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Abstract

Mushy layers are regions of intermixed liquid and solid which can arise during the solidifi-
cation of binary alloys, generally consisting of dendritic solids with solute-rich liquid in the
interstices. They occur due to an instability resulting from the buildup of rejected solute
along the solidification front. Liquid ahead of the front becomes supercooled, so distur-
bances to the interface grow more rapidly than the interface itself. A simple experiment
has a tank filled with a uniform solution at uniform temperature being placed upon a cold
surface. Early on, a small solid layer forms at the bottom capped by a rapidly advancing
mushy layer. Typical modeling efforts have made at least one of two assumptions, that
the tank is of infinite depth or that the diffusion of solute is negligible. This dissertation
investigates the finite-domain problem in the presence of solute diffusion, highlighting new
interfacial dynamics and other behaviors that arise in this case.
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Chapter 1

Introduction

1.1 Preliminaries

Solidification of alloys is a process which occurs both in industrial settings and the natural
world. The formation of sea ice and the cooling of magma chambers both serve as natural
examples. In industry, solidification of alloys is present in semiconductor manufacturing.
Metallurgical examples are also very common, for example bronze, brass, and steel. The
low melting point of mercury alloys lead to the use of amalgam for dental fillings.

In this dissertation, we address binary alloys, which consist of two components. While
there are many metallurgical examples, including common alloys such as bronze (copper
and tin), brass (copper and zinc), and steel (iron and carbon), binary alloys do not need
to be metallic. For example, a simple salt solution (sodium chloride and water) is a bi-
nary alloy. Throughout this dissertation, we will approximate a sodium nitrate solution.
However, many experiments investigating issues associated with solidification of binary al-
loys utilize an ammonium chloride solution. In common language, alloys are typically solid
and solutions are typically liquid, but both terms may refer to substances in either phase.
Throughout this dissertation, we use this more general definition.

A fairly simple experimental arrangement is to take a tank filled with a uniformly-mixed
solution which is at some uniform temperature and place it upon a cold surface. The top of
the tank is held at a fixed warm temperature, the bottom is held at a fixed cold temperature,
and the sides are insulated. One of two phenomena may occur. The first is that a solid
will grow from the bottom with a planar solid-liquid interface. The second is that a solid
layer will grow from the bottom, but with a very convoluted solid-liquid interface. In fact,
this convoluted interface may be difficult to detect with the human eye, as the solid forms
dendritic structures that are intermixed with liquid. Frequently, a completely solid layer
and a completely liquid layer would be perceived with a third layer in the middle. At smaller
scales, one can see that this middle layer is made up of solid dendrites surrounded by liquid.
This layer has come to be called a mushy layer, mush, or mushy zone. A schematic of
this arrangement is given in figure 1.1(a), with the representative profile for the fraction
of the mushy layer which is solid shown in figure 1.1(b)) and representative temperature
and concentration profiles on the full domain shown in figure 1.1(c). The temperature is
increasing throughout the domain, fixed at the cold temperature TB at the bottom of the
tank and a warm temperature TH at the top of the tank, which is also the initial temperature
throughout the tank. This experimental arrangement forms the basis for our model.
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Figure 1.1: A finite-depth tank filled with a uniformly mixed solution is placed on a cold
boundary. Two time-dependent interfaces form, separating the domain into three regions as
shown in (a): a thin solid layer at the bottom (not visible on the scale shown), mush in the
middle (grey), and liquid at the top (white). In (b), we see the corresponding curve for the
solid fraction, which decreases from the solid-mush interface to the mush-liquid interface. In
(c), representative temperature (solid, varying from T = TB to T = TH) and concentration
(dashed) curves are shown, with interface positions shown as horizontal lines.

2



(a) (b)

Figure 1.2: The full phase diagram for a binary system is given in (a), whereas the simplified
phase diagram that will be used in our analyses is given in (b).

Phase transitions in binary alloys are more complicated than the transitions in pure
materials. A pure material, at a fixed pressure value, has a particular freezing temperature,
below which it will solidify and above which it is liquid. Binary alloys, on the other hand,
have variable freezing temperatures dependent upon the concentration. Full and simplified
phase diagrams for a binary alloy are demonstrated in figure 1.2. The liquidus temperature
TL(C) is the temperature at which an alloy at concentration C will begin to solidify, and
the solidus temperature TS(C) is the temperature at which the alloy will begin to melt. The
full phase diagram, given in figure 1.2(a), describes the equilibrium configuration of an alloy
at temperature T and concentration C. If the associated point falls in the liquid or solid
regions, then the alloy will be liquid or solid at equilibrium. If the associated point falls
into the “Liquid + Solid A” region, then the state at equilibrium will contain both liquid
and solid. If a line is drawn across the left half of the phase diagram at the temperature
T of the alloy, then the concentration value along the solidus curve is the concentration Cs

that will appear in the solid portion of the alloy at equilibrium, and the concentration value
along the liquidus curve is the concentration CL that will appear in the liquid portion of
the alloy. The fraction of the alloy in the liquid phase is given by the lever rule,

χ =
C − CS

CL − CS
.

The eutectic concentration CE is the concentration value at which the freezing temperature
is minimized, and corresponds to the eutectic temperature TE . Regardless of concentration,
if T < TE , then the alloy will be completely solid at equilibrium. In other words, the eutectic
temperature is the lowest possible melting temperature of the alloy.

We will utilize a simplified phase diagram, as in figure 1.2(b). This is representative of
phase diagrams for many aqueous solutions, which are commonly used in experiments due
to their transparency. Here, the liquidus curve is linear, so that the liquidus temperature
is given by

TL(C) = TM − ΓC, (1.1)

3



where TM is the melting temperature of the pure material and Γ is the slope of the liq-
uidus curve. The solidus curve is now vertical, reflecting an assumption of complete solute
rejection. One example of this phase diagram is related to sea ice, which is fresh even
though it is the result of a solidifying brine. During the evolution of a mushy layer, it is
typically assumed that the dendrites grow or melt in order to maintain local thermal equi-
librium, which is represented by assuming that the temperature and concentration within
the mushy layer obey the liquidus relationship. In a more general situation where solute is
not completely rejected, then the liquidus relationship would dictate the concentration of
solute in the liquid phase of the mushy layer and the solidus relationship would dictate the
concentration of solute within the dendrites.

The linear stability of a planar solid-liquid interface during solidification of binary alloys
was studied by Mullins and Sekerka (1964). An arbitrary perturbation to the interface is
described by its Fourier expansion, and the interface is stable if all of the Fourier modes
decay with time. Under the assumptions of negligible latent heat, uniform thermal proper-
ties, and negligible surface energy, which will be used throughout in this dissertation, the
condition for instability identified by Mullins and Sekerka (1964) reduces to the presence
of supercooling in the liquid near the interface. In the case of binary alloys, the liquid is
supercooled if the temperature is below the liquidus temperature of the local concentration.
It had previously been thought, as in Rutter and Chalmers (1953), that the presence of
supercooling was generally the condition for instability, since supercooling leads to insta-
bility during solidification of a pure melt, as described in Langer (1980). An argument
for the utilization of this simplified condition in more general circumstances is given by
Worster (1986). Additionally, Wilson et al. (1982) argued, based on equilibrium dynamics,
that a mushy layer should be predicted to occur whenever supercooling is present at the
interface. For a one-dimensional setting, supercooling at the interface can be expressed by
the inequality

(

∂T

∂z

)

h+

< −Γ

(

∂C

∂z

)

h+

,

where z = h(t) is the location of the solid-liquid interface. The notation (·)h+ indicates that
the quantity is evaluated as a limit from above, for example,

(

∂T

∂z

)

h+

= lim
z→h+

∂T

∂z
.

This can also be thought of as the gradient of the quantity ahead of the interface, which
would be on the liquid side of the interface in the present case.

The physical interpretation for linear instability in the presence of supercooling is as fol-
lows. As the alloy solidifies, rejected solute accumulates in the liquid immediately adjacent
to the front. Higher concentrations of solute suppress the freezing temperature; the idea
behind spreading salt on icy roads in order to encourage melting of the ice is a result of
this property. Perturbations to the interface which protrude into the liquid will encounter
reduced solute concentrations. If supercooling occurs, then the temperature along such a
perturbation will be below the freezing temperature, so the perturbation will grow into the
supercooled region. As a result, the perturbations grow more rapidly, so the interface is
unstable.

The solid-liquid interface within a mushy layer is very convoluted. Tracking such a
complicated interface is a difficult proposition, so other methods have been developed to
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model mushy layers. The most common techniques treat the mushy layer as a continuum.
The method utilized in this dissertation is the approach taken by Worster (1986), where
the mushy layer is essentially treated as a third phase, along with the liquid and solid
phases. This results in the problem being split into three domains, one each for solid, mush,
and liquid. The properties in the mushy layer vary with the local liquid fraction, which is
determined by averaging over a scale that is larger than the pore size.

Another approach is to use thermodynamic principles on the whole domain. One ex-
ample is an enthalpy formulation. Wilson et al. (1984) formulated such a model for binary
alloy solidification, with one cold boundary and one insulated boundary, where solid and
liquid regions could be identified along with a possible intermediate zone. Le Bars and
Worster (2006) formulated a two-dimensional model with a cold boundary opposite a warm
boundary and two insulated side boundaries. This model includes flow terms, so that con-
vective effects can be captured. Other authors, such as Hills et al. (1983), have formulated
models using mixture theory.

While not addressed by the models presented in this dissertation, effects related to flow
are often of great interest. Convective instabilities, which will be discussed later in this
section, are of great interest. The mushy layer is a porous medium, so Darcy’s equation is
typically used. The permeability in the mushy layer is assumed to be some function of the
local solid fraction. Additionally, a Boussinesq approximation is utilized, restricting density
variations to the buoyancy terms only.

There are other experimental arrangements similar to the one utilized in this disserta-
tion. A simple variation is to assume that the upper boundary is insulated, rather than held
at a fixed temperature. This permits the mushy layer to grow to the top of the tank, and
may lead to complete solidification if the cold boundary is sufficiently cold. This particular
approach has been utilized by Huppert and Worster (1985) for a sodium nitrate solution and
Aitta et al. (2001) for a ternary alloy. The use of a cold upper boundary and an insulated
lower boundary has proved useful in experiments analyzing the growth of sea ice and cooling
of magma chambers. A series of papers (Kerr et al. (1990a), Kerr et al. (1990b), and Kerr
et al. (1990c)) investigated the evolution of various aqueous solutions in such experiments.
Wettlaufer et al. (1997b) used this arrangement with a sodium chloride solution and with
sea water to study the growth of sea ice, with further exploration of convective effects in
Wettlaufer et al. (1997a).

A related process that has received considerable attention is the case where a melt
is translated through a specified temperature field. This is variously called directional
solidification or continuous casting of alloys. A major focus of related theoretical research
relates to the stability of the steady states, under the assumption of an infinite domain.
A sketch of this configuration is shown in figure 1.3. If the cold temperature applied is
below the eutectic then a eutectic solid grows capped by a mushy layer, with liquid melt
extending into the farfield. Such models exhibit a steady state, where the solid-mush and
mush-liquid interfaces advance upward at a rate equal to the rate that the melt is being
translated through the temperature field, so that an observer in the laboratory sees a fixed
position of the interfaces. Aspects of this process have been studied theoretically by many
authors, including Langer (1980), Worster (1992), Emms and Fowler (1994), Schulze and
Worster (1999), Chung and Chen (2000), Roper et al. (2007), and Roper et al. (2008).

