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ABSTRACT 

The elastic properties of novel transition metal oxides have been investigated, using a 

powerful technique known as Resonant Ultrasound Spectroscopy (RUS). Two sets of 

transition metal oxides have been studied. One is the ruthenate Ca2-xSrxRuO4 series 

with a layered perovskite structure, a Mott transition system that connects the Mott 

insulator Ca2RuO4 with the unconventional superconductor Sr2RuO4. The other set 

contains geometrically frustrated materials, including vanadium spinels AV2O4 (A = 

Zn, Mn and Fe) and titanate pyrochlores A2Ti2O7 (A= Y, Tb, Yb, Ho and Dy). 

 

The elastic response of five Ca2-xSrxRuO4 single crystals (x = 2.0, 1.9, 0.5, 0.3 and 

0.2) has been measured.  For 2.0 ≥ x ≥ 0.5, a dramatic softening over a wide 

temperature range is observed upon cooling, caused by the rotational instability of 

RuO6 octahedra (for x = 2.0 and 1.9) or the static rotation of the octahedra (for x = 

0.5). For the Ca-rich samples (x = 0.3 and 0.2), the softening occurs in a very narrow 

temperature range, corresponding to the structural phase transition from 

high-temperature-tetragonal to low-temperature-orthorhombic symmetry.  

 

Elastic softening in ZnV2O4 is observed near the cubic-to-tetragonal structural phase 

transition at 50 K. The elastic response of MnV2O4 is quite unusual, displaying a 

softening over a wide temperature range with decreasing temperature. Upon cooling, 

C‟ of FeV2O4 becomes so soft that it drops to almost zero around 140 K, where the 

cubic-to-tetragonal structural transition occurs.  

 

For Y2Ti2O7, all three elastic constants show normal “Varshni” behavior. For spin 

liquid Tb2Ti2O7, all three elastic constants show a pronounced softening below 50 K, 

indicative of a possible Jahn-Teller, cubic-to-tetragonal transition at very low 

temperatures. It is also found that the application of a magnetic field suppresses the 

elastic softening in this compound. Another spin liquid Yb2Ti2O7 shows no elastic 
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softening. The elastic moduli of the spin-ice compounds, Ho2Ti2O7 and Dy2Ti2O7, 

show a broad “dip” around 100 K, which is believed to be caused by the strong 

crystal field effect in those two compounds.  

 

Key words: Elastic Properties, Resonant Ultrasound Spectroscopy (RUS), Transition 

Metal Oxides (TMO), Geometrically Frustrated Materials 
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INTRODUCTION 

    Transition metal oxides represent a fascinating class of materials with a uniquely 

wide range of electronic properties and a distinguished, long history. Some of these 

properties, like the magnetism of loadstone, have been known since antiquity. The 

fascination in transition metal oxides was first triggered in the 1950s, when the 

compound La1-xCaxCuO4 revealed a variety of physical properties with the change of 

Ca concentration (Wollan, 1955). Later, novel synthetic approaches, sophisticated 

computation and simulation methods, and innovative characterization techniques 

have led to unprecedented progress in the design and development of new generation 

of advanced materials based on transition metal oxides. The most important landmark 

in the history of transition metal oxides was the discovery of high-Tc 

superconductivity in layered cuprates La2–xBaxCuO4 (Bednorz, 1986) in 1986, which 

led to a strong upsurge of research interests in transition metal oxides. In addition, 

multiferroism, the coexistence of magnetism and ferroelectricity, was found in some 

materials, most of which are transition metal oxides. Those multiferroics are 

receiving extensive attention due to their potential application in the emerging field 

of spintronics and sensors. More recently, geometric frustration, an interesting 

phenomena leading to many exotic ground states, are also found in a variety of 

transition metal oxides. The electrical, magnetic and optical properties of transition 

metal oxides find a rich field of important technical applications. A classical example 

is the wide use of ferrites in electronic devices. Further examples of suitable 

technological applications include wide gap semiconductors, superconductors and 

thermoelectric materials, to mention just a few. 

    Before fully understanding the physics behind the exotic macroscopic properties 

of transition metal oxides, one has to know two essential microscopic properties of 

transition metal oxides. First, orbital degree of freedom of electrons in transition 

metal oxides ensures that the electrons can choose from several types of energetically 

equivalent electronic orbitals that they could occupy. Secondly, the valence electrons 
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in these materials interact very strongly and dramatic changes of behavior can be 

induced by relatively small changes in families of closely related materials. One of 

the characteristics of transition metal oxides is the coupling between electronic and 

lattice degrees of freedom. In many cases, this is mirrored by an electronic or 

magnetic transition which is accompanied by a change of the crystallographic 

structure. Even though these structural changes in most cases only involve slight 

distortions of a parent structure, they may induce drastic changes of the physical 

properties. 

    Our research focuses on the elastic properties of transition metal oxides, using a 

novel technique called Resonant Ultrasound Spectroscopy (RUS). The elastic 

properties of a material are amongst the most important physical properties, and are 

directly related to the atomic bonding and to quantities such as the sound velocity. In 

this dissertation, we present our findings on two classes of transition metal oxides. 

One is the layered ruthenate Ca2-xSrxRuO4 series, a Mott transition system that 

connects the Mott insulator Ca2RuO4 with the unconventional superconductor 

Sr2RuO4 and exhibits a variety of physical properties for different x values. The other 

class is transition metal oxides with geometric frustration, including vanadium 

spinels AV2O4 (A = Zn, Mn and Fe) and titanate pyrochlores A2Ti2O7 (A= Y, Tb, Yb, 

Ho and Dy). The elastic study of those materials will help the understanding of the 

correlation between the spin, orbital and lattice degrees of freedom.  

    This dissertation consists of 5 chapters. In Chapter 1, we will briefly summarize 

the literature on layered ruthenate Ca2-xSrxRuO4 series, as well as vanadium spinels 

AV2O4 and titanate pyrochlores A2Ti2O7. In Chapter 2, our main experimental 

apparatus, Resonant Ultrasound Spectroscopy (RUS), will be introduced, and single 

crystal growth by means of floating zone method will be covered. In Chapter 3, RUS 

results on the elastic properties of layered ruthenate Ca2-xSrxRuO4 series are 

presented, and the physics behind the experimental results are investigated. In 

Chapter 4, our experimental data on the vanadium spinels AV2O4 and titanate 
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pyrochlores A2Ti2O7 are revealed and discussed. In Chapter 5, a conclusion of the 

whole dissertation is given.  
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CHAPTER 1  

1LITERATURE REVIEW 

    Transition metal oxides (TMOs) constitute one of the most exciting families of 

materials, by virtue of the variety of structures and the diversity of properties 

exhibited by them. In terms of electrical conductivity, they may be good insulators, 

semiconductors, metals or superconductors. Transition metal oxides are best known 

to play a vital role in the electronics industry. Aside from their fascinating electronic 

properties, some transition metal oxides serve as ideal coating materials due to the 

remarkable mechanical and high-temperature stability together with a strong 

resistance against corrosion. Many transition metal oxides exhibit high catalytic 

activity and are widely used in industrial applications.  

    In this research, we mainly work on the elastic properties of transition metal 

oxides. Despite the immense interest in these materials, their elastic properties have 

not received a lot of attention, mainly because the traditional method (pulse-echo) 

requires large single crystals with dimensions of the order of a centimeter, which are 

not easily obtained. Using a technique called Resonant Ultrasound Spectroscopy 

(RUS), we have measured the elastic response of two sets of TMOs. One is the 

ruthenate Ca2-xSrxRuO4 series with a layered perovskite structure, a Mott transition 

system that connects the Mott insulator Ca2RuO4 with the unconventional 

superconductor Sr2RuO4. The other set contains geometrically frustrated materials, 

including vanadium spinels AV2O4 (A = Zn, Mn and Fe) and titanate pyrochlores 

A2Ti2O7 (A= Y, Tb, Yb, Ho and Dy). 
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1.1  Ca2-xSrxRuO4 series 

1.1.1 Sr2RuO4  

    In 1994, Maeno et al. (Maeno, 1994) discovered that stoichiometric Sr2RuO4 is 

a superconductor with a Tc = 0.93 K. Figure 1.1 clearly shows the superconducting 

transition in resistivity data within the ab-plane and along the c axis. In spite of the 

low value of the superconducting transition temperature, the discovery of 

superconductivity in Sr2RuO4 is remarkable since it is the first Cu-free 

superconductor with a perovskite-related layered structure. Even today, Sr2RuO4 

represents the only non-cuprate superconductor isostructural with La2-xBaxCuO4, as 

well as the only superconducting ruthenate.  

    Sr2RuO4 is the n = 1 member of the layered Ruddlesden-Popper series 

Srn+1RunO3n+1 (n = 1, 2, 3 and ∞). The Srn+1RunO3n+1 series includes the 

superconductor Sr2RuO4 (n = 1), the enhanced paramagnet Sr3Ru2O7 (n = 2) (Ikeda, 

2000)
 
and ferromagnetic Sr4Ru3O10 (n = 3) (Crawford, 2000). It was found that the 

properties of Srn+1RunO3n+1 series depend strongly on the number of RuO6 octahedral 

layers. The structure of the Srn+1RunO3n+1 series is shown in Figure 1.2 (Iliev, 2005). 

Here we focus on the n = 1 member of this series and its doped varieties.  

    Sr2RuO4 adopts the tetragonal K2NiF4 structure with I4/mmm space group 

symmetry. Its lattice parameters are a = b = 3.87 Å and c = 12.74 Å at room 

temperature. Since most of the isostructural compounds, including the cuprates, 

exhibit structural phase transition due to the rotation or tilt of the metal oxygen 

octahedral, it is natural to look for a similar structural transition in Sr2RuO4. However, 

structural analysis of Sr2RuO4
 
(Braden, 1997) revealed that the structure remains 

stable even at low temperatures and no evidence was found for a structural distortion 

between room temperature and 100 mK.  
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Figure 1.1 Resistivity of early single crystals of Sr2RuO4, indicating the superconducting 

transition (Maeno, 1994) 

 

 

 

Figure 1.2 Units cells of Sr2RuO4 (I4/ mmm), Sr3Ru2O7 (I4/ mmm and Pban) and Sr4Ru3O10 

(Pbam) (Iliev, 2005) 
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    In the early work on Sr2RuO4 superconductivity, the Tc varied slightly, 

depending on the quality of the single crystals. The highest Tc result was 1.5 K, 

obtained from high-quality Sr2RuO4 single crystals. The variation of Tc also 

stimulated a quantitative investigation of impurity effects. It was found that the 

effects of impurities on the superconductivity of Sr2RuO4 were very strong. As seen 

in Figure 1.3
 
(Mackenize, 1998), samples with low residual resistivity showed sharp 

superconducting transitions, and as the residual scattering increased, Tc dropped and 

the transition became broader, until the superconductivity was destroyed altogether.   

    The nature of superconductivity in Sr2RuO4 has been the subject of extensive 

research. In 1995, Rice and Sigrist (Rice, 1995) argued on theoretical grounds that 

the superconductivity in Sr2RuO4 is an electronic analogue to superfluid 
3
He and 

Sr2RuO4 represents an unconventional p-wave spin-triplet superconductor.  

 

 

 

Figure 1.3 Temperature dependence of resistivity for three Sr2RuO4 single crystals with 

residual resistivities of 1.85, 0.85 and 0.15µΩ (from top to bottom) (Mackenize, 1998) 
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    Rice‟s statement was later confirmed by experimental evidences. NMR 

measurements (Ishida, 1998) (Ishida, 2001) and polarized neutron scattering (Duffy, 

2000) showed that the spin susceptibility remained unchanged across the 

superconducting transition, indicating spin triplet with the spin of Copper pairs lying 

within the ab-plane. It needs to be pointed out that even though the p-wave spin 

triplet superconductivity of Sr2RuO4 has been generally accepted, some theoretic 

calculations (Mazin, 1999)
 
showed that the spin fluctuations in Sr2RuO4 have both a 

ferromagnetic (FM) and antiferromagnetic (AFM) component, of comparable 

magnitude, thus making d-wave superconductivity a strong competitor with the 

p-wave state. It is possible that the system may be driven to the d-wave 

superconductivity by an external force, for instance by pressure. Therefore, the nature 

of superconductivity in Sr2RuO4 is still an issue under debate. 

    Other experimental studies of Sr2RuO4 include thermal conductivity 

measurements (Tanatar, 2000), inelastic neutron scattering studies (Sidis, 2000), 

susceptibility measurements at high magnetic fields (Ohmichi, 2001) and other 

various studies. It is beyond the scope of this work to give an overview of all studies 

and their results, considering the large quantities of papers on Sr2RuO4. Instead, we 

will focus on the literature that reports studies of the elastic properties of Sr2RuO4. 

For Sr2RuO4 with the tetragonal crystal structure, there are six independent 

second-order elastic constant Cij, expressed as C11, C33, C12, C23, C44 and C66. The 

elastic tensor of Sr2RuO4 was measured on a high-quality single crystal specimen, 

using Resonant Ultrasound Spectroscopy (RUS) (Paglione, 2002). The obtained 

elastic constants at room temperature were 2.32, 2.08, 0.71, 1.06, 0.657, 0.612 (unit: 

10
11

 Pa) respectively for C11, C33, C12, C23, C44 and C66. Those values of elastic 

constants resulted in a Debye temperature θD = 465 K, which can provide information 

on the possible role of electron-phonon coupling in the superconductivity. 

    Longitudinal elastic constants C11 and C33 were measured on a Sr2RuO4 single 

crystal across Tc, using pulse-echo technique
 
(Okuda, 2002). As shown in Figure 1.4, 
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a drop in the longitudinal elastic moduli was observed at Tc.   

    Transverse ultrasonic measurements were also performed on a single crystal of 

Sr2RuO4 across Tc
 
and the transverse elastic modulus C66 was evaluated from the 

in-plane transverse sound velocity v, using the equation C66 = ρv
2
, where ρ is the 

density (Okuda, 2003). Figure 1.5 shows the temperature dependence of the sound 

velocity for both the superconducting state at 0 T and the normal state at 1.5 T for 

Sr2RuO4. The jump of C66 at Tc (indicated by the arrow) is attributed to the coupling 

between the strain and the two-dimensional order parameter (OP) with broken 

time-reversal symmetry. This led to additional evidence for the spin-triplet 

superconductivity with the two-dimensional OP.  

    So far, there are no reports on the elastic properties of other concentrations than 

Sr2RuO4 in the Ca2-xSrxRuO4 series. Our RUS studies on different concentrations will 

provide an insight into the thermodynamic properties of this fascinating system. 
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Figure 1.4 The difference in the longitudinal elastic moduli (a) C11 and (b) C33 across the 

superconducting transition in Sr2RuO4. The solid curves are calculated with a thermodynamic 

model
 
(Okuda, 2002)  

 

 

 

Figure 1.5 The temperature dependence of the sound velocity shown for both the 

superconducting state at 0 T and the normal state at 1.5 T for Sr2RuO4. The arrow indicates 

the jump of C66, when Tc is approached from low temperature (Okuda, 2003)  
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1.1.2 Ca2RuO4 

    A compound closely related to the superconductor Sr2RuO4 is Ca2RuO4, which 

is obtained by the isovalent substitution of Sr by Ca. In contrast to Sr2RuO4 which is 

metallic, Ca2RuO4 shows nonmetallic behavior at room temperature. Ca2RuO4 is 

considered to be a Mott insulator, in which suppression of conductivity occurs as a 

result of strong interactions between electrons in a solid.  

    The structure of Ca2RuO4 is of the same layered perovskite type as that of 

Sr2RuO4. However, unlike the I4/mmm tetragonal symmetry in Sr2RuO4, Ca2RuO4 

has the Pbca orthorhombic unit cell with the dimensions a = 5.402 Å, b = 5.493 Å, 

and c = 11.932 Å at room temperature (Nakatsuji, 1997a). The presence of the 

orthorhombic distortion in Ca2RuO4 is attributed to the static rotation of the RuO6 

octahedra about an axis parallel to the c-axis combined with a tilt of the RuO6 about 

an axis in ab-plane. The temperature dependence of the structural parameters of 

Ca2RuO4 indicates a structural phase transition at 356 K, as shown in Figure 1.6 

(Friedt, 2001). The low-temperature phase is characterized by a small c- lattice 

parameter (S - Pbca) compared to the high-temperature phase with long c (L – Pbca). 

In the temperature dependence of the partial volume fractions of the L – Pbca and S - 

Pbca phases, a hysteresis was observed, which indicated the first order nature of this 

structural transition.  

    The structural transition in Ca2RuO4 is also companied by a metal to insulator 

transition, as depicted in Figure 1.7
 
(Alexander, 1999). Figure 1.7 shows the electric 

conductivity, ρ (T), in the ab plane as a function of temperature for 70 < T < 600 K. 

An abrupt transition from a nearly metallic state to an insulating state was observed 

at 357 K, simultaneously with the structural transition. The metal-insulator transition 

is Mott-like and not associated with a magnetic transition, and it is primarily due to 

the coupled electronic elastic energies associated with the structural change. This is 

not a common phenomenon in Mott insulators, since for most Mott insulators the gap 

depends only on the existence of moments and is not coupled to the crystal structure.  
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Figure 1.6 The temperature dependence of the lattice parameters in Ca2RuO4 (Friedt, 2001) 

 

 

Figure 1.7 Electrical resistivity ρ (T) for the ab plane as a function of temperature for 70 < T 

< 600 K. Inset: Details of the abrupt jump in ρ (T) near the transition at TM = 357 K
 

(Alexander, 1999) 
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Figure 1.8 Magnetic susceptibility for single-crystal Ca2RuO4 (Cao, 1997) 

    

    In contrast to the ferromagnetic instability suggested for Sr2RuO4, Ca2RuO4 

exhibits antiferromagnetic ordering at TN ≈ 110 K, with only a weak ferromagnetic 

component induced by spin canting
 
(Nakatsuji, 1997b) (Cao, 1997). Figure 1.8 (Cao, 

1997) shows the magnetic susceptibility of a single crystal Ca2RuO4 sample with the 

applied field parallel and perpendicular to the c axis. A significant cusp is observed at 

110 K, a clear evidence of the onset of antiferromagnetism. The transition in Figure 

1.8 is more sharply defined than those typical of antiferromagnets. The inset of 

Figure 1.8 displays the magnetic susceptibility of Sr2RuO4 for contrast and its 

susceptibility is much smaller and less temperature dependent than that of Ca2RuO4.  

1.1.3 Ca2-xSrxRuO4 series  

    The remarkable discovery of superconductivity in Sr2RuO4 stimulated a surge of 

investigations on the doped Ca2-xSrxRuO4 series, connecting the Mott insulator 

Ca2RuO4 with the superconductor Sr2RuO4.  

    It should be noted that since Sr and Ca are isoelectronic, Ca substitution does 

not change the valence electron numbers, in contrast to carrier doping in the cuprate 

high-Tc superconductors. The rich physical phenomena in this series result rather 

from the changes in the interplay between electronic correlations and the band 
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structures induced by the crystal structure changes (Wang, 2004). 

    S. Nakatsuji and Y. Maeno (Nakatsuji, 2000a) (Nakatsuji, 2000b) first 

revealed the entire experimental phase diagram of Ca2-xSrxRuO4 by resistivity, 

magnetic susceptibility and x-ray diffraction measurements. The phase diagram, as 

shown in Figure 1.9 (Nakatsuji, 2000b), exhibits rich behavior, including an 

antiferromagnetic (AF) transition, a metal-insulator transition (MIT), a structural 

transition and a ferromagnetic instability. The phase diagram consists of three 

regions: 

 (І)   (0 ≤ x < 0.2) AF insulating ground state  

Antiferromagnetic ordering occurs for all x < 0.2 compositions. In addition, the 

metal-insulator transition occurs in this region，and the transition temperature 

decreases with Sr addition until it reaches zero for x = 0.2. Even though for Ca2RuO4 

(x = 0), the metal-insulator transition temperature Tc, which is about 360K, is far 

above the Néel temperature TN = 110 K, slight doping of Sr can shift Tc and TN to the 

same value. Figure 1.10 (Nakatsuji, 2000a) clearly indicates the abrupt increase by 

factors more than 10
4
 in resistivity at 155 K and 70 K for x = 0.09 and 0.15 

respectively. 

(П)  (0.2 ≤ x < 0.5) Magnetic metallic (M-M) region  

    In this region, the system becomes metallic at all temperatures with AF 

correlation at low temperatures. Even though long-range order (LRO) does not 

emerge, an AF short-range order (AF-SRO) is well stabilized, as evidenced by the 

broad peak in the temperature dependence of the susceptibility
 
and also by the 

anisotropy of the susceptibility below the peak temperature.  

