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Abstract 

 

Here, I evaluate biospheric evolution during the Ordovician using high-resolution inorganic 

carbon and sulfur (carbonate-associated sulfate and pyrite) isotope profiles for Early Ordovician 

to early Late Ordovician strata from geographically distant sections in Western Newfoundland 

and the Argentine Precordillera. Additionally, I present new, high-resolution U-Pb ages for 

volcanic ash beds within strata of the Argentine Precordillera. Carbon isotope data record 

subdued variation that is typical of Early to Middle Ordovician strata worldwide. By contrast, 

sulfur isotopic compositions of carbonate-associated sulfate reveal a complex signal of short-

term, rhythmic variation superimposed over a longer-term signal. This short-term, rhythmic 

variation occurs in all sections and appears to be unrelated to lithology or depositional 

environment, suggesting preservation of an oceanographic signal. I interpret this signal to reflect 

a combination of a marine sulfate reservoir that was likely much smaller than the modern, the 

persistence of a substantial deep-ocean hydrogen sulfide reservoir, and the episodic oxidation of 

a portion of the deep-ocean euxinic reservoir. Persistent euxinia likely resulted from decreased 

solubility of oxygen in warmer water and/or sluggish oceanic circulation during greenhouse 

conditions that reduced vertical ventilation. A dramatic change in the behavior of carbonate-

associated sulfate and pyrite in the Middle Ordovician is interpreted to reflect a major 

oceanographic event that records the initial transition from Ordovician greenhouse to icehouse 

states. I suggest that the initiation of downwelling of increasingly cool, oxygen-rich surface 

water resulted in widespread oxidation of much of the deep ocean hydrogen sulfide reservoir and 

concomitant limitation of marine pyrite formation. It is unknown, however, why sea surface 

temperatures declined through the Early to Middle Ordovician. Explosive volcanism does not 

appear to be a primary climate driver, based on the timing of Argentinian K-bentonite formations 

relative to marine records of sea surface temperature, carbon and strontium isotopic composition. 

Rather, long-term positive feedback between organic carbon burial rates and productivity may 

have increased carbon dioxide drawdown, ultimately driving a gradual decrease in sea surface 

temperatures in the Early to Middle Ordovician. 
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1. Overview 

 

This dissertation is divided into three parts, two that present high-resolution Ordovician carbon 

and sulfur isotope chemostratigraphic curves and a third that incorporates high-resolution U-Pb 

geochronology data from K-bentonites. These data sets are used to understand the timing and 

drivers of oceanographic and climate change in the Ordovician. In particular, data in Parts 2 and 

3 are used to constrain sulfate reservoir size and understand changes in the extent of deep ocean 

anoxia and data in Part 4 are used to evaluate potential climate forcing by explosive volcanism, 

which was prevalent in the Ordovician.  

 

Biospheric oxygenation in the terminal Proterozoic (Hurtgen et al., 2009) and the advent of 

biomineralization in the earliest Cambrian likely paved the way for increased biodiversification 

in the Ordovician. Recent evidence, however, suggests deep-water anoxia persisted in the Late 

Cambrian (Gill et al., 2011). In Parts 2 and 3, carbon and sulfur isotope profiles from marine 

platform rocks from the Argentine Precordillera and Western Newfoundland are evaluated to 

show that anoxia likely persisted into at least the Middle Ordovician, when sea surface 

temperature cooling initiated downwelling of cool, oxygen-rich surface waters. In Part 4, high-

resolution U-Pb zircon ages of K-bentonites that span a globally correlated, low magnitude C-

isotope excursion are used to show that timing of Argentinian K-bentonite deposition is 

inconsistent with climate forcing via explosive volcanism. 

 

2. The Ordovician carbon and sulfur isotope record 

 

Paired carbon and sulfur isotope records offer valuable insight into the degree of water column 

oxygenation since the processes that govern marine carbon and sulfur isotopic composition are 

largely a function of redox conditions. Like carbon, biological processes preferentially 

fractionate isotopically light sulfur into the reduced phase (hydrogen sulfide, which is buried as 

pyrite), therefore, conditions that promote the removal of this reduced phase result in an 

isotopically heavy oxidized phase (marine sulfate). The carbon and sulfur cycles are linked 

because the primary mechanism for sulfate removal in marine settings, bacterial sulfate-
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reduction, requires the respiration of organic matter. The coupling of these two isotope systems, 

therefore, helps constrain not only organic carbon production and burial rates, but also sulfate 

availability and pyrite burial, both of which are closely tied to ocean redox conditions.  

 

Despite evidence for increased ocean-atmosphere oxygenation in the terminal Neoproterozoic 

(Fike et al., 2006; Ries et al., 2009), widespread, deep-ocean anoxia persisted (Canfield et al., 

2008), and low-oxygen, low-sulfate conditions resulted in variable euxinia across the global 

ocean (Wille et al., 2008; Li et al., 2010). Evaluation of marine carbon and sulfur isotope records 

from Late Cambrian successions suggest that oceanic euxinia persisted through, and may have 

even increased within, the Cambrian (Hurtgen et al., 2009; Gill et al., 2011) despite marine 

oxidation represented by carbon burial during the Late Cambrian SPICE (Steptoean Positive 

Carbon Isotope Excursion) event (Saltzman et al., 1998; 2000; 2004). Part 2 presents the first 

long-term, high-resolution record of marine sulfur isotope variation for the Ordovician. These 

records reveal short-term variation superimposed over a longer-term signal. Short-term, rhythmic 

variation occurs in geographically disparate, lithologically distinct sections, suggesting 

preservation of an oceanographic signal. The rapidity of short-term isotopic variation requires 

the marine sulfate reservoir size to be much smaller (<10%) than that of the modern ocean, 

which agrees with previous estimates of low marine sulfate concentration in the Ordovician 

ocean (e.g., Horita et al., 2002; Brennan et al., 2004; Hough et al., 2006; Hurtgen et al., 2009; 

Gill et al., 2011). Single-reservoir box model calculations suggest the rhythmic nature of the 

short-term variability is best explained by episodic oxidation of at least a portion of a persistent 

deep-water hydrogen sulfide reservoir. Early-Middle Ordovician greenhouse conditions 

permitted the build-up of a deep-water hydrogen sulfide reservoir either through the decreased 

oxygen solubility of warmer water, sluggish ocean circulation, or both, and enhanced bacterial 

sulfate reduction in the water column.  

 

Part 3 presents a continued examination of the Ordovician marine sulfur cycle in to the Middle-

Late Ordovician. Long-term sulfur isotope signals vary little until the late Middle Ordovician, 

when a large, rapid decrease in sulfate sulfur occurs and is followed by a progressive increase in 

the isotopic composition of pyrite sulfur to values heavier than coeval sulfate. Such dramatic 



 4 

change in the behavior of the marine sulfur cycle likely reflects decreased sea surface 

temperature (Trotter et al., 2008) and initiation of downwelling of cool, oxygen-rich surface 

waters which resulted in substantial oxidation of the deep-water hydrogen sulfide reservoir. 

Reoxidation of hydrogen sulfide, along with continued ocean ventilation and the combination of 

sulfide oxidation and restriction of bacterial sulfate reduction to the sediment aided in driving 

pyrite sulfur to superheavy values.  

 

3. Relationship between K-bentonite deposition and climate 

 

The Ordovician represents an interval of high sea level, large epicontinental seas, and elevated 

atmospheric carbon dioxide that resulted in super greenhouse climate in the Early-Middle 

Ordovician (Berner, 1984; Brenchley, 1994). Greenhouse conditions were interrupted by 

widespread glaciation in the Late Ordovician, which is associated with the end Ordovician mass 

extinction (Brenchley et al., 1994). A recent push to attribute Ordovician climate forcing to 

explosive volcanism (Young et al., 2009; Buggisch et al., 2010) has garnered interest in the 

relationship between K-bentonite deposition and high-resolution marine geochemical records. 

The Ordovician represents a time of expansive volcanism where two prominent suites of K-

bentonites are recognized, Early to Middle Ordovician Famatina K-bentonites in Argentina and 

Late Ordovician K-bentonites primarily in North America. In Part 4, high-resolution ID-TIMS 

U-Pb zircon ages of K-bentonites from measured sections of the San Juan Formation (Talacasto 

and Cerro La Chilca) in the Argentine Precordillera are used to explore the relationship between 

explosive volcanism and global climate change. These K-bentonites span a low-magnitude, 

globally correlatable negative excursion in marine carbon isotopic composition. K-bentonites 

yield mean ages that range from 469.53 to 473.45±0.40 Ma. These ages agree well with C-

isotope correlation of the Cerro La Chilca and Talacasto sections, but suggest an overall older 

age for the upper San Juan Formation than is sometimes reported (Buggisch et al., 2003). The 

discrepancy between U-Pb zircon ages and reported biostratigraphy points to the difficulty in 

placing biostratigraphic constraints on the regionally diachronous boundary between the San 

Juan Formation and overlying strata. The timing of K-bentonite deposition also does not coincide 

with major perturbations in marine records of sea surface temperature, strontium, carbon and 
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sulfur isotopic composition, which suggests explosive volcanism did not substantially alter the 

marine environment on a long-term scale. 

 

4. Summary 

 

This study provides the first high-resolution, long-term sulfur isotope records for the Ordovician. 

Marine carbon isotopic composition shows only subdued isotopic variability and it is consistent 

with global patterns observed during Paleozoic greenhouse times. Sulfur isotope records are 

highly variable and support and interpretation of a reduced sulfate reservoir size in the 

Ordovician, which is consistent with previous estimates of marine sulfate concentration. Short-

term, rhythmic fluctuations in the marine sulfur isotope record are best explained by partial 

reoxidation of a deep-water hydrogen sulfide reservoir, and an abrupt decrease in marine sulfur 

isotopic composition in the Middle Ordovician are interpreted to reflect the onset of 

downwelling of cool, oxygenated waters and oxidation of this deep-water hydrogen sulfide 

reservoir.  Proxy records for sea surface temperature and strontium isotope ratios suggest that the 

transition from Ordovician greenhouse to icehouse climate states initiated substantially earlier 

than the onset of Hirnantian glaciation. Additionally, new U-Pb zircon ages from Argentina K-

bentonites constrain the age of a small, yet globally correlatable negative excursion in carbon 

isotope values. Comparison of the timing of these K-bentonites with records for marine carbon 

(Saltzman et al., 1998; 2000; Saltzman and Young, 2005; Young et al., 2005; 2008; this study), 

sulfur (this study), strontium (Shields et al., 2003) and sea surface temperature (Trotter et al., 

2008) suggests explosive volcanism in the Early and Middle Ordovician likely did not 

significantly alter marine chemistry on a long-term scale and was likely not a driver for the 

observed long-term decrease in sea surface temperatures.  
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Abstract 

 

Despite marine geochemical records indicating widespread oxygenation of the biosphere in the 

terminal Neoproterozoic, Late Cambrian records point to the persistence of deep-water anoxia 

and potential for development of euxinic conditions. The Late Cambrian SPICE event, however, 

is a globally recognized chemostratigraphic marker that likely represents significant organic 

carbon burial and subsequent liberation of oxygen to the biosphere. Here, we present high-

resolution inorganic carbon and sulfur isotope profiles from Early to Middle Ordovician 

carbonate rocks from the Argentine Precordillera and Western Newfoundland to constrain 

oceanic redox conditions in the post-SPICE world. Marine C-isotope profiles record relatively 

stable behavior (excursions <3‰) that is characteristic of greenhouse climates. Marine S-isotope 

profiles record short-term (<106 yr), rhythmic variation superimposed over a longer-term (~107 

yr) signal. Substantial isotopic heterogeneity between average S-isotope values of different 

sections (15-25‰) suggests the Ordovician marine sulfate reservoir was not well mixed, 

indicating a low marine sulfate concentration (likely <2 mM or less than 10% modern). Short-

term variation (7‰ excursions over 1 Myr) is consistent with a small sulfate reservoir size and is 

best explained by the rhythmic oxidation of a deep-water reactive HS- reservoir. Greenhouse 

intervals are often associated with deep-water anoxia (either through decreased ocean ventilation 

or reduced O2 solubility of warmer water), and the presence of a persistent, deep water HS- 

reservoir that is fed through BSR is not unexpected. A broadly sympathetic relationship between 

carbon and sulfur isotope systems over long time scales (~107 yr) suggests that the extent of 

deep-ocean euxinia was moderated by changes in organic productivity, which fueled BSR and 

production of reduced sulfide species. By contrast, short-term (<106 yr) sulfur isotope variation 
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appears to be decoupled from the marine carbon isotope signal. We suggest that this apparent 

decoupling reflects a combination of elevated pCO2 during greenhouse times—which acts to 

dampen C-isotope response—and relatively small-scale fluctuations in organic productivity that 

affected the position of the marine oxycline and the balance of HS- production and reoxidation.  

 

1. Introduction 

 

Isotopic compositions recorded in sedimentary successions suggest that in the terminal 

Neoproterozoic, widespread, deep-ocean anoxia persisted (Canfield et al., 2008) and low-

oxygen, low-sulfate conditions resulted in variable euxinia across the global ocean (Wille et al., 

2008; Li et al., 2010) despite evidence for increased ocean-atmosphere oxygenation (Logan et 

al., 2995; Fike et al., 2006; Halverson and Hurtgen 2007; Ries et al., 2009), Furthermore, 

evaluation of marine C- and S-isotope records from Late Cambrian successions suggest that 

oceanic euxinia persisted through, and may have even increased within, the Cambrian (Hough et 

al., 2006; Hurtgen et al., 2009; Gill et al., 2011).  

 

Recent work by Hurtgen et al. (2009) and Gill et al. (2011) has provided particularly interesting 

insights because these studies examined relationships between linked C- and S-isotope records 

preceding and during the time of the globally recognized SPICE event (Steptoean Positive 

Carbon Isotope Excursion; Saltzman et al, 1998; 2000; 2004). The SPICE event is a globally 

correlative, 4-6‰ increase in marine δ13C and comprises one of the most well documented 

carbon isotope excursions in the Early Paleozoic. Paired C- and S-isotope analyses record both 

large and rapid variation in δ13C and δ34S during this interval and a generally sympathetic 

correlation between δ13C and δ34S trends (Hurtgen et al., 2009; Gill et al., 2011). In these 

models, expanded anoxia, potentially driven by relatively elevated organic productivity 

(Saltzman et al., 2004; Saltzman, 2005), promotes an increase in bacterial sulfate reduction 

(BSR) in the water column and a subsequent increase in pyrite burial (Hurtgen et al., 2009; Gill 

et al., 2011). In both these studies, an increase in pyrite burial relative to organic carbon burial 

(i.e. a decrease in ΔS) is also observed through this interval, which results in a decreased C/S 

ratios to values that are substantially lower than that observed in modern marine environments 
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(2.8 by weight%; Berner and Raiswell, 1983). A decreased C/S ratio, combined with a decrease 

in Mo enrichment during the SPICE event (Gill et al., 2011), is consistent with a transient 

increase in oceanic euxinia in the Late Cambrian. 

 

Evidence for increased euxinia during the SPICE event is important because it highlights the 

question as to what extent high-magnitude positive C-isotope excursions, such as the SPICE 

event, may have had lasting effects on the composition of the marine biosphere. For instance, 

excess carbon burial associated with the SPICE event has been estimated at ~1019 g C (Saltzman 

et al., 1998). Carbon burial, however, can be linked plausibly to either an increase or a decrease 

in marine oxygenation. If the SPICE event was driven primarily by organic carbon burial 

resulting from increased productivity by oxygenic photoautotrophs in a well-ventilated water 

column, long-term effects might include an increase in organic carbon burial and biospheric 

oxygenation (Garrels and Perry, 1974; Kump and Garrels, 1986; Berner, 1987; Berner and 

Canfield, 1989; Canfield, 2005). By contrast, if productivity was associated with ocean 

stratification and effective decoupling of the ocean-atmosphere system (equivalent to well-

documented OAEs in the Paleozoic; Meyer and Kump, 2008), long term effects might include an 

increase in the global extent of anoxia, an expansion of oceanic euxinia, and depletion of 

bioessential trace metals (Anbar and Knoll, 2002; Saltzman, 2005). Because both oceanic 

oxygenation and differential availability of food sources—driven by enhanced euxinia and the 

effects of nutrient-limitation on the biological pump (Butterfield, 2009)—have been linked to 

trends in biological diversification (Munnecke & Servais, 2007; Martin et al., 2008; Dahl et al., 

2010), it is critical to understand what effect the SPICE event may have had on the evolution of 

post-SPICE environments, such as those that span the Great Ordovician Biodiversification Event 

(GOBE; Webby et al., 2004; Harper, 2006; Servais et al., 2009). 

 

The C-isotope record, unfortunately, provides only limited insight into the oxygenation state of 

marine environments in the Early Paleozoic. The Paleozoic C-isotope record is characterized by 

extended intervals of relative isotopic stability (excursions <3‰) that alternate with shorter 

intervals of isotopic volatility (excursions to 6‰; Figure 2.1). These alternating signals have  
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Figure 2.1. Paleozoic marine C-isotope curve (modified from Saltzman, 2005). Intervals of 

carbon isotope stability (grey boxes) occur during “greenhouse” climates and are interpreted to 

reflect nitrogen limitation of primary productivity. Intervals of isotopic volatility (white boxes) 

occur during “icehouse climates, when increased oceanic ventilation is believed to have reduced 

the effects of nitrogen limitation. The Late Cambrian SPICE event (Steptoean Positive Isotope 

Carbon Excursion) is a globally recognized 4-6‰ C-isotope excursion (Saltzman et al., 1998; 

2000) that directly precedes Early to Middle Ordovician greenhouse times. 
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been associated with changing states of global climate, oceanic circulation, and nutrient 

availability (Saltzman, 2005). In this model, enhanced circulation and oceanic ventilation during 

“icehouse” periods increases both nitrogen and phosphorus delivery to the surface oceans, 

resulting in enhanced photosynthetic productivity, higher organic carbon burial, and 

development of large, positive δ13C excursions. By contrast, restrictive circulation in greenhouse 

oceans promotes development of a strong oxycline and nitrogen limitation through anoxic 

denitrification, ultimately producing a negative feedback between productivity and nitrogen 

availability and limiting the magnitude of C-isotope excursions (Saltzman, 2005).  

 

In an alternative scenario, limited C-isotope variability that characterizes most of the Paleozoic 

can also plausibly be explained by a combination of high pCO2 (Berner and Kothavala, 2001; 

Berner, 2006) and elevated marine dissolved inorganic carbon (DIC) (Bartley and Kah, 2004; 

Ridgwell and Zeebe, 2004). Because a large oceanic DIC reservoir is resistant to short-term 

changes in the magnitude and isotopic composition of carbon fluxes into and out from the 

oceanic system (Kump and Arthur, 1999), elevated pCO2 conditions are consistent with minimal 

variability of the C-isotope record. In the Early Paleozoic, this effect might have been 

accentuated by the dramatic diversification of shelled marine invertebrates (i.e., the Great 

Ordovician Biodiversification Event), which would effectively couple marine carbonate and 

organic carbon burial across the continental shelves and further reduce the potential for isotopic 

variability (Bartley and Kah, 2004). Under these conditions, the primary source for C-isotope 

variability becomes the production of organic carbon by non-calcifying pelagic phytoplankton 

(Ridgwell, 2003; Bartley and Kah, 2004). In this scenario, increased C-isotope variability 

observed during “icehouse” states may represent a combination of lower pCO2 and enhanced 

extinction of skeletonizing platform organisms, which would effectively decouple marine 

carbonate and organic carbon burial, resulting in increased organic carbon burial (Bartley and 

Kah, 2004).  

 

Since the C-isotope record alone can provide only limited insight into oceanic oxygenation in the 

early Paleozoic, we focus on a combination of C- and S-isotope records. The biogeochemical 

cycles of carbon and sulfur are intimately linked, with their behavior largely dependent upon the 
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ambient state of biospheric oxygenation, therefore, combined C-S analysis can provide unique 

insight into oceanic oxygenation. Under relatively oxidizing conditions, inhibition of BSR can 

result in enhanced nutrient flux, higher rates of organic carbon burial, and a greater oxygen 

release, ultimately driving enhanced oxidative weathering and delivery of sulfate to the marine 

system (Kump and Garrels, 1986; Berner, 1987; Berner and Canfield, 1989; Canfield, 2005). 

Conversely, under conditions of anoxia, organic input will enhance BSR, resulting in either 

increased pyrite burial—provided there was sufficient availability of Fe—or expansion of 

oceanic euxinic conditions that may ultimately lead to a drawdown of oceanic sulfate 

concentration (Garrels and Perry, 1974; Veizer et al., 1980; Garrels and Lerman, 1981). 

Furthermore, generally low marine sulfate concentrations in the lower Paleozoic (Horita et al., 

2002; Brennan et al., 2004; Hough et al., 2006; Hurtgen et al., 2009; Gill et al., 2011; Thompson 

et al., in review) should show a greater sensitivity of the marine S-isotope record to 

biogeochemical change, and thus provide a substantially more detailed and nuanced view of 

marine geochemical processes.  

 

Here we present high-resolution, C- and S-isotope profiles of Latest Cambrian through Middle 

Ordovician strata from the Argentine Precordillera (La Silla and San Juan formations) and 

Western Newfoundland. Deposition of these units initiated shortly after the end of the globally 

recognized SPICE C-isotope event, and represents deposition through more than 20 Myr that are 

marked by relatively invariant C-isotope compositions. These strata thus provide an opportunity 

to use C-S relationships to test contrasting hypotheses regarding oceanic behavior in the 

aftermath of the SPICE event and ocean anoxia during global “greenhouse” conditions of the 

Ordovician. 

 

2. Geologic setting and biostratigraphy 

 

2.1. Ordovician paleogeography 

 

Cambrian and Ordovician-aged marine carbonate and siliciclastic rocks crop out over large 

sections of the Argentine Precordillera (Baldis et al., 1984; Ramos et al., 1986) and Western 
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Newfoundland (Williams and Stevens, 1974; James et al., 1989). Both localities record intertidal 

to subtidal carbonate platform deposition in the Iapetus ocean, thereby avoiding potential issues 

of decoupling of geochemistry between epeiric and marine water masses (Holmden et al., 1998; 

Panchuk et al., 2006; Newton et al., 2011). Furthermore Ordovician biostratigraphic and 

paleomagnetic records place Western Newfoundland at equatorial latitudes (Ross and Ingham, 

1970; Hall and Evans, 1988; Neuman and Harper, 1992; Cocks and McKerrow, 1993; Harper et 

al., 1996) and the Argentine Precordillera at moderately high southern latitudes (Figure 2.2; 

Herrera and Benedetto, 1991; Niocaill et al., 1997), suggesting that these sections, combined, 

provide a broad view of the Iapetus ocean. Finally, although there are relatively few absolute 

chronostratigraphic constraints for these successions, abundant biostratigraphic work has 

provided a necessary time-correlation of these geographically widespread successions (Herrera 

and Benedetto, 1991, Lehnert and Keller, 1994; Astini et al., 1995; Albanesi and Ortega, 2002).  

 

2.2. Argentine Precordillera 

 

Lower Paleozoic strata of the Argentine Precordillera comprise >2500 meters of siliciclastic, 

carbonate, evaporite-bearing sedimentary rocks, as well as associated mafic rocks, that record 

rifting of the Precordilleran microcontinent from the southeast margin of Laurentia in the 

Cambrian (Thomas and Astini, 1996; 1999), its subsequent drift across the Iapetus Ocean during 

the Early Ordovician, and eventual docking with Gondwana in the Middle to Late Ordovician 

(Ramos, 1988a; Benedetto et al., 1999). Initiation of Precordilleran docking with Gondwana is 

marked by the formation of the Famatina volcanic arc, which is the source of widespread 

bentonites in Middle Ordovician strata of the Argentine Precordillera (Huff et al., 1998). K-

bentonites with ages of 469.5 ±3.2 Ma, 470.1 ±3.3 Ma (U-Pbzircon; Fanning et al., 2004), and 464 

±2 Ma (U-Pbzircon; Huff et al., 1997) suggest initiation of the pre-docking stage of the 

Precordillera in the Dapingian-early Darriwilian. Ultimately the Precordilleran terrane was 

uplifted by east-directed faulting of the Andean thrust belt in the Cenozoic (Thomas and Astini, 

1999) and currently is exposed along the western margin of Argentina, striking north-south along 

the eastern margin of the Andean mountain range between 28°45′S and 33°15′S (Figure 2.3A; 

Ramos, 1988b; 2004). Strata are subdivided into eastern and western tectofacies, which record  
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Figure 2.2. Paleogeographic reconstruction of the Early Ordovician (modified from Scotese and 

McKerrow, 1990). Whereas Western Newfoundland (WN) was positioned in subtropical 

latitudes throughout the Early and Middle Ordovician, during this time the Argentine 

Precordillera (AP) drifted from mid to high southerly latitudes, ultimately to collide with 

Gondwana in the Middle Ordovician. SA = South America, L = Laurentia, B = Baltica, S = 

Siberia, AF = Africa, AU = Australia, G = Gondwana. 
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Figure 2.3. Geologic maps of the Argentinian and Newfoundland sections (modified from 

Williams, 1987 and Keller, 1994). A) Geographic locality of Argentinian sections. Both the La 

Silla and San Juan Formations were sampled at the type section, Cerro La Silla. The San Juan 

Formation was also sampled at Cerro La Chilca, Talacasto and Pachaco. B) Geographic locality 

of the Western Newfoundland sections. The Aguathuna Formation and Table Head Group were 

both sampled at Table Point. 
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carbonate, siliciclastic, and evaporite platform deposition on the Precordilleran platform and 

outer platform, respectively. Outer platform deposits, in particular, are comprised of basin 

deposits with slump features and conglomerates containing large olistoliths (Thomas and Astini, 

2007).  

 

2.2.1. La Silla Formation 

 

The La Silla Formation consists of approximately 375 meters of shallow, subtidal limestone and 

dolostone that represent restricted carbonate platform deposition. The base of the La Silla 

Formation yields conodonts of the C. proavus zone, indicating a Late Furongian (Figure 2.4; 

Late Cambrian; Lehnert et al., 1997). The uppermost strata yield conodonts of the P. Proteus 

zone, indicating a Late Tremadocian age (Keller et al., 1994; Lehnert, 1995; Lehnert et al., 

1997). The La Silla Formation was sampled at Cerro La Silla (30°21′10″S, 68°39′09″W), where 

the boundary with both the underlying La Flecha Formation and overlying San Juan Formation is 

exposed. The boundary between the La Flecha and La Silla formations is marked by a 20 cm 

thick dark grey silty dolostone and a shift from cyclic stromatolitic to thrombolitic, cherty 

dolostone of the La Flecha Formation to predominantly non-stromatolitic calcareous facies of the 

La Silla Formation (Keller, 1999). At the Cerro La Silla section, the La Silla Formation is 

composed of calcareous peloidal and intraclast grainstone, oolites, and fine-grained microbial 

laminates, with minor dolomite and chert. The boundary between the La Silla Formation and 

overlying San Juan Formation is conformable and marked by a major transgressive surface and 

the sudden appearance of facies that contain a diverse, open marine fauna (Keller et al., 1994; 

Keller, 1999).  

 

2.2.2. San Juan Formation 

 

The San Juan Formation consists of shallow subtidal deposits that record open ocean carbonate 

platform deposition. The base of the San Juan Formation yields conodonts of the P. elongatus-

deltifer zone, indicating a Late Tremadocian-Early Floian age (Lindström, 1971, Löfgren, 1978; 

1996). The uppermost strata yield conodonts of the E. suecicus zone (Lindström, 1971, Löfgren, 
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Figure 2.4. Biostratigraphic correlation of the Argentinian and Western Newfoundland sections 

compiled from Williams (1987), Stouge (1984), Lehnert and Keller (1997), Albanesi et al. 

(1999), and Albanesi and Ortega (2000). International stage names and time slices are from 

Bergström et al. (2008) and Walker and Geissman (2009). Age of the base of the section (here, 

the base of the La Silla Formation) is estimated based on a combination of biostratigraphic 

constraints, ages of stage boundaries, and an assumption of constant sedimentation rate for the 

individual sections. 
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1978; 1996) indicating a mid-Darriwilian age (Figure 2.4). The San Juan Formation is 

lithologically heterogeneous, consisting of fossiliferous mudstone and wackestone, nodular 

wackestone, oncolitic packstone, and reef boundstone. The top of the San Juan Formation is 

time-transgressive; it is conformably overlain by deep-water shale of the Gualcamayo Formation 

(Figure 2.5), and by mixed carbonate to shale deposition of the regional Las Chacritas and Las 

Aguaditas formations (not pictured), and is, in places, unconformably overlain by Silurian-aged 

strata. The San Juan Formation was sampled at its type section, Cerro La Silla. At Cerro La Silla, 

the uppermost San Juan Formation is absent, and was sampled at the nearby Cerro La Chilca 

section (Figure 2.3A). At Cerro La Chilca, uppermost San Juan strata consist of interbedded 

shale and limestone, yielding conodonts of the E. suecicus zone, and mark the conformable 

transition to the overlying Gualcamayo Formation. Incomplete sections of the San Juan 

Formation were also sampled at Talacasto and Pachaco (Figure 2.3A). In these sections 

substantial faulting and duplication prohibited measurement of their lower sections. The San 

Juan Formation at both Talacasto and Pachaco are unconformably overlain by Silurian-aged 

green shale. The Cerro La Chilca, Talacasto, and Pachaco sections also contain discrete K-

bentonites in the upper portion of exposed San Juan strata. Several bentonites in the Talacasto 

have been dated using U-Pb zircon techniques and give ages that range from 470.1 ±3.3 Ma to 

469.5 ±3.2 Ma (Fanning et al., 2004). Similarity in age to a porphyritic rhyolite from the 

Famatinian magmatic arc links these bentonites to the Famatina volcanism and initial docking of 

the Precordillera to Gondwana (Fanning et al., 2004). 

 

2.3. Western Newfoundland 

 

More than 2500 m of Early Paleozoic strata exposed in the Humber Zone of Western 

Newfoundland (Figure 2.3B) record the development and demise of a long-lived passive margin 

(Stenzel and James, 1987; James et al., 1989). Early Cambrian rifting resulted in predominantly 

siliciclastic deposition that shifted to predominantly carbonate deposition by the late Cambrian. 

Strata of the Aguathuna Formation and Table Head Group represent carbonate platform 

deposition during marine transgression (James et al., 1989; Knight and Cawood, 1991) and rapid  
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Figure 2.5. Time correlation of the Argentinian sections sampled for this study. The contact 

between the San Juan Formation and overlying Gualcamayo Formation is diachronous, as shown 

in the SW to NE directed section. Northward deepening reflects facies changes across the 

carbonate platform in response to higher rates of subsidence associated with tectonic 

convergence with Gondwana. P = Pachaco, T = Talacasto, S = Cerro La Silla, C = Cerro La 

Chilca.  
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drowning of the carbonate platform in the early stages of the Taconic orogeny (Stenzel et al., 

1990). 

 

2.3.1. Aguathuna Formation 

 

The Aguathuna Formation represents the uppermost St. George Group and is generally reported 

to be approximately 70 meters thick. It is composed primarily of dolostone deposited in a 

shallow-water, restricted setting. The base of the Aguathuna Formation yields conodonts 

considered equivalent to the P. fruticosus zone (Williams et al., 1987) indicating a mid-Floian 

age (Figure 2.4). The upper Aguathuna Formation correlates with the Orthidiella brachiopod 

zone (Early Dapingian; Williams et al., 1987), suggesting the Floian-Dapingian boundary lies in 

the upper part of the Aguathuna Formation. For this study, the entire Aguathuna Formation (76 

meters) was sampled at Table Point (50°22′22˝ N, 57°31′44˝ W; Figure 2.3B). Here, the 

Aguathuna Formation conformably overlies the Catoche Formation and is unconformably 

overlain by the Table Point Formation. At Table Point, the boundary between the Aguathuna 

Formation and overlying Table Head Group is marked by an abrupt change from coarsely-

recrystalline, buff-colored dolomite to dark grey lime mudstone and wackestone. 

