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ABSTRACT 
 

Functional magnetic resonance imaging (fMRI) was used to examine functional brain 

activity in two demographically matched depressed women following their participation 

in a Behavioral Activation Treatment for Depression (BATD; Hopko & Lejuez, 2007) or 

Pragmatic Psychodynamic Psychotherapy (PPP; Summers & Barber, 2010). A reward 

responsiveness pleasurable music listening scanner paradigm was employed during brain 

scanning to assess reward responsivity prior to and following treatment. Both women 

responded positively to treatment, evidenced reductions in depression, and exhibited 

changes in their blood oxygenation level dependence (BOLD) response as measured by 

fMRI following treatment. BOLD response changes were not observed in either patient in 

subcortical regions implicated in reward responsiveness following treatment. However, 

BOLD response changes were observed for both patients in regions of the dorsolateral 

and medial orbital prefrontal cortex and subgenual cingulate following treatment, with 

each treatment affecting these areas. These findings support the notion that when BATD 

and PPP are implemented effectively they are associated with functional brain changes in 

areas implicated in the pathophysiology of depression.    
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CHAPTER 1 

INTRODUCTION  

Understanding the relationship between neurobiological processes and effective 

treatments for clinical depression is an important and burgeoning area of research. 

Indeed, major depressive disorder is now beginning to be understood as a systems level 

disorder affecting distributed regions in the cortical, subcortical, and limbic regions that 

in turn contribute to the pathophysiology and symptom presentation of the condition 

(Davidson Pizzagalli, Nitschke, & Putnam, 2002; Drevets, Price, & Furey, 2008; 

Mayberg et al., 1997, Mayberg, 2003). Much of the aberrant functional brain activity that 

characterizes depression has been normalized following recovery from depression (Brody 

et al., 2001; Mayberg et al., 1999, 2000, 2005). Understanding the putative mechanisms 

of change facilitated by psychosocial treatments for depression may enhance our 

understanding of the pathophysiology of the disorder, lead to treatment refinement and 

development, and eventually facilitate patient-treatment matching (Mayberg, 2006). 

Initial studies evaluating associative changes that psychosocial treatments have on the 

neurobiological basis of depression hold promise toward achieving these objectives.  

Studies examining neurobiological changes associated with Interpersonal 

Psychotherapy (IPT) for depression have found increased metabolic changes in the left 

temporal lobe and anterior insula during resting state PET scans following treatment 

(Brody et al., 2001), and increases in blood flow in the right basal ganglia and limbic 

right posterior cingulate during resting state SPECT scans after six weeks of treatment 

(Martin, Martin, Rai, Richardson, & Royall, 2001).  Additional findings entailed 

decreases in the right middle frontal gyrus (including both VLPFC and DLPFC) left 
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middle anterior cingulate, and right dorsal caudate nucleus during resting state PET scan 

(Brody et al., 2001). In terms of methodological limitations, results reported by Martin et 

al. (2001) are somewhat limited due to the second scan occurring at 6-weeks into 

treatment, mid-way through treatment completions, and because SPECT methodology 

produces resolution without the precision required to evaluate activity in striatal 

subregions. Nonetheless, these studies were pioneering works insofar as being among the 

first to demonstrate functional brain changes corresponding to psychotherapeutic 

treatments for depression.  

Studies examining neurobiological changes following Cognitive Behavioral 

Therapy (CBT) for depression have found increases in metabolic activity in the 

hippocampus and dorsal anterior cingulate cortex (Goldapple et al., 2004), as well as 

increases in the right inferior occipital cortex, left inferior temporal cortex, and anterior 

portions of the subgenual/ventromedial frontal cortex during resting state PET scans 

(Kennedy et al., 2007). At post-treatment, these same studies found attenuation of 

depressive symptoms and decreased activations in the dorsolateral, medial, and 

ventrolateral prefrontal regions, orbital frontal regions, posterior cingulate, inferior 

parietal and temporal regions (Goldapple et al., 2004), as well as decreases in the bilateral 

orbital frontal cortex, left medial prefrontal cortex, left dorsomedial, posterior cingulate, 

and thalamus during resting state PET scans (Kennedy et al., 2007).  

