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Abstract

With the success of Revenue Management (RM) techniques over the past three decades in

various segments of the service industry, many manufacturing firms have started exploring

innovative RM technologies to improve their profits. This dissertation studies RM for make-

to-order (MTO) and make-to-stock (MTS) systems.

We start with a problem faced by a MTO firm that has the ability to reject or accept the

order and set prices and lead-times to influence demands. The firm is confronted with the

problem to decide, which orders to accept or reject and trade-off the price, lead-time and

potential for increased demand against capacity constraints, in order to maximize the total

profits in a finite planning horizon with deterministic demands. We develop a mathematical

model for this problem. Through numerical analysis, we present insights regarding the

benefits of price customization and lead-time flexibilities in various demand scenarios.

However, the demands of MTO firms are always hard to be predicted in most situations.

We further study the above problem under the stochastic demands, with the objective to

maximize the long-run average profit. We model the problem as a Semi-Markov Decision

Problem (SMDP) and develop a reinforcement learning (RL) algorithm-Q-learning algorithm

(QLA), in which a decision agent is assigned to the machine and improves the accuracy of its

v



action-selection decisions via a “learning” process. Numerical experiment shows the superior

performance of the QLA.

Finally, we consider a problem in a MTS production system consists of a single machine

in which the demands and the processing times for N types of products are random. The

problem is to decide when, what, and how much to produce so that the long-run average

profit. We develop a mathematical model and propose two RL algorithms for real-time

decision-making. Specifically, one is a Q-learning algorithm for Semi-Markov decision process

(QLS) and another is a Q-learning algorithm with a learning-improvement heuristic (QLIH)

to further improve the performance of QLS. We compare the performance of QLS and QLIH

with a benchmarking Brownian policy and the first-come-first-serve policy. The numerical

results show that QLIH outperforms QLS and both benchmarking policies.
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Chapter 1

Introduction

1.1 Research Motivations

In a global competitive market, companies are always striving to maximize their profitabil-

ity. Revenue Management (RM) has been applied successfully to many industries in order to

achieve this goal. However, RM techniques are mostly used in the service industries to allo-

cate limited resources, such as airplane seats or hotel rooms, among a variety of customers,

such as business or leisure travelers. With the tremendous success of RM techniques over

the past three decades in various segments of the service industry such as airlines, hotels,

car rentals, cargos etc., there is an increasing interest in applying RM in the manufacturing

industries. The general applicability of RM concepts to manufacturing can be found in the

studies of Harris and Pinder (1995) and Rehkopf and Spengler (2004).

An important trend in manufacturing industry is customized production, the make-to-

order (MTO) environment. By producing in an MTO system, firms benefit by eliminating
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finished goods inventory carrying and obsolescence costs (Nicholas, 1997). However, this

benefit comes at the cost of increased response time in satisfying customer orders and/or

cost of keeping higher production capacities to accommodate variations in demand (Hopp

and Spearman, 2000). If it is not profitable to keep spare production capacities and due-

dates of orders are inflexible, it becomes very critical for the MTO manufacturer to selectively

accept and schedule customer orders. One of the common characteristics of MTO companies

is the rigidity of available capacity. With high variable demand, the MTO systems imply

that periods where the facility is idle and other time in which a large number of orders

are waring for production. Furthermore, since accepted orders require the availability of

resources to guarantee the order promising and hence potentially displace more profitable

orders to come under limited production capacity, firms are confronted with the problem to

decide, which orders to accept and which orders to reject, in order to maximize overall profit

(Spengler et al., 2007).

To make efficient pricing, lead-time, order acceptance and scheduling decisions in face

of deterministic/stochastic demands, limited production capacity and manufacturing costs,

RM techniques can be adopted in MTO environment. This is precisely the focus of Chapter

2 and 3 in this dissertation.

While some customers enjoy customizing their products, other customers would accept

a standard configuration in order to receive their products immediately. To satisfy these

customers, manufacturing companies also produces the standard products to stock, the

make-to-stock (MTS) environment. For instance, Dell also frequently provides some low-

end products to attract more customers. For these low-end products, customer usually have
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little flexibility in customize their products. For manufacturers, however, the problem of

setups is prevalent in many industries because facilities that operate in a MTS mode typi-

cally produce standardized products that require setups. In most situations, the setup time

problem is more realistic than the setup cost problem, but is also less amenable to analy-

sis. The setup cost problem, however, may be relevant for manufacturing systems that have

internalized their setup times; that is, they incur significant material, labor, and/or capital

costs to greatly reduce their setup times (Markowitz et al., 1995). The presence of setup

costs and times in combination with the stochastic environment adds to the difficulties of the

problem. On the one hand, short cycle lengths are desirable because they provide frequent

production opportunities for the various products to react to the stochastic environment.

But, on the other hand, short cycle lengths increase the setup frequency, which not only

reduce capacity available for production and hinders the timely fulfillment of demand, but

also increases setup costs.

These developments call for RM models that integrate production sequencing and lot size

decisions to dynamically respond to the stochastic demands for a MTS production system.

This is exactly the focus of Chapter 4 in this dissertation.

In Section 1.2, we present a brief overview of RM. Section 1.3 states the special features

of manufacturing RM models by comparing with the airline RM models, which highlights

that solutions developed for airline RM cannot be directly applied to MTO manufacturing

RM problem. This motivates us to explore efficient solutions to a version of the manufac-

turing RM model. Section 1.4 outlines the contributions and document organization of this

dissertation.
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1.2 Overview of Revenue Management (RM)

RM is an area of applying operations research techniques to deal with the demand manage-

ment by finding at what price, how much of a limited resource should be made available to

the customers (Talluri and van Ryzin, 2004). RM was the term originally used to describe

the process of achieving maximum revenue from a fixed or “perishable” asset, such as a seat

on a plane or hotel accommodation. It originates from the airline industry’s “Yield Manage-

ment”, a set of sophisticated techniques that were developed initially in the 80s to maximize

“bums in seats”, then adopted in the accommodation, car rental, and other service segments.

From the perspective of demand management decisions (Talluri and van Ryzin, 2004), the

RM decisions can be divided into three categories: structural decisions (e.g., which selling

format should be used?), price decisions (e.g., how to set the posted price, individual-offered

price and reserve price?) and quantity decisions (e.g., whether reject or accept an order?).

After the deregulation of the airlines industry in the 1970s, the established airline faced

with the difficult situation of competing with the newer low-priced airline. During this time,

the adoption of RM helped that airlines to stay competitive (Cross, 1997). According to

a report from SIAM news (Davis, 1994), yield management saved American Airlines $ 1.4

billion dollars in the period from 1989 to 1992, about 50% more than its net profit of $892

million for the same period. The successful application of RM in airline industry led to

interest in the study, research, and application of RM.

RM applications can be classified into two categories: traditional and nontraditional

categories (Boyd and Bilegan, 2003). Traditional applications are similar to the airline RM
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models. Examples of traditional applications would include hotel and car rental industries.

The nontraditional applications use models that are sufficiently different from the airline

model (Boyd and Bilegan, 2003). Examples of nontraditional applications include retail,

media, theaters, manufacturing, cruise ships, passenger railways, electricity generation and

transmission, air cargo, freight and so on. The various nontraditional applications of RM

are described in the study of Talluri and van Ryzin (2004).

1.3 RM in Manufacturing Industry

Compared with the RM in service industries, the research and applications of RM in manu-

facturing industry are relatively new. Although RM has been applied extensively and made

significant contributions to the profitability of service enterprise, such as airline (Talluri

and van Ryzin, 2004). However, certain features of RM problem in manufacturing make it

difficult to adapt techniques developed for service RM to this problem.

First, the goal of service industry applications, i.e. the maximization of revenue, has

to be replaced by the maximization of contribution margin due to significant variable costs

encountered in manufacturing (Spengler et al., 2007). The term contribution margin thereby

refers to the difference between revenue and variable costs for a specific order. Consequently,

the goal of manufacturing RM is to maximize the profit.

Second, in the case of manufacturing RM, the manufacturer can sell future capacity

by offering a lead-time exceeding one planning period. If the inventory is available, the

manufacturer can produce to stock items that are not necessarily consumed in the current
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period. In contrast, in the typical service-industry RM model (see McGill and van Ryzin

(1999) and Talluri and van Ryzin (2004)) overbooking results in a financial penalty, but its

impact on future capacity is not modeled.

Third, there is more flexibility in scheduling customer orders in manufacturing industry,

as long as it satisfies customer demands within customer’s acceptable due-date. While in

the case of the airline industry, there is limited flexibility in substituting a seat reserved

in a flight with another seat in some other flight. Such substitutions are done to meet

overbooking in airline, but incur significant penalty costs. Therefore, the aspect of order

scheduling decisions under the constraint of production capacity presents new challenges in

RM.

Due to the special features of RM in manufacturing industry, it is impossible to apply

the existing RM models in service industry. In other words, we need to extend the research

area of RM from traditional industries with perishable products, such as airlines and hotels,

to the manufacturing industry with non-perishable products.

1.4 Contributions and Document Organization

In Chapter 2, we examine a situation in which a MTO manufacturing firm faces price and

lead-time dependent demand and must jointly determine the price, lead-time and production

schedule for a finite planning horizon. The goal is to maximize the total profit gained in a

finite planning horizon under the production capacity, lead-time and demand constraint. We

develop a mathematical model for the joint decision on pricing, lead-time and production
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decisions with a goal to maximize profit in the face of a demand function that links price

and lead-time to demand for MTO firm. We also develop a rounding heuristic to provide

the initial feasible solution to the MIP solver, so that the solution quality and time has been

improved. From the numerical analysis, we get some useful insights regarding the price and

lead-time flexibilities.

However, in MTO manufacturing it is generally not possible to obtain accurate forecast

information about the timing and attributes of expected future orders over the planning

horizon (Wu and Chiang, 2009). Therefore, to deal with the stochastic demands, we propose

a reinforcement learning (RL) algorithm to solve the same problem in an infinite time horizon.

The RL is derived from dynamic programming (DP) and stochastic approximation, which

will be introduced in details in in Chapter 3. This stochastic version problem have the

same conditions as the deterministic problem which we studied in Chapter 2 except that the

stochastic demands and the objective is to maximize the long-run average total profit. In this

Chapter 3, different scenarios in MTO system have been evaluated to compare the proposed

RL with the First-Come-First-Serve (FCFS) policy and the threshold heuristic developed

based on the order acceptance threshold heuristic proposed by Hing et al. (2007). The results

shows that the proposed algorithm outperforms the other two policies in all scenarios. To

the best of our knowledge, this is the first that uses RL as a method for solving joint pricing,

lead-time, order acceptance and production scheduling decision problem.

In Chapter 4, we consider a RM problem in a MTS manufacturing system which consists

of a single machine in which the demands and the processing times forN types of products are

random. The problem decide when, what, and how much (the lot size) to produce so that the

7



long-run average total profit is maximized. We develop a mathematical model and propose

two reinforcement learning (RL) algorithms, QLS and QLIH, for real-time decision-making.

The QLS outperforms the two benchmarking policies, Brownian and First-Come-First-Serve

(FCFS) policies in most cases. The QLIH outperforms QLS and the two benchmarking

policies in all cases.

In Chapter 5, we summarize the work and demonstrate its potential applications. Future

research directions are also pointed out.
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Chapter 2

Joint Optimization on Pricing,

Lead-time and Scheduling Decisions

for Revenue Management in a

Make-to-Order System

2.1 Introduction

During the past decade, there has been increasing interest in the integration of pricing and

scheduling decisions. However, such problems may not have been practical before since

manufacturers have not traditionally been in direct contact with end customers, making

it difficult to influence demands by quoted price. Nowadays direct selling becomes more

common due to advancements in technology, particularly with the Internet and thus makes
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it easy to observe and influence end customer behavior (Boyd and Bilegan, 2003). Under this

circumstance, joint pricing and production scheduling problems arise in the manufacturing

firm. As reported by Direct Selling Association, the direct selling becomes a significant

business sector, which have grown 2.6% from 1999 to 2008 and reached $29.6 billion in 2008.

Due to the direct selling, manufacturing firms can maintain close customer relationship, as

is currently done by the computer companies, such as Dell. For instance, Dell Computers

separates its customers into different classes and may charge them different prices. Other

companies, such as IBM and HP, are also adopting the same strategy. To name another

example for a different industry, between 1995 and 1999, Ford Motor Co. credits $3 billion

in growth for the effort of using pricing strategies to match supply, demand and target

specific customer segments (Leibs, 2000).

Price is used to be considered as a key factor to win competitive advantage. However,

the success of the Japanese manufacturing Just-In-Time (JIT) philosophy has highlighted

the importance of short lead-times and further increased the level of competition. In today’s

time-based competitive market, practitioners recognized that customer demand increases not

only with lower prices but also shorter lead-times (So, 2000; So and Song, 1998; Stalk and

Hout, 1990). Lead-time (due-date) decisions depend on several factors, such as the manu-

facturer’s capacity and the customers’ demands and due-date preferences. With recognition

of the lead-time sensitive demands, many companies, specifically the make-to-order (MTO)

manufacturing sectors, are offering a uniform lead-time for all customers within which they

guarantee to satisfy “most” orders (Rao et al., 2000; So and Song, 1998). While this strategy

may attract many customers, there is a risk that the increasing demand may exceed capacity
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limitation. This can incur a lateness penalty cost for the manufacturers or customer dis-

satisfaction and may lead to loss in future business. Firms then must trade-off the price,

lead-time and potential for increased demand against capacity constraints.

In this chapter, we examine a situation in which a firm faces price and lead-time depen-

dent demand and must jointly determine the price, lead-time and production schedule for a

finite planning horizon. The goal is to maximize the total profit gained in a finite planning

horizon under the production capacity, lead-time and demand constraint. This situation is

common in MTO firms. The firm is a joint price and lead-time decision maker who has

power to influence the customers’ decisions for order quantities. But they can not predict

customers’ demands. In this chapter, the lead-time is the time period from the moment

the manufacturer receives an order to the moment the order is shipped as the customers

are assume to be responsible for the delivery costs. We consider a single machine produc-

tion system with perfect reliability. Manufacturing fixed costs (including the overhead cost,

setup cost and quality cost) should be considered in MTO production lines because of the

customized orders for different customers. The fixed costs are time-independent and order-

independent. Customer orders differ in their arrival times, possible prices and lead-times

that can be quoted, quantities demanded and latest acceptable due-dates.

