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Abstract

The genetic code is redundant, with most amino acids coded by multiple codons.

In many organisms, codon usage is biased towards particular codons. A variety of

adaptive and non-adaptive explanations have been proposed to explain these patterns

of codon usage bias. Using mechanistic models of protein translation and population

genetics, I explore the relative importance of various evolutionary forces in shaping

these patterns. This work challenges one of the fundamental assumptions made in

over 30 years of research: codons with higher tRNA abundances leads to lower error

rates. I show that observed patterns of codon usage are inconsistent with selection

for translation accuracy. I also show that almost all the variation in patterns of codon

usage in S. cerevisiae can be explained by a model taking into account the effects of

mutational biases and selection for efficient ribosome usage. In addition, by sampling

suboptimal mRNA secondary structures at various temperatures, I show that melting

of ribosomal binding sites in a special class of mRNAs known as RNA thermometers

is a more general phenomenon.
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Chapter 1

Introduction

One of the fundamental questions facing biologists is deciphering how the information

in our genomes shapes our physiology and behavior. In the past, addressing this

question has been difficult due to a lack of genomic data. However, with over 2000

genomes sequenced and the number expected to increase exponentially∗, we are at

the cusp of unraveling the intricacies of information contained in genomic sequences.

This flood of data has also led to creation of entirely new fields of science including

that of bioinformatics and systems biology. However, as Dobzhansky put it, “Nothing

in biology makes sense except in the light of evolution” (Dobzhansky, 1973). Thus,

my doctoral dissertation work is primarily based on explaining genomic patterns by

combining models from both molecular and evolutionary biology. Specifically, this

work integrates mechanistic models of specific biological processes such as protein

translation with classical models in population genetics.

One of the earliest patterns to be discovered in genomic DNA was that of biases

in codon usage (Fitch, 1976; Grantham et al., 1980; Ikemura, 1981). The genetic

code is highly redundant with multiple codons coding for a particular amino acid

(Fig. 1.1). However, the frequency with which these codons are used within a genome

are not uniform. There exists strong preference for certain codons over others. This

preferential usage of codons is often referred to as Codon Usage Bias (CUB). Patterns

of codon usage have been found in all three domains of life: Archaea, Eubacteria and

∗http://www.ncbi.nlm.nih.gov/genomes/static/gpstat.html
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Eukaryotes (Carbone et al., 2003; Mougel et al., 2004; Subramanian, 2008).

Moreover, the codon usage changes not only among different organisms, but also

between genes of a species as well as within a single gene. For many organisms this

preferential use of certain codons is strongly correlated with corresponding tRNA

abundances and gene expression levels (Ikemura, 1981; Dong et al., 1996; Kanaya

et al., 1999). Identifying and explaining the evolutionary forces that shape these

patterns has been the focus of a large number of studies spanning over three decades.

U C A G

UUU    F UCU    S UAU    Y UGU    C
UUC    F UCC    S UAC    Y UGC    C

UUA    L UCA    S UAA    X UGA    X
UUG    L UCG    S UAG    X UGG    W

CUU    L CCU    P CAU    H CGU    R
CUC    L CCC    P CAC    H CGC    R

CUA    L CCA    P CAA    Q CGA    R

CUG    L CCG    P CAG    Q CGG    R

AUU    I ACU    T AAU    N AGU    S
AUC    I ACC    T AAC    N AGC    S

AUA    I ACA    T AAA    K AGA    R

AUG    M ACG    T AAG    K AGG    R

GUU    V GCU    A GAU    D GGU    G
GUC    V GCC    A GAC    D GGC    G

GUA    V GCA    A GAA    E GGA    G

GUG    V GCG    A GAG    E GGG    G
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G
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A

G

U
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G

U

C

A

G

U

C

A

G

GENETIC CODE

Premal Shah, Univ. of Tennessee

Figure 1.1: The Genetic Code

A variety of explanations have been put forth to explain these patterns of

CUB. These explanations can be broadly classified into adaptive and non-adaptive

mechanisms. Non-adaptive mechanisms include genetic drift, and biased mutation

and gene conversion. Adaptive explanations for CUB comprise of selection for

translation efficiency, selection for translation accuracy, selection against nonsense

2



errors, selection against ribosomal interference, and selection for DNA packaging. In

multicellular eukaryotes such as humans, the effective population sizes of the species

are low and the efficacy of selection in maintaining optimal codons in gene sequences

is expected to be weak (Chamary et al., 2006). Hence, in these organisms patterns

of codon usage are thought to be primarily driven by non-adaptive forces. In contrast,

in genomes of prokaryotes and unicellular eukaryotes, owing to their large effective

population sizes, CUB in highly expressed genes is thought to be a result of natural

selection. However, the relative importance of various selective forces in shaping these

patterns remains an area of intense debate as multiple combinations of these forces

can lead to similar patterns of codon usage. I briefly describe the various adaptive

mechanisms proposed to explain CUB below.

1.1 Patterns and Explanations for CUB

1.1.1 Role of translation errors

Protein production is the most energetically expensive metabolic process within a

cell (Warner, 1999; Akashi and Gojobori, 2002). However, like all biological

processes, protein translation is prone to errors. The biological importance of these

translation errors and their impact on coding sequence evolution, especially the

evolution of codon usage bias (CUB), depends on both their effects on protein function

and their frequencies. Translation errors fall into two categories: nonsense errors and

missense errors.

Nonsense errors have a number of different causes such as ribosome drop-

off, improper translation of release factors, and frame shifts (Menninger, 1977;

Kurland, 1992; Kurland and Gallant, 1996). In addition to the indirect cost of

ribosome usage, nonsense errors impose a direct assembly cost to the cell. These costs

are proportional to the length of the peptide at the time of the error (Bulmer, 1991;

Kurland, 1992; Eyre-Walker, 1996; Gilchrist and Wagner, 2006). Although

3



costly to produce, the vast majority of these incomplete peptides are expected to have

no utility for the cell (Kurland and Gallant, 1996).

Missense errors are primarily caused by competition between cognate and

near-cognate tRNAs (Kramer and Farabaugh, 2007; Fluitt et al., 2007)

followed by errors during initial tRNA selection and proof-reading (Rodnina and

Wintermeyer, 2001; Gromadski and Rodnina, 2004; Wintermeyer et al.,

2004; Zaher and Green, 2009). Missense errors can lead to inactive or non-

functional proteins, protein aggregation, nonsense errors and in some cases even cell

death (Cornut and Willson, 1991; Kurland and Gallant, 1996; Zhao et al.,

2005; Lee et al., 2006). However, unlike most nonsense errors which result in a

non-functional protein, current data suggests that only ∼10-50% of missense errors

disrupt protein function (Markiewicz et al., 1994; Guo et al., 2004).

Direct estimates of nonsense and missense error rates in prokaryotes suggest

they occur with similar frequencies, i.e. on the order of 10−4 to 10−3 per codon

(Manley, 1978; Tsung et al., 1989; Jørgensen and Kurland, 1990; Ogle and

Ramakrishnan, 2005; Kramer and Farabaugh, 2007)). Although these error

rates may seem low, it is important to remember that these values are on a per

codon basis and most coding sequences consist of hundreds of codons. For example,

a translational error rate of 10−3.5 implies that for the average length protein ∼1 out

of every 5 proteins will contain at least one error.

For over 30 years, the standard model of translation errors has implicitly assumed

that for any given amino acid, the translation error rates are lowest for the codon

with the highest tRNA abundances (Ikemura, 1981; Varenne et al., 1984; Kramer

and Farabaugh, 2007). Surprisingly, this assumption has not been adequately tested

either theoretically or empirically until now. In Chapter 2 (Shah and Gilchrist,

2010b) we directly test this assumption and find that tRNA abundances are highly

correlated, i.e., tRNAs with similar abundances are clustered within the genetic code.

This pattern is observed across a wide range of bacterial genomes. Using a model

of tRNA competition we also show that codons with higher tRNA abundances do

4



not always lead to lower error rates. If correct, this represents a major shift in our

understanding of how tRNA abundances affect error rates and brings into question one

of the fundamental assumptions made in decades of studies on codon usage patterns.

1.1.2 Role of translation efficiency

In addition to the cost of errors during protein translation, there are major indirect

costs such as the cost of ribosome production. For example, in S. cerevisiae during

log-growth phase, 2× 103 ribosome are produced every minute tying up ∼60% of the

cell’s transcriptional machinery (Warner, 1999). Given their substantial cost, the

efficient usage of these ribosomes during protein production is clearly advantageous

and, therefore, one of the main explanations for the evolution of CUB (Bulmer,

1991).

In Chapter 3 we test the ability of a mechanistic model based on overhead cost

of ribosome usage in protein production to explain and predict patterns of CUB.

This is in contrast to most commonly used indices of CUB, such as Fop (Ikemura,

1981), CAI (Sharp and Li, 1986), and CBI (Bennetzen and Hall, 1982), which

are both heuristic and aggregate measures of CUB and fail to explicitly define the

factors responsible for the evolution of CUB. I find that our model can explain ∼92%

of the observed variation in CUB across the S. cerevisiae genome indicating that cost

of ribosomal usage may indeed be a dominant force in shaping CUB. Although, ours

is not the first attempt at using mechanistic models to explain CUB in a population

genetics context (Bulmer, 1991; Gilchrist, 2007), it is unique in its ability to

estimate codon-specific parameters and quantitatively predict how codon frequencies

change with gene expression. In addition the framework created in this study will

allow explicit comparisons of various hypothesis proposed to explain patterns of codon

usage and resolution of this long-standing debate. Moreover, the generality of our

approach allows us to apply our model to any sequenced organism with available gene

expression datasets.

5



1.1.3 Role of mRNA secondary structure in affecting gene

expression

The protein production rate of a gene determines the efficacy of natural selection in

affecting patterns of codon usage. Since protein translation is limited by the rate of

translation initiation (Bulmer, 1991; de Smit and van Duin, 1990), selection for

efficient usage of ribosomes would not only favor faster codons to increase the pool of

free ribosomes within the cell but also affect the secondary structure of an mRNA for

rapid initiation. This is due to the fact that secondary structure of an mRNA affects

the rate at which ribosome ‘jump’ onto the mRNA. If the mRNA structure is such

that the ribosome binding site (RBS) is sequestered in a closed hairpin structure, the

ribosome cannot recognize it and hence cannot initiate protein translation (Yuzawa

et al., 1993; Nakahigashi et al., 1995; Morita et al., 1999; Narberhaus et al.,

2006). Hence, one would expect selection for less stable secondary structures near the

RBS of an mRNA. It has been recently shown that mutations affecting the stability

of mRNA secondary structures near the RBS site are correlated with changes in gene

expression such that mRNAs with mutations that destabilize the structure lead to

higher expression (Kudla et al., 2009; Tuller et al., 2010).

In Chapter 4 we test the relationship between mRNA secondary structure and

temperature in RNA thermometers. RNA thermometers are genes whose expression

level changes with temperature due to changes in the stability of its mRNAs (Yuzawa

et al., 1993; Nakahigashi et al., 1995; Morita et al., 1999). At lower temperatures,

the sequence adopts a secondary structure that sequesters RBS of a gene, hence

interfering with translation initiation by the ribosome. At higher temperatures, the

mRNA melts, increasing the accessibility of the RBS leading to an increase in the

initiation of translation and, in turn, its protein production rate (de Smit and

van Duin, 1990; Yuzawa et al., 1993; Chowdhury et al., 2003; Narberhaus

et al., 2006). In order to test whether this ‘melting’ behavior is unique to RNA

thermometers, we computationally sampled the distribution of the RNA structures

6



at various temperatures using Vienna - an RNA folding software. Although, known

thermometers showed a higher rate of melting at their RBS compared to non-

thermometers, contrary to our expectations these higher rates were not significant. I

also did not find any significant differences between RNA thermometers from a range

of γ-proteobacteria and E. coli non-thermometers. Although, in this study we did

not link the effects of mRNA stability on patterns of codon usage, the methodology

developed here would allow us to map such relationships explicitly.

7



Chapter 2

Effect of correlated tRNA abundances on translation errors

and evolution of codon usage bias.

This chapter is a lightly revised version of a paper by the same name published in

PLoS Genetics and co-authored with Michael A. Gilchrist.

Shah and Gilchrist. Effect of Correlated tRNA Abundances on Translation Errors

and Evolution of Codon Usage Bias. PLoS Genet (2010) vol. 6 (9).
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Abstract

Despite the fact that tRNA abundances are thought to play a major role in

determining translation error rates, their distribution across the genetic code and

the resulting implications have received little attention. In general, studies of codon

usage bias (CUB) assume that codons with higher tRNA abundance have lower

missense error rates. Using a model of protein translation based on tRNA competition

and intra-ribosomal kinetics, we show that this assumption can be violated when

tRNA abundances are positively correlated across the genetic code. Examining the

distribution of tRNA abundances across 73 bacterial genomes from 20 different genera,

we find a consistent positive correlation between tRNA abundances across the genetic

code. This work challenges one of the fundamental assumptions made in over 30 years

of research on CUB that codons with higher tRNA abundances have lower missense

error rates and that missense errors are the primary selective force responsible for

CUB.
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2.1 Introduction

Protein production is the most energetically expensive metabolic process within a cell

(Lobley et al., 1980; Pannevis and Houlihan, 1992; Warner, 1999; Akashi and

Gojobori, 2002). However, like all biological processes, protein translation is prone

to errors. The biological importance of these translation errors and their impact

on coding sequence evolution, especially the evolution of codon usage bias (CUB),

depends on both their effects on protein function and their frequencies. Translation

errors fall into two categories: nonsense errors and missense errors. Nonsense errors,

also referred to as processivity errors, occur when a ribosome prematurely terminates

translating a coding sequence. Missense errors occur when the wrong amino acid

is incorporated into a growing peptide chain. Although many possible factors such

as mRNA stability and recombination likely contribute to the evolution of CUB,

selection against translation errors and biased mutation are thought to be the primary

forces (Sharp and Li, 1986; Bulmer, 1991; Berg and Kurland, 1997; Kanaya

et al., 1999; Rocha, 2004; Drummond and Wilke, 2009; Gilchrist et al., 2009).

Most researchers believe that CUB results primarily from selection against

missense errors or, equivalently, for translational accuracy (see (Akashi, 1994,

2001; Arava et al., 2005; Stoletzki and Eyre-Walker, 2007; Drummond and

Wilke, 2009)). In addition to limited empirical observations, the main evidence

cited as supporting this belief includes the fact that preferred synonymous codons

(i.e. the codons over-represented in high expression genes) have higher cognate tRNA

abundances and that these codons are also favored at evolutionarily conserved sites

(Akashi, 1994, 2001). While the preferred codons may indeed be ‘optimal’ in some

limited sense, as we demonstrate below, the idea that they minimize missense error

rates is based on an overly simplistic understanding of the relationship between tRNA

abundances and missense error rates.

The effect of missense errors on protein function is equivalent to a non-synonymous

point mutation. Because amino acids with similar properties are clustered within the
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genetic code (Grantham, 1974; Freeland and Hurst, 1998; Freeland et al.,

2000; Higgs, 2009), the genetic code is generally considered to be adapted to minimize

the phenotypic effects of point mutations and missense errors. However, despite its

importance, the adaptedness of tRNA abundances across the genetic code to reduce

the rate of translation errors has received almost no attention. For instance, in E.

coli the average nonsense and missense error rates are estimated to be on the order of

10−4 to 10−3 per codon, respectively (Andersson et al., 1982; Bouadloun et al.,

1983; Precup and Parker, 1987; Kurland and Ehrenberg, 1987; Jørgensen

and Kurland, 1990; Kramer and Farabaugh, 2007; Drummond and Wilke,

2009). This implies that for an average length gene of ∼ 300 amino acids, about

3-26% of its protein products will contain at least one translation error. However,

since the only available estimates of missense error rates are for specific amino acid

misincorporations (Andersson et al., 1982; Bouadloun et al., 1983; Precup and

Parker, 1987), these rates are likely gross underestimates as they do not take into

account all possible amino acid misincorporations at that codon.

