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ABSTRACT 

 The period between pollination and fertilization, or the progamic phase, is a critical life 

history stage in seed plants and innovations in this life history stage are hypothesized to have 

played an important role in the diversification of flowering plants. Over the course of this 

dissertation research, I investigated programic phase development in Nymphaeales (water lilies), 

an ancient angiosperm lineage that diverged from the basalmost or next most basal node of the 

angiosperm phylogenetic tree and that is represented in the oldest angiosperm fossil record. I 

used field experiments and microscopy to document pollination biology, breeding system, and 

reproductive developmental traits in two families of Nymphaeales: Cabombaceae (Brasenia, 

Cabomba) and Hydatellaceae (Trithuria). Nymphaeales exhibits considerable variation in 

reproductive traits and true carpel closure, wind-pollination, and a primarily selfing breeding 

system have arisen independently in the lineage. Pollen tube pathway length, timing of stigma 

receptivity, and pollen tube growth rates are conspicuous traits that have undergone considerable 

modification in concert with shifts in pollination biology and breeding system. Post-pollination 

developmental processes in Nymphaeales appear to experience selective pressures similar to 

those experienced by more derived angiosperms and to evolve in similar ways. Nymphaeales 

also exhibits traits, such as accelerated pollen tube growth, callosic pollen tube walls, and the 

formation of callose plugs, that are almost certainly plesiomorphic in  angiosperms and may have 

facilitated modification of carpel structure and progamic phase ontogenies. The finding that 

pollen tube traits that underlie developmental flexibility were already in place before the 

divergence of Nymphaeales supports the hypothesis that innovations in male gametophyte 

development were instrumental in facilitating early angiosperm diversification.  
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INTRODUCTION 

 Angiosperms, or flowering plants, comprise the largest and most diverse group of plants 

on Earth. At over 260,000 species, this clade exhibits rich taxonomic and ecologic diversity that 

has dominated plant communities since the end of the Cretaceous (Lupia et al. 1999). 

Angiosperms also comprise the youngest major plant clade, with angiosperm fossils first clearly 

present in the fossil record in the early Cretaceous (~140 mya; e.g Friis et al. 2010), although 

molecular dates indicate an earlier crown group origin (e.g 140-180 mya, Bell et al. 2005; 130 

mya, Magallón and Castillo 2009; 182-257 mya, Smith et al. 2010). 

 The evolutionary success of angiosperms has been repeatedly attributed to innovations in 

reproductive biology. Angiosperms exhibit a suite of novel reproductive traits that include highly 

reduced male and female gametophytes, a closed carpel with an internalized pollen tube 

pathway, pollen tubes with callosic walls, and increased pollen tube growth rates, as well as 

mechanisms for pre-zygotic mate discrimination, such as pollen competition or self 

incompatibility (e.g. Stebbins 1970, 1974; Willson and Burley, 1983; Doyle and Donoghue 

1986; Mulcahy and Mulcahy 1987; Williams 2008, 2009). The majority of these developmental 

events occur during the life history stage known as the progamic phase. 

 

THE PROGAMIC PHASE 

 The progamic phase is the life history stage in seed plants that begins with pollination 

and ends with fertilization (Cresti et al. 1992). In angiosperms, progamic phase events take place 

within the confines of the closed carpel. A pollen grain lands on the stigma and germinates, with 
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the pollen tube emerging through the aperture of the pollen grain. The pollen tube grows through 

the style, typically through a secretion-filled canal or a region of specialized cells (the 

transmitting tract), to reach the ovarian cavity. Pollen tubes must then enter an ovule through the 

micropyle, traverse the nucellus, and deliver two sperm nuclei to the female gametophyte. One 

nucleus fuses with the female gamete (egg) to form the zygote and the other fuses with one or 

more polar nuclei to produce the endosperm. Achieving fertilization requires coordination among 

multiple ontogenies so that male and female gametes meet at the correct developmental stage 

(Cresti et al. 1992; Friedman 1999; Williams et al. 1999; de Graaf et al. 2001; Herrero 2003). 

Despite the necessity of tight coordination, lability in progamic phase ontogenies has allowed the 

evolution of  diverse reproductive developmental schedules and flower structures. The duration 

of the progamic phase can vary from less than 30 min to over 12 months and the pollen tube 

pathway can range from less than 0.5 mm to over 500 mm in length (Maheshwari 1950; 

Williams 2008). Understanding the causes and consequences of this diversity is of considerable 

interest in studies of angiosperm evolution (Willson and Burley 1983; Mulcahy and Mulcahy 

1987; Williams 2008). 

 It is known that both pre- and post-pollination processes affect fertilization biology. 

Pollen size and quality, determined prior to pollination, can influence pollen tube growth rates 

and lengths (Baker and Baker 1979; Williams and Rouse 1990), as can the size and genetic 

diversity of pollen loads that are delivered to stigmas during pollination (Németh and Smith-

Huerta 2003; Mazer et al. 2010). After pollination, pollen tubes interact with each other in the 

style, under the influence of both female sporophytic tissues and the female gametophyte (de 
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Graaf et al. 2001). Environmental factors, such as temperature, also affect pollen tube growth 

rates (Hedhly et al. 2003).  

 While we have some understanding of the abiotic and biotic factors that influence 

progamic phase development, particularly pollen tube growth, our knowledge of what forces 

shape the evolution of the progamic phase in flowering plants is much more limited (but see 

Williams 2008). Comparative investigations of integrated progamic phase developmental 

processes set in a phylogenetic context are necessary to better understand when key traits arose 

and how labile each is in the context of the others. Characterizing developmental and structural 

traits of the progamic phase in early-diverging lineages of angiosperms is particularly important 

for understanding the role progamic phase traits may have played in angiosperm diversification.  

 

EARLY-DIVERGENT ANGIOSPERM LINEAGES 

 There is increasing resolution in the angiosperm phylogenetic tree and it has become 

clear that several lineages diverged from the rest of angiosperms early in angiosperm history, 

from nodes basal to origin of the monocot plus eudicot clade that includes the vast majority of 

flowering plant species (e.g Qiu et al. 1999, 2006; Löhne and Borsch 2005; Saarela et al. 2007; 

APG III 2009). These include the Magnoliids (Magnoliales, Laurales, Canellales, Piperales) plus 

Chloranthales (Ascarina, Chloranthus, Hedyosmum, Sarcandra), Austrobaileyales 

(Austrobaileya, Illicium, Kadsura, Schisandra, and Trimenia), Nymphaeales, and Amborellales 

(Amborella; Figure 1.1; all figures referenced in this chapter are found in Appendix 1). In the 

following chapters, I will refer to these lineages as “early-divergent” and to the taxa that 

collectively comprise these lineages as “basal angiosperms.” This term is commonly used in the 
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literature to refer to these, or some subset of these taxa and references the basal nature of the 

nodes from which their respective lineage diverged. It is not meant to imply that these extant 

taxa are in any way necessarily ancestral or primitive. These lineages have had the same amount 

of time to diversify and evolve as all other angiosperms (see Crisp and Cook 2005).  

 Studies of these lineages, however, can provide valuable insight into early angiosperm 

history and angiosperm diversification, as traits that are shared across this basal grade have a 

strong likelihood of being ancestral in flowering plants. It is true that some shared traits are 

likely independently evolved in multiple lineages (Crisp and Cook 2005). For example, a 

transition to the aquatic habit in both water lilies and the basal eudicot, Ceratophyllum may have 

led to convergent evolution of traits associated with the aquatic lifestyle, such as absence of a 

vascular cambium, highly dissected leaves, and floating leaves with high photosynthetic rates 

(Crisp and Cook 2005). However, this only underscores the importance of comparative 

developmental studies of basal lineages. Understanding development can shed light on whether 

characters have evolved independently or whether they represent a plesiomorphic state. Studies 

of early-diverging lineages can also provide insight into the likely direction of evolutionary 

transitions and possible developmental constraints in early angiosperms (e.g. Friedman 2006).  

   

NYMPHAEALES AS A STUDY SYSTEM 

 The order Nymphaeales, or water lilies, has long been considered to be among the oldest 

independent lineages of angiosperms and molecular studies have consistently indicated that 

Nymphaeales diverged from the basal-most or next most basal node of the extant angiosperm 

phylogenetic tree (Figure 1.1; e.g. Walker 1974; Doyle and Donoghue 1986; Hamby and Zimmer 
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1992; Doyle 1998: Les et al. 199l; Qiu et al. 1999, 2006; Löhne and Borsch 2005; Saarela et al. 

2007). Water lilies are also well represented in the oldest angiosperm fossil records (Friis et al. 

2001, 2003, 2009, 2010; Wang and Dilcher 2006; Mohr et al. 2008; Taylor et al. 2008). 

Nymphaeales traditionally encompasses two well-supported monophyletic families: 

Cabombaceae (Brasenia, Cabomba) and Nymphaeaceae (Victoria, Euryale, Nymphaea, 

Ondinea, Barclaya, Nuphar; Les et al. 1999; Borsch et al. 2008) and recent molecular data have 

placed the family Hydatellaceae (Trithuria) as sister to traditional Nymphaeales (Saarela et al. 

2007). The intergeneric relationships within Nymphaeales have been elucidated in recent years, 

including the separation of Nymphaea into five subgenera (Figure 1.1), although there is still 

conflict concerning the exact relationships among “core Nymphaeales” (Nymphaea, Ondinea, 

Victoria, Euryale). This conflict arises primarily due to probable paraphyly in Nymphaea. The 

clade comprising Victoria and Euryale is likely nested within Nymphaea (Figure 1.1) and 

monotypic Ondinea (O. purpurea) may be nested within the Nymphaea sub-genus Anecypha and 

synonomized with Nymphaea (N. ondinea; Borsch et al. 2007). 

 Among basal lineages, the Nymphaeales are particularly well suited for studying 

evolutionary transitions in pollination and fertilization biology because they exhibit much more 

variation in reproductive traits than other basal angiosperms. Nymphaeales is the earliest 

diverging lineage that includes extant species with hermaphroditic flowers and flower size ranges 

from 30-50 cm wide in Victoria (Figure 1.2A; Schneider and Williamson 1993) to 1-2 cm in 

diameter in Cabombaceae (Figure 1.2G–H; Williamson and Schneider 1993) to less than 2 mm 

in diameter in Trithuria (Figure 1.2I).  
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 Nymphaeales also exhibit a range of pollination strategies. Nymphaea (Figure 1.2C), 

Ondinea (Figure 1.2D), Barclaya (Figure 1.2E), and Nuphar (Figure 1.2F) are pollinated by 

beetles, flies, bees, or some combination (Schneider and Moore 1977; Schneider 1983; 

Capperino and Schneider 1985; Schneider and Williamson 1993, 1994; Seymour and Matthews 

2006; Thien et al. 2009), whereas Victoria (Figure 1.2A) is specialized for pollination via 

entrapment of Dynastid beetles (Cyclocephala; Prance and Arias 1975), Cabomba (Figure 1.2G) 

is fly pollinated (Schneider and Jeter 1982), and Brasenia (Figure 1.2H) is wind-pollinated 

(Osborn and Schneider 1988). Trithuria has been hypothesized to exhibit pollination by either 

wind or water (Rudall et al. 2007). Evolution of these various pollination strategies has had 

consequences for reproductive morphology and phenology in Nymphaeales and may have 

consequences for progamic phase development. 

 There is also variation in sexual system within Nymphaeales, particularly in the genus 

Trithuria. Of the twelve species of Trithuria, four have bisexual reproductive structures, four are 

dioecious, and four are cosexual (monoecious), with male and female reproductive structures on 

the same plant (Yadav and Janarthanam 1995; Sokoloff et al. 2008). Among early-divergent 

angiosperm lineages, this variation in sexual system is unique to Trithuria. Most other basal 

genera, including all of Nymphaeaceae and Cabombaceae, as well as Austrobaileya, Illicium, and 

Trimenia (Austrobaileyales) exhibit only bisexual flowers, whereas other genera, including 

Amborella, Hedyosmum, Ascarina, and those in the family Myristicaceae (Magnoliales), exhibit 

only unisexual flowers and are dioecious (e.g. Endress 2001, 2010). Diversity in sexual system in 

Trithuria may have consequences for breeding system, reproductive morphology, and pollen 

tube development.  
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 Nymphaeales also exhibits diversity in carpel morphology. Both Cabombaceae and 

Hydatellaceae are apocarpous, with carpels free, whereas Nymphaeaceae are syncarpous, with 

multiple carpels fused together (Williamson and Schneider 1993; Schneider and Williamson 

1993). Furthermore, carpels in Cabombaceae and Hydatellaceae are sealed only by secretion, 

whereas carpels in Nymphaeaceae are partially fused at maturity (Endress 2001, 2005; Rudall et 

al. 2007). Cabombaceae have long stylar necks and few ovules per carpel (Brasenia = 2, 

Cabomba = 3), while Nymphaeaceae lack styles and have deep ovaries filled with numerous 

ovules (Schneider and Williamson 1993). Hydatellaceae lack styles, having instead long 

stigmatic hairs, and have ovaries containing one ovule (Rudall et al. 2007). Carpel structure 

provides the context for developmental events that occur during the progamic phase and, 

therefore, variation in carpel form potentially underlies modification of these developmental 

events.  

  

GOALS OF THE DISSERTATION RESEARCH 

 The goals of this research were (1) to document post-pollination biology and the 

progamic phase developmental program in Nymphaeales and  (2) to determine the consequences 

of ecological transitions, such as shifts in pollination syndrome, habitat, or breeding system, on 

reproductive morphology and progamic phase processes. This dissertation work focuses on five 

water lily species comprising two families: Cabombaceae (Brasenia, Cabomba) and 

Hydatellaceae (Trithuria). I chose to focus on Cabombaceae and Hydatellaceae because they 

exhibit some of the greatest structural and ecological divergence in water lilies, yet next to 

nothing was previously known about progamic phase development in these families. All 
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previous investigations of the progamic phase in water lilies were in Nymphaeaceae (Nymphaea 

capensis, Orban and Bouharmont 1995; Nuphar polysepala, Friedman and Williams 2003).  

 In Chapter II, I describe a comparative investigation of progamic phase development in 

the two genera of Cabombaceae and discuss evolutionary transitions in this family in light of 

their divergent pollination syndromes (wind vs. fly). In Chapter III, I discuss a study of 

reproductive development, pollination syndrome, and breeding system in Trithuria submersa. I 

expanded on this work in a comparative study, described in Chapter IV, of progamic phase 

development in three Trithuria species, T. submersa, T. austinensis, and T. australis. This 

chapter explores the evolution in pollen tube growth and progamic phase development in the 

context of breeding system divergence in Trithuria. Finally, in Chapter V, I highlight several 

conclusions regarding progamic phase evolution in water lilies that can be drawn from the results 

of this dissertation work, in combination with results from previous studies of Nymphaeales 

reproductive biology (e.g. Friedman and Williams 2003; Williams et al. 2010).  
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APPENDIX 1 

 

 

Figure 1.1. Phylogenetic relationships among genera of Nymphaeales and other selected 

angiosperm lineages (modified from APG III 2009; Borsch et al. 2008; Saarela et al. 2007). Note 

hypothesized paraphyly of the genus Nymphaea, which is divided into 5 subgenera. Blue 

branches = Nymphaeaceae, green = Cabombaceae, black = Hydatellaceae, gray = water lily stem 

lineage.  



 

 15 

 

 

 

Figure 1.2. Representative staminate flowers of water lily genera. A–F: 

Nymphaeaceae: (A) Victoria cruziana with anthers (arrow) dehiscing over central 

gynoecium. (B) Euryale ferox. (C) Nymphaea odorata with dehiscing anthers 

(arrow) surrounding and bending over central syncarpous gynoecium. (D) 

Ondinea purpurea with dehiscing anthers (arrow) reflexed away from central 

stigmas. (E) Barclaya motleyi. (F) Nuphar lutea with dehiscing anthers (arrow) 

reflexed from the central syncarpous gynoecium (arrowhead). G–H: 

Cabombaceae: (G) Cabomba caroliniana with six dehiscent anthers (arrow) and 

three carpels (arrowhead) aggregated in the floral center. (H) Brasenia schreberi 

with many dehiscing anthers (arrow) supported by long, slender filaments above 

centrally aggregated carpels (arrowhead)  (I) Hydatellaceae: Trithuria austinensis 

male plant with three dehiscing anthers (arrow) held above the water surface on 

long filaments. Photo credit (B, D, E): EL Schneider. 
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CHAPTER II:  CONSEQUENCES OF POLLINATION SYNDROME EVOLUTION FOR 

POST-POLLINATION BIOLOGY IN AN ANCIENT ANGIOSPERM FAMILY 

 

 

This chapter is a slightly modified version of an original research article published in the June 

2009 issue of the International Journal of Plant Sciences. 

 

  

 Taylor M.L. and J.H. Williams. 2009. Consequences of pollination syndrome evolution  

 for postpollination biology in an ancient angiosperm family. International Journal  

 of Plant Sciences 170: 584–598. 

 

 

In the following chapter, the words “we” and “our” refer to my co-author and me. My 

contributions to this paper include (1) co-formation of the original hypothesis (2) modification of 

experimental pollination techniques and completion of all field experiments (3) completion of all 

microscopical analyses (4) construction of figures, and (5) most of the writing.  
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ABSTRACT 

Evolutionary shifts from insect to wind pollination involve a host of modifications to floral 

structure and phenology, but little is known about how floral modifications that facilitate 

pollination might affect the fertilization process. Within the water lily family Cabombaceae, 

there is evidence that wind pollination arose recently in Brasenia, whereas the sister genus 

Cabomba became specialized for fly pollination. Both species have an apomorphic stylar 

extension, which in Brasenia became greatly elongated to produce a much larger stigmatic 

surface. Consequently, pollen tubes in Brasenia must travel much farther to reach ovules, and 

because mean pollen tube growth rates are similar (750–950 !m/h), fertilization occurs 

approximately four hours later in Brasenia than in Cabomba. In both genera, pollen tubes grow 

between cells of the sub-stigmatic ground tissue and then within an open, secretion-filled stylar 

canal and ovarian cavity. In Brasenia, early pollen tube development is slower than in Cabomba, 

which may be a result of displacement of flower opening to an earlier, cooler time of day. Our 

results show that modifications to carpel ontogeny and structure associated with the transition to 

wind pollination had consequences for pollen tube development and fertilization. 

 

INTRODUCTION 

 The progamic phase is the life history stage in seed plants that begins with pollination 

and ends with fertilization. In angiosperms this process takes place within the confines of the 

closed carpel (stigma, transmitting tract, ovarian cavity, and ovule) and requires coordination 

among multiple ontogenies so that male and female gametes meet at the correct developmental 

stage (Friedman 1999; Williams et al. 1999; Herrero 2003). The progamic phase is characterized 
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by tremendous developmental and structural diversity (Maheshwari 1950). For example, in 

angiosperms, the duration of the progamic phase can vary from less than 30 min to over 12 

months and the pollen tube pathway can range from less than 0.5 mm to over 500 mm in length 

(Williams 2008). Understanding the forces that shape such diversity has long been of interest 

(Willson and Burley 1983; Mulcahy and Mulcahy 1987; Williams 2008). 

 It is well known that fertilization biology is affected by both pre- and post-pollination 

processes. For example, pollen size and quality (determined by the paternal parent) can influence 

pollen tube growth rates and lengths (Baker and Baker 1979; Williams and Rouse 1990). After 

pollination, development of pollen is contingent on properties of the carpel, which forms the 

pollen tube pathway within which pollen tubes interact, and signaling by the female gametophyte 

(de Graaf et al. 2001). Competition and selection can occur during pollen germination, pollen 

tube growth, and fertilization, causing both maternally-derived and paternally-derived progamic 

phase traits to evolve.  

 Conversely, progamic phase traits might become modified indirectly when selection acts 

primarily on floral traits. We know that pollinator identity can often be predicted on the basis of 

floral biology (Stebbins 1970; Faegri and van der Pijl 1979; Waser 1983; Proctor et al. 1996; 

Peeters and Totland 1999; Weller et al. 2006) and shifts in pollination syndrome are often 

associated with dramatic changes in floral morphology and flowering schedule (Fulton and 

Hodges 1999; Schemske and Bradshaw 1999; Castellanos et al. 2003; Friedman and Barrett 

2008). Because the progamic phase takes place within the flower, changes in floral size or 

phenology might affect coordination of the fertilization process. Shifts in the size of flowers are 

strongly correlated with shifts between insect and wind pollination (Friedman and Barrett 2008) 
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and, if the size of the carpel scales with that of the flower, then the length of the pollen tube 

pathway will be affected. Changes in pollen tube pathway length will, in turn, affect the duration 

of the progamic phase, unless pollen tube growth rate evolves to compensate. Changes in 

pollination syndrome can also affect the timing and duration of pollen dispersal, which must, in 

turn, have consequences for the timing of stigma receptivity. Changes in the onset or duration of 

stigma receptivity may then have downstream effects on pollen tube growth or ovule longevity. 

There is a wealth of comparative studies on the evolution of floral and pollination biology (e.g. 

Lloyd and Barrett 1996), but relatively few on comparative progamic phase biology (e.g. 

Williams and Rouse 1990; Williams 2008), and none that we know of that connect the two. In 

this study, we hypothesized that the floral traits involved in pollination syndrome divergence also 

caused developmental changes in the progamic phase. We sought to determine the nature of such 

changes by measuring rates, timing, and durations of progamic phase ontogenies in Brasenia 

schreberi JF Gmelin and Cabomba caroliniana Gray, within the water lily family Cabombaceae. 

Brasenia is wind pollinated (Osborn and Schneider 1988), while Cabomba is pollinated by small 

flies (Diptera; Schneider and Jeter 1982). Their floral morphologies and phenologies differ in 

many attributes related to their divergent pollination syndromes (Schneider and Jeter 1982; 

Osborn and Schneider 1988).  

 Cabombaceae is an important family in which to study evolutionary transitions in 

pollination and fertilization biology because of its position within Nymphaeales s.l. 

(Nymphaeaceae, Cabombaceae, Hydatellaceae), a lineage that is represented in the oldest 

angiosperm fossil records (Friis et al. 2001; Friis et al. 2003; DW Taylor et al. 2008), and that 

diverges from the basal-most or next most basal node of the extant angiosperm phylogenetic tree 



 

 21 

(e.g Qiu et al. 1999, 2006; Löhne and Borsch 2005; Saarela et al. 2007). Cabombaceae possesses 

a suite of reproductive traits that are thought to be plesiomorphic in angiosperms. Their bisexual 

flowers are apocarpous, with open, ascidiate carpels and few ovules (Endress 2001). They have 

monosulcate pollen (Osborn et al. 1991) and likely a four-celled female gametophyte with 

diploid endosperm (Galati 1985; Williams and Friedman 2002; Rudall et al. 2008). Their 

pollination syndromes have been well studied (Schneider and Jeter 1982; Osborn and Schneider 

1988), but little is known about their pollination to fertilization biology. Thus, the divergence in 

pollination syndrome between Brasenia and Cabomba is of general interest in that it represents 

an evolutionary transition in floral biology between two genera that lack many of the usual floral 

features characteristic of derived lineages of monocots and eudicots. 

 The specific goal of this study was to characterize progamic phase ontogenies and mature 

traits (from stigma receptivity to egg receptivity) in Brasenia and Cabomba and to identify 

differences that might be associated with their divergent pollination syndromes. We also review 

what is known of floral biology as it relates to the progamic phase in Nymphaeaceae and other 

outgroups to better understand apomorphies of Cabombaceae.  

 

METHODS 

FIELD SITES 

 Experimental pollinations of Brasenia schreberi J.F. Gmel were conducted in June and 

July of 2006 and 2007 at Monterey Lake, Putnam County, TN, USA (36°06’ N, 85°14’ W). 