The manufacturer has the option to accept or reject an order. The order can be rejected

if either the quoted price is higher than the customers’ willingness to pay or the quoted

lead-time is longer than the customers’ willingness to wait (i.e., customer’s latest acceptable

due-date). However, the rejection may lead to the loss of future business which incurs the lost

opportunity cost. For all of the accepted orders, the manufacturer sets the production and
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delivery schedule within the planning horizon. The production of an order can be completed

in different periods. However, we assume that the delivery of an accepted order must be

integrated in an one-time shipment and the order must be shipped between its arrival time

plus quoted lead-time and the customer’s latest acceptable due-date. This assumption is

reasonable when customers are responsible for the delivery costs and prefer to receive the

order at one time.

An order completed before its quoted lead-time is considered early and incur inventory

holding costs. The firm also pays lateness penalty cost whenever the actual lead-time (i.e.,

delivery date) exceeds the quoted lead-time. We assume that customer is patient enough

to accept a late order as long as the order delivery date is within its latest acceptable due-

date. Manufacturing variable costs are linear variable cost in addition to a manufacturing

fixed cost for each production run. Production capacity, inventory holding cost and lateness

penalty cost is known in each period and may be time varying. Manufacturing variable cost

(including costs of raw material, direct labor and maintenance) is a linear variable cost in

addition to a fixed cost for each production period. Variable cost, inventory holding cost

and lateness penalty cost is known and time-independent. Therefore, The total profit is the

total revenue minus the total cost.

The above model of the firm is a good representation of any MTO manufacturing firms

that offer customized orders. An example of this type of firm can be found in iron and steel

industry as described by Spengler et al. (2007). A few raw materials are converted into a

variety of products which are made to order in terms of steel grade, dimensions, and surface

treatment.
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2.2 Literature Review

This research is related to the literature on joint production and pricing decision making. The

extensive review of this literature can be found in the surveys of Eliashberg and Steinberg

(1993) and Yano and Gilbert (2004). One of the earliest paper in which price and production

quantity are both the decision variables in an EOQ framework is made by Whitin (1955). The

literature can be classified into two categories: optimal control approaches (Chen and Chu,

2003; Feichtinger and Hartl, 1985; Pekelman, 1974; Vanthienen, 1975); and mathematical

programming approaches (Ahn et al., 2007; Charnsirisakskul et al., 2006; Deng and Yano,

2006; Gilbert, 1999, 2000; Kim and Lee, 1998).

The optimal control approaches incorporate both static and dynamic pricing, and deter-

mination of production quantities. They use linear, convex and non-smooth functions for

production and inventory costs while the demand functions are always assumed to be linear.

Pekelman (1974) develops an optimal control model for profit maximization with both price

and production quantities as decision variables over a planning horizon. Vanthienen (1975)

incorporates a capacity constraint into Pekelman’s model. Pekelman’s model is further ex-

tended by allowing backlogging in the paper of Feichtinger and Hartl (1985). Chen and Chu

(2003) find the optimal choice between production rate which may affect the inventory level

and the optimal sales rate at each time through different pricing strategies in order to achieve

the maximum profit for a given planning horizon. The research above do not consider limits

on capacity or storage.
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Mathematical programming models divide the time horizon into discrete time buckets

and are closely related to production planning models. Kim and Lee (1998) address the

problem of joint pricing, lot sizing and capacity expansion decision over a planning horizon.

Gilbert (1999) studies version of a model in which a constant price is to be maintained for

a seasonal product in advance of demand observation. Gilbert (1999) extends his model to

consider a multi-product scenario in which different products share the common production

capacity. Deng and Yano (2006) give the optimal solution of price and production quantities

for a manufacturer facing price-sensitive demand, in consideration of both capacity constraint

and setup costs in finite discrete time horizon. Deng and Yano (2006) present a model that

integrates pricing, production and order selection decisions for MTO manufacturer who can

set price to influence demand and set lead times for accepted orders. Ahn et al. (2007)

considered a joint production and pricing decision problem, accounting for that portion of

demand realized in each period that is induced by the interaction of pricing decision in the

current period and in previous period. All of the models fail to incorporate the influence of

the lead-time on demand function.

The second body of research related to our research focuses on due-date quotation. For

an overview of due-date management policies, see Keskinocak and Tayur (2004). A large

number of studies are conducted on due-date assignment in the production scheduling field.

For the summary of recent works, see Philipoom et al. (1994), Lawrence (1995) and Easton

and Moodie (1999). Duenya and Hopp (1995) and Duenya (1995) firstly incorporate the

customer order selection to the firm’s lead-time policy where the probability that a customer

places the order decreases as the quoted lead-time increases. Some researchers consider the
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order acceptance problem, where the manufacturer has options to reject orders and accepted

orders must be finished by specified due-dates with the objectives to maximize revenue or

profit (Charnsirisakskul et al., 2006; Hall and Magazine, 1994; Keskinocak et al., 2001).

The third body of research related to our research is revenue management (RM) based

order acceptance with the limited manufacturing capacity. Some examples of the earliest

models for selective order acceptance policies that can be applied in MTO systems are

developed by Miller (1969) and Lippman and Ross (1971). Their models assume that the

order service times are exponentially distributed and there are no due-date constraints or

lateness penalties in producing the orders. Miller (1969) studies the order acceptance problem

as an admission control problem to a queue. Lippman and Ross (1971) extend Miller’s

model by allowing service times that are dependent on the customer classes and a general

arrival process. One of the key insights from these models is that in an MTO system

with exponentially distributed processing times, a cµ policy gives optimal results. c is the

revenue earned after a job is completed while the job’s mean processing time is 1/µ. A cµ

policy states that if the job with largest value of cµ, among all available jobs, is chosen for

scheduling, it maximizes the total expected returns. In the recent study, Spengler et al.

(2007) develop a RM approach for companies in the iron and steel industry. The aim is to

improve short-term order selection. Due to the complexity of obtaining opportunity costs

from dynamic programming approaches, a static bid-price based approximation scheme for

selecting profitable orders is implemented to determines bid-prices from a multi-dimensional

knapsack problem formulation.
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This research is more relevant to the literature that consider price, lead-time quotation,

production quantities and capacity investment simultaneously. So and Song (1998) present

an optimization model to determine the joint optimal selection of price, lead-time and capac-

ity investment with an objective of maximizing the average net profit where price is sensitive

to both price and lead-time. However, they do not consider lateness penalty costs in the

objective function and quote uniform delivery times for every order. Palaka et al. (1998)

model the firm’s operations as an M/M/1 queue and treat the demand as being linear in

quoted price and lead-time. The objective is to maximize revenues less total variable pro-

duction costs, congestion related costs and lateness penalty costs subject to a service level

constraint. Webster (2002) develops dynamic pricing and lead-time policies for a MTO sys-

tem using the similar linear demand function. In the later research, use a RM approach

for companies in the iron and steel industry was developed. The aim was to improve short-

term order selection. Due to the complexity of obtaining opportunity costs from dynamic

programming approaches, a static bid-price based approximation scheme for selecting prof-

itable orders was implemented to determines bid-prices from a multi-dimensional knapsack

problem formulation.

In this study, we model customer demand as a linear function of price and lead-time as in

So and Song (1998), but we consider the production cost (incorporated in the manufacturing

variable cost), lateness patently cost, inventory holding cost as in Charnsirisakskul et al.

(2006). In addition to these costs, we also consider the setup costs (incorporated in the

manufacturing fixed cost) incurred in each production period mentioned in the study of

Deng and Yano (2006). Our major contribution is that we firstly incorporate the order
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acceptance decision and manufacturing fixed cost on joint pricing, lead-time and production

decision problem with lead-time and price sensitive demands and capacity constraints.

2.3 Problem Definition

In this chapter, we assume customer demands are known and predictable. We consider a firm

that serves customers in a MTO fashion. In this model, we assume that the manufacturer

can charge different prices to each customers since customer will have the customized order.

Our customers are delay sensitive and thus the order quantity is a function quoted lead-times

as well as price. We assume that the demand is downward sloping in both quoted lead-times

and prices and the demand to be a linear function of quoted lead-time as in constraint (4.2).

The decision process is illustrated in Section 2.3.1 and the firm’s cost structure is given in

Section 2.3.2.

2.3.1 The decision process of the problem

The figure 2.1 illustrates the decision process of the problem. Customer orders differ in their

arrival times, possible prices and lead-times that can be quoted, quantities demanded and

latest acceptable due-dates. The demand quantities are determined by a demand function

which is dependent on the quoted lead-time and price. The accepted orders are scheduled

for production and delivery within the manufacturer’s capacity. Since for this problem, the

order/demand arrival times are known in advance, the manufacturer makes the decisions on
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and 5 

Capacity 
constraint 

Order 4 

Figure 2.1: The decision process of the problem

order acceptance, price, lead-time and scheduling simultaneously in order to maximize the

total profit over a given planning horizon.

2.3.2 Cost structure

As shown in figure 2.2, the firm’s cost structure is composed of manufacturing cost, inventory

holding cost, lateness penalty cost and lost opportunity cost.
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Figure 2.2: Cost structure

2.3.3 Manufacturing cost

The manufacturing costs include costs of material, labor, fixed overhead, and operational

cost such as maintenance, setup and quality cost. The manufacturing cost can be divided

into fixed cost and variable cost.

Fixed cost

In our research, manufacturing fixed costs are these costs incurred whenever the production

takes place in each production period. The cost includes overhead cost, setup cost and

quality cost. The mathematical model is a deterministic model that maximizes the total

profit over a given planning horizon. Each planning period is considered as a work shift

(e.g.,three shifts per day), in which workers need to take a break and be replaced by another

shift. At the same time, the production also needs to resume for the new shift.
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Variable cost

Manufacturing variable cost combines costs of raw material and direct labor and maintenance

incurred in producing products, which is proportional to production quantities. The products

have a broad definition in our research: it can be a real product (e.g., a lamp) or a virtual

product (e.g., packing service). It is clear that it spends limited resources (raw material

and labor) on producing any kind of products in a manufacturing firm. On the other hand,

the provision of any type of services also consumes the limited labor (and raw material in

some cases), thus the manufacturing variable cost can be considered as a labor cost. There

are vast literature in joint pricing, lead-time and scheduling decisions, which incorporate

the manufacturing variable cost (Charnsirisakskul et al., 2006; Deng and Yano, 2006; Palaka

et al., 1998; So and Song, 1998).

Inventory holding cost

Inventory holding cost is defined as these costs that include warehousing and storage costs

and labor to operate the space, insurance, security, interest on money invested in the in-

ventory and space, and other direct expenses. We assume that the costs is the number of

products completed before its quoted lead-time multiple the number of periods in inventory

multiple the unit holding cost. Inventory holding cost has been incorporated in many re-

searches on scheduling problem (Anupindi and Tayur, 1998; Paternina-Arboleda and Das,

2005; Qiu and Loulou, 1995; Sox and Muckstadt, 1997). However, due to the difficulties

in obtaining the optimality, there are few related research incorporating the holding costs,

except for the study of So and Song (1998) and Charnsirisakskul et al. (2006).
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Lateness penalty cost

The lateness penalty cost is defined as these penalties that reflect direct compensation paid

to the customers for not meeting the quoted lead-times. We assume that these costs are

proportional to the number of periods and the quantity delay. The latest acceptable lead-time

and the tardiness penalty may depend upon negotiations between each customer and the firm.

The lateness penalty cost is a common cost that can be found in the real-world applications.

However, in the related literature, it only can be found in the study of Charnsirisakskul et al.

(2006).

Lost opportunity cost

The lost opportunity cost is defined as a penalty due to loss of goodwill, and the potential

loss of future business because the orders is rejected. The order may be rejected due to the

firm’s limited capacity. The rejected order also can be considered as the quoted lead-time is

longer than the customers’ willingness to wait (i.e., the latest acceptable due-date). However,

since the customer’s order is reject, the firm loses customer loyalty. It is most likely that the

firm loses its long-term profits because the customer may switch to other suppliers in the

future.
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2.4 Model Formulation

2.4.1 Notation

Sets :

T ={1,2,...,T} planning periods

O={1,2,...,n} Customer order

P(i)={pi1, pi2, ...pini
} prices (per unit) the firm can charge for order i

L(i)={li1, li2, ...limi
} the lead-time the firm can quote for order i

Parameters :

ai: arrival time of order i, (i ∈ O)

ci: variable cost per unit of order i, (i ∈ O)

hi: holding cost per period per unit of order i, (i ∈ O)

bi: lateness penalty per period per unit of order i, (i ∈ O)

si: fixed cost of order i, (i ∈ O)

ri: rejection cost for order i (i ∈ O)

kt: units of production capacity available in period t, (t ∈ T )

ei: the latest acceptable due-dates of order i, (i ∈ O)

v: demand corresponding to zero quoted price and zero quoted lead-time

w: price sensitivity of demand

u: lead-time sensitivity of demand

22



2.4.2 Model

In this model, we assume that the manufacturer can customize price and lead-time, i.e.,

charge a different price and lead-time to different customers. This might be the case if

customers can be differentiated by geographical differences. We formulate the manufacturer’s

profit maximization problem as a Mixed Integer Program (MIP) as follows.