Currently, missense errors are thought to be the result of competition between

tRNAs with the right amino acid (cognates) and the ones with the wrong amino

acids (near-cognates) for the codon at the ribosomal A-site (Varenne et al., 1984;

Gromadski and Rodnina, 2004; Kramer and Farabaugh, 2007). A near-cognate

tRNA is characterized by a single codon-anticodon nucleotide mismatch and codes

for an amino acid different from that of the A-site codon (Ogle et al., 2001; Fluitt

et al., 2007; Zaher and Green, 2009). As a result of this competition, the rate

of missense errors at a codon should be strongly affected by the abundances of both

cognate and near-cognate tRNAs (Kramer and Farabaugh, 2007). For example, an

increase in cognate tRNA abundances is predicted to lead to a decrease in a codon’s

missense error rate. In contrast, an increase in near-cognate tRNA abundances is

predicted to lead to an increase in a codon’s missense error rate (Kramer and

Farabaugh, 2007).
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Previous studies of CUB have generally assumed that amongst a set of synonymous

codons, the one with the correspondingly highest tRNA abundance is the one with

the lowest missense error rate. However, because missense error rates are thought

to be a function of both cognate and near-cognate tRNA abundances, if tRNA

abundances are positively correlated across the genetic code this assumption may

not hold. In this study we ask a fundamental question, “Are tRNA abundances

correlated across the genetic code?” Finding that tRNA abundances are indeed

generally positively correlated across a wide range of prokaryotes, we then ask, “How

does the distribution of tRNA abundances affect the relationship between codon

translation and error rates?” This question is of critical importance because the

currently favored explanation of CUB, what we will refer to as the standard model,

implicitly assumes that codons with the highest translation rates are also the ones with

the lowest missense error rates. Our results indicate that this basic assumption only

holds for a limited subset of amino acids. As a result, our work strongly suggests that

missense errors play a smaller role in the evolution of CUB than currently believed

and that the observed patterns of codon conservation observed by Akashi and others

are likely due to other selective forces such as selection for translational efficiency or

against nonsense errors.

2.2 Results

We began our analysis by first assuming that the abundance of a tRNA species within

a cell is proportional to its gene copy number (GCN). This relationship between tRNA

abundance and GCN is often made in studies of CUB and has been observed in

both prokaryotes and eukaryotes (Dong et al., 1996; Kanaya et al., 1999; Cognat

et al., 2008). We obtained GCNs of each tRNA type within an organism from

the Genomic tRNA Database GtRNAdb (Chan and Lowe, 2009) for 73 bacterial

genomes representing 50 species from 20 genera (see Table 2.1 for list of genomes

analyzed).
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Table 2.1: List of Genomes Analyzed

Aeromonas hydrophila ATCC 7966 Aeromonas salmonicida A449
Alkaliphilus metalliredigens QYMF Alkaliphilus oremlandii OhILAs
Bacillus amyloliquefaciens FZB42 Bacillus anthracis Ames
Bacillus cereus ATCC14579 Bacillus cereus ATCC 10987
Bacillus cereus ZK Bacillus cereus cytotoxis NVH 391-98
Bacillus subtilis Bacillus thuringiensis Al Hakam
Bacillus thuringiensis konkukian Bacillus weihenstephanensis KBAB4
Chromobacterium violaceum Clostridium beijerinckii NCIMB 8052
Clostridium difficile 630 Clostridium perfringens
Clostridium perfringens ATCC 13124 Colwellia psychrerythraea 34H
Escherichia coli APEC O1 Escherichia coli CFT073
Escherichia coli C ATCC 8739 Escherichia coli E24377A
Escherichia coli HS Escherichia coli K 12 substr DH10B
Escherichia coli K 12 substr W3110 Escherichia coli O157H7
Escherichia coli O157H7 EDL933 Escherichia coli SMS 3 5
Escherichia coli UTI89 Geobacillus kaustophilus HTA426
Geobacillus thermodenitrificans NG80-2 Heliobacterium modesticaldum Ice1
Klebsiella pneumoniae MGH 78578 Lactobacillus delbrueckii bulgaricus
Photobacterium profundum SS9 Lactobacillus delbrueckii bulgaricus BAA365
Pseudoalteromonas haloplanktis TAC125 Psychromonas ingrahamii 37
Salmonella typhimurium LT2 Shewanella ANA-3
Shewanella MR-4 Shewanella MR-7
Shewanella W3-18-1 Shewanella amazonensis SB2B
Shewanella baltica OS155 Shewanella baltica OS185
Shewanella baltica OS195 Shewanella denitrificans OS217
Shewanella frigidimarina NCIMB 400 Shewanella halifaxensis HAW EB4
Shewanella loihica PV-4 Shewanella oneidensis
Shewanella pealeana ATCC 700345 Shewanella putrefaciens CN-32
Shewanella sediminis HAW-EB3 Shewanella woodyi ATCC 51908
Shigella boydii CDC 3083 94 Shigella boydii Sb227
Shigella flexneri 2a Shigella flexneri 2a 2457T
Shigella flexneri 5 8401 Shigella sonnei Ss046
Symbiobacterium thermophilum IAM14863 Vibrio cholerae
Vibrio cholerae O395 Vibrio fischeri ES114
Vibrio harveyi ATCC BAA-1116 Vibrio parahaemolyticus
Vibrio vulnificus CMCP6 Vibrio vulnificus YJ016
Yersinia pseudotuberculosis IP 31758
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We classified each amino acid based on its level of degeneracy i, where i represents

the number of synonymous codons of that amino acid. As a result, each amino acid

is placed in one of five different degenerate categories Di (i ∈ {1, 2, 3, 4, 6}). For

instance, alanine belongs to the D4 class, while lysine belongs to the D2 class as these

amino acids are coded by 4 and 2 codons, respectively. Serine represents a special

case as it is encoded by two disjoint degenerate subsets. As a result we treated each

of these subsets as a separate amino acid. We calculated the correlation between

GCN of a focal tRNA tF and the sum of GCNs of neighboring tRNAs that coded

for a different amino acid and differed from the focal tRNA’s anticodon by a single

base-pair, tN (Table 2.2).

Table 2.2: List of Symbols

tF tRNA gene copy number of a focal codon
tN tRNA gene copy number of focal codon’s neighbors
Di Set of amino acids with i synonymous codons
ρt Correlation coefficient between tF and tN
εM Missense error rate
εN Nonsense error rate
Rc Cognate elongation rate
Rn Near-cognate elongation rate
Rd Ribosomal drop-off rate
pc Probability of elongation by cognate tRNA per tRNA entry
pn Probability of elongation by near-cognate tRNA per tRNA entry
pp Probability of elongation by pseudo-cognate tRNA per tRNA entry
w Wobble parameter

Figure 2.1 shows the distribution of correlation coefficients ρt between tF and

tN for three degenerate classes of amino acids Di within each of the genomes we

examined.
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Figure 2.1: Correlation between a focal tRNA’s abundance tF and the abundance

of its neighbors tN , ρt across 73 prokaryotic genomes.

Each point in panels (A - C) represents a tRNA species that encodes an amino acid

with degeneracy Di (i = {2, 4, 6}). The solid lines represent the regression lines

between tF and tN for each genome. Genomes with a negative ρt are coded in red,

while genomes with a positive ρt are represented by blue lines. Panels (D - F) present

the distribution of correlation coefficients ρt between tF and tN across all the genomes.

The mean of the distribution of ρt values for all the three degenerate classes differ

significantly from 0 (Wilcox test, p < 10−7).
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We find that the vast majority of genomes (69 out of 73 or ∼ 95%) show a positive

relationship between the abundance of a focal tRNA species tF and its one-step non-

synonymous neighbors tN , ρt (Binomial test, p < 10−15, Figure 2.2).
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Figure 2.2: Correlation between a focal tRNA’s abundance tF and the abundance

of its neighbors tN across prokaryotic genomes.

Panel (a) represents the correlation between tF and tN across all amino acids for

B. subtilis, E. coli and V. parahaemolyticus . Regression line between tF and tN

for B. subtilis, E. coli and V. parahaemolyticus are represented by solid, dashed and

dotted lines, respectively. Panel (b) shows the distribution of correlation coefficients

ρt between tF and tN across 73 prokaryotic genomes. About 69 out of 73 genomes

(Binomial test, p < 10−15) have a positive relationship between tF and tN .

This indicates that tRNAs with similar abundances are closer to each other in the

genetic code than expected under the implicit assumptions of the standard model.

In other words, according to the standard model the tRNA abundances within the

genetic code are predicted to be uncorrelated and the distributions of correlation
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coefficients ρt in Figures 2.1 (d)-(f) are expected to be centered around 0. However,

we find that under each of the degenerate classes of amino acids, D2, D4 and D6, the

distribution of ρt is significantly different from 0 (Wilcox test, p < 10−7 for all Di).

Interestingly, we also find that the distribution of ρt differs considerably between

degenerate classes of amino acids. tRNAs corresponding to amino acids in both

D2 and D4 degenerate classes show a significant bias towards a positive correlation

between tF and tN , whereas tRNAs in D6 degenerate class are biased towards a

negative correlation.

Since the frequency of amino acid usage within a genome is highly correlated

with tRNA gene copy number (e.g. in E. coli ρ = 0.632, p < 0.003), the observed

correlations may be the indirect result of amino acid usage bias. In addition to amino

acid usage biases, the stereochemistry of codon-anticodon interactions forbids the

existence of certain tRNA types (Lim and Curran, 2001), potentially contributing

to the observed positive correlation among tRNA abundances. In order to address

these inherent constraints on the distribution of tRNAs within the genetic code,

we randomly distributed tRNA gene copies taking into account the stereochemical

constraints, both with and without biased amino acid usage (see Figures 2.3 and 2.4).
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Figure 2.3: The distribution of correlation coefficients between a focal tRNA’s

abundance tF and the abundance of its neighbors tN , ρt.

Open bars represents the null distribution of ρt when tRNAs are randomly distributed

across the genetic code, taking into account stereochemical constraints on possible

tRNA anticodon types. Red bars represent the observed distribution of ρt across all

73 prokaryotic genomes. The observed distribution is significantly different from the

null distribution (Kolmogorov-Smirnov test p < 0.001) across all three degenerate

classes.
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Figure 2.4: The distribution of correlation coefficients between a focal tRNA’s
abundance tF and the abundance of its neighbors tN , ρt.
Open bars represents the null distribution of ρt when tRNAs are randomly distributed
across the genetic code prop, taking into account stereochemical constraints on
possible tRNA anticodon types as well as the observed amino acid frequency
distribution in E. coli genome. Red bars represent the observed distribution of ρt

across all 73 prokaryotic genomes. The observed distribution is significantly different
from the null distribution (Kolmogorov-Smirnov test p < 0.001) across all three
degenerate classes.

We find that the observed distribution of ρt is significantly different from this more

complex null distribution for all of the degenerate classes (Kolmogorov-Smirnov test

p < 0.001 for all cases).

The distribution of tRNAs within the genetic code have important consequences

with respect to translation errors and bias in codon usage. Codons with higher

tRNA abundances than their coding synonyms are often referred to as ‘optimal’

codons (Drummond and Wilke, 2009) assuming they lead to fewer translation

errors (Ikemura, 1985; Akashi, 1994; Kramer and Farabaugh, 2007). In light

of the above results, we now ask the question, “Given that tRNA abundances are

positively correlated in the genetic code, do higher cognate tRNA abundances always

lead to fewer translation errors?”
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2.2.1 Modeling translation errors

Following (Fluitt et al., 2007), our model of translation errors takes into account

competition between cognate and near-cognate tRNAs for the ribosomal A-site during

translation. We also consider the kinetics of tRNA selection within a ribosome

(Gromadski and Rodnina, 2004) and the effect of codon-anticodon wobble on these

kinetics (Curran and Yarus, 1989). During protein translation, when a ribosome

waits at a given codon, one of three outcomes is likely to occur: (a) elongation by

cognate tRNA, (b) elongation by a near-cognate tRNA leading to a missense error or

(c) spontaneous ribosomal drop-off, frameshift or recognition by release factors, any

of which will lead to a nonsense error (Figure 2.5). The relative frequency of each of

these outcomes determines the rates of missense and nonsense errors at a particular

codon.

Assuming an exponential waiting process for a tRNA at codon i, the codon specific

missense and nonsense error rates, εM and εN respectively, can be calculated as

follows,

εM(i) =
Rn(i)

Rc(i) + Rn(i) + Rd

(2.1)

εN(i) =
Rd

Rc(i) + Rn(i) + Rd

(2.2)

where Rc(i) is the codon specific cognate elongation rate, Rn(i) is the codon specific

near-cognate elongation rate, and Rd represents the background nonsense error rate

(see Methods for details).

Using Equations (1) and (2), we calculated codon-specific missense and nonsense

error rates for each bacterial genome. In order to understand the effect of codon

degeneracy on the relationship between error rates and codon elongation rates, we

categorized amino acids based on the number of their synonymous codons Di as

before. Given our model was parametrized from data on E. coli, we also checked for
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ATG  AGA  TTA  TCA  ACA  CCC  CCA  CCG

Cognate

Near-cognate

Non-cognate

ACA

Missense Error

εM (ACA)

Nonsense Error

εN (ACA)

No Error

 TTA  TCA  ACA  CCC  TTA  TCA  ACA  CCC  TTA  TCA  ACA  CCC

Figure 2.5: Model of translation errors.
During translation, a ribosome pauses at a codon (ACA in this case) waiting for
a cognate tRNA. During this pause, one of the three processes can take place:
elongation by cognate tRNAs leading to no translation error, elongation by a near-
cognate tRNA leading to a missense error with rate εM or premature termination of
translation due to recognition by release factors, spontaneous ribosome drop-off or
frameshifting leading to a nonsense error with a rate εN .

the sensitivity of our analysis to changes in these parameters when extending it to

other prokaryotes (Section 2.6.1).

2.2.2 Error Rates vs. Elongation Rates

Using E. coli strain K12/DH10B (K12) as an example, our estimates of codon-specific

missense error rates εM ranged from 0 − 9.38 × 10−3 with a median of 2.50 × 10−3.
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Six of the 61 sense codons have a predicted missense error rate of 0 as these codons

have no near-cognate tRNA species (Table 2.3).
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Table 2.3: List of codon-specific tRNAs, elongation rates and error rates in E. coli

AA Codon Cognates
Pseudo-
cognates

Near-cognates Rc Rn εM εN

A GCA UGC GGC
UCC, UAC, UGA, 
UGU, UGG, UUC

21.496 5.50E-02 2.55E-03 1.46E-04

A GCC GGC, UGC
GAC, GGU, GUC, 
GCC, GGA, GGG

27.218 5.86E-02 2.15E-03 1.15E-04

A GCG UGC GGC CGA, CGG, CCC, CGU 13.760 2.11E-02 1.53E-03 2.28E-04

A GCU GGC, UGC 22.061 0.00E+00 0.00E+00 1.43E-04

C UGC GCA
GCU, GUA, GCC, 
GGA, GAA, CCA

7.163 5.42E-02 7.51E-03 4.36E-04

C UGU GCA ACG, CCA 4.584 2.16E-02 4.69E-03 6.83E-04

D GAC GUC
GGC, GAC, GUA, 
GUU, GCC, GUG, 

UUC
21.488 8.43E-02 3.91E-03 1.46E-04

D GAU GUC UUC 13.752 1.64E-02 1.19E-03 2.28E-04

E GAA UUC
UGC, UCC, UAC, 
UUG, GUC, UUU

28.650 8.40E-02 2.92E-03 1.09E-04

E GAG UUC GUC, CCC, CUG 18.336 2.49E-02 1.36E-03 1.71E-04

F UUC GAA
GAG, GAC, GCA, 

GAU, GUA, GGA, UAA, 
CAA

14.325 5.83E-02 4.05E-03 2.19E-04

F UUU GAA UAA, CAA 9.168 8.21E-03 8.94E-04 3.43E-04

G GGA UCC GCC, CCC UGC, UAC, UCU, UUC 7.183 5.47E-02 7.56E-03 4.34E-04

G GGC GCC, UCC CCC
GGC, GAC, GCU, 

GCA, GUC
32.952 3.81E-02 1.15E-03 9.53E-05

G GGG CCC, UCC GCC CCU, CCG, CCA 11.763 1.26E-02 1.07E-03 2.67E-04

G GGU GCC, UCC CCC ACG 22.638 1.64E-02 7.25E-04 1.39E-04

H CAC GUG
GAG, GUA, GUU, 
UUG, GUC, GGG, 

CUG
7.163 6.65E-02 9.20E-03 4.35E-04

H CAU GUG ACG, UUG, CUG 4.584 3.39E-02 7.34E-03 6.81E-04

I AUA CAU GAU
UAG, UAC, UGU, 

UUU, UCU, UAA, CAU
36.685 9.83E-02 2.67E-03 8.55E-05

I AUC GAU CAU
GAG, GAC, GCU, 

GUU, GGU, GAA, CAU
21.521 8.32E-02 3.85E-03 1.46E-04

I AUU GAU CAU 13.785 3.28E-02 2.38E-03 2.28E-04

K AAA UUU
GUU, UGU, UUG, 

UCU, UUC
42.976 5.06E-02 1.18E-03 7.31E-05

K AAG UUU
GUU, CCU, CAU, 

CUG, CGU
27.504 7.01E-02 2.54E-03 1.14E-04

L CUA UAG GAG, CAG, UAA UAC, UUG, UGG 7.189 3.31E-02 4.58E-03 4.35E-04

L CUC GAG, UAG CAG
GAC, GAU, GAA, 

GUG, GGG
11.477 3.78E-02 3.28E-03 2.73E-04

L CUG CAG, UAG GAG, CAA CGG, CCG, CAU, CUG 33.243 4.95E-02 1.49E-03 9.45E-05

L CUU GAG, UAG CAG ACG 8.898 1.64E-02 1.84E-03 3.53E-04

L UUA UAA UAG, CAA UAC, UGA, GAA 7.171 3.31E-02 4.59E-03 4.36E-04

L UUG CAA, UAA CAG CGA, GAA, CAU, CCA 11.764 4.95E-02 4.19E-03 2.66E-04

M AUG CAU
GAU, CAG, CCU, CAA, 

CGU
57.301 4.57E-02 7.97E-04 5.49E-05
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Table 2.3: (continued)

