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ABSTRACT 
 

Obesity is a major health problem in the United States and worldwide. It increases the 

risk for type-2 diabetes and cardiovascular diseases. A chronic low-grade inflammation 

occurring in white adipose tissue (WAT) is causally linked to the development of insulin 

resistance (IR), metabolic syndrome and obesity-associated chronic diseases. The aim of this 

dissertation research was to elucidate the WAT function in metabolic syndrome using genetic 

(overexpression of an adipose pro-inflammatory hormone, angiotensinogen) and nutritional 

manipulations/approaches (caloric restriction and omega-3 fatty acids), with specific emphasis 

on the role of inflammation. 

Previous research indicates that WAT renin-angiotensin system (RAS) is overactivated in 

obesity. However, its role in the pathogenesis of IR is hitherto unknown. Using mice 

overexpressing angiotensinogen (Agt), the only precursor for the hypertensive hormone 

angiotensin (Ang) II, in WAT, we showed that adipose-specific RAS overactivation leads to 

systemic IR. This is at least in part due to Ang II, NADPH oxidase and NF-kB-dependent 

increases in WAT inflammation. 

Caloric restriction is the main dietary intervention to treat obesity-associated metabolic 

disorders. While most health agencies recommend a low-fat diet, energy-restricted high-fat diets 

(HFR) are also claimed to be effective in this regard. Here, we show that weight loss due to HFR 

is accompanied by improvements of IR but only partial resolution of WAT inflammation. 

Further, this diet negatively impacted the adipokine profile supporting the current 

recommendations for low-fat diets. 

Dietary interventions targeted at reducing WAT inflammation have not been explored in 

detail. Eicosapentaenoic acid (EPA) is an omega-3 polyunsaturated fatty acid of marine origin 
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with anti-inflammatory properties. We show that EPA is able to both prevent and reverse high-

fat diet-induced IR and hepatic steatosis via modulation of WAT inflammation. 

In conclusion, primary changes occurring in WAT, such as overexpression of Agt, can 

lead to WAT inflammation and systemic IR. Moreover, nutritional interventions targeting at 

reducing adiposity (caloric restriction) and inflammation (EPA) can both lead to improvements 

in systemic IR. Our findings support the current recommendation of low-fat diets for 

improvement in metabolic profile and show that dietary modulation of WAT function can be 

used to improve metabolic derangements in obesity.  
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CHAPTER I 
INTRODUCTION AND OVERVIEW 

 
 

Obesity is a major health problem in the United States and worldwide. Obesity 

increases the risk of premature death and several co-morbidities such as Type 2 diabetes, 

cardiovascular disease and several forms of cancer. It is also a feature of the metabolic 

syndrome which is characterized by abdominal obesity, hypertension, dyslipidemia and 

hyperglycemia. Individuals with the metabolic syndrome are at a higher risk of 

developing the obesity-associated co-morbidities. Recent evidence has causally linked 

obesity and increased adiposity to the pathogenesis of metabolic syndrome.  

Adipose tissue is an endocrine organ which secretes numerous bioactive peptides 

collectively known as adipokines. Further, obesity is characterized by a chronic low-

grade inflammation and a dysregulation of adipokine secretion in the adipose tissue, 

which can lead to insulin resistance and metabolic syndrome. Angiotensin II, generated 

from its precursor angiotensinogen, is among the adipokines of interest to us. We have 

used a series of genetic and dietary manipulations to study the role of adipose tissue in 

the pathogenesis of the metabolic syndrome. First, we used a mouse model which 

overexpresses angiotensinogen to dissect the role of adipose tissue renin angiotensin 

system overactivation in the pathogenesis of insulin resistance in obesity. Next we used 

different dietary approaches to alleviate the adipose tissue inflammation and metabolic 

dysfunctions caused by high-fat feeding. In this regard we studied the role of high-fat 

reduced energy diets and high-fat diets supplemented with omega-3 fatty acids to study 

the dietary modulation of adipose tissue dysfunction in obesity.  
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The findings of this work will help in furthering the understanding of adipose 

tissue dysfunction in obesity and help in development of dietary and pharmacological 

interventions to prevent and treat obesity-associated co-morbidities.      
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CHAPTER II 
LITERATURE REVIEW 

Obesity and Type-2 diabetes - trends in the United States and the world 
 

Obesity is a major health problem in the Unites States (US) with an estimated 

68% of the adult population being overweight or obese [1]. The classification of 

overweight and obesity are based on the calculation of body mass index (BMI), which is 

defined as weight in kilograms divided by the square of the height in meters. Overweight 

is defined as a BMI of 25 to 29.9 kg/m2 and obesity as a BMI of greater than or equal to 

30 kg/m2 [2]. According to the National Health and Nutrition Examination Survey 

(NHANES) data [1], the prevalence of overweight and obesity in the US was 44.9% in 

1960-62 which increased to 67.9% in 2007-08 (Figure 1). The increasing prevalence of 

obesity is also a problem worldwide. According to the World Health Organization 

(WHO), approximately 1.6 billion and 400 million adults were overweight and obese 

respectively in the world in 2005 [3].  

According to NHANES data, the prevalence of obesity among children and 

adolescents (defined as BMI greater than or equal to 95th percentile from the CDC growth 

charts) aged 2-19 years in US was 16.9% in 2007-2008 [4]. This is a significant increase 

from the reported value of 5.5% for this group in 1976-1980.  

Obesity increases the risk of premature death [5] as well as several co-

morbidities. These include cardiovascular diseases [6], type-2 diabetes [7], several forms 

of cancer [8], obstructive sleep apnea [9], osteoarthritis [10], asthma [11], depression [12] 

and gallbladder disease [13]. Thus, parallel to the increase in obesity rates, the prevalence  
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Figure 1. Prevalence of overweight and obesity in the United States 

Change in prevalence of overweight and obesity in US adults from 1960 to 2008 is 

shown. Based on NHANES data from Flegal et al, 2010 [1] 
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of diabetes and other co-morbid conditions have also increased during the last few 

decades. For example, between 1980 and 2008, the number of US adults with type 2 

diabetes has more than tripled (5.5 to 18.0 million) [14]. Worldwide, 150 million people 

had type 2 diabetes in 2001, which was projected to increase to 220 million in 2010 and 

300 million by 2025 [15].   

 

Etiology of obesity 

While obesity is a manifestation of chronic positive energy balance, its exact 

etiology can be complex. Genes, environmental factors and gene-environment 

interactions are important factors in this regard. Twin and family studies have shown that 

genetic factors can account for 45–75% of the variation in BMI [16]. The two 

conventional approaches for identifying genes associated with a trait of interest are 

association studies and linkage analysis [17]. Using the former approach, where 

associations between candidate genes and phenotypes are identified, several monogenic 

forms of obesity have been discovered. These include mutations in leptin, leptin receptor, 

pro-opiomelanocortin and melanocortin 4 receptor and syndromic forms of obesity 

including Bardet-Biedl and Prader-Willi syndromes [18]. These single-gene syndromic 

and non-syndromic forms account for about 5% of obese individuals. More recently, 

large-scale genome-wide association studies have identified common genetic variations 

associated with differences in adiposity across populations. Single nucleotide 

polymorphisms (SNPs) of the fat mass and obesity associated (FTO) gene have been 

identified in this manner. However, such loci with risk alleles for obesity only account for 
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around 2% of the variation of BMI. Thus, it is likely that alleles with very low 

frequencies might explain at least part of the missing genetic contribution [19].    

Although genetic factors are responsible for several forms of obesity, they alone 

are unlikely to be responsible for the recent increase in obesity trends. In this regard, 

environmental factors and gene-environment interactions become important factors for 

the recent rise in obesity rates. Indeed, physical activity is decreasing in the society 

especially among children [20]. Moreover, food availability has also become plentiful 

during this period. In this context, it is possible that the ‘thrifty genotype’ in some 

individuals interacts with these environmental conditions to manifest as obesity.               

 

Obesity and metabolic syndrome 

Obesity is associated with the metabolic syndrome, which is characterized by 

hyperglycemia, abdominal obesity, hypertension, elevated plasma triglycerides and 

reduced plasma high-density lipoprotein cholesterol (HDL) levels [21]. Individuals with 

the metabolic syndrome frequently have pro-inflammatory and pro-thrombotic metabolic 

profiles and are at a higher risk of developing type-2 diabetes and cardiovascular disease. 

Recent evidence has causally linked obesity and increased adiposity to the pathogenesis 

of metabolic syndrome and type 2 diabetes. Furthermore, adipose tissue dysfunction and 

inflammation play major roles in these disorders.      

Adipose tissue dysfunction in obesity 

Disclosure: The work described in this section has been submitted for the following 

publication, with minor modifications in the numbering of tables and figures: 
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“Kalupahana NS, Claycombe KJ and Moustaid-Moussa N. Omega-3 fatty acids alleviate 

adipose tissue inflammation and insulin resistance: mechanistic insights. Submitted to 

Advances in Nutrition” 

 

Structure and function of adipose tissue  

White adipose tissue is the major site for storage of excess energy in the body. It 

is composed of adipocytes, an extra-cellular matrix, vascular and neural tissues and other 

cell types [22]. These other cell types include preadipocytes, fibroblasts, stem cells and 

immune cells such as macrophages and T cells. Adipose tissue secretes numerous 

bioactive peptides collectively known as adipokines [23]. Examples include hormones 

involved in energy homeostasis such as leptin, peptides involved in glucose homeostasis 

such as adiponectin, resistin, apelin and visfatin, chemokines such as monocyte 

chemotactic protein (MCP)-1 and interleukin (IL)-8, pro-inflammatory cytokines such as 

IL-6, IL-1, angiotensin (Ang)-II and tumor necrosis factor (TNF)-α, and anti-

inflammatory peptides such as IL-10. Thus, adipose tissue is now considered to be an 

endocrine organ which plays a major role in energy balance, glucose homeostasis, blood 

pressure regulation and immune function [24]. A detailed list of adipokines and their 

functions are given in Table 1.  

 

Distribution of body fat  

The distribution of white adipose tissue throughout the body can be divided into 

two major divisions, viz. subcutaneous and visceral adipose tissue [25]. Subcutaneous fat 
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is mainly present in the gluteofemoral region, back and anterior abdominal wall, while 

visceral fat is present intra-abdominally. Since visceral fat is present around internal 

organs, and because it can drain directly into the liver via the portal vain, it is considered 

to be more metabolically active than subcutaneous fat. Moreover, the adipokine profile is 

different between the two fat depots, with the visceral depot having a more pro-

inflammatory adipokine profile [26]. Thus, in contrast to subcutaneous fat, excessive 

accumulation of visceral fat is considered to be detrimental to metabolic health [27]. 

Indeed, epidemiological studies have shown that central obesity (increased visceral fat), 

is associated with overall mortality, insulin resistance, type 2 diabetes mellitus and 

cardiovascular disease [5]. Rodent models are frequently used to study mechanisms of 

obesity and its co-morbidities. In these animals, the inguinal and gonadal fat pads are 

considered to be comparable to subcutaneous and visceral fat depots respectively in 

humans.    

 

Adipose tissue inflammation in obesity 

 
Excessive triglyceride accumulation within adipocytes, as a result of positive 

energy balance, leads to adipocyte hypertrophy and a dysregulation of adipokine 

secretory patterns. This has been primarily linked to an unbalance between secretions of 

pro- vs. anti-inflammatory adipokines. Specifically, adipocyte hypertrophy is 

characterized by increased secretion of pro-inflammatory adipokines such as TNF-α [28],  

  



9 
 

Table 1. Major adipokines and their functions 
 
Adipokine Physiological effects Ref. 
Leptin Reduces energy intake and increases expenditure, 

angiogenesis and hematopoiesis, immune functions 
[29] 

Adiponectin Improves insulin sensitivity, anti-inflammatory, anti-
atherogenic,  promotes fatty acid oxidation 

[30] 

Resistin Promotes insulin resistance [31] 
Angiotensin II Vasoconstriction, sodium and water retention, increases 

blood pressure, promotes insulin resistance  
[32] 

MCP-1 Promotes macrophage infiltration and insulin resistance, 
pro-inflammatory, chemotaxic 

[33] 

TNF-α Pro-inflammatory, promotes insulin resistance  [34] 
PAI-1 Pro-thrombotic, pro-inflammatory [35] 
IL-6 Pro-inflammatory [36] 
IL-10 Anti-inflammatory [37] 
Visfatin Insulin-mimetic actions, cell proliferation [38] 
Apelin Promotes glucose uptake, angiogenesis [39] 
RBP-4 Promotes insulin resistance [40] 
VEGF Angiogenesis [41] 
NGF Neuronal development [42] 
IL-1 Pro-inflammatory [43] 
IL-1Ra Anti-inflammatory [43] 
Vaspin Insulin-sensitizing effects [44] 
Omentin Regulates insulin action [45] 
Neuropeptide Y Energy homeostasis, proliferation of preadipocytes [46] 
Hepcidin Pro-inflammatory [47] 
IL-8 Pro-inflammatory, chemotaxic [48] 
IL-18 Pro-inflammatory [49] 
Thrombospondin-1 Pro-inflammatory [50] 
Chemerin Impairs glucose tolerance [51] 
MCP-1 – monocyte chemotactic protein-1, TNF-α – tumor necrosis factor-α, PAI-1 – 

plasminogen activator-1, IL – interleukin, RBP-4 – retinol binding protein-4, VEGF - vascular 

endothelial growth factor, NGF – nerve growth factor; IL-1Ra – IL-1 receptor antagonist 
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IL-6 [26], angiotensinogen, Ang II [52], leptin [53] and MCP-1 [54] and reduced 

secretion of anti-inflammatory adipokines such as adiponectin [55] and IL-10. 

Thus, obesity is associated with a chronic low-grade inflammation in the adipose 

tissue [56, 57]. Both adipocytes and macrophages are considered to be the source of 

proinflammatory cytokines in obesity [23, 58]. Major cellularity and immune changes 

between lean and obese adipose tissue is illustrated in Figure 2. 

While the exact trigger for the onset of adipose tissue inflammation is hitherto unknown, 

several possible mechanisms have been suggested. In a state of positive energy balance, 

adipose tissue expands to accommodate the storage of excess triglycerides. Adipose 

tissue remodeling via degradation of the extracellular matrix (ECM) and adipogenesis are 

two key processes in this expansion. Matrix metalloproteinases (MMP) and tissue 

inhibitors of MMPs (TIMP) play important roles in ECM degradation and adipose tissue 

remodeling [59, 60]. Defective adipose tissue expansion as a result of dysregulation of 

any of the above factors could lead to adipocyte injury, death and inflammation. For 

example, factors that promote adipose tissue fibrosis such as secreted protein acidic and 

rich in cysteine (SPARC) are associated with obesity and adipose tissue inflammation 

[61].  

Rodent studies show that increasing adipose tissue mass without a similar 

magnitude increase in supporting vasculature could lead to tissue hypoxia, triggering the 

expression of hypoxia-inducible factor-1 and inflammatory genes [62]. Similarly, oxygen 

partial pressure in subcutaneous adipose tissue negatively correlates with adiposity in 

humans [63]. Thus, hypoxia could be a trigger for adipose tissue inflammation. 
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Figure 2. Immune cell infiltration of adipose tissue in obesity  

Lean individuals have higher M2/M1 macrophage, TH2/TH1 T cell and Regulatory / 

Effector T Cell ratios (A). Excessive triglyceride accumulation leads to adipose tissue 

remodeling, relative hypoxia and ER stress which trigger production of chemokines and 

changes in the above cell ratios culminating in increased production of pro-inflammatory 

adipokines and reduced production of anti-inflammatory adipokines (B). MMPs-Matrix 

metalloproteinases, SPARC- secreted protein acidic and rich in cysteine     
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Further, several animal and human studies have suggested that adipose tissue 

endoplasmic reticulum (ER) stress is another important triggering event for subsequent 

inflammation in obesity [64-67].  

While there is evidence that adipose tissue expansion per se is an important 

initiator of the inflammatory processes during the development of obesity, other lines of 

evidence suggest that dietary fats could also trigger this process. Indeed,  the nuclear 

factor kappa B (NF-kB) pathway in the visceral adipose tissue is activated 2 hours after 

consumption of a meal rich in saturated fatty acids in rodents [68]. Other studies have 

shown similar chronic effects of fatty acids (saturated fatty acids and conjugated linoleic 

acid) in triggering inflammation in the adipose tissue [69-71]. Given that these fatty acids 

are ligands for Toll-like receptors (TLR) 2 and 4, and since TLR 2 and 4 are expressed in 

human adipocytes [72], it is likely that the effect of saturated fats on adipose tissue 

inflammation is mediated via these receptors. Indeed, obesity-induced adipose tissue 

inflammation is attenuated in mice with a mutation in  TLR-4 [73].  

Other pattern recognition receptors of the innate immune system such as Nod-like 

receptors are also implicated in obesity and high saturated fat-associated adipose tissue 

inflammation [74]. Conversely, there are studies showing that adipose tissue 

inflammation can be reduced without changing adipose mass [75, 76]. This is also 

consistent with our recent findings that omega-3 polyunsaturated fatty acids reverse high-

fat induced metabolic disorders and adipose inflammation [77]. Taken together, the 

current research suggests a role of dietary fat in the onset of adipose tissue inflammation.  
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Adipose tissue inflammation in obesity is characterized by macrophage 

infiltration [56, 78] (Figure 2). Adipose tissue macrophages (ATM) are classified into 

two main types. M1 or classically activated macrophages are stimulated by interferon 

(IFN)-γ and lipopolysaccharide (LPS) and produce pro-inflammatory cytokines such as 

TNF-α, IL-6 and IL-1 and reactive oxygen species such as NO (Figure 2). M2 or 

alternatively activated macrophages are activated by IL-4 and IL-13 and express anti-

inflammatory factors IL-10, transforming growth factor (TGF)-β, IL-1 receptor 

antagonist-a, IL-4 and arginase [79, 80]. Phenotypically, murine ATM express F4/80 

antigen. The murine M1 ATM highly express cluster of differentiation (CD) 11c, while 

the M2 express macrophage galactose N-acetyl-galactosamine specific lectin 1 (MGL1) 

[81]. In contrast, human ATM express CD14, while CD11c is only poorly expressed. 

Human ATM also express CD206, CD209 and CD163 [81].  

Obesity induces an M2 to M1 shift in ATM populations, characterized by a 

reduction in anti-inflammatory IL-10 and arginase production and an increase in pro-

inflammatory TNF-α production [82] (Figure 2). This increase in M1 ATM could be due 

to either a ‘phenotypic switch’ from M2 to M1, or due to additional recruitment of M1 

macrophages from blood vessels. Lipotoxicity of macrophages seems to play a major role 

in the phenotypic switch of M2 to M1 [83]. Detailed mechanisms of the M2 to M1 switch 

have previously been reviewed by Olefsky et al. [84]. Briefly, TLR4 ligands such as 

saturated fatty acids activate NF-kB and activator protein 1 transcription factors, leading 

to increased production of proinflammatory cytokines such as TNF-α, IL-6 and IL-1 

giving rise to the M1 phenotype. In the lean adipose tissue, this is prevented by 
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repression of TLR4-responsive genes by nuclear receptor corepressor (NCoR) 

complexes. Peroxisome proliferator-activated receptor (PPAR) γ along with IL-4 and IL-

13 prevent the signal-dependent turnover of NCoR and thus maintain the M2 phenotype.  

Evidence for M1 recruitment originated from studies showing increased MGL1- 

C-C motif chemokine receptor (Ccr)+ macrophages recruited around necrotic adipocytes 

in high-fat diet-fed mice; while the MGL+ ATM levels remain unchanged [85]. Adipose 

tissue from obese animals expresses high levels of chemokines such as MCP-1, 

Macrophage inflammatory protein-1α (MIP-1α) and regulated upon activation, normal T-

cell expressed and secreted (RANTES), chemokine receptors such as Ccr2 and Ccr5 [56] 

and adhesion molecules such as P-selectin glycoprotein ligand-1 (PSGL-1) [86]. The 

expression of these chemokines, chemokine receptors and adhesion molecules play a 

major role in recruitment of macrophages to adipose tissue in obesity. Indeed, mice 

overexpressing MCP-1 in the adipose tissue have higher macrophage infiltration of 

adipose tissue, while MCP-1 knockout mice are protected from high-fat diet-induced 

adipose tissue macrophage infiltration [87]. Similarly, Ccr2 deficient mice also have 

lower ATM numbers [88], while PSGL-1 knockout mice are protected from HF diet-

induced adipose inflammation [86]. In contrast, however, MIP-1α-deficient mice are not 

protected against high-fat diet induced adipose tissue macrophage infiltration [89]. Thus, 

MCP-1 is a key mediator of the initiation of adipose tissue inflammation in obesity. 

However, the exact mechanism of MCP-1 induction in obesity is not known. It is likely 

that adipocyte hypertrophy plays a role in this, since adipocyte size positively correlates 

with MCP-1 expression in humans [90, 91].             
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 Recent evidence also points towards involvement of T cells in the adipose tissue 

inflammation in obesity [92]. Nishimura et al. showed that CD8 (+) effector T cells 

infiltrate the WAT in high-fat fed mice, with a concurrent reduction in CD4 (+) helper 

(Th) and regulatory (Treg) T cells [93]. Moreover, these changes occur before the 

adipose tissue infiltration with macrophages. The adipose tissue infiltration of 

macrophages is prevented by genetic depletion of CD8 (+) T cells. Feuerer et al. showed 

that the number of Treg cells in the WAT of obese mice is significantly lower than in 

lean ones [94]. Winer et al. showed that obese mice have a higher Th1/Th2 ratio 

promoting IFN-γ secretion from adipose tissue [95] (Figure 2). Taken together, this 

suggests that T cells are early modulators of adipose tissue inflammation in obesity. The 

cytokine profile of these T cells could play an important role in determining the M1/M2 

phenotype of ATMs.  

 

Role of adipose tissue in insulin resistance 
 
 Insulin resistance is defined as an inadequate response by insulin-sensitive tissues 

(liver, skeletal muscle and adipose tissue) to normal circulating levels of insulin [96]. At 

physiological levels, insulin inhibits hepatic glucose production, promotes skeletal 

muscle glucose uptake and inhibits lipolysis. Thus, insulin resistance leads to 

impairments in insulin-mediated suppression of hepatic glucose production, skeletal 

muscle glucose disposal and inhibition of lipolysis, leading to relative hyperglycemia and 

increased plasma levels of non-esterified fatty acids (NEFAs). In response to the relative 

hyperglycemia, there is a compensatory response by the pancreatic β cells, which secrete 
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more insulin. This hypersecretion of insulin in turn increases skeletal muscle glucose 

uptake and inhibits hepatic glucose production to maintain normoglycemia. Thus, insulin 

resistant individuals maintain normoglycemia through overproduction of and secretion of 

higher insulin levels. Long term insulin resistance and hypersecretion of insulin 

eventually leads to pancreatic β cell failure. These events results initially in prediabetes 

and glucose intolerance and later progresses to hyperglycemia and type-2 diabetes [97].      

 Insulin resistance can be either genetic or acquired. But in most instances it is due 

to an interaction of environmental / lifestyle factors with genetic factors. Obesity, 

sedentary lifestyle and aging are known causes of insulin resistance [96]. The 

contribution of adipose tissue to the pathogenesis of insulin resistance and metabolic 

syndrome is reviewed in detail below. 

 
 
Molecular mechanisms of insulin resistance 
 
 Insulin exerts its physiological actions on insulin-sensitive tissues via activation 

of a cascade of intracellular signaling events, all of which have been previously reviewed 

[98, 99]. Insulin binds to the insulin receptor, which induces autophosphorylation as well 

as phosphorylation of downstream substrates including the insulin receptor substrates 

(IRS) at tyrosine residues. The family of IRS proteins contains 6 members. IRS-1 and 

IRS-2 are widely distributed, while IRS-3 is present mainly in adipocytes and brain. IRS-

4 is expressed in embryonic tissue.  Tyrosine phosphorylation of the IRS leads to its 

binding to Src-homology-2 domain (SH2 domain) of the regulatory subunit of 

phosphatidylinositol 3-kinase (PI3K). This leads to activation of the catalytic subunit of 
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PI3K, which in turn catalyses the formation of lipid second messenger PIP3. This allows 

proteins with pleckstrin-homology domains (PH domains) to bind to PIP3, leading to their 

activation. Activation of 3-phosphoinositide-dependent protein kinase 1 (PDK1), leads to 

activation of Akt / protein kinase B (PKB). Akt/PKB is a serine/threonine kinase which 

targets several downstream proteins. Activation of Rab small GTPases via 

phosphorylation and inactivation of AS160 by Akt, leads to cytoskeletal reorganization 

and translocation of glucose transporter-4 (Glut-4) into the cell membrane. This leads to 

increased glucose entry into cells.  

Akt also phosphorylates and deactivates glycogen synthase kinase 3 (GSK3), 

which leads to activation of glycogen synthase and subsequent glycogen synthesis. Akt 

also regulates transcription of several genes involved in gluconeogenesis and lipogenesis 

via control of winged helix or forkhead (FOXO) class of transcription factors. For 

example, Akt inhibits the FOXO1-mediated activation of hepatic guconeogenic genes in 

the liver [98]. Thus, the net effect of these signaling cascades is an increased glucose 

entry into cells as well as increased flux of glucose into intra-cellular metabolic pathways 

(skeletal muscle and adipose tissue) and reduced gluconeogenesis (liver).    

Downregulation of insulin receptor protein level, as seen in obesity, can result in 

insulin resistance [98]. Defective insulin signaling at various levels of the above cascade 

is also known to be associated with insulin resistance. A reduction in IRS protein levels is 

also associated with insulin resistance. Hyperinsulinemia itself can reduce IRS protein via 

transcriptional regulation [99]. Suppressor of cytokine signaling-3 (SOCS-3) sterically 

blocks the interaction between insulin receptor and IRS and contributes to insulin 
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resistance [100]. Serine phosphorylation of IRS by free fatty acids, cytokines [101] and 

activation of NF-kB-mediated inflammatory pathways [102] is also known to induce 

insulin resistance. SOCS1 and 3 are also known to induce degradation of IRS [103]. 

