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Abstract

I give explicit estimates of the Lp-norm of a mean zero infinitely divisible random

vector taking values in a Hilbert space in terms of a certain mixture of the L2- and

Lp-norms of the Levy measure. Using decoupling inequalities, the stochastic integral

driven by an infinitely divisible random measure is defined. As a first application

utilizing the Lp-norm estimates, computation of Ito Isomorphisms for different types

of stochastic integrals are given. As a second application, I consider the discrete

time signal-observation model in the presence of an alpha-stable noise environment.

Formulation is given to compute the optimal linear estimate of the system state.
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Chapter 1

Infinitely Divisible Distributions

1.1 Introduction

When producing models of an evolving dynamical system, one is often faced with the

challenge of which effects to include in the model and which effects may reasonably be

ignored to accurately determine the state of the system. An alternate approach is to

capture these unmodeled effects as random variables or stochastic processes, which are

often assumed to be Gaussian in the classical literature. Many researchers have sought

extensions to such models by replacing the Gaussian assumption, as there is a need

for models capturing observed heavy tailed data exhibiting high variability and/or

long range dependency. Infinitely divisible distributions have often been utilized for

such modeling. The advantage of infinitely divisible models is their computability

in terms of the Lévy-Khintchine triplet parameterization. Difficulties arise, however,

when such distributions have infinite variance, since L2-theory and orthogonality are

not applicable. Instead, we seek computation of the Lp-norm in terms of the Lévy

measure.

Infinitely divisible distributions are a broad family of distributions containing

many named distributions. For example, the geometric, negative binomial, and

Poisson distribution are all discrete distributions in this family. So too are the

continuous normal, Cauchy, gamma, F, lognormal, Pareto, Student’s t, Weibull, α-

stable, and tempered α-stable distributions. The following theorem characterizes

infinitely divisible random vectors and will be the primary tool used for investigation

1



throughout. For x ∈ H, a real Hilbert space, define

JxK def
=

x

max{‖x‖ , 1}
.

Whenever H = R, we have

JxK =

x if |x| ≤ 1

sign(x) if |x| > 1.

Theorem 1.1.1 (Lévy-Khintchine representation). The characteristic function of an

infinitely divisible random vector X taking values in a Hilbert space H can be written

as

Eei〈u,X〉 = exp

{
i〈u, b〉 − 1

2
〈u,Σu〉+

∫
H

(
ei〈u,x〉 − 1− i〈u, JxK〉

)
Q(dx)

}
, (1.1)

where u, b ∈ H, Σ is a nonnegative symmetric operator on H, and Q is a measure on

H such that Q({0}) = 0 and
∫
H
‖JxK‖2Q(dx) < ∞. Moreover, the triplet (b,Σ, Q)

completely determines the distribution of X and this triplet is unique.

We call (b,Σ, Q) the Lévy-Khintchine triplet of X. When Q ≡ 0, X is Gaussian

with mean b and covariance matrix Σ and results are well-known. It is the non-

Gaussian case Σ ≡ 0 that is of interest to us in the following work. When

studying infinitely divisible distributions and their associated random vectors, the

characteristic function will be our primary tool. If we define the exponent of (1.1) by

C(u)
def
= i〈u, b〉 − 1

2
〈u,Σu〉+

∫
H

(
ei〈u,x〉 − 1− i〈u, JxK〉

)
Q(dx),

then C is called the cumulant of X and we have Eei〈u,X〉 = eC(u). Moreover, if

X is infinitely divisible with Lévy-Khintchine triplet
(
bX ,ΣX , QX

)
and cumulant

CX(u), Y is infinitely divisible with Lévy-Khintchine triplet
(
bY ,ΣY , QY

)
and

cumulant CY (u), and X and Y are independent, then X + Y is also infinitely

divisible with cumulant CX(u) + CY (u), and hence, has Lévy-Khintchine triplet(
bX + bY ,ΣX + ΣY , QX +QY

)
. As an immediate corollary of the Lévy-Khintchine

representation, we have that the family of infinitely divisible random vectors are closed

under continuous linear transformations and, in particular, projections of infinitely

divisible random vectors are infinitely divisible. More precisely:

2



Corollary 1.1.2. Let X ∈ H be an infinitely divisible random vector with Lévy-

Khintchine triplet (b,Σ, Q). If F : H → H1 is a continuous linear operator from the

Hilbert space H into the Hilbert space H1, then FX ∈ H1 is also an infinitely divisible

random vector with Lévy-Khintchine triplet (bF ,ΣF , QF ), where

bF
def
= Fb+

∫
H

(JFxK− F JxK)Q(dx), ΣF = FΣF ∗,

and for every B ∈ B(H1),

QF (B)
def
= Q {x ∈ H : Fx ∈ B \ {0}} .

Before proving the corollary, we make a few remarks. First, if Q is a symmetric

Lévy measure on H, then QF is a symmetric Lévy measure on H1. Second, the

integrand in the definition bF is an odd function. Therefore, if b = 0 and Q is

symmetric, then bF = 0 also. We point out these facts since the majority of the

examples we consider will make one (or both) of these assumptions.

Proof of Corollary 1.1.2. Let F : H → H1 be a continuous linear operator and let

u ∈ H1. Then

Eei〈u,FX〉 = Eei〈F ∗u,X〉

= exp

{
i〈F ∗u, b〉 − 1

2
〈F ∗u,ΣF ∗u〉+

∫
H

(
ei〈F

∗u,x〉 − 1− i〈F ∗u, JxK〉
)
Q(dx)

}
= exp

{
i〈u, Fb〉 − 1

2
〈u, FΣF ∗u〉+

∫
H

(
ei〈u,Fx〉 − 1− i〈u, F JxK〉

)
Q(dx)

}
= exp

{
i〈u, Fb〉+

∫
H

(i〈u, JFxK〉 − i〈u, F JxK〉)Q(dx)− 1

2
〈u, FΣF ∗u〉

+

∫
H

(
ei〈u,Fx〉 − 1− i〈u, JFxK〉

)
Q(dx)

}
= exp

{
i

〈
u, Fb+

∫
H

(JFxK− F JxK)Q(dx)

〉
− 1

2
〈u, FΣF ∗u〉

+

∫
H1

(
ei〈u,x〉 − 1− i〈u, JxK〉

)
QF (dx)

}
= exp

{
i〈u, bF 〉 −

1

2
〈u,ΣFu〉+

∫
H1

(
ei〈u,x〉 − 1− i〈u, JxK〉

)
QF (dx)

}
.

3



In practice, the normal distribution is justified in its use by the central limit

theorem and a popular distribution in modeling because of the ease of computations

when L2-orthogonality is applicable. Under the assumption of non-Gaussian

distributions, it is often not known how the ”error” should be measured. The next

section addresses this question for infinitely divisible distributions. In Chapter 2, we

will apply this result to obtain the Kalman filter for a discrete time signal-observation

model with infinite covariance noise. In Chapter 3, we will define the stochastic

integral of a stochastic field driven by an infinitely divisible random measure. Itô

Isomorphisms will be derived for the stochastic integral.

1.2 Lp-norm of Hilbert space valued infinitely di-

visible random vectors

Let X be a mean 0 random vector taking values in a separable Hilbert space H with

characteristic function given by (1.1). When X is purely Gaussian (Q ≡ 0), the

Lp-norm of X is controlled by the covariance matrix Σ. In the non-Gaussian case,

Marcus and Rosiński (2001) showed that for X ∈ L1, the L1-norm of X is controlled

by the Lévy measure Q as

(0.25)l(Q) ≤ E ‖X‖ ≤ (2.125)l(Q),

where the functional l of Q satisfies

∫
H

min

{
‖x‖2

l2
,
‖x‖
l

}
Q(dx) = 1.

The following theorem generalizes this result to obtain bounds on the Lp-norm of

X. Assume that X is in Lp for given p ≥ 1, EX = 0, and that X does not have a

Gaussian component. The characteristic function of X can be written as

E exp (i〈u,X〉) = exp

(∫
H

(
ei〈u,x〉 − 1− i〈u, x〉

)
Q(dx)

)
.

We assume throughout that Q is symmetric and later remark on removing this

restriction by standard symmetrization techniques. Since Q is assumed symmetric,

4



the characteristic function of X is

E exp (i〈u,X〉) = exp

(∫
H

(cos〈u, x〉 − 1)Q(dx)

)
.

It is well known that an infinitely divisible random vector X with Lévy measure Q has

finite Lp-norm if and only if
∫
‖x‖≥1

‖x‖pQ(dx) is finite (see e.g. Sato (2002, Corollary

25.8)). Therefore the Lévy measure Q satisfies∫
H

(
‖x‖2

1{‖x‖<1} + ‖x‖p 1{‖x‖≥1}
)
Q(dx) <∞.

Let the functional l of Q be given by the solution of

ξ(l)
def
=

∫
H

(
‖x‖2

l2
1{ ‖x‖l <1} +

‖x‖p

lp
1{ ‖x‖l ≥1}

)
Q(dx) = 1. (1.2)

We remark that

‖x‖2
1{‖x‖<1} + ‖x‖p 1{‖x‖≥l} =

‖x‖
2 ∧ ‖x‖p if 1 ≤ p ≤ 2,

‖x‖2 ∨ ‖x‖p if p > 2.

We can view l as a special mixture of the L2-norm and Lp-norm of Q. In the case of

non-Gaussian infinitely divisible random vectors, the following theorem gives explicit

estimates of the Lp-norm in terms of the Lévy measure Q.

Theorem 1.2.1. Let p ≥ 1. Assume that X ∈ Lp is a mean 0 infinitely divisible

random vector without Gaussian component, taking values in the Hilbert space H, and

that X has symmetric Lévy measure Q. Then

0.25l ≤ ‖X‖p ≤ K(p)l (1.3)

where

K(p)
def
=



1 + p
√

23−p + 1, if 1 ≤ p ≤ 2

4
√

4 + p

√
1 + p(p−1)

4
, if 2 < p ≤ 3

4
√

4 +K
1/p
3,p (K4,p + 1)1/p , if 3 < p < 4

2 4
√

4, if p = 4

K1,p (K2,p + 1) +K
1/p
3,p (K4,p + 1)1/p , if p > 4,

(1.4)

5



where K1,p
def
= (p + 1)

p+1
p 21/p, K2,p = 41+1/p, K3,p = 2p·4

(22/(p+1)−1)
p+1 , K4,p =

22(p+1)4p/2(x0 + 5)p/2, and x0 ≈ 4.7591 solves x0 = e log(x0 + 1).

We remark on important cases for the constant K(p). First, it is the 1 ≤ p < 2

case that is of most interest to us, as Lp-theory must be used when working with

models containing infinite covariance noise or random driving terms. It is often

challenging, if not impossible, to compute such norms directly. Second,we have very

nice constants for estimation of the mean, variance, skewness, and kurtosis. Constant

K(p) is graphed in Figure 1.1.

In preparation of the proof of Theorem 1.2.1, we follow the lead of Marcus and

Rosiński (2001) and decompose X as X = Y + Z, where Y and Z are independent

mean zero random vectors with characteristic functions

E exp (i〈u, Y 〉) = exp

(∫
‖x‖<l

(cos〈u, x〉 − 1)Q(dx)

)

and

E exp (i〈u, Z〉) = exp

(∫
‖x‖≥l

(cos〈u, x〉 − 1)Q(dx)

)
,

respectively. The following four lemmas provide upper and lower bounds for norms

of Y and Z and will be used in the proof of Theorem 1.2.1.

Lemma 1.2.2. We have the following upper bounds on norms of Y :

i. If 1 ≤ p ≤ 2, then

‖Y ‖p ≤ ‖Y ‖2 =

(∫
‖x‖<l

‖x‖2Q(dx)

)1/2

. (1.5)

ii. If 2 < p ≤ 4, then

‖Y ‖p ≤ ‖Y ‖4 =

(∫
‖x‖<l

‖x‖4Q(dx) + 3

(∫
‖x‖<l

‖x‖2Q(dx)

)2
)1/4

. (1.6)

iii. If p > 4, then

‖Y ‖p ≤ K1,p (K2,p‖Y ‖2 + l) , (1.7)

6
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Figure 1.1: Explicit constant in Lp-norm estimate.

where K1,p and K2,p are given in Theorem 1.2.1.

Proof. (1.5) and (1.6) were proved by Marcus and Rosiński (2001, Lemma 1.1). Now

let p > 4. Let {Yt}t≥0 be a Lévy process such that Y1
d
= Y . Since the Lévy measure

of Y , and hence Yt, is supported on {‖x‖ < l}, the sample path t→ Yt(ω) a.s. has no

jumps of magnitude larger than l on t ∈ [0, 1]. So there exists Ω0 ⊂ Ω with P(Ω0) = 1

such that ‖Yt(ω)− Yt−(ω)‖ ≤ l for every ω ∈ Ω0 and for every t ∈ [0, 1]. For each

n ∈ N, we may write Y as the sum of n i.i.d. random vectors by

Y
d
=
(
Y1 − Yn−1

n

)
+
(
Yn−1

n
− Yn−2

n

)
+ · · ·+

(
Y 1
n
− Y0

)
def
=

n∑
k=1

∆ k
n
Y,

where

∆ k
n
Y

def
= Y k

n
− Y k−1

n
.

Fix ε > 0 and ω ∈ Ω0. Since

{t ∈ [0, 1] : |Xt(ω)−Xt−(ω)| ≥ l + ε} = ∅,

7



standard analysis results give that there exists N = N(ω) so large that for each

n ≥ N(ω), ∥∥∥∆ k
n
Y (ω)

∥∥∥ < l + ε

for every 1 ≤ k ≤ n. For each n ∈ N, define a new i.i.d. sequence of bounded random

vectors {Yk,n}nk=1 by

Yk,n
def
= ∆ k

n
Y 1{∥∥∥∥∆ k

n
Y

∥∥∥∥<l+ε}.
For each ω ∈ Ω0,

Yk,n(ω) = ∆ k
n
Y (ω)

for every n ≥ N(ω). We now have that

Sn
def
=

n∑
k=1

Yk,n → Y a.s.,

since P(Ω0) = 1. Observe that for fixed n, {Yk,n}nk=1 is sequence of symmetric (since

Q is assumed symmetric) i.i.d. random vectors bounded by l+ ε. By de la Peña and

Giné (1999, Theorem 1.2.5, a Hoffman-Jorgensen type inequality), for every n ∈ N,

‖Sn‖p ≤ K1,p

(
K2,p ‖Sn‖2 +

∥∥∥∥max
1≤k≤n

‖Yk,n‖
∥∥∥∥
p

)
.

But

‖Sn‖2
2 = E

(
n∑
k=1

Y 2
k,n

)
≤ E

(
n∑
k=1

(
∆ k

n
Y
)2
)

= E
(
Y 2
)

and

‖Yk,n‖ < l + ε

for every 1 ≤ k ≤ n. Hence, for every n ∈ N,

‖Sn‖p < K1,p (K2,p‖Y ‖2 + l + ε) .

By Fatou’s lemma and the arbitrariness of ε,

‖Y ‖p ≤ K1,p (K2,p‖Y ‖2 + l) .

8



Lemma 1.2.3. We have the following lower bounds on norms of Y :

i. If 1 ≤ p ≤ 2, then

E ‖Y ‖p ≥ E ‖Y ‖2(
l2 + 3E ‖Y ‖2) 2−p

2

. (1.8)

ii. If p > 2, then

‖Y ‖p ≥ ‖Y ‖2 =

(∫
‖x‖<l

‖x‖2Q(dx)

)1/2

. (1.9)

Proof. Let 1 ≤ p ≤ 2. To show (1.8), Holder’s inequality gives

E ‖Y ‖2 = E ‖Y ‖
2p
4−p ‖Y ‖

8−4p
4−p

≤
(
E ‖Y ‖

2p
4−p

4−p
2

) 2
4−p
(
E ‖Y ‖

8−4p
4−p

4−p
2−p

) 2−p
4−p

= (E ‖Y ‖p)
2

4−p
(
E ‖Y ‖4) 2−p

4−p

and hence,

E ‖Y ‖p ≥
(
E ‖Y ‖2) 4−p

2(
E ‖Y ‖4) 2−p

2

.

Applying (1.6) to the denominator gives

E ‖Y ‖p ≥
(
E ‖Y ‖2) 4−p

2(
l2E ‖Y ‖2 + 3

(
E ‖Y ‖2)2

) 2−p
2

=
E ‖Y ‖2(

l2 + 3E ‖Y ‖2) 2−p
2

,

proving (1.8). This technique is known as Littlewood’s approach. (1.9) is immediate

by (1.5).

Lemma 1.2.4. We have the following upper bounds on norms of Z:

i. If 1 ≤ p ≤ 2, then

E ‖Z‖p ≤ cp

∫
‖x‖≥l

‖x‖pQ(dx), (1.10)

where cp = 23−p + 1. If H = R, the constant may be taken as cp given by (A.12)

or (A.20) instead.

9



ii. If 2 < p ≤ 3, then

E ‖Z‖p ≤
∫
‖x‖≥l

‖x‖pQ(dx) +
p(p− 1)

4

∫
‖x‖≥l

‖x‖p−2Q(dx)

∫
‖x‖≥l

‖x‖2Q(dx).

(1.11)

iii. Let λ > p/x0. If 3 < p < 4 or if p > 4, then

E ‖Z‖p ≤ K3,p

(
K4,p

(∫
‖x‖≥l

‖x‖2Q(dx)

)p/2
+

∫
‖x‖≥l

‖x‖pQ(dx)

)
, (1.12)

where K3,p and K4,p are given in Theorem 1.2.1.

iv. Let λ ≤ p/x0. If 3 < p < 4 or if p > 4, then

E ‖Z‖p ≤ max

1 +
8p

log

(
p
p
x0
∧1

) , 6p

log x0


p ∫
‖x‖≥l

‖x‖pQ(dx). (1.13)

v. If p = 4, then

E ‖Z‖p =

∫
‖x‖≥l

‖x‖4Q(dx) + 3

(∫
‖x‖≥l

‖x‖2Q(dx)

)2

. (1.14)

Proof. First, (1.14) follows exactly as in (1.6) by standard computation from the

characteristic function. Next let λ
def
= Q(‖x‖ ≥ l) and {Wi}i∈N a collection of i.i.d.

random vectors in H such that P(Wi ∈ A) = λ−1Q(A ∩ {‖x‖ ≥ l}). Let N be a

Poisson random variable with mean λ independent of {Wi}i∈N. Now Z is a compound

Poisson random vector and we have

Z
d
=

N∑
i=1

Wi. (1.15)

Then

E ‖Z‖p = E

∥∥∥∥∥
N∑
i=1

Wi

∥∥∥∥∥
p

=
∞∑
k=1

E

∥∥∥∥∥
k∑
i=1

Wi

∥∥∥∥∥
p

P(N = k). (1.16)
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First let 1 ≤ p ≤ 2. By Corollary A.6 if H = R or Theorem A.2 in general, for each

k ∈ N, E

∥∥∥∥∥
k∑
i=1

Wi

∥∥∥∥∥
p

is bounded above by cp

k∑
i=1

E ‖Wi‖p = cpkE ‖W1‖p. Utilizing this

in (1.16) gives

E ‖Z‖p ≤ cpE ‖W1‖p
∞∑
k=1

kP(N = k) = cpE ‖W1‖p EN = cpE ‖W1‖p λ,

since N is a Poisson random variable with mean λ. But

E ‖W1‖p =

∫
‖x‖≥l

‖x‖p λ−1Q(dx)

and hence,

E ‖Z‖p ≤ cp

∫
‖x‖≥l

‖x‖pQ(dx),

proving (1.10).

Next, let 2 < p ≤ 3. By Theorem A.1,

E

∥∥∥∥∥
k∑
i=1

Wi

∥∥∥∥∥
p

≤ kE ‖X1‖p +
p(p− 1)

2
E ‖X1‖p−2

k∑
i=1

E ‖Si−1‖2

= kE ‖X1‖p +
p(p− 1)

2
E ‖X1‖p−2

k∑
i=1

i−1∑
j=1

E ‖Xj‖2

= kE ‖X1‖p +
p(p− 1)

2

k2 − k
2

E ‖X1‖p−2 E ‖X1‖2 .

Again recalling that N is Poisson, substituting into (1.16) gives

E ‖Z‖p ≤
∞∑
k=1

(
kE ‖X1‖p +

p(p− 1)

2

k2 − k
2

E ‖X1‖p−2 E ‖X1‖2

)
P(N = k)

= E (N)E ‖X1‖p +
p(p− 1)

4
E
(
N2 −N

)
E ‖X1‖p−2 E ‖X1‖2

= λ

∫
‖x‖≥l

‖x‖p λ−1Q(dx)

+
p(p− 1)

4
λ2

∫
‖x‖≥l

‖x‖p−2 λ−1Q(dx)

∫
‖x‖≥l

‖x‖2 λ−1Q(dx)

=

∫
‖x‖≥l

‖x‖pQ(dx) +
p(p− 1)

4

∫
‖x‖≥l

‖x‖p−2Q(dx)

∫
‖x‖≥l

‖x‖2Q(dx).
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Finally, let p > 3. If λ > p/x0, we have by de la Peña and Giné (1999, Theorem

1.2.5, a Hoffman-Jorgensen type inequality)

E

∥∥∥∥∥
k∑
i=1

Wi

∥∥∥∥∥
p

≤

41/(p+1)2p/(p+1)4p/(2(p+1))22/(p+1)

22/(p+1) − 1

∥∥∥∥∥
k∑
i=1

Wi

∥∥∥∥∥
p/(p+1)

2

+
22/(p+1)

22/(p+1) − 1

(
k∑
i=1

E ‖Wi‖p
)1/(p+1)

p+1

.

By convexity, (a+ b)p+1 ≤ 2p (ap+1 + bp+1) for every a, b ≥ 0. Therefore

E

∥∥∥∥∥
k∑
i=1

Wi

∥∥∥∥∥
p

≤ 2p
4

(22/(p+1) − 1)
p+1

(
22(p+1)

∥∥∥∥∥
k∑
i=1

Wi

∥∥∥∥∥
p

2

+
k∑
i=1

E ‖Wi‖p
)

= K3,p

(
22(p+1)kp/2

(
E ‖W1‖2)p/2 + kE ‖W1‖p

)
.

Substituting into (1.16) gives

E ‖Z‖p ≤
∞∑
k=1

K3,p

(
22(p+1)kp/2

(
E ‖W1‖2)p/2 + kE ‖W1‖p

)
P(N = k)

= K3,p

(
22(p+1)ENp/2

(∫
‖x‖≥l

‖x‖2 λ−1Q(dx)

)p/2
+ EN

∫
‖x‖≥l

‖x‖p λ−1Q(dx)

)

= K3,p

(
22(p+1)

(∫
‖x‖≥l

‖x‖2Q(dx)

)p/2
λ−p/2ENp/2 +

∫
‖x‖≥l

‖x‖pQ(dx)

)
.

To bound λ−p/2ENp/2, Kwapień and Woyczyński (2009, Proposition 1.7.2) showed

that in the case λ > p/x0,

‖N‖p/2 ≤ ‖N‖p ≤ 4(p+ 5λ).

Hence,

λ−p/2ENp/2 ≤ 4p/2
(p
λ

+ 5
)p/2
≤ 4p/2(x0 + 5)p/2
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and we have

E ‖Z‖p ≤ K3,p

(
22(p+1)

(∫
‖x‖≥l

‖x‖2Q(dx)

)p/2
4p/2(x0 + 5)p/2 +

∫
‖x‖≥l

‖x‖pQ(dx)

)

= K3,p

(
K4,p

(∫
‖x‖≥l

‖x‖2Q(dx)

)p/2
+

∫
‖x‖≥l

‖x‖pQ(dx)

)
.

Now suppose that λ ≤ p/x0. For each ω ∈ Ω, Holder’s inequality gives

∥∥∥∥∥
k∑
i=1

Wi(ω)

∥∥∥∥∥ ≤
k∑
i=1

‖Wi(ω)‖ ≤ k1−1/p

(
k∑
i=1

‖Wi(ω)‖p
)1/p

and hence,

E

∥∥∥∥∥
k∑
i=1

Wi

∥∥∥∥∥
p

≤ kp−1

k∑
i=1

E ‖Wi‖p = kpE ‖W1‖p .

Substituting into (1.16) gives

E ‖Z‖p ≤ E ‖W1‖p
∞∑
k=1

kpP(N = k) =

∫
‖x‖≥l

‖x‖p λ−1Q(dx)ENp. (1.17)

To bound λ−1ENp, Kwapień and Woyczyński (2009, Proposition 1.7.2) also showed

that in the case λ ≤ p/x0,

λ−1ENp ≤ max

1 +
8p

log

(
p
p
x0
∧1

) , 6p

log x0


p

Combining with (1.17) gives

E ‖Z‖p ≤ max

1 +
8p

log

(
p
p
x0
∧1

) , 6p

log x0


p ∫
‖x‖≥l

‖x‖pQ(dx).
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Lemma 1.2.5. If p ≥ 1, we have the following lower bound on norms of Z:

E ‖Z‖p ≥ 1− e−λ

λ

∫
‖x‖≥l

‖x‖pQ(dx). (1.18)

Proof. Let p ≥ 1. Since we have assumed that Q is symmetric, Lemma A.7 gives

E

∥∥∥∥∥
k∑
i=1

Wi

∥∥∥∥∥
p

≥ E ‖W1‖p .

Substituting into (1.16) gives

E ‖Z‖p ≥
∞∑
k=1

E ‖W1‖p P(N = k) =
1− e−λ

λ

∫
‖x‖≥l

‖x‖pQ(dx).

We are now ready to prove the upper bound of Theorem 1.2.1 using Lemma 1.2.2

and Lemma 1.2.4.

Proof of upper bound of Theorem 1.2.1. First assume that 1 ≤ p ≤ 2. From (1.5)

and (1.10), we have

‖X‖p ≤ ‖Y ‖2 + ‖Z‖p

≤
(∫
‖x‖<l

‖x‖2Q(dx)

)1/2

+ p
√
cp

(∫
‖x‖≥l

‖x‖pQ(dx)

)1/p

= l

(∫
‖x‖<l

∥∥∥x
l

∥∥∥2

Q(dx)

)1/2

+ l p
√
cp

(∫
‖x‖≥l

∥∥∥x
l

∥∥∥pQ(dx)

)1/p

.