Decision variables :

xit,k: quantity produced (in units of capacity) for order i in period t and

delivered in period k (t = ai, ..., k, k = ai, ...ei, i ∈ O)

dij,q: implicit decision variable, order quantity of order i corresponding to

price pij and lead-time liq (j = 1, ..., ni, q = 1, ...,mi, i ∈ O)

I ik: 1 if order i is accepted and delivered in period k; 0, otherwise (k =

ai, ..., ei)

Zi
j,q: 1 if price pij and lead-time liq are quoted for order i 0, otherwise

(j = 1, ..., ni, q = 1, ...,mi, i ∈ O)

δit: fixed cost indicator in period t for order i (1 if xit,k > 0 ; 0, otherwise)

φi order i rejection indicator ( 1 if
∑ni

j=1

∑mi

q=1Z
i
j,q = 0 ; 0, otherwise)

H i
j,q: total quantity-period holding inventory of order i corresponding to

price pij and lead-time liq

Bi
j,q: total quantity-period tardiness of order i corresponding to price pij and

lead-time liq
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Objective function

maximize total profit:

∑
i∈O

ni∑
j=1

mi∑
q=1

pijd
i
j,qZ

i
j,q−

∑
i∈O

ei∑
k=ai+liq

k∑
t=ai

cix
i
t,k−

∑
i∈O

T∑
t=1

δitsi−
∑
i∈O

ni∑
j=1

mi∑
q=1

hiH
i
j,q−

∑
i∈O

ni∑
j=1

mi∑
q=1

biB
i
j,q−

∑
i∈O

riφ
i

(2.1)

Constraints :

Order quantity constraints:

dij,q = v − wpij − uliq ∀i ∈ O, j = 1, ..., ni, q = 1, ...,mi (2.2)

Demand constraints:

ei∑
k=ai+liq

k∑
t=ai

xit,k =

ni∑
j=1

mi∑
q=1

dij,qZ
i
j,q ∀i ∈ O (2.3)

Capacity constraints:

∑
i∈O|t≥ai;t≤ei

ei∑
k=ai+liq

xit,k ≤ Kt ∀t ∈ T (2.4)

Price and lead-time selection constraints:

ni∑
j=1

mi∑
q=1

Zi
j,q ≤ 1 ∀i ∈ O (2.5)

ai + liq ≤ ei ∀i ∈ O (2.6)
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Delivery quantity and time constraints:

k∑
t=ai

xit,k ≤M1I
i
k k = ai + liq, ...ei,∀i ∈ O (2.7)

ei∑
k=ai+liq

I ik ≤
ni∑
j=1

mi∑
q=1

Zi
j,q ∀i ∈ O (2.8)

ei∑
k=eij,q+1

I ik ≤ 1− Zi
j,q j = 1, ..., ni, q = 1, ...,mi, ∀i ∈ O (2.9)

Manufacturing fixed cost (e.g. setup cost) indicator constraint:

xit,k ≤M2δ
i
t t = ai, ...k, k = ai + liq, ...ei,∀i ∈ O (2.10)

Order rejection indicator constraint:

1−
ni∑
j=1

mi∑
q=1

Zi
j,q = φi ∀i ∈ O (2.11)

Quantity-period holding inventory:

H i
j,q ≥

ei∑
k=ai+liq

k∑
t=ai

(k − t)xit,k +M3(Z
i
j,q − 1) j = 1, ..., ni, q = 1, ...,mi,∀i ∈ O (2.12)

Quantity-period tardiness:
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Bi
j,q ≥

ei∑
k=ai+liq

k∑
t=ai

(k− ai− liq)xit,k +M4(Z
i
j,q − 1) j = 1, ..., ni, q = 1, ...,mi,∀i ∈ O (2.13)

Variable constraints:

xit,k ≥ 0 t = ai, ...k, k = ai + liq, ...ei,∀i ∈ O (2.14)

Bi
j,q, H

i
j,q ≥ 0 j = 1, ..., ni, q = 1, ...,mi, ∀i ∈ O (2.15)

I ik ∈ {0, 1} k = ai + liq, ...ei,∀i ∈ O (2.16)

Zi
j,q ∈ {0, 1} j = 1, ..., ni, q = 1, ...,mi,∀i ∈ O (2.17)

δit ∈ {0, 1} j = 1, ..., ni, q = 1, ...,mi,∀i ∈ O (2.18)

In the objective function (2.1), the total profit is composed of five elements: the total

revenue, manufacturing variable cost, manufacturing fixed cost, inventory holding cost and

lateness penalty cost. In constraint (2.2), we assume order quantity or customer demand

is downward- sloping in both price and quoted lead-time, which is a linear function of the

quoted price and lead-time. Demand constraints (2.3) ensures that if price pij and lead-time
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liq are quoted, the exact number of demand dij,q must be produced and delivered. Capacity

constraint (2.4) ensures that the production capacity in each period will not exceed. Con-

straint (2.5) ensures that the order is either be accepted or rejected. If accepted, the order

can be only quoted one price and one lead-time. Constraint (2.6) states that the order ar-

rival time ai plus the quoted lead-time liq is less that the latest acceptable order due-date.

This implies that customers refuse to accept the orders which are later than their acceptable

latest due-date corresponding to quoted price and lead-time. Constraint (2.7) states that

every production must be delivered in a specific period. M1 is a sufficient large number, such

as maxj,q{dij,q}. Constraint (2.8) ensure that an order can be only delivered once between

(ai + liq) to ei. Constraints (2.9) guarantees that the order can not be delivered after the

latest acceptable due-date if the price and lead-time are quoted. Constraints (2.10) states

that if production for order i begins in a period t, the setup indicator δit is 1; otherwise,

zero. M2 is a sufficient large number, such as maxj,q{dij,q}. Constraint (2.11) states that

if the order is rejected, the order rejection indicator is 1. Constraint (2.12) calculates the

total quantity-period inventory of each order at price pij and lead-time liq. The H i
j,q is pos-

itive only if Zi
j,q equals to 1 when price pij and lead-time liq are selected. M3 is a sufficient

large number, such as (ei−ai)(maxj,q{dij,q}). Similarly, constraint (2.13) calculates the total

quantity-period tardiness and Bi
j,q is positive only if the price and lead-time are selected. M4

is a sufficient large number, such as (ei − ai − liq)(maxj,q{dij,q}). Constraints (2.14) to (2.16)

are non-negativity constraints and constraints (2.17) to (2.18) specify binary variables.

In this model, there are (7n+ T + 2
∑n

i=1(ei − ai − liq) + 6
∑n

i=1(nimi) + 2
∑n

i=1(ei − ai −

liq)(ei−ai)) constraints, (nT 2 +2
∑n

i=1(nimi)) nonnegative decision variables and (n+2nT +
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∑n
i=1(nimi)) binary decision variables. Therefore, the formulation is of sizeO(nT 2)×O(nT 2),

where n is the number of arrival orders and T is the number of time periods of the planning

horizon.

2.5 Numerical Analysis

The numerical analysis presented in this section is designed to develop insights regarding

the benefits of price and lead-time flexibilities, under various demand environments.

2.5.1 Experiment Design

In the numerical experiment, we assume that each customer is a retailer who faces various

demand scenarios. The price and the lead-time follow Uniform [20, 80] and Uniform [10,

20] distributions, respectively. We assume the order quantity function is determined by

Equation 2.2, where u=600, v=2 and w=3, respectively. The the manufacturing fixed cost,

variable cost, unit holding and unit tardiness costs per period are generated from Uniform

[2, 5], Uniform [10, 15], Uniform[2, 5] and [2, 4] for arrival orders , respectively. Since the

lost sale may have the negative influence the manufacturer’s future sale, we assume the lost

opportunity cost is 20. We assume one unit of production capacity (Kt = 1) in each period.

Therefore, the processing time of order i is ptij,q = dij,q. To ensure that the latest acceptable

due-dates of all orders are within the planning horizon, the length of the planning horizon

is extended to |T |=maxi{ei}.
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In the model, there are three factors that affect the demand environment: order size

(S), demand load (L), and order arrival time distribution (D). We focus on two forms

of flexibilities which have impact on the manufacturing environment: price and lead-time

flexibilities.

Order Size indicates the amount of production resources (in units of capacity) required

to complete an order. The order size is determined by the price distribution and lead-time

distribution.

Demand Load indicates the congestion in the system and is defined as the expected ratio

of total requested production capacity and total available capacity over the forecast horizon.

The demand load is directly related to the order size and the number of orders that arrive

during the forecast horizon. Since the demanded quantity of an order depends on the price

and lead-time, we use the average of quantities of the orders in defining the demand load.

In this numerical study, we use three levels of demand load, Low: 0.5, Medium: 1.0, and

High: 1.5. The number of orders that arrive during the forecast horizon is determined by

the expression: N = L·|T |
Smedium

.

Order Arrival Time Distribution represents seasonality or the variations of demands.

Three types of arrival time distributions are considered: high arrivals near the beginning (LT:

triangular[1, 20, 80]), the middle (MT: triangular[1, 40, 80]), and the end (RT: triangular[1,

60, 80]) of the planning horizon.

Price Flexibility describes the flexibility to charge different prices to different customers.

In some cases, for example, when manufacturer wants to sell the low-end product in similar

price in a promotion or the customers cannot be segmented due to reasons such as legal
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regulations or difficulties in identifying geographic differences, the manufacturer may not be

able to price discriminate among the customers. In this case, the manufacturer has to quote

the best single price to all customers. When there is no price flexibility, a single (fixed) price

is charged to all customers.

Lead-time Flexibility refers to the flexibility to extend their latest acceptable due-dates.

The lead-time flexibility indicator (W ) denotes the ratio of the length of the lead-time window

(the time between quoted lead-time and latest acceptable due-dates) to the processing time

of the order ptij,q. To illustrate the effect of lead-time flexibility, the latest acceptable due-date

is ei = maxj,q{liq +Lptij,q}, in which liq is quoted lead-time of order i. In each experiment, We

use the same (L) for all orders. In the analysis, we compare systems with different lead-time

flexibility levels: no lead-time flexibility (L = 0), low lead-time flexibility (L = 3), and high

lead-time flexibility (L = 5), denoted by L0, L3, and L5, respectively.

2.5.2 Computational Issues

The problem size becomes larger with more price and lead-time selection, higher demand

load, larger order numbers and longer planning horizon. It takes a long time to find a

feasible MIP solution in CPLEX when the problem size increases. However, the solution

time can be reduced considerably when an initial feasible MIP solution is input into the

solver. We propose three LP-based Binary Rounding Heuristics (BRH) for finding good

initial solutions. We solve the LP relaxation and then interactively round the fractional

binary integer variables in LP relaxation.
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Binary Rounding Heuristics

In the model formulation in Section 2.4, there are three sets of binary variables Zi
j,q, I

i
k, δ

i
t

and φi. However, it is difficult to find a feasible solution by rounding the four sets of binary

variables at the same time. For example, if a rounding heuristic fixes Zi
j,q = 1, the heuristic

may not find a feasible solution by rounding I ik. Therefore, to simplify finding a feasible

solution in the binary rounding heuristic, we introduce an alternative model for formulation.

The decision variables Zi
j,q, I

i
k and Bi

j,q are removed and introduce new binary variable Zi
k,j,q

which equals to 1 if order i is quoted price pij and liq and delivered in period k and 0 otherwise.

However, we can always round δit to 1 after a rounding heuristic fixes Zi
k,j,q = 1 because this

will not lead to infeasibility as shown in constraint (2.10). The Zi
j,q in objective function

(2.1), constraints (2.3), (2.5), (2.12) and (2.13) is replaced by
∑ei

k=ai+liq
Zi
k,j,q. In addition,

the φi in the objective function can be replaced by (1 −
∑ni

j=1

∑mi

q=1Z
i
k,j,q). The constraints

(2.8), (2.9), (2.11), (2.13) and (2.16) are removed. Bi
j,q in the objective function is replaced

by dij,q(
∑ei

k=ai+liq
(k − ai − liq)Zi

k,j,q).
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Algorithm 1: Binary Rounding Heuristic-1 (BRH-1)

while not all binary variable are integers do1

Solve the LP relaxation;2

Find “order” rounding index ĩ ← Pick orders not yet fixed with highest pij;3

Find “delivery period” index k ← find Z ĩ
k,j,q with value closest to 0.5;4

Round Z ĩ
k,j,q up (down) with probability equal to value 1 (otherwise, 0);5

Fix Z ĩ
k,j,q in the LP ;6

if Z ĩ
k,j,q = 1 then7

Find “production period” index t ← find X ĩ
t,k with value bigger than 0;8

if There is available capacity in period t then9

Round δit up to value 1;10

else11

Round δit down to value 0;12

end13

Fix δit in the LP ;14

end15

end16

The key point in the the BRH-1 is to firstly fix the order with highest price. However,

in consideration of lead-time and profit, we propose the other two heuristics which inherit

the most parts in BRH-1. In BRH-2 and BRH-3, we replace the priority selection rule to

shortest lij and highest piqd
i
j,q in step 4 of BRH-1, respectively.

The heuristics can be run repetitively with different seeds for randomization to obtain a

better solution, we use a different random number sequence generated for the probabilistic

rounding. In the numerical experiments, we will repeat the heuristic for 90 times and run

BRH-1, BRH-2 and BRH-3 for 30 iterations, respectively. The best solution will be selected

as the initial feasible solution and input into the solver.

For each demand scenario, five replications were simulated and the corresponding models

were solved using CPLEX 11.0. The computational time varies from less than 10 seconds

for easy instances to more than 12 hours for hard instances. The quality of the solution
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varies from less than 0.1% to 5.0% optimality gap. Because of the problem complexity, we

were not able to solve some of the instances to optimality. In our experiment, 92% of the

tested cases achieve optimality and 5% of the cases have an optimality gap less than 0.1%.

The instances where optimality cannot be achieved are those with high demand load and

high lead-time flexibility. In such cases where optimality is not achieved, the analysis of the

benefit of flexibility is based on the lower bound (the profit obtained from the best solution).

2.5.3 Numerical Results and Insights

We consider six different combinations of price and lead-time flexibility: S-L0 (single price

and no lead-time flexibility), S-L3 (single price and low lead-time flexibility), S-L5 (single

price and high lead-time flexibility), M-L0 (multiple price and no lead-time flexibility), S-L3

(multiple price and low lead-time flexibility) and S-L5 (multiple price and high lead-time

flexibility).

With the binrary rounding heuristic, the CPU time required to solve the problems to op-

timality in CPLEX is compared to the CPU time required for the default CPLEX settings.

For the hard instances, the CPU times are compared based on the computational time used

to obtain the same feasible solutions. Table 2.1 shows the average percentage CPU time re-

duction under each demand load scenario for different levels of price and lead-time flexibility

compared with the default setting of CPLEX. For example, in Table 2.1, the column cor-

responding to (Single price, L0) reports the average percentage CPU time reduction under

Single price-no lead-time flexibility. First, the method combined with the binary rounding

heuristic on average requires 11.12% less CPU time than when using the default CPLEX
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settings, and the solution obtained from the binary rounding heuristic is close to the optimal

solution. Second, the reduction in CPU time increases as the demand load and lead-time

flexibility increase.