Comparisons between theory and experiment frequently address the temperature and
concentration profiles along with the interface positions, but another important aspect is
the solid fraction within the mushy layer. In the context of sea ice, there is also interest in
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Figure 1.3: During directional solidification, the melt is translated through a specified
temperature field. In this schematic, the melt is being translated to the right at velocity V
past a hot contact at temperature T = TH and a cold contact at temperature T = TB . At
steady state, a solid layer and a mushy layer appear as shown.

measuring devices that can be deployed in the environment to collect data. Experiments
which utilize conduction of electricity have exhibited good agreement with the solid fraction
values determined from mathematical models. One experiment in the case of cooling from
below, developed by Shirtcliffe et al. (1991), uses individual thin platinum wires placed at
varying heights with a large carbon block above the wires. Each wire in combination with
the carbon block formed a conductivity cell. Since pure ice is a good insulator, the solid
fraction near each wire could be calculated based on the conductivity of the liquid and
the resistance of the cell. A concern with these experiments is that the crystals may grow
preferentially along the wires, which would increase the observed solid fraction, but Notz
et al. (2005) assert that the effect is minimal. Another experiment developed by Shirtcliffe
and Kerr (1992) for cooling from below, and later adapted for cooling from above by Notz
et al. (2005), uses pairs of wires at each height as a conductivity cell, rather than a single
wire with a distant carbon block.

Instabilities in the growth of mushy layers are also of great interest. Convective insta-
bilities can occur within the mush or in a boundary layer near the mush-liquid interface.
Typically, these instabilities are expected in the case of cooling from below if the density
of the liquid decreases as the concentration increases. If these instabilities occur within the
mushy layer, then certain defects called chimneys appear (see Fowler (1985)). These chim-
neys are channels in the mush with zero solid fraction. A summary and review of relevant
literature is contained in Worster (1997). Worster and Wettlaufer (1997) compared theoret-
ical and experimental results with regards to the formation of sea ice, where solidification
occurs from above.

A variety of experiments have been performed examining chimney formation. Sample
and Hellawell (1984), Chen and Chen (1991), and Chen (1995) examined the case of solidi-
fication from below with an insulated upper boundary. The study of Sample and Hellawell
(1984) also studied the effects of rotating the mold during solidification. Solomon and
Hartley (1998) tested the case of solidification from below with a fixed temperature at the
upper boundary, which relates to the study in this dissertation. These studies all identified
a finger convection associated with the compositional boundary layer near the mush-liquid
interface, which preceded the plume convection in the mushy layer. The finger convection
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is a fine scale convection, while the plume convection is on a larger scale. This plume con-
vection causes the chimneys to form. Another case of solidification from above was studied
by Aussillous et al. (2006) using a sucrose solution. This experiment is notable because the
chimneys formed were branched and did not completely penetrate the mushy layer, due to
high viscosity of the sucrose at low temperature near the top of the mush.

Many theoretical studies of convective instabilities utilize the assumption that the solid-
mush and mush-liquid interfaces advance with constant velocity V , which reflects the case
of directional solidification. Other common assumptions in these studies are that solute
diffusivity is negligible and that the mush-liquid interface is rigid and impermeable. Studies
using these assumptions include Worster (1992) and Emms and Fowler (1994). Chung
and Chen (2000) allowed the interface to be permeable, and Schulze and Worster (1999)
and Roper et al. (2008) additionally allowed the interface to be deformable. The earlier
studies exhibited chimney which initiated deep within the mush, whereas these later studies
indicate that chimneys initiate near the mush-liquid interface owing to the permeability of
the interface. Convection caused by sidewall heat loss has been studied by Roper et al.
(2007), with a hypothesis that chimneys would form near the sidewalls due to upflow being
greatest there, although no stability analysis was performed.

Throughout this dissertation, we will utilize an assumption of negligible latent heat.
This assumption has commonly been used in the study of mushy zones. For example, it
is part of the frozen temperature approximation, which is understood to be a collection of
three assumptions (see Davis (2001)): thermal diffusion is much faster than solute diffusion;
latent heat is negligible; and the temperature profile is given by its steady state. The frozen
temperature approximation was used by Langer (1980) to study mushy layers appearing
during directional solidification of binary alloys. Studies often show that the influence of
latent heat is rather weak. For example, Kerr et al. (1990a) investigated the effects of
varying the Stefan number, which is equivalent to varying latent heat, when solidifying an
alloy from above. The case of negligible latent heat (zero Stefan number) was included in
that study. The most visible effect of increasing the Stefan number is that solidification is
slowed.

A critical issue in this dissertation is the treatment of a variety of conditions at the solid-
mush and mush-liquid interfaces. This idea has arisen before, as Schulze and Worster (2005)
consider boundary conditions along mush-liquid interfaces in the absence of solute diffusion,
but in a crystal-pulling arrangement with a solid phase that moves steadily relative to the
liquid phase. That study classifies the interface conditions into four different scenarios
based upon the velocity of the solid phase, the velocity of the mush-liquid interface, and the
velocity of the liquid. While the arrangement is different, the classification of the interface
conditions still depends upon different velocities that arise in the problem.

Numerical calculations throughout this dissertation will utilize values given in Set I of
Table 1 of Worster (1986), roughly approximating a 14% sodium nitrate solution. While
the values in Set II more accurately model this solution, incorporating different thermal
properties between the solid and liquid phases, the values in Set I serve as an approximation
including the assumption of uniform thermal properties. We provide in Table 1.1 the values
needed for our study, with a modification to the liquidus slope value, reflecting our use of
a mass fraction for concentration as opposed to a mass percentage. Temperatures are in
degrees Celsius, with TM = 0 being the melting temperature of pure water. The eutectic
point is assumed to be at TE = −20 and CE = 0.5. This is surely not the true eutectic point
but will still serve to illustrate the qualitative behaviors when eutectic effects are accounted
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Table 1.1: Parameters approximating a 14% sodium nitrate solution.
Parameter Symbol Value Units

Liquidus slope Γ 40 ◦ C
Solute diffusivity D 1.0 × 10−5 cm2s−1

Thermal diffusivity κ 1.3 × 10−3 cm2s−1

for.

1.2 Contributions

The research presented in this dissertation includes results reported in Gewecke and Schulze
(2011), as well as results that have not yet been reported. In particular, the majority of
Chapter 3 and Appendix A provides the results of Gewecke and Schulze (2011) along with
additional discussion.

Chapter 2 contains many results pertaining to the infinite-domain problems that are
special cases of the models used by Worster (1986) and Anderson (2003). Each of those
previous studies included more general results than those included in this dissertation.
Section 2.4 contains novel results, identifying the transition point between the cases studied
by those authors.

Chapters 3 and 4 contain a variety of new results for mushy layers on a finite domain.
The role of solute diffusion leads to changes through time in the interfacial conditions at the
solid-mush and mush-liquid interfaces. Previous studies provide reasonable approximations
of the behaviors over the thermal diffusivity timescale. In addition, the diffusive effects
ultimately lead to elimination of the mushy layer on the solute diffusivity timescale, which
is much slower.

The main contribution of this dissertation is the identification of long-term behaviors
in the finite-domain case that have appear when solute diffusion is present. The eventual
disappearance of the mushy layer does not occur in a semi-infinite domain or when solute
diffusion is assumed to be negligible. In addition, when eutectic effects are considered, this
work demonstrates that the solid layer at the bottom of the tank has a variable concentra-
tion, which is not observed under those same common assumptions.

1.3 Applications and Broader Impacts

Various studies address the evolution of mushy layers on an infinite domain. The evolution
of sea ice or the cooling of magma chambers occur in large spatial domains, but they are
still finite domains. On these geologic spatial domains, the timescales for thermal and solute
diffusion become very large. However, on geologic timescales, the effects of solute diffusion
on finite domains highlighted by this research could have important consequences in these
applications.

1.4 Dissertation Organization

In Chapter 2, we discuss solidification of dilute binary alloys on an infinite domain. The
related problems admit similarity solutions, and these solutions are presented under the
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assumptions utilized throughout this dissertation. Finally, we develop methods to identify
when a mushy layer first appears and when the solid-mush interface conditions change.

In Chapter 3, we examine the dynamics of a mushy layer on a finite domain when
eutectic effects are not present. Applicable mush-liquid interface conditions are identified,
and associated with a condition on the interface velocity. The method of characteristics is
applied in the mushy layer, which permits the development of a numerical scheme to solve
the mushy layer problem on the finite domain.

In Chapter 4, we examine the dynamics of a mushy layer on a finite domain when eutectic
effects are included. In addition to the issues addressed in Chapter 3, we identify the issues
that arise at the solid-mush interface. After modifying our numerical scheme to account for
the possibility of a eutectic solid-mush front, in addition to a diffusion-controlled solid-mush
front, we are able to demonstrate numerically that both types of solid-mush front can occur.
Furthermore, we demonstrate variability of solute concentration in the solid which forms in
this case.

Finally, in Chapter 5, we identify related questions whose answers would generalize the
results in this dissertation.
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Chapter 2

Solidification in a semi-infinite

domain

In this chapter, we study solidification from a cold lower boundary under the common
assumption of a semi-infinite domain. The models presented in this chapter admit similarity
solutions. To determine similarity solutions, a particular relationship between the spatial
and temporal variables is used which transforms the system of partial differential equations
into a system of ordinary differential equations. For the mushy layer models, there are two
cases for the solid-mush interface to consider. One case is a diffusion-controlled interface and
the second is a eutectic interface. This issue is accounted for in the models of Fowler (1985)
and Emms and Fowler (1994), with little discussion. In terms of the similarity solution,
only one of these two cases will apply for a given set of parameters. If all other parameters
are fixed, there is a critical temperature at the base of the tank where the change between
the cases occurs. This critical temperature will be referred to as a switching temperature.
There is also a switching temperature for the transition from the presence of a solid-liquid
interface to the presence of a mushy layer.

For the numerical schemes implemented on a finite domain in Chapters 3 and 4, we
will incorporate the similarity solutions for the semi-infinite domain as a short-time ap-
proximation. Additionally, the switching temperature presented in Section 2.4 will inform
which similarity solution to apply for this approximation. Worster (1986) solves the Stefan
problem for binary alloys freezing from a cold planar surface, as highlighted in Section 2.1,
and presents a model with a mushy layer. This mushy layer model, which incorporates a
diffusion-controlled solid-mush interface, is presented in Section 2.2, along with a binary
alloy analogue of the ternary alloy model presented by Anderson (2003), which incorpo-
rates a eutectic solid-mush interface. These mushy layer models treat the mushy layer as a
third phase, where the properties vary with the liquid fraction. The model then has three
domains, one each for the solid, mush, and liquid. The models will be presented with latent
heat, but we will ultimately incorporate an assumption of negligible latent heat which is
important in the analysis in Chapters 3 and 4.

2.1 Binary Stefan problem

The Stefan problem for a binary alloy is similar to the well-studied Stefan problem for pure
materials. Worster (1986) describes the model for binary alloys in a more general form than
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presented here, as the present analysis utilizes an assumption of uniform thermal properties
in each phase.