(1.19)

By definition (1.2) of l,∫
‖x‖≥l

∥∥∥x
l

∥∥∥pQ(dx) = 1−
∫
‖x‖<l

∥∥∥x
l

∥∥∥2

Q(dx).

Substituting into (1.19) gives

‖X‖p ≤

{(∫
‖x‖<l

∥∥∥x
l

∥∥∥2

Q(dx)

)1/2

+ p
√
cp

(
1−

∫
‖x‖<l

∥∥∥x
l

∥∥∥2

Q(dx)

)1/p
}
l.
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Clearly, by definition (1.2) of l we have

0 ≤
∫
‖x‖<l

∥∥∥x
l

∥∥∥2

Q(dx) ≤ 1

and hence,

‖X‖p ≤ max
0≤a≤1

(√
a+ p
√
cp

p
√

1− a
)
l ≤

(
1 + p
√
cp
)
l.

Next, let 2 < p ≤ 3. Combining (1.6) and (1.11) gives

‖X‖p ≤ ‖Y ‖p + ‖Z‖p

≤

(∫
‖x‖<l

l2 ‖x‖2Q(dx) + 3

(∫
‖x‖<l

‖x‖2Q(dx)

)2
)1/4

+

(∫
‖x‖≥l

‖x‖pQ(dx) +
p(p− 1)

4

∫
‖x‖≥l

‖x‖p−2Q(dx)

∫
‖x‖≥l

‖x‖2Q(dx)

)1/p

≤

∫
‖x‖<l

‖x‖2

l2
Q(dx) + 3

(∫
‖x‖<l

‖x‖2

l2
Q(dx)

)2
1/4

l

+

(∫
‖x‖≥l

‖x‖p

lp
Q(dx) +

p(p− 1)

4

∫
‖x‖≥l

‖x‖p−2

lp−2
Q(dx)

∫
‖x‖≥l

‖x‖2

l2
Q(dx)

)1/p

l

≤

(
4
√

4 +
p

√
1 +

p(p− 1)

4

)
l.

Now let 3 < p < 4. If λ > p/x0, (1.12) gives

E ‖Z‖p ≤ K3,p

(
K4,p

(∫
‖x‖≥l

‖x‖2Q(dx)

)p/2
+

∫
‖x‖≥l

‖x‖pQ(dx)

)

= K3,p

K4,p

(∫
‖x‖≥l

‖x‖2

l2
Q(dx)

)p/2

lp +

∫
‖x‖≥l

‖x‖p

lp
Q(dx)lp


≤ K3,p (K4,p + 1) lp
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and if λ ≤ p/x0, (1.13) gives

E ‖Z‖p ≤ max

1 +
8p

log

(
p
p
x0
∧1

) , 6p

log x0


p ∫
‖x‖≥l

‖x‖pQ(dx)

= max

1 +
8p

log

(
p
p
x0
∧1

) , 6p

log x0


p ∫
‖x‖≥l

‖x‖p

lp
Q(dx)lp

≤ max

1 +
8p

log

(
p
p
x0
∧1

) , 6p

log x0


p

lp.

In either case, we have

E ‖Z‖p ≤ K3,p (K4,p + 1) lp.

This, along with (1.6) gives

‖X‖p ≤ ‖Y ‖4 + ‖Z‖p
≤
(

4
√

4 +K
1/p
3,p (K4,p + 1)1/p

)
l.

Now let p = 4. Combining (1.6) and (1.14) gives

‖X‖p ≤ ‖Y ‖p + ‖Z‖p

≤

(∫
‖x‖<l

l2 ‖x‖2Q(dx) + 3

(∫
‖x‖<l

‖x‖2Q(dx)

)2
)1/4

+

(∫
‖x‖≥l

‖x‖4Q(dx) + 3

(∫
‖x‖≥l

‖x‖2Q(dx)

)2
)1/4

=

∫
‖x‖<l

‖x‖2

l2
Q(dx) + 3

(∫
‖x‖<l

‖x‖2

l2
Q(dx)

)2
1/4

l

+

∫
‖x‖≥l

‖x‖4

l4
Q(dx) + 3

(∫
‖x‖≥l

‖x‖2

l2
Q(dx)

)2
1/4

l

≤ 2
4
√

4l.
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Finally, let p > 4. Combining (1.7) and the bounds on Z from the 3 < p < 4 case,

we have

‖X‖p ≤ ‖Y ‖p + ‖Z‖p
≤ K1,p (K2,p‖Y ‖2 + l) +K

1/p
3,p (K4,p + 1)1/p l

= K1,p

K2,p

(∫
‖x‖<l

‖x‖2

l2
Q(dx)

)1/2

l + l

+K
1/p
3,p (K4,p + 1)1/p l

≤
(
K1,p (K2,p + 1) +K

1/p
3,p (K4,p + 1)1/p

)
l.

We are now ready to prove the lower bound of Theorem 1.2.1 using Lemma 1.2.3

and Lemma 1.2.5.

Proof of lower bound of Theorem 1.2.1. By (1.2), either∫
‖x‖<l

‖x‖2

l2
Q(dx) ≥ 0.5 (1.20)

or ∫
‖x‖≥l

‖x‖p

lp
Q(dx) ≥ 0.5 (1.21)

must be true. Assume (1.20) holds. If 1 ≤ p ≤ 2, Lemma A.7 and (1.7) combine to

give

E ‖X‖p = E ‖Y + Z‖p ≥ E ‖Y ‖p ≥ E ‖Y ‖2(
l2 + 3E ‖Y ‖2) 2−p

2

.

Since the function t 7→ t (l2 + 3t)
p−2
2 is increasing in t,

E ‖X‖p ≥ 0.5l2

(l2 + 3(0.5)l2)
2−p
2

=
2.5p/2

5
lp ≥ lp

4

and hence,

‖X‖p ≥ p
√

0.25l ≥ 0.25l.
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If p > 2, then by Lemma A.7 and (1.9),

‖X‖p ≥ ‖Y ‖p ≥ ‖Y ‖2 =

(∫
‖x‖<l

x2Q(dx)

) 1
2

≥
√

0.5l > 0.25l.

Now assume (1.21) holds. Then∫
‖x‖≥l

(‖x‖p + (‖x‖p − lp))Q(dx) ≥
∫
‖x‖≥l

‖x‖pQ(dx) ≥ 0.5lp.

Now the left hand side simplifies to

2

∫
‖x‖≥l

‖x‖pQ(dx)− lpλ,

where λ = Q(‖x‖ ≥ l), and hence,∫
‖x‖≥l

‖x‖pQ(dx) ≥ lp

2
(0.5 + λ) =

lp

4
(1 + 2λ) .

We may combine this with the lower bound inequality in (1.10) and utilize Lemma A.7

as in the above case to get

E ‖X‖p ≥ E ‖Z‖p ≥ 1− e−λ

λ

lp

4
(1 + 2λ) ≥ lp

4

and hence,

‖X‖p ≥ p
√

0.25l ≥ 0.25l.

In either case, the left hand inequality in (1.3) holds.

Recall that we have been working under the assumption that Q is symmetric. To

remove this restriction, assume that X is a mean 0 infinitely divisible random vector

in Lp with Lévy measure Q and let Xs be the standard symmetrization of X. The

Lévy measure of Xs is given by Qs(A) = Q(A) +Q(−A) and if c solves (1.2) for Qs,

we have that c also solves∫
H

(
‖x‖2

c2
1{‖x‖<c} +

‖x‖p

cp
1{‖x‖≥c}

)
Q(dx) =

1

2
. (1.22)
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By Corollary A.8 and Theorem 1.2.1,

1

8
c ≤ 1

2
‖Xs‖p ≤ ‖X‖p ≤ ‖Xs‖p ≤ K(p)c.

Now let l solve ∫
H

(
‖x‖2

l2
1{‖x‖<l} +

‖x‖p

lp
1{‖x‖≥l}

)
Q(dx) = 1 (1.23)

and

k
def
=


p
√

2, if 1 ≤ p ≤ 2
√

2, if p > 2.

Then k > 1 and if 1 ≤ p ≤ 2, we have

∫
H

min

{
‖x‖2

(kl)2
,
‖x‖p

(kl)p

}
Q(dx) ≤ max

{
1

k2
,

1

kp

}∫
H

min

{
‖x‖2

l2
,
‖x‖p

lp

}
Q(dx) =

1

kp
=

1

2

or if p > 2, we have

∫
H

max

{
‖x‖2

(kl)2
,
‖x‖p

(kl)p

}
Q(dx) ≤ max

{
1

k2
,

1

kp

}∫
H

max

{
‖x‖2

l2
,
‖x‖p

lp

}
Q(dx) =

1

k2
=

1

2
.

In either case, c ≤ kl since c solves (1.22). Clearly, l ≤ c since l solves (1.23). We

have proven the following corollary to Theorem 1.2.1:

Corollary 1.2.6. Let p ≥ 1. Assume that X ∈ Lp is a mean 0 infinitely divisible

random vector without Gaussian component, taking values in the Hilbert space H, and

that X has Lévy measure Q. Let l be the solution of

ξ(l)
def
=

∫
H

(
‖x‖2

l2
1{‖x‖<l} +

‖x‖p

lp
1{‖x‖≥l}

)
Q(dx) = 1. (1.24)

Then

0.125l ≤ ‖X‖p ≤ max{ p
√

2,
√

2}K(p)l (1.25)

where K(p) is given by (1.4).

The last corollary to Theorem 1.2.1 that we present gives quick estimation of the

Lp-norm of X in terms of the functional ξ(l).
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Corollary 1.2.7. Under the assumptions of Theorem 1.2.1, if ξ(l) is given by (1.2),

then

(0.25) min
{√

ξ(1), p
√
ξ(1)

}
≤ ‖X‖p ≤ K(p) max

{√
ξ(1), p

√
ξ(1)

}
.

Similarly, under the assumptions of Corollary 1.2.6,

(0.125) min
{√

ξ(1), p
√
ξ(1)

}
≤ ‖X‖p ≤ max{ p

√
2,
√

2}K(p) max
{√

ξ(1), p
√
ξ(1)

}
.

Proof. First, suppose 1 ≤ p ≤ 2. If l < 1,

l2 =

∫
‖x‖<l

‖x‖2Q(dx) +

∫
‖x‖≥l

l2−p ‖x‖pQ(dx)

≤
∫
‖x‖<l

‖x‖2Q(dx) +

∫
l≤‖x‖<1

‖x‖2−p ‖x‖pQ(dx) +

∫
‖x‖≥1

‖x‖pQ(dx)

= ξ(1)

and

lp =

∫
‖x‖<l

lp−2 ‖x‖2Q(dx) +

∫
‖x‖≥l

‖x‖pQ(dx)

≥
∫
‖x‖<l

‖x‖2Q(dx) +

∫
l≤‖x‖<1

‖x‖2Q(dx) +

∫
‖x‖≥1

‖x‖pQ(dx)

= ξ(1).

If l ≥ 1, similar arguments give l2 ≥ ξ(1) and lp ≤ ξ(1). In either case we have

min
{√

ξ(1), p
√
ξ(1)

}
≤ l ≤ max

{√
ξ(1), p

√
ξ(1)

}
.

Similar arguments give the p > 2 case.
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Chapter 2

Kalman Filter

2.1 Kalman filter theory

In his landmark paper, Kalman (1960) considered the discrete time signal-observation

model

xk = Fkxk−1 +Bkuk + wk

yk = Hkxk + vk,

where xk is the state of an evolving dynamical system at time k, uk is a (deterministic)

control input to the system, and yk is a noisy linear observation of xk. The

”noise” terms {wk} and {vk} are assumed to be mean 0 Gaussian random vectors

with covariance matrices Wk and Vk, respectively. In ”filter theory”, the objective

is to produce an efficient estimate x∗k of the (unobservable) process xk using the

observed values y1, y2, . . . , yk, which are known at time k. An efficient estimate

is one that minimizes some expected ”loss” of the error xk − x∗k. In his paper,

Kalman (1960) showed that x∗k
def
= E (xk|y1, y2, . . . , yk) minimizes the L2-norm of

the error and gave a recursive formulation for computing the estimate x∗k. Under the

assumption of normally distributed noise terms, the orthogonal projection x∗k is an

affine transformation of the observations y1, y2, . . . , yk.

Let x̂k|k−1 be the predicted state of the system at time k, given that the

observations y1, y2, . . . , yk−1 are known at time k−1. Then, at time k, the observation

yk becomes available and we may update our state estimate. Let x̂k|k be the updated

estimate of the system state at time k once the observation yk has become available.
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We denote by Pk|k the covariance matrix of the error xk − x̂k|k and by Pk|k−1 the

covariance matrix of the error xk − x̂k|k−1. The recursively formulated solution given

by Kalman (1960) to compute x∗k = x̂k|k is given in Algorithm 1. The filter x̂k|k

is a linear combination of the predicted state x̂k|k−1 and the observation yk. The

optimal Kalman gain Kk in Algorithm 1 is chosen to minimize the L2-norm of the

error xk − x̂k|k and is given by

Kk = Pk|k−1H
T
k

(
HkPk|k−1H

T
k + Vk

)−1
. (2.1)

Over the years since this publication, some research has focused on replacing the

noise terms by random vectors with heavy-tailed distributions. Gordon et al. (2003,

Introduction) argued for the need of models allowing heavy tailed error estimates

as outlying system state realizations and/or observation measurements ”have long

been known to adversely affect the estimation procedure”. In Gordon et al. (2003),

the authors assume that the noise terms are ”power law” distributed and give the

Kalman filter in terms of the ”tail covariance matrices” of the noise terms. Stuck

(1978) first addressed this model under the assumption that both xk and yk are R-

valued and each noise sequence {wk} and {vk} are α-stable random variables for fixed

α. These examples fall under a more general framework for which the noise sequences

are assumed to be symmetric infinitely divisible random vectors. In what follows, we

establish a general framework to explore the Kalman filter under this assumption on

the distributions of the noise sequences and demonstrate in two different examples

that a solution can often be obtained (or approximated). The first example assumes

that each noise term has finite L2-norm, but makes no other assumptions on the

distributions. The second example considers the problem for α-stable distributed

noise sequences, which was first addressed in dimension 1 by Stuck (1978) and then

in Gordon et al. (2003). In each example, a tractable (approximate) solution is given.

Each solution is exact in dimension 1 and agrees with the classic Kalman gain (2.1)

(when α = 2 in the second example).

Before we begin, we should point out that these solutions are only optimal in the

linear sense. Kalman (1960) noted that, under the assumption that the noise terms

are normally distributed, the orthogonal projection E (xk|y1, y2, . . . , yk) is a linear

function of the observations y1, y2, . . . , yk. However, by removing this assumption, this

is no longer the case. In general, the L2-orthogonal projection E (xk|y1, y2, . . . , yk) is

non-linear and non-linear filtering theory may give better results. If we are seeking the
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Algorithm 1 Kalman filter for Gaussian noise.

1: Initialize:
x̂0|0

def
= Ex0 = 0

P0|0 = W0

2: Predict:
x̂k|k−1

def
= Fkx̂k−1|k−1 +Bkuk (unbiased estimate)

Pk|k−1 = FkPk−1|k−1F
T
k +Wk

3: Update:

Kk = Pk|k−1H
T
k

(
HkPk|k−1H

T
k + Vk

)−1

x̂k|k
def
= x̂k|k−1 +Kk

(
yk −Hkx̂k|k−1

)
Pk|k = (I −KkHk)Pk|k−1

optimal solution x∗k minimizing, say, the Lp-norm of the error xk−x∗k, the conventional

conditional expected value is no longer even the optimal solution. Instead, it will be

the conditional Lp-expected value Ep (xk|y1, y2, . . . , yk) that minimizes the Lp-norm

of the error. However, the linear formulation has the desirable property of being

easily implemented and are the only estimates we consider. To this end, consider the

discrete time signal-observation model

xk = Fkxk−1 +Bkuk + wk

yk = Hkxk + vk,
(2.2)

where xk ∈ Rd, Fk ∈ Rd×d, uk ∈ Rn, Bk ∈ Rd×n, yk ∈ Rm, and Hk ∈ Rm×d. Assume

that the system noise {wk}k∈N are independent symmetric Rd-valued random vectors

with the Lévy-Khintchine triplets

wk ∼
(
0, 0, Qw,k

)
, k = 1, 2, . . . ,

where, for each k, Qw,k is a symmetric Lévy measure on Rd, that the observation

noise {vk}k∈N are independent symmetric Rm-valued random vectors with the Lévy-

Khintchine triplets

vk ∼
(
0, 0, Qv,k

)
, k = 1, 2, . . . ,

where, for each k, Qv,k is a symmetric Lévy measure on Rm, and that x0 ∈ Rd is a

symmetric infinitely divisible random vector with Lévy-Khintchine triplet

x0 ∼
(
0, 0, Qw,0

)
,
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where Qw,0 is a symmetric Lévy measure on Rd. Moreover, assume that the sequence

of random vectors {x0, w1, v1, w2, v2, . . . } are mutually independent. Finally, assume

that for some fixed p ≥ 1, we have that both∫
Rd
‖x‖p 1{‖x‖≥1}Q

w,k(dx) <∞

for each k = 0, 1, 2, . . . , and that∫
Rm
‖x‖p 1{‖x‖≥1}Q

v,k(dx) <∞

for each k = 1, 2, 3, . . . . Restricting ourselves to linear estimates, the Kalman filter

algorithm is given by Algorithm 2.

Let ek|k be the updated estimate error, ek|k−1 the predicted estimate error, and

observe that

e0|0 = x0,

ek|k−1
def
= xk − x̂k|k−1

= (Fkxk−1 +Bkuk + wk)−
(
Fkx̂k−1|k−1 +Bkuk

)
= Fkek−1|k−1 + wk,

and

ek|k
def
= xk − x̂k|k
= xk −

(
x̂k|k−1 +Kk

(
yk −Hkx̂k|k−1

))
= xk − x̂k|k−1 −Kk (Hkxk + vk) +KkHkx̂k|k−1

= ek|k−1 −KkHk

(
xk − x̂k|k−1

)
−Kkvk

= (Id −KkHk) ek|k−1 −Kkvk

= (Id −KkHk)
(
Fkek−1|k−1 + wk

)
−Kkvk.

First, we remark that ek−1|k−1, wk, and vk are independent. Second, Kkvk is a

symmetric random vector. These two facts, along with Corollary 1.1.2, imply that

the updated error ek|k is an infinitely divisible random vector on Rd and, since each
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Algorithm 2 Kalman filter

1: Initialize:
x̂0|0

def
= Ex0 = 0

2: Predict:
x̂k|k−1

def
= Fkx̂k−1|k−1 +Bkuk (unbiased estimate)

3: Update:

x̂k|k
def
= x̂k|k−1 +Kk

(
yk −Hkx̂k|k−1

)
Lévy measure Q·,· is symmetric, the Lévy-Khintchine triplet is given by

e0|0 ∼
(
0, 0, Qw,0

) def
=
(
0, 0, Q0

)
,

ek|k ∼
(

0, 0, Qk−1
(Id−KkHk)Fk

+Qw,k
Id−KkHk +Qv,k

Kk

)
def
=
(
0, 0, Qk

)
, k = 1, 2, . . . . (2.3)

We recall from Corollary 1.1.2 that the subscript notation Qv,k
Kk

represents a new Lévy

measure on Rd given by

Qv,k
Kk

(B)
def
= Qv,k {x ∈ Rm : Kkx ∈ B \ {0}} ,

for every B ∈ B(Rd). In light of Section 1.2, for every k, we may measure the

magnitude of the error by lk, where lk solves

∫
Rd

(
‖x‖2

l2k
1{ ‖x‖

lk
<1
} +
‖x‖p

lpk
1{ ‖x‖

lk
>1
}
)
Qk(dx) = 1. (2.4)

The optimal Kalman gain Kk ∈ Rd×m is chosen to minimize lk. While no closed

form solution exists for such arbitrary Lévy measures, we demonstrate (approximate)

solutions in the following two examples. The first will deal with the case that

p = 2 and the Lévy measures are arbitrary. The second example will deal with the

symmetric α-stable case. Often, we will need to compute Qk iteratively, as opposed

to recursively as in (2.3). To do so, observe that if Q is a measure on Rn, G ∈ Rq×n,

and H ∈ Rr×q, then (QG)H is a measure on Rr and we have, for B ∈ B (Rr),

(QG)H (B) = QG ({x ∈ Rq : Hx ∈ B \ {0}})

= Q ({x ∈ Rn : Gx ∈ {x ∈ Rq : Hx ∈ B \ {0}} \ {0}})

= Q ({x ∈ Rn : HGx ∈ B \ {0}})

= QHG (B) .
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Using this rule that (QG)H = QHG, we may derive the following formulation of (2.3):

Theorem 2.1.1. The recursively defined Lévy measure Qk in (2.3) is

Qk = Qw,0∏k−1
i=0 (Id−Kk−iHk−i)Fk−i

+
k∑
j=1

(
Qw,j

(
∏k−j−1
i=0 (Id−Kk−iHk−i)Fk−i)(Id−KjHj)

+Qv,j

(
∏k−j−1
i=0 (Id−Kk−iHk−i)Fk−i)Kj

)
, (2.5)

where the product notation is understood to be right multiplication and equal to the

identity matrix when the product is empty.

2.2 Finite L2-norm noise environment

Suppose now that p = 2, so that each noise wk and vk has finite L2-norm. The

integrand of (2.4) is no longer piecewise, simplifying computations. Since each L2-

norm is finite, the second moments of ‖wk‖ and ‖vk‖ are finite and given by

Wk
def
=

∫
Rd
‖x‖2Qw,k(dx)

and

Vk
def
=

∫
Rm
‖x‖2Qv,k(dx),

respectively. Then the initial and updated errors are given by

l20 =

∫
Rd
‖x‖2Q0(dx) =

∫
Rd
‖x‖2Qw,0(dx) = W0

and

l2k =

∫
Rd
‖x‖2Qk(dx)

=

∫
Rd
‖x‖2

(
Qk−1

(Id−KkHk)Fk
+Qw,k

Id−KkHk +Qv,k
Kk

)
(dx)
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=

∫
Rd
‖(Id −KkHk)Fkx‖2Qk−1(dx)

+

∫
Rd
‖(Id −KkHk)x‖2Qw,k(dx) +

∫
Rm
‖Kkx‖2Qv,k.

Instead of minimizing lk, will minimize an upper bound on lk. Using the subordinate

matrix 2-norm induced by the Euclidean vector norm ‖·‖, we can bound the

magnitude of the updated error by

l2k ≤ ‖(Id −KkHk)Fk‖2
2

∫
Rd
‖x‖2Qk−1(dx)

+ ‖Id −KkHk‖2
2

∫
Rd
‖x‖2Qw,k(dx) + ‖Kk‖2

2

∫
Rm
‖x‖2Qv,k(dx)

= ‖(Id −KkHk)Fk‖2
2 l

2
k−1 + ‖Id −KkHk‖2

2Wk + ‖Kk‖2
2 Vk.

Let us define

l̂20
def
= l20 and

l̂2k
def
= ‖(Id −KkHk)Fk‖2

2 l̂
2
k−1 + ‖Id −KkHk‖2

2Wk + ‖Kk‖2
2 Vk. (2.6)

The above definitions allow us to iteratively update our error estimates using only

the previous error update. Now we must determine an approximating procedure that

minimizes l̂k|k. While the subordinate matrix 2-norm has the desirable property that

‖I‖2 = 1, it presents a challenge in minimizing l̂k|k. For a matrix A, the Frobenius

norm

‖A‖F
def
=
√

trace (ATA), (2.7)

while larger than the subordinate matrix 2-norm ‖A‖2
2, is easier to compute. To this

end, we may bound (2.6) by

l̂2k ≤ ‖(Id −KkHk)Fk‖2
F l̂

2
k−1 + ‖Id −KkHk‖2

F Wk + ‖Kk‖2
F Vk. (2.8)

The right hand side is now easy to minimize by recognizing it as a multivariate

multiple regression minimizing the residual sum of squares of the model[
l̂k−1Id

√
WkId 0d×m

]
= Kk

[
l̂k−1HkFk

√
WkHk

√
VkIm

]
.
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It is well known that for a multiple multivariate linear regression model Y = BX,

the least squares estimate of the matrix B is Y XT
(
XXT

)−1
. Hence

Kk =
(
l̂2k−1F

T
k H

T
k +WkH

T
k

)(
l̂2k−1HkFkF

T
k H

T
k +WkHkH

T
k + VkIm

)−1

.

The above solution is exact in 1 dimension, since the matrix norms ‖·‖2 and ‖·‖F
are replaced by |·|, and coincides with the classic Kalman filter. The algorithm is

summarized in Algorithm 3.

2.3 α-Stable noise environment

For the next example, fix 1 < α < 2 and assume that x0 is known, so that Qw,0 = δ0.

Assume that the signal noise sequence has the form wk = Gw̃k, where G ∈ Rd×q and

w̃k are Rq-valued rotationally invariant α-stable random vectors with Lévy measures

Qw̃,k(dx)
def
= cw̃k ‖x‖

−α−q dx. By Corollary 1.1.2, wk are infinitely divisible Rd-valued

random vectors with Lévy-Khintchine triplets (0, 0, Qw,k)
def
= (0, 0, Qw̃,k

G ). Assume vk

are Rm-valued rotationally invariant α-stable random vectors with Lévy measures

Qv,k(dx)
def
= cvk ‖x‖

−α−m dx. Before determining the Kalman gain, we will need the

following computations in the analysis of this problem: Fix 1 ≤ p < α and let

A ∈ Rd×d. I denote by σ the uniform measure on the unit sphere. Then∫
Rd

‖x‖2

l2
1{‖x‖<l}Q

w,k
A (dx) =

1

l2

∫
Rq
‖Ax‖2

1{‖Ax‖<l}Q
w̃,k
G (dx)

=
1

l2

∫
Rq
‖AGx‖2

1{‖AGx‖<l}c
w̃
k ‖x‖

−α−q dx

=
cw̃k
l2

∫ ∞
0

∫
Sq−1

‖AGru‖2
1{‖AGru‖<l} ‖ru‖−α−q σ(du)rq−1dr

=
cw̃k
l2

∫ ∞
0

∫
Sq−1

‖AGu‖2
1{‖AGu‖<l/r}σ(du)r1−αdr

=
cw̃k
l2

∫
Sq−1

‖AGu‖2

∫ ∞
0

1{r<l/‖AGu‖,‖AGu‖6=0}r
1−αdrσ(du)

=
cw̃k
lα

1

2− α

∫
Sq−1

‖AGu‖α σ(du), (2.9)
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Algorithm 3 Kalman filter for finite L2-norm noise.