Further downstream, higher expression of the regulatory subunit of PI3K is also 

associated with insulin resistance [104].           

 
Proposed mechanisms for obesity-induced insulin resistance 
 

Obesity induces insulin resistance in skeletal muscle, liver and adipose tissue 

[84]. Several models have been put forward to explain mechanisms of obesity-induced 

insulin resistance. The chronic low-grade inflammation occurring in adipose tissue is 

considered to be a major factor in the pathogenesis of obesity-induced insulin resistance. 

There are several lines of evidence to support this model. First, adipose specific 

overexpression of proinflammatory cytokines such as MCP-1 or Agt induces whole-body 

insulin resistance [87, 105]. Second, neutralization or knock down of inflammatory 

mediators such as TNF-α, MCP-1, Ccr-2 and PSGL-1 protects rodents from HF diet-

induced insulin resistance [34, 86-88]. Finally, overexpression of anti-inflammatory 

adipokines such as adiponectin protects rodents from HF diet-induced insulin resistance 

[106].  

Increased pro-inflammatory cytokines can induce insulin resistance by several 

mechanisms. As outlined earlier, pro-inflammatory cytokines can induce SOCS3 

expression, which in turn can inhibit insulin signaling by inhibiting IRS action [100]. 

Pro-inflammatory cytokines also activate numerous intracellular serine kinases such as 

jun N-terminal kinase (JNK) and inhibitor of κB kinase (IKK). These serine kinases can 
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also inhibit insulin signaling at various levels [102]. Indeed, JNK1 or IKK-β knockout 

mice and mice with adipose specific JNK inactivation are protected from insulin 

resistance [107-109]. Finally, increased circulating free fatty acid levels due to adipose 

tissue insulin resistance can in turn inhibit insulin signaling via serine phosphorylation of 

IRS [101] and lead to insulin resistance in skeletal muscle and liver.  

While the imbalance of pro- and anti-inflammatory adipokines can induce insulin 

resistance via paracrine effects, the endocrine effects of these adipokines are especially 

important in the development of insulin resistance in skeletal muscle and liver [34]. For 

example, circulating levels of adiponectin, an adipokine exclusively secreted by the 

adipose tissue, are positively correlated with insulin sensitivity in both humans and 

rodents [110]. Moreover, individuals with high plasma adiponectin levels have a lower 

risk of developing type-2 diabetes [111]. Finally, abdominal adiposity correlates with 

plasma C-reactive protein (an acute-phase protein) levels, indicating that systemic 

markers of inflammation are also increased with obesity [112]. While adipose tissue 

inflammation in obesity plays a key role in the development of insulin resistance, adipose 

inflammation in the absence of obesity does not seem to induce insulin resistance [113]. 

Thus, it is important to use mouse models with at least some degree of obesity when 

studying the contribution of individual inflammatory mediators to insulin resistance.  

Increased lipid deposition in skeletal muscle and liver is also considered to be a 

factor linked to the pathogenesis of insulin resistance [96]. Indeed, obese insulin sensitive 

individuals have lower skeletal muscle and liver lipids than obese insulin resistant 

individuals [114]. This ectopic lipid deposition is attributed to the inability of the adipose 
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tissue (mainly subcutaneous) to store excess energy due to reduced differentiation / 

remodeling capacity. Insulin resistance in adipocytes leading to increased lipolysis and 

plasma free fatty acid levels also contributes to lipid accumulation in these tissues. This is 

also characterized by increased visceral fat mass. While the exact mechanism of these 

defects in adipogenesis / remodeling is not known, pro-inflammatory cytokines such as 

TNF-α are implicated because of their known inhibitory effects on adipogenesis [115], in 

a PPARγ-dependent manner. Conversely, PPARγ agonists such as thiazolidinediones are 

known to increase both adipogenesis and insulin sensitivity [116].  

While it was initially hypothesized that increased fatty acid availability to skeletal 

muscle inhibits glucose utilization via inhibition of key glycolytic steps (Randle 

hypothesis), current evidence suggests that this is related to impairments in glucose 

transport due to defective insulin signaling [117]. Indeed, increased lipid accumulation in 

the liver and skeletal muscle is associated with increased fatty acid flux, which leads to 

excessive accumulation of fatty acid intermediates such as ceramide [96]. These lipid 

intermediates activate intracellular serine kinases which can lead to inhibition of insulin 

signaling. Ceramide can also directly inhibit Akt [118]. Indeed, pharmacological 

inhibition of ceramide synthesis protects rodents from obesity-associated insulin 

resistance.                                

Role of the renin angiotensin system in the pathogenesis of insulin 
resistance in obesity 

 
Disclosure: The work described in this section has been submitted for the following 

publication, with minor modifications in the numbering of tables and figures: 
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“Kalupahana NS and Moustaid-Moussa N. The renin-angiotensin system: a link between 

obesity and insulin resistance. Submitted to Obesity Reviews” 

 
The renin angiotensin system (RAS) is traditionally known for its role in 

regulation of blood pressure, fluid and electrolyte balance [119]. Angiotensinogen (Agt), 

the main precursor peptide of this system, undergoes enzymatic cleavage by renin and 

angiotensin-converting enzyme (ACE) to form angiotensin II (Ang II), the main effector 

peptide of this system. Ang II exerts its physiological effects via two G-protein coupled 

receptors, viz. Ang II type 1 (AT1) and type 2 (AT2) receptors. In addition to the systemic 

RAS, several local ones also exist in organs such as brain, pancreas, heart and adipose 

tissue [32]. Because Ang II increases blood pressure through AT1, ACE inhibitors 

(ACEI) and AT1 blockers (ARB) are clinically used as anti-hypertensive agents. 

 Interestingly, epidemiological studies have shown that patients on ACEI or ARB 

have a lower risk of developing type 2 diabetes compared to ones treated with other anti-

hypertensive medications [120]. Subsequent randomized controlled trials have also 

shown that RAS blockade improves glycemic control [121] and lowers the risk of 

developing type 2 diabetes [122]. Because there is evidence for RAS overactivation in 

obesity, and because RAS blockade improves insulin resistance, it is possible that RAS is 

implicated in the pathogenesis of insulin resistance in obesity. Evidence for this 

hypothesis, with specific emphasis on the role of adipose RAS on the pathogenesis of 

insulin resistance is reviewed.  
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Components of the RAS 

 Components of the classical RAS are well characterized. The common precursor 

of all bioactive angiotensin peptides is Agt (Figure 3). It is mainly secreted by the liver in 

lean individuals. Adipose tissue is another important source of Agt, especially in obese 

individuals [123]. Agt is cleaved by the enzyme renin to form angiotensin I (Ang I). 

Renin is mainly produced by the kidneys, and is a regulatory step in the RAS. Renin can 

also bind to the renin receptor, and increase the catalytic efficiency of Ang I formation 

[124]. Ang I is subsequently cleaved by ACE, present mainly in the lung and vascular 

endothelium, to produce Ang II. Alternatively, Ang II can also be formed by the action of 

cathepsins and chymase, especially in local RAS [119].  

Ang II is the main effector peptide of the RAS, which exerts its effect via two G-

protein-coupled receptors (GPR) AT1 or AT2. Stimulation of AT1 induces 

vasoconstriction and aldosterone secretion from the adrenal cortex, resulting in increased 

blood pressure and sodium and water retention. Stimulation of AT2 generally exerts 

blood pressure lowering effects. Ang I and Ang II can be cleaved to angiotensin (1-9) and 

(1-7) respectively by the action of recently discovered enzyme ACE2 (Figure 3). 

Angiotensin (1-7) can act on another GPR, the Mas receptor. Ang II is subsequently 

degraded by aminopeptidases to produce angiotensin III and IV. Angiotensin IV acts on 

the AT4 receptor. Most components of the systemic RAS are also found in the adipose 

tissue [125]. Additionally, Agt can be cleaved by cathepsins and chymase to produce Ang 

II, bypassing the renin-ACE axis in the adipose tissue [125]. Thus, Agt production is a 

regulatory step in the adipose RAS.  
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Figure 3: Components of the renin-angiotensin system 

Angiotensinogen is cleaved by renin and angiotensin converting enzyme (ACE) to form 

angiotensin (Ang) I and II respectively. Ang II acts via Ang II type 1 (AT1) or type 2 

(AT2) receptors to exert its physiological actions. Ang I and II can also be cleaved by 

ACE2 to form Ang (1-9) and (1-7), which in turn can act on the Mas receptor. Ang II is 

degraded to Ang III and IV. The latter can act on the AT4 receptor. Renin can also act on 

the renin / pro-renin receptor (R/PR).  

 
 

 



24 
 

Association between RAS and obesity 

Several polymorphisms of RAS genes are associated with body weight and 

adiposity. For example, the insertion/ deletion polymorphism (I/D) of ACE is associated 

with overweight and abdominal adiposity in Italian men [126]. Further, the M235T 

polymorphism of AGT is associated with visceral obesity in Japanese [127] and 

subcutaneous adipocyte size in French [128] women.  

Obesity is also associated with overactivation of both systemic and adipose RAS 

in humans and animals (Table 2). In humans, obesity is associated with increases in 

plasma Agt, renin, ACE and Ang II (Table 2). The elevation of plasma Ang II following 

beta-adrenergic stimulation is also greater in obese than lean individuals [129]. 

Subcutaneous adipose tissue renin, ACE and AT1 expression is also increased in obesity. 

Most, but not all studies show that adipose Agt expression is also higher in obese humans 

(Table 2). Moreover, weight-loss leads to reductions in plasma Agt, renin, ACE and 

adipose Agt levels [130]. Animal studies, in contrast, show that the direction of change in 

RAS components in obesity is strain-dependent (Table 2). Similar to humans, most diet-

induced obese rodent models show overexpression of both systemic and adipose RAS 

components. When genetic models of obesity are considered, ob/ob and db/db mice show 

activation of systemic and adipose RAS, while the obese (fa/fa) Zucker rat, viable yellow 

mouse and Wistar fatty rat exhibit lower expression of systemic and adipose RAS 

components compared to lean littermates (Table 2). Taken together, this highlights the 

importance of selecting the correct animal model to study the role of systemic and 

adipose RAS in obesity. 
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Table 2. Association of RAS components with obesity 
Subjects RAS component Association with obesity 

Positive No association Negative 
Humans Plasma Agt [131], [130], 

[132], [133], 
[134], [135] 

[129], [136]  

 Plasma Renin [130], [137], 
[138], [139] 

  

 Plasma ACE [130], [135]   
 Plasma Ang II [130] [129]  
 Plasma Ang II 

(sympathetic 
stimulated) 

[129]   

 Adipose Agt  [129], [52], 
[140], [141] 

[128], [136] [130], [142] 

 Adipose AT1 [136], [142]   
 Adipose Renin [142]   
 Adipose ACE [142]   
     
Animals 
 

Plasma Agt DIO-SD [143], 
DIO-B6 [123] 

 ZF [144] 

 Plasma Ang II DIO-SD [143], 
SF-Wistar rat 
[145] 

  

 Plasma renin SD DIO [146], 
dogs [147]  

 ZF [148], [149] 

 Adipose Agt Ob/ob, Db/db 
[150], ZF [151], 
DIO-SD [143], 
DIO-B6 [152], 
[123] FF-SD 
[153] 

FF-SD [154] ZF,  Viable 
yellow [32], 
Wistar fatty rat 
[155] 

 Adipose AT1 FF-SD [154]  ZF [156] 
 Liver Agt  ZF, Viable 

yellow [32], 
[151], DIO-SD 
[143], DIO-B6 
[123, 152] 

 

DIO – diet-induced obese; SD- Sprague-Dawley rat; B6- C57BL/6J mouse; ZF – Zucker 
fatty rat; SF – sucrose-fed; FF- fructose-fed 
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 While there are discrepancies concerning adipose Agt expression in animal 

models of obesity, these studies consistently report no change in hepatic Agt production 

in obese compared to lean animals (Table 2). Considering that plasma Agt levels are 

increased in obesity, with relatively unchanged hepatic Agt production, this highlights the 

potential contribution of adipose-derived Agt to systemic levels. Indeed, adipose tissue 

may contribute up to 30% of plasma Agt level in obesity [157]. Further, studies in 

transgenic mice overexpressing Agt in adipose tissue demonstrate that overproduction by 

only about 20% can drive both adipocyte hypertrophy and high blood pressure [157].  

Several studies have reported effects of overactivation of various RAS 

components or blockade on body weight and adiposity. Surprisingly, systemic RAS 

overactivation via chronic Ang II infusions or renin overproduction induces weight loss, 

rather than weight gain, in rodents (Table 3). This is attributed to initial reduction in 

energy intake and subsequent increase in energy expenditure [158, 159]. In contrast, 

adipose specific RAS overactivation via increased expression of Agt leads to increased 

adiposity [157]. Thus, it appears that paracrine/autocrine actions of Ang II in adipose 

tissue maybe important for fat mass expansion associated with RAS overexpression.  

Pharmacological RAS blockade via ACE inhibitors or ARB reduce adiposity in 

rodents [160, 161], but not in humans. RAS blockade via genetic deletion of Agt, renin, 

ACE, AT1 or AT2 also protect rodents from diet-induced obesity (Table 3), suggesting a 

role of RAS in the development of obesity. Deficiency of Mas receptor, however, 

increases adiposity in rodents, suggesting a potential beneficial role for the Ang (1-7)-

mas axis on adiposity [162].   
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Table 3: Effects of RAS manipulation in humans and animals 
      

Manipulation Body 
weight/ 
adiposity 

Insulin 
sensitivity 

Adipocyte 
size 

Adipocyte 
number 

Reference 

Ang II infusion 
(acute – humans) 

 +   [163], [164], 
[165], [166] 

Ang II infusion 
(chronic – rodents) 

- -   [167], [168], 
[158], [169], 
[159] 

Renin overexpression - -   [170], [171] 

Ang (1-7) infusion 
(rodents) 

 +   [172] 

Renin knockout - + -  [173] 

Agt knockout -  -  [174] 

ACE knockout - +   [175] 

AT1 knockout - + -  [176], [177] 

AT2 knockout - + - + [178] 

Adipose Agt 
overexpression 

+  + - [157], [179] 

Mas genetic deletion + -   [162] 

Adipose Agt 
overexpression + AT2 
knockout 

-  -  [179] 

+ positive association; - negative association 
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RAS and insulin resistance 

Numerous genetic studies have shown associations between polymorphisms in 

RAS genes and glucose homeostasis. The DD genotype of the ACE I/D polymorphism is 

associated with glucose intolerance and insulin resistance in several adult [180, 181] and 

infant [182] populations. Further, the AGT T174M and M235T polymorphisms are 

significantly associated with metabolic syndrome in aboriginal Canadians [183] and 

glycated hemoglobin in neonates [184], respectively. The plasma level of insulin 

sensitizer adiponectin is also associated with the AT1 A1166C polymorphism in young 

women [185]. Having multiple risk genotypes of RAS polymorphisms significantly 

increases the risk of type 2 diabetes [186].  

The strongest clinical evidence for an association between systemic RAS and 

insulin resistance originates from clinical trials which have shown that RAS blockade 

reduces the risk of developing type 2 diabetes [119, 187]. For example, there was a 14% 

lower risk of developing type 2 diabetes for patients on ACEI vs. conventional treatment 

(diuretics / beta blockers) in the in the Captopril Primary Prevention Project (CAPPP) 

[122]. In the Heart Outcomes Prevention Evaluation (HOPE) trial, there was a 34% risk 

reduction in the Ramipril (ARB) group compared to the placebo control group [187]. 

Pharmacological RAS blockade also improves insulin sensitivity in several rodent models 

of obesity or insulin resistance [188, 189] Moreover, rodents with genetic deletions of 

Agt, renin, ACE, AT1 or AT2 show improvements in insulin sensitivity and/or resistance 

to HF diet-induced insulin resistance (Table 3).  
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Conversely, chronic overactivation of systemic RAS induces whole body insulin 

resistance in rodents (Table 3). However, acute RAS overactivation via short-term Ang II 

infusions increases glucose disposal, and improves insulin sensitivity in humans [163] 

and rodents [190]. This latter phenomenon is attributed to acute haemodynamic 

adaptations in the form of redistribution of blood flow to skeletal muscle in response to 

increased Ang II levels [163, 164]. Since experimental chronic Ang II infusions are not 

feasible in human studies, animal models have been used to study the effects of chronic 

RAS overactivation. In these studies, chronic Ang II infusion induces skeletal muscle and 

hepatic insulin resistance, giving rise to whole-body insulin resistance [167]. The 

TG(mREN2)27 rat, another model of chronic systemic RAS overactivation, also develops 

skeletal muscle and systemic insulin resistance [170]. The insulin resistance in these 

animals is improved by either direct renin inhibition [191] or AT1 blockade [192].  

The mechanisms of Ang II-mediated skeletal muscle insulin resistance have been 

studied extensively. A summary is given in Figure 4. Muscle glucose uptake depends 

upon glucose delivery, glucose transport across the cell membrane and glucose utilization 

[193]. Of these processes, Ang II mainly impairs glucose transport and glucose utilization 

by the skeletal muscle [194] (Figure 4). Ang II impairs glucose transport mainly via 

inhibition of insulin signaling. Specifically, Ang II abolishes the insulin-mediated 

tyrosine phosprorylation of IRS-1, activation of Akt and translocation of Glut 4 in L6 

myocytes in vitro, in a  NADPH oxidase and AT1-dependent manner [195]. This is also 

dependent upon activation of the NF-kB pathway in skeletal muscle [196].      
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studied extensively and was reviewed by Henriksen [197]. A summary is given in 

Figure 5. Muscle glucose uptake depends upon glucose delivery, glucose transport across 

the cell membrane and intracellular glucose trapping via phosphorylation of glucose, 

which in turn is affected by  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Mechanisms of Ang-II mediated skeletal muscle insulin resistance 
 
Ang II activates NADPH oxidase via AT1. This leads to generation of reactive oxygen 

species (ROS), which induce and activate nuclear translocation of NF-kB pathway.  The 

latter mediates transcription of cytokines such as TNF-α and IL-6 and subsequent binding 

to their receptors. This binding induces serine kinases and SOCS3 expression, further 

inhibiting the tyrosine phosphorylation of IRS-1. This leads to deactivation of 

downstream insulin signaling and Glut-4 translocation, resulting in reduced glucose entry 

in to the cell. ROS also inhibit mitochondrial biogenesis leading to reduced glucose 

utilization.   
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Similarly, defective insulin-stimulated phosphorylation of IRS-1, Akt and glycogen 

synthase kinase-3beta [170] was reported in isolated skeletal muscle of the 

TG(mREN2)27 rat. The Ang-II mediated inhibition of IRS-1 is also due to its 

inactivation by serine phosphorylation or due to activation of protein tyrosine 

phosphatase-1B [198]. It is likely that Ang II activates NADPH oxides via AT1, which 

leads to increased production of reactive oxygen species (ROS). This activates the NF-kB 

pathway, which increases transcription of cytokines such as TNF-α and IL-6. These 

cytokines acting in a paracrine fashion, increase SOCS3 expression [199], which further 

inhibits insulin signaling (Figure 4). In terms of glucose utilization, Ang II reduces 

skeletal muscle mitochondrial content in an AT1 and AT2-dependent manner in rodents 

both in vitro and vivo [200], an effect proposed to be mediated via ROS [200].  

ACEI and ARB prevent these Ang II effects on insulin signaling and utilization 

and improve skeletal muscle insulin sensitivity. An additional mechanism of ACEI-

mediated improvement in insulin sensitivity is via prevention of the degradation of 

bradykinin, a potent vasodilator and potentiator of insulin signaling [201]. This is 

explained by the ability of ACE to degrade bradykinin (Figure 3), which is prevented by 

ACE inhibition. 

Additional mechanisms contributing to Ang II-mediated insulin resistance include 

the ability of Ang II to increase hepatic glucose production [202], which can contribute to 

whole-body insulin resistance. However, the exact mechanism responsible for this is not 

known, although recent evidence suggests that Ang II might be implicated in the 

development of hepatic steatosis [203]. Ang II’s actions on the endocrine pancreas may 
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also play a role in defective glucose homeostasis associated with RAS overexpression. 

Indeed, the endocrine pancreas expresses a local RAS which is involved in the regulation 

of glucose-stimulated insulin secretion, insulin synthesis and pancreatic blood flow [204]. 

Further, RAS blockade improves islet morphology and function [205] and transfection of 

ACE2 into pancreatic islets of db/db mice also improves glycemic control [206].  

Unlike in skeletal muscle, Ang II does not induce insulin resistance in adipose 

tissue [190]. Indeed, Ang II potentiates insulin-stimulated glucose uptake by adipocytes 

[190] via activation of insulin signaling molecules in vitro [207]. However, adipose tissue 

RAS could be important in the pathogenesis of systemic insulin resistance for several 

reasons. First, adipose-derived Agt and Ang II contribute to systemic levels of these 

hormones [208], which are increased in obesity [123]. Next, paracrine effects of Ang II 

on adipose tissue alter the adipokine profile toward a pro-inflammatory phenotype, which 

can then lead to skeletal muscle insulin resistance. For example, Ang II infusions reduce 

plasma adiponectin levels in an AT1-dependent manner [209]. Finally, similar to several 

pro-inflammatory cytokines, Agt is expressed higher in visceral compared to 

subcutaneous adipose tissue [210]. Thus, it is important to discuss the adipose RAS in the 

context of obesity and insulin resistance.   

 

Role of Adipose tissue RAS in regulating adipose tissue function  

In the adipose tissue, Agt is synthesized and secreted by adipocytes. Most of the 

other RAS components necessary to produce Ang II are also present in the adipose tissue. 

Thus, the presence of an adipose RAS is well established. In addition to the classical 
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regulatory steps, Adipose RAS appears to be regulated at the level of Agt production, 

which is controlled by hormones such as insulin, androgens and dexamethasone and 

cytokines such as TNF-α [32, 210]. Indeed, insulin [211] and cytokine [212] response 

elements have been reported in the Agt promoter.  

Functionally, Ang II plays a role in energy sensing, as well as modulating fat 

mass expansion via its effect on adipogenesis, lipogenesis and lipolysis. In genetically 

obese mice, feeding increases adipose Agt expression, while fasting reduces it [150], 

suggesting a role of Agt in energy sensing, possibly via the hexosamine pathway [213, 

214]. It is plausible that in a state of acute energy influx to the adipose tissue, Agt 

production leads to increased local Ang II levels, which in turn induces local 

vasoconstriction resulting in lower lipolytic rates [215]. Conversely, in fasting conditions, 

due to lower local Ang II levels, vasodilatation occurs, leading to increased rates of 

lipolysis. These Ang II effects are mediated via AT1.  

Ang II also increases lipogenesis via AT2 [216]. This is through induction of key 

lipogenic enzymes such as glycerol-3-phosphate dehydrogenase. Consistent with these 

effects, Ang II also potentiates insulin-stimulated glucose uptake by adipocytes [190]. 

Therefore, unlike in skeletal muscle, Ang II appears to enhance insulin action in 

adipocytes in vitro. Taken together, the net paracrine effect of Ang II is to reduce 

lipolysis and promote lipogenesis, ultimately increasing lipid storage and inflammation in 

adipose tissue (Figure 5).  

While acute changes in energy availability modulate adipose RAS activity, the 

effects of chronic energy excess on it is inconsistent. While most studies report Agt  
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Figure 5. Effects of Ang II and RAS blockade on adipose tissue function 

Adipose tissue expansion during positive energy balance involves a combination of 

adipocyte hypertrophy and hyperplasia. Adipogenesis via preadipocyte differentiation to 

adipocytes results in adipocyte hyperplasia (A). Mature adipocytes secrete Agt, which is 

converted to Ang II. Ang II acting on AT1 and AT2 inhibits preadipocyte differentiation. 

Stimulation of AT2 also promotes lipogenesis, while activation of AT1 inhibits lipolysis. 

Both processes promote adipocyte hypertrophy (B) which is associated with a pro-

inflammatory adipokine profile.    
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overexpression in human obesity, some have reported no change or a negative association 

(Table 2). Since adipose Agt expression is acutely regulated by hormonal and nutritional 

signals, this could be a confounding factor when studying the chronic effect of obesity on 

adipose Agt expression. It is also possible that genetic factors, such as polymorphisms in 

RAS genes also play a role in this discrepancy of results [128]. This is supported by the 

fact that while adipose RAS is overactivated in most animal models of diet-induced 

obesity, it is downregulated in some models with genetic forms of obesity (Table 2). 

Given that not all obese individuals develop metabolic derangements, it is possible that 

adipose RAS is also overexpressed in some, but not all, obese individuals. In this context, 

it is important to study the effects of adipose RAS overactivation on adipose tissue 

function and systemic insulin sensitivity, to elucidate its role in the pathogenesis of 

metabolic derangements in obesity.          

Since a reduced adipogenic capacity is linked to adipose tissue inflammation and 

systemic insulin resistance in obesity [217], it is important to investigate the effects of 

adipose RAS on both adipogenesis and lipogenesis, and conversely on both adipose 

hyperplasia and hypertrophy. It is important to recognize that lipogenesis and 

adipogenesis are distinct processes. The former refers to storage of lipids in adipocytes, 

which is positively regulated by Ang II as described above. Adipogeneis refers to 

formation of new adipocytes, either from preadipocytes or other precursors such as 

mesenchymal stem cells. In a state of positive energy balance, adipose tissue expansion 

occurs as a result of both these processes. Adipogenesis leads to adipocyte hyperplasia, 

while lipogenesis leads to adipocyte hypertrophy. An inadequate adipogenic capacity, 
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which is postulated to be linked to systemic insulin resistance, is characterized by 

adipocyte hypertrophy and a lower adipocyte number.  

RAS blockade via either ACEI or ARB results in smaller adipocyte size in 

numerous rodent models of obesity [218-220]. Furthermore, ARB also increase the 

number of small differentiated adipocytes in diabetic rats [161]. Both these findings 

support the assertion that while RAS blockade inhibits lipogenesis, it also promotes 

adipogenesis in vivo. However, these findings are confounded by the fact that some ARB 

such as Losartan, activate PPARγ, an adipogenic transcription factor [221, 222]. Thus, 

the effects of ARB on adipogenesis could be attributed to indirect effects.  