Initially, the domain z ≥ 0 is filled with a liquid binary alloy with uniform temperature
T∞ and concentration C0. Note that the concentration C is a mass fraction of the solute
within the liquid phase as opposed to the weight percentage used in Worster (1986), but
the difference between the two is simply a factor of 100. The restrictions on the initial
conditions are that 0 ≤ C0 < CE and T∞ > TL(C0), where T = TL(C0) is the temperature
on the liquidus curve associated with C = C0 given by (1.1). The initial conditions are
therefore

T (z, 0) = T∞, (2.1a)

C(z, 0) = C0. (2.1b)

For t > 0, a solid region grows from the lower boundary. In the farfield z → ∞,

T → T∞, (2.2a)

C → C0. (2.2b)

In the liquid region z > h(t) heat and solute diffuse, so

∂T

∂t
= κ

∂2T

∂z2
, (2.3a)

∂C

∂t
= D

∂2C

∂z2
, (2.3b)

where κ and D are the thermal and solutal diffusivities, respectively.
At the solid-liquid interface z = h(t),

L

cp
ḣ = κ

(

∂T

∂z

)

h−

− κ

(

∂T

∂z

)

h+

, (2.4a)

Ch+ḣ = −D
(

∂C

∂z

)

h+

, (2.4b)

[T ]+− = 0, (2.4c)

Th = TM − ΓCh+, (2.4d)

where [·]+− denotes the jump of the quantity across the interface, TM is the melting tem-
perature of the pure liquid, L is the latent heat, cp is the specific heat, and Γ is the slope
of the liquidus curve. Additionally, (·)h+ indicates the value of the quantity computed as a
limit from above, which is the value of the quantity on the liquid side of the interface. The
first condition is a Stefan condition, balancing heat flux with the release of latent heat due
to solidification. The second condition balances solute flux with the solute rejected during
solidification. The condition (2.4d) indicates that the temperature at the interface is the
liquidus temperature.

There is no solute diffusion within the solid, but the diffusion of heat is still present.
Hence, in the solid region 0 < z < h(t),

∂T

∂t
= κ

∂2T

∂z2
. (2.5)
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Since solute is completely rejected, the mass fraction of solute in the solid phase is C = 0.
At the lower boundary z = 0, the temperature is fixed at a cold temperature TB <

TL(C0), so
T (0, t) = TB. (2.6)

This model admits a similarity solution, which will be discussed in Section 2.3.

2.2 Mushy layer problems

The model in Section 2.1 applies until an instability occurs at the interface leading to the
formation of a mushy layer. It is well understood that supercooling ahead of the interface
leads to such instability, and this can be expressed by the condition

(

∂T

∂z

)

h+

< −Γ

(

∂C

∂z

)

h+

. (2.7)

For the mushy layer model, there is a solid region which grows from the lower boundary,
then a mushy layer, then a liquid region which extends into the farfield. Depending upon the
parameters in the system, there are two different solid-mush interfaces which can appear.
One of these is a eutectic interface, which is dictated by the advance of the T = TE isotherm.
The other is diffusion-controlled interface, which will also be referred to as a noneutectic
interface, whose advance is restricted by the diffusion of rejected solute away from the
interface. The first interface type appears in a model for ternary alloy solidification with
TB << TE studied by Anderson (2003). The second interface type is studied in Worster
(1986), which focused on the case TB ≥ TE. Here, the model studied by Worster (1986) will
be presented, followed by a discussion of the changes needed for the case of a eutectic solid-
mush interface. In each case, we let a(t) and b(t) denote the solid-mush and mush-liquid
interface positions, respectively.

The initial conditions for the mushy layer problem are the same as in the Stefan prob-
lem, with the entire domain z > 0 filled with a uniform solution at concentration C0 and
temperature T∞ > TL(C0), so

T (z, 0) = T∞, (2.8a)

C(z, 0) = C0. (2.8b)

Similarly, the farfield z → ∞ conditions remain unchanged,

T → T∞, (2.9a)

C → C0. (2.9b)

In the liquid region z > b(t),

∂T

∂t
= κ

∂2T

∂z2
, (2.10a)

∂C

∂t
= D

∂2C

∂z2
. (2.10b)
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At the mush-liquid interface z = b(t),

[T ]+− = 0, (2.11a)

[C]+− = 0, (2.11b)

L

cp
(1 − χb)ḃ = κ

(

∂T

∂z

)

b−
− κ

(

∂T

∂z

)

b+
, (2.11c)

Cb(1 − χb)ḃ = Dχb

(

∂C

∂z

)

b−
−D

(

∂C

∂z

)

b+
, (2.11d)

(

∂T

∂z

)

b+
= −Γ

(

∂C

∂z

)

b+
, (2.11e)

where χ(z, t) denotes the liquid fraction. The condition of marginal equilibrium (2.11e)
reflects the concept that the mushy layer grows sufficiently to relieve undercooling. That
is, the mushy layer grows until the inequality (2.7) no longer holds at the interface. As
shown below, the temperature and concentration within the mushy layer are tied together
through the liquidus relationship (1.1). Combining this with the continuity of temperature
and concentration at the mush-liquid interface, we find that

Tb = TM − ΓCb.

Inside the mushy layer a(t) < z < b(t),

∂T

∂t
= κ

∂2T

∂z2
− L

ρcp

∂χ

∂t
, (2.12a)

∂ (χC)

∂t
= D

∂

∂z

(

χ
∂C

∂z

)

, (2.12b)

T = TM − ΓC, (2.12c)

where ρ is the density of the liquid. The third equation reflects local thermodynamic
equilibrium, which represents the assumption that the dendrites composing the mush grow
or decay sufficiently to maintain the liquidus relationship.

At the solid-mush interface z = a(t),

[T ]+− = 0, (2.13a)

L

cp
χaȧ = κ

(

∂T

∂z

)

a−

− κ

(

∂T

∂z

)

a+

, (2.13b)

Ca+χaȧ = −Dχa

(

∂C

∂z

)

a+

. (2.13c)

In the solid 0 < z < a(t), heat diffuses but solute does not, so

∂T

∂t
= κ

∂2T

∂z2
, (2.14a)

∂C

∂t
= 0, (2.14b)

where C is the mass fraction of the solute in the solid phase. For the case of a noneutectic
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solid-mush front, C = 0 as no solute is being frozen into the solid. In the case of a eutectic
solid-mush front, discussed below, C > 0 is possible, and will be determined by a condition
at the solid-mush interface.

At the lower boundary z = 0, for t > 0,

T = TB . (2.15)

The above assumes that a noneutectic solid-mush front appears. For sufficiently cold
temperatures TB at the lower boundary, the solid-mush front will be a eutectic front. In
this case, the conditions given by (2.13a)-(2.13c) at the solid-mush interface z = a(t) are
replaced by the conditions

T = TE , (2.16a)

[T ]+− = 0, (2.16b)

L

cp
χaȧ = κ

(

∂T

∂z

)

a−

− κ

(

∂T

∂z

)

a+

, (2.16c)

(Ca− − Ca+χa+) ȧ = Dχa+

(

∂C

∂z

)

a+

. (2.16d)

Since the liquidus relationship (2.12c) holds in the mushy layer, the concentration on the
mush side of the interface is

Ca+ = CE .

The final condition describes the quantity of solute being frozen into the solid.
For problems like this, the number of boundary and interface conditions is very impor-

tant. The temperature field is governed by the heat equation in each region, with a source
term in the mushy layer. Since we have two interfaces, a lower boundary, and a farfield
boundary, a total of six conditions are required for the temperature; two conditions are
needed for each of the regions. At the two boundaries, the temperature is fixed, providing
two of these conditions. The other four are the jump conditions for temperature and its
gradient at the interfaces. Since the temperature and concentration in the mushy layer
being tied together through the liquidus relationship (2.12c), we find the (2.12b) becomes
an evolution equation for the liquid fraction. As a result, the concentration field is governed
by the diffusion equation in the liquid region and the temperature field in the mushy layer,
so only two boundary conditions are need to determine the concentration profile. The liq-
uid fraction is governed in the mush by (2.12b), which is a first-order partial differential
equation. As a result, it needs a single boundary condition. We also need an additional
condition to determine each of the two interfaces. For the case of a eutectic front, we also
need a condition for C . Hence, we need eleven combined boundary and interface conditions
for a diffusion-controlled front, and twelve for a eutectic front. Our models include the
needed number of conditions.

Each case admits a similarity solution. These will be presented in the following section.
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2.3 Similarity solutions

The models presented in Sections 2.1 and 2.2 admit similarity solutions with respect to the
similarity variable

η =
z√
4κt

.

Each interface can be described by

h(t) = 2λ
√
κt,

for which λ is a fixed value, in terms of the similarity variable, describing the interface. The
similarity solutions presented here include assumptions of uniform thermal properties and
negligible latent, but more general similarity solutions can be found in Worster (1986) and
Anderson (2003). The error function and the complementary error function, which arise
frequently throughout the remainder of this chapter, are defined as

erf(x) =
2√
π

∫ x

0
exp(−z2) dz,

erfc(x) = 1 − erf(x).

In the case of the Stefan problem in Section 2.1, we find that

T (η) = TB + (T∞ − TB)erf(η), (2.17a)

C(η) =







C0 +
(Ch−C0)erfc(η/

√
ǫ)

erfc(λS/
√

ǫ)
λS < η,

0, 0 < η < λS ,
(2.17b)

where
Ch = − (TB − TM + (T∞ − TB)erf(λS)) /Γ, (2.17c)

and λS , which describes the solid-liquid interface position, is the root of

2λCh =
2(Ch −C0)√
π
√
ǫerfc(λ/

√
ǫ)

exp

(

−λ2

ǫ

)

. (2.17d)

In the presence of a mushy layer with a noneutectic solid-mush front, described by
(2.9a)-(2.15), we find that

T (η) = TB + (T∞ − TB)erf(η), (2.18a)

C(η) =











C0 +
(Ch−C0)erfc(η/

√
ǫ)

erfc(λb/
√

ǫ)
λb < η,

−(T (η) − TM )/Γ, λa < η < λb,
0, 0 < η < λa,

(2.18b)

where
Ch = − (TB − TM + (T∞ − TB)erf(λb)) /Γ, (2.18c)
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and λa and λb, which respectively describe the solid-mush and mush-liquid interface posi-
tions, are the roots of

0 = 2λaCa+ + ǫC ′
a+ , (2.18d)

exp

((

1

ǫ
− 1

)

λ2
b

)

=
−ΓC0 − T (λb)√

ǫ(T∞ − TB)erfc(λb/
√
ǫ)
, (2.18e)

where C ′ is the derivative of C with respect to the similarity variable η.
In the presence of a mushy layer with a eutectic solid-mush front, described by (2.9a)-

(2.15) but with (2.13a)-(2.13c) replaced by (2.16a)-(2.16d),

T (η) = TB + (T∞ − TB)erf(η), (2.19a)

C(η) =







C0 +
(Ch−C0)erfc(η/

√
ǫ)

erfc(λb/
√

ǫ)
λb < η,

−(T (η) − TM )/Γ, λE < η < λb,
(2.19b)

C (η) =

(

CE +
ǫC ′

a+

2λE

)

χa+ , (0 < η < λE) (2.19c)

where
Ch = − (TB − TM + (T∞ − TB)erf(λb)) /Γ, (2.19d)

and λb and λE, which describe the mush-liquid and eutectic solid-mush interface positions,
are the roots of

exp

((

1

ǫ
− 1

)

λ2
b

)

=
−ΓC0 − T (λb)√

ǫ(T∞ − TB)erfc(λb/
√
ǫ)
, (2.19e)

erf(λE) = (TE − TB)/(T∞ − TB). (2.19f)

In each of the two cases where a mushy layer is present, we also need to identify the
liquid fraction throughout the mush. For λa ≤ η ≤ λb,

χ(η) = χb exp

(
∫ λb

η

ǫC ′′(ξ) + 2ξC ′(ξ)

ǫC ′(ξ) + 2ξC(ξ)
dξ

)

, (2.20)

where χb = 1 due to the combination of our assumptions with the condition of marginal
equilibrium. In more general circumstances, where thermal properties are not uniform and
latent heat is present, Worster (1986) demonstrates that χb = 1 does not always hold.

One additional fact in the case of the noneutectic solid-mush front is that χa = 0. This
is the result of the integrand in (2.20) having a singularity at η = λa, due to the condition
(2.18d). Analysis of the differential equation governing the liquid fraction in the mushy
layer illuminates this more clearly, and the full proof is provided in Appendix A.