Table 2.1: Percentage CPU time reduction under each demand load scenario for different
levels of price and lead-time flexibility

Demand load Single price (S) Multiple price (M)
Scenario L0 L3 L5 L0 L3 L5

Low -5.08 -3.15 -1.8 -1.65 0.05 5.19
Medium 5.33 9.12 10.82 8.28 10.67 24.07

High 13.19 22.95 25.64 15.01 22.83 38.72
Average 4.48 9.64 11.55 7.21 11.18 22.66

Price Flexibility

Table 2.2 shows the percentage profit increases due to charging multiple prices in stead

of single price under different levels of lead-time flexibility. Comparing the benefit of price

flexibility under L0, L3 and L5, we find that under L0, the benefit of price flexibility is higher

in L3 and L5 in all environments. However, on average, the percentage of price increased is

not significantly different under L3 and L5. That is, in most environments with no lead-time

flexibility, we observe a substitution effect between price and lead-time flexibilities.

Lead-time Flexibility

Table 2.3 reports the percentage profit increases due to L3 and L5 over L0. For instance, in

Table 2.3, the column corresponding to (Single price, L3) reports the percentage increase in

S-L3 over S-L0.
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Table 2.2: Percentage profit increases over baseline (single price) under each environment
for different levels of lead-time flexibility

Demand
scenario L0 L3 L5
(LT, L) 24.82 4.36 3.94
(LT, M) 27.73 7.53 6.98
(LT, H) 27.17 9.45 8.15
(MT, L) 30.61 6.77 9.03
(MT, M) 25.23 6.46 6.11
(MT, H) 31.82 13.02 12.03
(RT, L) 25.17 5.77 6.78
(RT, M) 21.13 3.69 6.43
(RT, H) 21.36 5.40 5.25
Average 26.12 6.94 7.19

Table 2.3: Percentage profit increases over baseline (L0) under each environment for different
levels of price and lead-time flexibility

Demand Single price (S) Multiple price (M)
scenario L3 L5 L3 L5
(LT, L) 21.45 21.43 1.55 1.12
(LT, M) 23.70 25.48 4.13 5.09
(LT, H) 24.74 26.88 7.36 7.90
(MT, L) 23.94 20.81 1.32 0.85
(MT, M) 24.19 25.23 5.57 6.11
(MT, H) 24.13 27.85 6.43 8.65
(RT, L) 21.71 20.63 2.84 2.91
(RT, M) 23.34 23.79 5.58 8.77
(RT, H) 25.35 26.37 8.87 9.60
Average 23.62 24.27 4.85 5.67

First, we discuss the benefits of lead-time flexibility under environments without price

flexibility (single price). If there is no price flexibility, L3 leads to higher profits than L0 in

all environments. In comparison with L3, L5 increases profits over L0 in most environments,

except in (MT, L) and (RT, L), where the demand load is low. If the demand load is low,

medium lead-time L3 provides sufficient flexibility to satisfy most of the orders. If the the

lead-time extends to L5, the order quantity will decrease according to our demand function.

Therefore, the average profit will not increase too much compared with L3.
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Second, when there is price flexibility (multiple price), the percentage profit increases less

than that without price flexibility, which confirms our observation on the substitution effect

between price and lead-time flexibility. Interestingly, with the price flexibility, L3 and L5

are more useful when the demand load is high, such as in (LT, M) and (MT, H). However,

when the demand load is low, such as in (LT, L) and (MT, L), most orders can be satisfied

by their best prices and corresponding order quantity.

2.5.4 Summary of Results

We compared five combinations of lead-time and price flexibility with the baseline (no lead-

time flexibility and single price). Figure 2.3 and 2.4 show the impact of different combinations

of price and lead-time flexibility on the profits and the order acceptance rate, respectively.

Order acceptance rate is the number of accepted orders divided by the total number of arrival

orders. Although the manufacturer would primarily be interested in maximizing profits, the

order acceptance rate is also of interest as it reflects customer satisfaction, which is important

for long-term profitability.

As shown in Figure 2.3, lead-time flexibility leads to higher profits under all combinations

of price flexibility; however, it exhibits diminishing returns. In addition, Price flexibility is

more useful when there is no lead-time flexibility. Under L0, the average percentage increase

in profit over single price is 26% whereas they are 7% and 6% under L3 and L5, respectively.

From Figure 2.4, higher price and lead-time flexibility leads to a higher order acceptance

rate; However, the effects are diminishing as lead-time flexibility increases.
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Figure 2.3: Average percentage profit increases over the baseline under different combinations
of lead-time and price flexibility
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Figure 2.4: Average percentage order acceptance rate increase over the baseline under dif-
ferent combinations of lead-time and price flexibility

2.6 Summary

In this chapter, we study the joint optimization decisions on pricing, lead-time and scheduling

in a MTO production system under a price and lead-time sensitive demand environment,

where the manufacturer can quote different prices and lead-times to the customers. The

goal of the research is to maximize the profit, which is the revenue minus costs. We develop
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a mathematical model, which can be solved by optimization software CPLEX. We also

develop a rounding heuristic to provide the initial feasible solution to the MIP solver so that

the solution time and quality are considerably improved.

In the numerical experiment, we study the problem under different demand scenarios with

price and lead-time flexibilities. Both of the price and lead-time flexibilities are useful to

improve the profit and order acceptance rate. Furthermore, price and lead-time flexibilities

have a substitution effect. That is, without the price flexibility, the effect of lead-time

flexibility is more useful and vice versa. In general, when the demand load is high, the high

level of lead-time flexibility is more useful.
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Chapter 3

A Reinforcement Learning (RL)

Approach to Revenue Management in

a Make-to-Order System

3.1 Introduction on Reinforcement Learning (RL)

Reinforcement Learning (RL) was initially proposed in the early 1990s in the area of machine

learning and has attracted a lot of interest from the research community. Different from

another popular approach of supervised learning, in which the agent learns from examples

provided by a knowledgeable external supervisor, in RL the learning agent learns by directly

interacting with the environment in two ways. On the one hand, the learning agent in RL

keeps interacting with its dynamic environment and uses a policy to choose actions based

on the feedback from the environment; on the other hand, the environment responds to the
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agent’s actions by assigning rewards or punishment to the agent in a way that tends to

increase the long-run average reward (Kaelbling et al., 1996).

As depicted in Figure 3.1, a single-agent learning model contains four elements: the sys-

tem environment model, the learning agent, the policy set (a set of actions), and the response

(intermediate reward or punishment) from the environment. The process is conducted it-

eratively; each iteration starts from a decision-making epoch (i.e., system state) and ends

in another new epoch (state). In each decision-making epoch, the learning agent chooses

an action according to its policy and based on the information about the current state:

immediate reward or punishment obtained from the environment in the last iteration and

the time of the last state-transition. As new demands arrive or the production completes,

the state will transit to a new state. Then, the environment assigns the immediate reward

or punishment to react to the action taken by the learning agent, which completes a state

transition (iteration). At each iteration, the learning agent updates its knowledge using the

RL algorithm and chooses the action according to its policy with the goal of maximizing the

long-run average reward or minimizing the long-run average cost/punishment. This leads

the system evolution to the next decision-making epoch and a state transition (iteration)

is completed. As “good” actions are rewarded and “bad” actions are punished over time,

some actions tend to be more and more preferable and some less. This learning process ends

when the agent has a steady average reward, a stable trend appears in the knowledge, and

a near-optimal policy on action selection is obtained.

RL has been proposed to learn near-optimal policies for large scale Markov decision pro-

cess (MDP) and is widely used as a promising method in the area of machine learning.
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Figure 3.1: The mechanism of reinforcement learning

Various simulation-based RL methods are derived from stochastic approximation, such as

the method of Temporal Differences, TD(λ) (Sutton, 1988) and Q-learning (Eliashberg and

Steinberg, 1989). Stochastic approximation method is iteratively attempts to find zeros

or extrema of functions which cannot be computed directly, but only estimated via noisy

observations. The early studies on RL only consider maximizing the cumulative reward.

Mahadevan (1996) firstly undertakes a detailed study on the average reward RL. Later,

Das et al. (1999) develop a new model-free average-reward algorithm called SMART for

continuous-time semi-Markov decision processes (SMDPs). Compared with classical Dy-

namic Programming (DP), RL avoids the need for computing the transition probability and

the reward matrices. RL only requires the probability distributions of the process random
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variables since it is based on discrete event simulation (Law and Kelton, 1991). RL not

only overcomes some of the drawbacks of classical DP but also can be used in large state

space, e.g., with 1015 states (Das et al., 1999). There are strong theoretical guarantees on

convergence in most of RL algorithms (Szepesvari and Littman, 1996), such as Q-learning

algorithm (Gosavi, 2004b). In addition, RL provides model-free learning of adequate control

strategies. Thus, RL is an ideal method to solve the joint pricing, lead-time and production

scheduling problem in a stochastic environment.

3.2 RL for Joint Pricing, Lead-time, Order Acceptance

and Production Scheduling Decision Problem

Our problem is closely related to the production scheduling, revenue management (RM) and

pricing problems. Here we enumerate a few cases that are related to our topic.

In literature, there are some applications of RL in production scheduling problem. Zeng

and Sycara (1995) firstly apply a RL approach for a job-shop scheduling problem: They

develop a repair-based scheduing that is trained using the temporal difference RL algorithm

and that starts with a critical-path schedule and incrementally repairs constraint violations.

Mahadevan et al. (1997a), Mahadevan et al. (1997b) and Das et al. (1999) apply the SMART

algorithm to the problem of optimal preventative maintenance in a production inventory

system, where there is a single machine capable of producing multiple types of products

with multiple buffers for storing each of the different products. The SMART outperforms the

two heuristics in determining proper maintenance schedules regarding to costs. Mahadevan
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and Theocharous (1998) also apply SMART to the problem of optimizing a three-machine

transfer line producing single type of products. They find that the policy from SMART

is better than the kanban heuristic to maximize the throughput while minimizing WIP

and failures. Paternina-Arboleda and Das (2001) extend the previous work to deal with

a four-machine serial line and compared SMART to more existing control policies. They

examined the system with constant demand rate and Poisson demand rate. Under these

two circumstances, SMART outperformed those heuristic policies on average WIP level and

average WIP costs.

Some researchers have worked on applying RL methods in RM, in which RM in airline

industry is considered as the the first application area. The first paper related to this problem

is a single leg airline RM problem (e.g., pricing and seat allocation) solved by Gosavi et al.

(2002). They present an approximate DP or RL approach that is based on value iteration

and employ function approximation with neural networks for estimating the value function

of DP within a simulator to solve a continuous-time SMDP with random demands arrival

and cancellations. Gosavi (2004a) further develops a RL algorithm base on policy interaction

for the same problem. He tests the proposed RL algorithm with a nearest-neighbor approach

on an airline RM problem to tackle a large state space.

There are several advantages of using RL in our problem. Firstly, RL is a simulation-

based approach, thus, it only requires the probability distributions of the process random

variables. Secondly, a combined approach of RL and discrete-event simulation approach

avoids the difficulties of determining the price, lead-time and production sequence in a

stochastic environment. Thirdly, many RL algorithms have been proved to converge and
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allow a free choice of action (e.g., any action may be chosen from an action set according to

a RL algorithm) in the learning process, such as in a Q-learning algorithm.

The Q-learning algorithm developed by (Eliashberg and Steinberg, 1989), is a temporal

difference (TD) method that approximates Q(s, a) directly, where (s, a) is a state-action pair.

TD methods such as Q-learning are incremental algorithms that update the estimates of Q(s,

a) on each time-step. The update formula is Q(s, a) ← Q(s, a) + α[r + γmaxa′ Q(s′, a′) −

Q(s, a)]. The parameter α is referred as the learning rate, which determines the size of the

update made on each step. γ is referred as the discount rate, which determines the value of

future rewards. r is the immediate reward obtained. The Q-learning algorithm is well suited

for on-line applications and generally performs well in practice.

Although a great deal of work in algorithmic development and applications of RL has

already occurred, RL continues to attract research attention. To the best of our knowledge,

this is the first that uses RL as a method for solving joint pricing, lead-time, order acceptance

and production scheduling decision problem. We adopt an infinite horizon model with the

average reward (profit) performance criterion using one of the RL algorithm, Q-learning

algorithm.

3.3 Problem Description

The firm considered in this problem faces price and lead-time dependent demand and must

jointly determine the price, lead-time and production schedule for a given planning horizon

under time-dependent production capacity constraints. It is assumed that there are multiple
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types of customers who place an order with the demands dependent on the quoted lead-time

and price. Whenever a customer place an order, the firm needs to make a decision whether

to accept or reject the order. The order from different customers are assumed to arrive

according to independent Poisson processes. The different orders have different sets of lead-

times and prices to be quoted, arrival times and latest acceptable due-dates. An order can be

delivered immediately only after the entire order is completed. The inventory holding cost

is incurred if an order completed before its quoted lead-time and the lateness penalty cost

is incurred whenever the actual lead-time (i.e., delivery date) exceeds the quoted lead-time.

The manufacturing fixed costs and variable costs are incurred in each production period.

Our goal is to develop a strategy for pricing, lead-time quotation and production scheduling

so as to maximize the average profit earned by the firm per unit period. In the following

section, we present an SMDP model for the problem.

3.3.1 SMDP Model

In order to model this joint decision problem as a SMDP, we first defined the system state-

space. If there are n type of customer in the system, the system state (ψ) can be denoted

by the vector

ψ = (m, θ, µ1, µ2, . . . , µn, σ),

where m represents the type the most recent order type (among n possible types) was placed

by a customer, θ is the order quantity of the most recent order, µ1, µ2, . . . , µn represent the

order quantity sold in n types of orders, and σ denotes the production capacity remaining
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in this period. We assume the processing time for order i is ptij,q = dij,q, so σ also denote

the production capacity remaining in this period. The cardinality of the state-space can be

shown to have an upper bound of n×M (n+2), where M is the maximum number of customers

in any give type of order within this period, which is the production period capacity.

Clearly, a change in system state is caused by any of the following three events: (1) a

new customer arrives and places an order; (2) the production is completed for a specific unit

in an order and (3) the production period is ended. Whenever a customer places an order,

a decision needs to be made whether to accept or reject the order. The completed order

will not be delivered until its quoted lead-time. Hence, the time epochs of customer demand

arrivals form the decision-making epochs.

Let ψm and σm denote the system state and time respectively at the mth decision-making

epoch. We define two stochastic processes: ψ={ψm: m ∈ N} and σ={σm: m ∈ N} where

N is the set of natural numbers. We also defined a joint process (ψ, σ)={ψm, σm: m ∈ N}.