1: Initialize:
x̂0|0 = Ex0 = 0

l̂20 = W0

2: Predict:
x̂k|k−1 = Fkx̂k−1|k−1 +Bkuk

3: Update:

Kk =
(
l̂2k−1F

T
k H

T
k +WkH

T
k

)(
l̂2k−1HkFkF

T
k H

T
k +WkHkH

T
k + VkIm

)−1

x̂k|k = x̂k|k−1 +Kk

(
yk −Hkx̂k|k−1

)
l̂2k = ‖(Id −KkHk)Fk‖2

2 l̂
2
k−1 + ‖Id −KkHk‖2

2Wk + ‖Kk‖2
2 Vk.

and, similarly,∫
Rd

‖x‖p

lp
1{‖x‖≥l}Q

w,k
A (dx) =

cw̃k
lα

1

α− p

∫
Sq−1

‖AGu‖α σ(du). (2.10)

Also, if A ∈ Rd×m, then∫
Rd

‖x‖2

l2
1{‖x‖<l}Q

v,k
A (dx) =

1

l2

∫
Rm
‖Ax‖2

1{‖Ax‖<l}Q
v,k(dx)

=
1

l2

∫
Rm
‖Ax‖2

1{‖Ax‖<l}c
v
k ‖x‖

−α−m dx

=
cvk
l2

∫ ∞
0

∫
Sm−1

‖Aru‖2
1{‖Aru‖<l} ‖ru‖−α−m σ(du)rm−1dr

=
cvk
l2

∫ ∞
0

∫
Sm−1

‖Au‖2
1{‖Au‖<l/r}σ(du)r1−αdr

=
cvk
l2

∫
Sm−1

‖Au‖2

∫ ∞
0

1{r<l/‖Au‖,‖Au‖6=0}r
1−αdrσ(du)

=
cvk
lα

1

2− α

∫
Sm−1

‖Au‖α σ(du), (2.11)

and, similarly,∫
Rd

‖x‖2

l2
1{‖x‖<l}Q

v,k
A (dx) =

cvk
lα

1

2− α

∫
Sm−1

‖Au‖α σ(du). (2.12)

We are now ready to compute the estimated error lk. To compute the first integral in

the functional equation (2.4) for lk, we use the iterative formulation and the integral
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formulas (2.9) and (2.11) to get∫
Rd

‖x‖2

l2k
1{‖x‖<lk}Q

k(dx)

=

∫
Rd

‖x‖2

l2k
1{‖x‖<lk}Q

w,0∏k−1
i=0 (Id−Kk−iHk−i)Fk−i

(dx)

+

∫
Rd

‖x‖2

l2k
1{‖x‖<lk}

(
k∑
j=1

Qw,j

(
∏k−j−1
i=0 (Id−Kk−iHk−i)Fk−i)(Id−KjHj)

)
(dx)

+

∫
Rd

‖x‖2

l2k
1{‖x‖<lk}

(
k∑
j=1

Qv,j

(
∏k−j−1
i=0 (Id−Kk−iHk−i)Fk−i)Kj

)
(dx)

=
1

lαk (2− α)

k∑
j=1

cw̃j

∫
Sq−1

∥∥∥∥∥
(
k−j−1∏
i=0

(Id −Kk−iHk−i)Fk−i

)
(Id −KjHj)Gu

∥∥∥∥∥
α

σ(du)

+
1

lαk (2− α)

k∑
j=1

cvj

∫
Sm−1

∥∥∥∥∥
(
k−j−1∏
i=0

(Id −Kk−iHk−i)Fk−i

)
Kju

∥∥∥∥∥
α

σ(du)

and similarly, using the integral formulas (2.10) and (2.12), we have that the second

integral in the functional equation (2.4) for lk is∫
Rd

‖x‖p

lpk
1{‖x‖≥lk|k−1}Q

k(dx)

=
1

lαk (α− p)

k∑
j=1

cw̃j

∫
Sq−1

∥∥∥∥∥
(
k−j−1∏
i=0

(Id −Kk−iHk−i)Fk−i

)
(Id −KjHj)Gu

∥∥∥∥∥
α

σ(du)

+
1

lαk (α− p)

k∑
j=1

cvj

∫
Sm−1

∥∥∥∥∥
(
k−j−1∏
i=0

(Id −Kk−iHk−i)Fk−i

)
Kju

∥∥∥∥∥
α

σ(du).

Since lk satisfies (2.4), the two computations above combine to give

lαk =

(
1

2− α
+

1

α− p

)( k∑
j=1

cvj

∫
Sm−1

∥∥∥∥∥
(
k−j−1∏
i=0

(Id −Kk−iHk−i)Fk−i

)
Kju

∥∥∥∥∥
α

σ(du)

+
k∑
j=1

cw̃j

∫
Sq−1

∥∥∥∥∥
(
k−j−1∏
i=0

(Id −Kk−iHk−i)Fk−i

)
(Id −KjHj)Gu

∥∥∥∥∥
α

σ(du)

)
. (2.13)

While no closed form solution exists for Kk minimizing lk (except in the 1-dimensional

case), we can get a tractable problem, as we did in the p = 2 example, by minimizing
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an upper bound of lk. Define

Wk
def
= cw̃k

(
1

2− α
+

1

α− p

)
σ
(
Sq−1

)
and

Vk
def
= cvk

(
1

2− α
+

1

α− p

)
σ
(
Sm−1

)
.

Observe that lα0 = 0 and that

lαk =

(
1

2− α
+

1

α− p

)(
cvk

∫
Sm−1

‖Kku‖α σ(du)

+
k−1∑
j=1

cvj

∫
Sm−1

∥∥∥∥∥(Id −KkHk)Fk

(
k−j−1∏
i=1

(Id −Kk−iHk−i)Fk−i

)
Kju

∥∥∥∥∥
α

σ(du)

+ cw̃k

∫
Sq−1

‖(Id −KkHk)Gu‖α σ(du)

+
k−1∑
j=1

cw̃j

∫
Sq−1

∥∥∥∥ (Id −KkHk)Fk

(
k−j−1∏
i=1

(Id −Kk−iHk−i)Fk−i

)

(Id −KjHj)Gu

∥∥∥∥ασ(du)

)
≤ ‖(Id −KkHk)Fk‖α2 l

α
k−1 + ‖(Id −KkHk)G‖α2 Wk + ‖Kk‖α2 Vk, (2.14)

where, for a matrix A, ‖A‖2

def
= max‖x‖=1 ‖Ax‖ is the subordinate matrix 2-norm

induced by the Euclidean vector norm ‖·‖. As we did in the p = 2 case, we consider

l̂αk
def
= ‖(Id −KkHk)Fk‖α2 l̂

α
k−1 + ‖(Id −KkHk)G‖α2 Wk + ‖Kk‖α2 Vk (2.15)

instead of lk. The above iterative definition will allow us to minimize the convenient

upper bound l̂k of lk. As before, using these upper bounds, our error estimates may

be updated using only the previous estimated error.

Now we must determine an approximating procedure that minimizes l̂k. As we did

in the p = 2 case, we will minimize the Frobenius norm ‖·‖F (see (2.7) for definition)
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instead of the subordinate matrix 2-norm ‖·‖2. To this end, we may bound (2.15) by

l̂αk = ‖(Id −KkHk)Fk‖α2 l̂
α
k−1 + ‖(Id −KkHk)G‖α2 Wk + ‖Kk‖α2 Vk

≤ ‖(Id −KkHk)Fk‖αF l̂
α
k−1 + ‖(Id −KkHk)G‖αF Wk + ‖Kk‖αF Vk

= l̂αk−1 ‖(Id −KkHk)Fk‖α−2
F ‖(Id −KkHk)Fk‖2

F

+Wk ‖(Id −KkHk)G‖α−2
F ‖(Id −KkHk)G‖2

F + Vk ‖Kk‖α−2
F ‖Kk‖2

F ,

(2.16)

the right hand side now being easier to minimize as follows: suppose that we have an

estimate K
(t)
k for Kk. Then we may iteratively improve our estimate of Kk by finding

K
(t+1)
k minimizing

w
(t)
1

∥∥∥(Id −K(t+1)
k Hk

)
Fk

∥∥∥2

F
+ w

(t)
2 ‖(Id −KkHk)G‖2

F + w
(t)
3

∥∥∥K(t+1)
k

∥∥∥2

F
, (2.17)

where

w
(t)
1

def
= l̂αk−1

∥∥∥(Id −K(t)
k Hk

)
Fk

∥∥∥α−2

F
,

w
(t)
2

def
= Wk

∥∥∥(Id −K(t)
k Hk

)
G
∥∥∥α−2

F
,

and

w
(t)
3

def
= Vk

∥∥∥K(t)
k

∥∥∥α−2

F
.

We may recognize (2.17) as a multivariate multiple regression minimizing the residual

sum of squares of the model[√
w

(t)
1 Fk

√
w

(t)
2 G 0d×m

]
= K

(t+1)
k

[√
w

(t)
1 HkFk

√
w

(t)
2 HkG

√
w

(t)
3 Im

]
.

It is well known that for a multiple multivariate linear regression model Y = BX,

the least squares estimate of the matrix B is Y XT
(
XXT

)−1
. Hence

K
(t+1)
k =

(
w

(t)
1 FkF

T
k H

T
k + w

(t)
2 GGTHT

k

)
·(

w
(t)
1 HkFkF

T
k H

T
k + w

(t)
2 HkGG

THT
k + w

(t)
3 Im

)−1

.
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This approximating technique is known as iteratively reweighted least squares. See, for

example, Gentle (2007, Lp norms and Iteratively Reweighted Least Squares, pg. 232)

for an overview. Iteratively reweighted least squares approximates Kk minimizing

(2.16) by

Kk = lim
t→∞

K
(t)
k .

The above procedure is easily implemented on a computer and allows us to

approximate the optimal Kalman gain Kk using the iteratively reweighted least

squares algorithm. We may initialize the algorithm by the least squares solution,

where w
(1)
1 , w

(1)
2 , and w

(1)
3 are taken to be 1, and compute the error to be any matrix

norm of the differenceK
(t+1)
k −K(t)

k . The iteratively reweighted least squares algorithm

is implemented in Algorithm 4 and the Kalman filter is implemented in Algorithm 5.

Algorithm 5 can become unstable over time due to the fact that we are not actually

keeping track of the actual errors, but instead, an upper bound on the errors using

the matrix norm inequality

‖AB‖2 ≤ ‖A‖2 ‖B‖2 .

At each step, we used this inequality, and hence our estimated error l̂k tends to

be much larger than the actual error lk. If we are only tracking the target short

term, Algorithm 5 works very well. However, for long term tracking we may improve

estimation of xk at the expense of computational inefficiency by keeping track of more

of the matrix multiplications in (2.13) instead of approximating the error by (2.14).

If we are filtering off-line and computational speed is not a priority, we may use (2.13)

for l to improve performance. Alternatively, we may perform a statistical analysis to

determine how large an overestimate (2.14) tends to be and adjust accordingly.

2.3.1 Exact 1-dimensional filtering

As mentioned above, we can get an exact closed form solution in dimension 1 and

demonstrate this here. If d = m = q = 1, then the inequality (2.14) is in fact an

equality, since the matrix norms are replaced by |·|, giving

lαk = |1−KkHk|α |Fk|α lαk−1 + |1−KkHk|αWk + |Kk|α Vk
= |1−KkHk|α

(
|Fk|α lαk−1 +Wk

)
+ |Kk|α Vk,

33



Algorithm 4 Iteratively reweighted least squares.

1: Initialize K
(1)
k to the least squares solution with weights of 1:

K
(1)
k =

(
FkF

T
k H

T
k +GGTHT

k

) (
HkFkF

T
k H

T
k +HkGG

THT
k + Im

)−1

2: While error > ε and t ≤ maxiterations

Compute w
(t)
1 = l̂αk−1

∥∥∥(Id −K(t)
k Hk

)
Fk

∥∥∥α−2

F

w
(t)
2 = Wk

∥∥∥(Id −K(t)
k Hk

)
G
∥∥∥α−2

F

w
(t)
3 = Vk

∥∥∥K(t)
k

∥∥∥α−2

F

Compute K
(t+1)
k =

(
w

(t)
1 FkF

T
k H

T
k + w

(t)
2 GGTHT

k

)
·(

w
(t)
1 HkFkF

T
k H

T
k + w

(t)
2 HkGG

THT
k + w

(t)
3 Im

)−1

Compute error =
∥∥∥K(t+1)

k −K(t)
k

∥∥∥
F

Increment t.
3: Kk = K

(t)
k .

where we have assumed without loss of generality that G ≡ 1 (it may be absorbed

into cwk in dimension 1). Here, Wk and Vk reduce to

Wk = 2cwk

(
1

2− α
+

1

α− p

)
and

Vk = 2cvk

(
1

2− α
+

1

α− p

)
.

Let us define lαk|k−1

def
= |Fk|α lαk−1 + Wk. One can show by arguments similar to those

used to derive (2.13) that lk|k−1 measures the magnitude of the predicted error ek|k−1

just as lk measures the magnitude of the updated error ek|k. We then have

lαk = |1−KkHk|α lαk|k−1 + |Kk|α Vk

and may minimize lk by standard calculus. The derivative of lαk is computed as

d lαk
dKk

= α |1−KkHk|α−1 sign (1−KkHk) (−Hk) l
α
k|k−1 + α |Kk|α−1 sign (Kk)Vk.

Equating to 0 and solving, we see that
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Algorithm 5 Kalman filter for α-stable noise.

1: Initialize:
x̂0|0 = x0

l̂α0 = 0
2: Predict:
x̂k|k−1 = Fkx̂k−1|k−1 +Bkuk

3: Update:
Approximate Kk by iteratively reweighted least squares Algorithm 4.
x̂k|k = x̂k|k−1 +Kk

(
yk −Hkx̂k|k−1

)
l̂αk = ‖(Id −KkHk)Fk‖α2 l̂αk−1 + ‖(Id −KkHk)G‖α2 Wk + ‖Kk‖α2 Vk.

sign (Kk) = sign (1−KkHk) sign (Hk)

and

|Kk|V
1

α−1

k = |1−KkHk| |Hk|
1

α−1 l
α
α−1

k|k−1.

Hence,

KkV
1

α−1

k = (1−KkHk) sign (Hk) |Hk|
1

α−1 l
α
α−1

k|k−1,

which is easily solved for Kk to get the optimal Kalman gain as

Kk =
(

sign (Hk) |Hk|
1

α−1 l
α
α−1

k|k−1

)(
|Hk|

α
α−1 l

α
α−1

k|k−1 + V
1

α−1

k

)−1

. (2.18)

If we take α = 2 in the above equation, we have exactly the classic Kalman gain

(2.1) (ignoring the fact that the dispersion Vk, playing a similar role as variance in

the normal distribution, is infinite). The Kalman filter algorithm is implemented in

Algorithm 6. As opposed to the higher dimensional solutions of the Kalman filter

for finite L2-norm noise and α-stable noise I have given, the Kalman gain (2.18) is

exact in the sense that it minimizes the error lk, not an upper bound on lk. We next

present simulations utilizing these results for the α-stable noise environment.

2.3.2 Vehicle tracking

Suppose we are tracking a vehicle moving in a straight line. The vehicle’s position is

measured every T seconds, at which time we can change the velocity u = uk+1. Then
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Algorithm 6 Kalman filter for 1 dimensional α-stable noise.

1: Initialize:
x̂0|0 = Ex0 = 0
lα0 = W0

2: Predict:
x̂k|k−1 = Fkx̂k−1|k−1 +Bkuk
lαk|k−1 = |Fk|α lαk−1 +Wk

3: Update:

Kk =
(

sign (Hk) |Hk|
1

α−1 l
α
α−1

k|k−1

)(
|Hk|

α
α−1 l

α
α−1

k|k−1 + V
1

α−1

k

)−1

x̂k|k = x̂k|k−1 +Kk

(
yk −Hkx̂k|k−1

)
lαk = |1−KkHk|α lαk|k−1 + |Kk|α Vk

the position of the vehicle is modeled by

xk = xk−1 + Tuk.

In actuality, the position of the vehicle at each time is perturbed by circumstances

beyond our control (potholes, gusts of wind, etc.). A more realistic model is

xk = xk−1 + Tuk + wk,

where wk is a random ”noise”. At each time increment, we observe the position of

the vehicle, which is also contaminated by a random noise. The observation yk is

modeled by

yk = xk + vk,

where vk is a random ”noise”. Our objective is to efficiently estimate the position

of the vehicle at time k. First, we could completely ignore our observation yk and

predict the position of the vehicle to be x̂k = x̂k−1 + Tuk. Or, we could completely

ignore the dynamics of the system and predict the position of the vehicle to be the

observation x̂k = yk. In actuality, we would like to use each piece of information: the

dynamics of the system and the observation. If we restrict to linear estimates and

assume that {wk} and {vk} are independent symmetric α-stable random variables,

then we may apply the Kalman filter Algorithm 6 to estimate the position of the

vehicle xk|k at time k. Figure 2.1 is a simulation with parameters p = 1, α = 1.4,

T = 0.1, and constant velocity uk = u = 4 throughout every time increment. The

36



dispersion parameter cwk of wk is taken to be small (cwk = 0.1). This represents that

the potholes, gusts of wind, etc. have minimal effect on the position of the vehicle.

The dispersion parameter cvk of vk is taken to be large in comparison to vwk (cvk = 5).

This parameter represents the known accuracy of the gps technology. The classic

Kalman filter Algorithm 1 weights the observation to heavily in this case, as it does

not expect such extreme tail events that occur under an α-stable distribution. We

can see in Figure 2.1 the tail events that occur in the observation noise. Such tail

events have probability ≈ 0 under the Gaussian distribution and are not expected in

the classic Kalman filter.

2.3.3 Aircraft tracking

As a last example, we consider two models commonly employed in the tracking of

an aircraft. Ignoring altitude, the system state being tracked is x = (x1, ẋ1, x2, ẋ2).

The system dynamics of a maneuvering aircraft are modeled by the constant velocity

(CV) model and the coordinated turn (CT) model (see e.g. Bar-Shalom et al. (2001,

Section 11.7) for an overview). The models are

xk = Fxk−1 +


T 2

2
0

T 0

0 T 2

2

0 T

wk,

where the system dynamics matrix for the CV model is

F
def
=


1 T 0 0

0 1 0 0

0 0 1 T

0 0 0 1


and for the CT model is

F
def
=


1 sinωT

ω
0 −1−cosωT

ω

0 cosωT 0 − sinωT

0 1−cosωT
ω

1 sinωT
ω

0 sinωT 0 cosωT

 .
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In practice, the turn rate ω is unknown. One would need to consider the augmented

state matrix xk = (x1, ẋ1, x2, ẋ2, ω), for which the system model is now non-linear.

Standard practice is to then approximate by a first order expansion. We assume here

that the turn rate ω is constant and known for simulation purposes. The signal noise

wk is a 2-dimensional rotationally invariant α-stable random vector. At each time

increment, we observe the position of the aircraft, which is also contaminated by a

2-dimensional rotationally invariant α-stable random noise. Then the observation yk

is

yk =

[
1 0 0 0

0 0 1 0

]
xk + vk.

We apply Algorithm 5 to estimate the position of the vehicle by x̂k|k. Figure 2.2 and

Figure 2.3 are simulations of the CV and CT models respectively. The parameters

were taken as p = 1, α = 1.4, T = 0.1, cwk = 0.1, and ckv = 3. As in the vehicle tracking

example, the classic Kalman filter can perform poorly when tail events occur. If we

mistakenly believe that the noise is normally distributed, then we do not anticipate

such extreme tail events experienced in the noisy observation. Therefore, the classic

Kalman filter is again weighting the observation to heavily and underperforms the

α-stable Kalman filter Algorithm 5.
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Chapter 3

Infinitely Divisible Random

Measures

3.1 Introduction

Stochastic integrals are a useful and widely employed method to capture unmodeled

effects in continuous time dynamical models. Gaussian white noise and Poisson

random measures are popular driving terms for the stochastic integration as each

are described by parameters that can be statistically estimated. In this chapter we

focus on the family of infinitely divisible random measures, which includes both of

the aforementioned random measures. First, let us recall a few basic facts about

Gaussian white noise. If {Bt}t≥0 is a Brownian motion, then

B(C)
def
=

∫ T

0

1C(t)dBt,

for arbitrary Borel set C ∈ B([0, T ]), is a Gaussian white noise satisfying

i. B(∅) = 0 a.s.

ii. If C1, · · · , Cn are disjoint sets in B([0, T ]), then {B(Ck)}nk=1 is a sequence of

independent variables such that

B

(
n⋃
k=1

Ck

)
=

n∑
k=1

B(Ck) a.s.

and
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iii. B(C) ∼ N (0, Leb(C)σ2) for every C ∈ B([0, T ]).

Item iii follows by Itô’s isometry. That B(C) is normally distributed is a special case of

the more general condition that B(C) is infinitely divisible. It is this property that will

be our focus. By requiring B(C) to be infinitely divisible, we get a parameterization

from the Lévy-Khintchine triplet and, as we saw in Chapter 2, can give computations

in terms of these parameters. With this motivation, we now turn to infinitely divisible

random measures. Fix a stochastic basis (Ω,F ,P, {Ft}0≤t≤T ), where (Ω,F ,P) is a

complete probability space. Throughout, for any set S ⊂ Rn, we denote by B0(S) the

Borel σ − ring generated by S.

Definition 3.1.1. Let Z : B0([0, T ]× Rd)× Ω → R. Z = {Z(C)}C∈B0([0,T ]×Rd) is an

infinitely divisible random measure if

i. Z(∅) = 0 a.s.,

ii. For every sequence {Ci} ⊂ B0

(
[0, T ]× Rd

)
of pairwise disjoint sets, {Z(Ci)} is a

sequence of independent random variables and if
⋃
Ci ∈ B0

(
[0, T ]× Rd

)
,

Z

(
∞⋃
i=1

Ci

)
=
∞∑
i=1

Z(Ci) a.s., (3.1)

and

iii. For every C ∈ B0([0, T ]× Rd), Z(C) is an infinitely divisible random variable.

Stochastic integration of deterministic functions driven by infinitely divisible

random measures was studied by Rajput and Rosiński (1989). In their work, they

showed that the Lévy-Khintchine triplet of Z(C) (see Theorem 1.1.1) is

Z(C) ∼
(∫

C

b(t, x)m(dt, dx),

∫
C

σ2(t, x)m(dt, dx), FC

)
, (3.2)

where b : [0, T ]×Rd → R, σ2 : [0, T ]×Rd → R+, and FC is a Lévy measure on R. FC

has the property that there exists a unique σ-finite measure F on B([0, T ]×Rd)⊗B(R)

such that F (C × B) = FC(B) for every C ∈ B([0, T ]× Rd) and for every B ∈ B(R).

Moreover, there exists a σ-finite measure m on B([0, T ] × Rd) and a function ν :

[0, T ]× Rd × B(R)→ [0,∞] such that F may be disintegrated as

F (dt, dx, dz) = ν(t, x, dz)m(dt, dx).
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Measure m is called the control measure of Z. It satisfies the property that Z(C) = 0

a.s. if and only if m(C) ≡ 0. Also, for each fixed t and x, ν(t, x, ·) is a Lévy measure

on B(R).

Remark 3.1.2. The characteristic function of Z(C) is

E exp{iuZ(C)}

= exp

{
iu

∫
C

b(t, x)m(dt, dx)− 1

2
u2

∫
C

σ2(t, x)m(dt, dx)

+

∫
R

(
eiuz − 1− iuJzK

)
FC(dz)

}
= exp

{
iu

∫
C

b(t, x)m(dt, dx)− 1

2
u2

∫
C

σ2(t, x)m(dt, dx)

+

∫
C×R

(
eiuz − 1− iuJzK

)
F (dt, dx, dz)

}
= exp

{
iu

∫
C

b(t, x)m(dt, dx)− 1

2
u2

∫
C

σ2(t, x)m(dt, dx)

+

∫
C

∫
R

(
eiuz − 1− iuJzK

)
ν(t, x, dz)m(dt, dx)

}
.

Two examples that we will particularly focus upon are symmetric α-stable and

tempered α-stable random measures. Gaussian white noise models can perform poorly

when observed data contains outliers not probable under this assumption. Just as in

the discrete time examples of Chapter 2, α-Stable white noise models may outperform

the Gaussian assumption in this case. α-Stable processes are justified in their use by

the generalized central limit theorem. Tempered α-stable processes are attained by a

”uniform tilting” of the α-stable Lévy measure and as a result, have finite variance.

Such processes were studied by Rosiński (2007b) and proven to exhibit α-stable short

time behavior and Brownian motion long time behavior. The process still exhibits

jumps but not at the expense of infinite variance, as opposed to α-stable processes.

These properties have lead to a growing popularity of tempered α-stable processes as

a suitable model choice. As such, there is need and use for stochastic integrals driven

by such processes. To this end, let us formally define these random measures. For

0 < α < 2, an infinitely divisible random measure Z : B0([0, T ]× Rd)× Ω→ R with

Lévy-Khintchine triplet

Z(C) ∼ (0, 0,m(C)να) (3.3)
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is called a symmetric α-stable random measure when the Lévy measure να is given

by

να(dx)
def
= c |x|−α−1 dx. (3.4)

It is called a symmetric tempered α-stable random measure when the Lévy measure

is

να(dx)
def
= c |x|−α−1 dx. (3.5)

Here, c > 0 is called the dispersion parameter of an α-stable distribution on R. In

the former case, the the characteristic function of Z(C) is

E
(
eiuZ(C)

)
= e−m(C)|u|α . (3.6)

In the following section, we will extend work of Rajput and Rosiński (1989) to

define the integral of a random field driven by an infinitely divisible random measure.

For such stochastic integrals to be fully utilized, results analogous to Itô’s Isometry

are needed. These will be studied in Section 3.3. As examples, we will focus on the

two random measures above.