Experimental pollinations of Cabomba caroliniana Gray were conducted in July 2006 and 2007 
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at Raccoon Creek, Jackson County, AL, USA (34°46’ N, 85°50’ W). Voucher specimens from 

both populations are deposited in the University of Tennessee Herbarium (TENN). Because 

temperature is known to affect rates of development, daily mean and 7:00 am (Central Daylight 

time) temperature were obtained from the Monterey, TN and Scottsboro, AL Weather Stations 

for the duration of the field study (National Climactic Data Center, online at 

<http://www.ncdc.noaa.gov/oa/ncdc.html>). In addition, the hourly temperature and relative 

humidity during May and June 2007 were measured at Monterey Lake (<10 m from plants) with 

a HOBO Pro Series Weatherproof Data Logger (Forestry Suppliers, INC., Jackson, MS).  

 

Pollen exclusion treatments 

 Brasenia emergent buds were caged on the day before pollination treatment with cages 

modified from Osborn and Schneider (1988). One-quart Styrofoam cups with bottoms removed 

and three “windows” cut out of the sides were attached to 20 cm
2
 bases constructed from one-

quarter-inch insulating Styrofoam. The center of each base was removed to allow cages to float 

over flowers, held in place with floating leaves. To exclude windborne pollen, cages were 

covered with Spunbond Polypropylene non-woven fabric with a maximum gap diameter of 70 

µm.  

 Cabomba first-day flowers were caged before anther dehiscence. Cabomba cages were 

constructed by cutting away the top two-thirds of 1-qt. Styrofoam cups. Cup bottoms were 

removed and replaced with bridal veil (maximum gap diameter = 200 µm) to exclude insects. 

Cages were placed over flowers and attached to peduncles with nylon fishing line. Caging 
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treatments had no apparent effect on the timing of floral submergence, emergence, opening, or 

closing in either Brasenia or Cabomba. 

 

Stigma receptivity and pollen viability 

 The duration of stigma receptivity was determined by measuring pollen germination 

success following experimental pollinations. Dehiscent anthers were collected across the lake 

from pollen recipients and kept in a desiccation chamber on ice to conserve pollen viability. To 

mimic natural wind pollination in Brasenia, anthers were held approximately 3 cm above first-

day flowers and tapped twice to release pollen. To simulate fly pollination in Cabomba, 

dehiscent anthers were gently brushed across the stigmas of first-day flowers. Brasenia flowers 

were pollinated at 7:30 am, 8:30 am, 9:30 am, 10:30 am, and 11:30 am, with the first pollination 

time corresponding to the time when anthers typically first dehisced. Pollen germination rate was 

calculated as the percentage of pollen germinated on two stigmas/flower collected at least one 

hour after pollination (hap). Cabomba flowers were pollinated at 11:00 am, 12:00 pm, 12:30 pm, 

1:00 pm, 2:00 pm, and 3:00 pm. Again, the first pollination time corresponded to the onset of 

anther dehiscence. Pollen germination rate was calculated as above from one stigma/flower 

collected at least one hap. For both species, 10 second-day flowers were experimentally 

pollinated to assess stigma receptivity beyond the first day. 

 Stigmas were placed onto glass slides immediately after collection. A drop of stain 

solution (1mg/1mL aniline blue [AB] plus 1mg/mL of sodium azide in 0.33 M K3PO4 and 10 mL 

glycerol; Marshall and Diggle 2001) was added. Slides were covered, stored in a humid chamber 

for 24 h, and examined under fluorescent light with an Olympus (Lake Success, New York, 
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USA) BX60 compound microscope. Pollen was scored as germinated if a clearly defined pollen 

tube, at least one-half the length of the pollen grain, was seen emerging from the pollen aperture. 

The number and location of germinated and ungerminated grains was recorded.  

 To determine if differences in pollen germination percentage over time might be due to 

differences in pollen viability over time rather than to stigma quality, in vitro germination 

success of Brasenia pollen was determined. Pollen was tapped onto depression slides containing 

10 % sucrose solutions at 8:00 am, 9:00 am, 10:00 am, 11:00 am, 12:00 pm, 8:00 pm, and 8:00 

am the following day. Slides were incubated for 24 h before viewing as above. Germination 

percentage was calculated from 100 grains/slide with four replicates/treatment.  

 

Pollen germination  

 Once the timing of stigma receptivity was determined, additional flowers were caged and 

experimentally pollinated at the optimal time to determine typical time to pollen germination. 

Brasenia stigmas were collected and fixed at 15, 30, 45, 60, 75, and 90 min after pollination 

(map), and Cabomba stigmas were fixed at 15, 30, 45, 60, 120, 180, and 240 map. Stigmas were 

stained, stored, and observed as above. As water content of dispersed pollen can affect 

germination speed (Franchi et al. 2002), we measured both fresh and dry weight of pollen from 

dehiscing anthers. Dry weight was calculated after drying fresh pollen at 50° C for 72 h. Water 

content was expressed as a percent of fresh weight.  

 To determine whether pollen load size differed by location on the stigma (top, middle, 

bottom thirds of stigma) or whether germination success was affected by pollen load size or 
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location on the stigma, one- and two-way ANOVAs, respectively, were run on SAS 9.13 (SAS 

Institute Inc, Cary, NC, USA), with plant as the experimental unit.  

 

Pollen tube growth and ovule development 

 To investigate pollen tube growth, first-day flowers of Brasenia and Cabomba were 

pollinated as discussed earlier. Brasenia flowers were collected at 2, 4, 6, 8, 10, 16, 24, 28, 34, 

48, 72, and 96 hap, and Cabomba flowers were collected at 1, 2, 4, 6, 8, 10, 22, 24, 28, 32, and 

48 hap. 

 Whole carpels were removed from flowers and chemically fixed for at least 24 h in 3:1 

95 % ethanol: acetic acid, FAA (40 % formaldehyde, glacial acetic acid, and 95 % ethanol), or 

Karnovsky’s fixative (50 % gluteraldehyde and 16 % paraformaldehyde in 0.2 M Phosphate 

buffer [pH 7.4]). Specimens fixed in 3:1 and FAA were then rinsed in 70 % EtOH, while those 

fixed with Karnovsky’s fixative were buffer-washed and dehydrated in a graded ethanol series. 

All specimens were stored in 70 % EtOH. To document pollen tube lengths, as well as overall 

pollen tube and carpel morphology, specimens were hand sectioned, placed on glass slides, 

stained with aniline blue for 4-8 h, and viewed under fluorescent light with a Zeiss Axioplan II 

compound microscope (Carl Zeiss, Oberkochen, Germany). Imaging of carpel anatomy and 

pollen tubes and analysis of sizes of structures was performed using Zeiss Axiocam camera and 

Axiophot 4.0 micrograph analysis software. Maximum pollen tube pathway length was measured 

from the stigmatic apex to the apical micropyle along the pollen tube pathway. The distance the 

pollen tube had reached into the carpel and the actual pollen tube length (pollen grain to tube tip) 

were measured. Ovules were scored as entered if a pollen tube was observed within the 
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micropyle. For observation of pollen tube nuclei, aniline blue-stained material was rinsed in 

distilled water, and stained with 4',6-diamidino-2-phenylindole (DAPI) for four to five hours.  

For histological analysis, carpels were dehydrated to 95 % EtOH, and then infiltrated and 

embedded in JB-4 polymer (Polysciences, Inc., Warrington, PA, USA) following standard 

protocols. Specimens were serial-sectioned with a Sorvall Dupont JB-4 microtome (Newtown, 

Connecticut, USA), using glass knives. Serial sections (5 µM) were mounted on glass slides and 

stained with 0.1 % toluidine blue O (TBO) for general histology and imaged with a Zeiss 

Axioplan 2 compound microscope.  

 Pollen tube growth rates were calculated at each timepoint from the leading pollen tube in 

each carpel as length from pollen grain to tube tip divided by time since pollination minus 15 

minutes to account for pollen germination (see “Results”; mean n/timepoint = 6 and 11 for 

Brasenia and Cabomba, respectively). We also estimated average growth rate within a time 

interval as the difference between average pollen tube lengths at any two time points divided by 

the time interval. 

 

RESULTS 

Floral cycle and anther dehiscence 

 Brasenia and Cabomba are strongly protogynous; both typically have a two-day floral 

cycle with the female phase on the first day and male phase on the second (for further discussion, 

see Osborn and Schneider 1988; Schneider and Jeter 1982). In Brasenia, floral buds emerged 

between 5:00 and 6:00 am, with second-day flowers emerging slightly earlier than first-day 

flowers, and opened at approximately 7:00 am. Carpels of first-day (female phase) flowers are 
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reflexed outward, exposing their long stigmatic crests (Figure 2.1A; all figures referenced in this 

chapter are found in Appendix 2). Anthers are closed and on short filaments below stigmas 

(Figure 2.1A). 

 Brasenia first-day flowers closed by 1:00 pm and became submerged in the late 

afternoon. Flowers reemerged the next morning, opening with anthers elevated on elongated 

filaments well above the central aggregation of carpel tips (Figure 2.1B). Anther dehiscence 

began at approximately 7:30 am. Anthers within a flower dehisced simultaneously and generally 

emptied within minutes of opening. Within the population, all flowers began to release pollen 

within 1 h of each other and almost all anthers were empty within 2 h after the first flowers 

opened, thus pollen dispersal was generally over by about 9:30 am. Flowers closed and 

submerged as in first-day flowers. 

 Cabomba floral buds emerged between 10:00 am and 11:00 am and opened 

approximately 30 min later. Second-day flowers emerged and opened first, followed by first-day 

flowers. The carpels of first-day flowers remain aggregated so that stigmas are much closer 

together than in Brasenia (compare Figures 2.1A, C), however, anthers remain closed and 

basally positioned (Figure 2.1C). Cabomba first-day flowers remained open until approximately 

5:00 pm, then closed and submerged.  

 As with Brasenia stamens, filaments elongated overnight so that anthers were held above 

stigmas when second-day flowers opened (Figure 2.1D). All anthers within a flower dehisced 

simultaneously and all second-day flowers within the population began to release pollen at 

approximately the same time, concurrent with the opening of first-day flowers. Pollen remained 
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in the open anthers throughout the day. Second-day flowers were generally completely closed by 

5:00 pm. In both Brasenia and Cabomba, seeds develop beneath the water surface.  

 

Stigma receptivity and pollen germination 

 Pollen is mature when second-day flowers open and was bicellular on stigmas in both 

Brasenia and Cabomba. The water content of pollen grains was 72 ± 7.2 % just after flower 

opening in Brasenia and 81 ± 3.4 % 1-2 h after flower opening in Cabomba. During the 

approximate period of pollen dispersal in Brasenia (7 am - 9 am) the mean relative humidity was 

91.7 ± 12.9 % (Monterey Lake site; May 23, 2007 to June 30, 2007).  

 In Brasenia, 74 % of pollen germinated successfully on stigmas at 7:30 am, when pollen 

is typically released (Figure 2.2A). Pollen germination percentage declined slightly at 8:30 and 

9:30 am, and was significantly lower at 10:30 and 11:30 am (Figure 2.2A). Because pollen used 

in pollinations became progressively older, we tested in vitro pollen germination percentage and 

found it to be relatively constant over the entire period that hand-pollinations were performed 

(although lower than in vivo germination, germination percentage did not drop until more than 

12 h after anther dehiscence (Figure 2.2A). Therefore, the decline in in vivo pollen germination 

percentage seen at 3 and 4 hap was not due to declining pollen viability or vigor, but to 

decreased stigmatic receptivity.  

 Anatomical observations also indicate declining female support for pollen germination in 

Brasenia. In pollinations of stigmas that were 3 or more hours old, many pollen grains exhibited 

an open sulcus from which pollen cytoplasm had been expelled (Figure 2.3A), instead of 

emitting a pollen tube (cf. Figures 2.3A, B). No burst grains were observed in 7:30 am 
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pollinations and very few were seen in 8:30 am or 9:30 am pollinations. Thus, Brasenia stigmas 

were most receptive when pollen was first being released and the receptive period ended a little 

over 2 h later, at least 2 h before flowers closed. 

 In Cabomba, first-day flowers open about 10:30 am and 61 % of pollen germinated in 

11:00 am pollinations (Figure 2.2B). In contrast to Brasenia, germination success was high for 

the entire time the flower was open (Figure 2.2B). In addition, stigmas from second-day flowers 

still supported low levels of pollen germination, although pollen did not adhere as well. 

 Pollen germinated before 15 map in both species, and Cabomba was already near its 

maximum germination percentage at this time (Figure 2.4B), whereas the maximum was not 

approached until 60 map in Brasenia (Figure 2.4A). Brasenia has a stigmatic crest that was on 

average 4.3 ± 0.7 mm in length (n = 26), which results in a large stigmatic surface area of 

approximately 5 mm
2
 (Figure 2.5A). Thus, position on the stigma might have a greater effect on 

pollen germination success in Brasenia. In Cabomba, the stigma is restricted to the very tip of 

the carpel (Figure 2.5B) and averages only 0.4 mm in length and 0.75 mm
2
 in surface area 

(Figure 2.5B).  

 In our hand pollinations, designed to mimic wind pollination, a one-way ANOVA 

indicated pollen load varied by stigmatic region (n = 87 flowers, p < 0.0001). Significantly more 

pollen was received on the upper one-third than on the middle, and significantly more pollen was 

received on the middle than on the bottom one-third of the stigmatic crest (Post-Hoc Tukey’s 

Studentized Range Test). Neither stigmatic region nor pollen load size had a significant effect on 

pollen germination percentage (p = 0.441 and 0.840 respectively; n = 29 plants). Under natural 
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pollination, the average pollen load per stigma was three pollen grains, with a maximum load of 

ten grains (n = 16). 

 

Brasenia pollen tube path and development 

 Pollen grains in Brasenia were captured by unicellular papillae or secretions present on 

the stigmatic crest (Figures 2.3A–C). Pollen tubes emerged and grew either along the surface of 

the papillae or through the secretions toward the ground tissue of the stylar neck (Figures 2.3B-

C). Whether originating at the carpel tip or the lateral margins of the stigmatic crest, pollen tubes 

penetrated the cuticle to enter the ground tissue of the carpel and grew towards the stylar canal, 

between large obliquely elongated cells (Figures 2.5A, 2.6A-B). These cells comprise the outer 

layer of the substigmatic region (Figure 2.6C) and clearly act as transmitting tissue (compare 

ground tissue that does not underlie stigmatic tissue on right side of Figure 2.6C). Pollen tubes 

exited the ground tissue through a single conspicuous layer of secretory epidermal cells (Endress 

2005) to enter the open stylar canal (Figure 2.6A, C). The stylar canal extends through the length 

of the carpel, from the ovarian cavity to near the carpel tip, where the mouth opens from a 

slightly ventral position (Figure 2.5A; Endress 2005). Pollen tubes grew within secretions in the 

canal and only occasionally contacted the canal wall (Figures 2.6C-D).  

 Since the Brasenia stigmatic crest is oriented parallel to the stylar canal, the distance that 

pollen tubes must grow to reach ovules varies. At 1 hap, all pollen tubes had entered the stylar 

canal but not yet reached the ovarian cavity, and the tips of leading pollen tubes were 1000 - 

3000 µm below the mouth of the stylar canal (Figure 2.7A). At 2 hap, most leading pollen tubes 

had entered the ovarian cavity, and at 4 hap, some leading pollen tubes had reached the apical 
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ovule (Figure 2.7A). Pollen tubes were first observed entering the apical micropyle at 6 hap 

(Figures 2.6E, 2.7A) and at 8 and 10 hap all apical ovules had been entered (n = 8, Figure 2.7A). 

With one exception, in both species the apical ovule was entered first and in both species only 

one pollen tube entered each micropyle.  

 Aniline blue staining indicated pollen tube walls were strongly callosic at all times 

(Figures 2.3B-C, 2.6A). Callose plugs apparently formed by greater callose deposition along one 

edge of the tube wall to form a bulge extending into the pollen tube lumen that eventually seals it 

off along all sides (Figure 2.6A, D-E). Callose plugs generally did not form until 2 hap, and 

some pollen tubes reached the ovarian cavity without having formed a plug. After 4 hap, when 

most leading pollen tubes were entering the ovarian cavity, callose plugs were common, 

especially near the pollen grain (Figure 2.6A), and pollen tubes contained many callose plugs 

thereafter (Figure 2.6D). 

 

Cabomba pollen tube path and development 

 In Cabomba, pollen grains were captured by unicellular papillae and secretions of the 

small stigmatic region surrounding the mouth of the stylar canal (Figures 2.5B, 2.8A, C-E). 

Some pollen germinated directly adjacent to the carpel mouth and tubes grew directly into the 

secretion-filled stylar canal. However, most pollen tubes followed a pattern identical to Brasenia, 

in which pollen tubes penetrated the cuticle (Figures 2.8C-E) and then entered substigmatic 

ground tissue, growing between obliquely-oriented cells to enter the stylar canal below its mouth 

(Figures 2.8A-C, F). As in Brasenia, strongly callose-walled pollen tubes grew within secretions 

to the ovarian cavity (Figure 2.8F), and few or no callose plugs were observed at 1 or 2 hap 
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(Figure 2.8F). At 4 hap and later, numerous callose plugs were present (not shown); however, 

apical ovules had already been penetrated at this time (Figure 2.7B). In second-day flowers, cell 

walls at the base of the stigmatic region were strongly callosic, indicating pollen tubes could no 

longer penetrate styles (Figure 2.8H). 

 In Cabomba, leading pollen tubes first reached the area near the apical micropyle at 1 hap 

and first entered the apical ovule at 2 hap, although there was a great deal of variation in how far 

tubes had grown at that time (Figure 2.7B). In some pollen tubes, two sperm nuclei were 

observed at 2 hap, whereas in others the generative cell was in anaphase or telophase of mitosis 

II at 2 hap (Figure 2.8G). In some cases, ovule entry still had not occurred by 10 hap (Figure 

2.7B), yet the leading pollen tube was seen near the apical micropyle. In several carpels, the 

leading pollen tube had passed the apical micropyle and was approaching a more basal 

micropyle.  

 

The ovule and female gametophyte  

 Ovules in Brasenia and in Cabomba are anatropous, bitegmic, and crassinucellar (Galati 

1985; Williamson and Schneider 1993). Carpels in Brasenia typically contained two ovules, 

whereas in Cabomba, they almost all contained three (Figure 2.5B). In ovules observed at the 

onset of stigma receptivity, the female gametophyte in both species was cellularized to form a 

four-celled/four-nucleate gametophyte containing an egg cell, two intact synergids, and a central 

cell with a single nucleus positioned near the micropylar pole in Cabomba, but closer to the 

chalazal pole in Brasenia (n = 5/genus; collected at 10:30 am and 7:30 am, respectively). 
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 In Brasenia the apical ovule micropyle was 6621 ± 868 µm (n = 33) and the basal ovule 

was 7573 ± 697 µm (n = 11) from mouth of the stylar canal (Figure 2.7A). The distance from the 

entrance of the micropyle to the nucellus was 106.5 ± 14.0 µm and the one to two cell layers of 

nucellus were 31.2 ± 7.1 µm thick (n = 10). The equivalent lengths in Cabomba were 2039 ± 882 

µm (n = 52) to apical ovule, 2869 ± 1004 µm (n = 46) to basal-most ovule, 100.4 ± 3.6 µm 

through the micropyle, and 24.8 ± 4.2 µm through nucellus (n = 11).  

 

Pollen tube growth rate 

 The overall maximum sustained growth rate, measured at the time ovules were first 

entered was 742 µm/h in Brasenia (n = 4) and 963 µm/h in Cabomba (n = 12; Figure 2.9). In 

Brasenia, pollen tube growth rate was slowest during early growth, averaging 309 µm/h over the 

first 45 minutes of growth, then increased to 991 µm/h from 1 to 4 hap and finally slowed to 623 

µm/h from 4 to 6 hap (Figure 2.9). In contrast, in Cabomba pollen tube growth rate was 1935 

µm/h over the first 45 minutes and then slowed to 476 µm/h from one to two hap (Figure 2.9). In 

Brasenia, growth rates ranged from 96 - 1705 µm/h, whereas in Cabomba they varied from 281 - 

2724 µm/h. 

 

DISCUSSION 

 The progamic phase begins with deposition of pollen on a receptive stigma and ends with 

fusion of the male and female gametes (Cresti et al. 1992). The timing of stigma receptivity 

relative to differentiation of the egg and central cell nucleus of the female gametophyte 
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determine the overall duration of the progamic phase. A number of aspects of pollen 

development must co-evolve with pollen tube pathway characters to maintain synchrony during 

this phase. Below we first discuss the great number of shared characters present in Brasenia and 

Cabomba, and in their sister family Nymphaeaceae, that relate to progamic phase timing. Then 

we address the question of how complex developmental interactions were affected by 

transformations in floral morphology and phenology associated with their divergent pollination 

syndromes.  

 

Ancestral character states of the progamic phase in Cabombaceae 

 Duration of the progamic phase.  Both Brasenia and Cabomba have very short progamic 

phases. Female gametophytes were anatomically near maturity at the time of stigma receptivity 

in both species and pollen tubes reached the micropyle within 2 h in Cabomba and within 6 h in 

Brasenia. This pattern is similar to other Nymphaeales which have nearly coincident stigma 

receptivity and female gametophyte maturity and a correspondingly short period of time between 

pollination and pollen tube entry of the ovule, such as in Nuphar polysepala (Williams 2008), 

Nymphaea nouchali (Orban and Bourharmont 1998) and Nymphaea odorata (Conard 1905; 

Williams 2009). Ovule entry occurs between 1 and 6 hap in Nymphaea capensis (Orban and 

Bourharmont 1995) and by 8 hap in N. polysepala (Williams 2008). The traits that determine the 

short duration of the progamic phase in Cabombaceae can be inferred to have evolved sometime 

before the divergence of Nymphaeaceae and Cabombaceae (Figure 2.10). In most other basal 

angiosperms, pollen tubes reach the ovules after a slightly longer period of 14-72 hap (Williams 

2008; 2009).  
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 Male gametophyte development.  Pollen germination in Cabombaceae occurs within 15 

map and is among the fastest known in angiosperms (see Nepi et al. 2001). Pollen germination in 

Nuphar and Nymphaea is also rapid (Figure 2.10; Orban and Bouharmont 1995; Friedman and 

Williams 2003; Williams et al. 2010).  

 Cabombaceae pollen is monosulcate, with a single large aperture that extends along the 

entire length of the pollen grain. Monosulcate pollen is generally thought to germinate more 

slowly than other pollen types because pollen with multiple apertures allows more opportunity 

for direct contact between apertures and the stigma to facilitate rapid hydration (Heslop-Harrison 

1979a, 1979b; Furness and Rudall 2004). However, pollen grains of Cabombaceae have large 

and long apertures that increase the area of stigma contact. Large apertures can have a cost of 

increasing water loss (Heslop-Harrison 1979a, 1979b), but pollination in this study took place in 

an environment with high relative humidity, which likely reduces this risk. 

 Perhaps the most important trait underlying rapid germination is the high water content 

(>70 %) of Cabombaceae pollen grains at dispersal. Pollen that has low water content at 

dispersal undergoes physiological dormancy, allowing it to better withstand the stresses of the 

environment. Upon pollination, it must become rehydrated, delaying germination (Nepi et al. 