AA Codon Cognates
Pseudo-
cognates

Near-cognates Rc Rn εM εN

N AAC GUU
GCU, GAU, GUA, 
GGU, GUC, UUU, 

GUG
28.650 7.91E-02 2.75E-03 1.09E-04

N AAU GUU UUU 18.336 2.46E-02 1.34E-03 1.71E-04

P CCA UGG CGG, GGG
UAG, UGC, UGA, 

UGU, UUG
7.171 3.34E-02 4.63E-03 4.36E-04

P CCC GGG, UGG CGG
GAG, GGC, GGU, 

GGA, GUG
11.464 3.37E-02 2.93E-03 2.74E-04

P CCG CGG, UGG GGG
CGA, CAG, CCG, 

CUG, CGU
11.751 4.24E-02 3.60E-03 2.67E-04

P CCU GGG, UGG CGG ACG 8.886 1.64E-02 1.84E-03 3.53E-04

Q CAA UUG CUG
UAG, UGG, UUU, 

GUG, UUC
14.334 5.34E-02 3.71E-03 2.19E-04

Q CAG CUG, UUG
CGG, CAG, GUG, 

CCG
23.493 2.90E-02 1.23E-03 1.34E-04

R AGA UCU CCU UCC, GCU, UGU, UUU 7.167 3.89E-02 5.39E-03 4.36E-04

R AGG CCU, UCU CCG
GCU, CAU, CC, CCA, 

CGU
11.751 5.36E-02 4.54E-03 2.66E-04

R CGA ACG UCU, CCG UAG, UCC, UUG, UGG 17.199 2.11E-02 1.22E-03 1.83E-04

R CGC ACG CCG
GAG, GCU, GCA, 
GCC, GUG, GGG

18.340 3.75E-02 2.04E-03 1.71E-04

R CGG CCG, ACG CCU
CGG, CAG, CCC, 

CCA, CUG
24.357 3.78E-02 1.55E-03 1.29E-04

R CGU ACG CCG 28.655 0.00E+00 0.00E+00 1.10E-04

S UCA UGA CGA, GGA UGC, UGU, UGG, UAA 7.175 2.52E-02 3.50E-03 4.37E-04

S UCC GGA, UGA CGA
GGC, GCA, GUA, 
GGU, GAA, GGG

18.627 4.60E-02 2.46E-03 1.68E-04

S UCG CGA, UGA GGA CGG, CCA, CAA, CGU 11.755 2.11E-02 1.79E-03 2.67E-04

S UCU GGA, UGA CGA 13.470 0.00E+00 0.00E+00 2.33E-04

U ACA UGU GGU, CGU
UGC, UGA, UGG, 

UUU, UCU
7.180 5.01E-02 6.93E-03 4.35E-04

U ACC GGU, UGU CGU
GGC, GCU, GAU, 
GUU, GGA, GGG

18.631 5.47E-02 2.93E-03 1.68E-04

U ACG CGU, UGU GGU CGA, CGG, CCU, CAU 18.917 4.74E-02 2.50E-03 1.66E-04

U ACU GGU, UGU CGU 13.474 0.00E+00 0.00E+00 2.33E-04

V GUA UAC GAC
UAG, UGC, UCC, 

UUC, UAA
35.821 4.19E-02 1.17E-03 8.77E-05

V GUC GAC, UAC
GAG, GGC, GAU, 
GUC, GCC, GAA

35.813 6.29E-02 1.75E-03 8.77E-05

V GUG UAC GAC CAG, CAU, CCC, CAA 22.929 5.97E-02 2.60E-03 1.37E-04

V GUU GAC, UAC 30.656 0.00E+00 0.00E+00 1.03E-04

W UGG CCA
GCA, CGA, CCU, 
CCG, CCC, CAA

7.163 2.49E-02 3.46E-03 4.37E-04

Y UAC GUA
GCA, GUU, GUC, 
GGA, GAA, GUG

21.488 5.39E-02 2.50E-03 1.46E-04

Y UAU GUA 13.752 0.00E+00 0.00E+00 2.29E-04

Z AGC GCU
GCA, GAU, GUU, 

GGU, GCC, CCU, UCU
7.163 6.79E-02 9.38E-03 4.35E-04

Z AGU GCU ACG, CCU, UCU 4.584 2.46E-02 5.34E-03 6.82E-04
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These rates are higher than recent empirical estimates of missense error rates in

E. coli, which vary from 2.0 × 10−4 − 3.6 × 10−3 with a median value of 3.4 × 10−4

(Kramer and Farabaugh, 2007). This is likely due to the fact that the missense

error estimates in (Kramer and Farabaugh, 2007) were for specific amino acid

misincorporations, whereas, the values predicted here indicate the rate of all possible

missense errors at a given codon. Our predicted rates of codon-specific nonsense errors

εN in E. coli ranged from 5.49 × 10−5 − 6.83 × 10−4 with a median of 2.19 × 10−4

(Table 2.3).

We find that on average both missense εM and nonsense error rates εN decrease

with an increase in cognate elongation rates Rc (Figure 2.6).
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Figure 2.6: Correlation of translation error rates ε with cognate elongation rate Rc

in E. coli.

We find that rates of both (A) missense εM and (B) nonsense errors εN are negatively

correlated with the rate of elongation by cognate tRNAs at that codon. The

dashed line indicates the regression line between Rc and ε. This is consistent with

expectations under the standard model. However, in the case of twofold degenerate

amino acids (D2), whose two codons are joined together by solid lines, we see that

εM increases with Rc for 8 out of 10 amino acids. In the case of εN every amino acid

showed a decrease in εN with Rc.

These results seem, on first glance, largely consistent with the standard model for

inferring translation errors from tRNA abundances, which assumes that ε decreases

with Rc. However, because Rn varies between synonymous codons, for about half of

the amino acids (10 out of 21) εM is actually greater for the codon with the highest

Rc value. This holds even when empirical estimates of tRNA abundances in E. coli

(Dong et al., 1996) are used instead of tRNA gene copy numbers (see Figure 2.7).
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Figure 2.7: Correlation of translation error rates ε with cognate elongation rate Rc

using empirical estimate of tRNA abundances.

We find that rates of both (a.) missense εM and (b.) nonsense errors εN are negatively

correlated with the rate of elongation by cognate tRNAs at that codon. The dashed

line indicates the regression line between Rc and ε. These results are consistent with

the results obtained using tRNA gene copy numbers as proxies for tRNA abundances.

This result is inconsistent with expectations under the standard model that

implicitly assumes a codon-independent rate of elongation by near-cognate tRNAs,

Rn. If the abundance of a focal tRNA tF and its neighbors tN are uncorrelated,

then the only factor that affects εM is Rc. However, as shown earlier, tF and tN are

positively correlated (Figure 2.1). Thus, the estimates of εM of synonymous codons

of an amino acid depend not only on their individual Rc but also on the slope of the

relationship between Rc and Rn. If the rate of increase of Rn with Rc is higher than

the relative increase in Rc, then codons with higher cognate elongation rates Rc are

expected to have higher missense error rates εM (Figure 2.8).
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Figure 2.8: Contour plot of missense error rates log10(εM) with cognate Rc and

near-cognate Rn elongation rates.

The black dots represent log10(εM) of codons in E. coli. Blue dots are the two codons

of amino acid asparagine (N). In the case of asparagine, the codon with a higher Rc has

a higher εM as it also has a much higher Rn. The regression line between observed Rc

and Rn in E. coli is represented as a solid red line. The positive correlation between

Rc and Rn, explains why codons with higher Rc sometimes have a higher missense

error rate.
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Interestingly, 8 out of the 10 D2 amino acids in E. coli K12 showed a positive

relationship between Rc and εM . Specifically, we would expect εM to increase with

Rc whenever the condition dRn

dRc
> Rn

Rc
is satisfied. Thus, among the synonymous

codons of an amino acid in E. coli, the codon with the lowest εM is often not the

codon with the highest Rc. This points to a fundamental change in our understanding

of the relationship between tRNA abundances and missense errors and which codons

minimize their occurrence.

Interestingly, these results are also consistent with the limited empirical estimates

of codon-specific missense error rates. For instance, (Precup and Parker, 1987)

used E. coli to estimate rates at which the asparagine codons AAC and AAU were

mistranslated by tRNALys
UUU. As expected, the authors found that the AAC codon,

with a higher Rc had a lower rate of mistranslation by tRNALys
UUU than AAU, with

a lower Rc. Our model makes the same prediction when considering this specific

subset of missense errors. However, when considering the overall missense error rates

at AAC and AAU codons due to tRNALys, tRNASer, tRNAThr, tRNAAsp, tRNAHis,

tRNATyr and tRNAIle(all one-step neighbors), we come to a very different prediction.

Specifically we find that even though AAC has a higher Rc than AAU, it also has a

much higher Rn rate. As a result, the overall missense error rate for AAC is actually

predicted to be higher than AAU. This result illustrates how focusing on only a subset

of possible missense errors at a codon, as all previous experiments have done, provides

an incomplete and potentially misleading picture.

In contrast to missense error rates, our model predicts εN will consistently decline

with an increase in Rc, suggesting that nonsense errors may be playing a larger role

in driving CUB than commonly accepted (Arava et al., 2005).
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2.2.3 Intra- and Inter-specific Variation in the Relationship

between Elongation and Error Rates

In order to evaluate the relationship between cognate elongation rate, Rc, and error

rates, we looked across 73 bacterial genomes for inter-specific variation and 11 strains

of E. coli for intra-specific variation. As before, we categorized amino acids based

on the degeneracy of their synonymous codons for each genome. We calculated the

fraction of amino acids within each category that showed a negative relationship

between Rc and error rates, εM and εN (Figure 2.9) as expected under the standard

model where the abundances of tRNAs are assumed to be uncorrelated.

For both intra- and inter-specific datasets we find that synonymous codons with

a higher Rc have a lower nonsense error rate εN for all amino acids, irrespective of

the degenerate class Di they belong to. However, in the case of missense errors,

the relationship between Rc and εM depends on the amino acid degeneracy Di as

previously observed in E. coli K12 (Figure 2.6). Amino acids with two synonymous

codons (D2) show a strong bias towards a positive relationship between Rc and εM ,

both intra- and inter-specifically (Binomial test, p = 1.5× 10−10 and p < 2.2× 10−16,

respectively). In the case of isoleucine, the only amino acid in D3, there exists no

bias towards a positive or a negative relationship between cognate elongation and

missense error rates (Binomial test, intra-specific p = 0.548 and interspecific p =

0.349). Interestingly 4-fold degenerate amino acids show a bimodal distribution of

the fraction of genomes with a negative relationship, and the two 6-fold degenerate

amino acids (arginine and leucine) show a strong bias towards negative correlation

between Rc and εM (Binomial test, intra-specific p = 4.7 × 10−7 and interspecific

p < 2.2 × 10−16). The differences in the relationship between εM and Rc across

degenerate classes are similar to the differences in the correlation between tF and tN

across these classes (Figure 2.1).

Although the patterns we observe are complex and vary with amino acid

degenerate classes, the assumption underlying the standard model that higher cognate
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Figure 2.9: Frequencies of negative relationships between cognate elongation rate
Rc and translation errors ε.
Panels (A - D) represent the distribution of E. coli strains that show amino acid
specific negative relationship between Rc and ε, while panels (E - H) represent the
distribution of 73 genomes for the same. Amino acids in every degenerate class (Di)
show a negative relationship between cognate elongation rate Rc and nonsense error
rates (εN) both intra-specifically as well as inter-specifically. A majority of amino
acids in the 2-fold degenerate class (D2) show an increase in missense error rate εM

with Rc across genomes. As the degeneracy of amino acids increases, we see an
increase in the frequency of the expected negative relationship between εM and Rc

across E. coli strains as well as other bacterial species.

tRNA abundance codons will have the lowest translation error rates is predicted

to be clearly violated in the case of missense errors – a finding consistent both

across bacterial genomes and across various E. coli strains. We also find that the

positive relationship between missense error rates εM and Rc observed within certain

amino acids is insensitive to moderate changes in parameter estimates of background

nonsense error rates, and wobble parameters (Section 2.6.1).
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2.3 Discussion

For over 30 years, the standard model of translation errors has implicitly assumed that

for any given amino acid, the translation error rates are lowest for the codons with

the highest tRNA abundances (Ikemura, 1981; Varenne et al., 1984; Kramer

and Farabaugh, 2007). With respect to missense errors εM , this prediction was

based on the implicit and unstated assumption that the distribution of tRNA

abundances across the genetic code are uncorrelated. Here we show a consistent

positive correlation between the abundance of a tRNA and its one-step mutational

neighbors across a wide array of prokaryotes. In order to understand the effects of

this relationship on translation errors, we developed a simple model for estimating

codon-specific error rates based on the distribution of tRNA gene copy number of a

species. Our model takes into account tRNA competition, wobble effects, and intra-

ribosomal kinetics of elongation to predict rates of missense and nonsense errors. To

our knowledge, ours is the first model to integrate all these factors for estimating

translation errors. Using our model, we find that on average, both missense and

nonsense error rates of a codon decrease with an increase in its cognate tRNA

elongation rate. This average behavior is consistent with expectations under the

standard model of how codon specific error rates scale with cognate tRNA abundance

(Akashi, 1994; Stoletzki and Eyre-Walker, 2007; Kramer and Farabaugh,

2007; Drummond and Wilke, 2008). However, the expected relationship between

error rates and cognate tRNA abundances does not hold at finer scales of individual

amino acids, the relevant scale for the evolution of CUB.

For about half of the amino acids (10 out of 21) in E. coli K12, synonymous

codons that have higher cognate elongation rates Rc also have higher missense error

rates εM . This counterintuitive behavior is due to the fact that tRNA abundances

within the genetic code are positively correlated, which leads to an increase in εM

with Rc, an important pattern that has been overlooked by previous researchers.

We find a positive correlation between the abundance of a focal tRNA tF and
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that of its neighbors tN in 69 out of 73 genomes examined here. In addition,

the 4 genomes that show a negative ρt (E. coli O157H7, E. coli O157H7-EDL933,

Photobacterium profundum SS9, Vibrio parahaemolyticus) also show evidence of a

high degree of horizontal gene transfer. Interestingly we also find that the differences

in the relationship between tF and tN across amino acid degenerate classes is mirrored

in the correlation between εM and Rc. In contrast to εM , the nonsense error rates εN

of synonymous codons decrease with an increase in Rc for every amino acid across

every genome we analyzed. This is due to the fact that increasing either Rc or Rn

leads to a decrease in ribosomal wait time at that codon which, in turn, leads to a

lower εN . Thus with respect to εN , a positive correlation between tRNA abundances

actually accentuates the advantage of using codons with higher tRNA abundances.

These results lend further support to the hypothesis that nonsense errors play an

important but under-appreciated role in the evolution of CUB (Gilchrist, 2007;

Gilchrist et al., 2009).

The role of tRNA competition has been recognized as an important factor in

affecting translation error rates (Varenne et al., 1984; Fluitt et al., 2007; Kramer

and Farabaugh, 2007). However, previous studies on the relationship between

error rates and tRNA abundances have focused primarily on the effects of modifying

cognate tRNA abundances and ignored the effects of near-cognate tRNA abundances.