3.2 Stochastic integration

3.2.1 Space of integrands

In this section we define the space of integrands for the stochastic integral.

Throughout, assume that m is a control measure of Z that may be disintegrated as

m(dt, dx) = ρ(t, dx)dt for some function ρ : [0, T ]× B(Rd)→ [0,∞]. Since m is a σ-

finite measure, for each t ∈ [0, T ], we require that ρ(t, ·) is also a σ-finite measure. We

single out time in this assumption due to current conventions. By using the Lebesgue

measure to measure time, the distribution of Z(C) is stationary and one can speak of

stationary random measures. It is worth noting that this theory of integration could

be produced without the above assumption on the control measure m. In this case,

one must restrict to predictable random fields. Otherwise, the following developments

remain unchanged.

Definition 3.2.1. A random field X : [0, T ] × Rd × Ω → R is Ft-adapted

(nonanticipating) if {ω : X(t, x, ω) ≤ a} ∈ Ft for every a ∈ R and for every x ∈ Rd.
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For example, one may take {Ft}t≥0 as follows: Let

F ′t
def
= σ

{
Z(C) : C ⊂ [0, t]× Rd, C ∈ B0([0, T ]× Rd)

}
and Ft be F ′t augmented with the null sets of F .

Let L0
T

(
[0, T ]× Rd × Ω;B([0, T ]× Rd)⊗F ;m⊗ P

)
be the collection of all mea-

surable random fields

X :
(
[0, T ]× Rd × Ω,B([0, T ]× Rd)⊗F

)
→ (R,B(R)),

such that X is Ft-adapted. When there is no confusion, we may simply write L0
T .

Denote by S the collection of all simple random fields f : [0, T ]×Rd × Ω→ R of the

form

f(t, x, ω) =
m∑
i=1

n∑
j=1

fij(ω)1(ti,ti+1](t)1Aj(x), (3.7)

where 0 ≤ t1 < . . . < tm+1 ≤ T , fij are bounded Fti-measurable random variables,

and Aj ∈ B0(Rd) are disjoint subsets of Rd with m((ti, ti+1]×Aj) <∞ for each i and

j. For p > 0, we denote by LpT
def
= Lp([0, T ]×Rd × Ω;B([0, T ]×Rd)⊗F ;m⊗ P) the

collection of all random fields X ∈ L0
T such that

‖X‖p,T
def
=

(
E
∫ T

0

∫
Rd
|X(t, x)|pm(dt, dx)

)1/p

=

(
E
∫ T

0

∫
Rd
|X(t, x)|p ρ(t, dx)dt

)1/p

<∞.

In the case 0 < p < 1, ‖·‖p,T does not satisfy the triangle inequality. However,

by subadditivity, ‖X + Y ‖pp,T ≤ ‖X‖
p
p,T + ‖Y ‖pp,T , so that ‖ · ‖pp,T is an F-norm and

‖X − Y ‖pp,T defines a metric on LpT .

Theorem 3.2.2. For p > 0, S is dense in LpT .

If one restricts to predictable integrands, the proof of this theorem simplifies

dramatically by observing that sets of the form (s, t]×A, where s < t and A ∈ B
(
Rd
)
,

generate the predictable sigma algebra. More work is required when this assumption

is not imposed. We will need the following lemma in the proof of Theorem 3.2.2

showing the Lebesgue integral in time of adapted random processes is adapted.
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Lemma 3.2.3. Let A be a sigma-subalgebra of F . Suppose that ξ : (Ω × R+,A ⊗
B(R+))→ (R,B(R)) is measurable and bounded and ξ(·, t) is A-measurable for every

t ∈ [a, b). Then

∫ b

a

ξ(·, t)dt is also A-measurable.

Proof. Let (Ω′,F ′,P′) be another probability space and Un : Ω′ → [a, b) be uniform

i.i.d. random variables. Define a sequence of random variables on (Ω×Ω′,F⊗F ′,P⊗
P′) by Xn(ω, ω′) := ξ(ω, Un(ω′)). For each ω ∈ Ω, Xn(ω, ·) is an i.i.d. sequence of

random variables on Ω′ and by the Strong Law of Large Numbers,

ξ(ω, U1) + · · ·+ ξ(ω, Un)

n

P′−a.s.−→ EP′ξ(ω, U1) =
1

b− a

∫ b

a

ξ(ω, t)dt. (3.8)

Let

A
def
=

{
(ω, ω′) :

ξ(ω, U1(ω′)) + · · ·+ ξ(ω, Un(ω′))

n
→ 1

b− a

∫ b

a

ξ(ω, t)dt

}
,

Aω′
def
=

{
ω :

ξ(ω, U1(ω′)) + · · ·+ ξ(ω, Un(ω′))

n
→ 1

b− a

∫ b

a

ξ(ω, t)dt

}
,

and

Aω
def
=

{
ω′ :

ξ(ω, U1(ω′)) + · · ·+ ξ(ω, Un(ω′))

n
→ 1

b− a

∫ b

a

ξ(ω, t)dt

}
.

Then we have A =
⋃
ω′∈Ω′

(Aω′ × {ω′}) =
⋃
ω∈Ω

({ω} × Aω) and by Fubini’s theorem and

(3.8),

1 ≥ (P⊗ P′)(A) =

∫
Ω×Ω′

1A(ω, ω′)P⊗ P′(dω × dω′)

=

∫
Ω

∫
Ω′
1
⋃
x∈Ω

({x} × Ax)


(ω, ω′)P′(dω′)P(dω)

=

∫
Ω

∫
Ω′
1Aω(ω′)P′(dω′)P(dω)

=

∫
Ω

P′(Aω)P(dω) =

∫
Ω

P(dω) = 1.
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Therefore P⊗ P′(A) = 1. But again by Fubini’s theorem,

1 = P⊗ P′(A) =

∫
Ω×Ω′

1A(ω, ω′)P⊗ P′(dω × dω′)

=

∫
Ω′

∫
Ω

1
⋃
x∈Ω′

(Ax × {x})


(ω, ω′)P(dω)P′(dω′)

=

∫
Ω′

∫
Ω

1Aω′ (ω)P(dω)P′(dω′) =

∫
Ω′
P(Aω′)P′(dω′).

Therefore
∫

Ω′
(1− P(Aω′))P′(dω′) = 0. Since 1− P(Aω′) ≥ 0, P(Aω′) = 1 P′-a.s. and

hence, there exists an Ω′0 ⊂ Ω′ such that P′(Ω′0) = 1 and for each ω′ ∈ Ω′0, P (Aω′) = 1.

Fix ω′0 ∈ Ω′0 and put tn
def
= Un(ω′0). Then

ξ(ω, t1) + · · ·+ ξ(ω, tn)

n

P−a.s.−→ 1

b− a

∫ b

a

ξ(ω, t)dt.

Since ti ∈ [a, b), ξ(·, ti) is A-measurable for each i and therefore the limit
1
b−a

∫ b
a
ξ(·, t)dt is A-measurable. In particular,

∫ b
a
ξ(·, t)dt is A-measurable.

To complete the proof of Theorem 3.2.2, we follow the outline of Bensoussan and

Lions (1984, pgs. 261 - 262).

Proof of Theorem 3.2.2. Let X ∈ LpT . First, assume that X is bounded and vanishes

off of (S1, S2]×B ⊂ [0, T ]× Rd with m ((S1, S2]×B) <∞. Set

φnj (x, ω)
def
=

n

S2 − S1

∫ S1+
j(S2−S1)

n

S1+
(j−1)(S2−S1)

n

X(s, x, ω)ds

and

φn(t, x, ω)
def
=

n−1∑
j=1

φnj (x, ω)1(
S1+

j(S2−S1)
n

,S1+
(j+1)(S2−S1)

n

](t).

Since X is nonanticipating, X(s, x, ·) is F
S1+

j(S2−S1)
n

-measurable for every

s ∈
[
S1 + (j−1)(S2−S1)

n
, S1 + j(S2−S1)

n

)
. Using Lemma 3.2.3, we have that φnj (x, ω) is

F
S1+

j(S2−S1)
n

-measurable, so that φn is nonanticipating. Letting α = 1
4

and B(t, rn) =
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B
(
t, 2(S2−S1)

n

)
in Theorem C.1.2, for every ω and for every x,

lim
n→∞

φn(t, x, ω) = X(t, x, ω) for Leb-a.e. t.

Since we have assumed X is bounded and m ((S1, S2]×B) < ∞, φn are uniformly

bounded vanishing off of (S1, S2]×B, and by the Dominated Convergence theorem,

lim
n→∞

E
∫ T

0

∫
Rd
|X(t, x)− φn(t, x)|p ρ(t, dx)dt

= lim
n→∞

E
∫ S2

S1

∫
B

|X(t, x)− φn(t, x)|p ρ(t, dx)dt

= E
∫ S2

S1

∫
B

lim
n→∞

|X(t, x)− φn(t, x)|p ρ(t, dx)dt = 0.

Let ε > 0. Then for large n,

‖X − φn‖p,T <
ε

2
.

Fix n large and for each j, consider the map (Rd,B(Rd)) → L0
(

Ω,F
S1+

j(S2−S1)
n

,P
)

given by

x 7→ (ω 7→ φnj (x, ω)).

By standard analysis results, there exist disjoint Aji ∈ B(Rd) and bounded

F
S1+

j(S2−S1)
n

-measurable random variables ϕij such that

∣∣∣∣∣∣φnj (x, ω)−
m(j)∑
i=1

ϕij(ω)1Aji
(x)

∣∣∣∣∣∣ < ε

2m ((S1, S2]×B)

for every x ∈ Rd. Rewrite the collection of sets {Aji}n−1
j=1 as a collection of m disjoint

sets {Ak}mk=1 and set ψkj = ϕij if Ak ⊂ Aji . Then∣∣∣∣∣φn(t, x, ω)−
n−1∑
j=1

m∑
k=1

ψkj(ω)1Ak(x)1( j(S2−S1)
n

,
(j+1)(S2−S1)

n

](t)
∣∣∣∣∣ < ε

2m ((S1, S2]×B)
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for each (t, x, ω) ∈ [0, T ]× Rd × Ω. If p ≥ 1, Minkowski’s inequality yields,

(
E
∫ T

0

∫
Rd

∣∣∣∣∣X(t, x)−
n−1∑
j=1

m∑
k=1

ψkj1Ak(x)1( j(S2−S1)
n

,
(j+1)(S2−S1)

n

](t)
∣∣∣∣∣
p

ρ(t, dx)dt

)1/p

≤
(
E
∫ T

0

∫
Rd
|X(t, x)− φn(t, x)|p ρ(t, dx)dt

)1/p

+

(
E
∫ T

0

∫
Rd

∣∣∣∣∣φn(t, x)−
n−1∑
j=1

m∑
k=1

ψkj1Ak(x)1( j(S2−S1)
n

,
(j+1)(S2−S1)

n

](t)
∣∣∣∣∣
p

ρ(t, dx)dt

)1/p

<
ε

2
+

ε

2m ((S1, S2]×B)
m ((S1, S2]×B)

= ε,

showing that X is in the closure of S under the Lp([0, T ]×Rd×Ω)-norm. If 0 < p < 1,

E
∫ T

0

∫
Rd

∣∣∣∣∣X(t, x)−
n−1∑
j=1

m∑
k=1

ψkj1Ak(x)1( j(S2−S1)
n

,
(j+1)(S2−S1)

n

](t)
∣∣∣∣∣
p

ρ(t, dx)dt

≤ E
∫ T

0

∫
Rd
|X(t, x)− φn(t, x)|p ρ(t, dx)dt

+ E
∫ T

0

∫
Rd

∣∣∣∣∣φn(t, x)−
n−1∑
j=1

m∑
k=1

ψkj1Ak(x)1( j(S2−S1)
n

,
(j+1)(S2−S1)

n

](t)
∣∣∣∣∣
p

ρ(t, dx)dt

<
(ε

2

)p
+

(
ε

2m ((S1, S2]×B)
m ((S1, S2]×B)

)p
= 2

(ε
2

)p
,

showing that X is in the closure of S under the metric induced by norm ‖·‖pp,T .
Finally, let ε > 0, let C ∈ B

(
[0, T ]× Rd

)
⊗F with P⊗m (C) <∞, and let X be

an arbitrary random field in LpT . By Corollary C.2.2, there exists

p⋃
i=1

((si, si+1]×Bi × γi)

such that

P⊗m

(
C4

p⋃
i=1

((si, si+1]×Bi × γi)

)
<
ε

2
.
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By definition, there exists an n so large that

P⊗m (|X| > n) <
ε

2
.

Define

Xn(t, x, ω)
def
= X1{|X|≤n}(t, x, ω)1

p⋃
i=1

(si, si+1]×Bi × γi)


(t, x, ω)

=

p∑
i=1

X(t, x, ω)1|X|≤n(ω)1(si,si+1](t)1Bi(x)1γi(ω).

Then by the above, each term in the finite sum of Xn is in the closure of S and hence,

so is Xn. Restricted to C,

P⊗m (|X −Xn| > ε) = P⊗m

(
{|X| > n}

⋃(
C \

p⋃
i=1

((si, si+1]×Bi × γi)

))

≤ P⊗m (|X| > n) + P⊗m

(
C4

p⋃
i=1

((si, si+1]×Bi × γi)

)
<
ε

2
+
ε

2
= ε.

So Xn converges locally in P⊗m-measure. Since P⊗m is a σ-finite measure, there

exists a subsequence nk such that Xnk → X P⊗m-a.e. Since |Xn −X| ≤ 2X ∈ LpT ,

the dominated convergence theorem gives

lim
k→∞
‖Xnk −X‖p,T = 0.

Therefore X is in the closure of S under the LpT norm.

Finally, we denote by LpT,a.s. the collection of all random fields X ∈ L0
T such that

∫ T

0

∫
Rd
|X(t, x, ω)|p ρ(t, dx)dt <∞ a.s.

Theorem 3.2.4. For each X ∈ L0
T , there exists fn, gn ∈ S such that

i. fn → f locally in P⊗m-measure.

ii. gn → f P⊗m-a.e.
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Again, this theorem follows from standard analysis results if one restricts to

predictable integrands.

Proof. Let X ∈ L0
T . By decomposing X as X = X+ − X−, we may assume that

X ≥ 0. Define a sequence {Xn} ∈ L0
T by Xn

def
= X ∧ n. Then, for each n, Xn ∈ L1

T

and by Theorem 3.2.2, there exists simple random fields fnk ∈ S such that fnk → Xn

in L1
T as k → ∞. Therefore fnk → Xn locally in P ⊗ m-measure as k → ∞. Let

ε, δ > 0 and let C ⊂ [0, T ]×Rd×Ω be such that P⊗m (C) <∞. For each n, choose

kn large so that, when restricted to C,

P⊗m
(∣∣fnkn −Xn

∣∣ ≥ ε

2

)
<
δ

2

and choose n large so that, when restricted to C,

P⊗m (X > n) <
δ

2
.

For such n, when restricted to C,

P⊗m
(∣∣X − fnkn∣∣ ≥ ε

)
≤ P⊗m

(
|X −Xn|+

∣∣Xn − fnkn
∣∣ ≥ ε

)
≤ P⊗m

(
|X −Xn| ≥

ε

2

)
+ P⊗m

(∣∣Xn − fnkn
∣∣ ≥ ε

2

)
≤ P⊗m

(
|X −Xn| ≥

ε

2

)
+
δ

2

≤ P⊗m (X > n) +
δ

2

≤ δ

2
+
δ

2
= δ.

Since C was arbitrary, we have shown that fnkn converges locally in P⊗m-measure to

X. Since P ⊗m is a σ-finite measure, there exists a subsequence
{
f
nj
knj

}
converging

to X P⊗m-a.e.

3.2.2 The stochastic integral driven by random measures

For a simple random field f ∈ S, we define the integral of f with respect Z by∫ T

0

∫
Rd
f(t, x, ω)Z(dt, dx;ω)

def
=

m∑
i=1

n∑
j=1

fij(ω)Z((ti, ti+1]× Aj;ω).
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Let

Zij(ω)
def
= Z((ti, ti+1]× Aj;ω).

We will often simply write∫ T

0

∫
Rd
fZ(dt, dx) =

∫ T

0

∫
Rd
f(t, x)Z(dt, dx) =

m∑
i=1

n∑
j=1

fijZij.

For each f ∈ S we then define

‖f‖Z
def
= sup

φ∈S1

∥∥∥∥∫ T

0

∫
Rd
φfZ(dt, dx)

∥∥∥∥
0

,

where S1 ⊂ S is the set of simple random fields bounded by 1 and ‖·‖0 is an F-

norm on the space of random variables defined in example B.5. ‖·‖Z is an F-norm

and modular on S (see Appendix B for definitions). We can extend the definition of

stochastic integration in the usual way:

Definition 3.2.5. An adapted random field f is said to be Z-integrable if there exists

a sequence of adapted simple random fields {fn} ∈ S such that

i. fn → f P⊗m-a.e.

ii. {fn} is a Cauchy sequence with respect to ‖·‖Z .

For such adapted random fields f , we then define the stochastic integral of f with

respect to Z by ∫ T

0

∫
Rd
fZ(dt, dx)

def
= P− lim

n→∞

∫ T

0

∫
Rd
fnZ(dt, dx).

We next show that this definition is well-defined and identify the space of Z-integrable

adapted random fields.

Define a function Φ0 : [0, T ]× Rd × R→ R+ by

Φ0(t, x, u)
def
= |U(t, x, u)|+ σ2(t, x)u2 +

∫
R
JuzK2ν(t, x, dz), (3.9)

where

U(t, x, u)
def
= b(t, x)u+

∫
R

(JuzK− uJzK) ν(t, x, dz)
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and u ∈ R. In the next lemma, we will see that Φ0 gives us a means to control

convergence of ‖·‖Z . The proof extends results of Rajput and Rosiński (1989) by

utilizing a technique known as decoupling, for which the integrand and integrator can

be treated independently. Let Z ′ be a copy of Z defined on a probability space Ω′,

independent of Z and F . Define an enlarged σ-algebra on the product space Ω× Ω′

by

F̂t
def
= σ

(
Ft, Z ′(C) : C ⊂ [0, t]× Rd, C ∈ B0([0, T ]× Rd)

)
.

For an Ft-adapted simple random field g(t, x, ω) =
∑m

i=1

∑q
j=1 gij(ω)1(ti,ti+1]×Aj(t, x),

define two sequences of F̂ti-adapted random variables by

Xi(ω, ω
′) = Xi(ω)

def
=

q∑
j=1

gij(ω)Z((ti, ti+1]× Aj;ω)

and

Yi(ω, ω
′)
def
=

q∑
j=1

gij(ω)Z ′((ti, ti+1]× Aj;ω′).

Observe the following:

i. For each ω ∈ Ω, {Yi(ω, ·)}mi=1 is a sequence of independent random variables on

Ω′.

ii. Xi and Yi are F̂ti-adapted with

P⊗P′
(
Xi ∈ A|F̂ti

)
= P (Xi ∈ A|Fti) = P

(
q∑
j=1

gij(ω)Z((ti, ti+1]× Aj) ∈ A|Fti

)

and

P⊗ P′
(
Yi ∈ A|F̂ti

)
= P⊗ P′

(
q∑
j=1

gij(ω)Z ′((ti, ti+1]× Aj) ∈ A|Fti

)

= P

(
q∑
j=1

gij(ω)Z((ti, ti+1]× Aj) ∈ A|Fti

)
,

since both Z ′((ti, ti+1]×Aj) and Z((ti, ti+1]×Aj) are independent of F̂ti for every

j.
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Sequences that satisfy (i) and (ii) are said to be F̂ti-tangent sequences. Moreover,

observe that

P⊗ P′
(
Yi ∈ A|F̂ti

)
= P⊗ P′ (Yi ∈ A|F) = P′ (Yi ∈ A|F)

and, conditioned on F , {Yi}mi=1 is a sequence of independent random variables on

Ω′. The sequence {Yi}mi=1 is said to satisfy conditional independence. The sequence

{Yi}mi=1 satisfying (i), (ii), and conditional independence is said to be a decoupled F̂ti-
tangent sequence to {Xi}mi=1. Kwapień and Woyczyński (1992, Section 5.7) showed

the following:

Theorem 3.2.6. Let X1, . . . , Xm and Y1, . . . , Ym be two Fi-tangent sequences of

random variables. If ϕ : R+ → R+ is a continuous, nondecreasing function of

moderate growth (see Definition C.1.4 and Theorem C.1.5), then there exists a

constant K1, depending only on ϕ, such that

Eϕ

(∣∣∣∣∣
m∑
i=1

Xi

∣∣∣∣∣
)
≤ K1 max

εi=±1
Eϕ

(∣∣∣∣∣
m∑
i=1

εiYi

∣∣∣∣∣
)

and

Eϕ

(
max

1≤k≤m

∣∣∣∣∣
k∑
i=1

Xi

∣∣∣∣∣
)
≤ K1 max

εi=±1
Eϕ

(
max

1≤k≤m

∣∣∣∣∣
k∑
i=1

εiYi

∣∣∣∣∣
)
.

Moreover, if Y1, . . . , Ym satisfy property conditional independence, then there exists a

constant K2, depending only on ϕ, such that

Eϕ

(∣∣∣∣∣
m∑
i=1

Xi

∣∣∣∣∣
)
≤ K2Eϕ

(∣∣∣∣∣
m∑
i=1

Yi

∣∣∣∣∣
)

and

Eϕ

(
max

1≤k≤m

∣∣∣∣∣
k∑
i=1

Xi

∣∣∣∣∣
)
≤ K2Eϕ

(
max

1≤k≤m

∣∣∣∣∣
k∑
i=1

Yi

∣∣∣∣∣
)
.

Next, we use these decoupled tangent sequences and the above theorem to extend

the deterministic integrand results of Rajput and Rosiński (1989) to f ∈ L0
T .
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Lemma 3.2.7. Let {fn}n≥0 be a sequence of adapted simple random fields. The

following conditions are equivalent:

i. ‖fn‖Z = sup
φ∈S1

∥∥∥∥∫ T

0

∫
Rd
φ(t, x)fn(t, x)Z(dt, dx)

∥∥∥∥
0

→ 0

ii. ‖fn‖Z′ = sup
φ∈S1

∥∥∥∥∫ T

0

∫
Rd
φ(t, x)fn(t, x)Z ′(dt, dx)

∥∥∥∥
0

→ 0

iii.
∫ T

0

∫
Rd Φ0(t, x, fn(t, x, ·))m(dt, dx)

P→ 0.

Proof. Let f be an adapted simple random field. For any adapted random field φ ∈ S1,

write (φf)(t, x, ω) as
m∑
i=1

q∑
j=1

gij(ω)1(si,si+1](t)1Bj(x). Define a function ϕ : R+ → R+

by

ϕ(x) = x ∧ 1.

Note that ϕ satisfies the ∆2 condition (see Definition C.1.4) since

ϕ(2x) = (2x) ∧ 1 ≤ (2x) ∧ 2 = 2(x ∧ 1) = 2ϕ(x).

By Theorem C.1.5, ϕ is of moderate growth (see Definition C.1.4 Item ii) and hence,

by Theorem 3.2.6 applied to Xi
def
=

q∑
j=1

gijZij and Yi
def
=

q∑
j=1

gijZ
′
ij, there exists a

constant C, depending only on ϕ, such that

E

(∣∣∣∣∫ T

0

∫
Rd

(φf)(t, x)Z(dt, dx)

∣∣∣∣ ∧ 1

)
= E

(∣∣∣∣∣
m∑
i=1

q∑
j=1

gijZ ((si, si+1]×Bj)

∣∣∣∣∣ ∧ 1

)

≤ C max
εi=±1

E

(∣∣∣∣∣
m∑
i=1

q∑
j=1

εigijZ
′ ((si, si+1]×Bj)

∣∣∣∣∣ ∧ 1

)
≤ C ‖f‖Z′ .

Since φ was arbitrary,

‖f‖Z ≤ C ‖f‖Z′ .

The same argument holds when the roles of Z and Z ′ are reversed. So there exists

constants C1 and C2 such that

C1 ‖f‖Z′ ≤ ‖f‖Z ≤ C2 ‖f‖Z′ .
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This shows the equivalence of Item i and Item ii.

To show Item iii ⇒ Item ii, assume that
∫ ∫

Φ0(t, x, fn(t, x, ·))m(dt, dx)
P→ 0 and

let {nk}k∈N be a sequence of natural numbers. Then∫ T

0

∫
Rd

Φ0(t, x, fnk(t, x, ·))m(dt, dx)
P→ 0

and hence, there exists a subsequence {nkl} ⊂ {nk} and an Ω0 ⊂ Ω with P(Ω0) = 1

such that ∫ T

0

∫
Rd

Φ0

(
t, x, fnkl (t, x, ω)

)
m(dt, dx)→ 0

for every ω ∈ Ω0. Let φ ∈ S1. By Rosiński (2007a, Lemma 2.1.5),

Φ0

(
t, x, φ(t, x, ω)fnkl (t, x, ω)

)
≤ 2Φ0

(
t, x, fnkl (t, x, ω)

)
for each (t, x, ω) ∈ R+ × Rd × Ω and hence,

∫ T

0

∫
Rd

Φ0

(
t, x, φ(t, x, ω)fnkl (t, x, ω)

)
m(dt, dx)

≤
∫ T

0

∫
Rd

2Φ0

(
t, x, fnkl (t, x, ω)

)
m(dt, dx)→ 0

for every ω ∈ Ω0. That is, for every ω ∈ Ω0,

∫ T

0

∫
Rd

∣∣∣U (t, x, φ(t, x, ω)fnkl (t, x, ω)
)∣∣∣m(dt, dx)

+

∫ T

0

∫
Rd
σ2(t, x)φ2(t, x, ω)f 2

nkl
(t, x, ω)m(dt, dx)

+

∫ T

0

∫
Rd

∫
R
Jφ(t, x, ω)fnkl (t, x, ω)zK2ν(t, x, dz)m(dt, dx)→ 0.