Assuming that the demand arrival processes for the order type i are Poisson, it can be easily

shown that

P [ψm+1 = j, σm+1−σm <= σ|ψ0, . . . , ψm;σ0, . . . , σm] = P [ψm+1 = j, σm+1−σm <= σ|ψm, σm]

which means that the process (ψ, σ) is a Markov renewal process. Then the decision process

related to (ψ, σ) is a SMDP, and ψ is a Markov chain underlying the Markov renewal process.

It is clear that for SMDPs, decision epochs are not restricted to discrete time epochs (e.g.,

in MDPs) but are all time epochs at which the system transits to a new decision-making

46



state. That is, the system state may change several times between two decision epochs. In

our SMDP, the process that tracks every state change referred to as the natural process,

and the process embedded at the decision-making epochs is referred to as decision process.

Between two consecutive decision epochs, the system state can be changed for many times

because it is possible that one unit product for an accepted order is completed or a specific

production period is ended.

The action space (set)A can be defined as the set of all possible actions that can be chosen

at any decision-making state (epoch). The actions to be taken can be described broadly as

production (C) and delivery (D). The action set “production” corresponds to the action of

whether accept or reject the arrival order while the action set “delivery” corresponds to the

action of whether ship or hold the completed orders. C={accept, reject} and D={ship, hold},

Thus, the action space is A=C ∪ D. Under the action set of production, if action ”accept”

is selected, we will choose the price and lead-time from the specific price and lead-time sets.

Figure 3.2 shows the hierarchy of the action space. At each decision-making epoch, the agent

decides to take action a from an action set or action space A. If we define the current and

next state is s and s’ (s, s’ ∈ ψ), respectively, the current state-action pair is defined as

(s, a).

3.3.2 Q-learning Algorithm (QLA)

As stated in Section 3.3.1, the problem can be modeled as a SMDP with the following

characters: state space, action space and immediate rewards (Qiu and Loulou, 1995). For

our SMDP, we use one of RL algorithms, Q-learning algorithm for SMDP.
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Figure 3.2: Hierarchical action space for the SMDP (The root node is the decision to be
made for the main problem)

The following notation is used in describing our QLA algorithm.

m : current iteration(step) index

tm : simulation time at the mth decision-making epoch

maxtime : maximum time of iterations

A : action space

a: an action in action space A

Qm(s, a) : action value (Q function value) for state-action pair (s, a) at the

mth decision-making epoch

am : the action taken at the mth decision-making epoch

cm : cumulative reward at the mth decision-making epoch

ρm : average reward at the mth decision-making epoch

αm : the learning rate at the mth decision-making epoch
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pm : probability of exploratory at the mth decision-making epoch

τ(s, s’, a) : the transition time from current state s to next state s’ due to

action a

r(s, s’, a) : the immediate rewards earned as a result of taking action a in

current state s and leading to next state s’
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Algorithm 2: QLA

m = 0, Qm(s, a) = 0, Choose the initial state arbitrarily.1

tm = 0, cm = 0, ρm = 0, pm = αm = 0.1.
while tm < maxtime do2

With probability (1− pm), choose an action amax that maximize Qm(s, a);3

otherwise randomly choose an action from A. Denote the chosen action as ã
if the order can be insert into the current schedule then4

am ← ã5

else6

while the order can not be insert into the current schedule do7

Randomly choose an action from {A\ã}. Denote the chosen action as ã8

end9

am ← ã10

end11

Let the current and next state be s and s’, respectively.12

Qm+1(s, am)←13

(1− αm)Qm(s, am) + αm
(
r(s, s’, am)− ρmτm(s, s’, am) + maxb∈AQm(s’, b)

)
if am = amax then14

tm+1 ← tm + τ(s, s’, am)15

cm+1 ← cm + r(s, s’, am)16

ρm+1 ← cm+1/tm+117

else18

tm+1 ← tm19

cm+1 ← cm20

ρm+1 ← ρm21

end22

αm = α0

1+(m/χ)23

pm = p0
1+(m/χ)24

m← m+ 125

end26

At each epoch m, a learning rate is used, which is denoted by αm. In addition, we use

the exploratory rate pm which decreases with the simulation iterations in order to guarantee

its convergence. As in line 23 and 24, αm and pm are decayed according the DCM scheme

(Darken and Moody, 1992). The DCM scheme is also called search-then-converge schedule.

In DCM scheme,
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αm =
α0

1 + (m/χ)

pm =
p0

1 + (m/χ)

where α0, p0 and χ are constants, which are 0.1, 0.1 and 1015, respectively. In the early

stages of adaptation, the value of learning rate and exploratory rate are approximately same

as the constant α0 and p0 as the algorithm mainly explores. As the number of time steps

approaches the constant χ, the algorithm converges. For a number of steps m sufficiently

large compared to the search time constant χ, the learning rate operates as a traditional

stochastic approximation algorithm.

In the QLA (Algorithm 2), step 1 (line 1) initializes the simulation parameters and chooses

the initial state randomly. Then, at the iteration m, lines 2 to 3 choose an action amin that

minimizes the value of Qm(s, a) with a probability (1−pm); otherwise a random (exploratory)

action from A with equal probabilities is chosen. RL involves a conflict between exploitation

and exploration. When deciding which action to take, the RL agent has to trade-off two

conflicting goals: it has to exploit what it has already learned in order to have a high reward,

and it has to behave in new ways, which are to explore and to learn more. In order to balance

these two objectives, there is an exploratory rate in RL algorithms. We use the exploratory

rate pm which decreases with the simulation iterations to guarantee the convergence of QLA

as in line 24. Step 2 (lines 4 to 11) checks the feasibility to make sure if the order can be

insert into the current schedule with the chosen action. The order can be inserted into the

current schedule if all the accepted orders can be completed within their latest acceptable
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due-dates. If it is feasible, then it will be executed; otherwise, another one from the action

set will be chosen randomly.

Then, line 13 updates the reward value Qm+1(s, a) for the pair of (s, a). τ(s, s’, a) is

the transit time between two states, that is recorded and stored in the simulation model.

For example, if the chosen action is “produce order i”, it records the production start time

and completion time as the simulation is running. Therefore, the transition time is the

processing time, which is updated at each decision-making epoch. Regarding the immedi-

ate reward r(s, s’, a), the simulation model calculates and stores the total rewards at each

decision-making epoch and the immediate reward is the difference in total costs between two

consecutive decision-making epochs.

If a non-exploratory (nonrandom) action is chosen, lines 14 to 17 update total time tm,

update total reward cm and update average reward ρm as in lines 14 to 17. Otherwise, as

in lines 19 to 21 the total time tm, update total reward cm and update average reward ρm

remain the same values as they are in the m− 1 decision-making epoch. The last step (lines

23 to 26) sets current state s to new state s’ and updates the decision epoch number m,

learning rates αm and βm, and probability of exploratory pm. The simulation continues until

the termination criterion (line 2) is met.

3.3.3 Function approximation scheme

Traditionally, the lookup tables are used to represent Q-values as described. However, it

can only be feasible for small-scale problems. For our problem, the state-action space is

too large-scale and complex to tackle via lookup tables, and that some sort of function
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approximation scheme will be necessary. This section examines the use of neural networks

(NN) to represent the Q-functions in the same economic models studied previously.

Artificial Neural Networks (ANN), usually called NN, is a mathematical model or com-

putational model that tries to simulate the structure and/or functional aspects of biological

neural networks. NN provides a general and practical method for learning real-values and

discrete-values functions from examples. In order to approximate the Q-values over the state-

action space, we use a function approximation scheme by which a large number of Q-values

are stored in the form a small number of scalers (weights of the neural network). A primi-

tive class of NN consisting of a single neuron operating under the assumption of linearity is

presented next. This class of network is known as the Least Mean Square (LMS) algorithm.

A linear neuron is a two-layered NN where the input layer contains the input nodes and the

output layer contains the output node. Our input nodes denote the variables used to define

the state-action space and the output node is the Q-value. The input is normalized between

zero and one. When an action is executed and the state transits to the new decision-making

epoch, the Q-values for the action taken in the old decision-making epoch has to be updated.

The net stores the Q-value for each state-action pair in form of weights. Consequently, the

Q-value is updated by updating the weights that store this particular Q-value. The rule

(algorithm) we used to update the weights is the delta-rule or the Widrow-Hoff rule. The

algorithm is based on the use of instantaneous estimates of the environment (simulation)

response to the learning agent. Whenever an action is chosen, Q-values for all possible

actions are obtained from the network and an action is chosen based its Q-value. As the

system transits to the new state due to the chosen action, the new Q-value for the most
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recent state-action pair is calculated from the QLA algorithm. The new Q-values serve as

the target in the updating algorithm and update the weights of the network. The notations

and updating algorithm is given below:

ym : the actual output unit (the old Q-value) at the mth decision-making

epoch

ŷm : the target output unit (the new Q-value) at the mth decision-making

epoch

δm : the error between the actual output and the target output at the mth

decision-making epoch

wim : estimates of the input unit weights at the mth decision-making epoch

η : the learning rate

xim : the ith input unit at the mth decision-making epoch

p : the number of input units that will undergo updating during the learning

process ( equivalent to the number of partitions for the problem

mmax : the maximum simulation epoch
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Algorithm 3: Function approximation algorithm

for i← 1 to p do1

wi1 = 0.00012

end3

for m← 1 to mmax do4

ym =
∑p

i=1w
i
mx

i
m5

δm = ŷm − ym6

for i← 1 to p do7

wim+1 = wim + ηδxim8

end9

end10

In the function approximation algorithm (Algorithm 3), step 1 (from line 1 to 3) initializes

the values of input unit weights wim to 0.001. Step 2 is from line 4 to line 10. Line 5 calculates

the network output (old Q-value) ym. Line 6 calculate the error between the target value ŷm

and the actual output ym. The target value is the new Q-value, which is obtained from RL.

Line 7 to 9 update each network weight wi. In the numerical problems that we studied, η

was decayed according the DCM scheme.

3.4 Numerical Experiments

In the numerical experiments, there are three types of customer orders for a MTO manufac-

turer. Each type of order can be quote three levels of prices and three lengths of lead-times.

Price set and lead-time are generated using Uniform[60,100] and Uniform[5, 15]. Each order

has a specific latest acceptable due-date which is generated from Uniform[20,30]. Customer

order quantity depends on the quoted lead-time and price, which is a linear function. The

available production capacity in each production period is 80 hours. Type i customer orders
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arrive following a Poisson process with parameter λi. The parameter of baseline case is

shown in Table 3.1.

Table 3.1: Parameters for the baseline scenario

Demand Rate Holding cost Lateness penalty cost Variable cost Fixed cost Lost opportunity cost
1/10 1 3 2
1/20 2 5 1 2 20
1/30 3 2 3

Different scenarios in MTO system have been evaluated to compare the QLA with the

First-Come-First-Serve (FCFS) policy and the threshold heuristic developed based on the

order acceptance threshold heuristic proposed by Hing et al. (2007). The evaluation of

performance is based on the average reward and order acceptance rate. Order acceptance

rate is the number of accepted orders divided by the total number of arrival orders. The

performance of QLA, FCFS and threshold heuristic are tested in five scenario. The results

are shown in Table 3.2. The detailed design and outcome of the five simulation scenarios are

illustrated in the following sections.

Table 3.2: Comparison results of average reward and acceptance rate earned by QLA vs.
Heuristic and FCFS for the five scenarios at 95% confidence interval

QLA Heuristic FCFS
Average Acceptance Average Acceptance Average Acceptance

Scenario reward rate reward rate reward rate
1 61.37±1.81 0.31±0.02 54.36±0.18 0.42 ±0.01 52.92±0.23 0.42± 0.01
2 63.25±1.17 0.53±0.03 52.88±0.26 0.78±0.02 51.79±0.36 0.79±0.03
3 130.54±2.12 0.53±0.03 106.17±0.52 0.72±0.02 102.69±0.37 0.78±0.01
4 58.39±1.19 0.43±0.01 40.59±0.48 0.50±0.02 38.79±0.6 0.51±0.01
5 72.63±1.05 0.52±0.02 61.93±0.32 0.69±0.05 56.42±0.25 0.70 ±0.02
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3.4.1 Scenario 1: Baseline

In Table 3.1, the input parameter values for this baseline scenario are given. In Figure 3.3,

the learning curve for this baseline scenario is shown for the QLA policy using the average

reward obtained from the accepted orders. The learning curves are obtained by averaging

ten independent simulation runs. The comparison is made among the QLA, FCFS and the

modified threshold heuristic b ≥ 6. Parameter b is defined as the revenue per requested unit

of capacity for an accepted order. In the Heuristic, we accept the order with b larger than 6

and give the priority to the order with the bigger b value.
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Figure 3.3: Average reward leaning curves for baseline scenario (QLA compared to FCFS
and a threshold heuristic with b=6)

As shown in Figure 3.3, it is clear that the QLA outperforms both the Heuristic and

FCFS policies on profitability. However, it is quite interesting that in the learning phase,

the average reward are much greater than the average reward obtained after the learning
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phase. This phenomenon can be explained by the high lost opportunity cost and limited

production capacity. At the the beginning of simulation, almost every arrival order can be

accepted. But after several iterations, the learning agent has to reject some orders due to the

limited production capacity. According to the results in Table 3.2, the QLA is very selective

on orders because it has the lowest order acceptance rate. Although the QLA has a very low

order acceptable rate, it generates the highest average reward compared with the Heuristic

and FCFS policies, which indicates the superior performance of the QLA in order selection,

pricing and lead-time decisions.

3.4.2 Scenario 2: Demand variation

In order to test the adaptability of the proposed QLA, we make a variation on the customer

demands. In the demand variation scenario, the demand rates of order type 1, 2 and 3 are

reduced to 1/20, 1/40 and 1/60, respectively. The rest of the input parameters are same as

these in baseline scenario.

Variations in demand rates are quickly detected by the QLA by accepting more orders.