Consistent with our model behavior, (Kramer and Farabaugh, 2007) showed that

when tRNAArg
UCU was over-expressed, it led to a decrease in the missense error rate εM

at codons for which the tRNA was a cognate: AGA and AGG. However, if a higher

expression level of tRNAArg
UCU reduces the frequency of εM at codons AGA and AGG,

why is it not fixed in the population? We argue that increasing the abundance of a

given tRNA may not always be adaptive. For instance, over-expressing tRNAArg
UCU will

also lead to an increase in εM at nearby non-synonymous codons - AAA, ACA, AUA,

etc., a testable prediction not considered by (Kramer and Farabaugh, 2007). The

trade-offs between reducing εM at one codon at the expense of increasing εM at nearby

codons has not been explored. However, these trade-offs likely play an important role
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in shaping the evolution of tRNA gene copy number and force us to reconsider the

evolutionary causes of CUB.

Currently, many researchers believe that selection for translational accuracy, i.e.,

against missense errors, is a primary force driving the evolution of CUB (see (Akashi,

1994; Arava et al., 2005; Drummond et al., 2005; Stoletzki and Eyre-Walker,

2007)). This belief largely rests on the interpretation of two facts. Firstly, preferred

codons are generally those with the highest corresponding tRNA abundances and

secondly, sites that are highly conserved and thought to have large effects on protein

structure and function, use preferred codons more often than their coding synonyms

(Akashi, 1994). Selection for translational accuracy is usually tested using Akashi’s

test by identifying evolutionarily conserved sites in protein sequences and checking

whether they are coded by preferred codons (Akashi, 1994; Drummond et al.,

2006; Stoletzki and Eyre-Walker, 2007; Drummond and Wilke, 2009). In

light of the above results, we need to revisit the underlying assumptions of Akashi’s

test (Akashi, 1994). Although, our analysis predicts that a considerable number of

amino acids have a positive relationship between missense error rates, εM and cognate

elongation rates Rc, many amino acids in E. coli are still predicted to conform to the

standard model of lower εM with higher Rc. Indeed, in the case of Drosophila species

used in the original Akashi’s paper (Akashi, 1994), only 4 out of 21 amino acids are

predicted to have a positive relationship between εM and Rc. Thus, we argue that the

relationship between εM and Rc are highly species and amino acid specific and that

selection for translation accuracy cannot explain all of the observed CUB at conserved

sites. In addition to selection for translational accuracy, selection against nonsense

errors (Gilchrist and Wagner, 2006; Gilchrist, 2007; Gilchrist et al., 2009),

mRNA stability (Bulmer, 1991) and protein misfolding due to ribosome stalling

(Kimchi-Sarfaty et al., 2007; Tsai et al., 2008) have been shown to affect CUB.

In fact, recent evidence suggests that the speed of translating a codon also affects

protein folding (Kimchi-Sarfaty et al., 2007; Tsai et al., 2008; Marin, 2008). The

presence of a codon with a low Rc, increases the ribosomal waiting time at a codon
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potentially leading to alternate protein folds. This directly affects the functionality

and stability of the protein. Thus, a codon with a higher Rc at a conserved site, as

observed by Akashi and others, could be under selection to prevent protein misfolding

due to an entirely different mechanism unrelated to missense errors. Thus, we would

like to stress that the definition of preferred codons used in the Akashis test is based

on the genome-wide frequency of codon usage and not on any fundamental biological

process. Although, we do not dispute the fact that certain codons are preferred

over others at conserved sites, we simply point that the presence of these preferred

codons at conserved sites cannot be explained entirely by selection against missense

errors and that other selective forces must be responsible for the maintenance of these

codons.

CUB often increases with gene expression, such that highly expressed genes tend

to use codons with a higher cognate elongation rate Rc (Ikemura, 1985; Greenbaum

et al., 2003; Gilchrist et al., 2009). Thus, these genes would have lower nonsense

error rates and wait times, but not necessarily lower missense error rates. This might

appear paradoxical, as the failure to minimize missense error rate would presumably

increase the probability that a translated protein would be rendered nonfunctional

and be selected against. However, the deleterious effects of a high missense error rate

can be mitigated by an increased robustness of highly expressed genes. According to

(Kellogg and Juliano, 1997; Drummond et al., 2005; Wilke and Drummond,

2006), highly expressed genes are expected to evolve at a slower rate and also be

extremely functionally robust to missense errors. If this is the case, then missense

errors in highly expressed genes may not have much of an effect on protein function.

These genes maybe perfectly poised for trading off an elevated missense error rate for

faster elongation and fewer nonsense error rates.

When it comes to mitigating the effects of non-synonymous mutations and

missense errors, the genetic code has been described as “one in a million” (Freeland

and Hurst, 1998). This is due to the fact that amino acids with similar chemical

properties are in a genetic ‘neighborhood’, thus reducing the phenotypic effect of any
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point mutation or missense error. However, unlike point mutations, the frequency of

missense errors depends on the distribution of tRNA within the genetic code. The

distribution of tRNA abundances is usually attributed to the coevolution between

codon usage and tRNA abundances (Wong, 1975; Ardell and Sella, 2001;

Vetsigian and Goldenfeld, 2009). However, these studies have not taken into

account how changes in tRNA abundances affect the rate of translation errors at

neighboring codons. The degree to which the distribution of tRNA abundances within

the genetic code is adapted to minimize translation errors remains largely unexplored.

Our work suggests that understanding the trade-offs between missense and nonsense

errors would provide significant insights into the evolution of tRNA abundances within

the genetic code. We believe building mechanistic models of translation errors, as

shown here, will help further our understanding of the evolution of tRNA abundances

across the genetic code.

2.4 Methods

2.4.1 tRNA competition

Assuming an exponential waiting process and simple diffusion, the rates at which

cognate and near-cognate tRNAs enter the ribosomal A-site will be proportional to

their abundances. As a result, translation error rates of a codon will depend, in part,

on the relative abundances of its cognate and near-cognate tRNAs (Kramer and

Farabaugh, 2007). Following (Dong et al., 1996; Kanaya et al., 1999; Cognat

et al., 2008), we use the GCN of a tRNA as a proxy for its abundance.

2.4.2 Intra-ribosomal dynamics

Discrimination between cognate, near-cognate and non-cognate tRNAs takes place in

the peptidyl transfer step of elongation. Since the underlying process is stochastic,

there is a non-zero probability that when a cognate tRNA enters the A-site it will
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be rejected or a near-cognate tRNA will be accepted (Gromadski and Rodnina,

2004). These probabilities are a function of the kinetic rate constants of various

steps involved within the peptidyl transfer and translocation processes during tRNA

elongation for both cognate and near-cognate tRNAs (Gromadski and Rodnina,

2004; Blanchard et al., 2004b,a) (Section 2.6.2). Based on the rate constants

for cognate and near-cognate tRNAs from (Gromadski and Rodnina, 2004) and

equations from (Fluitt et al., 2007), we estimated the probability of elongation of

a codon by a cognate and near-cognate tRNA per tRNA entry into the ribosomal

A-site to be pc = 6.52× 10−1 and pn = 6.2× 10−4, respectively (Section 2.6.2).

2.4.3 Wobble effects

One of the factors affecting the rate constants in the intra-ribosome kinetic model

described above, is the effect of codon-anticodon wobble. (Gromadski and

Rodnina, 2004) proposed that a wobble mismatch between a codon and its cognate

tRNA anticodon, will affect its kinetic rate constants (Section 2.6.2) and consequently

reduce the probability of elongation by that tRNA. Based on (Curran and Yarus,

1989; Lim and Curran, 2001), we assume that a purine-purine or pyrimidine-

pyrimidine wobble reduces the probability of a cognate tRNA being accepted pc,

by 40%. This reduction in pc is consistent with estimates based on the kinetic

rate constants estimated by (Kothe and Rodnina, 2007) for AlaGCC codon that

is recognized by tRNAAla
UGC through a pyrimidine-pyrimidine wobble. Similarly, based

on (Curran and Yarus, 1989) ,we assume that a non-canonical purine-pyrimidine

wobble (GU/AC) would reduce pc by 36%.

In addition, some codons can be recognized by cognate tRNAs through a non-

standard wobble as described by (Agris, 1991; Agris et al., 2007). For instance,

C-U and C-A anticodon-codon interactions are considered nonstandard owing to

their stereochemistry and thermodynamic constraints. Hence, even though anticodon

tRNAAla
CGC does not lead to a missense error when translating the codon AlaGCU, it
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is considered nonstandard translation due to its C-U wobble. We call these tRNAs

‘pseudo-cognates’. We assume that the probability of elongation of a codon by pseudo-

cognates pp is the same as that of near-cognate tRNAs, i.e., pp = pn.

2.4.4 Estimation of cognate and near-cognate elongation

rates

In order to predict per codon missense and nonsense error rates, we calculated the

rates of elongation by cognate and pseudo-cognate tRNAs vs. near-cognate tRNAs

at each codon. The cognate elongation rate for codon i is given by

Rc(i) = a

 ∑
j∈Sc(i)

tjpcwj,i +
∑

j∈Sp(i)

tjppwj,i

 (2.3)

where Sc(i) is the set of cognate tRNAs for codon i, Sp(i) represents the set of pseudo-

cognate tRNAs, tj represents the gene copy number of jth tRNA species, and wj,i is

the reduction in elongation probability due to wobble mismatch.

Similarly, the rate at which near-cognate tRNAs elongate codon i is given by

Rn(i) = a
∑

j∈Sn(i)

tjpnwj,i (2.4)

where Sn(i) is the set of near-cognate tRNAs with respect to codon i. The parameter

a represents a scaling constant between tRNA gene copy number GCN and elongation

rate. For E. coli, we used a value of a = 10.992 s−1, so that the harmonic mean of

elongation rates of all codons was Rc + Rn ∼ 12.5 aa/s (Andersson et al., 1982;

Varenne et al., 1984; Sørensen et al., 1989).

We assume that nonsense errors occur primarily due to spontaneous drop-off of

ribosomes at a given codon when it is waiting for a tRNA. As a result, the nonsense

error rate due to spontaneous ribosomal drop-off, Rd(i), is codon independent and

occurs at a constant rate. (Jørgensen and Kurland, 1990) measured a nonsense
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error rate of 1 per 4000 codons. If we assume Rc + Rn ∼ 12.5 aa/sec, then the

background rate of nonsense errors is Rd = 3.146× 10−3 s−1.
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2.6 Supporting Information

2.6.1 Parameter Sensitivity

Since our model was parametrized using empirical data for E. coli, we checked for

the sensitivity of our analyses to changes in underlying parameters. Specifically,

we changed the wobble parameters (wRR and wRY ) and the rate of premature

termination (Rd). We checked for the sensitivity to parameters by visually comparing

the correlation of error rates (εM and εN) versus cognate elongation rate (Rc) as well

as by comparing the distribution of these correlations across amino acids both intra-

and inter-specifically.

Cognate elongation rate versus error rates

We find no qualitative difference in the relationship between cognate elongation and

error rates when the rate of premature termination (Rd) was both increased and

decreased by an order of magnitude. However, we did see a corresponding change in

the overall nonsense error rate of codons, as expected.
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Figure 2.10: Sensitivity of model behavior to changes in parameters.

41



2.6.2 Estimating probability of elongation at a codon during

one tRNA insertion attempt

E          P        A E          P        A E          P        A E          P        A

E          P        A E          P        A

E          P        A
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GTP
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Figure 2.11: Kinetic model of tRNA selection
The kinetic model as adapted from Gromadski and Rodnina (2004)

Rate Constant k1  (μm-1 s-1) k-1   (s-1) k2  (s-1) k-2  (s-1) k3  (s-1) kGTP  (s-1) k4  (s-1) k5  (s-1) k7  (s-1) kpep  (s-1)

Cognate
Near-cognate

140 85 190 0.23 260 1000 1000 1000 60 200
140 85 190 80 0.4 1000 1000 60 1000 200

Table 2.4: Rate constants for the kinetic model of tRNA selection

Using Eqn. (5) from Fluitt, et.al. (2007), we estimated the probability of

elongation as

p =
P23P34P67

P23P34 + P21

(2.5)
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P23 =
k2

k2 + k−1

P34 =
k3

k3 + k−2
P67 =

k5

k5 + k7

P21 =
k−1

k−1 + k2
(2.6)

Plugging in the values for cognate and near-cognate tRNAs, we find pc = 6.52× 10−1

and pn = 6.2× 10−4.

43



Chapter 3

Explaining complex codon usage patterns with selection for

translational efficiency, mutation bias, and genetic drift

This chapter is a lightly revised version of a paper by the same name submitted in

Proc. Natl. Acad. Sci. and co-authored with Michael A. Gilchrist.

44



Abstract

The genetic code is redundant with most amino acids using multiple codons. In

many organisms, codon usage is biased towards particular codons. Understanding

the adaptive and non-adaptive forces driving the evolution of codon usage bias

(CUB) has been an area of intense focus and debate in the fields of molecular

and evolutionary biology. However, their relative importance in shaping genomic

patterns of CUB remains unsolved. Using a nested model of protein translation and

population genetics, we show that observed gene level variation of CUB in S. cerevisiae

can be explained almost entirely by selection for efficient ribosomal usage, genetic

drift and biased mutation. The correlation between observed codon counts within

individual genes and our model predictions is 0.96. Although a variety of factors

shape patterns of CUB at the level of individual sites within genes, our results suggest

that selection for efficient ribosome usage is a central force in shaping codon usage at

the genomic scale. In addition, our model allows direct estimation of codon-specific

mutation rates and elongation times and can be readily applied to any organism with

high throughput expression datasets. More generally, we have developed a natural

framework for integrating models of molecular processes to population genetics models

to quantitatively estimate parameters underlying fundamental biological processes

such as protein translation.
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3.1 Introduction

For many organisms the preferential use of certain codons, commonly referred to as

codon usage bias (CUB), is strongly correlated with corresponding tRNA abundances

and expression levels (Ikemura, 1981; Dong et al., 1996). Explanations for these

correlations abound; the most favored ones include selection against translational

errors (Akashi, 1994; Drummond and Wilke, 2009; Gilchrist, 2007), selection

for translational efficiency (Bulmer, 1991; Akashi and Eyre-Walker, 1998;

Coleman et al., 2008), effects on protein folding (Kimchi-Sarfaty et al., 2007),

and stability of mRNA secondary structures (Kudla et al., 2009; Tuller et al.,

2010). Since different combinations of these factors could lead to very similar

patterns of codon usage, their relative importance in shaping evolution of CUB is

unknown (Arava et al., 2005; Kudla et al., 2009; Shah and Gilchrist, 2010b).

We believe that this uncertainty over their relative importance is, in large part,

due to lack of mechanistic models of processes hypothesized to give rise to these

patterns (for exceptions see (Bulmer, 1991; Gilchrist and Wagner, 2006; Shah

and Gilchrist, 2010b)). While most theories of codon usage predict that the

degree of bias in codon usage should increase with gene expression (Ikemura, 1981;

Drummond and Wilke, 2009; Gilchrist et al., 2009), they lack any specific

quantitative predictions about the rate and nature of these changes. This is because

most commonly used indices of CUB, such as Fop (Ikemura, 1981), CAI (Sharp

and Li, 1986), and CBI (Bennetzen and Hall, 1982), are both heuristic and

aggregate measures of CUB and fail to explicitly define the factors responsible for

the evolution of CUB (for exceptions see (dos Reis et al., 2004; Gilchrist et al.,

2009)). In contrast, we show that a mechanistic model of protein translation that

explicitly includes the effects of biased mutation, genetic drift, and selection for

efficient ribosome usage can explain the genome wide codon usage patterns in S.

cerevisiae. Although, ours is not the first attempt at using mechanistic models to

explain CUB in a population genetics context (Bulmer, 1991; Gilchrist, 2007), it is
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unique in its ability to estimate codon-specific parameters and quantitatively predict

how codon frequencies change with gene expression. We find that our model can

explain ∼92% of the observed variation in CUB across the Saccharomyces cerevisiae

genome.

3.2 Model

Protein synthesis is the most energetically expensive process within a cell (Wagner,

2005). During the log-phase of growth in S. cerevisiae, about 60% of transcriptional

machinery is devoted to making about 2000 ribosomes every minute (Warner,

1999). Since ribosomes are large complexes with finite lifespan and are expensive

to manufacture, one would expect strong selection for their efficient use during

protein translation (Kurland, 1987; Bulmer, 1991; Lovmar and Ehrenberg,

2006; Hershberg and Petrov, 2008). Here we explicitly define selection for

efficient use of ribosomes as selection for translational efficiency (Bulmer, 1991;

Lovmar and Ehrenberg, 2006). Since codons that have longer elongation times

tie up ribosomes on the mRNA leading to an inefficient usage, these codons should

be selected against. Thus, in the absence of other factors, selection for translation

efficiency should favor coding sequences that use codons with shorter elongation times

and the strength of this selection should increase with gene expression (Bulmer,

1991; Akashi and Eyre-Walker, 1998; Akashi, 2003; Hershberg and Petrov,

2008). If selection for translational efficiency is a major force driving the evolution of

CUB in S. cerevisiae, then we should be able to predict the CUB of a gene based on

the differences in elongation times of synonymous codons, mutational bias, and its

expression level.