    Another characteristic of region П is a second-order structural phase transition 

from high-temperature-tetragonal (HTT) to low-temperature-orthorhombic (LTO) 

phase. The structural transition temperature is close to room temperature for 

Ca1.8Sr0.2RuO4 (x = 2) and continues to drop to lower temperatures with more Sr 

addition until it reaches zero at xc ~ 0.5.  



 15 

 

Figure 1.9 Phase diagram of Ca2-xSrxRuO4 with abbreviations: P for paramagnetic, AF for 

antiferromagnetic, FM for ferromagnetic, (M) for metallic phase, (I) for insulating phase, SC 

for superconducting phase, HTT for high-temperature-tetragonal, LTO for low-temperature- 

orthorhombic, SRO for short range order and QCP for quantum critical point (Nakatsuji, 

2000b) 

 

 

 

 

Figure 1.10 Temperature dependence of the in-plane resistivity for Ca2-xSrxRuO4 with 

different values of x (Nakatsuji, 2000a)  
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(Ш )  (0.5 ≤ x ≤ 2)  Paramagnetic metal. Superconductivity emerges at x = 2. 

    For Sr2RuO4, the χ (T) curve is typical for a Pauli-paramagnet, showing little 

temperature dependence. Upon Ca substitution, however, the susceptibility becomes 

Curie-Weiss–like. The susceptibility, at the zero temperature limit, increases 

gradually with increasing Ca concentration until it is substantially enhanced at xc = 

0.5 and reached a value that is more than 100 times larger than the susceptibility of 

Sr2RuO4. The critical enhancement of the low-temperature susceptibility at xc is 

correlated to the disappearance of AF-SRO in region П at x ~ 0.5, indicating a drastic 

change of the ground state to a nearly ferromagnetic one. The critical enhancement of 

susceptibility at xc is also correlated to the zero temperature HTT to LTO structural 

transition at this point, which is believed to have quantum-critical character 

(Nakatsuji, 2000b). A quantum-critical phase transition takes place at the absolute 

zero of temperature, where crossing the phase boundary means that the quantum 

ground state of the system changes in some fundamental way (Sondhi, 1997).          

    Figure 1.11 shows the magnetic phase diagram of Ca2-xSrxRuO4 constructed 

using first principle calculations, in the space spanned by structural distortions (Fang, 

2001). From right to left of the phase diagram, first the RuO6 starts to rotate along the 

c axis by up to 12°, and then with the 12° rotation being fixed, the RuO6 starts to tilt 

up to 12°. The basic tendency suggested by this calculated phase diagram is that 

RuO6 rotation will drive the system from a non-magnetic (NM) state to a 

ferromagnetic (FM) state, while the subsequent tilting plus the flattening of RuO6 

will push the system to an antiferromagnetic (AF) region. This general tendency is 

quite consistent with the experimental phase diagram.  
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Figure 1.11 The calculated magnetic phase diagram of Ca2-xSrxRuO4 with structural distortion. 

Here, the degree of flattening of RuO6 octahedron was defined by λ = dc / dab, with dc (dab) 

denoting the Ru-O bond length along the c axis (in the ab plane) with the RuO6 volume fixed
 

(Fang, 2001). 

    

1.2  Geometrically frustrated materials 

    The second class of materials in our study are transition metal oxides with 

geometric frustration, including vanadium spinels AV2O4 (A = Zn, Mn and Fe) and 

titanate pyrochlores A2Ti2O7 (A= Y, Tb, Yb, Ho and Dy). In this section, we will first 

talk about geometric frustration, an intriguing phenomenon in condensed matter 

physics, followed by literature reviews on vanadium spinels AV2O4 and titanate 

pyrochlores A2Ti2O7.  

1.2.1 Geometric frustration 

    Geometric frustration, a concept developed in the 1950‟s, has been a topic of 

interest during recent years (Ramirez, 1994) (Greedan, 2001) (Bramwell, 2001) 

(Schiffer, 2002) (Gaulin, 2005) (Moessner, 2006) (Greedan, 2006). “Frustration” in 

physics is a term applied to the situation where the system is unable to find a unique 

ground state due to competing or conflicting interactions. When frustration arises 

purely from the geometry or topology of the lattice, it is termed geometric frustration.  

    A simple example of 2D geometric frustration is the arrangement of three 
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identical spins on the corners of an equilateral triangle (Figure 1.12 b). The spins are 

constrained to point either up or down, and the energy is minimized when each spin 

is aligned opposite to its neighbors. Once the first two spins align anti-parallel, the 

third one is frustrated: it cannot simultaneously minimize its interactions with both of 

the other spins and its two possible orientations, up and down, give the same energy. 

In other words, antiferromagnetic interactions are incompatible with triangular lattice 

symmetry. This situation can be contrasted with the situation for the square planar 

plaquette in Figure 1.12 a, which is clearly not frustrated under the same constraints. 

Similarly, in three dimensions, when four identical spins reside on the corner of a 

tetrahedron, two of the four spins may experience geometric frustration, as illustrated 

in Figure 1.12 c.  

    In frustrated systems, triangles and tetrahedra can share corners, edges or even 

faces (in the case of tetrahedra) to form the lattices which appear in real materials. 

Four representative geometrically frustrated lattices are illustrated in Figure 1.13 

(Ramirez, 1994)
 

and include: (a) edge-sharing triangular; (b) corner-sharing 

triangular, also called Kagome lattice; (c) edge-sharing tetrahedral (which leads to the 

classic fcc lattice); (d) corner-sharing tetrahedral, also called pyrochlore lattice. 

Currently, the pyrochlore lattices are attracting considerable attention in geometric 

frustration research. This type of 3-D network, which can be shown to be the most 

frustrated of all common lattice types, can be found in the spinels, laves and real 

pyrochlore type compounds. The primary source of the growing interest in 

geometrically frustrated materials is the novel and complex phenomena induced by 

frustration. For example, the presence of geometric frustration can inhibit the 

formation of long-range ordered spin ground states, even at very low temperatures. 

Figure 1.14 (Ramirez, 1994) illustrates how geometric frustration is quantified in an 

antiferromagnetic (AF) system. The frustration index is defined as: NCW TF / , 

with CW the Curie-Weiss temperature, and TN the Néel temperature. Materials with 

frustration index more than 10 are considered strongly frustrated.  
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Figure 1.12 (a) square planar plaquette, not frustrated; (b) frustrated triangular plaquette; (c) 

frustrated tetrahedral plaquette 

 

Figure 1.13 Some common frustrated lattices (Ramirez, 1994) 
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Figure 1.14 How frustration is quantified in an AF system. The left hand side shows a 

“normal (i.e. non-frustrated) case of the inverse susceptibility, 1/χ, versus temperature with 

TN ≈ θcw, the Néel, or ordering temperature. The right-hand side shows a frustrated magnet 

where TN << θcw (Ramirez, 1994) 

 

 

    In contrast to conventional materials, the ground state of frustrated system is 

often macroscopically degenerate, i. e., consists of a macroscopic number of different 

spin arrangements. How the degeneracy is eventually lifted on cooling is a matter of 

intense theoretical and experimental interest (Radaelli, 2005). There are several 

possibilities. The system may distort structurally on cooling to lift the degeneracy and 

allow long-range charge or spin ordering. Alternatively, the system may settle into a 

variety of low-temperature cooperative spin states with evocative names such as 

“spin glass”, “spin liquid”, or “spin ice”, all of which originate from the delicate 

balance of frustrated spin-spin interaction. Microscopically, the “spin glass” state is a 

configuration of spins frozen into a more or less random pattern. There exists a 

distinct freezing or glass temperature, Tf or Tg, below which the random frozen state 

is established from a random fluctuating state (Greedan, 2001). A “spin liquid” is a 

cooperative paramagnet and differs from a “spin glass” in that no distinct Tf is 

observed, i. e., the spins remain dynamic down to the lowest temperatures. A “spin 

ice” is an unusual system with ferromagnetic interaction, in which the configurational 
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disorder in the orientations of the magnetic moments is precisely the same as the 

distribution of protons around O atoms in solid, hexagonal water ice.  

    Our research interests focus on geometrically frustrated materials based on a 

pyrochlore lattice, including spinels AB2O4 (in which the B-site forms a pyrochlore 

sublattice) or pyrochlores A2B2O7. Those materials play a critical role in the 

development of current ideas about geometric frustration. 

 

1.2.2 Vanadium spinels AV2O4 (A = Zn, Mn and Fe) 

1.2.2.1 Spinel structure  

    The spinel structure, shared by many important oxides, is named after the 

mineral spinel, MgAl2O4. Spinels have a general formula AB2O4, with A representing 

a divalent metal ion such as Magnesium, Manganese, Cadmium and Zinc amongst 

others, and B representing trivalent metal ions, such as Aluminum, Iron, Chromium 

and Vanadium. Spinels are cubic (space group Fd-3m) with eight formula units in the 

conventional unit cell.  The 32 oxygen ions form a fcc lattice and the 24 cations 

occupy the tetrahedral and octahedral interstitial sites. Spinel structures can be 

divided into two types: “normal” and “inverse” spinels. In a “normal” spinel, A
2+

 ions 

are on the tetrahedral sites (A-sites) and B
3+

 ions are on the octahedral sites (B-sites), 

[A]T[B2]OO4. In an “inverse” spinel, the A
2+

 ions and half the B
3+

 ions are on 

octahedral sites and the other half of the B
3+

 are on tetrahedral sties, [B]T[AB]OO4. 

Vanadium spinels AV2O4 in this study are normal spinels with V
3+

 cations forming a 

geometrically frustrated pyrochlore lattice.  

1.2.2.2 Orbital degree of freedom in vanadium spinels 

    For the Heisenberg antiferromagnet on a pyrochlore lattice, the spins would fail 

to order down to the lowest temperature. In real compounds like vanadium spinels, 

the magnetic V
3+

ions form the frustrated pyrochlore lattice and possess an additional 
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orbital degeneracy due to electron correlation. The physical behavior of those 

compounds is expected to be dramatically different from that of pure spin models, as 

the occurrence of an orbital ordering can modulate the spin exchange and partially 

release the geometrical degeneracy of the underlying lattice (Jacheli, 2007). 

Vanadium spinels thus give unique opportunity to explore the interplay between 

strong electron correlation and geometric frustration.  

    In vanadium spinels, V
3+

 has the electronic configuration [Ar] 3d
2+

. As is widely 

known, there are five 3d orbitals with different orientations, as shown in Fig. 1.15. In 

an isolated atom, all d orbitals have the same energy. However, in an octahedral 

crystal field, the fivefold d levels of vanadium cation split into twofold eg levels 

(dx2-y2 and dz2) and three fold t2g levels (dxy, dyz, dxz), as illustrated in Fig. 1.16
 

(Motome, 2005). In the octahedral environment of the V-atom, the eg orbitals point 

toward the oxygen anions, so they are higher in energy and hybridize more strongly 

with the oxygen p orbitals. In accordance with Hund‟s rule, the two d electrons of V
3+

 

have spin S = 1 and occupy two out of the three low-energy t2g orbitals. Thus, 

vanadium ions have an orbital degree of freedom, in addition to lattice vibrations and 

spin. At high temperatures, the occupation of t2g orbitals is expected to be random. 

However, as the system cools, it is expected to undergo a symmetry breaking “orbital 

ordering” transition in which an orbital occupation pattern develops along with a 

tetragonal distortion of O6 octahedron. The distortion is called Jahn-Teller distortion, 

which can reduce energy by reducing the symmetry and lifting the degeneracy of t2g 

orbitals. Since t2g electrons may have a nonzero orbital angular momentum, spin-orbit 

coupling may play an important role in the physics of vanadium spinels (Motome, 

2005). 

 
.  
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Figure 1.15 Images of five 3d-orbitals with different orientation 

     

 

 

Figure 1.16 Crystal-field splitting of d levels and Jahn-Teller distortion (Motome, 2005) 
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1.2.2.3 ZnV2O4 

    ZnV2O4 undergoes two successive transitions at low temperatures (Ueda, 1997). 

At TS = 50 K, ZnV2O4 undergoes a cubic-to-tetragonal structural phase transition. At 

lower temperature TN = 40 K, the system orders antiferromagnetically. In spite of 

extensive theoretical studies, there still exists controversy about the mechanism 

behind the two transitions. The main difficulty in obtaining a consistent theoretical 

picture is that the energy scales in the problem are poorly separated with Jahn-Teller, 

spin orbit, and magnetic interactions all having the same energy scale. One scenario 

proposed by Yamashita and Ueta (Yamashita, 2000)
 

is based on a 

valence-bond-solid (VBS) approach and the effects of Jahn-Teller distortion are 

examined. It is proposed that the transition at TS is due to the spin-driven Jahn-Teller 

effect which lifts the degeneracy of the spin-singlet local ground states at each 

tetrahedron unit of the pyrochlore lattice. This scenario is quite appealing, but it is 

difficult to explain the magnetic order below TN, based on this quantum-spin picture. 

Tsunetsugu and Motome (Motome, 2005) (Tsunetsugu, 2003)
 
propose a different 

scenario based on the Kugel-Khomskii Hamiltonian. In their scenario, the structural 

phase transition at TS is an orbital order transition assisted by the Jahn-Teller 

distortion. This orbital order induces spatial modulation of the spin-exchange 

coupling depending on the bond direction. This partially releases the frustration and 

leads to a spin order observed at TN = 40 K. This scenario is corroborated by recent 

inelastic neutron scattering experiments
 
(Lee, 2004), but the problem is that the 

symmetry of the crystal structure in this scenario is inconsistent with the spatial 

symmetry I41/amd predicted by X-ray scattering experiments. This issue was later 

addressed by Tchernyshyov
 
(Tchernyshyov, 2004). His alternative model, which 

takes into the relativistic spin-orbit interaction, has I41/amd crystallographic 

symmetry and is able to account for the observed magnetic structure. Figure 1.17 

demonstrates two predicted orbital ordering pattern for ZnV2O4.  
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Figure 1.17 Two predicted orbital ordering patterns for ZnV2O4. The left pattern is from 

Tsunetsugu and Motome (Motome, 2005) (Tsunetsugu, 2003), which is based on 

Kugel-Khomskii Hamiltonian and does not include spin-orbit coupling. The right pattern is 

from Tchernyshyov
 
(Tchernyshyov, 2004) and is based on a model in which spin-orbit 

coupling is dominant. 

1.2.2.4 MnV2O4  

    Recent attention has turned to MnV2O4, which, unlike ZnV2O4, has magnetic 

ions Mn 
2+

 at A sites, leading to a superexchange interaction between Mn
2+

 and V
3+

. 

In this compound, Mn
2+

 ion is in the 3d
5
 high-spin configuration S = 5/2 with no 

orbital degrees of freedom.  

    Studies on MnV2O4 demonstrated that this compound also undergoes two 

successive transitions at low temperatures: a ferrimagnetic phase transition at TN = 56 

K, where Mn spins and V spins align in the opposite direction, and a 

cubic-to-tetragonal structural transition at a lower temperature TS = 53 K (Plumier, 

1987) (Plumier, 1989) (Plumier, 1998) (Adachi, 2005). Neutron diffraction on 

MnV2O4 clearly demonstrated the occurrence of a tetragonal distortion, evidenced by 

the splitting of the (400) peak into two peaks (220)T and (004)T in the tetragonal cell, 

shown in Figure 1.18 (Garlea, 2008). It is noteworthy that TN reported here is higher 

than TS in MnV2O4, opposite to most other frustrated spinels, such as ZnV2O4 

discussed above, where TS is higher than TN. To understand the physics behind the 

behavior of MnV2O4, it is informative to compare it with the isostructural ZnV2O4. 

Although neighboring V spins in ZnV2O4 have a strong antiferromagnetic interaction, 

they fail to find a stable antiferromagnetic ordering due to geometric frustration. 
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Antiferromagnetic ordering occurs in this compound only after a cubic-to-tetragonal 

structural transition relieves the geometric frustration. In this case, the spin-orbit 

coupling is an orbital-ordering-driven one. In MnV2O4, on the other hand, there is an 

additional superexchange antiferromagnetic interaction between Mn and V, which 

leads to ferrimagnetic ordering at TN. This ferrimagnetic state gives a ferromagnetic 

configuration of V spins, which changes the orbital-orbital interaction between 

neighboring V sites, and at some point results in the orbital ordering and structural 

phase transition at TS. In this sense, the spin-orbit coupling in MnV2O4 is a 

magnetic-ordering-driven one. The observed magnetic field switching of crystal 

structure can also be explained by the same scenario. When a magnetic field is 

applied, the ferromagnetic configuration of V spins occurs at higher temperatures, 

and accordingly the orbital ordering (structural phase transition) occurs at higher 

temperatures (Katsufuji, 2006). 

    However, there still exists controversy about the temperatures of the two 

transitions in MnV2O4, as there are reports that the ferrimagnetic phase transition and 

structural transition occur simultaneously at 57 K (Suzuki, 2007). More work needs 

to be done to fully understand its complex physics. So far, there have been no reports 

on its elastic properties and our RUS measurement may provide additional insight in 

the coupling between spin, orbit and lattice in this compound.  

 

 

Figure 1.18 Neutron diffraction of MnV2O4, showing the spitting of the (400) cubic peak into 

two tetragonal peaks (220) T and (004) T (Garlea, 2008) 
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1.2.2.5 FeV2O4  

    Like MnV2O4, FeV2O4 has magnetic ions at both A sites and B sites. However, 

there is an additional degree of complexity, as the Fe
2+

 ion has the 3d
6
 high-spin 

electron configuration with orbital degrees of freedom.  

    It is found that FeV2O4 exhibits successive structural transitions at low 

temperatures (Tanaka, 1966). Figure 1.19 shows X-ray powder diffraction 

measurements on this compound, demonstrating structural phase transitions from 

cubic to tetragonal at 140 K, from tetragonal to orthorhombic at 110 K, and from 

orthorhombic to tetragonal at 70 K (Katsufuji, 2008). In addition, magnetization 

measurement on FeV2O4 shows a ferrimagnetic transition at 110 K, similar to that of 

MnV2O4. The simultaneous occurrence of ferrimagnetic ordering and a structural 

phase transition at 110 K indicates the coupling between magnetism and the crystal 

structure.  

 

 
Figure 1.19 (a) X-ray powder diffraction patterns of FeV2O4; (b) Temperature dependence of 

lattice constants obtained from X-ray powder diffraction data; (c) Temperature dependence of 

the ratio of the O-O bond along the <101> to that along the <110> direction around Fe 

(closed circles), and the ratio of the V-O bond along the <001> to that along the <100> 

direction (closed squares), obtained from X-ray powder diffraction data (Katsufuji, 2008) 
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1.2.3 Titanate pyrochlores A2Ti2O7 (A= Y, Tb, Yb, Ho and Dy) 

    The A2B2O7 pyrochlore family crystallizes into a face centered cubic structure 

with eight formula units per conventional unit cell. In the A2B2O7 pyrochlores of 

interest to our study, the A-sites (16d) are occupied by a trivalent rare earth and the 

B-sites (16c) by Ti
4+

. The sublattices formed by each of the two metal ions result in 

two infinite, interpenetrating networks of corner-sharing tetrahedra, as shown in 

Figure 1.20 (Gingras, 2000). If A, B or both are magnetic and the nearest-neighbor 

exchange interaction is antiferromagnetic, the system is highly geometrically 

frustrated. As a result, antiferromagnetically coupled classical Heisenberg spins on 

the pyrochlore lattice do not develop any long range order at any nonzero 

temperature, opening up new avenues for novel intrinsically quantum mechanical 

effects to emerge at low temperatures.   

    Many materials adopt this structure and titanate pyrochlores A2Ti2O7 are being 

studied extensively. The titanate pyrochlores in our research include five compounds 

Y2Ti2O7, Tb2Ti2O7, Yb2Ti2O7, Ho2Ti2O7 and Dy2Ti2O7.   

 

 

Figure 1.20 Corner-sharing tetrahedra in A2B2O7 pyrochlore lattice (Gingras, 2000) 
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1.2.3.1 Y2Ti2O7 

    Whereas Yttrium titanate Y2Ti2O7, often abbreviated as YTO, has attracted 

attention for a number of applications (Higashi, 2005) (Kramer, 1994), it is 

diamagnetic, and therefore rather uninteresting for studies of magnetism and 

geometric frustration. However, due to this “boring” magnetic behavior, it is expected 

to be an excellent reference compound for more complex titanate pyrochlores. So far, 

there are only a few reports on the theoretical prediction of elastic constants for 

single crystal Y2Ti2O7 (Pruneda, 2005) (Jiang, 2010) and discrepancies exist among 

those reports, especially C44 values.  No reported experimental results are available 

to confirm those predictions and our RUS measurement on Y2Ti2O7 can be used to 

compare with the theoretical studies and will surely contribute to the understanding 

of elastic properties of the titanate pyrochlores.  