Rodents with genetic deletion of renin, Agt, AT1 or AT2 also exhibit smaller 

adipocytes (Table 3). Of these, mice lacking AT2 have a relative increase in adipocyte 

number [178], suggesting an inhibitory effect of AT2 on adipogenesis. 

The only animal model available to study the paracrine effects of RAS 

overactivation on adipose tissue is the transgenic mouse model overexpressing Agt in the 

adipose tissue (aP2-Agt mice). These mice become moderately obese and develop large 

adipocytes [157]. Their adipocyte number is also reduced compared to wild-type mice 

[179]. This suggests that increased local levels of Ang II inhibit adipogenesis. When 

these mice are crossed with mice lacking the AT2 gene, their adipocyte number and size 

becomes comparable to wild-type mice [179],   demonstrating a critical role of AT2 in 

mediating Ang II’s inhibitory effects on adipogenesis. However, since their adipocyte 

number is still lower than AT2 knockouts (with normal adipose Agt expression), AT1 also 

seems to be, at least in part, involved in mediating Ang II’s anti-adipogenic effects.  
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In vitro studies on Ang II’s effects on adipogenesis are inconsistent; practical 

difficulties in dissociating adipogenesis from lipogenesis likely being the reason. Some 

early studies show that Ang II increases murine preadipocyte differentiation via 

prostacyclin and AT2-dependent manner [223]. However, it was later shown that Ang II 

inhibits human mesenchymal stem cell differentiation into adipocytes in an AT2-

dependent manner [224]. There is also evidence that Ang II inhibits differentiation of 

human [225-227] and 3T3-L1 [228] preadipocytes in an AT1-dependent manner in vitro. 

While there is some evidence to suggest that Ang II exerts these effects via mitogen 

activated protein kinase (MAPK) and extracellular signal-regulated kinase (Erk) 

pathways [227], further studies are certainly warranted. Overall, this evidence suggests 

that Ang II promotes lipogenesis and inhibits adipogenesis leading to an adipose tissue 

phenotype characterized by large adipocytes (Figure 5). Whether this could be an 

important mechanism for insulin resistance in conditions of adipose RAS overactivation, 

remains to be tested.    

Ang II promotes inflammation in several tissues [229]. Similarly, aP2-Agt mice 

express higher levels of inflammatory genes in the adipose tissue [179]; however, it is 

unclear whether this is a direct effect of Ang II.  In vitro studies show that Ang II 

increases pro-inflammatory cytokines IL-6 and IL-8 secretion from human adipocytes 

[230] and MCP-1 from preadipocytes [231] in an NF-kB dependent manner. Conversely, 

RAS blockade reduces MCP-1 expression and macrophage infiltration in HF diet-induced 

obese mice [161]. Taken together this suggests that Ang II promotes adipose tissue 

inflammation in an NF-kB-dependent manner (Figure 5). Further studies on the 
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mechanisms of Ang II mediated stimulation of NF-kB in adipose tissue are thus 

warranted.     

   

Dietary approaches to ameliorate metabolic derangements in obesity 
  

 Obesity is causally linked to insulin resistance and metabolic syndrome (discussed 

previously). Individuals with metabolic syndrome are at a higher risk of developing type-

2 diabetes and other chronic and inflammatory diseases. Dietary interventions are useful 

in reducing the severity of these chronic diseases and in preventing them. Caloric 

restriction is the primary dietary approach employed for weight loss purposes [232].  

Furthermore, in recent years, bioactive components of foods, such as omega-3 fatty acids, 

and various food-derived phytochemicals  have gained popularity and are commonly 

used as natural preventive therapies for chronic diseases [233]. In this section, we will 

review the state of research interventions for metabolic disorders, using caloric restriction 

and those using a bioactive compound, omega-3 polyunsaturated fatty acids.  

 

Caloric restriction for improvement of insulin resistance and metabolic 

derangements in obesity 

  Lifestyle modification, including restriction of energy intake, is as or more 

effective than pharmacotherapy in preventing the progression of metabolic syndrome to 

type 2 diabetes [234]. Caloric restriction leading to 5-10% loss of body weight, regardless 

of the macronutrient composition of the diet, significantly improves glycemic control in 
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obese individuals [235]. Even in patients with type-2 diabetes, caloric restriction and 

weight loss improves insulin sensitivity [236]. Since dysfunctions in adipose tissue, 

skeletal muscle, liver and endocrine pancreas alter glucose homeostasis in obesity, it is 

important to investigate whether improved insulin resistance following caloric restriction 

is accompanied with reversal of these tissue dysfunctions.  

Enhanced insulin sensitivity following caloric restriction is at least in part due to 

loss of body weight and adipose tissue mass. Indeed, some studies show that weight loss 

consistently improves insulin sensitivity, regardless of whether it is induced by increased 

energy expenditure or reduced energy intake [237, 238]. However, other weight-

independent mechanisms might also operate. For example, obese individuals subjected to 

short-term caloric restriction (1-week) exhibit improvements in insulin sensitivity despite 

minimal weight loss [239]. This is also postulated to be a mechanism responsible for 

rapid improvement of insulin sensitivity following bariatric surgery [239]. Moreover, 

caloric restriction in non-obese animals increases longevity and delays the onset of 

several chronic illnesses including type-2 diabetes [240]. In this context it is important to 

understand the mechanisms of improvements in insulin sensitivity following caloric 

restriction in obese individuals.  

  

Caloric restriction and adipose tissue function 

 Caloric restriction leads to loss of adipose tissue mass in both subcutaneous and 

visceral fat depots [241]. It also favorably alters plasma adipokine profile (Table 4). 

Caloric restriction also reduces plasma leptin consistently across studies (Table 4) and  
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Table 4 . Change in plasma adipokines following caloric restriction in obese humans 

Adipokine Increased No Change Decreased 

Leptin   [242-246] 

Adiponectin [244, 247-250] [245, 246, 251-254]  

IL-6  [246] [242, 249, 255-257] 

RBP-4   [242, 258] 

Visfatin [259, 260]  [244] 

TNF-α  [246, 257] [255, 261] 

PAI-1   [246, 262] 

MCP-1   [248] 

 

IL-6 – interleukin-6, RBP-4 – retinol binding protein-4, TNF – tumor necrosis factor, 

PAI-1 – plasminogen activator inhibitor-1, MCP-1 – monocyte chemotactic protein-1 
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increases sensitivity to leptin [263]. The effect of caloric restriction on plasma 

adiponectin level is variable, with some studies showing an increase while others 

showing no effects of caloric restriction on this anti-inflammatory adipokine (Table 4).  

Several reasons might account for these discrepancies. Fist, the restoration of plasma 

adiponectin to non-obese levels could be age-dependent as evident by studies showing 

that caloric restriction improves plasma adiponectin level in young, but not old rodents 

[259]. Second, there could be a temporal change in adiponectin response to caloric 

restriction [260]. Further, the magnitude of weight loss might influence adiponectin 

response. Finally, given that fatty acids can modulate adipose tissue adipokine secretion, 

the macronutrient composition of a caloric-restricted diet could also affect plasma 

adiponectin levels. However, this latter possibility remains to be tested. When the effect 

of caloric restriction on other adipokines are considered, it favorably changes plasma 

RBP4, IL-6, visfatin, TNF-α, PAI-1 and MCP-1 levels (Table 4).   

Caloric restriction reduces adipocyte size in humans [264, 265], probably due to 

increased rates of lipolysis and a resistance to the insulin’s anti-lipolytic effects [266]. 

The anti-lipolytic α-2 adrenergic receptor expression is also reduced following caloric 

restriction in obese individuals [267]. Caloric restriction also regulates expression of 

genes involved in lipogenesis, fatty acid oxidation [268, 269] and fatty acid metabolism 

in human adipose tissue. Examples include stearoyl-coenzyme A desaturase (SCD) and 

diacylglycerol acyl transferase 2 (DGAT2) [270], both of which are downregulated by 

caloric restriction.   
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It is possible that caloric restriction also restores the adipogenic capacity affected by 

obesity, by increasing the expression of several adipogenic factors [271] and the number 

of small insulin-sensitive adipocytes in rats [272] suggesting an improvement in 

adipogenic capacity. 

Changes in expression of inflammatory genes in adipose tissue during caloric 

restriction is variable, with some studies showing increased expression of IL-6 and TNF-

α [256] and others showing downregulation of inflammatory genes [273-275]. Moreover, 

adipose tissue gene expression pattern does not always follow the direction of change in 

plasma adipokines [246]. Therefore, it is possible that changes in adipose tissue 

inflammation following caloric restriction are of a temporal nature. Recent evidence 

confirms this as weight loss during caloric restriction is characterized by a dynamic 

immune response. In obese mice on a high-fat diet, caloric restriction initially induces 

macrophage recruitment into adipose tissue [276]. The macrophage number peaks at the 

time of maximal lipolysis, suggesting a role of fatty acid flux in their recruitment. With 

continued weight loss, the macrophage number decreases [276]. Similarly, in human 

adipose tissue, macrophage markers increase during caloric restriction and decrease 

during weight stabilization and maintenance [277], suggesting a dynamic immune 

response.  

Endoplasmic reticulum stress, another triggering factor of adipose tissue 

inflammation, is alleviated by caloric restriction in obese mice [278]. Taken together, 

while the adipose tissue inflammation associated with obesity seems to be alleviated by 

caloric restriction, the exact nature of the dynamic immune response occurring during 
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caloric restriction is yet to be fully characterized. Further, the effect of macronutrient 

composition on adipose tissue inflammation also needs characterization. 

 

Effects of caloric restriction on skeletal muscle and hepatic insulin sensitivity 

 Caloric restriction increases insulin-stimulated glucose disposal by the skeletal 

muscle [279]. This is primarily due to enhancement of insulin signaling [236, 280] in an 

Akt2-dependent fashion [281, 282]. Caloric restriction also results in increased glycogen 

synthesis as well as fatty acid oxidation by the skeletal muscle [283]. Further, an increase 

in skeletal muscle mitochondria content due to caloric restriction potentially leads to 

increased glucose utilization and fatty acid oxidation by the muscle as well [284]. While 

the exact mechanisms responsible for these changes are still unknown, but may be 

attributed to reduced intramyocellular triglyceride (IMTG) content during caloric 

restriction [236, 285]. Moreover, caloric restriction reduces the proportion of saturated 

fatty acids in IMTG and muscle cell membranes [286, 287]. Other potential mediators of 

caloric restriction-induced improvement in skeletal muscle insulin signaling include 

growth factor receptor-bound protein 2 (Grb2). Expression of this protein is reduced in 

caloric restriction. Further, experimental reduction of Grb2 enhances insulin signaling 

and increases insulin-stimulated glucose uptake by myoblasts in vitro and protects mice 

from high-fat diet induced insulin resistance [288].    

   Caloric restriction improves hepatic insulin sensitivity and restores the insulin 

mediated suppression of hepatic glucose production [289]. These improvements are 

primarily related to reductions in hepatic lipid [264, 290, 291] and visceral fat content 
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[292]. Although the effects of caloric restriction on all components of hepatic insulin 

signaling cascade have not been characterized, the obesity-induced increase in serine 

phosphorylation of IRS is reported to be reversed by caloric restriction [293].  

Caloric restriction also attenuates the glucose-stimulated insulin response [294, 

295] suggesting a beneficial effect on the endocrine pancreas.   

 

Caloric restriction and longevity 

Caloric restriction, defined as dietary restriction without induction of 

malnutrition, slows aging and extends longevity in different species including yeast, flies, 

nematodes, rodents and non-human primates [296]. The effect of caloric restriction on 

longevity of humans is still not clear [297], however studies are currently underway to 

study this effect [298]. Several mechanisms have been proposed for mediating the 

beneficial effects of caloric restriction on longevity. Reduced activation of nutrient-

sensing pathways is proposed to be one such mechanism. Indeed, animals with mutations 

of these pathways, including insulin-like growth factor / insulin and mammalian target of 

rapamycin (mTOR) pathways, have increased lifespan. For example, mice with deletion 

of ribosomal S6 protein kinase 1 have extended lifespan and have gene expression 

patterns similar to that of caloric-restricted animals [299]. Adipose-specific insulin 

receptor knockout mice also have lower adiposity and extended lifespan [300].   

 Prevention of age-related deterioration of insulin sensitivity is another mechanism 

proposed to mediate effects of caloric-restriction on longevity. Growth hormone activity 

is known to be associated with insulin resistance, and growth-hormone receptor knockout 
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(GHRKO) mice are insulin sensitive and have a prolonged lifespan. Because caloric-

restriction does not have additional effects on longevity on these mice, it is likely that GH 

also mediates effects of caloric-restriction on longevity. 

Finally, the beneficial effects of caloric restriction in animals are at least in part 

mediated via the histone deacetylases sirtuins [301]. Mammalian sirtuins include SIRT1-

7. SIRT1 is upregulated in caloric restriction and promotes fatty acid oxidation in the 

liver and skeletal muscle and improves glucose homeostasis [302]. Further, SIRT1 

activators, such as resveratrol extend lifespan in organisms such as yeast [303]. SIRT2 is 

also upregulated in adipose tissue following caloric restriction [304], while SIRT3 is 

mainly expressed in mitochondria and regulates fatty acid metabolism [305]. 

 While the aforementioned mechanisms are responsible for the beneficial effects 

of caloric restriction on longevity, it is not evident whether similar mechanisms operate in 

obese animals as well. Limited evidence suggests that SIRT1 activation protects from 

high-fat diet-induced metabolic derangements. For example, resveratrol prevents the 

development of insulin resistance in high-fat fed mice [306]. Although these sirtuins are 

implicated in mediating the beneficial roles of caloric restriction, whether these 

mechanisms operate in obese humans subjected to caloric restriction remains to be 

elucidated. 

 

Macronutrient composition of a caloric restricted diet   

 Most health agencies recommend a low-fat diet for weight loss and improvement 

of metabolic health. However, low-carbohydrate, high-fat reduced-energy diets are also 
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effective in weight loss [307]. While energy restriction, rather than macronutrient 

composition, seems to be more important for improving insulin sensitivity [308], the 

effects of these high-fat reduced-energy diets on other cardiovascular risk factors are not 

well known. In contrast, low-fat diets are known to reverse coronary artery disease [309] 

and reduce cardiovascular disease risk factors such as low-density lipoprotein cholesterol 

levels [310]. Therefore, it is important to study the effects of energy-restricted diets with 

varying macronutrient compositions on metabolic markers.  It is especially crucial to 

dissect the role of dietary fat in health and disease, due to its higher energy density. 

  

Effect of macronutrient composition on degree of weight loss and insulin sensitivity 

 Caloric restriction, rather than macronutrient composition, appears to be more 

important for weight loss. Low-fat, low-carbohydrate, very-low carbohydrate and high-

protein diets induce similar degrees of weight loss [311]. Although very low-

carbohydrate ketogenic diets induce greater weight loss short-term, this difference is not 

significant after 1 year [310].  

Caloric restriction leading to weight loss also seems to be more important for 

improvements in insulin sensitivity, than the macronutrient composition of the diet. In a 

large randomized controlled trial, lower intakes of dietary fat reduced the risk of type-2 

diabetes only in the presence of weight loss [312]. However, animal studies show that 

very low-carbohydrate diets induce hepatic lipid accumulation and might not improve HF 

diet-induced insulin resistance to the same extent as high-carbohydrate low-fat diets [313, 

314].      
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Effect of macronutrient composition on serum cholesterol levels 

 In addition to weight loss and improvement in insulin sensitivity, low-fat diets 

also reduce circulating total cholesterol and low-density lipoprotein (LDL) cholesterol 

levels. However, they have an undesirable effect of lowering high-density lipoprotein 

(HDL) cholesterol level as well. In contrast, low-carbohydrate diets reduce triglyceride 

and very low-density lipoprotein (VLDL) cholesterol levels, with a slight increase in 

LDL cholesterol levels [310, 315]. These low-carbohydrate diets also induce a greater 

degree of reduction in the total/HDL cholesterol ratio [235].  

  

Effect of macronutrient composition on adipose tissue function 

 Caloric restriction alters lipolytic rates and lipogenesis in adipose tissue 

(discussed above). However, the fat/carbohydrate content of a caloric restricted diet does 

not change insulin-stimulated glucose transport or lipolysis in human subcutaneous 

adipose tissue [316].   

Only a few studies have investigated the effect of macronutrient composition of a 

caloric-restricted diet on adipose tissue gene expression. In one study, dietary energy 

intake was restricted by 600 kcal/day in obese women by either a low-fat (20-25% of 

total energy by fat) or a moderate-fat (40-45% of total energy by fat) diet [246]. During 

10 weeks of the intervention, body weight of women in both groups decreased an average 

of 7.5%. In the subcutaneous adipose tissue, mRNA expression of leptin and IL-6 were 

reduced by both diets, with no changes in TNF-α, PAI-1, IL-8 and adiponectin 

expression. When the protein secretion was considered, leptin, IL-6 and IL-8 were 
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reduced by both diets, while TNF-α reduced only by the low-fat diet. This shows that 

during caloric restriction, the effect of macronutrient composition is minimal. In another 

study, microarray analysis of adipose tissue of obese women showed that a majority of 

genes were differentially expressed in response to caloric restriction, but only a few genes 

responded to the fat / carbohydrate content of the diet [315]. These latter genes included 

FABP4, SIRT3, NR3C1, FNTA, and GABARAPL2, which were expressed at higher levels 

in the low-carbohydrate group.      

 In conclusion, caloric restriction, regardless of the macronutrient composition of 

the diet, induces weight loss and improves systemic insulin sensitivity. However, the 

effect of macronutrient composition in reduced-energy diets on adipose tissue function 

and other cardiovascular risk factors need further characterization. 

   

Long-chain (n-3) polyunsaturated fatty acids for improvement of insulin resistance 

and metabolic derangements in obesity 

 

Disclosure: The work described in this section has been submitted for the following 

publication, with minor modifications in the numbering of tables and figures: 

“Kalupahana NS, Claycombe KJ and Moustaid-Moussa N. (n-3) fatty acids alleviate 

adipose tissue inflammation and insulin resistance: mechanistic insights. Advances in 

Nutrition in press, 2011”  

While caloric restriction leading to weight loss is a successful dietary intervention 

for improving obesity-associated metabolic disorders, other dietary interventions such as 
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ones targeted at reducing adipose tissue inflammation, regardless of weight loss, have not 

been explored in detail. Long-chain (n-3) polyunsaturated fatty acids of marine origin 

[(n-3) LC-PUFA] namely eicosapentaenoic acid [20:5 (n-3), EPA] and docosahexaenoic 

acid [22:6 (n-3), DHA] have known anti-inflammatory properties [317]. Moreover, they 

reduce plasma triglycerides, reduce cardiac events and delay the progression of 

atherosclerosis [318, 319]. They also have anti-obesity effects on humans [320] and 

rodents [321].  

In contrast, the effect of EPA/DHA on insulin sensitivity is not well characterized. 

While EPA/DHA consistently prevent the development of insulin resistance associated 

with high-fat [322, 323] or high-sucrose [324] feeding in rodents, they do not improve 

insulin sensitivity in individuals with type-2 diabetes [325, 326]. However, preliminary 

evidence suggests that EPA/DHA might help delay the progression of metabolic 

syndrome to type-2 diabetes [327]. In this context, elucidating the mechanisms 

responsible for improvement of insulin sensitivity due to EPA/DHA might enhance the 

understanding of the pathophysiology of obesity-associated insulin resistance and could 

potentially lead to discovery of novel therapeutic targets for the metabolic syndrome. 

 
(n-3) and (n-6) polyunsaturated fatty acids 
 
 (n-3) and (n-6) polyunsaturated fatty acids are the two main classes of essential 

fatty acids. In (n-3) fatty acids, the first double bond is located between the 3rd and 4th 

carbons counting from the methyl end (Figures 6 and 7), while in (n-6) fatty acids this is 
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Figure 6. Structures of main (n-3) and (n-6) polyunsaturated fatty acids 
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Figure 7. Metabolism of (n-3) and (n-6) fatty acids 

Linoleic (LA) and α-linolenic acid (ALA) are the parent (n-6) and (n-3) long-chain 

polyunsaturated fatty acids. LA is converted to arachidonic acid (AA), while ALA is 

converted to eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). AA-derived 

eicosanoids are pro-inflammatory, while EPA-derived ones are less so. EPA and DHA 

metabolites such as resolvins and protectins have important roles in resolution of 

inflammation. 

COX – cyclooxygenase   
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located between the 6th and 7th carbons from that end.  These are considered essential 

fatty acids because humans cannot synthesize them due to absence of delta-12 and 15 

desaturase enzymes. Linoleic acid (LA) is the parent long-chain (n-6) fatty acid, which 

can be converted into arachidonic acid (AA) (Figure 7). LA is found mainly in vegetable 

oils such as corn, sunflower and soybean oil, while AA is found in foods of animal origin 

such as meat and egg-yolk [328]. α-linolenic acid (ALA), is the parent (n-3) fatty acid, 

which can be converted to EPA and DHA. ALA is found in nuts such as walnuts and flax 

seed, while EPA and DHA are found primarily in foods of marine origin such as oily fish. 

AA-derived eicosanoids such as PGE2 and thromboxane A2 are pro-inflammatory, while 

EPA-derived ones such as PGE3 are less inflammatory. EPA and DHA are also 

metabolized into resolvins and protectins, which have important roles in resolution of 

inflammation (Figure 7).      

 The ratio of (n-6) /(n-3) polyunsaturated fatty acids in the western diet ranges 

from about 10/1 to 20/1 [329]. In countries with a relatively higher fish consumption such 

as Japan, this ratio is 4/1 [330]. Dietary intake of these fatty acids affects the proportion 

of AA/EPA ratio in phospholipids, which affects cardiovascular disease risk [331]. The 

(n-3) index is a measure of erythrocyte EPA+DHA to total fatty acid ratio, which has 

been proposed to be used as a cardiovascular disease risk factor. Individuals with a low 

(n-3) index have a higher risk of cardiac events [332]    

 
EPA/DHA and hepatic insulin sensitivity  
 
 The effect of (n-3) LC-PUFA, mainly EPA, on lowering plasma triglycerides is 

well established. This effect is at least in part due to their ability to inhibit hepatic 
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enzyme diacylglycerol acyltransferase (DGAT) [333], which catalyses the final reaction 

of triglyceride synthesis. In addition to this triglyceride lowering effect, EPA/DHA also 

prevents the development of hepatic steatosis [334] and insulin resistance [323] 

associated with high saturated fat (HF) feeding in rodents.  

Lipid accumulation in the liver depends on non-esterified fatty acid delivery to the 

liver, de novo lipogenesis and the rate of fatty acid oxidation. In obesity, there is a net 

increase in fatty acid availability, promoting lipid deposition in the liver. Moreover, 

lipogenic gene transcription factors such as sterol regulatory element-binding protein 

(SREBP)-1c, are expressed at a higher level in obesity [335]. This leads to increased 

expression of hepatic lipogenic genes such as fatty acid synthase (FAS) and stearoyl-CoA 

desaturase 1 (SCD1) [336]. Further, obesity is also associated with suppression of 

peroxisome proliferator-activated receptor (PPAR)-α [335] leading to reduced fatty acid 

oxidation [336]. All these processes are linked to the development of hepatic steatosis. 

Excessive lipid accumulation in the liver leads to hepatic insulin resistance and blunting 

of insulin-mediated suppression of hepatic glucose production. 

EPA reduces lipogenesis and increases fatty acid oxidation [337], preventing lipid 

accumulation in the liver, leading to improvements in hepatic insulin resistance (Figure 

8). Moreover, EPA reduces lipogenesis via inhibition of lipogenic transcription factors 

such as SREBP-1c, nuclear factor-Y [338] and carbohydrate-responsive element-binding 

protein (ChREBP) [339]. EPA stimulates fatty acid oxidation via activation of PPARα    
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Figure 8.  Effect of EPA/DHA on liver, skeletal muscle and adipose tissue metabolism  

EPA/ DHA promote hepatic fatty acid oxidation and suppress lipogenesis. This leads to 

reduced accumulation of TAG in the liver. These fatty acids also increase adipose tissue 

fatty acid oxidation and increase secretion of adiponectin, leptin and visfatin. EPA/DHA 

also alleviate adipose tissue inflammation via GPR120 and resolvins / protectins. In the 

skeletal muscle, EPA/DHA promote fatty acid oxidation, thereby preventing 

accumulation of fatty acid intermediates. All these mechanisms are responsible for the 

EPA/DHA- mediated improvement in insulin sensitivity. FA – fatty acids, DAG – 

diacylglycerol, TAG – triacylglycerol, DGAT – diacylglycerol acyl transferase.     
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[336, 340-342] and AMP-activated protein kinase (AMPK) [343]. PPARα is required for 

EPA’s beneficial effects on hepatic insulin sensitivity, as evident by a lack of EPA effect 

in restoring hepatic insulin sensitivity in PPARα null mice fed a HF diet [344]. 

Interestingly, these mice continue to exhibit low plasma triglyceride levels, concomitant 

with diacyl glycerol accumulation in the liver, suggesting that EPA exerts a PPARα-

independent effect on hepatic DGAT. AMPKα2 is another signaling enzyme,coordinately 

regulated with PPARα during fat oxidation. As expected, and in line with the PPARα null 

mice phenotype, AMPKα2 null mice do not exhibit EPA’s beneficial effects on 

improvement in hepatic insulin sensitivity [345].              

 

Effects of EPA/ DHA on adipose tissue function 

 EPA/DHA reduce adiposity in humans [346] especially when combined with 

caloric restriction [320]. These fatty acids also prevent the development of high-fat diet 

induced adiposity and adipocyte hypertrophy in rodents [347]. There are two possible 

mechanisms for these anti-obesity effects of EPA/DHA. First, EPA/DHA is known to 

increase fatty acid oxidation in liver, adipose tissue [348] and small intestine [349] in 

vivo and adipocytes [350] and myotubules [351] in vitro. Second, they are known to 

inhibit hepatic lipogenesis (Figure 8). Both these processes shift the balance of fatty acid 

metabolism toward oxidation, rather than storage. EPA/DHA activate AMPK in adipose 

tissue and cultured adipocytes, which could be a mechanism for their effect on fatty acid 

oxidation [352, 353]. Further, these PUFAs are also known to induce mitochondrial 

biogenesis [318].  