2.4 Switching temperatures

A careful study of the solutions in Section 2.3 indicate that there are two possibilities for
the solid-mush interface in the presence of a mushy layer whenever TB < TE . Only one
of these fronts can occur for a given set of parameters, since both fronts behave like αt1/2

with different coefficients, so it is important to correctly identify which interface conditions
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Figure 2.1: The various interface positions are shown as functions of the difference TL(C0)−
TB . The dashed curves represent the predicted positions of interfaces which are not actually
present at a particular base temperature.

should be applied. At a basic level, we should expect that the front that advances at a
faster rate should be the one that is present. Everything below a eutectic front must be
solid, based on the phase diagram, so if the eutectic front advances more rapidly than the
predicted noneutectic front then clearly the eutectic front should be present. Additionally,
it is important to correctly identify whether a mushy layer will even appear.

For a given set of parameters, the solution to the Stefan problem can be computed and
checked for supercooling ahead of the front. If supercooling is not present, then that was the
correct solution. If supercooling is present, then the solution to the mushy layer problem
with a noneutectic front can be computed, and the temperature at the solid-mush front
can be compared with the eutectic temperature. If that temperature is above the eutectic,
then the mushy layer solution with a noneutectic solid-mush front is correct. Otherwise,
the mushy layer solution with a eutectic solid-mush front is the correct solution.

For a given alloy with a specific concentration, it would be convenient to know the values
of T∞ and TB where each of the three models applies. If we fix one of these two values, say
T∞, then we can identify two critical values of TB at which the system transitions from a
solid-liquid interface to having a mushy layer with a diffusion-controlled solid-mush interface
and then to a eutectic solid-mush interface.

In figure 2.1 we demonstrate the predicted positions of the interface positions λi, in
terms of the similarity variable, with respect to the difference between TL(C0) and TB .
For TB near TL(C0), only a liquid-solid interface appears. Once TB is sufficiently cold for
undercooling to occur at a solid-liquid interface, two interfaces bounding a mushy layer
appear instead. For TB < TE , the eutectic solid-mush interface can be predicted, but the
noneutectic interface dominates for a relatively narrow range of TB values. However, once
TB crosses some critical value T ∗

B , the eutectic solid-mush front begins to dominate the
noneutectic solid-mush front.
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2.4.1 Transition from Stefan problem to mushy layer problem

For the Stefan problem with our assumptions, supercooling ahead of the interface leads
to instability of the front. This instability leads to the presence of a mushy layer, so the
condition that becomes important for the transition is

(

∂T

∂z

)

h+

= −Γ

(

∂C

∂z

)

h+

. (2.21)

If this condition is satisfied at the critical value of TB , which we will denote T †
B , then we

can use the similarity solution given by (2.17a)-(2.17d) to rewrite the condition as

2(T∞ − T †
B) exp

(

−λ2
S

)

+





ΓC0 − TM + T †
B +

(

T∞ − T †
B

)

erf(λS)

erfc(λS/
√
ǫ)



 exp

(−λ2
S

ǫ

)

= 0,

(2.22)
where λS is a function of TB , determined by (2.17d).

2.4.2 Transition between solid-mush interface types

The transition between the two different solid-mush interface types can be described as
when the two coincide. We will denote the critical value of TB where this occurs as T ∗

B .
The diffusion-controlled interface satisfies (2.13a)-(2.13c) and the eutectic interface satis-
fies (2.16a)-(2.16d). In terms of the similarity solutions, the diffusion-controlled interface
satisfies

χa+ = 0, (2.23a)

Ca+ +
ǫ

2λa
C ′

a+ = 0, (2.23b)

and the eutectic interface satisfies
(

CE +
ǫ

2λa
C ′

a+

)

χa+ = Ca− , (2.24)

when λa = λE and TB = T ∗
B . Furthermore, when λa = λE , we see that Ca− = 0, so

CE +
ǫ

2λa
C ′

a+ = 0, (2.25a)

with

erf(λa) =
TE − T ∗

B

T∞ − T ∗
B

. (2.25b)

We can manipulate (2.25a) using the liquidus relationship (2.12c) to get the condition

2λa (TE − TM ) + ǫT ′
a+ = 0, (2.26)

where λa is the solution to (2.25b).
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2.4.3 Regimes

Combining the results of the previous parts of this section, we can numerically identify the
two values T †

B and T ∗
B. We can use such results with varying T∞ to identify regions where

each of the models applies. Such results are summarized in figure 2.2. In that figure, a
portion of the T∞ − TB plane is separated into three distinct regions, one where there is no
mushy layer, one where the diffusion-controlled solid-mush front appears, and one where the
eutectic solid-mush front is present. As with other calculations in this dissertation, we have
utilized the parameters in Set 1 of Table 1 from Worster (1986), roughly approximating a
14% NaNO3 + H2O solution, for which we have assumed that CE = 0.5 for convenience.
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Figure 2.2: The horizontal line at TB = TL(C0) = −5.6 is the temperature needed to initiate

solidification. The middle curve describes the critical temperature T †
B at the bottom of the

tank at which a mushy layer first appears. The lower curve describes the critical temperature
T ∗

B at the bottom of the tank at which the solid-mush front transitions to a eutectic front.
In other words, the curves divide the TE −TB plane into four regions: the top region where
no solidification occurs, the upper middle region where a solid-liquid front appears, the
lower middle region where a mushy layer appears with a noneutectic solid-mush front, and
the lower region where a mushy layer appears with a eutectic solid-mush front.
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Chapter 3

Finite domain case without

eutectic effects

The assumption of an infinite domain, as exhibited in the previous chapter, can lead to a
mushy layer that grows forever. In the experimental arrangement where a tank filled with
a uniformly mixed solution is placed upon a cold boundary, with fixed temperature at the
upper boundary, the growth of the mushy layer is restricted by the thermal profile within
the tank. As will be demonstrated, if the diffusion of solute is ignored, then a mushy layer
can be present for all time, whereas the presence of solute diffusion will result in the eventual
elimination of the mushy layer. In this chapter, we focus on the finite domain mushy layer
model without the presence of eutectic effects. Much of the work presented in this chapter
appears in Gewecke and Schulze (2011).

3.1 Mushy layer problem on a finite domain

The model on a finite domain is similar to the model presented for an infinite domain. The
farfield conditions are replaced by conditions at an upper boundary z = H, specifically

T (H, t) = TH , (3.1a)

∂C

∂z
(H, t) = 0, (3.1b)

where TH > TL(C0). The first condition represents a fixed temperature at the upper
boundary. The second condition represents no flux of solute at the upper boundary, which
is necessary for conservation of solute. In addition to this modification, the liquid region
becomes the region b(t) < z < H. The temperature at the bottom of the tank is chosen in
the range TE ≤ TB < TL(C0).

We will nondimensionalize the system in order to highlight the controlling parameters
of the system. We rescale the temperature, time, and space variables using

θ =
T − TB

TH − TB
, t̂ =

κ

H2
t, ẑ =

1

H
z.

The concentration and liquid fraction already vary between zero and one; they are scaled
naturally to be fractional values without units. We will drop the ‘hats’ on the variables, so
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the variables throughout the rest of this chapter refer to these rescaled quantities, unless
specifically noted. We will maintain our assumption of negligible latent heat, and any
nondimensional parameters will be identified when they are presented.

At the upper boundary, which is now located at z = 1,

θ = 1, (3.2a)

∂C

∂z
= 0. (3.2b)

In the liquid region, b(t) < z < 1,

∂θ

∂t
=
∂2θ

∂z2
, (3.3a)

∂C

∂t
= ǫ

∂2C

∂z2
, (3.3b)

where ǫ = D/κ is the inverse Lewis number.
At the mush-liquid interface, z = b(t),

[θ]+− = 0, (3.4a)
[

∂θ

∂z

]+

−
= 0, (3.4b)

[C]+− = 0, (3.4c)

ǫ

[

χ
∂C

∂z

]+

−
= −Cb (1 − (χb−)) ḃ. (3.4d)

There is one remaining condition at this interface, which will be discussed in more detail
in Section 3.2. The condition of marginal equilibrium, which reflects the physical idea that
the mushy layer grows to relieve undercooling, will be applied only when it is needed. Due
to the nature of the equations within the mushy layer, which will be presented below and
discussed more thoroughly in Section 3.2, the condition of marginal equilibrium will not
apply for all time. This condition can be written as

(

∂θ

∂z

)

b+
= −Γ̂

(

∂C

∂z

)

b+
, (3.5a)

when

ḃ(t) > −ǫ
(

∂C

∂z
(b−(t), t)

)

/C(b−(t), t), (3.5b)

where Γ̂ = Γ/(TH −TB). The condition given above indicates that the condition of marginal
equilibrium holds when the interface is advancing more rapidly than the leading characteris-
tic. When combined with the other interface conditions and our assumptions, the condition
of marginal equilibrium forces

χb− = 1. (3.6)

In a more general setting with nonuniform thermal properties, the resulting value of χb−

may be less than one, as indicated in Worster (1986). When the interface velocity falls
below the given threshold, the value of χb− will be dictated by the evolution equation for
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the liquid fraction in the mushy layer.
In the mushy layer, a(t) < z < b(t),

∂θ

∂t
=
∂2θ

∂z2
, (3.7a)

∂(χC)

∂t
= ǫ

∂

∂z

(

χ
∂C

∂z

)

, (3.7b)

θ = −Γ̂ (C − CB) , (3.7c)

where CB = (TM −TB)/Γ is the liquidus concentration corresponding to TB . In (3.7b), the

diffusive flux is χ∂C
∂z instead of ∂(χC)

∂z , because the diffusion occurs only within the interstitial
liquid. If the concentration within this interstitial fluid were uniform but the liquid fraction
were variable, we would expect no solute diffusion to occur, which indicates that our choice
of the diffusive flux is correct.

At the solid-mush interface, z = a(t),

[θ]+− = 0, (3.8a)
[

∂θ

∂z

]+

−
= 0, (3.8b)

Ca+χa+ ȧ = −ǫχa+

(

∂C

∂z

)

a+

. (3.8c)

In the solid region, 0 < z < a(t),

∂θ

∂t
=
∂2θ

∂z2
. (3.9)

Since we have assumed that the solid is pure and that there is no diffusion of solute within
the solid, we do not need any equations for the evolution of the concentration in the solid.

At the bottom of the tank, z = 0,
θ = 0. (3.10)

At t = 0, only liquid is present, and

θ(z, 0) = 1, (3.11a)

C(z, 0) = C0. (3.11b)

Due to continuity of θ and θz at the two interfaces, and since θ is governed by the
diffusion equation in each of the three regions, we find that θ solves the diffusion equation
on the whole domain 0 < z < 1, subject to θ(0, t) = 0 and θ(1, t) = 1. This is one of the
key benefits of the assumption of negligible latent heat.