2001; Franchi et al. 2002). Such “partially dehydrated” pollen is typical of gymnosperms and 

many angiosperms (Franchi et al. 2002). Pollen with a high water content at dispersal, such as in 

Cabombaceae, maintains an active metabolic state during dispersal and does not have to become 

hydrated in order to germinate (Nepi et al. 2001; Franchi et al. 2002). However, partially 

hydrated (PH) grains are less likely to have mechanisms that control water loss and are more 

vulnerable to desiccation once in the external environment (Pacini and Franchi 1999; Nepi et al. 
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2001). Both Brasenia and Cabomba exhibit pollen characters typical of PH grains (see Franchi et 

al. 2002), including a thick exine and intine to slow water loss and a short period of viability (< 

24 h). They also lack furrows, which are characteristic of pollen that must undergo large changes 

in volume during dehydration and rehydration.  

 In Cabombaceae, pollen was bicellular at pollination, as previously seen in Cabomba 

(Padmanabhan and Ramji 1966; Batygina and Shamrov 1983; Galati 1985) and Brasenia (Taylor 

and Osborn 2006) and this trait is considered plesiomorphic in angiosperms (Brewbaker 1967). 

Tricellular pollen has been reported in some Nymphaeaceae Euryale ferox, Victoria cruziana and 

Nymphaea stellata (Khanna 1964, 1967), as well as Nuphar lutea (Batygina and Shamrov 1983), 

but bicellular pollen was seen in Barclaya longifolia (Batygina and Shamrov 1983) Nuphar 

polysepala (Friedman and Williams 2003) and Nymphaea odorata (Williams unpublished data). 

Transitions to tricellular pollen are generally thought promote faster pollen germination and/or 

tube growth (Mulcahy and Mulcahy 1983), but the data from our study suggest that hydrated, 

bicellular pollen can germinate and grow tubes quite rapidly. Pollen tubes in Cabomba and 

Brasenia grow at average rates of over 700 µm/h, similar to rates in Nymphaea and Nuphar, 

which range from approximately 600 to 800 µm/h (Williams 2008). Pollen tube growth rates in 

Nymphaeales are much more rapid than in other basal angiosperms (Williams 2008) and 

approach those more typical of derived angiosperms (Maheshwari 1950).  

 As is typical in angiosperms, pollen tubes in Cabombaceae have prominent callosic walls, 

especially early in pollen tube development (Figure 2.3B; 2.8A). In both species, callose plugs 

begin to develop between one and two hap. In Cabomba, this is just after mitosis II, which is the 

general pattern in angiosperms (Mulcahy and Mulcahy 1983). Brasenia and Cabomba produce 
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numerous callose plugs, though plugs are not common until 4 hap. Similarly, Nymphaea and 

Nuphar both produce many callose plugs (Williams 2008). 

 Pollen tube pathway.  Both Brasenia and Cabomba have open, ascidiate carpels that are 

sealed by secretion, a trait thought to be plesiomorphic in angiosperms (Tucker and Douglas, 

1996; Doyle and Endress 2000; Endress 2001, 2005). The presence of a distinct extension of the 

carpel to form a hollow style is apomorphic in Cabombaceae (Figure 2.10). The long stylar canal 

is the major portion of the pollen tube pathway of Brasenia and Cabomba. 

 Both Cabomba and Brasenia have stigmatic tissue surrounding the open mouth of the 

stylar canal, and one might expect pollen tubes to follow a path of least resistance entirely within 

secretions. This would resemble Amborella, in which pollen tubes grow laterally along the sub-

stigmatic surface until they reach the open mouth of the stylar canal (Williams 2009). However, 

in both Cabomba and Brasenia pollen tubes clearly penetrate the cuticle of the sub-stigmatic 

surface and then grow between tightly-packed ground tissue cells to reach the stylar canal. Once 

pollen tubes enter the stylar canal, they grow freely within secretions (instead of along the inner 

epidermal surfaces) to the top of the ovarian cavity and then to the micropyle.  

 In Nymphaeaceae, carpels of Nymphaea and Nuphar are also ascidiate, but they undergo 

post-genital fusion at the periphery, just below the stigmatic crests (Endress 2001) and pollen 

tubes must grow through these developmentally fused tissues (Orban and Bourharmont 1995). 

Thus, in both Cabombaceae and Nymphaeaceae, pollen tubes pass through a short region of 

ground tissue early in development and then grow through secretions for the majority of the 

pollen tube pathway. Some of the fastest pollen tube growth rates measured were during the 

period that included growth through ground tissue.  
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 Summary.  Brasenia and Cabomba inherited a very short progamic phase, already present 

in the common ancestor of the family (Figure 2.10), but determined by a unique combination of 

plesiomorphic and apomorphic characters. Rapid pollen germination and rapid pollen tube 

growth rates can be inferred to have arisen early in Nymphaeales (Figure 2.10), whereas pollen 

tube growth through solid ground tissue may or may not have had independent origins in 

Cabombaceae and Nymphaeaceae (Williams 2009). Cabombaceae retains angiosperm 

plesiomorphies such as open carpels and bicellular pollen, but has an apomorphic stylar neck, 

whereas Nymphaeaceae lack the stylar neck, but some taxa originate partially closed carpels and 

possibly tricellular pollen. The variability of the many pollen and carpel traits contribute to 

speeding the fertilization process and reflect a general developmental flexibility of reproductive 

traits among early lineages of angiosperms. 

 

Ancestral pollination syndrome of Cabombaceae 

 Brasenia schreberi exhibits many traits that are specialized for wind pollination. At 

dehiscence, anthers are elevated and tepals are strongly reflexed, nectar is absent, and flowers 

produce smaller and many more pollen grains than does Cabomba (Osborn and Schneider, 

1988). Because insects, especially flies and bees, may occasionally visit Brasenia flowers, 

comparative studies of pollination syndromes often consider Brasenia to have a mixed 

wind/insect pollination syndrome (e.g Thien 2000; Hu et al. 2008; Thien et al. 2009). However, 

at Monterey Lake insects primarily visited second-day, male-phase flowers to feed on pollen and 

this occurred in late morning (MLT personal observation), after the decline of stigma receptivity 

(this study). Moreover, Brasenia pollen is unornamented and lacks pollenkitt, so it is less able to 
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adhere to insect bodies in the first place (Osborn and Schneider 1988). Therefore, like Osborn 

and Schneider (1988), we consider Brasenia to be primarily wind-pollinated. 

 In contrast, Cabomba caroliniana and all other extant members of Nymphaeaceae are 

pollinated by beetles, flies, bees, or some combination (Schneider and Moore, 1977; Schneider 

1983; Schneider and Williamson 1993; Capperino and Schneider, 1985; Seymore and Matthews, 

2006; Thien et al. 2009). Nymphaeaceous fossil flowers from the early Cretaceous (115-125 

mya; Friis et al. 2001) and late Cretaceous (90 mya; Gandolfo et al. 2004) have also been 

interpreted to be entomophilous (Friis et al. 2001). Cabomba itself appears to be specialized for 

fly pollination. Petals are not strongly reflexed, flowers are light in color, anthers and stigmas are 

exposed, petals have exposed nectaries, and pollen is ornamented and covered with copious 

pollenkitt (see Schneider and Jeter 1982; Osborn et al. 1991; ML Taylor et al. 2008). 

 We consider it likely that the ancestor of extant Cabombaceae exhibited a generalist 

pollination syndrome and extant Brasenia and Cabomba each represent derived specializations 

for wind and flies, respectively (Osborn and Schneider 1988). Several other extant basal genera, 

including Amborella (Thien et al. 2003), Trimenia (Bernhardt et al. 2003), and Saururus (Thien 

et al. 2000), display a combined wind/insect pollination syndrome, whereas many other basal 

groups exhibit flowers with a generalist insect pollination strategy (Thien et al. 2000, 2009). 

 Cabomba pollen exhibits specializations such as sculptural rods on the surface of the 

grain and microchannels that form in the pollen wall. These are hypothesized to function in the 

distribution and storage of the copious pollenkitt it produces (Osborn et al. 1991; ML Taylor et 

al. 2008). In contrast, pollen in Brasenia and Nymphaeaceae do not have these features (Osborn 

et al. 1991; Taylor and Osborn 2006; ML Taylor et al. 2008). Furthermore, fossil Cabombaceae 
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pollen from the Tertiary (Brasenia purpurea Michx = B. schreberi) and Quaternary (B. 

schreberi) is unornamented and is identical to modern Brasenia pollen (Jessen et al. 1959; Lloyd 

and Kershaw 1997). Thus, parsimony suggests that specializations of Cabomba pollen evolved 

from either a generalist insect or wind/insect pollinated ancestor. 

 The common ancestor of extant Cabombaceae is unlikely to have been exclusively wind 

pollinated. Brasenia exhibits both a perianth and UV reflectance in its flowers (Osborn and 

Schneider 1988), traits that function in insect attraction and are unnecessary for wind pollination. 

Furthermore, the long style associated with wind pollination in Brasenia is likely a derived 

feature, as short styles have been inferred to be the ancestral state in Nymphaeales and for all 

angiosperms (Williams 2008). Therefore, it seems likely that Brasenia became specialized for 

wind pollination sometime after its divergence from Cabomba.  

 Transitions from insect to wind pollination are not uncommon in angiosperms and have 

occurred at least 65 times, while the converse seems to be much less frequent (Stebbins 1970; 

Linder 1998; Culley et al. 2002). Wind-pollinated flowers have generally evolved from 

dioecious ancestors that had small (< 1 cm wide), unshowy flowers, with a generalist insect 

pollination syndrome (Friedman and Barrett 2008). However, because of its occurrence in an 

early-diverging angiosperm lineage, the evolutionary transition to wind pollination in Brasenia 

has some unique qualities relative to such transitions among derived lineages. The flowers of the 

common ancestor of Brasenia and Cabomba were likely generalist pollinated, but they were 

likely similar in size to those in extant Cabombaceae (> 1 cm wide), were almost certainly 

bisexual, and were probably showy, with a colored and UV reflective perianth. 
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 Interestingly, most other early-divergent angiosperms, especially those that are wind-

pollinated, have small flowers. The relatively larger flower size of Brasenia reflects its 

evolutionary developmental history: wind pollination became more efficient when a larger 

stigmatic surface evolved through elongation of an ancestrally short stylar neck. Elongation of 

the neck involved enlargement of the whole carpel (compare carpels in Figure 2.5), and flower 

size increased because other floral parts had to also enlarge in order to enclose the larger carpels 

during repeated submergences of the mature flower. 

 

The consequences of a shift in pollination syndrome on progamic phase biology 

 The evolutionary transition to wind pollination in Brasenia affected floral structure as 

well as phenology. In Brasenia, flowers open 3 h earlier than in Cabomba, and thus stigma 

receptivity and pollen dispersal occur during the cooler, more humid hours of the early morning. 

Pollen is almost completely dispersed by wind very soon after anther dehiscence and stigma 

receptivity is correspondingly short (Figure 2.11). Earlier flowering probably reduces desiccation 

of wind-dispersed pollen and might also provide an escape from pollinivorous insects. In 

Cabomba, pollen germination and pollen tube growth take place during the warmest part of the 

day, when insect pollinators are more active. Pollen is presented to flies throughout the entire 

time the pistillate flower is open and stigmas maintain a similar period of receptivity (Figure 

2.11). No other Nymphaeales exhibit as brief a period of pollen dispersal and stigma receptivity 

as seen in Brasenia, suggesting this pattern evolved as a consequence of the origin of wind 

pollination. 
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 Brasenia has a stylar neck that is more than four times as long as that of Cabomba, and 

much of its epidermal surface is papillate and functions as stigmatic tissue with nearly seven 

times the surface area as in Cabomba. Brasenia flowers fit a pattern often seen in wind 

pollinated species relative to animal-pollinated species in which larger stigmatic surfaces and 

shorter periods of stigma receptivity arise to increase pollen reception (Whitehead 1969). 

 In the case of Brasenia the expanded stigma, developed by elongation of the stylar neck, 

had the secondary effect of increasing pollen tube pathway length. In both species, pollen tubes 

first grow a short distance through substigmatic ground tissue and then grow within secretions of 

the stylar canal and ovary to the micropyle. In Brasenia pollen tubes must grow an additional 

distance of 0.5-6.5 mms entirely because of their longer stylar canal. However pollen tube 

growth rates within secretions of the stylar canal were similar in both species (Figure 2.9). Thus, 

the longer progamic phase of Brasenia, defined by a shift to an earlier time of pollination and 

retention of a similar fertilization time (~1 pm in both species; Figure 2.9), is due in large part to 

failure of pollen tube growth rate to have tracked the evolution of stylar canal length. 

  Brasenia pollen did germinate slightly slower and overall average pollen tube growth rate 

was slightly slower (742 µm/h compared to 963 µm/h in Cabomba). Slower early development 

of pollen in wind- versus animal-pollinated groups has been seen as a female strategy for 

increasing the quantity and quality of pollen on stigmas when pollen is limiting (Willson and 

Burley 1983). Our data are consistent with this scenario, but such a pattern might also arise as a 

consequence of differences in the intensity of pollen competition. In both Brasenia and 

Cabomba, one pollen tube approaches and enters each micropyle, so pollen competition is 

strongest before the ovary is reached. We found very low and dispersed pollen loads in Brasenia 
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under both natural and artificial pollination, and although we did not measure pollen loads on the 

small, capitate stigma of Cabomba, insect pollination generally results in increased pollen loads 

(Faegri and van der Pijl 1979; Willson 1983). Thus, both stigma structure and pollination 

syndrome favor stronger pollen competition within the stylar canals of Cabomba than in 

Brasenia. Because the common ancestor of Cabombaceae also likely had small, insect-pollinated 

stigmas, Cabomba probably has a long history of strong pollen competition and would be 

expected to have evolved a shorter progamic phase, consistent with our findings. In either case, 

selection for rapid fertilization seems to have acted strongly on early development in 

Nymphaeales in general, and in Cabomba pollen tubes “get out of the gate” rapidly as a result of 

both exceptionally fast pollen germination and to very fast early pollen tube growth (Figure 2.9).  

Pollen tubes often slow down in the ovary in other angiosperms (Herrero 2003), and this was the 

case in Cabomba, as well. However, slower late growth rates in Cabomba might be caused by 

the occurrence of mitosis II (Brewbaker and Majumder 1961), which, in leading pollen tubes,  

takes place in the ovary within 2 hap.  

 Environmental effects also add to the differences in developmental rates. The pollen 

population effect (Brewbaker and Majumder 1961; Cruzan 1986) predicts faster germination of 

Cabomba pollen because of its larger and more concentrated pollen loads. Our hand pollinations, 

designed to mimic natural pollination, resulted in consistently larger pollen loads in Cabomba. 

Faster pollen tube growth in Cabomba might also be due to warmer temperatures over its growth 

period (see Hedhly et al. 2003), as a result of starting the progamic phase later in the day.  
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CONCLUSION 

 Cabombaceae and Nymphaeaceae have an extremely short progamic phase relative to 

other groups of early-divergent angiosperms, especially woody perennials. Shifts to very short 

progamic phases are also seen in other aquatic early-divergent lineages and are primarily caused 

by speeding of pollen development after pollination (Williams 2009). In Nymphaeales, the very 

short progamic phase was achieved by shifts to faster pollen germination, faster pollen tube 

growth rates, and a novel pattern of pollen tube growth through solid ground tissue.  

The common ancestor of Cabombaceae possessed a carpel with a short stylar neck and 

capitate stigma. Under the assumption that Brasenia represents a derived case of wind 

pollination, its style became elongated to produce a larger stigma, and the duration of stigma 

receptivity and pollen dispersal were shortened and shifted earlier in the day. Fertilization occurs 

at the same time of day in both species; therefore, as the period of pollen tube growth became 

lengthened, pollen germination and early tube growth became displaced to a cooler time of day. 

Environmental and developmental effects might explain slower pollen tube growth in Brasenia, 

but differences in the historical intensity of pollen competition between these wind- and insect-

pollinated taxa might also have been important. 
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Figure 2.1. Floral cycle of Brasenia and Cabomba. Stigmatic crests indicated with arrows and 

anthers with arrowheads. (A) Brasenia first-day flower showing reflexed tepals and stigmatic 

crests. Closed anthers are positioned beneath stigmas because filaments are undeveloped. (B) 

Brasenia second-day flower showing elongated filaments supporting dehiscent anthers and 

centrally aggregated cluster of stigmas. (C) Cabomba first-day flower showing slightly reflexed 

tepals, exposed stigmatic surfaces, and short stamens. (D) Cabomba second-day flower showing 

more strongly reflexed tepals, dehiscent anthers borne upon elongated filaments and centrally 

aggregated stigmas. Scale bars = 5.0 mm. 
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Figure 2.2. Duration of stigma receptivity in (A) Brasenia and (B) Cabomba, as determined by 

pollen germination percentage at different times after flower opening (pollen fixed 1 h after 

pollination). Bars are 95 % confidence intervals and numbers refer to the number of maternal 

plants sampled. In vitro pollen germination success of Brasenia pollen is represented by circles 

without bars in A.
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Figure 2.3. Pollen germination in Brasenia. (A) Burst pollen grain 2 h after 10:30 am pollination. 

(B) Pollen grains with well-developed pollen tubes  2 h after 7:30 am pollination. Note strong 

fluorescence of callose walls of pollen tubes growing within stigmatic secretions, which is still 

visible after they penetrate stigmatic ground tissue. (C) Germinated pollen grain on stigmatic 

papilla showing the pollen tube growing along papilla surface (1 h after pollination). Scale bars = 

50 µm. Abbreviations: C = pollen cytoplasm, P = stigmatic papillae, PG = pollen grain, PT = 

pollen tube, S = stigmatic surface. Stain: aniline blue. 
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Figure 2.4. Timing of pollen germination in (A) Brasenia and (B) Cabomba. Pollen germination 

percentage for each time point. Bars are the 95 % confidence interval and numbers refer to the 

number of maternal plants sampled. 
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Figure 2.5. Median longitudinal section of (A) Brasenia and (B) Cabomba carpels. In Brasenia, 

the solid oval indicates the location of the apical ovule from another section. In both, the stylar 

canal is mostly out of section, but extends from the mouth of the carpel through the stylar neck to 

the apex of the ovarian cavity. Scale bar = 500 µm. Abbreviations: M = carpel mouth, OC = 

ovarian canal, S = stigmatic region, SC = stylar canal. Stain: toluidine blue O.



 

 55 

 

 

 

Figure 2.6. Pollen tube growth in Brasenia. (A) Pollen tubes (arrows) have grown 

within ground tissue to reach the stylar canal where they turn toward the ovary 

(four h after pollination [hap]). Note differential callose wall thickenings (white 

arrowhead) and fully developed callose plugs (black arrowhead). Scale bar = 100 

µm. (B) Thin section through stigmatic surface showing a germinated pollen grain 

with a pollen tube (arrow) growing between two diagonally-oriented cells of the 

carpel ground tissue that comprises the transmitting tract (10 hap). Scale bar = 25 

µm. (C) Thin section showing pollen tubes (arrow) in secretion-filled stylar canal 

(10 hap). Note diagonally-oriented parenchyma cells of the pollen tube 

transmitting tract, which corresponds to the region in Figure 2.6B. Scale bar = 

100 µm. (D) Stylar canal filled with pollen tubes (arrow) showing abundance of 

callose plugs (arrowhead, many out of focal plane; 8 hap). Scale bar = 100 µm. 

(E) Micropyle entered by a pollen tube (arrow) with callose plugs (arrowhead; 8 

hap). Scale bar = 100 µm. Abbreviations: F = funiculus, FG = female 

gametophyte, MP = micropyle, PG = pollen grain, SN = stylar neck, TT = 

transmitting tract. Stains: aniline blue (A, D, E); toluidine blue O (B, C). 
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Figure 2.7. Pollen tube growth and timing of ovule penetration in (A) Brasenia 

and (B) Cabomba. Each symbol indicates the location of the leading pollen tube 

in a carpel relative to the tip of the carpel (0). In Cabomba, this distance 

corresponds closely to total pollen tube length, whereas in Brasenia, it does not. 

Black circles indicate that ovule entry has not occurred in the carpel, blue circles 

indicate that a pollen tube has entered the apical ovule but not the basal-most 

ovule; red circles indicate both ovules penetrated. A red circle with subscript 

indicates that the basal-most ovule was entered, but not the apical ovule. Line 

drawings of carpels show mean ± 95 % confidence interval distances from the 

carpel tip to the base of the stigmatic region (n = 33 [A], 52 [B]), the apical 

micropyle (n = 33, 52), the basalmost micropyle (n = 11, 46), and the base of the 

carpel (n = 29, 42; receptive surface of stigma illustrated with thicker line). Note 

differences in scale. 
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  Figure 2.7 
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Figure 2.8. Pollen tube growth in Cabomba. (A) Germinated pollen showing most 

pollen tubes growing into the ground tissue beneath the stigma to reach the central 

stylar canal (2 h after pollination [hap]). Scale bar = 100 µm. (B) Thin section 

through the carpel tip showing the narrow mouth of stylar canal and obliquely-

oriented cells of ground tissue. Scale bar = 100 µm. (C-E) Adjacent serial sections 

of stigma showing newly formed pollen tube penetrating cuticle and growing 

between cells of stigmatic surface (pollen tube cytoplasm indicated by arrows; 1 

hap). Scale bar = 20 µm. (F) Hand-section of a carpel showing pollen tubes in the 

stylar canal and entering the ovarian cavity (2 hap). Note lack of callose plugs at 

this time. Scale bar = 200 µm. (G) Close-up of pollen tube in stylar canal showing 

telophase of mitosis II to form two sperm nuclei  (2 hap). Scale bar = 20 µm. (H) 

Stigma of a second-day flower showing a band of callose at the base of the 

stigma. Scale bar = 200 µm. Abbreviations:  CL = callose, CT = cuticle, M = 

carpel mouth, OC = ovarian cavity, P = stigmatic papilla; PG = pollen grain, PT = 

pollen tube, SC = stylar canal, SN = stylar neck, SP = sperm nucleus. Stains: 

aniline blue (A, F, H); toluidine blue O (B-E); aniline blue + DAPI (G).  
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         Figure 2.8 
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Figure 2.9. Pollen tube length over time in Brasenia and Cabomba. SRB and SRC indicate the 

stigma receptivity periods for Brasenia and Cabomba, respectively. Slopes of solid lines indicate 

growth rates within each time interval, and dotted lines indicate the maximum sustained growth 

rate. Trend lines begin at 15 minutes after pollination to account for time to pollen germination. 

Bars indicate standard errors.  
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Figure 2.10. Evolution of pollination syndromes and progamic phase traits in Nymphaeales. 

Character states of Hydatellaceae, the sister group to traditional Nymphaeales, are unknown.  



 

 63 

 

Figure 2.11. Relative timing of progamic phase ontogenies in Brasenia (solid bars) and 

Cabomba (open bars). Period of flower opening, stigma receptivity, pollen dispersal, pollen 

germination, and the progamic phase are arranged relative to the onset of stigma receptivity, at 

which time hand-pollinations (P) were performed (7:30 am in Brasenia and 10:30 am in 

Cabomba). FB
 
and FC indicate fertilization, as determined by ovule penetration, in Brasenia and 

Cabomba, respectively. Note that gray areas in progamic phase bars reflect time to maximum 

pollen germination.  
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CHAPTER III: REPRODUCTIVE ECOLOGY OF THE BASAL ANGIOSPERM  

TRITHURIA SUBMERSA (HYDATELLACEAE) 

 

This chapter is a slightly modified version of an original research article published in the 

December 2010 issue of the journal Annals of Botany. 

 

  

 Taylor M.L., T.D. Macfarlane, and J.H. Williams. 2010. Reproductive ecology of the 

 basal angiosperm Trithuria submersa (Hydatellaceae). Annals of Botany 106: 909-920. 