Since each integrand is positive,∫ T

0

∫
Rd

∣∣∣U (t, x, φ(t, x, ω)fnkl (t, x, ω)
)∣∣∣m(dt, dx)→ 0,∫ T

0

∫
Rd
σ2(t, x)φ2(t, x, ω)f 2

nkl
(t, x, ω)m(dt, dx)→ 0,
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and ∫ T

0

∫
Rd

∫
R
Jφ(t, x, ω)fnkl (t, x, ω)zK2ν(t, x, dz)m(dt, dx)→ 0

for every ω ∈ Ω0. Define a new measure on B(R) by

Fg(A)
def
= F

{
(t, x, z) ∈ [0, T ]× Rd × R : g(t, x)z ∈ A \ {0}

}
=

∫ T

0

∫
Rd

∫
R

1A/g(t,x)(z)ν(t, x, dz)m(dt, dx)

=

∫ T

0

∫
Rd
ν (t, x, A/g(t, x))m(dt, dx).

Then for every ω ∈ Ω0,∫ T

0

∫
Rd

∫
R
Jφ(t, x, ω)fnkl (t, x, ω)zK2ν(t, x, dz)m(dt, dx) =

∫
R
JzK2Fφfnkl

(dz)→ 0.

Fix ω ∈ Ω0. The the function
(
φfnkl

)
(·, ·, ω) is measurable and Z ′-integrable (as a

deterministic function, see Rajput and Rosiński (1989)) and the stochastic integral is

infinitely divisible with Lévy-Khintchine triplet

(∫ T

0

∫
Rd
U
(
t, x, φ(t, x, ω)fnkl (t, x, ω)

)
m(dt, dx),∫ T

0

∫
Rd
σ2(t, x)φ2(t, x, ω)f 2

nkl
(t, x, ω)m(dt, dx), Fφfnkl

)
.

By Rajput and Rosiński (1989, Lemma 3.2),

L
{∫ T

0

∫
Rd
φ(t, x, ω)fnkl (t, x, ω)Z ′(dt, dx;ω′)

}
w→ δ0

and hence∫
Ω

(∣∣∣∣∫ T

0

∫
Rd
φ(t, x, ω)fnkl (t, x, ω)Z ′(dt, dx;ω′)

∣∣∣∣ ∧ 1

)
P(dω′)→ 0.
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Since P(Ω0) = 1, the dominated convergence theorem implies∫
Ω

∫
Ω

(∣∣∣∣∫ T

0

∫
Rd
φ(t, x, ω)fnkl (t, x, ω)Z ′(dt, dx;ω′)

∣∣∣∣ ∧ 1

)
P(dω′)P(dω)→ 0

for every φ ∈ S1. For each l, choose φl ∈ S1 such that

∥∥∥fnkl∥∥∥Z′ <
∫

Ω

∫
Ω

(∣∣∣∣∫ T

0

∫
Rd
φl(t, x, ω)fnkl (t, x, ω)Z ′(dt, dx;ω′)

∣∣∣∣ ∧ 1

)
P(dω′)P(dω) +

1

l
.

Repeating the above argument with φl replacing φ gives∫
Ω

∫
Ω

(∣∣∣∣∫ T

0

∫
Rd
φl(t, x, ω)fnkl (t, x, ω)Z ′(dt, dx;ω′)

∣∣∣∣ ∧ 1

)
P(dω′)P(dω)→ 0

and hence, ∥∥∥fnkl∥∥∥Z′ → 0.

So every sequence {nk} has a subsequence {nkl} such that∥∥∥fnkl∥∥∥Z′ → 0

as l→∞. Therefore,

‖fn‖Z′ → 0.

Finally, to show Item ii ⇒ Item iii, assume

‖fn‖Z′ → 0.

By definition,

sup
φ∈S1

E

(∣∣∣∣∫ T

0

∫
Rd
φ(t, x, ω)fn(t, x, ω)Z ′(dt, dx;ω)

∣∣∣∣ ∧ 1

)
→ 0.

For each n, define φn ∈ S1 by

φn(t, x, ω) = signU(t, x, fn(t, x, ω)).
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Then∫
Ω

∫
Ω

(∣∣∣∣∫ T

0

∫
Rd
φn(t, x, ω)fn(t, x, ω)Z ′(dt, dx;ω′)

∣∣∣∣ ∧ 1

)
P(dω′)P(dω)

= E

(∣∣∣∣∫ T

0

∫
Rd
φn(t, x, ω)fn(t, x, ω)Z ′(dt, dx;ω)

∣∣∣∣ ∧ 1

)
→ 0.

Therefore ∫
Ω

(∣∣∣∣∫ T

0

∫
Rd
φn(t, x, ω)fn(t, x, ω)Z ′(dt, dx;ω′)

∣∣∣∣ ∧ 1

)
P(dω′)

P→ 0

and there exists a subsequence {nk}k∈N and an Ω0 ⊂ Ω with P (Ω0) = 1 such that∫
Ω

(∣∣∣∣∫ T

0

∫
Rd
φnk(t, x, ω)fnk(t, x, ω)Z ′(dt, dx;ω′)

∣∣∣∣ ∧ 1

)
P(dω′)→ 0

for every ω ∈ Ω0. Fix ω ∈ Ω0. We have∫ T

0

∫
Rd
φnk(t, x, ω)fnk(t, x, ω)Z ′(dt, dx;ω′)

P→ 0,

so that L
(∫ T

0

∫
Rd
φnk(t, x, ω)fnk(t, x, ω)Z ′(dt, dx)

)
w→ δ0. But φnk(t, x, ω)fnk(·, ·, ω)

is measurable and Z ′-integrable as a deterministic function. By Rajput and Rosiński

(1989, Theorem 2.7), the stochastic integral is infinitely divisible with generating

triplet

(∫ T

0

∫
Rd
U (t, x, φnk(t, x, ω)fnk(t, x, ω))m(dt, dx),∫ T

0

∫
Rd
σ2(t, x)f 2

nk
(t, x, ω)m(dt, dx), Fφnkfnk

)
.

By Rajput and Rosiński (1989, Lemma 3.2),∫ T

0

∫
Rd
U (t, x, φnk(t, x, ω)fnk(t, x, ω))m(dt, dx)→ 0,∫ T

0

∫
Rd
σ2(t, x)f 2

nk
(t, x, ω)m(dt, dx)→ 0,
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and ∫
R
JzK2Fφnkfnk (dz)→ 0.

Since U(t, x, ·) is an odd function,∫ T

0

∫
Rd

Φ0 (t, x, fnk(t, x, ω))m(dt, dx)

=

∫ T

0

∫
Rd

(
|U (t, x, fnk(t, x, ω))|+ σ2(t, x)f 2

nk
(t, x, ω)

)
m(dt, dx)

+

∫ T

0

∫
Rd

∫
R
Jfnk(t, x, ω)zK2ν(t, x, dz)m(dt, dx)

=

∫ T

0

∫
Rd

(
U (t, x, φnk(t, x, ω)fnk(t, x, ω)) + σ2(t, x)f 2

nk
(t, x, ω)

)
m(dt, dx)

+

∫ T

0

∫
Rd

∫
R
Jφnk(t, x, ω)fnk(t, x, ω)zK2ν(t, x, dz)m(dt, dx)→ 0.

Since ω ∈ Ω0 was arbitrary and P (Ω0) = 1,∫ T

0

∫
Rd

Φ0 (t, x, fnk(t, x, ·))m(dt, dx)→ 0 a.s.

We have shown that if ‖fn‖Z′ → 0, then there exists a subsequence {nk} such that∫ T

0

∫
Rd

Φ0 (t, x, fnk (t, x, ·))m(dt, dx)→ 0 a.s.

Let ‖fn‖Z′ → 0 and {nk}k∈N a sequence of natural numbers. Then ‖fnk‖Z′ → 0 and

by the above, there exists a subsequence {nkl}l∈N ⊂ {nk}k∈N such that

∫ T

0

∫
Rd

Φ0

(
fnkl (t, x, ·)

)
m(dt, dx)→ 0 a.s.

By Lemma C.1.3, ∫ T

0

∫
Rd

Φ0 (t, x, fn(t, x, ·))m(dt, dx)
P→ 0.
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We now see the power of the decoupling approach. We may treat the integrand

and integrator as independent. The next two theorems are the main results in

the development of the stochastic integral. The first shows that the integral does

not depend upon the approximating sequence of simple random fields. The second

addresses which random fields are Z-integrable in terms of the control measure m.

Theorem 3.2.8. Suppose that f ∈ L0
T is Z-integrable. Then the stochastic integral

is well-defined.

Proof. Let fn, gn ∈ S be simple random fields such that

i. fn → f and gn → f P⊗m-a.e.

ii. ‖fn − fm‖Z → 0 and ‖gn − gm‖Z → 0.

By Lemma 3.2.7,∫ T

0

∫
Rd

Φ0 (t, x, fm(t, x, ω)− fn(t, x, ω))m(dt, dx)→ 0

and ∫ T

0

∫
Rd

Φ0 (t, x, gm(t, x, ω)− gn(t, x, ω))m(dt, dx)→ 0.

Since Φ0 ≥ 0, Fatou’s lemma gives∫ T

0

∫
Rd

Φ0 (t, x, f(t, x, ω)− fn(t, x, ω))m(dt, dx)→ 0

and ∫ T

0

∫
Rd

Φ0 (t, x, f(t, x, ω)− gn(t, x, ω))m(dt, dx)→ 0.

By Rosiński (2007a, Lemma 2.1.5),∫ T

0

∫
Rd

Φ0(t, x, fn(t, x, ω)− gn(t, x, ω))m(dt, dx)

≤ 3

∫ T

0

∫
Rd

Φ0(t, x, fn(t, x, ω)− f(t, x, ω))m(dt, dx)

+ 3

∫ T

0

∫
Rd

Φ0(t, x, f(t, x, ω)− gn(t, x, ω))m(dt, dx)→ 0.

By Lemma 3.2.7,

‖fn − gn‖Z → 0,
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that is,

sup
φ∈S1

∥∥∥∥∫ T

0

∫
Rd
φ (fn − gn)Z(dt, dx)

∥∥∥∥
0

→ 0.

Take φ ≡ 1 ∈ S1. Then ∥∥∥∥∫ T

0

∫
Rd

(fn − gn)Z(dt, dx)

∥∥∥∥
0

→ 0,

showing ∫ T

0

∫
Rd

(fn − gn)Z(dt, dx)
P→ 0.

Theorem 3.2.9. For random field f ∈ L0
T , the following are equivalent:

i. f is Z-integrable.

ii. f is Z ′-integrable.

iii.
∫ T

0

∫
Rd Φ0(t, x, f(t, x, ·))m(dt, dx) <∞ a.s.

Proof. That Item i is equivalent to Item ii is immediate by Lemma 3.2.7 since {fn}n≥0

is a Cauchy sequence with respect to ‖ · ‖Z if and only if it is a Cauchy sequence with

respect to ‖ · ‖Z′ .
Item i ⇒ Item iii. Let f be an adapted Z-integrable random field. Then there

exists a sequence of simple random fields {fn} such that

i. fn → f P⊗m-a.e.

ii. ‖fn − fm‖Z → 0 as m,n→∞.

By Lemma 3.2.7,∫ T

0

∫
Rd

Φ0 (t, x, fn (t, x, ·)− fm (t, x, ·))m(dt, dx)
P→ 0.

By Rosiński (2007a, Lemma 2.1.5),∫ T

0

∫
Rd

Φ0 (t, x, f (t, x, ·))m(dt, dx)

=

∫ T

0

∫
Rd

Φ0 (t, x, f(t, x, ·)− fn(t, x, ·) + fn(t, x, ·))m(dt, dx)
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≤ 3

∫ T

0

∫
Rd

Φ0 (t, x, f(t, x, ·)− fn(t, x, ·))m(dt, dx) (3.10)

+ 3

∫ T

0

∫
Rd

Φ0 (t, x, fn(t, x, ·))m(dt, dx).

Since Φ0 ≥ 0, by Fatou’s lemma, for every ω ∈ Ω0,

∫ T

0

∫
Rd

Φ0 (t, x, f(t, x, ·)− fn(t, x, ·))m(dt, dx)

≤ lim inf
m→∞

∫ T

0

∫
Rd

Φ0 (t, x, fm(t, x, ·)− fn(t, x, ·))m(dt, dx).

Therefore{
ω :

∣∣∣∣∫ T

0

∫
Rd

Φ0 (t, x, f(t, x, ω)− fn(t, x, ω))m(dt, dx)

∣∣∣∣ > ε

}
=

{
ω :

∫ T

0

∫
Rd

Φ0 (t, x, f(t, x, ω)− fn(t, x, ω))m(dt, dx) > ε

}
⊂
{
ω : lim inf

m→∞

∫ T

0

∫
Rd

Φ0 (t, x, fm(t, x, ω)− fn(t, x, ω))m(dt, dx) > ε

}
and hence,

P
(∣∣∣∣∫ T

0

∫
Rd

Φ0 (t, x, f(t, x, ω)− fn(t, x, ω))m(dt, dx)

∣∣∣∣ > ε

)
≤ P

(
lim inf
m→∞

∫ T

0

∫
Rd

Φ0 (t, x, fm(t, x, ω)− fn(t, x, ω))m(dt, dx) > ε

)
→ 0

as n→∞. So ∫ T

0

∫
Rd

Φ0 (t, x, f(t, x, ω)− fn(t, x, ω))m(dt, dx)
P→ 0

and as such, there exists a subsequence {nk} and an Ω0 ⊂ Ω with P (Ω0) = 1 such

that ∫ T

0

∫
Rd

Φ0 (t, x, f(t, x, ω)− fnk(t, x, ω))m(dt, dx)→ 0
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for every ω ∈ Ω0. Fix ω ∈ Ω0. By (3.10),

∫ T

0

∫
Rd

Φ0 (t, x, f (t, x, ω))m(dt, dx)

≤ 3

∫ T

0

∫
Rd

Φ0 (t, x, f(t, x, ω)− fnk(t, x, ω))m(dt, dx)

+ 3

∫ T

0

∫
Rd

Φ0 (t, x, fnk(t, x, ω))m(dt, dx).

Let k → ∞. The first term converges to 0 and the second term is finite for each k

since fnk ∈ S. Since P (Ω0) = 1,
∫ T

0

∫
Rd Φ0(t, x, f(t, x, ·))m(dt, dx) <∞ a.s.

Item iii ⇒ Item i. Let f ∈ L0 and suppose∫ T

0

∫
Rd

Φ0 (t, x, f(t, x, ·))m(dt, dx) <∞ a.s.

By Theorem 3.2.4, choose fn ∈ S such that

fn → f P⊗m-a.e.

and |fn| ≤ |f | for each (t, x, ω) ∈ [0, T ]×Rd×Ω. By Rosiński (2007a, Lemma 2.1.5),

Φ0(t, x, fm(t, x, ·)− fn(t, x, ·)) ≤ 4Φ0(t, x, f(t, x, ·)) ∈ L1
(
[0, T ]× Rd;m

)
a.s.

By the Dominated Convergence theorem,

lim
m,n→∞

∫ T

0

∫
Rd

Φ0(t, x, fm(t, x, ·)− fn(t, x, ·))m(dt, dx) = 0 a.s.

and hence, by Lemma 3.2.7,

lim
m,n→∞

‖fm − fn‖Z = 0.
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3.2.3 Examples

Symmetric α-stable random measure

Let Z be a symmetric α-stable random measure with Lévy-Khintchine triplet Z(C) ∼
(0, 0,m(C)ν), where 0 < α < 2, c > 0, and ν(dz) = c |z|−α−1 dz. Since the Lévy

measure ν does not depend upon t and x, Φ0(t, x, u) = Φ0(u) and since ν is symmetric,

U(t, x, u) ≡ 0. We have

Φ0(u) =

∫
R
JuzK2ν(dz)

= 2c

∫ ∞
0

JuzK2z−α−1dz

= 2c |u|2
∫ 1/|u|

0

z1−αdz + 2c

∫ ∞
1/|u|

z−α−1dz

=
2c

2− α
|u|2

(
1

|u|

)2−α

+
2c

α

(
1

|u|

)−α
=

4c

α(2− α)
|u|α .

Theorem 3.2.9 gives

{
f ∈ L0

T : f is Z-integrable
}

=

{
f ∈ L0

T :

∫ T

0

∫
Rd
|f(t, x)|αm(dt, dx) <∞ a.s.

}
= LαT,a.s..

This is result is analogous to the space of integrable functions with respect to

Brownian motion.

Symmetric tempered α-stable random measure

Let Z be a symmetric tempered α-stable random measure with Lévy-Khintchine

triplet Z(C) ∼ (0, 0,m(C)ν), where 0 < α < 2, c > 0, and ν(dz) = c |z|−α−1 e−|z|dz.

Since the Lévy measure ν does not depend upon t and x, Φ0(t, x, u) = Φ0(u). To

identify the space of Z-integrable random fields, we first show that

Φ0(u) ' |u|2 ∧ |u|α . (3.11)
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Since x 7→ JxK is an odd function,

Φ0(u) =

∫
JuzK2ν(dz) = 2

∫ ∞
0

JuzK2c |z|−α−1 e−|z|dz

= 2c |u|2
∫ 1/|u|

0

z1−αe−zdz + 2c

∫ ∞
1/|u|

z−α−1e−zdz. (3.12)

To compute the lower bound of the equivalence (3.11),

Φ0(u) ≥ 2c |u|2
∫ 1/|u|

0

z1−αe−zdz

= 2cu2

(
1{|u|≤1}

∫ 1/|u|

0

z1−αe−zdz + 1{|u|>1}

∫ 1/|u|

0

z1−αe−zdz

)

≥ 2cu2

(
γ(2− α, 1)1{|u|≤1} +

e−1

2− α
|u|α−2

1{|u|>1}

)
= 2cγ(2− α, 1)u21{|u|≤1} +

2ce−1

2− α
|u|α 1{|u|>1}

≥
(

2γ(2− α, 1) ∧ 2ce−1

2− α

)(
|u|2 ∧ |u|α

)
.

For the upper bound of the equivalence (3.11), observe that the first integral in (3.12)

is bounded above by

2cu2

∫ 1/|u|

0

z1−αe−zdz = 2cu21|u|≤1

∫ 1/|u|

0

z1−αe−zdz + 2cu21|u|>1

∫ 1/|u|

0

z1−αe−zdz

≤ 2cΓ(2− α)u21{|u|≤1} +
2cu2

2− α

(
1

|u|

)2−α

1{|u|>1}

= 2cΓ(2− α)u21{|u|≤1} +
2c

2− α
|u|α 1{|u|>1} (3.13)

and the second integral in (3.12) is bounded above by

2c

∫ ∞
1/|u|

z−α−1e−zdz = 2c1{|u|≤1}

∫ ∞
1/|u|

z−α−1e−zdz + 2c1{|u|>1}

∫ ∞
1/|u|

z−α−1e−zdz

≤ 2c sup
z∈[1,∞)

(
z2−αe−z

)
1{|u|≤1}

∫ ∞
1/|u|

z−3dz + 2c1{|u|>1}

∫ ∞
1/|u|

z−α−1dz

= c sup
z∈[1,∞)

(
z2−αe−z

)
1{|u|≤1} |u|2 + 2c1{|u|>1}α

−1 |u|α . (3.14)
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Therefore, (3.13) and (3.14) combine to give

Φ0(u) ≤ 2cΓ(2− α) |u|2 1{|u|≤1} +
2c

2− α
|u|α 1{|u|>1}

+ c sup
z∈[1,∞)

(
z2−αe−z

)
|u|2 1{|u|≤1} + 2cα−1 |u|α 1{|u|>1} ≤ C

(
|u|2 ∧ |u|α

)
,

where C =
(
2cΓ(2− α) + c supz∈[1,∞) (z2−αe−z)

)
∨
(

2c
2−α + 2c

α

)
. So the equivalence

(3.11) holds and from this, along with Theorem 3.2.9,

{
f ∈ L0

T : f is Z-integrable
}

=

{
f ∈ L0

T :

∫ T

0

∫
Rd
|f(t, x)|2 ∧ |f(t, x)|αm(dt, dx) <∞ a.s.

}
.

Notice that the space of symmetric tempered stable integrable random fields contains

both the space of Brownian motion integrable random fields L2
T,a.s. and the space of

symmetric α-stable integrable random fields LαT,a.s. from Section 3.2.3.

3.3 Itô isomorphisms

The well-known classic Ito Isometry gives

E
∣∣∣∣∫ T

0

XtB(dt)

∣∣∣∣2 = E
∫ T

0

X2
t dt.

Hence,{
X ∈ L0

T : X is B-integrable and E
∣∣∣∣∫ T

0

XtB(dt)

∣∣∣∣2 <∞
}

= L2 ([0, T ]× Ω;B ([0, T ])⊗F ; leb⊗ P) (3.15)

and the map X 7→
∫ T

0
XtB(dt) is an isomorphism from L2 ([0, T ]× Ω;B ([0, T ])⊗F ;

leb⊗ P) into L2(Ω;F ;P). In this section, we use Theorem 1.2.1 to obtain

Itô Isomorphisms for stochastic integrals driven by an infinitely divisible random

measure Z, similar in nature to (3.15). We seek to determine when the stochastic

integral
∫ T

0

∫
Rd f(t, x)Z(dt, dx) is in Lp(Ω,F ,P) and when the map f(t, x) 7→∫ T

0

∫
Rd f(t, x)Z(dt, dx) is an isomorphism into Lp(Ω,F ,P). We will see that, just
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as in the case (3.15), the above condition is characterized by certain integrability

conditions on f with respect to the control measure m of Z. We seek contraction

inequalities of norms between the space{
f ∈ L0

T : f is Z-integrable and E
∣∣∣∣∫ T

0

∫
Rd
f(t, x)Z(dt, dx)

∣∣∣∣p <∞}
and an appropriate subspace of

L0
(
[0, T ]× Rd × Ω;B([0, T ]× Rd)⊗F ;m⊗ P

)
.

The appropriate subspace will be a Musielak-Orlicz modular space, a special type of

modular space described in Appendix B. We begin by considering the case when f is

deterministic and extend these results to the random case by decoupling arguments.

Let p ≥ 1 and Z be an infinitely divisible random measure with Lévy-Khintchine

triplet (3.2). Define the function Φp : [0, T ]× Rd × R+ → R by

Φp(t, x, u)
def
= U∗(t, x, u) + σ2(t, x)u2 + Vp(t, x, u), (3.16)

where

U∗(t, x, u)
def
= sup
|c|≤1

|U(t, x, cu)| ,

U(t, x, u)
def
= b(t, x)u+

∫
R

(JuzK− uJzK) ν(t, x, dz),

and

Vp(t, x, u)
def
=

∫
R

(
|uz|2 1|uz|<1 + |uz|p 1|uz|≥1

)
ν(t, x, dz).

Rajput and Rosiński (1989, Lemma 3.1) showed that Φp satisfies the properties given

in Section B.5 and hence, generates a modular on the Musielak-Orlicz modular space

of deterministic functions

L
Φp
T,det = L

Φp
T,det

(
[0, T ]× Rd;B

(
[0, T ]× Rd

)
;m
)

def
=

{
f ∈ L0

T,det :

∫ T

0

∫
Rd

Φp (t, x, |f(t, x)|)m(dt, dx) <∞
}
.

(3.17)
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Rajput and Rosiński (1989, Theorem 3.4) also showed that, under certain assumptions

on the infinitely divisible random measure Z, the mapping of deterministic functions

f →
∫ T

0

∫
Rd f(t, x)Z(dt, dx) is an isomorphism from L

Φp
T,det into Lp(Ω;P ). Assuming

that this assumption holds, if ‖ · ‖ is a norm on L
Φp
T,det, then∥∥∥∥∫ T

0

∫
Rd
f(t, x)Z(dt, dx)

∥∥∥∥
p

' ‖f‖.

Example 3.3.1. To demonstrate this for the classic stochastic integral with respect

to Brownian motion, let B be an infinitely divisible random measure with Lévy-

Khintchine triplet B(C) ∼ (0,m(C), 0). Here, Φp(t, x, u) = Φ(u) = u2. Then

Φ(|f(t, x)|) = |f(t, x)|2 and

L
Φp
T,det = {f ∈ L0

T,det :

∫ T

0

∫
Rd
|f(t, x)|2m(dt, dx) <∞}.

Since Φ is convex, the Orlicz norm (see Appendix B)

‖f‖Φp

def
= inf

{
c > 0 :

∫ T

0

∫
Rd

Φ(c−1 |f(t, x)|)m(dt, dx) ≤ 1

}
= inf

{
c > 0 :

∫ T

0

∫
Rd
c−2 |f(t, x)|2m(dt, x) ≤ 1

}
= ‖f‖L2([0,T ]×Rd;m)

is a norm on L
Φp
T,det = L2([0, T ]× Rd;m) and we have∥∥∥∥∫ T

0

∫
Rd
f(t, x)Z(dt, dx)

∥∥∥∥
Lp(Ω;P)

' ‖f‖L2([0,T ]×Rd;m) .

We now use the results of Section 1.2 to obtain Itô Isomorphisms for certain cases

of the infinitely divisible random measure Z. First assume that f is a Z-integrable

deterministic measurable field. For a general infinitely divisible random measure Z,

Rajput and Rosiński (1989, Theorem 2.7) showed that
∫ T

0

∫
Rd f(t, x)Z(dt, dx) was

infinitely divisible with Lévy-Khintchine triplet (bf , σ
2
f , Ff ), where

bf =

∫ T

0

∫
Rd
U(t, x, f(t, x))m(dt, dx), σ2

f =

∫ T

0

∫
Rd
|f(t, x)|2 σ2(t, x)m(dt, dx),
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and

Ff (B) = F ({(t, x, z) ∈ [0, T ]× Rd × R : f(t, x)z ∈ B \ {0}})

for every B ∈ B(R). Now suppose that Z is a mean 0 infinitely divisible random

measure without Gaussian part. The Lévy-Khintchine triplet is necessarily

Z(C) ∼
(∫

C

∫
R

(JzK− z) ν(t, x, dz)m(dt, dx), 0, FC

)
,

where F (dt, dx, dz) = ν(t, x, dz)m(dt, dx). First assume that for each (t, x) ∈ [0, T ]×
Rd, ν(t, x, ·) is a symmetric Lévy measure on R. In this case, (3.16) becomes

Φp(t, x, u) = Vp(t, x, u) =

∫
R

(
|uz|2 1{|uz|<1} + |uz|p 1{|uz|≥1}

)
ν(t, x, dz)

and
∫ T

0

∫
Rd f(t, x)Z(dt, dx) ∼ (0, 0, Ff ) where Ff is the symmetric Lévy measure given

by

Ff (B) = F ({(t, x, z) ∈ [0, T ]× Rd × R : f(t, x)z ∈ B \ {0}})

for every B ∈ B(R). If ν(t, x, ·) is not necessarily symmetric, Rajput and Rosiński

(1989, Proposition 3.6) show that in this more general mean 0 case, there exists

a constant C such that Φp(t, x, u) ≤ CVp(t, x, u). Trivially, we have Φp(t, x, u) ≥
Vp(t, x, u) and hence, Φp(t, x, u) ' Vp(t, x, u). In either case, we have

L
Φp
T,det = L

Vp
T,det =

{
f ∈ L0

T,det :

∫ T

0

∫
Rd
Vp (t, x, |f(t, x)|)m(dt, dx) <∞

}
.

