotropic and chaotropic ions of ionic liquids, natural properties of the 

enzyme, and water content in the system will be significant factors to influence 

the performance of enzyme activity in ILs [99]. In addition, ILs that consists of 

a “free” hydrophilic anion or cation and a hydrophobic alkyl chain are 
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structurally similar to surfactants and hence potentially valuable for enhancing 

solubility of acyl acceptor substrates. Plus, ILs can improve the 

enantioselectivity of lipase-catalyzed transesterifications [102-105]. 

  

Bornscheuer‘s group discovered that CALB modified by covalent attachment 

of poly (ethylene glycol) catalyzed the esterification of glucose and fatty acid 

in pure [Bmim] [BF4] and [Bmim] [PF6] with 30% and 35% conversion 

achieved, respectively [104]. Although 30% ~ 35% conversions are low, the 

addition of 40% tert-butanol to the ILs, producing a two-phase system, 

increased the conversion to 89% [104]. Another system consisting of an ionic 

liquid ([Bmim] [BF4] or [BMIM] [PF6]) and tert-butanol was prepared for 

lipase-catalyzed synthesis of glucose-fatty acid esters. The final conversion 

achieved was 60% in [Bmim][PF6] and  tert-BuOH  when employing fatty acid 

vinyl ester as acyl donors in the presence of   molecular sieves (10% w/v) and 

CALB at 60 °C [60]. This result presumably indicates tert-BuOH could 

improve the miscibility of substrates.  

 

Zhao and co-works examined the solubility of D-glucose and sucrose in 

different ILs (Table 2.3). An IL (1.0g) in a glass was placed in an oil bath at 

60oC. D-glucose or sucrose (5 mg) was slowly introduced into IL. Then, the 

glass tube containing IL and sugar was clear after a vigorous agitation by hands. 

This procedure was repeated until the IL did not turn clear. It means the 

saturation limit was reached.  [Me(OEt)3-Et-Im][OAc] exhibits the good 

capability for the solubility of D-Glucose 80 wt% of ionic liquid shown in 

Table. 2.3 [107]. Furthermore, Lee and coworkers created a novel procedure 

for the formation of supersaturated sugar/IL solution stirring a water-soluble 

saccharide solution and IL.  Subsequently, the water was removed from the 

mixture solution by vacuum evaporation for 12 h at 60°C. Through this method, 

the glucose concentrations achieved in [Emim][TfO] and [Bmim][TfO] were 

19 and 10-fold higher, respectively,  compared to the solubility of glucose in 
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the ILs at room temperature. Furthermore, the stability of supersaturated 

glucose solutions in ILs was stable for 1 day and the glucose concentration was 

decreased by 87% compared to the initial concentration after 3 day [108]. The 

supersaturated solution when employed for lipase-catalyzed esterification 

produced a 96% yield of only monoester (6-O-lauroyl-D-glucose) in 1 day.  

Specifically, a high initial rate (15.0 μmol/ (min g)) in [Bmim] [TfO] was 

achieved when supersaturated glucose/IL solution was employed. These results 

indicated the utility of supersaturated solutions for lipase-catalyzed saccharide-

fatty acid esterification [108]. 

 

 

Table 2.3. The solubility of D-glucose and sucrose in different Ionic liquids at 

600C [107] 
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2.8 Synthesis of Saccharide-Fatty Acid Esters in 

Solvent-Free Media  

 
Solvent-free media is desirable for the lipase-catalyzed synthesis of sugar-fatty 

acid esters due to low cost, improved operational safety, and improved 

biocompatibility for food, cosmetics, and pharmaceutical applications [109]. 

Previously, sugar-fatty acid esters were synthesized at 1:1 and 2:1 molar ratios 

of fatty acid acyl group to sugar acyl acceptor at 75°C in open vials or under 

vacuum to remove byproducts (water or methanol produced when employing 

free fatty acid or fatty acid methyl ester as acyl donor, respectively) [110]. 

Solvent-free enzymatic synthesis of isopropylidene-derivatized xylofuranose 

fatty acid esters produced yields of 83–85% under optimal conditions using 

RML at 60°C. The enzyme was easily recovered after the reaction to allow for 

its reuse [72]. Evaporation of organic solvents from reaction mixtures during 

the initial phase of the time course of reaction is a related approach. This 

method was used for an initial reaction mixture containing 100 mM palmitic 

acid and 100 mM acyl acceptor (D-glucose, D-fructose, D-galactose, D-

sorbitol, L-ascorbic acid or methyl-D-glucose) in 5.0 ml organic solvent 

(acetone, 2-methyl-2-butanol, tert-butanol, MTBE, or n-hexane) in the 

presence of molecular sieves (1.0g). The highest yield (76.0%) was obtained 

from palmitic acid and glucose using CALB at 45°C [112]. To achieve solvent-

free conditions during the time course of reaction, solvents with low boiling 

points can be employed since they can be easily recovered and possibly reused 

[63, 113]. For this purpose, tert-butanol, a very effective solvent to co-

solubilize fructose and oleic acid, was utilized by Hayes and co-workers to 

produce fructose-oleic acid ester at the initial stage of the reaction [83]. The 

reaction rate was enhanced over 10-fold higher at a tert-butanol concentration 

of 0.35–0.55 w/w and tert-butanol was removal during the middle-to-latter 
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stage of the reaction since the presence of tert-butanol impeded the reaction 

rate at latter stage [114]. For synthesis of saccharide-fatty acid ester, the poor 

miscibility of saccharide in the reaction media is the significant obstacle in 

solvent-free condition. The saccharide-fatty acid ester products greatly enhance 

the miscibility of the acyl donor and acceptor substrates. The apparent 

solubility of saccharide was significantly improved linearly from 0.002 to 0.13 

g/g in the presence of mixtures of oleic acid substrate and fructose mono-and 

di-esters products at 60 °C [84]. A ternary phase diagram for the ternary 

system saccharide (fructose)/ oleic acid/fructose–oleic acid monoester (ME) at 

60°C is illustrated in Fig. 2.6 [115].     

 

To further apply the enhanced miscibility imparted by saccharide-fatty acid 

ester products, Hayes and co-workers designed bioreactor systems for lipase-

catalyzed  esterification of  saccharide fatty acid esters in solvent-free media at 

65oC [116-117]. Different bioreactor systems and modes of operation (e.g., 

fed-batch mode and employment of packed bed or continuously stirred tank 

bioreactors) in combination with a packed saccharide column for delivery of 

the acyl acceptor were developed, as depicted in Fig. 2.7. The fructose / silica 

gel packed column was believed to deliver saccharide at saturation 

concentration. The desorption of saccharide from the column increased as the 

concentration of the fructose-oleaic acid ester, FOE, in the liquid phase 

increased. The equilibrium partitioning of saccharide between the liquid and 

stationary phases was described by the Freundlich isotherm [116]. The highest 

conversion of 85% was obtained by utilization of a packed-bed bioreactor and 

operation through continuous recirculation. Control of water content was 

achieved by free evaporation during the entire time course of reaction plus the 

addition of 10 wt % molecular sieves during the latter period of the time course. 

However, the reaction rate was several-fold lower than the batch mode 

reactions due to the lower fructose concentrations [117].  The main goal of the 
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preliminary research is to understand why the reaction rate was too slow and 

make corrections in the bioreactor design accordingly. 

 

 

                                  
 

 

Fig.2.6. Ternary phase diagram for fructose/oleic acid/technical-grade 

monoester (5% diester and 95% monoester) at 60°C. A one-phase liquid 

mixture ( saccharide suspended in the liquid phase) exists to the right of 

the phase boundary, two-phase media to the left of the boundary [84] 
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Fig. 2.7. Bioreactor systems for solventless synthesis of fructose–oleic acid 

ester, FOE, that undergo continuous recirculation and utilized a packed 

bed column of silica gel and saccharide A. Reservoir tank (no lipase), A’. 

Stirred tank bioreactor (STBR; with lipase) heated by hot plate to 65°C, B. 

Peristaltic pump (0.1 ml/min), C. Fructose desorption column (DC; 100 9 

10 mm ID), D. Molecular sieves column (MSC; 1 g, 50 9 10 mm ID), E. 

Packed-Bed Bioreactor (PBBR; 50 9 10 mm ID) packed with RML, F; 

65°C oven [117] 
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2.9 Kinetic Models of Lipase-Catalyzed Esterification of 

Saccharide-Fatty Acid Esters 

 
Several different reactions are catalyzed by lipases: alcoholysis, 

transesterification, esterification, acidolysis, and hydrolysis [118]. In this 

section, kinetic models regarding esterification are described. 

 

The Michaelis–Menten kinetic mechanism which is mathematically similar to 

Langmuir-Hinshelwood kinetics has been applied as a kinetic model for lipase-

catalyzed reactions. The whole process is defined by two steps. Firstly, lipase 

opens the lid which covers its active site once it is activated at an interface. 

Secondly, product is generated by the hydrolysis of the enzyme-substrates 

intermediate eventually and the regenerated enzyme will be repeating the same 

action on the next recycle [118].  

 

However, a primary underlying assumption is that the enzymatic reaction must 

take place in isotropic medium, i.e., substrates and enzymes are in the same 

phase. The Michaelis–Menten kinetic mechanism applies to irreversible 

reactions. Therefore, the Michaelis–Menten kinetic mechanism is obviously 

inadequate for the model to describe the action of lipolytic enzymes at the 

interface between the lipid (rich nonpolar) phase and the water phase [119]. 

The most common and accurate description of the catalytic process of lipases 

is a Ping-Pong Bi Bi model [119]. Two major steps constitute the entire 

mechanism. In the first step, nucleophilic attack occurs on the acyl bond 

through the lone-pair electrons of the oxygen atom contained on the hydroxyl 

group of serine at the active site after opening of the lid [119]. Then, the 

process causes the formation of an acyl-enzyme intermediate [119]. 

Subsequently, hydrolysis of the acyl-enzyme complexation occurs leading to 

production of the desired product and employment of recycled enzyme [119]. 



 

 37

Due to many different species for lipases, different substrates, and non-

enzymatic side reactions (e.g., deactivation of the enzyme or intramolecular 

migration of an acyl group) existing in lipase-catalyzed reactions reaction, it is 

challenging to develop a kinetic model [120]. As a consequence, most 

investigations of lipase kinetics have concentrated on model systems based on 

several assumptions which cover only a few specific reactions [120]. A simple 

kinetic model derived from a Ping-Pong Bi Bi mechanism to characterize the 

rate of acylation of glucose with lauric, palmitic, and stearic acids in the 

presence of CALB in acetone was successfully developed by Arcos et al., 

utilizing a few assumptions. First, reverse-direction enzymatic reactions were 

ignored. Second, the dissolved glucose concentration was assumed to be 

constant [120]. The mathematical model from this work has been verified by 

several sets of experimental data under different reaction conditions. The 

results indicated that the model fits the experimental data very well for 

temperatures from 30 to 60 degrees C, enzyme loadings from 90 to 180 mg, 

and fatty acid concentrations from 0.33M to 1M. Another research group 

proposed a full reversible kinetic model based on a Ping- Pong Bi Bi 

mechanism which represents the acylation of glucose by lauric acid in 2-

methyl 2-butanol mediated by CALB at 60°C. The developed model displays a 

good fit of experimental results [121]. Dang and his coworkers developed a 

good linear kinetic Ping-Pong Bi Bi model regarding feed batch addition of 

saccharide during synthesis of fructose-oleic acid esters in agreement with 

measured data for the time course of the reaction [115].  
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2.10 Bioreactor Types for Lipase-Catalyzed Synthesis 

of Saccharide-Fatty Acid Esters  
 

The production of saccharide-fatty acid esters needs to be economically 

feasible for practical industrial application. Bioreactors are vital components of 

scaling up of bioprocess. Several types of bioreactors have been employed: 

batch stirred-tank reactors (BSTRs), packed-bed bioreactors (PBBRs), 

fluidized-bed reactors (FBRs), and enzymatic membrane reactors (EMR) 

[122,137,138,139,140]. Three major processes associated with 

physicochemical processes have to be considered for bioreactors employing 

immobilized enzymes: 1) transport of the substrate (product) molecules of 

reactants from (to) the bulk phase to (from) the boundary layer surrounding the 

immobilized lipase, and transport across a boundary layer by diffusion 2) 

transformation of the substrate molecules by chemical reaction catalyzed by 

the immobilized lipase, and 3) deactivation of the immobilized lipase [122].  

 

Generally, BSTRs are useful for preliminary screening of enzymatic reactions 

[123]. This configuration is the most commonly employed for of saccharide-

fatty acid ester synthesis in literature reviews. BSTRs [124] consist of a vessel 

containing the reactant fluid mixture which is stirred by mechanical and 

physical methods (e.g., magnetic bars, reciprocal oscillators, submerged 

impellers, and end-over-end rotators) to avoid the formation of temperature and 

concentration of enzyme gradients. Immobilized enzyme is separated from the 

reaction medium at the end of the reaction by filtration or centrifugation. These 

reactors are easy to operate (e.g., to heat, cool, clean, and maintain) normally 

without the assistance of additional equipment. For example, monolauroyl 

maltose was selectively synthesized by an immobilized lipase in acetone in a 

BSTR or a continuous stirred tank reactor [125]. In addition, STBRs were 

employed for the synthesis of 6-O-stearoyl-D-glucose monoester in a mainly 
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solid phase system in the presence of a small amount of solvent, MEK which 

was regenerated by with a membrane-pervaporation separation unit [126]. 

Recently, scale-up has been investigated for lipase-catalyzed alcoholysis of 

palm oil with oleyl alcohol in n-hexane using a batch stirred-tank reactors with 

a single impeller mounted on the centrally located shaft. Compared to 

aluminum-hydrofoil and 2-bladed elephant ear impellers (2L, BiostatMD, 

B.Braun, Germany), rushton turbine impellers in batch mode was the most 

effective providing the highest reaction yield (95.8%) and homogenous 

enzyme particles suspension at 250 rpm. High stability and usability of RML 

was observed, with high yield (79%) occurring after 15 cycles of repeated 

batch reactions. Subsequently, the process was successfully scaled up to a 75 L 

stirred-tank reactor at constant impeller speed and a yield of 97.2% was 

obtained after 5 h reaction time [127]. Compared to only 70.1% for the 2L 

STBR in 2h, the product yield in 75 L stirred-tank reactor reached 88.8% in 2h, 

probably since the multiple impellers in large scale reactor improve effects of 

mass and heat transfers than single impeller in small scale reactor [127-128]. 

 

However, some undesirable properties of BSTRs limit their large-scale use in 

industry based on economic considerations. Firstly, the required operations of 

emptying, cleaning, and filling between batch runs will lead to dead times 

during the industrial process, which will decrease the productivity [122]. 

Secondly, additional steps would be required for separation of catalysis 

particles from final products. Thirdly, immobilized enzyme granules can be 

broken apart by impellers operating at high stir rates [122]. 

 

For packed bed bioreactors (PBBRs), the reaction mixture can be transported 

upward to avoid downward taking advantage of gravitational flow [122]. For 

two-phase media, the streams can be transported counter- or co-currently [122]. 

PBBRs have extensively investigated for industrial scale applications of 

enzyme-catalyzed reactions according to the literature. There are several 
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benefits for employing PBBRs. First, they assist downstream separation of 

product and biocatalyst.  Second, the exit stream carries away possible enzyme 

inhibitors.  Third, they facilitate reuse of the enzyme and improved enzyme 

stability. Fourth, they effectively catalyze streams possessing low substrate 

solubility. Fifth, their operation is simplified through automation [122]. Sixth, 

they are more appropriate for long-term and industrial-scale production than a 

stirred-tank reactor since mechanical shear stress of an impeller results in 

breakage of immobilized enzyme granules.  Seventh, it is more cost effective 

than the batch operation [123]. The ratio between enzyme and substrates in a 

PBBR is low compared to other type of reactors resulting in the low cost. 

Therefore, a PBBR is suitable for most large-scale biocatalytic reactions 

[123,134,135].  

 

Several research groups reported employment of PBBRs for the successful 

lipase-catalyzed synthesis of polyol-fatty acid esters. Mono- and dilauroyl 

arabitols, ribitols, xylitols and sorbitols were continuously synthesized at 50°C 

or 60°C using a system consisting of a packed column of sugar alcohol and a 

packed-bed reactor containing CALB in the presence of solvents (Fig. 2.8) 

[129]. Esters of L-ascorbic acid and several acyl donors were continuously 

produced at 50°C using a column packed with ascorbic acid powder and a 

PBBR containing CALB with the productivity of 1.6–1.9 kg/L achieved during 

an 11 day period [130]. Erythritol and medium-chain fatty acids in acetonitrile 

with 1% v/v water were esterified by CALB at 50°C using a PBBR at 70% 

conversion in a 10 day period [131]. In addition, PBBRs containing CALB 

were operated at 60 °C for the continuous production of 6-O-linoleoyl mannose, 

glucose and galactose in acetone. The high solubility of mannose in acetone 

among the hexoses yielded the highest production of ester [132]. Additionally, 

PBBRs have been investigated by the lipase-catalyzed synthesis of sugar-fatty 

acid esters in solvent-free media. Hayes and co-workers for the synthesis of 

fructose- and sucrose-oleic acid esters employed a bioreactor system 
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containing a packed "desorption" column which contained fructose crystals and 

silica gel for delivery of saccharide, and a PBBR, operated under continuous 

recirculation. The highest conversion (84.4%) was achieved in the presence of 

10 wt % molecular sieves, added during the latter stage of reaction. However, 

the reaction rate was several-fold lower than achieved during batch mode 

reactions since concentrations of fructose provided by the desorption column 

were quite low [133].  

 

EMRs were employed for the lipase-mediated esterification of sorbitol and 

fatty acid, in a two-phase media containing lipase immobilized at the inner 

fiber side of the membrane.  Fatty acid was circulated in the internal circuit 

initially and a solution of sorbitol, 2-pyrrolidone, and buffer were circulated in 

the external circuit. Trans-membrane diffusion of 2-pyrrolidone occurred until 

equilibrium was reached. 80% yield was obtained after 74 h [136].  

 

 

2.11 Water removal strategies during lipase-catalyzed 

synthesis of saccharide fatty acid esters  
 

 

Water “content” refer to the quantity of water in a system or material [141]. 

Water “activity” (aw), a thermodynamic property applying to single- or multi-

phase systems at equilibrium, refers to the ratio of the partial pressure of water 

in the air headspace and vapor pressure of (pure) water at the reaction system’s 

temperature [142]. For enzyme-catalyzed reactions, water content and activity 

are importance parameters.  A small amount of water is essential for the 

structural integrity, the active site polarity, and conformational stability of 

enzymes [143-145]. With an increase of water, flexibility and the expressed 

activity of the enzyme are enhanced [144]. Water facilitates bond formation 
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with the polar amino acids on its surface, leading to retention of its three-

dimensional structural conformation. Otherwise, the absence of a proper 

amount of water may change bond formation, which could lead to an inactive 

conformation, intermolecular aggregation, or refolding [144-148]. However, an 

excess amount of water promotes the shift of the thermodynamic equilibrium 

toward the hydrolysis of esters, leading to low final conversions. Ideally, the 

reaction system will maintain an optimal water amount in the reaction mixtures. 

Therefore, many strategies have been applied for a continuous removal of the 

water generated during esterification [109,149-151]. 
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Fig. 2.8. Packed bed bioreactor system used for the continuous synthesis of 

biobased surfactant. 1 feed reservoir of fatty acid and acetone; 2 pump; 3 

preheating coil; 4 a column packed with sugar alcohol powders; 5 a 

reactor packed with CALB; 6 temperature-controlled oven; 7 back-

pressure regulator; 8 effluent reservoir  [129] 
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Molecular sieves have been used frequently to removal excess water according 

to the literature. Sabeder et al. investigated the influence of molecular sieve 

concentration on fructose palmitate synthesis after 72 h of reaction (Fig. 2.9) 

[59]. The equimolar mixture (0.5 mmol) of fructose and palmitic acid was 

dissolved in 2-methyl 2-butanol at 60 °C and mixed with lipase at 600 rpm. 