 

 

In the following chapter, the words “we” and “our” refer to my co-authors and me. My 

contributions to this paper include (1) formation and further development of the original 

hypotheses (2) development of experimental pollination techniques and completion of all field 

experiments (3) preparation of materials to secure funding and permits (4) completion of all 

microscopical and statistical analyses (4) construction of figures, and (5) most of the writing.  
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ABSTRACT 

Trithuria, the sole genus in Hydatellaceae, is an important group for understanding early 

angiosperm evolution because of placement within, or as sister to, the ancient lineage, 

Nymphaeales (water lilies). Although also aquatic, Trithuria differs from water lilies in that all 

species are extremely small, and most have an annual life form and grow in seasonal wetlands. 

Very little is known about their reproductive ecology. In this study, we report on reproductive 

timing, mode of pollination, and characteristics of the breeding system of Trithuria submersa in 

Western Australia. Mass collections of open-pollinated plants from different ecological settings 

were used to characterize the reproductive developmental sequence and natural pollen reception. 

Hand-pollination, caging, and emasculation experiments were used to measure outcross + 

geitonogamous pollen reception versus autonomous self-pollination in two populations over two 

field seasons. Natural outcross or geitonogamous pollination was by wind, not by water or 

insects, however pollen reception was extremely low. Pollen production was very low and pollen 

release was non-synchronous within populations. The pollen to ovule (P/O) ratio was 23.9, 

compared to 1569.1 in dioecious Trithuria austinensis. Stigmas became receptive before male 

phase and remained so until anthers dehisced and autonomous self-pollination occurred. Natural 

pollen loads are composed primarily of self pollen. Self- and open-pollinated plants had 

equivalent seed set (both > 70 %). Self-pollinated plants produced seed within 17 days.  

Autonomous self-pollination and self-fertilization are predominant in T. submersa. The low P/O 

ratio is not an artefact of small plant size and is inconsistent with long-term pollination by wind. 

It indicates that T. submersa has evolved a primarily autogamous breeding system. Selfing, along 
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with the effect of small plant size on the speed of reproduction, has enabled T. submersa to 

colonize marginal ephemeral wetlands in the face of unpredictable pollination. 

 

INTRODUCTION 

 Nymphaeales is an ancient lineage that diverges from the basal-most, or next most basal 

node of the flowering plant phylogenetic tree (Qiu et al. 1999; APG III 2009) and is represented 

among the oldest known angiosperm macrofossils (Friis et al. 2001 2009; Wang and Dilcher 

2006; Mohr et al. 2008; Taylor et al. 2008). Trithuria Hook.f., the sole genus within the family 

Hydatellaceae, has recently been placed as sister to the water lilies, Nymphaeales sensu stricto 

(Nymphaeaceae + Cabombaceae; Saarela et al. 2007; Borsch et al. 2008). A number of 

morphological and anatomical features unite these two ancient groups (e.g. Rudall et al. 2007; 

Friedman 2008; Endress and Doyle 2009). However, the reproductive ecology and life history of 

Trithuria species are likely to be quite different from water lilies and have not yet been studied in 

detail in the wild. 

 Water lilies are herbaceous perennials that typically inhabit stable, permanently 

inundated habitats. Only Ondinea purpurea (= Nymphaea ondinea, Löhne et al. 2009) and 

Barclaya rotundifolia (both in Nymphaeaceae) are known to occupy habitats that experience 

seasonal dry-down. Both are perennials that survive seasonal dry periods as persistent rhizomes 

and tubers (Schneider and Carlquist 1995; Williamson and Moseley 1989). In contrast, ten of 

twelve species of Trithuria occupy ephemeral aquatic habitats. All ten are reported to be annuals 

that survive the dry period as seeds (Hamann 1998; Gaikwad and Yadav 2003; Sokoloff et al. 

2008a). Annuals are extremely rare among extant basal angiosperms and are found only in 
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Trithuria, and possibly in two species of Nymphaeaceae, Euryale ferox (Kadono and Schneider 

1987) and Victoria cruziana (C. Magdalena, Royal Botanic Gardens, Kew, UK ‘pers. comm.’).  

 Water lilies are large plants, with large floating leaves, extensive rhizomes and flower 

sizes that range from 1-2 cm in diameter in Cabombaceae (Williamson and Schneider 1993) to 

30-50 cm wide in Victoria (Schneider and Williamson 1993). In contrast, whole plants of 

Trithuria are often less than 1 cm in diameter and bear tiny “flowers” (Figure 3.1A-B; all figures 

referenced in this chapter are found in Appendix 3). These small reproductive structures have 

characteristics of both flowers and inflorescences and they may represent a transitional, pre-

floral stage in the evolution of the flower (Endress and Doyle 2009; Rudall et al. 2009). 

Hereafter we refer to them as “reproductive units,” occasionally abbreviated as “RU” (Rudall et 

al. 2007; 2009). 

 Given its phylogenetic position as sister to the rest of water lilies, Trithuria may offer 

important clues to the evolution of reproductive function among early angiosperms and 

Nymphaeales sensu lato in particular. To date, studies of Trithuria have concentrated on 

characterizing vegetative morphology (Edgar 1966; Gaikwad and Yadav 2003), pollen 

morphology (Bortenschlager et al. 1966; Remizowa et al. 2008), and developmental aspects of 

the reproductive unit (Rudall et al. 2007, 2009), shoot (Sokoloff et al. 2009), female 

gametophyte (Friedman 2008; Rudall et al. 2008), seeds (Tuckett et al. 2010a, b) and seedlings 

(Cooke 1983; Tillich et al. 2007; Sokoloff, et al. 2008b).  

 All Trithuria species are thought to be abiotically pollinated. Wind pollination has been 

hypothesized for T. konkanensis and other species with emergent reproductive units, on the basis 

of floral morphology (Hamann 1998; Gaikwad and Yadav 2003). Water pollination has also been 
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hypothesized as a possibility, particularly in the two permanently submerged species (Rudall et 

al. 2007). Nothing is known of breeding systems, apart from the fact that four species are 

dioecious, and hence obligately outcrossing (Yadav and Janarthanam 1995; Sokoloff et al. 

2008a). There are no data on relative timing and duration of male and female function, a 

potentially important aspect of the breeding system of the other species that are monoecious or 

have bisexual reproductive units. 

 The objective of this study was to understand the reproductive ecology of Trithuria 

submersa Hook.f., a species found in seasonal, rain-fed wetlands of southwestern Western 

Australia, as well as parts of southern New South Wales, South Australia, Victoria, and 

Tasmania (Sokoloff et al. 2008a). Trithuria submersa was chosen because it is a widespread 

species with emergent, bisexual reproductive units. Our goals were, (1) to determine the primary 

pollen vector, (2) to describe the relative timing and duration of anther dehiscence and stigma 

receptivity and (3) to determine if self pollination and self seed-set occur. We also report the 

pollen/ovule ratio of dioecious T. austinensis and pollen load size in Brasenia schreberi to 

enable a discussion of alternative life history strategies among wind-pollinated Nymphaeales. 

 

METHODS 

Reproductive biology of Trithuria submersa 

 Fieldwork on Trithuria submersa was undertaken in November/December 2008 at 

Kulunilup Swamp (Figure 3.1A), Kulunilup Nature Reserve, Western Australia (34
o 
19’ S, 116

o 

46’ E). A second field season was undertaken in November/December 2009 at Kulunilup Swamp 

and nearby Frying Pan Swamp (34
o 
16’ S, 116

o 
42’ E). Laboratory work was conducted at the 
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Department of Environment and Conservation Science Division facility in Manjimup, WA and at 

the University of Tennessee, Knoxville. Voucher specimens have been deposited in the 

University of Tennessee herbarium (TENN).  

 Southwestern Western Australia experiences cool, wet winters and hot, dry summers and 

exhibits a vast network of wetlands that undergo a strong seasonal hydrological cycle of winter 

flooding and summer drawdown (Hill et al. 1996). “Swamps,” or “sumplands,” are characterized 

by shallow standing water in late winter through spring, followed by complete evaporation of 

water over the course of a few days to a few weeks (Hill et al. 1996). These swamps can also be 

considered vernal pools (Holland and Jain 1988; Rheinhardt and Hollands 2008). Seeds of T. 

submersa germinate in swamps and plants mature while entirely submerged. Reproductive units 

become gradually exposed as the water level falls and flowering and fruit set must be completed 

before the swamp dries out. Trithuria austinensis, T. australis, and T. bibracteata are also found 

in this region, with T. australis and T. bibracteata sometimes growing alongside T. submersa.  

 

Reproductive development 

 Because of the small size of Trithuria plants, reproductive development was 

characterized by relative stages rather than by absolute time. A developmental sequence was 

reconstructed from a mass collection of open-pollinated T. submersa reproductive units (made 

without knowledge of developmental stage). To understand the effect of environment on 

reproductive development, the mass collection comprised equal numbers of haphazardly 

collected RUs in four distinct ecological settings: (1) reproductive units entirely submerged, (2) 

reproductive units newly emergent with between 50-75 % of the reproductive unit above water 
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level, (3) reproductive units fully emergent but plants still partially submerged, and (4) plants 

completely emergent (hereafter termed long emergent; see Figures 3.1A, B). 

 Reproductive units were fixed in FAA (2:1:10 40 % formaldehyde, glacial acetic acid, 95 

% ethanol) or 3:1 (95 % ethanol: glacial acetic acid) for 24 h and then stored in 70 % ethanol. 

Carpels were removed, stained with aniline blue for 4-8 h, and viewed under UV light to 

visualize pollen grains (methods in Taylor and Williams 2009). Onset and duration of pollen 

reception and stigma receptivity were assessed by recording the number of germinated pollen 

grains on each stigmatic hair at each developmental/ecological stage and the proportion of 

carpels exhibiting pollen germination and pollen loads were compared. Since ungerminated 

pollen grains can wash off stigmatic hairs during fixation, only germinated grains were 

compared. If data were non-normally distributed, a non-parametric Wilcoxon Rank Sums test 

was performed. If variances were not equal, an unequal variance t-test was used (Ruxton 2006). 

Analyses were performed in JMP v.7.0.2 statistical software (SAS Institute Cary, NC). When 

comparing three or more means after a significant one-way ANOVA, a Games-Howell post-hoc 

test was performed with SPSS 16.0 (SPSS Inc., Chicago, IL). Individual plants were the 

experimental unit. All measures of variance in the text are standard deviations.  

 A second experiment used hand-pollinations of stage two and three reproductive units to 

determine if stigmas were receptive before anther dehiscence. Foreign pollen was excluded from 

haphazardly selected, fully submerged plants by covering them with clear plastic cups staked 

into the ground with wire. All reproductive units except the focal unit were first removed to 

prevent geitonogamous pollination within the “cage.” After the reproductive unit emerged within 

the cage, but before anthers dehisced, carpels were pollinated by gently brushing a dehiscent 
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anther across stigmatic hairs. The pollen donor plant was 1-5 m distant from the caged plant and 

there was no evidence for rhizome connections between plants. Hand-pollinated reproductive 

units were collected within 6 h after pollination and fixed in 3:1. Carpels were scored for number 

of germinated pollen grains. 

 

Pollination syndrome 

 To determine if entomophily occurred, insect behaviour in the population was assessed 

by direct observation (~ 75 h). Twenty plants were marked with coloured thread and their 

reproductive units were observed periodically from emergence until anther opening and then 

continually until anthers were judged to be empty. The number of events in which insects 

contacted reproductive units and the activity of the insect (resting or foraging) was recorded.  

To test for anemophily, 11 glass slides were thinly coated with petroleum jelly and placed at 1 m 

intervals in a transect through the Kulunilup Swamp population to trap wind-borne pollen. As 

anther dehiscence was common in late morning and early afternoon, slides were set at 10 am and 

collected after 6 h to prevent exposure to afternoon rain. Pollen grains were counted and typed 

(no other Trithuria species in the population were reproductive at the time). 

 To determine the potential for hydrophily, 20 plants with developing reproductive units 

were kept submerged in the laboratory for 15 days. Anthers were monitored periodically, and 

RUs were collected well after bracts reflexed and scored for pollen reception and anther opening. 
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Breeding system 

 A caging experiment tested for autonomous self-pollination and self-fertilization. Thirty 

plants with a single reproductive unit at Kulunilup swamp were covered with cups as above to 

prevent cross-pollination and geitonogamy (cups also excluded wind as a pollen vector). Twelve 

plants were collected 3-5 days after emergence, fixed in 3:1, and the germinated pollen load was 

determined. The remaining 18 plants were collected three weeks later, after seeds were mature. 

Seed-set was calculated as the number of developed seeds divided by the total number of ovules 

and seeds (ovules could be easily seen through the carpel wall with a stereomicroscope). A 

developed seed was conspicuously larger than a mature ovule in an unpollinated reproductive 

unit and had a hard seed coat. 

 An emasculation experiment was designed to determine pollen load sizes with and 

without self-pollination. Immature anthers were removed from 23 reproductive units, which were 

then allowed to naturally receive pollen, including geitonogamous pollen. The 23 emasculated 

reproductive units and 23 untreated reproductive units were collected 15 days after emasculation 

or anther abscission to ensure maximum pollen reception. Carpels were fixed and stained with 

aniline blue and pollen was counted. 

 For analysis of pollen production, anthers of T. submersa were each macerated in 200 µl 

of 1 % polyethylene glycol (PEG) in 95 % ethanol and gently vortexed for 30 seconds. One tenth 

(20 µl) of the pollen mixture was placed on a glass slide and the entire cover slip was scanned. 

The number of observed pollen grains was multiplied by 10 to estimate total number of grains 

per anther and this was multiplied by the number of anthers in the reproductive unit to estimate 

the total number per unit. The number of pollen grains per reproductive unit was divided by the 

number of carpels in the unit (one ovule/carpel) to obtain the pollen to ovule (P/O) ratio. 
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For comparison, pollen production and P/O ratio in dioecious T. austinensis D. D. Sokoloff, 

Remizowa, T. D. Macfarl. & Rudall were calculated using 11 male and 11 female mature 

reproductive units collected at Branchinella Lake, shire of Manjimup, Western Australia (34
o 
21’ 

S, 116
o 
43’ E). One anther from each male reproductive unit was macerated in PEG and pollen 

production per anther and reproductive unit was determined as above. As T. austinensis is 

dioecious, average pollen production per male reproductive unit was divided by the average 

number of carpels (one ovule/carpel) in female reproductive units to obtain the P/O ratio. Also 

for comparison, stigmatic pollen loads were determined for open-pollinated flowers of Brasenia 

schreberi J.F. Gmel (n = 16 plants; methods and location in Taylor and Williams 2009). 

  

RESULTS 

Reproductive development   

 Individual plants produced from 1-18 reproductive units (mean = 4.8 ± 3.7 in Kulunilup 

Swamp, 5.4 ± 4.4 in Frying Pan Swamp) over the course of the season. Reproductive units were 

borne singly on peduncles of different heights and emerged at different times (Figure 3.1B). 

Most reproductive units possessed a single stamen (Figure 3.1C), but 3 % from Kulunilup 

swamp and 24 % from Frying Pan swamp had two (Figure 3.1D; n = 180, 67, respectively). 

Reproductive units contained an average of 19.3 ± 6.4 carpels (n = 280, range: 3-37) each with a 

single ovule and three uniseriate stigmatic hairs. 

 Buds enlarged under water and mature bracts partially reflexed (Figure 3.1B-D), whether 

or not the reproductive unit had emerged. Once they reflexed, the bracts did not close again. The 
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stamens and carpels continued to develop whether or not they were under water, but anther 

dehiscence did not occur until the reproductive unit had emerged. 

 Within open reproductive units, five distinct developmental stages could be characterized 

with respect to stamen development (Table 3.1). In stage 1, anthers and carpels were positioned 

at similar heights. Ovaries and their ovules had already attained their mature size (cf. Figure 

3.1E, F). Each of the three uniseriate stigmatic hairs was fully formed, but the cells had not 

expanded (mean height to width ratio of 5
th
 cell = 0.31; n = 10; Figure 3.1E).  

 In stage 2, anther filaments had elongated but had not reached their full length, and the 

anthers protruded above carpels, but not the stigmatic hairs (Figure 3.1C). The stigmatic hairs 

had partially elongated via cell expansion, with one hair typically longer than the others. Cells 

near the base of the stigmatic hair elongated first, whereas cells at the tip rarely expanded (Figure 

3.1C, F).  

 In stage 3, the anthers were positioned above most or all of the stigmatic hairs. The 

longest stigmatic hairs had more than doubled in length to their mature size (mean height to 

width ratio = 0.76; n = 15; Figure 3.1F). The second stigmatic hair often remained slightly 

shorter than the first whereas the third stigmatic hair did not elongate in any of the carpels 

observed (Figure 3.1F).  

 Stage 4 was characterized by anther dehiscence (Figure 3.1D). Anthers opened along two 

longitudinal lines of dehiscence that extended the length of the anther (Figure 3.2A-B). 

Dehiscence was observed at all times of day, and anthers generally emptied within a few minutes 

after opening. At this stage stigmatic hairs often exhibited one or more collapsed cells, causing 

the stigmatic hair to bend or curl. Cells in the top half of the hair were more prone to collapse 



 

 75 

than those near the base (Figure 3.1D, F). Occasionally, filaments were also observed to bend, 

lowering the dehiscent anther toward the stigmatic hairs (Figure 3.1D). After dehiscence, anthers 

abscised, leaving the filament– this indicated the onset of stage 5 (Table 3.1).    

 In contrast to other water lilies, in which the entire perianth closes after anthesis, bracts of 

T. submersa remained reflexed throughout fruit development. Fruits appeared mature and were 

falling out of reproductive units within 17 days of dehiscence. Seeds from reproductive units that 

were naturally pollinated 10-16 Nov. 2008 were collected on 3 Dec., stored dry at room 

temperature (~21º C) and planted in saturated soil (18º C), on 15 Mar. 2009. These germinated 

while submerged and began flowering on 6 Oct. 2009. Seeds collected on 1 Dec. 2009 were 

stored as above and planted in chilled (10º C), saturated soil on 1 July 2010. These first 

germinated 30 days later. 

 

Pollination syndrome 

 Two indications that T. submersa might experience pollination by water were, 1) buds 

opened, stigmatic hairs and stamen filaments elongated, and pollen matured under water, and 2) 

aerenchyma was present in the connective tissue of the anther (Figure 3.2A). However, anthers 

were never dehiscent in either naturally or experimentally submerged reproductive units. 

Furthermore, submerged reproductive units (ecological stage 1) never received pollen (Figure 

3.3A-B), despite having fully elongated stigmatic hairs. Even among newly emergent 

reproductive units (ecological stage 2) only a single stigmatic hair received pollen (Figure 3.3B). 

Only emergent reproductive units received pollen (Figure 3.3). 
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 Nine insect visits to Trithuria plants were recorded over the course of two years of field 

observations. In all nine cases insects only rested on bracts. No foraging behaviour within 

reproductive units was ever observed, although two of 264 anthers in the fixed material appeared 

to have been partially eaten. 

 Sixty-four of 427 pollen grains on glass slides were from T. submersa. Anthers were also 

observed shedding pollen in the wind. Pollen was not sticky and exhibited a smooth exine 

(Figure 3.2D). On stigmas, pollen grains measured 18.5 µm ± 1.7 µm by 15.8 µm ± 1.8 µm. A 

dehiscent anther(s) is held above the reproductive unit, which is in turn held above the vegetative 

body by a long slender peduncle (0.5 - 3.0 cm long and 0.4 mm wide; Figure 3.1A, B; 3.2B). 

Anther morphology of T. submersa was nearly identical to that of wind-pollinated water lily, 

Brasenia schreberi (Cabombaceae; Figures 3.2B-C), including the presence of robust 

endothecial bands (Figure 3.2A; see also Taylor and Osborn 2006). 

 

Breeding system 

 In the mass collection experiment, only one emergent reproductive unit received pollen 

during developmental stages one and two and no pollen germination was observed (Figure 3.4A-

B). In stage 3, 25 % of the reproductive units and 6 % of carpels per reproductive unit exhibited 

stigmas with germinated pollen (Figure 3.4A). However, the average germinated pollen load in 

stage 3 was small (0.08 grains/carpel; Figure 3.4B). Within reproductive units that received 

pollen, 23 % of carpels received pollen and the average pollen load per carpel was 1.2 ± 0.5. The 

maximum pollen load was three. In the hand-pollination experiment, 9 of 21 reproductive units, 

all in stage 3, had growing pollen tubes. Since, anthers were indehiscent when stigmatic hairs 
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became receptive in stage 3, the onset of female function occurs before the onset of male 

function in the bisexual reproductive unit in T. submersa.  

 Reproductive units with dehiscent anthers (stages 4 and 5) received much more pollen 

than those prior to dehiscence (stages 1-3). In 2008, almost all post-dehiscent reproductive units 

had received pollen; the percentage of pollinated carpels/RU was significantly higher than that of 

pre-dehiscent RUs (Figure 3.4A); and pollen loads were also higher (Figure 3.4B). In 2009, 6 % 

of reproductive units received pollen prior to anther dehiscence, whereas 91 % received pollen 

after dehiscence (Figure 3.5A), and both the percentage of carpels pollinated and pollen loads 

were significantly higher (Figure 3.5A-B). 

 In the caging experiment, outcross or geitonogamous self-pollination by wind was 

prevented so that only autonomous self pollination by gravity could occur. In caged plants, 100 

% of reproductive units and a mean of 87 % of carpels/RU received germinable pollen, a 

significantly higher percentage than that of open-pollinated plants (Figure 3.6A). The average 

stigmatic pollen load was 5.8 ± 1.8 on caged plants versus 2.3 ± 2.7 on stage 5 open-pollinated 

plants. Mean seed set of the 18 caged plants was not significantly different than the open-

pollinated control (Figure 3.6B). 

 The emasculation experiment showed that reproductive units received outcross or 

geitonogamous pollen. These plants received significantly fewer pollen grains (14 % versus 64 

% of carpels/RU; Figure 3.7A) and had smaller pollen loads than the open-pollinated control 

(0.38 ± 0.9 versus 2.5 ± 1.7 pollen grains/carpel; Figure 3.7B). For comparison, the mean pollen 

load per carpel of Brasenia schreberi, which receives only outcross or geitonogamous pollen 

from a separate inflorescence, was 3.0 ± 3.1.  



 

 78 

 Mature anthers in T. submersa contained 426.0 ± 149.4 pollen grains and the average 

pollen to ovule (P/O) ratio was 23.9 (n = 27). Reproductive units of T. austinensis had similar 

numbers of ovules as T. submersa (17.1 versus 19.3), but more anthers (7.9 versus 1.1) and much 

greater pollen production of 3,526 grains/anther and 27,650 grains/RU. Its P/O ratio was 1569.1 

(n = 11). Anthers in T. austinensis measured 1.96 mm long x 0.52 mm wide x 0.29 deep, 

compared to 0.71 x 0.32 x 0.22 mm in T. submersa (n = 5 each).  

 

DISCUSSION 

 Trithuria species are similar to other Nymphaeales in that they begin development while 

totally submerged. However, unlike most water lilies that occur in more or less permanent 

aquatic environments, nearly all Trithuria species are found in ephemeral wetlands. Vernal pool 

plants are typically small and exhibit fast vegetative and reproductive development (Zedler 

1990). Plants of Trithuria submersa are quite small (< 1 cm in diameter) and their reproductive 

function, triggered by water drawdown, was short and locally unpredictable. The period between 

fertilization and seed dispersal was also short, only 17 days in 2008. Small plant size and the 

brief window for reproduction underlie many aspects of T. submersa’s reproductive biology. 

Below we discuss the reproductive development of T. submersa in light of its probable aquatic, 

perennial ancestry and the evolution of its ephemeral wetland ecology. 