 

1.2.3.2 Spin liquid Tb2Ti2O7 and Yb2Ti2O7 

    Terbium titanate, Tb2Ti2O7,
 
is believed to be a prime example of a spin liquid 

and has been extensively studied. In a perfect spin liquid, though the magnetic 

moments are strongly correlated, they remain paramagnetic to zero temperature, but a 

magnetically ordered ground state can often be stabilized upon the application of 

pressure or a magnetic field. Despite the onset of antiferromagnetic short-range order 

at ~ 50 K, Tb2Ti2O7 displays no signs of long-range magnetic ordering down to at 

least 70 mK, as evidenced by the absence of anomalies in the susceptibility at low 

temperatures in Figure 1.21 (Gardner, 1999). Tb2Ti2O7 is thus believed to be a 

cooperative paramagnet, a term coined to describe such a low temperature state. 

There exists significant evidence, especially from neutron scattering (Gardner, 2001), 

that strong magnetic correlations exist on a nearest neighbor length scale, ~ 5 Å, 

down to very low temperature. To date, Tb2Ti2O7 appears to be the best realization of 

a spin liquid in three dimensions. However, the application of pressure of 8.6 GPa on 
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Tb2Ti2O7 can suppress the spin fluctuation and induce long-range antiferromagnetic 

ordering at a Néel temperature of 2.1 K (Mirebeau, 2004). High-resolution X-ray 

scattering measurements on a single crystal of Tb2Ti2O7 show continuous broadening 

of allowed Bragg peaks below ~ 20 K, consistent with the development of 

fluctuations above a cooperative Jahn-Teller, cubic-to-tetragonal phase transition at 

very low temperatures (Ruff, 2007). In the most recent X-ray diffraction studies on 

Tb2Ti2O7 in pulsed magnetic fields, Bragg peaks split at a critical field of H ~ 29 T at 

low temperatures, which is a hallmark of a symmetry-lowering structural phase 

transition (Ruff, 2010).   

 

  

 

Figure 1.21 The temperature dependence of the inverse susceptibility for Tb2Ti2O7, along 

with a fit of the high temperature regime of this data to a Curie-Weiss form. The inset shows 

the assumed local arrangement of moments on a single tetrahedron (Gardner, 1999). 
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    Ytterbium titanate, Yb2Ti2O7, has been studied in some detail. It is an insulator 

with lattice parameter a0 = 10.028 Å at room temperature (Brixner, 1964). A sharp 

anomaly in the specific heat at 0.25K had long been interpreted as a phase transition 

to an ordered magnetic state, which was supported by a detailed magnetization study 

indicative of weak ferromagnetic coupling and a free ion moment of 3.34 μB 

(Bramwell, 2000). However, spin dynamics studies by Hodges and co-workers 

(Hodges, 2002) indicated a different low-temperature scenario. As shown in Figure 

1.22, they disclosed an abrupt change in the fluctuation rate of the Yb
3+

 spin at 0.24 

K which corresponds to the temperature of the heat capacity anomaly. Below 0.24 K, 

Yb
3+

 spin fluctuation slows down by more than three orders of magnitude to several 

megahertz without freezing completely. This finding evidenced a first-order 

transition at 0.24 K which does not correspond to a transition from a paramagnetic 

state to a ferromagnetic state. Instead, the transition mainly concerns the time domain 

and involves the drastic slowing down of the spin fluctuations. The neutron powder 

diffraction confirmed this finding since no extra Bragg intensity was found below 

0.24 K. A recent polarized neutron study by Gardner (Gardner, 2004) conclusively 

confirmed this fluctuating picture and ruled out the frozen ferromagnetic state. Now 

it seems well established that Yb2Ti2O7 is a spin liquid with spins continuing to 

fluctuate below the 0.24 K transition. 

 

Figure 1.22 The fluctuation rate for Yb
3+

 as a function of temperature derived from muon 

(filled circle) and Mossbauer (open circles) spectroscopy. Note the first-order change at 0.24 

K (Hodges, 2002) 
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1.2.3.3 Spin ice Ho2Ti2O7 and Dy2Ti2O7 

    A spin ice is a highly unusual magnet, since it does not order to the lowest 

temperatures even though it appears to have ferromagnetic interactions
. 
There are 

only a few confirmed spin ice pyrochlores, which are Ho2Ti2O7, Dy2Ti2O7, Ho2Sn2O7 

and Dy2Sn2O7.  

    Holmium titanate, Ho2Ti2O7, was the first material proposed as a spin ice system. 

In 1997, Harris and collaborators (Harris, 1997) reported that, in zero applied 

magnetic field, neutron scattering on Ho2Ti2O7 detects no evidence of a transition to 

long range order down to at least 0.35 K. The most surprising part of the results was 

that the Curie-Weiss temperature was found to be positive with θ cw ~ + 1.9 K, 

indicating ferromagnetic coupling between the Ho
3+

 ions with J ~ 1 K. When a 

magnetic field is applied, its ground state degeneracy is broken and ordered magnetic 

phases are formed which display unusual history dependence. The behavior of 

Ho2Ti2O7 fits well within the proposed “spin ice” model, which is a model of a 

ferromagnetic pyrochlore with local Ising anisotropy directed along the <111>-type 

directions. The ground state of Ho
3+

 spins is characterized by the simple arrangement 

of two spins “in” toward the center of its tetrahedron and two spins “out” of the 

tetrahedron, which is equivalent of the water ice rule “two protons near, two protons 

far” , as illustrated in Figure 1.23 (Gardner, 2010). Just as water ice has extensive 

proton disorder entropy, spin ice Ho2Ti2O7 also exhibits low-temperature residual 

entropy.  

 
Figure 1.23 Illustration of the equivalence of the proton arrangement in water ice (left) and 

the spin arrangement in spin ice (right) (Gardner, 2010) 
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    The unusually large hyperfine interaction between the nuclear and electronic 

spins of Ho
3+

 makes Ho2Ti2O7 unsuitable for low temperature specific heat 

measurements. The first compelling thermodynamic evidence for the existence of a 

spin ice state in Ising pyrochlore systems was therefore obtained via measurements of 

the magnetic specific heat on another identified spin ice system: dysprosium titanate 

Dy2Ti2O7 (Ramirez, 1999).  From the specific heat data, the residual spin entropy of 

Dy2Ti2O7 was inferred, which is numerically in excellent agreement with Pauling‟s 

prediction for the entropy of water ice S = R (ln2 – ½ ln 3/2), as illustrated in Figure 

1.24. This finding has provided the crucial link in the chain between spin ice and water 

ice.  

    The spin ice phenomenon exemplifies the richness of the intrinsic physics of 

geometric frustration and will continue to capture extensive attention for years to 

come.  

 

Figure 1.24 (a) Specific heat and (b) entropy of the spin ice compound Dy2Ti2O7, showing 

agreement with Pauling‟s prediction for the entropy of water ice S = R (ln2 – ½ ln 3/2) 

(Ramirez, 1999) 
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CHAPTER 2  

2EXPERIMENTAL DETAILS 

2.1 Resonant Ultrasound Spectroscopy (RUS) 

    Resonant Ultrasound Spectroscopy (RUS) is a relatively new technique to 

determine the elastic constants of solids, based on the measurement of the mechanical 

resonances of a freely vibrating body. The origins of RUS are traceable to the 

geophysics community, where solutions are needed that utilize the Earth‟s 

free-oscillation modes (e.g. excited by a major earthquake) to accurately measure the 

elastic moduli of materials believed to be Earth‟s constituents. A RUS-like method 

was first used for materials science problems in 1964 by Fraser and LeCraw, who 

used a one-transducer setup to find the elastic constants for a sphere of isotropic 

materials (Fraser, 1964). Later, the method of Fraser and LeCraw was improved by 

geophysicists Anderson, Schreiber and Soga, who introduced the so-called resonance 

sphere technique (RST) and generated great sensation when they successfully 

measured the elastic moduli of small spherical lunar samples in 1970 (Schreiber, 

1970). In 1971, Demarest (Demarest, 1971) made a great breakthrough by 

developing the computational procedures to find the elastic moduli for a rectangular 

parallelepiped of an anisotropic, crystalline material with the axis of the sample 

oriented along high-symmetry crystallographic directions. Demarest‟s method was 

later referred to as the rectangular parallelepiped resonance (RPR) method, which has 

been used extensively since then. With the advantage of modern computing power, 

RUS in its present form was developed in 1988 by Migliori and Visscher, and was 

turned into a powerful method for measuring elastic constants of materials of a wide 

variety of shapes and symmetry (Migliori, 1993) (Schwarz, 2000) (Zadler, 2004) 

(Migliori, 2008). Recent theoretical advances indicate that RUS technique in 

principle can be applied to any well-defined shape and to materials with any 

crystallographic symmetry.  
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    Traditionally, the elastic constants of solids have been derived from 

measurements of the phase velocity of plane acoustic waves. Among the 

conventional techniques, the most used one is called pulse-echo method, the basic 

idea of which is to launch an acoustic pulse into a specimen and measure the time it 

takes to reflect from the face of the specimen opposite the transducer. From the 

measurement, the sound velocities are calculated and the elastic constants are 

obtained from sound velocities for various propagation and polarization directions. 

This technique, although quite powerful, suffers from certain limitations. Among the 

major restrictions are: (a) relatively large samples are required for accurate 

measurements, (b) a number of independent measurements, often on separate 

samples, are needed to fully characterize the elastic properties of a material (Leisure, 

1997). Those drawbacks can be avoided when using RUS, which, instead of relying 

on the plane-wave approximation, measures the resonant frequencies of samples of 

well-defined shapes and match the measured lines with the calculated spectrum to 

deduce the elastic tensor. This allows the accurate determination of all of the elastic 

constants in a single measurement, which clearly indicates a main advantage of RUS. 

The second advantage lies in the ability of RUS to work with small samples of mm 

dimensions or smaller, which is especially important when large single crystals are 

not available. Another advantage is the accuracy of RUS measurement, due to the 

fact that no bonding exists between sample and transducer, and minimal loading 

closely simulates stress-free boundary conditions.  More remarkably, RUS has been 

used for the simultaneous determination of both the elastic constants and the 

crystalline orientation of a tantalum single crystal (Sarrao, 1994a). In addition, RUS 

shows great promise for the study of processing-induced weak elastic anisotropy in 

some polycrystalline materials. RUS is especially sensitive to this anisotropy because 

all the elastic constants can be measured simultaneously. Over the past 20 years, RUS 

has become an attractive and versatile technique in materials science, condensed 

matter physics, and engineering. 
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2.1.1 Elastic tensor 

    As second derivatives of the free energy with respect to strain, elastic constants 

are directly related to the atomic bonding of the material and are of fundamental 

importance. They are closely connected to thermodynamic properties of the material, 

such as the specific heat, the Debye temperature and the Gruneisen parameter (which 

relates the thermal expansion coefficient to the specific heat at constant volume) and 

they can be used to check theoretical models (Maynard, 1996). The elastic 

properties also play an important role in probing various phase transitions. Unlike 

most of the quantities used to characterize condensed matter, the elastic constants are 

fourth-rank tensors containing a wealth of detailed directional information about the 

material.  

    Materials are generally deformed when forces are applied. For linear elasticity, a 

generalized Hooke‟s Law holds so that  

 klijklij C                         (2.1) 

where ζij is applied stress, Cijkl are the elastic constants and εkl is the resulting strain. 

For a three dimensional object, it appears that Cijkl is a 9×9 matrix with 81 elastic 

constants. Voigt-notation can simplify the 9×9 matrix to a 6×6 matrix with 21 

independent elastic constants, as in equation (2.2). Only the lowest-symmetry crystal, 

triclinic with a one-fold axis of rotation, has 21 independent elastic constants. In 

high-symmetry crystals, this number is considerably reduced by mirror planes and 

n-fold rotation axes. For example, a single crystal with cubic symmetry has only 3 

independent elastic constants and an isotropic material has only 2.  
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2.1.2 Theoretical basis of RUS 

    As illustrated in Figure 2.1 (Leisure, 1997), the mechanical resonant response 

of a three-dimensional solid is rather complicated. The key to the successful 

application of RUS is the ability to compute mechanical resonances from a body‟s 

shape, density and elastic moduli (Migliori, 1993). For solids such as a sphere or 

rectangular parallelepiped (RP) that have a shape sufficiently simple to enable 

description by a few mathematical functions, the computing procedure involves 

seeking stationary points of the Lagrangian for a solid with free surfaces. Once the 

mechanical resonances are computed (the direct problem), a carefully constructed 

fitting procedure can be used to work backwards and find the elastic moduli from the 

measured resonant frequencies (the inverse problem).  

    The procedure for solving the direct problem begins with the general form of the 

Lagrangian L
 
(Migliori, 1997):  

                   
V

dVPEKEL )(                   (2.3) 

where KE is the kinetic energy and PE is the potential energy. For an arbitrarily 

shaped elastic solid with volume V in a free surface S and with density ρ, the kinetic 

energy is given by: 
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The potential energy is given by: 
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Here ui is the ith component of the displacement vector, ω is the angular frequency 

from harmonic time dependence, Cijkl is a component of the elastic tensor. Subscripts 

i, j, etc., refer to Cartesian coordinate directions and the summation on subscripts 

runs from 1 to 3.  

    To find the minimum of the Lagrangian, we let u vary arbitrarily in V and on S 

and calculate the variation in L (δL). This yields: 
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Figure 2.1 Illustration of several vibrational eigenmodes for a rectangular parallelepiped 

(Leisure, 1997) 
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    Because δui is arbitrary in V and on S, the value of ui that corresponds to 

stationary points of L (i. e. δL = 0) must satisfy the condition that the terms in square 

brackets in Equation 2.6 are zero. Setting the first such term in Equation (2.6) equal 

to zero yields the elastic wave equation: 
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2 0                           (2.7) 

The second square-bracketed term is an expression of free-surface boundary 

conditions: 
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where ζij is the ij th component of the stress tensor.  

    There are no such ui‟s of course, unless ω
2
 is one of a discrete set of eigenvalues, 

the normal mode frequencies of free vibration of the system. This simple result 

makes possible the following procedure for obtaining the free vibrations of an object. 

    Using the Rayleigh-Ritz prescription, we expand the displacement vector in a 
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complete set of functions {Φλ}: 

        


ii au                      (2.9) 

and choose powers of Cartesian coordinates as our basis functions: 

     nml zyx                         (2.10) 

where λ = (l,m,n) is the function label, a set of three nonnegative integers. After 

substituting Equation (2.9) into Equation (2.3), we obtain: 

     aaaEaL
TT
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1 2                  (2.11) 

Here a is a vector with elements ai whose transpose is a
T
. E and Γ are matrices whose 

order R is determined by the truncation condition: 

            Nnml                   (2.12) 

with R=3(N+1)(N+2)(N+3)/6. It was found that N = 10 gives a good compromise 

between computational accuracy, computing time and typical sample preparation 

errors. 

   The matrix E has elements: 

            
V
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and the matrix Γ has elements: 
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    The Equation (2.11) for the Lagrangian is stationary if the displacements ui are 

solutions of the free-vibration problem. These solutions may be obtained by setting 

the derivatives of Equation (2.11) with respect to each of the R amplitudes aiλ equal 

to zero. This yields the following eigenvalue equation: 

          aaE 2         .                    (2.15) 

The matrix E is symmetric and positive definite and Γ is symmetric, so a standard 

eigenvalue-eigenvector subroutine package can be used to solve Equation (2.15) to 

obtain the eigenvalues ω
2
. 
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    This very fast and accurate solution to the direct problem is the key tool for the 

solution of the inverse problem. However, the inverse problem is not as 

straightforward. Since there is no unique solution to the inverse problem, a nonlinear 

optimization procedure is required. The code is based on a Levenberg-Marquard 

minimization and carries out a nonlinear least-square fit by minimizing the „figure of 

merit‟ F defined by:  

              

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i

iii gfwF
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2)(                               (2.16) 

    Here, fi = ωi/2π is the ith calculated frequency and gi is the ith measured 

frequency. wi is a weighing factor chosen based on the confidence in the measured 

frequencies and is customarily set to one or zero. Since many of the lower modes 

depend mostly on a shear mode, N must be large enough so that many non-shear 

modes are included. Figure 2.2 shows the block diagram for the RUS principle. 

    In a RUS measurement, the resonance frequencies of a sample are excited and 

detected by electronics shown in Figure 2.3. Then a fitting procedure follows, 

generating a list of calculated resonances based on the given sample dimensions and 

an educated guess of the elastic moduli. Using an iteration procedure that adjusts the 

input values of the elastic constants, the experimental frequencies are “matched” to 

the theoretical spectrum. The quality of a fit that is found is determined by the 

root-mean-square error σRMS between the calculated and experimental frequencies: 
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The computer repeats the fitting procedure until σRMS is minimized. If σRMS is not too 

high (typically below 0.5%), one can assume that the elastic constants generated by 

the computer accurately represent those of the sample.  
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Figure 2.2 Principle of RUS 

 

 

 

Figure 2.3 Block diagram of RUS electronics 
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2.1.3 RUS setup and data analysis 

    Because the task is to excite resonances, it is important to drive the sample at a 

low-symmetry location to excite as many modes as possible. The lowest symmetry 

point on a RP sample is the corner, thus this is a desirable point to drive and detect 

(Migliori, 1993). Moreover, the corners have low mechanical impedance so that 

touching them with a transducer has minimal effect on the free-body condition. In 

earlier work, great pains were therefore taken to mount the sample on two of its 

opposite corners between two transducers, as illustrated in Figure 2.4. However, this 

approach has serious drawbacks. A sample mounted on its corner is easily knocked 

from between the transducers when the RUS probe is inserted into a cryostat. In 

addition, the sharp corners wear away both samples and transducers in long runs
 

(Migliori, 2005). The current trend avoids these problems by mounting the sample 

flat, as shown in Figure 2.5. This is also the setup in our RUS measurement. In this 

approach, the transducers are slightly nonparallel, so weak point contact is always 

achieved even though the sample is flat mounted.  

    In a RUS measurement, the sample is excited by one transducer, with a typical 

frequency range from 200 ~ 2000 KHz. A large response is detected by the other 

transducer when the frequency of the driving transducer corresponds to one of the 

sample‟s natural frequencies. A segment of a typical spectrum is shown in Figure 2.6. 

Peaks in the spectrum are marked and the fitting procedure discussed before is used 

to obtain the elastic constants. To obtain the temperature dependence of elastic 

constants or resonant frequencies, a set of RUS transducers is mounted in a Physical 

Property Measurement System (PPMS). With the help of a LabVIEW program, 

automatic measurement of resonant frequencies at different temperatures is realized.  
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Figure 2.4 RP sample corner-mounted in RUS setup 

 

 

 

 

(a)

(b)

 

Figure 2.5 (a) RP sample flat-mounted in RUS setup; (b) Enlarged image of mounted sample 
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Figure 2.6 Typical resonance frequency spectrum measured by RUS 

 

2.1.4 RUS and phase transitions 

    The measurement of elastic moduli is useful not only in the determination of 

their absolute magnitude but also in the study of their relative temperature 

dependence, especially in the presence of phase transitions. RUS has proved to be an 

ideal probe for the study of phase transitions. Sample inhomogeneities are less of a 

problem because of RUS‟s ability to use much smaller samples. Its ability to 

simultaneously determine all elastic moduli in one run can eliminate the worry that 

difference in moduli are due to extrinsic variations from run to run, as one would 

encounter in pulse-echo measurement. Its absence of a bond between the sample and 

transducers makes it possible to make measurements on systems that undergo 

considerable thermal contraction at the transition temperature.  
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Figure 2.7 “Normal” temperature dependence of elastic constants 

 

    Figure 2.7 shows the “normal” temperature dependence of elastic constants, i.e., 

a smooth increase with decreasing temperature, leveling–off at the lowest 

temperatures.  However, elastic constants will deviate from “normal” behavior when 

a phase transition occurs. The most common phase transitions studied by RUS are 

second-order transitions. At such phase transitions, many thermodynamic quantities 

show no obvious evidence of the transition. However, as the second derivatives of 

free energy with respect to strain, the elastic moduli may show discontinuities at 

second-order transitions. As a tensor, the elastic moduli can probe the full symmetry 

of the discontinuities and one may use the discontinuities to learn about the physics 

driving the phase transition.  

    A particularly noteworthy application of RUS to such a transition was realized 

by Migliori and collaborators, who have successfully used RUS to study the 

structural phase transition in single crystal perovskite SrTiO3 (Migliori, 1993). 

SrTiO3 undergoes a structural phase transition at 105 K from cubic to tetragonal 
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symmetry. A Ginsburg-Landau analysis of this phase transition predicts a step-like 

decrease in elastic moduli at the transition and predicts the relative size of the step for 

each individual modulus by using the full crystal symmetry. RUS measurements on 

SrTiO3 by Migliori et al. show that each modulus increases with decreasing 

temperature due to normal thermal contraction and then exhibits a sharp decrease in 

the region near the transition, in excellent agreement with the theoretical prediction. 