The optimal concentration of molecular sieves was 12.1% (w/w of reaction 

mixture). With the increased amount of molecular sieves (Fig. 2.9.), the final 

yield of products decreased due to the excessive extraction of water from 

enzyme, resulting in the loss of enzyme activity [59, 93]. In another 

investigation, for the synthesis of fructose palmitate in 2-methyl 2-butanol, the 

steady- state concentration of the final product was improved by 100 % (from 

16.5 g L-1 to > 32 g L-1) and the initial rate of reaction is enhanced from 4.9 to 

10.1 g L-1 h-1 through the addition of 4A molecular sieves to the reactor [67]. 

For the lipase-catalyzed synthesis of fructose oleate under solvent-free or 

nearly solvent-free conditions, Hayes et al. found the addition of molecular 

increased the conversion of final yield from 78.7% to 83.2% [117].   

 

 The type of molecular sieve employed has a strong effect on the removal of 

water.  In 2-methyl-2-propanol and 2-methyl-2-butanol, 4A molecular sieve 

adsorbed slightly more water than 3A molecular sieves. Conversely, the 

performance of 3A molecular sieves was better than 4A molecular sieves in 

acetonitrile [153-154]. There are some disadvantages for utilization of 

molecular sieves. First, visual observations from experiments indicated that 

inhomogeneous stirring of a reaction mixture with molecular sieves led to 

limited mass transfer between liquid and solid phases [59, 93]. Consequently, 

molecular sieves are not suitable for the larger-scale production [155]. 

Secondly, the presence of molecular sieves can shift enzyme selectivity in 

favor of di- and poly-ester production due to the removal of water from the 

enzymes’ active sites, leading to an increased hydrophobicity of the enzymes’ 

microenvironment [67, 153].  
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Fig. 2.9. Influence of molecular sieve concentration on ester concentration 

after 72 h of reaction performance. Reaction conditions: 0.5 mmol fructose, 

0.5 mmol palmitic acid, 0.6 mL 2-methyl 2-butanol, 22.5 mg lipase SP 435, 

60°C, 600 rpm [59]. 
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Many research groups have employed silica gel to remove the excess water 

during the lipase-catalyzed reactions [156-158]. In the early literature, one 

group demonstrated the capability of silica gel to extract water continuously 

formed from esterification, leading to a shift in the equilibrium efficiently 

toward synthesis [158]. 60% palmitate conversion was achieved in the 

presence of silica gel.  In contrast, only 20% conversion of palmitate was 

obtained in the absence of silica gel [158].  Later investigations tested different 

adsorbents for water removal. From the experimental screening, silica gel had 

the highest capacity to adsorb water on a weight basis [157-160]. 

 

Azeotropic distillation is another alternative approach to remove water from 

reaction mixtures. An azeotrope is defined as a mixture consisting of two or 

more liquids in a certain ratio. In general, azeotropic mixtures are introduced to 

the esterification reaction as a media to lower the boiling temperature compare 

to either of its constituents and remove the water by distillation [161]. Taking 

advantage of the lower boiling temperature, the synthesis of sorbitan esters 

catalyzed by CALB was carried out in azeotropic mixtures of binary solvent 

systems (n-Hexane / tert-Butanol 78: 22 v/v) at 64°C with 89% conversion 

achieved [161]. Yan et al. developed a practical process potentially useful on 

an industrial scale for removal of by-products (water and methanol) by 

azeotropic distillation during lipase-catalyzed sugar fatty acid ester synthesis. 

Acetone was introduced to remove methanol during transesterification since 

the boiling point of the azeotrope of acetone / methanol 86/14 v/v is 54.6°C. 

MEK was employed for the removal of water due to the azeotrope of 67% 

MEK and 33% water v/v at a boiling point of 73.5°C.The pretreatment of the 

reaction mixture was operated in a 50-ml two-necked round-bottom flask 

equipped with a Soxhlet extractor. A condenser with a vacuum controller was 

placed on the top of this apparatus. Molecular sieves were activated by heating 

overnight to 250°C under reduced pressure. With addition of activated 



 

 47

molecular sieve placed in the Soxhlet extractor for the removal of byproducts 

(3 A for water and 5 A for; methanol,), the condensed solvent was pre-dried by 

mixing with activated molecular sieves before pumping back to the reaction 

system. This method constantly removed water and methanol generated in the 

reaction and shifted the equilibrium position towards sugar ester synthesis. 

Under above conditions, the highest conversion of 90% was achieved by 

conducting the reactions under reduced pressure at 60°C [155]. By the same 

principle, the synthesis of sugar-fatty acid ester catalyzed by CALB was 

performed in a mixture of MEK and hexane (4:1, v/v) to remove water 

efficiently at 59°C. The process is shown in Fig.2.10. [162]. The highest yield 

of glucose stearate was 93% after 48h using an equimolar ratio of substrates 

via this approach [162].  

 

However, the employment of organic solvents is unavoidable for use of 

azeotropic distillation. Therefore, some implications, for instance, process cost, 

toxicity and catalytic activity should be considered [161]. Another major 

drawback of this method is that the reaction temperature should be maintained 

above the boiling point of the azeotrope [163]. 

 

A convenient and rather simple method for maintaining a constant water 

activity during esterification is the introduction of a suitable salt hydrate pair to 

the reaction medium [164], which can maintain the water activity during the 

reaction at a certain value of water activity at a given temperature [164]. It acts 

as “a buffer” by adjusting (releasing or extracting) water molecules as required 

in the presence of some of both salt hydrate pairs in the reaction medium [164]. 

The yield of sucrose ester versus water activity by direct addition of salt 

hydrate pair in closed reaction system is given in Table 5. The 13.8% yield of 

final products was obtained in the presence of Ba(OH)2 octahydrate-

monohydrate  [Ba(OH)2,8/1 H2O] pair (water activity; aw=0.44) and 0.6 g of 

Ba(OH) 2 per 3.57 g of the reaction mixture was the most favorable content of 
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salt hydrate. In addition, the authors concluded that monoester was formed 

only with water activity in the range of 0.3–0.5. Although the conversion 

(13.8%) is low in the presence of salt hydrate pairs to control this water activity 

during the reaction, it is still a useful approach for maintaining the water 

content [165].  
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Fig.2.10. Schematic diagram of the process of production of CALB lipase-

catalyzed synthesis of glucose stearate in the mixture of ethyl 

methylketone and hexane 4/1 v/v (1, pump; 2, water bath; 3, membrane 

reactor; 4, condenser, 5, permeate container; 6, vacuum pump) [162] 
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Another method for the adjustment of water activity in the reactor was used by 

circulating saturated salt solutions contained silicone tubing [178] or hollow 

fibers [179].Mattiasson with coworkers developed a thin silicone tubing filled 

in saturated salt solutions to control water activity in the reaction medium by 

transporting water through the wall of the tubing [178]. The highest conversion 

of lipase-catalyzed esterification of decanoic acid and dodecanol in diisopropyl 

ether was approximately 80% for 50h at 0.33 water activity [178]. Kim et al. 

investigated various salt saturated solutions for the optimal water activity 

control in a solvent-free system (Table 2.6) [165]. Desiccant (CaSO4) was 

introduced to the pretreatment on reduce moistures of enzyme, fructose, and 

oleic acid. The results clearly indicated that the reaction rate decreased with 

dehydration of lipase in comparison to a control experiment. Water removal 

from fructose and oleic acid prior to the initiation of reaction was found that it 

is had little or no influence on the time course of esterification under solvent-

free conditions [114]. Using saturated aqueous solutions to control water 

activity has one shortcoming. This method is not effective enough, particularly 

at a larger scale, due to the slow mass transfer of water between three phases: 

saturated salt solution, air, and organic phase. [151].  

 

A solution for controlling water content in a system is the introduction of dry 

air or nitrogen into the reactor to remove water from the reaction mixture 

[151,166]. Air has a relatively high capacity for water removal and a limited 

direct effect on enzyme activity and stability [167]. An online system was 

developed to monitor water activity and utilize dry air to favor water removal 

and during the lipase-catalyzed esterification reaction of capric acid and n-

decyl alcohol in solvent-free media (Fig. 2.11.). The final yield is up to nearly 

100% at the optimal water activity (aw=0.6) after 1600 min [167].  
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Table.2.4. Reaction yield at different initial water activities1 [165] 
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Fig. 2.11.  Schematic diagram of the computer-based system for water 

activity control and on-line conversion estimation. (1) Air pump; (2) air 

filter; (3) mass flow controller; (4) silica gel; (5) distilled water; (6) digital 

to analog converter; (7) solid state relay; (8) solenoid valve; (9) stirrer; (10) 

relative humidity sensor; (11) enzyme reactor; (12) analog-to-digital 

converter; (13) computer [167].  
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Vacuum pressure has been employed to remove water from a system during 

reaction. For example, an air-bled evacuated-headspace reactor was designed 

and constructed under a vacuum of 0.7 bar [168]. It would appear that the 

quality of the vacuum pressure employed did not have any positive or negative 

influence on the initial rate of esterification [168]. However, combination of 

vacuum and air leakage was utilized to improve the performance of synthesis 

of organic-phase enzymatic esterification. A yield of 96% ester was achieved 

in a reactor operated under a vacuum of 0.7 bar and air leakage at 50 °C during 

the RML-catalyzed esterification of a solvent-free sorbitol-decanoic acid 

mixture when air at 20 °C with a relative humidity of 54% was leaked into the 

headspace [168]. Furthermore, another study illustrated that the application of 

even a moderate vacuum (20 mbar) led to an increase in the reaction yield 80% 

from 75% [110]. 

 

The water content of the reaction mixture can also be controlled by a 

pervaporation, defined as a chemical separation method in which one of the 

components in a solution selectively passes through a semi-permeable 

membrane. A pervaporation process was applied to the lipase-catalyzed 

synthesis of n-butyl oleate to selectively separate water from the reaction 

mixture using a nonporous polymeric membrane [169]. In addition, 

pervaporation enhanced the enantioselective esterification of (R, S)-2-

chloropropanoic acid with n-butanol using Candida rugosa lipase in IL. The 

highest conversion 36.6% was obtained at 0.5 % w/w constant water content in 

[Bmim] [PF6] [170]. The yield 36.6% under optimal water content (0.5% w/w) 

was increased by nearly 10% compared to 26.3% for the control [170]. 

Furthermore, it was demonstrated that water removal at the beginning phase of 

the reaction has a negative effect on optimization of the water content for the 

enzyme because too small amount of water content (e.g. 0.2% w/w) reduced 

the water content in the enzymes’ microenvironment, leading to a reduction of 

the biocatalytic activity [170]. This conclusion was verified by the early 
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literature in the field [171].  Enzymatic triacylglycerol synthesis was conducted 

at 25 °C catalyzed by an immobilized lipase under pervaporation. 26% activity 

of enzyme remained after 600 hours with initial aw equal to 0.1 and 71% when 

aw was equal to 0.45 [171]. 

 

Free evaporation utilized for water removal during lipase-catalyzed synthesis 

of sugar fatty acid esters at super-ambient temperatures (50°C-65°C) is well 

documented in the literature [58,175,176]. The effect of water control on the 

solvent-free equilibrium conversion of fructose-oleic acid esterification was 

investigated by as part of this dissertation (described in Ch.3) [115].  

 

In conclusion, water activity plays a significant role in lipase-catalyzed 

esterification reaction since it is formed as a byproduct. Insufficient amount 

water inactivates and destabilizes an enzyme since water has a significant 

influence on the enzyme structure by non-covalent bonding and disruption of 

hydrogen bonds. In contrast, excess water in reaction system lead to the lower 

yield due to thermodynamic equilibrium. Therefore, water at the proper 

amount in the reaction system is crucial for successful synthesis of sugar fatty 

acid esters. Although numerous methods have been generated, the efficient and 

economical approach for water removal has not been fully developed to meet 

the requirement of industrial scale-up. 

 

 

 

 

                                                  

 



 

 55

                                               

 

 

CHAPTER 3 

CHARACTERIZATION OF SUSPENSIONS 

AND 

BIOREACTOR SYSTEM DESIGN FOR 

SOLVENT-FREE LIPASE CATALYZED 

SYNTHESIS OF SACCHARIDE-FATTY ACID 

ESTERS 
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3.1 Abstract 
 
Saccharide-fatty acid esters, important biobased and biodegradable biobased in 

foods, cosmetics, and pharmaceuticals, were synthesized by immobilized 

Rhizomucor miehei lipase-catalyzed esterification in solvent-free systems at 

65oC in a 2-step process: rapid mixing (e.g., at 800 rpm) of acyl donor, 

acceptor, and a mixture of mono- and di-ester at an elevated temperature (e.g., 

85oC) for several hours (≥ 6 h), followed by centrifugation at a low angular 

velocity (e.g., 800 rpm) for a short duration (e.g., 0.5-1.0 min, to remove large 

particles), a supersaturated solution of 1.5-2.0 wt % saccharide was obtained 

that remained stable for ≥10-12 h, either in the presence or absence of acetone. 

The solvent-free suspensions were used in a bioreactor system at 65oC, 

consisting of a reservoir open to the atmosphere that contained molecular 

sieves, a peristaltic pump, and a packed bed bioreactor, operated under 

continuous recirculation.  At 10 h intervals, suspensions were re-formed in the 

substrate/product mixture by adding additional acyl acceptor and applying 

strong agitation.  Using this system and approach, a product mixture containing 

88% fructose oleate was formed, of which 92% was monoester, within 6 days.  

This equates to a productivity of 0.2 mmol h-1 g-1, which is similar to values 

reported for synthesis in the presence of solvent. 

 

 

3.2 Introduction 
 

In this chapter, the content was taken from a recently published paper [181]. 

Note that the contents of this chapter are a component of Objective 1 (given in 

Chapter 1).  Saccharide fatty acid esters, biocompatible and biobased 
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surfactants, are valuable emulsifiers in a variety of food, cosmetic, and 

pharmaceutical commercial products such as chocolate, toothpaste, lotions, 

shampoo, and lipstick [41-43].  They possess excellent antimicrobial activity as 

well [50-52].  Although they are currently produced chemically (at high 

pressure and temperature [39]), their synthesis catalyzed by enzymes (lipases 

primarily) has received great interest due to the enhancement of sustainability:  

near-ambient pressure and temperature (leading to lower energy usage and 

hence lower CO2 production), the absence of alkaline or acidic conditions 

(leading to lower amounts of waste products), and a more narrow product 

distribution, with mono- and di-esters formed selectively via the primary 

hydroxyl groups of the acyl acceptor. The major hurdle to overcome for lipase-

catalyzed synthesis is the poor miscibility of the lipophilic acyl donor and 

hydrophilic acyl acceptor, leading to unacceptably slow reaction rates.  Several 

different approaches have been employed to overcome this barrier.  The most 

common approach to achieve the highest miscibility is to employ immobilized 

thermophilic lipases with polar organic solvent or solvent mixtures near their 

boiling points or under reflux (e.g., tert- butyl or tert-amyl alcohol, methyl 

ethyl ketone, or acetone; or their mixtures with very polar solvents [octanol-

water partition coefficients, or log P values, of ≤1],  such as dimethylsulfoxide, 

DMSO, at < 20 vol %) , with great care being used to minimize their 

inactivation of the biocatalyst (particularly by polar solvents) and their 

accumulation of water, which reduces yields [63-73]. Recently, the use of ionic 

liquids [ 99, 100] and pressurized solvent systems near or above their critical 

points (e.g., supercritical CO2 / solvent mixtures) [92-95] have applied for the 

improvement of rates of reaction. 

 

Our group is focusing upon the RML-catalyzed production of saccharide-fatty 

acid esters under solvent-free conditions, taking advantage of the presence of 

saccharide-fatty acid esters to enhance the miscibility of acyl donor and 

acceptor with a nearly stoichiometric substrate ratio (1:1) by fed-batch addition 
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of saccharide. In the early work, tert-Butanol, as a cosolvent for the increase of 

solubility of saccharide, was utilized in the initial phase at 65°C at stirred batch 

mode. tert-Butanol was totally evaporated away at around 25% conversion of 

the product. The final conversion reached 80-93% in 250h [115]. Subsequently, 

bioreactor systems were developed consisting of initial reaction medium 

(fructose-oleic acid ester/ oleic acid 25/75 w/w) and stirred-tank or packed bed 

reactors with a packed column of the mixture of saccharide crystals and silica 

gel at 65°C reaching upon 80-85% conversion without any employment of 

solvent [133].  

 

However, the reaction rate for bioreactor systems utilizing saccharide packed 

columns for the delivering of saccharide was relatively slow due to the low 

concentration of saccharide yielded [115]. In contrast, the best reaction rate 

occurred when suspensions were employed with tert-butanol during batch 

mode reactions. Accordingly, we decided to revisit the use of solvent to assist 

in the formation of suspensions.  Acetone was selected because it is a food-

grade solvent in the EU (Chapter 2). Therefore, an investigation of using 

acetone as solvent between 30 and 65oC the RML-catalyzed formation of 

saccharide in solvent-free media was undertaken. With the employment of 

acetone, results indicated that the reaction rate and yield were promoted when 

the reaction temperature was nearly or above the boiling point (56°C) 

temperature of acetone [181]. Under the latter conditions, acetone evaporated 

away from the reaction medium within a few hours, suggesting the 

enhancement was not due solely to the presence of the solvent. It was 

hypothesized that the underlying reason for the promotion of acetone-based 

reaction rate were suspensions of saccharide were formed in the reaction 

medium [181].   
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3.3 Materials and Methods 
 

3.3.1 Materials 

 

Technical grade oleic acid, 90 % pure, as determined by HPLC (14), and 

Lipozyme®IM, lipase (EC 3.1.1.3) from Rhizomucor miehei immobilized onto 

macroporous anionic beads, or "RML," the latter a product manufactured by 

Novozymes, Inc. (Franklinton, NC), were purchased from Sigma-Aldrich (St. 

Louis, MO). Fructose (>98% purity), sucrose (> 99%), acetone (HPLC-grade), 

acetonitrile (HPLC-grade), molecular sieves (Type 3A, 4-8 mesh, Grade 562) 

were obtained from Fisher Scientific (Pittsburgh, PA). All materials were used 

without further purification. The saccharide crystals were ground into a fine 

powder using a mortar and pestle. Technical grade fructose-oleic acid ester, 

FOE, the reaction product and a component of the initial charge to the 

bioreactor system, was synthesized by the RML-catalyzed fed batch reaction 

protocol given in our modified from previous report [18], as described 

elsewhere [21]. The purity of FOE was 89.6% (and the remaining fraction 

being oleic acid), with its composition being 83.6% monoester (ME) and 

16.4% diester (DE). This product was mixed with oleic acid to obtain the 

desired proportions of oleic acid and ester, and fed to the bioreactor system.  

  

 

3.3.2 Preparation of supersaturated solutions of fructose in oleic acid / 

fructose oleic acid ester mixtures 

 

The preparation of a slurry of fructose crystals and a mixture of oleic acid and 

FOE was conducted in a 20 mL scintillation vial placed on a 4-position hot 

plate-magnetic stirrer (Super-Nuova from Barnstead, Dubuque, IA USA) open 

to the atmosphere, to allow for the free evaporation of water and acetone (when 
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used).  Typical conditions consisted of adding 0.5 g of crystalline fructose to 2 

g of oleic acid + FOE, and in some instances acetone, at a specified stir rate 

and temperature, for a specified time. The slurry was centrifuged at a specified 

angular velocity and for a specified time.  The model CentrificTM table-top 

centrifuge and model AccuSpinTM microcentrifuge, both from Fisher, were 

used for angular velocities of ≤ 3000 rpm and > 3000 rpm, respectively.  The 

supernatant was collected and employed in enzymatic reactions, and/or was 

analyzed for fructose content, particle size, water content and absorbance at 

1000 nm.  For experiments which analyzed the stability of the supersaturated 

solutions, the suspensions prepared as described above were allowed to settle 

without stirring applied at a controlled temperature. 