 

Pollination syndrome  

 Hydrophily in T. submersa was a distinct possibility because reproductive units often 

opened under water, and both stamens and carpels reached mature sizes while submerged. At 
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least two other Trithuria species may carry out their entire life history underwater (Edgar 1966; 

Pledge 1974; Rudall et al. 2007). However, two observations indicate desiccation was necessary 

for anther dehiscence. First, only emergent anthers dehisced, whether in collected material or in 

plants that were kept artificially submerged for up to 15 days and second, anthers possessed 

endothecial bands, which are known to facilitate anther opening upon desiccation and are not 

present in submerged anthers of water-pollinated plants (D’Arcy 1996; Endress 1996). Our data 

also show that emergence was necessary for pollen reception. Stigmatic hairs from mass 

collected submerged reproductive units received no pollen and artificially submerged plants set 

no seed. 

 Emerging reproductive units created an indentation in the water surface that might serve 

to draw floating pollen or abscised anthers toward the stigmatic hairs (Figure 3.1B). Many 

aquatic taxa, including several seagrasses (Cymodoceaceae; Hydrocharitaceae; Zosteraceae), 

achieve pollination via floating pollen or anthers that physically contact receptive stigmas (Cox 

1988; Cox and Humphries 1993). Among early-divergent lineages of angiosperms, both the basal 

eudicots Ceratophyllum (Ceratophyllaceae) and basal monocot Lepilaena cylindrocarpa 

(Potamogetonaceae) have anthers that abscise underwater and float to the surface to release 

pollen (Cox 1988). Anthers of T. submersa also abscise and the large lacunae in the connective 

tissue suggest anthers could float on the water surface. However, in T. submersa pollen was dry, 

anthers emptied before they abscised and partially emergent reproductive units received very 

little pollen. We conclude Trithuria submersa is not water-pollinated. 

 We also ruled out insect pollination. Extensive observation over the course of two field 

seasons in several populations indicated that insects did not interact with Trithuria reproductive 
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units, and there was very little evidence of pollen scavenging. Pollinivory is quite common in 

many basal angiosperms (Thien et al. 2009), but in T. submersa the reward would be quite small, 

given how little pollen was present in an anther. Under insect pollination, large pollen loads 

might be expected within at least some RUs, but on emasculated RUs, no stigma received more 

than three pollen grains and most received no pollen at all. 

 Experimental, observational and anatomical evidence indicate that T. submersa at least 

occasionally exhibits wind-pollination. Pollen traps captured wind-borne pollen and small 

numbers of viable pollen were received on stigmas of emasculated and female phase 

reproductive units. Pollen in T. submersa is not sticky, lacks ornamentation, and is at the small 

end of the size range of wind-dispersed pollen (Friedman and Barrett 2009). Reproductive units 

lack a perianth or showy bracts, dehiscent anthers are elevated on elongated filaments, and 

receptive stigmatic hairs often extended beyond the bracts. Organ placement that reduces 

interference is common in wind-pollinated plants (Whitehead 1969; Friedman and Barrett 2009).  

Pollination and the breeding system 

 Trithuria submersa can be characterized as self-pollinated, self-compatible and 

autogamous. Stigmas are receptive before and during anther dehiscence. Thus, stigmas can 

receive outcross or geitonogamous (self) pollen prior to autonomous self-pollination by the 

overarching anther. Outcross pollination was exceptionally rare – when reproductive units were 

emasculated more than 86 % of carpels received no pollen at all. Yet in unemasculated plants 

that could outcross and self, over 60 % of carpels received pollen. Pollen reception was even 

greater on caged plants in which only autonomous self-pollination could occur. These results 
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indicate autonomous self-pollination compensates for the lack of outcross pollen reaching 

stigmas of T. submersa. 

 Open-pollinated plants had 71 % seed set, a result inconsistent with the extremely low 

levels of cross-pollination, unless self-pollination is ubiquitous and plants are self-compatible. 

Self-compatibility was confirmed by the 83 % seed set of self-pollinated plants in the caging 

experiment. Germination of open-pollinated seeds in the greenhouse indicates seeds have high 

viability, as also found by Tuckett et al. (2010b) for the same species. Our data show that such 

seeds were likely self-fertilized, and therefore have low levels of inbreeding depression. Another 

indication of long-term inbreeding is the low P/O ratio of 24. Such a low P/O ratio is consistent 

with obligate autogamy (Cruden 1977).  

 It could be argued that the exceptionally low P/O ratio of T. submersa evolved in large 

part because extreme reduction in plant size caused reduced pollen production, leading to the 

subsequent evolution of autogamy. Its reproductive units are only 2 mms wide and have a mean 

of 1.1 anthers with 426 pollen grains per anther. However, T. austinensis, a close relative that is 

of similarly small size, produces about eight times more anthers and eight times more pollen per 

anther, even though it has slightly larger pollen than T. submersa. Thus, the extremely low pollen 

production of T. submersa, the proximate cause of its low P/O ratio, cannot be due to small plant 

size alone. To underscore the point, the P/O ratio of 1569 of T. austinensis is within the low end 

of the range of those of other dioecious and wind-pollinated species (Cruden 2000; Michalski 

and Durka 2010). Thus, we interpret the low P/O ratio of T. submersa as being causally linked to 

the evolution of an obligately autogamous breeding system. 
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 Given our conclusions, traits typically associated with cross-pollination, such as the onset 

of stigma receptivity prior to anther dehiscence, pollination by wind and a somewhat sequential 

maturation of RUs, now seem to have little function. Perhaps one of the best-supported 

conclusions of recent comparative studies of basal angiosperms is that bisexual flowers were 

ancestrally protogynous (Endress 2010). As such, the prior onset of stigma receptivity in T. 

submersa is likely an historical effect and if so, would indicate a similar level of developmental 

integration within a bisexual RU (Trithuria) as within a bisexual flower (other basal 

angiosperms). Its retention in present-day T. submersa may be less related to facilitating cross-

pollination than to its function in ensuring self-pollination. Early onset of a long period of 

stigmatic receptivity is currently maintained because of the uncertainty in timing of anther 

dehiscence and the predominant mode of pollen reception - autonomous self-pollination. 

 

Reproductive strategies of wind-pollinated Nymphaeales 

 Many of the structural features associated with wind pollination in T. submersa (pollen, 

anthers and reproductive units) are also present in other Trithuria species. It may be that all but 

the two perennial species with submerged reproductive units have some degree of wind-

pollination, as hypothesized by Hamann (1998). Within the sister lineage to Hydatellaceae, 

Nymphaeales sensu stricto, insect pollination is generally thought to be plesiomorphic (e.g. Friis 

et al. 2001; Borsch et al. 2008) and the only documentation of wind-pollination in the group is in 

Brasenia schreberi (Osborn and Schneider 1988). Here we compare ecological and historical 

aspects of the evolution of anemophily in Trithuria and Brasenia, as well as the subsequent shift 
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from a primarily wind-pollinated to a primarily autonomously self-pollinated reproductive 

system in present-day T. submersa. 

 There are strong indications that the common ancestor of Nymphaeales sensu lato was 

aquatic and perennial, with homoecious (bisexual or monoecious) reproductive units in which 

female organs matured before male organs (Friis et al. 2001; Crepet et al. 2004; Wang and 

Dilcher 2006; Mohr et al. 2008; Taylor et al. 2008; Endress and Doyle 2009; Endress 2010). The 

major ecological difference between Nymphaeales sensu stricto (Cabombaceae + 

Nymphaeaceae) and Hydatellaceae involves their aquatic environment – the former are large 

perennials that occupy permanently inundated habitats (Williamson and Schneider 1993), 

whereas the latter are extremely small and most are annuals that live in a seasonal aquatic 

environment (only two species of Trithuria occur in permanently inundated habitat and both 

retain the ancestral perennial habit)(Edgar 1966; Pledge 1974; Sokoloff et al. 2008a). 

 Wind pollination is favored in dry, open environments (Whitehead 1969; Culley et al. 

2002; Friedman and Barrett 2009), yet wind can also be a reliable pollen vector in the large, open 

habitats of many aquatics that flower above water. Long-term persistence in predictable 

environments with seasonal cues can also enable a high degree of synchronization of flowering 

within a population to evolve (Whitehead 1969). Synchrony of flowering is much stronger in B. 

schreberi (closely coincident onset timing and of much shorter duration) than in other insect-

pollinated Nymphaeales (Osborn and Schneider 1988; Taylor and Williams 2009). It also occurs 

in the context of the strict dichogamy typical of Nymphaeales – female phase occurs on the first 

day of anthesis and male phase begins on the second day, a pattern present in most basal 

angiosperms (Endress 2010). Floral buds also open sequentially on B. schreberi shoots, 
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minimizing the potential for geitonogamy. We found that outcross pollen transfer by wind was 

successful in B. schreberi and we have observed high seed set in several populations, both in the 

southeastern USA and in Australia (Taylor and Williams 2009; personal observations). The 

species has a cosmopolitan distribution (Williamson and Schneider 1993). 

 The evolution of wind pollination in Trithuria has a quite different history. Extreme 

reduction in plant size occurred before the common ancestor of extant species. Subsequently, the 

annual species have shifted from their ancestral perennial habit in permanent wetlands to 

seasonal wetlands. Trithuria austinensis reflects one outcome of such a shift. It typically grows 

in shallow wetlands in a very dense carpet, forming large populations that are fairly constant in 

size from year to year. Gradual water drawdown causes many neighbouring plants along the 

receding wetland margins to emerge and to flower simultaneously in an open environment. 

 Pollen production and P/O ratios were relatively high, consistent with wind pollination 

and outcrossing. Large population size, dioecy, and predictable environmental cues all favour the 

origin and maintenance of outcrossing by wind pollination (Friedman and Barrett 2008, 2009). 

An alternative, and perhaps more derived strategy is represented by T. submersa, which has 

bisexual reproduction units, but in which dichogamy has been lost. In T. submersa cross-

pollination via wind can occur but was rare in both years. T. submersa is found in disturbed, 

early-successional wetland habitats, such as in roadside ditches or in shallow depressions in 

recently burned areas. Relative to T. austinensis, its populations are small and ephemeral, and 

individuals are not as densely distributed. Furthermore, the topography and surrounding 

vegetation in their small patchy habitats forms a more closed environment for these small plants, 

greatly reducing exposure to wind. Though plants matured fairly synchronously in both years, 
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their reproductive units did not. Small differences in plant height or relative ground level often 

caused neighbouring reproductive units to emerge, and anthers to dehisce, hours or even days 

apart. Thus, low population density, non-synchrony of pollen dispersal, and the often closed 

habitat are all causes of ineffective outcross pollen transfer by wind. The shift to an effective 

system of autonomous self-pollination and primarily autogamous reproduction has exacerbated 

the effect by causing lower pollen production. 

 Self-fertilization has long been associated with the ability to colonize and succeed in 

pioneer habitats (Stebbins 1970) and one indicator of success is that T. submersa is one of the 

most widespread Trithuria species. Pioneer habitats are not typically colonized by obligately 

outcrossing T. austinensis. On the other hand, T. bibracteata is considered to be a pioneer 

species, and although its breeding system is unknown, it has bisexual reproductive units like T. 

submersa. Understanding the significance of the great reproductive diversity in Trithuria in the 

context of early angiosperm evolution will certainly require a greater appreciation of the intimate 

connection between their reproductive biology and their natural ecological settings.  

 

Conclusion 

 Nymphaeales is thought to be ancestrally aquatic, perennial and probably insect 

pollinated. In contrast, most species of Trithuria are annuals and inhabit seasonal wetlands. 

Among these, T. submersa has evolved to colonize disturbed, early-successional habitats. 

Protogyny and prolonged stigma receptivity may have initially promoted outcrossing with 

reproductive assurance via delayed selfing. The overlapping male and female phases now seem 
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to function primarily to ensure autonomous self-pollination and high seed set in an unpredictable 

and heterogeneous pollination environment. 
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APPENDIX  3 

 

Table 3.1:  Developmental sequences of reproductive units in Trithuria submersa.  

 

Developmental 

Stage 

Stamen 

 

Carpel 

1 Filament not elongated, anther 

not above carpels 

Stigmatic hairs short (mean of longest 

hair = 253 ± 58 µm; n = 7) 

2 Filament partially elongated, 

anther beginning to emerge 

above carpel body, but not 

above stigmatic hairs 

At least one stigmatic hair per carpel 

has begun elongating 

3 Filament fully elongated, 

anther above carpel tops and 

many of the stigmatic hairs. 

Anther not dehiscent.  

Typically two stigmatic hairs per 

carpel have elongated 

(mean = 463 µm ± 172; n = 15)  

4 Filament fully elongated as in 

stage 3. Anther dehiscent.  

Stigmatic hairs as in stage 3, some 

hairs bent with collapsed cells  

5 Anther abscised. Stigmatic hair length as in stage 3. 

(mean = 480 µm ± 239; n = 10). 
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Figure 3.1. Morphology and development of Trithuria submersa. (A) Habit of 

Trithuria submersa at Kulunilup Swamp, Kulunilup Nature Reserve. T. submersa 

plants are red (bright green leaves are immature Goodenia claytoniacea). (B) 

Reproductive units at various stages of emergence; completely submerged (stage 

1; arrow), at the water level creating a depression (stage 2; arrowhead), and fully 

emergent (stage 3; asterisk). bar =  5 mm. (C) One reproductive unit showing four 

bracts surrounding carpels with elongating stigmatic hairs and a single central 

stamen comprised of a partially elongated filament and non-dehiscent anther 

(developmental stage 2). Note that one stigmatic hair is typically longer than the 

others. bar = 500 µm. (D) One reproductive unit with two dehiscent anthers 

(developmental stage 4). Some stigmatic hairs have received pollen and cells have 

collapsed, causing stigmatic hairs to bend (arrowhead). bar = 500 µm. (E) A 

single carpel from a stage 1 reproductive unit. Stigmatic hairs are short and cell 

length is much greater along the axis perpendicular to the stigmatic hair. bar = 

100 µm. (F) A composite image (two focal planes) showing a single carpel from a 

mature reproductive unit (stage 4) with two elongated and one short stigmatic 

hair. Stigmatic cells have elongated and some have collapsed (arrowheads). Gray 

line indicates the border between images. bar = 100 µm. Abbreviations: A, anther; 

B, bract; C, carpel; F, filament; H, stigmatic hair; M, carpel mouth; O, ovule.  
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Figure 3.2. Pollination and pollen reception in Trithuria submersa. (A) Cross 

section of a dehiscent anther showing numerous endothecial bands (arrow), 

aerenchyma ground tissue, and the two stomia just beginning to open (one 

indicated by arrowhead). bar = 50 µm. (B) Mature reproductive units of Trithuria 

submersa with fully elongated filaments supporting dehiscing anthers 

(developmental stage 4). The stigmatic hairs are visible above and between the 

reflexed bracts (arrowhead). bar = 5 mm. (C) Staminate flower of wind-pollinated 

Brasenia schreberi with dehiscing anthers supported by long, slender filaments. 

Compare to 2B. bar = 5 mm. (D) Receptive stigmatic hair (from a developmental 

stage 3 reproductive unit) with germinating pollen grains (two in plane of focus). 

bar = 25 µm. (E) Carpel in which cross-pollination was prohibited, with self-

pollen tubes successfully reaching the carpel mouth. bar = 150 µm. 

Abbreviations: A, anther; F, filament; L, aerenchyma; M, carpel mouth; H, 

stigmatic hair; P, peduncle; PG, pollen grain; PT, pollen tube. Stains: toluidine 

blue O (A), aniline blue (E).  
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Figure 3.3. Natural pollen reception by ecological stage of Trithuria submersa. Pollen reception 

occurs only in partially or fully emergent reproductive units. The percentage of reproductive 

units (black) or carpels per reproductive unit (white) that were naturally pollinated at each of the 

four ecological stages (1-4) is shown for each population. (A) Kulunilup Swamp (2008; n = 25, 

25, 82, 35). (B) Frying Pan Swamp (2009; n = 15, 11, 17, 13). On the x-axis, the position of the 

water level (gray bar) is represented relative to the reproductive unit (black circles). Error bars = 

95 % CI 
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Figure 3.4. Natural pollen reception by stamen developmental stage of Trithuria 

submersa at Kulunilup Swamp. Outcross pollen reception can occur during 

developmental stages 1-3, whereas potential for self pollination occurs during 

stages 4 and 5 (grey background). Developmental stages are categorized by the 

position of non-dehiscent anthers (black ovals) or dehiscent anthers (grey ovals) 

relative to that of the carpels (white ovals). (A) Percent reproductive units (black) 

and carpels per reproductive unit (white) that received pollen at each 

developmental stage (1-5). The percentage of carpels pollinated is significantly 

higher in stages 4 and 5 than in stages 1-3 (ANOVA/Games-Howell: F = 32.32, df 

= 4, p < 0.0001). (B) Pollen load per carpel in emergent reproductive units at each 

developmental stage. Pollen loads are significantly higher in stages 4 and 5 than in 

stages 1-3 (ANOVA/Games-Howell test: F = 11.58, df = 4; p <0.0001). Error bars 

= 95 % CI. n = 15, 28, 28, 18, 22, respectively. Submerged and water level 

reproductive units (ecological stages 1 and 2) were excluded from analyses of 

pollen reception by developmental stage. 
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Figure 3.5. Natural pollen reception by stamen developmental stage in Trithuria 

submersa at Frying Pan Swamp. Reproductive units with dehisced anthers could 

have received autonomous self pollen, as well as geitonogamous-self and outcross 

pollen (grey background), whereas those without dehiscent anthers could only 

have received outcross or geitonogamous-self pollen (white background). (A) 

Percent of reproductive units (black bars) or carpels per reproductive unit (white 

bars) that received pollen (Wilcoxon Rank Sums: !2
 = 30.21; df = 1; ***p < 

0.0001). (B) Pollen load per carpel in emergent reproductive units pre- or post 

anther dehiscence (Wilcoxon Rank Sums: !2
 = 30.20; df = 1; ***p < 0.0001). 

Error bars = 95 % CI. n = 18, 23, respectively. Submerged reproductive units 

(ecological stage 1) were excluded from this analysis. 
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   Figure 3.5 
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Figure 3.6. Self-pollen reception by caged and uncaged plants. (A) The percentage of carpels per 

reproductive unit that received pollen when cross-pollination was either experimentally excluded 

to allow only autonomous self-pollination (n = 12) or allowed to occur naturally (n = 46). 

Treatments were significantly different (Wilcoxon Rank Sums: !2
 = 14.82; df = 1; ***p < 

0.0001). (B) Seed set in reproductive units in which cross-pollination was experimentally 

excluded (n = 18) or not (n = 14). Treatments were not significantly different (Wilcoxon Rank 

Sums: !2
 = 3.40; df = 1; p = .065). Error bars = 95 % CI. 
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Figure 3.7. Outcross pollination in emasculated reproductive units. (A) The percent of carpels 

per reproductive unit that received pollen when self pollination was prevented by emasculation 

(n = 23) compared to untreated reproductive units in which self-pollination could occur (n = 23). 

Treatments were significantly different (t = 7.07, df = 44, ***p < 0.0001). (B) Pollen load per 

carpel in emasculated reproductive units (n = 23) compared to open-pollinated reproductive units 

(n = 23). Treatments were significantly different (unequal variance t-test: t’ = 5.12, df = 32.42, 

***p < 0.0001). Error bars = 95 % CI. 
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CHAPTER IV: POST-POLLINATION BIOLOGY IN TRITHURIA (HYDATELLACEAE): 

CONSEQUENCES OF BREEDING SYSTEM DIVERGENCE.  

 

 

 

This chapter is a modified version of an original research article to be submitted for publication 

by M.L. Taylor and J.H. Williams.  

 

 

 

 

In the following chapter, the words “we” and “our” refer to my co-author and me. My 

contributions to this paper include (1) formation of the original hypotheses (2) development of 

experimental pollination techniques and completion of all field experiments (3) preparation of 

materials to secure funding and permits (4) completion of all microscopical analyses (4) 

construction of figures, and (5) all of the writing.  
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ABSTRACT 

Breeding system, reproductive morphology, and pollen tube growth traits are closely 

linked. However, relatively little is known about the consequences of breeding system evolution 

on post-pollination development, particularly in early-divergent angiosperm lineages. Trithuria 

(Hydatellaceae) is unique among basal angiosperms in that it exhibits considerable variation in 

sexual system and breeding system. To determine the consequences of breeding system 

divergence on pollen tube growth and other reproductive traits, post-pollination development 

was investigated in three Western Australian Trithuria species (T. austinensis, T. australis, and 

T. submersa). These species exhibit dioecy, monoecy, and hermaphrodism, respectively, and at 

least two different breeding systems (T. austinensis  = outcrossing; T. submersa = selfing). In the 

species studied, the time to fertilization was  < 1 h , pollen tube pathways were short (T 

submersa = 0.48; T. austinensis =1.95 mm) and pollen tube development was rapid. Outcrossing 

T. austinensis exhibited more male investment, slower pollen germination (15-45 vs. 5-15 min), 

faster pollen tube growth rates (499 vs. 321 µm/hr), and higher pollen tube attrition (~ 70 % vs. < 

10 %) than selfing T. submersa. Trithiria australis exhibits selfing and both low pollen 

production (350 grains/anther) and a low P/O ratio (32:1), typical of plants that experience high 

levels of selfing. The patterns of divergence in post-pollination biology observed in Trithuria 

matched theoretical predictions based on experiments in derived angiosperms. This is evidence 

that post-pollination development responds to similar selective forces across the angiosperm 

phylogeny.  
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INTRODUCTION 

In seed plants, pollination and fertilization are separated by a life history stage known as 

the progamic phase. In angiosperms, the progamic phase takes place within the closed carpel and 

involvess a set of specific interactions among the male gametophyte, carpel, and female 

gametophyte that determine the success of male gametes (Cresti et al. 1992; Herrero and Arbeloa 

1989; Williams et al. 1999; de Graaf et al. 2001; Herrero 2000, 2003). There is tremendous 

variation in the structures and ontogenies involved in the progamic phase and the selective forces 

that shape this diversity are of considerable interest in studies of angiosperm evolution 

(Maheshwari 1950; Mulcahy and Mulcahy 1987; Williams 2008). 

Progamic phase development is intimately linked with breeding system (e.g. Barrett et al. 

1996; Mazer et al. 2010). Outcrossing results in greater genetic diversity of stigmatic pollen 

loads and a greater opportunity for pollen competition than selfing (Willson and Burley 1983; 

Mulcahy and Mulcahy 1987; Mazer et al. 2010). This is hypothesized to drive the evolution of 

longer styles (Goodwillie and Ness 2005), faster pollen tube growth rates (Kerwin and Smith-

Huerta 2000; Smith-Huerta 1996), and greater pollen tube attrition (Plitmann 1993, 1994; Smith-

Huerta 1997), as well as to have an affect on pollen germination rate (Plitmann and Levine 1990; 

Smith-Huerta 1996; Kerwin and Smith-Huerta 2000). In addition, outcrossing is associated with 

greater investment in male reproductive function, including larger pollen and larger pollen to 

ovule ratios (P/O; Cruden 1977; Barrett et al. 1996). Mazer et al. (2010) have recently developed 

predictions for the trajectory of male gametophyte evolution due to breeding system divergence.  

Novel angiosperm progamic phase traits, including the closed carpel, accelerated pollen 

tube growth, and double fertilization, have been hypothesized to play a critical role in 
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angiosperm diversification (Stebbins 1974; Doyle 1978; Doyle and Donohue 1986; Williams 

2008). The evolutionary success of flowering plants has also been attributed to their increased 

ability to discriminate between potential mates prior to fertilization, which is an component of 

breeding system (Whitehouse 1950; Stebbins 1957). Despite the putative importance of these 

traits in angiosperm evolution, relatively few studies have explicitly investigated the 

consequences of breeding system evolution on progamic phase development (but see Mazer et 

al. 2010), or addressed these phenomena in early-divergent angiosperm lineages.  