One study employed an affective facial processing task during fMRI scanning to 

assess blood oxygenation level dependence (BOLD) prior to and following CBT for 

depression, and observed elevated amygdala-hippocampal activity (relative to healthy 

individuals) that was observed to normalize following treatment (Fu et al., 2008). Fu et 
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al., (2008) also observed increases in BOLD response in the dorsal anterior cingulate 

following treatment. Examining reward responsiveness using a Wheel-Of-Fortune task 

prior to and following Behavioral Activation Treatment for Depression (BATD; Hopko, 

Lejuez, Ruggiero, & Eiffert 2003; Lejuez, Hopko, Acierno, Daughters, & Pagoto, 2011) 

it was shown that simultaneous with depression symptom reduction, left planum 

temporale, right superior lateral occipital cortex, and right posterior temporal fusiform 

cortex functioning increased during reward feedback (Dichter et al., 2009). Following 

BATD, decreases in the left posterior cingulate, left caudate, left postcentral gyrus, and 

left paracingulate gyrus also were observed during reward feedback (Dichter et al., 2009). 

Importantly, this was the first study using a scanner paradigm to assess neurobiological 

changes directly corresponding to the aim of the treatment. Specifically, BATD was 

designed to increase exposure to rewarding stimuli (Hopko et al., 2003) and the scanner 

paradigm assessed for neurobiological response to rewarding feedback.  

Initial findings generally suggest that positive treatment outcome among 

depressed patients treated with BATD, IPT, and CBT are associated with changes in 

brain regions that have been implicated in the pathophysiology of depression. Such brain 

changes have been thought to reflect improved problem-solving, reductions in negative 

affect and associated cognitions, decreased rumination, and improved affect regulation 

and self-perception (Cabeza & Nyberg, 2000; Duncan & Owen, 2000; Northoff et al., 

2006; Ochsner & Gross, 2005). While these findings are salient to understanding the 

pathophysiology of depression and the role that psychotherapeutic treatments may have 

in modulating aberrant brain activations, the assumptions made about functional brain 

changes are mostly based on resting state brain scans. Only two studies incorporated 
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functional tasks during brain scans to more clearly assess activations associated with 

features of depression. In particular, processing affectively salient facial features (Fu et 

al., 2008) and reward feedback (Dichter et al., 2009) directly relate to behavioral models 

of depression and targets of intervention. Utilizing functional tasks during scanning has 

been encouraged as it more clearly delineates specific neurobiological components of 

depression and how treatments may or may not specifically target relevant brain regions 

(Frewen, Dozois, & Lanius, 2008). Ideally, functional brain data acquired during 

scanning would entail a task that is relevant to the psychiatric disorder as well as the 

mechanisms of change the treatment of interest purports to be predicated upon.  

Investigating neurobiological networks of reward is warranted given the relevance 

of behavioral inhibition, withdrawal, avoidance, and limited behavioral activation among 

depressed individuals (Jacobson, Martell, Dimidjian, 2001; Kasch, Rottenberg, Arnow & 

Gotlib, 2002). Plausibly, these behavioral correlates are due to decreased reward 

responsiveness as the brain activity of healthy and depressed patients are distinguishable 

by differential responsiveness to rewarding stimuli. Lower activation of the mesolimbic 

regions in depressed individuals is observed in response to positive stimuli such as happy 

faces or pleasant autobiographical narratives (Epstein et al., 2006; Keedwell, Andrew, 

Williams, Brammer, & Phillips, 2005; Schaefer, Putnam, Benca, & Davidson, 2006). 