 

2.3.2. Table Head Group 

 

Table Head Group was also sampled at Table Point, where it comprises ~300 meters of 

bioturbated, fossiliferous wackestone and packstone. These deposits yield conodonts from the H. 

tableheadensis to P. anserinus zone that span the Dapingian to late Darriwilian (Figure 2.4; 

Stouge, 1982; Williams et al., 1987). At Table Point, the Table Head Group is divided into the 

Table Point, Table Cove, and Black Cove formations, which represent subtidal shelf deposition 

in increasingly deepening marine environments (Jacobi, 1981; Stouge, 1982; Knight and James, 

1991). The Table Point Formation represents the lower 250 meters and consists of a 

homogeneous succession of subtidal, nodular limestone. The Table Point Formation is 

conformably overlain by the Table Cove Formation that consists, where sampled, of intercalated 

limestone and shale, with distinct intervals of slumping. Interbedded limestone and shale give 
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way upsection to predominantly black shale of the upper Table Cove and overlying Black Cove 

formations (Stenzel, 1990), which were not sampled for this study. 

 

3. Methods 

 

3.1. Petrographic screening 

 

Prior to isotope and elemental analyses, samples were examined using standard petrographic and 

cathodoluminescence (CL) techniques (Hemming et al., 1989; Kaufman et al., 1991; Kah et al., 

1999; Frank et al., 2003; Bartley et al, 2007) to evaluate secondary alteration that may affect the 

interpretation of geochemical profiles. Mirror-image slabs of samples were cut using a water-

cooled rock saw and made into thin and thick sections for petrographic and CL analysis, 

respectively. Petrographic observations were used to characterize carbonate fabrics and to 

identify primary and secondary phases. Past studies have demonstrated that primary depositional 

phases, particularly micritic and fine-grained microsparitic fabrics, that show little evidence of 

secondary recrystallization, often preserve geochemical signatures that also show little evidence 

of overprinting by diagenetic fluids (Kaufman et al., 1991; Frank et al., 1997; Bartley et al., 

2007). Similarly, coarsely recrystallized fabrics and secondary phases, such as spar-filled 

fractures and voids, commonly preserve a geochemical signal related to post-depositional fluid 

flow. Combined, such data permit careful evaluation of the range of geochemical signatures 

retrieved from samples and interpretation of the degree of diagenesis that samples have 

undergone.  

 

Petrographic analyses show that, on the whole, both the Argentina and Newfoundland sections 

are comprised primarily of variably fossiliferous wackestone, packstone, and grainstone that 

contain abundant micritic and fine-grained microsparitic components (Figure 2.6). Petrographic 

fabrics of the Table Head Group are lithologically homogenous compared to the Argentina 

sections, which contain a variety of grainstone fabrics (La Silla and San Juan formations), and 

more poorly fossiliferous mudstone facies (La Silla Formation). A noted exception is the 

Aguathuna Formation, which contains patches of coarse-grained, euhedral, fabric-obliterative  
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Figure 2.6. Characteristic microfabrics of Ordovician strata, Argentina and Newfoundland. A) 

Peritidal facies of the La Silla Formation are dominated by peloidal and microbial intraclastic 

carbonate containing abundant fenestrae filled with equant calcite cements (FOV = 6.9 mm). B) 

Oolitic intraclastic grainstone of the La Silla Formation (FOV = 6.9 mm). C) Erosional surface in 

fossiliferous wackestone of the San Juan Formation, overlain by intraclastic grainstone (FOV = 

6.9 mm). D) Micritic carbonate of the San Juan Formation showing abundant calcified microbial 

filaments (girvanella; FOV = 1.37 mm). E) Coarsely crystalline, fabric destructive dolomite of 

the Aguathuna Formation showing fractures modified by secondary dissolution (FOV = 2.74 

mm). F) Finely-crystalline microspar within sparsely fossiliferous wackestone of the Table Head 

Group, showing minor shelter porosity and superb preservation of fossil microstructures (FOV = 

6.9 mm). 
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dolomite that indicates substantial potential for diagenetic overprinting of geochemical signals. 

Additionally, the La Silla Formation contains a number of primary depositional phases 

consisting of coarse, sparry cement (e.g., fenestrae with microbial laminates) that indicate early 

diagenetic interaction with meteoric fluids. Such fabrics are consistent with deposition in a 

shallow marine environment that is susceptible to periodic subaerial exposure, but also marks 

substantial potential for geochemical alteration.  

 

In addition to standard petrographic analysis, cathodoluminescence petrography was used to 

diagnose the potential for alteration within primary and secondary phases. Luminescence in 

carbonate minerals is activated by the presence of Mn2+ in the carbonate lattice and suppressed 

by the presence of Fe2+ (Hemming et al., 1989). Because both Mn2+ and Fe2+ are incorporated in 

carbonates either during deposition from or dissolution and re-precipitation within diagenetic 

fluids, evidence for incorporation via CL analysis provides a quick measure of the degree of 

alteration (Brand and Veizer, 1980; Veizer, 1983; Banner, 1995). Caution must be taken, 

however, since previous studies have shown that CL need not accurately reflect the true extent of 

geochemical alteration (Rush and Chafetz, 1990; Marshall, 1992; Savard et al., 1995), and might 

also reflect primary incorporation of Mn or Fe from unusual marine fluids. All samples were 

examined under vacuum (50-80 mtorr) using a Luminoscope cathodoluminescence system at the 

University of Tennessee. 

 

On the whole, CL analyses revealed dully luminescent, fine-grained limestones with local 

brightly luminescent, spar-filled fractures and voids. A noted difference between the 

Newfoundland and Argentina sections is the relative luminescence of fossil fragments. In the 

Argentina sections, fossil fragments tend to be more variable in both their microfabric 

preservation and their luminescence, whereas in the Newfoundland sections, fossil components 

tend to have better fabric preservation but more brightly luminescent than the matrix, suggesting 

the potential for either a greater degree of post-depositional recrystallization or primarily 

enhanced Mn incorporation. Additionally, the La Silla Formation is notably more dully 

luminescent than the other sections. 
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After petrographic evaluation, selected regions of polished thick sections were micro-sampled 

using 0.5 mm dental drill bits attached to a micro-drill press. Petrographically uniform phases 

were drilled to retrieve 2-5 mg of powder to be used as splits for the C- and O-isotope and 

elemental analyses. When possible, a range of fabrics was sampled in order to compare the 

geochemical properties of both primary and secondary phases.  

 

3.2. Major and trace element analyses 

 

Micro-drilled carbonate phases were analyzed for major (Ca, Mg) and trace (Sr, Mn, Fe) element 

concentration. Approximately 1 mg of microdrilled powder was dissolved in 10 mL of trace 

metal grade 2% HNO3, agitated, then left overnight to assure complete dissolution. To remove 

any insoluble material that might clog intake tubing during analysis, each sample was 

centrifuged for 10 minutes at 3000 rpm and the top ~9 mL decanted into a clean centrifuge tube. 

Centrifuging was repeated as often as necessary to ensure removal of visible insoluble material. 

Elemental analyses for the San Juan Formation and Table Head Group were conducted at the 

University of West Georgia using a Perkin-Elmer inductively coupled plasma-optical emission 

spectrometer (ICP-OES) fitted with a Meinhardt concentric nebulizer calibrated to a series of 

gravimetric standards. Elemental analyses of the La Silla Formation were completed at the 

University of Tennessee, Knoxville using a Perkin-Elmer Optima 2100 DV ICP-OES with a 

Scott spray chamber. All analyses were calibrated using a series of gravimetric standards that 

were run before and after every six unknowns. Analyses were determined to be reproducible to 

within ±10% by analysis of standards and duplicate samples. 

 

3.3. Total organic carbon concentration 

 

Total organic carbon concentration was determined using a UIC, Inc carbon dioxide coulometer 

with a combustion apparatus at the University of Tennessee. Five grams of whole-rock powder 

were acidified overnight using 10% HCl to dissolve carbonate components. Samples were then 

rinsed with at least 1 L of Milli-Q water until filtrate reached a pH > 6 to ensure removal of 

chlorine. Insoluble residues were dried for 24-48 hours at 30°C, then hand-ground to a fine 
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powder. 150-200 mg was then loaded into pre-cleaned and dried porcelain boats. Each sample 

was combusted between 900 and 1000ºC for 11 minutes to ensure complete combustion. CO2 

resulting from combustion was then measured via coulometric titration. Analytical error was 

<0.1%, based upon duplicate sample and calcite standard analyses. 

 

3.4. Carbon and oxygen isotope analyses 

 

Approximately 1.0 to 1.5 mg of powder from microdrilled carbonate phases were loaded into 

silver caps, reacted with anhydrous phosphoric acid at a reaction temperature of 120°C, and 

cryogenically distilled using a Carbo-Flo automated sampler attached to a dual-inlet Finnigan 

MAT Delta Plus gas source isotope ratio mass spectrometer at the University of Tennessee. Data 

are reported in delta notation as per mil (‰) deviations from Vienna Pee Dee Belemnite 

(VPDB). Analyses were determined to be reproducible to within ±0.1‰ from analysis of 

duplicate and internal lab standards. Two internal standards were used for isotope calibration, 

Chihuahua calcite (CHCC; δ13C = +1.35‰, δ18O = –6.16‰ at 25°C) was used for analyses of 

the Table Head Group and San Juan Formation, and Australian National University “M1” (ANU-

M1: δ13C = -10.66‰, δ18O = -9.23‰ at 25°C) was used for analyses on La Silla and Aguathuna 

formation samples. 

 

3.5. Sulfur extraction and isotope analyses 

 

δ34SSO4 profiles were constructed using carbonate-associated sulfate (CAS). CAS substitutes into 

the carbonate lattice during initial carbonate precipitation and is regarded as a reliable proxy for 

marine sulfate δ34S (Burdett et al., 1989; Strauss, 1999). For instance, in the modern ocean, the 

isotopic composition of CAS (δ34SCAS) of brachiopod shells (+21.2±0.8‰) is analytically 

indistinguishable from mean ocean δ34SSO4 (+20.9±0.5‰; Kampschulte et al., 2001). In ancient 

sediments, CAS has been demonstrated to be isotopically similar to coeval evaporite deposits 

(Burdett et al., 1989; Strauss, 1997; Kah et al., 2001). Additionally, δ34SSO4 has been shown to be 

resistant to diagenetic alteration and retain a record of primary δ34SSO4 despite large decreases in 

sulfate concentration during diagenetic recrystallization (Lyons et al., 2004; Gill et al., 2008).  
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CAS was extracted using acid dissolution and barite precipitation methods modified from 

Burdett et al. (1989), Kah et al. (2001), and Hurtgen et al. (2002). Approximately 200 grams of 

bulk rock was first etched with 10% HCl to remove surface weathering products, then crushed 

and powdered. Approximately 100 grams of powdered sample was soaked overnight in 250 mL 

of 5.65-6% laboratory grade sodium hypochlorite (NaOCl), rinsed four times with Milli-Q water 

(typically 1.0-1.5 L), and filtered. An initial NaOCl leach is necessary to remove soluble iron 

sulfide and organically bound sulfur that might oxidize to sulfate during acidification (Burdett et 

al., 1989) and was completed although the potential for organically-bound sulfur is low in 

ancient samples. Geologically ancient samples typically have low concentration (here <0.6 wt%) 

of preserved organic carbon concentration is low, and the organic material is dominantly 

kerogen, which suggests that most labile organic components containing organically bound 

sulfur have long since degraded. 

 

Approximately 50-100 g of dried and weighed sample were dissolved slowly with up to 600 mL 

of 3N hydrochloric acid. Dissolution was monitored to maintain a pH >3 to prevent the exchange 

of oxygen between sulfate and water and to minimize pyrite oxidation (Chiba and Sakai, 1985). 

Samples were then filtered to remove insoluble and undissolved residue. The filtrate was then 

brought to a pH of 9 using sodium hydroxide (NaOH) pellets to precipitate any dissolved iron 

oxides, and filtered. Approximately 140 mL of saturated barium chloride solution (250 g/L) was 

added to the filtrate to recover CAS as barium sulfate. The reaction was allowed to continue 

overnight at room temperature to ensure complete precipitation. Barium sulfate precipitate was 

then filtered using 0.45 µm Millipore filters, dried at 30°C, and weighed. Sulfate concentration 

was estimated from weight measurements of barium sulfate precipitate from extraction.  

 

For S-isotope analyses, 1.5-2.0 µg of BaSO4 was weighed into tin cups along with excess V2O5 

(~10x weight to ensure complete combustion). Samples were analyzed for δ34S using a Finnigan 

MAT 252 gas source mass spectrometer fitted with an elemental analyzer at Indiana University. 

S-isotope composition is expressed as per mil (‰) deviation from Vienna Canyon Diablo 

Troilite (VCDT). Analytical precision was determined to be ±1‰ by analysis of four lab 

standards, ERE Ag2S (-4.7‰), EMR Cp (+0.9‰), NBS 127 (+20.3‰), and PQB (+39.8‰). 
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4. Results and interpretation 

Geochemical results are presented in Tables 2.1 - 2.6 and presented in Figures 2.7, 2.8, 

and 2.9. 

 

4.1. Geochemical signals of alteration 

 

It is important to constrain the degree to which carbonate rocks have been altered to establish 

whether geochemical trends are likely to be representative of syndepositional oceanic values 

(Given and Lohmann, 1985; Zempolich et al., 1988; Carpenter et al., 1991; Frank and Lohmann, 

1996; Kah, 2000). Primary depositional fluids, whether at the seafloor or of meteoric origin can 

result in the production of sedimentary grains and the precipitation of primary cement phases. 

Primary depositional components, such as skeletal grains, micrite, and marine cements, have the 

potential to retain signatures of these depositional fluids. However, all secondary fluids—from 

the seafloor, to early diagenetic influx of meteoric fluids, to deep-burial fluids, to fluids involved 

in modern weathering— also have the potential to result in dissolution and recrystallization of 

carbonate phases. Of these, only stabilization of carbonate phases by syndepositional marine 

fluids may result in recrystallization at high water:rock ratios that may still preserve marine 

geochemical signals. In all other cases, preservation of marine signals will reflect the relative 

composition of water and rock and the degree of water:rock interaction (Banner and Hanson, 

1990).  

 

Relative to marine carbonate rocks, meteoric fluids typically have low Sr concentration and more 

depleted δ18O and δ13C isotope compositions. Similarly, anoxic fluids may contain substantially 

higher concentrations of redox-sensitive divalent ions, such as Mn and Fe, as well (Brand and 

Veizer, 1980; Banner and Hanson, 1990). Numerous studies have shown that, because of the low 

carbon content of most diagenetic fluids, δ18O, Sr, Mn and Fe are much more sensitive indicators 

of post depositional alteration, especially at low water to rock ratios. Alteration of δ13C, 

however, can occur during diagenesis if fluids contain large amounts of dissolved inorganic 

carbon from the remineralization of organic carbon (Brand and Veizer, 1980; Banner and 

Hanson, 1990; Derry, 2010). To help constrain the degree of alteration and the potential for  
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Figure 2.7. Isotopic and elemental data from Ordovician marine carbonates. A) A cross plot of 

C- and O-isotope values show no covariance and little indication of alteration of C-isotope 

values by postdepostional alteration. B) A cross plot of S- and O-isotope shows distinct 

separation of S-isotopic composition for different units, suggesting postdepositional alteration 

has not overprinted S-isotope compositions. C) Across the range of preserved O-isotope 

compositions, Sr typically falls between 150 and 500 ppm, which is consistent with well-

preserved marine limestone. Sr concentrations < 50 ppm in the Aguathuna Formation likely 

represent substantial interaction with late stage, low Sr fluids, which is consistent with 

petrographic indicators for alteration. D) Similarly, Mn/Sr fall largely below 1.5, which is often 

considered an acceptable values for little altered carbonate rocks. Elevated Mn/Sr occurs 

predominantly in the Aguathuna Formation, which shows strong petrographic indication of 

secondary recrystallization. Several samples with anomalously high Mn concentration occur in 

the Cerro La Chilca section. These fall near the boundary between the San Juan and overlying 

Gualcamayo Formation suggesting the potential for fluid interaction confined to this lithologic 

transition. C = Cerro La Chilca, T = Talacasto, S = Cerro La Silla.  
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Figure 2.8. Carbon and sulfur isotope records from the Argentine Precordillera. 

Chemostratigraphic profiles show coherent carbon isotope trends through the San Juan 

Formation, although the underlying La Silla Formation records more stratigraphic variability. 

Sulfur isotopes show relatively stable long-term stratigraphic trends overprinted by a clear, short-

term isotopic signal. Measured sections were correlated using a combination of biostratigraphic 

and carbon isotope data. SJF = San Juan Formation, LSF = La Silla Formation, C = Cerro La 

Silla, T = Talacasto, P = Pachaco, S = Cerro La Silla.  
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Figure 2.9. Carbon and sulfur isotope records from Western Newfoundland. Strata from 

Newfoundland show patterns similar to those recorded in the Argentinian sections. Carbon 

isotopes show relatively stable isotopic compositions and sulfur isotopes are characterized by 

clear, short-term isotopic variation. Despite petrographic evidence of fabric-obliterative dolomite 

and low Sr values in the Aguathuna Formation, carbon and sulfur values are not drastically 

different than the well-preserved Table Head Group, Western Newfoundland. 
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preservation of C- and S-isotope trends, we compared petrographic characteristics (optical and 

cathodoluminescence) to geochemical (Mn, Sr, δ13C and δ18O and δ34S) characteristics.  

 

4.1.1. δ18O and trace element data 

 

The majority of δ18O values of primary depositional phases fall between -9 and -5‰ (Figure 

2.6A). δ18O values from the La Silla and Aguathuna Formations broadly overlap and represent 

the most depleted isotopic values (-10 to -7‰), whereas the San Juan Formation preserved the 

least depleted isotopic values (-7 to -5‰). O-isotope values from the Table Head Group are 

intermediate and fall within a relatively narrow range (-8 to -6.5‰). Most of these values fall 

within the range of data from other well-preserved, non-evaporative carbonate units in the 

Paleozoic (-9 to -5‰) (Wadleigh and Veizer, 1992; Qing and Veizer, 1994; Veizer et al., 1999). 

Since O-isotopes are easily exchanged during diagenesis, δ18O values more positive than -9‰ in 

depositional phases that show little petrographic evidence of recrystallization are generally 

interpreted to represent minimal water-rock interaction (Banner and Hanson, 1990; Wadleigh 

and Veizer, 1992; Qing and Veizer, 1994). Extensive dolomitization and the occurrence of the 

isotopically lightest δ18O values in the Aguathuna Formation, however, suggests a higher degree 

of water-rock interaction. Similarly, δ18O depleted values in the La Silla Formation likely reflect 

observed contributions from and interaction with meteoric fluids.  

 

More positive isotopic values in the San Juan Formation suggest this section may represent a 

lesser degree of post-depositional alteration or higher degree of evaporation of primary marine 

fluids, although the presence of open ocean facies does not support this interpretation. Another 

possibility is that generally more positive values in the San Juan Formation preserve secular 

change in the isotopic composition of marine δ18O, such as that inferred from previous studies of 

Ordovician brachiopods, which show δ18O values generally increasing through the Ordovician 

(Wadleigh and Veizer, 1992; Qing and Veizer, 1994; Veizer et al., 1999). O-isotope values in 

those studies are derived from brachiopod shells that meet stringent criteria for quality of 

preservation (well-preserved microfabrics, high Sr and Na and low Mn and Fe concentrations; 

Banner and Hanson, 1990). Additional evidence for diagenetic alteration of δ18O variation are 
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refuted since variation is observed in geologically disparate basins and because these samples 

also preserve other, globally correlative isotopic trends (87Sr/86Sr, δ13C). Mechanisms driving 

δ18O variation, however, are still under debate. Sea surface temperature, extent of glacial ice and 

high-temperature interaction with ocean crust have all been considered as potential mechanisms 

of δ18O variation (Wadleigh and Veizer, 1992; Qing and Veizer, 1994; Veizer et al., 1999). 

Based on petrographic and CL analyses, we consider δ18O values between -5.5‰ and -7.5‰ are 

consistent with marine rocks that have undergone minimal post-depositional alteration. 

 

Mn and Sr concentrations also provide insight into the degree of post-depositional fluid 

interaction since they are exchanged readily in the presence of secondary fluids (Banner and 

Hanson, 1990). Sr concentrations fall primarily between 200-1200 ppm (Figure 2.6, C and D), 

which are typical for marine calcites that have undergone limited exchange with post-

depositional fluids (Banner and Hanson, 1990). The highest Sr concentrations occur in the Table 

Head Group and San Juan Formation, which support O-isotope and petrographic evidence for 

limited exchange with post-depositional fluids. Notably, Sr concentrations within the Aguathuna 

Formation fall well below 200 ppm, consistent with petrographic evidence for post-depositional 

fluid interaction. Sr concentration also fall below 200 ppm in the La Silla Formation, potentially 

reflects some interaction with meteoric fluids.  The low Sr concentration in the La Silla 

Formation is also consistent with isotopically light O-isotope values that were observed 

petrographically, and provide evidence for early interaction with meteoric fluids, although the 

observed δ18O values still primarily fall within the range of accepted values for well-preserved 

carbonate rocks. 

 

Mn concentrations of all formations fall predominantly below 400 ppm, with all but five values 

falling below 800 ppm (four from the Cerro La Chilca section of the San Juan Formation, one 

and one from the Pachaco section) (Figure 2.6D). An Mn concentration below 400 ppm is 

consistent, as well, with an interpretation of relatively limited water-rock interaction (Banner and 

Hanson, 1990). The one value that is >800 ppm in the Pachaco section occurs at the top of the 

section, where it is associated with a major subaerial exposure surface that marks a significant 

depositional hiatus between the Middle Ordovician San Juan Formation and overlying Silurian 
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strata (Astini et al., 1995). This sample also yields anomalously low δ18O values, supporting an 

interpretation that elevated Mn concentration is a result of alteration along this boundary. 

Similarly, all Mn values that are >400 ppm in the Cerro La Chilca section occur in the upper 55 

meters of the section indicating the potential for stratigraphic control. In this case, however, there 

is no indication of subaerial exposure. Rather, elevated Mn concentrations coincide with marine 

transgression and potential interaction with reduced, Mn-rich fluids. These observations suggest 

potential transgression of high Mn, low O2 waters, which can facilitate the deposition of Mn in 

marine sediments (Grill, 1978; Davison, 1982) and may explain elevated Mn concentration in the 

upper San Juan Formation at the Cerro La Chilca section. Extraordinarily low Mn in the La Silla 

Formation (Mn concentrations <50 ppm) along with the presence of meteoric cements suggests 

precipitation from oxic, low Mn fluids. Early diagenetic interaction with oxic, meteoric fluids 

may also account for some of the scatter in δ13C in the La Silla Formation (Figures 2.7A and 

2.8), because such fluids would also be expected to oxidize depositional organic matter and 

provide variable δ13C for incorporation into early diagenetic phases. By contrast, the large range 

of Mn concentrations in the Aguathuna Formation, along with low Sr and petrographic evidence 

for replacive dolotimization, suggest this interval has experienced substantially greater post-

depositional alteration. Despite evidence for at least some interaction with post-depositional 

fluids, in no case is there clear evidence that interaction with post-depositional fluids proceeded 

to such a degree as to strongly affect the C-isotope values of the samples. 

 

4.1.2. δ34SCAS signal 

 

Although we concluded that carbonate rocks sampled in this study have undergone only limited 

water-rock interaction and therefore are likely to preserve reliable records of marine δ13C, we 

also need to consider whether δ34SCAS is likely to preserve a reliable record of marine δ34S. A 

cross plot of δ34SCAS and δ18O shows no clear trends in any of the studied sections (Figure 2.7B). 

In particular, the Table Head Group, which represents an interval where δ34SCAS shows dramatic 

stratigraphic variability, reveals a large range in δ34SCAS over a only about a 1.5‰ range in δ18O, 

suggesting that variation in δ34SCAS is not related to post-depositional alteration of the host 

carbonate. Similarly, although the La Silla and San Juan formations show a broader range in 
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δ18O, there is no clear correlation with δ34SCAS that might suggest covariance resulting from post-

depositional alteration. Additionally, diagenetic fluids have substantial oxygen, whereas only 

scant amounts of sulfate are expected in early Paleozoic fluids since oxygen levels were likely 

low. Because of this relative imbalance between O2 and SO4 concentration in diagenetic fluids, 

δ18O should alter much more quickly that δ34SCAS (Banner and Hanson, 1990). These 

interpretations are consistent with other studies (Burdett et al., 1989; Kampschulte et al., 2001; 

Lyons et al., 2004; Gill et al., 2007), which suggest that CAS faithfully records marine δ34S in 

samples of minor to moderate diagenetic recrystallization. 

 

5.2 Interpretation of C- and S-isotope profiles 

 

5.2.1. Global stability of the Middle Ordovician C-isotope record 

 

δ13C values from all sections overlap in range (between -1.5 and +0.5‰) and show no clear 

covariance with δ18O or other common indicators of diagenetic alteration. A further test of the 

preservation of marine δ13C is provided by comparison with coeval C-isotope records. C-isotope 

records from the Argentine Precordillera (Figure 2.8) and Western Newfoundland (Figure 2.9) 

reveal a clear and coherent signal with correlative excursions. C-isotope values average -1‰ in 

the latest Cambrian through the Early Ordovician (Tremadocian), drop briefly to values near -

2.5‰ in the early Floian, before returning to near zero values by the late Floian (Figure 2.10). 

Isotopic compositions drop again to near -1.5‰ in the Dapingian, and then increase through the 

Darriwilian to values near 0.5‰. C-isotope data in this study are consistent with data from 

published curves for Early and Middle Ordovician marine carbonate rocks worldwide (Wadleigh 

and Veizer, 1992; Qing and Veizer, 1994; Ainsaar et al., 1999; Buggisch et al., 2003; Saltzman, 

2005; Saltzman and Young, 2005; Bergström et al., 2008; Kah et al., in prep). The one exception 

to this coherence is at the very top of the Pachaco section, where a single sample near -1.5‰ is 

substantially more depleted than the underlying C-isotope values in the Pachaco section and 

values recorded in the coeval Cerro La Silla section. The occurrence of high Mn, low δ18O and 

δ13C in this sample likely represents meteoric alteration of δ13C values as would be expected in  
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Figure 2.10. Composite carbon and sulfur isotope records from the Early to Middle Ordovician. 

Section were correlated using a combination of previously published biostratigraphic data and 

matched with carbon isotope data from this study. Heterogeneity in recorded sulfur isotope data, 

here apparent in the uppermost Floian and Dapingian, is interpreted to reflect true heterogeneity 

in a low sulfate marine system. Despite regional heterogeneity, all sections are marked by a 

short-term (< 106 yr) oscillation in the isotopic composition of marine sulfate. International stage 

names and time slices are from Bergström et al. (2008) and Walker and Geissman (2009). The 

age of the base of the section (here at the base of the La Silla Formation) is estimated based on a 

combination of biostratigraphic constraints, ages of stage boundaries, and an assumption of 

constant sedimentation rate for the individual sections.  
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subaerial exposure and interaction with meteoric fluids, which produce 12C-enriched limestone 

(e.g., Allan and Matthews, 1982).  

 

C-isotope profiles from the La Silla, San Juan and Table Head formations (Figures 2.8, 2.9, and 

2.10) record limited isotopic variation (< 3‰), in striking contrast to either the Late Cambrian 

(Steptoean) SPICE excursion (Ripperdan et al., 1992; Braiser, 1993; Glumac and Walker, 1998; 

Saltzman et al., 1998) or Late Ordovician excursions (GICE, HICE; Kump et al., 1999; Saltzman 

and Young, 2005; Young et al., 2005) (cf., Figure 2.1). Limited variation in marine δ13C values 

during global greenhouse intervals has been attributed to nitrogen-limitation of organic 

productivity (Saltzman, 2005) or the combination of high DIC values (Berner, 1998; Bartley and 

Kah, 2004) and the coupling of organic and inorganic δ13C in widespread epeiric seas (Ridgwell, 

2003; Bartley and Kah, 2004). Our data is consistent with relatively stable marine δ13C values, 

although confirming the specific mechanisms maintaining this stability is outside the scope of 

this study.  

 

5.2.2. Sectional heterogeneity in δ34S 

 

Comparison of δ34S values shows clear heterogeneity both between the Argentina and 

Newfoundland sections and locally within the Argentine Precordillera (Figures 2.8, 2.9, and 

2.10). In coeval (Dapingian) intervals of the San Juan Formation, the isotopic composition of 

CAS in the Talacasto section is typically enriched in 34S, with δ34S values 4.5‰ more positive 

than the Cerro La Silla section (Figure 2.10). Similarly, δ34S values from the Table Head Group 

are 10‰ heavier than the Cerro La Silla section of the San Juan Formation and 6.6‰ heavier 

than the Talacasto section. Furthermore, comparison of δ34S of the Tremadocian Gasconade 

Formation (Gill et al., 2007) to δ34S profiles presented here shows that La Silla Formation δ34S 

values are 10‰ more negative relative to the Gasconade Formation. Combined, these data 

suggest the potential for substantial regional heterogeneity in marine sulfur isotope composition.  

 

Heterogeneity in isotopic composition between the different stratigraphic sections could 

plausibly arise from non-conservative isotopic behavior under conditions of low marine sulfate 
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concentration or potentially from vertical variation in δ34S that results from chemical 

stratification of the water column. Variation in δ34SSO4 with depth in the water column has been 

documented in the modern day Black Sea (Vinogradov et al., 1962; Sweeney and Kaplan, 1980; 

Calvert et al., 1996; Lyons, 1997). In the Black Sea, the isotopic composition of deep-water 

sulfate is 1.5-2‰ more positive than surface water sulfate, due to high rates of bacterial sulfate 

reduction in deeper anoxic waters (Sweeney and Kaplan, 1980). The 34S-depleted values CAS of 

the San Juan Formation relative to deeper water deposits of the Table Head Group potentially 

result from proximity of these deeper water deposits to anoxic fluids and water-column BSR. 

δ34S values from the Table Head Group, however, are more depleted in the deeper water Table 

Cove Formation, suggesting δ34S stratification is not the primary cause of spatial heterogeneity, 

and that heterogeneity more likely derives from the simple non-conservative behavior of δ34S in 

a low-sulfate ocean. Numerous studies of fluid inclusions in marine evaporites (Lowenstein et 

al., 2001; Horita et al., 2002; Lowenstein et al., 2003; Brennan et al., 2004) suggest Early 

Paleozoic marine sulfate concentration may have been only 2-12 mM (or <50% of modern 

marine sulfate concentrations; 28mM, Bottrell and Newton, 2006), and isotopic heterogeneity 

appears to be a hallmark of these low-sulfate oceans (Gill et al., 2011).  

 

5.2.3. Instability of the Middle Ordovician S-isotope record 

 

Despite spatial heterogeneity, all sections show a strikingly similar stratigraphic pattern in 

marine δ34S. In sharp contrast to the marine C-isotope record, marine S-isotopes record repeated 

short-term oscillation superimposed over more subtle, longer-term trends. The duration of δ34S 

these two scales of isotopic variation is estimated using a combination of biostratigraphic 

constraints and an assumption of constant sedimentation rate for each of the individual sections. 

From the latest Cambrian (here estimated to be the upper 3 Ma of the Furongian) through the 

Early Ordovician (Tremadocian), average S-isotope composition shows little long-term variation 

(Figure 2.10). In the Cerro La Silla section of the San Juan Formation, δ34S values increase from 

approximately +16‰ to +22‰ through the Floian, then decrease to approximately +18‰ 

through the Dapingian (Figure 2.10). The Cerro La Chilca section of the San Juan formation 

shows the same trend, although these values are offset by about +2‰ (Figure 2.10). The Table 
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Head Group shows similarly elevated δ34S in Dapingian and early Darriwilian, but then records a 

dramatic shift from +30‰ to near +15‰ in the mid-Darriwilian (Thompson et al., in review). 