We now define a norm on this Musielak-Orlicz modular space of deterministic

functions. To do so, define a new function Ψp : [0, T ]× Rd × R+ → R+ by

Ψp(t, x, u)
def
=



∫
R

(
|uz|2 1{|uz|<1} +

(
2

p
|uz|p +

p− 2

p

)
1{|uz|≥1}

)
ν(t, x, dz),

if 1 ≤ p ≤ 2,∫
R

(
|uz|2 1{|uz|<1} + |uz|p 1{|uz|≥1}

)
ν(t, x, dz), if p > 2.
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It is easy to check that Ψp(t, x, ·) is convex on R+ (since the integrand is now increasing

and convex), of moderate growth, and for every u ∈ R+ and 1 ≤ p ≤ 2,

Vp(t, x, u) ≤ Ψp(t, x, u) ≤ 2

p
Vp(t, x, u). (3.18)

Therefore L
Φp
T,det = L

Vp
T,det = L

Ψp
T,det is a Musielak-Orlicz modular space with norm

‖f‖Ψp

def
= inf

{
c > 0 :

∫ T

0

∫
Rd

Ψp

(
t, x, c−1 |f(t, x)|

)
m(dt, dx) ≤ 1

}
.

We now show that ∥∥∥∥∫ T

0

∫
Rd
f(t, x)Z(dt, dx)

∥∥∥∥
p

' ‖f‖Ψp
.

Let l solve

1 =

∫
R

(
|x|2

l2
1{|x|<1} +

|x|p

lp
1{|x|≥1}

)
Ff (dx)

=

∫ T

0

∫
Rd

∫
R

(
|f(t, x)z|2

l2
1{|f(t,x)z|<1} +

|f(t, x)z|p

lp
1{|f(t,x)z|≥1}

)
F (dt, dx, dz)

=

∫ T

0

∫
Rd

∫
R

(
|f(t, x)z|2

l2
1{|f(t,x)z|<1} +

|f(t, x)z|p

lp
1{|f(t,x)z|≥1}

)
ν(t, x, dz)m(dt, dx)

=

∫ T

0

∫
Rd
Vp
(
t, x, l−1 |f(t, x)|

)
m(dt, dx).

By Theorem 1.2.1, if ν(t, x, ·) is symmetric for every (t, x) ∈ [0, T ]× Rd, then

0.25l ≤
∥∥∥∥∫ T

0

∫
Rd
f(t, x)Z(dt, dx)

∥∥∥∥
p

≤ K(p)l,

where K(p) is given by (1.4). In the more general mean 0 case, Corollary 1.2.6 gives

0.125l ≤
∥∥∥∥∫ T

0

∫
Rd
f(t, x)Z(dt, dx)

∥∥∥∥
p

≤ max{ p
√

2,
√

2}K(p)l.

Using (3.18) and the convexity of Ψp(t, x, ·), it is easy to show that if 1 ≤ p ≤ 2, then

l ≤ ‖f‖Ψp
≤ 2

p
l.
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We have proved the following theorem:

Theorem 3.3.2. Let Z be a mean 0 infinitely divisible random measure with

Lévy-Khintchine triplet Z(C) ∼
(∫

C

∫
R (JzK− z) ν(t, x, dz)m(dt, dx), 0, FC

)
, where

FC(B) = F (C × B), F (dt, dx, dz) = ν(t, x, dz)m(dt, dx), and for each (t, x) ∈
[0, T ]× Rd, ν(t, x, ·) is a Lévy measure on R. Then

k̃(p) ‖f‖Ψp
≤
∥∥∥∥∫ T

0

∫
Rd
f(t, x)Z(dt, dx)

∥∥∥∥
p

≤ max{ p
√

2,
√

2}K(p) ‖f‖Ψp
, (3.19)

where

k̃(p) =

0.0625p, if 1 ≤ p ≤ 2,

0.125, if p > 2

and K(p) is given by (1.4). If ν(t, x, ·) is symmetric for every t and x, then the

constants in (3.19) may be taken as

k̃(p) =

0.125p, if 1 ≤ p ≤ 2,

0.25, if p > 2

and K(p). Hence,{
f ∈ L0

T,det : f is Z-integrable and E
∣∣∣∣∫ T

0

∫
Rd
f(t, x)Z(dt, dx)

∣∣∣∣p <∞} = L
Ψp
T,det

and the map f 7→
∫ T

0

∫
Rd f(t, x)Z(dt, dx) is an isomorphism from L

Ψp
T,det into

Lp(Ω;F ;P).

Next, we extend these arguments to f ∈ L0
T by decoupling inequalities. Let Z ′ be

a copy of Z defined on a probability space Ω′, independent of Z and F . Define an

enlarged σ-algebra on the product space Ω× Ω′ by

F̂t
def
= σ

(
Ft, Z ′(C) : C ⊂ [0, t]× Rd, C ∈ B([0, T ]× Rd)

)
.

For an Ft-adapted simple random field f(t, x, ω) =
∑m

i=1

∑n
j=1 fij(ω)1(ti,ti+1]×Aj(t, x),

define two sequences of F̂ti-adapted random variables by

Xi(ω, ω
′) = Xi(ω)

def
=

n∑
j=1

fij(ω)Z((ti, ti+1]× Aj;ω) (3.20)
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and

Yi(ω, ω
′)
def
=

n∑
j=1

fij(ω)Z ′((ti, ti+1]× Aj;ω′). (3.21)

Sequences {Xi}mi=1 and {Yi}mi=1 are F̂ti-tangent sequences and {Yi}mi=1 satisfies

conditional independence. Let ϕ(u)
def
= up and apply Theorem 3.2.6 to the decoupled

F̂ti-tangent sequences {Xi}mi=1 and {Yi}mi=1. We have the following theorem:

Theorem 3.3.3. Let f ∈ L0
T be a simple random field. Then there exists a constant

K1, depending only on p, such that∥∥∥∥∫ T

0

∫
Rd
f(t, x)Z(dt, dx)

∥∥∥∥
p

≤ K1

∥∥∥∥∫ T

0

∫
Rd
f(t, x)Z ′(dt, dx)

∥∥∥∥
p

. (3.22)

Moreover, if the Lévy measure ν(t, x, ·) is symmetric, then there exists a constant K2,

depending only on p, such that

K2

∥∥∥∥∫ T

0

∫
Rd
f(t, x)Z ′(dt, dx)

∥∥∥∥
p

≤
∥∥∥∥∫ T

0

∫
Rd
f(t, x)Z(dt, dx)

∥∥∥∥
p

≤ K1

∥∥∥∥∫ T

0

∫
Rd
f(t, x)Z ′(dt, dx)

∥∥∥∥
p

. (3.23)

Inequality (3.22) follows from the second inequality of Theorem 3.2.6 since the

sequence {Yi}mi=1 satisfies conditional independence. The first inequality in (3.23)

follows from the first inequality of Theorem 3.2.6 and observing that Z(C) and Z ′(C)

are symmetric random variables whenever ν(t, x, ·) is symmetric.

We return to the problem of extending the Itô Isomorphism of Theorem 3.3.2 for

deterministic fields to random fields. Let ν(t, x, ·) be a symmetric Lévy measure. By

(3.23), we may first fix ω ∈ Ω and consider

Eω′
∣∣∣∣∫ T

0

∫
Rd
f(t, x, ω)Z ′(dt, dx)

∣∣∣∣p .
The beauty of decoupling arguments are now revealed. By ”decoupling” the integrand

from Z, we may now use deterministic integrand results. Fix ω ∈ Ω. The function

Ψp is the same for both Z and Z ′ since each have the same Lévy-Khintchine triplet.

74



By Theorem 3.3.2, the deterministic field f(·, ·, ω) is Z ′-integrable with

Eω′
∣∣∣∣∫ T

0

∫
Rd
f(t, x, ω)Z ′(dt, dx)

∣∣∣∣p <∞
if and only if ∫ T

0

∫
Rd

Ψp (t, x, |f(t, x, ω)|)m(dt, dx) <∞.

Hence, by (3.23),

E
∣∣∣∣∫ T

0

∫
Rd
f(t, x)Z(dt, dx)

∣∣∣∣p <∞
if and only if

E
∫ T

0

∫
Rd

Ψp (t, x, |f(t, x)|)m(dt, dx) <∞.

Moreover, Theorem 3.3.2 gives

k̃(p)p ‖f(·, ·, ω)‖pΨp ≤ Eω′
∣∣∣∣∫ T

0

∫
Rd
f(t, x, ω)Z ′(dt, dx)

∣∣∣∣p ≤ K(p)p ‖f(·, ·, ω)‖pΨp .

By (3.23),

Kp
2 k̃(p)pEω ‖f(·, ·, ω)‖pΨp ≤ Kp

2E
∣∣∣∣∫ T

0

∫
Rd
f(t, x)Z ′(dt, dx)

∣∣∣∣p
≤ Eω

∣∣∣∣∫ T

0

∫
Rd
f(t, x)Z(dt, dx)

∣∣∣∣p
≤ Kp

1E
∣∣∣∣∫ T

0

∫
Rd
f(t, x)Z ′(dt, dx)

∣∣∣∣p ≤ Kp
1K(p)pEω ‖f(·, ·, ω)‖pΨp . (3.24)

If ν(t, x, ·) is not symmetric, we still get the upper bound in (3.24) with constant

Kp
1 max{ p

√
2,
√

2}pK(p)p by (3.22) and the arguments above. Let us denote

L
Φp
T = L

Vp
T

def
=

{
f ∈ L0

T : E
∣∣∣∣∫ T

0

∫
Rd
Vp (t, x, |f(t, x)|)m(dt, dx)

∣∣∣∣p <∞} .
Then

∥∥∥‖f(·, ·, ω)‖Ψp

∥∥∥
Lp(Ω;F ;P)

is a norm on L
Φp
T and we can extend (3.24) by standard

density arguments to measurable random fields f ∈ L0
T to get the following theorem:

Theorem 3.3.4 (Itô Isomorphisms). Let Z be a mean 0 infinitely divisible random

measure with Lévy-Khintchine triplet Z(C) ∼
( ∫

C

∫
R (JzK− z) ν(t, x, dz)m(dt, dx), 0,
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FC
)
, where FC(B) = F (C×B), F (dt, dx, dz) = ν(t, x, dz)m(dt, dx), and ν(t, x, ·) is a

Lévy measure on R. Assume that for each (t, x) ∈ [0, T ]×Rd, ν(t, x, ·) is a symmetric

measure on R. Then

K2k̃(p)
∥∥∥‖f(·, ·, ω)‖Ψp

∥∥∥
Lp(Ω;P)

≤
∥∥∥∥∫ T

0

∫
Rd
f(t, x)Z(dt, dx)

∥∥∥∥
Lp(Ω;P)

≤ K1K(p)
∥∥∥‖f(·, ·, ω)‖Ψp

∥∥∥
Lp(Ω;P)

, (3.25)

where

k̃(p) =

0.125p, if 1 ≤ p ≤ 2,

0.25, if p > 2

and K(p) is given is (1.4). Hence,{
f ∈ L0

T : f is Z-integrable and E
∣∣∣∣∫ T

0

∫
Rd
f(t, x)Z(dt, dx)

∣∣∣∣p <∞} = L
Φp
T .

and the map f 7→
∫ T

0

∫
Rd f(t, x)Z(dt, dx) is an isomorphism from L

Φp
T into Lp(Ω;F ;

P). If ν(t, x, ·) is not symmetric, then the right hand inequality of (3.25) still holds

with constant K1 max{ p
√

2,
√

2}K(p) and hence,{
f ∈ L0

T : f is Z-integrable and E
∣∣∣∣∫ T

0

∫
Rd
f(t, x)Z(dt, dx)

∣∣∣∣p <∞} ⊇ L
Φp
T .

3.3.1 Examples

Symmetric α-stable random measure

Let 0 < α < 2, c > 0, and ν(t, x, dz) = ν(dz) = c |z|−α−1 dz in Theorem 3.3.4, so that

Z is a symmetric α-stable random measure. As an example of the Itô isomorphism

in Theorem 3.3.4, we first compute and simplify Φp for 1 ≤ p < α. Since ν does not

depend upon t and x, Φp(t, x, u) = Φp(u) and for 1 ≤ p < α we have

Φp(u) =

∫
R

(
|uz|2 1{|uz|<1} + |uz|p 1{|uz|≥1}

)
c |z|−α−1 dz

= 2c |u|2
∫ 1/|u|

0

z1−αdz + 2c |u|p
∫ ∞

1/|u|
zp−α−1dz
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=
2c

2− α
|u|2

(
1

|u|

)2−α

+
2c

α− p
|u|p

(
1

|u|

)p−2

=
2c

2− α
|u|α +

2c

α− p
|u|α

= 2c
2− p

(2− α)(α− p)
|u|α .

By Theorem 3.3.4, if 1 ≤ p < α, then

{
f ∈ L0

T : f is Z-integrable and E
∣∣∣∣∫ T

0

∫
Rd
f(t, x)Z(dt, dx)

∣∣∣∣p <∞}
=

{
f ∈ L0

T : E
∣∣∣∣∫ T

0

∫
Rd
|f(t, x)|αm(dt, dx)

∣∣∣∣p <∞} .
Since |u|α is already a convex function, it will generate an Orlicz norm equivalent to

‖·‖Ψp
. Let l solve ∫ T

0

∫
Rd

(
|f(t, x)|

l

)α
m(dt, dx) = 1,

that is,

lα =

∫ T

0

∫
Rd
|f(t, x)|αm(dt, dx).

Then for each ω ∈ Ω, l is equivalent to ‖f(t, x)‖Ψp
and by Theorem 3.3.4

E
∣∣∣∣∫ T

0

∫
Rd
f(t, x)Z(dt, dx)

∣∣∣∣p ' E
(∫ T

0

∫
Rd
|f(t, x)|αm(dt, dx)

)p/α
.

When p = α, we no longer get the classic type Itô isomorphism since Z has infinite

absolute αth-moment. It would be desirable to take p = α in the above equivalence in

order to obtain the analogue of the classic Itô Isometry for integration with respect

to Brownian motion. However, we can get a desirable result similar in nature to

the above Itô Isomorphism, given in terms of the weak-Lα(Ω,P) space instead of the

Lα(Ω,P) space. In what follows in the remainder of this example, we will extend

results of Giné and Marcus (1983) and Rosiński and Woyczyński (1986), culminating

in Theorem 3.3.7. This theorem will address the problem presented above when

p = α and give an analogue of the aforementioned Itó Isometry for α-stable random

measures. As mentioned, we will see that the Lα(Ω,P)-norm on the left hand side of

the above equivalence is replaced by a weak-Lα(Ω,P)-norm of the stochastic integral.
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Before we present the result, recall that in the development of the stochastic integral,

no assumptions were made on T except that T > 0. Therefore, for T > 0, we may

consider the stochastic integral of a simple random field f to be a stochastic process

{It(f)}0≤t≤T as follows: for a simple adapted random field f ∈ S, we define the

stochastic integral of f with respect to the α-stable random measure Z as

It(f)
def
=

∫ t

0

∫
Rd
f(t, x, ω)Z(dt, dx;ω)

def
=

m∑
i=1

n∑
j=1

fij(ω)Z ((ti ∧ t, ti+1 ∧ t]× Aj;ω)

Since we are working with the weak-Lα norm, we may choose a separable version of

It(f) and our calculations will not be affected. So henceforth, we assume that It(f) is

separable. First, we establish some desirable properties of the process {It(f)}0≤t≤T .

Proposition 3.3.5. The process It(f) is nonanticipating.

Proof. Let t ∈ (tk, tk+1]. Then

It(f) =
k−1∑
i=1

n∑
j=1

fijZ ((ti, ti+1]× Aj) +
n∑
j=1

fkjZ ((tk, t]× Aj) .

Since fij is Fti-adapted and Fti ⊂ Ft for each i, fij is Ft-adapted for each i. By the

definition, Z ((ti, ti+1]× Aj) and Z ((tk, t]× Aj) are Ft-adapted for each i.

Proposition 3.3.6. The process It(f) is linear. Namely, for f, g ∈ LαT ∩ S and

α, β ∈ R,

It(αf + βg) = αIt(f) + βIt(g).

Proof. Without loss of generality, we may assume that the simple random fields

f(t, x) =
∑m

i=1

∑n
j=1 fij1(ti,ti+1]×Aj and g(t, x) =

∑m
i=1

∑n
j=1 gij1(ti,ti+1]×Aj for the

same sets (ti, ti+1]× Aj ∈ B0([0, T ]× Rd). Let t ∈ (tk, tk+1]. Then for any α, β > 0,

It(αf + βg) =
k−1∑
i=1

n∑
j=1

(αfij + βgij)Zij +
n∑
j=1

(αfkj + βgkj)Z ((tk, t]× Aj)

= α

(
k−1∑
i=1

n∑
j=1

fijZ ((ti, ti+1]× Aj) +
n∑
j=1

fkjZ ((tk, t]× Aj)

)
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+ β

(
k−1∑
i=1

n∑
j=1

gijZ ((ti, ti+1]× Aj) +
n∑
j=1

gkjZ ((tk, t]× Aj)

)
= αIt(f) + βIt(g).

Following is the main result and gives the analogue of Itô’s Isometry for integration

driven by α-stable random measures. The upper bound for deterministic fields was

proved by Giné and Marcus (1983) and the lower bound by Rosiński and Woyczyński

(1986). We again utilize the decoupling inequalities approach.

Theorem 3.3.7. Let T > 0 and 0 < α < 2. If f ∈ LαT ∩ S and Z is a α-stable

random measure, then

Λα

(∥∥∥∥∫ ∗T
0

∫
Rd
f(s, x, ω)Z(ds, dx;ω)

∥∥∥∥) ' ‖f‖α,T , (3.26)

where

Λα

(∥∥∥∥∫ ∗T
0

∫
Rd
f(s, x, ω)Z(ds, dx;ω)

∥∥∥∥)
def
=

{
sup
u>0

uαP
(

sup
0≤t≤T

∣∣∣∣∫ t

0

∫
Rd
f(s, x, ω)Z(ds, dx;ω)

∣∣∣∣ > u

)}1/α

and hence,

{
f ∈ L0

T : f is Z-integrable and Λα

(∥∥∥∥∫ ∗T
0

∫
Rd
f(t, x)Z(dt, dx)

∥∥∥∥) <∞
}

=

{
f ∈ L0

T : E
∫ T

0

∫
Rd
|f(t, x)|αm(dt, dx) <∞

}
= LαT,a.s.. (3.27)

Proof. By standard density arguments and Section 3.2.3, (3.27) holds once we have

proven (3.26). To prove (3.26), we apply Theorem 3.2.6, with ϕ(w)
def
= 1{w>u},

to the decoupled tangent sequences (3.20) and (3.21). Recalling that {Yi} satisfies

conditional independence, for any u > 0 we have

P
(

max
1≤k≤m

∣∣∣∣∫ tk

0

∫
Rd
f(t, x, ω)Z(dt, dx)

∣∣∣∣ > u

)
= P

(
max

1≤k≤m

∣∣∣∣∣
k∑
i=1

Xi

∣∣∣∣∣ > u

)
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≤ C P⊗ P′
(

max
1≤k≤m

∣∣∣∣∣
k∑
i=1

Yi

∣∣∣∣∣ > u

)

= C

∫
Ω

P′
(

max
1≤k≤m

∣∣∣∣∫ tk

0

∫
Rd
f(t, x, ω)Z ′(dt, dx;ω′)

∣∣∣∣ > u

)
P(dω).

By the deterministic integrand result of Giné and Marcus (1983), for each ω ∈ Ω,

uαP′
(

max
1≤k≤m

∣∣∣∣∫ tk

0

∫
Rd
f(t, x, ω)Z ′(dt, dx;ω′)

∣∣∣∣ > u

)
≤
∫ T

0

∫
Rd
|f(t, x, ω)|αm(dt, dx),

and hence,

uαP
(

max
1≤k≤m

∣∣∣∣∫ tk

0

∫
Rd
f(t, x, ω)Z(dt, dx)

∣∣∣∣ > u

)
≤ C

∫
Ω

∫ T

0

∫
Rd
|f(t, x, ω)|αm(dt, dx)P(dω) = C E

∫ T

0

∫
Rd
|f(t, x)|αm(dt, dx).

Since we have made no assumptions on the partition {tk} of [0, T ], the partition

lengths may be taken arbitrarily small. Also, u > 0 was arbitrary. The upper bound

is now immediate.

For the lower bound, again let u > 0 be arbitrary. By Theorem 3.2.6,

P
(

max
1≤k≤m

∣∣∣∣∫ tk

0

∫
Rd
f(t, x, ω)Z(dt, dx)

∣∣∣∣ > u

)
= P

(
max

1≤k≤m

∣∣∣∣∣
k∑
i=1

Xi

∣∣∣∣∣ > u

)

≥ C max
εi=±1

P⊗ P′
(

max
1≤k≤m

∣∣∣∣∣
k∑
i=1

εiYi

∣∣∣∣∣ > u

)

= C

∫
Ω

P′
(

max
1≤k≤m

∣∣∣∣∫ tk

0

∫
Rd
εf(t, x, ω)Z ′(dt, dx;ω′)

∣∣∣∣ > u

)
P(dω),

where εf
def
=
∑n

i=1 εiYi. By the deterministic integrand result of Rosiński and

Woyczyński (1986), for each ω ∈ Ω,

uαP′
(

max
1≤k≤m

∣∣∣∣∫ tk

0

∫
Rd
f(t, x, ω)Z ′(dt, dx;ω′)

∣∣∣∣ > u

)
≥
∫ T

0

∫
Rd
|εf(t, x, ω)|αm(dt, dx)

=

∫ T

0

∫
Rd
|f(t, x, ω)|αm(dt, dx).

The result now follows exactly as in the upper bound case.
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Symmetric tempered α-stable random measure

Let 0 < α < 2, c > 0, and ν(t, x, dz) = ν(dz) = c |z|−α−1 e−|z|dz in Theorem 3.3.4,

so that Z is a symmetric tempered α-stable random measure. We demonstrate how

to identify the Itô isomorphisms in Theorem 3.3.4. First, we will identify simpler

functions that are equivalent to Φp(t, x, u). Recall that the notation g ' h means

there exists C > 0 such that (1/C)h(u) ≤ g(u) ≤ Ch(u) for every u and we say that

the functions g and h are equivalent. We have the following lemma giving equivalent

functions of Φp.

Lemma 3.3.8. Let p ≥ 1 and 0 < α < 2.

i. If p < α

Φp(u) ' |u|2 ∧ |u|α .

ii. If p = α

Φp(u) ' |u|2 1{|u|≤1} + |u|α (ln |u|+ 1)1{|u|>1}.

iii. If p > α

Φp(u) ' |u|2 1{|u|≤1} + |u|p 1{|u|>1}.

Proof. Since the Lévy measure is symmetric and does not depend upon t or x,

Φp(t, x, u) = Φp(u) is given by

Φp(u) =

∫
R

(
|uz|2 1{|uz|<1} + |uz|p 1{|uz|≥1}

)
c |z|−α−1 e−|z|dz

= 2

∫ 1/|u|

0

|u|2 z1−αe−zcdz + 2

∫ ∞
1/|u|
|u|p zp−α−1e−zcdz.

(3.28)

Let p ≥ 1. First, suppose that p < α < 2. Just as in the proof of (3.11), the first

integral in (3.28) is bounded by

2

∫ 1/|u|

0

|u|2 z1−αe−zcdz ≤ 2cΓ(2− α)u21{|u|≤1} +
2c

2− α
|u|α 1{|u|>1}. (3.29)
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The second integral in (3.28) is bounded by

2

∫ ∞
1/|u|
|u|p zp−α−1e−zcdz

= 21{|u|≤1}

∫ ∞
1/|u|
|u|p zp−α−1e−zcdz + 21{|u|>1}

∫ ∞
1/|u|
|u|p zp−α−1e−zcdz

≤ 2c sup
z≥1
{z2−αe−z} |u|p 1{|u|≤1}

∫ ∞
1/|u|

zp−3dz + 2c |u|p 1{|u|>1}

∫ ∞
1/|u|

zp−α−1dz

=
2c

2− p
sup
z≥1
{z2−αe−z} |u|2 1{|u|≤1} +

2c

α− p
|u|α 1{|u|>1}. (3.30)

Combining (3.29) and (3.30) gives

Φp(u) ≤ C
(
|u|2 ∧ |u|α

)
.

The lower bound follows exactly as in the proof of (3.11) to get

Φp(u) ≥
(

2γ(2− α, 1) ∧ 2e−1

2− α

)(
|z|2 ∧ |z|α

)
.

Next let p = α < 2. The first integral in (3.28) is bounded above by

2

∫ 1/|u|

0

|u|2 z1−αe−zcdz = 2c |u|2 1{|u|≤1}

∫ 1/|u|

0

z1−αe−zdz

+ 2c |u|2 1{|u|>1}

∫ 1/|u|

0

z1−αe−zdz

≤ 2c |u|2 1{|u|≤1}Γ(2− α) +
2c

2− α
|u|2 1{|u|>1}

(
1

|u|

)2−α

(3.31)

= 2c |u|2 1{|u|≤1}Γ(2− α) +
2c

2− α
|u|α 1{|u|>1}

≤ 2c |u|2 1{|u|≤1}Γ(2− α) +
2c

2− α
|u|α (ln |u|+ 1)1{|u|>1}

and the second integral in (3.28) by

2

∫ ∞
1/|u|
|u|p zp−α−1e−zcdz

= 2c |u|α 1{|u|≤1}

∫ ∞
1/|u|

z−1e−zdz + 2c |u|α 1{|u|>1}

∫ ∞
1/|u|

z−1e−zdz

82



≤ 2c |u|α 1{|u|≤1}

(
1

|u|

)−1

+ 2c |u|α 1{|u|>1}

(∫ 1

1/|u|
z−1dz +

∫ ∞
1

e−zdz

)
(3.32)

= 2c |u|α+1
1{|u|≤1} + 2c |u|α 1{|u|>1}

(
ln |u|+ e−1

)
≤ 2c |u|2 1{|u|≤1} + 2c |u|α 1{|u|>1} (ln |u|+ 1) .