Another important example of RUS is its application to the study of the phase 

transition in superconducting La1.86Sr0.14CuO4 (Sarrao, 1994b). Sarrao‟s RUS 

measurements revealed a strong temperature dependence of the tetragonal elastic 

constants above the tetragonal-to-orthorhombic structural phase transition in 

La1.86Sr0.14CuO4, and thus raised serious questions about the standard interpretation 

of the nature of this second-order structural transition in La2-xSrxCuO4.  

    For samples with irregular shape or symmetry lower than orthorhombic, the 

procedure for calculating the elastic moduli from the resonances becomes quite 

cumbersome, but a great deal of physics near phase transitions may still be studied by 

high-precision measurement of resonant frequencies or quality factors (which will be 

introduced below) as a function of temperature, pressure and isotopic content, 

without having to determine the absolute values of the elastic constants.  

 

2.1.5 Quality factor in RUS 

    The ability to measure the quality factor Q of a mechanical resonance is another 

attractive feature of RUS. Q is defined as the center frequency of the resonance 

divided by its full width at half maximum (FWHM), as indicated in the following 

equation: 
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    As can be seen in the equation, the sharper the resonance peak, the higher Q. 

Figure 2.8 demonstrates a resonance peak with Q as high as 10
5
 (Migliori, 2008). 

The high Q values of many resonance lines surely enhance the sensitivity of RUS. 

However, to obtain high-Q resonances, special attention needs to be paid to the 

quality of RUS design and to the sample quality.  

    It is worth pointing out that only those processes that cause energy loss from the 

vibrational mode under consideration will affect the Q of that particular mode. Elastic 

scattering processes can change the location of the resonance, but have no effects on 

the Q of the resonance.          

    1/Q is sometimes called internal friction, since one can often obtain useful 

information about the ultrasonic attenuation from Q. In many cases, a sudden change 

in Q appears near phase transition, which can help define the transition temperature 

and can provide important insight into the nature of the transition. 

 

 

Figure 2.8 An example of a high-Q resonance acquired with RUS system (Migliori, 2008) 
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2.2 Sample preparation 

    As part of this research, we have grown single crystals of Ca2-xSrxRuO4, using 

facilities at Oak Ridge National Laboratory (ORNL). Single crystals of vanadium 

spinels and titanate pyrochlores were provided by Dr. Gaulin at Mcmaster University 

and Dr. Zhou at the National High Magnetic Field Laboratory. All the single crystals 

are grown in an optical floating zone furnace.  

2.2.1 Floating zone technique 

    To study material properties in condensed matter, it is important to have high 

quality single crystals. Among the various techniques for single crystal growth, the 

optical floating zone method has been the subject of rapid development since the first 

use nearly fifty years ago. Following extensive development, in particular at SEC in 

Japan, image furnaces have become commercially available in the 1980s. The basic 

principle of this technique is melting a small section of a polycrystalline feed rod,  

by means of infrared radiation generated by two halogen or xenon light bulbs.  

Ellipsoidal or parabolic mirrors focus the infrared radiation onto the feed rod to 

produce a molten zone. Early designs of the image furnace had only one or two 

mirrors, but since the late 1990s, image furnaces usually have four mirrors to produce 

more uniform heating and to improve furnace power. The molten zone is then 

translated along the sample length by moving the sample with respect to the radiation 

focus. The crystal will grow on the solidifying end of the floating zone on a seed rod, 

which should be a material with a similar crystal structure as the feed rod. The crystal 

growth process always proceeds in vertical direction. In addition, a rotation 

movement of the two rods improves the microstructural homogeneity during 

directional solidification. As the molten zone is shielded by a quartz tube, one can 

choose the atmosphere and pressure under which the growth takes place. Fig. 2.9 and 

2.10 respectively show the schematic of this technique and the image furnace used in 

our research.  
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Figure 2.9 Schematic of floating zone technique 

 

 

 

 

Figure 2.10 Image of floating zone furnace 

 

 

 



 50 

    When growing single crystals by floating zone technique, careful control of 

certain experimental parameters is of prime importance in order to optimize both the 

stability of the molten zone and the eventual crystal quality. Those parameters 

include feed rod characteristics, the growth rate and rotation rate, the temperature 

gradient along the sample, as well as the growth atmosphere and gas pressure, all of 

which can play key roles during single crystal growth. In particular, the quality of 

feed rod is extremely important since a poorly compacted feed rod can lead to bubble 

formation in the molten zone and in the growing crystal.  

    The floating zone technique has many advantages, as summarized below. (1) It 

is crucible-free so that there can be no contamination by a crucible material. (2) In 

contrast to crucible methods, a steady state can be achieved, which is especially 

beneficial for crystal growth of doped materials and for incongruent crystallization. 

(3) The speed of the crystallization may be well controlled, which allows the growth 

of materials with very complex metallurgical properties. (4) Oxides melting as high 

as 2500
o
C can be grown. The growth can be conducted at high pressure (up to 10 atm) 

and in a specific atmosphere. However, the floating zone technique has some 

disadvantages as well. It is not suitable for materials that undergo a phase transition 

during cooling and for materials with high vapor pressure or high viscosity. In 

addition, the light heating used in this technique is not suitable for metallic samples 

that exhibit a high reflectivity in the infrared region.  

    Nowadays, the floating zone technique has become a preferred method for 

high-quality single crystal growth, especially for those showing extreme melt 

reactivity and high melting temperatures. In fact, it has become a standard method for 

single crystal growth in the semiconductor industry. The growing number of floating 

zone furnaces in use proves the usefulness of this method in the growth of a wide 

range of materials, from metals to semiconductors to various complex oxides 

including high-temperature superconductors, new magnetic materials and complex 

oxides with “exotic” oxidation states of some cations.  



 51 

    We have been successful in synthesizing polycrystals and in growing single 

crystals of Ca2-xSrxRuO4 in a wide region of x, by means of floating zone method. To 

prepare a polycrystalline rod, a standard solid-state reaction was used with CaCO3 

(99.9995% Alfa Aesar), SrCO3 (99.9995% Alfa Aesar), and RuO2 (99.99% Alfa 

Aesar) powders as starting materials. Those powders were mixed with appropriate 

molar ratio, depending on the composition of the polycrystal to be made. For 

example, the ratio was 1.8∶0.2∶1.15 for Ca1.8Sr0.2RuO4 polycrystal. After the mixture 

was well ground in a vibratory micro mill for about an hour, a proper amount of the 

mixture was put in a rod-shaped rubber balloon. After being pressed in water under 

the pressure of 1200 kg/m
2
, the rubber balloon was cut off by scissors. Then, the rod, 

with a typical diameter of 5 mm and a typical length of 120 mm, was sintered in a 

furnace at 950C for 24 hours to yield a homogeneous polycrystal. This 

polycrystalline rod was used as the feed rod in the process of single crystal growth in 

the NEC SC-M15HD image furnace in Figure 3.2. During the growth process, both 

the feed rod and the seed rod rotated in the opposite direction with a rotation rate of 

20 rpm. The single crystal was grown at the growth rate of 25 mm/h in the 

environment of oxygen and argon gases. The ratio of the two gases is 1:1 and the 

pressure of each gas is 0.3 MPa. During the growth process, the furnace temperature 

needs to be adjusted from time to time to ensure a stable molten zone. If the 

temperature is too high or too low, continuous single crystal growth may not be 

realized. Figure 2.11 shows the single crystal of Sr2RuO4 grown by floating zone 

technique.  

 

 

Figure 2.11 Single crystal of Sr2RuO4 grown by floating zone technique in ORNL 
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2.2.2 RUS sample preparation 

    To obtain the elastic moduli of a single crystal by RUS, the first step is to 

determine the orientation using X-ray Laue diffraction. The sample is then cut to the 

nearly final shape using a wire saw or wheel saw so that the faces of the sample are 

perpendicular to its crystallographic axes. Although it is possible to find the elastic 

moduli of a RP-shaped sample with crystallographic axes not parallel to its edges, 

this is difficult and prone to error. It is noted that a 1° error in alignment will produce 

an error in the final determination, which is of the order of a few parts in 10
4
, an 

acceptable value. However, parallelism or perpendicularity errors couple linearly to 

some resonance modes but not others, requiring precision of the order 1 μm/mm.  

    To achieve such precision, it is usually necessary to polish the sample after 

cutting. Unlike the pulse-echo method, the entire sample must be carefully polished 

with sharp edges and corners. To achieve an accurate fit, the faces of the mm-sized 

RP sample must be accurate to 2 µm or better, which means that the geometric errors 

must be of the order of a part in 10
3
 since the resonances are to be fit to that order.  

    Most samples in our research were polished by using ground steel shims and a 

magnet plate. The edges of the shims were squared up in an ordinary milling machine, 

and their surfaces were required to be 10 to 50 μm thinner than the distance between 

samples faces to be polished. The arrangement of four shims and the sample on a 

round magnet plate is shown in Figure 2.12. The X-ray oriented sample is trapped 

between the shims and polished using a variety of sand paper and polishing cloths. As 

the sample is close to completion, the shims support the sample edges to ensure that 

sharp edges and corners are produced. This appears to be important for an accurate fit. 

At least six sets of ground steel shims are required, corresponding to the two cuts 

required for three different edge lengths of the sample. For brittle samples like 

ruthenate Ca2-xSrxRuO4, the chipping of the edges can be a problem, which can be 

prevented by using Crystalbond or wax, an adhesive implemented by melting it on a 

hot plate. 
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    It needs to be pointed out that it is preferred that a finished RP-shaped sample 

has three different dimensions instead of being a perfect cube. The reason is that the 

geometric symmetry of a cube will cause a degeneracy of resonant frequencies, 

which means that several modes have the same frequency. Such overlapping of 

resonances is undesired and in most cases it will cause difficulties when sorting out 

the total number of resonances and their locations, thus decreasing the possibility of 

obtaining reliable elastic moduli because the models will possibly not fit the 

measured data. Usually, a slight difference between dimensions will split the 

degeneracy and make it easy to spot the missing mode.  

 

 

 

Shims Magnet plate

Sample

 

Figure 2.12 A polishing system using ground steel shims to make a RP sample 
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CHAPTER 3 

3RESONANT ULTRASOUND STUDIES OF CA2-XSRXRUO4 

    In this chapter, we present the results of our study of the elastic response of 

doped ruthenates Ca2-xSrxRuO4 with 0.2 ≤ x ≤ 2 (Luan, 2009).  The RUS data 

reported here were carried out as a function of temperature between 5 K and 300 K, 

using a custom designed RUS probe that was inserted in a commercial Quantum 

Design PPMS. For our study, three Ca2-xSrxRuO4 polycrystals with x = 1.0, 0.5 and 

0.3 were cut and polished into rectangular parallelepipeds (RP) and their elastic 

constants were determined from measurements of the resonant frequencies. In 

addition, the temperature dependence of the resonant frequencies were measured on 

Ca2-xSrxRuO4 single crystals with five different compositions, i.e., x = 2.0, 1.9, 0.5, 

0.3 and 0.2. The shape and small size of these samples prevented crystallographic 

orientation, but valuable information can be obtained from the temperature 

dependence of the frequencies, as explained below. RUS measurements were carried 

out upon both cooling and warming, and no difference was observed. The results 

presented are based on the cooling data.  

3.1 Ca2-xSrxRuO4 polycrystals 

    For polycrystals, only two independent elastic constants exist: the longitudinal 

modulus C11 and shear modulus C44. In this research, elastic constants of three 

Ca2-xSrxRuO4 polycrystalline samples with x = 1, 0.5 and 0.3 were measured, using 

the RUS technique. The polycrystals were polished into RP-shape with parallel faces 

and sharp corners, and their mass and dimensions were measured. The resonant 

spectra were subsequently measured by RUS, and the resonant frequencies were 

marked, from which a text file called rusin.dat was generated. The rusin.dat file 

serves as the input to the fitting code and the output was written to a file called 

rusout.dat. Table 3.1 shows the output file for CaSrRuO4 (x = 1) polycrystal.  
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Table 3.1 RUS output file for polycrystal CaSrRuO4 (mass: 9 mg; density = 3.842 g/cm
3
) 
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    The header of the rusout.dat file in Table 3.1 contains four lines. The first line is 

simply a comment on what material is being worked on. The second and the third 

lines respectively list the moduli (to be fit) and the dimensions (known). The fourth 

line shows the order of polynomials to be used (usually 10), together with the mass 

and density of the sample under investigation.  

    Following the header of the rusout.dat file is the list of modes used in the fitting 

procedure. In the list, the columns from left to right are the mode number n; the 

measured frequency fex, the fitted frequency fr, the error in fitting that mode %err, 

the weight used for fitting wt (1 or 0), the mode symmetry and order k and i, and the 

dependence of the mode on moduli to be fit (in this case, C11 and C44) df/d(moduli). 

For example, for the first mode (n = 1), the two numbers under df/d(moduli), 0.00 and 

1.00, are the sensitivities of the first fitted mode fr to the elastic moduli C11 and C44 

respectively. This provides us a useful piece of information that the first mode 

depends only on shear modulus C44. Of course, it is crucial to obtain a reliable fit in 

order to identify the mode type and its dependence on the moduli.  

    Further down in the output are fitted elastic moduli, dimensions, the number of 

iterations required for convergence, the RMS error between the fitted and measured 

frequencies, and the change in that error between present and previous iteration. It 

needs to be pointed out that C12 here is not an independent elastic modulus and it is 

related to C11 and C44 by the relation C12 = C11- 2C44, a relation that is only valid in 

elastically isotropic materials. In single crystals, C12 is an independent elastic 

modulus. The RMS error is 0.3570 %, which indicates a reliable fit. Below the 

moduli are the eigenvalues and vectors for references and debugging if the code 

crashes, and finally the all-important error matrix. The biggest entry in the first 

column is the approximate error bar for C11. The biggest entry in the second column 

is the error bar for C44 and the third, fourth and fifth column are for d1, d2 and d3. 

The shear modulus always seems to fit better and have tighter error bars, because 

most of the lower modes are shear-like.    
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    Table 3.2 lists the experimental values for the elastic moduli obtained at room 

temperature using RUS for Ca2-xSrxRuO4 polycrystals with x = 1.0, 0.5 and 0.3. Also 

listed in Table 3.2 are the calculated polycrystalline moduli for the parent compound 

Sr2RuO4 (x = 2), using the Voigt approximation (Schreiber, 1973). The latter allows 

computation of the shear and bulk modulus of a polycrystalline solid based on the 

values of elastic moduli of the single crystal, under the assumption that the stress is 

uniform everywhere within the sample.  

    The general expressions for the Voigt approximation
 
are: 

 

Bulk modulus:  
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Shear modulus: 
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The C11 and C44 values of Sr2RuO4 polycrystal are calculated from the data reported 

in reference (Paglione, 2002). With tetragonal structure, single crystal Sr2RuO4 has 

six independent elastic constants C11 (= C22), C33, C12, C13 (= C23), C44 (=C55) and C66, 

and the reported values are C11 = 2.32, C33 = 2.08, C23 = 0.71, C12 = 1.06, C44 = 0.657, 

C66 = 0.612 (unit: 10
11

 Pa ) (Paglione, 2002). We put those values into equations (3.1) 

and (3.2) and obtained B = 1.2978  10 
11

Pa, G = 0.6679  10 
11

Pa. 

    For isotropic polycrystal, the following relations hold: 

 

   GC 44                                                (3.3) 

   
3

4
11

G
BC                                             (3.4) 

 

yielding  C44 = 0.6679  10
11

Pa  and  C11 = 2.1883  10 
11

Pa. 
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    Before comparing the elastic moduli found for the various compositions, we 

need to point out that the density of the polycrystals is only about 70% of the 

theoretical density. As the elastic moduli of a solid depend on its density, a 

meaningful comparison of the experimental values requires that they are corrected to 

zero porosity. Following the model of Ledbetter and Datta (Ledbetter, 1986) for 

spherical inclusions in a matrix and Chandra Sekhar‟s treatment of a porous ceramic 

as a composite material containing spherical voids (Sekhar, 2003), the moduli for 

zero porosity Ca2-xSrxRuO4 polycrystals are estimated, and included in Table 3.2. 

Figure 3.1 illustrates how the values of the elastic constants decrease with decreasing 

Sr-content. Since Ca atoms are smaller than Sr atoms, the replacement of Sr by Ca 

atoms in Sr2RuO4 will cause both randomness in SrO layers and lattice distortion in 

RuO2 layers, and thus induce a decrease of elastic constants.  

 

 

Table 3.2 Elastic constants of Ca2-xSrxRuO4 polycrystals at room temperature. The calculated 

values are corrected for porosity, as explained in the text. 

 

   a 
Calculated by using single crystal values in reference (Paglione, 2002) 

 

 

 

  Composition      C11 ( 10
 11

 Pa) 

 experimental  corrected 

C44 ( 10 
11

 Pa) 

experimental  corrected 

Sr2RuO4   2.1883 
a
   0.6679 

a
   

CaSrRuO4    1.008  1.946 0.307 0.534 

Ca1.5Sr0.5RuO4    0.459  0.905 0.176 0.350 

Ca1.7Sr0.3RuO4    0.364  0.722 0.155 0.320 
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Figure 3.1 Elastic constants (corrected for porosity) versus composition x in Ca2-xSrxRuO4 

polycrystals. The error for C11 is less than 1.5 % and less than 0.3 % for C44.   

    

3.2 Ca2-xSrxRuO4 single crystals 

    The resonant frequencies of five Ca2-xSrxRuO4 single crystals (x = 2.0, 1.9, 0.5, 

0.3 and 0.2) were measured between 5 K and 300 K (the x = 0.2 composition was 

measured up to 350 K).  The squared resonant frequencies are directly proportional 

to the elastic moduli (Migliori, 1993)
 
(Migliori, 1997) and any irregularity in the 

elastic response is therefore reflected in the temperature dependence of the resonant 

frequencies. 

    The temperature dependence of representative squared resonant frequencies for 

the 5 single crystals is plotted in Figures 3.2 and 3.3. A significant softening is 

apparent in the behavior of all 5 crystals, but whereas this softening is rather gradual 

and spans more than 100 K in the compounds with x > 0.5, it is more abrupt in the 

samples with high Ca-content (x ≤ 0.5).  
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Figure 3.2 Relative change in representative squared resonant frequencies vs. temperature for 

Sr2RuO4 (a), and Ca0.1Sr1.9RuO4 (b) 
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Figure 3.3 Relative change in representative squared resonant frequencies vs. temperature for 

Ca1.5Sr0.5RuO4 (a), Ca1.7Sr0.3RuO4 (b), and Ca1.8Sr0.2RuO4 (c) 
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    Starting with the parent compound, Sr2RuO4, a gradual softening of about 5% is 

observed upon cooling, reaching a minimum around 40 K, as shown in Figure 3.2a. 

While it may be tempting to attribute this softening to the superconductivity in this 

material, the two are most likely unrelated, since a similar -albeit more significant- 

softening is observed in the slightly Ca-doped (and non-superconducting) 

Ca0.1Sr1.9RuO4 (Figure 3.2b). In contrast to La2CuO4, where tilting of the Cu-O 

octahedra leads to a tetragonal-to-orthorhombic phase transition, neutron diffraction 

on single crystals of Sr2RuO4
 
confirms that its K2NiF4-type structure remains 

undistorted (Braden, 1997). Thus the observed softening of resonant frequencies in 

Sr2RuO4 upon cooling cannot be attributed to a structural transition. Instead, we 

believe that the softening is due to a rotational instability of RuO6 octahedra around 

the c-axis. Even though neither tilting nor rotation of RuO6 is revealed in Sr2RuO4, 

large atomic displacement parameters (ADP) (Braden, 1997) indicate that Sr2RuO4 

is close to a rotational instability. Such instability has indeed been observed in the 

phonon dispersion relation of Sr2RuO4, using inelastic neutron scattering
 
(Braden, 

1998). The rotation of the RuO6 octahedra corresponds to a Σ3 mode, whose second 

optical branch along [110] direction is found to soften continuously in the Brillouin 

zone. This softening interacts with the first optical branch and the acoustic branch of 

Σ3, leading to a sharp drop in the acoustic branch near the zone boundary (Braden, 

1998). This steep drop in the dispersion relation of the Σ3 mode is an indication of a 

rotational instability, which we believe to be the cause of the observed softening of 

the resonant frequencies in Sr2RuO4 and Ca0.1Sr1.9RuO4 upon cooling. With 

increasing Ca-concentrations, the instability develops into a static rotation of RuO6 

that distorts the I4/mmm symmetry and results in I41/acd symmetry when the 

Sr-content decreases below x = 1.5 (Friedt, 2001).  