Combined, these observations suggest broad, long-term stability of marine sulfur isotope 

composition, with potential variation of 6-15‰ over time spans of 0.5 Myr.  

 

Despite long periods of time that show no apparent change in the average sulfate isotope 

composition of the marine system, regular, short-term oscillation of δ34SCAS appears to be 

characteristic of the Lower to Middle Ordovician, and shows striking similarity in duration and 

magnitude (average 7‰ excursion over 0.9 Myr) through all of the measured sections. Because 

oscillation in δ34SCAS occurs in all sections, is commonly defined by multiple data points, and 

does not appear to be directly related to either depositional environment or changes in lithology 

within the different sections, we suggest that observed short-term change in the isotopic 

composition of marine systems represents a true oceanographic signal with a driving mechanism 

that occurs on at least a basin-wide scale.  

 

6. Discussion 

 

6.1. Marine depositional environments of the Ordovician 

 

The Early to Middle Ordovician represents a global greenhouse interval (Frakes et al., 1992) 

when high sea level (Hallam, 1992; Miller et al., 2005; Haq and Schutter, 2008) and extensive 

epeiric seas promoted widespread carbonate platform deposition (Algeo and Seslavinsky, 1995; 

Pratt and Holmden, 2008). Elevated pCO2 associated with greenhouse, or potentially 

supergreenhouse, conditions (Berner, 1994; Brenchley, 1994) resulted in elevated sea surface 

temperatures (Trotter et al., 2008; Finnegan et al., 2011) and potentially sluggish ocean 

circulation (Brenchley et al., 1995; Saltzman, 2005). Deep-water anoxia is often attributed to 

organic matter production in global greenhouse climate conditions, either through sluggish ocean 

circulation or the decreased O2 solubility of warm water, or both (Sarmiento et al., 1988; Meyer 

and Kump, 2008). Decreased deep-ocean ventilation, in turn, may result in the effective 



 47 

decoupling of surface and deep-ocean waters as has been suggested for Late Paleozoic ocean 

anoxic events (Meyer and Kump, 2008).  

 

Under these conditions hydrogen sulfide (HS-) can build up in the water column via bacterial 

sulfate reduction, wherein photosynthetically produced organic matter provides a carbon source 

for bacterial sulfate reduction (BSR), which in turn reduces oceanic sulfate to produce hydrogen 

sulfide (Garrels and Lerman, 1981; Berner et al., 1985). Under well-oxygenated marine 

conditions, BSR is restricted to the sediment-column and >90% of HS- produced by BSR is 

immediately reoxidized to sulfate or intermediate sulfur species (Jørgensen et al., 1990), with 

remaining HS- available to react with Fe2+ to form pyrite (Berner et al., 1985). Under anoxic 

marine conditions, reoxidation of bacterially reduced HS- is likely to be substantially less, and 

euxinic conditions arise when Fe2+ availability is insufficient to strip the water column of 

bacterially produced HS- (Rozanov et al., 1974).  

 

6.2. Biogeochemical cycling of carbon and sulfur 

 

Isotopic composition of marine dissolved inorganic carbon (DIC) and sulfate are a function of 

the magnitude and isotopic composition of carbon and sulfur fluxes into and out from the marine 

system. The primary sources of marine DIC are the input of crustal carbon from metamorphic, 

volcanic outgassing and the weathering of marine carbonates, air-water gas exchange and 

associated organic matter (Kump and Arthur, 1999). Marine DIC is removed via photosynthetic 

organic carbon production and subsequent burial, and through marine carbonate deposition. 

Similarly, sources of marine sulfate include oxidative weathering of crustal sulfides (Berner, 

1987), dissolution of evaporite minerals (Holser et al., 1988), and oxidation of volcanogenic 

sulfur species (Bischoff and Dickson, 1975; Seyfried and Bischoff, 1979; Alt, 1995). Sinks 

include burial of S-bearing phases such as bacterially mediated sedimentary sulfides (Berner and 

Raiswell, 1983; Berner, 1984; Kump; 1989), precipitation of sulfur-bearing evaporite minerals in 

the shallow oceans (Holser, 1966) and at mid-ocean ridge hydrothermal circulation systems 

(Edmond et al., 1979), and sulfate substitution into the marine carbonate lattice (Takano et al., 

1985; Kitano et al., 1985). Evaporite precipitation and dissolution (Ault and Kulp, 1959; Thode 
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et al., 1961; Holser and Kaplan, 1966; Raab and Spiro, 1991), volcanogenic sulfur fluxes 

(Petsch, 1999), and trace sulfate account for only a small amount of the total fluxes of marine 

sulfate. Furthermore, they do not impart substantial isotopic fractionation and are thus not 

typically considered as drivers of variation of marine sulfate isotopic composition. Instead, 

riverine delivery of oxidatively weathered sulfide is considered the primary input of marine 

sulfate, whereas the burial of bacterially-mediated sulfide is considered the primary export 

(Garrels and Lerman, 1984; Berner and Petsch, 1998; Berner, 2001).  

 

The isotopic composition of carbon input into the oceans is variable, with metamorphic and 

volcanic outgassing typically -5%, weathering of marine carbonates near 0‰, and weathering of 

organic carbon near -22‰ (Kump and Arthur, 1999), but ultimately approximates the crustal 

value of -5‰ (Garrels and Lerman, 1984). Marine DIC is then removed from the oceanic system 

via the autotrophic production of organic matter, which typically imparts a fractionation of 28-

30‰. Similarly, modern riverine sulfate, derived from the oxidative weathering of crustal 

components (e.g., sulfide and evaporite minerals), ranges from 0-10‰ (Holser et al., 1988), and 

bacterially reduced sulfide can impart fractionations of 2 to 46‰ (Harrison and Thode, 1957; 

Habicht and Canfield; 1997; Canfield, 2001). Under conditions where BSR is not limited by 

sulfate availability, fractionations are commonly observed to be 35-45‰, with restricted 

fractionation observed with greater sulfate limitation. Additionally, S-isotope fractionation of up 

to 70‰ can result from disproportionation in the oxidative parts of the bacterial sulfur cycle 

(Canfield and Thamdrup, 1994; Habicht and Canfield, 1996; 1997; 2001).  

 

Variation in the isotopic composition of both carbon and sulfur can be modeled as a function of 

the isotopic composition and magnitude of these fluxes (e.g., Kump and Arthur, 1999). Change 

in the isotopic composition of the marine dissolved inorganic carbon reservoir (δDIC) is defined 

as a time-dependent relationship (Kump and Arthur, 1999): 

  

∂δDIC/∂t = [FW (δW – δDIC) – (FORG • ΔC)] • 1/MDIC   [1] 
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where FW and FORG, and δW and δORG, represent the magnitude and isotopic composition of 

weathering input to the ocean and removal of carbon as organic carbon, respectively; ΔC 

represents the fractionation between oxidized and reduced carbon reservoirs; and MDIC represent 

the magnitude of dissolved inorganic carbon in the marine reservoir. 

 

Similarly, change in the isotopic composition of the oceanic sulfate reservoir (dSO4) can also be 

defined as a time-dependent relationship (e.g. Kah et al., 2004): 

 

∂δSO4/∂t = [FW (δW – δSO4) – (FPY • ΔS)] • 1/MSO4   [2] 

 

wherein δSO4, δW and δPY are the isotopic composition of marine sulfate, weathered sulfate input 

to the ocean and buried pyrite, respectively; FW and FPY represent the magnitude of weathering 

and pyrite burial fluxes; ΔS represents the fractionation between organic and inorganic sulfur 

reservoirs; and MSO4 represent the magnitude of sulfate in the marine reservoir. The relationships 

expressed in Eq. [1] and [2] highlight reservoir size effects, with small reservoir size facilitating 

more rapid changes in δ13CDIC and δ34SSO4. The maximum rate of marine C-isotope variability 

(∂δDIC/∂tMAX) can then be estimated by allowing the weathering input to approach zero (FW → 0) 

and the remaining carbon to be removed via organic carbon burial (FORG = FW), giving: 

 

∂δDIC/∂tMAX = FW • ΔC/MDIC      [3] 

 

Likewise, ∂δSO4/∂tMAX can be estimated for the marine sulfate reservoir as weathering input 

approaches zero (FW → 0) and the remaining sulfate reservoir is removed via pyrite burial (FPY = 

FW), giving: 

 

∂δSO4/∂tMAX = FW • ΔS/MSO4      [4] 

 

At steady state, carbonate and sulfate input fluxes are equivalent to output fluxes (FW = FDIC + 

FORG and FW = FSO4 + FPY, respectively) and ∂dSO4/∂t = 0 (Kump and Arthur, 1999; Rothman, 

2003). From Eq. [1], this gives: 
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FORG = [FW • (δW – δDIC)] / ΔC     [5] 

 

for the marine carbon cycle and from Eq. [2], this gives: 

 

FPY = [FW • (δW – δSO4)] / ΔS      [6] 

 

for the marine sulfur cycle. Dividing Eq. [5] and [6] by FW gives: 

 

fORG  = (δW - δDIC) / ΔC      [7] 

 

fPY  = (δW - δSO4) / ΔS       [8] 

 

where fORG is the relative fraction of carbon that is removed from the system as organic carbon 

(fORG = FORG/(FORG + FDIC)) and fPY is the relative fraction of sulfur that is removed from the 

system as pyrite (fPY = FPY/(FPY + FSO4)). The relationships in Eq. [7] and [8] are valid for times 

scales longer than the residence time of marine DIC (τDIC) and marine sulfate (τSO4). In the 

modern ocean sulfate residence time is very long (approximately 20 Myr, Böttcher et al., 2007), 

but in the early Paleozoic, the residence time was potentially much shorter since the sulfate 

reservoir size was likely much smaller than in the modern ocean (Horita et al., 2002; Hurtgen et 

al., 2009; Gill et al., 2011; Thompson et al., in review) and residence time is a function of sulfate 

reservoir size (τSO4 = Mo/FW). Therefore, the steady state relationship [Eq. 4] is potentially 

applicable to short-term (<106 Myr) δ34SSO4 variation.  

 

6.3. Long-term C- and S-isotope trends 

 

Over longer time scales (107 yr), carbon and sulfur isotope data show sympathetic variation with 

a 1‰ increase in δ13C values from the early to mid-Floian that corresponds to a 15‰ increase in 

average δ34S (Figure 2.10). Similar sympathetic behavior in δ13C and δ34S values has been 

recognized in the Lower Paleozoic, particularly during the Late Cambrian SPICE event (Hurtgen 

et al., 2009; Gill et al., 2011). This covariant behavior has been interpreted as increased organic 
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carbon input to an anoxic and sulfidic deep-ocean (Hurtgen et al., 2009; Gill et al., 2011). Under 

these conditions, enhanced delivery of organic carbon results in increased bacterial sulfate 

reduction and expansion of ocean euxinia. Ordovician sulfur isotope records show an excursion 

of similar magnitude to that recorded at the time of the SPICE event (15‰) occurring over an 

interval approximately 2x longer than the SPICE event (~2 Myr SPICE; Saltzman et al., 2004; 

versus approximately 4 Myr from early to mid-Floian). If we assume, as in Gill et al. (2011), that 

the increase in δ34S is driven by enhanced delivery of organic carbon under low oxygen, 

potentially sulfidic conditions, the longer duration of the observed sulfur isotope shift may reflect 

a longer duration of enhanced organic carbon input. Alternatively, it may also reflect a slower 

response time to enhanced organic carbon input because of a larger marine sulfate reservoir.  

 

Gill et al. (2011) suggests that marine sulfate concentration at the time of the SPICE event would 

have to have been <1.5 mM in order to produce a S-isotope excursion that would recover within 

the 2 Myr time-frame afforded by the SPICE isotopic records. Hurtgen et al. (2009) suggests 

even lower (<1 mM) marine concentrations for this same time. Recent evaluation of a sharp 15‰ 

shift in the marine sulfur isotope record in the upper Table Head Group, Thompson et al. (in 

review) calculated marine sulfate concentration to be approximately 2 mM in the Early to Middle 

Ordovician. These models would therefore suggest that marine sulfate reservoir size potentially 

doubled in the aftermath of the SPICE event as a result of organic carbon burial and release of 

oxidative potential.  

 

In either case, if marine sulfur isotope change was ultimately driven by enhanced delivery of 

organic carbon, then the 15‰ shift in δ34S would have required a net organic carbon flux of 

4x1018 mol (Gill et al., 2011). In the Middle Ordovician, however, the enhanced organic carbon 

flux necessary to drive a 15‰ sympathetic shift in δ34S is not reflected in the apparent δ13C 

composition of marine DIC (as recorded in carbonates), which only increases 1‰. This 

dramatically muted response of DIC may result from a larger DIC reservoir during greenhouse 

times. Another potential factor would be increased coupling between marine organic and 

inorganic carbon (Ridgwell, 2003; Bartley and Kah, 2004) resulting from a globally sustained 

increase in skeletal biomass during this time (i.e. GOBE; Harper, 2006; Servais et al., 2009).  If 
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the muted carbon isotope response resulted entirely from increased DIC related to greenhouse 

climate, a time-dependent mass balance requires the DIC reservoir to be 10x larger than that 

assumed by Gill et al (2011). Although extreme pCO2 of up to 10x present atmospheric level 

may have been present during Ordovician greenhouse times (Berner, 1998; Berner, 2006), there 

are little data to support such a dramatic change in pCO2 (and thus DIC) from the Late Cambrian 

to the Middle Ordovician. Even at lower levels of pCO2, however, a muted carbon isotope 

response may occur if organic and inorganic carbon production are strongly coupled via 

metazoan skeletonization (i.e., limited production of organic carbon by pelagic, non-calcifying 

organisms (Ridgwell, 2003; Bartley and Kah, 2004). Such a scenario might be expected under 

potentially nutrient-limiting conditions during greenhouse times (Saltzman, 2005). Under these 

conditions, small changes in organic carbon flux may result in changes in δ34S that are largely 

uncompensated by changes in δ13C. This apparent decoupling is readily observed in Ordovician 

data from Argentina and Western Newfoundland in terms of the dramatic, short-term (<106 yr) 

oscillation in δ34S that is recorded in all studied sections (Figure 2.10). 

 

6.4. Potential origins of short-term S-isotope variation 

 

The most dramatic feature of the Ordovician marine sulfur isotope record is a short-term 

oscillation with an amplitude of 7‰ and wavelength of approximately 1 Myr. This oscillation is 

observed in each of the measured section and is surprising in its uniformity through Lower and 

Middle Ordovician strata sampled at these two very disparate sections. This short-term sulfur 

isotope variability, which records rates of isotopic change of approximately 14‰ per Myr (or 

7‰ per 0.5 Myr) suggests a fundamentally different response of the marine system than 

traditional models. Marine S-isotope variation is usually considered to be primarily driven by 

pyrite burial (Garrels and Lerman, 1984; Kump, 1989; Petsch and Berner, 1998; Petsch, 1999; 

Berner, 2001). Here, we evaluate the potential for alternate drivers such as a change in the 

fractionation between oxidized and reduced sulfur reservoirs, the magnitude of pyrite burial, and 

the magnitude and isotopic composition of the weathering flux as keys to understanding the 

short-term S-isotope variation. 
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6.4.1. ΔS control 

 

The degree of fractionation between oxidized and reduced marine sulfur reservoirs (ΔS) can vary 

as a function of sulfate availability (Habicht et al., 2002), sulfur disproportionation (Jørgensen, 

1990; Canfield and Teske, 1996), and the burial efficiency of pyrite (Hurtgen et al., 2005). The 

kinetic isotope effect associated with bacterial sulfate reduction imparted a 2-46‰ fractionation 

between sulfide and residual sulfate (Canfield, 1997; 2001; Detmers et al., 2001). Fractionation 

greater than 46‰ is commonly attributed to bacterial disproportionation, wherein intermediate 

sulfur species, thiosulfate (S2O3
2-) and elemental sulfur (S0), are recycled, producing sulfide that 

is depleted by 7-20‰ relative to the residual intermediate sulfur species (Jørgensen et al., 1990; 

Canfield and Thamdrup, 1994; Habicht et al., 1998; Cypionka et al., 1998; Böttcher et al., 2001). 

Late Cambrian to Ordovician records of δSO4 and δ34SPY suggest ΔS values <46‰ (Hurtgen et 

al., 2009; Gill et al., 2011, Thompson et al., in review). Because bacterial communities 

responsible for sulfur disproportionation have been active in the marine realm since the latter 

half of the Proterozoic (Canfield and Teske, 1996; Johnston et al., 2005), these reduced 

fractionations are generally interpreted to reflect BSR under sulfate-limiting conditions. To 

evaluate whether changes in ΔS required to produce observed short-term variation in marine 

sulfate S-isotope composition are plausible, steady state (Eq. [8]) constraints on the magnitude 

and fPY required are first considered, then time dependent relationships (Eq. [2] and [4]) are used 

to determine the magnitude of ΔS and changes in ΔS required to achieve the observed rate of S-

isotope change and its potential oscillation. All models use values provided in Table 2.7. 

 

Steady state estimates of ΔS indicate either a high fraction of pyrite burial (fPY) or large changes 

in ΔS are required to achieve average observed magnitude of S-isotope excursions (7‰) (Figure 

2.11A). At modern fPY (0.2-0.4; Holland, 1973; Berner and Raiswell, 1983; Garrels and Lerman, 

1984; Canfield, 2005), ΔS must change by 25‰ to produce a 7‰ shift in δSO4. Even at 

unreasonably high pyrite burial fractions (fPY = 0.9), ΔS would need to change by nearly 8‰ in 

to produce a 7‰ shift in δSO4. Time dependent modeling of the magnitude of ΔS required to 

produce observed rates of S-isotope change (14‰/Myr) also indicate low marine sulfate 

reservoir size is required to produce short-term marine S-isotope variation. Maximum possible  



 54 

 
 

Figure 2.11. Steady state model estimates for production of small amplitude isotopic excursions. 

A) Approximately 20% increase in relative pyrite burial is required to produce an average 7‰ 

increase in δSO4 at ΔS = 30‰. At lower values of ΔS, as is commonly observed in low sulfate 

systems, even greater increase in relative pyrite burial is required. B) δSO4 over a range of fPY. 

These plots highlight the sensitivity of δSO4 to high ΔS and high fPY values. 
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rates of change (∂δSO4/∂tMAX) were estimated using Eq. [4] for a range of ΔS values. Since sulfate 

reservoir size is unknown, we used Mo values that correspond to a range of sulfate concentrations 

from 0.5 to 28 mM. Estimates of ∂δSO4/∂tMAX indicate that a rate of change of 14‰/Myr requires 

either large ΔS or small reservoir size, or both. At modern sulfate reservoir size (28 mM), 

observed rate of S-isotope variation can only be achieved at values of ΔS >50‰ (Table 2.8). At 

values of ΔS closer to those commonly observed in the Cambrian and Ordovician (0 to 30‰), 

MSO4 <2 mM is required to achieve observed rate of S-isotope variation. Estimates of ∂δSO4/∂t at 

varying ΔS values using the time dependent relationship in Eq. [2] further indicate the necessity 

of a small sulfate reservoir (<2 mM) and large changes in ΔS (>25‰) to achieve observed 

oscillation of S-isotope composition (Table 2.9).  

 

It is clear that both steady state and time dependent estimates suggest low marine sulfate 

concentration and large fluctuations in ΔS (approximately 25‰). Low marine sulfate 

concentration is consistent with high-resolution Late Cambrian and Ordovician records of δSO4 

(Hurtgen et al., 2009; Gill et al., 2011; Thompson et al., in review) and marine evaporite data 

(Horita et al., 2002; Petrychenko et al., 2005) that suggest marine sulfate concentrations of <2 

mM. Although parallel records of Cambrian and Ordovician δSO4 and δPY record ΔS fluctuations 

of great enough magnitude (>25‰) to result in observed isotopic variation (Hurtgen et al., 2009; 

Gill et al., 2011; Thompson et al., in review), observed changes in ΔS all occur over substantially 

longer time frames (2-4 Myr), suggesting this mechanism is unlikely as a driver for short-term 

oscillation in the isotopic composition of marine sulfate. 

 

6.4.2. Pyrite burial control 

 

In most traditional models of marine sulfur cycling, pyrite burial is considered to be the primary 

control on changes in the isotopic composition of marine sulfate (Garrels and Lerman, 1984; 

Kump, 1989; Petsch and Berner, 1998; Petsch, 1999; Berner, 2001) and is, in itself, a function of 

water column oxygenation, the availability of organic carbon for bacterial sulfate reduction, and 

the availability of Fe2+ for pyrite burial (Westrich, 1983; Westrich and Berner 1984; Berner et 

al., 1985). In modern, well-oxygenated marine waters, bacterial sulfate reduction is typically 
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restricted to within the sediment column and, since highly reactive organic matter is also 

degraded by oxygen in the water column, bacterial sulfate reduction is further limited by the 

concentration and quality of organic carbon within sediments (Berner and Raiswell, 1983;  

Westrich, 1983; Westrich and Berner, 1984; Boudreau and Westrich, 1984). Under well-

oxygenated conditions, organic matter availability is controlled primarily by factors extrinsic to 

the marine system, e.g., increased sedimentation rate, which enhances deposition of highly 

reactive organic matter and leads to higher rates of bacterial sulfate reduction, or increased 

terrigenous weathering and delivery of nutrients to the marine system, which enhances organic 

productivity within the water column and its subsequent deposition. By contrast, under anoxic to 

euxinic oceanic conditions—resulting from lower biospheric oxygen (Canfield et al., 2007), 

decreased oxygen solubility (Meyer and Kump, 2008), or ocean stagnation (Saltzman, 2005)—

even slight changes in the extent of marine redox can result in an intrinsic increase in nutrient 

delivery to the surface oceans, which can enhance organic productivity within the water column.  

 

Permanent removal of marine sulfur by pyrite burial additionally relies on the availability of 

reactive iron, which facilitates the removal of biogenically-mediated hydrogen sulfide as pyrite 

(Berner, 1984; 1985; Lyons and Berner, 1992; Hurtgen et al., 2005). The availability of reactive 

iron to the marine system is controlled by a combination of hydrothermal influx and the delivery 

of iron via riverine and atmospheric sources (Fung et al., 2000). The dynamics of this system, 

however, are also affected by the rate at which reduced sulfur is rexoidized prior to its 

transformation to pyrite. In well-oxygenated environments, as much as 95% of HS- is reoxidized 

to sulfate and intermediate sulfide species before it can react with iron to form pyrite (Jørgensen, 

1982; Canfield and Teske, 1996). Under anoxic to euxinic oceanic conditions, however, the 

degree of HS- reoxidation was likely reduced, leading to a greater efficiency of pyrite burial 

(Hurtgen et al., 2005).  

 

A greater efficiency of pyrite burial might have the potential to drive observed short-term 

variation in the isotopic composition of marine sulfate. Steady state estimates of fPY using Eq. [8] 

indicate that at ΔS = 30‰, fPY must fluctuate by approximately 20% to achieve the observed 

average 7‰ shift in δ34S (Figure 2.11B). At smaller values of ΔS (e.g., 20‰ or less, which is 
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commonly observed in low-sulfate systems), fPY increases dramatically to >40%. Although such 

a large increase in fPY may not be unreasonable over long time scales, such change becomes 

substantially more difficult when examined using a time-dependent model. 

 

Time dependent estimates of S-isotope variation reinforce requirements that both a small 

reservoir size and large fluctuations in FPY are needed to achieve the observed rate of δSO4 

variation (Table 2.10). Estimates suggest that observed ∂δSSO4/∂t cannot be achieved with a 

sulfate reservoir size >2 mM except at very high pyrite burial rates (>>FW), which would result 

in a rapid drawdown of marine sulfate concentrations. Even at sulfate concentrations much lower 

than the estimated 2 mM, the bi-directional change in δSO4 observed in this study would require 

changes in FPY from near zero to 0.8x1018 mol/Myr (Table 2.10). Large fluctuations in pyrite 

burial are best explained by the presence of a persistent HS- reservoir in an ocean that is stratified 

with respect to dissolved oxygen. In this scenario, HS- produced by BSR in anoxic bottom waters 

is removed from the overlying sulfate reservoir and is effectively sequestered as a distinct sulfur 

reservoir (Meyer and Kump, 2008). In an iron-limited system, variability in the isotopic 

composition of the marine sulfate reservoir would reflect expansion or contraction of a deep-

ocean euxinic reservoir resulting from changes in organic carbon availability. Ultimately, such a 

scenario in which rates of BSR are decoupled from rates of pyrite burial (i.e., where modeled 

values of FPY effectively reflect FBSR rather than pyrite burial) could result in substantial changes 

in the isotopic composition of marine sulfate even in the absence of evidence (such as changes in 

ΔS) for enhanced efficiency of pyrite burial. Furthermore, although it is difficult to separate 

extrinsic from intrinsic controls on CORG availability, we suggest that the rapid (<106 yr) time-

frame of observed sulfur isotope change is consistent with changes in CORG availability resulting 

from intrinsic changes in marine redox structure and nutrient availability. 

 

6.4.3. Weathering flux control 

 

In a final model examination, we examine the potential for changes in the magnitude and 

isotopic composition of sulfate weathering to result in short-term oscillation of marine sulfur 

isotope composition. Flux of sulfate to the marine system includes the oxidative weathering of 
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crustal sulfide minerals, dissolution of marine evaporite minerals, and the input of magmatic 

sulfur, with the isotopic composition of this flux being a function of the relative contribution of 

these sulfur sources (Garrels and Lerman, 1984; Carpenter and Lohmann, 1997; Berner and 

Petsch, 1998; Berner, 2001). Typically, volcanogenic sulfur input is inferred to be low relative to 

crustal weathering, and is typically ignored (Kump, 1989; Petsch and Berner, 1998; Petsch, 

1999; Berner, 2001; see Carpenter and Lohmann, 1997 who argue for the addition of a 

significant mantle flux). Additionally, because there is little fractionation associated with the 

precipitation of sulfate-bearing evaporites from seawater (Holser et al., 1988; Raab and Spiro, 

1991), their dissolution plays only a minor role in determining the isotopic composition of a 

crustal weathering flux, which is, instead, dominated by the oxidative weathering of crustal 

pyrite. 

 

Because crustal weathering, and thus the flux and isotopic composition of weathering input to 

the marine sulfur system, is primarily controlled by long term (>107 yr) processes (Berner, 1994; 

Canfield et al., 2000), weathering input typically affects marine δ34S only on long time scales 

(Garrels and Lerman, 1984; Veizer et al., 1999; Kampschulte et al., 2001). To constrain the 

magnitude of weathering flux change required for ∂δSO4/∂t = 14‰/Myr, we used Eq. [2] to 

calculate ∂δSO4/∂t for a range of MSO4 and FW (Table 2.11). These estimates again emphasize that 

observed ∂δSO4/∂t requires low marine sulfate concentration (<2 mM) and large fluctuations in 

FW. Modern sulfate reservoir size (equivalent to a concentration of 28 mM) cannot achieve 

observed rates even at FW that is 10x estimates for Phanerozoic weathering rates. Even at a 

marine sulfate concentration of 0.5 mM a near doubling of FW is required to shift from δSO4 

variation in the negative direction to the positive direction (FW from 2.5x1018 mol/Myr to 5x1018 

mol/Myr). The combination of large fluxes and rapid change in the magnitude of these fluxes 

suggests that FW is not a primary control on marine S-isotope variation.  

 

Additionally, time-dependent estimates (Eq. [2]) of the sensitivity of marine sulfate isotopic 

composition to changes in the isotopic composition of the weathering flux (δW) suggest great 

difficulty in achieving observed rates of S-isotope change at modern concentrations of marine 

sulfate (Table 2.12). Even at very low marine sulfate concentrations (0.5 mM), observed 
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oscillation of marine δSO4 would require shifts in δW from approximately -13‰ to > 3 (Table 

2.12). Estimates of Early Paleozoic the isotopic composition of sulfate weathering flux range 

from +3 to +12‰ (Hurtgen et al., 2009; Gill et al., 2011). Although early Paleozoic δW values 

are admittedly difficult to constrain, values much below 0‰ are unlikely from a continental 

source since these values represent a mixture of sulfate and sulfide weathering (Holser et al., 

1988). Under conditions of a persistent euxinia, however, a deep water HS- reservoir could 

provide a potentially large reservoir of highly reactive, isotopically light sulfur. Model estimates 

provided here suggest that partial reoxidation of this source (i.e., where modeled values of FW 

and δW effectively reflect a combination of a traditional crustal weathering flux plus a flux of 

oxidized hydrogen sulfide, FW + FOX) could result in substantial changes in the isotopic 

composition of marine sulfate. 

 

6.5. Short-term sulfur isotope oscillation driven fluctuating oxycline 

 

Time-dependent analyses indicate that it is unlikely that observed, systematic oscillations in 

marine δ34S result from changes in the isotopic fractionation between oxidized and reduced 

sulfur phases. We suggest that difficulties in generating large, yet short-term, changes in the 

either pyrite burial (FPY) or weathering (FW) flux can be reconciled by treating the Ordovician 

sulfur cycle as a dual-reservoir system, with marine sulfate and HS- treated as distinct, reactive 

reservoirs (Thompson et al., in review; cf. Rothman et al., 2003). Numerous studies suggest early 

Paleozoic oceans were susceptible to deep-ocean anoxia and fluctuating euxinia (Wille et al., 

2008; Hurtgen et al., 2009; Gill et al., 2011). Here we consider that short-term, rapid oscillation 

in the marine CAS record may be best explained by the intrinsic expansion and contraction of a 

reactive deep-ocean HS- reservoir responding to small-scale changes in marine redox.  

 

If we first consider a single-reservoir model (Figure 2.12A), the composition of the marine 

sulfate reservoir depends only on the magnitude and isotopic composition of input fluxes (from 

weathering) and output fluxes (from deposition of marine evaporates, including deposition of 

carbonate-associated sulfate, and pyrite). Because marine evaporite deposition has little 

fractionation from original marine compositions (Holser et al., 1988; Raab and Spiro, 1991), 
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pyrite burial is the quantitatively critical flux. The inherent assumption in this single-reservoir 

model—suitable for a well-ventilated water column—is that all bacterially reduced HS- that is 

not extracted by reaction with available iron is immediately reoxidized, through a range of 

intermediate sulfur phases, to sulfate.  