56 
 

While it is possible that improvements of systemic insulin resistance due to 

EPA/DHA are secondary to reduction in adipose mass, this could also be due to direct 

actions of these fatty acids in improving adipose tissue function. Indeed, some studies 

have shown that these (n-3) LC-PUFA-mediated insulin sensitivity is preserved even in 

the presence of increased adipose mass [354].          

   EPA/DHA modulate adipokine secretion from adipose tissue (Figure 8). They 

increase plasma adiponectin levels in obese humans [355, 356] and rodents [357], which 

could be a potential mechanism by which EPA/DHA improve insulin sensitivity. This 

effect of EPA/DHA on adiponectin is PPARγ-dependent, because adiponectin is not 

elevated in response to fish oil in mice lacking PPARγ [358]. They also induce leptin and 

visfatin secretion and reduce the expression of several proinflammatory cytokines from 

the adipose tissue including TNFα and IL-6 [359-361]. Current evidence suggests that 

these anti-inflammatory actions of EPA/DHA play a major role in their insulin-

sensitizing effects. 

Adipose tissue macrophage infiltration and phenotypic switch is causally linked to 

insulin resistance in obesity (discussed previously). EPA/DHA prevent HF diet-induced 

adipose tissue macrophage infiltration in mice [362]. Production of pro-inflammatory 

cytokines by macrophages is dependent on activation of the NF-kB  and JNK pathways. 

EPA/DHA bind to G protein-coupled receptor 120 (GPR120) and inhibit NF-kB and 

JNK, attenuating this response [363]. The importance of this receptor is highlighted by 

the finding that the EPA-mediated improvement in insulin sensitivity is absent in mice 

lacking GPR120. Another G protein-coupled receptor, GPR40 is also known to be 
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activated by long-chain PUFA [364]. Recent evidence has highlighted the role of 

EPA/DHA in resolving inflammation, through mechanisms involving EPA-derived 

resolvin E1 and DHA-derived protectin D1 [365]. In HF-fed mice, protectin D1 is 

lacking in the adipose tissue and skeletal muscle. Moreover, transgenic restoration of (n-

3) PUFA and protectin D1 prevents the HF diet-induced insulin resistance, highlighting 

the important role of this DHA-derivative [366].     

 

EPA/DHA and skeletal muscle metabolism 

  Triglyceride accumulation in skeletal muscle fibers has been linked to insulin 

resistance (discussed previously). Proposed mediators include increased fatty acid 

availability and impaired fatty acid oxidation in the skeletal muscle. The latter is also 

associated with accumulation of fatty acid intermediates such as diacylglycerol and 

ceramides. Exposure of myotubules to EPA enhances glucose uptake [367], indicating 

increased insulin sensitivity. EPA also protects from the development of HF-induced 

skeletal muscle insulin resistance in vivo [368]. Interestingly, EPA increases both TAG 

accumulation and fatty acid β oxidation (Figure 8) while improving skeletal muscle 

insulin sensitivity both in vitro [351] and in vivo [369].  

Because EPA/DHA also reduce skeletal muscle ceramide content [357], it is 

possible that their effect on maintaining skeletal muscle insulin sensitivity is related to 

their ability to normalize fatty acid oxidation with lower accumulation of fatty acid 

intermediates. Saturated fatty acids induce skeletal muscle insulin resistance via 

activation of the NF-kB pathway [370]. Since EPA/DHA inhibit this pathway in other 
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tissues, it will be interesting to determine whether EPA/DHA inhibit this pathway in the 

skeletal muscle, and subsequently prevent the saturated fatty acid-mediated insulin 

resistance.      

In summary, EPA/DHA prevent excessive adiposity and insulin resistance in 

rodents. Mechanistically, this is related to the ability of these fatty acids to increase 

hepatic, skeletal muscle and adipose tissue fatty acid oxidation and their ability to reduce 

lipogenesis. EPA/DHA also have important anti-inflammatory properties which modulate 

adipose tissue inflammation via GPR120-mediated suppression of macrophage pro-

inflammatory cytokine secretion, resolvin and protectin-mediated resolution of 

inflammation. Through modulation of adipokine secretion, these fatty acids also favor 

insulin sensitivity. Most studies have addressed preventive effects of these PUFA, 

however whether these macronutrients are also able to reverse insulin resistance in 

obesity or their mechanisms for modulating adipocyte secretory function needs further 

characterization.        
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 Goal and specific aims 
 
 
The overarching goal of this dissertation research is elucidating adipose tissue function in 

metabolic syndrome using genetic and nutritional manipulations/approaches, with 

specific emphasis on the roles of inflammation and angiotensinogen. 

 
Specific Aims 

I. Determine the role of adipose tissue angiotensinogen (Agt) overexpression in the 

pathogenesis of insulin resistance in obesity 

In this specific aim, we test the hypothesis that overexpression of Agt from adipose tissue 

induces systemic insulin resistance via NADPH oxidase and NF-kB-dependent increases 

in adipose tissue inflammation (Figure 9). We have the following objectives. 

A. Determine the metabolic and adipose tissue gene expression changes resulting 

from overexpression of Agt in adipose tissue. 

B. Determine the metabolic changes resulting from high-fat feeding in mice with 

overexpression of Agt in adipose tissue in the presence and absence of ACE 

inhibitor captopril. 

C. Determine whether the effects of adipose Agt overproduction on adipokine 

secretory patterns in murine adipocytes are mediated via NADPH oxidase and 

NF-kB 
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Figure 9. Hypothesis for specific aim I 

We propose that overproduction of Agt from adipose tissue leads to increased lipogenesis 

and activation of NADPH oxidase, which in turn lead to activation of the NF-kB pathway 

in adipocytes. This will increase transcription of pro-inflammatory adipokines and 

suppress the anti-inflammatory adipokines leading to systemic insulin resistance.  
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II. Determine the role of energy-restricted high-fat diets in reversing metabolic 

derangements of obesity 

In this specific aim, we test the hypothesis that weight loss due to an energy-restricted 

high-fat diet is accompanied by improvements in insulin sensitivity, adipose tissue 

inflammation and metabolic markers (Figure 10). To test this hypothesis, we have the 

following objective.   

A. Determine the changes in metabolic markers and adipose tissue gene expression 

patterns in mice fed a low-fat, high-fat or a high-fat energy-restricted diet 

 

III. Elucidate mechanisms of (n-3) polyunsaturated fatty acid-mediated prevention 

and reversal of insulin resistance in high-fat diet-induced obesity 

In this specific aim we test the hypothesis that eicosapentaenoic acid (EPA) would 

prevent and reverse the metabolic derangements occurring in diet-induced obesity (DIO) 

via modulation of adipose tissue inflammation (Figure 10). We have the following 

objectives. 

A. Determine metabolic alterations in adipose tissue and changes in glucose 

tolerance, insulin sensitivity and circulating metabolic biomarkers in mice fed a 

low-fat, high-fat or a high-fat EPA diet 

B. Determine mechanisms by which EPA modulates HF diet-induced adipose tissue 

inflammation 
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Figure 10. Hypotheses for specific aims II and III 

Obesity leads to adipocyte hypertrophy and a dysregulation of adipokine secretion 

favoring inflammation. We propose that loss of adiposity due to energy-restricted high-

fat diets will also lead to improvements in adipokine secretory patterns and metabolic 

markers. We also propose that EPA would modulate adipose tissue inflammation and 

thereby improve systemic insulin resistance induced by high-fat feeding.  

 
  

 



63 
 

CHAPTER III 
 

ROLE OF ADIPOSE TISSUE ANGIOTENSINOGEN (AGT) OVEREXPRESSION 
IN THE PATHOGENESIS OF INSULIN RESISTANCE IN OBESITY  

 
 
Disclosure: The work described in this chapter in its entirety has been submitted for the 

following publication, with minor modifications in the numbering of tables and figures: 

“Kalupahana NS, Massiera F, Quignard-Boulange A, Ailhaud G, Voy BH, Wasserman 

DH and Moustaid-Moussa N. Overproduction of angiotensinogen from adipose tissue 

induces adipose tissue inflammation, glucose intolerance and insulin resistance. 

Submitted to Endocrinology” 

 

Introduction 

The renin-angiotensin system (RAS) is classically known for its role in the 

regulation of blood pressure and fluid balance [371]. Angiotensinogen (Agt) is cleaved 

by the enzymes renin and angiotensin-converting enzyme (ACE) successively, to form 

angiotensin II (Ang II), the main bioactive peptide of this system. In addition to Ang II, 

several other angiotensin peptides such as Ang 1-7 are also generated by the RAS [372].  

It is also well documented that other non classical enzymatic and non enzymatic 

pathways can generate many of the RAS intermediate peptides [371]. Ang II exerts its 

physiological actions, primarily via two G-protein coupled receptors, Ang II Type 1 

(AT1) and Type 2 (AT2) receptors [371]. Hence, ACE inhibitors and angiotensin receptor 

blockers (ARBs) are common drug targets for anti-hypertensive therapy [371]. 

Interestingly, several clinical trials have shown that the risk for type-2 diabetes mellitus is 
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lower in hypertensive individuals treated with ACE inhibitors or ARBs compared to 

those treated with other anti-hypertensive medications [373]. Subsequent randomized 

controlled trials have also shown that RAS blockade improves glucose tolerance and 

insulin sensitivity in previously insulin resistant individuals [374]. Further, RAS blockade 

also ameliorates insulin resistance and glucose intolerance in several rodent models of 

obesity [188, 375]. However, the exact mechanism of modulation of insulin sensitivity 

via RAS blockade is not fully understood.  

Adipose tissue is well recognized now as an important endocrine organ which 

secretes a number of bioactive peptides collectively known as adipokines. These include 

leptin, adiponectin, resistin, tumor necrosis factor-α (TNF-α), plasminogen activator 

inhibitor-1(PAI-1), monocyte chemotactic protein-1(MCP-1) and Ang II [23]. Obesity 

leads to a chronic low-grade inflammatory state in the adipose tissue and a dysregulation 

of adipokine secretory patterns, which is causally linked to the pathogenesis of metabolic 

syndrome and Type-2 diabetes [376]. Several lines of evidence point to the adipose RAS 

as a potential link between obesity and insulin resistance. Indeed, adipose tissue 

synthesizes and secretes the major components of RAS [377]. There is also  evidence for 

overactivation of adipose tissue RAS in obesity in rodents [143, 152], and  for a positive 

correlation between adipose tissue Agt levels and body mass index in humans [52]. 

Moreover, circulating levels of Agt correlate with BMI and estimated total adipose 

tissue-derived Agt in humans [123], suggesting an endocrine role for adipose Agt. 

Further, Ang II secretion from adipose tissue is increased following sympathetic 

stimulation in obese, but not lean, individuals [129]. Conversely, plasma and adipose Agt 
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levels are decreased following weight-loss [130]. Despite this strong evidence for an 

association between adipose RAS overactivation and insulin resistance, it is hitherto 

unknown whether the former is causally linked to the latter.   

More recent studies targeted manipulation of RAS (overexpression or deletion) 

and subsequent effects on obesity and insulin sensitivity.  Loss of function in any single 

component of the RAS tested so far, provides protection from diet-induced obesity and 

insulin resistance; i.e. Agt, Renin, ACE, AT1 or AT2 knockout rodents are lean and 

insulin sensitive [173-175, 178, 378]. Systemic RAS overactivation via gene 

overexpression or chronic Ang II infusion also induces insulin resistance, but not 

necessarily obesity [159, 197, 202]. Considering the relationship of adipose tissue 

inflammation to insulin resistance, it is possible that overactivation of adipose RAS 

specifically, leads to obesity and associated insulin resistance and inflammation. The 

hypothesis that adipose RAS overactivation will induce insulin resistance via increasing 

adipose tissue inflammation was tested in the present studies using a mouse model which 

overexpresses Agt in adipose tissue via the adipose aP2 promoter (aP2-Agt mice). These 

mice have elevated plasma Agt and develop hypertension [157].  As previously reported, 

male aP2-Agt mice exhibit higher fat pad weights compared to wild type littermates.  

Here, we further demonstrate that these mice also develop adipose tissue inflammation, 

glucose intolerance and insulin resistance even on a low-fat diet. Moreover, the glucose 

intolerance was significantly improved when aP2-Agt mice were treated with ACE 

inhibitor, captopril. Our studies thus demonstrate that adipose tissue RAS overactivation 

causes systemic insulin resistance in an Ang II-dependent manner. 
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Research Design and Methods 

Animals 

Generation of transgenic mice overexpressing Agt in adipose tissue using the 

adipose  aP2 promoter (aP2-Agt mice) has been described previously [157]. Mice used in 

the current study were bred on a C57BL/6J background and maintained in our animal 

facility at the University of Tennessee. Genotyping of the offspring was performed using 

PCR of genomic DNA using transgene-specific (5’-CTTTGCCTTTCTCTCCACAG-3') 

and intron-specific (5'-TTATCTCGCAGGGTCTTCTC-3') oligonucleotides. All mice 

were housed under 12-hour light/dark cycles with free access to food and water. For the 

first study, mice were fed a regular low-fat (LF) diet from weaning. For the second study,  

a separate cohort of male mice were fed a high-fat (HF) diet (45, 20, and 35% of energy 

from fat, protein, and carbohydrate, respectively; D12451 Research Diets, New 

Brunswick, NJ)) [379] for 12 weeks from the time of weaning. The mice on the HF diet 

were housed individually. Half the number of HF-fed mice was given the ACE inhibitor 

captopril with drinking water (30mg/L). At the end of each study, mice were feed-

deprived for 6 hours and then killed using the CO2 inhalation method. Blood was 

collected into tubes with EDTA, kept on ice for 10 min, centrifuged at 3000 X g for 20 

min, and plasma samples were collected and stored at -800C for subsequent analyses. 

Gonadal (epididymal or periovarian), inguinal, retroperitoneal and subscapular fat pads 

were dissected, snap-frozen in liquid N2, and stored at -800C for subsequent analyses. 

These protocols were all approved by the Institutional Animal Care and Use Committee 

of the University of Tennessee, Knoxville. 
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Glucose tolerance test 

Mice were feed-deprived for 6 hours with free access to water. A drop of tail 

blood was used to measure the blood glucose levels using the One Touch Ultra 

glucometer. Next, 1 g/kg body weight of 20% D-glucose was injected intraperitoneally. 

Serial blood glucose measures were taken at 15, 30, 60, and 120 min after the injection. 

 

Hyperinsulinemic, euglycemic clamp 

Detailed procedure has been previously reported [380].  Catheters were 

chronically implanted in the jugular vein (for infusions) and carotid artery (for sampling) 

5 to 7 days prior to clamps (n=8-10). Insulin was continuously administered at 4 

mU/kg/min. Arterial glucose levels were measured every 5-10 min and glucose infusion 

rates were adjusted to maintain fasting glucose. Mice were infused with [3-3H]glucose at 

a rate of 0.4 µCi/min. Endogenous glucose appearance (Ra) and disappearance (Rd) rates 

were calculated as described previously [380]. Glucose clearance was calculated by 

dividing the Rd by the arterial glucose concentration. To measure a tissue-specific index 

of glucose metabolism (Rg), mice were injected with 12 µCi of [3H]-labeled 2-

deoxyglucose ([2-3H]DG). Arterial plasma samples were collected in intervals for 40 

minutes before mice were anesthetized and tissues were extracted and frozen in liquid 

nitrogen until further analysis.  

Plasma analyte measurements 

Commercially available ELISA kits were used to measure plasma Agt, leptin and 

total adiponectin (Linco Research, Billerica, MA) concentrations, whereas a colorimetric 
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assay was used to measure plasma nonesterified fatty acids (Wako Chemicals USA, 

Richmond, VA). Plasma insulin, monocyte chemotactic protein-1 (MCP-1) and resistin 

concentrations were measured using a commercially available microsphere-based 

multiplexing system (Luminex xMAP, Millipore, Billerica, MA). 

 

Adipose tissue adipokine measurements 

Because the epididymal (gonadal) fat depot is known to show a pronounced 

dysregulation of adipo/cytokine secretory patterns in response to high-fat diets and other 

metabolic challenges [381], we used it to study the adipo/cytokine changes in our mice. 

Epididymal adipose tissue was homogenized in modified radio-immunoprecipitation 

assay buffer containing a cocktail of protease inhibitors for total protein extraction. The 

protein concentration was determined by the Bradford assay (18). Luminex xMAP was 

used to measure adipokines. Analyte values in the adipose protein extracts were 

normalized to total protein concentration. 

 

Proteomics  

Proteins were extracted from epididymal adipose tissue of aP2-Agt and control 

littermates matched for adipose mass, and labeled with cyanine 3 or 5 (green or red), 

respectively. Both samples were run on a 2-dimensional gel electrophoresis (Applied 

Biomics). A complete analysis of all differentially expressed proteins was obtained using 

Decyder software from which quantitative data were derived. Spots with a volume ratio 

of >30% and a consistent presence in replicate gels were identified and obtained using the 
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spot picker robot, and proteins within each spot were enzymatically digested and 

analyzed by Mass Spectrometry. Proteins identified from this analysis were then 

uploaded into DAVID Bioinformatics Resources, where the functional annotation chart 

was used to search for significantly enriched gene ontology categories. Differential 

expression of these proteins was further confirmed by western blotting. 

 

Cell culture experiments 

Adipocytes were cultured as described previously [382]. Briefly, 3T3-L1 

preadipocytes were cultured in 6-well plates in regular growth media consisting of 

Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% fetal bovine 

serum and 1% penicillin/streptomycin (P/S). At confluence, the cells were differentiated 

by the addition of growth media supplemented with 250 nmol/L dexamethasone and 0.5 

mmol/L methyl isobutylxanthine for 72 h, after which regular media were added for 2 

additional days. Subsequently, cells were placed in serum-free media [DMEM, P/S, and 

1% bovine serum albumin (BSA)] for 18 hours prior to applying various treatments for 

24 hours, as described in the results and figure legends. Secreted adipokine levels were 

assayed in culture media, using Luminex Xmap.  

 

Western immunoblotting 

Total proteins were isolated from epididymal adipose tissue, homogenized in 

modified RIPA buffer containing a cocktail of protease inhibitors. Twenty micrograms of 

total protein was loaded into each lane and separated by electrophoresis in an 8–10% 
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polyacrylamide gel. Proteins were transferred to a nitrocellulose membrane in transfer 

buffer, blocked overnight with 5% non-fat dry milk in Tris-buffered saline, and 0.1% 

Tween, incubated with polyclonal antibodies against monoglyceride lipase (MGL) and 

actin (Santa Cruz Biotechnology, Santa Cruz, CA), followed by secondary antibodies 

containing horseradish peroxidase and finally detected by chemiluminescence. 

 

Statistical analysis 

Body and fat-pad weight, area under the glucose curve (AUC) and plasma 

biomarkers were analyzed by ANOVA using the general linear models procedure, taking 

the effect of the genotype, sex, and interactions between these factors into account. For 

the diet study, a similar analysis was performed taking the effect of genotype, treatment 

and interactions between these factors into account. Glucose infusion rate and tissue 

glucose uptake in the clamp studies, adipose tissue cytokine levels and MGLL expression 

was compared using the student t test. In the cell culture studies, one way-ANOVA was 

used. If the F test was significant, group means were compared using the Tukey’s post 

hoc test for multiple comparisons. The fold difference in protein expression between 

replicate gels in proteomic studies was compared using the 1-sample t test. The level of 

significance for all tests was P < 0.05. All data are expressed as mean ± SD. 
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Results  

Adipose Agt overexpression induces higher adiposity, glucose intolerance and 

insulin resistance 

As expected, the aP2-Agt transgenic mice had higher adipose Agt levels (5.2 ± 

3.9, 16.9 ± 8.6, 15.9 ± 7.7 and 20.4 ± 10.8 μg/g protein in female wild-type (Wt), female 

transgenic, male Wt and male transgenic respectively; p < 0.05 for genotype effect) at the 

age of 24-weeks. Similar to previous reports [157], the transgenics also had 

approximately 20% higher plasma Agt levels (Table 5) than the Wt mice. These mice 

also exhibited higher fat pad weights, while there was no genotype effect on body weight 

(Figure 11A and B). An intra-peritoneal glucose tolerance test performed at 22-weeks of 

age showed that male transgenics were glucose intolerant as compared to Wt males, 

indicated by a higher area under the glucose curve (AUC -Figure 11C and D). However, 

this difference in glucose tolerance was not seen in female mice.  

While the transgenics also had higher plasma leptin levels compared to their Wt 

counterparts, as expected from fat pad weight differences, there was no significant 

genotype effect on plasma levels of several other adipocytokines (Table 5). Next, to 

determine if overexpression of Agt in adipose tissue causes insulin resistance, we 

performed hyperinsulinemic, euglycemic clamps on male aP2-Agt mice. The transgenics 

had a lower steady-state glucose infusion rate compared to Wt mice, indicating lower 

insulin sensitivity (Figure 12B, C). The difference in glucose clearance between basal and 

clamp was also lower in the transgenics (Figure 12D). Isotope studies for tissue glucose 

uptake showed that Rg was significantly lower in the gastrocnemius and vastus muscles  



72 
 

Table 5.  Plasma biomarkers in low-fat fed aP2-agt mice# 

 
 Females Males P Value 
 Wt Tg Wt Tg Sex 

effect 
Genotype 
Effect 

Sex X 
Genotype 
Effect 

Insulin 
(pmol/L) 131 ± 93 164 ± 67 191 ± 73 312 ± 133 0.019* 0.157 0.725 

Glucose 
(mg/dL) 204 ± 16 183 ± 9 199 ± 15 221 ± 22 0.352 0.753 0.166 

Adiponectin 
(mg/L) 18.2 ± 7.0 19.7 ± 6.1 9.8 ± 3.1 9.9 ± 2.9 0.001* 0.743 0.769 

Leptin 
(μg/L) 1.6 ± 1.0 4.1 ± 2.5 2.9 ± 1.7 6.0 ± 4.6 0.204 0.046* 0.508 

Agt (mg/L) 2.8 ± 0.8  3.4 ± 0.8 3.4 ± 0.5 4.4 ± 0.4 0.021* 0.022* 0.617 

NEFA 
(mmol/L) 0.55 ± 0.19 0.70 ± 0.19 0.62 ± 0.22 0.71 ± 0.19 0.649 0.200 0.727 

MCP-1 
(ng/L) 18.9 ± 7.0 25.4 ± 15.0 22.6 ± 14.7 24.0 ± 9.2 0.894 0.638 0.761 

Resistin 
(ng/L) 1400 ± 211 1748 ± 566 1184 ± 279 1032 ± 99 0.034* 0.777 0.267 
 

#Data is presented as mean ± SD (n=4-9 per group); Wt – wild-type, Tg - transgenic 
* p < 0.05 
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Figure 11. Adipose Agt overexpression induces adiposity and glucose intolerance  

Wild-type (Wt) and transgenic (Tg) aP2-Agt mice were fed a low-fat diet from weaning 

until 24-weeks of age. Body weight (A) and fat pad weight (B) are shown. At 22-weeks 

of age, an intraperitoneal glucose tolerance test was performed. Change in blood glucose 

over time (C) and area under the glucose curve (AUC) (D) are shown. Data are presented 

as mean ± SEM (n=4-9 per each group). # p <0.05 for sex effect; * p < 0.05 for genotype 

effect. 
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Figure 12. Adipose Agt overproduction induces insulin resistance 

Low-fat diet fed, male aP2-Agt wild-type (Wt) and transgenic (Tg) mice were subjected 

to a hyperinsulinemic, euglycemic clamp. Change in blood glucose (A) and glucose 

infusion rate (B) over time, mean steady-state glucose infusion rate (C) and glucose 

clearance rate (D) are shown. Using [3H]-labeled 2-deoxyglucose, tissue-specific index of 

glucose metabolism (Rg) was measured (E). Data are presented as mean ± SEM (n=8-10 

in each group). * p < 0.05   
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in the transgenic mice compared to the Wt mice (Figure 12E). Interestingly, the 

transgenics also had lower cardiac Rg. While there was a trend for an increase in adipose 

tissue Rg (adjusted for adipocyte number) of transgenics, this was not significant.  

 

Captopril attenuates glucose intolerance in HF-fed aP2-Agt and Wt mice  

HF feeding is known to induce glucose intolerance and insulin resistance in 

C57BL/6J mice [77]. To test that adipose RAS overactivation exacerbates HF diet-

induced glucose intolerance, we fed transgenic and Wt litermates a HF diet for 12 weeks. 

To determine if the glucose intolerance was Ang II-dependent, we also treated a cohort of 

HF-fed mice with the ACE inhibitor, captopril (30mg/L in drinking water). In contrast to 

males on the LF diet (figure 11D), the glucose tolerance was similar in both transgenics 

and Wt mice on the HF diet, as indicated by similar AUCs (Figure 13C and D). Captopril 

prevented the HF-diet induced increase in adiposity (Figure 13A and B) and glucose 

intolerance in both transgenic and Wt mice (Figure 13C and D). Thus, while aP2-Agt 

mice exhibited glucose intolerance compared to control littermates when fed low-fat 

diets, HF feeding normalized these difference in glucose tolerance between genotypes. 

Further, ACE inhibition improved HF diet-induced glucose intolerance in both 

genotypes. 