    Plotted in Figure 3.3a is the temperature dependence of a representative squared 

resonant frequency for Ca1.5Sr0.5RuO4 (x = 0.5). The softening in this sample is more 

pronounced, and happens in a narrower temperature region than the softening 
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observed in Sr2RuO4 and Ca0.1Sr1.9RuO4. This indicates that a different mechanism is 

most likely responsible for the sudden drop in resonant frequency, observed below 

150 K in Ca1.5Sr0.5RuO4. Ca1.5Sr0.5RuO4 is known to be at the verge of a structural 

phase transition, from the tetragonal I41/acd symmetry to orthorhombic Pbca 

symmetry. As the Ca-content increases, a tilt of RuO6 octahedra develops in addition 

to the already present rotation. This tilt around an axis parallel to the ab plane 

deepens the lattice distortion and leads to the structural phase transition in the Ca-rich 

compounds (x < 0.5). Figure 3.4 illustrates the RuO6 octahedron in different tilt and 

rotational configurations.  

    For x = 0.5, the transition is believed to have quantum-critical character 

(Nakatsuji, 2000b). A quantum-critical phase transition takes place at the absolute 

zero of temperature, where crossing the phase boundary means that the quantum 

ground state of the system changes in some fundamental way (Sondhi, 1997). As 

shown in the phase diagram (Figure 3.5), the temperature of the transition increases 

rapidly with increasing Ca-content. Figure 3.3 a-c illustrates how the gradual 

softening below 100 K, indicating the proximity of a phase-transition in 

Ca1.5Sr0.5RuO4, develops into a sharp decrease in a very narrow temperature range in 

Ca1.7Sr0.3RuO4 (x = 0.3) and Ca1.8Sr0.2RuO4 (x = 0.2). The minimum in the resonant 

frequencies corresponds to a transition temperature To of 50 K for Ca1.5Sr0.5RuO4, 

210 K for Ca1.7Sr0.3RuO4 and 260 K for Ca1.8Sr0.2RuO4 respectively. Note that To > 0 

K for Ca1.5Sr0.5RuO4, indicating that the actual Ca content in our sample is slightly 

greater than 1.5. Nevertheless, these transition temperatures agree well with the phase 

diagram of Ca2-xSrxRuO4, and illustrate how RUS measurements probe structural 

phase transitions. In addition to the softening, a significant broadening of the 

resonance peaks is observed in the vicinity of the transition, indicating considerable 

ultrasonic attenuation. 
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Figure 3.4 The RuO6 octahedron in different tilt and rotational distorted configurations: (a) 

no distortion, (b) rotation around c axis, (c) combined tilt and rotational distortion 
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Figure 3.5 Phase diagram of Ca2-xSrxRuO4 series, based on data from reference (Nakatsuji, 

2000b) 
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    The sharp softening of resonant frequencies across the structural transition is 

due to the coupling between the elastic strain and the order parameter, i.e. the tilt 

angle of the RuO6 octahedra. The Landau theory of structural phase transitions 

predicts a step-like decrease in the elastic moduli when approaching Tc from high 

temperatures, as observed in Ca1.7Sr0.3RuO4 and Ca1.8Sr0.2RuO4, when the coupling is 

linear in strain and quadratic in order parameter
 
(Rehwald, 1973). The deviation 

from true step-like behavior can be attributed to the thermal fluctuation or some 

imperfections in the crystals. A similar behavior of the resonant frequencies was also 

revealed across the tetragonal-to-orthorhombic transition in the cuprates 

La2-xSrxCuO4 (Sarrao, 1994 b) and in the pyrochlore Cd2Re2O7 (Sergienko, 2004).  

    Whereas the above results clearly illustrate the ability of RUS to qualitatively 

probe instabilities and phase transitions in a crystal lattice, a full quantitative analysis 

requires measurements on oriented single crystals. Since the resonant frequencies 

represent a “mixture” of the elastic moduli, i.e., a given frequency typically depends 

on a combination of elastic constants, it is not possible to evaluate the temperature 

dependence of individual moduli at this time. When slightly larger single crystals that 

can be oriented are available, a quantitative study of the elastic response of these 

crystals should be able to assess the individual moduli. 

 

3.3 Conclusions 

    In summary, we report the elastic constants c11 and c44 for three Ca2-xSrxRuO4 

polycrystals (x = 1.0, 0.5 and 0.3). It is found that the replacement of Sr by smaller 

Ca atoms causes a decrease of elastic constants. The temperature dependences of the 

resonant frequencies for five Ca2-xSrxRuO4 single crystals ( x = 2.0, 1.9, 0.5, 0.3 and 

0.2) all show softening, due to rotation and/or tilts of the Ru-O octahedra, and clearly 

illustrate the ability of RUS to qualitatively probe instabilities and phase transitions 

in a crystal lattice. The gradual softening of resonant frequencies over a large 
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temperature span in single crystals Sr2RuO4 (x = 2) and Ca0.1Sr1.9RuO4 (x = 1.9) is 

caused by a rotational instability in the lattice. The sharp softening of resonant 

frequencies over a very narrow temperature range for Ca1.7Sr0.3RuO4 (x = 0.3) and 

Ca1.8Sr0.2RuO4 (x = 0.2) corresponds to the tetragonal to orthorhombic structural 

phase transition, which involves both rotation and tilting of RuO6 octahedra.  
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CHAPTER 4 

4EXPERIMENTAL RESULTS OF FRUSTRATED TRANSITION 

METAL OXIDES 

    In this chapter, we will discuss the elastic properties of transition metal oxides 

with geometric frustration, studied using Resonant Ultrasound Spectroscopy. We 

have focused on three vanadium spinels AV2O4 (A = Zn, Mn and Fe) and five titanate 

pyrochlores A2Ti2O7 (A= Y, Tb, Yb, Ho and Dy). All samples in this chapter are 

single crystals, except for ZnV2O4, which is a polycrystal.  

 

4.1 Vanadium spinels AV2O4 (A = Zn, Mn and Fe) 

    Single crystals MnV2O4 and FeV2O4 were provided by Dr. H. Zhou at the 

National High Magnetic Field Laboratory. All single crystals were oriented and 

polished into a rectangular parallelepiped (RP) shape with faces perpendicular to the 

crystallographic [100] axis. Polycrystalline ZnV2O4 samples were home synthesized 

using a standard solid state reaction and its X-ray powder diffraction pattern is shown 

in Figure 4.1.   

    Table 4.1 lists the room temperature elastic constants of polycrystal ZnV2O4, 

single crystals MnV2O4 and FeV2O4, measured using RUS. For polycrystal ZnV2O4, 

only two independent elastic constants exist, C11 and C44. For single crystals MnV2O4 

and FeV2O4 with a cubic structure, three independent elastic constants exist, typically 

labeled C11, C12 and C44 in Voigt notation. Since the sound velocity in cubic crystals 

is directly related to the moduli C11 (vL= (/C11)
1/2

), C44 (vT1 = (/C44)
1/2

) and C‟ = 1/2 

* (C11-C12) (vT2 = (/C‟)
1/2

), it is often preferred to report C11, C44, and C‟, and that is 

the approach we will follow in the remainder of this work. It needs to be pointed out 

that for polycrystals, C‟= C44.  
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Figure 4.1 X-ray powder diffraction pattern of polycrystal ZnV2O4 

 

 

Table 4.1 Elastic constants of vanadium spinels measured by RUS at room temperature 

 

 

Composition Mass     

(mg) 

C11                

( 10
 11

 Pa) 

C‟                

( 10
 11

 Pa) 

C44              

( 10
 11

 Pa) 

ZnV2O4  
246.8 1.3895 0.4106 0.4106 

MnV2O4 48.8 2.1570 0.3324 0.7422 

FeV2O4 4.9 2.4991 0.1613 0.7286 
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4.1.1 Polycrystal ZnV2O4 

    ZnV2O4 is expected to be the simplest case in vanadium spinels, since there is 

no magnetic moment on Zn
2+

. As mentioned in Chapter 1, polycrystalline ZnV2O4 

was reported to undergo two successive transitions at low temperatures: a 

cubic-to-tetragonal structural phase transition at TS = 50 K followed by a transition 

into an antiferromagnetically ordered state at TN = 40 K (Ueda, 1997). However, 

single crystal ZnV2O4 indicated no sign of structural transition down to 2 K. Instead, 

it displays spin glass behavior at low temperatures without long-range magnetic order 

(Ebbinghaus, 2004).  

    RUS data for polycrystalline ZnV2O4 are shown in Figure 4.2 and Figure 4.3. 

Here we only present low-temperature data below 150 K since resonant peaks of 

ZnV2O4 above 150 K have low quality factor Q and can not be well defined due to 

background noise. Figure 4.2 shows the temperature dependence of the shear 

modulus C44 when no magnetic field is applied. With decreasing temperature, C44 

decreases continuously until it reaches a minimum around 50 K. This elastic 

softening corresponds to the cubic-to-tetragonal structural phase transition at 50 K, as 

reported by Ueda (Ueda, 1997). However, the reported antiferromagnetic ordering at 

40 K is not clear in our RUS data. Figure 4.3 shows the temperature dependence of 

C44 under different magnetic fields. No apparent field effects are observed, except 

that the minimum in C44 occurs at a slightly higher temperature under higher fields.  

In addition, we conducted magnetization measurement on this polycrystalline sample, 

and spin glass behavior is observed at low temperatures (Figure 4.4), similar to the 

reports by Ebbinghaus for single crystals (Ebbinghaus, 2004).  

    Our results show that the behavior of ZnV2O4 is far from straight-forward, even 

though it was expected to be the simplest case. At this stage, it looks like the various 

findings are very sample-dependent and it is too early to draw major conclusions on 

this compound. Further investigations on well-characterized samples are needed to 

clarify its behavior.  Neutron scattering measurements were recently carried out on 
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our polycrystalline sample of ZnV2O4 at Oak Ridge National Laboratory and 

refinements are currently under way.  
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Figure 4.2 Temperature dependence of C44 for polycrystal ZnV2O4 under no magnetic field 
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Figure 4.3 Temperature dependence of C44 for polycrystal ZnV2O4 under various magnetic 

fields 
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Figure 4.4 Magnetization versus temperature for polycrystal ZnV2O4 on the condition of field 

cooling (FC) and zero field cooling (ZFC) in the magnetic field of 10 Oe (black square) and 

1000 Oe (red diamond) 
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4.1.2 MnV2O4 single crystal 

    As mentioned in Chapter 1, the case of MnV2O4 is more complicated than 

ZnV2O4 since magnetic ions Mn
2+

 lead to an additional superexchange interaction 

between Mn
2+

 and V
3+

. MnV2O4 was reported to undergo two successive transitions 

at low temperatures: a ferrimagnetic phase transition at TN = 56 K followed by a 

cubic-to-tetragonal structural transition at TS = 53 K (Plumier, 1987) (Adachi, 2005). 

However, there still exists controversy about the two transitions in MnV2O4, as there 

are reports that the ferrimagnetic phase transition and structural transition occur 

simultaneously at 57 K (Suzuki, 2007). 

    Figure 4.5 demonstrates the temperature dependence of shear moduli C44 and C‟ 

under no magnetic field.  Although the “normal” elastic response of a material 

shows a gradual “stiffening” when cooling, the elastic response of MnV2O4 is found 

to be quite unusual, displaying a softening over a wide temperature range with 

decreasing temperature, especially C‟.  The minimum of C44 and C‟ occurs at 56 K, 

corresponding to the cubic-to-tetragonal structural phase transition around this 

temperature. The small gap in the data right after 56 K is due to poor quality of the 

resonant spectrum during this temperature range, likely caused by the structural 

transition.  At even lower temperatures, both C44 and C‟ are higher than the values at 

56 K and C‟ does not change much with changing temperatures. Since the compound 

is tetragonal after the structural transition, the values of C66 are different from those 

of C44, as shown in this figure.   

    The effect of a magnetic field on the elastic response of MnV2O4 is also 

investigated, and shown in Figures 4.6 and 4.7. At high temperatures, MnV2O4 is in 

the paramagnetic state and data under different magnetic fields overlap. However, at 

low temperatures below ~ 56 K, MnV2O4 is in the ferrimagnetic state, and data 

obtained in different magnetic fields begin to diverge. With increasing magnetic field, 

C‟ increases, while C44 decreases. In particular, the temperature dependence of C‟ 
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under different magnetic fields is particularly noteworthy. C‟ increases with 

decreasing temperature in the case of 0.1 T, and decreases with decreasing 

temperature until it flattens in the case of 0.5 T and 1 T, both of which are in contrast 

with the temperature-independent behavior when no field is applied. Our results are 

consistent with the newly found first-order transition line at low temperature under 

magnetic fields in the phase diagram of MnV2O4, ascribed to a phenomenon of 

field-induced alignment within the structure of tetragonal domains (Hardy, 2008). 

    Even though further investigation is still needed to clarify the physics behind its 

exotic behavior, our RUS data represent direct coupling between orbital and spin 

degrees of freedom in MnV2O4 and provide insight into the complex thermodynamic 

behavior of this material.  
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Figure 4.5 Temperature dependences of C44 and C‟ for MnV2O4 under no magnetic field 
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Figure 4.6 Temperature dependence of C44 for MnV2O4 under various magnetic fields 
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Figure 4.7 Temperature dependence of C‟ for MnV2O4 under various magnetic fields 
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4.1.3 FeV2O4 single crystal 

    As mentioned in Chapter 1, FeV2O4 has an additional degree of complexity 

compared to MnV2O4, as the Fe
2+

 ion has an additional degree of freedom. FeV2O4 

was reported to undergo a series of structural transitions at low temperatures, 

including  cubic-to-tetragonal transition at 140 K, tetragonal-to-orthorhombic 

transition at 110 K, and orthorhombic–to-tetragonal transition at 70 K (Katsufuji, 

2008). 

    The elastic response of FeV2O4 from 300 K to 5 K was investigated using RUS. 

Unfortunately, when the temperature reaches 140 K, the first structural transition 

temperature, all of the resonant lines disappear due to too much damping. Even though 

RUS data are only available above 140 K, a lot of useful information about this 

compound can still be deduced.  

    Figure 4.8 compares the temperature dependence of two resonant frequencies, 

Line 1 and Line 5. From the room temperature fit of FeV2O4 in the Appendix rusout 

file #3, it can be seen that Line 1 depends on shear modulus C‟ and Line 5 depends on 

shear modulus C44. It is clear that those two lines behave differently upon cooling. 

Even though both lines show elastic softening with decreasing temperature, Line 1 

decreases at a much faster pace than Line 5. Since the resonant frequencies of a given 

sample are directly proportional to the square-root of its elastic moduli, C‟ also drops 

much faster than C44 when temperature deceases, as demonstrated in Figure 4.9. 

Actually, C‟ becomes so soft that it is close to zero at 140 K. The elastic softening in 

this compound is a clear indication of strong correlation between elastic response and 

structural transition in this compound.  

    We also conducted magnetostriction measurement on FeV2O4 at low 

temperatures and a giant magnetostriction effect was observed, as shown in Figure 

4.10. Magnetostriction is a property of ferromagnetic or ferrimagnetic materials that 

causes them to change dimensions during the process of magnetization. In a cubic 

system, the magnetostrictive strain along any arbitrary measuring direction is related 

http://en.wikipedia.org/wiki/Ferromagnetic
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to the elastic constants by the following formula (Engdahl, 2000): 

          

)()
3

1
(

44

2222222

1211

1
xzxzzyzyyxyxzzyyxx

C

b

CC

b

l

l
 











                                                          (4.1) 

 

Here, 
l

l
 is the magnetostrictive strain. b1 and b2 are magneto-coupling constants. 

C11-C12 (= 2 C‟) and C44 are elastic constants, αx, αy and αz are the cosine of the angle 

between magnetization direction and axes x, y, z respectively. βx, βy and βz are the 

cosine of the angle between the measuring direction and axes x, y, z respectively. 

Therefore, the soft elastic constants in FeV2O4 at low temperatures are expected to 

lead to large magnetostriction, which is exactly what we observe in Figure 4.10. 
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Figure 4.8 Comparison of the temperature dependence of Line 1 and Line 5 in FeV2O4 

resonant spectrum 
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Figure 4.9 Comparison of the temperature dependence of C44 and C‟ in FeV2O4 (inset: 

magnified C‟ curve versus temperature) 
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Figure 4.10 Magnetostrictive strain versus magnetic field for FeV2O4 
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4.2 Titanate pyrochlores A2Ti2O7 (A= Y, Tb, Yb, Ho and Dy) 

    In this section, we will discuss the elastic response of five titanate pyrochlore 

compounds: Y2Ti2O7, Tb2Ti2O7, Yb2Ti2O7, Ho2Ti2O7 and Dy2Ti2O7. Y2Ti2O7 and two 

of the three Tb2Ti2O7 samples were obtained from Bruce Gaulin‟s group at Mcmaster 

University in Canada and all the other single crystals were provided by Haidong 

Zhou at National High Magnetic Field Laboratory. The single crystals were oriented 

and cut along the [001] direction, and then polished into mm-sized samples with RP 

shape. Since all of the compounds are single crystals with a cubic structure, they have 

three independent elastic constants. Table 4.2 lists the mass and room temperature 

elastic constants of the titanate pyrochlore compounds used in this study.  

 

Table 4.2 Room temperature elastic constants of various titanate pyrochlores 

   * Samples came from Mcmaster University. 

 

Composition Mass  

  (mg) 

C11 

 ( 10
 11

 Pa) 

C‟ 

 ( 10
 11

 Pa) 

C44 

 ( 10
 11

 Pa) 

Y2Ti2O7 
43.4 * 3.2945 1.1904 0.9718 

 

Tb2Ti2O7 

116.8 *  3.6362 1.0693 0.9781 

148.2 * 3.4971 1.0759 0.9725 

30 3.4715 1.0668 0.9662 

Yb2Ti2O7 19.8 3.1841 1.0241 0.8221 

Ho2Ti2O7 

 

67.3 3.5545 1.1623 0.9847 

69.3 3.4842 1.1617 0.9765 

Dy2Ti2O7 43.8 3.4666 1.1227 0.9738 
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4.2.1 Y2Ti2O7 

    In Y2Ti2O7, both Y
3+

 and Ti
4+

 are nonmagnetic ions. Geometric frustration of spins 

is therefore not expected to be present in Y2Ti2O7, which makes Y2Ti2O7 an ideal 

reference compound for the more complex titanates with magnetic A
3+

 ions discussed 

below. RUS measurements on Y2Ti2O7 were performed upon cooling between 300 K 

and 5 K. Figure 4.11 shows the temperature dependence of the three independent 

elastic constants of Y2Ti2O7. Our experimental data are modeled quite well with the 

Varshni model, using equation:  Cij= Cij
0
 – s / (e 

t/T
 -1) (Varshni, 1970).  Here, Cij 

and Cij
0
 respectively represent the elastic constants at T and at 0

o
 K, while s and t are 

fitting parameters listed in Table 4.3.  

    As seen in Figure 4.11, all three elastic constants increase gradually with 

decreasing temperature until they level off at very low temperatures, which is the 

“normal” behavior of solids when no thermodynamic “irregularity” occurs. The elastic 

response of this compound is consistent with what we expected. Our RUS data confirm 

that no phase transition is observed in this material between 5 K and 300 K.  The red 

lines in Figure 4.11 are Varshni model simulation of experimental data.   
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Figure 4.11 Temperature dependence of elastic constants C44 (a), C11 (b) and C‟ (c) for 

Y2Ti2O7. Here, black open circles are experimental data, and red solid lines correspond to the 

Varshni model. 
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Table 4.3 Values of parameters in Varshni model for C44, C11 and C‟ in Y2Ti2O7 

 

 

 

 

      

 

 

 

 

4.2.2 Spin liquid Tb2Ti2O7 

    As mentioned in Chapter 1, Tb2Ti2O7 is a prime example of spin liquid, which 

displays no signs of long-range magnetic ordering down to at least 70 mK (Gardner, 

1999).  

    The elastic response of three samples with the mass of 116.8 mg, 148.2 mg and 

30 mg have been measured as a function of temperature (5-300 K) and magnetic field 

(0 – 8 T) using RUS. Sample # 2 (148.2 mg) was also sent to Los Alamos National 

Laboratory (LANL) for RUS measurement down to 300 mK. Since results from three 

samples are very similar, we only present the RUS results on sample # 2 (148.2 mg).  

    Figure 4.12 shows the temperature dependence of the elastic constants C44, C11 

and C‟ (5-300 K) for Tb2Ti2O7 sample # 2 (148.2 mg) under zero magnetic field.  