 

By contrast, a dual-reservoir model acknowledges the potential existence of a reactive, deep-

ocean HS- reservoir in addition to the marine sulfate reservoir. Deep-ocean euxinia is treated as a  

distinct reservoir with its own input and output fluxes that can affect both the behavior of the 

individual reservoirs as well as the degree of linkage between them (Thompson et al., in review; 

cf., Rothman et al., 2003). In a dual-reservoir model (Figure 2.12B) the isotopic composition of 

marine sulfate is affected directly by the magnitude and isotopic composition of traditional input 

and output fluxes (from weathering and deposition of marine evaporates, including deposition of 

carbonate-associated sulfate, respectively) that act over long time-scales, as well as a suite of 

transitory input and output fluxes (from BSR and a combination of chemical and biological 

sulfide oxidation; Kaplan and Rittenberg, 1964; Fry et al, 1988). In this scenario, the 

composition of marine sulfate will be influenced directly by the magnitude and isotopic 

composition of pyrite burial only when the transitory fluxes between the two reservoirs, bacterial 

sulfate reduction (FBSR) and sulfide oxidation (FOX), are in equilibrium (Figure 2.12B). When 

transitory fluxes are not in equilibrium, it is critical to consider the time-scales of these fluxes 

with respect to the size of the individual reactive reservoirs (cf. Rothman et al., 2003). For 

instance, if BSR or HS- oxidation occurs over time scales that are shorter than the residence time 

of the marine HS- reservoir (τHS), but longer than the residence time of the marine sulfate (τSO4) 

these processes will preferentially affect the composition of the marine sulfate reservoir but not 

that of the marine HS- reservoir. The implications of this two-reservoir model indicate that rapid 

oscillation in the isotopic composition of marine sulfate may reflect transitory changes in the 

balance of BSR and HS- oxidation in a low-sulfate, euxinic marine system (Figure 2.13). In this 

scenario, reduced oceanic ventilation (via sluggish circulation or reduced oxygen solubility) 

promotes deep-water anoxia and buildup of an HS- reservoir. During intervals of increased 

marine anoxia (Figure 2.13A), HS- produced via BSR is effectively removed from the overlying 

marine sulfate reservoir. The high position of the marine oxycline prevents substantial  
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Figure 2.12. Conceptual diagrams of single and dual reservoir marine sulfur models. A) In a 

single reservoir model (cf., Kurtz et al., 2003) the isotopic composition of marine sulfate is 

controlled primarily by the magnitude and isotopic composition of input fluxes (from 

weathering) and output fluxes (from deposition of marine evaporites, including deposition of 

carbonate-associated sulfate and pyrite). Because marine evaporite deposition imparts little 

fractionation from the original marine composition, pyrite burial is the quantitatively critical 

flux. B) In a dual reservoir sulfur model (cf., Rothman et al., 2003) both marine sulfate and 

marine hydrogen sulfide serve as reactive reservoirs. The isotopic composition of the marine 

sulfate reservoir can be affected not only by endmember input fluxes and output fluxes, but also 

by the magnitude and isotopic composition of processes that occur between the two reservoirs, 

such as bacterial sulfate reduction and biotic/abiotic sulfide oxidation. 
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reoxidation of HS-, which results in isotopically heavy marine sulfate. During times of decreased 

marine anoxia (Figure 2.13B), partial reoxidation of HS- in the water column and sediment 

releases a flux of isotopically light marine sulfate to the marine sulfate reservoir, resulting in a 

negative shift in the isotopic composition of marine sulfate.  

 

We envision the primary driver behind fluctuating marine redox to be organic productivity. In 

this model, expansion of euxinic deep-waters occurs when productivity leads to enhanced 

oxygen consumption and increased rates of BSR within the water column. Modeled C/S ratios of 

0.8-1.8 and diminished evidence for restricted ΔS support the hypothesis of syngenetic pyrite 

formation within a euxinic water column (Thompson et al., in review), although, in this case, the 

isotopic composition of marine pyrite is buffered by HS- rather than by pyrite burial. We expect 

that such conditions are self-limiting and have internal feedback. For example, a strong oxycline 

will foster anoxic denitrification, ultimately resulting in a negative feedback between nitrogen 

availability and organic productivity. As nitrate limitation forces a reduction in productivity, 

oxygen consumption will decline, resulting in a lowering of the marine oxycline. Even these 

potentially small changes in nutrient availability and organic productivity, may result in cyclic 

changes in oceanic redox that is reflected in an oscillation in the isotopic composition of marine 

sulfate. Regardless of the driving mechanism, it is clear that the transitory nature of observed 

isotopic changes requires consideration of a dual-reservoir model for marine sulfur cycling. In 

this scenario, the total flux of bacterially reduced sulfur, less the reduced sulfur removed from 

the system as pyrite, represents the extent of euxinia and the amount of reactive sulfur available 

for reoxidation. The stability of the observed short-term oscillation of δ34S indicates that, over 

the long time-frame of this study (>20 Myr), extrinisic factors such as increased crustal 

weathering and its affect on organic productivity on expansion and contraction of marine euxinia 

was largely decoupled from changes driven by intrinsic changes in nutrient flux.  

 

7. Conclusions 

 

Marine S-isotope records from the Early to Middle Ordovician Argentine Precordillera and 

Western Newfoundland show robust short-term variation superimposed over a longer-term  
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Figure 2.13. Conceptual model of a fluctuating oxycline in the poorly ventilated Ordovician 

greenhouse ocean. A) During intervals of widespread anoxia (high marine oxycline) low rates of 

hydrogen sulfide reoxidation results in effective removal of sulfur from the marine sulfate 

reservoir and buildup of a large hydrogen sulfide reservoir. B) Contraction of deep ocean euxinia 

and partial oxidation of the reactive hydrogen sulfide reservoir results in an increased flux of 

isotopically light sulfate to the marine sulfate reservoir and a concomitant decrease in the 

isotopic composition of the marine sulfate reservoir. 
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signal. Long-term S-isotope variation is sympathetic to marine C-isotope variation, indicating 

organic carbon burial was a driver of C- and S-isotope variation. Comparison to long-term C- 

and S-isotope variation to trends observed during the Late Cambrian SPICE event shows δ34S 

variation that is similar in magnitude, but which occurs over a time interval twice as long as 

during the Late Cambrian. We suggest this longer duration of average variation in marine sulfur 

isotope composition reflects an approximate doubling of the marine sulfate reservoir after SPICE 

(equivalent to a concentration change from approximately 1 to 2 mM). Marine δ13C variation is 

notably muted in the Ordovician relative to SPICE (1‰ excursion versus 5‰ during SPICE). 

The muted response of marine δ13C in the Ordovician likely reflects a combination of increased 

pCO2 in a supergreenhouse climate and organic and inorganic carbon production that was 

strongly coupled via metazoan skeletonization (Ridgwell, 2003; Bartley and Kah, 2004). 

 

Traditional single-reservoir modeling of the sulfur cycle is not sufficient to account, however, for 

a persistent short-term oscillation in the isotopic composition of marine sulfur. Short-term 

variation in marine sulfate isotopic composition is indicative of expansion and contraction of 

deep-ocean euxinia, and is best explained by an intrinsically controlled fluctuation in the marine 

oxycline that results in an alternation between enhanced BSR and enhanced reoxidation of 

marine HS- in a poorly ventilated Ordovician greenhouse ocean.  

 

The potential for a large, reactive HS- reservoir demands consideration of the sulfur cycle as a 

dual-reservoir model (cf. Rothman et al., 2003), and suggests that Precambrian and Early 

Paleozoic records of S-isotope variation should be re-evaluated in terms of a dual reservoir 

model, especially during intervals when the water column was potentially euxinic. The results 

from this and other recent studies (Thompson et al., in review) indicate the persistence of deep-

ocean euxinia well into the Ordovician despite the potential for large-scale organic carbon burial 

during the Late Cambrian SPICE event. We suggest that the extent of oxygen liberated to the 

biosphere during the SPICE event, although sufficient to double the size of the marine sulfate 

reservoir, was insufficient fully ventilate the deep ocean environment, particularly during 

greenhouse climates.  
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Table 2.1. Range of isotopic compositions and elemental concentrations recorded in the La Silla 

Formation, Argentina. *Stratigraphic height is cumulative based on measured section and carbon 

isotope correlation of individual sections.  

 
Strat. 

Height* Age δ13C δ18O δ34S Mg/Ca Mn Fe Sr Sample 
(m) (Myr) (‰ VPDB) (‰ VCDT)     (ppm)   

LS-1 1 491.0 -1.0 -4.8 19.1 0.48 10 406 248 
LS-9 9 490.7 -0.4 -9.1 16.3 0.00 0 11 111 
LS-18 18 490.4 -0.4 -9.3 17.0 0.01 0 216 273 
LS-30 29.5 490.0 0.5 -9.4 11.6 0.00 0 103 150 
LS-39 38.5 489.8 0.3 -9.0 13.4 0.01 0 168 156 
LS-48 47.5 489.5 0.7 -7.8 11.0 0.00 0 149 152 
LS-58 57.7 489.1 -1.0 -8.7 16.1 0.01 0 91 136 
LS-67 66.7 488.9 -0.1 -7.6 11.2 0.01 0 4 148 
LS-78 78 488.5 -1.0 -9.1 13.9 0.00 0 118 158 
LS-87 87 488.2 0.3 -7.8 17.3 0.01 0 127 164 
LS-96 96 487.9 -0.2 -8.2 10.1 0.00 0 148 187 

LS-105 105 487.6 -0.9 -7.8 18.8 0.01 0 74 186 
LS-120 120 487.1 -1.7 -7.7 17.9 0.00 0 100 190 
LS-131 130.5 486.8 -1.6 -7.9 18.7 0.01 0 378 315 
LS-149 149.3 486.2 -0.4 -8.2 15.6 0.00 0 40 290 
LS-159 158.3 485.9 -1.6 -7.7 17.4 0.00 0 0 209 
LS-167 167.3 485.6 -1.1 -7.7 11.7 0.00 0 122 287 
LS-176 176.3 485.3 -1.3 -7.9 19.9 0.00 0 90 246 
LS-185 185.3 485.0 -1.0 -8.4 18.5 0.00 0 112 182 
LS-199 199 484.6 -0.8 -7.6 13.1 0.00 0 10 204 
LS-217 217 484.0 -1.1 -8.3 19.5 0.00 0 18 158 
LS-227 226.8 483.7   12.2 0.00 0 30 166 
LS-236 235.8 483.4 -0.8 -8.7 15.3 0.00 0 31 177 
LS-246 245.6 483.1 0.3 -7.5 14.9 -0.01 0 228 159 
LS-255 255.4 482.8 -0.3 -8.1 17.3 0.00 0 0 183 
LS-264 264.4 482.5 -1.1 -8.0 17.0 0.01 0 158 232 
LS-273 273.4 482.2 -0.9 -7.6 20.1 0.00 0 132 201 
LS-282 282.4 481.9 -1.4 -8.1 19.0 0.00 0 40 440 
LS-291 291.4 481.6 -1.5 -8.5 13.4 0.00 0 0 177 
LS-300 300.4 481.3 -1.6 -7.5 19.8 0.01 0 179 203 
LS-309 309 481.0 -1.3 -8.2 18.3 0.01 0 50 209 
LS-318 317.6 480.8 -0.7 -9.0 16.6 0.01 0 86 258 
LS-327 326.6 480.5 -1.6 -9.0 16.6 0.00 0 21 210 
LS-337 336.6 480.2 -1.6 -7.8 15.0 0.01 0 198 168 
LS-346 345.5 479.9 -1.1 -8.0 15.7 0.00 0 130 139 
LS-355 354.5 479.6 -0.8 -7.8 15.6 0.01 0 98 132 
LS-364 363.5 479.3 -1.0 -7.2 12.3 0.00 0 128 158 
LS-373 372.5 479.0 0.0 -7.8 15.3 0.00 0 107 273 
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Table 2.2. Range of isotopic compositions and elemental concentrations recorded in the Cerro 

La Silla section of the San Juan Formation. *Stratigraphic height is cumulative based on 

measured section and carbon isotope correlation of individual sections. 

 

Strat. Height* Age δ13C δ18O δ34S Mg/Ca Mn Fe Sr 
Sample 

(m) (Myr) (‰ VPDB) (‰ VCDT)     (ppm)   
SJ-0 375.2 479.0 -0.6 -8.4 15.3 0.00 8 8 200 
SJ-8 382.7 478.8 -0.5 -7.2 17.1 0.00 9 42 196 

SJ-15 390.2 478.6 -0.7 -6.7 18.3 0.00 12 81 277 
SJ-23 397.7 478.4 -1.1 -6.9 23.5 0.01 12 76 279 
SJ-31 405.8 478.1 -0.7 -5.9 19.6 0.01 14 71 251 
SJ-39 413.7 477.9 -1.5 -6.6 19.0 0.01 17 123 257 
SJ-46 421.2 477.7 -1.2 -6.7 21.7 0.01 13 91 303 
SJ-55 429.7 477.5 -2.5 -6.7 23.3 0.01 24 203 299 
SJ-62 437.2 477.2 -2.4 -6.2 14.9 0.01 21 92 271 
SJ-70 444.7 477.0 -1.4 -7.0 21.2 0.01 76 718 291 
SJ-77 452.2 476.8 -0.9 -6.6 25.3 0.00 107 1119 277 
SJ-85 459.7 476.6 -0.9 -6.9 23.8 0.00 232 1652 281 
SJ-92 467.2 476.4 -0.8 -6.7 24.5 0.01 214 1637 309 
SJ-100 474.7 476.2 -0.8 -6.4 20.2 0.00 121 1455 303 
SJ-107 482.2 476.0 -0.5 -6.6 23.9 0.00 184 1251 315 
SJ-115 489.7 475.8 -0.7 -6.6  0.01 210 2144 312 
SJ-116 491.2 475.7 -0.8 -5.9 26.5 0.01 158 1252 255 
SJ-124 498.7 475.5 -1.1 -6.6 26.6 0.00 491 1025 425 
SJ-131 506.2 475.3 -0.7 -6.6 25.5 0.01 182 1556 307 
SJ-139 513.7 475.1 -0.3 -6.4 20.7 0.01 206 1332 291 
SJ-146 521.2 474.9 -0.4 -6.1 22.0 0.01 194 1523 308 
SJ-154 528.7 474.7 -0.3 -6.1 27.6 0.01 201 1207 300 
SJ-162 536.2 474.4 -0.3 -5.6 23.8 0.00 340 977 233 
SJ-169 543.7 474.2 0.0 -6.1  0.01 312 1477 313 
SJ-176 551.2 474.0 -0.1 -5.9 21.5 0.00 294 862 262 
SJ-184 558.7 473.8 -0.2 -6.0 26.7 0.01 232 943 321 
SJ-191 566.2 473.6 -0.2 -5.8 25.0 0.00 186 855 280 
SJ-199 573.7 473.4 -0.1 -6.1  0.00 43 229 179 
SJ-206 581.2 473.2 -0.2 -6.2 22.5 0.01 167 572 285 
SJ-214 588.7 473.0 0.0 -6.0 23.7 0.01 223 1201 274 
SJ-221 596.2 472.7 -0.3 -6.2 26.3 0.01 148 1114 269 
SJ-229 603.7 472.5 -0.9 -6.5 22.2 0.01 178 1281 261 
SJ-236 611.2 472.3 -0.3 -5.9 15.5 0.00 106 217 324 
SJ-246 621.4 472.0 -0.6 -5.7 20.2 0.01 81 290 347 
SJ-253 628.9 471.8 -0.4 -5.9 17.1 0.01 70 274 345 
SJ-261 636.4 471.6 -0.7 -5.9 24.2 0.00 255 1301 270 
SJ-269 643.9 471.4 -0.5 -5.7 16.8 0.01 110 321 332 
SJ-277 651.7 471.2 -0.5 -6.0 19.7 0.01 158 780 314 
SJ-284 659.2 471.0 -0.6 -5.6 23.7 0.00 211 556 295 
SJ-292 666.7 470.7 -0.5 -5.6  0.02 218 691 327 
SJ-299 674.2 470.5 -0.6 -5.2 19.7 0.01 190 655 287 
SJ-307 681.7 470.3 -0.6 -5.1 19.6 0.01 180 532 334 
SJ-316 690.7 470.1 -0.7 -5.5 15.6 0.01 159 456 317 
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SJ-323 698.2 469.8 -0.6 -5.5 19.4 0.01 217 404 332 
SJ-331 705.7 469.6 -0.7 -5.8 16.4 0.01 276 657 337 
SJ-338 713.2 469.4 -0.8 -5.8 19.4 0.01 248 512 354 
SJ-346 720.7 469.2 -1.0 -5.7 16.8 0.01 184 427 341 
SJ-353 728.2 469.0 -1.2 -5.7 13.5 0.01 127 290 297 
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Table 2.3. Range of isotopic compositions and elemental concentrations recorded in the 

Talacasto section of the San Juan Formation, Argentina. *Stratigraphic height is cumulative 

based on measured section and carbon isotope correlation of individual sections.  

 

Strat. Height* Age δ13C δ18O δ34S Mg/Ca Mn Fe Sr Sample 
(m) (Myr) (‰ VPDB) (‰ VCDT)     (ppm)   

SJT-0 647.9 471.2 -0.7  25.1 0.01 184 798 359 
SJT-7 655.1 471.0 -0.6 -6.3 25.0 0.01 141 563 283 

SJT-16 663.9 470.7 -0.7 -6.3 27.1     
SJT-19T 667.2 470.7 -0.7 -6.1 23.6 0.01 193 767 337 

SJT-19B1 666.9 470.7 -0.4 -6.1 20.9 0.01 249 475 298 
SJT-19B2 666.9 470.7 -0.5 -6.3 21.5 0.01 170 491 292 

SJT-22 670.2 470.6 -0.6 -6.3 20.6 0.01 155 347 424 
SJT-31 679 470.3 -0.7 -6.2 24.4 0.01 131 294 298 
SJT-38 686.1 470.1 -0.8 -6.5 26.2 0.01 175 454 325 
SJT-45 693.2 469.9 -0.6 -6.3 25.8 0.00 191 392 248 
SJT-54 701.5 469.7 -1.0 -6.4 23.2 0.01 143 222 522 
SJT-63 710.4 469.4 -1.0 -6.3 23.7 0.01 114 333 350 
SJT-71 718.5 469.2 -1.1 -6.2 21.1 0.00 204 1991 206 
SJT-82 729.4 468.9 -1.5 -6.3 13.9 0.01 147 427 321 
SJT-89 736.6 468.7 -1.6 -6.4 27.1 0.01 107 181 326 
SJT-99 747.1 468.4 -1.5 -6.7 23.5 0.00 107 244 311 
SJT-106 754.4 468.2 -1.5 -6.5 21.9 0.01 117 227 334 
SJT-115 762.7 467.9 -1.3 -6.8 19.0 0.00 73 286 282 
SJT-121 769.2 467.8 -1.1 -6.6 19.6 0.01 94 125 295 
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Table 2.4. Range of isotopic compositions and elemental concentrations recorded in the Cerro 

La Chilca section of the San Juan Formation, Argentina. *Stratigraphic height is cumulative 

based on measured section and carbon isotope correlation of individual sections.  

 

Strat. Height* Age δ13C δ18O δ34S Mg/Ca Mn Fe Sr Sample 
(m) (Myr) (‰ VPDB) (‰ VCDT)     (ppm)   

SJC-0 624.7 472.7 -0.5 -6.1  0.01 91 399 362 
SJC-8 632.2 471.7 -0.4 -6.2  0.01 185 342 383 
SJC-17 641.2 471.5 -0.2 -5.8  0.00 171 457 287 
SJC-24 648.7 471.3 -0.6 -6.0  0.00 211 533 322 
SJC-32 656.2 471.0 -0.4 -6.0  0.01 170 267 291 
SJC-39 663.7 470.8 -0.4 -6.0  0.00 212 344 338 
SJC-48 672.7 470.6 -0.6 -5.9  0.01 166 340 368 
SJC-56 680.2 470.4 -0.7 -5.7  0.01 176 342 320 
SJC-63 687.7 470.1 -0.8 -5.8  0.00 197 335 322 
SJC-71 695.2 469.9 -0.7 -6.0  0.00 136 220 372 
SJC-78 702.4 469.7 -0.6 -6.2  0.01 151 272 368 
SJC-86 710.6 469.5 -0.7 -5.9  0.00 158 189 280 
SJC-94 718.2 469.3 -1.0 -5.8  0.00 145 152 283 

SJC-101 725.7 469.1 -1.3 -6.1 22.1 0.00 176 264 280 
SJC-109 733.2 468.9 -1.4 -6.2 20.1 0.01 142 244 349 
SJC-116 740.7 468.6 -1.3 -5.9 19.1 0.00 139 236 338 
SJC-124 748.2 468.4 -1.6 -5.9 18.3 0.00 362 1177 280 
SJC-131 755.7 468.2 -1.2 -6.1 15.3 0.01 764 2449 359 
SJC-139 763.2 468.0 -1.2 -5.9 13.0 0.00 1535 3528 232 
SJC-147 771.2 467.8 -0.8 -5.5 23.0 0.00 2102 3800 306 
SJC-154 778.9 467.6 -0.5 -5.9 23.7 0.00 610 871 381 
SJC-162 787 467.3 -0.4 -5.1 25.7 0.02 1592 4126 257 
SJC-171 795.3 467.1 -0.3 -5.8 22.8 0.01 2006 3660 308 
SJC-178 802.4 466.9 -0.6 -5.2 22.2 0.02 517 1174 437 
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Table 2.5. Range of isotopic compositions and elemental concentrations recorded in the Pachaco 

section of the San Juan Formation, Argentina. *Stratigraphic height is cumulative based on 

measured section and carbon isotope correlation of individual sections.  

 

Strat. Height* Age δ13C δ18O Mg/Ca Mn Fe Sr 
Sample 

(m) (Myr) (‰ VPDB)     (ppm)   
SJP-0 437.5  -1.8 -7.0 0.00 80 611 219 
SJP-8 440.6  -1.3 -7.0 0.00 136 400 225 

SJP-13 442.6  -1.0 -6.8 0.02 60 902 232 
SJP-21 445.9  -1.2 -7.0 0.01 127 727 225 
SJP-28 448.9  -1.0 -6.9 0.00 182 1149 208 
SJP-36 452.0  -0.6 -7.2 0.00 195 1783 264 
SJP-44 455.3  -0.8 -7.3 0.00 205 2346 273 
SJP-51 458.4  -0.7 -6.9 0.00 192 1753 247 
SJP-58 461.3  -0.7 -6.9 0.01 179 1965 241 
SJP-66 464.4  -0.7 -6.9 0.00 296 1820 232 

SJP-66(*) 464.4  -0.6 -7.2 0.01 185 2653 242 
SJP-73 467.5  -0.9 -7.0 0.01 220 2171 224 
SJP-81 470.5  -0.6 -7.1 0.01 334 2712 265 
SJP-89 473.7  -0.7 -7.1 0.00 263 2111 212 
SJP-96 476.7  -0.8 -6.7 0.01 278 2006 253 
SJP-103 479.8  -0.7 -7.2 0.00 241 2095 248 
SJP-111 482.9  -0.6 -7.0 0.00 226 1909 250 
SJP-119 485.9  -0.5 -6.8 0.00 416 1999 256 
SJP-126 489.0  -0.4 -6.9 0.00 261 1414 209 
SJP-133 492.0  -0.5 -7.0 0.00 374 1692 192 
SJP-141 495.1  -0.8 -6.6 0.00 373 1750 248 
SJP-149 498.2  -0.7 -6.7 0.01 442 1799 237 
SJP-156 501.2  -0.1 -6.6 0.00 213 1136 209 
SJP-164 504.3  -0.3 -6.4 0.00 258 1422 250 
SJP-171 507.4  -0.1 -6.2 0.00 180 1184 246 
SJP-179 510.4  0.0 -6.5 0.00 158 1466 323 
SJP-186 513.5  -0.1 -7.0 0.00 212 1425 237 
SJP-194 516.6  0.0 -6.7 0.00 180 1251 236 
SJP-201 519.6  0.0 -7.0 0.01 267 1141 244 
SJP-209 522.7  -0.1 -7.1 0.00 363 1727 238 
SJP-216 525.8  0.1 -7.0 0.01 359 1524 221 
SJP-224 528.8  0.0 -7.0 0.00 474 1299 218 
SJP-231 531.9  0.1 -7.3 0.01 313 833 194 
SJP-239 534.9  0.0 -7.7 0.02 252 1291 177 
SJP-246 538.0  0.2 -9.6 0.00 210 967 173 
SJP-254 541.1  0.1 -10.8 0.01 372 1012 172 
SJP-257 542.5   -1.3 -14.3 0.00 2044 2698 243 
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Table 2.6. Range of isotopic compositions and elemental concentrations recorded in the Western 

Newfoundland sections. *Stratigraphic height is cumulative based on measured section and 

carbon isotope correlation of individual sections. † AG = Aguathuna Formation and TH = Table 

Head Group 

 
Strat. 

Height* Age δ13C δ18O δ34S TOC Mg/Ca Mn Fe Sr Sample† 
(m) (Myr) (‰ VPDB) (‰ VCDT) (wt%)     (ppm)   

AG-0B 0 473.8 -0.7 -10.0 31.6      
AG-9 9.4 473.6 -0.6 -9.4 28.7      
AG-18 18.4 473.3 -1.4 -11.0       
AG-26 26.4 473.1 -1.6 -8.7 30.9      
AG-31 30.9 473.0 -1.4 -6.8 24.8      
AG-41 41.4 472.7 -1.1 -6.7 32.9      
AG-50 50.4 472.5   31.3      
AG-59 59.4 472.2 -1.2 -8.1 27.4      
AG-67 67.4 472.0   33.7      
AG-76 76.4 471.8 -1.5 -6.2 25.0      
TH-1 76.4 471.8 -1.0 -7.8 30.9 0.01 0.1 56 1088 214 
TH-9 85.4 471.6 -1.5 -5.7 29.2 0.06 0.5 167 5084 78 

TH-18 94.4 471.3 -3.1 -7.4 29.9 0.08 0.0 32 672 332 
TH-27 103.4 471.1 -1.0 -7.4 33.0 0.10 0.0 23 108 410 
TH-35 110.9 470.9 -0.9 -7.3 29.4 0.05 0.0 11 299 286 
TH-43 119.9 470.6 -1.6 -7.0 24.6 0.04 0.1 86 1109 198 
TH-52 128.9 470.4 -1.0 -7.4 29.8 0.06 0.0 33 397 309 
TH-61 137.9 470.2 -1.3 -7.0 28.9 0.05 0.0 28 653 411 
TH-70 146.9 469.9 -1.5 -7.0 25.0 0.04 0.0 22 639 369 
TH-81 157.4 469.7 -1.7 -6.9 28.2 0.06 0.0 32 797 284 
TH-90 166.4 469.4 -1.7 -6.9 33.6 0.06 0.0 98 394 422 
TH-99 175.4 469.2 -1.9 -6.9 30.0 0.05 0.0 72 381 458 
TH-108 184.8 468.9 -1.6 -6.6 38.6 0.05 0.0 27 597 486 
TH-117 193.8 468.7 -0.7 -6.8 17.1 0.07 0.0 71 1625 368 
TH-126 202.8 468.5 -0.9 -7.1 26.8 0.06 0.0 39 1022 469 
TH-133 210 468.3 -1.1 -6.7 31.8  0.0 35 545 619 
TH-142 219 468.0 -0.7 -7.1 31.6 0.06 0.0 118 425 246 
TH-153 229.5 467.8 -1.4 -6.9 29.0 0.06 0.0 48 722 538 

TH-162A 238.5 467.5 -1.1 -6.7 29.2 0.05 0.0 41 431 417 
TH-171 247.5 467.3 -0.5 -6.8 32.9 0.05 0.0 30 391 400 
TH-180 256.5 467.1 -0.4 -6.7 29.9 0.05 0.0 52 578 361 
TH-189 265.4 466.8 -0.8 -7.6   0.1 40 279 311 
TH-201 277.4 466.5 -0.6 -7.2 19.2 0.06 0.0 127 275 297 
TH-215 292.1 466.1 -0.4 -7.6 21.8 0.06 0.0 184 503 255 
TH-226 302.6 465.8 -0.4 -6.9 2.6 0.09 0.0 413 1368 377 
TH-235 311.6 465.6 -0.6 -7.8 18.5      
TH-244 320.6 465.4 -0.2 -6.9 12.2 0.11 0.0 279 2578 715 
TH-253 329.6 465.1 0.0 -7.1 21.8 0.10 0.0 178 2217 1040 
TH-262 338.6 464.9 -0.1 -7.4 13.3 0.19 0.0 301 3132 901 
TH-270 346.1 464.7 0.3 -6.7 15.6 0.23 0.0 164 2232 1045 
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TH-278 355.1 464.5 0.3 -7.2 21.1 0.19 0.0 134 2148 1031 
TH-287 364.1 464.2 0.5 -8.1 18.2 0.14 0.0 116 1528 1094 
TH-295 371.6 464.0 0.6 -8.0 20.7 0.08 0.0 173 1787 1118 
TH-304 380.6 463.8 0.6 -7.0 9.7 0.12 0.0 121 1889 1073 
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Table 2.7. Values used for carbon and sulfur isotopic modeling. Values for fluxes and isotopic 

compositions were estimated from typical values used for Phanerozoic studies (Kump and 

Arthur, 1999; Kurtz et al., 2003; Gill et al., 2011). Values for ΔS used are less than traditional 

values (Kah et al., 2004), but reflect the values recorded by data in an earlier study for the early 

Darriwilian (Thompson et al., in review); δcarb and δSO4 were estimated from data recorded in the 

current study (see Figs. 8, 9, and 10). 

 
Carbon   Sulfur 
Fw = 3x1019 mol/My   Fw = 1.5x1018 mol/My 
FORG = 1x1019 mol/My  FPY = 0.5x1018 mol/My 
δw = -4‰  δw = +7‰ 
ΔC = -28‰  ΔS = -30‰ 
δcarb = -1‰   δSO4 = +15‰ 
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Table 2.8. Estimates of maximum rate of change in sulfur isotope composition (∂δSO4/∂t) with 
ΔS. Sulfate concentration is expressed in millimoles (mM) and weathering flux is expressed in 
‰/Myr. 
 

[SO4] ΔS = 0‰ ΔS = 10‰ ΔS = 20‰ ΔS = 30‰ ΔS = 40‰ ΔS = 50‰ 
0.5 0 21 41 62 82 102 
1 0 10 21 31 41 51 
2 0 5 10 15 21 26 
14 0 1 2 2 3 4 
28 0 0 1 1 2 2 

 
 
 
Table 2.9. Estimates of rate of change in sulfur isotope composition (∂δSO4/∂t) with ΔS. Sulfate 
concentration is expressed in millimoles (mM) and weathering flux is expressed in ‰/Myr. 
 

[SO4] ΔS = 0‰ ΔS = 10‰ ΔS = 20‰ ΔS = 30‰ ΔS = 40‰ ΔS = 50‰ 
0.5 -17 -3 11 25 38 52 
1 -8 -1 5 12 19 26 
2 -4 -1 3 6 10 13 

14 -1 0 0 1 1 2 
28 0 0 0 0 1 1 

 
 
 
Table 2.10. Estimates of rate of change in sulfur isotope composition (∂δSO4/∂t) with FPY. Sulfate 
concentration is expressed in millimoles (mM) and weathering flux is expressed in ‰/Myr. 
 

[SO4] FPY = 0 FPY = 0.5x1018 FPY = 1x1018 FPY = 1.5x1018 FPY = 2x1018 
0.5 -16 4 25 45 66 
2 -4 1 6 11 16 

14 -1 0 1 2 2 
28 0 0 0 1 1 
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Table 2.11. Estimates of rate of change in sulfur isotope composition (∂δSO4/∂t) with FW. Sulfate 
concentration is expressed in millimoles (mM) and weathering flux is expressed in ‰/Myr. 
 

[SO4] 
FW = 

0 
FW = 

1x1018 
FW = 

1.5x1018 
FW = 

2x1018 
FW = 

3x1018 
FW = 

4x1018 
FW = 

5x1018 
0.5 41 30 25 19 8 -3 -14 
1 20 15 12 10 4 -1 -7 
2 10 8 6 5 2 -1 -3 

14 1 1 1 1 0 0 0 
28 1 1 0 0 0 0 0 

 
 
 
Table 2.12. Estimates of rate of change in sulfur isotope composition (∂δSO4/∂t) with δW. Sulfate 
concentration is expressed in millimoles (mM) and weathering flux is expressed in ‰/Myr. 
 

[SO4] 
δW =  
-15‰ 

δW =  
-10‰ 

δW =  
-5‰ 

δW =  
0‰ 

δW = 
+5‰ 

δW = 
+10‰ 

δW = 
+15‰ 

0.5 -20 -10 0 10 20 31 41 
1 -10 -5 0 5 10 15 20 
2 -5 -3 0 3 5 8 10 
14 -1 0 0 0 1 1 1 
28 0 0 0 0 0 1 1 
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Part 3 

Sulfur isotopes mark end of Ordovician greenhouse climate in Darriwilian 
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This chapter is a reformatted version of a paper by the same title submitted for publication to 

Nature Geoscience in 2011 by Cara K. Thompson, Linda C. Kah and Alan Jay Kaufman. Journal 

format requires a short paper and an additional document of supplementary online material. 