  

 

3.3.3 Operation of a Packed-Bed Bioreactor System Undergoing 

Continuous Recirculation  

 

The bioreactor system consisted of a 20 mL scintillation vial open to the 

atmosphere which served as reservoir, a peristaltic pump (BioLogic LP® from 

Bio-Rad, Hercules, CA USA), and a packed bed bioreactor (PBBR; 50mm L × 

10mm ID Omnifit® chromatography column packed with 0.025-0.10 g of RML 

per gram of oleic acid + FOE) in Fig 3.1.   The frit restrictors contained within 

the endcaps of the Omnifit® column were not used, but were replaced a small 

piece of a 100 denier,156 mesh polyester net manufactured by SiamDutch 

Mosquito Netting Co., Ltd., Bangkok, Thailand, determinedgravimetrically to 

possess an areal density of 29 g m–2.  C-FLEX® 1.6 mm ID tubing made of a 

styrene-ethylene-butylene modified block copolymer from Cole-Parmer 

(Vernon Hills, IL), was used to connect the reservoir to the pump, the pump to 

the PBBR, and the PBBR to the reservoir, to form a closed-loop system that 

underwent continuous recirculation. PharMed® BPT 1.6 mm ID tubing (Saint-

Gobain Performance Plastics Corp., Akron, OH) was used within the peristaltic 
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pump apparatus. The PBBR and associated tubing were placed within a 

convection oven to yield a constant temperature of 65oC for the recirculating 

liquid phase. The reservoir’s contents were maintained at 65oC and stirred 

gently at 200 rpm using the above-mentioned hot plate / stirrer. Molecular 

sieves (0.10 g per g of oleic acid + FOE) were added to the reservoir for some 

experiments after reaching 60~70% ester content to reduce the water content 

and hence the degree of conversion.  

 

The reaction for carried out using supersaturated solution of fructose prepared 

by the method described above, by stirring a slurry or saccharide crystals (1.5 g) 

in an oleic acid/ saccharide-oleic acid mixture (10 g) at 80oC and 800 rpm for 6 

hr, followed by centrifugation at 800 rpm for 30 s, and then collecting the 

supernatant.  The initial charge to the bioreactor systems typically consisted of 

25% FOE and 75% oleic acid, equivalent to a reaction mixture that has 

achieved 25% conversion. At 10 hour intervals, the suspensions contained 

within the reservoir were re-treated as described above to incorporate 

additional saccharide. For the retreatment to occur, the bioreactor system was 

temporarily disabled by stopping the pump, the reservoir’s contents removed to 

a separate container, 1.5 g of saccharide added, and the suspension reformed by 

the 2-step method given above and then returned to the reservoir.    
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Fig. 3.1. The diagram of packed-bed based bioreactor system A. 20ml 

vessel opened to the atmosphere B. Hot plate maintained at 85oC C.  

PBBRs D. Oven maintained at 65oC E. Pump (0.5ml/min) 

3.3.4 Monitoring of water 
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The water content for an aliquot of the reaction mixture, after being diluted 

with methanol, was analyzed by Karl-Fischer titration using a Coulometric KF 

Titrator (Denver Instrument Company, Aurora, CO).  The working principle is 

following the formulae below:  

 

H2O+I2+SO2+3C5H5N 2(C5H5NH)I-+ C5H5N+SO3  C5H5NSO3+ 

CH3OH (C5H5NH)OSO2OCH3   

 

The working principle utilizes the reaction of water with iodine and sulfur 

dioxide in the presence of a lower alcohol such as methanol or other organic 

solvents. In this dissertation, methanol was used as a medium to dissolve the 

reaction medium due to its lower price compared with other organic solvents 

[219].  

 

3.3.5 Monitoring of oleic acid, ester, and fructose concentration 

 

Quantitative analysis of oleic acid and its mono- and di-esters on a fructose-

free basis was performed using a dual-pump system from Varian (Walnut 

Grove, CA) and a model Mark III evaporative light scattering detector from 

Alltech Associates, a division of WR Grace (Deerfield, IL) . An analytical 

reversed phase (4.6 * 250 mm, pore diameter 5 µm) C18 column from Alltech 

was employed using separation conditions consisting of a column temperature 

of 25oC and an isocratic solvent system, acetone / acetonitrile / acetic acid (45 / 

45 / 10 v/v/v) at flow rate of 1.0 mL min-1. Response factors were measured 

and employed to convert peak areas into concentrations. 
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Fig. 3.2. Log of oleic acid peak area vs Log of ester content  
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To analyze the fructose content, 40 mg-sized aliquots of column effluent were 

subjected to liquid-liquid extraction by the system of n-hexane and water (500 

µL of each). The extraction was carried out 3 X at 35oC for 2 hr using a 

thermomixer (Eppendorf AG, Germany). The aliquots from the pooled aqueous 

extraction solutions were diluted with acetonitrile to match the composition of 

the HPLC mobile phase to prevent peak broadening in the HPLC analysis. An 

analytical Prevail Carbohydrate ES column (4.6 * 250 mm, pore diameter 5 µm) 

from Alltech was employed using a column temperature of 25oC and an 

isocratic solvent system, acetonitrile / deionized water (80 / 20 v/v) at flow rate 

of 1 mL min-1. Standard curves for fructose concentration in an oleic acid / 

fructose oleate liquid phase versus peak area were obtained and found to be 

independent of the reaction mixture’s composition. 

 

3.3.5 Measurements of absorbance and particle size for suspensions  

 

The absorbance of solutions between 500 and 1000 nm was performed to 

provide a measure of turbidity using a model UV-1700 instrument from 

Shimadzu (Japan) and either a 1.0 or 0.2 cm pathlength quartz length cuvette 

by Hellma (Plainview, NY USA), with all reported values normalized to a 1.0 

cm pathlength. Light scattering is a method to determine the distribution of 

small size particles in suspension. In this dissertation, photometric mode was 

used to measure absorbance (ABS) at an arbitrary fixed wavelength (1000nm). 

Absorbance values at 1000 nm are reported since at this wavelength the values 

were often < 1.0 units, meaning that the linear Beer-Lambert law is applicable. 

The Beer-Lambert law is a principle to describe the linear relationship between 

absorbance and concentration of an absorbing sample. The Beer-lambert law is 

usually written as: 

                                          A= a (lambda)*b*c 

where A is the measured absorbance, a(lambda) is a wavelength-dependent 

absorptivity coefficient, b is the path length, and c is the analyte concentration. 
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When working in concentration units of molarity, the Beer-Lambert law is 

written as: 

                                                    A = epsilon * b * c 

where epsilon is the wavelength-dependent molar absorptivity coefficient with 

units of M -1 cm -1  

Differences of absorbance values between samples at this wavelength are 

representative in trend of differences at the other wavelengths.  The particle 

size distribution of the dispersions present in the above-mentioned solutions 

was analyzed by Zeta potential Analyzer, Zeta PALS (Brookhaven Instruments 

Corporation, Holtsville, NY USA). 

 

3.4 Results and Discussion 

 
3.4.1 Formation of Metastable Suspensions of Saccharide in Solvent-free 

Media  

 

To justify the above-mentioned hypothesis, reaction medium was prepared 

which simulated the reaction conditions used for the RML-catalyzed reactions 

in the presence of acetone.  The (apparent) concentration of fructose and 

particle size distribution in the liquid medium was analyzed.  

 

6.0 g of FOE/oleic acid 25/75 w/w was mixed with 1.5 g fructose and either 

0.0 or 6.0 g acetone for 20 h at 800 rpm in a 20 mL scintillation at a 

temperature near or above the boiling point of acetone, 56°C. After 

centrifugation for 2.0 min, the larger particles were removed and the 

supernatant was collected and analyzed. Fig. 3.3 illustrates that the fructose 

concentration, absorbance at 1000 nm, and average particle size significantly 

increased with the increase of fructose oleic ester (FOE) concentration and the 

decrease of centrifugation angular velocity. Absorbance reflects the scattering 
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of light by the suspended particles, and is proportional to the size multiplied by 

the number density of the particles. The detection of particles of the size range 

5-70 μm confirms that suspensions were formed, in agreement with the 

hypothesis put forth.  Compared with controls, the employment of acetone 

significantly increased the saccharide concentration of all three measurements 

but only slightly increased the average size of particles.  

 

Next, several parameters related to the formation of suspensions were 

investigated to optimize the concentration of suspended saccharide crystals in 

FOE / oleic acid (25 / 75, w/w). Fig. 3.4 depicts the effect of the mass ratio of 

acetone to the  oleic acid / FOE mixture and stirring time with the stirring rate 

(800 rpm), temperature (65°C),  and centrifugation conditions (3,000 rpm, 2 

min) held constant. The stirring time was set in accordance to the time required 

nearly 100% remove of acetone by free evaporation at 65°C. Results illustrate 

that absorbance for both cases (acetone and solvent-free) increased with the 

stirring time. There was no significant increase of absorbance when the acetone 

/FOE +oleic acid ratio was increased from 3:1 to 5:1. However, the presence of 

acetone did not increase suspension formation after 6h of stirring time; hence, 

acetone is not necessary for formation of the suspension of saccharide crystals, 

particularly if a longer stirring time is employed. 

 

Fig. 3.5 describes the effect of stirring rate for a constant stirring time (3 hr), 

with the other conditions being identical to those described for Fig. 3.4. The 

results demonstrate that the concentration of suspended fructose increases 

linearly with stir rate from 200 rpm to 800 rpm. In addition, acetone (at a 1:1 

mass ratio per oleic acid + FOE) did not increase the concentration of fructose 

distinctly. Fig. 3.6 illustrates that an increase of temperature from 65°C to 

85°C slightly increased the liquid-phase fructose concentration.   
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a

c

Fructose-Oleic Acid Ester (FOE), % (Solvent-Free)

b

 
Fig.3.3 Effect of acetone, wt % fructose-oleic acid ester, and sedimentation 

angular velocity on (a) the apparent solubility, (b) the absorbance at 1000 

nm, and (c) the average particle size of the suspensions of fructose in oleic 

acid/FOE mixtures at 65°C.  
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Fig.3.4 Effect of stirring time on the absorbance at 1000 nm for a 

suspension of fructose in (∆) solvent-free media and (□) in the presence of 

acetone.  [181]  
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Fig.3.5 Effect of stirring rate on the absorbance at 1000 nm for a 

suspension of fructose in (∆) solvent-free media and (□) in the presence of 

acetone.  [181]. 
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Fig. 3.6 Effect of temperature on the apparent fructose concentration and 

absorbance at 1000 nm for a suspension of fructose in a solvent-free 

medium.  [181]. 
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Centrifugation is an essential component of the procedure for forming 

suspensions since it removes excessively large size fructose particles that can 

potentially create blockage within the bioreactor system or can adsorb to the 

immobilized lipase particles, imparting mass transfer limitations. Fig. 3.7 

indicates that the concentration, absorbance, and average particle size increased 

linearly with the decrease of angular velocity and centrifugation time. The 

highest concentration was obtained at minimal angular velocity value for the 

apparatus (800 rpm) and 1.0 min for centrifugation time, leading to the 

formation of 100-200 μm sized particles. Fig. 3.8 illustrates that the 

suspensions formed are reasonably stable over 12 h, especially under solvent-

free conditions.  Therefore, a suspension solution containing ~10-100 μm –

sized fructose crystals can be created using mixtures of FOE and oleic acid 

under solvent-free condition. 
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Fig.3.7 Effect of centrifugation parameters on the apparent fructose 

concentration, absorbance at 1000 nm, and particle size (insets) for a 

suspension of fructose in a solvent less medium.  [181] 
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a

b

 
Fig. 3.8 Change of (a) absorbance at 1000 nm and (b) apparent fructose 

concentration of liquid phase for a suspension of fructose crystals and 

fructose-oleic acid esters (FOE)/ oleic acid prepared in the presence or 

absence of acetone at 65oC.  [181]. 
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3.4.2 Assessment of the Performance of a Bioreactor System with 

Saccharide Suspension Crystals  

 

A bioreactor system composed of a packed bed bioreactor (PBBR) containing 

RML particles, an open reservoir and a peristaltic pump was created. The 

liquid phase consisting of the mixture of oleic acid / FOE 75/25 w/w with 

suspended fructose crystals underwent continuous recirculation under a fixed 

flow rate at 65°C. The system was stopped at 10 h intervals, at which point the 

reservoir’s liquid phase was isolated by centrifugation and additional fructose 

was introduced to form a new suspension.  Finally, the new suspension 

medium was returned to the reservoir and the pump re-initiated.  

 

From Fig. 3.9a, the reaction rate increased with the mass of RML in the PBBR, 

or equivalently, the residence time of the liquid phase in the PBBR. High 

repeatability of the experimental results occurred. One of the experiments used 

molecular sieves at 70 h to remove water and therefore increase the final 

conversion.  Moreover, the high water content (0.7%) in the absence of 

molecular sieves led to a slow reaction rate after the product yield reached 

~60%, after 2 days of reaction time.  The employment of molecular sieves 

decreased the water content from ~0.7% to ~0.5 % (Fig 3.8b), resulting in a 

slight enhancement in the conversion of FOE, Fig. 3.9.a. It indicates that 

further research is required to optimize the water activity in the bioreactor 

system to increase the rate and conversion of reaction. This work is a 

component of this proposal’s research plan. 



 

 76

a

b

 
Fig.3.9. Effect of bioreactor volume on the change of (a) fructose-oleic acid 

esters and (b) fructose concentration before (solid lines) and after (dashed 

lines) retreatment for solvent-free RML-catalyzed fructose-oleic acid ester 

[181]. 
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Fig. 3.9b illustrates the changes of fructose concentrations of the reservoir in 

the bioreactor system between the beginning and ending period for each 10 h 

interval cycle. For the reactions performed with 7.5% (w/w) RML, fructose 

was almost completely consumed at the end of each cycle during the first 60 h 

of reaction. The ~0.3% interval concentration of the residual fructose between 

“before retreatment” and “after retreatment” demonstrated low concentration 

the reaction rate.  In addition, the distance between the “before retreatment” 

and “after retreatment” in the time course is consistent with the conversion of 

ester synthesis, Fig 3.9a. The increase of fructose concentration “after 

retreatment” as a function of time is consistent with the increase of saccharide 

concentration with increased FOE proportion.  

 

The initial rate reaction data between 0 and 40 h are described as a function of 

residence time per pass through the bioreactor system, evaluated by dividing 

the volume of the PBBR by the volumetric flow rate, Q (Fig. 3.10). Further 

experiments were conducted using a constant PBBR volume (3.46 mL; 0.075 

gRML per g of oleic acid + fructose) with Q varied between 0.3 and 1.2 mL min-

1for determination of an optimal average residence time. The maximal initial 

rate was 15.5-16.0 % conversion of oleyl acyl groups per day using a residence 

time of 10 min or Q ≤ 0.3 mL min-1. The initial rate increased linearly with 

residence time for residence times below 6 min, following classical Michaelis-

Menten kinetics model [116]. 
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Fig. 3.10 Effect of residence time in packed bed bioreactor (PBBR) per 

pass through the bioreactor system on the initial rate of esterification 

(wt % FOE /day) for a series of experiments [181]. 
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3.5 Conclusion 
 

In conclusion, in this chapter, it was found that 22.6g/L supersaturated solution 

of suspensions of saccharide in the mixture of monoester and acyl donor (25/75 

w/w) was created under solvent-free condition under the following conditions: 

stirring at 800rpm for 6h at 85oC and then, centrifugation at 800 rpm for 0.5-

1.0 min. Subsequently, solvent-free suspensions solution was introduced to a 

bioreactor system undergoing continuous recirculation at 65 oC (Fig. 3.1). At 

10h interval time, suspensions were reformed after addition of additional 

saccharides. The reaction rate was slowed at approximately 60% conversion 

due to the relatively high water content (0.7%). Molecular sieves were 

employed into the bioreactor system during time course as water removal 

method. 88% yield of saccharide-fatty acid esters was achieved in 6 days.  

 

As noted, when water content in the bioreactor system was decreased from 

~0.85% to ~0.5% through addition of molecular sieves, a slight increase in the 

level of esters occurred. This suggests optimal control of the bioreactor 

system’s water content will increase reaction rate and yield, performed in 

Chapter 4.   
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CHAPTER 4 
OPTIMIZATION OF SOLVENT-FREE LIPASE-

CATALYZED SYNTHESIS OF SACCHARIDE-

FATTY ACID ESTER USING SUSPENSIONS 

THROUGH WATER REMOVAL AND 

OPTIMIZED INTERVAL TIME 
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4.1 Abstract 

 
The synthesis of saccharide-fatty acid esters, environmentally-friendly 

biobased surfactants, via immobilized Rhizomucor miehei lipase 

(Lipozyme®IM, Novozymes, Franklinton, NC USA) at 53 oC  using a packed 

bed bioreactor (PBBR)-based bioreactor system utilizing suspensions of 

saccharide in a mixture of acyl donor and monoester-rich product (solvent-free 

conditions), was optimized to enhance reaction rate and conversion by 

programming the control of water activity and the interval time for re-forming 

suspensions. When the bioreactor system reached 57.75 % w/w conversion, 

water was removed by the combination of nitrogen gas bubbling and vacuum 

pressure at 2.16 mgH2O h-1 to maintain at 0.4% w/w plus/minus 0.05 % w/w 

level in the liquid phase. Also, the optimization of the interval time for re-

treatment of suspensions decreased the reaction time by 23 h compared to the 

arbitrary use of a 10 h interval time. Additionally, the initial ester concentration 

in the solvent-free suspensions media was reduced from 25% w/w to 5% w/w 

without any loss of reaction rate. In conclusion, the optimized PBBR-based 

bioreactor system operated at optimal conditions employing an initial charge of 

fructose suspensions in oleic acid / fructose oleate 95/5 w/w yielded 92.6% 

w/w conversion within 132 h and a productivity (0.297 mmolFOE h-1 glipase
-1) 2-

fold higher than the control. RML displayed excellent stability during four 

successive reactions (528 h) in the PBBR based bioreactor system. No loss of 

Initial rates was observed.  
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4.2 Introduction 

 
In this chapter, the content was taken from a recently accepted paper [220]. 

Note that the contents of this chapter are a component of Objective 2 (given in 

Chapter 1). 

 

Saccharide-fatty acid esters, biodegradable, environmental friendly nonionic 

biobased surfactants prepared from inexpensive renewable agricultural 

feedstocks, are employed as emulsifiers in foods, pharmaceutical and 

cosmetics [41-46]. In addition, they possess antimicrobial activity, leading to 

their potential employment in food preservation [42, 43] and insecticides [50-

51]. Traditionally, saccharide-fatty acid esters are produced by chemical 

methods under harsh conditions, for instance, high pressure and temperature, 

yielding undesirable byproducts and unsafe operation condition. In contrast, 

biocatalytic synthesis of saccharide-fatty acid esters employs near-ambient 

operation conditions and leads to a narrow product distribution. However, the 

presence of significant hurdles hinders the application of biocatalysts for 

industrial utilization is the poor miscibility of polar and non-polar substrates, 

resulting in slow reaction rates. Although several methods have been 

successfully utilized to enhance the miscibility, particularly the employment of 

co-solvents: polar organic solvents [63-73] supercritical CO2 [92, 95] and ionic 

liquids [99, 100], their use involves several disadvantages, including the high 

cost of solvent and/or their recovery or disposal, reduction of process safety, 

and the environmental impact of solvent utilization.  