Adipose Agt overexpression increases markers of adipose inflammation  

Chronic low-grade inflammation in adipose tissue is causally linked to the 

pathogenesis of insulin resistance in obesity. To determine if adipose inflammation is a 

potential mechanism for the insulin resistance in aP2-Agt mice, we measured selected  
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Figure 13. Captopril attenuates high-fat diet induced adiposity and glucose intolerance  

Male aP2-Agt wild-type (Wt) and transgenic (Tg) mice were fed a high-fat diet (45, 20, 

and 35% of energy from fat, protein, and carbohydrate, respectively) for 11 weeks. Half 

of each genotype was given captopril (cap - 30mg/L) in drinking water. Body weight (A) 

and fat pad weight (B) are shown. At 10 weeks on the high-fat diet, an intra-peritoneal 

glucose tolerance test was performed. Change in blood glucose concentration over time 

(C) and area under the glucose curve (AUC) (D) are shown. Data are presented as mean ± 

SEM (n=8-12 in each group). * p <0.05 treatment effect. 
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markers of adipose inflammation. Pro-inflammatory cytokine MCP-1 was nearly two-

fold higher in the epididymal adipose tissue of the transgenics compared to Wt litermates 

(Figure 14). Further, expression of interleukin-10 (IL-10), an anti-inflammatory cytokine 

was significantly lower in the transgenics. The hematopoietic cytokine IL-7 and 

leukocytotrophic cytokine IL-2 were expressed lower in the transgenics. These findings 

indicate that adipose Agt overexpression induces adipose tissue inflammation.    

 

Angiotensin II increases secretion of MCP-1 and resistin in adipocytes 

Previous studies have reported that aP2-Agt mice exhibit adipocyte hypertrophy 

[157]. Because adipocyte hypertrophy is associated with a pro-inflammatory adipokine 

secretory profile, increased MCP-1 levels in adipose tissue of transgenics could be due to 

either a direct action of Ang II on adipocytes, or an indirect effect due to adipocyte 

hypertrophy. To address this issue, we subjected 3T3-L1 murine adipocytes to a short-

term (24-hour) treatment of Ang II (10 nM). As shown in figure 15, Ang II increased the 

secretion of MCP-1 and resistin from adipocytes. Because Ang II is known to activate the 

nuclear factor kappa B (NF-kB) pathway, we treated the adipocytes with Ang II in the 

presence of an NF-kB inhibitor (Bay 11-7082). As expected, Bay 11-7082 suppressed the 

Ang II-induced increases in MCP-1 and resistin secretion from adipocytes. This indicates 

that Ang II induces MCP-1 and resistin secretion from adipocytes in an NF-kB pathway-

dependent manner. To further investigate the mechanism of Ang II-mediated stimulation 

of the NF-kB pathway, we treated the adipocytes with Ang II in the presence of NADPH  
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Figure 14. Adipose Agt overexpression induces inflammatory markers in adipose tissue  

Male aP2-Agt wild-type (Wt) and transgenic (Tg) mice were fed a low-fat diet from 

weaning until 24-weeks of age. Epididymal adipose tissue cytokine levels normalized to 

total protein content are shown. Data are presented as mean ± SEM (n=5 per group). * p 

< 0.05 
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Figure 15. Ang II induces MCP-1 and resistin secretion from 3T3-L1 adipocytes 

Differentiated 3T3-L1 adipocytes were treated with control (DMSO), Ang II (10nM), 

Ang II plus NFkB inhibitor Bay 11-7082 (5μM), Ang II plus NADPH oxidase inhibitor 

apocynin (200μM), Ang II plus AT2R antagonist P-186 (100nM) or TNF α (100pM) for 

24 hours. Culture media MCP-1 (A) and resistin (B) levels are shown. Data are presented 

as mean ± SEM (n=3 per each group). Different letters indicate a significant difference (p 

< 0.05) 
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oxidase inhibitor, apocynin. As shown in Figure 15, apocynin also completely prevented 

the Ang II-induced increases in MCP-1 and resistin secretion. We have previously shown 

that Ang II effects in 3T3-L1 adipocytes are mediated by AT2 [216]. To test whether 

these changes were mediated via AT2, we treated the adipocytes with Ang II in the 

presence of an AT2 antagonist. We found that this antagonist was able to partially prevent 

the Ang II-induced MCP-1, but not resistin secretion.  

 

Adipose angiotensinogen overexpression induces MGL expression 

Proteomic studies of epididymal adipose tissue were used to identify novel 

proteins induced by adipose angiotensinogen overexpression of adipose weight-matched 

transgenic and Wt litermates, using 2DIGE. Several spots differentially expressed 

between the Wt and transgenic mice were identified (Figure 16A and B), quantified 

(Figure 6C), and proteins were identified by mass spectrometry. The detailed list of 

proteins is given in Table 6. Transgenics exhibited higher expression of glycerol-3-

phosphate dehydrogenase, a major lipogenic enzyme and MGL, a lipolytic enzyme. The 

differential expression of MGL was confirmed by western blotting as shown in Figure 

16D and E. Proteins expressed at low levels in the transgenic mice include catalase, an 

antioxidant enzyme. 

 

Discussion 

These studies provide the first evidence that adipose RAS components directly 

link to insulin resistance. Male aP2-Agt mice develop glucose intolerance and systemic  
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Figure 16. Adipose agt overexpression induces monoglyceride lipase in adipose tissue  

Male aP2-Agt wild-type (Wt) and transgenic (Tg) mice were fed a low-fat diet from 

weaning until 24-weeks of age. Epididymal adipose tissue proteomic studies were done 

in adipose weight-matched mice. Differentially expressed spots between Wt and Tg are 

shown (A and B). Spots were quantified (C), picked and identified using mass 

spectrometry. Detailed list of proteins are given in Table 6. Monoglyceride lipase 

expression between Wt and Tg was confirmed by western blot (D and E). Data are 

expressed as mean ± SEM (n=4-5 per group). * p < 0.05 
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Table 6. Proteins differentially expressed in adipose tissue in low-fat fed aP2-Agt mice  
Protein Name GI Accession No Tg/Wt spot 

volume ratio# 
Tg higher Expression than Wt 

  
   Triosephosphate isomerase 1 6678413 1.67 
   Gpd1 protein (glycerol-3-phosphate dehydrogenase)  13543176 1.36 
   Vinculin  31543942 1.46 
   Isocitrate dehydrogenase 3 (NAD+) alpha  18250284 1.49 
   Eukaryotic translation initiation factor 5A, isoform CRA_a  148680528 2.42 
   Vitamin D-binding protein  193446 1.40 
   Ehd2 protein  20072042 1.43 
   Medium-chain acyl-CoA dehydrogenase  6680618 1.52 
   Polymerase I and transcript release factor 6679567 1.59 
   Polymerase I and transcript release factor 6679567 1.66 
   Glutathione S-transferase, alpha 4 15215030 1.65 
   Fumarate hydratase 1 33859554 1.79 
   Mgll protein (monoglyceride lipase) 34786023 2.40 
   Anxa1 protein 12805619 1.92 
 
Tg lower expression than Wt 

  

   Apolipoprotein A-I 6753096 0.17 
   Immunoglobulin gamma-1 heavy chain 26665404 0.25 
   Mannose binding lectin, serum (C) 6754656 0.20 
   Arhgdib protein 21618829 0.26 
   Galactokinase 1, isoform CRA_a  148702595 0.35 
   Medium-chain acyl-CoA dehydrogenase 6680618 0.35 
   Apolipoprotein A-I precursor - mouse  109571 0.35 
   Dnm1l protein  51259985 0.21 
   Villin 2 37573976 0.41 
   Major urinary protein 2   47059037 0.35 
   Transthyretin 56541070 0.39 
   Proteasome beta 3 subunit  6755202 0.50 
   DOM1  21322147 0.50 
   Carbonic anhydrase 3 31982861 0.20 
   Similar to Sly protein  38090288 0.29 
   Hemopexin  160358829 0.64 
   Catalase  157951741 0.64 
   Glutathione S-transferase M2 6680121 0.68 
   G protein beta subuit like 475012 0.68 
   Anti-human seminoprotein monoclonal antibody  27227449 0.25 
   65-kDa macrophage protein 984636 0.34 
   
#Spots with a volume ratio of >30% and a consistent presence in replicate gels were 

identified and analyzed by mass spectrometry. Tg – transgenics, Wt- wild-type 
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insulin resistance, which is at least in part due to reduced skeletal muscle glucose uptake. 

Moreover, the inflammatory profile of these transgenic mice is characterized by elevated 

adipose MCP-1 levels. We further confirmed this in vitro, demonstrating that Ang II 

increases MCP-1 secretion from murine adipocytes, in an NF-kB and NADPH oxidase-

dependent manner.  

 

RAS overactivation, adiposity and insulin resistance 

In agreement with previous reports, our aP2-Agt mice developed increased 

adiposity even on a low-fat diet [157]. We have previously shown that Ang II increases 

triglyceride content and lipogenic enzyme levels in murine adipocytes in vitro [216]. 

Similarly, we found that the expression of glycerol-3-phosphate dehydrogenase, a key 

lipogenic enzyme, was expressed at higher levels in the adipose tissue of aP2-Agt 

transgenics compared to non-transgenic controls. Interestingly, other models of systemic 

RAS overactivation such as chronic Ang II infusion [159] and overexpression of human 

AGT in liver [152], do not exhibit higher adiposity. The increased adiposity seen in aP2-

Agt mice strongly suggests that it is due to autocrine / paracrine actions of Ang II on 

adipose tissue. 

In addition to being moderately obese, male aP2-Agt mice are also glucose 

intolerant and insulin resistant. Previous rodent models of RAS overexpression have 

shown that chronic systemic RAS overactivation leads to insulin resistance. These 

include the renin overexpressing hypertensive transgenic TG(mRen2)27 rat [191],  and 

chronic Ang II infusion models [202]. In this study we show that specific adipose Agt 
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overexpression is sufficient to produce a level of glucose intolerance that is comparable 

to Wt mice on a HF diet. An important finding of these studies is that HF feeding did not 

further exacerbate glucose intolerance in aP2-Agt mice.  This suggests that similar 

mechanisms operate in both instances. It is interesting that female aP2-Agt transgenics 

remained glucose tolerant, which is likely due to the effects of sex hormones as reported 

previously [383]; however further studies beyond the scope of this work, are warranted. 

Since systemic RAS blockade improves insulin resistance and glucose tolerance in 

numerous human and rodent studies [191, 374, 384], we tested whether blocking RAS 

would improve metabolic alterations in the aP2-Agt mice. As expected, treatment with 

ACE inhibitor captopril prevented the HF diet-induced glucose intolerance in both 

transgenic and Wt mice. Previous studies in rodents with ACE knockout [175], renin 

inhibition [191], renin knockout [173], AT1 blockade [375] or AT2 deletion [178] have all 

shown improvements in insulin sensitivity and glucose tolerance. ACE2 overactivation 

which lowers Ang II and increases Ang (1-7) has also been shown to promote insulin 

sensitivity and glucose tolerance [206, 372].  

 

Mechanisms of insulin resistance induced by RAS overactivation 

Most models of obesity and insulin resistance exhibit both muscle and adipose 

insulin resistance. Here, we found that while adipose tissue Rg was not impaired in the 

aP2-Agt mice, these mice exhibited reduced skeletal muscle and heart Rg. This could at 

least in part explain the whole body insulin resistance in transgenic mice. Several 

potential factors might have caused skeletal muscle insulin resistance. We found that the 
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level of pro-inflammatory cytokine MCP-1 was almost two-fold higher in the adipose 

tissue of transgenics compared to the non-transgenic control mice, while the level of anti-

inflammatory cytokine IL-10 was lower. Together, these findings indicate increased 

inflammation in the adipose tissue of the aP2-Agt mice. Altered adipokine secretory 

patterns due to adipose tissue inflammation could be a cause of skeletal muscle insulin 

resistance [96].  It should however be noted that the plasma levels of several adipokines 

(with the exception of leptin) was comparable between the Wt and transgenic mice. Thus, 

a possible paracrine role of adipose tissue could be important in the reduced skeletal 

muscle and heart Rg in the aP2-Agt mice. Indeed, previous studies have linked adipose 

tissue distribution within skeletal muscle to insulin resistance [385]. Epicardial fat is also 

known to produce proinflammatory cytokines, which is implicated in the post-operative 

insulin resistance [386, 387]. In vitro studies have also shown that adipokine secretion 

can impair insulin signaling of myocytes, suggesting cross-talk between the two tissues 

[388].  

The aP2-Agt transgenics also exhibited higher plasma Agt levels. Higher Agt and 

Ang II levels were previously reported to induce skeletal muscle and vascular smooth 

muscle insulin resistance by several mechanisms. First, the skeletal muscle blood flow 

can be reduced due to the pressor effect of Ang II, resulting in lower glucose delivery. 

Second, Ang II can also inhibit insulin signaling in muscle [389], resulting in reduced 

translocation of Glut4, leading to reduced glucose transport. Increased Ang II levels are 

also known to impair glucose-stimulated insulin release from the pancreatic islets [204]. 

Thus, the glucose intolerance in the aP2-Agt transgenics could be attributed to a 
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combination of reduced skeletal muscle glucose uptake as well as reduced insulin 

response in the pancreas, which could be exacerbated by their elevated blood pressure 

[157].  Additionally, previous studies have also reported that Ang II increases hepatic 

glucose production, which could also contribute to glucose intolerance [202]. We propose 

that these metabolic alterations are mediated by Ang II, as evidenced by an improvement 

of the glucose tolerance in the mice treated with ACE inhibitor captopril. While elevated 

plasma Agt levels could contribute to the systemic insulin resistance in aP2-Agt mice as 

outlined above, it is unlikely that it played a major role, because the difference in plasma 

Agt levels between the two genotypes was modest compared to circulating concentrations 

shown to be effective in causing insulin resistance in previous studies [202].  

 

Ang II and adipose tissue inflammation 

Adipose Agt overexpression increases markers of adipose tissue inflammation 

(increased MCP-1 and decreased IL-10 in this study and increased IL-6 and IL1β in 

previous reports [179]). aP2-Agt mice also exhibit higher adiposity and adipocyte 

hypertrophy [157], and because the latter is associated with a pro-inflammatory adipokine 

profile, the increased MCP-1 could be a result of adipocyte hypertrophy. However, we 

showed that Ang II can also directly increase MCP-1 and resistin secretion from 

adipocytes in vitro. Ang II’s ability to promote MCP-1 production in other cell types such 

as preadipocytes [390] and pancreatic islets [391] has been reported previously. Further, 

RAS blockade improved plasma MCP-1 and resistin levels in humans [392, 393].  
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Ang II is also documented to simulate NADPH oxidase, leading to increased 

production of reactive oxygen species, which can activate the NF-kB pathway and 

production of proinflammatory cytokines in the skeletal muscle [196] and vascular 

smooth muscle [394].  Thus, we investigated whether similar mechanisms operate in the 

adipose tissue. We found that Ang II-induced MCP-1 and resistin secretion from 

adipocytes was completely abolished by treatment with NADPH oxidase or NF-kB 

inhibitors. 

From our proteomic studies, we found that the expression of MGL, a lipolytic 

enzyme, was two-fold higher in the epididymal adipose tissue of transgenics. MGL 

cleaves 2-arachodonyl glycerol to form arachidonic acid (AA). Activation of MGL has 

been shown to increase AA levels in vascular smooth muscle [395].  Elevated AA levels 

induce secretion of pro-inflammatory cytokines [77] and PGE2 [382] in adipocytes in 

vitro, thus MGL could be another mediator of Ang II-induced adipose inflammation. We 

have previously shown that Ang II dose-dependently increases PGE2 secretion in murine 

adipocytes in vitro [396].  However, direct effects of Ang II on MCP-1 via prostaglandins 

remain to be tested. 

Overall, the aP2-Agt transgenic mouse model is a valuable model for studies of 

human obesity associated with insulin resistance and hypertension. This study provides 

for the first time evidence of a causal link between adipose tissue Agt overproduction and 

the generation of glucose intolerance and systemic insulin resistance. The mechanisms 

are at least in part due to skeletal and cardiac muscle insulin resistance, resulting from 

increased adipose tissue inflammation and systemic levels of Ang II.   



88 
 

CHAPTER IV 
 

ROLE OF ENERGY-RESTRICTED HIGH-FAT DIETS IN REVERSING 
METABOLIC DERANGEMENTS OF OBESITY 

 
 

Disclosure: The work described in this chapter in its entirety has been published in the 

following reference with minor modifications in the numbering of tables and figures: 

“Kalupahana NS, Voy BH, Saxton A and Moustaid-Moussa N. Energy-restricted high-fat 

diets only partially improve markers of systemic and adipose tissue inflammation. 

Obesity (Silver Spring) 2011 Feb;19(2):245-54” 

 
 
Introduction 

Obesity is associated with a number of co-morbidities including the metabolic 

syndrome, which is characterized by atherogenic dyslipidemia, hypertension, insulin 

resistance, and pro-inflammatory and pro-thrombotic states [397]. Individuals with the 

metabolic syndrome have a greater risk of developing type II diabetes mellitus and 

cardiovascular diseases [397]. Our previous work and that of others have shown that in 

addition to serving as an energy store, adipose tissue also functions as an endocrine organ 

by secreting adipokines such as leptin, adiponectin, resistin, tumor necrosis factor-α 

(TNF-α), plasminogen activator inhibitor-1(PAI-1), monocyte chemotactic protein-

1(MCP-1) and angiotensin II [23, 382]. There is evidence that with the increasing 

accumulation of fat inside adipocytes, the endocrine function of the adipose tissue 

becomes dysregulated resulting in a change in adipokine secretory patterns, with a 

predominant pro-inflammatory profile [90] . Further, there is evidence that with 
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increasing accumulation of triglycerides, there is an onset of adipocyte death, remodeling 

and inflammation [93, 381]. These changes of adipokine secretory patterns and release of 

inflammatory mediators contribute to the development of insulin resistance, cardio-

vascular pathologies and the proinflammatory and prothrombotic state associated with 

obesity. 

Energy restriction is a main form of dietary intervention to treat obesity and 

metabolic syndrome. It has been shown to not only reduce body weight and adipose 

tissue mass, but also reverse the metabolic derangements resulting from diet-induced 

obesity including an improvement of insulin sensitivity [398], and downregulate 

inflammatory genes in the adipose tissue [273, 399]. The role of macronutrient 

composition in a weight-loss diet, however, remains contentious [307]. Most health 

agencies advocate a low-fat diet, while there are claims that low-carbohydrate, high-fat, 

energy-restricted diets are more effective in bringing about weight loss [400]. Since the 

increasing portion sizes of meals over the years have been linked to the obesity epidemic 

[401], a reduction in portion sizes without changing the macronutrient composition seems 

a logical alternative to reverse obesity. However, it not clear whether weight loss by these 

high-fat, energy restricted diets is accompanied with improvements in the adipose tissue 

inflammation and metabolic markers. Thus we tested the hypothesis that weight loss due 

to a high-fat, energy restricted diet (analogous to a reduction in portion size without 

changing food items) is accompanied with improvements in adipose tissue inflammation 

and markers of the metabolic syndrome.    
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Methods and Procedures 

Animals and Diets 

Male C57BL/6J mice aged 7-8 weeks were purchased from Jackson Laboratory 

(Bar Harbor, ME). After a one-week period of acclimation, they were fed either a control 

low-fat (LF, n=15) diet (10, 70 (35% from sucrose) and 20% of total energy from fat, 

carbohydrates and proteins respectively; Research Diets: D12450B) or a high-fat (HF, 

n=28) diet (45, 35 (17% from sucrose) and 20% of energy from fat, carbohydrates and 

proteins respectively; Research Diets: D12451). Detailed diet composition can be found 

at researchdiets.com. The mice were individually housed with standard 12 hour light / 

dark cycles. After four months, half the mice on the high-fat diet were switched to an 

energy-restricted (HFR) diet with the same macronutrient composition as the previous 

high-fat diet. (Ad-libitum food intake of the HF group was measured daily and on the 

next day 70% of that amount was then given to the HFR mice; thus HFR mice were fed 

70% of calories taken by the HF group), while the other half continued on the ad-libitum 

high-fat feeding. Mice were terminated two months later, using the CO2 inhalation 

method, following an 8-hour food deprivation with water available. These protocols were 

all approved by the Institutional Animal Care and Use Committee of the University of 

Tennessee, Knoxville 

 

Plasma glucose, insulin, triglycerides and non-esterified fatty acids measurements 

Following sacrifice, blood was collected into tubes with EDTA, kept on ice for 

10min, centrifuged at 10,000 g for 10minutes, supernatant collected and stored at -80oC 



91 
 

for subsequent analyses. Glucose and insulin concentrations were measured by glucose 

oxidase and a commercially available enzyme immuno assay (EIA) kit (Crystal Chem 

Inc., Downers Grove, IL) respectively. Homeostasis model assessment of insulin 

resistance (HOMA-IR) was calculated as glucose concentration (mmol/l) * insulin 

concentration (mU/l) / 22.5 [402].  A commercially available EIA kit was used to assay 

the plasma total adiponectin level (Linco Research, Billerica, MA), while colorimetric 

assays were used to measure plasma triglycerides and non-esterified fatty acids (Wako 

chemicals USA inc., Richmond, VA). All assays were performed according to the 

manufacturers’ protocols. 

 

RNA isolation and microarray 

Total RNA was isolated from gonadal (epididymal) adipose tissue using Tri-

reagent (Sigma Inc., St.Louis, MO). Five µg of total RNA was used to setup first strand 

cDNA synthesis reaction with an Affymetrix oligo (dT) primer and Superscript II reverse 

transcriptase (First strand cDNA synthesis kit, Invitrogen). Second strand synthesis 

reaction was setup by addition of E.coli DNA ligase, E.coli Pol I, and RNAse H to the 

first strand. cRNA labeling, hybridization to, washing and scanning of the GeneChip 

Mouse Genome 430 2.0 array were performed using standard protocols [403]. RNA 

samples from each of 3 animals in each group were used for microarray analysis. 
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Western blotting 

Total proteins were isolated from gonadal (epididymal) adipose tissue by 

homogenizing with modified RIPA buffer containing a cocktail of protease inhibitors. 

Protein concentration was determined by the Bradford assay [404]. Twenty micrograms 

of total protein was loaded into each lane and separated by electrophoresis in an 8-10% 

polyacrylamide gel. Proteins were transferred to a nitrocellulose membrane in transfer 

buffer, blocked overnight with 5% non-fat dry milk in tris-buffered-saline and 0.1% 

tween, incubated with polyclonal antibodies against PAI-1(Santa Cruz biotechnology) 

and tubulin (Millipore), incubated with secondary antibodies containing horse radish 

peroxidase (HRP) and finally detected by chemiluminiscence. 

 

Plasma and adipose tissue adipo / cytokine measurements 

Plasma leptin and PAI-1, and cytokine content in the gonadal adipose tissue 

homogenized in modified RIPA buffer were measured using a commercially available 

microsphere based multiplexing system (Luminex xMAP–Millipore, Billerica, MA). 

Adipose tissue cytokines were normalized to total protein content. 

 

Liver triglycerides and oil-red-o staining 

Livers were homogenized as described by Miao et al [405]. Briefly, they were 

homogenized in saline and solubilized in 1% deoxycholate. Triglycerides were assayed 

using a colorimetric method (Wako chemicals USA Inc.) and normalized to liver weight. 
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Frozen sections of livers were made, stained with oil red o and counterstained with DAPI 

as described previously [406].     

 

Quantitative real-time PCR 

Total RNA (5μg) was reverse transcribed and quantitative real time PCR was 

performed using the SYBR Green method with ABI 7300 Sequence Detection System. 

Levels of RNA were normalized to those of a housekeeping gene, acidic ribosomal 

phosphoprotein P0 (36b4). The primers were ordered from Sigma Genosys (Sigma Inc., 

St.Louis, MO) and the sequences are given in Table 7. Relative expression of RNA was 

compared to the HF group using the delta-delta ct method [407]. 

 

Statistical Analysis 

Body weight and other parameters were compared for between-group differences 

by one way ANOVA using SPSS (ver15.0 SPSS Inc., Chicago, IL) software. If the F test 

was significant, group means were compared using the Bonferroni post-hoc test for 

multiple comparisons. Adipose cytokines and liver triglycerides were compared between 

HF and HFR groups using the independent samples t-test, while RT-PCR data were 

expressed relative to the HF group using the one-sample t-test to determine significance. 

Microarray data were uploaded and stored in the UTMD (University of Tennessee 

Microarray Database). UTMD is an implementation of the Stanford Microarray Database 

(SMD) package.  Data was analyzed using Significance Analysis of Microarrays (SAM – 

ver 3.0) [408] and DAVID bioinformatics resources, 2008 [409]. Differentially expressed  
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Table 7.  Primer sequences used for quantitative real-time PCR 

Gene 
Symb
ol 

Gene Name Forward primer (5'-3') Reverse primer (5’-3’) 

Thbs1 Thrombospondin 1  GGGGAGATAACGGTG
TGTTTG 

CGGGGATCAGGTTGG
CATT 

Cd59a CD59a antigen GTTAGCCTCACATGC
TACCAC 

AGGAGAGCAAGTGCT
GTTCATA 

Adpn Adiponutrin  TCACCTTCGTGTGCA
GTCTC 

CCTGGAGCCCGTCTC
TGAT 

Scd2 Stearoyl-Coenzyme A 
desaturase 2 

GCATTTGGGAGCCTT
GTACG 

AGCCGTGCCTTGTAT
GTTCTG 

Tlr1 Toll-like receptor 1  TGAGGGTCCTGATAA
TGTCCTAC 

AGAGGTCCAAATGCT
TGAGGC 

Fbln5 Fibulin 5  GCTTGTCGTGGGGAC
ATGAT 

TGGGGTAGTTGGAAG
CTGGTA 

Fasn Fatty acid synthase  GGAGGTGGTGATAGC
CGGTAT 

TGGGTAATCCATAGA
GCCCAG 

36b4 Acidic ribosomal 
phosphoprotein P0 

GAGGAATCAGATGAG
GATATGGGA 

AAGCAGGCTGACTTG
GTTGC 

Lep Leptin GAGACCCCTGTGTCG
GTTC 

CTGCGTGTGTGAAAT
GTCATTG 

Sfrp5 Secreted frizzled-related 
sequence protein 5 

CACTGCCACAAGTTC
CCCC 

TCTGTTCCATGAGGC
CATCAG 

An Adiponectin  TGTTCCTCTTAATCCT
GCCCA 

CCAACCTGCACAAGT
TCCCTT 
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genes were selected based on false discovery rate (FDR) less than 5% [410] for both 

SAM and GO enrichment analyses. All data are expressed as mean ± SD.  