 

Thompson, C.K., Kah, L.C., Kaufman, A.J., in review, Sulphur isotopes mark end of Ordovician 

greenhouse climate in Darriwilian. Nature Geoscience. 

 

Abstract 

 

Climatic cooling in the terminal Ordovician Period (Finnegan et al., in press) resulted in 

widespread Gondwanan glaciation (Brenchley et al., 1994) and a catastrophic loss of marine 

biodiversity (Sheehan, 2001). Icehouse climates, however, may have been initiated earlier in the 

Ordovician, as marked by C-isotope volatility in the Sandbian associated with oceanic 

ventilation (Saltzman, 2005; Saltzman and Young, 2005) or by a >25 Myr low in tropical sea 

surface temperatures (SSTs) in the Darriwilian (Trotter et al., 2008) which would be expected to 

drive oceanic ventilation. To test this hypothesis, we constructed high-resolution geochemical 

profiles across Middle-to-Late Ordovician (472-457 Ma) marine successions from Argentina and 

Newfoundland. Our results reveal profound changes in the S-isotope composition of carbonate 

associated sulphate (CAS) and co-existing pyrite. S-isotope data are consistent with an abrupt 

flux of oxygen into the oceans as surface temperatures cooled, resulting in widespread 

ventilation of euxinic bottom waters and subsequent growth of the marine sulfate reservoir. 

Synchronous changes in the isotopic composition of both C and pyrite S suggest that oceanic 

ventilation resulted in both enhanced organic productivity and increased efficiency of pyrite 

burial, ultimately driving the isotopic composition of pyrite heavier than that of marine sulphate. 

Coincidence of superheavy pyrite with marine Sr-isotope change supports a critical increase in 

iron delivery to the oceans, most likely from hydrothermal sources associated with seafloor 

spreading. This unique dataset demonstrates that deep-water euxinia and the complex C-S 

relationships that result from these conditions persisted through at least the Middle Ordovician.  

 

1. Introduction 
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The terminal Ordovician is marked by a dramatic shift in global climate resulting in widespread 

glaciation and the catastrophic extinction of >100 marine invertebrate families (Finnegan et al., 

in press; Brenchley et al., 1994; Sheehan, 2001). Recent evidence, however, suggests that the 

transition to icehouse conditions may have occurred as early as the Katian (Saltzman and Young, 

2005; Pope and Steffen, 2003; Young et al., 2010) in association with oceanic ventilation, 

enhanced productivity, and atmospheric CO2 drawdown (Saltzman, 2005). Oxygen-isotope 

measurements of conodont phosphate (Trotter et al., 2008), however, indicate conditions for 

oceanic ventilation may have been initiated 10 Myr earlier, in the Darriwilian. In order to better 

understand oceanic ventilation and the timing of the greenhouse to icehouse transition, we focus 

on marine geochemical records from the Middle-to-Late Ordovician of western Newfoundland 

and the Argentina Precordillera (Figure 3.1). Biostratigraphically correlated sections include 

critical intervals defined by variation in SST (Trotter et al., 2008) and a prominent decrease in 

marine 87Sr/86Sr (Shields et al., 2003; Young et al., 2009). Sections comprise dominantly open 

marine, subtidal environments in tropical to high paleolatitudes, respectively, and geochemical 

comparison of correlative intervals supports the global nature of observed isotopic trends (see 

supplementary information for discussion of sections and preservation of geochemical records).  

 

Our understanding of Middle-to-Late Ordovician marine geochemical change is rooted within 

studies of Proterozoic and earlier Paleozoic seawater proxies. High resolution S-isotope data 

from Proterozoic (Kah et al., 2004; Hurtgen et al., 2006; Fike et al., 2006; Ries et al., 2009) and 

Cambrian (Hurtgen et al., 2009; Gill et al., 2011) successions show rapid fluctuation in δ34S 

compositions of CAS (herein designated δSO4) that indicate low concentrations and non-

conservative behavior of marine sulphate. Time-dependent models (Hurtgen et al., 2009; Gill et 

al., 2011), fluid inclusions (Horita et al., 2002; Brennan et al., 2004), and a combination of C/S 

ratios and Mo concentration (Gill et al., 2011) from late Cambrian strata further indicate sulphate 

concentrations <2-12 mM and suggest the persistence of regional euxinic conditions that first 

arose in the Proterozoic (Canfield, 1998).  

 

2. Results and interpretation 



 98 

 
 

Figure 3.1. Chemostratigraphic data for Middle to Late Ordovician marine rocks of Western 

Newfoundland and the Argentine Precordillera. In all plots isotopic analyses are represented as 

follows: open circles = Table Head Group; hatch marks = Gualcamayo Formation; grey circles = 

Las Chacritas Formation; black circles = Las Aguaditas Formation. Open squares are 87Sr/86Sr 

data from Shields et al. (2003) and references therein and the sea surface temperature curve is 

from Trotter et al. (2008). Dotted lines separate (A) baseline values representative of pre-early 

Darriwilian marine systems, (B) Darriwilian transitional oceanic compositions representing 

dynamic disequilibrium between [SO4
=] and [HS-] reservoirs, (C) Late Darriwilian interval of 

superheavy pyrite representing maximum extent of disequilibrium between [SO4
=] and [HS-] 

reservoirs, and (D) inferred end of the period of dynamic disequilibrium. Stable isotope values 

are recorded in parts per thousand (‰) relative to VPDB (for carbon and oxygen) and VCDT 

(for sulfur) with an analytical error of ±0.2 or better. 
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Results (Figure 3.1) suggest that euxinic conditions likely persisted through at least the Middle 

Ordovician. Preserved isotopic fractionation between sulphate and sulphide (ΔS) is distinctly less 

than that commonly attributed to fractionation effects associated with bacterial sulfate reduction 

(BSR) and S-disproportionation in the oxidative part of the sulphur cycle (Canfield and Teske, 

1996). Non-photosynthetic sulfide-oxidizing bacteria responsible for S-disproportionation were 

well established by the Neoproterozoic (Johnston et al., 2005), so a diminished ΔS likely reflects 

a combination of low sulfate concentration and syngenetic pyrite formation within a euxinic 

water column (Hurtgen et al., 2005). Euxinic conditions are also supported by low C/S ratios 

(=0.82; Berner, 1984) and rapid fluctuations in δSO4, which are interpreted to reflect transient 

perturbations associated with a fluctuating marine oxycline.  

 

An abrupt 15‰ shift in δSO4 in the Darriwilian (c. 467 Myr), however, marks a profound 

perturbation from steady-state conditions. We suggest that disequilibrium conditions arose from 

a combination of decreased pyrite burial and oxidation of a deep-water HS- reservoir as cooling 

SSTs initiated deep ocean ventilation. In the aftermath of this event, the isotopic composition of 

both marine C and pyrite S increase, with a 20‰ shift in FPY culminating in an interval of 

superheavy pyrite and unusual inverse fractionation between sulfate and sulfide reservoirs (ΔS = 

δSO4 – δPY) that persisted for >3 Myr, into the Late Ordovician. Across this same interval, Sr-

isotopes reveal a remarkable stepwise decline in 87Sr/86Sr (0.7087 to 0.7079), with notably lower 

values in the late Darriwilian than previously reported (Shields et al., 2003; Young et al., 2009). 

Observed records of C, S, and Sr can plausibly be linked through enhanced nutrient delivery to 

the oceans, wherein oceanic ventilation reduced nitrogen-limitation and stimulated organic 

productivity, and iron delivery associated with enhanced hydrothermal input increased the 

efficacy of pyrite burial. Alternatively, it has been suggested that Sr-isotope change could be 

related to input of Sr from rapidly weathered juvenile volcanic rocks (Young et al., 2009), 

although widespread Ordovician ash falls both pre-date and post-date observed Sr- and S-isotope 

anomalies.  

 

Using time-series isotopic data to test hypotheses regarding persistent euxinia and oceanic 

ventilation requires consideration of a model for S-cycling in which the Earth’s oceans are 



 100 

represented by two distinct pools of reactive sulphur (Figure 3.2; cf. Rothman et al., 2003). In a 

single-reservoir model, the size (MSO4) and composition (δSO4) of the marine sulphate reservoir is 

controlled through time by the balance of input flux via weathering (FW, δW) and output fluxes of 

S as gypsum or CAS (FSO4, = δSO4) and pyrite (FPY, δPY). Assuming the steady-state condition 

that Fw = FSO4 + FPY and that the pyrite fraction of the output flux can be expressed as fPY = FPY / 

[FPY + FSO4], this relationship can be expressed as: 

 

 ∂δSO4/∂t = 1/MSO4 * [FW (δW – δSO4) – (FPY • ΔS)]    [1] 

 

Significant kinetic isotope effects associated with BSR make FPY the primary driver of changes 

in the isotopic composition of the marine sulphate reservoir. By contrast, consideration of a dual-

reservoir model requires that the isotopic composition of the marine sulphate reservoir be 

influenced directly by FPY only when the fluxes between the two reservoirs (FBSR and bacterial or 

abiotic sulphide oxidation, FOX) are in equilibrium as, for instance, under very low oxygen 

conditions of the Proterozoic. Under conditions of enhanced marine oxygenation, increased FOX 

may mask the effect of FPY. Similarly, increased anoxia may lead to enhanced water column 

BSR and an increase in the size of the marine sulphide reservoir—assuming that the supply of 

soluble Fe2+ is insufficient for quantitative removal of HS- as pyrite. Availability of Fe2+ will, as 

well, affect the degree to which BSR fractionation (ΔS1) is recorded in the isotopic composition 

of FPY (Hurtgen et al., 2005). We conclude that the relationships afforded by a dual-reservoir 

model are essential for a more complete understanding of the Early Paleozoic sulphur cycle.  

  

At 467 Ma, S-isotope data record an abrupt shift in marine δSO4 from 30‰ to 15‰ (Figure 3.1). 

In terms of a single-reservoir steady-state model, maximum rates of isotopic change are reached 

when S input to the oceans approaches zero (FW=0) and the standing marine sulphate reservoir is 

removed in its reduced form (FPY) giving, from equation [1]: 

 

∂δSO4/∂t = (FW * ΔS) *1/MSO4    [2] 
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Figure 3.2. Dual reservoir model of sulfur cycling in early Earth oceans. Marine sulfur is divided 

into two chemically distinct reservoirs: sulfate [SO4
=] and reduced sulfur [HS-], which includes 

all transient reduced sulfur species. Fluxes and their isotopic compositions include input from 

crustal weathering (FW, δW), output via deposition of sedimentary sulfates (FGYP, δGYP) or pyrite 

(FPY, δPY), and bacterial sulfur reduction with or without expression of sulfur disproportionation 

(FBSR, ΔS1). In terms of model application, although biotic and abiotic sulfide oxidation (ΔS2) are 

associated with substantially different fractionations (Fry et al., 1988; Kaplan and Rittenburg, 

1964), difficulty in distinguishing oxidation pathways will results in condensation of these terms 

into a single flux. In a dual reservoir system (cf. Rothman et al., 2003), model behavior is 

indistinguishable from a single reservoir model (Canfield, 2001) when FBSR = FOX. When FBSR ≠ 

FOX, FPY is decoupled from FBSR and represents FPY = FBSR – FOX indicating a dynamically 

maintained disequilibrium between the two reservoirs. In this dynamic system, the rate of 

processes acting as fluxes between the two reservoirs is critical to understanding the relative 

behavior of the reservoirs (Rothman et al., 2003), where rates shorter than the residence time of 

the larger reservoir, but shorter than the residence time of the smaller reservoir will affect the 

size and isotopic composition of the smaller reservoir, but will have no effect on the larger 

reservoir. Additionally, behavior of this dual reservoir sulfur model will also be affected by 

availability of organic carbon and reactive iron. Organic carbon may act as a limiting factor in 

either bacterial sulfate reduction or biological sulfide oxidation and availability of reactive iron 

can limit pyrite burial relative to bacterial sulfate reduction rates. 
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In terms of a dual-reservoir model, this relationship assumes that FW includes potential input 

from FOX, and that FPY includes sulphate removed as either pyrite or HS- (FBSR). Thus, the rapid 

(<0.5 Myr) isotopic shift recorded in early Darriwilian CAS suggests a maximum marine 

reservoir size of approximately 1.5 to 1.7x1018 mol (1-2 mM), and potentially less if isotopic 

compositions record only a fraction of maximum isotopic change (Kah et al., 2004). This abrupt  

change in marine δSO4 occurs coincident with marine equatorial SSTs reaching their lowest point 

in >25 Myr (Trotter et al., 2008). From this perspective, it seems plausible that lower equatorial 

SSTs reflect global cooling in the Darriwilian, intensified thermohaline circulation, and delivery 

of cool, oxygenated waters to the deep ocean (Figure 3.3). 

 

This conceptual model is tested through calculation fluxes of FPY from single- and dual-reservoir 

models in order to better estimate the extent of HS- oxidation. A critical difference between 

single- and dual-reservoir models is that, in a single-reservoir model, FPY is presumed to reflect 

all byproducts of BSR that are not immediately reoxidized to sulfate and intermediate sulphide 

species (up to 95% HS- in modern oceans; Jørgensen et al., 1990). In a dual-reservoir model, 

FBSR (and FOX) are decoupled from FPY in such a way that FBSR reflects all byproducts of BSR 

that are not immediately reoxidized to sulphate (e.g. the flux of HS- available for oxidation, FOX), 

and FPY reflects only sulphide species that are transformed into syngenetic or diagenetic pyrite. 

Thus, an estimation of the oxidized flux can be determined by modeling the single-reservoir, 

steady-state FPY before (FPY1 which, in our dual-reservoir model, equals FPY + FBSR) and after 

(FPY2 which, in our model equals FPY + FBSR – FOX) the observed change in δSO4. Our results 

indicate that approximately 1.5x1018 mol (1 mM) of HS- was oxidized during this event.  

 

Both modeled C/S ratios (=1.8) and observed short-term variation in δSO4 suggest that euxinic 

conditions likely persisted in the aftermath of this oxidation event, although the oxidation of 

approximately 1.5x1018 mol of HS- had substantial effects on the evolution of Ordovician marine 

biogeochemical cycles: first, the oxidation event increased the marine sulphate reservoir by 50-

100%; second, a substantial decrease in euxinia is proposed to have resulted in a reduction of N-

limitation via anoxic denitrification (Saltzman, 2005) and an increase in organic carbon 

production; and third, rapid oxidation of a reactive HS- reservoir resulted in a dynamic  
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Figure 3.3. Conceptual model of sulfur cycling in the early Paleozoic. Individual panels 

correspond to time steps (A), (B), and (C) in Figure 3.1. Reservoir labels [SO4
=] and [HS-] 

correspond to dual, reactive reservoirs in Figure 3.1. (A) Pre-early Darriwilian marine systems 

express evidence for low oceanic sulfate concentration and the presence of sulfidic deep oceans 

(Ries et al., 2009; Hurtgen et al., 2009; this study). Under such conditions, nitrogen limitation 

arises because the area of oxic substrate available for nitrogen fixation is reduced relative to 

anoxic substrate, which promotes denitrification (Saltzman, 2005). Transient variability in δSO4 

likely represents a low level of disequilibrium between [SO4
=] and [HS-]. Over longer time 

scales, FBSR and FOX are in dynamic disequilibrium. Under such conditions, calculation of FPY 

from a single reservoir model of sulfur cycling will give a value that includes both pyrite burial 

and bacterial sulfate reduction. (B) Long-term cooling of oceans (Trotter et al., 2008) results in 

enhanced flux of cool, oxygen-rich surface waters to the deep ocean and substantial oxidation of 

hydrogen sulfide, initiating a period of dynamic disequilibrium between the [SO4
=] and [HS-] 

reservoirs. Effects of oxidation are recorded immediately in δSO4 with only a delayed response in 

δPY, suggesting that [HS-] was initially much larger than [SO4
=]. Diminished anoxia is suggested 

to have reduced denitrification and increased nitrogen availability (Saltzman, 2005) promoting 

enhanced organic productivity. Decreased ΔS is interpreted to reflect a combination of increased 

FPY relative to FBSR under more oxygenated conditions and change in the isotopic composition of 

[HS-] resulting from a kinetic isotope effects associated with a combination of biotic and abiotic 

sulfide oxidation (Fry et al., 1988; Kaplan and Rittenberg, 1964). (C) A continuation of FPY > 

FBSR, potentially enhanced by progressive cooling, in addition to more vigorous oceanographic 

oxidation of [HS-] and depletion of euxinic conditions (shown here), results in superheavy pyrite 

(i.e. ΔS < 0) formation. Isotope effects associated with dynamic disequilibrium can occur over 

time scales longer that the residence time of the larger reservoir (Rothman et al., 2003). We 

interpret the end of consistently superheavy pyrite values to mark the nominal end of dynamic 

disequilibrium conditions. 
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disequilibrium that potentially persisted for time scales much longer than the residence time of 

marine sulfate (cf. Rothman et al., 2003). Although we do not observe an increase in CAS 

abundance in our samples across the ventilation interval, increased organic carbon burial is 

predicted from the >2‰ positive shift in δ13C after 467 Ma, which persists for at least 11 Myr.  

 

Evidence for dynamic disequilibrium between oxidized and reduced water masses is observed in 

the behavior of δPY in the aftermath of HS- oxidation (Figure 3.1). In the four Myr after the HS- 

oxidation event, δPY increases from 0‰ to 20‰, with a concomitant decrease in ΔS to 

approximately -5‰, which persists for an additional three Myr. Values of ΔS<0 are contrary to 

traditional understanding of pyrite formation where pyrite is derived from coeval marine sulphate 

(Canfield, 2001). This data represents the first report of “superheavy” pyrite from Paleozoic 

strata. Earlier studies attribute ΔS<0 in the Proterozoic to either Rayleigh distillation within a 

sulphate-poor water body decoupled from overlying sulphate-rich waters (Tie-bing et al., 2006; 

Shen et al., 2008), or to fractionation effects associated with intense aerobic reoxidation of 

sedimentary sulfide (Ries et al., 2009). Experimental data suggests that residual sulphide is 

enriched by 4-5‰ for abiotic oxidation (Fry et al., 1988) and up to 18‰ for biotic oxidation 

(Kaplan and Rittenberg, 1964). We suggest that superheavy pyrite reflects both an increase in 

FPY relative to FBSR and a change in the isotopic composition of the HS- reservoir resulting from 

HS- oxidation during progressive oceanic ventilation. Furthermore, a global rise in sea level—

reflected by a rapid decrease in 87Sr/86Sr beginning at 463 Myr (Figure 3.1)—may have enhanced 

production of cool, oxygenated waters and their delivery to the deep ocean, accelerating 

oxidation of the remaining HS- reservoir and resulting in the disappearance of short-term δSO4 

variability and predominance of superheavy pyrite (Figure 3.3). 

 

3. Conclusions 

 

Data presented here lend new insight into the complex linkages between Ordovician ocean 

chemistry and climate, and provide a temporal framework for understanding the biological 

responses to deep ocean ventilation. Elevated SSTs during greenhouse climates of the early 

Middle Ordovician resulted in sluggish oceanic circulation, enhanced ocean anoxia and 
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maintenance of a substantial HS- reservoir. Ventilation of the deep oceans, driven by a 

progressive reduction in SST, began in the early Darriwilian—10 Myr before the traditional 

onset of icehouse climates—and is marked by the widespread oxidation of a deep-ocean HS- 

reservoir and establishment of a dynamic disequilibrium between SO4
= and HS- reservoirs. 

Together, results from this study suggest a dynamic and rapidly evolving Ordovician system 

sensitive to environmental perturbations, wherein long-term cooling initiated in the Darriwilian 

ultimately progressed into full-scale glaciation and mass extinction some 25 Myr later.  

 

4. Supplementary online material 

 

4.1. Geologic setting 

 

Cambrian-Ordovician marine carbonate and siliciclastic rocks outcrop in large sections in both 

the Argentine Precordillera (Baldis et al., 1984; Ramos, 1986) and Western Newfoundland 

(Williams and Stevens, 1974; James et al., 1989). Although both localities preserve carbonate 

platform deposition in the Iapetus ocean, Ordovician biostratigraphic and paleomagnetic records 

place Western Newfoundland at near equatorial latitudes (Ross and Ingham, 1970; Hall and 

Evans, 1988; Neuman and Harper, 1992; Cocks and McKerrow, 1993; Harper et al, 1996) while 

the Argentine Precordillera was positioned at higher latitudes in the southern hemisphere (Figure 

3.4; Herrera and Benedetto, 1991; Niocaill et al., 1997). Although relatively few absolute 

chronostratigraphic dates exist for these successions, abundant biostratigraphic work has 

provided the basis for the time-correlation of these geographically widespread successions 

(Herrera and Benedetto, 1991; Lehnert and Keller, 1994; Astini et al., 1995; Albanesi and 

Ortega, 2002).  

 

4.1.1. Precordilleran sections, Argentina 

 

Lower Paleozoic strata of the Argentine Precordillera comprise >2500 meters of siliciclastic, 

carbonate, evaporite-bearing and mafic rocks that record rifting of the Precordilleran 

microcontinent from the southeast margin of Laurentia in the Cambrian (Thomas and Astini,  
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Figure 3.4. Paleogeographic reconstruction of the Middle-Late Ordovician (late Darriwilian to 

early Sandbian) landmasses (adapted from Scotese and McKerrow, 1990). The approximate 

locations of sections sampled for this study are marked by asterisks. The Argentine Precordillera 

drifted southward towards Gondwana during the Ordovician. Western Newfoundland sections 

were located closer to equatorial latitudes. 
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1996; 1999), its subsequent drift across the Iapetus ocean during the Early Ordovician, and 

eventual docking with Gondwana in the Middle to Late Ordovician (Ramos, 1988; Benedetto et 

al., 1999). Precordilleran docking with Gondwana is marked by the formation of the Famatinian 

volcanic arc, which is the source of widespread bentonites in Middle Ordovician San Juan strata 

of the Argentine Precordillera (Huff et al., 1998). Several discrete K-bentonites have been dated  

using zircon U-Pb zircon geochronology techniques and give a Dapingian-early Darriwilian age 

(469.5 ±3.2 Mya, 470.1 ±3.3 Mya; Fanning et al., 2004; 464 ±2 Mya; Huff et al., 1997) for the 

pre-docking stage of the Precordillera.  

 

The Precordilleran terrane was uplifted by east-directed faulting of the Andean thrust belt and 

currently is exposed along the western margin of Argentina, striking north-south along the 

eastern margin of the Andean mountain range between 28°45′S and 33°15′S (Figure 3.5; Ramos, 

1988; 2004). Strata are subdivided into eastern and western tectofacies, which record carbonate, 

siliciclastic, and evaporite platform deposition on the Precordilleran platform and outer platform, 

respectively. Outer platform deposits, in particular, include slump features and mafic to 

ultramafic sills, and lava flows (Thomas and Astini, 2003). Sections sampled for this study, 

including the Gualcamayo, Las Chacritas and Las Aguaditas formations, represent Late 

Dapingian to early Sandbian-aged strata of the eastern tectofacies (Figure 3.5 and 3.6). 

 

4.1.1.1. Gualcamayo Formation 

 

Carbonaceous and graptolitic black shale deposits of the Gualcamayo Formation overlie San 

Juan Formation limestone and are overlain by thick carbonate breccias of the Trapiche 

Formation (Astini et al., 1995). The Gualcamayo Formation is interpreted to reflect regional 

drowning of the San Juan carbonate platform during a combination of global transgression and 

regional subsidence related to the collision of the Precordilleran terrane with Gondwana (Astini, 

1995; Cañas, 1995). The contact between the Gualcamayo and San Juan Formation is regionally 

diachronous (Astini, 1995; Albanesi et al., 1999), and reflects differential subsidence during the 

docking of the Precordilleran microcontinent (Astini, 1995).  
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Figure 3.5. Geologic map of the Argentine Precordillera in western Argentina and the Humber 

Zone of the Appalachian-Caledonian fold belt in Western Newfoundland. Figures were adapted 

from Williams et al. (1987) and Astini et al. (1995). Strata were sampled at the Las Aguaditas, 

Las Chacritas, and Gualcamayo formations (numbered) in the Argentine Precordillera and at 

Table Point (arrow) in Western Newfoundland.  
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Figure 3.6. Biostratigraphic correlation of studied sections. Western Newfoundland conodont 

and graptolite biostratigraphic data are from Williams et al. (1987) and Argentinian conodont 

and graptolite biostratigraphic data are from Albanesi and Ortega (2002). 
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The Gualcamayo Formation was sampled at the type section, Las Corriditas Creek (29°35′41˝S; 

68°3′14˝W), where conodont-graptolite data indicate an age spanning the Dapingian-Darriwilian 

(Albanesi et al., 1999). At this locality, the basal 40 meters consist of alternating platy limestone 

and black shale and are considered as a distinct, lower member of the Gualcamayo Formation 

(Figure 3.5 and 3.6; Astini, 1995; Albanesi et al., 1999). The upper 200 meters of the 

Gualcamayo Formation consists primarily of graptolitic black shale, which is interpreted to 

represent deep ramp deposition. 

 

4.1.1.2. Las Chacritas Formation 

 

The Las Chacritas Formation consists of 55 meters of thin to medium bedded, marly limestone 

and fossiliferous black shale that represents deposition in outer carbonate ramp environments 

(Peralta et al., 1999). The lower member (38 meters) yields conodonts of the L. variabilis zone 

indicating an early Darriwilian age (Heredia et al., 2005). Occurrence of the conodont H. 

kristinae in the very top of the Las Chacritas Formation correlates this part of the section with 

the internationally recognized E. suecicus zone and indicates a mid-Darriwilian age (Heredia et 

al., 2005). The Las Chacritas Formation was sampled at Las Chacritas Creek (30°33′41˝ S, 

68°51′49˝ W), where it conformably overlies the San Juan Formation and is unconformably 

overlain by the Las Aguaditas Formation (Heredia et al., 2005). While the basal 38 meters are 

interpreted to represent outer platform deposition (Peralta et al., 1999; Heredia et al., 2005), the 

upper member (17 meters) is comprised of fossiliferous wackestones and mudstones that are 

interpreted to represent deposition in a shallow subtidal environment.  

 

4.1.1.3. Las Aguaditas Formation 

 

The Las Aguaditas Formation consists of ~300 meters of black shale with intercalated, mudstone 

and carbonate breccia, that are interpreted to represent deposition in upper slope environments 

(Keller et al. 1993). The Las Aguaditas Formation overlies pertidal to subtidal limestone of the 

San Juan Formation and is overlain by the La Chilca Formation, which records uplift and erosion 
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resulting from collision of the Precordilleran terrane with Gondwana (Astini, 1995; Astini et al., 

1995). 

 

The Las Aguaditas Formation was sampled at Las Aguaditas Creek (30°20′15˝ S, 68°49′49˝ W), 

where P. tentaculatus and N. gracilis graptolite zones indicate a Darriwilian to Sandbian age 

(Brussa, 1996). In the region sampled for this study, the Las Aguaditas Formation consists of 

interbedded lime mudstone and shale with abundant small-scale slump features.  

 

4.1.2. Table Head Group, Western Newfoundland 

 

The Table Head Group is exposed in the Humber Zone of western Newfoundland (Figure 3.5). 

The Table Head Group represents passive margin platform carbonate deposition during marine 

transgression (James et al., 1989; Knight and Cawood, 1991) and rapid drowning of the 

carbonate platform in the early stages of the Taconic orogeny (Stenzel et al., 1990).  

 

Table Head Group was sampled at the type section, Table Point, in Western Newfoundland 

(50°22′22˝ N, 57°31′44˝ W), where it comprises ~300 meters of bioturbated, lime-mudstone and 

wackestone. These deposits yield conodonts from the H. tableheadensis to P. anserinus zone that 

span the Dapingian to late Darriwilian (Stouge, 1982; Williams et al., 1987). The Table Head 

Group conformably overlies the Aguathuna Formation, where the contact is marked by an abrupt 

change from coarsely-recrystalline, buff-colored dolomite to dark grey lime mudstone and 

wackestone. At Table Point, the Table Head Group is divided into the Table Point, Table Cove, 

and Black Cove formations (Stouge, 1982). The Table Point Formation represents the lower 250 

meters and consists of a homogeneous succession of subtidal, bioturbated carbonate. The 

conformably overlying Table Cove Formation is comprised, at its base, of intercalated ribbon 

limestone and shale, with distinct intervals of slumping that give way to predominantly shale in 

the upper portion. Strata of the Table Point and Table Cove formations represent subtidal shelf 

deposition in an increasingly deepening environment (Stouge, 1982; Jacobi, 1981; King et al., 

1991). 
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4.2. Geochemical methods 

 

4.2.1. Initial petrographic screening 

 

Samples were evaluated using standard petrographic and cathodoluminescence (CL) techniques 

(Hemming et al., 1989; Kaufman et al., 1991; Kah et al., 1999; Frank et al., 2003) prior to 

isotope and elemental analyses to evaluate secondary alteration that is a concern when 

constructing geochemical profiles. Mirror-image slabs of samples were cut using a water-cooled 

rock saw and made into thin and thick sections for petrographic and CL analysis, respectively. 

Petrographic analyses were used to characterize carbonate fabrics and to identify primary and 

secondary phases. Past studies have demonstrated that primary depositional phases, particularly 

micritic and fine-grained microsparitic fabrics that show little physical evidence of secondary 

recrystallization, often preserve geochemical signatures that also show little evidence of 

overprinting by diagenetic fluids (Kaufman et al., 1991; Frank et al., 2003; Bartley et al., 2007). 

Similarly, coarsely crystalline fabrics and secondary phases, such as spar-filled fractures and 

voids, commonly preserve a geochemical signal related to post-depositional fluid flow. 

Combined, such data permit careful evaluation of the range of geochemical signatures retrieved 

from samples and interpretation of the degree of diagenesis that samples have undergone. 

 

In addition to standard petrographic analysis, cathodoluminescence petrography was used to 

distinguish the potential for alteration of within primary and secondary phases. Luminescence in 

carbonate minerals is activated by the presence of Mn2+ in the carbonate lattice and suppressed 

by the presence of Fe2+ (Hemming et al., 1989). Because both Mn2+ and Fe2+ are incorporated in 

carbonates either during deposition from or dissolution and re-precipitation within diagenetic 

fluids, evidence for incorporation via CL analysis provides a quick measure of the degree of 

alteration (Brand and Veizer, 1980; Veizer, 1983; Banner, 1995). Caution must be taken, 

however, since previous studies have shown that CL does not always accurately reflect alteration 

(Rush and Chafetz, 1990; Marshall, 1992; Savard et al., 1995), and might also reflect primary 

incorporation from unusual marine fluids. All samples were examined under vacuum (50-80 

mtorr) using a cathodolumnescence microscope at the University of Tennessee.  
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After petrographic evaluation, selected regions of polished thick sections were micro-sampled 

using 0.5 mm dental drill bits attached to a micro-drill press. Petrographically uniform phases 

were drilled to retrieve 2-5 mg of powder to be used as splits for the C- and O-isotope and 

elemental analyses. When possible, a range of fabrics was sampled in order to compare the 

geochemical properties of both primary and secondary phases.  

 

4.2.2. Carbon and oxygen isotope analyses 

 

Microdrilled powders were stored in a desiccator prior to C- and O-isotope analyses. Each 

sample (1.5-2 mg) was loaded into silver capsules and reacted individually with anhydrous 

phosphoric acid at 90°C (Table Head Group) and 120°C (Las Chacritas and Las Aguaditas 

formations) and analyzed using a Carbo-Flo dual inlet Finnigan Delta Plus gas source isotope 

ratio mass spectrometer fitted with a auto sampler at the University of Tennessee, Knoxville. 