This situation triggers a resetting of the exploration strategy of the QLA and a new leaning

curve is shown in Figure 3.4. After a learning phase, the QLA outperforms the Heuristic

and FCFS, which obtains the highest average reward. However, compared to the baseline

scenario, the average reward of the QLA increases while the average rewards of the Heuristic

and FCFS reduce slightly. It is interesting that with the increase in demand, the average

rewards gained from the Heuristic and FCFS decrease because many profitable orders are

rejected. The QLA demonstrates the adaptability on the demand variation. It is worth
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Figure 3.4: Average reward leaning curves for demand variation scenario (QLA compared
to FCFS and a threshold heuristic with b=6)

noting that most of the arrival orders can be accepted when the demand rate are lower. In

Table 3.2, the order acceptance rates for three policies are increased compared to the baseline

scenario.

3.4.3 Scenario 3: Capacity variation

In each production period, the available production capacity is very critical for the MTO

manufacture in light of profitability. The order selection, pricing and lead-time selection

policy should be response to the capacity variation. For example, if the capacity increases,

the policy needs to select more orders from the rejection set. In this capacity variation

scenario, we increase the available production capacity to 160 hours. The rest of the input
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parameters are same as these in baseline scenario. The learning curves are shown in Figure

3.5.
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Figure 3.5: Average reward leaning curves for capacity variation scenario (QLA compared
to FCFS and a threshold heuristic with b=6)

With the increase in capacity, the average rewards generated by three policies increase

significantly. More specifically, the average rewards obtained by the QLA, Heuristic and

FCFS increase by 111%, 95% and 94%, respectively. Therefore, the QLA gains the highest

improvement in profit generation compared with the other two policies. It also indicates

that the QLA is more sensitive to the increase in capacity and takes full advantage of the

capacity improvement by its learning ability.
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3.4.4 Scenario 4: Single price

Market conditions constantly change order profitability. If there is only a single price can be

chosen for each type of order. The order acceptance and lead-time selection policy should

be able to detect to adapt to these changes. According to the study of Charnsirisakskul

et al. (2006) , the multiple price is more profitable than a single price for a order. We choose

the lowest price level as the single price for each order. For instance,the different types of

order can be quoted different price sets in baseline scenario while different order only can be

quoted one price set. The rest of the input parameters are same as these in baseline scenario.

The learning curves are shown in Figure 3.6.
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Figure 3.6: Average reward leaning curves for single price scenario (QLA compared to FCFS
and a threshold heuristic with b=6)

As shown in Table 3.2, the change to single low price cause the average rewards reduce

and the acceptance rates increase compared with the baseline scenario. Clearly, the QLA
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consistently outperforms the other two policies with highest average reward and acceptance

rate.

3.4.5 Scenario 5: Due-date negotiation

Due-date negotiation is modeled here as offering customer some compensation on order

late delivery (i.e., lateness penalty cost for the manufacturer) if customers postpone their

latest acceptable due-dates. In this scenario, the latest acceptable due-date for all orders

are generated from Uniform[25, 35]. The rest of the input parameters are same as these in

baseline scenario. The learning curves are shown in Figure 3.7.
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Figure 3.7: Average reward leaning curves for due-date negotiation scenario (QLA compared
to FCFS and a threshold heuristic with b=6)

With the due-date negotiation, the average rewards and the order acceptance rates for

three policies increase. More specifically, the average reward of the QLA, Heuristic and
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FCFS increase by 18%, 14% and 7%, respectively. It is clear that the QLA obtains the

highest improvement in profit compared with the other two policies. It indicates that the

QLA makes better use of the advantages of the due-date negotiation and generate more

profit than the other two policies.

3.5 Summary

In this chapter, we investigate the pricing, lead-time, scheduling and order acceptance deci-

sions in a MTO manufacturing system with stochastic demands. The goal of this study is

to maximize the long-run average profit (reward). We proposed a RL-based algorithm, the

QLA, to solve this problem. To deal with many sources of uncertainty in a MTO manufac-

turing system, we set up five scenarios including the baseline, the demand variation, capacity

improvement, single price selection and due-date negotiation. In all these five scenarios, the

QLA outperforms the other two benchmarking policies, the Heuristic and FCFS. Although

the QLA has the lowest order acceptance rate in all five scenarios, it can generate the highest

average reward among three policies.

The importance of developing joint optimization on the pricing, lead-time, scheduling

and order acceptance decisions under uncertainty using the QLA have been highlighted for

MTO. It is obvious that the QLA not only is highly selective on order acceptance but also

adapts quickly to the environmental changes. The QLA is very effective to quickly learn

which order is worth accepting in order to accept more profitable orders within the limited
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production capacity. Therefore, the QLA can be implemented in a MTO manufacturing firm

for revenue management.
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Chapter 4

Revenue management for a

Make-to-Stock System

4.1 Introduction

We consider a problem that is motivated by a situation commonly found in make-to-stock

(MTS) manufacturing. The system consists of a single machine in which the demands and

the processing times for N types of products are random. The prices, sequence-independent

setup times and costs are explicitly considered and may have different values for various

types of products. If stock is on-hand, the demands can be fulfilled immediately. In shortage

situations, orders can be backordered to be fulfilled from future arriving supply. The problem

is to decide when, what, and how much (the lot size) to produce so that the long-run average

profit. The total profit equals to the total revenue minus the total cost including setup,

holding and backorder costs.
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The problem is related to the stochastic economic lot scheduling problem (SELSP). The

objective in SELSP, however, is to minimize the long-run average total cost. The SELSP is

the stochastic version of economic lot scheduling problem (ELSP), which is NP-hard (Hsu,

1983). The typical ELSP is concerned with scheduling the production of several products

on a single machine with the objective of minimizing the long-run average holding and setup

costs. Despite the vast literature devoted to the ELSP (see the survey paper by (Elmaghraby,

1978; Raza et al., 2006)), the ELSP has not been solved in general. Not surprisingly, the

SELSP appears to be analytically intractable when the demands arrive in a random fashion

and the production rates also are random. The main challenge in the SELSP is how to

dynamically schedule the products on a single machine in the face of unpredictable, dynamic

and random demands so that the long-run average cost is minimized. In contrast to the

ESLP, it is hard to get the predetermined cyclical production sequence and lot sizes, for the

SELSP, due to the stochastic environment (e.g., stochastic demands and processing rates)

since it is important to be responsive to the dynamic changes in this environment. In our

cost structure, the presence of setup costs and times in combination with the stochastic

environment adds to the difficulties of the problem. On the one hand, short cycle lengths

are desirable because they provide frequent production opportunities for the various products

to react to the stochastic environment. But, on the other hand, short cycle lengths increase

the setup frequency, which not only reduce capacity available for production and hinders the

timely fulfillment of demand, but also increases setup costs.

Despite its difficulty, this problem has been the subject of a recent flurry of activity. A

range of quantitative techniques have been applied to the SELSP in the literature. Some

66



authors have adopted a deterministic analysis of the ELSP to construct simple control rules

for the SELSP. For example, Leachman and Gascon (1988) developed a dynamic cycle lengths

heuristics (DCL), for the problem with both setup costs and times. Their control policy

is based on the solution of an ELSP, using the basic period formulation of the ELSP and

assuming equal lot sizes for every run of a particular item to determine the target cycle times.

Gallego (1990) employed a cyclic production sequence that was computed using the results

of (Gallego and Roundy, 1992) for the deterministic ELSP with backorder costs. Bourland

and Yano (1994) use a static continuous review control policy in a cyclical schedule and

developed a two-level approach including a planning model and a control model. However,

other authors have directly incorporated the stochastic elements of the problem and applied

non-linear optimization, queueing analysis, or simulation to construct a control approach.

Qiu and Loulou (1995) model the SELSP with Poisson demand and deterministic processing

times as a semi-Markov decision process (SMDP) and use a successive approximation scheme

over a truncated state space to compute near-optimal policies in the two-product case. Sox

and Muckstadt (1997) address the stochastic lot-size model directly, developing heuristic

solutions. Anupindi and Tayur (1998) consider a class of periodic base stock policies and used

a simulation-based approach to obtain good base stock levels for a variety of performance

measures. The strength of their approach was that it is more general than the control

policies described previously. They consider a given cyclic production sequence and use

an optimization-based search procedure to determine base stock levels for different cost and

service objectives. Paternina-Arboleda and Das (2005) first apply the reinforcement learning

(RL) algorithm named relaxed-SMART (Semi-Markov Average Reward Technique) to the
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SELSP problem with stochastic demands, constant processing times and setup times. In

their work, the relaxed-SMART algorithm outperformed the various cyclical policies.

Our problem is more challenging than the SELSP in that we consider not only the

setup time, setup, holding and backorder costs but also the prices so that the objective is

to maximize the long-run average total profit. There is only limited research available on

the revenue management (RM) in MTS manufacturing. RM applications in manufactur-

ing largely focus on make-to-order (MTO) production environments. This is intuitive due

to the correspondence between production capacities and perishable assets, which are the

difficulties in applying RM in the service industries. In the context of pricing and order

acceptance control, MTS queues, which combine aspects of queueing and inventory models,

have been studied. Li (1992) allows the customer arrival rate to depend on the congestion

and exogenous price, and derives optimal busy/idle policies for competing manufacturers.

Carr and Duenyas (2000) consider a two-class queue with a make-to-stock class and a MTO

class, where the controller sequences the jobs and makes accept/reject decisions on the MTS

class. A closely related paper is the paper written by Caldentey and Lawrence (2006) who

consider a single-product MTS manufacturing system in which the manufacturer’s control

problem is to select the optimal long-term contract price as well as the optimal production

(i.e., busy/idle) and electronic-order admission policies to maximize revenue minus inventory

holding and backorder costs. All of these models assume that no set-ups (e.g. setup times

and costs) are required to switch from one type of product to another. However, the problem

of set-ups are prevalent in many industries because facilities that operate in a MTS mode

typically produce standardized products that require set-ups. In most situation, the setup
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time problem is more realistic than the setup cost problem, but is also less amenable to

analysis. The setup cost problem, however, may be relevant for manufacturing systems that

have internalized their setup times; that is, they incur significant material, labor, and/or

capital costs to greatly reduce their switchover times (Markowitz et al., 1995). Therefore, in

order to represent the real-world problem, we consider the setup times and costs. In order to

make real-time decisions that react to the stochastic demands and processing times, we use

a discrete control approach with the dynamic sequencing based on a combination of discrete

event simulation and reinforcement learning (RL).

This chapter offers three contributions. Firstly, we develop a mathematical model to

describe the problem for further investigation. Secondly, we propose two RL algorithms.

One of our RL algorithms is a Q-learning algorithm for the Semi-Markov decision process

(QLS), which is developed from Q-learning algorithm (Gosavi, 2004b). In order to improve

the performance of QLS, we develop QLIH by integrating a heuristic with QLS. Thirdly, a

simulation model in Arena R© is developed to test the QLIH and QLS compared with the

other two benchmarking policies, Brownian policy and FCFS policy in the study of (Wein,

1992).

The rest of the chapter is organized as follows. Section 4.2 develops a mathematical

model for the problem. Section 4.3 addresses the control state-action space of the problem

and proposes two RL algorithms. Section 4.4 presents two benchmarking policies, numerical

examples and simulation results. Section 4.5 gives the summary and proposes future research.
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4.2 Model Formulation

The problem in this study involves a single machine and N types of products. The setup

times are separate from the processing times and independent of job sequences. We assume

that raw materials are always sufficient and available for production (e.g., raw materials

for product i can be obtained whenever the production of product i occurs) and we do not

consider the procurement and holding costs for the raw materials. Such an assumption is

common in the literature (Paternina-Arboleda and Das, 2001; Wein, 1992); for example, Wein

(1992) assumes there are enough raw materials for production in a multiclass queue. Each

product may have a unique demand pattern and processing rate distribution. Demands

for various products are stationary and mutually independent stochastic processes. Let

D(t) = [Di(t)], for i = 1, · · · , N . The demand for product i follows the renewal process

Di(t), which is the number of demands for type i up to time t. The demands that cannot

be satisfied directly from stock are backordered and will be filled whenever the products

are ready. The processing times for product i are expressed by the renewal process Pi(t),

which is the number of finished products i completed up to time t assuming the machine is

continuously producing product i in the interval [0, t].

We present the decisions in our model in the form of cumulative control process. The

system state is a vector of the inventory position of each product. The inventory position

could be positive, implying that the on-hand inventory is available, or it could be negative,

implying there is no inventory and its absolute value is at the level of backorder. Let

Li(t) denote the inventory position of type i product in inventory at time t. The vector
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L(t) = [Li(t)] for i = 1, · · · , N denotes the system state at time t, representing the dynamics

of the inventory process. The inventory position for product i, Li(t) cannot exceed the

basestock level Lmaxi , that is,

Li(t) ≤ Lmaxi (4.1)

where Lmaxi represents basestock inventory level. If the inventory level Li(t) reaches the

basestock level Lmaxi , the production for product i is stopped. If Li(t) reaches zero, future

demands are backordered. The agent must make a scheduling decision whenever the system

state changes either because of production completion or demand arrival.

The allocation process Ti(t) is the cumulative amount of time that the machine produces

type i product in [0, t]. The vector T(t) = [Ti(t)] denotes a scheduling policy which is the

allocation of the time over [0, t] on processing each type of product. As in the study of

Harrison (1988), a scheduling policy T(t) has two properties: (1) T(t) is nondecreasing

and continuous. (2) T(t) is nonanticipating with respect to L, which implies that the agent

cannot predict future demands or processing times. Assuming T(0) = 0,D(0) = 0 and

L(0) = 0. For i = 1, · · · , N and t ≥ 0,

Li(t) = Pi(Ti(t))−Di(t) (4.2)

Let Qi(t) denote the number of setups for processing product i during the time interval

[0, t]. Qi(t) is determined by the scheduling policy T. Considering the machine idle times
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and setup times, we have the following constraint:

N∑
i=1

Ti(t) +
N∑
i=1

Qi(t)sti ≤ t (4.3)

where sti denotes the setup time for product i. In our model, the decision variables are Li(t),

Ti(t) and Qi(t) for i = 1, · · · , N .