Combining (3.31) and (3.32) gives

Φp(u) ≤ C
(
|u|2 1{|u|≤1} + |u|α ln |u|1{|u|>1} + |u|α 1{|u|>1}

)
.

To compute the lower bound,

Φp(u) ≥ 2c1{|u|≤1} |u|2
∫ 1/|u|

0

z1−αe−zdz + 2c |u|α 1{|u|>1}

∫ ∞
1/|u|

z−1e−zdz

≥ 2cγ(2− α, 1)1{|u|≤1} |u|2 + 2c |u|α 1{|u|>1}

(∫ 1

1/|u|
z−1e−1dz +

∫ ∞
1

z−1e−zdz

)
= 2cγ(2− α, 1)1{|u|≤1} |u|2 + 2c |u|α 1{|u|>1}

(
e−1 ln |u|+ Γ(0, 1)

)
≥ C

(
|u|2 1{|u|≤1} + |u|α ln |u|1{|u|>1} + |u|α 1{|u|>1}

)
.

Finally let p > α. To compute the lower bound of Φp(u),

Φp(u) ≥ 2c |u|2 1{|u|≤1}

∫ 1/|u|

0

z1−αe−zdz + 2c |u|p 1{|u|>1}

∫ ∞
1/|u|

zp−α−1e−zdz

≥ 2c |u|2 1{|u|≤1}γ(2− α, 1) + 2c |u|p 1{|u|>1}Γ(p− α, 1)

≥ C
(
|u|2 1{|u|≤1} + |u|p 1{|u|>1}

)
.

To compute the upper bound, we consider three subcases. First suppose that p < 2.

We can bound the first integral in (3.28) by

2

∫ 1/|u|

0

|u|2 z1−αe−zcdz

≤ 2cΓ(2− α)u21{|u|≤1} + 2c sup
z>0
{zp−αe−z} |u|2 1{|u|>1}

∫ 1/|u|

0

z1−pdz

= 2cΓ(2− α)u21{|u|≤1} +
2c

2− p
sup
z>0
{zp−αe−z} |u|p 1{|u|>1}. (3.33)
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and the second integral in (3.28) by

2

∫ ∞
1/|u|
|u|p zp−α−1e−zcdz

= 21{|u|≤1}

∫ ∞
1/|u|
|u|p zp−α−1e−zcdz + 21{|u|>1}

∫ ∞
1/|u|
|u|p zp−α−1e−zcdz

≤ 2c sup
z≥1
{z2−αe−z} |u|p 1{|u|≤1}

∫ ∞
1/|u|

zp−3dz + 2c |u|p 1{|u|>1}Γ(p− α)

=
2c

2− p
sup
z≥1
{z2−αe−z} |u|2 1{|u|≤1} + 2cΓ(p− α) |u|p 1{|u|>1}. (3.34)

Combining (3.33) and (3.34) gives

Φp(u) ≤ C
(
|u|2 1{|u|≤1} + |u|p 1{|u|>1}

)
.

Next, if p = 2, then Φp(u) = cΓ(2 − α) |u|2. Finally suppose that p > 2. We can

bound the first integral in (3.28) by

2

∫ 1/|u|

0

|u|2 z1−αe−zcdz ≤ 2cΓ(2− α) |u|2

≤ 2cΓ(2− α)
(
|u|2 1{|u|≤1} + |u|p 1{|u|>1}

) (3.35)

and the second integral in (3.28) by

2

∫ ∞
1/|u|
|u|p zp−α−1e−zcdz ≤ 2cΓ(p− α) |u|p

≤ 2cΓ(p− α)
(
|u|2 1{|u|≤1} + |u|p 1{|u|>1}

)
.

(3.36)

Combining (3.35) and (3.36) again gives

Φp(u) ≤ C
(
|u|2 1{|u|≤1} + |u|p 1{|u|>1}

)
.

Let p ≥ 1 and Z be a symmetric tempered stable random measure with

Lévy-Khintchine triplet Z(C) ∼ (0, 0,m(C)ν), where ν(dx) = c |x|−α−1 e−|x|dx.

By Theorem 3.3.4 and the above Lemma 3.3.8, we have the following three Itô

isomorphisms:
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i. If p < α,

{
f ∈ L0

T : f is Z-integrable and E
∣∣∣∣∫ T

0

∫
Rd
f(t, x)Z(dt, dx)

∣∣∣∣p <∞}
=

{
f ∈ L0

T : E
(∫ T

0

∫
Rd
|f(t, x)|2 ∧ |f(t, x)|αm(dt, dx)

)p
<∞

}
.

ii. If p = α,

{
f ∈ L0

T : f is Z-integrable and E
∣∣∣∣∫ T

0

∫
Rd
f(t, x)Z(dt, dx)

∣∣∣∣α <∞}
=

{
f ∈ L0

T : E
(∫ T

0

∫
Rd

(
|f(t, x)|2 1{|f(t,x)|≤1}

+ |f(t, x)|α (ln |f(t, x)|+ 1)1{|f(t,x)|>1}
)
m(dt, dx)

)α
<∞

}
.

iii. If p > α,

{
f ∈ L0

T : f is Z-integrable and E
∣∣∣∣∫ T

0

∫
Rd
f(t, x)Z(dt, dx)

∣∣∣∣p <∞}
=

{
f ∈ L0

T : E
(∫ T

0

∫
Rd

(
|f(t, x)|2 1{|f(t,x)|≤1}

+ |f(t, x)|p 1{|f(t,x)|>1}
)
m(dt, dx)

)p
<∞

}
.

We see that when p < α, the condition imposed upon f is a mixture between

the classic Itô Isometry (for integration with respect to Brownian motion) and the

symmetric α-stable example of Section 3.3.1.
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Chapter 4

Summary and Future Directions

The focus of this dissertation has been to study the Lp-norm of infinitely divisible

random vectors and present several applications. Such distributions are important

in that they contain many of the named distributions used in numerous disciplines.

They have the desirable property of being completely characterized by their parame-

terization given by the Lévy-Khintchine triplet and this work gives explicit estimate

of the Lp-norm of said distributions in terms of these parameters. Of most importance

is the 1 ≤ p < 2 case, as L2-theory and orthogonality are not applicable. This result

was demonstrated most useful in Chapter 2. In this, we obtained the optimal linear

estimate of the state space in a discrete times signal-observation model in the presence

of an α-stable noise environment. Often, data collected demonstrates outlying

realizations not probable under the Gaussian assumption. In such instances, heavy-

tailed infinitely divisible distributions may be more appropriate model assumptions.

The Lp-norm results are precisely the tools needed to work under such assumptions.

In the continuous time case, model ”noise” is often given by a stochastic integral.

In Chapter 3, I defined the stochastic integral driven by infinitely divisible random

measures. Throughout I use a very powerful, but not widely employed method

known as decoupling. This method allows one to treat integrands and integrators

independently. Using the Lp-norm result, I was able to obtain Itô Isomorphisms for

such stochastic integrals. As an immediate future extension of this dissertation, I

would like to explore continuous time models and apply these Itô Isomorphisms to

approximate the solutions.

As another extension, I would like to apply the Lp-norm result to both discrete and

continuous time models for which skewed data has been observed. In this dissertation,
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I have mainly focused on symmetric distributions as this is a very common assumption

in modeling. By no means however is this result restricted to such distributions.
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Appendix A

Moments of Independent Random

Variables and Vectors

This chapter develops a few useful inequalities concerning sums of independent

symmetric or mean 0 random vectors. Most inequalities were first derived for random

variables. In some instances, the results were able to be extended to random vectors

taking values in a Hilbert space H. I include some of the results obtained for random

variables, even if the result is superseded by a result concerning random vectors. In

one instance, this is because the constants are sharper in the H = R case. The first

two theorems below deal with bounding E ‖Sn‖p, which is difficult (if not impossible

in most instances) to compute directly, by computable moments.

Theorem A.1. Let 2 < p ≤ 3 and {Xi}n∈N be independent mean 0 random vectors

taking values in a Hilbert space H. Put Sn
def
=
∑n

i=1 Xi. Then

E ‖Sn‖p ≤
n∑
i=1

E ‖Xi‖p +
p(p− 1)

2

n∑
i=1

E ‖Si−1‖2 E ‖Xi‖p−2 .

Proof. Fix y ∈ H and consider the map

f : H → R : x 7→ ‖x+ y‖p − ‖x‖p .

There is a version of Taylor’s theorem for functions mapping a Banach space into

another Banach space, given in terms of the Gâteaux derivative (see e.g. Dudley and

Norvaǐsa (2010, Chapter 5) for an overview). When working with real Hilbert spaces,

the Gâteaux and Frechet derivatives coincide and the Gâteaux derivative is a linear
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functional. Applying Taylor’s theorem to f , about the vector 0 ∈ H, we have

f(x) = f(0) + df(0;x) +R(x), (A.1)

where df(u;x) is the Gâteaux derivative of f(u) in the direction of x defined by

df(u;x)
def
= lim

τ→0

f(u+ τx)− f(u)

τ

and

R(x) =
1

2
d2f(ξ;x, x) (A.2)

for some ξ lying on the line segment between 0 and x, strictly between the points. In

the following computations, we calculate the first and second Gâteaux derivatives of

f(u) in the direction of x. First, we compute the derivative of ‖x‖. We have

d (‖u‖) (u;x) = lim
τ→0

‖u+ τx‖ − ‖u‖
τ

= lim
τ→0

‖u+ τx‖2 − ‖u‖2

τ (‖u+ τx‖+ ‖u‖)

= lim
τ→0

〈u+ τx, u+ τx〉 − 〈u, u〉
τ (‖u+ τx‖+ ‖u‖)

= lim
τ→0

2〈u, τx〉+ 〈τx, τx〉
τ (‖u+ τx‖+ ‖u‖)

= lim
τ→0

2〈u, x〉+ 〈x, τx〉
(‖u+ τx‖+ ‖u‖)

=
〈u, x〉
‖u‖

=

〈
u

‖u‖
, x

〉
.

(A.3)

Now in the calculus of Gâteaux derivatives, there is also a chain rule given by

d(G ◦ F )(u;x) = dG(F (u); dF (u;x)).

Applying the chain rule to ‖u‖p and utilizing (A.3), we have

d (‖u‖p) (u;x) = d(yp) (‖u‖ ; d (‖u‖) (u;x))
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Now the directional derivative of the map R→ R : w 7→ wp in the direction z is

d(wp)(w; z) = lim
τ→0

(w + τz)p − wp

τ

= lim
h→0

(w + h)p − wp

h/z

= zpwp−1,

and hence,

d (‖u‖p) (u;x) = (d (‖u‖) (u;x)) p ‖u‖p−1

= p

〈
u

‖u‖
, x

〉
‖u‖p−1

= p〈u, x〉 ‖u‖p−2 .

(A.4)

Applying the chain rule again, we compute

d (‖u+ y‖p) (u;x) = d (‖u‖p) (u+ y, d(u+ y)(u;x))

= d (‖u‖p) (u+ y, x)

= p〈u+ y, x〉 ‖u+ y‖p−2 .

(A.5)

Combining (A.4) and (A.5) gives

df(u;x) = d (‖u+ y‖p − ‖u‖p) (u;x) = p〈u+ y, x〉 ‖u+ y‖p−2− p〈u, x〉 ‖u‖p−2 (A.6)

and

df(0;x) = p〈y, x〉 ‖y‖p−2

Next, we compute d2f(u;x):

d2f(u;x, x) = lim
τ→0

df(u+ τx;x)− df(u;x)

τ

= lim
τ→0

(
p〈u+ τx+ y, x〉 ‖u+ τx+ y‖p−2 − p〈u+ τx, x〉 ‖u+ τx‖p−2

τ

− p〈u+ y, x〉 ‖u+ y‖p−2 − p〈u, x〉 ‖u‖p−2

τ

)
.
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Consider first

lim
τ→0

p〈u+ τx+ y, x〉 ‖u+ τx+ y‖p−2 − p〈u+ y, x〉 ‖u+ y‖p−2

τ

= lim
τ→0

(
p〈u+ y, x〉

(
‖u+ τx+ y‖p−2 − ‖u+ y‖p−2)

τ
+
p〈τx, x〉 ‖u+ τx+ y‖p−2

τ

)
= p〈u+ y, x〉d

(
‖u+ y‖p−2) (u;x) + p〈x, x〉 ‖u+ y‖p−2

= p〈u+ y, x〉(p− 2)〈u+ y, x〉 ‖u+ y‖p−4 + p〈x, x〉 ‖u+ y‖p−2

= p(p− 2)〈u+ y, x〉2 ‖u+ y‖p−4 + p ‖x‖2 ‖u+ y‖p−2 , (A.7)

the next to last equality coming from (A.5). Take y = 0 in (A.7) to get

lim
τ→0

p〈u+ τx, x〉 ‖u+ τx‖p−2 − p〈u, x〉 ‖u‖p−2

τ

= p(p− 2)〈u, x〉2 ‖u‖p−4 + p ‖x‖2 ‖u‖p−2 (A.8)

and subtracting (A.8) from (A.7) gives

d2f(u;x, x) = p ‖x‖2 (‖u+ y‖p−2 − ‖u‖p−2)
+ p(p− 2)

(
〈u+ y, x〉2 ‖u+ y‖p−4 − 〈u, x〉2 ‖u‖p−4) .

We are now ready to give the Taylor expansion f(x) = ‖x+ y‖p−‖x‖p, where y ∈ H
is fixed. Substituting the first and second Gâteaux derivatives in the the Taylor

expansion (A.1) gives

‖x+ y‖p − ‖x‖p = ‖y‖p + p〈y, x〉 ‖y‖p−2 +
1

2

(
p ‖x‖2 (‖ξ + y‖p−2 − ‖ξ‖p−2)

+ p(p− 2)
(
〈ξ + y, x〉2 ‖ξ + y‖p−4 − 〈ξ, x〉2 ‖ξ‖p−4)) , (A.9)

for some ξ lying on the line segment strictly between 0 and x. We will now bound

the two terms coming from the remainder to eliminate ξ. First, since 2 < p ≤ 3, the

function ‖·‖p−2 is subadditive and the first remainder term is bounded by

‖ξ + y‖p−2 − ‖ξ‖p−2 ≤ ‖y‖p−2 .
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Next, we may write ξ = tx for some 0 < t < 1 since ξ lies on the line segment strictly

between 0 and x. Then the second remainder term is bounded by

〈ξ + y, x〉2 ‖ξ + y‖p−4 − 〈ξ, x〉2 ‖ξ‖p−4

= 〈tx+ y, x〉2 ‖tx+ y‖p−4 − 〈tx, x〉2 ‖tx‖p−4

=

〈
tx+ y

‖tx+ y‖
,
x

‖x‖

〉2

‖tx+ y‖p−2 ‖x‖2 −
〈

tx

‖tx‖
,
x

‖x‖

〉2

‖tx‖p−2 ‖x‖2

≤ ‖tx+ y‖p−2 ‖x‖2 − tp−2 ‖x‖p

= ‖x‖2 (‖tx+ y‖p−2 − ‖tx‖p−2)
≤ ‖x‖2 ‖y‖p−2 ,

the last inequality coming again by subadditivity. Combining the bounds on the

remainder terms and substituting into (A.9) gives

‖x+ y‖p−‖x‖p ≤ ‖y‖p + p〈y, x〉 ‖y‖p−2 +
1

2

(
p ‖x‖2 ‖y‖p−2 + p(p− 2) ‖x‖2 ‖y‖p−2)

= ‖y‖p + p〈y, x〉 ‖y‖p−2 +
p(p− 1)

2
‖x‖2 ‖y‖p−2 . (A.10)

Now let x
def
= Si−1 and y

def
= Xi in (A.10) and compute the expected value,

conditioned on Xi, of each side. Recalling that {Xi} are independent mean 0 random

vectors, we get

E (‖Si‖p − ‖Si−1‖p |Xi) ≤ ‖Xi‖p +
p(p− 1)

2
‖Xi‖p−2 E

(
‖Si−1‖2 |Xi

)
.

Finally, take the expected value of both sides and sum from i = 1 to n. The left hand

side telescopes giving

E ‖Sn‖p ≤
n∑
i=1

E ‖Xi‖p +
p(p− 1)

2

n∑
i=1

E ‖Si−1‖2 E ‖Xi‖p−2 .

It is known that a Hilbert space is a type 2, and hence type p, Banach space. As

an immediate consequence, we have the following theorem. For our application, we

desire to precisely know the constant cp (not depending upon n). Woyczyński (1974,

Theorem 1 and Proposition 1) provided a method for determining this constant in
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concrete situations. We use this procedure and provide his proof below to derive the

constant cp.

Theorem A.2. Assume that X1, . . . , Xn are independent mean zero random vectors

taking values in a Hilbert space H. Then for 1 < p ≤ 2,

E ‖X1 + . . .+Xn‖p ≤ cp

n∑
j=1

E ‖Xj‖p ,

where cp = 23−p + 1.

Proof. Let 0 < α ≤ 1 be given by α = p− 1. Let G : H → H be given by

G(x) = ‖x‖α−1 x.

Then G satisfies the following three properties

i. ‖G(x)‖ = ‖x‖α−1 ‖x‖ = ‖x‖α .

ii. 〈G(x), x〉 =
〈
‖x‖α−1 x, x

〉
= ‖x‖α−1 ‖x‖2 = ‖x‖α+1 .

iii. For every x, h ∈ H,

‖G(x+ h)−G(x)‖ =

∥∥∥∥‖x+ h‖α x+ h

‖x+ h‖
− ‖x‖α x

‖x‖

∥∥∥∥
≤
∥∥∥∥‖x+ h‖α x+ h

‖x+ h‖
− ‖x‖α x+ h

‖x+ h‖

∥∥∥∥
+

∥∥∥∥‖x‖α x+ h

‖x+ h‖
− ‖x‖α x

‖x‖

∥∥∥∥
= |‖x+ h‖α − ‖x‖α|+ ‖x‖α

∥∥∥∥ x+ h

‖x+ h‖
− x

‖x‖

∥∥∥∥ .
Since 0 < α ≤ 1, the first term above is subadditive. Also, we may write the last

norm as
∥∥∥ x+h
‖x+h‖ −

x
‖x‖

∥∥∥α ∥∥∥ x+h
‖x+h‖ −

x
‖x‖

∥∥∥1−α
. This last norm is bounded by 21−α by

the triangle inequality and continuing we have

‖G(x+ h)−G(x)‖ ≤ ‖h‖α + 21−α ‖x‖α
∥∥∥∥ x+ h

‖x+ h‖
− x

‖x‖

∥∥∥∥α
= ‖h‖α +

21−α

‖x+ h‖α
‖(x+ h) ‖x‖ − x ‖x+ h‖‖α .
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Again applying subadditivity to the rightmost norm gives

‖G(x+ h)−G(x)‖ ≤ ‖h‖α +
21−α

‖x+ h‖α
(‖(x+ h) ‖x‖ − (x+ h) ‖x+ h‖‖α

+ ‖(x+ h) ‖x+ h‖ − x ‖x+ h‖‖α)

= ‖h‖α + 21−α (|‖x‖ − ‖x+ h‖|α + ‖h‖α) .

Applying subadditivity a third time to the absolute value term, we arrive at

‖G(x+ h)−G(x)‖ ≤ ‖h‖α + 21−α (‖h‖α + ‖h‖α)

=
(
1 + 2 · 21−α) ‖h‖α .

Woyczyński (1974, Theorem 1) showed that, for G satisfying properties (i)-(iii), the

proof of Theorem A.2 is as follows: By (ii),

‖X1 + · · ·+Xn‖1+α =
n∑
j=1

〈G(X1 + · · ·+Xn), Xj〉 .

Let Tj
def
=
∑

i 6=j Xi. Then X1 + · · ·+Xn = Tj +Xj and by (iii), G(X1 + · · ·+Xn) =

G(Tj) + xj for some xj ∈ H such that ‖xj‖ ≤ (1 + 2 · 21−α) ‖Xj‖α . Since G(Tj) and

Xj are independent and since Xj are mean 0,

E ‖X1 + · · ·+Xn‖1+α = E
n∑
j=1

(
G(Tj)Xj + xjXj

)
≤

n∑
j=1

(
EG(Tj)EXj + E

∥∥xj∥∥ ‖Xj‖
)

≤ (1 + 2 · 21−α)
n∑
j=1

E ‖Xj‖1+α .

When H = R, we can get a better constant than the one obtained in Theorem A.2.

We establish this in the next four lemmas and corollaries.

Lemma A.3. Let 1 ≤ p ≤ 2. Then for every x, y ∈ R,

|x+ y|p ≤ |x|p + p sign(x) |x|p−1 y + cp |y|p (A.11)
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where

cp = max
0≤z≤1

(
(1− z)p + pzp−1 − zp

)
. (A.12)

If p ≥ 2, then for every x, y ∈ R,

|x+ y|p ≥ |x|p + p sign(x) |x|p−1 y + dp |y|p (A.13)

where

dp = min
0≤z≤1

(
(1− z)p + pzp−1 − zp

)
. (A.14)

If p = 2, then equality holds in (A.11) and (A.13).

Proof. If p = 2, then equality holds in (A.11). So assume that 1 ≤ p < 2 and consider

the function

R(z)
def
= |z + 1|p − |z|p − p sign(z) |z|p−1 . (A.15)

We maximize R over R. First, assume that z > 0. Then

R(z) = (z + 1)p − zp − pzp−1

and

R′(z) = p(z + 1)p−1 − pzp−1 − p(p− 1)zp−2

= p
[(

(z + 1)p−1 − zp−1
)
− (p− 1)zp−2

]
.

(A.16)

By the mean value theorem, there exists ξ ∈ (z, z + 1) such that

(z + 1)p−1 − zp−1 = (p− 1)ξp−2.

Substituting this into (A.16) gives

R′(z) = p(p− 1)
(
ξp−2 − zp−2

)
.

Since p < 2 and z < ξ, R′(z) < 0. Therefore R is strictly decreasing on z > 0 and we

have

R(z) < R(0) = 1,

showing that

max
z∈R

R(z) = max
z≤0

R(z).
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So assume now that z ≤ 0. We observe that

max
z≤0

R(z) = max
z≥0

R(−z) = max
z≥0

(
|1− z|p − zp + pzp−1

) def
= max

z≥0
R̃(z).

Let z > 1. On this interval R̃(z) becomes

R̃(z) = (z − 1)p − zp + pzp−1. (A.17)

By the mean value theorem, there exists ξ ∈ (z − 1, z) such that

zp−1 − (z − 1)p−1 = (p− 1)ξp−2. (A.18)

Differentiating R̃ and making the substitution (A.18) gives

R̃′(z) = p(z − 1)p−1 − pzp−1 + p(p− 1)zp−2

= p
[(

(z − 1)p−1 − zp−1
)

+ (p− 1)zp−2
]

= p(p− 1)
(
−ξp−2 + zp−2

)
.

Since p < 2 and ξ < z, R̃′(z) < 0. So R̃ is strictly decreasing on z > 1 and hence,

R̃(z) < R̃(1) = p− 1 for z > 1. Since p− 1 < 1 and R̃(0) = 1, we see that

max
z∈R

R(z) = max
z≤0

R(z) = max
z≥0

R̃(z) = max
0≤z≤1

R̃(z) = cp. (A.19)

We are now ready to prove (A.11). If y = 0, then equality holds in (A.11). Assume

y 6= 0 and make the substitution z = x/y in (A.19) to get∣∣∣∣xy + 1

∣∣∣∣p ≤ ∣∣∣∣xy
∣∣∣∣p + p sign

(
x

y

) ∣∣∣∣xy
∣∣∣∣p−1

+ cp.

Multiplying by |y|p gives

|x+ y|p ≤ |x|p + p
sign(x)

sign(y)

|x|p−1

|y|p−1 sign(y)y |y|p−1 + cp |y|p

= |x|p + p sign(x) |x|p−1 y + cp |y|p .
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This proves (A.11). If p > 2, the argument above carries over almost verbatim, with

inequalities switched and max replaced by min, to show the reverse inequality of

(A.11) holds with constant dp.

Lemma A.4. Let cp and dp be the constants given above. Then

1 ≤ cp ≤ c̃p ≤ 3− p (A.20)

and
1

2p−1
≤ dp ≤ 1, (A.21)

where c̃p = 1+p(p−1)
p−1
2−p (2−p) for 1 < p < 2, c̃1

def
= lim

p→1+
c̃p = 2, and c̃2

def
= lim

p→2−
c̃p =

1.

Proof. Let R̃ be as above. Since R̃(0) = 1, cp ≥ 1. To obtain the upper bounds for

cp, let 0 ≤ z ≤ 1 and 1 < p < 2. If 1
2
< z ≤ 1, then by the mean value theorem, there

exists ξ between 1− z and z such that

R̃(z) = (1− z)p − zp + pzp−1

= pξp−1(1− 2z) + pzp−1.

Since z < 1, 1− z < 1, and ξ is between z and 1− z,

R̃(z) ≤ p(1− 2z) + pzp−1.

Since z > 1/2,

R̃(z) ≤ 1− pz + pzp−1. (A.22)

If 0 < z ≤ 1
2
, then 1

z
≥ 2 and by Taylor’s theorem, there exists ξ ∈

(
1
z
− 1, 1

z

)
such

that (
1

z
− 1

)p
=

(
1

z

)p
− p

(
1

z

)p−1

+
p(p− 1)

2
ξp−2.

Since p < 2 and ξ > 1, (
1

z
− 1

)p
≤
(

1

z

)p
− p

(
1

z

)p−1

+ 1.