3.2 Method of characteristics

We will now turn our attention to (3.7b), which holds in the mushy layer, and rewrite it as

∂χ

∂t
− ǫ

C

(

∂C

∂z

)(

∂χ

∂z

)

+
1

C

[(

∂C

∂t

)

− ǫ

(

∂2C

∂z2

)]

χ = 0. (3.12)
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Due to the liquidus relationship (3.7c), and since θ does not depend on any other quantities
in this problem, this equation is a first-order partial differential equation describing the
evolution of the liquid fraction. As a result, the method of characteristics can be applied to
solve this equation. Applying this method, as can be found in Evans (1998) and numerous
other sources, we find that the characteristics satisfy

τ̇(s) = 1, (3.13a)

ζ̇(s) =

(

−ǫ
C(ζ(s), τ(s))

)

∂C

∂z
(ζ(s), τ(s)), (3.13b)

χ̇(s) =
1

C(ζ(s), τ(s))

(

ǫ
∂2C

∂z2
(ζ(s), τ(s)) − ∂C

∂t
(ζ(s), τ(s))

)

χ(s), (3.13c)

where τ and ζ correspond to time and spatial position. Equation (3.13a) indicates that
τ and t correspond directly with each other. Additionally, (3.13c) can be integrated with
respect to s, so

χ(s) = χ(0) exp

(

∫ s

0

ǫ∂2C
∂z2 (ζ(ξ), τ(ξ)) − ∂C

∂t (ζ(ξ), τ(ξ))

C(ζ(ξ), τ(ξ))
dξ

)

. (3.14)

Based on the behavior of the diffusion equation, θz > 0 on the whole domain for t > 0.
Combining this with the liquidus relationship, we see that Cz < 0 throughout the mushy
layer. Since C > 0 in the mushy layer, characteristic curves always advance, as these
inequalities applied to (3.13b) yield ζ̇(s) > 0.

Taking into account these characteristic curves, we can address the final mush-liquid
interface condition, as given by (3.5a)-(3.5b). In Worster (1986), the condition of marginal
equilibrium was always enforced at the mush-liquid interface. In the special case of uniform
thermal properties, this implies χb = 1. Such a condition was appropriate because the
interface in the semi-infinite domain case always advances at a sufficiently high rate, pro-
portional to t−1/2. In the present case, this interface cannot advance beyond the isotherm
corresponding to θL(C0), so the interface cannot advance at such a high rate for all time.

Examination of the characteristics can further illuminate this situation. As illustrated in
figure 3.1(a), characteristic curves for the infinite-domain problem emerge from the mush-
liquid front and never again intersect with the front. Thus, the advance of each characteristic
is bounded below, so every characteristic curve will intersect with the mush-liquid interface
in finite time. The condition χb− = 1 is inconsistent with the value of χ along characteristic
curves that are intersecting with the mush-liquid interface. In figure 3.1(b), we see how
characteristics for the finite-domain problem intersect with the mush-liquid interface. In
the case of a finite domain, the maximum height of the mush-liquid interface is restricted.
Once the thermal profile reaches its linear steady state, the concentration in the mush
satisfies Cz = −1/Γ̂ and 0 < C ≤ CE, so

ζ̇(s) =
−ǫ∂C

∂z (ζ(s), τ(s))

C(ζ(s), τ(s))
≥ ǫ

Γ̂CE

.

In terms of the characteristic curves, we set χb− = 1, due to the condition of marginal
equilibrium, whenever characteristic curves emerge from the mush-liquid interface, which
occurs when the interface velocity is greater than the velocity of the leading characteristic.
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Figure 3.1: In both images, the characteristics are given by dashed curves. The solid curves
denote the solid-mush interface (lower curve) and the mush-liquid interface (upper curve).
The infinite domain case is shown in (a) and the finite domain case is shown in (b).

Otherwise, the value of χb− is dictated by the liquid fraction value along the characteristic
curve which intersects the interface at time t. In other words, the condition of marginal
equilibrium is a physical principle which serves as a closure condition when such a condition
is required. This leads to the final condition at the liquid-mush interface, given by (3.5a)-
(3.5b).

An important result associated with the method of characteristics is that the solid-mush
interface follows a characteristic curve. As demonstrated in the appendix, χa = 0 for the
similarity solution with no latent heat, under the assumption that eutectic effects are not
present. Clearly, χa+ = 0 is a solution for the free-boundary condition given by (3.8c). If
χ(s1) = 0 on a particular characteristic for some value s = s1, then χ(s) = 0 along that
entire characteristic curve, due to (3.13c). Therefore, such a characteristic would satisfy the
interface condition. However, if the interface advanced more rapidly than this characteristic,
then the liquid fraction at the solid-mush interface would be determined by the value along
a characteristic terminating along the interface, which would result in χa+ 6= 0, so (3.8c)
could be rewritten as

ȧ =
−ǫ
Ca+

(

∂C

∂z

)

a+

, (3.15)

which is (3.13b) applied at (ζ(s), τ(s)) = (a(t), t). This indicates that the advance of the
interface is the same as the advance of a characteristic, which contradicts the assumption
that the interface advanced more rapidly than a characteristic. Therefore, the solid-mush
interface travels along a characteristic with χa+ = 0. Furthermore, since all characteristics
intersect the mush-liquid interface in finite time, the solid-mush interface will do the same.
As a result, the mushy layer will completely disappear in finite time.
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3.3 Steady states

An important difference between the cases where solute diffusion is present and where it is
absent appears in the associated steady states. In the case ǫ = 0, where solute diffusion is
assumed to be negligible, the steady state is given by

θ(z) = z,

C(z) =

{

C0, Γ̂(CB − C0) ≤ z ≤ 1,
Γ̂CB−z

Γ̂
, 0 ≤ z ≤ Γ̂(CB − C0)

(3.16)

χ(z) =

{

1, Γ̂(CB − C0) ≤ z ≤ 1,
Γ̂C0

Γ̂CB−z
, 0 ≤ z ≤ Γ̂(CB − C0).

Note that this steady state does not include a solid region.
In the case ǫ > 0, where solute diffusion is present, the steady state is given by

θ(z) = z,

C(z) =

{

0, 0 ≤ z < h∗
C0

1−h∗
, h∗ ≤ z ≤ 1,

(3.17)

χ(z) =

{

0, 0 ≤ z < h∗

1, h∗ ≤ z ≤ 1,

h∗ =
1

2

(

1 + Γ̂CB −
√

(

1 − Γ̂CB

)2
+ 4Γ̂C0

)

. (3.18)

Note that this steady state does not include a mushy region. Instead, there is a solid region
in equilibrium with a liquid region of increased concentration.

From the above, we see that the assumption of negligible solute diffusion results in a
steady-state mushy zone, but the presence of diffusion eliminates that mushy zone and
results in a phase-separated steady state.

3.4 Numerical method

The full model with nonzero latent heat poses many challenges numerically. At each time
step, the positions of the two free interfaces must be determined. The coupled partial dif-
ferential equations in the mush require careful consideration. In addition, calculations of
the solutions of the differential equations in each of the three regions depends upon the
interface locations, which themselves depend upon the solutions of the differential equa-
tions. Accurately solving for the liquid fraction requires the solution of a first-order partial
differential equation, which requires upwinding to be performed in the correct direction.

The assumption of negligible latent heat alleviates a number of these challenges. The
key benefit is that the temperature field no longer depends upon the liquid fraction in the
mush, but is instead governed by the heat equation over the whole domain. This allows
the temperature field to be calculated separately from all other quantities in the problem.
Applying the method of characteristics allows us to track the liquid fraction using a simple
formula, and it allows us to track the solid-mush interface position without any additional
effort since this interface follows a characteristic. Once the temperature field has been
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calculated, we utilize the liquidus relationship to determine the concentration values in the
mush. This leaves two quantities whose numerical solutions rely heavily on each other:
concentration in the liquid region and the mush-liquid interface position.

While the numerical procedure utilized here will not directly translate to the nonzero
latent heat case, the intent is to generate a relatively simple procedure to gain insight into
various behaviors of the system. These insights can then inform future construction of a
numerical procedure which will include the latent heat terms. We first present the various
spatial discretizations used and proceed with a description of the numerical scheme.

3.4.1 Discretization

The discretizations of the various quantities in this problem are handled in different ways.
Essentially, the simplest discretizations that worked well were utilized.

For liquid fraction within the mush, we do not utilize a spatially uniform discretization.
Instead, we track the characteristics within the mush. The temperature field is tracked
independently of the characteristics, which allows for this choice.

A spatially uniform mesh over the entire domain is utilized for the temperature field.
The interface positions do not influence the temperature field at all, so splitting the domain
for the temperature field into three pieces would introduce unnecessary complications. Since
we use characteristics to track the liquid fraction in the mush, additional work is required
to incorporate data for the concentration in the mush to solve the characteristic equations,
where the concentration in the mush is determined by the liquidus relationship. Either a
non-uniform mesh or interpolation is required. We utilize interpolation since interpolating
the data seems the better approach and solving for the temperature field on the whole
domain is easier than solving on three domains.

The concentration only needs to be solved for in the liquid region. For this, we use a
spatially uniform mesh. This domain is dependent upon time, so the mesh varies with time.
To handle this, we map the liquid region [b(t), 1] to the fixed domain [0, 1]. Specifically, the
transformation is given by

τ = t, ξ =
z − b(t)

1 − b(t)
.

This transformation changes (3.3b) into

∂C

∂τ
− (1 − ξ)ḃ(τ)

H − b(τ)

∂C

∂ξ
=

ǫ

(H − b(τ))2
∂2C

∂ξ2
. (3.19)

The gridpoints in [0, 1] do not move, so data at the previous timestep can be utilized
directly. This transformation introduces a first-order spatial derivative which accounts for
the movement of the gridpoints in the original variables.

3.4.2 Scheme

We initialize the system at some very small initial time ts using the similarity solution from
Worster (1986) discussed in Section 2.3. A small number of characteristics are initiated at
this time, including a characteristic at each of the two interfaces. In line with the fact that
the liquid fraction along the solid-mush interface is zero, see Appendix A, the corresponding
characteristic is initiated with χ = 0.

For each following timestep ti, we perform the following steps:
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1. We update the temperature distribution over the whole domain, using the implicit
Euler scheme.

2. For each characteristic present at ti−1, we update the position and liquid fraction data,
assuming that all characteristics remain in the mush. The values for concentration
and its derivatives are calculated using the liquidus relationship and interpolating the
values of θ and its derivatives. The new position for each characteristic is identified
through the trapezoid rule for ordinary differential equations and a Newton iteration.
The liquid fraction is then updated using a trapezoid rule quadrature to integrate
from ti−1 to ti, as (3.14) can be rewritten to get

χ(ti) = χ(ti−1) exp

(

∫ ti

ti−1

ǫ∂2C
∂z2 (ζ(ξ), τ(ξ)) − ∂C

∂t (ζ(ξ), τ(ξ))

C(ζ(ξ), τ(ξ))
dξ

)

.

Since the solid-mush interface follows a characteristic, this procedure also updates the
interface position ai.

3. We then determine the location of the mush-liquid interface bi:

(i) We guess an interface position bi and a secondary guess bi + δ, with δ small.

(ii) The concentration field in the liquid is calculated using the two guess values
above.

(iii) For each guess, the liquid fraction at the mush-liquid interface is set to unity
if the guess is ahead of the leading characteristic or to an interpolated value if
the guess is behind the leading characteristic. Specifically, we determine the two
characteristics bounding the guess, then interpolate the liquid fraction values
between those characteristics. Residuals for each of the two guesses are then
calculated using (3.4d).

(iv) Using the residuals calculated in the previous step, we use a secant-line approx-
imation of the derivative in a Newton iteration to update the guess for bi. With
this updated guess, we repeat the previous two steps.

(v) Once the size in the change for the guess is small enough, we terminate the
iteration. If the accepted value of bi is ahead of the leading characteristic, we
initialize a characteristic at (bi, ti) with χ = 1. If the accepted value of bi is not
ahead of the leading characteristic, we remove characteristics as needed so that
the leading characteristic is at (ti, bi). In practice, we remove characteristics by
setting their positions at ti to be bi and by setting their liquid fraction values
to the value determined for the interface position. We then proceed to the next
timestep.