Brain regions observed to be active during passive listening to pleasurable music (Blood 

& Zatorre, 2001; Menon & Levitin, 2005) have similarly been observed to be active in 

response to other reward inducing stimuli such as food, sex, and drugs of abuse (Bardo, 

1998; Pfaus, Damsma, Wenkstern, & Fibiger, 1995; Schilström, Svensson, Svensson, & 
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Nomikos, 1998; Carelli, Ijames, & Crumling, 2000) and have distinguished brain 

functioning between healthy and depressed individuals (Osuch et al., 2009). 

Osuch et al., (2009) utilized a pleasurable music listening paradigm during fMRI 

scanning to assess differential responsiveness to rewarding stimuli among depressed 

individuals and healthy controls. Depressed individuals exhibited significantly weaker 

activations in the medial orbital prefrontal cortex (moPFC) and nucleus 

accumbens/ventral striatum, regions implicated in reward processing (Osuch et al., 2009). 

Moreover, self-reported pleasure ratings were positively correlated with left medial 

prefrontal activity and negatively correlated with the middle temporal cortex and globus 

pallidus. Examining the neurobiological activity associated with reward responsiveness is 

an important advancement in clarifying the pathophysiology of depression. However, 

only one study has examined how such aberrant functional brain activity associated with 

both diminished reward response and depressive symptoms corresponds to changes 

induced by psychotherapy (Dichter et al., 2009).   

Examining brain regions implicated in reward responsiveness is a pressing need, 

especially given models of depression that implicate decreased behavioral activation and 

minimized exposure to reward as being primary causal factors associated with the onset 

and maintenance of clinical depression (Ferster, 1973; Lewinsohn, 1974; Lewinsohn & 

Graf, 1973). Behavioral activation is a therapeutic process that emphasizes structured 

attempts at engendering increases in overt behaviors likely to bring patients into contact 

with reinforcing environmental contingencies and corresponding improvements in 

thoughts, mood, and quality of life (Hopko et al., 2003). Behavioral activation 

interventions largely have been used to treat depressive disorders and symptoms, with 
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three meta-analyses supporting their efficacy such that behavioral activation is now 

considered an empirically validated treatment for depression (Cuijpers van Straten, & 

Warmerdam, 2007; Ekers, Richards, & Gilbody, 2008; Mazzucchelli, Kane, & Rees, 

2009; Sturmey, 2009). In one of the more compelling studies, behavioral activation was 

comparable to antidepressant medication and superior to cognitive therapy in treating 

severe depression (Dimidjian et al. 2006), results that were maintained at 2-year follow-

up (Dobson et al., 2008). Behavioral activation also has been effectively used with 

depressed patients in community mental health centers (Lejuez, Hopko, LePage, Hopko, 

& McNeil, 2001; Porter, Spates, & Smitham, 2004), in a primary care setting as 

administered by previously untrained mental health nurses, (Ekers, Richards, McMillan, 

Bland, & Gilbody, 2011), an inpatient psychiatric facility (Hopko, Lejuez, LePage, 

Hopko, & McNeil, 2003), a representative community outpatient sample (Jacobson et al., 

1996), for smokers and drug users with elevated depressive symptoms (Daughters et al., 

2008; MacPherson et al., 2010), as a single session intervention with depressed college 

students (Gawrysiak, Nicholas, & Hopko, 2009), for depressed patients with obesity 

(Pagoto et al., 2008) and as a supplemental intervention for patients with co-existent Axis 

I (Hopko, Hopko, & Lejuez, 2004; Jakupak et al., 2006; Mulick & Naugle, 2004) and 

Axis II disorders (Hopko, Sanchez, Hopko, Dvir, & Lejuez, 2003). Perhaps most relevant 

to the current study, behavioral activation also has been effective with depressed cancer 

patients in a medical care setting (Hopko et al., 2005, 2008, 2011), an important finding 

given the high rates of depression in patients with co-existent medical problems (Welch, 