 

The aim of our group is to develop “green” approaches for the lipase-catalyzed 

synthesis of saccharide-fatty acid esters, utilizing the ester product to improve 

the dissolution of saccharide into the acyl donor (oleic acid), the latter acting as 

substrate and solvent [114-117]. Recently, we have employed suspensions of 
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saccharide crystals 10-200 μm in length dispersed in solvent-free media, 

formed by stirring the solid-phase saccharide and the liquid-phase media (acyl 

donor plus fatty acid ester) for several minutes, followed by sedimentation to 

remove larger particles [181]. In conjunction with a closed-loop bioreactor 

system, consisting of a reservoir open to the atmosphere (for free evaporation 

of the reaction product, water), a peristaltic pump, and packed bed bioreactor 

(PBBR), operated under continuous recirculation, this medium has led to an 

increased saccharide concentration, therefore, to a high conversion and an 

enhanced reaction rate: 88% w/w conversion into fructose oleate (92% w/w 

monoester and 8% w/w diester) within 6 days, starting with a reaction medium 

containing 75% w/w oleic acid and 25% w/w fructose oleate [181]. The 

suspension-based medium required retreatment with additional fructose at 10 h 

intervals, requiring a temporary stoppage of the bioreactor system. Molecular 

sieves were added to the reservoir upon achieving 60% w/w conversion of 

oleic acid to remove water, to enable further conversion [181]. The primary 

objective of this study is to improve the performance of the bioreactor system 

by controlling and optimizing the water concentration in reaction medium and 

the interval time for re-treatment and reformation of suspensions. Different 

approaches for water removal were compared. Also, the water removal 

strategies were employed for stirred tank bioreactor systems to test their 

universality.    

 

 

4.3 Methods and Materials 
 

4.3.1 Materials  

 

Technical grade oleic acid, 90% pure, and Lipozyme®IM, lipase (EC 3.1.1.3) 

from Rhizomucor miehei immobilized onto macroporous anionic beads, or 
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"RML," the latter a product manufactured by Novozymes, Inc. (Franklinton, 

NC USA), were purchased from Sigma-Aldrich (St. Louis, MO USA). 

Fructose (>98% purity), acetone (HPLC-grade), acetonitrile (HPLC-grade), 

and molecular sieves (Type 3A, 4-8 mesh, Grade 562) were obtained from 

Fisher Scientific (Pittsburgh, PA USA). All materials were used without 

further purification. The saccharide crystals were ground into a fine powder 

using a mortar and pestle. Technical grade fructose-oleic acid ester, FOE, the 

reaction product and a component of the initial charge to the bioreactor system, 

was synthesized by the RML-catalyzed fed batch reaction protocol given in our 

modified from previous report [8], as described elsewhere [19]. The purity of 

FOE was 89.6% (and the remaining fraction being oleic acid), with its 

composition being 83.6% monoester (ME) and 16.4% diester (DE). This 

product was mixed with oleic acid to obtain the desired proportions of oleic 

acid and ester, and fed to the bioreactor system.  

 

4.3.2 Methods  

 

4.3.2.1 Formation of supersaturated solutions of fructose in oleic acid / 

fructose-oleic acid ester mixtures   

 

Typically, the initial reaction medium, a suspension of saccharide crystals in 

solvent-free media, was formed by mixing 1.5 g fructose crystals and 10 g 

oleic acid / fructose-oleic acid ester (FOE), 75/25 w/w, equivalent to a reaction 

mixture that has achieved 25% conversion, in a 20 mL scintillation vial open to 

the atmosphere on a magnetic stirrer plate (Super-Nuova from Barnstead, 

Dubuque, IA USA) at 80oC and 800 rpm (radius of 1.5 cm) for 6 h. The slurry 

was centrifuged at 800 rpm for 0.5-1.0 min, with the supernatant collected.  
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4.3.2.2 Operation of Bioreactor Systems Undergoing Continuous 

Recirculation 

 

The bioreactor system included three major components:  a 20 mL scintillation 

vial open to the atmosphere serving as a reservoir, a peristaltic pump (BioLogic 

LP® from Bio-Rad, Hercules, CA USA), and a packed bed bioreactor (PBBR; 

50mm L × 10mm ID Omnifit® chromatography column packed with 0.75 g of 

RML per g of oleic acid + FOE). The three major components were connected 

in series, forming a closed-loop system that underwent continuous recirculation 

The PBBR and associated tubing were placed in an oven at constant 

temperature, 53oC. The reservoir was kept at 65oC and stirred at 200 rpm. 

Other details of the bioreactor system are described in our previous paper [19].  

The stirred-tank bioreactor (STBR) system utilized the same apparatus as 

described above except for the replacement of the PBBR with a STBR, a 20 

mL scintillation vial equipped with magnetic stirring (300 rpm). To enable the 

re-treatment of suspensions for the latter, the reaction medium was treated by 

microfiltration to remove the immobilized lipase as an initial step.  

 

At specified intervals (typically 10 h), the suspensions contained within the 

reservoir were re-treated as described above through introduction of additional 

saccharide (1.5 g). During the re-formation of suspensions, the bioreactor 

system was temporarily paused by stopping the pump; the mixtures in the 

reservoir were transferred to another 20 mL vial and the pumps re-initiated. 

Molecular sieves, MS were added to the reservoir or incorporated into a packed 

column (MSC) inserted between the reservoir and pump for several 

experiments.  
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Fig.4.1. The diagram of bioreactor system with molecular sieve column A. 

Hot plate maintained at 85oC B. 20ml vessel opened to the atmosphere C.  

Pump (0.5ml/min) D. Molecular sieves column (MSC) E. PBBRs F. Oven 

maintained at 53oC  
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4.3.2.3 Operation of Bioreactor Systems Undergoing Continuous 

Recirculation with In Situ Water Control 

 

A Wheaton Celstir spinner double-side arm flask was used to replace the 20 

mL scintillation vial acting as a reservoir and in situ water control place. The 

formation of supersaturated solutions of fructose in oleic acid / fructose-oleic 

acid ester mixtures was identical with section 4.3.2.1.  Operation of bioreactor 

system was same as section 4.3.2.2 except that water control was conducted in 

situ in a Wheaton Celstir spinner double-side arm flask using the combination 

of nitrogen gas bubbling and vacuum pressure. After one cycle of fructose 

oleate synthesis, the immobilized lipase was isolated from the PBBR, washed 

with a small amount of acetone quickly, and then reused for the next reaction. 

Replicated experiments were operated at four times.   

 

 

4.3.2.4 Water removal via vacuum pressure and N2 (g) bubbling   

 

A Wheaton celstir spinner double-side arm flask (50 mL) with a tight screw 

cap was placed on a hot plate/stirrer at 80 oC and stirred gently at 200 rpm 

(radius = 2.5 cm). The right side of the flask was connected to N2 (g) and a 

flowrate meter when needed; and, the left side was interfaced with a vacuum 

pump and a vacuum meter when needed. Subsequently, the fructose 

suspensions were placed into the flask. After water control treatment, the 

reaction media containing fructose suspensions was transferred to the 

bioreactor system. 

 

 

 

 



 

 88

4.3.2.5 Operation of Bioreactor Systems Undergoing Continuous 

Recirculation with In Situ Water Control 

 

A Wheaton Celstir spinner double-side arm flask was used to replace the 20 

mL scintillation vial acting as a reservoir and in situ water control. Other 

components and operation conditions remain the same as described above. 

 

4.3.2.6 Monitoring of Water, Oleic Acid, Ester, and Fructose 

Concentration  

 

The water content for the reaction mixture was analyzed using a Coulometric 

Karl-Fischer Titrator (Denver Instrument Company, Aurora, CO) after its 

dilution with methanol. The relative amounts of oleic acid and its mono- and 

di-esters formed with fructose was determined using a dual-pump system from 

Varian (Walnut Grove, CA) and a model Mark III evaporative light scattering 

detector from Alltech Associates, a division of WR Grace (Deerfield, IL) [18] . 

An analytical reversed phase (4.6 x 250 mm, pore diameter 5 µm) C18 column 

from Alltech was employed using separation conditions consisting of a column 

temperature of 25oC and an isocratic solvent system, acetone / acetonitrile / 

acetic acid (45 / 45 / 10 v/v/v) at flow rate of 1.0 mL min-1. Response factors 

were measured and employed to convert peak areas into concentrations [8].  

  

To analyze the fructose content, 40 mg-sized aliquots of column effluent were 

subjected to liquid-liquid extraction by the system of n-hexane and water (500 

µL of each) [18]. The extraction was carried out 3 X at 35oC for 2 hr using a 

thermomixer (Eppendorf AG, Germany). The aliquots from the pooled aqueous 

extraction solutions were diluted with acetonitrile to match the composition of 

the HPLC mobile phase to prevent peak broadening in the HPLC analysis. An 

analytical Prevail Carbohydrate ES column (4.6 x 250 mm, pore diameter 5 µm) 

from Alltech was employed using a column temperature of 25oC and an 
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isocratic solvent system, acetonitrile / deionized water (80 / 20 v/v) at flow rate 

of 1 mL min-1. Standard curves for fructose concentration in an oleic acid / 

fructose oleate liquid phase versus peak area were obtained and found to be 

independent of the reaction mixture’s composition [8]. 

 

4.4 Results and Discussion  

 
4.4.1 Effect of Molecular Sieve Concentration on Production of Fructose-

Oleic Acid Esters Using a Packed-Bed Bioreactor System  

 

For maintaining water concentration in the liquid phase in the reaction medium 

at the optimal level, molecular sieve column (MSC) at different concentrations 

were introduced into the bioreactor system developed by Obejctive1, 

consisting of a reservoir, peristaltic pump, and a PBBR, undergoing continuous 

recirculation at 0.50 mL/min and at 70 h during the time course of fructose 

oleate, using suspensions of fructose crystals in solvent-free media 53oC as 

described in Fig. 4.1. MSC were utilized other than scattered molecular sieve 

preventing mass transfer limitations for transport of water between the liquid 

phase and solid phases [59] and decreased the possibility of molecular sieve 

absorbing water away from enzyme directly [116]. At the initial phase, the 

conversion of fructose oleate increased with the amounts of molecular sieve. 

The maximum conversion (89.9 wt %) was obtained at the employment of 12 

wt % MS (i.e., 0.12 g molecular sieves per g of reaction mixture) in a MSC, 

equal to a residence time of 6.21 min per pass (Fig. 4.2A). Higher or lower 

amounts of molecular sieves have a negative effect on the final yield (Fig. 4.2).  

The amount of removed water was directly proportional to the concentration of 

MSC, as shown when the water concentration decrease at 70 h in Fig. 4.2B is 

plotted versus the molecular sieve concentration (Fig. 4.3). Hence, it appears 

that the optimal water concentration is approximately at 0.4wt % with 12 wt % 
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molecular sieve (Fig. 4.2B). Lower amounts of molecular sieve (i.e., 7wt %) 

removed insufficiently water from reaction medium (from 0.775 wt % to 0.611 

wt %) resulting in the hydrolysis of the desire products. In contrast, higher 

amount of molecular sieve (i.e., 16 and 20 wt %) reduced excessive water 

(0.236 wt % to 0.092 wt %) leading to the loss of enzyme activity [182, 183].  
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Fig.4.2.   Effect of molecular sieve concentration (g per g oleic acid+FOE, 

given in legend) on a. immobilized Rhizomucor miehei lipase- (RML-) 

catalyzed synthesis of fructose -oleic acid esters and b. liquid phase water 

concentration for a bioreactor system  
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Fig.4.3. Effect of molecular sieve concentration (g per g of reaction 

medium*100 %) on water removal (g per g of reaction medium*100 %) in 

the liquid phase of reaction medium.  
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4.4.2 Effect of Timing for Incorporating Molecular Sieve Column into the 

Packed-Bed Bioreactor System 

 

As mentioned in previous reports of our group [114, 115, and 160], 

inappropriate introduction time of water removal method results in a decrease 

reaction rate. Up to this point in the dissertation, timing for the incorporating 

MSC into the bioreactor system is still unclear and need to be investigated for 

optimization of bioreactor system. Fig. 4.4 compare the different introduction 

times for incorporating the MSC (12 wt % sieves) into the PBBR-based 

bioreactor system utilizing suspensions. The maximum rate and conversion 

( 89.1 wt %) was achieved when incorporating the MSC at 70 h, equivalent to 

approximately 60 wt % conversion into esters in the liquid phase (Fig. 4.4A). 

The 70 h incorporation time created the optimal water concentration 0.35-0.40 

wt % in the liquid phase (Fig.4.4B). Furthermore, Fig. 4 demonstrates although 

the early introduction of molecular sieves into the reaction (i.e., at 30 or 50 h, 

equivalent to 39.5 wt % and 52.9 wt % conversion, respectively) also obtained  

the  optimal water concentration (0.4 wt %), the rate of reaction was decreased, 

presumably due to extraction of water from the lipase, and hence reduced rates 

and yields( Fig 3). However, with employment of molecular sieves into the 

reaction during the latter stage of reaction (90 and 110 h, or equivalently 68 

and 77% conversion, respectively), they lead to the lower conversions since the 

high water contents (~0.6 wt %) cause the hydrolysis of esters (Fig. 4A & B). 

The time course of reaction for the experiments in Figs 4.4 are in strong 

consistent with each other and with Fig. 4.3 experiments, indicating the high 

repeatability of the bioreactor performance. 
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Fig.4.4.  Effect of introduction time for the molecular sieve column (given 

in legend) on the RML-catalyzed esterification of fructose and oleic acid 

employing a suspension of fructose crystals in solvent-free media and a 

bioreactor system containing a packed-bed bioreactor undergoing 

continuous recirculation.  
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Fig. 4.5 Effect of different bioreactor types on the RML-catalyzed 

fructose-oleic acid ester synthesis utilizing a suspension of fructose crystals 

undergoing continuous recirculation at 65oC using biosystem.  
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4.4.3 Effect of Bioreactor Type on Production of Fructose Oleate   
 

In the previous publication [116], the different bioreactor types using saturation 

saccharide concentrations were investigated and demonstrated that the rate and 

extent of reaction was higher for PBBRs compared to stirred-tank bioreactors 

(STBRs). However, the comparison of PBBRs and STBRs using suspensions 

has not been studied yet. Fig. 4.5 compared the two typical bioreactor types 

with the employment of suspensions, with identical molecular sieve 

concentrations and programming of the introduction time of the MS for both 

bioreactor systems. The results indicated that the highest productivity (0.193 

mmolFOE h-1 glipase
-1), and 90.2 wt % FOE, were obtained in PBBR system. 

Only 0.171 mmolFOE h-1 glipase
-1 with 82.5 wt % ester was achieved In STBRs. 

This result is strongly in agreement with the previous paper in our group [116]. 

The difference of water contents (Fig.4.5B, 0.42 wt % in PBBRs and 0.817 

wt % in STBRs, respectively) in the liquid phase of two bioreactor types 

resulted in the difference of ester productivity and conversions. Although the 

MS particles did not undergo breakage as expected, an adsorbed saccharide 

layer was formed on the MS particles during the later phase of reaction, 

hindering the ability of MS particles to remove water from reaction medium, 

further leading to a higher water concentration in STBR liquid phase. 

 

 

4.4.4 Comparison of Water Removal Methods  

 
In the Chapter 2, numerous water removal methods were reviewed for the 

lipase catalyzed synthesis of saccharide fatty acid esters, commonly including 

molecular sieves [59,67, 93, 117], silica gel [156-158], azeotropic distillation 

[161,162], vacuum pressure [110,168], pervaporation [169-171], free 

evaporation [58,115,175,176], dry air or N2 [184,185], salt hydrate pairs 
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[186,187]. However, few publications have been reported and compared 

various water removal methods for lipase-catalyzed reactions in nonaqueous 

media. Fig. 4.6 indicates the effect of four different water removal approaches: 

vacuum pressure (20 in Hg), N2 bubbling (2.5 L min-1 at standard pressure and 

temperature, 101.3 kPa and 273.15 K, respectively), MS (20 wt% overall), and 

a combination of vacuum pressure and N2 bubbling, applied to a suspension of 

fructose crystals in oleic acid/FOE 75/25 w/w at 80 oC during the time course. 

The water removal methods are listed in their order of effectiveness to remove 

water as followings: vacuum+ N2 bubbling (2.16 mgH2O h-1 > molecular sieves 

(1.42 mgH2O h-1) > N2 bubbling (0.68 mgH2O h-1) > vacuum (0.23 mgH2O h-1). 

Consequently, the combination of vacuum and nitrogen was chosen as an 

effective water removal method to strip water from the reaction medium for 

optimizing the performance of bioreactor in subsequent experiments. 

Additionally, the water convective mass transfer rates of air or/and N2 bubbling 

is relatively high with minimal influence on enzyme activity and stability [184]. 

On the other hand, with employment of the combination of vacuum and N2, 

lowered the water contents from 0.67 wt % to 0.24 wt % in 20 h, and to 0.16 

wt % in 140 h (Fig. 4.6) were obtained, which is far below the optimal level, 

0.4 wt % plus/minus 0.05 wt % in Fig. 4.1. Hence, when using this approach, 

excessive removal of water should be avoided.   
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Fig.4.6. Effect of water removal methods on the water concentration for a 

suspension of fructose crystals in FOE/oleic acid 25/75 w/w at 80 oC.  
 

 

 

 

 

 

 

 

 

 

 

 



 

 99

4.4.5 Determination of Required Interval Time for the Reformation of 

Suspensions of Fructose Crystals in Solvent-Free Media  

 

For the PBBR-based bioreactor system employed in our previous work [17] 

and for Figs 4.2, 4.3, and 4.4 of this dissertation, 10 h intervals were employed 

for the removal of the liquid phase and re-formation of suspensions through the 

addition of solid-phase fructose under stirring, followed by sedimentation to 

remove the larger particles. However, we observed that saccharide was 

frequently 100% consumed before the end of the 10 h cycle was reached, 

particularly during the initial period of the reaction where the rate is highest 

[17].Therefore, the interval times during lipase-catalyzed synthesis of 

saccharide-fatty acid esters reaction can be further optimized. Fig. 4.6 explores 

the time course of reaction for each interval using the PBBR-based bioreactor 

system. For the first cycle, it is clear that the formation of ester is nearly 

complete since the conversion slows at the approach of 30% esters (dashed 

arrows).  Therefore, utilization of 4.0 h is sufficient for operation of the first 

cycle (solid downward-pointing arrows of Fig. 4.6) rather than the 10 h 

interval employed previously. Likewise, the second and third cycles can be 

shortened to 4.0 h, the fourth cycle to 5.0 h, and the fifth cycle to 8.0 h (Fig. 

4.6). Additionally, the total reaction time is decreased from 140 h to 117 h 

when the interval time is optimized. Of note, the final conversion achieve at the 

end of each interval of Fig. 4.6 strongly agrees with the conversions achieved 

at the end of each 10 h interval in Fig. 4.2, further demonstrating the 

repeatability of the PBBR-based bioreactor’s performance. 
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Fig.4.7. Determination of required interval time for the reformation of 

suspensions of fructose crystals in solvent-free media for the RML-

catalyzed esterification. 
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4.4.6 Employment of Lower Initial Ester Concentrations  

 

Up to this point in my dissertation, the mixture of 25% w/w ester/75 % w/w 

oleic acid was used as the starting materials for lipase catalyzed synthesis of 

saccharide fatty acid esters. In this section, we explored the possibility of 

minimizing the ester content in initial phase to form the stable, metastable 

suspensions. Fig. 4.7 indicated that the initial reaction rate did not vary with 

ester concentration between 5 and 25 wt %, illustrating oleic acid/FOE 95/5 

w/w could act as the initial reaction medium, requiring 40 h (i.e., 4 cycles) of 

additional reaction time. Furthermore, the fructose concentrations were 

reasonably high: 0.69 wt% initially, increasing to 0.79 wt %, 1.18 wt %, and 

1.49 wt % after the second, third, and fourth 10 h cycles, respectively. The 

latter value is strongly consistent with the initial fructose concentration for 

25% FOE / 75% oleic acid as initial medium, 1.45% (e.g., Fig. 4.2).  However, 

FOE concentrations < 5 wt %, for instance, 3 wt % and 0 wt %, resulted in the 

poor initial reaction rates since the low concentration of saccharide suspensions 

were obtained (unpublished data).   
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Fig.4.8. Effect of the initial ester content of the solvent-free reaction 

medium on the initial rate of RML-catalyzed esterification. 
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4.4.7 Operation of Solvent-Free Packed-Bed Bioreactor System Using 

Suspensions under Optimized Interval Time and Water Removal 

Programming  

 
With the goal being to optimize the performance of the PBBR-based bioreactor 

system for synthesis of the solvent-free lipase-catalyzed saccharide-fatty acid 

esters, combining the knowledge learned on controlling the methodology, the 

appropriate amount and timing of water removal (vacuum pressure, 20 in Hg + 

N2 bubbling, 2.6 L min-1 selected, introduced upon reaching 60% conversion) 

bioreactor type (with PBBR selected, due to the lower water content ), and the 

interval time (programmed as described in Fig. 4.7). Initial medium contained 

oleic acid/FOE 95/5 w/w containing suspensions of solid-phase fructose. In Fig. 