The elastic constants show normal behavior at high temperatures, but all three moduli 

show a pronounced softening below 50 K, which is indicative of some kind of phase 

transition. Figure 4.13 focuses on the temperatures below 50 K, and data from LANL 

with temperatures below 5 K are also added to the plot. It is observed that the elastic 

softening continues to temperatures as low as 1.5 K. The origin of the elastic 

softening in Tb2Ti2O7 is still an open question. We believe that it might be a 

Cij Cij 
0
               

( 10
 11

 Pa) 

   s                  

( 10
 11

 Pa) 

  t              

(
o
K) 

C44  

 
1.0496 0.02 68 

C11 3.3976 0.1 200 

C‟ 1.2670 0.02 68 
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manifestation of a possible Jahn-Teller, cubic-to-tetragonal transition at extremely 

low temperature, caused by the coupling between the electronic states of a Tb
3+

 ion 

and the lattice strain. RUS results are in good agreement with high-resolution x-ray 

scattering measurements on single crystal of Tb2Ti2O7 (Ruff, 2007), which shows 

continuous broadening below ~ 20 K of allowed Bragg peaks and indicates the 

development of fluctuations above a cooperative Jahn-Teller transition at very low 

temperatures. Such Jahn-Teller transition is highly unusual in a pyrochlore. It needs 

to be pointed out that since RUS can still get a good fit with cubic structure even at 

1.5 K, it is assumed that the cubic-to-tetragonal transition occurs at extremely low 

temperatures below 1.5 K.    
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Figure 4.12 Temperature dependence of elastic constants C44, C11 and C‟ under zero magnetic 

field for Tb2Ti2O7 sample # 2 (148.2 mg) 
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Figure 4.13 Elastic constants C44 (a), C11 (b) and C‟ (c) versus temperature below 50 K under 

zero magnetic field for Tb2Ti2O7 sample # 2 (148.2 mg). Black squares are data taken at Los 

Alamos National Lab and red dots are data taken at UTK 
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    Figures 4.14 demonstrates the temperature dependence of a representative 

resonant frequency of the same Tb2Ti2O7 sample under various magnetic fields. Here 

we only present low temperature data, because at high temperatures above ~ 50 K, the 

magnetic field has no effect on the elastic response of Tb2Ti2O7 and data at different 

fields overlap. Below 50 K, curves begin to diverge. In relatively small fields like 2 

Tesla, large elastic softening is observed, similar to the 0 Tesla data. Starting from 5 

Tesla, the elastic softening is somewhat suppressed by the magnetic field. An upturn is 

observed and thus a minimum in the curves is formed. The temperature where the 

minimum occurs, increases with increasing fields.  

    Figure 4.15 demonstrates that the magnetic field has similar effects on the elastic 

constants C44, C11 and C‟ as its effect on the resonant frequencies, which is not 

surprising since the squared resonant frequencies are directly proportional to the 

elastic moduli. It needs to be pointed out that when higher fields like 5 T, 6 T and 8 T 

are applied and temperatures are below 10 K, RUS can only get a good fit with the 

tetragonal structure instead of cubic structure. This is rather surprising since no 

structural phase transition has been detected in other work. Only very recently did 

Ruff et al. perform X-ray experiments on Tb2Ti2O7 in magnetic fields and see Bragg 

peak splitting, which is a hallmark of a symmetry-lowering structural phase transition 

(Ruff, 2010). 
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Figure 4.14 Temperature dependence of Line 1 in various magnetic fields for Tb2Ti2O7 

sample #2 (148.2 mg) 
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Figure 4.15 Elastic constants C44 (a), C11 (b) and C‟ (c) versus temperature below 50 K under 

various magnetic fields for Tb2Ti2O7 sample # 2 (148.2 mg) 
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4.2.3 Spin liquid Yb2Ti2O7 

    Like Tb2Ti2O7, ytterbium titanate Yb2Ti2O7 is also found to be a spin liquid. At 

0.24 K, Yb2Ti2O7 is found to experience a transition that involves the drastic slowing 

down of the spin fluctuations. RUS measurements on Yb2Ti2O7 have been performed 

upon cooling between 300 K and 5 K. Figure 4.16 shows the temperature dependence 

of three independent elastic constants of Yb2Ti2O7 with applied magnetic fields of 0 T, 

2 T, 5 T and 9 T.  

    As can be seen, the elastic constants of Yb2Ti2O7 increase with decreasing 

temperatures, and no elastic softening is found between 300 K and 5 K, which is 

consistent with the lack of structural transitions in previous studies. The temperature 

dependence of C11 shows more scatter than the other moduli, which is due to the fact 

that fewer resonant frequencies have significant C11 dependence (see Appendix 

Rusout file # 8 ), and this modulus is therefore harder to determine. Curves under 

different magnetic fields overlap each other, indicating no magnetic field effect in 

this compound. Due to the fact that our cryogenic set-up cannot reach temperatures 

below 5 K, we are not able to assess the reported 0.24 K transition.  

 

 

 

 



 88 

0 50 100 150 200 250 300

0.82

0.83

0.84

0.85

0.86

0.87 (a)

C
4
4
 (

1
0

1
1
P

a
)

Temperature(K)

 0 T

 2 T

 5 T

 9 T

Yb
2
Ti

2
O

7
 19.8mg C

44

0 50 100 150 200 250 300
3.15

3.20

3.25

3.30

3.35

3.40

(b)

C
1
1
 (

1
0

1
1
P

a
)

Temperature (K)

 0 T

 2 T

 5 T

 9 T

Yb
2
Ti

2
O

7 
19.8mg C

11

0 50 100 150 200 250 300
1.02

1.03

1.04

1.05

1.06
(c)

C
' (

1
0

1
1
P

a
)

Temperature (K)

 0 T

 2 T

 5 T

 9 T

Yb
2
Ti

2
O

7
 19.8mg C'

 

Figure 4.16 Temperature dependence of elastic constants C44 (a), C11 (b) and C‟ (c) in various 

magnetic fields for Yb2Ti2O7 
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4.2.4 Spin ice Ho2Ti2O7 

    Ho2Ti2O7 was the first material proposed as a spin ice system and its elastic 

properties have been investigated in this section.  

    One Ho2Ti2O7 sample with the mass of 67.3 mg has been measured from room 

temperature down to 5 K using RUS under the magnetic fields of 0 T, 5 T and 9 T. 

The temperature dependences of three independent elastic constants C44, C‟ and C11 

are illustrated in the Figure 4.17. RUS data under various magnetic fields have 

overlapped each other, indicating no magnetic fields effect in this compound. In 

addition, a second Ho2Ti2O7 sample with the mass of 69.3 mg from the same single 

crystal chunk was also measured from 300 K and 5 K, and the results are demonstrated 

in Figure 4.18. Since magnetic field has no influence on the first sample, the RUS 

measurement on the second sample was only conducted under no magnetic field.  

    RUS data on both Ho2Ti2O7 samples have shown no elastic anomaly in the 

temperature dependences of longitudinal modulus C11 and shear modulus C‟. They 

increase gradually with decreasing temperature until they level off at very low 

temperatures. However, the temperature dependence of the shear modulus C44 exhibits 

some unusual concave behavior, which involves a clear change of slope and a bend 

upward at around 100 K. The deviation of C44 from normal behavior is somewhat 

puzzling. The spin ice transition occurs at ~ 0.35 K (Harris, 1997), well outside our 

experimental range, and no other transitions have been reported for Ho2Ti2O7. We 

believe that the observed anomaly is caused by the crystal electric field (CEF) effect 

existing in Ho2Ti2O7. Similar concave behavior was observed in the temperature 

dependence of C55 in uranium intermetallic compound U2Rh3Si5 and was modeled by 

CEF theory (Leisure, 2005).  The CEF effect in Ho2Ti2O7 has been investigated by 

Rosenkranz et al., who determined the crystal-field parameters and corresponding 

energy-level scheme using neutron time-of-flight spectroscopy (Rosenkranz, 2000).   

    Crystal field theory, developed in 1930s, is a model that describes the effect of the 

local environment (the crystal) on the energy levels of the atom. According to crystal 
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field theory, the interaction between a central metal atom and the surrounding ligands 

arises from the electrostatic attraction between the positively charged metal cation and 

negative charge on the non-bonding electrons of the ligands. As a ligand approaches 

the metal ion, the electrons from the ligand will be closer to some of the metal orbitals 

and farther away from other metal orbitals. The electrons in the metal orbitals and those 

in the ligands repel each other due to repulsion between like charges. Therefore, the 

orbital electrons closer to the ligands will have a higher energy than those further away, 

resulting in splitting of the metal orbital‟s energy. Energy splitting can occur in d- and 

f- orbitals. Several factors could affect the energy splitting, including the nature of the 

metal ion and its oxidation state, as well as the nature of the ligands and its 

arrangement around the metal ion. For crystals with magnetic ions, the presence of 

crystal field effect has played a role in the thermodynamic properties such as specific 

heat, magnetic susceptibility, thermal expansion and elastic constants. In particular, 

such effects have been reflected in the elastic behavior of many substances with rare 

earth ions, such as rare-earth antimonides TmSb, PrSb and SmSb (Mullen, 1974), and 

rare-earth aluminum compounds TmAl2 (Lingner, 1983) and CeAl3 (Niksch, 1980). 

For a system with strong CEF effect, the temperature dependence of the elastic 

constants depends strongly on the magneto-elastic coupling arising from the strain 

modulation of the CEF.  

 



 91 

0 50 100 150 200 250 300

0.98

1.00

1.02

1.04

1.06

1.08

1.10
(a)

C
4
4
 (

1
0

1
1
P

a
)

Temperature (K)

 0 T

 5 T

 9 T

Ho
2
Ti

2
O

7
 67.3mg C

44

 

0 50 100 150 200 250 300
3.4

3.5

3.6

3.7

3.8

3.9

4.0
(b)

C
1
1
 (
1
0

1
1
P

a
)

Temperature (K)

 0 T

 5 T

 9 T

Ho
2
Ti

2
O

7
 67.3mg C

11

0 50 100 150 200 250 300
1.12

1.14

1.16

1.18

1.20

1.22

1.24

1.26
(c)

C
' 
(1

0
1
1
 P

a
)

Temperature (K)

 0 T

 5 T

 9 T

Ho
2
Ti

2
O

7
 67.3mg C'

 

Figure 4.17 Temperature dependence of elastic constants C44 (a), C11 (b) and C‟ (c) in various 

magnetic fields for Ho2Ti2O7 sample #1 (67.3 mg) 
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Figure 4.18 Temperature dependence of elastic constants C44 (a), C11 (b) and C‟ (c) under no 

magnetic field for Ho2Ti2O7 sample #2 (69.3 mg) 
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4.2.5 Spin ice Dy2Ti2O7 

    Like Ho2Ti2O7, Dy2Ti2O7 is also a spin ice system in which the spin ice 

transition occurs at ~ 0.7 K (Ramirez, 1999).  

    The Dy2Ti2O7 sample with a mass of 43.8 mg has been measured from room 

temperature down to 5 K by using RUS. The temperature dependences of three 

independent elastic constants C44, C‟ and C11 are illustrated in Figure 4.19. The RUS 

measurement on the Dy2Ti2O7 sample is only taken under no magnetic field, since no 

magnetic field effect is observed in similar spin ice Ho2Ti2O7.   

    As can be seen in Figure 4.19, the elastic response of Dy2Ti2O7 is very similar to 

that of the previously discussed spin ice Ho2Ti2O7.  No elastic anomaly is observed in 

the temperature dependence of longitudinal modulus C11 and shear modulus C‟, both of 

which increase gradually with decreasing temperature until they level off at very low 

temperatures. However, the temperature dependence of shear modulus C44 displays 

some unusual concave behavior, which involves a clear change of slope and a bend 

upward at around 100 K. It is believed that this elastic anomaly is also attributed to the 

strong crystal field effects of Dy
3+

 in this compound. Such effect in Dy2Ti2O7 was 

investigated in previous report (Jana, 2002), where the crystal field parameters were 

determined within 2-4% accuracy and single ion anisotropy was estimated using 

crystal field theory.      
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Figure 4.19 Temperature dependence of elastic constants C44 (a), C11 (b) and C‟ (c) for 

Dy2Ti2O7 
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4.3 Future plans 

    Future plans of current research on the elastic studies of geometrically 

frustrated transition metal oxides include: (1) investigation of elastic response of 

other related vanadium spinels, such as MgV2O4 and CdV2O4; (2) measurements of 

elastic response of titanate pyrochlores Yb2Ti2O7, Ho2Ti2O7 and Dy2Ti2O7 under 

higher magnetic fields and lower temperatures by collaborating with Dr. Migliori at 

Los Alamos National Laboratory; (3) theoretical simulation of unusual elastic 

behavior of spin ices Ho2Ti2O7 and Dy2Ti2O7, using crystal field theory; (4) 

investigation of elastic response of other related titanate pyrochlores, such as 

Tm2Ti2O7, Er2Ti2O7 and Gd2Ti2O7.      
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CHAPTER 5 

5CONCLUSIONS 

    Resonant Ultrasound Spectroscopy has been utilized to investigate the elastic 

properties of two sets of transition metal oxides (TMO). One is the ruthenate 

Ca2-xSrxRuO4 series with a layered perovskite structure, a Mott transition system that 

connects the Mott insulator Ca2RuO4 with the unconventional superconductor 

Sr2RuO4. The other set contains geometrically frustrated materials, including 

vanadium spinels AV2O4 (A = Zn, Mn and Fe) and titanate pyrochlores A2Ti2O7 (A = 

Y, Tb, Yb, Ho and Dy). RUS proves to be an excellent probe in studying these 

fascinating TMOs and the following conclusions have been drawn.  

(1) Measurements on three Ca2-xSrxRuO4 polycrystals (x = 1.0, 0.5 and 0.3) show that 

the replacement of Sr by smaller Ca atoms causes a decrease of elastic constants. The 

gradual softening of resonant frequencies over a large temperature span in single 

crystals Sr2RuO4 (x = 2) and Ca0.1Sr1.9RuO4 (x = 1.9) is caused by a rotational 

instability in the lattice. The sharp softening of resonant frequencies over a very 

narrow temperature range for single crystals Ca1.7Sr0.3RuO4 (x = 0.3) and 

Ca1.8Sr0.2RuO4 (x = 0.2) corresponds to the tetragonal-to-orthorhombic structural 

phase transition.  

(2) Near the cubic-to-tetragonal structural phase transition at 50 K, elastic softening 

in ZnV2O4 is observed, while the antiferromagnetic transition at 40 K is not clear in 

our RUS data. With decreasing temperature, the elastic response of MnV2O4 displays 

a pronounced softening over a wide temperature range, due to the cubic-to-tetragonal 

structural transition around 56 K. Upon cooling, C‟ of FeV2O4 drops much faster than 

C44 and becomes so soft that it goes to almost zero around 140 K, where the 

cubic-to-tetragonal structural transition occurs.  

(3) For Y2Ti2O7, all three elastic constants demonstrate “normal” behavior of solids 

when no thermodynamic “irregularity” occurs. For spin liquid Tb2Ti2O7, all three 
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elastic constants show a pronounced softening below 50 K, indicating a possible 

Jahn-Teller, cubic-to-tetragonal transition at very low temperatures. Upon applying 

magnetic field, the elastic softening in this compound is suppressed. Another spin 

liquid Yb2Ti2O7 shows no elastic softening. The two spin-ice compounds, Ho2Ti2O7 

and Dy2Ti2O7, show an unusual concave behavior in the elastic response around 100 

K, which is believed to be caused by the strong crystal field effect in those two   

compounds.  
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Rusout files of vanadium spinels and titanate pyrochlores 

 

----------------------------------------------------------------------------------------------------------- 

Rusout file #1 

 

ZnV2O4  polycrystal  246.8mg            

free moduli are  c11, c44 

using 10 order polynomials    mass=  0.2468 gm  rho= 4.460 gm/cc 

 

  n     fex          fr        %err    wt      k    i     df/d(moduli) 

  1    0.214407    0.214883     0.22    1.00    4    1    0.00    1.00 

  2    0.287084    0.287593     0.18    1.00    6    2    0.13    0.87 

  3    0.365683    0.366605     0.25    1.00    7    2    0.17    0.83 

  4    0.390175    0.391440     0.32    1.00    6    3    0.33    0.67 

  5    0.396578    0.396376    -0.05    1.00    3    2    0.02    0.98 

  6    0.417709    0.418226     0.12    1.00    8    2    0.07    0.93 

  7    0.438039    0.437447    -0.14    1.00    5    1    0.04    0.96 

  8    0.450845    0.452652     0.40    1.00    2    2    0.07    0.93 

  9    0.471656    0.471190    -0.10    1.00    1    2    0.16    0.84 

 10    0.505273    0.506187     0.18    1.00    5    2    0.18    0.82 

 11    0.528174    0.527543    -0.12    1.00    4    2    0.01    0.99 

 12    0.532176    0.529567    -0.49    1.00    2    3    0.17    0.83 

 13    0.580520    0.578631    -0.33    1.00    5    3    0.32    0.68 

 14    0.591246    0.589859    -0.23    1.00    8    3    0.07    0.93 

 15    0.624542    0.624447    -0.02    1.00    7    3    0.04    0.96 

 16    0.629825    0.629990     0.03    1.00    1    3    0.05    0.95 

 17    0.643752    0.646326     0.40    1.00    6    4    0.08    0.92 

 18    0.664562    0.664781     0.03    1.00    8    4    0.06    0.94 

 19    0.679450    0.678815    -0.09    1.00    4    3    0.14    0.86 

 20    0.697699    0.699783     0.30    1.00    3    3    0.08    0.92 

 21    0.743482    0.742736    -0.10    1.00    2    4    0.04    0.96 

 22    0.748604    0.748066    -0.07    1.00    6    5    0.06    0.94 

 23    0.759650    0.757497   -0.28    1.00     2    5    0.06    0.94 

 24    0.771816    0.769238    -0.33    1.00    6    6    0.12    0.88 

 25    0.787664    0.787561    -0.01    1.00    4    4    0.02    0.98 

 26    0.816798    0.816089    -0.09    1.00    1    4    0.02    0.98 

 

Bulk Modulus=     0.842 

 

   c11     c22    c33    c23     c13    c12    c44     c55     c66 

 1.3895  1.3895  1.3895  0.5683  0.5683  0.5683  0.4106  0.4106  0.4106 
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   d1        d2       d3 

  0.52280  0.43920  0.24100 

 

 loop# 3  rms error=  0.2303 %, changed by 0.0000000 % 

 

 length of gradient vector=  0.000001  blamb=  0.000000 

 

    eigenvalues    eigenvectors 

      0.05554   1.00 0.03 

     63.53687  -0.03 1.00 

 

chisquare increased 2% by the following % changes in independent parameters 

  0.72  -0.07 

  0.00  0.07 

 

 

 

 

 

 

 

-----------------------------------------------------------------------------------------------------------  

Rusout file #2 

 

 

MnV2O4 Florida 48.8mg   room  temperature     

free moduli are  c11, c12, c44, cut along 100 

using 10 order polynomials    mass=  0.0488 gm  rho= 4.684 gm/cc 

 

  n     fex         fr           %err    wt     k    i       df/d(moduli) 

  1    0.629655    0.628300     -0.22    1.00    6    2    2.88   -1.97    0.09 

  2    0.648504    0.647998     -0.08    1.00    4    1    0.06   -0.04    0.98 

  3   0.696588    0.697073      0.07    1.00    7    2    2.84   -1.93    0.09 

  4    0.760450    0.760401     -0.01    1.00    5    1    3.23   -2.23    0.00 

  5    0.851686    0.850910     -0.09    1.00    1    2    2.95   -2.02    0.07 

  6    0.866573    0.863856     -0.31    1.00    5    2    3.18   -2.19    0.01 

  7    0.905593    0.903175     -0.27    1.00    6    3    2.35   -1.51    0.16 

  8   0.942021    0.943643      0.17    1.00    5    3    3.20   -2.20    0.00 

  9   0.976958    0.981275      0.44    1.00    2    2    1.86   -1.28    0.42 

 10    0.985723    0.981594    -0.42    1.00    3    2    0.70   -0.48    0.78 

 11    0.992746    0.994351     0.16    1.00    4    2    0.41   -0.28    0.87 
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 12    1.002050    0.997803    -0.42    1.00    8    2    1.40   -0.95    0.56 

 13    1.163210    1.162838    -0.03    1.00    1    3    2.68   -1.85    0.17 

 14    1.168430    1.171788     0.29    1.00    2    3    0.60   -0.37    0.77 

 15    1.208470    1.210443     0.16    1.00    7    3    2.68   -1.80    0.11 

 16    1.210580    1.212038     0.12    1.00    1    4    3.05   -2.08    0.03 

 17    1.219810    1.218533    -0.10    1.00    5    4    2.73   -1.79    0.06 

 18    1.225750    1.227870     0.17    1.00    3    3    2.13   -1.45    0.31 

 19    1.241120    1.244101     0.24    1.00    5    5    2.81   -1.86    0.05 

 20    1.251210    1.247680    -0.28    1.00    8    3    0.26   -0.15    0.90 

 21    1.264110    1.262100    -0.16    1.00    7    4    2.31   -1.59    0.28 

 22    1.325630    1.325995     0.03    1.00    6    4    1.54   -1.05    0.51 

 23    1.338120    1.342590     0.33    1.00    8    4    0.67   -0.45    0.79 

 24    1.369570    1.368539    -0.08    1.00    1    5    2.29   -1.51    0.22 

 25    1.384820    1.383518    -0.09    1.00    3    4    2.24   -1.54    0.30 

 26    1.424370    1.424711     0.02    1.00    1    6    2.10   -1.38    0.28 

 27    1.457930    1.457973     0.00    1.00    2    4    1.32   -0.91    0.59 

 28    1.463870    1.465088     0.08    1.00    7    5    1.49   -0.99    0.50 

 29    1.509910    1.510304     0.03    1.00    7    6    2.19   -1.46    0.27 

 30    1.525810    1.527578     0.12    1.00    4    3    0.94   -0.61    0.67 

 31    1.543760    1.545375     0.10    1.00    3    5    3.13   -2.16    0.03 

 