3.5 Results

In order to connect with potential future experiments, we will be presenting many of our
results in terms of the unscaled variables. All graphs will be in terms of the scaled variables.
The parameters used to generate our results, as given in Table 1.1, roughly approximate
a 14% sodium nitrate solution. The initial temperature of the tank TH is taken to be 15
degrees Celsius, and the temperature of the cold surface TB is taken to be −15.6 degrees
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Celsius. Additionally, the tank has a height of 15 cm. These parameters correspond to the
nondimensional values ǫ ≈ 7.7 × 10−3, Γ̂ ≈ 1.307, CB = 0.39, and the melting temperature
of the pure material TM = 0 corresponds to θ ≈ 0.51.

The interface positions through time are shown in figure 3.2. For the parameters used,
the time for the mush-liquid interface to reach its maximum height of approximately 4 cen-
timeters is approximately one day. In that time, the solid-mush interface has only reached a
height of approximately 0.25 centimeters. The mush-liquid interface then begins to retreat
slowly and the solid-mush interface continues a steady advance. After approximately 22
days the mush vanishes. During the retreat of the mush-liquid interface, the liquid fraction
at the interface decreases. After the mush vanishes, the solid-liquid interface is shown; see
Worster (1986) for the appropriate interface conditions.

In figure 3.3, we can see how the liquid fraction varies as time progresses. As long as
a particular spatial point stays in the mush, the liquid fraction at that point decreases
with time. In figure 3.4, we can see how the temperature profile changes. This should be
recognized as the solution of the heat equation on a finite domain. In figure 3.5, we can
see how the concentration profile varies in the liquid. The final concentration curve shown
relates to the time when the mush vanishes.

In figure 3.6 the solution during the early times is compared with the similarity solution
from Worster (1986). The curves match up very well for a significant portion of the time
until the mush-liquid interface reaches its maximum height. The curve for the mush-liquid
interface in the similarity solution eventually outpaces the finite-domain solution, but this
is expected due to the similarity solution having no bound on how far it could advance.
The solid-mush interface is well-approximated by the similarity solution over the interval
shown, but it too will eventually stop advancing in the finite tank.

In figure 3.7 the solution for the mush-liquid interface during the early times is compared
with the solution for ǫ = 0 on a finite domain. The curves match up fairly well during the
times shown. The advance of the mush-liquid interface position is well-approximated by
the ǫ = 0 solution, but the ǫ = 0 solution does not capture the retreat of the interface, as
highlighted in figure 3.8. Additionally, the ǫ = 0 solution does not exhibit an advancing
solid-mush interface. The absence of the solid-mush front when ǫ = 0 is caused by (3.7b)
transforming into

∂

∂t
(χC) = 0,

which prevents χa = 0, so the only permissible solution of (3.8c) is ȧ = 0.
Other trials confirm that the time scales with H2 and the heights of the fronts scale

with H, as can be predicted from the scaling of the system.
A boundary-layer analysis can also provide useful insights into the system. Consider

expansions of the form

f(z, t) = f0(z, t) + ǫf1(z, t) + ǫ2f2(z, t) + · · ·

for the temperature, concentration, and liquid fraction. To leading order, the equations
governing the temperature distribution do not change, but the equations governing con-
centration and liquid fraction change to the equations for ǫ = 0. This forms the boundary
layer, which corresponds to the time-frame of the rapid advance of the mush-liquid front,
and has (3.16) as its steady state.

For a rescaling to large time, specifically t → ǫ−1t, most of the equations change.
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Figure 3.2: In (a), the solid-mush (lower curve) and mush-liquid (upper curve) interface
positions are shown from t = 0 to the time when the mush vanishes. The long-time behavior
is shown in (b), with only a single curve denoting the solid-liquid interface once the mush
has vanished. The parameters used are provided in the main text.
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Figure 3.3: The curves are liquid fraction (χ) profiles within the mush at various stages of
system evolution. The curves in (a) are at evenly-spaced intervals during the advance of
the mush-liquid interface. The remainder of the time until the mush vanishes is illustrated
in (b), again at evenly spaced intervals.
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Figure 3.4: The curves shown are temperature profiles at regular intervals over the timescale
for thermal diffusivity. Time progresses in the direction shown by the arrow. By the last
time shown, the temperature profile is near its steady state.
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Figure 3.5: The curves shown are concentration profiles in the liquid at various stages of
system evolution. The profiles shown are at evenly-spaced intervals, starting at t = 0. The
dotted curve indicates the concentration at the mush-liquid interface. The arrows along the
dotted curve indicates the direction of time progression.
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Figure 3.6: The interface positions for the finite-domain solution (solid curves) are compared
with those for the infinite-domain similarity solution (dashed curves). The upper curves
are the mush-liquid interfaces, and the lower curves are the solid-mush interfaces.

32



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Time

H
ei

gh
t

Figure 3.7: The mush-liquid interface position (solid curve) is compared with the same
interface for the ǫ = 0 solution (dashed curve).
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Figure 3.8: The mush-liquid interface (solid curve) for large times is compared with the
corresponding interface in the ǫ = 0 solution (dashed curve).
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Specifically, the temperature profile becomes fixed, as the continuity of temperature and its
gradients continues to hold at each interface, but in each of the three regions,

∂2θ

∂z2
= 0.

Thus, the long-time solution has θ = z. The concentration and liquid fraction equations
transform to the equations in the system with ǫ = 1. This long-time solution has (3.17) as
its steady state.

Combining the above, the leading order solution for early times is the ǫ = 0 solution. For
large time values, the temperature solution becomes fixed, and the retreat of the mush-liquid
interface and the advance of the solid-mush interface come into effect.

3.6 Remarks

Our decision to initialize the numerical scheme at some small time value is due to singulari-
ties at t = 0 and z = 0. Since θ(z, 0) = 1, and then θ(0, t) = 0 for t > 0, it is clear that θ has
a discontinuity at z = 0, t = 0. By the nature of the heat equation, θ is smooth for t > 0.
If we initialize the scheme at t = 0, then there is not a clear method for identifying both
the location of the solid-mush interface and the liquid fraction at that interface at the next
timestep. The method of characteristics is not applicable at t = 0 as no mush is present.
To get around this issue, two options for a short-time approximation presented themselves.
First, we could use the similarity solution. This option, which we chose to use, satisfies
the system except at the upper boundary. However, for short times, the error presented at
the upper boundary is quite small. The error for the temperature is small due to the rapid
convergence of the error function to unity, and the error for the concentration gradient is
small due to the rapid decay of exp(−η2/

√
ǫ). For the initial time values utilized in our

calculations, this error appeared to be within machine accuracy. The second option would
be to use the leading order short-time solution, as appears in our boundary layer discussion.
The advantage is that this approximation satisfies the boundary conditions. However, the
drawbacks to such an approximation are that it only satisfies the governing equations and
interface conditions to leading order and no solid layer appears at the initial time.

Code runs performed to compare the two options indicate no great disparity. After
initial transients, the two are strikingly similar. The most notable differences are at the
solid-mush interface, as the leading-order approximation has no solid region. This leads to
the solid-mush interface lagging behind the position predicted with the similarity solution
initialization, and so the mushy layer persists for a slightly longer duration. Additionally,
the liquid fraction at the solid-mush interface is nonzero for the leading-order approxima-
tion. Transient effects at early time steps persist along the characteristic curves, and the
differences in these effects are also perceptible.

Le Bars and Worster (2006) developed a numerical scheme for an enthalpy formulation
of the mushy layer problem on a finite domain. One of the test cases in that study was simu-
lating the semi-infinite domain similarity solution from Worster (1986), and good agreement
was found until the effects of the finite domain were felt. Specifically, the growth rates of the
two interfaces calculated by the numerical scheme were compared with those predicted for
the similarity solution, with good agreement. These results reinforce our assertion that the
similarity solution is a reasonable short-time approximation for the finite-domain problem.
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Chapter 4

Finite domain case with eutectic

effects

In this chapter, we will remove the restriction TB ≥ TE, so that eutectic effects can be
present. In the infinite domain case, as discussed in Chapter 2, two different sets of condi-
tions are possible at the solid-mush interface, specifically a diffusion-controlled interface and
a eutectic front. The correct set of conditions to apply is dictated by the specific parameters
in the problem. For a given mixture and initial temperature, the interface type that appears
relies entirely upon the temperature TB at the lower boundary. Since the similarity solution
provides insight into the early time behavior of the finite domain case, the temperature TB

at the lower boundary indicates which interface type initially appears.
Isotherms in the finite domain case initially advance rapidly, but they slow as the thermal

profile approaches its linear steady state. As a result, we know that the isotherm associated
with the eutectic temperature TE will stop at a finite height. As we saw in Section 3.2,
characteristics will always advance, including a characteristic representing the diffusion-
controlled interface position. From this, we expect that if a eutectic front appears at early
times, it will give way to a diffusion-controlled interface as the thermal profile approaches
its steady state.

4.1 Model

The model here is similar to the model given in Chapter 3. However, we will use a modified
scaling of the variables, namely

θ =
T − TE

TH − TE
, t̂ =

κ

H2
t, ẑ =

1

H
z.

The cold temperature TB at the bottom of the tank will correspond to a temperature θB .
If TB ≥ TE , then θB ≥ 0, and the results from Chapter 3 apply. On the other hand, if
TB < TE , then θB < 0 and eutectic effects may appear.

As before, we will drop the ‘hats’ from the variables, and any references to the variables
will refer to the nondimensional variables unless otherwise noted.
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The boundary conditions at the upper boundary (now z = 1) are

θ = 1, (4.1a)

∂C

∂z
= 0. (4.1b)

In the liquid region b(t) < z < 1,

∂θ

∂t
=
∂2θ

∂z2
, (4.2a)

∂C

∂t
= ǫ

∂2C

∂z2
, (4.2b)

where ǫ = D/κ is the inverse Lewis number.
At the mush-liquid interface z = b(t),

[θ]+− = 0, (4.3a)

[C]+− = 0, (4.3b)
[

∂θ

∂z

]+

−
= 0, (4.3c)

Cb(1 − χb)ḃ = ǫχb

(

∂C

∂z

)

b−
− ǫ

(

∂C

∂z

)

b+
. (4.3d)

Recall that an additional condition applies at the mush-liquid interface, specifically

χb = 1 when ḃ(t) > ζ̇b(t), (4.3e)

where

ζ̇b(t) = −ǫ
(

∂C

∂z
(b+(t), t)

)

/C(b+(t), t), (4.3f)

describes the propogation of the leading characteristic. This condition was discussed in
detail in Chapter 3.

In the mushy layer a(t) < z < b(t) the equations become

∂θ

∂t
=
∂2θ

∂z2
, (4.4a)

∂(χC)

∂t
= ǫ

∂

∂z

(

χ
∂C

∂z

)

, (4.4b)

θ = −Γ̂(C − CE), (4.4c)

where Γ̂ = Γ/(TH − TE).
At the solid-mush interface z = a(t) the conditions can vary, depending upon whether

the solid-mush interface is a eutectic or non-eutectic front. At this interface, θ ≥ 0 is
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required. When it is non-eutectic, that is when θ(a(t), t) > 0, the conditions become

[θ]+− = 0, (4.5a)
[

∂θ

∂z

]+

−
= 0, (4.5b)

Ca+χaȧ = −ǫχa

(

∂C

∂z

)

a+

. (4.5c)

On the other hand, when θ(a(t), t) = 0 a eutectic front is present and the conditions become

[θ]+− = 0, (4.6a)

θ = 0, (4.6b)

(Ca− − Ca+χa+) ȧ = ǫχa+

(

∂C

∂z

)

a+

. (4.6c)

The final condition above describes the amount of solute frozen into the solid. Once again,
due to the liquidus relationship within the mush, the concentration on the mush side of the
interface is

Ca+ = CE .