4.9A, 92.6 wt % conversion was yielded in 5.5 days. The reaction product 

consisted of 93 wt % monoester and 7 wt % diester in Fig. 4.10, consistent 

with our previous results [181]. The control experiment obtained < 60 wt % 

conversion over the same time period (employing 10 h intervals for re-

formation of suspensions and only free evaporation for water removal).  For 

the average productivity rate, 9.13% conversion per day conversion for the 

control is much lower than optimal conditions, 15.9% conversion per day. Fig. 

4.9B indicates that the water concentration of the optimized process was 

maintained at the optimal water content, approximately 0.4 % w/w, which is 

much lower than control’s water concentration ~0.9 % w/w, leading to the 

hydrolysis of desired products. Fig. 4.11 showed that the saccharide 

concentration was consistently increased with the increase of ester content and 

finally reached upon ~2.5 wt  
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4.4.8 Operation of Solvent-Free Packed-Bed Bioreactor System Using 

Suspensions under Optimized Interval Time and Water Removal 

Programming  

 
Furthermore, the reusability and operational stability of RML was investigated 

using the PBBR based bioreactor system developed in Chapter 3 with a 

Wheaton Celstir spinner double-side arm flask serving as a reservoir and 

allowing for in situ water control place by the combination of nitrogen gas 

bubbling and vacuum pressure at 2.16 mgH2O h-1 to maintain water 

concentration at nearly 0.4% w/w. In sum, four successive reactions were 

operated without essentially any loss of activity, demonstrated by minimal 

change in the time course of reaction, including the initial rate (Fig. 4.12 and 

Table 4.1). The final ester content was consistently 84.8-90.2 % w/w for the 

four successive reactions in Fig. 4.12a and Table 4.1. The water concentration 

was maintained at ~0.4 w/w in Fig. 4.12b, consistent with the previous results 

in this Chapter. The excellent stability of RML may benefit from the solvent-

free reaction medium and water control method. The lack of organic solvent in 

the reaction medium during the time course reduces deactivation of lipase. Air 

or/and N2 have a minimal influence on enzyme activity and stability [184]. In 

conclusion, RML maintained a high activity for four successive reactions, 

equal to 528h (22 day) of operation.   
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4.5 Conclusion  
 
In this Chapter, the performance of the lipase-catalyzed synthesis of 

saccharide-fatty acid esters employing solvent-free suspensions of solid-phase 

saccharide in a packed bed bioreactor system was optimized in this study. The 

results illustrated that water removal method should be introduced to the 

bioreactor system upon reaching approximately 60% w/w conversion, at an 

optimal liquid-phase water concentration of ~0.4 % w/w. In addition, the 

combination of nitrogen gas bubbling + vacuum pressure was tested to be the 

most efficient water removal method. Plus, the performances of the stirred tank 

bioreactor and packed bed bioreactor under the uniform experimental condition 

were examined. Results indicated that the rate and yield of ester were 

significantly higher using a PBBR compared to a STBR, due to lower water 

content in the former. Furthermore, the interval time for re-treatment of 

suspensions was optimized leading to a decrease of the reaction time by 23 h.  

Additionally, the initial ester concentration for formation of the solvent-free 

suspensions could be decreased from 25% w/w to 5% w/w without any loss of 

reaction rate. By incorporating the optimal condition mentioned above, a yield 

of 92.6% w/w fructose oleate was achieved in the PBBR-based bioreactor 

system within 132h, increasing the productivity (0.297 mmolFOE h-1 glipase
-1), 

more than a 2-fold increase compared to the control (0.129 mmol h-1 g-1). 
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Fig.4.9. The effect of optimization of interval time for retreating of 

suspensions and removal of water for the solvent-free RML-catalyzed 

synthesis of fructose oleate using bioreactor system.  
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Fig. 4.10.  Mass fraction of monoesters among fructose-oleic acid esters 

(FOE) for the reaction depicted in Fig. 4.9 that was operated under 

optimal conditions.   
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Fig.4.11. Concentration of fructose in the liquid phase before and after re-

treatment of the liquid-phase medium through additional fructose, to 

produce metastable fructose suspensions, for the reaction depicted in Fig. 

4.9. 
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Fig.4.12. The examination of enzyme activity retention for RML for the 

solvent-free synthesis of fructose oleate at 65 oC in bioreactor system. 
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Table 4.1 The Change of Initial Reaction Rate & Yield of Fructose Oleate for 

Four Successive Runs Employing the Same Enzyme a 

 

Run number Initial rate  

(% Ester h -1) 

   % Ester @ 132h 

1 1.27 87.5 

2 1.32 91.2 

3             1.25 86.1 

4             1.29 89.6 
 

a Reaction conditions:  The reaction was operated under optimized condition 

described in Chapter 4 in a packed bed based bioreactor system with in situ 

wheaton celstir spinner double-side arm flask  using  the combination of 

nitrogen gas bubbling and vacuum pressure at 2.16 mgH2O h-1 to maintain water 

concentration at nearly 0.4% w/w . 
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CHAPTER 5 
EFFECT OF ACYL DONORS AND 

ACCEPTORS ON LIPASE-CATALYZED 

SYNTHESIS OF SACCHARIDE-FATTY ACID 

ESTERS UTILIZING SOLVENT-FREE 

SUSPENSIONS  
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5.1 Abstract  
 

The effect of acyl donor (oleic, caprylic, lauric and myristic acids) and acceptor 

(fructose, sucrose, glucose and xylose) were investigated for the solvent-free 

lipase-catalyzed synthesis of saccharide-fatty acid esters, biodegradable and 

biocompatible biobased surfactants. The reactions were conducted using a 

packed bed (PBBR)-based bioreactor system at 53 oC or a stirred tank 

bioreactor (STBR) at 65oC using immobilized Rhizomucor miehei lipase (or 

“RML,” Lipozyme®IM, Novozymes, Franklinton, NC USA)  and  solvent-free 

(50-200 μm-sized) suspensions of saccharide crystals in a mixture of fatty acid 

/ fructose oleate (90 wt % monoester and 10 wt % diester ) at a ratio of 75/25 

w/w initially. The highest conversion and initial rate occurred when the 

saccharide concentration was highest. Suspensions containing the highest 

saccharide concentration coincided with saccharide crystals of the smallest 

average size, since large-sized crystals sedimented out during the workup for 

formation of the suspensions. The best performance was achieved using 

fructose and oleic acid as substrates (92.3 wt % ester, 92 wt % of which was 

monoester) with a PBBR; and, all other acyl acceptors and donors achieving at 

least 47.6 wt % conversion of acyl donor, or equivalently, a solvent-free 

product mixture containing at least 69 wt % ester.   
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5.2 Introduction  

 
In this chapter, the content was taken from a recently accepted paper [201]. 

Note that the contents of this chapter are a part component of Objective 2 

(given in Chapter 1). 

 

As described in Chapter 3 and 4, I successfully developed a two-step bioreactor 

system undergoing continuous recirculation at 0.5 mL min-1 using the fructose 

or sucrose suspensions crystals was.  However, it is unclear for me to use other 

common acyl donors and acceptors for this bioreactor system. Hence, in this 

Chapter, the effect of acyl donor (oleic, caprylic, lauric and myristic acids) and 

acceptor (fructose, sucrose, glucose and xylose) were investigated to examine 

the universality of the bioreactor system. Furthermore, another aim of this 

section is to better understand the difference of the performances of acyl 

acceptors, dependent on inherent selectivity of acyl acceptor substrate or/and 

attributable to differences in saccharide concentration. To complete this aim, 

determining the underlying reason for difference in sacchariade concentration 

between suspensions formed by different acyl donors and acceptors was 

studied in this section.  

 

5.3 Methods and Materials 
 

5.3.1 Materials  

 

Technical grade oleic (cis-9-octadecenoic) acid, 90% pure (melting point 

temperature, or TMP, of 16.3oC, D-(+)-glucose (>99.5% pure), lauric 

(dodecanoic) acid (>99% pure, TMP = 43.2oC) and myristic (tetradecanoic) acid 
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(>99% pure, TMP, = 54.4oC) and Lipozyme®IM were purchased from Sigma-

Aldrich (St. Louis, MO USA). The latter, referred to as “RML” in this Chapter, 

is lipase (EC 3.1.1.3) from Rhizomucor miehei immobilized onto macroporous 

anionic resin beads (140 U g-1, where 1 U refers to the amount of enzyme 

which releases 1 μmol stearic acid per minute from tristearin at pH 8.0 and 

70 °C), manufactured by Novozymes, Inc. (Franklinton, NC USA). D-Fructose 

(>98% pure), D-xylose (>98% pure), sucrose (>98% pure), acetone (HPLC-

grade), acetonitrile (HPLC-grade), and molecular sieves (Type 3A, 4-8 mesh, 

Grade 562) were obtained from Fisher Scientific (Pittsburgh, PA USA). 

Caprylic (octanoic) acid (>99.5% pure) was purchased from MP Biomedicals, 

Inc. (Solon, OH USA). All materials were used without further purification. 

The saccharide crystals were ground into a fine powder using a mortar and 

pestle. Technical grade fructose-oleic acid ester, the reaction product and a 

component of the initial charge to the bioreactor system, was synthesized 

enzymatically. The reaction product consisted of 89.6 wt % ester, or FOE (of 

which 83.6 wt % is monoester and 16.4 wt % diester), and 10.4 wt% oleic acid. 

This product was mixed with fatty acid to obtain the desired proportions of 

acyl donors and ester, and fed to the bioreactor system.  

 

 

5.3.2 Methods  

 

5.3.2.1 Formation of Supersaturated Solutions of Saccharides in Fatty 

Acid / Fructose-Oleic Acid Ester Mixtures (Initial Reaction Medium)   

 

Generally, the initial reaction medium introduced into the bioreactor system, a 

suspension of saccharide crystals in solvent-free media, was formed by mixing 

1.5 g saccharide crystals and 10 g of a fatty acid / FOE 75/25 w/w mixture in a 

20 mL scintillation vial open to the atmosphere on a magnetic stirrer plate 

(Super-Nuova from Barnstead, Dubuque, IA USA) at 800 rpm (or equivalently, 
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at a radial acceleration of 11 g) and 80oC for 6 h. The slurry was centrifuged at 

800 rpm (or equivalently, 71 g) for 0.5-1.0 min, with the supernatant collected. 

The temperature of the resultant suspension after removal from the centrifuge 

was 25oC. For suspension-based media formed using lauric or myristic acid as 

acyl donor, centrifugation was not employed because the centrifugation 

instrumentation possessed by us could not retain the media above the melting 

point temperature, leading to solidification.  Therefore, for these acyl donors, 

larger particles were removed by allowing the medium to remain stagnant on a 

hot plate for 30 min at 65oC; then, the supernatant was isolated by careful use 

of a transfer pipette.  

 

 

5.3.2.2 Operation of Packed-Bed Bioreactor System Undergoing 

Continuous Recirculation 

 

The closed-loop bioreactor system, employed for reactions using oleic and 

caprylic acid as acyl donor, consisted of four main components connected in 

series:  a 20 mL scintillation vial open to the atmosphere serving as a reservoir, 

a peristaltic pump (BioLogic LP® from Bio-Rad, Hercules, CA USA), a packed 

column of molecular sieves (1.36 g of MS packed into a 50 mm  × 10 mm ID 

Omnifit® chromatography column) a packed bed bioreactor (PBBR; 50mm L × 

10mm ID Omnifit® chromatography column packed with 0.76 g of RML per g 

of reaction medium).  The outlet stream from the PBBR was returned to the 

reservoir to create a loop, which underwent continuous recirculation at 0.5 mL 

min-1; moreover, the average residence time for the MSC and PBBR were 6.2 

min per pass and 7.6 min per pass, respectively. The MSC and PBBR were 

maintained at 53oC via a convection oven. The enzyme concentration and 

recirculation rate employed herein were determined previously to be optimal 

[181]. The initial charge to the reactor consisted of 10 g of acyl donor / 

fructose oleate 75/25 w/w.  Other details of the bioreactor system have been 
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mentioned in my previous paper [181]. All reactions were performed in 

duplicate, with data reported in the figures and table representing average 

values. 

At specified intervals determined previously to be optimal, the suspension-

based solution contained within the reservoir was re-treated as described above 

through introduction of additional (1.5 g) saccharide, to replenish the 

consumed substrate: 3.0 h for intervals 1-3, 4.0 h for intervals 4-6, 6.0 h for 

interval 7, 9.0 h for interval 8, and 10 h for subsequent intervals (Ye and Hayes, 

submitted). During the re-formation of suspensions, the bioreactor system was 

temporarily paused by stopping the pump; the mixture in the reservoir was 

transferred to another 20 mL vial where additional saccharide was added and 

suspensions reformed, as described above.  Then the retreated suspension-

based medium was returned to the reservoir and the pump re-initiated. Initially, 

the MSC was not contained in the closed loop bioreactor system (since the free 

evaporation of water in the reservoir was found to be sufficient for removal of 

the water generated by the reaction), but was incorporated into the system 

when the ester content of the medium reached 60% to further reduce the 

liquid—phase water content, since this approach was found to be optimal in 

our previous work [201].    

 

5.3.2.3 Operation of Stirred-Tank- Bioreactor   

 

For reactions employing lauric and myristic acid as acyl donors, reactions were 

conducted in a stirred-tank bioreactor (STBR), a 20 mL scintillation vial 

containing 0.756 g of RML particles per g or reaction medium operated under 

magnetic stirring at 300 rpm (equivalently, 1.5 g) at 65oC through use of a hot 

plate-stirrer with 13 wt% molecular sieves for water concentration control.  

The mass of the initial charge to the STBR is identical to that used for the 

PBBR bioreactor systems, with its composition consisting of 72.1% lauric or 

myristic acid, 2.9% oleic acid, and 25% FOE; i.e., the acyl donor composition 
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was 96.1% lauric or myristic acid and 3.9% oleic acid.  The suspension-based 

medium was retreated with additional acyl acceptor periodically, as described 

above; however, RML particles were removed as a first step through 

microfiltration conducted in a 65 oC oven. All reactions were performed in 

duplicate, with data reported in the figures and table representing average 

values. 

 

5.3.2.4 Monitoring of Water, Fatty Acid, Ester, Saccharide Concentration 

and Particle Size   

 

The water content for the reaction mixture was analyzed using a coulometric 

Karl-Fischer Titrator (Denver Instrument Company, Aurora, CO, USA) after 

its dilution with methanol. The relative amounts of fatty acid and its mono- and 

di-esters formed with saccharides was determined using a dual-pump system 

from Varian (Walnut Grove, CA) and a model Mark III evaporative light 

scattering detector from Alltech Associates, a division of WR Grace (Deerfield, 

IL) [7] . An analytical reversed phase (4.6 x 250 mm, pore diameter 5 µm) C18 

column from Alltech was employed using separation conditions consisting of a 

column temperature of 25oC and an isocratic solvent system, acetone / 

acetonitrile / acetic acid (45 / 45 / 10 v/v/v) at flow rate of 1.0 mL min-1. 

Response factors were measured and employed to convert peak areas into 

concentrations [7]. Chromatograms of mono- and diester species obtained by 

us agree with those reported in Ref [19] 

  

To analyze the saccharide content, 40 mg-sized aliquots of column effluent 

were subjected to liquid-liquid extraction by the system of n-hexane and water 

(500 µL of each) [19]. The extraction was carried out 3 X at 35oC for 2 hr 

using a thermomixer (Eppendorf AG, Germany). The aliquots from the pooled 

aqueous extraction solutions were diluted with acetonitrile to match the 

composition of the HPLC mobile phase to prevent peak broadening in the 
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HPLC analysis. An analytical Prevail Carbohydrate ES column (4.6 x 250 mm, 

pore diameter 5 µm) from Alltech was employed using a column temperature 

of 25oC and an isocratic solvent system, acetonitrile / deionized water (80 / 20 

v/v) at flow rate of 1 mL min-1. Standard curves for saccharide concentration in 

a fatty acid / saccharide-fatty acid esters liquid phase versus peak area were 

obtained and found to be independent of the reaction mixture’s composition 

[19]. 

 

The particle size distribution of the dispersions present in the above-mentioned 

suspension solution following the method in the section of formation of 

supersaturated solutions of saccharides in fatty acid was analyzed by a Zeta 

potential Analyzer, Zeta PALS (Brookhaven Instruments Corporation, 

Holtsville, NY, USA) [9]. All measurements were performed in triplicate, with 

data reported in the figures and table representing average values. 

 

5.4 Results and Discussion 
 

5.4.1 Effect of Acyl Acceptor Type on Lipase-Catalyzed Solvent-Free 

Production of Saccharide-Oleic Acid Esters in a Packed-Bed Bioreactor 

System 

 

As mentioned in the prior publications [115, 133, 181, 182], fructose serving as 

the main acyl acceptor for was employed for the formation of suspensions, 

further to synthesize the saccharide fatty acid ester in the bioreactor system. 

Here, sucrose, glucose, and xylose were examined for their capabilities acting 

as acyl acceptors. Fructose oleic acid ester (FOE) was used as a cosolvent 

promoting the miscibility of acyl acceptors and donors. From the previous 

section, it is known that 5 wt% ester is adequate for fructose to form metastable 

suspensions in oleic-rich solvent free media at 530C. However, for glucose and 
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xylose, starting FOE (< 25 wt %) generated the poor concentration of glucose 

and xylose suspensions leading to slow initial reaction rates. Therefore, all the 

reactions in this section employed the mixture of oleic acid/FOE 75/25 w/w 

initially on a saccharide-free basis. These reactions were operated at the 

optimal conditions in the bioreactor system, as described in the Section 4.7. 

The performances of four different acyl acceptors were compared during the 

time course of lipase-catalyzed esterification reaction for synthesis of 

saccharide-oleic acid esters in PBBR-based bioreactor system using 

suspensions in Fig. 5.1a. The order of the final ester concentrations and initial 

reaction rates of four common acyl acceptors are as follows:  fructose (92.3 

wt % ester) > sucrose (85.5 wt %) > glucose (82.6 wt %) > xylose (74.9 wt %). 