 

Results 

Animal characteristics and metabolic markers 

As expected, mice lost 7.6 ± 3.4g of weight during the two-month period of 

energy restriction (HFR). Their final body weights (33.6 ± 1.8g) were also significantly 

lower than the mice on low-fat (LF) diet (39.1 ± 3.4g) (Figure 17A). The net energy 

intake of the HFR group was 30% lower than the HF group and approximately 15% less 

than that of the LF group (based on energy density of the diets and estimates of average 

daily food intakes). Mice on LF and HFR groups had lower fat pad weights (Figure 17B) 

than the high fat (HF) group (1.3 ± 0.5 and 1.0 ± 0.2 vs. 2.9 ± 0.5g). Plasma leptin levels 

showed a pattern similar to the fat pad weights (Figure 17C) with the HF group having 

the highest level (13.1 ± 8.3 ng/ml) followed by the LF (7.0 ± 3.4 ng/ml) and HFR (2.7 ± 

1.4 ng/ml) groups. The fad pad and plasma leptin levels were not significantly different 

between LF and HFR groups. The adiposity index (fat pad weight / “dead” weight) 

showed a pattern similar to that of the fat pad weight, indicating a lower body fat content 

in the HFR and LF mice. 

The HFR group exhibited better insulin sensitivity than the other two groups as 

indicated by their lower fasting plasma glucose when compared with the LF group (10.6 

± 1.8 in HFR vs12.1 ± 1.5 mmol/l in LF), lower plasma insulin levels (40.5 ± 21 in HFR 

vs. 161.3 ± 125.3 in HF and 180.3 ± 169.3 pmol/l in LF) and HOMA-IR when compared  
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Figure 17. Body and fat pad weights of LF, HF and HFR groups 

Weekly body weight (A) and gonadal fat pad weight (B), plasma leptin concentration (C) 

and adiposity index (gonadal fat pad / body weight ratio D) at sacrifice of C57BL/6J mice 

fed a high-fat (HF) low-fat (LF) or a high-fat reduced energy (HFR) diet (initially fed HF 

diet and later restricted to a total energy intake to 70% of initial intake). Different letters 

indicate a significant difference. (n=14-15 mice in each group) 
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to the other two groups (Figure 18A, B and C). Plasma non-esterified fatty acid 

concentration was lowest in the LF group (0.3 ± 0.1 mmol/l) followed by the HFR (0.56 

± 0.15mmol/l) and HF (0.77 ± 0.09mmol/l) groups (Figure 18D and E). Plasma 

triglycerides, in contrast, were significantly lower in the HFR group (43.7 ± 18.9mg/dl) 

than both LF (63.7 ± 20.7mg/dl) and HF (62.0 ± 15.3mg/dl) groups. Surprisingly, plasma 

total adiponectin level was significantly lower in the HFR (2.9 ± 0.4 µg/ml) group when 

compared to the HF (3.7 ± 0.7 µg/ml) group (Figure 18F). Plasma PAI-1 levels, however, 

were lower in the LF group (551 ± 89.9 pg/ml) than both HF (1557 ± 338 pg/ml) and 

HFR (1600 ± 182 pg/ml) groups (Figure 18G).   

 

Gonadal adipose tissue cytokines, gene expression and hepatic steatosis 

Since the HFR group had persistent elevation of plasma PAI-1 and reduced 

adiponectin levels, we next studied gonadal white adipose tissue (GWAT) cytokine levels 

to examine whether similar changes were seen there. This showed that in contrast to 

plasma levels, GWAT PAI-1 levels were comparable between LF and HFR groups, 

which were significantly lower than that of the HF group (Figure 19A). Next we 

compared levels of other cytokines between the HF and HFR groups to see whether 

caloric restriction has improved levels of these as well. This showed that while the HFR 

group had lower MCP-1 and IL-2 levels, the levels of GM-CSF, IFN-γ, IL-1β, IL-6 and 

IL-10 were comparable between the HF and HFR groups (Figure 19B).  
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Figure 18. Plasma metabolic markers of LF, HF and HFR groups 

Fasting plasma glucose (A), insulin (B), homeostasis model assessment of insulin 

resistance HOMA-IR (C), non-esterified fatty acids (D), triglycerides (E), adiponectin (F) 

and plasminogen activator inhibitor-1 (PAI-1) (G) concentrations at sacrifice of 

C57BL/6J mice fed a high-fat (HF) low-fat (LF) or a high-fat reduced energy (HFR) diet 

(initially fed HF diet and later restricted to a total energy intake to 70% of initial intake). 

Different letters indicate a significant difference. (n=14-15 mice in each group). 
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Figure 19. Gonadal adipose tissue inflammatory markers and hepatic lipid content in HF 

and HFR groups. Gonadal adipose tissue plasminogen activator inhibitor-1 (PAI-1) 

protein expression by western blot in C57BL/6J mice fed a high-fat (HF), low-fat (LF) or 

a high-fat reduced energy (HFR) diet (A). Gonadal adipose tissue cytokine levels (B), 

hepatic triglyceride content (C) and oil red O stained sections of liver (D) from HF and 

HFR groups are shown. Different letters indicate a significant difference. (n=3, 7, 4-5 and 

4 from each group for A, B, C and D respectively) * p<0.05 
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Since insulin resistance and lower plasma adiponectin levels are associated with hepatic 

steatosis, and since the HFR group exhibited better insulin sensitivity despite lower 

plasma adiponectin levels when compared to the HF group, we examined whether the 

caloric restriction improved hepatic steatosis. Analysis of liver triglyceride content and 

oil red o stained sections of the liver (Figure 19C and D) showed that the HFR group had 

improved hepatic steatosis.  

To analyze global gene expression changes in GWAT due to caloric restriction of 

HF diet, we performed microarray analysis. When the HF and LF groups were compared, 

36 genes were differentially expressed (FDR<5%). The LF group expressed lower levels 

of genes involved in cytoskeleton remodeling (fibulin 5 and lysyl oxidase), Wnt signaling 

pathway (secreted frizzled-related sequence protein 5 - Sfrp5) and lipid transport 

(phospholipid transfer protein and lipocalin 7) and higher levels of genes involved in 

lipogenesis (stearoly-coenzyme a desaturase 2 - Scd2) when compared to the HF group 

(Table 8). Additionally, RT-PCR data showed that the LF group expressed lower levels  

of several genes involved in inflammation (toll-like receptor-1, thrombospondin-1, 

CD59a antigen) when compared to the HF group (Figure 20). When the HFR and HF 

groups were compared, 1022 genes were differentially expressed (FDR <5%). The HFR 

group expressed lower levels of genes involved in cell and focal adhesion and cytokine-

cytokine receptor interaction. These included Cd34 antigen, thrombospondin 1, 

fibronectin 1 and integrin beta 1 (Table 9). The HFR group also expressed lower levels of 

leptin and genes involved in cytoskeleton organization and biogenesis, Wnt signaling 

pathway, endoplasmic reticulum (ER) associated degradation pathway and MAPK  
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 Table 8. Genes differentially expressed between low-fat (LF) and high-fat (HF) groups 

Accession ID Gene name 
Gene 
Symbol 

Fold 
Change 
 (log2) 

FDR 
(%) 

LF LOWER EXPRESSION VS HF (31 GENES) 

     
1416164_AT Fibulin 5 Fbln5 -1.31 0.00 

1423023_AT Secreted frizzled-related sequence 
protein 5  

Sfrp5 -2.54 0.00 

1417963_AT Lysyl oxidase Lox -1.19 0.00 

1417963_AT Phospholipid transfer protein Pltp -1.69 0.00 

1417109_AT Lipocalin 7 Lcn7 -1.21 0.00 

LF HIGHER EXPRESSION VS. HF (5 GENES) 

1424474_A_AT Calcium/calmodulin-dependent 
protein kinase kinase 2, beta 

Camkk2 1.16 2.93 

1426811_AT Protein phosphatase 2, regulatory 
subunit b (b56), beta isoform  

Ppp2r5b 1.20 0.00 

1426258_AT 
 

Sortilin-Related Receptor, Ldlr 
Class A Repeats-Containing 

Sorl1 1.52 0.00 

1415822_AT Stearoyl-coenzyme a desaturase 2 Scd2 1.72 0.00 

1452132_AT Riken cdna 0610030g03 gene G03rik 1.18 0.00 
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Figure 20. Gonadal adipose tissue gene expression in HF, LF and HFR groups 

Gonadal adipose tissue gene expression by reverse transcriptase quantitative PCR in 

C57BL/6J mice fed a high-fat (HF), low-fat (LF) or a high-fat reduced energy (HFR) 

diet. * p<0.001 vs HF, ** p<0.05 vs HF, # p<0.05 vs LF (n=3 RNA samples from 3 mice 

in each group) 
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Table 9. Genes differentially expressed between high-fat reduced-energy (HFR) and 

high-fat (HF) groups 

Accession ID Gene name 
Gene 
Symbol 

Fold 
Change 
 (log2) 

FDR 
(%) 

HFR LOWER EXPRESSION VS. HF (698 GENES) 
 
Cell adhesion molecules  
1416072_AT Cd34 antigen Cd34 -0.84 4.30 
1422445_AT Integrin alpha 6 ITga6 -0.77 4.68 
1426918_AT  Integrin beta 1 ITgb1 -0.79 4.30 
     
Focal adhesion  
1421811_AT Thrombospondin 1 Thbs1 -3.33 1.09 
1418711_AT Platelet-derived growth factor, alpha  Pdgfa -0.62 4.52 
1426642_AT Fibronectin 1  Fn1 -2.21 0.00 
     
Cytokine-cytokine receptor interaction 
1451462_A_AT Interferon (alpha and beta) receptor 2 Ifnar2 -0.89 4.52 
1422582_AT  Leptin  Lep -2.30 0.00 
1417936_AT Chemokine (c-c motif) ligand 9 Ccl9 -2.77 1.09 
     
Cytoskeleton organization and biogenesis 
1456292_A_AT Vimentin Vim -0.67 4.30 
1423626_AT Dystonin Dst -0.88 4.30 
1444089_AT Spectrin beta 2 Spnb2 -1.41 4.30 
     
Wnt signaling pathway 
1448201_AT Secreted frizzled-related sequence protein 2   Sfrp2 -1.51 4.30 
1436075_AT  secreted frizzled-related sequence protein 5 Sfrp5 -2.39 0 
1436791_AT  Wingless-related mmtv integration site 5a  Wnt5a -1.02 4.30 
     
ER associated degradation pathway 
1422845_AT  Calnexin  Canx -0.77 4.30 
1423149_AT  S-phase kinase-associated protein 1a   Skp1a -0.52 4.75 
1451218_AT  ER degradation enhancer, mannosidase alpha-

like 1  
Edem1 -0.73 4.30 

     
MAPK signaling pathway 
1426648_AT  Map kinase-activated protein kinase 2  Mapkapk2 -0.39 4.52 
1460420_A_AT  Epidermal growth factor receptor  Edfr -0.44 4.75 
1435646_AT inhibitor of kappab kinase gamma  Ikbkg -0.51 4.75 
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Table 9. Contd.     

Accession ID Gene name 
Gene 
Symbol 

Fold 
Change 
 (log2) 

FDR 
(%) 

HFR HIGHER EXPRESSION VS. HF (324 GENES) 
     
mTOR signaling pathway 
     
1455981_AT Ribosomal protein s6 Rps6 1.01 4.11 
1426380_AT Eukaryotic translation initiation factor 4b Eif4b 0.92 4.11 
     
Protein synthesis 
1424736_AT Eukaryotic translation elongation factor 2 Eef2 0.73 3.52 

1439439_X_AT 
Eukaryotic translation elongation factor 1 
delta Eef1d 

0.63 4.75 

1450934_AT Eukaryotic translation initiation factor 4a2 Eif4a2 0.32 3.52 
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Table 10. Genes differentially expressed between low-fat (LF) and high-fat reduced 

energy (HFR) diets 

Accesion ID Gene name 
Gene 
Symbol 

Fold 
Change 
 (log2) 

FDR 
(%) 

     
LF HIGHER EXPRESSION VS. HFR (249 GENES) 
     
Lipid biosynthesis 
1415822_AT Stearoyl-coenzyme a desaturase 2 Scd2 2.97 0.00 
1422678_AT Diacylglycerol o-acyltransferase 2 Dgat2 1.08 2.16 
1451457_AT Sterol-c5-desaturase (fungal erg3, delta-

5-desaturase) homolog (s. Cerevisae)  
Sc5d 1.19 2.16 

1450646_AT Cytochrome p450, 51 Cyp51 2.58 1.17 
1423418_AT Farnesyl diphosphate synthetase  Fdps 1.91 1.99 
1420655_AT Adiponutrin Adpn 1.92 0.00 
1433443_A_AT 3-hydroxy-3-methylglutaryl-coenzyme a 

synthase 1  
Hmgcs1 1.28 2.16 

     
Glucose metabolism 
1437672_AT  Insulin receptor substrate 3   Irs3 2.03 3.38 
1416069_AT  Phosphofructokinase, platelet  Pfkp 1.03 4.21 
1452915_AT  Protein kinase, camp dependent 

regulatory, type ii alpha  
Prkar2a 1.57 0.65 

     
LF LOWER EXPRESSION VS. HFR (563 GENES) 
     
Protein synthesis  
1416141_A_AT Ribosomal protein s6 Rps6 -0.86 4.49 
1426378_AT Eukaryotic translation initiation factor 4b  Eif4b -0.97 4.49 
1416546_A_AT  Ribosomal protein l6  Rpl6 -0.59 4.96 
     
Immune system process 
1460218_AT  Cd52 antigen  Cd52 -2.09 4.49 
1456174_X_AT N-myc downstream regulated gene 1  Ndrg1 -1.45 0.00 
1427511_AT Beta-2 microglobulin B2m -2.72 1.31 
1422962_A_AT Proteosome (prosome, macropain) 

subunit, beta type 8 (large 
multifunctional protease 7)  

Psmb8 -1.42 0.00 

1423135_AT Thymus cell antigen 1, theta  Thy1 -1.53 2.04 
1449049_AT Toll-like receptor 1  Tlr1 -2.97 2.52 
1421358_AT Histocompatibility 2, m region locus 3 H2-m3 -1.26 3.70 
1419212_AT Icos ligand  Cosl -1.77 2.04 
1450696_AT Proteosome (prosome, macropain) 

subunit, beta type 9 (large 
multifunctional protease 2)  

Psmb9 -1.54 2.52 
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pathway. Conversely, The HFR group expressed higher levels of genes involved in the 

mTOR pathway as well as overall protein synthesis, including ribosomal protein S6. In 

the final comparison between LF and HFR groups, 812 genes were differentially 

expressed (FDR < 5%). The LF group expressed higher levels of genes involved in lipid 

biosynthesis when compared to the HFR group, including Scd2, HMG-CoA synthase 1 

and adiponutrin (Table 11). The LF group also expressed higher levels of insulin receptor 

substrate-3 (Irs-3) and phosphofructokinase. In contrast, the LF group expressed lower 

levels of genes mediating immune response process and protein synthesis when 

compared to the HFR group. These included toll like receptor-1 and thymus cell antigen 

1 theta. Both the LF and HFR groups expressed lower levels of genes involved in cell 

adhesion when compared to the HF group. Selected microarray results were validated by 

reverse transcriptase quantitative PCR (Figure 20).  These data demonstrate an excellent 

correlation between changes in gene expression assessed by microarray and the real time 

PCR validation.  

 

Discussion 

In this study we tested the hypothesis that weight loss due to an energy restricted 

high-fat diet (analogous to a reduction in portion sizes) is accompanied by improvements 

in adipose inflammatory profiles and markers of the metabolic syndrome. While several 

previous studies have reported metabolic and adipose tissue gene expression changes due 

to energy restriction [271, 273, 411], to our knowledge this is the first study to 
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comprehensively investigate the long-term effects of a reduced energy high-fat diet on 

metabolic markers, adipokine secretion and adipose tissue gene expression in mice.  

Although the HF diet increased adiposity compared to the LF diet in our study, 

there were no significant differences in fasting plasma glucose and insulin, measured 

after 8h of food deprivation. However, data from our lab (unpublished) and others [412] 

indicate that this 45% fat diet, as compared to the same LF diet causes insulin 

insensitivity as evidenced by higher AUC during a GTT test, and higher gonadal adipose 

tissue inflammation. The impaired glucose homeostasis is milder than that caused by 

commonly used 60% HF diets, which causes extreme changes in adipose inflammation 

and remodeling [381]. Thus, we believe that 45% HF diets are more appropriate when 

modeling human nutrition and obesity. Second, a prolonged starvation period of 8 hours 

prior to the measurements likely contributed to the comparable levels of insulinemia and 

glycemia in the HF and LF groups. Finally, it is also possible that the higher sucrose 

content of the LF diet (35% of energy as sucrose in the LF diet vs. 17% energy from 

sucrose in the HF diet) led to smaller differences in glycemia and insulinemia between 

groups [413]. Most importantly, our study clearly demonstrated that the HFR group 

exhibited lower fasting plasma glucose, insulin and HOMA-IR indicating better insulin 

sensitivity than the other two groups.  

The HFR group also exhibited improvements in hepatic steatosis. These changes 

are more likely related to weight loss or the direct effect of energy restriction rather than 

due the fat content of the diet, consistent with findings from a recent large clinical trial 

involving post-menopausal women, which showed that weight loss, rather than LF intake 
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was associated with a reduced incidence of type 2 diabetes [312]. Thus, these findings 

further support that weight loss, rather than macronutrient composition of the diet is 

important in improving insulin sensitivity and hepatic steatosis.  

It is worth noting that the HFR group exhibited evidence of better insulin 

sensitivity than HF despite lower plasma adiponectin levels. Previous studies on humans 

and rodents have yielded inconsistent results regarding the impact of weight loss on 

plasma adiponectin [253, 414-417]. Although our RT-PCR data shows a trend for lower 

adiponectin mRNA expression in the adipose tissue of the HFR group, neither these PCR 

data nor the microarray analyses reached statistical significance. Thus it is likely that the 

decrease in plasma adiponectin is due to reduced fat mass rather than due to its reduced 

production in the adipose tissue, as adiponectin is also expressed in fat cell 

differentiation-dependent manner [418]. It is also possible that the lowering of plasma 

adiponectin level is due to the high fat content in the diet; this is a significant finding 

since plasma adiponectin levels are negatively correlated with cardiovascular risk.  

When other adipokines are considered, consistent with previous studies, plasma 

leptin level in the HFR mice reduced to about 20% to that of the HF mice [378]. A 

surprising finding was that the plasma PAI-1 concentration was similar between the HFR 

and HF groups, which were two-folds higher than the levels measured in the LF mice. 

Since previous studies showing improvements in plasma PAI-1 levels following energy 

restriction have used low-fat diets [262], this could indicate a role of fat content of the 

diet in modulating plasma PAI-1 levels.  Despite high circulating PAI-1 levels in HFR 

mice, PAI-1 protein content in GWAT was reduced (Figure 19A). Thus the finding that 
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plasma PAI-1 levels remained elevated in the HFR mice suggests that other sources of 

PAI-1 such as vascular endothelium and platelets may be important in determining the 

final plasma levels [419]. However, no studies have investigated the secretory patterns of 

PAI-1 from these tissues in response to dietary fat content. Our data suggests that fat 

content of the diet could be a factor which influences PAI-1 secretion from non-adipose 

sources in normal weight individuals. .  

Similar to improvements in GWAT PAI-1 levels, the HFR group also exhibited 

lower levels of MCP-1 and IL-2 when compared to the HF group. However, levels of 

several other pro-inflammatory (GM-CSF, IFN-γ, IL-1β and IL-6) and anti-inflammatory 

(IL-10) cytokines were similar between the HF and HFR groups. Further, GWAT gene 

expression by microarray analysis showed that the HFR group expressed lower levels of 

genes involved in cell and focal adhesion, cytokine-cytokine receptor interaction, ER 

associated degradation pathway, cytoskeleton organization and biogenesis, Wnt signaling 

pathway and MAPK pathway, when compared to the HF group. It is now established that 

the insulin resistance occurring in high-fat diet- induced obesity is accompanied with a 

chronic low-grade inflammation of the adipose tissue. This inflammatory process is 

characterized by CD11c+ macrophage infiltration and phenotypic switch, while recent 

evidence shows that adaptive immune responses of the T helper 1 (Th1) type could also 

be involved [93]. Lower levels of MCP-1, PAI-1, IL-2 and lower expression of genes 

linked to inflammation in the HFR group could indicate a partial improvement in adipose 

tissue inflammation by energy restriction.  
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The exact trigger of the adipose tissue inflammatory process in diet-induced 

obesity is hitherto unknown. Some have suggested that adipose tissue ER stress is a 

triggering event for subsequent inflammation and development of insulin resistance in 

obesity [64], which is reversed by weight loss [420]. The onset of ER stress is indicated 

by an increase in chaperon proteins followed by the unfolded protein response. In our 

study, the expression of calnexin, a gene encoding a chaperone protein, as well as Edem1, 

a mediator of ER stress were lower in the HFR group when compared to the HF group. 

This could indicate a possible reversal of ER stress in the adipose tissue following energy 

restriction. 

Rodent studies have indicated that increasing adipose tissue mass without a 

similar magnitude increase in supporting vasculature could lead to tissue hypoxia, 

triggering the expression of inflammatory genes [62].  Similar findings have been 

recently reported in humans where it was shown that subcutaneous adipose tissue oxygen 

partial pressure negatively correlated with adiposity [421]. Thrombospondin-1 (Tsp1), a 

known inhibitor of angiogenesis, was expressed 10 times higher in HF compared to the 

HFR group. Tsp1 has been previously shown to be expressed in the WAT of both humans 

and rodents [50, 422], correlating with both BMI and insulin resistance in humans [50]. 

Since thrombospondin-1 protein (TSP1) was shown to be secreted by adipocytes in vitro, 

it has been categorized as an adipokine. It is possible that TSP1 could be implicated in 

the suppression of angiogenesis leading to tissue hypoxia as described above.  Recently, 

it was shown that TSP1 impairs nitric oxide signaling, possibly implicating it in 
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vasoconstriction [423]. Thus, TSP1 could be an important mediator of cardiovascular 

complications in obesity and merits further investigation. 

Another interesting finding in this study was that expression of several genes 

involved in the Wnt signaling pathway were reduced in the HFR group when compared 

to the HF group. Inhibition of the Wnt signaling pathway is associated with increased 

adipogenesis resulting in an adipocyte phenotype [424]. In this study, the HFR group had 

lower expression of Sfrp2 and Sfrp5, two inhibitors of canonical Wnt signaling, possibly 

indicating an adipogenic scenario in the HF group. Recently it was reported that secreted 

frizzled-related protein 5 (Sfrp5) deficient mice on a high-fat diet develop severe glucose 

intolerance [425]. It is possible that Sfrp5 is a factor necessary for normal adipose tissue 

expansion, and lower expression of this gene in the HFR group could be a response to the 

rapid reduction in adiposity due to caloric restriction.  Along with the finding that the 

HFR group had lower expression of genes involved in cytoskeletal organization and 

biogenesis could indicate a remodeling process of the adipose tissue in the HF diet fed 

mice. This is in agreement with Strissel et al., who showed that in C57BL/6J mice fed a 

high fat diet, there is adipocyte death and remodeling occurring after 12 weeks [381].  

It is interesting that despite the large difference in fat pad weights, there were 

relatively few genes differentially expressed between the HF and LF groups. These 

included a lower expression of inflammatory genes and a higher expression of lipogenic 

genes in the LF group when compared to the HF group. The high sucrose content in the 

LF diet likely contributed to the latter. In contrast, although there was no difference in the 

fat pad weight between the HFR and LF groups, a large number of genes were 
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differentially expressed between these two groups. Interestingly, several genes involved 

in immune function had higher expression in the HFR group when compared to the LF 

group. This shows that energy restriction only partially reverses the adipose inflammation 

induced by high-fat feeding.   

We identified a large number of genes expressed at higher levels in the HFR 

group when compared to both HF and LF groups. A majority of these genes were 

involved in protein synthesis and the mTOR pathway. Several previous researchers have 

reported changes in adipose tissue gene expression in response to energy restriction. 

Higami et al. reported that there is decreased expression of genes linked to inflammation, 

cytoskeleton, extracellular matrix or cytoskeleton [273] and increased expression of 

genes associated with mitochondrial energy metabolism and macronutrient metabolism in 

the adipose tissue of mice subjected to caloric restriction [271]. Similar findings have 

been reported for humans recently [277]. Linford et al. reported that energy restriction 

prevented the age related downregulation of genes involved in mTOR pathway in the 

adipose tissue of rats [411]. While data from gene expression of other tissues including 

liver suggests that there is a downregulation of genes involved in synthetic activity with 

energy restriction [426], our data and the above suggest that the response for energy 

restriction could be tissue-specific.   

In summary the current study provides important information regarding metabolic 

and genomic differences in LF/high sucrose vs. HF/Low sucrose fed ad libitum or with 

energy restriction; there are however a few limitations to our study. Since the weights of 

the groups were not exactly matched, the changes in gene expression could be related in 
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part to weight, and in part to the macronutrient composition of the diet. Further, it is well 

established now that a remodeling process occurs in the adipose tissue of DIO mice after 

12 weeks of 65% high fat feeding [381], and our studies lasted 24 weeks of 45% HF 

feeding. Other limitations include limited cytokine and other analyses in adipose tissue 

from LF-fed mice due to limited tissue.  Finally, we used 3 samples from each group for 

the microarray studies and although our stringent statistical analysis provides confidence 

in our differential gene expression pattern, a higher number of replicates would have been 

more desirable.  