Data are reported in delta notation as per mil (‰) deviations from Vienna Pee Dee Belemnite 

(VPDB). Analyses were determined to be reproducible to within ±0.1‰ from analysis of 

duplicate samples and internal lab standards. Two internal standards were used for isotope 

calibration, Chihuahua calcite (CHCC; δ13C = +1.35‰, δ18O = –6.16‰ at 25°C) was used for 

the Table Head Group analyses, and Australian National University “M1” (ANU-M1: δ13C = -

10.66‰, δ18O = -9.23‰ at 25°C) was used for the Las Chacritas and Las Aguaditas formations. 

 

4.2.3. Major and trace element analyses 

 

Micro-drilled carbonate phases were also analyzed for major (Ca, Mg) and trace (Sr, Mn, Fe) 

element concentrations. Approximately 1 mg of microdrilled powder was quantitatively 

dissolved in 10 mL of trace metal grade 2% HNO3. After acidification each sample was 

centrifuged for 10 minutes at 3000 rpm and the top ~9 mL decanted into a clean centrifuge tube. 

Elemental analyses for the San Juan Formation and Table Head Group were conducted at the 

University of West Georgia using a Perkin-Elmer inductively coupled plasma optical emission 

spectrometer (ICP-OES) fitted with a Meinhardt concentric nebulizer calibrated to a series of 

gravimetric standards. Elemental analyses of the Las Chacritas, and Las Aguaditas formations 
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were completed at the University of Tennessee using a Perkin-Elmer Optima 2100 DV ICP-OES 

with a Scott spray chamber calibrated with a series gravimetric standards. Standards were run 

before and after every six unknowns. Analyses were determined to be reproducible to within 

±10% by analysis of duplicate samples and standards. 

 

4.2.4. Carbonate-associated sulfate extraction 

 

δ34SSO4 profiles were constructed using carbonate-associated sulfate (CAS). CAS substitutes into 

the carbonate lattice during initial deposition and is suggested to have potential as a proxy for the 

sulfur isotopic composition of marine sulfate δ34S (Burdett et al., 199; Strauss, 1999). In the 

modern ocean, the isotopic composition of CAS (δ34SCAS) of brachiopod shells (+21.2±0.8‰) 

has been shown to record mean ocean δ34SSO4 (+20.9±0.5‰; Kampschulte et al., 2001). In 

ancient sediments, CAS has been demonstrated to be isotopically similar to coeval evaporite 

deposits (Burdett et al., 1989; Strauss, 1999; Kah et al., 2001). Additionally, δ34SSO4 has been 

shown to be resistant to diagenetic alteration and retain a record of primary δ34SSO4 despite large 

drops in sulfate concentration during diagenetic recrystallization (Lyons et al., 2004; Gill et al., 

2008).  

 

CAS was extracted using acid dissolution and barite precipitation methods modified from 

(Burdett et al., 1989; Kah et al., 2001; Hurtgen et al., 2002). Approximately 200 grams of bulk 

rock was first etched with 10% HCl to remove surface weathering products, then crushed and 

powdered. Approximately 100 grams of powdered sample was soaked overnight in 250 mL of 

5.65-6% laboratory grade sodium hypochlorite (NaOCl), rinsed four times with Milli-Q water 

(typically 1.0-1.5 L), and filtered. Initial NaOCl leach was performed to remove soluble iron 

sulfide and organically bound sulfur that might oxidize to sulfate during acidification (Burdett et 

al., 1989). The potential for organically-bound sulfur was low since organic carbon concentration 

is low (<0.6 wt%) in all samples, and since organic material is dominantly kerogen, indicating 

that most labile organic components have long since degraded. 
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Dried and weighed samples were then dissolved slowly with 3M hydrochloric acid and 

monitored in order to maintain a pH > 3 to prevent the exchange of oxygen between sulfate and 

water and to minimize pyrite oxidation (Chiba and Sakai, 2002). Samples were then filtered to 

remove insoluble residue. The filtrate from HCl dissolutions was then brought to a pH of 9 using 

sodium hydroxide (NaOH) pellets to precipitate any dissolved iron oxides, and filtered. 

Approximately 140 mL of saturated barium chloride solution (250 g/L) was added to the filtrate 

to recover CAS as barium sulfate. The reaction was allowed to continue overnight to ensure 

complete precipitation. Barium sulfate precipitate was then filtered using 0.45 µm Millipore 

filters, dried at 30°C, and weighed. Sulfate concentration of samples was estimated from weight 

measurements of barium sulfate precipitates after extraction.  

 

4.2.5. Pyrite extraction 

 

Pyrite sulfur was extracted from bulk rock powders by sequential acid extraction (Canfield et al., 

1986) at Indiana University. Elemental and organically-bound sulfur were extracted from 

approximately 5 grams of sample in a heated Soxhlet setup for 12-18 hours using 250 mL of 

dichloromethane. Copper pellets were submerged in the dichloromethane trap during digestion to 

collect elemental sulfur (S0). Elemental sulfur was later removed from copper pellets by acid 

digestion under a nitrogen atmosphere and collected using silver nitrate traps. S0 was proved to 

be negligible by weight. The remaining sample powders were dried under a fume hood and 

weighed before the next extraction step.  

 

Acid-soluble sulfur (sulfate and monosulfide) was extracted by dissolution of powders in 6M 

hydrochloric acid under a nitrogen atmosphere. The resulting hydrogen sulfide gas was bubbled 

through a silver nitrate trap, precipitating Ag2S. The precipitate was then filtered, dried and 

weighed in preparation for isotope analyses.  

 

Pyrite sulfur was extracted from the remaining sample by dissolution in a 1:1 12N hydrochloric 

acid and chromium chloride solution under a nitrogen atmosphere for pyrite extraction. Like the 

acid soluble sulfur extraction step, the resulting hydrogen sulfide gas was bubbled through silver 
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nitrate traps where it precipitated as Ag2S. Samples were filtered and dried overnight prior to 

weighing for isotopic analysis. 

 

4.2.6. Sulfur isotope analyses 

 

For S-isotope analyses, Ag2S was weighed into tin cups along with excess V2O5 (~10x Ag2S 

weight to ensure complete combustion). Samples were analyzed for δ34S using a Finnigan MAT 

252 gas source mass spectrometer fitted with an elemental analyzer at Indiana University. S-

isotope composition is expressed as per mil (‰) deviation from Vienna Canyon Diablo Troilite 

(VCDT). Analytical precision was determined to be ±0.1‰ by analysis of four lab standards, 

ERE Ag2S (-4.7‰), EMR Cp (+0.9‰), NBS 127 (+20.3‰), and PQB (+39.8‰). 

 

4.2.7. 87Sr/86Sr analyses 

 

Strontium was separated from ~5 mg of carbonate powder by stepwise leaching and dissolution 

steps. Each powder was weighed into a microcentrifuge tube and ~1 mL of 0.2M ammonium 

acetate monitored to have pH~8.2 was added and allowed to leach unbound Sr from the samples 

for one hour. The samples were then centrifuged and the leachate discarded. This step was 

repeated three times, and the samples were then washed with Milli-Q ultrapure water and 

centrifuged three times. Remaining powder was dissolved in ultra-pure 0.5M acetic acid 

overnight, taken to dryness under a heat lamp, and the precipitate then dissolved with 200 µl of 

3M HNO3. Strontium was isolated from the acidified fraction using Sr spec resin and a variety of 

acid and neutral solutions. The dried Sr fraction was dissolved in 2 µl of 3M HNO3 and then 

loaded with ~0.8 µl of TaO onto a Rhenium filament and then allowed to dry under a heat lamp. 

Samples were loaded into a carousel for analysis on the VG Sector 54 thermal ionization mass 

spectrometer in the University of Maryland Geochemistry Laboratories, and each analyzed at 

between 1450-1650°C, which produced a stable 1V beam on mass 88Sr+ that was measured with 

other isotopes for over 100 ratios. Repeated analysis of NBS 987 over the course of the 

investigation resulted in a value of 0.710250 ± 0.000008. 
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4.3. Preservation of geochemical signals 

 

It is important to constrain the degree to which carbonate rocks have been altered to establish if 

geochemical trends are representative of primary or little-altered oceanic values (Given and 

Lohmann, 1985; Zempolich et al., 1988; Carpenter et al., 1991; Frank and Lohmann et al., 1996; 

Kah, 2000). Early diagenesis often results in the production of additional, secondary cements, 

whereas meteoric diagenesis can result in dissolution and recrystallization. Primary depositional 

components, such as skeletal grains, micrite, and marine cements have the potential to retain 

signatures of depositional fluids. However, all secondary fluids—meteoric fluids to deep-burial 

fluids to fluids involved in modern weathering—have the potential to result in recrystallization 

of carbonate phases and alteration of the geochemical signals.  

 

Relative to marine carbonate rocks, meteoric fluids typically have low Sr concentration and more 

depleted δ18O and δ13C isotope compositions; if these fluids are anoxic, they may also contain 

substantially higher concentrations of divalent Mn and Fe (Brand and Veizer, 1980; Banner and 

Hanson, 1990). Numerous studies have shown that, because of the low carbon content of most 

diagenetic fluids, δ18O, Sr, Mn and Fe are much more sensitive indicators of post depositional 

alteration, especially at low water to rock ratios; alteration of δ13C, however, can occur during 

burial diagenesis if fluids contain large amounts of organic carbon (Kaufman et al., 1991; Brand 

and Veizer, 1980; Frank and Lohmann, 1996; Banner and Hanson, 1990). To help constrain the 

degree of alteration and the potential for preservation of geochemical trends, we compared 

petrographic characteristics (optical and cathodoluminescence) to geochemical (Mn, Sr, δ13C and 

δ18O and δ34S) characteristics.  

 

Petrographic analyses show that carbonate samples from the Table Head Group, Las Chacritas 

and Las Aguaditas formations are primarily composed of micrite and microspar, with only a 

small degree of recrystallization. On the whole, the Table Head Group is more fine-grained than 

the Las Chacritas and Las Aguaditas formations, although all sections show a similar degree of 

recrystallization to coarser grain sizes. Fossil fragments (brachiopod, crinoid, bivalve shells, and 

sponge spicules) compose the majority of larger grains within the samples. Although most fossil 
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fragments show at least some evidence of recrystallization, many retain evidence of their primary 

microstructure (brachiopods and crinoid ossicles, in particular), which suggests relatively low 

degrees of post-depositional. Evidence for post-secondary fluid flow and burial diagenesis (spar-

filled fractures, late-stage void fills, and stylolites) was present in all sections, although relatively 

rare in most.  

 

Cathodoluminescence petrography (CL) was used to screen samples for diagenetic overprinting 

not necessarily apparent in thin sections. CL helps distinguish primary and secondary phases by 

revealing distribution of diagenetic indicators (Mn and Fe) in samples (Hemming et al., 1989). 

CL analyses of polished thick sections revealed micrite and fine-grained marine cements to be 

largely homogeneous, non- to dully luminescent, indicating overall low Mn concentration, which 

is consistent with the interpretation of these phases as having undergone only limited 

recrystallization. In most samples coarse-grained, spar-filled regions that were identified in thin 

section showed bright orange luminescence, suggesting deposition from post-depositional fluids. 

Additionally, many fossil fragments showed bright luminescence, supporting petrographic 

evidence of recrystallization. It is important to note, however, that although individual phases 

showed bright luminescence, these phases appear distinct from surrounding phases, indicating 

that diagenetic fluids did not affect the chemistry of depositional components uniformly, which 

further supports that dully-luminescent, fine-grained phases experienced only minimal resetting 

of geochemical signatures.  

 

Although the abundance of later stage cement and spar varied stratigraphically throughout all the 

studied sections, there was no clear difference between the degree of alteration of one section 

versus another. When possible, both primary and secondary phases were sampled for C-, O-

isotope, and elemental analyses to establish geochemical characteristics of endmember phases as 

an additional assessment of the preservation of geochemical trends. Isotopic and elemental data 

are provided in Tables 3.1 - 3.4. 

 

The bulk of δ18O values of primary phases fall between -4 and -8‰ (Figure 3.7). δ18O values 

from the Table Head Group and Las Chacritas Formation broadly overlap (-6 to -8‰) and are,  
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Figure 3.7. Elemental, carbon and oxygen isotope data from studied sections. Oxygen isotope 

values from the Table Head Group (-8.1 to -5.7‰, average -7.1‰ ±0.4) and Las Chacritas 

Formation (-8.0 to -5.7‰, average -6.6‰ ±0.6) broadly overlap and are, on the whole, 

isotopically depleted relative to the Las Aguaditas Formation (-6.2 to -3.2‰, average -5.2‰ 

±0.6). Marine δ13C values range from -1.9 to +2.0‰, where values average -1.3‰ ±0.6 from the 

Dapingian to the lower Darriwilian and increase to an average of +1.0‰ ±0.4 during the 

Darriwilian and into the Sandbian. Oxygen isotope values fall within the range of Ordovician 

values (Wadleigh and Veizer, 1992; Qing and Veizer, 1994; Veizer, 1999) and show no trend 

with carbon or sulfur isotopes. Mn/Sr values are consistent with well-preserved samples (<1.5) 

for the majority of samples and fall below the accepted value for little altered carbonate rocks 

(4.0).  
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on the whole, isotopically depleted by ~2‰ relative to the Las Aguaditas Formation (-4 to -6‰). 

All of these values fall within the range of data from other well-preserved, non-evaporative 

carbonate units (Wadleigh and Veizer, 1992; Qing and Veizer, 1994; Veizer, 1999). Since O-

isotopes are easily exchanged during diagenesis, δ18O values more positive than -8‰ in primary 

phases is generally interpreted to represent good preservation; more positive isotopic values in 

the Las Aguaditas Formation suggest this section may represent a slightly lesser degree of post-

depositional alteration. δ18O values of identified secondary phases are generally depleted relative 

to micrite δ18O by <4‰ in the Table Head Group, <2‰ in the Las Chacritas Formation and <1‰ 

in the Las Aguaditas Formation. Another possibility is that generally heavier values in the 

younger Las Aguaditas Formation preserve secular change in the isotopic composition of marine 

δ18O, such as that inferred from previous studies of Ordovician brachiopods that show δ18O 

values generally increasing through the Ordovician (Wadleigh and Veizer, 1992; Qing and 

Veizer, 1994; Veizer, 1999). Critically, the corresponding values of δ13C of secondary phases, 

however, were identical to micrite δ13C in the Table Head Group and depleted by 0.6‰ in the 

Las Chacritas Formation and 0.2‰ in the Las Aguaditas Formation, suggesting diagenetic 

overprinting did not alter δ13C values. 

 

Mn and Sr concentrations also provide insight into the degree of alteration experienced by these 

samples, since they are altered quickly in the presence of secondary fluids (Banner and Hanson, 

1990). Sr values fall primarily between 200-2000 ppm (Figure 3.7), which are typical for marine 

calcites that have undergone limited exchange with post-depositional fluids (Banner and Hanson, 

1990). Highest Sr concentrations occur in the Las Aguaditas Formation, which might support O-

isotope evidence for more limited exchange by post-depositional fluids. Similarly, Mn 

concentrations fall largely below 500 ppm, with all but 5 values (3 in Las Aguaditas and 2 in Las 

Chacritas) falling below 1000 ppm (Figure 3.6). Mn concentration below 500 ppm suggests 

relatively limited water/rock interaction (Banner and Hanson, 1990). Unlike Sr, there is no 

difference in Mn concentration among the three units. In nearly all samples, Mn/Sr falls below 

1.5, which is a common standard for samples that have undergone only limited postdepositional 

alteration70. For both Mn and Sr, there is no clear evidence that alteration proceeded to such a 

degree as to affect C-isotope values of the samples. 
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The bulk of marine δ13C values lie between -1.5 and +1.5‰ (Figure 3.6). A further test of the 

preservation of marine δ13C values is comparison with coeval C-isotope records. C-isotope 

records presented here provide a broadly coherent signal with only rare deviations (e.g. 

Argentine sections show slightly more negative values that the Newfoundland section from 465-

464 Ma; Figure 3.2) that plausibly represent true oceanic heterogeneity (Saltzman, 2000; 

Saltzman et al., 2004). C-isotope data in this study, however, are strikingly consistent with data 

from published curves for Middle Ordovician marine carbonate rocks (Wadleigh and Veizer, 

1992; Qing and Veizer, 1994; Ainsaar et al., 1999; Buggisch et al., 2003; Saltzman, 2005; 

Saltzman and Young, 2005). Within this global context, we see that even the most positive 

values, recorded as a positive shift in δ13C in the Las Aguaditas Formation, is coeval to a small, 

globally-correlatable shift in δ13C (Middle Darriwilian carbon isotope excursion or MDICE; 

Ainsaar et al., 2010).  

 

Although we would suggest that carbonate rocks sampled in this study preserve reliable records 

of marine δ13C, we consider whether δ34SCAS is likely to preserve a reliable record of marine 

δ34S. A cross plot of δ34SCAS and δ18O shows no clear correlation in any of the studied sections 

(Figure 3.8). In particular, the Table Head Group, which represents an interval where δ34SCAS 

shows dramatic stratigraphic variability, reveals a large spread in δ34SCAS over a only about a 

1.5‰ range in δ18O, suggesting that variation in δ34SCAS is not related to post-depositional 

alteration. Similarly, although the Las Chacritas and Las Aguaditas show a broader range in 

δ18O, there is no clear correlation with δ34SCAS that might suggest covariance resulting from 

postdepositional alteration. This same pattern is apparent when examining different indicators of 

diagenesis: the greatest variability in δ34SCAS corresponds to samples that all show very low Mn 

concentrations. Furthermore, if we consider the potential for alteration by the addition of 

oxidized sulfide either during sub-recent weathering or during the CAS extraction (Marenco et 

al., 2008; Mazumder et al., 2008), we find no correlation between δ34SCAS and the concentration 

of either CAS or pyrite (Figure 3.8). Together, these observations suggest that measured δ34SCAS 

compositions were not affected by pyrite oxidation. These interpretations are consistent with 

other studies (Burdett et al., 1989; Kampschulte et al., 2001; Lyons et al., 2004; Gill et al., 2008),  
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Figure 3.8. Elemental and sulfur isotope data from the studied sections. Sulfur isotope values 

range from +2.6 to +38.6‰ in the Table Head Group, from +4.8 to +24.0‰ (average (+24.9 

±8.1‰), in the Las Chacritas Formation, and from +6.0 to 28.9‰ (average +4.6 ±3.4‰) in the 

Las Aguaditas Formation. Sulfur isotope values from all sections overlap and fall within the 

range reported for the Ordovician, although the Table Head Group shows the largest range. 

Sulfur isotope values are not correlated with δ18O or Mn concentration. Likewise, pyrite 

concentration is not correlated with SO4 concentration or δ34S as would be expected if sulfide 

oxidation contributed to sulfate during the extraction process.  
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which suggest that CAS faithfully records marine δ34S in samples of minor to moderate 

diagenetic recrystallization.  

 

Because Sr is particularly susceptible to alteration, it is necessary to evaluate 87Sr/86Sr values for 

diagenetic overprinting as well. Samples with aforementioned indicators of well-preserved 

carbonates (elevated Sr concentration, moderate δ18O values, low Mn concentration, little 

petrographic indication of recrystallization) were selected for 87Sr/86Sr analyses. Cross plots of 
87Sr/86Sr with δ18O show no clear correlation within each section, although the most radiogenic 

Sr value in the Las Aguaditas Formation corresponds to the most depleted δ18O value. 

Additionally, cross plots with Sr concentration also shows no systematic correlation within each 

formation although lowest Sr values in the Las Chacritas and Las Aguaditas formations 

correspond to the most radiogenic 87Sr/86Sr values. Correlation of the most radiogenic 87Sr/86Sr 

values with the lowest δ18O and Sr concentration indicates these are potentially overprinted. 

Dapingian to lower Darriwilian 87Sr/86Sr values are very close to those of non-luminescent 

brachiopods, however, upper Darriwilian values are substantially lower than sparse, previously 

reported values (Shields et al., 2003). Sandbian-aged samples proved to be the most 

anomalous—despite elevated Sr concentrations, 87Sr/86Sr from these samples is substantially 

more radiogenic than coeval brachiopod data. We attribute these elevated values to the 

argillaceous nature of these limestone samples, wherein Rb in clays likely contributed to the 

increase in 87Sr in these samples.  

 

4.4. Single and dual reservoir modeling of marine sulfur  

 

Traditional modeling of the sulfate cycle utilizes a single oceanic sulfate reservoir whose 

composition (δSO4) and size (MSO4) is influenced by the combination of the magnitude and 

isotopic composition of input and output fluxes (Kah et al., 2004). In this model, input of sulfate 

results from crustal weathering (FW, δW), and output occur as both deposition of sulfate as either 

gypsum or carbonate associated sulfate (FSO4, δSO4), and the bacterial reduction of sulfate and its 

subsequent deposition as sedimentary pyrite (Fpy, δPY). Change in the size of the oceanic sulfate 

reservoir is defined as a time-dependent relationship (Kah et al., 2004):  
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∂δSO4/∂t = 1/MSO4 * [FW (δW – δSO4) – (FPY • ΔS)]    [1] 

 

where ΔS represents the difference in isotopic fractionation between oxidized and reduced sulfur 

species. Assuming the steady state condition that Fw = FSO4 + FPY and that the pyrite fraction of 

the output flux can be expressed as fPY = FPY / [FPY + FSO4], this relationship becomes:  

 

δSO4 = δW – (fPY • ΔS)]        [2] 

 

Using a combination of direct measurement of isotopic values and standard values listed in Table 

3.5, we first applied steady state conditions to calculate fPY and FPY for the Dapingian and early 

Darriwilian (A in Figure 3.2). Although we consider that rapid variation in the CAS record is 

best explained by the presence and partial oxidation of a reactive deep-ocean HS- reservoir, long-

term stability of this CAS isotopic pattern (Thompson and Kah, 2008) indicates that the deep-

ocean HS- reservoir was, over the long-term, isolated from the oceanic sulfate reservoir and thus 

behaved as a sedimentary pyrite reservoir. These conditions permit us to use a single-reservoir 

model to calculate FPY because, in a single reservoir model, we consider FBSR = FPY. Our 

calculations give us, for the early Darriwilian, fPY = 0.77 and FPY = 1.7x1018 mol.  

 

At 467 Ma, CAS data record an abrupt change in marine dSO4 composition from ~30‰ to ~15‰ 

over <0.5 Myr. In terms of a single-reservoir steady-state model, maximum rates of isotopic 

change are reached when S input to the oceans approaches zero (FW = 0) and the standing marine 

sulfate reservoir is removed in its reduced form (FPY) giving, from equation [1]: 

 

∂δSO4/∂t = (FW * ΔS) *1/MSO4    [3] 

 

Thus, this isotopic shift suggests a maximum marine reservoir size of approximately 1.5 to 

1.7x1018 Mol, or 1-2 mM, and potentially less, if isotopic compositions are presumed to record 

only a fraction of maximum isotopic change (Kah et al., 2004).  
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Instead, we suggest that the extraordinary rapidity of this change in marine sulfate composition 

can only be accounted for by rapid oxidation of a reactive, deep-ocean HS- reservoir, which 

demands consideration of a dual-reservoir model for sulfur cycling. A dual-reservoir model 

acknowledges the persistence and reactivity of a deep-ocean HS- reservoir and permits its 

decoupling from the marine sulfate reservoir (Rothman et al., 2003). Whereas, in a single-

reservoir model FPY plays the largest role in determining the composition of the marine sulfate 

reservoir, in a dual-reservoir model, isotopic composition of marine sulfate will be influenced 

directly by FPY only when the fluxes between the two reservoirs—bacterial sulfate reduction and 

sulfide oxidation—are in equilibrium. Furthermore, in a dual-reservoir model, FBSR ≠ FPY, as is 

assumed in a single-reservoir model. Instead, the total flux of bacterially reduced sulfur, less the 

reduced sulfur removed from the system as pyrite, provides a measure of the amount of reactive 

reduced sulfur available for reoxidation (e.g., FBSR – FPY = FOX).  

 

Using this relationship, we can estimate the size of the deep-ocean HS- reservoir that was 

oxidized to result in a 15% shift in the isotopic composition of CAS in the early Darriwilian. 

Across the abrupt shift in δSO4, there are no immediate observed changes in the isotopic 

composition of marine carbon or pyrite. We thereby infer that it is unlikely that large variation in 

organic carbon delivery occurred over this interval, suggesting that it is also unlikely that FBSR 

changed dramatically over this interval. Considering the linkages in a dual-reservoir model, we 

must consider that our originally calculated FPY (now termed FPY1) actually reflects a 

combination of pyrite burial and sequestration of reactive HS- in the deep-ocean reservoir (FBSR). 

Similarly, a calculated value for FPY after the oxidation event (now termed FPY2) will represent 

pyrite burial and sequestration of reactive HS- less the amount of reactive HS- that was oxidized 

during the event. Thus, calculated values of FPY before (FPY1; from fPY = 0.77) and after (FPY2; 

from fPY = 0.27) the inferred oxidation event will provide a measure of the amount of the HS- 

reservoir that was oxidized (FPY1 – FPY2 = FOX). FOX is here calculated to be 1.5 x 1018 mol or 1 

mM, which means that this early Darriwilian oceanographic event would have resulted in a 50-

100% increase in the size of the marine sulfate reservoir.  
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Because active exchange of FBSR and FOX within a dual-reservoir modeling results in 

disequilibrium behavior that can extend for intervals much longer than the residence time of the 

two reservoirs (Rothman et al., 2003), direct modeling of the system is not easily accomplished. 

Furthermore, many variables (e.g. FBSR, FPY) cannot be uniquely determined from a sedimentary 

dataset. Here, we show that consideration of a dual-reservoir model can be used to infer a 

combination of parameters that are calculated using a more simplistic single-reservoir model.  
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Table 3.1. Isotopic compositions and elemental concentrations recorded in the Table Head 

Group, Western Newfoundland. 

 

Age* δ13C δ34SCAS δ34SPY Δ34S Mn Fe Sr Sample 
(Myr) (‰ VPDB)   (‰ VCDT)     (ppm)   

87Sr/86Sr 

TH-1 472.0 -1.01 30.9 -9.8 40.7 56 1088 214  
TH-9 471.8 -1.46 29.2 5.6 23.6 167 5084 78  
TH-18 471.5 -3.12 29.9 1.1 28.8 32 672 332  
TH-27 471.3 -0.98 33.0 9.5 23.6 23 108 410  
TH-35 471.1 -0.94 29.4 0.5 28.9 11 299 286  
TH-43 470.9 -1.64 24.6 -4.5 29.1 86 1109 198  
TH-52 470.6 -1.03 29.8 -6.9 36.8 33 397 309  
TH-61 470.4 -1.28 28.9 3.6 25.3 28 654 411 0.708747 
TH-70 470.1 -1.5 25.0 -0.2 25.2 22 639 369  
TH-81 469.9 -1.74 28.2 2.7 25.5 32 797 284  
TH-90 469.6 -1.73 33.6 16.5 17.1 98 394 422  
TH-99 469.4 -1.87 30.0 10.3 19.6 72 381 458  

TH-108 469.1 -1.57 38.6 13.1 25.5 34 608 486 0.7087485 
TH-117 468.9 -0.69 17.1 8.5 8.6 71 1625 368  
TH-126 468.7 -0.94 26.8 13.5 13.4 39 1023 469  
TH-133 468.5 -1.11 36.1 14.8 21.4 35 545 619  
TH-142 468.2 -0.73 31.6 4.7 26.9 118 425 246  
TH-153 468.0 -1.37 29.0 0.7 28.3 48 722 538 0.7087389 

TH-162A 467.7 -1.09 29.2 1.4 27.7 41 431 417  
TH-171 467.5 -0.53 32.9 -4.1 37.0 30 391 400  
TH-180 467.3 -0.42 29.9 -5.8 35.6 52 578 361  
TH-189 467.0 -0.76 – – – 40 279 311  
TH-201 466.7 -0.58 19.2 -8.3 27.5 127 275 297 0.708868 
TH-215 466.3 -0.35 21.8 -12.7 34.5 184 503 255  
TH-226 466.1 -0.38 2.6 -8.5 11.1 413 1368 377  
TH-235 465.8 -0.63 18.5 -9.8 28.2 – – –  
TH-244 465.6 -0.18 12.2 -5.5 17.7 279 2206 715  
TH-253 465.3 0.03 21.8 16.4 5.4 178 2217 1040  
TH-262 465.1 -0.14 13.3 -15.5 28.8 301 3132 901 0.7088601 
TH-270 464.9 0.25 15.6 6.3 9.3 164 2232 1045  
TH-278 464.7 0.29 21.1 5.0 16.1 134 2148 1031  
TH-287 464.4 0.47 18.2 12.1 6.1 116 1528 1094 0.708823 
TH-295 464.2 0.62 20.7 8.9 11.8 173 1787 1118  
TH-304 464.0 0.58 9.7 2.0 7.7 121 1889 1073   
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Table 3.2. Isotopic compositions and elemental concentrations recorded in the Gualcamayo 

Formation, Argentina. 

 

Age* δ34SPY Sample 
(Myr) (‰ VCDT) 

GF-0 470.0 -10.2 
GF-1 470.0 -11.3 
GF-3 469.9 -7.2 
GF-6 469.9 -11.1 
GF-10 469.7 1.7 
GF-14 469.7 1.6 
GF-19 469.5 5.8 
GF-24 469.4 3.7 
GF-28 469.3 -4.7 
GF-32 469.2 -5.7 
GF-36 469.1 – 
GF-42 469.0 -6.6 
GF-43 469.0 -6.4 
GF-46 468.9 -16.5 
GF-52 468.8 -3.7 
GF-59 468.6 -12.1 
GF-64 468.5 0.9 
GF-69 468.3 -0.4 
GF-85 468.0 -7.5 
GF-87 467.9 -11.3 
GF-93 467.8 -4.4 

GF-100 467.6 -3.9 
GF-107 467.4 -14.4 
GF-113 467.3 -2.6 
GF-119 467.1 -2.0 
GF-122 467.1 -3.8 
GF-128 466.9 4.1 
GF-134 466.8 8.3 
GF-141 466.6 22.1 
GF-149 466.4 39.3 
GF-155 466.3 3.5 
GF-163 466.1 14.0 
GF-169 465.9 3.5 
GF-175 465.8 5.0 
GF-183 465.6 4.0 
GF-189 465.5 4.8 
GF-195 465.3 0.6 
GF-201 465.2 4.1 
GF-208 465.0 1.4 
GF-214 464.9 -4.1 
GF-221 464.7 -10.5 
GF-227 464.5 2.7 
GF-233 464.4 – 
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GF-241 464.2 -2.0 
GF-250 464.0 2.3 
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Table 3.3. Range of isotopic compositions and elemental concentrations recorded in the Las 

Chacritas Formation, Argentina. 