We model the cost of protein production explicitly in terms of ATP usage as it is

common currency for energy consumption within a cell (Alberts et al., 2008). Based

on the work in (Gilchrist, 2007; Gilchrist et al., 2009), we begin our model by

first noting that in the absence of translation errors, the expected cost for production
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of a single protein is simply

η(~x) = C
61∑
i=1

xiti, (3.1)

where xi is the number of codons of type i among the 61 sense codons used within

a given coding sequence ~x = {x1, x2, . . . x61}, ti is the expected elongation time for

codon i, and C is a scaling factor that represents the overhead cost of ribosome usage

in ATP/sec. Codons that have shorter elongation times will lead to lower costs η,

and hence, are expected to be selected over their coding synonyms. Based on the

work in (Gilchrist, 2007; Gilchrist et al., 2009) we assume an exponential fitness

function w(~x|φ) ∝ e−qφη(~x), where q is the scaling constant (sec/ATP) determining

the relationship between the rate of ATP usage and fitness w and φ is a measure of

gene expression, specifically protein production rate (proteins/sec). It is important

to note the distinction between the protein production rate and the translation rate

of a ribosome across an mRNA. This lack of distinction has been the source of

confusion over the role of gene expression in shaping patterns of codon usage in

the past (Bulmer, 1991; Plotkin and Kudla, 2011).

In addition, although protein production rate of a gene changes during a single

cell’s lifetime, the φ value used here is the target time-averaged rate at which the

protein will be produced. In this scenario, a change from an optimal codon to a

suboptimal codon does not affect φ but instead affects the cost of meeting the target φ.

Using the cost of producing a protein η as the phenotype, we calculate the probability

of observing a particular coding sequence given its expression level, P (~x|φ). P (~x|φ)

is defined for each coding sequence in the synonymous codon genotype space Sc for a

given protein. Under the Fisher-Wright process (Wright, 1969; Gavrilets, 2004;

Sella and Hirsh, 2005) this probability is,

P (~x|φ) ∝ w (~x|φ)Ne

61∏
i=1

µxi
i (3.2)
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where Ne is the effective population size and µi is the sum of mutation rates to codon

i from its synonymous codons (Sella and Hirsh, 2005). Simply put, P (~x|φ), the

probability of observing a particular synonymous codon genotype for a given protein

is a combined function of mutation bias
∏61

i=1 µxi
i , natural selection for translational

efficiency w, and genetic drift Ne. Given an expression level φ, the probability of

observing a set of codons for one amino acid is independent of the probability of

observing a set of codons for another amino acid (Section 3.7.1). This independence

allows us to calculate the expected frequencies of codons within an amino acid

independent of codon compositions of other amino acids. The resulting expected

frequency of codon i of amino acid aak that has nk synonymous codons is given by

E[fi|φ, aak] =
µie

−NeqCφti∑
j∈nk

µje−NeqCφtj
. (3.3)

Equation 3 describes how the expected frequency of a given codon changes with

gene expression φ at its mutation-selection-drift equilibrium. In order to compare our

model predictions to observed codon usage frequencies, we looked at the 4674 verified

nuclear genes that lack internal stops in S. cerevisiae (Gilchrist, 2007; Shah and

Gilchrist, 2010b). Since time-average target protein production rates of genes are

not available for any organism, we use estimates of protein production rates during log

growth as proxies. Empirical estimates of protein production rates φ were obtained

from (Gilchrist, 2007), which combines mRNA abundance (Beyer et al., 2004) and

ribosome occupancy datasets (Arava et al., 2003; MacKay et al., 2004; Shah and

Gilchrist, 2010b). The effective population size was set to Ne = 1.36 × 107 based

on the effective population size of its closely related species S. paradoxus (Wagner,

2005). Note that because Ne is scaled by qC in Eqn. 3, any error in our estimate of

Ne will only affect our estimates of qC and not the behavior of our predictions.
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3.3 Results

3.3.1 Model Behavior.

The general behavior of our model is illustrated in Fig. 3.1, which shows the

simple case of one amino acid with two codons. It demonstrates how expected

frequencies of the codons change with gene expression with respect to differences

in the elongation times of the codons ∆tij = ti− tj as well and their relative mutation

rates µi/µj. As expected, codon usage in genes with low expression is primarily

determined by their relative mutation rates, while codon usage in genes with high

expression is determined by the differences in their elongation times. When both

natural selection for translation efficiency and mutation biases favor the same codon,

the lines representing expected frequencies of codons (red lines in Fig. 1) do not cross.

However, when the direction of mutation bias is opposite to that of natural selection,

the lines representing expected frequencies of codons cross (blue lines in Fig. 3.1).
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Figure 3.1: Effect of varying relative mutation rates (µi/µj), elongation times

(∆tij) and protein production rate (φ) on the expected codon frequencies (E[f ]) in a

hypothetical two-codon amino acid.

A Effect of changing µi/µj on E[f ] with φ. Solid lines represent the codon with longer

elongation time t1 and dotted lines represent the codon with shorter elongation time

t2. Mutation bias has a greater effect on E[f ] at low φ, while at very high φ, the E[f ]

of codons converge to the same values irrespective of µi/µj. B Effect of changing

ti − tj on their expected frequencies E[f ] with respect to φ. Solid lines represent the

codon with a lower relative mutation rate µ1 and dotted lines represent the codon

with a higher mutation rate µ2. Differences in elongation times between the two

codons t1− t2 has little effect on E[f ] at low φ. However, at high φ, as t1− t2 changes,

so does the difference in their expected frequencies E[f ].

3.3.2 Model Fit to S. cerevisiae Genome.

We calculated maximum likelihood estimates for the composite parameter qC, codon-

specific differences in elongation times ∆tij, and relative mutation rates µi/µj using

4674 genes of the S. cerevisiae genome (see Section 3.5, Table 3.1, Table 3.2 for more

details).
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Table 3.1: Estimates of relative mutation rates µi/µjTable S2: Estimates of relative mutation rates µi/µj

Amino

acids Codons µi/µj

Ala µGCC/µGCA 0.6541

µGCG/µGCA 0.4016

µGCC/µGCA 1.0605

Cys µTGT /µTGC 1.6581

Asp µGAT /µGAC 1.9496

Glu µGAG/µGAA 0.4536

Phe µTTT /µTTC 1.5262

Gly µGGC/µGGA 0.7779

µGGG/µGGA 0.5310

µGGT /µGGA 1.6471

His µCAT /µCAC 1.8943

Ile µATC/µATA 0.7647

µATT /µATA 1.4006

Lys µAAG/µAAA 0.6811

Leu µCTC/µCTA 0.4319

µCTG/µCTA 0.8441

µCTT /µCTA 0.9404

µTTA/µCTA 1.9598

µTTG/µCTA 1.9253

Asn µAAT /µAAC 1.5897

Amino

acids Codons µi/µj

Pro µCCC/µCCA 0.4460

µCCG/µCCA 0.3630

µCCT /µCCA 0.8008

Gln µCAG/µCAA 0.5026

Arg µAGG/µAGA 0.5325

µCGA/µAGA 0.2012

µCGC/µAGA 0.1376

µCGG/µAGA 0.1104

µCGT /µAGA 0.2946

Ser µTCC/µTCA 0.6861

µTCG/µTCA 0.4736

µTCT /µTCA 1.1472

µAGT /µAGC 1.4752

Thr µACC/µACA 0.6185

µACG/µACA 0.4740

µACT /µACA 1.0249

Val µGTC/µGTA 0.7811

µGTG/µGTA 0.8533

µGTT /µGTA 1.5350

Tyr µTAT /µTAC 1.4217
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Table 3.2: Estimates of differences in elongation times ∆t (s)Table S3: Estimates of differences in elongation times ∆t (s)

Amino

acids Codons ∆t

Ala tGCC − tGCA -0.1108

tGCG − tGCA 0.0551

tGCC − tGCA -0.1168

Cys tTGT − tTGC -0.0289

Asp tGAT − tGAC 0.0125

Glu tGAG − tGAA 0.0585

Phe tTTT − tTTC 0.0419

Gly tGGC − tGGA -0.1452

tGGG − tGGA -0.0593

tGGT − tGGA -0.2126

His tCAT − tCAC 0.0281

Ile tATC − tATA -0.2671

tATT − tATA -0.2588

Lys tAAG − tAAA -0.0443

Leu tCTC − tCTA 0.1349

tCTG − tCTA 0.0733

tCTT − tCTA 0.0674

tTTA − tCTA -0.0266

tTTG − tCTA -0.0082

Asn tAAT − tAAC 0.0664

Amino

acids Codons ∆t

Pro tCCC − tCCA 0.1394

tCCG − tCCA 0.2514

tCCT − tCCA 0.0396

Gln tCAG − tCAA 0.1024

Arg tAGG − tAGA 0.1813

tCGA − tAGA 0.6795

tCGC − tAGA 0.1586

tCGG − tAGA 0.4932

tCGT − tAGA 0.0039

Ser tTCC − tTCA -0.0887

tTCG − tTCA 0.0400

tTCT − tTCA -0.0876

tAGT − tAGC 0.0054

Thr tACC − tACA -0.0950

tACG − tACA 0.0600

tACT − tACA -0.0902

Val tGTC − tGTA -0.1736

tGTG − tGTA -0.0863

tGTT − tGTA -0.1688

Tyr tTAT − tTAC 0.0683
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Although, our model uses 2(k− 1) parameters for each amino acid with k codons,

we show that it is far from being over-parameterized as it uses genome scale datasets

(see Section 3.7.2). The fit of our model predictions with observed data is illustrated

in Fig. 3.2. Specifically, Fig. 3.2 shows how the observed and predicted codon

frequencies change with gene expression φ for all the amino acids that use multiple

codons. Because the set of synonymous codons for Ser occur in blocks of two and four

codons separated by more than a single mutation step, we treat each of the blocks

as a separate amino acids, Ser2 and Ser4 respectively. The fit of our model can be

quantified on a per amino acid basis based on the Pearson correlation ρM between

mean of binned observed codon frequencies and predicted codon frequencies at mean

φ value. The ρM values ranged from 0.72 to 0.99 with a median value of 0.936.

54



Glu(A.) Glu(A.)
GAA
GAG

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ρm = 0.981
ρc = 0.988

Gln(B.) Gln(B.)
CAA
CAG

ρm = 0.989
ρc = 0.903

Cys(C.) Cys(C.)
TGC
TGT

ρm = 0.855
ρc = 0.833

Asp(D.) Asp(D.)
GAC
GAT

ρm = 0.846
ρc = 0.982

Phe(E.) Phe(E.)
TTC
TTT

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ρm = 0.931
ρc = 0.97

His(F.) His(F.)
CAC
CAT

ρm = 0.88
ρc = 0.96

Lys(G.) Lys(G.)
AAA
AAG

ρm = 0.931
ρc = 0.977

Asn(H.) Asn(H.)
AAC
AAT

ρm = 0.963
ρc = 0.94

Tyr(I.) Tyr(I.)
TAC
TAT

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ρm = 0.973
ρc = 0.91

Ser2(J.) Ser2(J.)
AGC
AGT

ρm = 0.717
ρc = 0.913

Ile(K.) Ile(K.) Ile(K.)
ATA
ATC
ATT

ρm = 0.949
ρc = 0.95

(L.) Ala(L.) Ala(L.) Ala(L.)
GCA
GCC
GCG
GCT

ρm = 0.977
ρc = 0.925

Gly(M.) Gly(M.) Gly(M.) Gly(M.)
GGA
GGC
GGG
GGT

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ρm = 0.972
ρc = 0.81

Pro(N.) Pro(N.) Pro(N.) Pro(N.)
CCA
CCC
CCG
CCT

ρm = 0.986
ρc = 0.923

Ser4(O.) Ser4(O.) Ser4(O.) Ser4(O.)
TCA
TCC
TCG
TCT

ρm = 0.964
ρc = 0.927

Thr(P.) Thr(P.) Thr(P.) Thr(P.)
ACA
ACC
ACG
ACT

ρm = 0.977
ρc = 0.93

Val(Q.) Val(Q.) Val(Q.) Val(Q.)
GTA
GTC
GTG
GTT

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

-3 -2 -1 0 1

ρm = 0.977
ρc = 0.917

Leu(R.) Leu(R.) Leu(R.) Leu(R.) Leu(R.) Leu(R.)
CTA
CTC
CTG
CTT
TTA
TTG

-3 -2 -1 0 1

ρm = 0.922
ρc = 0.933

Arg(S.) Arg(S.) Arg(S.) Arg(S.) Arg(S.) Arg(S.)
AGA
AGG
CGA
CGC
CGG
CGT

-3 -2 -1 0 1

ρm = 0.997
ρc = 0.938

mids

re
p(

1,
 le

ng
th

(m
id

s)
)

-3 -2 -1 0 1

Log10(Gene Expression φ)

C
od

on
 fr

eq
ue

nc
y

Figure 3.2: Observed and predicted changes in codon frequencies with gene

expression, specifically protein production rate φ.

Each panel corresponds to a specific amino acid where codons ending in A or T are is

shown in shades of blue while codons ending in G or C in shades of red. Solid dots and

vertical bars represent mean ±1 SD of observed codon frequencies within genes with

protein production rates defined by the bin. The expected codon frequencies under

our model are represented by solid lines. We used k−1 codons of an amino acid with

k codons in estimating correlation coefficients. ρM represents the Pearson correlation

between the mean of observed codon frequencies within a bin and predicted codon

frequencies at mean φ value. ρc represents the Pearson correlation between observed

codon counts and predicted codon counts of all genes at their specific φ value.
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Although many indices of adaptation have been proposed to estimate the degree

of codon bias within a gene, there exists no method or index that makes predictions

on codon counts of individual genes itself. For instance, if a particular gene has

a protein production rate φ, what should the distribution of its codons be given its

amino acid sequence? In order to directly address this question we used our estimates

of ∆tij and µi/µj (Table 3.1, Table 3.2) to evaluate on a per-gene basis the expected

codon frequencies for each amino acid using Eqn. 3. We find that the correlation

between observed and predicted codon counts is ρc = 0.959 (Fig. 3.3), explaining

∼ 92% of observed variation in codon counts. Even at the level of individual amino

acids, the correlation coefficients ρc ranged from 0.81− 0.99. All but two amino acids

had ρc > 0.9, indicating that the high correlation was consistent across all amino

acids. In summary, we find that our model does an excellent job of predicting how

the observed codon frequencies in S. cerevisiae change with gene expression φ.
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Figure 3.3: Correlation between observed codon counts and predicted codon counts

of individual genes.

We used codon counts of k − 1 codons of an amino acid with k codons. Ignoring

Met and Trp (one codon amino acids) and splitting Ser into two blocks of four and

two codons, there are 19 unique amino acid sets. Hence the number of data points

used are 4674 × (59 − 19) = 186, 960. We find a very high correlation (ρ = 0.959,

p-value < 10−15) between our model predictions and observed counts. Inset shows the

distribution of correlation coefficients at the level of individual amino acids, indicating

that our high correlation is not biased by specific amino acids and that we have a

high correlation across all amino acids.
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One key insight from this work is that in S. cerevisiae for amino acids with more

than two codons, the frequencies of preferred codons with similar elongation times

∆tij can change in a non-monotonic manner with gene expression φ. For instance, in

the case of Thr, the frequency of codon ACT increases from low to moderate levels

of gene expression log(φ) but decreases at high gene expression and is replaced by

codon ACC. This non-monotonic behavior is the result of complex interplay between

mutation biases and translation selection. Specifically, although both the codons ACC

and ACT have shorter elongation times than their other coding synonyms ACG and

ACA, codon ACC has the shortest elongation time. However, unlike codon ACC, ACT

is favored by mutation bias, so its frequency initially increases with gene expression.

We call this phenomenon ‘mutational inertia’, whereby, the frequency of a suboptimal

codon transiently increases with gene expression due to mutation bias. This non-

monotonic behavior runs counter to traditional explanations where the frequency of

an optimal codon is expected to monotonically increase and that of a suboptimal

codon to monotonically decrease with gene expression (Sharp and Li, 1986; Duret

and Mouchiroud, 1999). We observed these effects of mutational inertia in most

of the amino acids with more than two codons. Although non-monotonic changes in

codon frequencies with gene expression have been previously documented (Bulmer,

1988), the mechanisms responsible for this behavior have not been put forth. We

believe this interesting and complex interplay between mutation biases and selection

for efficient translation has been obscured due to an overemphasis on indices in studies

of codon usage bias. Our study illustrates the advantages of model-based approach

used here over heuristic approaches. In addition and as indicated by the crossing of

lines representing codon frequencies, 7 out of 10 amino acids with two codons in Fig.