This study is consistent with previous findings that intake of a high-fat diet results 

in obesity and is associated with upregulation of genes involved in inflammation and 

thrombosis in the white adipose tissue. Our studies further demonstrate that energy 

restriction: 1. despite the high fat content of the diet, reverses diet-induced obesity with 

concomitant improvements in insulin sensitivity and hepatic steatosis; and 2. only 

partially reverses the inflammation of the WAT, without improvement in some metabolic 

markers involved in increasing cardiovascular risk. Our study supports the recommended 

low fat intake for cardiovascular health and further emphasizes the importance of 

considering sucrose content in the diet in the management of diabetes. 
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CHAPTER V 
MECHANISMS OF (n-3) POLYUNSATURATED FATTY ACID-MEDIATED 

PREVENTION AND REVERSAL OF INSULIN RESISTANCE IN HIGH-FAT 

DIET-INDUCED OBESITY  

 
Disclosure: The work described in this chapter in its entirety has been published in the 

following reference with minor modifications in numbering of tables and figures: 

“Kalupahana NS, Claycombe K, Newman SJ, Stewart T, Siriwardhana N, Matthan N, 

Lichtenstein A and Moustaid-Moussa N. Eicosapentaenoic acid prevents and reverses 

insulin resistance in high-fat diet-induced obese mice via modulation of adipose tissue 

inflammation.    Journal of Nutrition, 2010 Nov; 140(11):1915-22” 

 

Introduction 

Obesity is a major health problem in the United States with two-thirds of the adult 

population being either overweight or obese [427]. It is causally linked to the metabolic 

syndrome, which is characterized by insulin resistance, atherogenic dyslipidemia and 

hypertension and also associated with a pro-inflammatory and a pro-thrombotic state. 

Individuals with the metabolic syndrome have a higher risk of developing type 2 diabetes 

and cardiovascular diseases [397]. In recent years, evidence has linked these metabolic 

disorders, in part, to adipose tissue endocrine function.  Indeed, adipose tissue secretes 

numerous bioactive peptides collectively known as adipokines, which play important 

endocrine roles in the regulation of glucose homeostasis, blood pressure and appetite 

[23]. Increased adiposity leads to a chronic low-grade inflammation in the adipose tissue 
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resulting in increased production of pro-inflammatory cytokines such as monocyte 

chemotactic protein-1 (MCP-1), interleukin-6 (IL-6), tumor necrosis factor-α, 

plasminogen activator inhibitor-1 (PAI-1) [428] and angiotensin II [32] and decreased 

production of anti-inflammatory adipokines such as adiponectin [428]. These 

dysregulations of adipokine secretory patterns are identified as a link between obesity and 

the metabolic syndrome.  

While caloric restriction leading to weight loss is the main dietary intervention to 

treat metabolic syndrome, other dietary interventions such as ones targeted at reducing 

adipose tissue inflammation independent of weight-loss are yet to be explored in detail. 

Long-chain (n-3) polyunsaturated fatty acids of marine origin, namely eicosapentaenoic 

acid (EPA) and docosahexaenoic acid (DHA) have been shown to have anti-

inflammatory properties [317]. In vitro, these (n-3) fatty acids prevent the arachidonic 

acid (AA)-induced increase in pro-inflammatory eicosanoids in fat cells [382] as well as 

inhibit the nuclear factor-κB (NF-κB) pathway activation in immune and cancer cells 

[429]. Since dietary intake of these fatty acids results in their enrichment in adipose tissue 

[430], we hypothesized that these fatty acids would prevent (P) and reverse (R) the 

metabolic derangements occurring in diet-induced obesity (DIO) via modulation of 

adipose tissue inflammation. Several previous researchers have shown that EPA and 

DHA prevent the development of insulin resistance in high-fat diet fed mice in an 

adiponectin dependent manner [323, 324, 347, 357, 431-434]. The aim of this study was 

to determine whether EPA can prevent and reverse the metabolic complications resulting 

from high saturated-fat (HF) feeding and to determine underlying mechanisms. We 
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hypothesized that EPA protects against HF diet-induced adiposity, insulin resistance and 

hepatic steatosis and that these effects are mediated in part by their anti-inflammatory 

effects on adipose tissue, as indicated by decreased secretion of pro-inflammatory 

adipokines and increased secretion of adiponectin.   

 

Materials and Methods 

Mice and diets: Male C57BL/6J mice aged 5-6 wk were purchased from the Jackson 

Laboratory (Bar Harbor, ME). Following a 1 wk period of acclimation, they were fed a 

low fat (LF) diet (10, 20 and 70% of energy from fat, proteins and carbohydrates 

respectively), HF diet (45, 20 and 35% of energy from fat, proteins and carbohydrates 

respectively) or a high saturated-fat EPA (HF-EPA-P) diet (36 g/kg EPA ethyl ester) for 

11 wk. A fourth group was initially fed the HF diet for 6 wk followed by the high 

saturated-fat EPA diet (HF-EPA-R) for 5 wk. All four groups had 9-10 mice each. Diets 

were custom made by Research Diets (New Brunswick, NJ) and the detailed diet 

compositions are given in Table 11. Mice were housed in individual cages with free 

access to food and water, and subjected to 12 h light/ dark cycles. Their food intake was 

measured daily as the difference between the amount of food provided and the amount of 

food removed after accounting for any spillage. Food was stored at -20 0C and the mice 

were given fresh food daily. Mice were maintained on diet groups for 11 wk and weighed 

weekly. 
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Table 11. Composition of the diets for the EPA study 
 

 LF  HF- EPA   HF   
Fat , % energy 10 45 45 

Carbohydrate, % energy  70 35 35 

Protein, % energy 20 20 20 

Digestible Energy, kJ/g 16.1 19.8 19.8 
  g/kg  
Lard  19 171 207 
Soybean Oil   24 29 29 
EPA, Ethyl Ester  0 36 0 
Mineral Mix, S100261  9 12 12 
DiCalcium Phosphate 12 15 15 
Calcium Carbonate 5 6 6 
Potassium Citrate, 1 H2O  16 19 19 
Vitamin Mix, V100011  9 12 12 
Choline Bitartrate 2 2 2 
dl-α-tocoheryl acetate 0.12 0.15 0.15 
 % total fatty acids 
Saturated fats 25.1 30.0 36.3 
         14:0  0.5 0.7 0.8 
         16:0 16.5 18.7 22.6 
        18:0 8.2 10.6 12.9 
Monounsaturatedats 34.7 37.6 45.3 
         14:1  0.2 0.4 0.5 
         1:1(n-9) 1.8 2.9 3.5 
         18:1(n-9) 32.7 34.3 41.3 
Polyunsaturated fats 40.2 32.4 18.5 
         18:2(n-6) 34.6 13.5 14.9 
         18:3(n-3) 5.0 1.8 1.9 
         20:4(n-6) 0.7 1.3 1.6 
         20:5(n-3) 0.0 16.1 0.0 
 

1Research Diets, Inc. (New Brunswick, NJ, USA); composition of mineral and 
vitamin mix as described previously by DeFuria et al. [47] 
 
 
 

   

 

  

 



118 
 

At the end of 11 wk, mice were feed-deprived for 4 h and killed using the CO2 inhalation 

method. Blood was collected into tubes with EDTA, kept on ice for 10 min, centrifuged 

at 3,000 Xg for 20 min, and plasma samples were collected and stored at -80 oC for 

subsequent analyses. Epididymal (gonadal), inguinal, retroperitoneal and subscapular fat 

pads were dissected out, snap frozen in liquid N2 and stored at -800C for subsequent 

analyses. These protocols were all approved by the Institutional Animal Care and Use 

Committee of the University of Tennessee, Knoxville.  

 

Glucose tolerance test: This was performed at two time points (6 wk and 10 wk into the 

dietary intervention) in the same set of mice. Following a 12 h period of feed-deprivation, 

5 μL of tail blood was used to measure the blood glucose levels using the one touch 

ultra® glucometer. Next, 2 g/kg body weight of 20% D-glucose was injected 

intraperitoneally. Serial blood glucose measures were taken at 15, 30, 60 and 120 min 

after the injection. 

 

Plasma insulin and adipokine measurements: Total protein was isolated from gonadal 

adipose tissue by homogenizing with modified radio-immunoprecipitation assay (RIPA) 

buffer containing a cocktail of protease inhibitors. Protein concentration was determined 

by the Bradford assay [404]. Commercially available ELISA kits were used to measure 

plasma insulin (Crystal Chem Inc., Downers Grove, IL) and total adiponectin (Linco 

Research, Billerica, MA) concentrations. Homeostasis model assessment of insulin 

resistance (HOMA-IR) was calculated as glucose concentration (mmol/L) ×  insulin 
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concentration (mU/L) / 22.5 [19]. PAI-1, MCP-1 and IL-6 levels were measured using a 

commercially available microsphere based multiplexing system (Luminex xMAP). 

Analyte values in the adipose protein extracts were normalized to total protein 

concentration. All assays were performed according to the manufacturers’ protocols. 

 

RBC fatty acid profile: RBC samples from 2-3 mice per group were pooled prior to 

analysis. Lipids were extracted from RBC membranes [435] followed by saponification 

and methylation [436]. The resultant fatty acid methyl esters were quantified using an 

established gas chromatography method as previously described [437].  Peaks of interest 

were identified by comparison with authentic fatty acid standards (Nu-Chek Prep, Inc. 

Elysian, MN) and expressed as molar percentage (mol %) proportions of total fatty acids. 

 

Liver triglycerides (TG): Liver TG was measured as described previously [23]. Briefly, 

the livers were homogenized in saline and solubilized in 1% deoxycholate. TG 

concentration was assayed using a colorimetric method (L-Type TG M kit, Wako 

chemicals USA Inc.) and normalized to liver weight. 

 

Cell culture experiments: Adipocytes were cultured as described previously [382]. 

Briefly, 3T3-L1 preadipocytes were cultured in 100 mm dishes in regular growth media 

consisting of DMEM supplemented with 10% fetal bovine serum and 1% 

penicillin/streptomycin (PS). At confluence, the cells were differentiated by the addition 

of growth media supplemented with 250 nmol/L dexamethasone, 0.5 mmol/L Methyl 
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Isobutyl Xanthine and 10 nmol/L insulin for 48 h after which regular media was added. 

After 6-7 d, the media was replaced with serum-free media (DMEM, PS, and 1% fatty 

acid-free bovine serum albumin - BSA). Treatment media (above plus 10 nmol/L insulin, 

dimethyl sulfoxide and AA or EPA) was added and kept for 48 h. Final fatty acid 

concentration in the incubation media was 150 µmol/L. Both fatty acids were conjugated 

to BSA prior to treatment (fatty acids to BSA molar ratio: 3:1). All fatty acids were 

purchased from Nu-Check Prep Inc. (Elysian, MN).   

 

Proteomics: Protein extracts from AA or EPA treated cells were labeled with cyanine 

(Cy) 3 or Cy 5 (green and red), respectively.  Both samples were run on a 2 dimensional 

difference gel electrophoresis (2D-DIGE; Applied Biomics, Hayward, CA). A complete 

analysis of all differentially expressed proteins was obtained using Decyder software 

from which quantitative data was derived. Spots with a volume ratio of >30% and a 

consistent presence in replicate gels were identified, obtained using the spot picker robot, 

and proteins within each spot were enzymatically digested and analyzed by mass 

spectrometry. Proteins identified from this analysis were then uploaded into DAVID 

Bioinformatics Resources [24], where the functional annotation chart was used to search 

for significantly enriched gene ontology (GO) categories. 

 

Liver Histology: Sections from the liver were fixed in 10% buffered formalin, routinely 

processed, sectioned at 5 μm and stained with hematoxylin and eosin. Liver sections were 

examined by a pathologist who was blinded to the various treatment groups. The pattern 
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and degree of macrovesicular steatosis was noted and the latter was graded as none, mild, 

moderate or severe (0-3) [438]. The presence of microvesicular hepatosis was also noted.    

 

Statistical Analysis: Body weight and other variables were compared for between group 

differences using one-way ANOVA. If the F test was significant, group means were 

compared using post-hoc tests. If the Levene statistic was not significant, the Tukey’s 

post-hoc test for multiple comparisons was employed, otherwise the Games-Howell post-

hoc test was used. For the glucose tolerance tests, area under the glucose curves was 

calculated and compared between groups. Inter-group differences for the presence of 

heapatic steatosis were compared using Pearson's chi-square test. The fold difference of 

protein expression in replicate gels in proteomic studies was compared using the one-

sample t test.  All analyses were performed using SPSS (ver16.0 SPSS Inc., Chicago, IL) 

software. The level of significance for all tests was p<0.05, while for the GO enrichment 

analysis a cut-off of false discovery rate of less than 5% was used. All data are expressed 

as mean ± SEM.    

 
Results 
Mouse characteristics and metabolic markers 

Fatty acid analysis of red blood cells showed enrichment with dietary EPA (Table 

12). As expected, the HF group gained significantly more weight (p<0.001) and had a 

significantly higher mean body weight (p<0.001) at the end of the 11 week study period 

when compared to the LF group (Figure 21, Table 13). While the HF-EPA-P group had a 

higher mean body weight at the end of the study compared to the LF group, this was  
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Table 12. Fatty acid composition of RBC in C57BL/6J mice in the LF, HF, HF-EPA-P, or 
HF-EPA-R groups 1 

 LF HF-EPA-P HF HF-EPA-R p value 
Saturated fatty acids 46.5 ± 0.2b 49.4 ± 0.1a 47.1 ± 0.2b 49.2 ± 0.2a <0.001 
       10:0 0.04 ± 0.00 0.06 ± 0.01 0.05 ± 0.00 0.05 ± 0.01 NS 
       12:0 0.45 ± 0.02 0.42 ± 0.01 0.47 ± 0.04 0.39 ± 0.03 NS 
       14:0 0.46 ± 0.00 0.44 ± 0.01 0.41 ± 0.03 0.42 ± 0.00 NS 
       16:0 31.7 ± 0.14a 31.3 ± 0.12a 29.5 ± 0.10b 31.5 ± 0.15a <0.001 
       18:0 12.6 ± 0.21b 16.0 ± 0.13a 15.5 ± 0.06a 15.5 ± 0.21a <0.001 
       20:0 0.44 ± 0.01 0.49 ± 0.04 0.38 ± 0.02 0.43 ± 0.07 NS 
       22:0 0.31 ± 0.01 0.30 ± 0.02 0.32 ± 0.02 0.33 ± 0.04 NS 
       24:0 0.44 ± 0.02 0.47 ± 0.02 0.40 ± 0.04 0.50 ± 0.04 NS 
Monounsaturated fatty 
acids 

18.8 ± 0.1a 15.0 ± 0.1b 15.2 ± 0.5b 15.0 ± 0.1b <0.001 

       14:1 0.01 ± 0.00 0.01 ± 0.00 0.02 ± 0.00 0.02 ± 0.00 NS 
       16:1(n-9) 0.40 ± 0.02a 0.29 ± 0.00b 0.32 ± 0.03ab 0.27 ± 0.02b 0.008 
       16:1(n-7) 1.3 ± 0.01a 0.5 ± 0.02b 0.6 ± 0.05b 0.6 ± 0.02b <0.001 
       18:1(n-9) 11.8 ± 0.08 11.1 ± 0.05 11.1 ± 0.36 11.5 ± 0.11 NS 
       18:1(n-7) 3.3 ± 0.08a 1.7 ± 0.01c 2.0 ± 0.01b 1.7 ± 0.06c <0.001 
       20:1(n-9) 1.2 ± 0.11a 0.83 ± 0.08ab 0.68 ± 0.08bc 0.44 ± 0.07c 0.002 
       22:1(n-9) 0.13 ± 0.01a 0.09 ± 0.02ab 0.08 ± 0.01ab 0.06 ± 0.01b 0.020 
       24:1(n-9) 0.53 ± 0.03 0.40 ± 0.00 0.39 ± 0.06 0.43 ± 0.03 NS 
PUFA 34.7 ± 0.1c 35.6 ± 0.2bc 37.7 ± 0.3a 35.8 ± 0.1ab <0.001 
   (n-3) fatty acids 6.8 ± 0.1b 17.7 ± 0.2a 6.8 ± 0.1b 17.3 ± 0.3a <0.001 
       18:3(n-3) 0.13 ± 0.01 0.12 ± 0.02 0.13 ± 0.02 0.12 ± 0.01 NS 
       20:5(n-3) 0.27 ± 0.01b 8.2 ± 0.06a 0.26 ± 0.05b 7.9 ± 0.22a <0.001 
       22:5(n-3) 0.79 ± 0.01b 5.2 ± 0.04a 0.90 ± 0.05b 4.9 ± 0.12a <0.001 
       22:6(n-3) 5.6 ± 0.04a 4.1 ± 0.17b 5.5 ± 0.09a 4.3 ± 0.18b <0.001 
   (n-6) fatty acids 27.7 ± 0.1b 17.8 ± 0.1c 30.8 ± 0.4a 18.3 ± 0.2c <0.001 
       18:2(n-6) 6.3 ± 0.18b 8.6 ± 0.11a 9.1 ± 0.42a 8.3 ± 0.07a <0.001 
       18:3(n-6) 0.17 ± 0.03 0.14 ± 0.02 0.17 ± 0.01 0.14 ± 0.01 NS 
       20:2(n-6) 0.41 ± 0.02b 0.36 ± 0.00b 0.65 ± 0.02a 0.36 ± 0.01b <0.001 
       20:3(n-6) 1.5 ± 0.02a 0.60 ± 0.01d 1.36 ± 0.02b 0.71 ± 0.03c <0.001 
       20:4(n-6) 16.8 ± 0.11a 7.8 ± 0.01b 17.0 ± 0.65a 8.4 ± 0.13b <0.001 
       22:2(n-6) 0.19 ± 0.05 0.06 ± 0.01 0.11 ± 0.04 0.08 ± 0.03 NS 
       22:4(n-6) 1.7 ± 0.02b 0.34 ± 0.01c 1.9 ± 0.08a 0.42 ± 0.01c <0.001 
       22:5(n-6) 0.89 ± 0.01a 0.05 ± 0.00b 0.71 ± 0.06a 0.11 ± 0.01b <0.001 
1Results are mean ± SEM, n=3.  Means in a row with superscripts without a common 
letter differ, P < 0.05. NS- p>0.10 
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Table 13. Mouse characteristics and metabolic markers in C57BL/6J mice in the LF, HF,          
HF-EPA-P, or HF-EPA-R groups 1 

 
Variable LF HF-EPA-P HF  HF-EPA-R p value 

Dead weight, g 31.7 ± 1.0c 35.9 ± 0.9b 40.4 ± 1.2a 40.6 ± 1.1a < 0.001 

Total fat pad weight, g 3.3 ± 0.2c 4.6 ± 0.3b 6.0 ± 0.3a 6.4 ± 0.3a <0.001 

Gonadal fat pad 
weight, g 

1.3 ± 0.1c 1.9 ± 0.1b 2.2 ± 0.1ab 2.4 ± 0.1a <0.001 

Inguinal fat pad 
weight,  g 

0.8 ± 0.1b 1.1 ± 0.1b  1.6 ± 0.1a 1.6 ± 0.1a <0.001 

Adiposity index, % 10.3 ± 0.5c 12.8 ± 0.5b 14.8 ± 0.4a 15.6 ± 0.5a <0.001 

Cumulative energy 
intake, kJ/ 11 wk 

3784 ± 57b 4765 ± 68a 4807 ± 89a 4834 ± 120a < 0.001 

Glucose AUC at 6 wk, 
min.mmol/L 

1772 ± 118b 1947 ± 142b 2376 ± 86a  - 0.001 

Glucose AUC at 11 
wk, min.mmol/L 

2099 ± 120b 2253 ± 83b 3289 ± 186a 2943 ± 132a < 0.001 

Blood glucose, 
mmol/L  

10.2 ± 0.5b 9.7 ± 0.4b 12.2 ± 0.5a 10.1 ± 0.4b 0.002 

Plasma insulin, pmol/L  69 ± 15b 39 ± 13b 330 ± 51a 149 ± 27b < 0.001 

HOMA-IR 4.5 ± 1.0b 2.4 ± 0.8b 25 ± 5.2a 9.8 ± 2.0b < 0.001 

Plasma total 
adiponectin, mg/L 

27 ± 1.0b 30 ± 0.8ab  21 ± 0.7c 31 ± 0.8a < 0.001 

Plasma PAI-1, ng/L 382 ± 53b 551 ± 52ab 632 ± 69a 550 ± 76ab 0.027 

Plasma TG, mmol/L  0.43 ± 0.03ab 0.37 ± 0.02b 0.48 ± 0.03a 0.39 ± 0.03ab 0.04 

Gonadal adipose 
cytokines 

     

     PAI-1, ng/g protein 222 ± 29b 215 ± 32b 400 ± 52a 260 ± 35b 0.005 

     MCP-1, ng/g 
protein 

18 ± 2.4b 22 ± 3.9b 130 ± 45a 72 ± 12ab 0.002 

Liver TG,2 μmol/g  40 ± 4.4bc 33 ± 2.1c 82 ± 2.4a 54 ± 6.2b <0.001 
 

1Results are mean ± SEM, n = 9-10. Means in a row with superscripts without a common letter 
differ, P < 0.05 
2n=4 
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Figure 21. Effects of dietary fat content and EPA on weight gain 

Change in body weight over time in C57BL/6J mice in the LF, HF, HF-EPA-P, or HF-

EPA-R groups is shown. Data are presented as the mean ± SEM, n= 9-10. Labeled means 

at a time without a common letter differ, P < 0.05 (Representative differences in weight 

gain are shown)    
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significantly lower compared to the HF group (p<0.05). The HF-EPA-R group had a 

mean body weight comparable to the HF group. The total energy intake during the study 

period was comparable among the HF, HF-EPA-P and HF-EPA-R groups, while it was 

significantly lower in the LF group (Table 13). The fat pad weights and adiposity index 

(fat pad weight / body weight) showed a pattern similar to that of body weight, with the 

LF group having significantly lower values compared to the other 3 groups, and the HF-

EPA-P group having significantly lower values than the HF and HF-EPA-R groups 

(Table 13).  

The HF group developed glucose intolerance as indicated by a higher area under 

the glucose curve (AUC) when compared to the LF group both at 6 and 10 weeks of the 

dietary intervention (Figure 22, Table 13). The HF-EPA-P group maintained glucose 

tolerance at both time points as indicated by a similar AUC to that of the LF group 

despite higher body and fat pad weights in HF-EPA-P compared to the LF group. 

However, there was no significant difference between the AUC of the HF-EPA-R and 

HF groups (Figure 22C and D), indicating that EPA did not reverse the glucose 

intolerance caused by HF feeding. Further, the HF group also exhibited significantly 

higher glycemia and insulinemia following feed-deprivation, compared to the LF group 

(Table 13). In contrast, glycemia, insulinemia and HOMA-IR score in the HF-EPA-P and 

HF-EPA-R groups were similar to that of the LF group (Table 13). These data suggest 

that EPA prevented and reversed the insulin resistance caused by HF feeding.   
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Figure 22. Effects of dietary fat content and EPA feeding on glucose tolerance 

Change in blood glucose over time during the glucose tolerance test in C57BL/6J mice in 

the LF, HF, HF-EPA-P, or HF-EPA-R groups after 6 wk (panel A) and 10 wk (panel B) 

is shown. Data are presented as the mean ± SEM, n= 9-10 (20 in the HF group for A).  
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Plasma adiponectin concentration showed a similar pattern, with lower levels in the HF 

group compared to all the other three groups.  Plasma PAI-1 concentration however, was 

higher in the HF group when compared to the LF group, while there was no significant 

difference in PAI-1 concentration between the HF-EPA-P and HF-EPA-R groups. Plasma 

triglyceride concentration was significantly lower (p<0.05) in the HF-EPA-P group when 

compared to the HF group, while the concentration in the LF and HF-EPA-R groups were 

not significantly different from the other two groups (Table 13). Plasma non-esterified 

fatty acid concentration was similar among all four groups (data not shown).    

Since the development of insulin resistance in HF feeding is known to be at least 

in part due to adipose tissue inflammation, next we assessed some markers of adipose 

tissue inflammation. This confirmed that gonadal adipose tissue PAI-1 level was higher 

in the HF group when compared to the other three groups (Table 13).  Gonadal adipose 

tissue MCP-1 level was highest in the HF group compared to the LF and HF-EPA-P 

groups, and intermediate in the HF-EPA-R group (Table 13).   

Since plasma adiponectin concentration and markers of adipose tissue 

inflammation were comparable between the HF-fed EPA groups and the LF group, we 

next examined this issue using adipocytes, 3T3-L1 cells, treated with AA and EPA. 

Analysis of culture media from 3T3- L1 adipocytes indicated that AA-treated cells 

secreted less adiponectin than either control or EPA-treated cells (Figure 23A). This AA 

induced reduction in adiponectin secretion was prevented by co-treating with EPA.  In 

contrast, EPA-treated cells secreted lower IL-6 levels when compared to both control, 

AA or AA+EPA treated adipocytes (Figure 23B). 
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Figure 23. Effects of EPA or AA treatment on adipokine secretion 

3T3-L1 adipocytes were treated with either EPA or AA. Culture media IL-6 (panel A) 

and adiponectin (panel B) levels are shown. Data are presented as the mean ± SEM, n= 5. 

Means without a common letter differ, p<0.05.  
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Given that systemic insulin resistance is also associated with hepatic steatosis, 

hematoxylin and eosin staining of liver was used to assess macrovesicular and 

microvesicular steatosis (Figure 24 for representative stained sections). This showed a 

significant difference among groups (44%, 11%, 70% and 44% of mice in the LF, HF-

EPA-P, HF and HF-EPA-R groups, respectively, exhibited moderate to severe 

macrovesicular or microvesicular steatosis; p<0.001). Similarly, liver TG levels of the 

HF-EPA groups (P and R) were comparable to that of the LF group, while it was 

significantly lower than that of the HF group (Table 13). Both these findings suggest that 

EPA prevented and reversed hepatic lipid accumulation.  

 

Protein expression in EPA and AA-treated adipocytes  

To gain further understanding of global metabolic changes elicited by EPA 

compared to AA, we conducted proteomic studies on 3T3-L1 adipocytes treated with 

either EPA or AA. This showed that several proteins were differentially expressed 

between the two groups (Figure 25). Identification of these proteins revealed that EPA 

treated cells expressed higher levels of enzymes involved in carbohydrate metabolism 

including citrate synthase, malate deydrogenase 2 and aconitase 2 when compared to the 

cells treated with AA (Table 14). The EPA treated cells also expressed higher levels of 

proteins involved in fatty acid metabolism (fatty acid binding protein 5, pyruvate 

carboxylase, acyl CoA dehydrogenase, propionyl CoA carboxylase and acyl CoA 

thiesterase). Several other proteins involved in cellular metabolism including heat shock 

protein 1 expression were higher in the EPA-treated cells. 
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Figure 24. Effects of dietary fat content and EPA feeding on hepatic steatosis 

Liver histology in C57BL/6J mice in the LF, HF, HF-EPA-P, or HF-EPA-R groups is 

shown. Representative hematoxylin and eosin stained sections of the liver from the four 

groups are shown.  