 

Age* δ13C δ34SCAS δ34SPY Δ34S Mn Fe Sr Sample 
(Myr) (‰ VPDB)   (‰ VCDT)     (ppm)   

87Sr/86Sr 

LCF-0 467.0 -1.35 16.3 -11.4 27.7 110 261 299.3  
LCF-5 466.8 -1.47 17.0 1.6 15.4 90 472 317.0  
LCF-8 466.7 -1.22 11.5 -7.5 19.0 138 747 311.7  

LCF-13 466.5 -1.29 12.8 -5.6 18.3 192 704 301.6  
LCF-18 466.3 -1.27 16.4 -2.9 19.3 283 1405 334.9  

LCF-23A 466.1 -0.49 17.6 -3.2 20.7 649 2595 360.5  
LCF-23B 466.1 -0.36 – – – 788 2177 259.7  
LCF-28 465.9 -0.08 13.5 0.0 13.5 958 3881 303.7  
LCF-32 465.7 -0.70 15.8 6.4 9.4 447 2189 518.6 0.7092304† 
LCF-37 465.5 -0.65 16.2 -6.4 22.6 412 3195 515.7  

LCF-41A 465.4 -1.15 13.0 1.7 11.3 478 7933 670.7  
LCF-41B 465.4 -0.94 – – – 451 2396 584.6  
LCF-47 465.2 -0.77 14.0 3.1 10.9 289 1589 827.8  
LCF-50 465.0 -0.57 14.7 11.7 3.0 291 3030 796.0  
LCF-55 464.8 -0.87 14.2 -2.4 16.6 446 1507 399.8  
LCF-59 464.6 -1.13 16.0 -0.7 16.7 301 1461 725.3 0.7089012 

LCF-64-1 464.4 -0.81 11.7 -12.8 24.5 344 3232 599.8  
LCF-64-2 464.4 -0.92 – – – 363 1232 457.7  
LCF-69 464.3 – 11.5 0.9 10.6 – – –  
LCF-73 464.1 -0.36 21.3 11.7 9.6 425 1557 303.2  
LCF-77 463.9 – 21.7 8.6 13.1 – – –  
LCF-81 463.7 0.71 24.0 11.7 12.3 287 1814 259.2  
LCF-88 463.5 0.37 17.4 1.4 16.0 285 1293 336.9  
LCF-94 463.2 0.23 13.0 11.5 1.5 988 10189 982.8  
LCF-96 463.2 0.80 9.9 2.0 7.9 481 5124 941.4  
LCF-97 463.1 0.44 8.8 2.9 5.9 526 5211 617.0  
LCF-98 463.1 0.14 11.3 8.8 2.5 739 4976 861.2  
LCF-99 463.1 0.12 7.2 6.2 0.9 1191 13228 741.3  
LCF-100 463.0 0.79 7.0 3.0 4.0 1944 6950 992.5  
LCF-101 463.0 – 4.8 -1.2 6.0 – – –   

*The age of the Las Chacritas Formation was approximated using biostratigraphy of 30. 
† Altered value, not plotted in Figure 3.2. 
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Table 3.4. Range of isotopic compositions and elemental concentrations in the Las Aguaditas 

Formation, Argentina. 

 

Age* δ13C δ34SCAS δ34SPY Δ34S Mn Fe Sr Sample 
(Myr) ( VPDB)   ( VCDT)     (ppm)   

87Sr/86Sr 

AF-0 465.2 -0.42 18.8 -7.3 26.1 802 2809 559  
AF-1 465.2 -0.09 15.5 5.0 10.5 865 2664 409  
AF-6 465.1 -0.29 18.3 19.2 -0.8 2056 4146 451  

AF-7A 465.0 0.31 17.7 23.9 -6.2 1689 1862 422  
AF-7B 465.0 0.38 – – – 944 4395 409  
AF-7.1 465.0 0.14 21.4 18.4 3.0 1081 2893 440  
AF-17A 464.8 -1.26 12.7 0.8 11.9 671 17687 1067 0.7093401† 
AF-17B 464.8 -0.75 – – – 568 8987 968  
AF-23 464.6 -0.46 6.0 -2.4 8.4 653 7243 913  
AF-30 464.4 -3.19 15.8 14.8 0.9 572 2884 526  

AF-37A 464.3 -1.87 28.9 11.9 16.9 177 2497 811  
AF-37B 464.3 -1.17 – – – 313 15348 2312  
AF-43 464.1 -0.99 17.1 17.5 -0.4 199 1431 1071  

AF-49A 463.9 -1.18 11.8 14.4 -2.6 436 2100 910  
AF-49B 463.9 -1.07 – – – 242 8091 2231  
AF-56 463.8 -1.57 17.1 11.1 6.0 360 1676 809  
AF-62 463.6 0.65 16.8 19.8 -3.0 137 3172 1139  
AF-65 463.5 0.46 11.6 – – 147 2452 1229  
AF-73 463.4 1.23 13.6 20.1 -6.6 108 2650 1397  
AF-79 463.2 0.41 13.6 18.1 -4.5 134 3450 1236  
AF-85 463.0 0.73 15.3 16.1 -0.8 111 2537 1596  

AF-91X 462.9 1.13 14.7 18.6 -3.9 100 2166 1773  
AF-91Y 462.9 1.04 – – – 99 1887 1763  
AF-97 462.7 0.96 14.9 18.6 -3.7 116 2268 1736  

AF-103 462.6 1.27 15.5 20.1 -4.6 96 1108 1039  
AF-109 462.4 0.90 14.0 16.3 -2.3 162 1831 1832  
AF-115 462.3 1.03 15.2 20.8 -5.7 – – –  
AF-121 462.1 0.93 13.3 18.8 -5.5 111 1995 1886 0.7084642 
AF-127 462.0 1.13 15.6 20.1 -4.5 147 4360 1801  
AF-133 461.8 1.18 14.8 18.9 -4.1 108 2157 2107  
AF-139 461.7 1.15 13.5 19.2 -5.6 105 1686 2061  
AF-145 461.5 1.16 13.5 21.1 -7.6 90 2508 2094  
AF-151 461.4 1.14 15.6 17.9 -2.2 116 2734 2054  
AF-151 461.4 0.46 – – – 316 5965 2013  

AF-157A 461.2 1.24 14.9 20.1 -5.2 104 2544 2220  
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AF-157B 461.2 1.40 – – – 100 1768 2272  
AF-160 461.1 1.44 9.8 19.1 – 104 2121 2353 0.70847 
AF-166 461.0 1.23 15.9 18.9 -3.0 135 2793 1908  
AF-172 460.8 1.22 15.8 19.7 -3.8 168 3954 2177  

AF-185A 460.5 1.65 7.8 8.9 -1.1 489 22688 1408  
AF-185B 460.5 2.01 – – – 589 31468 1489  
AF-191 460.4 0.81 11.1 17.3 -6.2 216 6316 2062  
AF-196 460.2 1.69 12.0 20.0 -8.1 873 39408 1738  

AF-196B 460.2 1.82 – – – 891 39330 1771  
AF-203 460.0 0.94 14.4 17.3 -2.9 228 6000 2247  
AF-208 459.9 1.17 11.0 14.4 -3.4 474 17124 1880  
AF-218 459.7 1.44 10.2 8.8 1.4 487 23274 1673 0.7085949 
AF-223 459.5 0.39 18.1 15.4 2.6 432 9369 1798  
AF-228 459.4 0.47 16.4 16.3 0.0 – – –  
AF-234 459.3 0.74 9.2 13.8 -4.6 404 13489 1735  
AF-256 458.7 1.07 14.5 11.1 3.4 205 7311 1824  
AF-270 458.3 0.51 14.4 12.1 2.4 350 12959 1519 0.7086782 
AF-276 458.2 0.33 18.1 13.6 4.6 326 19806 2041  
AF-283 458.0 0.90 14.9 12.0 2.9 203 6870 1786  
AF-290 457.8 0.91 13.8 8.9 4.9 261 10555 1837  
AF-293 457.8 0.76 15.3 9.0 6.3 151 3942 1808  
AF-299 457.6 0.57 12.7 15.6 -2.9 178 11295 2550  
AF-305 457.4 1.05 14.3 15.7 -1.4 225 7551 2756  
AF-312 457.3 1.25 11.3 11.1 0.1 113 2235 2075  
AF-318 457.1 0.78 14.6 17.8 -3.2 227 12772 2329  
AF-323 457.0 0.88 15.2 12.5 2.7 191 7633 2331  
AF-332 456.8 0.71 15.0 7.4 7.5 165 2451 1977 0.7084373 
AF-334 456.7 0.87 14.8 13.0 1.8 235 2592 2020   

*The age of the Las Aguaditas Formation was approximated using the biostratigraphy of 31. 
† Altered value, not plotted in Figure 3.2. 
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Table 3.5. Values for flux, mass and isotopic fractionation used for this study. Values for fluxes 

and isotopic compositions were estimated from typical values used for Phanerozoic studies 

(Kump and Arthur, 1999, Kurtz et al., 2003; Gill et al., 2011). Values for ΔS used are less than 

traditional values (Kah et al., 2004), but reflect the values recorded by data in this study for the 

early Darriwilian; δcarb and δSO4 were estimated from data recorded for intervals A and B of the 

current study (see Figure 3.2).  

 

Carbon   Sulfur 

FW = 3x1019 mol/My   FW = 1.5x1018 mol/My 

FCARB = 2x1019 mol/My  FGYP = 0.5x1018 mol/My 

δW = -4‰  δW = +7‰ 

ΔC = -28‰  ΔS = -30‰ 

δCARB (A) = -1‰  δSO4 (A) = +30‰ 

δCARB (B) = +1.5‰   δSO4 (B) = +15‰ 
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Part 4 

Bentonite geochronology, marine geochemistry, and the Great Ordovician 

Biodiversification Event (GOBE) 
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This chapter is a reformatted version of a paper by the same title submitted for publication to 

Palaeogeography, Palaeoclimatology, Palaeoecology in 2011 by Cara K. Thompson, Linda C. 

Kah, Ricardo Astini, Robert Buchwaldt, and Samuel Bowring. 

 

Thompson, C.K., Kah, L.C., Astini, R., Buchwalt, R., Bowring, S. in review, Bentonite 

Geochronology, Marine Geochemistry, and the Great Ordovician Biodiversification Event 

(GOBE), Palaeogeography, Palaeoclimatology, Palaeoecology. 

 

Abstract 

 

Attribution of Ordovician climate forcing to explosive volcanism and its potential global 

importance in Ordovician biodiversification and extinction suggests the necessity of evaluating 

the relationships between K-bentonite deposition and increasingly high-resolution records of 

marine biogeochemical change. Globally, Ordovician strata preserve an extensive record of 

explosive volcanism—including the widely recognized Early to Middle Ordovician Famatina K-

bentonite suite in Argentina and the Late Ordovician Millbrig-Diecke-Kinneulle suite of North 

America and Europe. Here, we present high-resolution ID-TIMS U-Pb zircon ages of K-

bentonites from measured sections of the San Juan Formation (Talacasto and Cerro La Chilca 

section) of the Argentine Precordillera. These bentonites span a low-magnitude (2‰), globally-

recorded negative excursion in marine carbon isotopic composition that provides an independent 

mechanism for global time-correlation.  

 

K-bentonites from the Argentine Precordillera provide stratigraphically consistent (i.e., younging 

upward) ages that range from 473.45±0.70 Ma to 469.53±0.62 Ma. Evaluation of the timing of 

K-bentonite deposition in the Argentina Precordillera relative to marine biostratigraphic and 

biogeochemical records provides insight into relationships between explosive volcanism and 

regional to global environmental change. From a regional standpoint, these ages provide direct 

evidence for a Dapingian to earliest Darriwilian age of the upper San Juan Formation at these 

localities. These ages are consistent with recent carbon isotope correlation suggesting that the 

San Juan Formation in the region of its type section is coeval with only the base of the often-
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correlated Table Head Group of Western Newfoundland and highlights the difficulties in using 

regional biostratigraphic data—particularly within erosionally truncated or otherwise 

diachronous units—to define the time-frame of carbon isotope chemostratigraphy. New 

geochronological data indicates that the pronounced negative carbon isotope excursion of the 

San Juan and Table Head formations is correlative to a globally recognized pre-MDICE negative 

excursion, and indicates that this aspect of the marine carbon isotope record can be used as a 

discrete chronologic marker. Argentinian bentonites, however, cannot be discretely correlated 

with observed, environmentally significant changes in the Middle Ordovician marine 

geochemical records of carbon, sulfur, strontium, or sea surface temperature, and suggests that 

the extent of volcanism represented by the Famatina bentonite suite was insufficient to affect 

global surface environments. These results suggest, in light of recent high-resolution records of 

marine chemistry during the Ordovician, that the relationship between explosive volcanism and 

environmental change—even during the Late Ordovician Millbrig-Diecke-Kinnekulle events—

may not be straightforward. 

 

1. Introduction  

 

The Ordovician is characterized by a series of profound changes in Earth surface environments. 

Perhaps most dramatic of these changes was the expansion of marine life during the Great 

Ordovician Biodiversification Event (GOBE) (Harper, 2006). Over a 25 Myr period beginning in 

the early Ordovician, a cascade of diversification resulted in increased biodiversity at species, 

genus, and family levels (Droser and Sheehan, 1997; Webby et al., 2004; Harper, 2006). The 

peak of the GOBE broadly correlates with a maximum continental dispersion (Scotese and 

McKerrow, 1990; Crame and Owen, 2002; Webby et al., 2004), elevated pCO2 (Berner and 

Kothavala, 2001; Herrmann et al., 2003), and global greenhouse climates. These conditions 

resulted in the largest area of tropical marine shelves in the Phanerozoic (Walker et al., 2002; 

Servais et al., 2009) and the potential for substantial diversification as a result of ecological 

interaction within an expanded ecosystem space (Droser and Finnegan, 2003; Harper et al., 2006; 

Achab and Paris, 2007; Servais et al., 2009; Servais et al., 2010). Yet there currently remains no 

single explanation for the GOBE (see Servais et al., 2009, 2010 for review), and a variety of 
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potential causes—including global cooling (Trotter et al., 2008; Zhang et al., 2010), changes in 

nutrient flux (Cardenas and Harries, 2010) and resulting expansion of phytoplankton (Servais et 

al., 2008; Hints et al., 2010), or even extraterrestrially-driven ecosystem disturbance (Schmitz et 

al., 2007)—remain under active investigation.  

 

Second only to the GOBE is the end-Ordovician extinction, during which nearly 85% of this 

newly gained species-level diversity was lost (Jablonski, 1991; Sheehan, 2001). Although it is 

generally accepted that abrupt and widespread glaciation in the Hirnantian served as the primary 

mechanism for extinction (Brenchley et al., 1994; Sheehan 2001), the timing, extent, and 

mechanism of global cooling remains controversial. Although evidence for dramatic changes in 

sea level and sea surface temperature are typically restricted to a very short (approximately 1 

Myr) interval in the Hirnantian (Brenchley et al., 1994; Finnegan et al., 2011), evidence for 

glacioeustatically driven sea level change (Pope and Read, 1998; Calner et al., 2010), expansion 

of cool-water depositional lithologies (Pope and Steffan, 2003; Cherns and Wheeley, 2007), 

carbon burial and CO2 drawdown (Kump et al., 1995; Saltzman and Young, 2005; Young et al., 

2005, 2008, 2010; Ainsaar et al., 2010), changes in oceanic circulation (Herrmann et al., 2004; 

Saltzman 2005; Thompson et al., 2010), and glacial deposition of strata in Africa (Theron, 1994; 

Hamoumi, 1999) suggest that onset of climate change may have been already underway at the 

height of the GOBE.  

 

Recently, substantial attention has been given to the hypothesis of Barnes (2004), that large-scale 

volcanism and low-latitude emplacement of a continental basaltic province in the Ordovician 

may have played a role in both the GOBE and the climatic upheaval of the Hirnantian (Keller 

and Lehnert, 2010; Kidder and Worsley, 2010; Lefebvre et al., 2010). Unfortunately, with the 

exception of a sharp drop in marine 87Sr/86Sr in the Darriwilian (Qing et al., 1998; Shields et al., 

2003) there is little direct evidence for the existence of such a basaltic province. Abundant 

evidence, however, for widespread bentonite deposits (Bergström et al., 1995; Kolata et al., 

1996) associated with explosive volcanism in continental margin arc settings suggest that 

volcanism —as well as potential weathering of arc-related basaltic provinces—may have indeed 
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played a role in moderating environmental change in the Ordovician (Young et al., 2009; 

Buggisch et al., 2010). 

 

Ordovician-aged bentonites have been reported in North America, South America, Europe, and 

Asia (Huff, 2008; Huff et al., 2010), with the Lower to Middle Ordovician Famatinian suite of 

Argentina (Huff et al., 1997; Fanning et al., 2004; Astini et al., 2007), and the predominantly 

Upper Ordovician Diecke-Millbrig-Kinekulle bentonite suite of North America and Sweden 

(Huff et al., 1992; Kolata et al., 1996, Bergström et al., 1995; 2004) being the most prominently 

discussed. Here, we examine age range of a portion of the Famatinian K-bentonite suite with 

respect globally recognized patterns of change in the marine records of carbon, sulfur, and 

strontium, in order to better understand the potential role of explosive volcanism in Ordovician 

biodiversification and climate change.  

 

2. Geologic background  

 

2.1. Argentine Precordillera  

 

The Argentine Precordillera represents a microcontinent that rifted from the southeast margin of 

Laurentia in the Cambrian, drifted southward across Iapetus in the Early Ordovician, and 

eventually docked with Gondwana in the Late Ordovician (Figure 4.1) (Thomas and Astini, 

1996; 1999; 2003). Biostratigraphic data for the Precordillera show a progression from fauna 

with predominantly Laurentian affinity in the Cambrian, through a period of increased 

endemicity and influence of Celtic-Baltic fauna in the Early Middle Ordovician, to fauna split 

between endemic and Gondwanan affinities by the Late Middle Ordovician (Benedetto, 1998; 

2004; Benedetto et al., 1999; Albanesi and Ortega, 2002; Ramos, 1988). Biostratigraphic data are 

interpreted to reflect the tectonic position of the Precordilleran microcontinent as it drifted 

southward from Laurentia to Gondwana (Benedetto, 2004).  

 

Sedimentary strata of the Precordillera are primarily comprised of mixed carbonate, siliciclastic, 

and evaporite deposits that represent a range of supratidal to deep subtidal environments (Astini  
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Figure 4.1. Paleogeographic reconstruction of the Middle Ordovician (c. 470 Ma; modified from 

Astini et al., 2007). The Argentine Precordillera drifted from mid-southerly latitudes, ultimately 

colliding with western Gondwana in the Middle-Late Ordovician. The Famatina magmatic arc 

has been identified as the source of voluminous ashfall deposits in the upper San Juan and lower 

Gualcamayo formations (Fanning et al., 2004). 
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et al., 1995). At the base of the Precordilleran succession, evaporite-bearing shale of the Lower 

Cambrian Cerro Totora Formation marks the initial rifting of the Precordilleran terrane rifted 

from southern Laurentia (Thomas and Astini, 2003), with passive-margin deposition initiating 

with the Lower to Middle Cambrian La Laja Formation (Gomez et al., 2007). Passive margin 

deposition continued from the Middle Cambrian through the Early Ordovician and is represented 

by the dominantly shallow-marine carbonate platform deposition of the Zonda, La Flecha, and 

La Silla formations (Cañas, 1999). Conformably overlying these deposits, deeper-water 

carbonate strata of the Lower to Middle Ordovician San Juan Formation (Astini et al., 1995), and 

north-south diachronous development of overlying deep-water shale, mixed carbonate-shale, and 

carbonate of the Gualcamayo, Las Chacritas, and Aguaditas formations in the Middle to Late 

Ordovician, reflect variation in subsidence rates with the approach of the Precordilleran 

microcontinent to Gondwana (Thomas and Astini, 1996; 2003). Finally, docking of the 

Precordillera with Gondwana is marked by Late Middle to Upper Ordovician clastic wedge 

deposits of the Trapiche Group and its equivalents, which are interpreted as recording 

development of a peripheral forebulge and steepening of slopes to the west, in response to 

tectonic loading during accretion (Thomas and Astini , 1996; 2003). 

 

By the Latest Cambrian-Early Ordovician, an active margin had developed along the western 

Gondwanan margin (Astini, 2003; Astini and Dávila, 2004), and a series of Early Ordovician-

aged K-bentonites in the Famatina terrane show compositional evolution from volcanic arc to 

more continental affinities (Astini et al., 2007). An absence of preserved bentonites in the 

Precordilleran terrane at this time suggests its spatial separation from the Gondwanan margin, 

with its approach to Gondwana marked by the widespread appearance of K-bentonite deposition 

in the Middle Ordovician (Huff et al., 1998; Astini et al., 2007).  

 

Ultimately the Precordilleran terrane was uplifted by east-directed faulting of the Andean thrust 

belt in the Cenozoic (Thomas and Astini, 1999), and currently is exposed along the western 

margin of Argentina, striking north-south along the eastern margin of the Andean mountain 

range between 28°45′S and 33°15′S (Figure 4.2) (Ramos, 1988; 2004). To the west of the 

carbonate platform occur deep-water turbidites and ocean-floor mafic and ultramafic rocks  
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Figure 4.2. Geologic map of western Argentina (modified from Keller, 1994; Thomas and 

Astini, 2003). A) Geographic locality of the Precordilleran sedimentary terrane relative to the 

Sierra Pampeanas and Famatina magmatic arcs. B) Outcrop map of Precordilleran strata, noting 

sections of the San Juan and Gualcamayo formations. K-bentonites have been observed at all 

marked sections with the exception of the type section of the San Juan Formation at Cerro La 

Silla. For this study, bentonite horizons were sampled at Cerro La Chilca and Talacasto.  
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(Astini et al., 1995). The Famatina magmatic belt of the Sierra Pampeanas lies to the east, which 

consists primarily of igneous rocks with calc-alkaline continental margin affinities (Astini et al., 

1995). The Famatinian volcanic arc, in particular, developed on and within basement 

metasedimentary and gneissic lithologies with protoliths derived, according to zircon ages, from 

Proterozoic to Cambrian sources (Pankhurst et al., 1998; Rapela et al., 2001). 

 

2.2. Distribution of K-bentonites within the Precordilleran terrane 

 

Numerous bentonite horizons have been reported in the upper San Juan and lower Gualcamayo 

Formations in the Argentine Precordillera (Huff et al., 1997; 1998; 2004; Fanning et al., 2004). 

These deposits are widespread in the Precordillera, where they occur interbedded with sub-tidal, 

storm-dominated carbonate deposits of the upper San Juan Formation and basinal shale of the 

Gualcamayo/Los Azules Formation. K-bentonites have been reported from sections at Talacasto 

La Chilca, Las Chacritas, Cerro Viejo and Rio Gualcamayo sections, and are here reported, as 

well, from the uppermost San Juan Formation strata at Pachaco. Bentonites are notably absent, 

however, from coeval, shallow-subtidal deposits of the San Juan Formation at its type section at 

La Silla, likely because bioturbation and wave action mixed ash deposits with underlying 

sediment, obscuring boundaries between carbonate deposition and ash deposits. By contrast, the 

absence of bentonites in strata of the lower San Juan Formation, from all sections, likely reflects 

the geographic distance of the Precordilleran terrane from the western Gondwanan margin at 

initiation of Famatina volcanism (Astini et al., 2007).  

 

Major and trace element analyses show K-bentonites from the Talacasto section (Fanning et al., 

2004) are high-silica rhyolites (>75% SiO2), and are strikingly similar in composition to those 

collected by Huff et al., (1998) at the Cerro Viejo section, suggesting lateral continuity of 

volcanic ash falls across the Precordilleran terrane. Geochemical data further demonstrates the 

similarity of K-bentonites from both of these localities with magmas of the Chaschuil rhyolite in 

the Famatinian arc system (Fanning et al., 2004), suggesting that Famatinian magma is the likely 

parent body for widespread ash falls. A Famatinian origin for Precordilleran bentonites is further 

supported by chronological data (Fanning et al., 2004) that indicates, within uncertainty, that 
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ages of Precordilleran bentonites overlap with those from a porphyritic rhyolite from the 

Famatinian magmatic arc near Rio Chaschuil (468.3±3.4 Ma; Pankhurst et al., 2000). 

 

2.3. Stratigraphic framework of San Juan Formation bentonites 

 

In the Argentine Precordillera, bentonite deposits of the San Juan and Gualcamayo formations 

span the latest Floian to the mid-Darriwilian (Huff et al., 2003; Astini, personal communication). 

For this study, we report ages only from bentonite horizons within the San Juan Formation from 

the Talacasto and Cerro La Chilca exposures (Figure 4.2). These bentonites dissect a prominent, 

yet low magnitude, carbon isotope excursion wherein the isotopic composition of marine 

carbonates drop from 0‰ to approximately 2‰ before rising again to values near 0‰ (Figure 

4.3). This negative isotopic excursion has been correlated to a near identical excursion in the 

lower Table Head Formation, Western Newfoundland (Thompson and Kah, in review; 

Thompson et al., in review). Overlying strata of the Table Head and Table Cove formations in 

Newfoundland (as well as strata of the Las Chacritas and Las Aguaditas formations in Argentina, 

show continued rise in marine carbon isotope composition in the aftermath of this excursion to 

values near +1.5‰ (Thompson et al., in review). These elevated values are considered equivalent 

to the MDICE event (Ainsaar et al., 2004). The MDICE is the oldest of seven positive marine 

carbon isotope excursions in the Middle to Late Ordovician that have been recognized and 

named (Bergström et al., 2009). The MDICE has been recorded broadly across Baltica (Ainsaar 

et al., 2004; 2010; Kaljo et al., 2007), China (Schmitz et al., 2010), and potentially North 

America (Saltzman and Young, 2005). North American marine carbon isotope records, however, 

are ambiguous as to the positive aspect of this excursion (cf. Saltzman and Young, 2005), so we 

consider the combined dataset from Argentina and Newfoundland to represent the first clear 

record of the MDICE in the western hemisphere.  

 

The negative carbon isotope excursion considered here is potentially correlative to low 

magnitude (<2‰) negative excursions that are widely recognized to directly precede the MDICE 

event (Ainsaar et al., 2004; 2010; Saltzman and Young, 2005; Kaljo et al., 2007; Schmitz et al., 

2010). The biostratigraphic correlation of this negative isotopic excursion, however, is at present 
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poorly constrained. In the Argentine Precordillera, bentonite deposits of the San Juan and 

Gualcamayo formations span the uppermost O. evae through P. suecicus conodont zones (Huff 

et al., 2008) and the victoriae to elegans graptolite zones (Huff et al., 1998; Astini et al., 2007), 

indicating an age of latest Floian (FL3) or earliest Dapingian (DP1) to late Darriwilian (DW3) 

(Bergström et al., 2008). Current U-Pb geochronology of the Precordilleran K-bentonites provide 

ages broadly consistent with biostratigraphic zonations: with bentonite horizons yielding ages of 

469.5±3.2 Ma and 470.1±3.3 Ma (Fanning et al., 2004) to 464±2 Ma (Huff et al., 1997). Fanning 

et al., (2004) noted, however, that the latter age was calculated by merging three concordant data 

points with one discordant point. A recalculated age that excluded the discordant point, provided 

a mean 207Pb/206Pb age of 470.9±3.4 Ma, and suggests that the Famatinian bentonite suite occurs 

largely within the upper Dapingian to lower Darriwilian. 

 

Across Baltica and China, the pre-MDICE negative isotope excursion occurs largely within the 

L. variabilis to the E. suecicus conodont zones (Ainsaar et al., 2004; 2010; Kaljo et al., 2007; 

Schmitz et al., 2010). Although regional biostratigraphic data from the Argentine Precordillera 

are consistent with an early to mid-Darriwilian (M. parva to L. variabilis) age for this event 

(Buggisch et al., 2003), recent correlation of carbon isotope records from Argentina and Western 

Newfoundland (Thompson and Kah, in review; Thompson et al., in review) show this excursion 

in the lower Table Head Formation (Figure 4.3), which requires that the excursion lies 

substantially below the top of the L. variabilis zone which defines the top of the overlying Table 

Cove Formation (Maletz, 2009). These correlations would place the observed negative excursion 

in the Dapingian to early Darriwilian, which is broadly consistent with current geochronological 

constraints but inconsistent with its identification as the pre-MDICE negative excursion. Much 

of the current uncertainty in the age of this chemostratigraphic event arises from the regional 

diachroneity of the top of the Middle Ordovician San Juan Formation, which undergoes both 

rapid deepening and differential erosion with tectonic loading and migration of the peripheral 

bulge as the Precordilleran terrane approaches and begins to dock with the western Gondwanan 

margin (Thomas and Astini, 1996; 2003). 

 

3. Geochronology of Precordilleran bentonites 
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Figure 4.3. Biostratigraphic and chemostratigraphic correlation of the San Juan Formation, 

Argentina. A) Proposed biostratigraphic framework for carbon isotope stratigraphy from 

Buggisch et al. (2003) based on regional maximum duration of the San Juan Formation. This 

biostratigraphic calibration is complicated by differential subsidence and/or uplift across the 

Precordilleran terrane during the Middle Ordovician convergence of the Precordillera with 

western Gondwana. This ultimately resulted in substantial diachroneity for the top of the San 

Juan Formation. B) Proposed biostratigraphic framework for carbon isotope stratigraphy from 

Thompson and Kah (in review) based on chemostratigraphic correlation of strata from Argentina 

and Newfoundland combined with of biostratigraphic constraints from these two geographically 

disparate units. Stage slices are from Bergström et al. (2008) and time slices are from Webby et 

al. (2004). 
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3.1. Sample collection 

 

K-bentonites were sampled from measured section of the San Juan Formation at Cerro La Chilca 

(30º 36´16.9˝S, 69º47´41.0˝W) and Talacasto (31º00´35.5˝S, 68º46´12.0˝W). Carbonate samples 

for stable isotopic (C, S, O) analysis were collected from the same measured sections (Thompson 

and Kah, in review). The San Juan Formation at Talacasto consists of an incomplete, composite 

section: lowermost strata of the San Juan Formation are deformed by chevron folds above a basal 

detachment and duplicated by numerous secondary faults; and the uppermost strata of the 

formation are erosionally removed and overlain by Silurian green shale. All samples for 

geochemical analysis were collected from the upper 125 meters of the section, which represent 

an incomplete, yet continuous and non-faulted section of the San Juan Formation. More than 70 

bentonites appear in the measured Talacasto section, and 11 were sampled for this study. 

Similarly, the uppermost 180 meters of the San Juan Formation at the Cerro La Chilca section 

were measured and sampled for stable isotopic and geochronological analysis. At Cerro La 

Chilca, bentonites are concentrated in the upper 50 meters of the formation, and in the 

transitional beds that mark the boundary between the San Juan Formation and the overlying 

Gualcamayo Formation. More than 50 bentonites occur in the Cerro La Chilca section, and 10 

were sampled for this study. In both localities, sampling was concentrated on well-preserved, 

relatively undisturbed bentonite horizons with distinct, normal grading. These horizons are 

interpreted to represent single, discrete ash fall events. Before sampling, surficial material was 

removed to expose the freshest material, and sampling focused on the lowest, most coarse-

grained interval was collected since zircons are expected to be concentrated in these intervals.  

In the sections sampled for this study (Talacasto and Cerro La Chilca; Figure 4.4A, B), K-

bentonites occur as discrete units that range in thickness from <1 cm to approximately 30 cm, 

with most ranging from 3-8 cm. K-bentonites are typically tan to buff colored, are clay-rich, and 

are typically recessed relative to the host carbonate rocks. Strata underlying bentonite horizons 

are iron-stained and commonly contain a cephalopod-rich death assemblage. Most bentonite 

horizons occur as single ash-fall deposits (Figure 4.4C), although several composite K-bentonite 

deposits were also observed (Figure 4.4D). Composite K-bentonites are identified by  
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Figure 4.4. Stratigraphic occurrence of K-bentonites at Cerro La Chilca and Talacasto. A) Strata 

of the San Juan Formation at Cerro La Chilca with arrows locating a number of bentonite 

horizons. Bentonites occur predominantly in the upper 50 meters of the San Juan Formation and 

through the transitional beds that mark the onset of the Gualcamayo Formation. B) The 

uppermost strata of the San Juan Formation at Talacasto with arrows location a number of 

prominent bentonite horizons. More than 70 bentonite horizons occur in the upper 125 meters of 

section, which is truncated and unconformably overlain by Silurian aged strata. C) Two 

prominent K-bentonites in the upper San Juan Formation at Talacasto (see B). Bentonite 

horizons range from several millimeters in thickness (arrow) to approximately 20 cm. D) 

Composite bentonite horizon consisting of two distinct ash fall unites marked by distinct, normal 

grading.  
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superposition of two or more events that show distinct normal grading. Grading is not observed 

within all horizons, and may reflect a combination of depositional and modern (i.e. rooting, or 

rodent burrowing) homogenization processes.  