Czerwinski, Chimire, & Bertsimas, 2009).  
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Given the efficacy of behavioral activation in treating depression and its 

purported mechanism of change being increased behavioral activation and reward 

exposure, the following study was designed to evaluate whether treatment of a depressed 

woman corresponded to changes in relevant functional brain activity. To examine this 

question, a novel reward responsiveness paradigm (pleasurable music listening) was used 

to explore regional brain activations following BATD. We first posited that music 

listening was an appropriate fMRI paradigm to evaluate neurobiological reward 

responsiveness given the relevant literature speaking to the relationship between music 

and neurobiological activity related to reward (Blood & Zatorre, 2001; Menon & Levitin, 

2005; Osuch et al., 2009). It was hypothesized that exposure to preferred as opposed to 

neutral music passages at pre- and post-treatment would elicit increased activation in the 

nucleus accumbens, orbital, medial, and dorsolateral prefrontal regions, ventral striatum, 

and the dorsal anterior cingulate cortex, and/or reductions in the globus pallidus, the 

caudate, the anterior cingulate cortex, paracingulate, posterior and subgenual cingulate 

cortical regions. The second hypothesis was that following treatment these regional 

changes would correspond with reduced depression severity and behavioral inhibition, 

and increased environmental reward and behavioral activation.  

To assess whether BATD uniquely affected regions implicated in depression and 

reward responsiveness, we included a demographically matched control patient. This 

patient underwent identical procedures to the patient receiving BATD with the exception 

that the control patient received Pragmatic Psychodynamic Psychotherapy (PPP; 

Summers & Barber, 2010), a semi-structured therapeutic intervention that utilizes 

psychoanalytic principles as the primary mechanism of change (see Shedler, 2010 for a 
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review). This treatment was selected because psychodynamic treatment is garnering 

increased support as an evidence-based practice that relies on mechanisms of change 

quite distinct from those purported by BATD (Shedler, 2010). Accordingly, it was 

predicted that functional brain changes in the control patient treated with PPP would be 

distinct from those observed in the patient treated with BATD.   
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CHAPTER 2 

METHODS 

Patients 

 Both patients were recruited from the University of Tennessee Medical Center’s 

Cancer Institute from an on-going randomized controlled study examining the efficacy of 

BATD and Problem Solving Therapy for depressed women with breast cancer (Hopko et 

al., 2011). Participants for this study were recruited through physician and medical staff 

referral. Eligibility criteria to participate in the present study was consistent with the 

larger study and was contingent upon a primary diagnosis of major depression made by a 

trained masters level clinician who administered the Anxiety Disorder Interview for 

DSM-IV (ADIS-IV; Brown, Di Nardo, & Barlow, 1994). Additional eligibility 

requirements included no current or former history of spinal or brain cancer, right hand 

dominance as indicated by the Edinburgh Handedness Inventory (Oldfield, 1971), no 

surgical metal implants, and no co-morbid Axis-I or II diagnoses other than anxiety 

secondary to depression. At pre- and post-treatment evaluations, patients completed the 

Behavioral Inhibition and Activation Scale (BIS/BAS; Carver & White, 1994) to assess 

activity and inhibition, the Beck Depression Inventory-II (BDI-II; Beck, Steer, & Brown, 

1996), to assess depression, and the Environmental Reward Observation Scale (EROS; 

Armento & Hopko, 2007) to assess environmental reward. The BDI-II and EROS also 

were completed after each therapy session. Clinicians completed the Hamilton Rating 

Scale for Depression (HRSD; Hamilton, 1960) at pre and post-treatment.  

A total of 5 patients were screened for inclusion, with two declining participation 

due to time commitments and one withdrawing after inclusion due to scanner-induced 
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claustrophobia during the initial scan. This study involved inclusion of 2 patients, one 

assigned to BATD and one to PPP. Both patients provided informed consent as approved 

by both the University of Tennessee Graduate School of Medicine and the University of 

Tennessee Institutional Review Boards. 