Bulk Modulus=     1.714 

 

   c11    c22    c33      c23     c13     c12     c44      c55      c66 

 2.1570  2.1570  2.1570  1.4922  1.4922    1.4922   0.7422  0.7422  0.7422 

 

   d1       d2       d3 

  0.26360  0.22510  0.17560 

 

 loop# 3  rms error=  0.2071 %, changed by -.0000001 % 

 

 length of gradient vector=  0.000001  blamb=  0.000000 

 

    eigenvalues    eigenvectors 

      0.00309   0.70 0.14 0.70 

      4.96290   0.71-0.14-0.69 

     33.49866   0.00-0.98 0.20 

 

chisquare increased 2% by the following % changes in independent parameters 

  1.35  1.99 -0.03 

  0.01 -0.01 -0.14 

  0.01 -0.02  0.01 
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----------------------------------------------------------------------------------------------------------- 

Rusout file   # 3 

 

FeV2O4    4.9 mg                     

free moduli are  c11, c12, c44, cut along 100 

free dimensions are   d1, d2, d3 

using 10 order polynomials    mass=  0.0049 gm  rho= 4.663 gm/cc 

 

  n     fex          fr         %err    wt     k    i         df/d(moduli) 

  1    0.905653    0.900753    -0.54    1.00    6    2    7.36   -6.40    0.04 

  2    1.097130    1.099929     0.26    1.00    5    1    7.75   -6.75    0.00 

  3    1.140580    1.133799    -0.59    1.00    7    2    7.30   -6.34    0.04 

  4    1.176060    1.171833    -0.36    1.00    1    2    7.32   -6.36    0.04 

  5    1.236440    1.240743     0.35    1.00    4    1    0.13   -0.11    0.98 

  6    1.280080    1.261354    -1.46    0.00    5    2    7.67   -6.67    0.00 

  7    1.299950    1.299873    -0.01    1.00    6    3    6.54   -5.63    0.09 

  8   1.411780    1.421093     0.66    1.00    5    3     7.62   -6.63    0.00 

  9    1.705290    1.707506     0.13    1.00    2    2    3.23   -2.81    0.58 

 10    1.734880    1.731621    -0.19    1.00    8    2    2.98   -2.59    0.61 

 11    1.797130    1.797582     0.03    1.00    3    2    4.35   -3.79    0.43 

 12    1.906610    1.908425     0.10    1.00    1    3    6.12   -5.33    0.20 

 13    1.952530    1.954967     0.12    1.00    7    3    5.97   -5.19    0.22 

 14    1.959550    1.960216     0.03   1.00     1    4    7.70   -6.70    0.00 

 15    1.973600    1.980603     0.35    1.00    7    4    7.68   -6.68    0.00 

 16    2.016210    2.002208    -0.69    1.00    4    2    3.23   -2.81    0.58 

 17    2.087580    2.087629     0.00    1.00    5    4    7.13   -6.17    0.04 

 18    2.109490    2.104161    -0.25    1.00    5    5    7.17   -6.21    0.04 

 19    2.186980    2.182166    -0.22    1.00    3    3    5.87   -5.10    0.23 

 20    2.193470    2.201397     0.36    1.00    3    4    7.74   -6.74    0.00 

 21    2.226470    2.236274     0.44    1.00    2    3    4.63   -4.00    0.37 

 

Bulk Modulus=     2.284 

 

 c11     c22     c33     c23    c13    c12     c44     c55    c66 

 2.4991  2.4991  2.4991  2.1766  2.1766  2.1766  0.7286  0.7286  0.7286 

 

   d1       d2        d3 

  0.12109  0.11795  0.07357 

 

 loop# 2  rms error=  0.3550 %, changed by -.0000007 % 
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 length of gradient vector=  0.000006  blamb=  0.000000 

 

    eigenvalues          eigenvectors 

      0.00027   0.71-0.12 0.66-0.21 0.01 0.05 

      0.69090   0.71 0.12-0.66 0.21-0.01-0.05 

     18.66201   0.00-0.98-0.18-0.01 0.00 0.01 

    845.93273   0.00 0.04-0.20-0.71-0.66-0.14 

   1777.93695   0.00 0.04-0.19-0.63 0.75-0.05 

   7469.50654   0.00 0.03-0.10-0.11-0.05 0.99 

 

chisquare increased 2% by the following % changes in independent parameters 

  5.47  6.29  0.02 -0.02 -0.03 -0.03 

 -0.02  0.02 -0.52  0.28  0.28  0.33 

  0.02 -0.02 -0.02 -0.24 -0.24 -0.20 

 

 

 

 

 

 

 

 

----------------------------------------------------------------------------------------------------------- 

Rusout file # 4 

 

  Y2Ti2O7  43.4mg                               

free moduli are  c11, c12, c44, cut along 100 

free dimensions are   d1, d2, d3 

using 10 order polynomials    mass=  0.0434 gm  rho= 4.831 gm/cc 

 

  n    fex            fr       %err     wt     k    i         df/d(moduli) 

  1    0.782481    0.768809    -1.75    0.00    4    1    0.01    0.00    0.99 

  2    1.073900    1.077605     0.35    1.00    6    2    0.94   -0.20    0.27 

  3    1.170840    1.164649    -0.53    1.00    7    2    0.89   -0.18    0.29 

  4    1.212680    1.217165     0.37    1.00    3    2    0.06   -0.01    0.95 

  5    1.232420    1.224033    -0.68    1.00    4    2    0.05   -0.01    0.96 

  6    1.373480    1.378115     0.34    1.00    2    2    0.14   -0.03    0.89 

  7    1.432060    1.421948    -0.71    1.00    6    3    0.77    -0.11    0.34 

  8    1.434097    1.445297     0.78    1.00    8    2    0.47   -0.10    0.63 

  9   1.455530    1.459823     0.29    1.00    5    1    1.34   -0.34     0.00 

 10    1.501870    1.512478     0.71    1.00    8    3    0.07    0.00    0.93 

 11    1.523470    1.526486    0.20    1.00    1    2    0.91   -0.20     0.29 
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 12    1.616640    1.609866    -0.42    1.00    2    3    0.68   -0.13    0.44 

 13    1.649460    1.648383    -0.07    1.00    5    2    1.30   -0.31    0.02 

 14    1.711540    1.697591    -0.81    1.00    8    4    0.27   -0.05    0.78 

 15    1.781640    1.814362     1.84    0.00    5    3    1.31   -0.31    0.00 

 16   1.898390    1.903128     0.25    1.00    4    3    0.10    0.00     0.90 

 17    1.903190    1.912897     0.51    1.00    7    3    0.70  -0.16     0.46 

 18    1.993050    2.002868     0.49    1.00    1    3    0.77   -0.15    0.38 

 19    2.025030    2.018615    -0.32    1.00    2    4    0.31   -0.07    0.76 

 20    2.032960    2.035933     0.15    1.00    6    4    0.82   -0.17    0.35 

 21    2.037340    2.038247     0.04    1.00    7    4    0.67   -0.11    0.43 

 22    2.044720    2.044211    -0.02    1.00    5    4    1.08   -0.17    0.10 

 23    2.055230    2.044580    -0.52    1.00    3    3    0.90   -0.19    0.29 

 24    2.072820    2.060478    -0.60    1.00    1    4    1.04   -0.25    0.22 

 25    2.129050    2.142680     0.64    1.00    5    5    1.14-   0.18    0.04 

 26    2.153790    2.142970    -0.50    1.00    6    5    0.44-   0.09   0.66 

 

Bulk Modulus=     1.707 

 

 c11     c22      c33    c23     c13    c12     c44    c55     c66 

 3.2945  3.2945  3.2945  0.9138  0.9138  0.9138  0.9718  0.9718  0.9718 

 

    d1      d2       d3 

  0.25460  0.21049  0.16765 

 

 loop# 7  rms error=  0.4858 %, changed by -.0000006 % 

 

 length of gradient vector=  0.000009  blamb=  0.000000 

 

    eigenvalues      eigenvectors 

      0.00619   0.61 0.77-0.18 0.00 0.00 0.01 

      0.73193   0.79-0.60 0.12 0.00 0.00-0.01 

      3.66627  -0.01-0.22-0.98-0.01-0.01 0.01 

    707.68663   0.00 0.00 0.01-0.95-0.13 0.28 

    996.22934   0.00 0.00 0.01 0.25-0.85 0.45 

   2358.80191   0.00-0.01 0.01 0.18 0.50 0.84 

 

chisquare increased 2% by the following % changes in independent parameters 

  1.12  5.25 -0.05 -0.04  0.01  0.02 

  0.13 -0.36 -0.12  0.01 -0.01 -0.04 

 -0.01  0.03 -0.25  0.02  0.03  0.02 
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----------------------------------------------------------------------------------------------------------- 

Rusout file # 5 

 

Tb2Ti2O7 _oriented single crystal    sample 1 

free moduli are  c11, c12, c44, cut along 100 

free dimensions are   d1, d2, d3 

using 10 order polynomials    mass=  0.1168 gm  rho= 6.451 gm/cc 

  

  n     fex          fr         %err    wt     k     i       df/d(moduli) 

  1    0.628334    0.620990    -1.17    0.00    4    1    0.03   -0.01    0.98 

  2    0.736198    0.730769    -0.74    1.00    4    2    0.04   -0.02    0.97 

  3    0.874317    0.874517     0.02    1.00    6    2    1.24   -0.48    0.24 

  4    0.879600    0.879654     0.01    1.00    7    2    1.23   -0.47    0.24 

  5    0.901931    0.904867     0.33    1.00    3    2    0.09   -0.03    0.94 

  6    0.906073    0.911220     0.57    1.00    2    2    0.09   -0.03    0.94 

  7    0.960030    0.964140     0.43    1.00    8    2    0.12   -0.05    0.93 

  8    1.005410    1.006637     0.12    1.00    1    2    1.32   -0.53    0.21 

  9    1.043460    1.046234     0.27    1.00    5    1    1.69   -0.69    0.00 

 10    1.086320    1.089712     0.31    1.00    6    3    0.84  -0.23    0.39 

 11    1.098030    1.096026    -0.18    1.00    5    2    1.69   -0.69    0.00 

 12    1.105410    1.104426    -0.09    1.00    8    3    0.91   -0.31    0.40 

 13    1.109310    1.108052    -0.11    1.00    7    3    0.85   -0.24    0.39 

 14    1.139500    1.144243     0.42    1.00    5    3    1.70   -0.70    0.00 

 15    1.173840    1.181225     0.63    1.00    1    3    0.77   -0.19    0.42 

 16    1.190530    1.185263    -0.44    1.00    2    3    1.04   -0.36    0.33 

 17    1.198750    1.199123     0.03    1.00    3    3    1.06   -0.37    0.31 

 18    1.229890    1.220145    -0.79    1.00    8    4    0.18   -0.07     0.89 

 19   1.297610    1.305451     0.60    1.00    4    3    0.07   -0.01     0.94 

 20   1.317300    1.318462     0.09    1.00    5    4    1.35   -0.40     0.05 

 21   1.365250    1.359142    -0.45    1.00    2    4    0.36   -0.14    0.78 

 22   1.371740    1.361782    -0.73    1.00    5    5    1.43   -0.45    0.02 

 23   1.375640    1.371110    -0.33    1.00    3    4    0.38   -0.15    0.77 

 

 

Bulk Modulus=     2.210 

  

  c11     c22    c33     c23     c13     c12    c44    c55     c66 

 3.6362  3.6362  3.6362  1.4977  1.4977  1.4977  0.9781  0.9781  0.9781 

  

   d1        d2      d3 

  0.28603  0.25330  0.24991 
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 loop#10  rms error=  0.4262 %, changed by 0.0000006 % 

  

 length of gradient vector=  0.000016  blamb=  0.000000 

  

   eigenvalues        eigenvectors 

      0.00642   0.67 0.71-0.21 0.00 0.00 0.00 

      1.30793   0.74-0.65 0.18 0.00 0.00 0.00 

      3.96391  -0.01-0.28-0.96 0.00 0.01 0.00 

    399.71479   0.00 0.00 0.01-0.11 0.84-0.52 

    511.94601   0.00 0.00 0.00 0.75-0.27-0.60 

   7687.71629   0.00 0.00 0.00-0.65-0.46-0.61 

  

chisquare increased 2% by the following % changes in independent parameters 

  0.92  2.47 -0.03 -0.02  0.01  0.01 

  0.07 -0.15 -0.10  0.01  0.00 -0.01 

 -0.01  0.02 -0.20  0.02  0.00 -0.01 

 

 

----------------------------------------------------------------------------------------------------------- 

Rusout file # 6 

 

 

Tb2Ti2O7 sample2  300K              

free moduli are  c11, c12, c44, cut along 100 

free dimensions are   d1, d2, d3 

using 10 order polynomials    mass=  0.1482 gm  rho= 6.538 gm/cc 

  

  n     fex          fr        %err      wt    k    i        df/d(moduli) 

  1    0.587236    0.579542    -1.31    0.00    4    1    0.03   -0.01    0.98 

  2    0.664427    0.662109    -0.35    1.00    4    2    0.04   -0.01    0.98 

  3    0.815857    0.818316     0.30    1.00    7    2    1.20   -0.43    0.23 

  4    0.829712    0.827348    -0.28    1.00    6    2    1.18   -0.42    0.24 

  5    0.834014    0.832356    -0.20    1.00    2    2    0.08   -0.02    0.95 

  6    0.839116    0.842477     0.40    1.00    3    2    0.08   -0.03    0.94 

  7    0.876782    0.879262     0.28    1.00    8    2    0.10   -0.03    0.93 

  8    0.915848    0.915693    -0.02    1.00    1    2    1.25   -0.47    0.21 

  9    0.974381    0.976463     0.21    1.00    5    1    1.62   -0.62    0.00 

 10    0.988237    0.989607     0.14    1.00    7    3    0.79   -0.18    0.39 

 11    1.012397    1.012683     0.03    1.00    5    2    1.62   -0.62    0.00 

 12    1.019658    1.018053    -0.16    1.00    6    3    0.81   -0.19    0.39 

 13    1.022960    1.023768     0.08    1.00    8    3    0.90   -0.28    0.38 
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 14    1.042668    1.049072     0.61    1.00    5    3    1.62   -0.62    0.00 

 15    1.064677    1.068380     0.35    1.00    1    3    0.74   -0.16    0.41 

 16    1.081834    1.080580    -0.12    1.00    3    3    0.98   -0.31    0.33 

 17    1.098691    1.101984     0.30    1.00    2    3    1.01   -0.32    0.31 

 18    1.145969    1.138822    -0.62    1.00    8    4    0.19   -0.07    0.88 

 19    1.194790    1.198378     0.30    1.00    4    3    0.07   -0.01    0.94 

 20    1.207695    1.208677     0.08    1.00    5    4    1.30   -0.34    0.04 

 21    1.240617    1.235245    -0.43    1.00    3    4    0.32   -0.12    0.80 

 22    1.246069    1.242088    -0.32    1.00    5    5    1.36   -0.38    0.02 

 23    1.257324    1.255366    -0.16    1.00    2    4    0.35   -0.13    0.78 

 24    1.272130    1.266800    -0.42    1.00    7    4    1.16   -0.40    0.24 

 25    1.278183    1.271208    -0.55    1.00    6    4    1.18   -0.41    0.23 

 26    1.290388    1.278312    -0.94    1.00    1    4    1.28   -0.46    0.17 

 27    1.351071    1.358793     0.57    1.00    6    5    0.64   -0.22    0.58 

 28    1.357824    1.365127     0.54    1.00    1    5    0.79   -0.26    0.48 

 29    1.362076    1.366387     0.32    1.00    7    5    0.61   -0.21    0.60 

  

Bulk Modulus=     2.063 

  

  c11     c22    c33     c23    c13     c12    c44     c55     c66 

 3.4971  3.4971  3.4971  1.3454  1.3454  1.3454  0.9725  0.9725  0.9725 

  

    d1      d2       d3 

  0.30314  0.27026  0.27669 

  

 loop# 6  rms error=  0.3844 %, changed by 0.0000000 % 

  

 length of gradient vector=  0.000039  blamb=  0.000000 

  

     eigenvalues      eigenvectors 

      0.00888   0.67-0.70 0.26 0.00 0.00 0.00 

      1.50840   0.75 0.63-0.22 0.00 0.00 0.00 

      4.80286  -0.01 0.34 0.94 0.00-0.01 0.00 

    340.87130   0.00 0.00-0.01 0.24-0.81-0.54 

    445.68457   0.00 0.00 0.00 0.56 0.56-0.60 

  10568.33075   0.00 0.00 0.00-0.79 0.16-0.59 

  

chisquare increased 2% by the following % changes in independent parameters 

  0.82  2.39 -0.03 -0.02  0.01  0.01 

 -0.07  0.15  0.12 -0.01  0.01  0.00 

  0.01 -0.03  0.18 -0.01  0.00  0.00 
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----------------------------------------------------------------------------------------------------------- 

Rusout file # 7 

 

 

Tb2Ti2O7 Florida 30 mg   sample 3           

free moduli are  c11, c12, c44, cut along 100 

using 10 order polynomials    mass=  0.0300 gm  rho= 6.647 gm/cc 

 

  n     fex         fr       %err      wt     k    i         df/d(moduli) 

  1   0.754567    0.750039    -0.60    1.00    4    1    0.01    0.00     0.99 

  2   1.055650    1.057194     0.15    1.00    6    2     1.19   -0.42    0.23 

  3    1.228690    1.228452    -0.02    1.00    7    2     1.08   -0.35   0.27 

  4    1.237040    1.237584     0.04    1.00    3    2    0.07   -0.02    0.95 

  5    1.321130    1.329879     0.66    1.00    6    3    0.88   -0.21    0.33 

  6    1.384700    1.394894     0.74    1.00    4    2    0.10   -0.04    0.94 

  7    1.433560    1.432029    -0.11    1.00    8    2    0.59   -0.20    0.60 

  8    1.449400    1.449937     0.04    1.00    5    1    1.61   -0.61    0.00 

  9    1.480620    1.461493    -1.29    1.00    1    2    1.10   -0.36    0.27 

 10    1.491190    1.488363    -0.19   1.00     2    2    0.63   -0.23    0.60 

 11    1.583620    1.587514     0.25    1.00    2    3    0.31   -0.06    0.76 

 12    1.624910    1.626812     0.12    1.00    5    2    1.52   -0.53    0.01 

 13    1.639500    1.639498     0.00    1.00    8    3    0.09   -0.02    0.92 

 14    1.800070    1.804905     0.27    1.00    5    3    1.48   -0.48    0.00 

 15    1.902110    1.894364    -0.41    1.00    8    4    0.32   -0.10    0.78 

 16    1.986380    1.989660     0.17    1.00    7    3    0.73   -0.27    0.54 

 17    2.011000    2.024578     0.68    1.00    1    3    1.06   -0.39    0.33 

 18    2.052590    2.040002    -0.61    1.00    4    3    0.15   -0.02    0.87 

 19    2.090470    2.090905     0.02    1.00    2    4    0.34   -0.11    0.77 

 20    2.108110    2.109252     0.05    1.00    6    4    0.66   -0.21    0.55 

 21    2.197070    2.194962    -0.10    1.00    6    5    0.51   -0.16    0.66 

 22    2.243640    2.241143    -0.11    1.00    3    3    0.80   -0.29    0.49 

 23    2.297490    2.306401     0.39    1.00    1    4    1.03   -0.35    0.32 

 24    2.302470    2.306839     0.19    1.00    6    6    0.45   -0.15    0.70 

 25    2.318370    2.309718    -0.37    1.00    5    4    1.22   -0.36    0.14 

 26    2.326530    2.316315    -0.44    1.00    7    4    1.05   -0.34    0.29 

 27    2.332480    2.341550     0.39    1.00    2    5    0.43   -0.13    0.70 

 28    2.353790    2.360082     0.27    1.00    5    5    1.25   -0.39    0.14 

 29    2.382120    2.367440    -0.62    1.00    3    4    1.14   -0.38    0.24 

 30    2.434880    2.444667     0.40    1.00    4    4    0.39   -0.14    0.75 

 

Bulk Modulus=     2.049 
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 c11      c22     c33    c23     c13   c12      c44     55    c66 