 

3.2. Sample preparation and analysis 

 

Zircon grains were dated using single grain ID-TIMS techniques (Schoene et al., 2006) at the 

Massachusetts Institute of Technology (MIT). Bentonites were processed using conventional 

magnetic and heavy liquid (methylene iodide) techniques to extract and separate zircon 

populations. Heavy mineral separates were hand picked in ethanol under an optical microscope 

to separate and classify zircons based on size, shape, clarity, and occurrence of inclusions. When 

possible, clear, elongate zircons with minimal inclusions were chosen for geochronological 

analysis in order to analyze the most rapidly formed, unaltered zircons. Internal zoning patterns 

were observed via SEM-cathodoluminescence (Figure 4.4). Grains were treated using chemical 

abrasion techniques, wherein zircons were annealed in quartz beakers at ~900°C for 60 hours 

(Mattinson, 2005) and leached in concentrated HF at 210°C for 12 hours to remove metamict 

grains or metamict grain portions.  

 

Once samples were chemically abraded and annealed, all additional sample processing took 

place in a clean lab. Any common Pb in zircon analyses was considered to be procedural 

contamination during zircon dissolution. Zircons were transferred to Teflon beakers and cleaned 

by fluxing with 30% HNO3 for 30-40 min, sonication, and rinsing in ultrapure water. Initial 

cleaning was repeated with another fluxing with 6.2N HCl for 30-40 min, followed by sonication 

and rinsing. Individual zircons were then dissolved in concentrated HF for 48 hours in teflon 

microvials at 210°C after being spiked with Earthtime ET535 205Pb-233U-235U tracer solution. 

 

Uranium and lead were collected by HCl-based anion exchange procedures modified from Krogh 

(1973). Pre-cleaned columns were filled with 200-400 µm microbead resin and cleaned by 

flushing with 6N HCl (to flush any possible Pb contaminant), ultra-pure Milli-Q water, 6N HCl, 

0.1N HCl (to flush any possible U contaminant), and 3N HCl. After cleaning, dissolved zircon 
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fractions were loaded in each column, which was then flushed with 3N HCl three times to 

remove zirconium. Pb was then released by flushing with 6N HCl, and U was released by 

flushing with 0.1N HCl. Pb and U were collected in clean Teflon beakers placed underneath the 

columns. Teflon beakers were cleaned by fluxing alternately with 6N HCl and 6N HF on a hot 

plate overnight (four times total). Pb and U were loaded together on a single Re filament using a 

silica-gel. U-Pb isotopic measurements were performed on a VG Sector-54 multi-collector 

thermal-ionization mass spectrometer at MIT. Error and weighted means were calculated using 

U-Pb Redux (McLean et al., 2008, 2009) and is reported as 2σ. Errors on the weighted mean are 

reported in a tripartite ±X/Y/Z scheme that denotes, respectively, the internal laboratory error, 

the tracer calibration error, and the tracer calibration and decay constant errors of Jaffey et al., 

(1971). Once ages have been reported with full error calculation, they will be referred to only in 

terms of the error that includes both the tracer calibration and decay constant errors.  

 

4. Results and interpretation 

 

Geochronological data from zircons of the San Juan Formation K-bentonites is summarized in 

Table 4.1. C-, S-, and O-isotope and major and trace element results are detailed in Thompson et 

al., (in review) and Thompson and Kah (in review). 

 

Heavy mineral fractions were separated from a total of nine K-bentonites (KB-1, KB-3, KB-7, 

KB-10, KBT-1, KBT-3, KBT-4, KBT-7, and KBT-10). These samples represent a combination 

of the lowermost and uppermost San Juan Formation bentonites from the La Chilca (KB 

samples) and Talacasto (KBT) measured sections, and therefore maximized the potential to 

resolve discrete depositional ages even under conditions of high sedimentation rate. One sample 

yielded no recoverable zircons (KB-10), and geochronological analyses were ultimately carried 

out on the five samples (KB-1, KB-3, KBT-3, KBT-7 and KBT-10) that yielded the greatest 

abundance of zircons. These five K-bentonite horizons also are positioned to define the lower 

portion and apex of a prominent, yet low magnitude (~2‰) negative carbon isotope excursion 

that occurs prior to the MDICE carbon isotope event (Figure 4.3). KBT-3 was deposited in the 
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lower third of this δ13C excursion, whereas KBT-7, KBT-10, KB-1 and KB-3 were deposited as 

δ13C reached its negative apex and began to return to heavier isotopic values. 

 

4.1. Zircon morphology and textures 

 

Zircons extracted from San Juan Formation K-bentonites are typically small (<100 µm) and 

show a range of morphologies, although most are euhedral, lozenge to needle shaped, and have 

bipyramidal terminations with no evidence for significant transport. Broken grains retain sharp 

edges along broken surfaces suggesting recent breakage, perhaps during extraction or by 

handling after the annealing process. Zircons are generally clear, although some contain distinct 

inclusions. Overall, grains display fine-scale, oscillatory-zoning under cathodoluminescence, 

with only a few recording more complicated internal structures such as rounded, internal cores; 

truncated zoning; and inclusions. Zircons with simple, zoned patterns and those that lacked cores 

were chosen for analyses. 

 

Zircons from KBT-3 and KBT-7 are small (<100 µm in length) and euhedral (Figure 4.5A, B), 

and zircons from KBT-3 display bimodal, stubby and acicular, morphologies. We chose to 

analyze acicular grains (length to width ratios >3:1) since this morphology is often associated 

with rapid crystallization and therefore are likely to reflect an age that is closer to the eruption 

age (Corfu et al., 2003). Zircons extracted from samples KBT-10 and KB-1 are generally larger 

(>100 µm in length), and display predominantly acicular morphologies with length to width 

ratios >3:1 (Figure 4.5C, D, E). Finally, zircons from KB-3 are typically small (<100 µm in 

length) and euhedral, although many grains display oscillatory-zoning with internal voids or 

rounded cores (Figure 4.5F). 

 

4.2. Geochronology of San Juan Formation zircons 

 

4.2.1. Sample KBT-3N 
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Figure 4.5. Cathodoluminescence images of San Juan Formation zircons. A) Zircon grain from 

sample KBT-3N (Talacasto section) showing fine-scale oscillatory zoning. B) Zircon grain from 

sample KBT-7 (Talacasto section) showing fine-scale oscillatory zoning and bipyramidal 

terminations. C) Fragment of acicular zircon grain from sample KBT-10 (Talacasto section) 

showing fine-scale oscillatory zoning. D) Acicular zircon grain from sample KBT-10 (Talacasto 

section) showing fine-scale oscillatory zoning and a small inclusion. E) Zircon grain from KB-1 

(Cerro La Chilca section) showing oscillatory zoning that is similar to zircons from the Talacasto 

section. F) Zircon grain from KB-3 (Cerro La Chilca) showing sub-rounded, inherited core. 

Scale bars are 50 µm in all photomicrographs. 
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Five grains from sample KBT-3 were analyzed. Grain Z3 yielded an age that is older than the 

other grains and, because this sample had low common Pb (0.33 pg) and the KBT-3N (needle-

shaped grain) population displayed potential for inherited cores, this age is considered to reflect 

inheritance. On a concordia plot (Figure 4.5), the remaining four analyses form a group near or 

within uncertainty of the concordia curve. A weighted mean of the remaining four analyses 

yields a mean age of 473.45 ±0.40/0.49/0.70 with MSWD = 0.65. The acicular shape and 

oscillatory-zoning, which is typical of magmatic grains (Corfu et al., 2003), suggests resolution 

at or near the eruption age [473.45 ±0.70] of the volcanic ash. 

 

4.2.2. Sample KBT-7 

 

Eight grains from sample KBT-7 were analyzed. Grains Z7 and Z8 were excluded from age 

calculation because of their high common lead content (1.37 and 1.49 pg, respectively), which 

likely represents procedural contamination. On a concordia plot (Figure 4.6), Z1 and Z3 fall 

largely outside uncertainty of the concordia curve and are, therefore, excluded from the age 

calculation. The remaining four analyses form a group near or within uncertainty of the 

concordia curve. A weighted mean of these four analyses gives an age of 469.86 ±0.33/0.42/0.65 

with MSWD = 1.4. Fine-scale oscillatory-zoning that is typical of magmatic grains (Corfu et al., 

2003) suggests resolution at or near the eruption age [469.86 ±0.65] of the volcanic ash. 

 

4.2.3. Sample KBT-10 

 

Eight grains from sample KBT-10 were analyzed. Grain Z10 was excluded from age calculations 

because of its high common lead content (1.93 pg), which likely reflect procedural 

contamination. On a concordia plot (Figure 4.5), Z6 and Z9 fall well outside uncertainty of the 

concordia curve and, therefore, are excluded from the age calculation. The remaining five 

analyses form a group near or within uncertainty of the concordia curve A weighted mean of 

these grains yields a mean age of 469.63 ±0.21/0.33/0.60 with MSWD = 0.97. The acicular 

shape and oscillatory-zoning, which is typical of magmatic grains (Corfu et al., 2003) suggests 

resolution at or near the eruption age [469.63 ±0.60] of the volcanic ash. 



 170 

 
 

Figure 4.6. U-Pb concordia diagrams of whole grain zircon analyses from the upper San Juan 

Formation at Talacasto (KBT) and Cerro La Chilca (KB), with internal error without systematic 

error, tracer calibration error, and combined tracer calibration and decay constant errors. Shaded 

ellipses represent analyses that were included in mean age calculations. Black bars represent the 

weight fraction that each analysis represents in mean age calculations. Thin dotted lines represent 

the concordia error range that results from propagation of decay constant counting statistic error 

(2σ) from Jaffey et al. (1971). 
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4.2.4. Sample KB-1 

 

Nine grains from sample KB-1 were analyzed. On a concordia plot (Figure 4.5), zircons Z4, Z5 

and Z25 fall well outside uncertainty of the concordia curve and, therefore, are excluded from 

the age. These grains could represent contamination from inclusions. The remaining six analyses 

form a group near or within uncertainty of the concordia curve. A weighted mean of these six 

grains yields a mean age of 469.53 ±0.26/0.36/0.62 with MSWD = 1.2. This is interpreted as the 

eruption age of the volcanic ash. The acicular shape and oscillatory-zoning, which is typical of 

magmatic grains (Corfu et al., 2003) suggests resolution at or near the eruption age [469.53 

±0.62] of the volcanic ash. 

 

4.2.5. Sample KB-3 

 

The two grains from sample KB-3 that were analyzed each yielded Proterozoic ages (1060 and 

1330 Ma). These ages suggest the zircons are potentially sourced from basement metasediments 

and gneisses of the Famatina and Pampeanas arc terranes (Figure 4.2A), which have yielded 

zircons with continental affinities that range in age from 500 to 2000 Ma (Casquet et al., 2001; 

Rapela et al., 2001). Zircons analyzed from KB-3, therefore, were interpreted as inherited and no 

further analyses were conducted. 

  

5. Discussion 

 

5.1. Defining Precordilleran chronology 

 

The resolved age of sample KBT-3 falls within the Floian stage of the 2009 GSA Geologic Time 

Scale (Walker and Geissman, 2009); mean ages of the remaining samples fall entirely within the 

Dapingian stage. The ages of KBT-3, KBT-7, KBT-10, and KB-1 are within error of mean U-Pb 

zircon ages previously reported for the Talacasto section (469.5±3.2 Ma and 470.1±3.3 Ma; 

Fanning et al., 2004). All bentonites analyzed in this study are older than the U-Pb zircon mean 
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age reported for the Cerro Viejo section (464±2 Ma; Huff et al., 1997), but agree well with a 

recalculation of this age to 470.9±3.4 Ma (Fanning et al., 2004).  

 

Difficulty arises, however, when considering these ages within a biostratigraphic framework for 

the San Juan Formation. The biostratigraphic age of the San Juan Formation is well constrained 

at its base to the Macerodus dianae zone, which is considered coeval with the uppermost 

Tremadocian P. deltifer conodont zone (Albanesi et al., 1998; Buggisch et al., 2003). The top of 

the formation, however, is regionally diachronous, with biostratigraphic determinations spanning 

an 8-10 Myr range from conodont zones O. evae to L. variabilis (Albanesi et al., 1998; Albanesi 

et al., 1999; Cañas and Aguirre, 2005) or E. suecicus (Sarmiento, 1991). Diachroneity of the 

uppermost San Juan Formation is recorded through the eastern Precordillera by a north-to south 

shift in depositional facies to deeper-water facies of the Gualcamayo, Las Chacritas, and Las 

Aguaditas formations (cf. Keller et al., 1993; Keller, 1999), or by truncation—either structurally, 

as at its type section of La Silla (Buggisch et al., 2003), or stratigraphically, as at Talacasto 

where it is unconformably overlain by deposits of Silurian-aged shale (Keller, 1999).  

Chemostratigraphic correlation of the San Juan Formation and conformably overlying 

Gualcamayo, Las Chacritas, and Las Aguaditas formations with carbonate strata of the Table 

Point and Table Cove formations, Western Newfoundland (Thompson and Kah, in review; 

Thompson et al., in review), suggest a similar mid-Dapingian to mid-Darriwilian (or 

approximately 470-464 Ma) diachroneity for the upper San Juan Formation. In sharp contrast to 

the correlation of biostratigraphic and chemostratigraphic profiles (Figure 4.3) proposed by 

Buggisch et al., (2003), the addition of biostratigraphic markers provided by chemostratigraphic 

correlation with Western Newfoundland (Thompson and Kah, in review; Thompson et al., in 

review) require that the uppermost strata of the San Juan Formation at both Talacasto and Cerro 

La Chilca reside close to the Dapingian-Darriwilian boundary. Combined chemo-biostratigraphic 

correlations are entirely consistent with geochronological data reported here. Close 

correspondence between the stratigraphic C-isotope profiles for Cerro La Chilca and Talacasto 

measured sections suggest similar deposition rates recorded by these strata. Geochronological 

constraints give a duration between KBT-3 and KBT-10 of the Talacasto section of 3.8±0.45 

Myr, which, assuming a field measurement error of ±5%, gives a sedimentation rates of 21.8±2.8 
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(19 to 24.6) meters/Myr. These sedimentation rates place the top of the San Juan Formation 

(defined as the top of the 20.9 meter thick “transitional beds” which mark the boundary between 

the San Juan and overlying Gualcamayo Formation), which lies 45.2 meters above sample KB-1, 

at approximately 467 Ma, or within the earliest Darriwilian. 

 

5.2. Calibration of marine carbon isotopes 

 

San Juan Formation bentonites occur across a prominent, low-magnitude (<2‰) negative carbon 

isotope excursion. Radiometric calibration of the San Juan Formation marine carbon isotope 

curve (Figure 4.7) requires revision of the current biostratigraphic interpretation (Buggisch et al., 

2003). Although marine carbonate rocks attributed to the San Juan Formation extend into the 

Middle Darriwilian E. suecicus conodont zone (Sarmiento, 1991), it has been well-documented 

that the top of the San Juan Formation is diachronous across the Precordillera (Albanesi et al., 

1998; Albanesi et al., 1999; Cañas and Aguirre, 2005). Both the Talacasto and Cerro La Chilca 

sections of the San Juan Formation occur near its type locality at Cerro La Silla (Figure 4.2). 

Chronometric calibration of the marine carbon isotope curve indicates that the top of the San 

Juan Formation in this region occurs within the earliest Darriwilian. This revised calibration 

(Figure 4.7) demonstrates that the observed negative carbon isotope event was initiated in the 

latest Floian (O. Evae conodont zone), reached its minima in the middle Dapingian (B. navis 

conodont zone), and returned to near 0‰ values near the in the early to middle Darriwilian 

(uppermost L. variabilis to lowermost E. suecicus conodont zone)—well above the top of the 

San Juan Formation near its type locality.  

 

This revised calibration suggests, as well, the need to evaluate the behavior of the marine carbon 

isotope record leading up to the mid-Darriwilian MDICE event. Everywhere where the MDICE 

event has been established, including within Latvia and Estonia (Ainsaar et al., 2004; 2010; 

Kaljo et al., 2007), Sweden (Sweden, Bergström, 2007; Schmitz et al., 2010), China (Schmitz et 

al., 2010), Newfoundland (this study) and Argentina (this study), positive carbon isotope 

excursions are initiated near the base of the E. suecicus conodont zone and continue above the E. 

suecicus zone into the Late Darriwilian P. serra conodont zone. Carbon isotope values then  
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Figure 4.7. Geochronological constraints on carbon isotope chemostratigraphy. Carbon isotope 

chemostratigraphic correlation of Early and Middle Ordovician strata from Argentina (San Juan 

Formation) and Western Newfoundland (Table Head Group, including the Table Point and Table 

Cove formations) across a prominent, yet low magnitude negative carbon isotope excursion. 

New radiometric ages are consistent with biostratigraphic calibration suggested by Thompson 

and Kah (in review; see Fig. 3) and suggest that this low magnitude negative carbon isotope 

event spans from the late Floian (O. evae conodont zone) to the mid-Darriwilian (uppermost L. 

variabilis conodont zone). The trend to more positive carbon isotope values (to 1.5‰ in the late 

Darriwilian, (see Fig. 3) begins in the mid-Darriwilian (E. suecicus conodont zone) and is 

interpreted to reflect the first clear identification of the MDICE excursion (Ainsaar et al., 2010) 

in both Laurentia (Western Newfoundland) and South America (Argentine Precordillera). Stage 

slices are from Bergström et al. (2008) and time slices are from Webby et al. (2004). 
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remain elevated until the latest Darriwilian (P. anserius conodont zone) before they begin to 

decline. The structure of the pre-MDICE carbon isotope record, however, is variable. In sections 

representing deposition in deep-water (deep shelf-to-slope) environments, such as the Jurmala 

borehole in Latvia (Ainsaar et al., 2010) or the Western Newfoundland (this study; for lithologic 

descriptions and depositional environments, see Thompson et al., in review), marine carbon 

isotope records reveal a broad (6-8 Myr duration) negative excursion that reaches its nadir in the 

B. navis conodont zone. By contrast, stratigraphic sections that represent shallower-water (mid-

shelf) environments, such as the Kerguta and Mehikoorma boreholes (Kaljo et al., 2007; Ainsaar 

et al., 2010) and Tallinn section (Ainsaar et al., 2004) in Estonia, the Kargärd section in Sweden 

(Bergström, 2007), and the Las Chacritas and Las Aguaditas sections of Argentina (this study; 

for lithologic descriptions and depositional environments, see Thompson et al., in review), show 

an initial decrease in marine carbon isotope composition followed by a distinct kick to more 

positive values in the L. variabilis conodont zone and an additional decline downward in the 

section to an isotopic nadir in the B. navis conodont zone.  

 

Sections representing deposition in environments transitional between these two states, such as 

the Hallekis Quarry section in Sweden, or the Puxi River and Maocaopu sections of China 

(Schmitz et al., 2010), appear to record a combination of these two signals wherein strata record 

a broad negative isotope excursion with a small positive increase (<0.5‰) in the L. variabilis 

conodont zone.  

 

That the pre-MDICE carbon isotope excursion appears to be quite low in its magnitude (< 2‰), 

long in its duration (6-8 Myr), and strongly correlated with depositional environment suggests 

that the excursion may simply reflect an isotopic depth gradient in the ocean and its interaction 

with different marine environments. In this scenario the isotopic “kick” in the L. variabilis 

conodont zone, and increased isotopic variability represented by sections representing the 

shallowest-water marine environments, such as the Tallinn section in Estonia (Ainsaar et al., 

2004) or the Antelope Valley section in the United States (Saltzman and Young, 2005), may 

represent the inherent variability within these environments. Regardless, the marine carbon 

isotope records from Argentina and Newfoundland appear to accurately reflect marine carbon 
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record as preserved globally, suggesting that this pre-MDICE negative carbon isotope 

excursion—despite its environmentally-controlled variation— may be used as a discrete 

chronologic marker.  

  

5.3. Climate consequences of explosive volcanism in the Middle Ordovician 

 

One of the largest, most rapid drops in 87Sr/86Sr (~0.7088 to ~0.7078; Figure 4.8) in the 

Phanerozoic occurs in the mid-Ordovician beginning in the P. serra conodont zone (late 

Darriwilian; Veizer and Compston, 1974; Burke et al., 1982; Veizer et al., 1986; Qing et al., 1998; 

Shields et al., 2003) and broadly coincident with Late Ordovician explosive volcanism, as marked 

by widespread bentonites deposition across Laurentia and Baltica (Huff et al., 1992; 1996; 

Bergström et al., 1995). This rapid drop has been attributed to a combination of waning Pan-

African orogenic activity, decreased continental weathering associated with a major transgression 

of sea level, and an increase in either sea floor spreading (Shields et al., 2003) or weathering of 

young basaltic provinces associated with arc magmatism (Young et al., 2009).  

 

It has further been suggested that this rapid drop in 87Sr/86Sr reflected potentially significant CO2 

and global cooling prior to Hirnantian glaciation (Buggisch et al., 2010). If significant CO2 

drawdown occurred, however, it does not appear to be reflected in the marine sea surface 

temperature record. Oxygen-isotopic signatures from both conodonts (Trotter et al., 2008; 

Herrmann et al., 2011) and clumped isotope paleothermometry (Finnegan et al., 2011) suggest 

that after a protracted decline in sea surface temperature from the Early through the Middle 

Ordovician (Trotter et al., 2008), sea surface temperatures stabilized in the mid-to-late 

Darriwilian and remained stable until the mid-to-late Katian when temperatures dropped 

dramatically with the onset of Hirnantian glaciation. Young et al., (2009) suggest that sea surface 

temperatures during this period were stabilized by explosive volcanism via a balance between 

volcanic outgassing and basalt weathering. In this scenario, late-Katian to Hirnantian cooling 

resulted from a combination of the cessation of volcanic outgassing associated with explosive 

volcanism, and continued weathering of arc-related basalts and their associated CO2 drawdown.  
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Figure 4.8. Timing of biospheric events in the Ordovician with respect to the distribution of 

explosive volcanic events. Two distinct suites of K-bentonite deposition occur in the Early-Middle 

Ordovician (Famatina suite, Argentina) and the Late Ordovician (Millbrig-Diecke-Kinnekulle 

suite). These bentonites span intervals of both subdued and more volatile marine carbon isotope 

signatures and have been implicated as a driver to biospheric change during these intervals. It is not 

clear, however, that causal relationships exist. The older, Famatinian bentonite suite occurs during 

rising to relatively stable sea level, stable marine strontium isotope composition, and near the end of 

a long-term cooling event. By contrast, the younger, Millbrig-Diecke-Kinnekulle bentonite suite 

occurs during rising to stable sea level, just after a major drop in marine strontium isotopic 

composition, and during a period of relatively stable sea surface temperatures. Stage slices are from 

Bergström et al. (2008) and time slices are from Webby et al. (2004). K-bentonite distribution is 

from Huff et al. (2008), composite carbon isotope curve is modified from Bergström et al. (2008), 

sea surface temperature curve (broad grey line) is from Trotter et al. (2008), and composite 
87Sr/86Sr curve (dashed line) is modified from Shields et al. (2003), Young et al., (2009), and 

Thompson et al. (in review).  
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In sharp contrast to the Middle Ordovician strontium isotope record, stable, yet elevated 87Sr/86Sr 

values in the Early to Middle Ordovician have been attributed primarily to extensive weathering of 

Pan-African orogenic rocks (Qing et al., 1998; Shields et al., 2003). During the Early Ordovician, 

a small decline in marine 87Sr/86Sr (0.7090 to 0.7088; Shields et al., 2003) broadly coincides with 

the onset of Famatina volcanic activity (Figure 4.8). Comparison of the timing of Argentina K-

bentonite deposition to sea surface temperature records shows that explosive volcanism occurred 

near the end of a long (>25 Myr) gradual decline in sea surface temperature, so there is no 

apparent link in the rate of oceanic cooling associated with the onset of Famatinian explosive 

volcanism (Huff et al., 2008). If a mechanism similar to that invoked by Young et al., (2009) 

were operating in the Early to Middle Ordovician, gradual cooling through the Early to Middle 

Ordovician would require basalt weathering to consume CO2 faster than it was produced by 

volcanic outgassing. Furthermore, in order to retain the marked stability and radiogenic isotopic 

composition of the 87Sr/86Sr record, basaltic weathering would also have to be balanced, over the 

long term, by a continental weathering input. Combined, these arguments suggest that explosive 

volcanism recorded by widespread bentonites in the Argentine Precordillera played only a very 

limited role in changes to the global biosphere.  

 

The gradual decline in sea surface temperature observed through the Early and Middle 

Ordovician has also been attributed to an increase in productivity and organic carbon burial as a 

result of increased biodiversification in the Ordovician (Trotter et al., 2008). Biodiversification 

during the GOBE also resulted in a transition from dominantly benthic grazers to suspension 

feeders (Bottjer et al., 2001). It has been hypothesized that this transition in feeding structure 

may have been driven by phytoplankton biodiversity expansion with new food source for animal 

consumption (Bambach, 1983; 1993; Signor and Vermeij, 1994). It is thus necessary to explore 

whether explosive volcanism in the Middle Ordovician, which can provide a variety of metals, 

such as iron and phosphorus, which are essential for organic matter production (Gaddy and 

Parker, 1986; Felitsyn and Kirianov, 2002), may have had played a direct role in the expansion 

of life in the Middle Ordovician. Explosive volcanism in the Famatinian arc system appears to 

have been active through much of the early stages of the GOBE (Webby et al., 2004). Volcanic 

ash deposits potentially may have acted as a fertilizer to enhance bioproductivity (Gaddy and 



 180 

Parker, 1986) during this time. If this is the case, the effects of increased nutrient input should be 

reflected in marine biogeochemical cycles.  

 

Marine C-isotope composition is considered to reflect a balance between organic carbon burial 

and delivery of inorganic carbon to the ocean. The deposition of Famatina K-bentonites 

coincides with an interval of unusually stable marine carbon isotope composition, wherein short-

term excursions of <1‰ superimposed over a long-term variation between -2‰ and 0‰ from 

the mid-Floian to the mid-Darriwilian (Figure 4.8). Subdued carbon isotope signatures in the 

Early to Middle Ordovician are commonly attributed to generally low rates of organic carbon 

burial (fraction of total carbon buried as organic carbon = 0.1 to 0.2) associated with decreased 

nutrient availability during greenhouse times (Saltzman, 2005). Such an interpretation is 

supported by sulfur isotope data that indicates widespread euxinia and potential for a net flux of 

nutrients to the sedimentary substrate (Thompson and Kah, in review). Under these conditions, 

initiation of Famatina arc volcanism in the Floian would be expected to enhance nutrient fluxes 

to the surface oceans, resulting in a net increase in marine productivity and organic carbon. The 

broad negative carbon isotope excursion recorded through the late Floian and Dapingian is 

inconsistent with such an interpretation. However, because marine carbon and sulfur isotope 

cycles are linked via the availability of reactive marine organic matter for bacterial sulfate 

reduction, the sulfur isotope record may provide additional insight into changes in marine 

productivity.  

 

The isotopic composition of marine sulfate in the Early to Middle Ordovician marine sulfate 

records short-term oscillation that has been attributed to small scale changes in the bacterial 

sulfate reduction and bacterial sulfate oxidation within an ocean that otherwise maintains a 

dynamic equilibrium between distinct sulfate (surface ocean) and hydrogen sulfide (deep ocean) 

reservoirs (Thompson and Kah, in review). An abrupt shift in the average isotopic composition 

of marine sulfate, however, occurs near the Middle-Late Ordovician boundary. This sulfur 

isotope event coincides with a long-term minimum in sea surface temperature (Trotter et al., 

2008) and has been hypothesized to represent the onset of vigorous oceanic circulation and 

downwelling of cool, oxygen-rich waters that resulted in substantial oxidation of the deep-ocean 
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hydrogen sulfide reservoir (Thompson et al., in review). This event and the subsequent 

reorganization of marine biogeochemical cycles (see Thompson et al., in review), however, occur 

well after the end of explosive volcanism associated with Famatinian arc magmatism. Prior to 

this biogeochemical reorganization, the long-term stability of the marine sulfur isotope record—

which was maintained both before and after the onset of Famatinian volcanism—suggests no 

clear influence of explosive volcanism on marine environmental conditions.  

 

Together, these observations suggest that the relationship between explosive volcanism and 

environmental change in the Middle Ordovician is not straightforward, and that the extent of 

volcanism represented by the Famatina bentonite suite was insufficient to affect global surface 

environments. Instead we suggest that expansion of phytoplankton (Servais et al., 2008; 2010), 

zooplankton (Noble and Danelian, 2004; Paris et al., 2004), and ultimately marine metazoan 

diversity in the earliest stages of the GOBE appear to be more closely related to expansion of 

ecospace ultimately driven by plate tectonic reconfiguration and changes in sea level (Figure 4.8).  

 

Distinguishing between sea level and nutrient input from explosive volcanism, however, and the 

apparent inability of Famatinian volcanism to affect the global biosphere may be related most 

clearly to the limited spatial extent of ash falls along the western Gondwanan margin  

(Huff et al., 1998; Astini et al., 2007).  

 

6. Conclusions 

 

Ordovician strata of the Early to Middle Ordovician of Argentina preserve an extensive record of 

explosive volcanism related to convergence of the Precordillera terrane with the western 

Gondwanan margin and the development and ultimate demise of the Famatina arc system. High-

resolution ID-TIMS U-Pb ages on zircons within K-bentonites of the San Juan Formation, 

Argentine Precordillera provide stratigraphically consistent ages that range from 473.45±0.70 

Ma to 469.53±0.62 Ma. The substantially higher precision of these new ages, and their 

correlation with high-resolution marine geochemical records, permits evaluation of explosive 

volcanism as an agent of global biospheric evolution.  
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Dated bentonites within the Famatina bentonite suite span a low-magnitude (2‰), globally-

recorded negative excursion in marine carbon isotopic composition that provides an independent 

mechanism for global time-correlation. New geochronological ages are consistent with recent 

carbon isotope correlation suggesting that the San Juan Formation in the region of its type 

section is coeval with only the base of the often-correlated Table Head Group of Western 

Newfoundland and highlights the difficulties in using regional biostratigraphic data—particularly 

within erosionally truncated or otherwise diachronous units—to define the time-frame of carbon 

isotope chemostratigraphy. New geochronological data also suggest that the negative carbon 

isotope excursion of the San Juan and Table Head formations is correlative to a globally 

recognized pre-MDICE negative excursion, and indicates that this aspect of the marine carbon 

isotope record can be used as a discrete chronologic marker. San Juan Formation bentonites, 

however, cannot be discretely correlated with observed, environmentally significant changes in 

the Middle Ordovician marine geochemical records of carbon, sulfur, strontium, or sea surface 

temperature, and suggests that the extent of volcanism represented by the Famatina bentonite 

suite was insufficient to affect global surface environments. These results emphasize that the 

relationship between explosive volcanism and environmental change is not straightforward and 

needs to be carefully evaluated, even for more extensive bentonite suites, such as the Millbrig-

Diecke-Kinnekulle suite of the Late Ordovician.  
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The results of this study represent the first long-term, high-resolution marine sulfate sulfur 

isotope records for the Ordovician. Both short and long-term variation in marine sulfate sulfur 

isotopic composition is consistent with the existence of a relatively large, deep-ocean hydrogen 

sulfide reservoir in the Early and Middle Ordovician. A major perturbation in the late Middle 

Ordovician sulfur cycle is best explained by the near complete oxidation of this deep-ocean 

hydrogen sulfide reservoir. Coeval records of declining sea surface temperature suggest this 

event was likely driven by downwelling of cool, oxygen-rich waters that perhaps signal the start 

of climate change that resulted in widespread glaciation and mass extinction in the terminal 

Ordovician. With the addition of new, high-resolution U-Pb zircon dates from K-bentonites from 

the Argentine Precordillera, evaluation of the timing of explosive volcanism suggests it was not 

the primary driver of climate change throughout the Ordovician. 
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