The objective of the problem is to minimize long-run average profit, i.e., the total profit

minus the sum of setup, holding and backorder costs, per unit time over a time horizon. Let

φ denote the planning time horizon. Let ri denotes the unit price of product i. Let hi and bi

denote the unit holding and backorder cost of product i per unit time, respectively, for i =

1, · · · , N . Let sti and sci denote the sequence-independent setup time and the corresponding

cost, respectively, that are incurred when the production switches from products i′ to i for

i′ 6=i and i = 1, · · · , N . The problem is to find a policy T to minimize the long-run average

profit. Recalling that if Li(t) < 0, we have the backorder cost |bLi(t)| and if Li(t) > 0, we

have the holding cost hLi(t); thus the problem can be formulated as

max lim
φ→∞

1

φ

∫ φ

0

N∑
i=1

(
riDi(t)− hi max{0, Li(t)}+ bi min{0, Li(t)} − sciQi(t)

)
dt (4.4)

subject to constraints (4.1) to (4.3).
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4.3 The RL Algorithms

In our RL algorithms, the environmental model includes the N types of products that need

to be processed, associated with a basestock inventory level and a maximal backorder level,

so as to perform the simulation in a limited state space. The learning agent is the single

machine that decides which type of product to produce whenever the machine is available.

The response from the environment is the immediate rewards (profits) incurred by executing

the chosen action from an action set. In order to design the RL algorithms, we first define the

control state-action space in subsection 4.3.1. Then, subsections 4.3.2 and 4.3.3, we present

the proposed RL algorithms, QLS and QLIH.

4.3.1 The control state-action space

In order to simulate our model formulated in Section 4.2, we discretize the continuous time

system to decision-making epoch. At each decision-making epoch (i.e., simulation iterations),

the agent decides to take action a from an action set or action space A ={no production,

produce product 1, · · · , produce product N}. The control state-action space is defined as

a set LA = {(L, a)} (a ∈ A), in which each element is a combination of inventory levels

of N types of products and the current action. We define the minimum inventory level or

maximum backorder level as Lmini . Since the inventory level Li(t), is allowed to be in the

range of [Lmini , Lmaxi ] in the simulation, there are (N + 1)
∏N

i=1(L
max
i − Lmini + 1) vectors in

the state-action space. For example, suppose that there are three types of products, and

the target basestock levels and maximum backorder levels are (50, 50, 50) and (49, 49, 49),
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respectively. Then, the total number of vectors in the control state-action space is (3 +

1)
∏3

i=1(50− (−49) + 1)= 4 · (50 + 49 + 1)3 = 4× 106.

4.3.2 Q-learning Algorithm for Semi-Markov Decision Processes

(QLS)

Many practical sequential decision making problems have underlying probability structures

that cannot simply be characterized by Markov chains. For SMDPs, decision epochs are

not restricted to discrete time epochs (e.g., in MDPs) but are all time epochs at which

the system transits to a new decision-making state (Das et al., 1999). That is, the system

state may change several times between two consecutive decision epoch. In our problem,

between two consecutive decision epoch (e.g., two decision points upon the completion of

the production), the system state can be changed many times as the new demands arrive.

Therefore, the problem can be modeled as an SMDP. For our SMDP, we use one of RL

algorithms, the Q-learning algorithm for SMDP.

The following notation is used in describing our QLS in Algorithm 4:

m : current decision epoch index

tm : simulation time at the mth decision-making epoch

maxtime : maximum time of an iteration

A : action space {produce product 1, · · · , produce product N, no produc-

tion}

a: an action in action space A
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Qm(L, a) : action value (Q function value) for state-action pair (L, a) at the

mth decision-making epoch

am : the action taken at the mth decision-making epoch

cm : cumulative reward at the mth decision-making epoch

ρm : average reward at the mth decision-making epoch

αm : the first learning rate at the mth decision-making epoch

βm : the second learning rate at the mth decision-making epoch

pm : probability of exploratory at the mth decision-making epoch

Lmini : the lower bound for inventory of product i (its absolute value is the

maximal backorder level

Lmaxi : the upper bound for inventory of product i (i.e., the basestock level)

τ(L,L’, a) : the transition time from the current state L to the next state

L′ due to action a

r(L,L’, a) : the immediate reward earned as a result of taking action a in

current state L and leading to next state L’
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Algorithm 4: QLS

m = 0, Qm(L, a) = 0, ∀L ∈ LA. Choose the initial state (inventory levels of N1

types of products) arbitrarily. tm = 0, cm = 0, ρm = 0, pm = αm = βm = 0.1.
while tm < maxtime do2

With probability (1− pm), choose an action amax that maximize Qm(L, a);3

otherwise randomly choose an action from A. Denote the chosen action as ã
if Lmini ≤ Li ≤ Lmaxi ,∀i then4

am ← ã5

else6

while Li < Lmini or Li > Lmaxi ,∀i do7

Randomly choose an action from {A\ã}. Denote the chosen action as ã8

end9

am ← ã10

end11

Let the current and next state be L and L’, respectively.12

Qm+1(L, am)←13

(1− αm)Qm(L, am) + αm
(
r(L,L’, am)− ρmτm(L,L’, am) + maxb∈AQm(L’, b)

)
if am = amax then14

tm+1 ← tm + τ(L,L’, am)15

cm+1 ← cm + r(L,L’, am)16

ρm+1 ← (1− βm)ρm + βm
tmρm+r(L,L’,am)

tm+1
17

else18

tm+1 ← tm19

cm+1 ← cm20

ρm+1 ← ρm21

end22

αm+1 ← αm/tm+123

βm+1 ← βm/(m+ 1)24

pm+1 ← pm/(m+ 1)25

m← m+ 126

end27

The learning rate αm at any decision epoch for each state-action pair depends on 1/tm,

which is the reciprocal of the number of times the state-action pair tried before that decision-

making epoch, as seen in line 19 in Algorithm 4. As seen in line 24, βm depends on 1/m,

which is the reciprocal of the number of decision-making epochs according to (Gosavi, 2004b).
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In the QLS, step 1 (line 1) initializes the simulation parameters and chooses the initial

state randomly. Then, at the iteration m, lines 2 to 3 choose an action amax that maximizes

the value of Qm(L, a) with a probability (1− pm); otherwise a random (exploratory) action

from A with equal probabilities is chosen. RL involves a conflict between exploitation and

exploration. When deciding which action to take, the RL agent has to trade-off two conflict-

ing goals: it has to exploit what it has already learned in order to have a high reward, and

it has to behave in new ways, which are to explore and to learn more. In order to balance

these two objectives, there is an exploratory rate in RL algorithms. We use the exploratory

rate pm which decreases with the simulation iterations to guarantee the convergence of QLS

as in line 21. Step 2 (lines 4 to 11) checks the feasibility of the chosen action. If it is feasible,

then it will be executed; otherwise, another one from the action set will be chosen randomly.

Then, line 13 updates the reward value Qm+1(L, a) for the pair of (L, a). τ(L,L’, a) is

the transit time between two states, that is recorded and stored in the simulation model.

For example, if the chosen action is “produce product i”, it records the production start

time and completion time as the simulation is running. Therefore, the transition time is the

processing time, which is updated at each decision-making epoch. Regarding the immediate

reward r(L,L’, a), the simulation model calculates and stores the total rewards at each

decision-making epoch and the immediate rewards is the difference in total rewards between

two consecutive decision-making epochs.

If a non-exploratory (nonrandom) action is chosen, lines 14 to 17 update total time tm,

update total reward cm and update average reward ρm as in lines 14 to 17. Otherwise, as in

lines 19 to 21 the total time tm, update total reward cm and update average reward ρm remain
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the same values as they are in the m−1 decision-making epoch. In the SMDP version of the

algorithm, the update equation for reward value Qm+1(L, a) and average reward value ρm+1

has a Robbins-Monro version that also makes use of the renewal reward theorem (Gosavi,

2004b). The last step (lines 23 to 26) sets current state L to new state L’ and updates the

decision epoch number m, learning rates αm and βm, and probability of exploratory pm. The

simulation continues until the termination criterion (line 2) is met.

4.3.3 Q-learning with Learning-Improvement Heuristic (QLIH)

In the QLS, the learning agent has no knowledge on the action choice rule at the beginning

of learning because the reward value matrix that stores the reward values is a zero matrix;

thus in the QLIH, we train its knowledge and consequently improve the learning process

through a heuristic. In the other words, we combine the heuristic with QLS.

The heuristic function is used in the action selection rule, defining which action a must

be executed when the agent is in state L according to the heuristic. The action selection

rule used is a modification of the standard ε− greedy rule used in Q-learning. The heuristic

function is defined as follows:

π(L) =


arg maxa[Q(L, a) + ξH(L, a)] if p < 1− pm

arandom otherwise

(4.5)

where π(L) is the policy used in state L, ξ is a real variable (e.g., 0.1) used to weight the

influence of the heuristic, p is a random number generated from a distribution with uniform

probability in (0,1), and arandom is a random action selected among the other possible actions.

78



The value of the heuristic function H(L, a) must be higher than the variation among the

Q(L, a) so that it can influence the choice of actions. According to (Bianchi et al., 2004), it

is defined as follows:

H(L, a) =


maxaQ(L, a)−Q(L, am) + η if am = πH(L)

0 otherwise

(4.6)

where η is a small real value (e.g., 0.01) and πH(L) is the action suggested by the heuristic

at state L.

For example, if the agent can execute four different actions when in state L, the values

of Q(L, a) for the actions are (1.1 1.0 0.9 1.3), and the action that the heuristic suggests is

the second one. If η=0.01, the values to be used are H(L, 2)=0.31, and zero for the other

actions.

Algorithm 5 presents the QLIH algorithm, which makes use of a heuristic function in line

13 to improve the Q-learning process.
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Algorithm 5: QLIH

m = 0, Qm(L, a) = 0, ∀L ∈ LA. Choose the initial state (inventory levels of N1

types of products) arbitrarily. tm = 0, cm = 0, ρm = 0, pm = αm = βm = 0.1.
while tm < maxtime do2

With probability (1− pm), choose an action amax that maximize3

Q0(L, a) + ξH0(L, a); otherwise randomly choose an action from A. Denote the
chosen action as ã
if Lmini ≤ Li ≤ Lmaxi ,∀i then4

am ← ã5

else6

while Li < Lmini or Li > Lmaxi ,∀i do7

Randomly choose an action from {A\ã}. Denote the chosen action as ã8

end9

am ← ã10

end11

Let the current and next state be L and L’, respectively.12

Call heuristic13

Update the value of Hm+1(L, a),∀a ∈ A using equation (4.6)14

Qm+1(L, am)←15

(1− αm)Qm(L, am) + αm
(
r(L,L’, am)− ρmτm(L,L’, am) + maxb∈AQm(L’, b)

)
if am = amax then16

tm+1 ← tm + τ(L,L’, am)17

cm+1 ← cm + r(L,L’, am)18

ρm+1 ← (1− βm)ρm + βm
tmρm+r(L,L’,am)

tm+1
19

else20

tm+1 ← tm21

cm+1 ← cm22

ρm+1 ← ρm23

end24

αm+1 ← αm/tm+125

βm+1 ← βm/(m+ 1)26

pm+1 ← pm/(m+ 1)27

m← m+ 128

end29

In the heuristic in line 13 of Algorithm 5, we consider the set of products that are currently

in danger of being backordered (e.g., Li < 1, i = 1, · · · , N) and gives production priority to

the largest value of index biµi−kisci, where µi is the processing rate of product i, and ki is 0
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if the last action is producing i (i.e., no setup if choosing to produce product i); otherwise, 1.

If no product is in danger of backorder, we will choose no production at this decision-making

epoch. Our policy gives priority to the products (among the ones that are in danger of being

backordered) with the maximum value of the index biµi− kisci: these products are quick to

process and expensive to backorder while reducing setup costs (frequency).

QLIH uses the same α, β and p values as the QLS. According to Bianchi et al. (2004),

the values of ξ and η are set to be 0.1 and 0.01, respectively. The proposed QLIH is different

from QLS only in the method of carrying out the exploration. The heuristic function value

has been considered in making the action choice in the decision-making epoch while QLS

only considers the value of Qm(L, a). QLIH inherits some good characteristics of the Q-

learning algorithm used in QLS, for example, the free choice of action from an action set

and its convergence. The additional advantage is that it can also learn from the heuristic to

reduce the arbitrariness in selecting action and thus reduce the search space of Q-learning.

If the heuristic sometimes is not appropriate due to the stochastic environment, QLIH still

converges, but slowly.

4.4 Simulation Experiments

The proposed RL algorithms were tested on an example with three different products pro-

cessed on a single machine. We conducted a series of simulation experiments to evaluate the

performances of QLS and QLIH and compared their performances with two existing policies,

Brownian and FCFS policies. None of these four policies allow preemption of service. One
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policy prioritizes jobs in an FCFS manner and the other control policy was developed from

Brownian approximation (Wein, 1992) in which the scheduling problem is approximated by

a dynamic control problem involving Brownian motion. The four policies QLIH, QLS, Brow-

nian and FCFS are all modeled in ARENA R© simulation software with the same experiment

parameters and simulation condition.

4.4.1 Experiment Design

Table 4.1 shows the setting of seven factors for our simulation experiment, including price,

setup time, production rate, holding cost, backorder cost, setup cost and demand rate. Based

on the values in (Wein, 1992), we choose two levels for each of six factors. Each factor was

a three-dimension vector which contained parameters for three different products. Then, we

set up a seven-factor two-level factorial design, as shown in Table 4.1, requiring a total of 32

(2(7−2)) data points. Three sets of cases were picked, as our illustrated examples shown in

Table 4.2.

Table 4.1: Parameters for seven-factor two-level factorial design

Price Production rate Costs(dollar/unit-time) Setup cost
Level (dollar/unit) Setup time (units/time) Holding Backorder (dollar/setup) Demand rate

50 0.01 1 1 1 1.6 0.3
1 60 0.02 1/2 1 1 1 0.15

70 0.03 1/3 1 1 1.5 0.1
70 0.1 2 2 2 4.8 0.15

2 80 0.2 1 2 2 3 0.075
90 0.3 2/3 2 2 4.5 0.05

Wein (1992) did not consider prices, setup times and costs; thus, we assume constant

prices, setup times and costs. The following are the assumptions in the test examples:
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Table 4.2: Tested parameters for the illustrated numerical examples

Price Production rate Costs(dollar/unit-time) Setup cost
Case (dollar/unit) Setup time (units/time) Holding Backorder (dollar/setup) Demand rate

50 0.1 1 2 2 4.8 0.15
6 60 0.2 1/2 2 2 3 0.075

70 0.3 1/3 2 2 4.5 0.05
50 0.01 2 2 2 4.8 0.15

12 60 0.02 1 2 2 3 0.075
70 0.03 2/3 2 2 4.5 0.05
70 0.1 2 1 2 1.6 0.15

16 80 0.2 1 1 2 1 0.075
90 0.3 2/3 1 21 1.5 0.05

� The machine is modeled as a multiproduct queue in which the machine operates con-

tinuously and can only process one product at a time. Preemption is not allowed.