 3.4715  3.4715  3.4715  1.3379  1.3379  1.3379  0.9662  0.9662  0.9662 

 

    d1      d2       d3 

  0.20500  0.18150  0.12130 

 

 loop# 4  rms error=  0.4305 %, changed by -.0000002 % 

 

 length of gradient vector=  0.000000  blamb=  0.000000 

 

    eigenvalues   eigenvectors 

      0.00356   0.66 0.71 0.23 

      1.23034   0.75-0.63-0.20 

      5.99473  -0.01-0.30 0.95 

 

chisquare increased 2% by the following % changes in independent parameters 

  1.51  4.44 -0.05 

  0.09 -0.20 -0.13 

  0.01 -0.03  0.19 

 

 

 

 

 

 

----------------------------------------------------------------------------------------------------------- 

Rusout file # 8 

 

 

Yb2Ti2O7 19.8mg                          

free moduli are  c11, c12, c44, cut along 100 

using 10 order polynomials    mass=  0.0198 gm  rho= 6.138 gm/cc 

 

  n     fex            fr       %err    wt    k    i         df/d(moduli) 

  1    0.851266    0.848283    -0.35   1.00    4    1    0.01    0.00    0.99 

  2    1.271140    1.273151     0.16   1.00    6    2    1.12   -0.37    0.25 

  3    1.355770    1.356614     0.06   1.00    3    2    0.05   -0.01    0.96 

  4    1.448140    1.447668    -0.03   1.00    4    2    0.07   -0.02    0.95 

  5    1.469990    1.468630    -0.09   1.00    7    2    0.97   -0.28    0.32 

  6    1.489380    1.490874     0.10   1.00    6    3    0.75   -0.13    0.38 

  7    1.585960    1.586923     0.06   1.00    1    2    0.97   -0.29    0.32 
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  8    1.643340    1.642363    -0.06   1.00    8    2    0.56   -0.18    0.62 

  9    1.647120    1.646008    -0.07   1.00    2    2    0.35   -0.12    0.77 

 10    1.705050    1.703884   -0.07   1.00     5    1    1.55   -0.55    0.00 

 11    1.726710    1.730024    0.19   1.00    8    3    0.13   -0.01    0.89 

 12    1.737580    1.737801    0.01   1.00    2    3    0.43   -0.10    0.67 

 13    1.873660    1.872257   -0.07   1.00    5    2    1.47   -0.47    0.00 

 14    2.032060    2.036302    0.21   1.00    5    3    1.41   -0.42    0.00 

 15    2.098930    2.100358    0.07   1.00    8    4    0.32   -0.09    0.77 

 16    2.197250    2.200793    0.16   1.00    4    3    0.10    -0.01    0.91 

 17    2.203190    2.201219   -0.09   1.00    2    4    0.32   -0.09    0.77 

 18    2.250010    2.251060    0.05   1.00    7    3    0.78   -0.27    0.49 

 19    2.281040    2.282129    0.05   1.00    1    3    0.89   -0.31    0.41 

 20    2.367050    2.364325   -0.12   1.00    6    4    0.83   -0.25    0.42 

 21    2.411300    2.414318    0.13   1.00    6    5    0.35   -0.09    0.75 

 22    2.484640    2.487671    0.12   1.00    1    4    0.95   -0.27    0.33 

 23    2.491310    2.488861   -0.10   1.00    7    4    0.92   -0.26    0.34 

 24    2.519270    2.512520   -0.27   1.00    5    4    1.19   -0.31    0.12 

 25    2.526290    2.528626    0.09   1.00    3    3    0.93   -0.29    0.37 

 26    2.553130    2.557307    0.16   1.00    6    6    0.48   -0.16    0.68 

 27    2.567050    2.566571   -0.02   1.00    3    4    0.82   -0.25    0.44 

 28    2.590230    2.589463   -0.03   1.00    5    5    1.21   -0.32    0.11 

 29    2.677200    2.676222   -0.04   1.00    7    5    1.07   -0.31    0.24 

 30    2.688840    2.682765   -0.23   1.00    2    5    0.41   -0.11    0.70 

 

Bulk Modulus=     1.819 

 

  c11     c22    c33      c23    c13     c12    c44      c55    c66 

 3.1841  3.1841  3.1841   1.1360  1.1360  1.1360  0.8221  0.8221  0.8221 

 

    d1      d2       d3 

  0.17370  0.16450  0.11290 

 

 loop# 2  rms error=  0.1331 %, changed by -.0004116 % 

 

 length of gradient vector=  0.000000  blamb=  0.000000 

 

     eigenvalues   eigenvectors 

      0.00605   0.65 0.73 0.20 

      1.33763   0.76-0.63-0.16 

      7.97276  -0.01-0.26 0.97 

 

chisquare increased 2% by the following % changes in independent parameters 
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  0.38  1.25 -0.01 

  0.03 -0.07 -0.04 

  0.00 -0.01  0.06 

 

 

 

 

----------------------------------------------------------------------------------------------------------- 

Rusout file # 9 

 

Ho2Ti2O7 67.3mg   sample 1       

free moduli are  c11, c12, c44, cut along 100 

using 10 order polynomials    mass=  0.0673 gm  rho= 6.989 gm/cc 

 

  n     fex          fr         %err    wt     k    i        df/d(moduli) 

  1    0.670835    0.666921    -0.58    1.00    4    1    0.02   -0.01    0.99 

  2    0.933017    0.935746     0.29    1.00    6    2    1.05   -0.31    0.26 

  3    0.943972    0.953351     0.99    1.00    4    2    0.05   -0.02    0.97 

  4    0.997549    0.982881    -1.47    0.00    7    2    1.00   -0.29    0.28 

  5    1.024970    1.025313     0.03    1.00    3    2    0.07   -0.02    0.95 

  6    1.104990    1.107385     0.22    1.00    2    2    0.11   -0.03    0.92 

  7    1.195270    1.193892    -0.12    1.00    8    2    0.22   -0.07    0.85 

  8    1.212980    1.213134     0.01    1.00    5    1    1.50   -0.50    0.00 

  9    1.227430    1.228924     0.12    1.00    6    3    0.81   -0.17    0.36 

 10    1.255470    1.256567     0.09   1.00     8    3    0.48   -0.11    0.63 

 11    1.264230    1.262243    -0.16   1.00     1    2    1.07   -0.33    0.26 

 12    1.349340    1.350816     0.11    1.00    5    2    1.48   -0.49    0.01 

 13    1.369090    1.369474     0.03    1.00    2    3    0.82   -0.22    0.40 

 14    1.387460    1.384143    -0.24    1.00    8    4    0.24   -0.07    0.83 

 15    1.459310    1.463738     0.30    1.00    5    3    1.50   -0.50    0.00 

 16    1.485900    1.484556    -0.09    1.00    7    3    0.81   -0.21    0.39 

 17    1.553790    1.553218    -0.04    1.00    1    3    0.75   -0.16    0.41 

 18    1.557810    1.557432    -0.02    1.00    4    3    0.09   -0.01    0.92 

 19    1.584160    1.580026    -0.26    1.00    3    3    0.99   -0.28    0.29 

 20   1.623410    1.624430     0.06    1.00    5    4    1.18    -0.26    0.08 

 21    1.651330    1.646497    -0.29    1.00    2    4    0.35    -0.10    0.76 

 22    1.669150    1.667098    -0.12    1.00    6    4    0.99   -0.29    0.30 

 23    1.679180    1.676597    -0.15    1.00    7    4    0.77   -0.23    0.46 

 24    1.694250    1.689758    -0.27    1.00    1    4    1.22   -0.41    0.19 

 25    1.716580    1.714220    -0.14    1.00    5    5    1.28   -0.30    0.03 

 26    1.747180    1.752105     0.28    1.00    7    5    0.95   -0.26    0.31 

 27    1.750610    1.754671     0.23    1.00    6    5    0.50   -0.14    0.65 
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 28    1.777080    1.771963    -0.29    1.00    3    4    0.58   -0.19    0.61 

 29    1.797430    1.797281    -0.01    1.00    1    5    0.98   -0.26    0.28 

 30    1.876600    1.876188    -0.02    1.00    6    6    0.29   -0.07    0.78 

 

Bulk Modulus=     2.005 

 

  c11     c22    c33     c23     c13    c12     c44    c55     c66 

 3.5545  3.5545  3.5545  1.2299  1.2299  1.2299  0.9847  0.9847  0.9847 

 

   d1       d2       d3 

  0.25180  0.20990  0.18220 

 

 loop# 2  rms error=  0.2752 %, changed by -.0000307 % 

 

 length of gradient vector=  0.000001  blamb=  0.000000 

 

     eigenvalues    eigenvectors 

      0.00706   0.65 0.73 0.21 

      1.16480   0.76-0.63-0.17 

      5.27597  -0.01-0.27 0.96 

 

chisquare increased 2% by the following % changes in independent parameters 

  0.65  2.17 -0.03 

  0.06 -0.14 -0.08 

  0.01 -0.02  0.13 

 

 

----------------------------------------------------------------------------------------------------------- 

Rusout file # 10 

 

 

Ho2Ti2O7 sample 2  69.3mg 

free moduli are  c11, c12, c44, cut along 100 

using 10 order polynomials    mass=  0.0693 gm  rho= 6.978 gm/cc 

 

  n      fex         fr        %err     wt     k    i         df/d(moduli) 

  1    0.668194    0.663599    -0.69    1.00    4    1    0.02    0.00    0.99 

  2    0.926053    0.933330     0.79    1.00    4    2    0.05   -0.02    0.97 

  3    0.959970    0.951079    -0.93    1.00    6    2    1.05   -0.31    0.26 

  4    1.005230    1.004616    -0.06    1.00    3    2    0.06   -0.01    0.95 

  5    1.019090    1.017640    -0.14    1.00    7    2    0.98   -0.27    0.29 

  6    1.112020    1.111730    -0.03    1.00    2    2    0.11   -0.03    0.92 
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  7    1.161830    1.160973    -0.07    1.00    6    3    0.76   -0.13    0.37 

  8    1.164770    1.165308     0.05    1.00    8    2    0.17   -0.05    0.89 

  9    1.191910    1.191421    -0.04    1.00    1    2    1.02   -0.29    0.28 

 10    1.216280    1.219535     0.27    1.00    5    1    1.48   -0.48    0.00 

 11    1.246340    1.244626    -0.14    1.00    8    3    0.56   -0.13    0.57 

 12    1.311540    1.314370     0.22    1.00    2    3    0.76   -0.19    0.43 

 13    1.325270    1.327247     0.15    1.00    5    2    1.45   -0.45    0.01 

 14    1.414840    1.413296    -0.11    1.00    8    4    0.25   -0.07    0.82 

 15    1.420230    1.423025     0.20    1.00    5    3    1.45   -0.45    0.00 

 16    1.489200    1.490157     0.06    1.00    7    3    0.80   -0.19    0.40 

 17    1.530020    1.530594     0.04    1.00    1    3    0.77   -0.17    0.40 

 18    1.535840    1.535351    -0.03    1.00    4    3    0.08    0.00    0.92 

 19    1.576540    1.575043    -0.09    1.00    2    4    0.30   -0.09    0.78 

 20    1.583440    1.581098    -0.15    1.00    3    3    0.99   -0.26    0.28 

 21    1.610760    1.608862    -0.12    1.00    5    4    1.18   -0.25    0.07 

 22    1.640820    1.638910    -0.12    1.00    6    4    0.96   -0.26    0.31 

 23    1.660450    1.659554    -0.05    1.00    7    4    0.82   -0.24    0.42 

 24    1.667470    1.668470     0.06    1.00    1    4    1.11   -0.36    0.24 

 25    1.683080    1.682190    -0.05    1.00    5    5    1.23   -0.27    0.03 

 26    1.737040    1.739631     0.15    1.00    7    5    0.94   -0.24    0.30 

 27    1.754870    1.753423    -0.08    1.00    3    4    0.56   -0.18    0.62 

 28    1.757930    1.762464     0.26    1.00    6    5    0.50   -0.15    0.65 

 29    1.767230    1.766465    -0.04    1.00    1    5    0.95   -0.24    0.29 

 30    1.831280    1.827415    -0.21    1.00    6    6    0.28   -0.06    0.79 

 31    1.897430    1.899026     0.08    1.00    3    5    0.40   -0.08    0.68 

 32    1.907320    1.903540    -0.20    1.00    1    6    1.20   -0.36    0.16 

 33    1.914110    1.907627    -0.34    1.00    2    5    0.45   -0.11    0.66 

 34    1.937580    1.942727     0.27    1.00    6    7    0.66   -0.16    0.50 

 35   1.987220    1.992333     0.26    1.00     4    4    0.38   -0.12    0.74 

 36    1.998450    1.996694   -0.09    1.00     7    6    1.06   -0.31    0.25 

 37    2.021730    2.023700    0.10    1.00     5    6    0.93    0.02    0.05 

 38    2.028090    2.030979    0.14    1.00     8    5    0.43   -0.12    0.69 

 39    2.083620    2.093423    0.47    1.00     2    6    0.53   -0.13    0.61 

 40    2.088060    2.093531    0.26    1.00     5    7    0.82   -0.22    0.40 

 41    2.105770    2.106514    0.04    1.00    7    7    0.36   -0.09    0.73 

 42    2.128570    2.130438    0.09    1.00    3    6    0.83   -0.23    0.41 

 43    2.141960    2.139142   -0.13    1.00    8    6    0.44   -0.10    0.66 

 44    2.153790    2.147718   -0.28    1.00    4    5    0.52   -0.12    0.60 

 45    2.205410    2.209871    0.20    1.00    1    7    0.66   -0.18    0.51 

 46    2.227430    2.228703    0.06    1.00    1    8    0.37   -0.09    0.73 

 47    2.240640    2.234198    -0.29    1.00   4    6    0.38   -0.09    0.71 

 48    2.250010    2.260182     0.45    1.00   5    8    0.67   -0.16    0.48 
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 49    2.273420    2.261357    -0.53    1.00   7    8    0.70   -0.18    0.48 

 50    2.278460    2.285999     0.33    1.00   5    9    0.55   -0.14    0.60 

 

Bulk Modulus=     1.935 

 

   c11    c22    c33     c23     c13    c12     c44    c55     c66 

 3.4842  3.4842  3.4842  1.1608  1.1608  1.1608  0.9765  0.9765  0.9765 

 

      d1    d2      d3 

  0.24690  0.22040  0.18250 

 

 loop#10  rms error=  0.2779 %, changed by -.0000660 % 

 

 length of gradient vector=  0.000001  blamb=  0.000000 

 

     eigenvalues  eigenvectors 

      0.02620   0.64 0.73 0.23 

      1.39189   0.77-0.61-0.18 

      9.16988  -0.01-0.29 0.96 

 

chisquare increased 2% by the following % changes in independent parameters 

  0.45  1.61 -0.02 

  0.07 -0.18 -0.10 

  0.01 -0.02  0.13 

 

 

 

----------------------------------------------------------------------------------------------------------- 

Rusout file # 11 

 

 

Dy2Ti2O7  43.8mg    

free moduli are  c11, c12, c44, cut along 100 

using 10 order polynomials    mass=  0.0438 gm  rho= 6.889 gm/cc 

 

  n      fex         fr       %err     wt      k     i        df/d(moduli) 

  1    0.839140    0.834395    -0.57    1.00    4    1    0.02   -0.01    0.99 

  2    1.020890    1.018126    -0.27    1.00    4    2    0.04   -0.01    0.97 

  3    1.183560    1.185367     0.15    1.00    6    2    1.09   -0.35    0.25 

  4    1.208110    1.209303     0.10    1.00    7    2    1.07   -0.33    0.26 

  5    1.222570    1.223308     0.06    1.00    3    2    0.07   -0.02    0.95 

  6    1.255290    1.257103     0.14    1.00    2    2    0.08   -0.02    0.94 
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  7    1.329890    1.330927     0.08    1.00    8    2    0.10   -0.03    0.93 

  8    1.415080    1.411716    -0.24    1.00    1    2    1.16   -0.39    0.23 

  9    1.448920    1.453025    0.28    1.00    5    1    1.53   -0.53    0.00 

 10   1.464170    1.462873    -0.09    1.00    6    3    0.78   -0.16    0.38 

 11   1.509610    1.508319    -0.09    1.00    8    3    0.80   -0.21    0.42 

 12   1.543340    1.540243    -0.20    1.00    5    2    1.53   -0.53    0.00 

 13   1.564230    1.564236     0.00    1.00    7    3    0.80   -0.18    0.38 

 14   1.611840    1.615293     0.21    1.00    2    3    0.90   -0.25    0.35 

 15   1.615980    1.619601     0.22    1.00    5    3    1.54   -0.54    0.00 

 16   1.645560    1.642627    -0.18    1.00    1    3    0.71   -0.12    0.42 

 17   1.661890    1.655559    -0.38    1.00    8    4    0.16   -0.05    0.89 

 18   1.695750    1.692799    -0.17    1.00    3    3    0.97   -0.27    0.31 

 19   1.782600    1.785707     0.17    1.00    4    3    0.07    0.00    0.93 

 20   1.821790    1.816064    -0.31    1.00    5    4    1.22   -0.27    0.05 

 21   1.867350    1.861017    -0.34    1.00    2    4    0.31   -0.10    0.79 

 22   1.894310    1.890712    -0.19    1.00    5    5    1.30   -0.31    0.02 

 23   1.916580    1.907725    -0.46    1.00    6    4    1.07   -0.32    0.25 

 24   1.924670    1.924334    -0.02    1.00    3    4    0.37   -0.12    0.75 

 25   1.939080    1.925174    -0.72    1.00    7    4    1.12   -0.35    0.23 

 26   1.945860    1.937174    -0.45    1.00    1    4    1.25   -0.41    0.16 

 27   2.004450    2.012234     0.39    1.00    7    5    0.61   -0.18    0.56 

 28   2.029110    2.037176     0.40    1.00    6    5    0.56   -0.17    0.61 

 29   2.042380    2.043686     0.06    1.00    1    5    0.81   -0.24    0.42 

 30   2.151390    2.159587     0.38    1.00    1    6    1.12   -0.35    0.23 

 31   2.237820    2.243948     0.27    1.00    6    6    0.81   -0.23    0.42 

 32   2.249640    2.256561     0.31    1.00    7    6    0.92   -0.28    0.36 

 33   2.261410    2.261862     0.02    1.00    6    7    0.30   -0.08    0.78 

 34   2.272340    2.274356     0.09    1.00    3    5    0.50   -0.13    0.63 

 35   2.279600    2.284744     0.23    1.00    2    5    0.51   -0.14    0.63 

 36   2.288360    2.291697     0.15    1.00    5    6    0.87    0.07    0.05 

 37   2.345020    2.348212     0.14    1.00    7    7    0.31   -0.08    0.77 

 38   2.377020    2.380694     0.15    1.00    4    4    0.47   -0.16    0.69 

 39   2.381280    2.386653     0.23    1.00    8    5    0.44   -0.13    0.69 

 40   2.425510    2.434592     0.37    1.00    5    7    0.77   -0.22    0.45 

 41   2.437640    2.446642     0.37    1.00    2    6    0.60   -0.17    0.57 

 42   2.455050    2.453662    -0.06    1.00    3    6    0.70   -0.20    0.51 

 43   2.519870    2.519824     0.00    1.00    8    6    0.57   -0.16    0.59 

 44   2.525210    2.522847    -0.09    1.00    1    7    0.34   -0.09    0.76 

 45   2.555110    2.553766    -0.05    1.00    4    5    0.56   -0.14    0.58 

 46   2.581880    2.581697    -0.01    1.00    5    8    0.59   -0.17    0.58 

 47   2.637580    2.640253     0.10    1.00    1    8    0.66   -0.21    0.54 

 48   2.684640    2.670362    -0.53    1.00    4    6    0.44   -0.11    0.67 
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 49   2.688360    2.704614     0.60    1.00    5    9    0.71   -0.20    0.49 

 50   2.734220    2.725549    -0.32    1.00    7    8    0.74   -0.22    0.48 

 

Bulk Modulus=     1.970 

 

 c11      c22     c33    c23     c13    c12     c44    c55     c66 

 3.4666  3.4666  3.4666  1.2213  1.2213  1.2213  0.9738  0.9738  0.9738 

 

    d1      d2       d3 

  0.20480  0.18080  0.17170 

 

 loop# 3  rms error=  0.2833 %, changed by -.0000013 % 

 

 length of gradient vector=  0.000000  blamb=  0.000000 

 

    eigenvalues   eigenvectors 

      0.03278   0.65 0.72 0.24 

      1.56329   0.76-0.62-0.19 

      9.36544  -0.01-0.30 0.95 

 

chisquare increased 2% by the following % changes in independent parameters 

  0.42  1.37 -0.02 

  0.07 -0.16 -0.10 

  0.01 -0.02  0.13 
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