3.2 (D-J), show mutation biases in a direction opposite to that of natural selection. In

other words, codons with high frequencies in low expression genes are not the same as

the ones preferred in high expression genes. Along with explaining these previously

described patterns (Sharp and Devine, 1989; Musto et al., 2003; Peixoto et al.,

2004), we quantity the changes in codon frequencies with gene expression.
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In addition to describing the genome scale patterns of codon usage, our model also

allows for estimation of relative mutation rates µi/µj and differences in elongation

times of these codons ∆tij on a per amino acid basis directly from the genome sequence

and expression datasets. Interestingly, we find that estimates of relative mutation

rates sometimes differed between amino acids. For instance, in the case of two-codon

amino acids (Lys, Gln, and Glu) the NNA codons were always favored over NNG

codons. However, the relative mutation rate µNNG/µNNA ranged from 0.45-0.68 with

a mean of 0.546. These small but significant differences (t test, p < 10−9 for every

pair of amino acids) in the estimation of relative mutation rate may be due, in part,

to the fact that our model does not allow for non-synonymous substitutions, some of

which may behave in a nearly neutral manner, especially in genes with low φ values.

We also compared our estimates of ∆tij with estimates based on tRNA gene copy

numbers as proxy for tRNA abundances and wobble penalties (see Methods). We find

that these independently obtained estimates of ∆tij are highly correlated (ρ = 0.801)

(Fig. 3.4).
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Figure 3.4: Correlation between our model based estimates of ∆tijs with ∆tijs

estimated using tRNA gene copy numbers.

We find a strong correlation (ρ = 0.801, p-value < 10−9) between our model estimates

and estimates of ∆tij based on tRNA gene copy numbers indicating that our estimates

can be related to other biological estimates such as tRNA abundances directly.

3.3.3 Model Fit vs. Model Predictions.

In order to demonstrate the predictive value of our model, we randomly partitioned

the S. cerevisiae genome into two sets of 2337 genes each with no signifiant bias in

their distribution of gene expression levels φ (t test, p > 0.4). Parameters estimated
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using half the genome were found to be highly correlated with our previous estimates

based on the entire genome ρ > 0.99 for both ∆tij and µi/µj (Fig. 3.5).
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Figure 3.5: Correlation between estimates of ∆ts andµi/µj using a random subset

of 2337 genes (half the genome) and using the entire genome.

We find a strong correlation (ρ > 0.99, p-value < 10−15) for both ∆t and µi/µj.

We then used the parameters estimated using the first set of genes to predict gene-

specific codon counts in the second set of genes. The correlation coefficient between

observed and predicted codon counts at the level of individual genes was 0.96 (Figs.

3.6 and 3.7).
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Figure 3.6: Observed and predicted changes in codon frequencies with gene

expression for the second half of the genome using parameters ∆t and µi/µj estimated

using the first half.

Each panel corresponds to a specific amino acid where codons ending in A/T are is

shown in shades of blue while codons ending in G/C in shades of red. Solid dots and

vertical bars represent mean ±1 SD of observed codon frequencies within genes with

protein production rates defined by the bin. The expected codon frequencies under

our model are represented by solid lines. ρM represents the correlation between the

mean of observed codon frequencies in a bin and predicted codon frequencies at mean

φ value. ρc represent the correlation between observed codon counts and predicted

codon counts of all genes at their specific φ value.
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Figure 3.7: Correlation between observed codon counts and predicted codon counts

of individual genes in second half of the genome using parameters ∆t and µi/µj

estimated using the first half.

We find a very high correlation (ρ = 0.96, p-value < 10−15) between our model

predictions and observed counts. Inset shows the distribution of correlation

coefficients at the level of individual amino acids, indicating that our high correlation

is not biased by specific amino acids and that we have a high correlation across all

amino acids.

Since for most organisms we do not have ribosome occupancy datasets to estimate

protein production rates, we estimated ∆tij and µi/µj using mRNA abundances
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(Beyer et al., 2004; Gilchrist, 2007) as proxies for protein production rates φ. We

found a very high correlation between parameters estimated using mRNA abundances

and protein production rates (ρ > 0.97, Figs. 3.8 and 3.9). Because our model

is based on mechanistic principles of protein translation, these parameters can be

directly related to specific biological processes underlying protein translation. Our

work demonstrates that, in principle, these parameters can be estimated directly from

genomic and expression datasets, as shown above. Estimation of these parameters can

thus be easily extended to any sequenced organisms for which genome scale expression

datasets exist.
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Figure 3.8: Correlation between estimates of ∆ts andµi/µj using protein production

rates φ for each gene and using mRNA abundances.

We find a strong correlation (ρ > 0.97, p-value < 10−15) for both ∆t and µi/µj.
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Figure 3.9: Observed and predicted changes in codon frequencies with gene

expression, specifically mRNA abundances.

Each panel corresponds to a specific amino acid where codons ending in A/T are is

shown in shades of blue while codons ending in G/C in shades of red. Solid dots

and vertical bars represent mean ±1 SD of observed codon frequencies within genes

with mRNA abundances defined by the bin. The expected codon frequencies under

our model are represented by solid lines. ρM represents the correlation between the

mean of observed codon frequencies in a bin and predicted codon frequencies at mean

mRNA abundance of the bin. ρc represent the correlation between observed codon

counts and predicted codon counts of all genes at their specific φ value.
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3.4 Discussion

3.4.1 Broader Interpretation of ∆tij.

The high correlation between estimates of ∆tij from independent sources of genomic

information (Fig. 3.4), suggests that our interpretation of the term ∆tij is consistent

with selection for translation efficiency as a major force in shaping patterns of codon

usage. However, from a purely mathematical standpoint, the parameter ∆tij is

akin to the additive fitness component used in (Sella and Hirsh, 2005), scaled

by φ. Thus its value can broadly be interpreted as an expression level dependent

selective coefficient associated with the specific codon pair. In future, this broader

interpretation should allow us to compare our genome-based estimates of ∆tij with

values expected under alternate hypotheses of the factors responsible for shaping

codon usage patterns. For example, in the case of Cys, an interpretation of ∆tij is

difficult to justify based on a naive model of estimating elongation times from tRNA

abundances. In S. cerevisiae, Cys is coded by a single tRNA where the non-canonical

codon TGT is recognized by wobble and assumed to be elongated at a slower rate

than its synonym TGC (Gromadski and Rodnina, 2004; Shah and Gilchrist,

2010b). Thus, our estimates of tTGT − tTGC < 0 cannot be explained on the basis of

elongation times alone as the sign of ∆tTGT,TGC is opposite to that expected based

on tRNA abundances and wobble. A variety of factors could potentially explain this

discrepancy. Firstly, due to its unique ability to form disulphide linkages, Cys might

be under a stronger selection to minimize missense errors than other amino acids.

The fact that a codon with a slower elongation rate might be better at minimizing

missense errors has also been predicted in a large number of other microorganisms

(Shah and Gilchrist, 2010b). Secondly, as noted by (Bennetzen and Hall,

1982), codons with side-by-side GC nucleotides may be selected against due to the

high binding energies between codon-anticodon pairs. Despite the fact that ∆tij can

potentially be interpreted many ways, the high correlation between our predicted
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∆tij and estimates of ∆tij based simply on tRNA gene copy numbers and wobble

parameters (Fig. 3.4) indicates a mechanistic link between our estimates of ∆t and

differences in elongation times of codons.

In summary, our work shows that genome scale patterns of codon usage can

be largely explained by the effects of genetic drift, mutational biases, and natural

selection for efficient usage of ribosome, i.e. translational efficiency. Although a

variety of indices have been proposed to estimate the degree of adaptation of a gene

based on its codon usage bias, ours method makes predictions in the opposite direction

as well, i.e., predicting codon counts of a gene given its expression level. Our model

of translation efficiency also allows us to estimate codon-specific elongation times

(selection coefficients) as well as relative mutation rates. In addition, we make

quantitative predictions on how individual codon frequencies should change with

gene expression in yeast. Although, selection for translational efficiency appears

to be sufficient to explain most of the genome-scale patterns of codon usage this

does not preclude the effects of other selective forces on the evolution of CUB. For

instance, selection for translation accuracy (minimizing translation missense errors)

has long been argued to be a dominant force in driving the evolution of CUB (Akashi,

1994; Drummond et al., 2005; Drummond and Wilke, 2008). However, current

data suggests that only ∼ 10 − 50% of missense errors disrupt protein function

(Markiewicz et al., 1994; Guo et al., 2004), and therefore cannot explain the

high frequencies ∼100% of mutationally disfavored codons in Phe, Asn, and Tyr

amino acids (Fig. 3.2). Moreover, the assumptions underlying Akashis test (Akashi,

1994) used to support the translation accuracy hypothesis are not always justified

(Shah and Gilchrist, 2010b). Nevertheless, selection for translation accuracy can

explain codon usage at functionally and/or structurally critical sites of a protein

(Drummond and Wilke, 2008). Because codons that minimize missense errors may

not necessarily be the ones that minimize elongation times (Shah and Gilchrist,

2010b), our model is likely insufficient to explain the codon usage at these sites.

Similarly, adaptation against nonsense errors has been documented in S. cerevisiae
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(Gilchrist and Wagner, 2006; Gilchrist et al., 2009) and other organisms (Qin

et al., 2004). In addition, factors indirectly related to protein translation, such as

mRNA secondary structures at the 5′ region of a gene, have been shown to be under

selection for translation initiation and hence can effect the frequency of codon usage

at these sites (Kudla et al., 2009; Tuller et al., 2010).

Clearly, although a number of selective mechanisms have been proposed to explain

and likely contribute to specific patterns of codon usage, the combined effects of

these forces in shaping genomic patterns of codon usage are not well understood

(Drummond and Wilke, 2009; Plotkin and Kudla, 2011). In order to decipher

the relative importance of these forces on the evolution of CUB, mechanistic models

that explicitly take into account tRNA competition and intra-ribosomal dynamics

(Shah and Gilchrist, 2010b) as well as effects of amino acid substitutions on

protein structure and function (Guo et al., 2004) need to be developed. Our

model demonstrates the strength of such an approach and provides a natural

framework for expansion to include other selective forces as well. More generally, this

approach will allow us to quantitatively estimate parameters underlying fundamental

biological processes such as protein translation and improve our understanding of how

evolutionary forces shape genomic patterns and processes.

3.5 Methods

3.5.1 Estimation of ∆tij and µi/µj from observed data

In the case of an amino acid with k codons, the change in codon frequencies across the

entire range of gene expression can be determined by 2(k− 1) parameters for codon-

specific mutation rates and elongation times. For instance, in the case of amino acids

with two codons, the frequency of any one codon depends only on the difference in
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the elongation times of the two codons and the ratio of their mutation rates.

E[x1|φ] =
nµ1e

−NeqCφt1

µ1e−NeqCφt1 + µ2e−NeqCφt2

=
1

1 + µ2

µ1
e−NeqCφ(t2−t1)

(3.4)

Codon usage in genes with low expression φ is thought to be determined primarily

by mutation biases, i.e., NeqCφ ≈ 0. Since absolute mutation rates to each codon

cannot be estimated directly as it is only their ratios that affect codon usage, we

estimated µi/µj by setting the mutation rate of an arbitrarily chosen codon to 1.

Codon counts in low expression genes can then be assumed to follow a multinomial

distribution with parameters determined by their mutation rates. Thus, in the case

of an amino acid with two codons whose codon counts are x1 and x2, the maximum

likelihood estimate of relative mutation rate is approximately,

µ2

µ1

≈ x2

x1

(3.5)

Similarly, elongation times of codons affect codon usage only as their differences

(t1−t2). Thus, during parameter estimation of elongation times, we set the elongation

time of an arbitrarily chosen codon within each amino acid to 1 and estimated the

differences in elongation times of other codons with respect to that codon. We used

the NEWUOA optimization algorithm (Powell, 2006) employed in R to estimate

∆tij and µi/µj for an amino acid with k codons and qC by maximizing the following

likelihood function (see Section 3.7.1 for additional details).

Lik(~t, ~µ|φ, ~x) = P (~x|φ) =
k∏

i=1

(
µie

−NeqCφti∑k
j=1 µje−NeqCφtj

)xi

(3.6)

In addition, we estimated the maximum likelihood value of q̂C = 9.12× 10−7 .
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3.5.2 Estimation of ∆tij from tRNA gene copy numbers

In order to compare our estimates of ∆tij with an independent source of genomic

information, we estimated ∆tij using tRNA gene copy numbers and wobble effects.

Following (Dong et al., 1996; Kanaya et al., 1999), we use tRNA gene copy

numbers in yeast obtained from GtRNAdb (Chan and Lowe, 2009) as proxies

for tRNA abundances. We assume that the expected waiting time at a codon ti

is inversely proportional to its cognate tRNA abundances based on an exponential

waiting process.

[tRNAi] ∝ Gene copy number of tRNAi (3.7)

ti =
a

[tRNAi]× wob
(3.8)

where wob is the wobble penalty due to codon-anticodon mismatch and a is a scaling

constant. When a codon is recognized by its canonical tRNA, we set wob = 1. Based

on (Curran and Yarus, 1989; Lim and Curran, 2001), we assume that a purine-

purine or pyrimidine-pyrimidine wobble penalty to be 39% and purine-pyrimidine

wobble penalty to be 36%. We set the scaling constant a such that the harmonic

mean of elongation rates of all codons is 10 aa/sec (Gilchrist and Wagner, 2006;

Gilchrist, 2007). However, note that changing the scaling constant would have

no effect on the correlation between our model based and gene copy number based

estimates of ∆tij.
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3.7 Supporting Information

3.7.1 Analytical solutions of the model

One amino acid with two codons

Consider a gene sequence of length n composed of a single two-codon amino acid,

whose average elongation times are t1 and t2. Let x1 and x2 = n−x1 be the respective

codon counts. The expected cost of ribosome usage during protein production is then

given as

η(~x) = C
2∑

i=1

xiti (3.9)

= C(x1t1 + x2t2) (3.10)

where C is the cost of ribosome usage in ATP/sec. We assume an exponential fitness

function w described as

w(~x|φ) = e−qφη(~x) = e−qφC(x1t1+x2t2) (3.11)

where φ is the protein production rate, a measure of gene expression and q is

the scaling constant determining the relationship between cost of ATP usage to

organismal fitness w.

Following (Kimura, 1964; Gavrilets, 2004; Berg et al., 2004; Sella and

Hirsh, 2005), the probability of observing an allele across the entire genotype space

at equilibrium is given by

P (~x|φ) =
w(~x|φ)Ne∑

y∈Sc
w(~y|φ)Ne

(3.12)

where Ne is the effective population size and Sc is the entire synonymous codon

genotype space, which has 2n alleles in this simple case. Since the cost of protein

71



production is independent of codon order within a gene, multiple synonymous alleles

could give rise to the same cost η. In the 2 codon case, the number of alleles with

the same cost is represented by a binomial coefficient and for amino acids with more

than two codons, the combinations will be represented by a multinomial coefficient.

P (~x|φ) =

(
n
x1

)
e−NeqφC(x1t1+x2t2)∑n

y1=0

(
n
y1

)
e−NeqφC(y1t1+y2t2)

(3.13)

Let µ1 and µ2 represent the rate of mutations to the two codons as described by

(Sella and Hirsh, 2005). For instance, µ1 = µ21 indicates the rate at which codon

2 is mutated to codon 1.

Taking mutational biases into account, the probability of observing a given allele

is given as

P (~x|φ) ∝ w(~x|φ)Ne

2∏
i=1

µxi
i (3.14)

P (~x|φ) =

(
n
x1

)
e−NeqCφ(x1t1+x2t2)

∏2
i=1 µxi

i∑n
y1=0

(
n
y1

)
e−NeqCφ(y1t1+y2t2)

∏2
i=1 µyi

i

(3.15)

where ~x = {x1, x2}.