The maximum fructose-oleic acid ester content is agreement with our prior 

publications [181]. Since water concentrations were maintained at the optimal 

level (~0.4 wt %) by the molecular sieve column in Fig. 5.1a, the saccharide 

concentrations were attributed to be the primary reason for the differences of 

performances of bioreactor system. The saccharide concentrations in the PBBR 

at the beginning and end of each interval were plotted in Fig. 5.1b (i.e., before 

and reformation of suspensions after adding additional saccharide crystals), 

demonstrating saccharide was completely consumed during the initial 4-hour 

stage for each acyl acceptor. During the first 40 h period of the reaction, the 

saccharide concentrations increased gradually with the improvement of ester 

concentration. The highest saccharide concentration was obtained using 

fructose as acyl acceptor, followed by sucrose, glucose and xylose (Fig. 5.1b), 

reflecting the rate and extent of esterification versus acyl acceptors relationship 

listed above. The identical trend of saccharide concentration with ester 

conversion indicated the relative concentration of acyl acceptor was more 

influential than the inherent acyl acceptor substrate selectivity of RML under 

these conditions. In general, the rate of lipase-catalyzed synthesis of 

saccharide-fatty acid esters increases with the increase of acyl acceptor 

(saccharide) concentration in publications for reactions conducted employing 
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polar solvents [188, 189] , ionic liquids [190], and supercritical carbon dioxide 

[191]. More importantly, for the reactions employing glucose, xylose, and 

sucrose as acyl donor, no free fructose was detected, suggesting the absence of 

lipase-catalyzed alcoholysis between FOE and acyl acceptor. 
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Fig. 5.1   Effect of different acyl acceptors (given in legend) on the time 

course of reaction for immobilized Rhizomucor miehei lipase- (RML-) 

catalyzed synthesis of saccharide -oleic acid esters in a packed-bed 

bioreactor (PBBR)-based bioreactor system at 53oC.  
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5.4.2 Effect of Acyl Donor Type on Lipase-Catalyzed Solvent-Free 

Production of Saccharide-Oleic Acid Esters in a Packed-Bed Bioreactor 

System 

In our previous work [115, 133, 181, 182], oleic acid (C18) has been used as 

acyl donor. In this section, other acyl donors, for instance, caprylic, lauric, and 

myristic acids, have been employed for lipase- catalyzed synthesis of 

saccharide-fatty acid esters. Caprylic acid was utilized in the PBBR-based 

bioreactor system described above, employing the same operating conditions 

as described for Fig. 5.1, including the presence of 25 wt % FOE initially.  

However, lauric and myristic acids possessed too high of a melting point for 

the PBBR-based system, leading to frequent precipitation when employed. The 

precipitation caused the blockage of system, particularly in the tubing and 

entries and exits of the system components.  Therefore, a stirred-tank 

bioreactor, or STBR, operated at 65oC were employed for the latter two donors. 

Fig. 5.2a compares the time courses of lipase-catalyzed solvent-free synthesis 

of glucose and fructose-caprylic acid esters in the PBBR-based bioreactor 

system. The final reaction medium contained 79.3 wt % glucose-caprylic acid 

ester and 72.6 wt % fructose-caprylic acid ester, respectively. It appears the 

difference in ester yield and initial rate between glucose and fructose, and the 

lower ester yield and rate for caprylic acid employed as acyl donor compared 

to oleic acid is attributable to their respective saccharide concentration. 

Fig.5.2b indicates the same principle as Fig.5.1b: the saccharide 

concentrations increased gradually with the enhancement of ester concentration. 

The highest saccharide concentration was obtained using fructose as acyl 

acceptor. As shown in Table 5.1, the nearly linear relationship between the 

initial rate and yield of esters versus the initial saccharide concentration is 

consistent with the two other different acyl donors in the PBBR-based 

bioreactor system. The final product distribution for the caprylic acid esters is 

in the range from 85 to 91 wt % monoester among the esters. For both the oleic 
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and caprylic acid reactions, the fraction of monoesters is lowest for glucose and 

highest for fructose and sucrose,   probably reflecting a difference in the 

inherent substrate selectivity of RML. Additionally, according to early 

investigations [192-194], it was indicated different acyl donors have an 

influence on the activity of lipase. More specifically, the activity of RML is 

promoted with the increase of chain length of fatty acids [192-194] .  Hence, 

the activity of RML is supposed to be higher than caprylic acid (C8) during the 

period of using the chain length of oleic acid (C18) as an acyl donor, partly 

leading to the difference on the time course of ester yields.  
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Fig. 5.2 Effect of acyl acceptor type on the time course of reaction for 

RML-catalyzed synthesis of saccharide –caprylic acid esters in a packed-

bed bioreactor (PBBR)-based bioreactor system at 53oC. 
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Fig. 5.3 demonstrates the time course of reaction for RML-catalyzed solvent-

free esterification between lauric and myristic acids as acyl donor and fructose 

and sucrose as acyl acceptors using a STBR. The final ester concentration for 

all reactions was more than 75 wt % (in Table 5.1). The greater yields and 

rates of reaction occur when employing lauric acid as acyl donor and fructose 

as acceptor. The ester yield was listed following: lauric acid + fructose (86.7 

wt %) > lauric acid + sucrose (85.1 wt %) > myristic acid + fructose (81.2 

wt %) > myristic acid + sucrose ester (76.8 wt %). The relationship between 

initial rate and final ester concentrations for the STBR data plotted in Fig. 5.4 

is consistent in trend with the PBBR-derived data of Figs 5.1 and 5.2, with 

both quantities increasing with the saccharide concentration (Table 5.1).  

However, Fig. 5.4 states clearly that the rate and ester production of reactions 

in the STBR are slightly lower than the PBBR bioreactor system, although the 

former bioreactor system was operated at a slightly higher temperature, 65oC, 

versus 53oC for the PBBR-based system.  The difference water concentration 

between the two bioreactor systems is considered to be the primary reason.  

Molecular sieves (0.13 g per g of reaction medium) were introduced into both 

bioreactor systems, when the ester concentration reached upon 60 wt %, to 

augment the removal of produced water via free evaporation, using a MSC for 

the PBBR bioreactor system and adding MS directly to the STBR. For the 

PBBR bioreactor system, the liquid-phase water concentration increased from 

0.65 to 0.8 wt% during the initial reaction period, then decreased to 0.4 wt % 

upon the incorporation of the MSC, with the latter water concentration deemed 

optimal. In contrast, the water concentration for all STBR reactions increased 

from 0.65 to 0.9 wt %, then decreased to 0.7 wt % upon the addition of MS.  

Therefore, the water concentration was significantly higher during operation of 

the STBR than PBBR. This agrees with previous investigations by us where 

the two bioreactors were compared for the solvent-free RML-catalyzed 

synthesis of FOE [133] and in Chapter 4. The difference is partly attributed to 

enhanced mass transport in PBBR. Furthermore, contact between MS and the 
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reaction medium is more efficient for the MSC than the stirring of the MS in 

the STBR.  Moreover, the literature suggests that lipases are more efficient 

biocatalysts in a PBBR compared to a STBR [195, 196]. Importantly, no 

transesterification between FOE and the acyl donor and acceptor substrates 

occurred due to the absence of free fructose (for reactions using sucrose as acyl 

acceptor) or fructose laurate or myristate at detectable levels by HPLC. The 

monoester fraction among the esters ranged between 85 and 92 wt%, but was 

slightly lower than for fructose and sucrose oleate (Table 5.1). 
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Table  5.1. Summary of final yield and product distribution for saccharide-fatty acid                         

esters in solvent-free bioreactor systems 

 
DE  saccharide-fatty acid diester, ME saccharide-fatty acid monoester;  
 
a  Packed-bed bioreactor system undergoing continuous recirculation  
b Stirred-tank bioreactor  
c Reaction displayed in Fig.1 

 
Bioreactor 

system 

 
Acyl 
donor 

 
Acyl 
acceptor 

 
Initial 

Saccharide 
( wt %) 

 
Initial rate 

(% Ester h -1) 

 
Final ester    

content 
(wt %) 

PBBRa Oleic 
acid c 

Fructose 1.67 ± 0.06 g 1.31 ± 0.02 g 91.3 ± 1.01 g 
Sucrose 1.46 ± 0.03 g 1.16 ± 0.03 g 85.9 ± 0.41 g 
Glucose 1.33 ± 0.06 g 1.08 ± 0.02 g 81.4 ± 1.20 g 
Xylose 1.21 ± 0.02 g 0.93 ± 0.07 g 72.4 ± 2.53 g 

Caprylic 
acid d 

Fructose 1.14 ± 0.02 g 0.86 ± 0.05 g 69.1 ± 3.56 g 
Glucose 1.31 ± 0.03 g 1.05 ± 0.01 g 77.8 ± 1.51 g 

STBR b Lauric 
acid e 

Fructose 1.63 ± 0.08 g 1.23 ± 0.04 g 87.1 ± 0.31 g 
Sucrose 1.51 ± 0.02 g 1.19 ± 0.02 g 85.9 ± 0.83 g 

Myristic 
acid e 

Fructose 1.43 ± 0.02 g 1.12 ± 0.03 g 81.7 ± 1.09 g 
Sucrose 1.19 ± 0.03 g 1.01 ±   0.05 g 76.4 ± 0.45 g 
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d  Reaction displayed in Fig.3 

e Reaction displayed in Fig.4 

f Fraction of monoesters among the saccharide-fatty acid esters; beginning reaction 

mediums containing 25 wt % fructose oleate with 90 wt% monoester  
g Standard deviation in each column equivalent to error bars
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Fig.5.3.  Effect of different acyl acceptors and donors (given in legend) on the 

time course of reaction for RML-catalyzed solvent-free synthesis of 

saccharide -oleic acid esters in a stirred bioreactor (STBR) at 65oC that 

utilizes solvent-free suspensions of saccharide crystals.  

 

 



 

 130

70

75

80

85

90

95

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

Initial Saccharide Concentration, Wt %.

Fi
na

l E
st

er
 C

on
ce

nt
ra

tio
n,

 W
t %

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

In
iti

al
 R

at
e 

of
 R

ea
ct

io
n,

 W
t%

 p
er

 D
ay

PBBR, Ester Content

STBR, Ester Content

PBBR, Init Rate

STBR, Init Rate

 
Fig.5.4. Relationship between initial saccharide concentration, final ester 

concentration, and initial rate of reaction for the solvent-free lipase-catalyzed 

synthesis of saccharide-fatty acid esters in either a packed-bed bioreactor 

(PBBR) system at 53oC or a stirred-tank bioreactor (STBR)at 65oC.   
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5.4.3 Characterization of the Solvent-Free Suspensions Formed by Different 

Acyl Acceptors and Donors and Fructose Oleate     

 

As mentioned above in Section 5.1-5.3, the most significant factor for operating 

lipase-catalyzed solvent-free saccharide-fatty acid ester synthesis is the maximization 

of the saccharide concentration in the suspension-based medium. Therefore, for better 

understanding the most significant factors for maximizing saccharide concentration, 

the physicochemical properties of the suspensions were characterized and studied. 

This investigation was limited to the starting media containing 75 wt % acyl donor 

(oleic or caprylic acid) and 25 wt % FOE at 25oC, i.e., conditions resembling the 

initial conditions in the reactions of Figs. 5.1 and 5.2.  The characterization of solvent-

free medium containing lauric acid or myristic acid could not be conducted due to the 

absence of heating remaining capability in the characterization instrumentation; 

moreover, it would be quickly solidified without heating. 

 

Fig. 5.5 illustrates the average particle size, achieved by light scattering, and 

saccharide concentration of suspensions formed as per the initial reaction media of 

Figs 5.1 and 5.3. The saccharide concentrations in Fig. 5.5a are strongly consistent 

with those of Figs 5.1a and 3a, indicating the highest saccharide concentrations 

occurred for fructose and sucrose as acyl acceptors and oleic acid as acyl donor. 

Additionally, the rapid and simple method was performed previously by our group to 

assess relative differences in saccharide concentration at 1000 nm absorbance values 

[181], reflecting the trends between acyl donors and acceptors in Fig. 5.6. The light 

scattering results of  Fig. 5.6 indicate the average particle sizes of suspensions formed 

from oleic acid / FOE increased slightly, from 30-43 μm, in the order: 

xylose >glucose > sucrose > fructose, the opposite trend as compared to saccharide 

concentration in Fig. 5.5.  The range of average particle size agrees with those 

reported previously by us for fructose/oleic acid/FOE-based suspensions [181]. In 

agreement, for suspensions formed from caprylic acid, glucose as acyl acceptor 

yielded the highest saccharide concentration and lowest average particle size in Fig. 
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5.5. Also, there is consistent with the relationship between increasing saccharide 

concentration and decreasing particle size when comparing acyl donors for a common 

acyl acceptor, glucose or fructose in Fig. 5.5. In conclusion, suspensions consisting of 

smaller average particle size result in higher saccharide concentration, reflecting the 

relative stability of the smaller particles to resist settling out of solution when 

subjected to centrifugation during the processing of the suspensions. 
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Fig.5.5. Effect of acyl donor types and acceptor types on a. liquid phase 

saccharide concentration, and b. the average particle sizes of suspensions at 

25oC formed by mixing saccharide and oleic acid / fructose oleate (FOE) under 

the conditions given in Fig. 5.1. 
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Fig.5.6. Comparison of suspensions of different acyl acceptors and donors in 

solvent-free media on the absorbance at 1,000 nm for the suspension samples 

listed in Fig. 5.2  
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Fig.5.7. Effect of different acyl acceptors and donors on the average particle 

sizes of suspensions of saccharide crystals in solvent-free media at 80oC after 

forming suspensions as mentioned in Figs 5.1 and 5.2, but before the 

centrifugation step is invoked.  
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As described above, the average size of suspended particles has a direct relationship 

with the size of the saccharide crystals in suspensions.  Light scattering analysis for 

the oleic acid/FOE 75/25 w/w suspensions prior to centrifugation show particles for 

xylose are quite large, 1650 μm, followed by glucose, 900 μm, sucrose, 700 μm, and 

fructose, 650 μm in Fig. 5.7, reflecting the same trend obtained for the particle sizes of 

the suspensions after centrifugation in Fig. 5.5. For the better understanding visually, 

light microscopy was utilized for obtaining optical images, presenting the same trend 

with the light scattering results:  suspensions of sucrose and fructose in oleic acid/FOE 

(prior to centrifugation) contain relatively small particles; glucose particles in the same 

medium are larger, and particles for xylose suspensions are even larger (Fig. 5.8); in 

contrast, after centrifugation, for all samples, very few particles were detected by light 

microscopy (Fig. 5.9). Additionally, optical microscopy images for saccharide-

caprylic acid –based suspensions follow trends mentioned above for oleic acid-based 

suspensions (Fig. 5.10). Accordingly, it is concluded that the suspensions formed by 

larger sized crystals lose a larger fraction of their saccharide content through 

centrifugation due to their lower settling velocities. Of note, the formation of 

suspensions is anticipated to impact the size of the suspended crystal particles 

minimally since the forming environment is relatively benign toward influencing the 

formation of the suspended crystals. First, due to free- evaporation by the pretreatment 

in a vial opened to the atmosphere at 80oC and low water contents of initial materials, 

this medium offers nearly-anhydrous environment (water concentration, 0.65 

wt %±0.04 wt %), which is considered to be a distinct barrier for crystallization or 

dissolution of large size crystals [197]. Second, the high viscosity of the reaction 

medium inhibits crystallization since it offers the high energy hurdle for crystallization 

process [108].  
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5.5 Conclusion  
 

In conclusion, the performances of common acyl donors (oleic acid, caprylic acid, 

lauric acid and myristic acid) and acceptors (fructose, sucrose, glucose and xylose) on 

solvent-free lipase (RML)-catalyzed synthesis of saccharide-fatty acid esters using 

acyl donor/ester-based suspensions in PBBR and STBR bioreactor systems were 

investigated and compared. The results presented that all of the donors and acceptors 

can act as substrates effectively, with conversion and initial rate being highest for 

fructose, followed by sucrose, glucose, and xylose among acyl acceptors, and oleic 

acid, followed by lauric, myristic, and caprylic acid among acyl acceptors. 

Significantly, an increase of acyl acceptor (saccharide) concentration was considered 

to be the primary factor for maximizing conversion and initial rate. It was 

demonstrated that the suspension formed from a saccharide starting material 

consisting of abundant smaller size saccharide particles yielded stable suspended 

saccharide particles of average size 30-45 mm, and therefore higher saccharide 

concentration, resulting in the higher conversion.  
 

 

 

 

 



 

 138

 
 

 

Fig.5.8. Images from light microscopy, 40X magnification, of suspensions for 

4 different acyl acceptors ( a. Xylose, b. Glucose, c. Sucrose, and d. Fructose) 

in solvent-free media (Fructose-oleic acid esters/ oleic acid, 25/75, w/w) at 

25oC after forming  suspensions as mentioned in Figs 5.1 and 5.3. 
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Fig.5.9. Images from light microscopy, 40X magnification, of suspensions for 

4 different acyl acceptors ( a. Xylose, b. Glucose, c. Sucrose, and d. Fructose) 

in solvent-free media (fructose-oleic acid esters/ oleic acid, 25/75, w/w) at 

25oC after completion of centrifugation. 
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Fig. 5.10 Images from light microscopy, 40X magnification, of suspensions 

for two different acyl acceptors before centrifugation (80oC):  a. Fructose and 

b. Glucose; and after centrifugation 25oC: c. Fructose and d. Glucose in 

solvent-free media (Fructose oleic acid esters/ caprylic acid, 25/75, w/w).  
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CHAPTER 6 
 

MATHEMATICAL  MODELING OF THE TIME 

COURSE OF SOLVENT-FREE FRUCTOSE 

OLEATE SYNTHESIS  FOR AN IMPROVED 

BIOREACTOR SYSTEM  
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6.1 Abstract 
 

Saccharide-fatty acid esters, biodegradable, biocompatible and nonionic biobased 

surfactants derived from inexpensive renewable agricultural sources, utilized in foods, 

cosmetics, and pharmaceuticals. An improved design of the bioreactor system was 

developed through the combination of Nitrogen + Vacuum applied to suspensions in 

situ with an in-line filter allowing for operation of forming the suspensions and 

production of ester synchronously, utilizing stable 10-200 µm suspensions of 

saccharide in solvent-free media in packed bed bioreactor (PBBR). 

The reaction started with the initial reaction medium consisting of oleic acid/ fructose-

oleic acid esters 95/5 w/w, using the addition of saccharide periodically to a reservoir 

where water is removed via vacuum pressure and nitrogen gas bubbling and 

suspensions is stirred at 80 oC and 800rpm continuously.  The rate of water removal 

was programmed to retain an optimal liquid-phase water concentration of ~0.4 wt %. 

The bioreactor system yielded a final conversion of 84 wt % with ~90 wt % of the 

ester consisting of monoester with a productivity of 0.195 mmol h-1 g-1. The resultant 

technical grade product can potentially be used directly, without further purification. 

RML exhibits the good stability for two times runs of the enzymatic reaction. A 

mathematical model was successfully developed to predict the concentration of 

substrates (oleic acid and saccharide concentration) during the time course of reaction, 

which utilizes mass balances and a Ping-Pong Bi Bi kinetic model.  
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6.2 Introduction  

 
Saccharide-fatty acid esters are important biodegradable, environmental friendly 

nonionic biobased surfactants that are utilized in foods, pharmaceuticals and cosmetics. 

They can be synthesized from cheap agricultural renewable materials and feedstocks 

[41-46]. In addition to emulsification and stabilization, they can be employed as food 

preserves and insecticides since they possess antimicrobial activity. Conventionally, 

saccharide-fatty acid esters are produced by chemical methods under harsh conditions, 

for instance, high pressure and temperature, and undesirable byproducts. In contrast, 

biocatalytic synthesis of saccharide-fatty acid esters employs mild, near-ambient 

operation conditions and leads to a narrow product distribution. However, the presence 

of significant hurdles hinders the application of biocatalytic production of biobased 

surfactants for industrial utilization.  The major problem is the poor miscibility of 

polar and non-polar substrates, resulting in slow reaction rates. To overcome this 

obstacle, a novel packed-bed based bioreactor system that utilizes solvent-free media 

was successfully developed in Chapter 3. Typically, the initial reaction medium, a 

suspension of saccharide crystals in solvent-free media, was formed by mixing 1.5 g 

fructose crystals and 10 g oleic acid / fructose-oleic acid ester (FOE), 3/1 w/w, in a 20 

mL reservoir open to the atmosphere on a magnetic stirrer plate at 80oC and 800 rpm 

(radius of 1.5 cm) for 6 h. The slurry was centrifuged at 800 rpm 71.57g’s for 0.5-1 

min, with the supernatant collected. Subsequently, the solvent-free suspensions, stable 

for over 12 h, were employed in a closed-loop bioreactor system, consisting of a 

reservoir open to the atmosphere (for free evaporation of the reaction byproduct, 

water), a peristaltic pump, and packed bed bioreactor (PBBR), operated under 

continuous recirculation at 0.5 L/min. The suspensions were retreated at 10 h intervals, 

through stopping the pump, removing the liquid phase, retreating the latter with 

additional saccharide to reform the suspensions using the methodology described 

above, and returning the liquid phase to the bioreactor system.  In Chapter 4, this 

bioreactor system was optimized to enhance reaction rate and conversion by 
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programming the control of water activity and the interval time for re-forming 

suspensions. 