Trithuria (Hydatellaceae) has recently been placed in the ancient angiosperm lineage 

Nymphaeales (water lilies; Saarela et al. 2007), which originated from the basalmost or next 

most basal node of the extant angiosperm phylogenetic tree (e.g. Qiu et al. 1999, 2006; Löhne 

and Borsch 2005) and is well represented in the oldest angiosperm macro fossil record (Friis et 

al. 2001, 2003, 2009, 2010; Wang and Dilcher 2006; Mohr et al. 2008; Taylor et al. 2008). 

Trithuria is of particular interest in evolutionary studies because it exhibits several unique 

reproductive traits, including traits associated with cotyledon morphology (Sokoloff et al 2008b), 

seed provisioning strategy (Friedman 2008), and reproductive structure morphology (Rudall et 

al. 2009; Rudall and Bateman 2010). Reproductive structures of Trithuria are composed of 

bracts surrounding stamens and/or carpels which, because of their uncertain homology, are 

typically referred to as reproductive units (Rudall et al. 2007, 2009). Trithuria may also 

represent an extreme in progamic phase modification because of its highly reduced size and 

shorter overall life history than any other water lily – it is the only basal angiosperm known to 

possess an annual life cycle (Sokoloff et al. 2008a; Taylor et al. 2010).  
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Trithuria exhibits great diversity in sexual system: four of the twelve species of Trithuria 

typically have bisexual reproductive units, four are dioecious, and four are typically cosexual 

(monoecious), with unisexual male and female reproductive units produced on the same plant 

(Yadav and Janarthanam 1995; Sokoloff et al. 2008a). Among early-divergent angiosperm 

lineages, such variation in sexual system is rare. Most other basal angiosperms, including all of 

Nymphaeaceae and Cabombaceae, and many Austrobaileyales (Austrobaileya, Illicium, 

Trimenia) exhibit bisexual flowers, whereas other taxa, including Amborella, Hedyosmum, 

Ascarina, and Myristicaceae (Magnoliales) are dioecious (Endress 2001, 2010). Variation in 

sexual system in Trithuria has set the stage for divergence in breeding system. The dioecious 

species, including T. austinensis, are almost certainly obligately outcrossing, but at least one of 

the bisexual species, T. submersa, is primarily selfing (Taylor et al. 2010).  

The goal of this study was to investigate the progamic phase in Trithuria. We describe 

life history, breeding system, and aspects of pollen tube growth in three Trithuria species that 

exhibit the range of diversity in sexuality found in Trithuria: T. austinensis, T. submersa and 

cosexual (monoecious) T. australis. For T. austinensis and T. submersa, we also 

comprehensively describe post-pollination development, documenting timing of pollen 

reception, germination and ovule entry, as well as pollen tube growth rates. We discuss how 

evolution in sexual system and breeding system is reflected in programic phase development in 

Trithuria and address this in the context of other basal angiosperms. 
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METHODS 

Field sites 

 The focal Trithuria species occur in ephemeral wetlands that are characterized by 

standing water in the wet season, a brief period of water drawdown lasting a few days to a few 

weeks, and a period of complete desiccation during the dry season (Hill et al. 1996). Trithuria 

seeds germinate and plants grow vegetatively while completely submerged. As the water level 

drops, plants become exposed and must complete flowering and fruit-set before the habitat dries 

out completely (Taylor et al. 2010). 

 Experimental pollinations and collections of Trithuria austinensis, T. australis, and T. 

submersa were undertaken in southwest Western Australia (shire of Manjimup) during 

November-December of 2008 and 2009. Laboratory work was conducted at the Department of 

Environment and Conservation Science Division facility in Manjimup, WA and at the University 

of Tennessee, Knoxville. Voucher specimens have been deposited in the University of Tennessee 

Herbarium (TENN). Experimental pollinations and collections were conducted at Branchinella 

Lake (T. austinensis D.D.Sokoloff, Remizowa, T.D.Macfarl. & Rudall; 34º 21’ S; 116º 43’ E; 

Figure 4.1A; all figures referenced in this chapter are found in Appendix 4), Frying Pan Swamp 

(T. australis (Diels) D.D.Sokoloff, Remizowa, T.D.Macfarl. & Rudall and T. submersa Hook.f;  

34
o
16’ S, 116

o 
42’ E; Figure 4.1B), and Kulunilup Swamp, Kulunilup Nature Reserve (T. 

submersa; 34
o
19’ S, 116

o
46’ E; Figure 4.1C). All three localities are within 11 km of each other. 
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Reproductive morphology 

 Plants of all three species were collected in mass and fixed whole in FAA (2:1:10 40 % 

formaldehyde, glacial acetic acid, 95 % ethanol) for 24 h and stored in 70 % ethanol for analysis 

of reproductive morphology. For T. australis, correlations of plant size and the proportion of 

female reproductive units were measured using Pearson’s correlation test in SPSS 16.0 (SPSS 

Inc., Chicago, IL; n = 20 plants). In a subset of 12 plants, the pollen production per anther was 

measured by macerating one anther per plant in 20 µl of 1 % polyethylene glycol in 95 % 

ethanol (PEG). The pollen mixture was vortexed for 30 s, placed on a drop of glycerine on a 

glass slide, and covered. The entire cover slip was scanned and all pollen grains were counted. 

The number of pollen grains per anther was used to calculate the pollen production and P/O ratio 

per reproductive unit and per plant. The P/O ratio of all plants were averaged to determine the 

mean P/O ratio. All measures of variance in the text are standard deviations unless otherwise 

noted. 

 

Pollen reception 

 To determine when plants received pollen and the size of natural pollen loads in T. 

austinensis, reproductive units of were haphazardly collected in mass from four ecological 

stages: (1) plants entirely submerged, (2) plants submerged, but reproductive units newly 

emergent with 50-75 % of the unit above the water line (Figure 4.2A), (3) plants submerged but 

reproductive units fully emergent (Figure 4.2A), and (4) whole plants completely emergent (see 

also Chapter III). Trithuria australis reproductive units were haphazardly collected in mass for 

the same purpose. However, due to extremely rapid water drawdown and an overall ‘flattened’ 
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plant morphology, plants collected represented only two ecological stages (1) whole plants 

submerged and (2) whole plants emergent. Reproductive units were fixed in FAA for 24 h and 

stored in 70 % ethanol. Carpels were dissected out of reproductive units stained 4-8 h with 0.1 % 

aniline blue and viewed under UV light with a Zeiss (Carl Zeiss, Oberkochen, Germany) 

Axioplan II compound microscope for visualization of pollen grains and tubes.  

 A caging experiment was conducted with T. australis to test for within plant self-

pollination. 15 submerged plants were covered with pollen exclusion cages constructed from 

clear plastic cups staked into the ground with flexible wire. Plants were collected three days after 

plant emergence, fixed in FAA, and stored in ethanol. Carpels were dissected out, stained with 

aniline blue, and viewed under UV light for visualization of pollen grains and tubes.  

 

Pollen tube development 

 Experimental pollinations were conducted in both T. austinensis and T. submersa to 

document the timing of pollen tube developmental events. Submerged female plants of T. 

austinensis were covered with pollen exclusion cages to prevent external pollination. Emergent 

anthers were collected and stored briefly (< 1 h) on filter paper to promote anther opening. As 

female reproductive units became emergent and stigmatic hairs mature, stigmatic hairs were 

gently brushed with dehiscing anthers. Over the course of the study period, 243 reproductive 

units were pollinated between 930 and 1400 h and collected at one of the following time points: 

5, 10, 15, 20, 30, 45 min or 1, 1.5, 2, 2.5, or 3 h after pollination.  

 Trithuria submersa anthers were removed from immature reproductive units with closed 

bracts and plants were covered until mature. Emergent anthers were collected from nearby plants 
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and briefly stored until fully open (< 1 h), then brushed gently over the mature stigmatic hairs. 

115 reproductive units were pollinated between 830 and 1130 h over the course of the study and 

collected at 5, 15, 30 min or at 1, 1.5, 2, or 3 h after pollination. Naturally pollinated 

reproductive units of all species were also collected. 

 All reproductive units collected were fixed in FAA or 3:1 (95 % ethanol: glacial acetic 

acid) for 24 h and stored in 70 % ethanol. Carpels were removed, stained 4-8 h with aniline blue, 

rinsed in distilled water, stained with 4',6-diamidino-2-phenylindole (DAPI) for 4 h, and viewed 

under UV light for simultaneous viewing of callose and nuclei. For histological analysis, carpels 

were dehydrated to 95 % EtOH, then infiltrated and embedded in JB-4 polymer (Polysciences, 

Inc., Warrington, PA, USA) following standard protocols. Serial-sections (5 µM) were cut with a 

Sorvall Dupont JB-4 microtome (Newtown, Connecticut, USA), using glass knives, mounted on 

glass slides and stained with 0.1 % toluidine blue O (TBO) for general histology, 0.1 % aniline 

blue for visualization of callose, or 0.01 % Auramine O for visualization of the cuticle. 

Specimens were imaged with a Zeiss Axioplan 2 compound microscope.  

 Average sustained pollen tube growth rate was determined for each pollen tube by 

dividing the length of the pollen tube by the time since pollination. In T. austinensis, 15 min was 

subtracted from the time since pollination to account for time to pollen germination (see 

“Results”). Rates were compared with a one-way ANOVA conducted in SPSS 16.0.  
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RESULTS  

Reproductive morphology and ecology 

 Trithuria austinensis – Plants grew at very high population densities in a monoculture 

carpeting the entire bottom of Branchinella Lake. The habitat is very open due to little 

surrounding vegetation and no canopy. Water evaporated from the lake margin so that large 

patches of adjacent T. austinensis plants became emergent at once (Figure 4.1A). However, not 

all reproductive units in a plant emerged simultaneously (Figure 4.2A).  

 Plants of T. austinensis are dioecious. Multiple reproductive units were supported by long 

peduncles (9.0 ± 2.9 mm; n = 15; Figures 4.2A-B). Female plants produced more reproductive 

units than male plants (Table 4.1). Female reproductive units measured 3.3 ± 0.3 mm from the 

base to the tip of the bracts and contained an average of 14.8 uniovulate carpels (Table 4.1) that 

each exhibited 5.5 uniseriate stigmatic hairs (Table 2; Figures 4.2D, 4.3B).  

 Anthers or carpels were completely enclosed in bracts of immature reproductive units. As 

female reproductive units matured, the stigmatic hairs elongated and emerged between the bracts 

of female reproductive units (Figure 4.2D). Mature stigmatic hairs were 2.06 mm long 

(maximum length = 3.89 mm; Table 4.2) and extended far beyond the tips of the bracts (Figure 

4.2D). As male reproductive units matured, filaments elongated and pushed anthers out of the 

bracts which did not ever strongly reflex (Figures 4.2B, E). Male reproductive units contained 

7.9 anthers that matured consecutively and produced over 3500 pollen grains each (Table 4.1; 

Taylor et al. 2010). Anthers abscised after they dehisced, leaving behind a persistent filament 

(Figure 4.2E). The pollen to ovule ratio was 1569 at the reproductive unit level (pollen produced 
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by male units to ovules produced by female units; Taylor et al. 2010) and 1138 at the plant level 

(pollen produced in male plants / ovules produced in female plants; Table 4.1).  

 Plants of T. austinensis did not receive pollen while submerged (Table 4.3) but began 

receiving pollen that successfully germinated as soon as stigmatic hairs emerged above the water 

surface (ecological stage 2; Table 4.3). Pollen loads increased over 3 times in stage 3 (fully 

emergent reproductive units) and by stage 4 (long emergent units), over 86 % of carpels per 

reproductive unit had received pollen (Table 4.3). The average pollen load in stage 4 plants was 

just over 29 grains per reproductive unit or 2.1 pollen grains per ovule (Table 4.2). Trithuria 

austinensis anthers opened via a two longitudinal slits that extended the entire length of the 

anther (Figure 4.2B) and we observed pollen being released directly into the air. We did not 

observe any insects landing on reproductive units or any anthers with signs of pollinivory.  

   

 Trithuria australis - Plants of T. australis grew at medium to high densities throughout 

Frying Pan Swamp (Figure 4.1B). This locality was less open than Branchinella Lake and T. 

australis plants grew intermixed with plants of slightly taller Centrolepis, as well as other 

vegetation.  

 Trithuria australis plants produced both male and female reproductive units aggregated 

together in a central head, with male units located in the center (Figures 4.2I-J). Reproductive 

units were either sessile or borne on very short peduncles (0.4 ± 0.3; n = 15), giving the plant a 

distinctly flattened morphology. Frying Pan Swamp was fairly flat, so plants near each other 

became emergent at approximately the same time. The sessile reproductive units were exposed 

simultaneously, unlike those of T. austinensis or T. submersa. 
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 Plants produced an average of 16.7 ± 7.7 reproductive units (range = 5-30). Plants 

continue to produce reproductive units while submerged and have been observed to produce over 

240 reproductive units in years with delayed water drawdown (TD. Macfarlane ‘pers. comm.’). 

85.5 % ± 8.0 % of reproductive units in plants were female (Table 4.1) and plant size (total 

number of reproductive units) had no effect on this proportion (Pearson’s Correlation; r = -0.037; 

p = 0.876). Bracts of female reproductive units were 2.3 ± 0.2 mm long and enclosed 10.1 

uniovulate carpels (Figure 4.2F; Table 4.1). Each carpel exhibited 5.7 stigmatic hairs that were 

2.0 mm long at maturity (maximum length = 3.3 mm; Figure 4.3C; Table 4.2). Male 

reproductive units produced 6.9 anthers that developed consecutively and produced 350 pollen 

grains (Figure 4.2G; Table 4.1). Anthers abscised after dehiscing (Figure 4.2G). The pollen to 

ovule ratio was 248 within reproductive units and 32 within plants (Table 4.1). 

 In Trithuria australis, no pollen was evident on submerged reproductive units (Table 4.3) 

and none of these reproductive units was developmentally mature. Bracts were completely 

closed, filaments not elongated, and stigmatic hairs were very short. During the study season, the 

water rapidly evaporated from a few cm deep (still completely submerging plants), such that no 

plants with reproductive units at the water level were observed. In addition, no plants were 

collected in a female-only phase with mature stigmatic hairs but indehiscent anthers. Every 

emergent plant collected had reproductive units with at least one dehiscent anther. This is 

evidence that reproductive development occurs extremely quickly in T. australis.  

 In emergent plants, 75 % of carpels per reproductive unit had received pollen (Table 4.3) 

and pollen load per reproductive unit was 38, with an average of 3.2 pollen grains per ovule 

(Table 4.2). Pollen loads were likely a mixture of outcross and self-pollen. Plants caged to 
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prevent out-crossing had an equal percentage of pollinated carpels and pollen loads higher than 

those observed in uncaged plants (Table. 4.2). Self-pollen produced tubes that entered the carpel 

mouth. 

 

 Trithuria submersa –T. submersa was investigated in two populations: Frying Pan 

Swamp and Kulunilup Swamp. Adjacent T. submersa plants became emergent at different times 

and the surrounding vegetation created a closed environment (Figure 4.1C; Taylor et al. 2010). 

  Trithuria submersa plants produced bisexual reproductive units that were borne on long 

peduncles (26.7 ±  6.8 mm; n = 15; Figures 4.2C, H; Table 4.1). Bracts measured 1.8 ± 0.3 mm 

in length and enclosed 19.3 carpels and 1.1 anthers (Figure 4.2H; Table 4.1). Carpels exhibited 

exactly three uniseriate stigmatic hairs that radiated from the carpel mouth and were 0.56 mm 

long at maturity (maximum length = 1.05 mm; Figure 4.3A; Table 4.2). Anthers each produced 

426 pollen grains and the pollen to ovule ratio was 24 (Table 4.1; Taylor et al. 2010). 

 Plants of T. submersa do experience a brief female phase in which only outcross pollen is 

received, but resulting pollen loads are quite small. The majority of pollen received on stigmatic 

hairs of T. submersa is self-pollen (Taylor et al. 2010).  

 

Pollen and pollen germination 

 Pollen grains of all three species were small (< 25 µm in diameter), nearly spherical, and 

monosulcate (Figures 4.4F-I). Pollen was bicellular in dehiscing anthers of all three species and 

on receptive stigmas of T. submersa and T. austinensis. Pollen germinated along the entire length 

of the stigmatic hair and the aperture did not have to be in direct contact with the stigmatic 
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surface for germination to occur (Figures 4.4F-I). At germination, the inner layer of the pollen 

wall fluoresced following aniline blue staining, indicating the presence of callose (1,3-ß-glucan; 

Stone and Clarke 1992; Figure 4.4G) 

 Trithuria austinensis pollen first germinated between 10 and 15 min after pollination. No 

individuals collected at 5 or 10 min exhibited germination, compared to 26 % of individuals 

collected at 15 min. Percent germination remained relatively low at 20 and 30 min after 

pollination (24 % and 19 %), but rose to 44 – 48 % between 45 min and 2 h after pollination. T. 

submersa pollen germinated even earlier, with 13 % of individuals exhibiting germination at 5 

min after pollination. Percent germination rose to 33 % after 15 min and afterward, was between 

25 and 38 %. Microscopical evaluation in both species revealed that stigmatic hairs in several 

individuals were very short, and thus likely not receptive at the time of hand-pollination (Taylor 

et al. 2010). This lack of receptivity probably accounts for the rather low (< 50 %) maximum 

percent pollen germination observed.  

 

Pollen tube growth and structure of the pollen tube pathway 

 The general pattern of pollen tube growth and structure of the pollen tube pathway was 

the same in all three species. However, the length of both the potential pollen tube pathway and 

the distance that pollen tubes actually traveled differed considerably (Figure 4.3; Table 4.4). T. 

austinensis pollen tubes grew between 0.33 to 3.24 mm to the carpel mouth (mean =1.92 mm), T. 

submersa pollen tubes grew between 0.10 and 1.00 mm (mean = 0.48 mm), and T. australis 

pollen tubes grew 1.07 to 2.54 mm (average = 1.95 mm).  
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 Pollen tubes emerged from the aperture and grew around the grain to reach the surface of 

the stigmatic hair (Figures 4.4F-I). Pollen tubes commonly branched shortly after germination, at 

the place where the tube first came into contact with the stigmatic surface (Figure 4.4I). 

Branching was not observed at any other point and one branch was always much shorter than the 

other.  

 Upon reaching the stigmatic surface, pollen tubes penetrated the cuticle of the stigmatic 

hair cell (Figure 4.4H). Following auramine O staining, the stigmatic hair wall fluoresced 

brightly, indicating the presence of a lipid cuticle (Heslop-Harrison 1977; Figures 4.4J-K). The 

stigmatic cell wall was distinctly bi-layered, with the inner opaque layer continuous beneath 

pollen tubes associated with the stigmatic hair (Figures 4.4K-M). The outer layer, which is 

translucent under light but stains strongly for cuticle, became thickened at pollen tube edge and 

stretched thinly over the pollen tube wall (Figures 4.4J-K). Callose was present in the pollen tube 

wall (Figures 4.4E, I, M) and occasionally in the stigmatic hair cell walls (Figure 4.4E). Most 

pollen tubes walls maintained a round shape in cross-section (Figures 4.4H, J-M), even near the 

growing tip. 

 Pollen tubes never  pulled away from the stigmatic hairs (Figures 4.4D-E). Although the 

ends of stigmatic hairs in T. austinensis and T. australis became entangled and had to be 

physically pulled apart during dissections, pollen tubes never crossed from one stigmatic hair to 

another (Figure 4.4C) and loose pollen tubes were never observed in dissected material. Pollen 

tubes did not grow laterally around stigmatic hairs (Figures 4.4A-C), but often grew away from 

the carpel mouth and over the top of the hair before continuing growth toward the carpel mouth. 
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In all three species, multiple stigmatic hairs per carpel often supported pollen tubes and each hair 

often supported multiple pollen grains. 

 Pollen tube walls were strongly callosic near the grain (Figures 4.4G, I) and along the 

length of the pollen tube (Figure 4E), but lacked callose at the growing tip (Figure 4.4G). The 

inner layer of the pollen wall continued to fluoresce, as well. Pollen tubes were narrow, 4.3 ± 0.9 

µm in T. austinensis (n = 98), 3.9 ± 0.7 µm in T. submersa (n = 38), and 4.0 ± 0.7 µm in T. 

australis (n = 28). Numerous callose plugs formed in each species through thickening of internal 

pollen tube walls (Figures 4.5A-B, E, G).  

 Upon reaching the base of the stigma, pollen tubes turned at sharp angles and grew 

laterally to enter the carpel mouth (Figures 4.5A, C). Once pollen tubes entered the open carpel 

mouth, they grew through a short, extremely narrow canal that extends through a differentiated 

region of carpel cells. The cells that form the transmitting tract are small, slightly elongated, and 

more densely cytoplasmic than those of the surrounding carpel (Figures 4.5H-M). In T. 

submersa, multiple pollen tubes were often observed entering the carpel mouth (Figure 4.5A). 

This occurred less frequently in T. austinensis.  

 Trithuria austinensis carpels have a short elongated neck and the transmitting tract is 5-

10 cell layers thick (Figures 4.5J, M), whereas T. submersa lacks this elongated region and the 

transmitting tract is less than 5 cells thick (Figure 4.5K). In both species, the canal is very narrow 

(Figures 4.5H-I) and we never observed more than one pollen tube growing through it.  

 As soon as pollen tubes reached the ovary they entered the micropyle (Figure 4.5J). 

Pollen tubes growing freely in the ovarian cavity were never observed. Pollen tubes grew 

through a region of elongated cells in the inner integument that likely physically directs them to 
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the nucellus, which is 2-3 layers thick (Figure 4.5J). At pollination, the four-celled/ four-nucleate 

female gametophyte is mature, with the single polar nucleus oriented near the micropylar pole 

(Figure 4.5J).  

 

Developmental timing of T. austinensis and T. submersa pollen tubes 

 Callose plugs – In T. austinensis, callose plugs were first observed at 45 min after 

pollination, but only in the one pollen tube that had reached an ovule. At 1 h after pollination, 

callose plugs were present in 39 % of pollen tubes, but were typically few per tube. Callose plugs 

were more abundant at 1.5 h (in 43 % of pollen tubes) and 2 h after pollination (88 %). All pollen 

tube that had reached the carpel mouth exhibited callose plugs. The first callose plug developed 

205.9 ± 85.2 µm from the grain and plugs were fairly regularly spaced along the length of the 

tube, 153.8 ± 55.1 µm apart on average (range 58 – 302 µm). 

 In T. submersa, callose plugs appeared as early as 30 min after pollination and were 

present in every tube by 2 h after pollination, as well as in every tube that had reached an ovule. 

Callose plugs are much closer together in T. submersa, first forming 84.9 ± 56.0 µm from the 

grain and occurring every 85.67 ± 34.3 µm (range 33.5-181.3). 

 Pollen cell mitosis - Nuclei were not visible in every pollen tube observed in either 

species. Mitotic division of the generative cell occurred between 45 min and 2 h after pollination 

in T. austinensis. Sperm nuclei were never observed in pollen tubes before 1 h, whereas 

undivided generative cells and sperm nuclei (Figure 4.5D) were observed in pollen tubes at 1 and 

1.5 h after pollination. At 2 h after pollination and after, only post-mitotic sperm nuclei were 

observed. In T. submersa, 2 sperm nuclei were observed in pollen tubes as early as 15 min after 
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pollination, but undivided generative cells were also observed in pollen tubes up to 1 h after 

pollination. Mitosis occurred while pollen tubes were growing along the stigmatic hair in both 

species.  