In the solid 0 < z < a(t), solute may be present, but it does not diffuse. Heat still
diffuses, so

∂θ

∂t
=
∂2θ

∂z2
, (4.7)

∂C

∂t
= 0. (4.8)

At the bottom boundary z = 0,
θ = θB, (4.9)

where θB = (TB − TE)/(TH − TE).

4.2 Method of characteristics

The method of characteristics in this case is the same as presented in Section 3.2. Char-
acteristics still initiate along the liquid-mush interface. However, characteristics can now
terminate on the solid-mush interface as well as the liquid-mush interface. For example,
figure 4.1 shows characteristics initiating on the mush-liquid interface and terminating on
the eutectic solid-mush interface. This is a result of the eutectic solid-mush interface ad-
vancing more rapidly than the speed of the characteristic at the solid-mush interface, which
would describe the advance of the diffusion-controlled interface. Terminating characteristics
dictate the liquid fraction on the mush side of the solid-mush interface, contributing to the
computation of the concentration being frozen into the solid via (4.6c).

In much the same way that conditions at the mush-liquid interface were determined
based on whether the interface advanced more rapidly than the leading characteristic, we
can determine which solid-mush interface is present based on a comparison of the interface
velocity and the velocity of the trailing characteristic. In particular, the eutectic front is

37



0 0.25 0.5
0

0.15

0.3

0.45

Time

H
ei

gh
t

Figure 4.1: Characteristics terminate along a eutectic solid-mush interface. The solid curves
are the solid-mush (lower) and mush-liquid (upper) interfaces, and the dashed curves are
characteristics. The characteristics shown begin at evenly-spaced time intervals.

present if

ȧ(t) > −ǫ
(

∂C

∂z
(a+(t), t)

)

/C(a+(t), t), (4.10)

and the diffusion-controlled front is present otherwise.

4.3 Numerical method

For the case with eutectic effects, we modify the method presented in Section 3.4 so that it
includes the possible eutectic solid-mush interface. The previous discretizations remain the
same, but now the concentration in the solid region also needs to be tracked. Previously, the
solid was pure, so the concentration was zero throughout the solid and we did not need to
explicitly keep track of this. Since we neglect solute diffusion in the solid, the concentration
that is frozen in at time t0 at height a(t0) remains at height a(t0) for all later time. Since
we already record the solid-mush interface position as a function of time, we can simply
record the concentration frozen into the solid at the interface as a function of time. The
numerical scheme for this case is then the following.

We initialize the system at some very small initial time ts using one of the two similarity
solutions. To pick between the two, we calculate the switching temperature T ∗

B using the
method outlined earlier and compare with our prescribed value of TB . A small number
of characteristics are initiated at this time, including a characteristic at each of the two
interfaces.

For each following timestep ti, we do the following:

1. We update the temperature distribution over the whole domain.

2. For each characteristic present at ti−1, we update the position and liquid fraction data,
assuming that all characteristics remain in the mush. The values for concentration
and its derivatives are calculated using the liquidus relationship and interpolating the
values of θ and its derivatives.
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3. We determine the location of the solid-mush interface ai. Since the noneutectic solid-
mush interface follows a characteristic, we first check to see if the corresponding char-
acteristic has temperature above or below TE . If it is above that temperature, then we
accept that position as the interface position, set the concentration on the solid side
of the interface to zero, and proceed to the next step. If the temperature is instead
at or below the eutectic, we perform the following steps:

(i) Perform a search to identify the position of the T = TE isotherm. This position
will be ai.

(ii) The liquid fraction on the mush side of the interface is determined by the char-
acteristics terminating on the interface.

(iii) We calculate the concentration on the solid side of the interface, using (4.6c).

(iv) The characteristics which terminated along the solid-mush interface, which are
those whose positions had been calculated to be below the new interface position,
are removed. In practice, the locations of these characteristics and the liquid
fraction along these characteristics are set to the values at the interface.

4. We then determine the location of the mush-liquid interface bi:

(i) We guess an interface position bi and a secondary guess bi + δ, with δ small.

(ii) The concentration field in the liquid is calculated using the two guess values
above.

(iii) Residuals for each of the two guesses are calculated using (4.3d).

(iv) Using the residuals calculated in the previous step, we use a secant-line approx-
imation of the derivative in a Newton iteration to update the guess for bi. With
this updated guess, we repeat the previous two steps.

(v) Once the size in the change for the guess is small enough, we terminate the
iteration. If the accepted value of bi is ahead of the leading characteristic, we
initialize a characteristic at (bi, ti) with χ = 1. If the accepted value of bi is
not ahead of the leading characteristic, we remove characteristics as needed so
that the leading characteristic is at (ti, bi). In practice, the locations of such
characteristics and their corresponding liquid fractions are set to the values at
the interface. We then proceed to the next timestep.

4.4 Results

As in Chapter 3, the dimensional parameters used for our numerical results are provided
in Table 1.1. Additionally, we set CE = 0.5 and TE = −20 degrees Celsius, primarily
for convenience. Even though this is certainly not the true eutectic point, the qualitative
behavior of the system will remain the same. We additionally set TH = 15 degrees Celsius
and TB = −25.6 degrees Celsius, with the height of the tank being H = 15 cm. These
parameter values correspond to the nondimensional quantities ǫ ≈ 7.7 × 10−3, Γ̂ ≈ 1.143,
and θB = −0.16. For reference, the melting temperature of the pure material TM = 0
corresponds to θ ≈ 0.57.
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Figure 4.2: In (a), the solid-mush (lower curve) and mush-liquid (upper curve) interface
positions are shown from t = 0 to the time when the mush vanishes. The long-time behavior
is shown in (b), with only a single curve denoting the solid-liquid interface once the mush
has vanished. The parameters used are provided in the main text.
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In figure 4.2 we plot the interface positions are plotted in terms of the original variables,
with the first image demonstrating the evolution until the mush vanishes, and the second
extending out over a longer time with the solid-liquid front shown.

We demonstrate the evolution of the concentration profile in figure 4.3. We see that the
solid-mush front never retreats, so the solute that is frozen into the solid at the interface
remains in the same place forever. The concentration on the solid side of the interface
is plotted as a function of time in figure 4.4, to highlight the fact that the amount of
solute being frozen into the solid declines over time, eventually becoming negligible once
the evolution of the temperature field has stagnated sufficiently. Once that occurs, the
solid-mush front switches from a eutectic front to a noneutectic front. In figure 4.4(b),
the vertical line represents the concentration in the solid determined by the semi-infinite
domain model in Chapter 2. There is good agreement between the two models over a large
portion of this region.

The evolution of the temperature profile is given in figure 4.5, and should be recognized
as the solution to the heat equation on a finite domain. The evolution of the liquid fraction
in the mushy zone is given in figure 4.6.

Another important aspect is how this solution compares with the solution that would
be generated if we were to ignore the possibility of a T = TE front. Figure 4.7 shows
the interface positions generated in the present case along with the interface positions
generated by utilizing the method set forth in Section 3.4, ignoring the impact of eutectics.
We see three major impacts. The most easily predicted impact is that the solid-mush
interface advances much more rapidly at early times when the T = TE front is incorporated.
Next, we see that the time until the mush vanishes is reduced. This is primarily due to
the rapid advance of the solid-mush front at early times. Finally, we can see that the
eventual steady states are different, with the solid-liquid interface advancing farther when
the T = TE interface is incorporated. This is also predictable, as some of the solute
becomes incorporated in the solid, so there is less total solute in the liquid in this long-
time regime. Since the steady-state location of the solid-liquid interface is dictated by
the liquidus relationship, with the concentration being the uniform concentration of the
remaining liquid, the interface must advance farther when less solute is present.
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Figure 4.3: Concentration profiles are shown at four different stages of system evolution.
The circles in each image represent the location of the solid-mush interface; note the jump
in concentration across the interface. The square in each image represents the location of
the mush-liquid interface. In (a) we see a sample concentration profile while the eutectic
solid-mush front is present. In (b) we see the concentration profile when the transition
from eutectic to noneutectic solid-mush interface occurs. Each of (c) and (d) show the
concentration profiles at later times, including jumps in the concentration gradient at the
mush-liquid interface.
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Figure 4.4: As time progresses, the concentration frozen in at the solid-mush interface
varies, as demonstrated in (a). We can also see this effect by looking at the concentration
profile in the solid when the interface switches from a eutectic interface to a noneutectic
interface, as shown in (b). The vertical line in (b) represents the concentration in the solid
determined by the semi-infinite domain model.
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Figure 4.5: Evolution of the temperature profile at evenly space intervals from t = 0 until
near the steady-state temperature profile.
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Figure 4.6: The curves are liquid fraction (χ) profiles within the mush at various stages of
system evolution. The curves in (a) are at evenly-spaced intervals during the advance of
the mush-liquid interface. The remainder of the time until the mush vanishes is illustrated
in (b), again at evenly spaced intervals.
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Figure 4.7: The interface positions for the present study (solid curves) are compared with the
interface positions ignoring eutectic effects (dashed curves). At early times, both systems
have a solid-mush interface (lower curve) and a mush-liquid interface (upper curve), and at
later times both systems have a solid-liquid interface. The mushy layer disappears sooner
when eutectics are taken into account.
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Chapter 5

Conclusions and Future Directions

When a finite-height tank filled with a uniformly-mixed binary alloy is placed onto a cooled
boundary, a mushy zone initially advances rapidly from that boundary. As time passes, this
advance stops. Eventually, the mush-liquid interface begins to retreat very slowly. There
is also a pure solid layer that grows slowly. After a sufficiently large amount of time, the
solid-mush interface catches up to the mush-liquid interface, eliminating the mushy layer.
After this occurs, the system continues to solidify without a mushy layer until the liquid
region homogenizes.

In this dissertation, we have highlighted issues that arise at the solid-mush and mush-
liquid interface for the mushy layer problem on a finite domain. A condition of marginal
equilibrium is applied at the mush-liquid interface as the free-boundary condition only
when the interface is advancing rapidly enough, otherwise the interface is controlled by the
diffusion of solute out of the mushy layer and into the liquid layer. The solid-mush interface
is initially a eutectic front if the temperature at the base of the tank is sufficiently cold,
and later switches to a diffusion-controlled interface. If the temperature at the base of the
tank is not as cold, then the diffusion-controlled solid-mush interface appears for all time.
Overall, we see that the diffusion of solute is critical in the finite domain case, especially
over long timescales, as it drives the advance of the solid-mush interface. These diffusive
effects lead to the eventual elimination of the mushy layer.

The differences between the infinite and finite domain cases are fairly significant. For the
infinite domain case, the conditions at each interface do not change with time, but instead
are dictated by the parameters of the system. In particular, the solid-mush interface is
exactly one of either a eutectic front or a diffusion-controlled front for all time. Additionally,
if a eutectic front appears, then the concentration of solute in the eutectic solid region
is uniform. On the other hand, the interface conditions can change over time for the
finite domain. The concentration in the solid can be variable with position, forming three
subregions within the solid: a solid region of nearly uniform nonzero concentration at the
bottom of the tank, a middle transition region with decreasing concentration, and a pure
solid region.

We anticipate that a simple experimental setup could be utilized to validate our results
for the noneutectic case. Our parameters roughly approximate a 14% sodium nitrate solu-
tion, as described in Set I of Table 1 in Worster (1986), so a tank filled with such a solution
at 15 degrees Celsius placed upon a surface cooled to −15.6 degrees Celsius should reflect
the results we have provided. The specific results obtained in this study are for a tank that
has a height of 15 cm, but a smaller tank would permit an experiment to be completed in
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a more reasonable amount of time due to the scaling of time with H2. For example, a tank
with height 3 cm filled with a uniformly mixed 14% sodium nitrate solution is predicted
to have no mushy zone remaining after one day. A similar experiment could confirm the
effects highlighted for the eutectic case.