 

However, this approach has suffered from the need to reform the suspension media at 

regular time intervals (to replenish saccharide consumed by the reaction), requiring the 

stoppage of the recirculation and removal of the reaction medium for several hours at 

a time. Therefore, this approach is not robust for scale-up. Therefore, the bioreactor 

system was redesigned for one-step process for the continuous production of 

saccharide fatty acid esters. One-step process refers to the continuous formation of 

suspensions (with the periodic addition of saccharide), water control and production of 

ester within the bioreactor system during its operation. This development was enabled 

by re-designing the system to contain a reservoir serving as a place for continuous 

formation of suspensions and water removal (via free evaporation), an in-line filter for 

preventing larger aggregates to be transported through the remainder of the bioreactor 

system. Specifically, the redesigned closed-loop bioreactor system consists of the 

reservoir, in-line filter, a peristaltic pump, and a packed bed bioreactor (PBBR), with 

the latter’s effluent returned to the reservoir.  This system was operated under 

continuous recirculation.  

 

The most common and accurate description of the catalytic process of lipases is a 

Ping-Pong Bi Bi model [119]. Many reports have investigated and developed 

mathematic models for lipase-catalyzed reaction based on a Ping-Pong Bi Bi 

mechanism.  A simple kinetic model derived from a Ping-Pong Bi Bi mechanism to 

characterize the rate of acylation of glucose with lauric, palmitic, and stearic acids in 

the presence of CALB in acetone was successfully developed by Arcos et al., utilizing 

a few assumptions. First, reverse-direction enzymatic reactions were ignored. Second, 

the dissolved glucose concentration was assumed to be constant [120]. The 

mathematical model from this work has been verified by several sets of experimental 

data under different reaction conditions. The results indicated that the model fits the 

experimental data very well for temperatures from 30 to 60 degrees C, enzyme 
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loadings from 90 to 180 mg, and fatty acid concentrations from 0.33M to 1M. Another 

research group proposed a full reversible kinetic model based on a Ping- Pong Bi Bi 

mechanism which represents the acylation of glucose by lauric acid in 2-methyl 2-

butanol mediated by CALB at 60°C. The developed model displays a good fit of 

experimental results [121]. Dang and his coworkers developed a good linear kinetic 

Ping-Pong Bi Bi model regarding feed batch addition of saccharide during synthesis of 

fructose-oleic acid esters in agreement with measured data for the time course of the 

reaction [115]. In this chapter, a mathematical model was developed understand the 

relationship between the significant variables in the system and the observed time 

course of reaction. The model is based on mass balances and an enzymatic kinetic 

model (Ping-Pong bi bi mechanism), the latter developed previously by Hayes and co-

workers.       

 

 

6.3 Materials and Methods 
 

6.3.1 Materials 

 

Lipozyme RM IM®, lipase from Rhizomucor miehei immobilized onto macroporous 

anionic resin beads (“RML”), was purchased from Novozymes, Inc. (Franklinton, NC 

USA). D-fructose (> 98%) and solvents employed for HPLC analysis (HPLC-grade) 

were purchased from Fisher Scientific (Pittsburgh, PA).  Technical grade oleic acid 

(90% pure) was purchased from Sigma-Aldrich (St Louis, MO). All materials were 

used without further purification. The saccharide crystals were ground into a fine 

powder using a mortar and pestle. Technical grade fructose-oleic acid ester 

(Ester/Oleic acid, 8.8/1.2 w/w), a component of the initial charge to the bioreactor 

system was synthesized by RML in batch mode.   
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6.3.2 Methods 

 

6.3.2.1 Closed-Loop Bioreactor System (Fig. 6.1) 

   

A Wheaton Celstir spinner double-side arm flask (25 mL) with a tight screw cap was 

placed on a hot plate (Super-Nuova from Barnstead, Dubuque, IA USA) at 80 oC and 

its contents stirred at 800 rpm. It served as a reservoir. The right arm of the flask was 

connected to purified nitrogen gas and a flowmeter; the left arm was interfaced with a 

vacuum pump and a vacuum gauge. Fluid was withdrawn from the reservoir through 

tubing connected to an in-line nylon filter of nominal size 180 microns (Millipore, 

Billerica, CA) and subsequently to the peristaltic pump, a BioLogic® LP model 

purchased from Bio-Rad (Hercules, CA). A packed bed bioreactor (PBBR; 50mm L × 

10mm ID Omnifit® chromatography column packed with 7.5g of RML) was enclosed 

in a temperature–regulated oven (Isotemp® Economy Lab Incubator from Fisher 

Scientific) and maintained at 78oC.  The PBBRs exit stream was returned to the 

reservoir.   

 

6.3.2.2 Operation of the Bioreactor System  

 

The bioreactor system consisted of three major components connected in series, 

forming a closed-loop system that underwent continuous recirculation:  a Wheaton 

Celstir flask serving as a reservoir, a peristaltic pump (BioLogic LP® from Bio-Rad, 

Hercules, CA USA), and a packed bed bioreactor (PBBR; 50mm L × 10mm ID 

Omnifit® chromatography column packed with 0.75 g of RML per g of oleic acid + 

FOE). The frit restrictors contained within the endcaps of the Omnifit® column were 

not used, but were replaced a small piece of a 100 denier,156 mesh polyester net 

manufactured by SiamDutch Mosquito Netting Co., Ltd., Bangkok, Thailand, 

determined gravimetrically to possess an areal density of 29 g m–2.  C-FLEX® 1.6 mm 
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ID tubing made of a styrene-ethylene-butylene modified block copolymer from Cole-

Parmer (Vernon Hills, IL), was used to connect the in-line filter in the reservoir to the 

pump, the pump to the PBBR, and the PBBR to the reservoir, to form a closed-loop 

system that underwent continuous recirculation. PharMed® BPT 1.6 mm ID tubing 

(Saint-Gobain Performance Plastics Corp., Akron, OH) was used within the peristaltic 

pump apparatus. The PBBR and associated tubing were placed within a convection 

oven at 78 oC to yield a constant temperature of 65oC for the recirculating liquid phase. 

The reservoir’s contents were maintained at 80oC and stirred at 800 rpm using the 

above-mentioned hot plate / stirrer. The reaction medium charged to the bioreactor 

system’s reservoir consisted of the solvent-free media, formed by mixing 1.5 g 

fructose crystals and 10 g of a oleic acid / FOE 95/5 w/w mixture, equivalent to a 

reaction medium that has achieved 5% w/w conversion of oleic acid at 80oC. 1.5g 

grounded saccharide crystals were periodically added into the reservoir (every 6h). 

The in-line filter was placed between the reservoir and the pump. Initially, free 

evaporation was the only means of removal for the co-product water to be removed. 

Vacuum and N2 were introduced into the bioreactor system after 40h to augment the 

removal of water by free evaporation, a step deemed necessary to enhance the rate and 

extent of reaction (Chapter 4). After one run, RML was washed by a small amount of 

acetone for reuse. Two replicate experiments were performed.  
 

6.3.2.3 Monitoring of Water 

 

The water content for an aliquot of the reaction mixture, after being diluted with 

methanol, was analyzed by Karl-Fischer titration using a Coulometric KF Titrator 

(Denver Instrument Company, Aurora, CO).  The working principle utilizes the 

reaction of water with iodine and sulfur dioxide in the presence of a lower alcohol 

such as methanol or other organic solvents. Please find more details regarding Karl-

Fischer titration in Chapter 3.  In this dissertation, methanol was used as a medium to 

dissolve the reaction medium due to its lower price compared with other organic 

solvents [219].  
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6.3.2.4 Monitoring of Oleic Acid, Ester, and Fructose Concentration 

 

Quantitative analysis of oleic acid and its mono- and di-esters on a fructose-free basis 

was performed using a dual-pump system from Varian (Walnut Grove, CA) and a 

model Mark III evaporative light scattering detector from Alltech Associates, a 

division of WR Grace (Deerfield, IL). An analytical reversed phase (4.6 * 250 mm, 

pore diameter 5 µm) C18 column from Alltech was employed using separation 

conditions consisting of a column temperature of 25oC and an isocratic solvent system, 

acetone / acetonitrile / acetic acid (45 / 45 / 10 v/v/v) at flow rate of 1.0 mL min-1. 

Response factors were measured and employed to convert peak areas into 

concentrations. 

  

To analyze the fructose content, 40 mg-sized aliquots of column effluent were 

subjected to liquid-liquid extraction by the system of n-hexane and water (500 µL of 

each). The extraction was carried out 3 X at 35oC for 2 hr using a thermomixer 

(Eppendorf AG, Germany). The aliquots from the pooled aqueous extraction solutions 

were diluted with acetonitrile to match the composition of the HPLC mobile phase to 

prevent peak broadening in the HPLC analysis. An analytical Prevail Carbohydrate ES 

column (4.6 * 250 mm, pore diameter 5 µm) from Alltech was employed using a 

column temperature of 25oC and an isocratic solvent system, acetonitrile / deionized 

water (80 / 20 v/v) at flow rate of 1 mL min-1. Standard curves for fructose 

concentration in an oleic acid / fructose oleate liquid phase versus peak area were 

obtained and found to be independent of the reaction mixture’s composition. 

 

6.3.2.5 Measurements of Absorbance and Particle Size for Suspensions  

 

The absorbance of solutions between 500 and 1000 nm was performed to provide a 

measure of turbidity using a model UV-1700 instrument from Shimadzu (Japan) and 

either a 1.0 or 0.2 cm pathlength quartz length cuvette by Hellma (Plainview, NY 

USA), with all reported values normalized to a 1.0 cm pathlength. Light scattering is a 
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method to determine the distribution of small size particles in suspension. Differences 

of absorbance values between samples at this wavelength are representative in trend of 

differences at the other wavelengths.  The particle size distribution of the dispersions 

present in the above-mentioned solutions was analyzed by Zeta potential Analyzer, 

Zeta PALS (Brookhaven Instruments Corporation, Holtsville, NY USA). 

 

 

6.3.2.6 Phase Diagram Determination 

 

During the lipase catalyzed esterification reaction in an improved bioreactor system as 

described in Sect. 6.3.2.2, the samples were very carefully collected every 10 h from 

the bioreactor system for determining the mass fraction of ester, oleic acid and 

fructose in the liquid phase by HPLC analysis (Sect.6.3.2.4). The mass fractions of 

ester, oleic acid and fructose in the liquid phase were calculated and plotted a yield a 

triangular phase diagram of the saccharide fructose/oleic acid/fructose-oleic acid 

monoester ternary system at 65 oC. The boundary line between one-phase and two-

phase was plotted according to the change of concentration of saccharide and ester 

over the reaction time. Phase boundary represents metastable suspensions; it does not 

represent a true phase boundary between two homogenous phases at thermodynamic 

equilibrium.  

 

 

6.4 Results and Discussion  

 
6.4.1 Improved Design of Bioreactor System 

 

The primary objective in the Chapter 6 is to find the best approach to create and 

operate the reactor system to minimize the labor required by an operator during the 

interval time. Specifically, since the formation of suspensions was performed in a 
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reservoir, where 10-200 micron-sized saccharide aggregates were suspended in 

solvent-free media formed at high stir rate, separation steps have to be taken to prevent 

large size saccharide crystals blocking the system’s tubing. Second, it is always a 

major challenge for researchers to find the superior way for controlling the water 

content efficiently in the esterification reaction. As mentioned in Chapter 4, the most 

efficient water removal method (the combination of nitrogen gas bubbling + vacuum 

pressure applied to suspensions off-line) was found to successfully maintain water 

content at the optimal level (~0.4 % w/w).   However, this water control method is 

required to be in situ, allowing for the more efficient operation of the bioprocess 

suitable for scale up. Consequently, the bioreactor system of Chapter 4 requires 

improvement.  

 

To accomplish these objectives, a bioreactor system was redesigned for one-step 

process for the continuous production of saccharide fatty acid esters under optimal 

operation condition in Fig. 6.1. The suspensions formed in the reservoir resided at the 

optimal water concentration.  A Wheaton Celstir spinner double-side arm flask (25 mL) 

with a tight screw cap placed on a hot plate serves as a reservoir for formation of 

suspensions and a reactor for water removal. The suspension-based solvent-free 

medium, after passing through the in-line filter of nominal size 180 microns (to 

prevent passage of large saccharide crystals effectively to be transported through the 

bioreactor system, making the bioreactor system operated under recirculation) were 

transported to the PBBR by the peristaltic pump. Subsequently, the reaction medium 

leaving the PBBR with the enhanced monoester content was returned into the 

reservoir.  
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Fig.6.1. The diagram of improved bioreactor system and parameters for 

mathematic model included. (A. Hot plate maintained at 85oC B. A 25 ml Wheaton 

Celstir spinner double-side arm flask with stirred bars C. An in-line filter D. Peristaltic 

pump (0.5mL/min) E. PBBRs F. Oven maintained at 78oC G. A vacuum pressure 

gauge  H. An air flow meter I. A vent for periodical addition of saccharide. Symbols 

represent parameters used in mathematical modeling).  
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6.4.2 Effect of the Improved Bioreactor System for Lipase-Catalyzed Synthesis of 

Saccharide-Fatty Acid Esters Utilizing Solvent-free Medium 

 

 

From Chapter 5, it was illustrated that when the oleic acid and fructose were utilized 

as acyl donor and acceptor, respectively, the reaction obtained the highest conversion 

and initial rate compared with other common acceptors and donors (sucrose, glucose, 

and xylose among acyl acceptors, and oleic acid, followed by lauric, myristic, and 

caprylic acid among acyl acceptors) due to the higher saccharide concentration 

produced by this substrate system. Hence, fructose and oleic acid were selected for 

employment in this chapter. The reservoir initially contained the mixture of fructose 

oleate / oleic acid 5/95 w/w, and suspensions of 1.5 g fructose crystals dispersed by 

magnetic stirring (800 rpm) on the hot plate at 80oC. Additional fructose crystals were 

added periodically:  1.5 g (0.5 mmol) added at 6 h intervals.  The new bioreactor 

system was operated successfully. For the in-line filter, it effectively blocked larger 

aggregates into the bioreactor system as determined from visual observation. The time 

course of reaction for the improved bioreactor system is given in Fig. 6.2. A linear 

increase of ester content was obtained with respect to time up to about 84% w/w ester 

concentration within 8.4 days using completely solvent-free reaction media (i.e., a 

productivity of 0.195 mmol h-1 g-1). The productivity is lower than the optimal 

productivity (0.297 mmol h-1 g-1 ) obtained in Chapter 4. However, the pretreatment 

time for forming suspensions was not included when calculating for the productivity 

of optimal bioreactor system in Chapter 4. The “corrected” optimal Chapter 4 

productivity is 0.226 mmol h-1g-1, slightly higher than the productivity obtained for the 

improved bioreactor system design of this chapter.  Secondly, the initial saccharide 

concentrations for these two experiments are significantly different. Fig. 6.3 represents 

the saccharide concentration for the new bioreactor system during the entire time 

course. Saccharide concentration during the time course increased with the increase of 

monoester concentration in Fig. 6.3. However, the final saccharide concentration of 

the optimal biosystem (~2.4 wt %) in Chapter 4 is much higher than for the improved 
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bioreactor system (~1.68 wt %) in Fig. 6.3. The pore size of the in-line filter (180 µm) 

is not sufficiently large to allow all appropriately sized suspensions to be pumped into 

the bioreactor system, preventing the higher saccharide concentration from occurring. 

Since the higher saccharide concentration leaded to higher initial reaction rate (shown 

in Table 5.1), the lower saccharide concentration limited by the pore size of filter is 

the reason for the lower productivity. In addition, there may not be sufficient time in 

the improved bioreactor system for formation of the suspensions.  Moreover, using the 

approach of Chapters 3-5, a minimum of 6 hours stirring was required to maximize the 

concentration of saccharide in the suspension-based medium. 

 

During the initial phase of the time course of reaction, water was removed through 

free evaporation. After 40h, the combination of vacuum+N2 bubbling was introduced 

into the bioreactor system since the water concentration increased quickly due to its 

formation from the reaction and is accumulated up to ~0.8 wt% after 40h. Water 

content in the reaction medium was remained at the previously-determined optimal 

level ~ 0.4 % w/w during the entire time course (described in Chapter 4, displayed in 

Fig. 6.4). This result indicates that the in situ water control is equally as effective as 

the off-line water control method of Chapter 4.  

 

For evaluating the effect of the water concentration in the improved bioreactor, the 

value of the concentration-based equilibrium constant, Kc, was calculated according to 

the following equation:  

 

                                Kc= [ME]eq [H2O] eq [S] eq
-1 [ME] eq

-1                                                [115] 

 

Where [ME]eq is 1.74 x10-2; [H2O] eq is 0.25 x10-2; [S] eq
-1 is 7.05 x 10-4; [ME] eq

-1                                                

is 9.2 x10-2 . From the previous report [115] in the literature, solvent (tert-butanol) was 

present only during the initial phase of the time course of the esterification reaction to 

enhance fructose solubility and was allowed to evaporate away completely on 

reaching 25 wt % conversion. Free evaporation was used into this reaction as a water 



 

 154

control method and Kc was equal to 6.4 [115]. In this chapter, the Kc value for the 

improved design bioreactor system was calculated to be 6.7, similar to the value in the 

previous report (6.4) [115], but much higher than other lipase (CAL) catalyzed 

synthesis of saccharide fatty acid esters in organic solvents (0.55 [199], 0.30 [200]). 

This suggests the conversion limitation that occurred for the reaction upon reaching 

80-90% w/w yield in Fig. 6.2 due to the thermodynamic equilibrium. It suggests 

excess water occurs in the bioreactor system. Hence, some works pertaining to water 

control are required to be performed in the future work to remove excess water from 

bioreactor system for the improvement of ester conversion.  

 

Regarding the product distribution, the selectivity toward fructose–oleic acid 

monoester (ME) over fructose–oleic acid diester (DE) occurred at a ratio of 

approximately 9:1 throughout the majority of the time course of the reaction (in Fig. 

6.5), highly consistent with the results from Chapters 3-5. 
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Fig. 6.2 The effect of improved design for the bioreactor system (Fig. 6.1) for 

the solvent-free RML-catalyzed synthesis of fructose oleate using bioreactor 

system containing a packed-bed bioreactor operated under continuous 

recirculation at 65oC  under optimization condition and reservoir was 

maintained at 78 oC.  
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Fig. 6.4. The water concentration versus time for the experiment in Fig. 6.2. 