 Carpel and ovule entry – Trithuria austinensis pollen tubes first entered the carpel 

mouth at 30 min after pollination and reached an ovule at 45 min, although only one pollen tube 

(4.0 %) had entered the micropyle (Figure 4.6B). At 1 h, 6.5 % of pollen tubes had entered a 

micropyle and after 1.5 h, between 21 and 32 % of pollen tubes had reached an ovule (Figure 

4.6B).  

Trithuria submersa pollen tubes had first entered the carpel mouth at 15 min after 

pollination and by 30 min, 42.9 % of pollen tubes had entered the micropyle (Figure 4.6B). 

However, only one pollen tube (10.0 %) was observed entering an ovule at 1 h and only 42.3 % 

at 1.5 h. By 2 h after pollination, over 90 % of pollen tubes had entered an ovule (Figure 4.6B). 

 Pollen tube growth rate – Average growth rate in T. austinensis pollen tubes was 499.4 

± 431.1 µm/hr (Figure 4.6A). However, pollen tubes that were successful in reaching a 

micropyle within 3 h grew over twice as fast (mean = 1046.7 ± 604.5 µm/hr; Figure 4.6A). 

Average pollen tube growth rate in T. submersa was 321.1 ± 281.0 µm/hr over the first 2 h, the 

period in which most pollen tubes reach the ovule (Figure 4.6).  

 

DISCUSSION 

 Trithuria austinensis, T. australis, and T. submersa exhibit different sexual and breeding 

systems and this, in turn, is associated with divergence in reproductive morphology and 

progamic phase development. Here we first discuss the evidence for divergent breeding systems 
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in these species and concomitant modifications in resource allocation and reproductive 

morphology. We then describe pollen tube development and progamic phase timing in Trithuria 

species and discuss reproductive traits in light of breeding system differences. Finally, we 

address the evolution of the progamic phase in Trithuria in the context of the other water lilies 

and other basal angiosperms.  

 

Breeding system in T. austinensis and T. submersa 

 Trithuria submersa is a primarily selfing species (Taylor et al. 2010). Self-pollen loads 

and seed set are high, whereas out-cross only pollen loads are extremely small. Plants do 

experience a short female-only phase and any outcrossing is accomplished through wind-

pollination (Taylor et al. 2010).  

 Trithuria austinensis is dioecious, and therefore, is very likely obligately outcrossing. In 

this study, outcrossing was efficient in the T. austinensis population studied, with over 86 % of 

carpels per reproductive unit receiving pollen and having average pollen loads of two grains per 

ovule. Furthermore, T. austinensis exhibits traits characteristic of outcrossing wind-pollinated 

plants. Plants were densely packed in an open habitat with few barriers to wind-borne pollen and 

large numbers of plants became emergent and flowered in synchrony. Anthers opened via two 

large slits and were borne on flexible filaments, which likely facilitates anther emptying. Pollen 

was within the size range expected for efficient wind-pollination, was not sticky, and lacked 

significant ornamentation. In addition, carpels exhibited a relatively large stigmatic surface area, 

with a mean of 5.7 stigmatic hairs each (Whitehead 1969; Friedman and Barrett 2009).   
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 We observed no evidence of insect visitation and reproductive units lacked 

morphological adaptations associated with insect pollination, such as a perianth. We consider it 

unlikely that insects play a significant role in pollination of T. austinensis.  

 Water was also a potential pollen vector in T. austinensis because stigmatic hairs 

elongated underwater and often floated on the water surface as reproductive units became 

emergent. However, submerged reproductive units received no pollen, indicating that pollination 

did not occur underwater. Reproductive units at the water level received much less pollen than 

those that were fully emergent and this indicates that pollen is, at the very least, not primarily 

transferred via the water surface.  

 

Evidence for selfing in cosexual T. australis 

 Trithuria australis exhibits the potential for high levels of selfing. The caging experiment 

clearly demonstrates that high pollen loads ( > 5 grains per ovule) can result from self-pollination 

and that self-pollen tubes successfully enter ovules. Furthermore, mass collected T. australis 

plants exhibited no female-only phase, suggesting that carpels have no opportunity to receive 

cross-pollen before self-pollen is available.  

 More work is needed to determine the proportion of selfing vs. outcrossing in T. 

australis, but these results indicate that whole plant morphology significantly affects breeding 

system in T. australis, and that this species may have evolved a primarily selfing breeding 

system. Cosexuality (monoecy) is hypothesized to evolve in some species as a mechanism to 

prevent selfing (Lloyd 1972; Charlesworth and Charlesworth 1978; Charlesworth 1993), but this 

is unlikely in T. australis, in which high levels of selfing can occur. Unisexual reproductive 
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structures are also hypothesized to evolve as a result  of selection for more efficient pollen 

removal and receipt in a wind-pollinated system (Friedman and Barrett 2008a, 2008b) and we 

consider this to be more probable in T. australis.  

 

Resource allocation  

 Trithuria austinensis is outcrossing, whereas T. submersa, and possibly T. australis, 

exhibit selfing (Taylor et al. 2010; this study). Sex allocation theory predicts that plants will 

allocate fewer resources to male function as higher levels of selfing evolves because fewer pollen 

grains are exported to outcross ovules and the fitness gain from pollen production is reduced 

(Charnov 1982; Brunet 1992). Thus, selfing populations or species should ultimately exhibit less 

male investment than related outcrossing ones (Charnov 1982; Barrett et al 1996; Sato and 

Yahara 1999). Male investment in dioecious species has been shown to approximate or even 

underestimate, male investment in outcrossing, hermaphroditic species (Philbrick and Rieseberg 

1994; Zunzunegui et al. 2006). As predicted, selfing T. submersa exhibited much less investment 

in male function than T. austinensis (Table 4.1). Compared to T. austinensis, plants of T. 

submersa produced fewer anthers per plant and fewer pollen grains per anther, resulting a 50-

fold difference in pollen production per plant and a much smaller pollen to ovule ratio (Table 

4.1). Trithuria australis exhibited male investment that was an order of magnitude smaller than 

that of  T. austinensis and had a much smaller pollen to ovule ratio, as well (Table 4.1). Reduced 

male investment is additional evidence that T. australis maintains high levels of selfing.  
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Reproductive morphology 

 Reproductive structures are highly reduced in Trithuria, consisting of only bracts 

surrounding stamens and/or carpels. Despite this simplicity, the three species studied exhibited 

strikingly different reproductive unit morphologies due to differences in bract length and carpel 

packaging (c.f. Figures 4.2D, F, H). In T. austinensis, the reproductive unit has a distinctly 

vertical orientation, with carpels overtopping of each other. The long stigmatic hairs extend 

through overtopping carpels to emerge from the bracts. In contrast, the carpels of T. submersa 

are positioned in the same plane and only slightly overtop each other. As a result, the 

reproductive unit is rather bowl shaped. Trithuria australis reproductive units are intermediate. 

Bracts are shorter and carpels overtop each other to a lesser degree than in T. austinensis, but 

also produce long stigmatic hairs.  

 Different carpel packaging strategies are likely advantageous in different pollen reception 

environments. The vertical orientation in T. austinensis may increase the stigmatic surface area 

that is in contact with pollen in the airstream. In contrast, in T. submersa, the bowl shaped 

reproductive unit likely facilitates capture of pollen falling from the overarching anthers in the 

same reproductive unit.  

 We hypothesize that the entire reproductive head in T. australis functions like the 

bisexual reproductive unit of T. submersa. Short bracts and long stigmatic hairs increase the 

horizontal receptive surface area extending over the reproductive head and increase the 

likelihood that stigmatic hairs will receive pollen from the overarching anthers.  
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Rates of pollen tube germination  

 Pollen germination in both Trithuria submersa and T. australis occurred very shortly 

after pollen reception. Trithuria submersa exhibited faster pollen germination than T. 

austinensis, with germination occurring within 5 min after pollination and reaching the observed 

maximum by 15 min, compared to 15 and 45 minutes in T. austinensis. Outcrossing species 

might be expected to have faster germination, as it is thought to result in more pollen 

competition and, thus, stronger selection for rapid pollen germination (Mazer et al. 2010). 

However, pollen identity and pollen-stigma interactions also play a role in pollen germination 

and pollen tube growth rates (Mulcahy 1971; Snow and Spira 1991; Acar and Kakani 2010). In 

selfing populations, stigmas across generations receive pollen from the same single donor (itself) 

and pollen-stigma interactions can become specialized, resulting in greater pollen germination 

success and faster pollen germination. In contrast, stigmas in outcrossing populations must 

interact with a variety of pollen genotypes and are not as likely to evolve epistatic pollen-stigma 

interactions (Plitmann and Levine 1990; Kerwin and Smith-Huerta 2000; Mazer et al. 2010). 

Trithuria exhibits the same pattern as Polemoniaceae genera and Clarkia tembloriensis 

populations: higher germination success and faster germination rates in selfing populations 

(Plitmann and Levin 1990; Kerwin and Smith-Huerta 2000). 

   

Pollen tube growth rates 

 In contrast to pollen germination, T. austinensis exhibited significantly faster pollen tube 

growth rates than T. submersa (499 µm/hr vs. 321; p = 0.01). Trithuria austinensis pollen tubes 

that were successful at reaching a micropyle over the first 3 h grew even faster, at rates well 
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above the average (mean = 1046 µm/hr). Outcrossing populations are predicted to have faster 

pollen tube growth due to pollen competition (Mazer et al. 2010) and faster growth rates have 

been documented in outcrossing vs. selfing populations of Clarkia tembloriensis (Kerwin and 

Smith-Huerta 2000). As multiple stigmatic hairs per carpel in T. austinensis typically received 

pollen and each hairs often supported more than one pollen tube, pollen competition potentially 

occurs in T. austinensis.  

 Most basal angiosperms exhibit growth pollen tube rates of 80 –300 µm/hr (Williams 

2008). These are faster than pollen tube growth rates exhibited by gymnosperms (< 20 µm/hr), 

but slower than those of more derived angiosperms (1000 – 40,000 µm/hr) and these moderate 

rates are thought to be plesiomorphic in angiosperms (Williams 2008).  

 Water lilies exhibit faster mean pollen tube growth rates than woody basal angiosperm 

species (~300 – 1050 µm/hr) and acceleration in pollen tube growth rate likely occurred with the  

transition to the aquatic habitat, before the origin of Hydatellaceae (Williams 2008; Williams et 

al. 2010; this study). Furthermore, T. austinensis exhibits pollen tube growth rates that are 

considerably faster than those of T. submersa and that are among the fastest observed in 

Nymphaeales. Therefore, T. austinensis likely exhibits acceleration in pollen tube growth rate 

compared to the Trithuria ancestor. Fast pollen tube growth in T. austinensis results in a short 

fertilization interval, in which the fastest pollen tubes entered the ovule within 45 min, and may 

have evolved to maintain a short progamic phase in the face of carpel elaboration. Ovule entry in 

T. austinensis occurred only 15 min later than in T. submersa, despite pollen tubes having grown 

over three times as far. However, many pollen tubes grew at rates similar to those exhibited by T. 

submersa and the maximum percentage of ovule entry did not occur until 2 h after pollination. 



 

 127 

This suggests that acceleration in pollen tube growth rate may lag behind stigmatic hair length 

and that elaboration of the carpel occurred first. This is the pattern observed in Cabombaceae, in 

which the pollen tube pathway lengthened in Brasenia without acceleration in pollen tube 

growth rate (Taylor and Williams 2009).  

  

Pollen tube growth  

 The ultrastructure of the pollen tube pathway was quite similar in all three species. After 

germination, pollen tubes travel down the length of the stigmatic hair. Pollen tube branching was 

observed in all three species, but only when pollen tubes first contact the stigmatic surface. 

Branching of Trithuria pollen tubes was also observed by Prychid et al. (in press). Pollen tube 

branching is rare in angiosperms and typically occurs in the ovary near the micropyle (e.g. 

Butomus, Fernando and Cass 1997; Oenothera, Sniezko 1996; Spinacia, Wilms 1974). 

Branching at the micropyle also occurs in conifers (Wilms 1974; Owens et al. 2005 Fernando et 

al. 2005).  

 Prychid et al. (in press) report that pollen tubes of T. submersa penetrate the cuticle and 

grow deep into the outer wall and that the primary stigmatic hair wall serves as transmitting 

tissue. We clearly observed pollen tubes penetrating the cuticle, as well as a cuticular layer of the 

stigmatic hair that appeared to extend over the pollen tube wall. We did not examine stigmatic 

hairs at the resolution of Prychid et al. (in press), but we did not see deformation of the pollen 

tube wall. Therefore, if the pollen tubes are growing deeply in the stigmatic cell wall, then the 

stigmatic hair cell wall must be rebuilt to accommodate pollen tubes.  
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 After entering the carpel mouth, Trithuria pollen tubes grow through a narrow canal. This 

canal is extremely narrow and the secretory cells of the inner carpel surfaces are in close 

proximity to each other. However, the secretory cells do not become interlocked to form a solid 

tissue like that of Nymphaea (Williams et al. 2010). Furthermore, pollen tubes grow only 

through the zone of secretion and not within the secretory tissue.  

 

Pollen tube attrition  

 In Trithuria austinensis, we observed no increase in the percentage of pollen tubes that 

reached a carpel mouth after 2 h, indicating that pollen attrition rate is high. In no case did every 

pollen tube supported by stigmatic hairs T. austinensis individuals reach the carpel mouth. In 

contrast, over 90 % of pollen tubes had entered the carpel mouth by 2 h after pollination in T. 

submersa. Pollen tube attrition rates are predicted to be higher in outcrossing versus selfing 

populations because mixed pollen loads and pollen competition increase the likelihood that some 

pollen genotypes will be unsuccessful (Mazer et al. 2010). Higher pollen tube attrition has been 

documented in outcrossing vs. selfing populations of Brassicaceae (Plitmann 1993), 

Polemoniaceae (Plitmann 1994), and Clarkia (Smith-Huerta 1997).  

 Pollen tube guidance and arrest have shown to be controlled, in part, by signaling 

molecules in the transmitting tract of Arabidopsis (Hulskamp et al. 1995; Ray et al. 1997; 

Palanivelu and Preuss 2006). The finding that T. austinensis pollen tube growth is arrested on, or 

within the wall of the stigmatic hair supports the hypothesis that pollen-stigma interactions occur 

as pollen grows along the stigmatic hair and that these stigmatic cells function as a transmitting 
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tract (Prychid et al. in press). Amborella also exhibits reduction of pollen tube number in the 

stigmatic tissue, before pollen tubes reach the mouth of the stylar canal (Williams 2009).  

 In T. submersa, little to no reduction occurred on the stigmatic hair, but only one pollen 

tubes was observed in each canal. Physical constraint likely prevented more than one pollen tube 

from entering this narrow tissue. No pollen tube cohort reduction has been observed in Brasenia 

or Cabomba (Taylor and Williams 2009) and in Nymphaea, many pollen tubes reach the ovary 

(Williams et al. 2010). 

  

Evolution of breeding system and reproductive development in Trithuria 

 The common ancestor of Nymphaeales is typically thought to have been perennial, 

homoecious (with hermaphroditic or monoecious reproductive structures), and insect pollinated 

(Friis et al. 2001; Crepet et al. 2004; Wang and Dilcher, 2006; Borsch et al. 2008; Mohr et al. 

2008; Taylor et al, 2008, Endress and Doyle 2009, Endress 2010). However, the ancestral states 

within Trithuria are difficult to elucidate, in great part, because there is no fossil record for 

Hydatellaceae.  

 Plants of all twelve Trithuria species are small, aquatic to semi-aquatic, and are 

hypothesized to be abiotically pollinated. The most parsimonious explanation is that the common 

ancestor of extant Trithuria exhibited these character states, as well. If this is the case, a 

transition from biotic to abiotic pollination likely occurred after the origin of Hydatellaceae, but 

before the radiation of the extant crown group.  

 At least ten of the twelve Trithuria species are annuals (Sokoloff et al. 2008a) and the 

annual habit may have evolved independently in several Trithuria lineages (Iles W. and Graham 
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SW. ‘unpub.’). Alternatively, this transition may have occurred once in the Trithuria common 

ancestor, with the putative perennial species T. filamentosa and T. inconspicua secondarily 

evolving the perennial habit. Secondary evolution of the perennial life history is the most 

parsimonious explanation; however, we consider independent evolution of the annual life history 

equally as likely because life history and habitat are tightly associated in Trithuria. Both 

perennial species are both found in permanently inundated habitats, whereas all annual species 

are found in ephemeral wetlands (Edgar 1966; Pledge 1974; Sokoloff et al 2008a). If the 

transition to ephemeral habitats occurred multiple times, then independent transitions to the 

annual habit are probable.  

  As Trithuria species moved into more ephemeral habitats, they may have experienced 

greater amounts of outcross pollen limitation (Stebbins 1957). Outcross pollen limitation is 

observed in T. submersa (Taylor et al. 2010). There are two common evolutionary trajectories 

that are thought to  relieve pollen limitation: the evolution of selfing (Stebbins 1970; Eckert et al. 

2006) and the evolution of  strategies to maximize outcross efficiency, such as wind-pollination, 

dichogamy, or dioecy (Culley et al. 2002; Friedman and Barrett 2008a). Trithuria species could 

evolve selfing through a relaxation of their ancestral condition of  protogyny in bisexual species 

(T. submersa) or by bringing the male and female unisexual units into close proximity (T. 

australis). Alternatively, selection to maximize pollen removal and reception via wind, which are 

independent events with different structural optima (Niklas 1985; Friedman and Harder 2007), 

and minimize interference, may have resulted in the evolution of dioecy (see Friedman and 

Barrett 2008a). 
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 The evolution of selfing in T. submersa was apparently followed by a reduction in male 

investment and changes in reproductive morphology. Stigmatic hairs may have shortened, 

resulting in a short pollen tube pathway and a time to fertilization that ranks among the shortest 

in angiosperms. In contrast, in T. austinensis outcrossing likely drove the evolution of longer 

stigmatic hairs, and thus a longer pollen tube pathway. Pollen tube growth rates accelerated and 

the time to fertilization increased slightly.  

 

Conclusion  

 Trithuria exhibits a short life history compared to other basal angiosperms, including 

other water lilies. Plants are small, typically annual, and inhabit ephemeral habitats. They also 

exhibit a degree of divergence in sexual system that is not observed in any other early-divergent 

angiosperm lineage and which may be correlated to their habitat. Dioecy and selfing in Trithuria 

species may have evolved as different strategies for maximizing pollination efficiency in habitats 

that require rapid reproduction and are often not particularly well-suited for wind-pollination. 

 Breeding system divergence in Trithuria has had consequences for stigmatic hair length 

and carpel packaging, as well as for developmental rates. The observed differences support the 

predictions for the trajectory of male gametophyte evolution in selfing vs. outcrossing 

populations (Mazer et al. 2010). This is evidence that post-pollination developmental processes 

in early-divergent lineages experience similar selective pressures and exhibit a similar 

evolutionary response to those of more derived angiosperms. Estimates of divergence dates and 

investigations of heretofore unstudied Trithuria species may help us further elucidate the timing, 

direction, and number of evolutionary transitions in Trithuria.  
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APPENDIX  4 

 

Table 4.1. Comparative male and female reproductive investment of Trithuria species.  

 
Species RUs per 

plant 

Carpels per 

RU 

Anthers 

per RU 

Pollen grains per 

anther 

Pollen 

grains 

per RU 

Pollen to 

ovule ratio 

T. austinensis M: 5.4 ± 2.4
 

F: 8.6 ± 4.6 
14.8 ±

 
4.2

b
 7.9 ±

 
1.7

a,c
 3525.9 ± 1609.3

a,d
 26818 ± 

9193
a,d

 

RU: 1569.1
a 

PL: 1137.8 

T. australis M: 2.5 ± 2.1
 

F: 14.3 ± 6.7
 
 

10.1 ± 1.9 6.9 ± 2.7 349.8 ± 127.3
e 2490 ± 

1013
e
 

RU: 248.4 

PL: 31.7 

T. submersa 4.3 ± 4.0
f
 19.3 ± 6.4

a,g
 1.1 ±

 
0.3

a,g
 426.0 ± 149.4

a,h
 468.6 ± 

164.4
h
 

23.9
a
 

 

Mean ± SD; 
a
Data in Taylor et al. (2010); n = 20 unless otherwise noted (n= 

b
60;

 c
10;

 d
17; 

e
12; 

f
85; 

g
280; 

h
27). Abbreviations: RU = reproductive unit; P = plant. 
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Table 4.2. Comparative success of pollen reception in Trithuria species.  

 
Open-pollinated Caged 

(no outcross pollination) 

Species No. of 

stigmatic 

hairs 

Stigmatic 

hair length 

(mm) No. grains 

captured per 

RU  

No. grains 

captured 

per ovule 

No. grains 

captured per 

RU 

No. grains 

captured 

per ovule 

T. austinensis  5.5 ± 0.9
a
 2.06 ± 0.59

b
 29.1 ± 14.1 

 

2.1 ± 1.5
 
 — — 

T. australis 5.7 ± 0.7
 
 2.00 ± 0.50 37.8 ± 42.9 3.2 ± 2.9 44.5 ± 37.3

c
 5.3 ± 4.4

c
 

T. submersa 3.0 ± 0.0 0.56 ± 0.23
d
 34.0 ± 42.3

e
 3.0 ± 2.5

e
 105.8 ± 59.4

f
 5.8 ± 1.8

f
 

 

Mean ± SD; n = 30 unless otherwise noted (n= 
a
103; 

b
66; 

c
14; 

d
64; 

e
40;

 f
10). Abbreviations: RU 

= reproductive unit
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Table 4.3. Timing of pollen reception as measured by the percentage of carpels per reproductive 

unit with pollen at each ecological stage in Trithuria species.  

 
Species Submerged 

(eco stage 1) 

Newly 

Emergent 

(eco stage 2) 

Fully Emergent 

(eco stage 3) 

Long Emergent 

(eco stage 4) 

Self – only  

 

T. austinensis  0 ± 0 19.16 ± 27.26  62.52  ± 35.39 86.51  ± 12.73  —
 
 

T. australis 0 ± 0 — — 74.88 ± 28.48 76.77 ± 33.15
b
 

T. submersa
a
 0 ± 0 0 ± 0 6.75  ± 16.74 50.75  ± 34.21 87.28  ± 8.00 

 

Percent ± SD; Cells left empty if the stage is not applicable (see text). 
a
Data for T. submersa 

from Taylor et al. (2010). n = 30, except at 
b
n =14 or as noted for T. submersa in Taylor et al. 

(2010). 
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Table 4.4. Pollen tube pathway length in Trithuria species. 

 

Species Mean stigmatic 

hair length (!m ± 

SD) 

Mean distance from 

grain to carpel mouth 

(!m ± SD) 

Mean distance from 

carpel mouth to FMG 

(!m ± SD)
a
 

T. austinensis  2062.8 ± 593.4
b
 1917.9 ± 575.9

b
 160.9 ± 19.5 

T. australis 1195.5 ± 500.0
c
  1948.7 ± 377.1

d
 Not measured 

T. submersa 556.2 ± 223.4
e
 460.6 ± 219.9

f
 175.6 ± 11.5 

 

n = a10, b66, 
c
30, 

d
15, 

e
64, 

f
38. Abbreviations: FMG = female gametophyte.  
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Figure 4.1. Trithuria habitats. (A) Branchinella Lake with water receding from the lake margin. 

Trithuria austinensis plants (not visible at this scale) are present in the saturated soil at the lake 

edge and across the entire bottom of the basin. (B) Frying Pan Swamp with water 1-5 cm deep. 