An experimental setup for directional solidification has recently been developed, as
described in Peppin et al. (2007). Some experimental results obtained with this apparatus
have also been described in Peppin et al. (2008). In particular, they show that the mushy
layer grows initially, reaches a state which it maintains for some time, and eventually begins
to slowly retreat. Such results would seem to highlight the distinction between the finite-size
Hele-Shaw cell used in the experiment and the infinite domain used for analytical results.
We suspect that our results demonstrate a similar issue, but in a different experimental
arrangement.

A number of experiments have been performed with an upper boundary that is insulated,
as opposed to an upper boundary fixed at the initial temperature. This change alters the
advance of the interfaces, allowing the mush-liquid interface to advance all the way to the
upper boundary. Aitta et al. (2001) studied the solidification of a ternary alloy with such
an experimental arrangement, and the mush-liquid interface advanced like h(t) = αt1/2 over
a span of five days. Depending on the temperature at the bottom of the tank, the steady
state will either be completely solidified or will have a solid layer and a mushy layer. In an
experimental arrangement with an upper boundary cooled below the eutectic temperature
and an insulated lower boundary, complete solidification is demonstrated by Kerr et al.
(1990c). That study also shows stratification of the composition in the solid phase, which is
an effect that we have predicted with both boundaries at fixed temperatures. Appropriate
modifications to our model and numerical scheme should be able to capture these effects,
where the interfaces advance like t1/2 for a longer duration and the possibility of complete
solidification.

The work presented in this dissertation provides insights that may allow investigation
of a variety of other questions. We will now discuss some of these additional problems.

5.1 Inclusion of latent heat

The assumption of negligible latent heat has been instrumental in the research described
in this dissertation. This assumption, combined with the assumption of uniform thermal
properties, decoupled the temperature equations from all other quantities in the problem.
This then allowed for a straightforward application of the method of characteristics within
the mushy layer.

A similar numerical approach to the one presented may be applicable in the presence
of latent heat. Such an approach would iterate on the temperature field and both the
position of the characteristics and their associated liquid fraction values at the new time
step. The liquid fraction at the solid-mush interface will no longer be zero, as this particular
condition is a direct result of negligible latent heat. We expect that the behaviors exhibited
in the present analysis would still occur. For instance, the steady states when TB ≥ TE

remain unchanged when latent heat is included. Additionally, the mush-liquid interface
remains bounded by the isotherm associated with θL(C0) and the solid-mush interface will
slowly advance until the mush vanishes. As previously discussed, varying the Stefan number
slows solidification, so the mushy layer may persist longer than predicted here, but it will
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ultimately vanish. The overall behavior of the system in the presence of eutectic effects will
still be the same, but we would anticipate some small change in the eventual steady state
of the system. The quantity of solute being frozen into the solid would likely be reduced,
as the advance of the eutectic isotherm would be slowed.

5.2 Nonuniform thermal properties

The assumption of uniform thermal properties played an important role in this research, as
it helped to eliminate any dependence of the thermal equations on other quantities in the
problem. In a more general setting, the thermal properties in the solid and liquid states are
not the same.

For the binary alloy mushy layer problem on an infinite domain, Worster (1986) included
nonuniform thermal properties. The thermal properties within the mushy layer varied lin-
early with the liquid fraction. This introduces a coupling of the equations within the mushy
layer. Additionally, as discussed by Worster (1986), the condition of marginal equilibrium
may lead to χb− 6= 1 in this case. For the infinite domain problem, the value of χb− is
uniform in time. On the other hand, for the finite domain problem, the value of χb− could
vary with time, much as can occur at the solid-mush interface in the present study.

5.3 Stability analysis

Much effort has been invested in studying convective instabilities of mushy zones, as can
be seen from the review in Worster (1997), along with our discussion in Chapter 1. The
results of such investigations should still apply to the present case. For solidification from
below, if the rejected component is less dense than the component making up the dendrites,
then buoyancy-driven convection is anticipated. In such a case, the long-term behavior
demonstrated in this dissertation may be disrupted. If the rejected component has higher
density, then convection is not expected.

However, the analysis for the present case will differ from those previous studies. The
main difference comes from the fact that the previous studies mainly address the case of
directional solidification. In the present case the two interfaces advance at different rates,
but the previous studies assume they advance at the same rate. The results presented in
Chapters 3 and 4 demonstrate that the similarity solution is a very good approximation to
the finite-domain solution at early times, so a stability analysis of the similarity solutions
would provide valuable information concerning the early-time stability of the finite domain
system. Unfortunately, the similarity solutions do not have a steady state, so the standard
techniques do not apply. Additionally, unlike the case of directional solidification, there is
no obvious characteristic length scale for the problem.

One approach that provides some insight is that used by Hwang and Choi (2004), who
analyzed stability of the system with respect to the similarity solution under the assumptions
that no solid layer appears, the base of the tank is at the eutectic temperature, solute
diffusion within the mushy layer is negligible, and that the permeability of the mushy layer
is uniform. Due to these assumptions, the solid-mush front is pinned to the lower boundary.
Their approach assumes periodic perturbations in terms of x and y, but then assumes that
the disturbances in z and t are related in terms of the similarity variable. That is, if
T̄ (x, y, z, t) is the disturbance, then T̄ = T̂ (η) exp (i(αx+ βy)). The mush-liquid interface
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is not disturbed, matching the rigid interface assumption used in many of the directional
solidification studies.

5.4 Ternary alloys

The infinite domain mushy layer problem with ternary alloys has been addressed in the
presence of eutectic effects by Anderson (2003). Ternary alloys impose a number of new
complications to the problem. First, the phase diagram is more complex. Second, two
different mushy layers form, called the primary and secondary mushy layer. One layer has
only one component being solidified with the other two being rejected, and the second has
two components being solidified with only one being rejected. Third, due to the presence
of three distinct species, one must track the solid fraction due to each component in each
region in the domain.

Before the finite domain problem for ternary alloys can be dealt with, the possibility of
a diffusion-controlled solid-mush interface must be taken into account. It is quite possible
that two such interface could occur, one which rejects two components and one which rejects
one component. The dynamics for such interfaces are likely similar to the case for binary
alloys, as addressed by Worster (1986).

Overall, we expect that the results of this dissertation would have application to the
case of ternary alloys. The disappearance of the mushy layers over time is expected, but the
transient behaviors before that point would be of interest. For example, does the secondary
mushy layer vanish before the primary mushy layer? Perhaps the answer to that question
depends upon the parameters for the system.
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Appendix A

Liquid fraction at the similarity

solution solid-mush interface

We have claimed that the liquid fraction at the solid-mush interface is zero for the similarity
solution discussed in Worster (1986) under the assumptions of negligible latent heat and
uniform thermal properties, for TB ≥ TE . Also, the numerical scheme incorporates the
similarity solution at the initial time, so the liquid fraction at that interface needs to be
known. The differential equation governing the liquid fraction in the mush, in terms of
the similarity variable, develops a singularity under the present assumptions. This disrupts
numerical integration of the similarity solution. However, as we will demonstrate, we can
analytically derive that the similarity solution has zero liquid fraction at the solid-mush
interface.

The system for the similarity solution is similar to the system presented in this paper.
However, since the similarity solution uses an infinite domain, the conditions that we use
at z = 1 for the finite domain are replaced with the farfield (z → ∞) conditions,

θ → 1, C → C0.

As in the finite-domain case, the temperature field decouples from the rest of the system
under our assumptions. In this case, the temperature field is given by

θ(z, t) = erf

(

z

2
√
t

)

,

where the error function erf(x) is defined to be

erf(x) =
2√
π

∫ x

0
exp(ψ2) dψ.

Equivalently, this is
θ(η) = erf(η),

where
η =

z

2
√
t
,

is a similarity variable. Under this similarity transformation, the equation governing the
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liquid fraction in the mush becomes

(

2ηC + ǫC ′)χ′ = −
(

2ηC ′ + ǫC ′′)χ. (A.1)

Furthermore, due to the liquidus relationship, the concentration and its derivatives in the
mush are given by

C(η) = CB − 1

Γ̂
erf(η),

C ′(η) = − 2

Γ̂
√
π

exp
(

−η2
)

,

C ′′(η) =
4η

Γ̂
√
π

exp
(

−η2
)

.

We can solve for the concentration Cb at the mush-liquid interface η = λb (see Worster
(1986) for details), and as a result we can integrate (A.1) to solve for the liquid fraction
throughout the mush,

χ(η) = χb exp

(∫ λb

η

(2ξC ′(ξ) + ǫC ′′(ξ))

2ξC(ξ) + ǫC ′(ξ)
dξ

)

.

Due to the condition of marginal equilibrium in the special case of uniform thermal prop-
erties in all phases, we have that χb = 1, so

χ(η) = exp

(∫ λb

η

(2ξC ′(ξ) + ǫC ′′(ξ))

2ξC(ξ) + ǫC ′(ξ)
dξ

)

.

The free-interface condition for the solid-mush interface (2.13c) transforms to

(

2Caλa + ǫC ′
a

)

χa = 0,

where η = λa denotes the interface position in terms of the similarity variable. This requires
either χa = 0 or 2λaCa + ǫC ′

a = 0. In the latter case, we will show that the interface is
located at a regular singular point of (A.1).

Equation (A.1) admits χ = 0 as a solution everywhere. However, this is inconsistent
with χb = 1, so we need to focus our attention to the behavior of the solution near the
singularity. We can rewrite (A.1) as

χ′ +
2ηC ′ + ǫC ′′

2ηC + ǫC ′ χ = 0.

If we can show that the function

p(η) =
2ηC ′ + ǫC ′′

2ηC + ǫC ′ ,

has a simple pole at the singularity, that is when 2ηC + ǫC ′ = 0, then we can examine the
series solution to determine the behavior of the solution near the singularity. We denote
the location of the singularity as ξs.
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Consider the function f(η) = 2ηC+ ǫC ′. We have already solved for C(η) and C ′(η), so

f(η) = 2ηCB − 2η

Γ̂
erf(η) − 2ǫ

Γ̂
√
π

exp(−η2).

If we can show that f ′(ξs) 6= 0, then p(η) has a simple pole at η = ξs. Now,

f ′(η) = 2CB − 2

Γ̂

[

erf(η) +
2(1 − ǫ)η√

π
exp

(

−η2
)

]

,

which is zero only if the bracketed expression is equal to Γ̂CB . We will now focus our
attention on the bracketed expression, which we will now call g(η). First, we note that
g(0) = 0. Then, we see that

g′(η) =
−2√
π

exp
(

−η2
)

[ǫ+ (1 − ǫ)η] ,

which is negative for all η ≥ 0. As a result, g(η) ≤ 0 for all η ≥ 0, so g(η) 6= Γ̂CB for any
η ≥ 0.

From the above, we see that f ′(η) 6= 0 for η ≥ 0, so f(ξs) 6= 0. Therefore, p(η) has a
simple pole at η = ξs. There exists a regular series solution to (A.1) near η = ξs of the form

χ(η) =
∞
∑

n=0

an (η − ξs)
n+r ,

with

r = − lim
η→ξs

(η − ξs)p(η) =
−2(1 − ǫ)ξ2s

2(1 − ǫ)ξ2s − ǫ
.

For the parameters described in the main text of the paper, we have r ≈ 0.011.
From the above, we see that

lim
η→ξ+

s

χ(η) = 0,

so we conclude that λa = ξs, and that both conditions χa = 0 and 2λaCa + ǫC ′
a = 0 are

satisfied at the interface. Furthermore, the series solution above indicates very rapid growth
of the liquid fraction near the solid-mush interface.
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