Multiplying by zp gives

(1− z)p ≤ 1− pz + zp.
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Therefore

R̃(z) = (1− z)p − zp + pzp−1 ≤ 1− pz + pzp−1 = 1 + p
(
zp−1 − z

)
. (A.23)

In either case, if 0 ≤ z ≤ 1, then (A.22) and (A.23) show

cp = max
0≤z≤1

R̃(z) ≤ max
0≤z≤1

(
1 + p

(
zp−1 − z

))
. (A.24)

Standard calculus shows that zp−1− z attains a maximum value at (p− 1)
1

2−p on the

interval [0, 1]. Using this in (A.24) gives

cp ≤ 1 + p
(

(p− 1)
p−1
2−p − (p− 1)

1
2−p

)
= 1 + p(p− 1)

p−1
2−p (2− p).

To show the last inequality in (A.20), we observe

1 + p(p− 1)
p−1
2−p (2− p) ≤ 3− p

if and only if

p(p− 1)
p−1
2−p (2− p) ≤ 2− p

if and only if

p(p− 1)
p−1
2−p ≤ 1

if and only if

ln p+
p− 1

2− p
ln (p− 1) ≤ 0

if and only if

(2− p) ln p+ (p− 1) ln(p− 1) ≤ 0. (A.25)

Now the left hand side of (A.25) is a convex combination of the function x 7→ lnx.

Since x 7→ lnx is concave,

(2− p) ln p+ (p− 1) ln (p− 1) ≤ ln
(
(2− p)p+ (p− 1)2

)
= ln

(
2p− p2 + p2 − 2p+ 1

)
= ln 1

= 0.
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Finally, to bound dp, first observe that R̃(0) = 1 and hence, dp ≤ 1. To prove the

lower bound, let 0 ≤ z ≤ 1 and p > 2. Then

R̃(z) = (1− z)p − zp + pzp−1 = (1− z)p + (p− z)zp−1 ≥ (1− z)p + zp−1

≥ (1− z)p + zp = (1− z)(1− z)p−1 + zzp−1

is a convex combination of the function x 7→ xp−1. Since x 7→ xp−1 is convex, we have

R̃(z) ≥
(
(1− z)2 + z2

)p−1
=
(
1− 2z + 2z2

)p−1
. (A.26)

Now the right hand side of (A.26) is minimized whenever 1− 2z + 2z2 is minimized,

that is, at z = 1/2 with a value of 1/2. Therefore,

dp = min
0≤z≤1

R̃(z) ≥ 1

2p−1
.

Corollary A.5. Let {Sn}∞n=0 be an (Fn)∞n=0-martingale, let 1 ≤ p ≤ 2, and let

Sn ∈ Lp for every n. Then

E |Sn|p − E |S0|p ≤ cp

n∑
k=1

E |Sk − Sk−1|p . (A.27)

If p > 2, then the reverse inequality holds for the constant dp. That is,

E |Sn|p − E |S0|p ≥ dp

n∑
k=1

E |Sk − Sk−1|p . (A.28)

Proof. Since (Sn) is a martingale, E (Sk − Sk−1|Fk−1) = 0. For every ω ∈ Ω,

Lemma A.3 then gives

|Sk(ω)|p = |Sk−1(ω) + (Sk(ω)− Sk−1(ω))|p

≤ |Sk−1(ω)|p + p sign (Sk−1(ω)) |Sk−1(ω)|p−1 (Sk(ω)− Sk−1(ω))

+ cp |Sk(ω)− Sk−1(ω)|p .
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Figure A.1: Graph and approximations of cp and dp.

Conditioning on Fk−1 and taking the expected value gives

E (|Sk|p |Fk−1)

≤ E (|Sk−1|p |Fk−1) + E
(
p sign (Sk−1) |Sk−1|p−1 (Sk − Sk−1) |Fk−1

)
+ cpE (|Sk − Sk−1|p |Fk−1)

= |Sk−1|p + p sign (Sk−1) |Sk−1|p−1 E (Sk − Sk−1|Fk−1) + cpE (|Sk − Sk−1|p |Fk−1)

= |Sk−1|p + cpE (|Sk − Sk−1|p |Fk−1) .

Taking the expected value gives, for every k,

E |Sk|p − E |Sk−1|p ≤ cpE |Sk − Sk−1|p . (A.29)

Sum (A.29) from k = 1 to n. The left hand side of (A.29) telescopes, giving (A.27).
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Corollary A.6. Let Xn be independent mean 0 random variables and 1 ≤ p ≤ 2.

Then

E

∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣
p

≤ cp

n∑
i=1

E |Xi|p . (A.30)

If p > 2, then the reverse inequality holds with constant dp. That is,

E

∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣
p

≥ dp

n∑
i=1

E |Xi|p . (A.31)

Proof. If any Xi /∈ Lp, (A.30) is trivial. So assume Xn ∈ Lp for every n. Let S0
def
= 0

and Sn
def
=

n∑
i=1

Xi. Let F0 = {∅,Ω} and Fn = σ (Xk : k ≤ n). Then {Sn}∞n=0 is an

(Fn)∞n=0-martingale and by Corollary A.5,

E

∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣
p

≤ cp

n∑
i=1

E |Xi|p . (A.32)

The next lemma gives control over lower limits of E ‖Sn‖p. Most often, this lemma

is used with J ≡ {1} when the summands are i.i.d. random vectors.

Lemma A.7. Let p ≥ 1 and let X1, X2, . . . , Xn ∈ Lp be independent mean 0 random

variables. Then for every J ⊂ {1, 2, . . . , n},

E

∥∥∥∥∥
n∑
i=1

Xi

∥∥∥∥∥
p

≥ E

∥∥∥∥∥∑
J

Xi

∥∥∥∥∥
p

. (A.33)

In particular,

E

∥∥∥∥∥
n∑
i=1

Xi

∥∥∥∥∥
p

≥ E max
J⊂{1,2,...,n}

∥∥∥∥∥∑
J

Xi

∥∥∥∥∥
p

. (A.34)

Proof. Let J ⊂ {1, 2, . . . , n} and put A def
= σ{Xj : j ∈ J}. Then by Jensen’s

inequality,

E

∥∥∥∥∥
n∑
i=1

Xi

∥∥∥∥∥
p

≥ E

∥∥∥∥∥E
(

n∑
i=1

Xi|A

)∥∥∥∥∥
p

= E

∥∥∥∥∥E
(∑

i∈J

Xi|A

)
+ E

(∑
i∈Jc

Xi|A

)∥∥∥∥∥
p

.
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Since {Xi}i∈Jc are mean 0 and independent of A,

E

(∑
i∈Jc

Xi|A

)
= 0

and since {Xi}i∈J are A-measurable,

E

(∑
i∈J

Xi|A

)
=
∑
i∈J

Xi,

giving the result.

The previous lemma has as an application the following corollary allowing one to

establish results concerning mean 0 random vectors from results concerning symmetric

random vectors.

Corollary A.8. Let p ≥ 1, let X be a mean 0 random vector, and let Xs def= X−X ′,
where X ′ is an independent copy of X, be the standard symmetrization of X. Then

E ‖X‖p ≤ E ‖Xs‖p ≤ 2pE ‖X‖p . (A.35)

Proof. The upper bound follows from Minkowski’s inequality and the lower bound

follows from Lemma A.7 with J ≡ {1}.

Finally, the following lemma and theorems were established by Lata la (1997). The

theorems hold for real-valued random variables. It is not known if these results hold

for random vectors taking values in a Hilbert space. If H = R, one may use these

theorems to obtain better constants in Theorem 1.2.1 whenever p > 3. Since the

results are restricted to the real valued case, they are excluded from the proof of

Theorem 1.2.1 in favor of results pertaining to Hilbert space valued random vectors

(in particular, the Hoffman-Jorgensen inequality).

Lemma A.9. For every x ≥ 0 and for every p ≥ 1,

(1 + x)p ≤
∑

0≤k<p

(
p

k

)
xk + xp. (A.36)
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For every x ∈ R and for every p > 2,

|1 + x|p ≤
∑

0≤k<p−1

(
p

k

)
xk +

(
p

dp− 1e

)
|x|dp−1e + |x|p . (A.37)

Proof. First, let p ≥ 1. For x > 0, Taylor’s theorem applied to the Maclaurin series

of the function f(x)
def
= (1 + x)p − xp gives

(1 + x)p − xp =
∑

0≤k<p

(
p

k

)
xk +R(x),

where

R(x) =
f (dpe)(ξ)

dpe!
xdpe

for some 0 < ξ < x. But

R(x) =

(
p

dpe

)(
(1 + ξ)p−dpe − ξp−dpe

)
xdpe ≤ 0

and hence

(1 + x)p − xp ≤
∑

0≤k<p

(
p

k

)
xk,

proving (A.36)

To prove (A.37), let p > 2. If x ≥ 0, then (A.36) is true by (A.36). So suppose

x < 0. Again by Taylor’s theorem applied to the Maclaurin series of the function

f(x)
def
= |1 + x|p − |x|p gives

|1 + x|p − |x|p =
∑

0≤k<p−1

(
p

k

)
xk +R(x),

where

R(x) =
f (dp−1e)(ξ)

dp− 1e!
xdp−1e

=

(
p

dp− 1e

)[
sign(1 + ξ)dp−1e |1 + ξ|p−dp−1e − (−1)dp−1e |ξ|p−dp−1e

]
xdp−1e
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for some x < ξ < 0. If dp− 1e is even, then

R(x) =

(
p

dp− 1e

)[
|1 + ξ|p−dp−1e − |ξ|p−dp−1e

]
|x|dp−1e ≤

(
p

dp− 1e

)
|x|dp−1e

and if dp− 1e is odd, then

R(x) =

(
p

dp− 1e

)[
sign(1 + ξ) |1 + ξ|p−dp−1e + |ξ|p−dp−1e

]
(−1) |x|dp−1e ≤ 0.

In either case, we have

|1 + x|p − |x|p =
∑

0≤k<p−1

(
p

k

)
xk +

(
p

dp− 1e

)
|x|dp−1e .

The following theorem was proved by Lata la (1997, Corollary 1) using Lemma A.9.

The constant in Theorem A.10 is easily observed from Lata la (1997, Corollary 2).

Theorem A.10. If p ≥ 1 and X,X1, . . . , Xn are i.i.d. nonnegative random variables,

then

‖X1 + · · ·+Xn‖p ≤ 2e2 sup

{
p

s

(
n

p

) 1
s

‖X‖s : max
(

1,
p

n

)
≤ s ≤ p

}
.

Again, using Lemma A.9, one can prove the following theorem of Lata la (1997,

Corollary 2).

Theorem A.11. If p > 2 and X,X1, . . . , Xn are i.i.d. symmetric random variables,

then

‖X1 + · · ·+Xn‖p ≤ 2e2 sup

{
p

s

(
n

p

) 1
s

‖X‖s : max
(

2,
p

n

)
≤ s ≤ p

}

I provide an alternate proof with worse constants.

Proof. Let {εi}ni=1 be a sequence of i.i.d Rademacher random variables independent

of {Xi}ni=1. Then

E |X1 + · · ·+Xn|p = EEε |ε1X1 + · · ·+ εnXn|p , (A.38)
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where Eε denotes integration of the random variables εi. Now for fixed ω, the

Khintchine − Kahane inequalities (see e.g. de la Peña and Giné (1999, Theorem

1.3.1)) gives

Eε |ε1X1(ω) + · · ·+ εnXn(ω)|p ≤

√p− 1

Eε

∣∣∣∣∣
n∑
i=1

εiXi(ω)

∣∣∣∣∣
2
1/2


p

=

√p− 1

(
n∑
i=1

Xi(ω)2

)1/2
p

=

(
k∑
i=1

(p− 1)Xi(ω)2

)p/2

and combining with (A.38) gives

‖X1 + · · ·Xn‖p ≤

E

(
k∑
i=1

(p− 1)Xi(ω)2

)p/2
1/p

. (A.39)

Now {(p− 1)X2
i }ni=1 is a sequence of nonnegative i.i.d. random variables and hence,

by Theorem A.10,

‖
n∑
i=1

(p− 1)X2
i ‖p/2 ≤ 2e2 sup{ p

2s

(
2n

p

)1/s

‖(p− 1)X2‖s : max
(

1,
p

2n

)
≤ s ≤ p

2
}

= 2e2 sup{ p
2s

(
2n

p

)1/s

(p− 1)‖X2‖s : max
(

2,
p

n

)
≤ 2s ≤ p}

= 2e2 sup{p
t

(
2n

p

)2/t

(p− 1)‖X2‖t/2 : max
(

2,
p

n

)
≤ t ≤ p}

= 2e2 sup{p
t

(
2n

p

)2/t

(p− 1)‖X‖2
t : max

(
2,
p

n

)
≤ t ≤ p}

= 2e2 p

t0

(
2n

p

)2/t0

(p− 1)‖X‖2
t0
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for some max
(
2, p

n

)
≤ t0 ≤ p. Combining with (A.39) gives

‖X1 + · · ·+Xn‖p ≤
√

2e2

√
p

t0

(
2n

p

)1/t0√
p− 1‖X‖t0

=
√

2e
√
p− 1

(
p

t0

)−1/2

21/t0

{
p

t0

(
n

p

)1/t0

‖X‖t0

}

≤ 2e
√
p− 1 sup

{
p

s

(
n

p

)1/2

‖X‖s : max
(

2,
p

n

)
≤ s ≤ p

}
.
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Appendix B

Modular Spaces

The following is a brief overview of Modular Spaces. I present a few useful basic facts

and theorems taken from Rolewicz (1972, Chapter 1) and Kwapień and Woyczyński

(1992, Chapter 0). Let X be a linear space.

Definition B.1. A function ‖ · ‖ : X → [0,∞] is an F-norm on X (or simply an

F-norm) if ‖ · ‖ satisfies the following properties:

i. ‖x‖ = 0 if and only if x = 0,

ii. ‖αx‖ = ‖x‖ for every α such that |α| = 1, and

iii. ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for every x, y ∈ X.

Definition B.2. A function ρ : X → [0,∞] is a modular on X (or simply a modular)

if ρ satisfies the following properties:

i. ρ(x) = 0 if and only if x = 0,

ii. ρ(αx) = ρ(x) for every α such that |α| = 1,

iii. ρ(αx+ βy) ≤ ρ(x) + ρ(y) for every α, β ≥ 0 such that α + β = 1,

iv. ρ(αnx)→ 0 if αn → 0 and ρ(x) <∞, and

v. ρ(αxn)→ 0 if ρ(xn)→ 0.

An F-norm need not be a modular. But if

‖αx‖ ≤ ‖x‖ for every 0 ≤ α ≤ 1,
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then the F-norm ‖ · ‖ is a modular. The following theorem show the relationships

between F-norms and modulars.

Theorem B.3 (F-norm to Modular). Rolewicz (1972, Theorem I.2.2)]. If ‖ · ‖ is an

F-norm on X, then the F-norm ‖ · ‖′ defined by

‖x‖′ def= sup
0≤t≤1

‖tx‖

is equivalent to ‖ · ‖ and is a modular on X.

Theorem B.4 (Modular to F-norm). [Rolewicz (1972, Theorem I.2.3)]. Let X be

a linear space with modular ρ(x). Let Xρ def
= {x ∈ X : ρ(kx) <∞ for some k > 0}.

Then

‖x‖ def= inf
{
c > 0 : ρ

(
c−1x

)
< c
}

is an F-norm on Xρ such that

‖xn‖ → 0 if and only if ρ(xn)→ 0.

Finally, we present an easy way to generate a modular. Let (S,S, µ) be a σ-

finite measure space and let L0 be the space of all measurable maps x : (S,S) →
(R,B(R)). Let N : R+ → R+ be a continuous, non-decreasing function satisfying the

∆2 condition such that N(u) = 0 if and only if u = 0. Then

ρN(x)
def
=

∫
S

N(|x(t)|)µ(dt)

defines a modular on L0 and by Theorem B.4,

‖x‖ρN
def
= inf

{
c > 0 :

∫
S

N(c−1 |x(t)|)µ(dt) < c

}

is an F-norm on LρN
def
= {x ∈ L0 : ρN(kx) <∞ for some k > 0}. The modular space

LρN is called an Orlicz space. Moreover, if N is convex, then the so called Orlicz

norm

‖x‖ρN
def
= inf

{
c > 0 : ρN

(
c−1x

)
=

∫
S

N(c−1 |x(t)|)µ(dt) ≤ 1

}
is a norm on LρN .
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Example B.5. i. As an example, let N(u)
def
= up for 0 < p < ∞. If p ≥ 1, let c

solve ∫
S

c−p |x(t)|p µ(dt) = 1.

Then c =
(∫

S
|x(t)|p µ(dt)

)1/p
and hence, ‖·‖ρN = ‖·‖Lp is a norm on Lp(S,S, µ).

If 0 < p < 1, then letting c solve∫
S

c−p |x(t)|p µ(dt) = c

gives ‖ · ‖ρN = ‖ · ‖p+1
Lp is an F-norm on Lp(S,S, µ). This shows that Orlicz spaces

generalize Lp spaces.

ii. Assume that µ(S) <∞ and let N(u) = u ∧ 1. Then

ρN(x)
def
=

∫
S

|x(t)| ∧ 1µ(dt) <∞

is a modular and F-norm on L0. The modular space L0 is often denoted

L0(S,S, µ) and the modular ρN denoted ‖ · ‖0. It is the space of all measurable

maps and ‖xn‖0 → 0 if and only if xn → 0 in µ-measure.

iii. Kwapień and Woyczyński (1992, Section 0.8). Let Φ : S × R+ → R+ be such

that

a. For every s ∈ S, Φ(s, ·) is a continuous non-decreasing function on R+ with

Φ(s, 0) = 0,

b. For every y ∈ R+, Φ(·, y) is S-measurable, and

c. For every s ∈ S, Φ(s, ·) satisfies the ∆2 condition (see Definition C.1.4 ).

Then

ρΦ(f)
def
=

∫
S

Φ(s, |f(s)|)µ(ds)

is a modular on the space

LΦ(S,S, µ) = LΦ def
=
{
f ∈ L0 : ρΦ(f) <∞

}
.
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The modular space LΦ is called a Musielak-Orlicz space. Similar to the above

‖f‖Φ
def
= inf

{
c > 0 : ρΦ

(
c−1f

)
≤ c
}

is an F-norm on LΦ and is called an Musielak-Orlicz F-norm.
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Appendix C

Selected Prerequisite Analysis

Results

We present a few basic, but possibly less known, facts from probability theory and

real analysis.

C.1 Convergence results

Theorem C.1.1. [See e.g. Ledoux and Talagrand (1991, Theorem 6.1)]. Let

{Xn}n∈N be a sequence of independent random variables taking values in a separable

Banach space. Let Sn
def
=
∑n

i=1Xi. The following are equivalent:

i. The sequence {Sn}n∈N converges almost surely.

ii. The sequence {Sn}n∈N converges in probability.

iii. The sequence {Sn}n∈N converges in distribution.

Theorem C.1.2. Rudin (1987, thm. 7.10). Associate to each x ∈ Rd a sequence

{En(x)} with the following property: there is a number α > 0 and a sequence of balls

B(x, rn) ⊃ En with rn → 0 such that

λ(En) ≥ αλ(B(x, rn))

for each n = 1, 2, 3, . . . . If f ∈ L1(Rd), then

f(x) = lim
n→∞

1

λ(En(x))

∫
En(x)

f(y)λ(dy) for λ-a.e. x.
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Lemma C.1.3. Xn
P→ X if and only if for every subsequence {nk} ⊂ N, there exists

a sub-subsequence {nkl} ⊂ {nk} such that Xnkl
→ X a.s.

Proof. (⇒) Let Xn
P→ X and let {nk} be a subsequence. Then Xnk

P→ X and by

Jacob and Protter (2004, Theorem 17.3), there exists a sub-subsequence nkl such that

Xnkl
→ X a.s.

(⇐) Let ε > 0 and {nk} be a subsequence. Then there exists a sub-

subsequence {nkl} such that Xnkl
→ X a.s. Therefore Xnkl

P→ X and hence,

the sequence of numbers P
(∣∣∣Xnkl

−X
∣∣∣ > ε

)
→ 0. So every subsequence of

numbers P (|Xnk −X| > ε) has a sub-subsequence of numbers P
(∣∣∣Xnkl

−X
∣∣∣ > ε

)
that converge to 0. Therefore

P (|Xn −X| > ε)→ 0.

Definition C.1.4. Let ϕ : R+ → R+ be a non-decreasing function.

i. The function ϕ is of moderate growth if for some C1 > 0 and any x, y ∈ R+,

ϕ(x+ y) ≤ C1(ϕ(x) + ϕ(y)).

ii. The function ϕ satisfies the ∆2 condition if for some C2 > 0 and any x, y ∈ R+,

ϕ(2x) ≤ C2ϕ(x).

Theorem C.1.5. ϕ is of moderate growth if and only if ϕ satisfies ∆2.

Proof. Item i ⇒ Item ii. Suppose there exists C1 > 0 such that

ϕ(x+ y) ≤ C1(ϕ(x) + ϕ(y))

for any x, y ∈ R+. Let x ∈ R+. Then

ϕ(2x) = ϕ(x+ x) ≤ C1(ϕ(x) + ϕ(x)) = C2ϕ(x),
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where C2 = 2C1.

Item ii ⇒ Item i. Now suppose there is a C2 > 0 such that

ϕ(2x) ≤ C2ϕ(x)

for any x, y ∈ R+. Let x, y ∈ R+ with x < y. Then, since ϕ is non-decreasing and

non-negative,

ϕ(x+ y) ≤ ϕ(2y) ≤ C2ϕ(y) ≤ C2(ϕ(y) + ϕ(x)).

C.2 Algebras

Theorem C.2.1. Let (S,A, µ) be a finite measure space and let A0 be an algebra

generating A. Then for every ε > 0 and for every A ∈ A, there exists an Aε ∈ A0

such that

µ (A4Aε)
def
= µ

(
(A \ Aε)

⋃
(Aε \ A)

)
< ε.

Proof. Let ε > 0 and define

B def
= {A ∈ A : µ (A4Aε) < ε for some Aε ∈ A0.}

Obviously B contains A0. We show B is a monotone class. First, let A,B ∈ B with

A ⊂ B. Then there exists Aε, Bε ∈ A0 such that

µ (A4Aε) + µ (B4Bε) < ε.

Since A0 is an algebra, Bε \ Aε ∈ A0 and we have

(B \ A)4 (Bε \ Aε) = (B ∩ Ac)4 (Bε ∩ Acε)

= [(B ∩ Ac) ∩ (Bε ∩ Acε)
c] ∪ [(Bε ∩ Acε) ∩ (B ∩ Ac)c]

= [(B ∩ Ac) ∩ (Bc
ε ∪ Aε)] ∪ [(Bε ∩ Acε) ∩ (Bc ∪ A)]

= [(B ∩ Ac) ∩Bc
ε] ∪ [(B ∩ Ac) ∩ Aε]

∪ [(Bε ∩ Acε) ∩Bc] ∪ [(Bε ∩ Acε) ∩ A]

⊂ (B ∩Bc
ε) ∪ (Ac ∩ Aε) ∪ (Bε ∩Bc) ∪ (Acε ∩ A)
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= (B \Bε ∪Bε \B) ∪ (A \ Aε ∪ Aε \ A)

= (B4Bε) ∪ (A4Aε) .

Therefore

µ ((B \ A)4 (Bε \ Aε)) ≤ µ (B4Bε) + µ (A4Aε) < ε,

showing that B \ A ∈ B and hence, B is closed under differences.

Second, let A1 ⊂ A2 ⊂ A3 ⊂ · · · be a sequence of events in B. Since S is a finite

space and

lim
n→∞

µ (An) = µ

(
∞⋃
i=1

Ai

)
<∞,

we can choose n > 0 so large that

µ

(
∞⋃
i=1

Ai

)
\ An = µ

(
∞⋃

i=n+1

Ai

)
<
ε

2
.

Fix such n. Since An ∈ B, there exists Aεn ∈ A0 such that

µ (An4Aεn) <
ε

2
.

Now

∞⋃
i=1

Ai4Aεn =

[(
∞⋃
i=1

Ai

)
\ Aεn

]
∪

[
Aεn \

(
∞⋃
i=1

Ai

)]

=

[(
∞⋃
i=1

Ai

)
∩ (Aεn)c

]
∪

[
Aεn ∩

(
∞⋃
i=1

Ai

)c]

=

[
∞⋃
i=1

(Ai ∩ (Aεn)c)

]
∪

[
Aεn ∩

(
∞⋂
i=1

Aci

)]

=

[
n⋃
i=1

(Ai ∩ (Aεn)c)

]
∪

[
∞⋃

i=n+1

(Ai ∩ (Aεn)c)

]
∪

[
Aεn ∩

(
∞⋂
i=1

Aci

)]
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⊂ [An ∩ (Aεn)c] ∪

[
∞⋃

i=n+1

Ai

]
∪ [Aεn ∩ Acn]

= An \ Aεn ∪

[
∞⋃

i=n+1

Ai

]
∪ Aεn \ An

= (An4Aεn) ∪

[
∞⋃

i=n+1

Ai

]
.

Then

µ

((
∞⋃
i=1

Ai

)
4Aεn

)
≤ µ (An4Aεn) + µ

(
∞⋃

i=n+1

Ai

)
<
ε

2
+
ε

2
= ε,

showing that
∞⋃
i=1

Ai ∈ B. So B is a monotone class. By the monotone class theorem,

B = σ (A0) = A.

Corollary C.2.2. Let T > 0 and

A0
def
=

{
n⋃
i=1

(si, si+1] : n is a finite integer, 0 ≤ s1 ≤ · · · ≤ sn+1 ≤ T , and si ∈ Q

}
.

Then A0 is an algebra of subsets of (0, T ] generating B((0, T ]).

Proof. Since A0 ⊂ B((0, T ]), σ(A0) ⊂ B((0, T ]). So its enough to show σ(A0) ⊃
B((0, T ]). Let 0 ≤ a < b ≤ T and an, bn ∈ Q ∩ [0, T ] with an decreasing to a and bn

strictly increasing to b. Then

(a, b) =
∞⋃
n=1

(an, bn] ∈ σ(A0).

Since any open subset of (0, T ] is a countable union of such open intervals,

B((0, T ]) ⊂ σ(A0).
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