Given the protein production rate φ (gene expression) of a gene and the elongation

times t of codons, the expected count of each codon is given as

E[x1|φ] =
n∑

x1=0

x1P (~x|φ) (3.16)

=
n∑

x1=0

x1

(
n
x1

)
e−NeqCφ(x1t1+x2t2)

∏2
i=1 µxi

i∑n
y1=0

(
n
y1

)
e−NeqCφ(y1t1+y2t2)

∏2
i=1 µyi

i

(3.17)

=
nµ1e

−NeqCφt1

µ1e−NeqCφt1 + µ2e−NeqCφt2
(3.18)
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and by symmetry

E[x2|φ] =
nµ2e

−NeqCφt1

µ1e−NeqCφt1 + µ2e−NeqCφt2
(3.19)

= n− E[x1|φ] (3.20)

One amino acid with k codons

Using the methods described above it can be showed that for any amino acid with k

codons, the expected count of the ith codon is given as

E[xi|φ] =
nµie

−NeqCφti∑k
j=1 µje−NeqCφtj

(3.21)

Thus, the expected frequencies of each codon fi = xi/n is given as

E[fi|φ] =
µie

−NeqCφti∑k
j=1 µje−NeqCφtj

(3.22)

Variance around the expected value Exi|φ can also be calculated as

Var[xi|φ] =
n∑

xi=0

(xi − Exi|φ)2P ({x1, x2, · · · , xk}) (3.23)

=
n
(∏k

j=1 µj

)
eNeqCφ

Pk
j=1 tj(∑k

j=1 µjeNeqCφtj

)2 (3.24)

Multiple amino acids with varying number of codons

In the case of real genes, which are comprised of multiple amino acids each with

a varying number of codons, the expected counts and frequencies of codons can be

estimated from the marginal distributions of each amino acid. For instance, consider

the simple case of two amino acids with two codons each. The ribosomal overhead

73



cost of protein production is given as

η(~x) = C(x11t11 + x12t12 + x21t21 + x22t22) (3.25)

where xij is the number of codons of type j of amino acid i in the gene. Let n1 =

x11 + x12 and n2 = x21 + x22 be the counts of the two amino acids in the gene. As

earlier, the probability of observing an allele can be written as

P (~x|φ) =

(
n1

x11

)(
n2

x21

)∏2
j=1 µ

x1j

1j

∏2
j=1 µ

x2j

2j e−Ne(x11qCφt11+x12qCφt12+x21qCφt21+x22qCφt22)∑n1

y11=0

∑n2

y21=0

(
n1

y11

)(
n2

y21

)∏2
j=1 µ

y1j

1j

∏2
j=1 µ

y2j

2j e−Ne(y11qCφt11+y12qCφt12+y21qCφt21+y22qCφt22)

(3.26)

=

(
n1

x11

)∏2
j=1 µ

x1j

1j e−Ne(x11qCφt11+x12qCφt12)∑n1

y11=0

(
n1

y11

)∏2
j=1 µ

x1j

1j e−Ne(x11qCφt11+x12qCφt12)
×(

n2

x21

)∏2
j=1 µ

x2j

2j e−Ne(x21qCφt21+x22qCφt22)∑n2

y21=0

(
n2

y21

)∏2
j=1 µ

x2j

2j e−Ne(x21qCφt21+x22qCφt22)
(3.27)

P ({~x1, ~x2}) = P (~x1|aa1)P (~x2|aa2) (3.28)

The marginal distribution of genotype space of a singe amino acid is given as

n2∑
x21=0

P (~x2|aa2) = 1 (3.29)

P (~x1|aa1) =

n2∑
x21=0

P ({~x1, ~x2}) (3.30)
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Thus, the expected number of codons of a specific amino acid based on the

marginal distribution of that amino acid can be calculated as

E[x11|φ] =

n1∑
x11=0

x11

n2∑
x21=0

P ({~x1, ~x2}) (3.31)

=

n1∑
x11=0

x11P (~x1|aa1)

n2∑
x21=0

P (~x2|aa2) (3.32)

=

n1∑
x11=0

x11P (~x1|aa1) (3.33)

=
n1µ11e

−NeqCφt11

µ11e−NeqCφt11 + µ12e−NeqCφt12
(3.34)

The above Eqn. (27) is equivalent to Eqn. (11) which considers a gene sequence with

only one amino acid and two codons.

3.7.2 An argument against model over-parametrization

Although, it may seem that the excellent fit between the observed and predicted

values may be due to over-fitting the data with a large numbers of parameters, this

is not the case. For instance, in the case of an amino acid with k codons, there

are k− 1 independent codon frequencies. Since the change in codon frequencies with

gene expression can be thought of as a non-linear regression, each codon should have a

slope and an intercept. Thus there are 2(k−1) independent parameters for an amino

acid with k codons. The relative mutation rates provide the estimates for intercepts,

while differences in elongation times provide the estimates for their respective slopes.

The beauty of our approach lies in the fact that our simple model, appropriately

parameterized leads to a correlation coefficient of 0.96.

75



Chapter 4

Is thermosensing property of RNA thermometers unique?

This chapter is a lightly revised version of a paper by the same name published in

PLoS ONE and co-authored with Michael A. Gilchrist.

Shah and Gilchrist. Is thermosensing property of RNA thermometers unique?. PLoS

ONE (2010) vol. 5 (7) pp. e11308
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Abstract

A large number of studies have been dedicated to identify the structural and

sequence based features of RNA thermometers, mRNAs that regulate their translation

initiation rate with temperature. It has been shown that the melting of the

ribosome-binding site (RBS) plays a prominent role in this thermosensing process.

However, little is known as to how widespread this melting phenomenon is as

earlier studies on the subject have worked with a small sample of known RNA

thermometers. We have developed a novel method of studying the melting of RNAs

with temperature by computationally sampling the distribution of the RNA structures

at various temperatures using the RNA folding software Vienna. In this study, we

compared the thermosensing property of 100 randomly selected mRNAs and three

well known thermometers - rpoH, ibpA and agsA sequences from E. coli. We also

compared the rpoH sequences from 81 mesophilic proteobacteria. Although, both

rpoH and ibpA, show a higher rate of melting at their RBS compared with the

mean of non-thermometers, contrary to our expectations these higher rates are not

significant. Surprisingly, we also do not find any significant differences between rpoH

thermometers from other γ-proteobacteria and E. coli non-thermometers.
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4.1 Introduction

Many microorganisms live in a variable environment. They have evolved a variety

of mechanisms to sense changes in their environment and alter their gene expression

in response to these changes. Regulatory proteins often play a role in controlling

the level of transcription and translation of other genes. However, in certain cases

post-transcriptional mechanisms, such as changes in mRNA conformation, are known

to influence gene expression. In some prokaryotes, reaction to changes in the

temperature is thought to be mediated by one such class of mRNAs called RNA

thermometers (Yuzawa et al., 1993; Nakahigashi et al., 1995; Morita et al., 1999;

Chowdhury et al., 2003; Narberhaus et al., 2006). At lower temperatures, the

thermosensing region in these sequences adopts a secondary structure that sequesters

the ribosome binding site (RBS) of a gene, hence interfering with translation initiation

by the ribosome. At higher temperatures, this thermosensing region upstream of the

coding sequence melts, increasing the accessibility of the RBS leading to an increase

in the initiation of translation and, in turn, its protein production rate (de Smit

and van Duin, 1990; Yuzawa et al., 1993; Chowdhury et al., 2003; Narberhaus

et al., 2006).

Previous work on RNA thermometers has focused primarily on understanding and

identifying their sequence based features and residues important for thermosensing

(de Smit and van Duin, 1990; Yuzawa et al., 1993; Nakahigashi et al., 1995;

Morita et al., 1999). Time elapsed spectral studies (Chowdhury et al., 2006) and

mutational analyses (Yuzawa et al., 1993; Nakahigashi et al., 1995; Morita et al.,

1999) of the thermometer genes have been used to identify regions, which play a crucial

part in the thermosensing property. For instance, in one of the most studied RNA

thermometer called the ROSE (Repression Of heat-Shock gene Expression) element,

a guanine residue at position 83, paired opposite the Shine-Dalgarno (SD) sequence

in a hairpin structure is known to play a prominent role in the ability of the mRNA

to change its expression with temperature (Chowdhury et al., 2003).
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Although these studies provide insights into the mechanisms by which specific

thermometers function, little is known as to how widespread these mechanisms are.

The fraction of genes in a genome that possess an ability to regulate their translation

by thermosensing or a similar mechanism is unknown. More importantly, because the

above studies do not include non-thermometers as controls, it is difficult to ascertain

if RNA thermometers are a special class of molecules different from other RNAs.

Since it is not feasible to perform mutational or spectral studies on every gene to

identify whether it behaves as an RNA thermometer, computational tools need to

be developed to provide these insights. We here propose a computational approach

to characterize RNA thermometers and ask how they differ from non-thermometers

in their ability to melt with an increase in temperature. Understanding the melting

potential of non-thermometers should aid in understanding the adaptive features

of RNA thermometer sequences. We focus specifically on the ability of genes to

change their expression by modifying the accessibility of RBS, or in other words,

‘RBS exposure’.

Earlier attempts to identify potential RNA thermometers have focused on

search patterns based on similarities in the secondary structure of the mRNAs

(Waldminghaus et al., 2005, 2007). However, the use of a fixed length sequence

for secondary structure limits the utility of this approach. For instance, sequences

that differ by only a single nucleotide in their lengths can have drastic differences in

their predicted secondary structures (Hughes and McElwaine, 2006). Secondly,

most studies when looking at secondary structures of RNAs use mainly the least free

energy (LFE) structures. Although, this approach of using the most stable structures

has proved useful, there are certain shortcomings when used for characterizing

RNA thermometers. It has been shown that as temperature increases, the overall

probability and uniqueness of finding a structure in its LFE state decreases (Huynen

et al., 1997; Voss et al., 2004). Thus, such an approach could lead to spurious results

as the energy landscape of the molecule evolves with temperature (Fig. 4.1). In

addition, looking at LFE structures at a single temperature alone provides no means
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of quantifying the effect of temperature on the structure. Finally, any pattern-based

approach to finding thermometers is restrictive, as it does not take into account novel

structures that might be thermosensing.

Figure 4.1: Effect of temperature on the energy landscape.

As temperature increases, the probability of finding an mRNA in its most stable

state decreases. This is because at higher temperatures, molecules have more

energy enabling them to spend more time in higher energy states. Also, at higher

temperatures, as the energy landscape becomes flatter, uniqueness of the stable state

may also be lost (Huynen et al., 1997).

Here we propose a novel method of quantitatively studying secondary structures of

RNAs that addresses all of the above shortcomings. This method explores the ability

of mRNAs to change their rate of translation initiation with temperature. We see this

approach as complementary to experimental studies in the field of RNA structures.

4.2 Methods

We used the RNAsubopt package from RNA folding software Vienna (Hofacker

et al., 1994) to predict secondary structures of the RNAs. This package was used

to sample 1000 secondary structures at each temperature for every gene from the

entire distribution of structures at that temperature. The sampling of sub-optimal
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structures is important because RNA secondary structures with very similar free

energies can have drastic differences in their secondary structures (Voss et al., 2004),

which might not be captured when looking at the structure with least energy in

isolation. The program RNAsubopt generates structures with probabilities equal

to their Boltzmann weights via stochastic backtracking in the partition function

(Wuchty et al., 1999). Since these structures are drawn based on their Boltzmann

weights, the entire ensemble of 1000 structures can be viewed as a time ensemble, i.e.,

the probability of finding a particular structure in our ensemble is proportional to the

amount of time the RNA is found to be in that structure. Thus, stable structures

would have higher Boltzmann weights and the RNA would spend a greater amount

of time in that structure.

In order to understand the effect of temperature on gene expression as measured

by RBS exposure, we randomly selected 100 non-thermometer mRNAs from the

E. coli genome (Shah and Gilchrist, 2010a) as well as rpoH mRNA sequence,

a known thermometer, from 81 mesophilic γ-proteobacteria for this study (Shah

and Gilchrist, 2010a). Transcript start and end positions for E. coli genes

were obtained from the RegulonDB database (Salgado et al., 2006). Information

regarding the position of RBS on the transcript was obtained from the flexrbs dataset

(Shultzaberger et al., 2001; Shah and Gilchrist, 2010a). We used the entire

length of the mRNA (5′ UTR + ORF + 3 UTR) to generate the sub-optimal

structures. This was done for the following reasons. The secondary structure of

mRNA is highly dependent on the length of the sequence used for simulation (Hughes

and McElwaine, 2006). Using a shorter length may prevent detection of any long-

range interactions that might be crucial for the stability, and function of the RNA

molecule. Moreover, although translation is coupled with transcription in prokaryotes,

the half-life of an mRNA is considerably longer than the time required for translation

(Bernstein et al., 2002; Hambraeus et al., 2003; Selinger et al., 2003) and hence

the mRNA transcript would spend most of its time as a full-length sequence. Thus,

we argue that the secondary structure of the mRNA is better simulated by using the
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entire mRNA length for our purposes. We also check whether our results are robust

to using an mRNA sequence of length 150 nucleotides centered around the RBS. Of

the 100 genes from E. coli, 56 genes were part of operons. In the case of operons,

we simulated the entire mRNA sequence but categorized multiple RBSs within an

operon individually.

We simulated 1000 secondary structures of each mRNA at 7 different temperatures

ranging from 25 ◦C to 50 ◦C. All other parameters in RNAsubopt were used at default

values. In order to quantify the openness of RNA, we used a sliding window length of

7 bases to estimate the fraction of simulated structures in which none of the bases in

that window were involved in base pairing. A window length of 7 was chosen because

the Shine-Dalgarno sequence/RBS in E. coli varies from 4-7 bases (Shultzaberger

et al., 2001; Kozak, 2005). Changing the window length from 5 bases to 10 bases

still resulted in the same qualitative behavior. However, as one would expect, because

of the categorical nature of the data (open or close), the fraction of open or melted

windows in the structure decreased with window length.

An alternative to sampling structures based on Boltzmann’s distribution is to

estimate the least free energy (LFE) structures by constraining the RBS in the

open conformation (Mathews et al., 2004). The LFE of the constrained and the

unconstrained structures can then be used to estimate probability of openness of the

RBS. However, as mentioned earlier, with and increase in temperature, the overall

probability and uniqueness of finding a structure in its LFE state decreases (Huynen

et al., 1997; Voss et al., 2004). Thus, such a method severely limits the ability to

compare the probability of openness across temperatures.

In order to compare the probability of openness across temperatures, we fitted a

logistic model to the fraction of open windows as a function of temperature.

pi(T ) =
eai+biT

1 + eai+biT
(4.1)
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where pi(T ) is the probability of finding the window at position i in a gene, open at

temperature T (◦C), ai and bi are the intercept and slope parameters of how the log-

odds of finding an open window at position i, log( pi(T )
1−pi(T )

) , changes with temperature.

The ratio −ai/bi indicates the temperature at which the probability of openness of a

window is 0.5. Although the probability of openness of RBS is positively correlated

with protein expression, the exact relationship between the two is unknown.

We find that the logistic model serves as a reasonable descriptor of RNA melting

(Fig. 4.2).
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Figure 4.2: Fitting logistic regression.

The solid circles indicate the probability of openness, pi at the RBS of rpoH gene.

The open circles and squares represent two randomly chosen windows within rpoH.

The best fit lines of the logistic regression are given by the solid line for RBS and

dashed and dotted line for the randomly chosen windows.
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At very low temperatures, we expect most of the bases in the RNA to be paired

with other bases. Hence, the probability of openness of a window would approach

0. At very high temperatures, the free energy of base-pairing decreases and most

bases would be unpaired causing the probability of openness to approach 1. Thus

in a specific range of temperatures, determined by the parameters a and b, we

can potentially see a transition between the two states. However, we restrict our

simulations to the biological relevant temperature range for mesophiles (25 ◦C - 55

◦C). In this study, we are primarily interested in the parameter b, which describes

the rate of change of openness with temperature. For each window within each gene,

the Maximum-Likelihood Estimates (MLE) of a and b were calculated using R (R

Development Core Team, 2008).

4.3 Results

4.3.1 Capturing the behavior of RNA thermometers

To show that our method is capable of capturing the increase in openness of the RBS

of an RNA thermometer, we used the rpoH gene sequence of E. coli. The rpoH gene

is a σ-factor involved in the up-regulation of the heat-shock proteins during higher

temperatures. It is one of the most studied RNA thermometers (Yuzawa et al.,

1993; Nakahigashi et al., 1995; Morita et al., 1999). Fig. 4.3 illustrates how as

temperature increases, the RBS of rpoH shows a much higher fold-change in openness

as compared to the regions flanking it. The openness of the RBS at 50 ◦C was 25

folds higher than at 25 ◦C. These results are consistent with the idea that the RBS of

a gene might be under stronger selection to increase its openness with temperature.
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Figure 4.3: Fold-change in the openness of the RBS and regions 5 bases upstream

and downstream of it with temperature.