� The release times of all products are zero and time/sequence-independent setup cost

and time exist.

� Demand for each product is an arbitrary point process which is a Poisson process.

� The processing time for each product is modeled as an Exponential distribution.

� Each product has a constant price, setup time, setup cost, holding cost and backorder

cost.

� Customers (orders) are homogeneous. For the same product type, service is given on a

first-come-first-serve (FCFS) rule.

A search was performed to find the optimal combination of basestock levels for all prod-

ucts in the simulation model to get the optimal objective function because the decision agent

cannot decide the basestock target inventory levels. This was obtained by using a commer-

cial optimization tool (OptQuest R©), embedded in the ARENA R© simulation software. The
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optimization objective function is described in OptQuest and the basestock levels of all prod-

ucts were set as control variables. Then, it searched for the values of controls that minimize

the long-run average total profit.

4.4.2 Computational Results

The value for performance measure, which is the long-run average total profit was based on

twenty replications. Each replication ran 20,000 time units where the average total profit

converged. Each replication started with an arbitrary system state (inventory position) and

ended when simulation time was reached. The total profit (consisting of revenue minus

holding cost, backorder cost and setup cost) incurred per unit of time was observed for

each replication. The mean value of average total profit and 95% confidence interval of this

quantity were calculated for each case and policy. The simulation results are shown in Table

4.3.

The results show that the proposed QLIH outperforms QLS, Brownian and FCFS policies

in all cases. Furthermore, QLS is also consistently better than Brownian and FCFS policy.

An interesting finding is that Brownian policy is not an effective policy with the presence of

setup cost and time. The optimality of Brownian policy has been proved by (Wein, 1992)

and it performs effectively when the product is only associated with the holding cost and

backorder cost. Under this condition, Brownian policy is better than the FCFS in minimize

the total cost. However, with the existence of the setup cost and time, it is not always the

case because Brownian policy may increase the setup and thus decrease the profit (e.g., case

6, 12 and 16 in Table 4.2). It is clear that Brownian policy is not a robust policy in any case.
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Table 4.3: Comparison results of average profit incurred by QLIH vs. QLS, Brownian and
FCFS for the three products at 95% confidence interval

Average profit (95% C.I.) in dollars
Case QLIH QLS Brownian FCFS

1 36.61(±3.02) 27.50 (±3.46) 22.1 (±1.32) 19.53 (±1.42)
2 38.85 (±3.65) 30.91 (±3.07) 19.32 (±1.25) 18.51 (±1.84)
3 28.66 (±2.99) 18.50 (±1.65) 15.21 (±1.03) 12.37 (±0.97)
4 55.42 (±3.82) 47.18 (±3.69) 38.59 (±1.77) 31.73 (±1.32)
5 49.23 (±3.12) 40.03 (±3.27) 25.90 (±1.35) 23.11 (±1.67)
6 19.33 (±2.86) 15.35 (±2.06) 10.7 (±1.01) 12.81 (±0.98)
7 44.40 (±3.95) 36.31 (±3.98) 28.63 (±1.80) 25.10 (±1.35)
8 40.90 (±3.03) 31.58 (±3.35) 18.05 (±1.97) 17.20 (±1.53)
9 44.52 (±3.53) 35.60 (±3.02) 21.12 (±1.86) 22.7 (±2.01)
10 30.33 (±2.21) 25.19 (±2.03) 19.27 (±0.98) 17.09 (±0.90)
11 61.03 (±2.06) 51.89 (±2.15) 34.37 (±1.16) 29.73 (±1.04)
12 63.26 (±4.51) 54.73 (±4.03) 40.11 (±2.05) 42.11 (±2.15)
13 33.70 (±2.05) 21.57 (±1.28) 17.20 (±0.95) 15.36 (±0.82)
14 34.41 (±2.15) 28.00 (±2.32) 23.09 (±1.05) 19.21 (±0.98)
15 27.93 (±1.23) 21.53 (±2.10) 12.90 (±0.79) 10.81 (±0.97)
16 69.50 (±4.20) 58.16 (±4.06) 40.29 (±1.22) 43.60 (±1.80)
17 58.32 (±3.97) 43.10 (±3.64) 30.50 (±1.83) 27.30 (±1.38)
18 19.99 (±1.84) 13.10 (±0.91) 10.12 (±0.79) 9.23 (±0.86)
19 76.65 (±3.87) 68.02 (±3.25) 47.22 (±2.57) 42.00 (±1.53)
20 43.99 (±2.78) 35.33 (±1.87) 29.21 (±1.15) 26.35 (±1.43)
21 82.26 (±4.38) 73.40 (±3.50) 58.31 (±2.89) 52.61 (±2.38)
22 18.02 (±1.10) 14.90 (±0.87) 9.20 (±0.53) 8.32 (±0.76)
23 27.12 (±2.57) 21.10 (±1.36) 15.05 (±0.86) 12.16(±0.22)
24 38.03 (±2.26) 32.19 (±1.97) 23.20 (±1.30) 21.49 (±1.27)
25 30.15 (±1.70) 22.60 (±1.83) 18.55 (±1.21) 15.30 (±0.79)
26 68.33 (±2.33) 59.40 (±2.50) 47.91 (±1.79) 44.20 (±1.87)
27 96.76 (±4.29) 85.24 (±3.56) 76.10 (±2.67) 72.63 (±2.96)
28 46.22 (±2.86) 37.18 (±1.84) 31.10 (±1.96) 27.76 (±1.45)
29 63.72 (±2.91) 55.30 (±3.01) 39.21 (±1.57) 31.56 (±1.21)
30 39.91 (±1.86) 25.82 (±1.43) 18.30 (±0.96) 16.02 (±0.74)
31 39.74 (±1.95) 30.15 (±1.79) 25.16 (±0.86) 20.72 (±0.95)
32 50.81 (±2.73) 42.22 (±2.60) 35.65 (±1.87) 31.37 (±1.90)

Corresponding to QLS and QLIH, respectively, Figure 4.1 shows two learning curves for

the decision agent for case 1, presenting the average profit obtained by the decision agent

in each decision-making epoch. Computational convergence was achieved long before the

simulation run ended. The convergence plot appears to be smooth. It is clear to see that
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Figure 4.1: The learning curves of a decision agent for case 1

QLS had worse performance than QLIH after the convergence although they had a similar

performance at the beginning of the simulation.

4.4.3 Sensitivity Analysis

Since there are several factors that can affect production scheduling decisions, it is imperative

for the decision maker to know what factors most critically influence the average profit.

To address this issue, we study seven factors, namely price, setup time, production rate,

holding cost, backorder cost, setup cost and demand rate. The ANOVA (analysis of variance)

performed on the 32 pieces of data obtained from the factorial experiment is shown in Table

4.4. From the ANOVA, it can be seen that four factors, price, producton rate, setup cost
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and setup time, were significant at a 95% confidence interval with respect to the average

profit obtained.

Table 4.4: Analysis of variance (ANOVA) results: Analysis performed at 95% confidence
interval

Source of variation Degree of freedom (DF) Sums of squares (SS) F-ratio Probability level
Price 1 2406.52 13.11 0.0001

Setup time 1 1101.73 6 0.0219
Production rate 1 1322.91 7.21 0.0129

Holding cost 1 0.58 0 0.9558
Backorder cost 1 67.88 0.37 0.5488

Setup cost 1 1035.53 5.64 0.0259
Demand rate 1 207.05 1.13 0.2987

Error 24 4404.29
Total (Adjusted) 31 11227.31
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Figure 4.2: Sensitivity of QLIH, QLS, Brownian and FCFS to price for case 10

As a follow-up to the ANOVA, we studied the sensitivities of QLIH, QLS, Brownian and

FCFS policies with respect to the price and production rate. For case 10 of Table 4.2, price
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Figure 4.3: Sensitivity of QLIH, QLS, Brownian and FCFS to production rate for case 10

is varied from a low level of (50, 60, 70) to a high level of (70, 80, 90) and setup time varied

from a low level of (1, 1/2, 1/3) to a high level of (2, 1, 2/3). The plots of the sensitivity

of the average profit obtained for case 10 in Table 4.2 with respect to the two main factors

(one at a time) are shown in Figures 4.2 and 4.3. In Figure 4.2 and 4.3, we find that QLIH

increases most quickly than QLS, Brownian and FCFS policies, with the increase in price

and production rate because QLIH is more sensitive to the increase in price and production

rate. These also partly explain the superior performance of QLIH.

4.5 Summary

In this chapter, we investigated RM in a MTS manufacturing. The objective function of the

problem is to maximize the long-run average total profit, which is the total revenue minus the
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holding cost, backorder cost and setup cost. We first developed a mathematical model of the

problem. Then, we proposed two RL algorithms, QLH and QLIH, to solve this problem. We

set up a seven-factor two-level design, and 32 cases were tested using QLIH, QLS, Brownian

and FCFS control policies. The results show that QLIH outperforms the other three policies

in all cases. Furthermore, we conducted a sensitivity analysis of the QLIH, QLS, Brownian

and FCFS policies with respect to the price and production rate. The results confirm the

superior performance of our proposed QLIH, which show that QLIH policy is more sensitive

to increase in significant factors, such as price and production rate.
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Chapter 5

Conclusions

5.1 Summarized Work

This dissertation studies the revenue management (RM) in the manufacturing industry in-

cluding make-to-order (MTO) and make-to-stock (MTS) production system. In Chapter 2,

we study a situation in which a firm faces price and lead-time dependent demand and must

jointly determine the price, lead-time and production schedule for a finite planning horizon.

The goal is to maximize the total profit gained in a finite planning horizon under the pro-

duction capacity, lead-time and demand constraint. The firm is a joint price and lead-time

decision maker who has power to influence the customers’ decisions for order quantities. In

Section 2.5, we develop a mathematical model, which can be solved by optimization software

CPLEX. In Section 2.4, we also develop a rounding heuristic to provide the initial feasible

solution to the MIP solver, which can solve the large-size instance in a considerably short

time with a satisfied solution. In the numerical experiment in Section 2.5, we study the
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problem under different demand scenarios with price and lead-time flexibilities. We find

that both of the price and lead-time flexibilities are useful to increase the average profit.

In addition, price and lead-time flexibilities are complementary. That is, without the price

flexibility, the effect of lead-time flexibility is more useful and vice versa. In general, when

the demand load is high, the high level of lead-time flexibility is more useful. These results

provide the insight regarding price and lead-time flexibilities for RM in MTO firms.

However, in MTO manufacturing, it is generally not possible to obtain accurate forecast

information about the timing and attributes of expected future orders over the planning

horizon. In Chapter 3, we investigate the pricing, lead-time, scheduling and order accep-

tance decisions in a MTO manufacturing system with stochastic demands. The goal of this

study is to maximize the long-run average profit. We proposed a reinforcement learning

(RL) algorithm, the QLA, to solve this problem. To deal with many sources of uncertainty

in a MTO manufacturing system, we set up five scenarios including the baseline, the demand

variation, capacity improvement, single price selection and due-date negotiation. In all these

five scenarios, the QLA outperforms the other two benchmarking policies, the Heuristic and

FCFS. Although the QLA has the lowest order acceptance rate in all five scenarios, it can

generate the highest average reward among three policies. It is obvious that the QLA is not

only highly selective on order acceptance but also adaptive to the environmental changes.

The QLA is very effective to select more profitable orders with the limited production ca-

pacity. Therefore, the QLA can be implemented in a MTO manufacturing firm to make

real-time decisions for RM.
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In Chapter 4, we consider a RM problem in a MTS manufacturing system which consists

of a single machine in which the demands and the processing times for N types of products

are random. The problem decide when, what, and how much to produce so that the long-run

average total profit, which is the total revenue minus the setup, holding and backorder costs,

is maximized.We first developed a mathematical model of the problem. Then, we proposed

two RL algorithms, QLH and QLIH, to solve this problem. We set up a seven-factor two-level

design, and 32 cases were tested using QLIH, QLS, Brownian and FCFS control policies.

The results show that QLIH outperforms the other three policies in all cases. Furthermore,

we conducted a sensitivity analysis of the QLIH, QLS, Brownian and FCFS policies with

respect to the price and production rate. The results confirm the superior performance of

our proposed QLIH, which show that QLIH policy is more adaptive to change in significant

factors, such as setup time and setup cost.

5.2 Potential Applications

The study results of this dissertation can be widely applied to the real world. Firstly, the

mathematical model and proposed rounding heuristic developed for joint pricing, lead-time

and scheduling decisions can be employed in RM by some MTO firms, where the customer

demands are predictable. Second, for some MTO firms where the customer demand is hard

to be predicted, the proposed RL algorithms can be applied to make the real-time decisions

on pricing, lead-time and production scheduling. Thirdly, the RL algorithms developed for
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MTS production systems can be used in RM of most MTS firms with the goal to maximize

the long-run average total profit.

5.3 Future Work and Directions

In the mathematical model in Chapter 2, the capacity allocation decision has not been

considered. In the future research, we may consider incorporating the capacity decision in

the model and studying the joint optimization decisions on capacity, pricing, lead-time and

scheduling. Moreover, in this model, we assume the demand function is a linear function,

which depends on the price and lead-time. Future research directions also include incorpo-

rating other demand functions.

In Chapter 3 and 4, we employ RL approaches to make real-time RM decisions for

MTO and MTS production systems. However, we only consider a single machine production

system. First, further studies can be extended to apply the RL approach to the multi-

machine production setting. Second, a disadvantage of RL is that the policy learned by

the decision agent was hard to determine since the agent’s actions depended on a black box

process. In addition, the learning process was a little harder for the practitioners to interpret.

Future research should focus on how to derive a parametric policy that can give the action

selection, from the RL process with a combination of other techniques, such as data mining.

Third, since there are only three products considered in theses two problem, future research

might also focus on how to reduce the complexity of the system while incorporating more

products into it. Last, in Chapter 3, we use one type of neural network approach for function
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approximation. In future work, other neural network approach for function approximation

can be explored to make better use of the learning information.
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