Trithuria australis plants are found throughout the swamp and are completely submerged. 

Trithuria submersa plants are restricted to a few small patches. (C) Kulunilup Swamp shortly 

after water has completely evaporated. T. submersa plants (not visible at this scale) are 

completely emergent, but not desiccated.  
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Figure 4.2. Reproductive morphology of Trithuria species. (A) Trithuria austinensis female 

plant mostly submerged, but with one fully emergent (arrow) and one newly emergent 

reproductive unit (asterisk). Stigmatic hairs are emerging from bracts (arrow). A few linear 

leaves are visible. Scale bar = 2 mm. (B) Trithuria austinensis male plant with an emergent 

reproductive unit. Multiple anthers (arrowhead) are dehiscing. Scale bar = 2 mm. (C) 

Trithuria submersa plants shortly after water drawdown. Stigmatic hairs (arrow) are 

emerging from bisexual reproductive units. Scale bar = 2 mm. (D) Trithuria austinensis 

female reproductive unit with many uniovulate carpels. Each carpel exhibits several 

elongated stigmatic hairs (arrow) that extend beyond bracts. Scale bar = 0.5 mm. (E) 

Trithuria austinensis male reproductive unit with several stamens of varying 

developmental stages. Several filaments have elongated and one anther has abscised 

(arrowhead), while at least one more is dehiscent. Immature stamens are enclosed in bracts. 

Scale bar = 0.5 mm. (F) Trithuria australis female reproductive unit with many uniovulate 

carpels. Elongated stigmatic hairs (arrow) extend far beyond bracts. Scale bar = 0.5 mm. 

(G) Trithuria australis male reproductive unit with several stamens. Several filaments are 

elongated and one anther has abscised (arrowhead). Scale bar = 0.5 mm. (H) Trithuria 

submersa reproductive unit with two central stamens (anthers have abscised) and several 

uniovulate carpels that are peripheral to the stamens. Each carpel has three stigmatic hairs 

(arrow). Scale bar = 0.5 mm. (I) Trithuria australis plant viewed from above, with linear 

leaves radiating from a central aggregation of male and female reproductive units. A few 
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male reproductive units, with elongated filaments and dehiscent anthers (arrowhead), are 

present in the center of the aggregation. Many female reproductive units (arrow) surround 

the male reproductive units. Scale bar = 2 mm. (J) Trithuria australis plant side view. 

Anthers in central reproductive units arch above the entire reproductive head and stigmatic 

hairs (arrow) emerge from female reproductive units and become intertwined with each 

other. Scale bar = 2 mm. Abbreviations: A = anther, B = bract, F = filament, L = leaf, C = 

carpel, P = peduncle.  
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Figure 4.3. Carpel morphology in Trithuria. (A) Section through Trithuria submersa carpel with 

two stigmatic hairs (arrow) in the plane of section. A single ovule is enclosed within the carpel 

wall, with the micropyle (arrowhead) oriented near the carpel mouth. (B) Section through 

Trithuria austinensis carpel with four to five stigmatic hairs (arrow) at least partially in the plane 

of section. As in T. submersa, the micropyle (arrowhead) of the single ovule is oriented near the 

carpel mouth. (A) and (B) are at the same scale. Scale bar = 100 µm. (C) Whole Trithuria 

australis carpel with six stigmatic hairs (arrow). A single ovule is enclosed within the translucent 

carpel wall. Scale bar = 200 µm. Abbreviations: B = bract, C = carpel wall, M = carpel mouth, O 

= ovule. Stain: toluidine blue O (A,B).  
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Figure 4.4. Pollen germination and pollen tube growth. (A) Trithuria austinensis carpel with 

pollen tubes (arrow) growing along stigmatic hairs. Callose plugs (arrowhead) are present 

and at least one pollen tube has entered the carpel. Scale bar = 200 µm (B) Self-pollinated 

Trithuria submersa carpel with multiple pollen tubes (arrow) entering the carpel. Callose 

plugs are present (arrowhead). Scale bar = 20 µm. (C) Self-pollinated Trithuria australis 

reproductive unit with several carpels and many intertwined stigmatic hairs. Most stigmatic 

hairs support 1-2 pollen tubes (arrow) and none cross between hairs. Scale bar = 200 µm. 

(D) Trithuria austinensis stigmatic hair with a tightly associated pollen tube (arrow). Scale 

bar = 20 µm. (E) Stigmatic hair from D following aniline blue staining. Pollen tube walls 

(arrow) are callosic and a callose plug is developing (arrowhead) at 1 hour after pollination 

(hap). Faint fluorescence in the stigmatic hair cell wall indicates callose is present. Scale bar 

= 20 µm. (F) Germinated T. austinensis pollen grains with a relatively thick pollen wall 

(exine) at 1 hap. Pollen tubes have emerged from the aperture and the pollen tube tip 

(arrow) has reached the stigmatic hair. Scale bar = 10 µm. (G) Grains from F following 

aniline blue staining. Callose is present in the pollen tube wall and also in the inner pollen 

grain wall (arrowhead), but not at the growing tip (arrow). Scale bar = 10 µm. (H) 

Germinated T. austinensis pollen grain at 45 minutes after pollination. The pollen tube 

(arrows) has grown around the grain to contact the stigmatic hair and the tip has penetrated 

the cuticle of the stigmatic hair cell (arrowhead). Scale bar = 10 µm. (I). Trithuria 

austinensis pollen tube at 1 hap. Walls are callosic (arrow) and branching occurred at the 

point where the pollen tube contacted the stigmatic hair. Scale bar = 10 µm. (J) Section 

through a T. austinensis stigmatic hair stained with auramine O with one pollen tube in cross 
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section. The fluorescing outer layer of the stigmatic hair cell wall thickens (arrowhead) at 

the edge of the pollen tube and thins to surround the pollen tube. Scale bar = 5 µm. (K) 

Close-up of a T. austinensis stigmatic hair cell and pollen tube cross section stained with 

auramine O. Two layers in the stigmatic cell wall are apparent: the inner layer continuing 

beneath the pollen tube (arrow) and the outer one surrounding the pollen tube (arrowhead). 

The lipid layer that encloses the pollen tube is continuous with the cuticle of the stigmatic 

hair cell. Scale bar = 5 µm. (L) Cross-section of a T. austinensis stigmatic hair supporting 

two pollen tubes. Both the inner layer of the stigmatic hair cell wall (arrow) and the 

translucent outer layer that corresponds to the cuticle in K are visible (arrowhead). Scale bar 

= 10 µm. (M) Cross-section in L stained with aniline blue, indicating the presence of callose 

in the pollen tube only. The two layers of the stigmatic cell wall are faintly visible (arrow, 

arrowhead). Scale bar = 10 µm. Abbreviations: A = aperture, B = bract, C = carpel, E = 

exine, M = carpel mouth, PT = pollen tube, S = stigmatic hair. Stains: aniline blue (A-C, E, 

G, I, M), auramine O (J, K). 
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Figure 4.4 
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Figure 4.5. Late pollen tube growth. (A) Trithuria submersa carpel at 30 minutes after 

pollination (map). Three pollen tubes (arrows) have grown down the stigmatic hair and 

entered the carpel mouth. Callose plugs are present (arrowheads). Scale bar = 20 µm. 

(B) Longitudinal section through a T. submersa carpel mouth with one pollen tube 

(arrow) in section. Scale bar = 20 µm. (C) Longitudinal section through a T. submersa 

carpel. A pollen tube (arrow) has turned 90º to enter the carpel. Scale bar = 20 µm. (D) 

Trithuria austinensis pollen tube at 1.5 hours after pollination (hap). The second mitotic 

division has occurred and two sperm nuclei are present. Scale bar = 10 µm. (E) 

Trithuria australis pollen tube with two callose plugs (arrows). Scale bar = 20 µm. (F) 

Trithuria austinensis pollen tube with a callosic thickening of the pollen tube wall 

(arrow) indicting early callose plug formation at 2.5 hap. Scale bar = 5 µm. (G) Fully 

developed callose plug in T. austinensis at 45 map. Scale bar = 5 µm. (H) Section 

through a T. submersa carpel just at the base of stigmatic hairs. Large cells at the base 

of stigmatic hairs surround the carpel mouth and the zone of secretion is visible as a 

narrow canal (arrow). Scale bar = 10 µm. (I). Section through a T. austinensis carpel 

below the mouth. The transmitting tract (arrow), composed of small, densely 

cytoplasmic cells with comparatively large amounts of extracellular space, runs through 

the center and is surrounded by larger cells of the outer carpel wall. Scale bar = 10 µm. 

(J) Longitudinal section of a T. austinensis carpel at 30 map. The carpel mouth opens 

into the transmitting tract and zone of secretion. The micropyle is positioned very near 

the top of the ovarian cavity. Several layers of nucellar tissue are present above the 
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female gametophyte. Scale bar = 50 µm. (K) Longitudinal section of a T. submersa 

carpel at 30 map. The carpel mouth opens into a very short transmitting tract and the 

micropyle (arrowhead) is positioned near the top of the ovary. The nucellus is similar to 

that of T. austinensis. (L) Longitudinal section of a naturally collected T. austinensis 

carpel with two pollen tubes present along the length of the stigmatic hair and in the 

transmitting tract of the carpel (arrows). Only one pollen tube is present in the carpel 

tissue. Scale bar = 25 µm. (M) Close up of the transmitting tract of T. austinensis at 30 

map. A pollen tube (arrow) has entered the carpel mouth and is growing through the 

zone of secretion between the densely cytoplasmic cells of the transmitting tract. Scale 

bar = 25 µm. Abbreviations: C = carpel, M = carpel mouth, N = nucellus, S = stigmatic 

hair, SN = sperm nucleus, TT = transmitting tract. Stains: aniline blue (A-C, E-G, L), 

DAPI (D), toluidine blue O (H-K, M). 
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Figure 4.5
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Figure 4.6. Comparative pollen tube growth in Trithuria austinensis and Trithuria submersa. (A) 

Average mean length of pollen tubes in individuals (± SE) of T. submersa (triangles; n = 45 

pollen tubes in 40 individuals) and T. austinensis (closed circles; n = 192 pollen tubes in 73 

individuals), as well as in only those individuals of T. austinensis that had entered the micropyle 

(open circles; n =32 pollen tubes). Slopes of black lines indicate growth rate within each time 

interval and slopes of grey lines indicate the average sustained growth rate. Dark grey dashed 

lines represent the average length of the realized pollen tube pathway. (B) Percent of pollen tubes 

that had entered the micropyle in T. submersa (triangles) and T. austinensis (circles) and at each 

collection point. A moving average trendline is shown for T. submersa (black line) and T. 

austinensis (dashed line).   

A B 
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CHAPTER V: CONCLUSIONS AND SYNTHESIS 
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 The progamic phase is a critical life history stage in angiosperms in which reproductive 

structures and developmental programs from four genetic individuals (male and female 

gametophyte and two sporophytes) interact to achieve fertilization (Cresti et al. 1992; de Graaf et 

al. 2001; Herrero 2003). There is considerable diversity in progamic phase traits (Williams 

2008); however, the forces that drive evolution in these traits and the consequences for the 

progamic phase as an integrated whole are not well understood.  

 The objective of this research was to  investigate the progamic phase in Nymphaeales, an 

early-diverging angiosperm lineage that exhibits great variation in pollination syndrome, carpel 

morphology, and breeding system. I described reproductive structures and documented the 

timing of developmental events in five water lily species, representing three genera and two 

families: Cabombaceae (Brasenia schreberi and Cabomba caroliniana; Chapter II) and 

Hydatellaceae (Trithuria austinensis, T australis, T. submersa: Chapter III, IV). Concurrently, 

progamic phase development was investigated in Nymphaea odorata (Nymphaeaceae; Williams 

et al. 2010) and selected results from that study are discussed in this chapter.  

 Divergence in pollination biology and breeding system has had consequences for 

progamic phase development in Nymphaeales. However, many progamic phase traits were 

shared by all taxa studied and are either conserved, or have evolved in parallel within 

Nymphaeales. Since they are similar despite divergence in other reproductive traits, it is likely 

that they were present in the water lily common ancestor. Below, I discuss some characteristics 

of the progamic phase in all water lilies and the evolutionary implications of these traits.  

   



 

 155 

Pollen tube ultrastructure 

 Pollen tubes in all water lily taxa studied were constructed from callose (1,3-ß-glucan; 

Stone and Clark 1992), which was present the entire length of pollen tubes, except at the growing 

tips (Figures 2.6D, 2.8F, 4.4A-B; Williams et al. 2010). A callosic pollen tube wall is a 

synapomorphy of angiosperms that has been linked to their evolutionary success. Callose can be 

synthesized rapidly and it is thought that callose walls can be constructed faster than the 

cellulose-based walls typical of gymnosperms, which allows for faster pollen tube growth (Knox 

1984; Stone and Clark 1992; Williams 2009). Callose plugs were also present in each species 

studied, forming via thickening of the inner pollen tube walls (Figures 2.6A, 4.5E-G). Callose 

plugs are a synapomorphy of angisosperms, as well, and may function to seal pollen tubes from 

pathogen attacks (Williams 2009). The presence of callosic walls and callose plugs in all water 

lily taxa studied supports the hypothesis that these traits originated in an angiosperm common 

ancestor. 

 

Pollen tube developmental rates 

 Pollen germination was rapid (< 1 h) in all water lily taxa investigated (Table 5.1; all 

figures referenced in this chapter are found in Appendix 5). Rapid pollen germination is often 

associated with pollen that is tricellular at dispersal (Mulcahy and Mulcahy 1983). In tricellular 

pollen, the generative cell undergoes mitosis to form the two sperm nuclei before pollen 

dispersal (Brewbaker 1967). However, this work indicates that bicellular pollen in water lilies is 

able to germinate extermely rapidly ( within 5 min in T. submersa; Chapter IV). Therefore, other 

pollen physiological traits may be more important for achieving rapid germination than pollen 
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cell number. One such trait is a high water content at pollen dispersal, which is also thought to 

enable rapid pollen germination (Nepi et al. 2001; Franchi et al. 2002). Indeed, both Brasenia 

and Cabomba exhibit grains with >70 % water content at dispersal and Trithuria pollen grains 

exhibit morphological characteristics typical of partially hydrated pollen, as well (see Franchi et 

al. 2002). 

 Pollen tubes growth rates in all water lily taxa studied are faster than those in woody 

perennial basal angiosperms ( > 300 vs. < 90 µm/hr; Figure 5.1). Growth rates in extant 

Nymphaeales almost certainly represent an acceleration from the ancestral pollen tube growth 

rate (Williams 2008). This acceleration can be inferred to have occurred early in water lily 

history, before the origin of Hydatellaceae, and it likely accompanied the transition to the aquatic 

habit. Rapid pollen tube growth rates have repeatedly evolved in early-divergent aquatic 

lineages, including Alismatales (basal monocots) and Nelumbonales (basal eudicots; Williams 

2009).  

 One consequence of faster pollen tube growth rates in water lilies is a shortening of the 

entire progamic phase. Time to fertilization in every water lily species is less than 10 hours, 

despite a 13-fold range in pollen tube pathway lengths (Table 5.1). As a result, although 

Nymphaeales taxa exhibit pollen tube pathways that are both shorter (T. submersa) and longer 

(Brasenia schreberi) than those of woody basal angiosperms, they all have a shorter time to 

fertilization (Figure 5.2). 
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Pollen tubes growth through solid tissue 

 Carpels in Brasenia and Cabomba are ascidiate, forming as a hollow tube open at the 

mouth and sealed only by secretion (Endress 2005). Pollen tubes in these genera might be 

expected to enter the stylar canal only through the open mouth and reach ovules without ever 

growing between cells. This is observed in Amborella, in which pollen tubes only enter the stylar 

canal through the open mouth (Williams 2009). Brasenia and Cabomba pollen tubes, however, 

do not necessarily grow through the open carpel mouth and are able to reach the stylar canal by 

penetrating the cuticle of stigmatic cells and growing between cells that comprise the solid sub-

dermal tissue of the stigma or stigmatic crest (Chapter II). 

 In contrast to those of Cabombaceae, carpels of Nymphaeaceae become partially sealed 

late in development when the inner carpel surfaces become interlocked (Igersheim and Endress, 

1998; Endress and Igersheim, 2000). The evolution of complete carpel closure in Nymphaea 

represents an independent origin of true ‘angiospermy’ in flowering plants (Endress and Doyle 

2009). In Nymphaeaceae, therefore, pollen tubes must grow through solid tissue in order to reach 

the ovary (Williams et al. 2010). Pollen tubes growth rate through zone of post-genital fusion is 

only slightly slower than growth rate through the secretion filled ovarian cavity (972 ± 470 vs. 

1323 ± 486 µm/hr; Williams et al. 2010) 

  Trithuria pollen tubes do not grow through solid tissue in the same sense as those of 

Cabombaceae and Nymphaeaceae. Pollen tubes grow only through the open carpel mouth  and 

proceed through a zone of secretion to reach the micropyle. However, pollen tubes clearly 

penetrate the cuticle of stigmatic cells and may grow within the stigmatic hair cell wall (Chapter 

IV, Prychid et al. in press), which might involve the same physiological processes as growth 

through a transmitting tract (Prychid et al. in press). 
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 These results indicate that water lily pollen tubes evolved the ability grow between 

solidly packed cells before the origin of truly closed carpels. Thus, pollen tube innovations arose 

first and this allowed the modification of carpel morphology (e.g. through stylar elongation and 

post-genital fusion) without disrupting the timing of the progamic phase.  

 

Male and female function in Nymphaeales: shifting boundaries  

 The timing of male and female function is critical to progamic phase development 

because it determines the onset of the progamic phase and provides a setting for this life history 

stage. Dichogamy, or the separation of male function (anther dehiscence) and female function 

(stigma receptivity) in time, is nearly ubiquitous among bisexual basal angiosperms (Endress 

2010). Dichogamy can be advantageous in bisexual flowers if it reduces the chance of within 

flower selfing, limits interference between floral organs, or allows respective sexual function to 

be optimized during each phase (Lloyd and Webb 1986). Among dichogamous basal 

angiosperms, 21 of 23 families exhibit protogyny, with female function preceding male function 

(e.g. Gottsberger et al. 1980; Bernhardt and Thien 1987; Endress 2001, 2010).  

 Synchronous dichogamy, in which flowers in a population open and close at once, has 

been well documented in Nymphaeales (Prance and Arias 1975; Schneider and Jeter 1982; 

Osborn and Schneider 1988; Wiersema 1988; Williams et al. 2010; this study). However, this 

work has revealed that there is considerable variation in both the absolute and relative timing of 

anther dehiscence and stigma receptivity among species of Nymphaeales. This variation 

primarily arose through shifts in the timing of the offset of stigma receptivity or in the onset of 

anther dehiscence. For example, in Brasenia, the period of stigma receptive has been truncated 
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so that it ends well before flowers close. As the window of pollen transport is also short due to 

wind pollination, this maintains tight coordination between male and female function in the 

population (Chapter II). In contrast, male and female function must overlap in Euryale and 

Barclaya, as these two taxa exhibit autonomous selfing (Kadono and Schneider 1987; 

Williamson and Schneider 1994). The exact timing of stigma receptivity and pollen release has 

not been studied in these species; however, work in Nuphar suggests that offset in stigma 

receptivity may be delayed. Flowers of N. pumila experimentally pollinated on the 2
nd

 and 3
rd

 

day, even after stigmatic fluid has dried up, still produce seeds, albeit fewer than experimentally 

pollinated 1
st
 day flowers (Zhou and Fu 2007).  

 Trithuria also exhibits overlap in female and male function, although in Trithuria, 

precocious anther dehiscence is the more likely mechanism for overlapping phases. This overlap 

allows T. submersa to exhibit a primarily selfing breeding system (Chapter III) and the female-

only phase appears to be drastically reduced, if not eliminated completely in T. australis 

(Chapter IV). 

 Water lilies exhibit modifications to a protogynous program that permit a host of 

pollination and breeding systems, including selfing, to evolve. This suggests that there is not 

strong selective pressure to maintain strict protogyny in these species. Many of the modifications 

exhibited, such as truncated or delayed stigma receptivity in Brasenia and Nuphar, are not 

apparent without experimental work, and this underscores the necessity of experimental data in 

determining onset and offset of reproductive function.  
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CONCLUSION 

 Nymphaeales is one of the oldest independent angiosperm lineages and water lilies have 

been evolving in parallel to all other angiosperm lineages, other than Amborella, for nearly all of 

documented angiosperm history. Therefore, it is not surprising that water lilies exhibit great 

diversity in reproductive traits. True carpel closure, wind-pollination, and a primarily selfing 

breeding system have all arisen independently in various water lily taxa and the progamic phase 

in Nymphaeales has evolved in concert. Pollen tube pathway length, timing of anther dehiscence, 

duration of stigma receptivity, and pollen tube growth rate have undergone conspicuous 

modification associated with shifts in pollination biology and breeding system. The post-

pollination developmental program in Nymphaeales appears to experience selective pressures 

similar to those experienced by more recently-derived angiosperms and to evolve in similar 

ways. Nymphaeales exhibits rapid pollen germination, fast pollen tube growth, and in many 

cases, a relatively short pollen tube pathway. Consequently, the fertilization interval in 

Nymphaeales is short, which may be advantageous in the aquatic environment. The pollen tube 

innovations that underlie developmental flexibility were already in place before the divergence 

of Nymphaeales, giving credence to the hypothesis that innovations in male gametophyte 

development were instrumental in facilitating diversification of flowering plants.  
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APPENDIX  5 

 

Table 5.1. Comparative progamic phase timing in Nymphaeales species. 

 
Species Min to 

pollen 

germination  

Time to 

ovule 

entry (h) 

Mean pollen tube 

growth rate (µm/h 

± SD) 

Mean pollen tube pathway 

length
a 

 (mm ± SD) 

Brasenia schreberi 15-60 6 742.1 ± 76.5 6.62 ± .087 

Cabomba caroliniana > 15  2 963.4 ± 514.2 2.04 ± 0.88 

Nymphaea odorata
b
 5-45 2.5 1066 ± 548 2.04 ± 0.15 (95 % CI) 

Trithuria austinensis 15-30 0.75 499.4 ± 435.1 

1046.7 ± 604.5
c
 

2.06 ± 0.59 + 0.16 ± 0.02
d
 

Trithuria submersa 5-15 0.50 321.1 ± 281.0 0.56 ± 0.22 + 0.18 ± 0.01
d
 

 

a 
Measured from the tip of the stigmatic surface to the closest micropyle; 

b
Data from Williams et 

al. 2010; 
c
Successful pollen tubes only, see Chapter IV; 

d
Distance from stigmatic hair tip to 

carpel mouth + distance from carpel mouth to micropyle.  
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Figure 5.1. Comparative pollen tube pathway lengths and time to fertilization in basal 

angiosperms. Water lilies (red circles) exhibit greater variation in pollen tube pathlength than 

species of woody basal angiosperms (blue circles), but the time to fertilization is much shorter 

due to accelerated pollen tube growth rates. Species represented are Austrobaileya scandens (A. 

s), Amborella trichopoda (A. t), Brasenia schreberi (B.s.), Cabomba caroliniana (C. c), Illicium 

floridanum (I. f), Kadsura longipedunculata (K. l), Nuphar polysepala (N. p), Nymphaea odorata 

(N. o), Trimenia moorei (T. m), Trithuria austinensis (T. a), and Trithuria submersa (T. s). 

Trithuria species exhibit the shortest time to fertilization, a result of a shorter pollen tube 

pathway in T. submersa and of accelerated pollen tube growth rates in T. austinensis. Data from 

this study (B. s, C. c, T. a, T. s); Williams et al. 2010 (N. o); and Williams 2008 (all other taxa).  
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