The fold change is with respect to the openness at 25 ◦C. The RBS of rpoH gene has

a much higher increase in openness with temperature than the regions around it.

We were also able to replicate the experimental results of Waldminghaus et al.

(2005) where they showed that the deletion of guanine at position 71 (G71) of the

gene ibpA in E. coli, resulted in a loss of thermosensing activity. Fig. 4.4 shows that

both the RNA thermometers rpoH and ibpA have a higher rate of increase in their

RBS exposure compared to the mean of the randomly selected 100 E. coli genes.

However, the MLE of b drops to 0 when G71 is removed from the ibpA gene sequence,

as we did not observe a single open window in 1000 runs at all temperatures between

25 ◦C and 50 ◦C at that position.
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Figure 4.4: The distribution of MLE estimates of b of the 76 genes that differed

significantly from zero in E. coli.

rpoH, ibpA and agsA genes show an increase in openness with temperature with

b values 0.213, 0.295 and 0.042, respectively. However, none of these values are

significantly higher than the mean of the distribution (Wilcox test, p-value =

0.156, 0.066 and 0.945, respectively). In addition, when the base G71 is removed

from ibpA sequence, the MLE estimate of b reduces to 0.

4.3.2 Comparing thermometers and non-thermometers

When the rate of openness of RBS, b, was compared across the 100 genes, we found

that b values were not significantly greater than zero for 24 genes at p value =

0.05. This implies that a small fraction of genes did not show a significant change

in openness of its RBS with temperature over the range of temperatures considered.

This is surprising because if RNA thermometers were a rare class of mRNAs, then
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this number would have been far higher. The distribution of the b values for the

remaining 76 genes is shown in Fig. 4.4. Since the distribution of b values is not

a Gaussian distribution (Shapiro-Wilk test, p-value < 10−5), non-parametric tests

were employed for further statistical analyses. Although the two of the three RNA

thermometers, rpoH and ibpA had a higher b value than the mean of the entire

distribution (b̄ = 0.157), these higher rates of openness were not significant (Wilcox

test, p-value = 0.156 and p-value = 0.066, respectively). Interestingly, we find that

RNA thermometer agsA had a b = 0.042, which, although positive, is lower than the

mean of the distribution of b values of non-thermometers. We also show that there is

no qualitative difference in our results when considering only 150 nucleotides of the

mRNA centered around the RBS (see Figure 4.5).
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Figure 4.5: The distribution of MLE estimates of b of the 75 genes that differed

significantly from zero in E. coli.

rpoH, ibpA and agsA genes show an increase in openness with temperature with

b values 0.109, 0.137 and 0.0, respectively. However, none of these values are

significantly higher than the mean (b̄ = 0.158) of the distribution (Wilcox test,

p-value = 0.781, 0.500 and 0.958, respectively). In addition, when the base G71

is removed from ibpA sequence, the MLE estimate of b reduces to 0.

This result did not change even after including non-significant values of b in the

above test. This indicates that RNA thermometers do not differ significantly from

non-thermometers in increasing the openness of RBS with temperature. It argues

that every RNA molecule has an inherent tendency to melt with temperature, albeit

to varying degree. These results are also consistent when considering the window
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spanning the start codon (ATG) (see Fig. 4.6), stability of which has been shown

recently to be correlated with gene expression (Kudla et al., 2009).
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Figure 4.6: The distribution of MLE estimates of b at the start codon (ATG) of

the 85 genes that significantly differ from zero in E. coli.

rpoH, ibpA and agsA genes show an increase in openness with temperature with b

values 0.095, 0.084 and 0.076, respectively. However, all the values are less than mean

of the distribution. Also, when the base G71 is removed from the ibpA sequence, the

MLE estimate of b reduces to 0.054. The results are consistent with what is observed

at the RBS window.

Interestingly, the median transition temperature, given by −a/b, was ∼ 68 ◦C.

Although the majority of the transition temperatures lie outside the temperature

range experienced by mesophiles, it is important to note that this temperature

indicates when the probability of openness is 0.5. Although, the relationship between
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degree of openness and translation initiation is positively correlated, there exists no

quantitative estimate of this relationship. The above values indicate that the RBS

needs to be open only a small fraction of time for translation initiation of most genes

to meet their target protein production rates.

In order to show the generality of the above results, we compared the distribution

of b of rpoH of 81 mesophilic γ-proteobacteria to that of the 100 randomly selected

genes. Surprisingly, of the 81 rpoH sequences, 17 ( 21%) showed no significant

change in their b. We also found that the mean of the two distributions are not

significantly different from each other (Kolmogorov-Smirnov test p-value = 0.794),

further supporting our conclusions. Fig. 4.7 shows the distribution of 76 E. coli

genes with significant b values alongside the significant b values of rpoH genes of 64

mesophilic γ-proteobacteria.
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Figure 4.7: Distribution of significant b values of 76 E. coli genes and 64 rpoH

genes of mesophilic γ-proteobacteria.

The two distributions are not significantly different from each other (Kolmogorov-

Smirnov test p-value = 0.794).

4.4 Discussion

We present here a novel method of studying the melting of RNAs with temperature by

incorporating the entire distribution of the RNA structures at a given temperature.

This approach is more holistic as it takes into account the probability of finding

the RNA in a sub-optimal structure based on its free energy as opposed to previous

studies which have looked at structures with the least free energies only (Avihoo and

Barash, 2005; Morita et al., 1999; Nakahigashi et al., 1995; Waldminghaus

et al., 2005, 2007). Although using the minimum free energy structure makes the
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analyses of structural features easier, it ignores the sub-optimal, yet highly likely

structures that the RNA molecule can also adopt. Using the minimum free energy

structure also becomes progressively problematic with and increase in temperature. It

has been shown that as temperature increases, probability of finding the RNA in the

minimum free energy structure becomes smaller (Huynen et al., 1997) as at higher

temperatures, various secondary structures become equally probable as the energy

landscape becomes shallower and flatter. Thus, for RNAs whose structure changes

with temperature, it becomes important to sample from the entire distribution of

structures. In addition, since our approach is not biased towards any particular

structural feature, it can be used to identify novel thermosensitive structures.

As one would expect, we find that mRNAs have an inherent tendency to melt

with an increase in temperature. This tendency varies with the sequence and

the difference in temperatures. Contrary to our expectations, we find that RNA

thermometers are not unique with respect to their ability to increase their RBS

exposure with temperature. Since it is difficult and expensive to demonstrate the

effect of temperature on the RNA secondary structure in the laboratory, researchers

have focused primarily on known RNA thermometers. However, due to a lack of such

studies on non-thermometers, it has been hard to ascertain whether thermosensing

properties are unique to a special class of RNAs. Our results call for further

experimental exploration of ‘non-thermometers’ with changes in temperatures, before

firm conclusions can be drawn regarding the uniqueness of RNA thermometers.

Physiological similarities between RNA thermometers and non-thermometers with

respect to their melting with temperature, raise an important question that if a large

number of mRNAs show an extensive increase in RBS exposure with temperature,

why don’t we see corresponding changes in their protein expressions. In other words,

why do physiological similarities not lead to functional similarities? This discrepancy

could be explained, in part, by the fact that the amount of protein expression depends

on a variety of factors such as mRNA abundance and stability, amount of regulatory

proteins, the stability of the protein itself, and factors apart from the accessibility of
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the RBS of the mRNA to the ribosome. Hence, although temperature may not result

in significant phenotypic effects of certain genes in terms of protein expression, it does

not preclude the possibility of changes in its RBS exposure. Thus, the above results

indicate that increased RBS exposure does not solely define as to what constitutes

an RNA thermometer.

One of the key challenges in such studies is to devise appropriate measures that

quantify the structural features in analyzing the distribution of secondary structures.

Here, we use a simple measure of openness to quantify the changes in the structure

with temperature. In order to quantify complex structural features like stems and

loops in a distribution of RNA structures, more sophisticated measures could be

developed. Our analysis based on the current state of RNA folding algorithms is

also limited by the simple energy model as well as parameter estimates used in most

algorithms.

Another key limitation of this study is the fact that current RNA folding

algorithms do not take into account the effect of presence of ribosome on the mRNAs

secondary structure. The secondary structure of an mRNA becomes a constantly

changing environment due to the presence and movement of ribosomes along the

mRNA affecting the openness of a window both upstream and downstream of its

current position. Hence, including the effect of ribosomes on the mRNA on translation

initiation in the folding algorithm may be important in identifying RNA thermometers

computationally. This is likely to be a non-trivial task both mathematically and

computationally. However, we believe that incorporating the movement of ribosomes

in RNA folding routine would open new avenues of research in investigating and

understanding not only the effect of ribosome on the RNA structure and in translation

initiation but also on the effect of any RNA-protein interactions on the secondary

structure of the RNA.
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Chapter 5

Conclusion

5.1 Synthesis

Over the years, a number of factors have been proposed to explain specific patterns

of codon usage bias (CUB). Thus, the problem of understanding these patterns is

not of identifying potential evolutionary forces but that of estimating their relative

importance (Shah and Gilchrist, 2010b; Plotkin and Kudla, 2011). One of the

main challenges in understanding the role played by various selective forces in shaping

CUB lies in the fact that there exists no coherent framework to test these hypotheses.

The majority of the work on CUB has been correlative and focussed on using heuristic

indices to quantify the bias (Bennetzen and Hall, 1982; Sharp and Li, 1987;

Wright, 1990). While heuristic approaches play an important role in exploring

datasets, especially in the initial stages of analysis, the lack of mechanistic principles

sheds little light on cause and effect Moreover, since heuristic indices are based on

individual researchers’ intuition, they can lead to contradictory results depending on

the index used (Stoletzki and Eyre-Walker, 2007; Gilchrist et al., 2009).

In contrast, building upon the insights developed in (Gilchrist and Wagner,

2006; Gilchrist, 2007), we have developed a robust framework of incorporating

mechanistic models of protein translation into classical population genetics models

to understand CUB. Since the models developed in this work are based on

mechanistic principles, observed patterns can be related directly to underlying

95



biological mechanisms. Thus, we have laid the groundwork upon which mechanistic

models of various hypotheses can be simultaneously compared and evaluated.

5.1.1 Consensus and disagreement

While explanations for certain patterns of CUB are generally agreed upon, others are

widely debated. For instance, the work presented here as well as other previous studies

suggests that CUB in genes with low expression is driven primarily by biased mutation

rates (Chamary et al., 2006; Hershberg and Petrov, 2008; Subramanian, 2008).

This is due to the fact that in genes expressed at low levels, the efficacy of selection

in driving CUB is weak.

However, in genes with high expression, patterns of CUB are thought be driven

primarily by natural selection, although the nature of selection is debated. For

instance, selection for translation accuracy predicts that codons at sites that are

evolutionarily conserved among proteins, will be better at minimizing missense errors

than their coding synonyms (Akashi, 1994; Arava et al., 2005; Drummond and

Wilke, 2008). This is because, evolutionarily conserved sites are thought to be

functionally or structurally important and errors at these sites might render the

protein nonfunctional. Preference of codons with high tRNA abundances at these

sites is thus thought to support this hypothesis. However, as we show in Chapter 2,

the assumption that codons with high tRNA abundances lead to fewer errors is not

always true and thus selection for translation accuracy is insufficient in explaining

the presence of codons with high tRNA abundance at conserved sites (Shah and

Gilchrist, 2010b).

In addition, it has been observed that the codons at the start of a gene are either

randomly distributed or have a higher proportion of suboptimal codons that the

rest of the sequence. The presence of slow or suboptimal codons at the beginning

of a gene is thought to be adaptive for efficient ribosome queueing and prevention

of collisions among ribosomes translating a given mRNA (Tuller et al., 2010).
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However, (Qin et al., 2004; Gilchrist, 2007; Gilchrist et al., 2009) suggest that

the presence of suboptimal codon at the beginning of a gene can also be explained

by non-adaptive forces. Selection against nonsense errors predicts that the degree of

adaptation in coding sequences should increase along the length of a gene. This is due

to the fact that nonsense errors later in the sequence are more energetically expensive

than earlier in the sequence as the cell has invested greater resources in making the

polypeptide. Since the cost of premature translation termination at the beginning of

gene is relatively small, efficacy of selection in maintaining optimal codons may be

weak. In a study done with Drs. Michael Gilchrist and Russell Zaretzki, Gilchrist

et al. (2009) show that this is indeed the case and that the degree of adaptation in

codon usage to minimize nonsense errors increases not only along the length of a gene

but also with gene expression.

5.2 Beyond translation

Understanding the factors responsible for shaping patterns of codon usage provides

important insights and estimates of processes affecting the fundamental process

of protein translation. However, insights gained from this understanding has far-

reaching implications for a wide range of fields including that of epidemiology, systems

biology and organismal and molecular evolution.

5.2.1 Identifying genes under selection

With the exponential growth in genomic data, it is now possible to identify the sets

of genes that are under strong selection in various species. Identifying these genes

can allow us to make inferences about the organisms’s environment as well as on its

ecology. For instance, the degree to which an aquatic organism expresses DNA UV

repair pathways should reflect the amount of time it spends in the upper reaches of

the water column (Buma et al., 2003).
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Traditionally the nature of selection acting on a gene - stabilizing or directional,

is identified by comparing it with orthologues from its closely related species. The

ratio of non-synonymous to synonymous substitutions (dN/dS) in these sequences

provides a measure of type of selection the gene is under (Nei and Gojobori, 1986;

Yang, 1998). If dN/dS� 1, the sequence is thought be under stabilizing or purifying

selection and if dN/dS� 1, the sequence is thought be under positive or directional

selection. However, one of the fundamental assumptions made in this analysis is that

synonymous substitutions are neutral. As shown in this work, this is overly simplistic

and could lead to various biases. The work presented here allows us to quantify the

strength of selection on synonymous codons of a sequence given its expression level

and will help in defining better measures of selection.

An alternative to using dN/dS is using heuristic measures of codon usage bias (e.g.

RSCU, CAI, Fop, E(g), Nc, CBI, CodonO, and RCB (Sharp and Li, 1987; Ikemura,

1981; Karlin and Mrázek, 2000; Wright, 1990; Bennetzen and Hall, 1982;

Wan et al., 2006)). As mentioned earlier, a variety of heuristic measures have been

developed to quantify the degree of bias in a statistical sense. In contrast to these

heuristic measures, we have also developed an index of adaptation based on a specific

biological process (Gilchrist et al., 2009). In any case, such measures allow us to

identify genes that are under selection using the degree of bias observed in their codon

patterns.

5.2.2 Phylogenetic inference and codon bias

One of the fundamental challenges in evolutionary biology is to understand the

phylogenetic relationships among organisms. In recent years, molecular data has

replaced morphological traits in building phylogenetic trees (Jukes and Cantor,

1969; Fink, 1986; Posada and Crandall, 1998). Models for building phylogenetic

trees using gene sequences can be broadly classified into two categories - nucleotide

based and codon based models (Goldman and Yang, 1994). As the name
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suggests, nucleotide based models account for changes among sequences at the

level of individual nucleotides by accounting for heterogeneity in mutations rates

among various nucleotides. Codon based models use codons as the fundamental

unit of change when building trees rom multiple organisms. In reality, codon based

models are really amino acid based models as they account for changes in only

those codons that lead to different amino acid. This is generally done by penalizing

codon substitutions based on the differences in properties of amino acids that are

substituted. As in the case of dN/dS, synonymous substitutions are generally

thought to be neutral. In contrast, along with Drs. Laura Kubatko (OSU) and

Michael Gilchrist, I have worked on developing codon based models for phylogenetic

inference that explicitly takes into account the effects of synonymous substitutions.

Such models would potentially provide greater resolution and lead to more accurate

phylogenies.

5.2.3 Codon usage and medicine

A large number of sequenced organisms are pathogens.However, it is unlikely that

our understanding of these organisms is ever going to rival that of model organisms.

For many of them, their sequence data might be the only source of information we

may have for a while. Thus by parsing genomic patterns such as those of codon usage

in an evolutionary context can help us understand the biology of the organism. For

example, it has been shown that the patterns of codon usage in many viruses reflect

an adaptation to the tRNA pools of their host (Zhou et al., 1999; Plotkin and

Dushoff, 2003; Grote et al., 2005; Coleman et al., 2008). Recently, (Coleman

et al., 2008) showed that by changing only the codon usage of a virus genome but

keeping the amino acid sequence same, one can dramatically reduce the infectivity

of the virus. Moreover, since the virus still produces the same proteins, albeit at a

much lower rate, it elicits the same immune response and thus such modified viruses

could be used for developing vaccines.
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