(Error bars represent the standard deviation from replicate runs of the 

enzymatic reaction).   
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Fig.6.5. Mass fraction of monoester among the esters for the experiment in Fig. 6.2.  
(Error bars represent the standard deviation from replicate runs of the enzymatic 
reaction).   
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6.4.3 A Mathematical Model for the Improved Bioreactor System for Lipase-

Catalyzed Synthesis of Saccharide-fatty Acid Esters Utilizing Solvent-free 

Medium 

 

6.4.3.1 A Ternary Phase Diagram 

 

A ternary phase diagram for the saccharide (fructose, S)/ (oleic acid, FA)/fructose-

oleic acid monoester (ME) ternary system at 65 oC is described in Fig. 6.6. A one-

phase mixture is located at the right of the phase boundary and two-phase media to the 

left of the boundary. “One phase” in this experiment does not mean true solubilization 

of saccharide. It means the formation of metastable suspensions mixtures of fructose 

particle, oleic acid and fructose oleate. The suspension media was formed via a 

specific protocol in Chapter 6 (6.3.2.2). Moreover, Fig. 6.6 replots the data of Figs 6.2 

and 6.3 in the form of a three phase diagram. Fig. 6.6 demonstrates that with the 

increase of ester content, the area of one phase region increases. Mass fraction of fatty 

(oleic) acid acyl donor, saccharide (fructose) acyl acceptor at the saturation, and 

fructose-oleic acid monoester product in the reservoir unit of the bioreactor system 

(Fig. 6.1), were defined as ωFA, ωs, and ωME, respectively. With the increase of ωME 

from 0.045 to 0.802, ωs  increased from 0.0029 to 0.016. The trend of the increase of 

ωs with the increase of ωME is in agreement with a triangular phase diagram in 

previously published results for fructose [115]. However, ωs of the new bioreactor 

system controlled by the in-line filter is apparently lower than Dang’s work (ωs =0.13) 

[115] since the in-line filter blocked many of suspensions particles. Compared with the 

previous work of Dang [115], the area of the “one phase” region is slightly smaller. 

 

The phase boundary of Fig. 6.6 can be described by the following linear equation: 

s FAA Bω ω= − ⋅                                                                                     (6.1) 

 

where A and B equal 0.638 and 0.163, respectively.  
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Fig.6.6. Ternary phase diagram for fructose/oleic acid/technical-grade monoester 

(8% diester and 92% monoester) in the stream of leaving in-line filter in 

improved bioreactor system at 65°C.  
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6.4.3.2 Mathematic Model for the Time Course of Reaction of Solvent-Free 

Fructose Oleate Synthesis in the Improved Bioreactor System  

 

A mathematical model, based on a model developed previously by Hayes and 

coworkers [115], was derived to predict the concentration change of two substrates 

(oleic acid as acyl donor, and saccharide as acyl acceptor) over the time course of 

reaction. Some assumptions were incorporated: First, the effect of water and inhibition 

by substrates and products were neglected. Second, although diester was also formed, 

mono- and di-ester were combined together and referred to collectively as 

“monoester” (ME).  These assumptions were also employed successfully for the 

batch-mode model [115].  

  

A mole balance for fatty acid on the reservoir (see Fig. 6.1) yields the following 

equation:  

 

 

,1
,2 0 ,1 0 0 FA

FA FA res

dC
C C V

dt
ν ν⋅ − ⋅ + = ⋅                                                         (6.2) 

 

 

This equation assumes the reservoir is well mixed, moreover, that the exit stream’s 

composition equals the composition at all positions inside of the researvoir.  

Rearrangement of this equation yields the following: 

 

 

      

( ) ,10
,2 ,1

FA
FA FA

res

dC
C C

V dt
ν

⋅ − =                                                    (6.3)      

     



 

 161

where ,1FAC , and ,2FAC refer to the concentration of fatty acid in the reservoir, the 

stream leaving the reservoir and the recycle stream returning to the reservoir from 

PBBR respectively; t refers to the reaction time; and 0v  refers to the volumetric flow 

rate of reaction medium circulating throughout the system (0.5 ml/min); Vres refers to 

the volume of reaction medium in the reservoir. Vres, is treated as a constant, which 

assumes the mass and density of the reservoir’s contents remain constant.  This 

assumption is valid as a first approximation since the change of density from 

beginning to end of the reaction was small, from 907 g L-1 to 928 g L-1, calculated 

using the density values for pure components published previously [115] and 

neglecting the volume change upon mixing, less than a 2.5% difference. The 

assumption also neglects the loss of mass due to water evaporation.   

 

A mole balance for fatty acid in the packed-bed (bio-) reactor, PBBR, yields the 

following equation: 

  

   ( ),1
0

F A
F A

d C
v r

d W
′⋅ = − −                                                                      (6.4) 

            
where W refers to the cumulative weight of lipase in the PBBR encountered during 

travel in the axial direction and FAr ′−  to the rate of reaction for fatty acid in 

dimensions of moles per mass unit of biocatalyst per unit of time.  The time course of 

reaction for lipase-catalyzed saccharide-fatty acid ester synthesis, and many other 

lipase-catalyzed reactions, has been effectively described by the Ping-Pong bi bi 

kinetic model [115, 201].  Previously, the following kinetic equation was derived by 

Hayes and coworkers for describing fructose-oleic acid esterification in batch mode  

[115]: 
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max
FA S

ENZ
FA

S FA FA S FA S

V C C
Cr

K C K C C C

⋅ ⋅
′ =

⋅ + ⋅ + ⋅
                                                                (6.5) 

              

where max

ENZ

V
C

 is the maximal velocity in dimensions of molesFA glipase
-1 time-1,  and KS 

and KFA are Michaelis constants.  For the batch-mode reaction under the conditions 

employed, is was determined that max
FA

ENZ

Vr
C

′  [115]. CENZ in this PBBR based 

bioreactor system refers to the ration of mass of RML in the PBBR to the volume of 

reaction medium. However, motivated by the nearly-constant time course of reaction 

(Fig. 6.2), it was assumed that the rate of reaction was equal to an “apparent” value of 

the maximal velocity; moreover: 

 

 

  
max

FA
ENZ app

Vr
C

⎛ ⎞′ ⎜ ⎟
⎝ ⎠

                                                                              (6.6) 

           

 

Substitution of Eq. 6.6 into Eq. 6.4, followed by separation of variables followed and 

integration of both sides of the equation leads to: 

,2

,1

m ax
0 ,1

0

.
FA

FA

C W

FA
EN Z C

Vv dC dW
C

⎛ ⎞
⋅ =⎜ ⎟
⎝ ⎠

∫ ∫                                                           (6.7)                                         

Integration of Eq. 6.7 yields the following: 

  ,2 ,1
0

m ax

F A F A
to t

E N Z

C C
W

V
C

ν

⎛ ⎞
⎜ ⎟

−⎜ ⎟ =⎜ ⎟⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

                                                                         (6.8)                                         

Substitution of  Eq. 6.8 into Eq. 6.3 leads to: 
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,1 max

0

.FA tot

ENZ

dC W V
dt v C

⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
                                                                         (6.9)                    

Integration of Eq. 6.9 leads to the following: 

,1 , ,0FA FA resC C tα= − ⋅                                                                                (6.10)                

where: 

 
max

0

tot

ENZ app

W V
v C

α
⎛ ⎞

≡ ⋅⎜ ⎟
⎝ ⎠

                                                                                   (6.11) 

                                                                          

and Wtot = total mass of immobilized lipase in the PBBR , and , ,0FA resC  is the initial 

concentration of fatty acid in the reservoir.  The mathematical model derived above 

was successful in describing the time course of reaction, as demonstrated by the 

reasonably close fit to the experimental data in Fig. 6.7  

 

 

An experimentally-determined triangular phase diagram for the fructose/oleic 

acid/fructose monooleate system (Fig. 6.7) yields the following relationship in, 

indicating the phase boundary. Eq. 6.12 is an alternate form of Eq. 6.1: 

 

   ,1 1 1 ,1s F AC A B C= − ⋅                                                                    (6.12) 

                                                                            

where ,1sC refers to the concentration of saccharide in the stream of leaving the in-line 

filter. A1 and B1 represent the density of reaction medium (ρmix) multiplied by the 

constants A and B of Eq. 6.1, respectively. A1 and B1 are equal to 0.58 and 0.15, 

respectively.   The density of the mixture is calculated assuming no change of volume 

due to mixing:  
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                                                      [115] 

                                                        

where ρFA and ρME are the density of oleic acid (0.895 g/ml) and fructose monoleate 

(0.936g/ml), respectively [115].  

 

 Substitution of Eq. 6.10 into Eq. 6.12 

 

,1 1 1 , ,0 1s FA resC A B C B tα= − ⋅ + ⋅ ⋅                                                          (6.13) 

                                                  

The mathematical model derived above was successful in describing the time course 

of reaction, as demonstrated by the reasonably close fit to the experimental data in Fig. 

6.8.  Fig. 6.8 depicts the saccharide content in the reservoir.  The equation predicting 

the fructose concentration (Eq. 6.3) fits to the experimental data very well during the 

time course of reaction (Fig. 6.2). Parameters employed in the mathematical model, 

obtained through measurement, consisted of Vres = 11 mL, Wtot = 0.75 g, CFA,res,0 = 

3.17 mol L-1, and the constants A and B for the solubility of fructose as 0.638 mol L-1 

and 0.163, respectively, obtained from Fig. 6.6.  The only adjustable parameter in the 

model was max

ENZ app

V
C

⎛ ⎞
⎜ ⎟
⎝ ⎠

, determined to be 0.21mmol glipase
-1 hr-1 from Chapter 3.   This 

value is significantly lower, by a factor of ~2, than corresponding value obtained for 

the same reaction operated in batch mode under similar operating conditions, 0.46 

mmol glipase
-1 hr-1 [115]. The inherent RML activity between Reference [115] and this 

work was assumed to be different. To confirm this hypothesis two experiments from 

the previous report [115] were repeated using the same RML preparation employed 

throughout this dissertation to prepare a Lineweaver–Burk plot, Fig. 6.9. This plot also 

contains a plot obtained from [115] obtained under comparable conditions. The slopes 

for two reactions are similar indicating michaelis constants are roughly identical. The 
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intercept of Lineweaver–Burk plot refers to 1/Vmax. In Fig. 6.9, the intercept (1/Vmax) 

of this work in Chapter 6 is 2-fold higher than that of [115], demonstrating the 

inherent RML activity in the latter was ~2-fold higher than the RML preparation 

employed throughout this dissertation.  Moreover, the RML preparation purchased 

from Novozymes through Sigma-Aldrich is less active than the RML preparation 

donated by Novozymes Inc for the work of [115]. 
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Fig.6.7. The change of the concentration of oleic acid in the mixture of ester and 

oleic acid over the time course for RML lipase-catalyzed synthesis of fructose 

oleate at 65 oC employing improved bioreactor system. (The straight line 

represents mathematical model fit assuming the concentration of oleic acid in the 

reservoir (Eq. 6.12). This is a re-plotting of data from Fig. 6.2. Error bars 

represent the standard deviations from replicate runs of the enzymatic reaction).   
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Fig.6.8. The change of the concentration of saccharide in the mixture of ester and 

oleic acid over the time course for RML lipase-catalyzed synthesis of fructose 

oleate at 60oC employing improved bioreactor system. (The straight line 

represents mathematical model fit (Eq, 6.13). This is a re-plotting of data from 

Fig. 6.3. Error bars represent the standard deviations from replicate runs of the 

enzymatic reaction).   
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Fig.6.9. Lineweaver–Burk plots for comparison of RML inherent activity. 

Reaction conditions: 127.5 mM fructose (constant), 23.4 g (30 mL) t-BuOH, 0.3 g 

RML, 65°C, stirring rate of 350 rpm. t-BuOH and water were allowed to freely 

evaporate during the time course of esterification.   (■) Data taken from [115]; 

(▲) RML Data obtained from experiments performed by the author of this 

dissertation. 
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6.5 Conclusion 
 

In conclusion, an improved bioreactor system was contained through re-designing the 

system to contain a reservoir serving as the site for continuous formation of 

suspensions and water removal (via free evaporation during the initial phase, and the 

combination of N2+vaccum during the later phase of the time course of reaction) and 

to include an in-line filter for preventing larger aggregates to be transported 

throughout the bioreactor system. Specifically, the redesigned closed-loop bioreactor 

system consists of the reservoir, in-line filter, a peristaltic pump, and a packed bed 

bioreactor (PBBR), with the latter’s effluent returned to the reservoir.  This system 

was successfully operated under continuous recirculation. A linear increase of 

maximum conversion was obtained with respect to time up to about 84 % w/w ester 

concentration within 8.4 days using completely solvent-free reaction media (i.e., a 

productivity of 0.195 mmol h-1 g-1 ). RML exhibits the good stability for two times 

runs of the enzymatic reaction.  In addition, a mathematical model was successfully 

developed to understand the relationship between the significant variables in the 

system and the observed time course of reaction. The model based on mass balances 

and an enzymatic kinetic model (Ping-pong bi bi mechanism) for predicting the 

substrate concentrations fits the experimental data very well.      
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CHAPTER 7 
CONCLUSIONS AND FUTURE PERSPECTIVES  
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7.1 Conclusions for This Dissertation  

 
In sum, several achievements for this dissertation have been achieved as listed below: 

 

1. Designed and developed a simple, inexpensive and environmentally friendly 

packed-bed based bioreactor system successfully using metastable suspensions of 

small, 10~200μm-sized, saccharide crystals in a fatty acid ester/ saccharide ester 

mixture, to synthesize saccharide fatty acid esters at high reaction rate under solvent-

free condition in Chapter 3[181]. By this approach, the initial reaction medium, a 

suspension of saccharide crystals in solvent-free media, was formed by mixing 1.5 g 

fructose crystals and 10 g oleic acid / fructose-oleic acid ester (FOE), 3/1 w/w, in a 20 

mL reservoir open to the atmosphere on a magnetic stirrer plate at 80oC and 800 rpm 

(radius of 1.5 cm) for 6 h. The slurry was centrifuged at 800 rpm for 0.5-1 min, with 

the supernatant collected. Subsequently, the solvent-free suspensions, stable for over 

12 h, were employed in a closed-loop bioreactor system, consisting of a reservoir open 

to the atmosphere (for free evaporation of the reaction product, water), a peristaltic 

pump, and packed bed bioreactor (PBBR), operated under continuous recirculation at 

0.5 L/min. The suspensions were retreated at 10 h intervals, through stopping the 

pump, removing the liquid phase, retreating the latter with additional saccharide to 

reform the suspensions using the methodology described above, and returning the 

liquid phase to the bioreactor system [181]. The technical-grade product was then 

collected from the reservoir by this sustainable and environmentally friendly method 

without the need for downstream purification. Due to the absence of organic solvents 

and ionic liquids, the process is also greatly simplified and less expensive. This 

accomplishment has been published by the Journal of the American Oil Chemists 

Society [181] 

 

2. Optimized the overall performance of the developed bioreactor system for the 

enhancement of the reaction rate and conversion in Chapter 4.  Water as byproduct of 

esterification is a significant factor for obtaining the high conversion of reaction. 
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However, excess water removal will lead to the loss of enzyme activity since water is 

essential for maintaining the three dimensional conformations of enzymes. An 

efficient water removal method was discovered using the combination of vacuum+N2 

bubbling in a Wheaton Celstir spinner double-side arm flask with a tight screw cap 

was placed on a hot plate at 2.16 mgH2O h-1 to maintain at 0.4% w/w plus/minus 

0.05 % w/w level in the liquid phase when the bioreactor system reached 57.75 % w/w 

conversion. With the employment of this approach, the excess water can be removed 

efficiently. This approach can be widely applied for the chemistry or chemical 

engineering industry when water control needed, for instance, the manufacture of 

biodiesel. In addition, the overall performance of the developed bioreactor system has 

been optimized for the promotion of the reaction rate and yield, including the optimal 

water concentration in the reaction medium and the initial ester concentration. In 

conclusion, the optimization of the interval time for re-treatment of suspensions 

decreased the reaction time by 23 h compared to the arbitrary use of a 10 h interval 

time. Additionally, the initial ester concentration in the solvent-free suspensions media 

was reduced from 25% w/w to 5% w/w without any loss of reaction rate. Conclusively, 

the optimized PBBR-based bioreactor system operated at optimal conditions 

employing an initial charge of fructose suspensions in oleic acid / fructose oleate 95/5 

w/w yielded 92.6% w/w conversion within 132 h and a productivity (0.297 mmolFOE 

h-1 glipase
-1) 2-fold higher than the control. This accomplishment has produced a 

manuscript and been accepted by the Journal of the American Oil Chemists Society 

for publication [201]. In addition, enzyme (RML) activity retention was examined in 

the bioreactor system described above but with in situ Wheaton Celstir spinner 

double-side arm flask by the combination of vacuum+N2 bubbling. In addition, the 

activity of RML using suspensions media exhibits excellent stability without any loss 

of activity in four successive runs in 22days. 

 

3. Examined the universality of the developed bioreactor system using different acyl 

donors (oleic, caprylic, lauric and myristic acids) and acceptors (fructose, sucrose, 

glucose and xylose) and discovered the underlying reason for difference in saccharide 
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concentration in Chapter 5. The results revealed that the highest conversion and initial 

rate occurred when the saccharide concentration was highest. Suspensions containing 

the highest saccharide concentration coincided with saccharide crystals of the smallest 

average size, since large-sized crystals sedimented out during the workup for 

formation of the suspensions. In addition, the underlying mechanism for effect of 

formation of suspensions on size of the suspended crystal particles was investigated. 

The formation of suspensions is anticipated to affect the size of the suspended crystal 

particles minimally since the environment present is relatively benign toward 

influencing the formation or decomposition of the crystals. First, due to the 

pretreatment in a vial opened to the atmosphere at 80oC and low water contents of 

starting materials, this medium offers nearly-anhydrous environment (water 

concentration, 0.65 wt %±0.04 wt %), which is considered to be a distinct barrier for 

crystallization or dissolution of large size crystals. Second, the high viscosity of the 

reaction medium inhibits crystallization since it offers the high energy hurdle for 

crystallization process. A manuscript is in preparation based on this work. 

 

4. Improved the design of the bioreactor system and derived a mathematic model to 

describe the change of two substrates over the time course in the improved bioreactor 

system in Chapter 6. For the bioreactor developed in accomplishment 1, the need to 

reform the suspension media at regular time intervals (to replenish saccharide 

consumed by the reaction) requires the stoppage of the recirculation and removal of 

the reaction medium for several hours at a time, leading to potentially the increase cost 

of production, and it is unsuitable for scale-up. To improve the bioreactor system’s 

performance, I re-designed the system to contain a reservoir serving as a place for 

continuous formation suspensions and water removal, an in-line filter for preventing 

larger aggregates to be transported through the bioreactor system, making the 

bioreactor system operated under recirculation. This system was successfully operated 

under continuous recirculation. A linear increase of maximum conversion was 

obtained with respect to time up to about 84 % w/w ester concentration within 8.4 

days using completely solvent-free reaction media (i.e., a productivity of 0.195mmol 
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h-1 g-1 ). RML exhibits the good stability for two times runs of the enzymatic reaction.  

In addition, a mathematical model was successfully developed to understand the 

relationship between the significant variables in the system and the observed time 

course of reaction. The model based on mass balances and an enzymatic kinetic model 

(Ping-pong bi bi mechanism) for predicting the substrate concentrations fits the 

experimental data very well.    

 

7.2 Recommendations for Future Work 
 

My recommendations for the next phase of this investigation are as follows: 

 

1. In Chapter 6, an improved bioreactor system with an in-line filter was successfully 

developed. However, this system is suffering from the lower saccharide concentration 

than optimal system’s in Chapter 4. Consequently, a suitable in-line filter with larger 

pore size is recommended to achieve the higher saccharide concentration.  

 

2. For achieving more stable, specific and higher activity of lipase, genetic engineering 

e.g. mutagenesis strategies, could be applied for the enhancement of the enzyme 

stability and activity. More specifically for lipase, thermostability is a key factor in 

successful bioprocesses, because typically reaction rates and conversion increase 

exponentially with temperature, until the denaturation of enzyme. Therefore, the 

development and programming of thermostable lipases from thermophilic 

microorganisms is significant for use in scale-up industrial reaction.  
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