  

 



131 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 25. Proteomic studies in EPA or AA-treated adipocytes 

 Differential expression of proteins in EPA (panel A) or AA (panel B) treated 3T3-L1 

adipocytes (panel C - overlay of 2D-DIGE) is shown. Spots were identified using 

Decyder software (panel D).  
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Table 14. Proteins expressed higher in EPA-treated compared to AA-treated adipocytes. 
Protein Name  GI Accession 

Number 
EPA/AA 
Spot 
volume 
ratio1 

TCA Cycle 
   Citrate synthase  13385942  2.0 
   Succinate-Coenzyme A ligase, ADP-forming, beta subunit  46849708  1.6 
   Dihydrolipoamide S-succinyltransferase (E2 component 
   of 2-oxo-glutarate complex)  

21313536  1.7 

   Malate dehydrogenase 2, NAD (mitochondrial)  31982186  1.7 
   Aconitase 2, mitochondrial 18079339  1.8 
 
Lipid metabolic process 
   Pyruvate carboxylase  32822907  2.0 
   Fatty acid binding protein 5, epidermal 6754450  1.7 
   Acetyl-Coenzyme A dehydrogenase, medium chain 6680618  1.4 
   Propionyl Coenzyme A carboxylase, beta polypeptide 33585846  1.5 
   Mitochondrial acyl-coa thioesterase 1 40538846  1.5 
 
Response to heat 
   Stress-70 protein (PBP74/CSA) 903309  1.8 
   Heat shock protein 1 (chaperonin) 31981679  1.9 
 
Cellular metabolic process 
   Eukaryotic translation initiation factor 4E 31982407  1.4 
   Acetyl-Coenzyme A dehydrogenase, medium chain 6680618  1.4 
   Propionyl Coenzyme A carboxylase, beta polypeptide 33585846  1.5 
   Mitochondrial acyl-coa thioesterase 1 40538846  1.5 
   Isovaleryl coenzyme A dehydrogenase 9789985  1.5 
   Aldehyde dehydrogenase family 6, subfamily A1 23271115  1.5 
   Williams-Beuren syndrome chromosome region 1Homolog 15808988  1.5 
   Succinate-Coenzyme A ligase, ADP-forming, beta subunit   46849708  1.6 
   Fatty acid binding protein 5, epidermal 6754450  1.7 
   Malate dehydrogenase 2, NAD (mitochondrial) 31982186  1.7 
   Dihydrolipoamide S-succinyltransferase (E2 component of 
   2-oxo-glutarate complex) 

21313536  1.7 

   Aconitase 2, mitochondrial  8079339  1.8 
   Stress-70 protein (PBP74/CSA)  903309  1.8 
   Eukaryotic translation elongation factor 1 gamma  3237111  1.9 
   Heat shock protein 1 (chaperonin)  1981679  1.9 
   Pyruvate carboxylase  2822907  2.0 
   Citrate synthase  3385942  2.0 
   Glutamate dehydrogenase 1   6680027  2.2 
   Peptidylprolyl isomerase A   6679439  2.2 
 
1Spots with a volume ratio of >30% and a consistent presence in replicate gels were 
identified and analyzed by mass spectrometry 
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Table 15. Proteins expressed lower in EPA-treated compared to AA-treated adipocytes. 
 
Protein Name  GI Accession 

Number 
EPA/ AA Spot 
Volume Ratio1 

Cellular catabolic process 
   Ubiquitin-conjugating enzyme E2L 3 6678481  0.48 
   Glycerol-3-phosphate dehydrogenase 1 (soluble)  6753966  0.48 
   Aldehyde dehydrogenase 1 family, member L2  21961590  0.53 
   
Carboxylic acid metabolic process 
   Asparaginyl-trna synthetase  29789191  0.67 
   Glycerol-3-phosphate dehydrogenase 1 (soluble) 6753966  0.48 
   Aldehyde dehydrogenase 1 family, member L2  21961590  0.53 
   
Protein metabolic process 
   Tubulin, beta, 2  22165384  0.53 
   Ubiquitin-conjugating enzyme E2L 3  6678481  0.48 
   Aldehyde dehydrogenase 1 family, member L2  21961590  0.53 
   Asparaginyl-trna synthetase  29789191  0.67 
   Clathrin, heavy polypeptide (hc)  33438248  0.59 
   Cofilin 1, non-muscle  55777182  0.56 
   
Cytoskeleton organization and biogenesis 
   Tubulin, beta, 2  22165384  0.53 
   Gamma-actin  809561  0.62 
   Cofilin 1, non-muscle  55777182  0.56 
 
1Spots with a volume ratio of >30% and a consistent presence in replicate gels were 
identified and analyzed by mass spectrometry 
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In contrast, the EPA-treated cells expressed lower levels glycerol-3-phosphate 

dehydrogenase, a key enzyme in lipogenesis, when compared to the ones treated with AA 

(Table 15).      

 

Discussion 

It has been previously demonstrated [439, 440] that HF diet-fed mice develop 

higher adiposity, glucose intolerance and insulin resistance when compared to the LF 

diet-fed mice and EPA or DHA supplementation prevents the high-fat diet-induced 

increase in adiposity [321, 357, 441]. Our results now demonstrate that EPA not only 

prevented, but also reversed, the development of insulin resistance in response to HF 

feeding.   

 

Effects of EPA on insulin resistance and adipose inflammation  

The effects of EPA and DHA on preventing excess weight-gain and development 

of insulin resistance associated with high-fat feeding are thought to be mediated by 

adiponectin [347, 357]. It is not clear from data from previous studies whether the 

maintenance of plasma adiponectin levels was secondary to reduced adiposity. Our study 

showed that the HF-EPA-R group maintained normal levels of plasma adiponectin -

despite similar adiposity compared to the HF group, suggesting adiposity-independent 

effects of EPA on adiponectin secretion. Since plasma glucose and insulin levels were 

comparable between the LF and both HF-EPA groups, as were plasma adiponectin 
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concentrations, we conclude that adiponectin is a major factor in the EPA-mediated 

prevention and reversal of insulin resistance.  

Obesity is characterized by a chronic lowgrade inflammation in the adipose tissue 

[381]. Since adiponectin is exclusively secreted by adipose tissue and since the presence 

of pro-inflammatory cytokines are known to inhibit its synthesis and release [442], next 

we investigated whether EPA modulated adipose tissue inflammation induced by HF 

feeding. We found that gonadal adipose tissue levels of MCP-1 and PAI-1, two markers 

of adipose tissue inflammation, were 85% and 50% lower, respectively, in LF and EPA-P 

groups, compared to the HF group. Although the HF-EPA-R group exhibited adiposity 

similar to that of HF group, EPA prevented increased secretion of these cytokines. 

Consistent with these findings, in vivo, EPA prevented the AA induced suppression of 

adiponectin secretion from cultured 3T3-L1 adipocytes. EPA also reduced IL-6 secretion 

and other pro-inflammatory cytokines from these cells (data not shown). This evidence 

suggests that EPA prevented and reversed the high-fat diet induced adipose tissue 

inflammation.  

Systemic insulin resistance and adipose tissue inflammation is associated with 

hepatic steatosis [443]. Similarly, we found that a higher proportion of the HF group had 

microscopic evidence of hepatic steatosis compared to the LF group. In contrast, the HF-

EPA-P group had the lowest incidence of hepatic steatosis while the HF-EPA-R group 

had a value similar to the LF group. Liver TG levels also were significantly lower in the 

LF, HF-EPA-P and HF-EPA-R groups compared to the HF group. This suggests a 

protective effect of EPA on the development of HF diet-induced hepatic steatosis. These 
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data are consistent with previously reported hypolipidemic effects of EPA and DHA 

[434, 444] and may be secondary to EPA-induced hepatic AMPK activation [434] and/or 

higher systemic insulin sensitivity and reduced adipose tissue inflammation.   

Obesity is characterized by a pro-thrombotic state associated with elevated PAI-1 

concentrations. Plasma PAI-1 concentration was higher in the HF group when compared 

to the LF group, and intermediate between the two in the HF-EPA P and R groups. Given 

that gonadal adipose tissue PAI-1 levels were similar between the LF and the HF-EPA 

groups, it is possible that the higher plasma PAI-1 concentration of the two HF-EPA 

groups could be due to their higher adiposity.  It is also possible that the duration of the 

study was too short to affect plasma PAI-1 concentration.  

 

Effect of EPA on weight-gain and adiposity 

The HF-EPA-P had lower adiposity when compared to the HF group, despite a 

similar energy intake. Evidence from previous studies in mouse models suggests that 

EPA and DHA increase lipid oxidation in the white adipose tissue [348] and small 

intestine [349], in vivo, in adipocytes [350] and myotubules [351], in vitro, and 

suppresses hepatic lipogenesis [445]. Consistent with these observations, our proteomic 

studies in 3T3-L1 adipocytes showed that several proteins involved in tricarboxylic acid 

(TCA) cycle and fatty acid β-oxidation were expressed at a higher level in the EPA-

treated cells when compared to AA-treated ones. The EPA-treated cells also expressed 

lower levels of glycerol-3-phosphate dehydrogenase, a key lipogenic enzyme. Since EPA 

is known to stimulate an activator of fatty acid oxidation, AMP-activated protein kinase 
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(AMPK) in adipocytes in vitro [353], it is plausible that AMPK mediates EPA effects. 

Further, peroxisome proliferator-activated receptor gamma coactivator 1α, a transcription 

co-factor involved in mitochondrial biogenesis, was shown to be induced in the white 

adipose tissue of EPA/DHA supplemented mice [348]. Expression of citrate synthase, a 

marker of mitochondrial content, was higher in our EPA-treated adipocytes. While 

evidence from our study and others point towards EPA’s lipid oxidizing effects, it 

remains to be seen whether this translates into increased energy expenditure, leading to 

reduced weight-gain. This is especially important to elucidate, since a recent study has 

shown that increased mitochondrial fatty acid oxidation does not necessarily lead to 

increased energy expenditure [40]. It is interesting that the HF-EPA-R and HF groups had 

comparable body weights. This could potentially indicate limited EPA effect on energy 

metabolism in already overweight (HF fed) mice. A longer intervention period would be 

necessary to distinguish between the effect of EPA on prevention and reversal of HF diet 

induced excess weight gain. 

In addition to the once mentioned above, several novel proteins were identified by 

proteomic analysis on 3T3-L1 adipocytes treated with EPA or AA. Fatty acid binding 

protein 5 (mal1), is a mediator of retinoic acid-induced peroxisome proliferation-

activated receptor-δ dependant fatty acid oxidation in adipocytes [41]. However, 

overexpression of this chaperone protein has been previously shown to be associated with 

insulin resistance in rodents [42]. Pyruvate carboxylase, another protein expressed higher 

in EPA-treated adipocytes, has been shown to be highly expressed in some rodent models 

of obesity [43]. Thus, it is not clear whether these in vitro changes of EPA-induced 
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protein expression will be replicated under in vivo conditions, and merits further 

investigation.      

In obese rodent animal models the data are relatively consistent regarding a 

positive effect of EPA or DHA on insulin resistance [323, 324, 347, 431, 433]. This is not 

the case in humans.  Most clinical studies on the effects of these fatty acids on insulin 

resistance have been carried out in Type-2 diabetic patients. In a recent meta-analysis of 

23 randomized controlled trials, it was concluded that while EPA or DHA significantly 

lowered plasma TG, there was no significant effect on glycemic control [446]. 

Differences between the findings in obese rodents and humans may be attributable to the 

stage of the disorder, associations in humans have only been explored after, rather than 

prior, to disease onset or the absolute dose used. 

In the present study we used a diet containing 36 g/kg EPA, which is equivalent to 

6.75% of energy intake in those mice, fed a 45% fat diet. In comparison, the intake of 

EPA/DHA in the United States is about 0.1 to 0.2 g/day [319] and the current 

recommendations vary from 1g/day [319] to 3.5g/day [447]. There are few additional 

limitations in this study. First, we did not directly measure the energy expenditure of the 

mice, hence, are unable to attribute the lower adiposity of the HF-EPA-P group to higher 

energy expenditure with confidence. However, results from our proteomic and metabolic 

studies are consistent with increased energy expenditure. Another limitation of the study 

was that we did not measure high-molecular weight adiponectin, which is known to be a 

better associated with insulin sensitivity. Also, the prolonged period of food deprivation 

prior to the GTT could have adversely impacted the results. Finally, we did not use 
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stringent statistical criteria for our proteomic studies and the proteins that were 

differentially expressed need to be validated by other methods prior to confirming these 

changes.   

In conclusion, the findings of our current study indicate that EPA both prevented 

and reversed the HF diet induced insulin resistance in mice. The mechanism appears to 

be at least in part via modulation of the adipokine secretory pattern.  The relationship of 

EPA and insulin resistance in humans remains to be determined. 
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CHAPTER VI 
DISCUSSION 

 
 The goal of this dissertation research was to elucidate adipose tissue function in 

metabolic syndrome using genetic and nutritional manipulations/approaches, with 

specific emphasis on the roles of inflammation and Angiotensinogen. As a genetic 

manipulation, we used mice overexpressing Agt in the adipose tissue to study the role of 

adipose RAS overexpression in the pathogenesis of insulin resistance. This was further 

dissected mechanistically using cultured adipocytes. Next we used energy-restricted high-

fat diets and high-fat diets supplemented with EPA as dietary manipulations to prevent 

and reverse insulin resistance and metabolic derangements induced by high-fat feeding. 

Each of these studies are discussed separately in the previous chapters. 

 Our studies demonstrate that primary changes occurring in adipose tissue, such as 

adipose specific overexpression of Agt, can lead to excessive adiposity, adipose tissue 

inflammation and insulin resistance. This supports the current view that adipose tissue 

dysfunction in obesity is causally linked to the pathogenesis of insulin resistance and 

metabolic syndrome [84]. Moreover, we showed that dietary manipulations can improve 

adipose tissue inflammation and systemic insulin resistance in an adiposity-dependent 

(caloric restriction) as well as independent (EPA) manner. We further characterized 

mechanisms involved in these instances, to enhance our understanding of adipose tissue 

dysfunction in obesity. 
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Adipose tissue inflammation in obesity 

 A chronic low-grade inflammation occurring in adipose tissue is causally linked 

to the pathogenesis of insulin resistance in obesity [84]. In agreement with previous 

studies, we found that both mouse models of obesity we employed, i.e., aP2-Agt mice 

and HF diet-induced obese mice, exhibited adipose tissue inflammation and insulin 

resistance. Further, the improvements in insulin resistance following the dietary 

interventions were also accompanied by improvements in markers of adipose tissue 

inflammation. This highlights the importance of adipose tissue inflammation in the 

development of systemic insulin resistance.  

 The pro-inflammatory cytokine MCP-1 was consistently expressed at higher 

levels in adipose tissue of both mouse models of obesity. Moreover, both caloric 

restriction and EPA suppressed MCP-1 expression. These animal studies are further 

supported by in vitro studies showing that Ang II treatment increases MCP-1 secretion by 

adipocytes. Therefore, MCP-1 appears to be a key mediator of adipose tissue 

inflammation in obesity. Indeed, previous studies have shown that MCP-1 knockout mice 

are protected from HF diet-induced insulin resistance, with mice having adipose specific 

MCP-1 overexpression developing insulin resistance [87]. Taken together, this shows that 

MCP-1 is required for obesity-induced insulin resistance. 

 Additionally, our in vitro data demonstrated that Ang II induces pro-inflammatory 

cytokine secretion form adipocytes in an NF-kB-dependent manner. Unpublished data 

from our lab also shows that EPA improves adipose tissue inflammation via inhibition of 

the NF-kB pathway [448]. The importance of this pathway in production of 
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proinflammatory cytokines from immune cells is well established [449]. Here we show 

that this pathway is also important as a key mediator of adipocyte function. We also 

showed that the Ang II induced pro-inflammatory cytokine production by adipocytes was 

dependent upon NADPH oxidase. Activation of NADPH oxidase results in increased 

production of reactive oxygen species, which likely activates the NF-kB pathway [450]. 

Therefore, increased oxidative stress also appears to be a trigger for the activation of NF-

kB pathway [451]. Taken together, this highlights NF-kB pathway as a potential target 

for alleviation of adipose tissue inflammation and systemic insulin resistance in obesity.   

   

Role of hepatic steatosis in obesity-related insulin resistance 

 Both dietary manipulations in our studies induced improvements in hepatic 

steatosis. Some researchers suggest that intrahepatic fat content, rather than visceral fat 

content, is causally linked to the development of insulin resistance in obesity [452]. 

However, in both our dietary manipulations, improvement in hepatic steatosis was 

accompanied by improvements in adipose tissue inflammation. Further, in the EPA study, 

in already obese mice, EPA improved insulin sensitivity and hepatic steatosis without 

inducing changes in adiposity. Despite the lack of change in adiposity, these mice 

exhibited marked improvements in adipose tissue inflammation. Taken together, this 

suggests that improvements in adipose tissue function, rather than adiposity itself is 

related to improved insulin sensitivity and hepatic steatosis.  Moreover, our unpublished 

studies also show that EPA-fed mice have smaller adipocytes compared to HF-fed ones, 
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further suggesting that improved adipose tissue function is associated with adipose tissue 

remodeling.   

 EPA supplementation also protected against HF diet-induced 

hypoadiponectinemia. Given that adiponectin protects against hepatic steatosis, it could 

be a common modulator of both hepatic steatosis and insulin sensitivity in these mice. In 

a previous human study which showed that intrahepatic fat, rather than visceral fat 

content, is important in insulin resistance, individuals with higher intrahepatic fat also 

had lower plasma adiponectin levels [452]. Taken together, this highlights the important 

role of plasma adiponectin as a key mediator of metabolic derangements in obesity.         

 

Role of adipose RAS in insulin resistance 

 Individuals treated with RAS blockers are protected from the development of 

type-2 diabetes [119]. Moreover, systemic and adipose RAS are overactivated in several 

models of obesity (Table 2). However, the exact role of adipose RAS overactivation in 

the development of insulin resistance was hitherto unknown. We showed that primary 

overactivation of adipose RAS via overexpression of Agt leads to increased adiposity, 

adipose tissue inflammation and systemic insulin resistance. Moreover, the glucose 

intolerance in both wild-type and aP2-Agt mice improved following treatment with ACE 

inhibitor captopril. This highlights the importance of adipose tissue RAS in the 

pathogenesis of insulin resistance.  

 To further confirm whether adipose RAS is directly responsible for the 

pathogenesis of insulin resistance, it would be important to generate and study mice with 
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adipose-specific knockdown of Agt. Work in this direction is currently under way in our 

research group. Along these lines, preliminary unpublished data from in vitro studies 

from our lab shows that Agt silencing in cultured adipocytes significantly suppressed 

secretion of proinflammatory cytokines by adipocytes.  

 A point of contention has been whether Agt is consistently overexpressed in 

adipose tissue in obesity. While some human studies show a positive correlation between 

BMI and adipose Agt expression, some show a negative or no correlation (Table 2). 

Animal studies also show that adipose Agt expression is strain-dependent (Table 2). 

Aside from acute hormonal and nutritional control, this points toward a genetic 

variability in regulation of adipose Agt expression. Indeed, plasma Agt levels show a 

high degree of heritability in some populations [453]. Polymorphisms of Agt gene are 

also associated with plasma Agt levels [454]. Similarly Agt promoter variants are 

associated with adipose Agt expression [455]. Further characterization of RAS 

polymorphisms associated with adipose Agt expression would facilitate individualized 

genotype-based treatments in the future. 

 One limitation of the aP2-Agt study was that we used the adipocyte protein 2 

(aP2) promoter for the overexpression of Agt in adipose tissue. While aP2 is primarily 

expressed in adipose tissue, evidence suggests that it is expressed in immune cells as well 

[456]. This could potentially lead to overexpression of Agt by these cells, and given that 

immune cells play a major role in adipose tissue inflammation and insulin resistance, this 

could act as a potential confounder in our study.  Adiponectin-driven expression of 
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angiotensinogen or other proteins in adipose tissue would provide a better alternative to 

dissect the role of specific adipose genes in metabolic disorders. 

 

Role of energy-restricted high-fat diets in improving insulin resistance 

 Caloric restriction leading to weight-loss is the most common form of weight loss 

interventions to prevent and treat obesity-associated metabolic derangements. While most 

health agencies recommend a low-fat diet, reduced-energy high-fat diets are also claimed 

to be effective in this regard. We found that weight loss induced by an energy-restricted 

high-fat diet was accompanied by parallel improvements in insulin resistance in mice. 

However this energy-restricted high-fat diet was only able to partially reverse adipose 

tissue inflammation. Moreover, plasma non-esterified fatty acids, adiponectin and PAI-1 

levels showed no improvement compared to low-fat diets. Thus, these results also 

question the long term safety of these high-fat energy restricted diets, especially 

regarding cardiovascular risk, and support the current recommendation of low-fat diets 

for improvement of the metabolic profile. 

 Another finding of this study was that the insulin resistance, as measured by the 

HOMA score was comparable between the high-fat and low-fat diet-fed groups. While 

insulin resistance is a common feature of high-fat feeding, the development of insulin 

resistance in the low-fat group was likely to be due to the high sugar content of that diet.  

In subsequent studies, we used a low-fat diet with low sugar content, which maintained 

the insulin sensitivity of mice on that diet. This highlights the importance of sugar 

content in low-fat diets used in animal studies.  
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Role of EPA in improving HF diet-induced insulin resistance 

 We showed that EPA is able to both prevent and reverse the HF diet-induced 

insulin resistance in mice. Importantly, we found that EPA improved these parameters 

independent of loss of adiposity in already obese mice. Hence, EPA was able to 

dissociate increased adiposity from adipose tissue inflammation. This is an important 

finding, because it shows potential for development of therapeutic strategies to alleviate 

adipose tissue inflammation and insulin resistance without inducing weight loss.  

 We found that adiponectin as a key mediator of EPA-induced improvements in 

insulin resistance. Adiponectin is an insulin sensitizer, which improves insulin signaling 

in skeletal muscle via preventing serine phosphorylation of IRS-1 [457]. It also activates 

AMPK and induces fatty acid oxidation in skeletal muscle [458]. In our study, high-fat 

feeding reduced plasma adiponectin levels which was both prevented and reversed by 

EPA in vivo. Mechanistically, using cultured adipocytes, we demonstrated that AA 

reduced adiponectin secretion, while EPA restored it. These findings are consistent with 

human studies showing that EPA increases plasma adiponectin levels. In addition to its 

insulin-sensitizing effects, adiponectin exerts both anti-inflammatory and anti-

atherogenic actions [106]. Thus, increasing plasma adiponectin levels via EPA 

supplementation is a promising approach to reduce the cardiovascular risk in obese 

individuals, especially considering other concomitant anti-inflammatory effects of this 

nutrient.     

 One limitation of this study was that the dose of EPA used was relatively higher, 

preventing direct extrapolation of the results to humans (equivalent dose for a human 
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consuming 2000 kcal/d on a 30% fat diet is 10g of EPA/day). Although the triglyceride-

lowering actions of EPA are seen at around 2-3g of EPA /day, it is likely that higher 

doses of EPA are needed to improve insulin resistance in humans. The effect of EPA in 

preventing the progression of insulin resistance and pre-diabetes to type-2 diabetes in 

humans needs to be further examined.     
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CHAPTER VII 
CONCLUSIONS AND RECOMMENDATIONS 

 
General conclusions 

 We successfully used genetic and nutritional manipulations to dissect the role of 

adipose tissue dysfunction in the pathogenesis of metabolic syndrome. We showed that 

primary changes occurring in adipose tissue, such as overexpression of pro-inflammatory 

proteins, such as Agt, can lead to adipose tissue inflammation and systemic insulin 

resistance. We also showed that nutritional interventions targeted at reducing adipose 

tissue mass (caloric restriction) and adipose tissue inflammation (EPA) can both lead to 

improvements in systemic insulin sensitivity. These findings are summarized below: 

 

1. Adipose specific overexpression of Agt leads to increased adiposity, glucose 

intolerance and systemic insulin resistance. This is at least in part due to Ang II 

mediated NADPH oxidase and NF-kB-dependent increases in adipose tissue 

inflammation.   

2. Weight loss induced by an energy restricted high-fat diet is accompanied by 

parallel improvements in insulin resistance and hepatic steatosis. However, this 

diet only partially improves markers of adipose tissue inflammation and 

negatively impacts plasma adiponectin levels and does not reverse HF diet-

induced increases in plasma non-esterified fatty acids and PAI-1.   
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3. EPA can both prevent and reverse high-fat diet-induced insulin resistance and 

hepatic steatosis in mice. Mechanistically, this is at least in part via EPA-mediated 

improvements in adipose tissue inflammation.  

 

Implications and Recommendations 

 Based on the findings of our studies we would like to make the following 

recommendations. First, our studies support the current recommendation of low-fat diets 

for improvement of metabolic derangements associated with obesity. Our findings also 

support the American Heart Association’s current recommendation for an increase in 

dietary intake of omega-3 fatty acids of marine origin. 

 We discovered that adipose specific RAS overactivation can lead to systemic 

insulin resistance. To confirm the role of adipose RAS in the pathogenesis of insulin 

resistance in high-fat feeding, studies using adipose-specific Agt knockout are warranted.  

 Our studies showed that EPA can both prevent and reverse the insulin resistance 

induced by high-fat diets. It is likely that EPA prevents the progression of metabolic 

syndrome and prediabetes to type-2 diabetes in obese humans. This hypothesis remains to 

be tested in humans using both tested doses as well as lower doses of EPA.  

 We uncovered mechanisms by which Ang II modulates adipocyte function. 

Further, we showed mechanisms by which EPA modulates insulin resistance. 

Identification of agents that modify these molecular targets could lead to development of 

novel therapeutic strategies to prevent and treat metabolic derangements in obesity.  
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