The first patient who received BATD was a 64 year-old, right-handed, married, 

Caucasian female, with two years of graduate level education. She was diagnosed with 

breast cancer four months prior to her pre-assessment evaluation for study inclusion. She 

received cancer treatment in the form of a lumpectomy, one month following her 

diagnosis, and chemotherapy that began one month prior to study enrollment that 

persisted through the course of psychotherapy. Her medication regimen was consistent 

throughout therapy and was limited to allergy, migraine, and sleep prescriptions. This 

patient reported no prior history of psychiatric problems other than depression and 

anxiety that emerged six months prior to her cancer diagnosis due to psychosocial 

stressors (i.e. death of dog, marital problems, job dissatisfaction). Her depression 

significantly exacerbated upon her breast cancer diagnosis and manifested as sleep 

disturbances, feelings of guilt, worthlessness and low self-esteem. Her generalized 

anxiety manifested as restlessness, fatigue, difficulty concentrating, irritability, muscle 

tension, and minor insomnia. At the time of inclusion in this study she was diagnosed 

with major depressive disorder with generalized anxiety disorder.  

 The second patient who received PPP was a 68 year-old, right-handed, married, 

Caucasian female, with four years of graduate school education. She was diagnosed with 

breast cancer two years prior to enrollment in the study. She received cancer treatment in 

the form of a left radical mastectomy approximately two years prior to study enrollment, 
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which was followed by 6 months of chemotherapy. She also received hormone treatment 

(i.e., Tamoxifen) for breast cancer that persisted from one year prior to study enrollment 

through mid-way through psychotherapy. Her medication regimen consisted of 

prescriptions for cholesterol, hypertension, Edema, allergies, asthma, and breast cancer, 

and was consistent throughout the study with the exception of Tamoxifen, which she 

discontinued following consultation with her physician. This patient reported no prior 

history of psychiatric problems. Her depression emerged approximately two years prior 

to participation in the study and surfaced in conjunction with her cancer diagnosis and her 

husband suffering a stroke. Her depression manifested as decreased energy, fatigue, 

listlessness, agitation, and feeling like a failure. At the time of study inclusion she was 

diagnosed with major depressive disorder. 

Outcome Measures 

The Hamilton Rating Scale for Depression (HRSD; Hamilton, 1960) is a 24-item 

semi-structured interview designed to measure symptom severity in patients diagnosed 

with depression. The instrument is the most widely used and accepted outcome measure 

for the evaluation of depression and has become the standard outcome measure in clinical 

trials (Kobak & Reynolds, 1999; Wolf & Hopko, 2008). 

The Beck Depression Inventory-II (BDI-II; Beck et al. 1996) consists of 21 items, 

each of which is rated on a 4-point Likert scale. The instrument has been demonstrated to 

have excellent reliability and validity with depressed younger and older adults (Beck et 

al., 1996; Dozois, Dobson, & Ahnberg, 1998). The psychometric properties of the BDI-II 

have been studied in cancer patients as well as a diverse primary care sample, with the 

instrument having strong predictive validity as it pertains to diagnoses of clinical 
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depression, strong internal consistency (α = .94), and adequate item-total correlations (R 

= .54-.74; Arnau, Meagher, Norris, & Bramson; 2001; Katz, Kopek, Waldron, Devins, & 

Thomlinson, 2004). 

The Environmental Reward Observation Scale (EROS; Armento & Hopko, 2007) 

is a 10-item measure (1 to 4 point Likert Scale) that assesses environmental reward and 

response-contingent positive reinforcement (RCPR; Lewinsohn, 1974). Scores range 

from 10 to 40, with higher scores suggesting increased environmental reward. Sample 

items include “the activities I engage in usually have positive consequences,” and “lots of 

activities in my life are pleasurable.” Based on psychometric research with three 

independent college samples, the EROS has strong internal consistency (α = .85-.86) and 

excellent test-retest reliability (r = .85), and correlates strongly with other commonly 

administered and psychometrically sound self-report measures of depression (r = -.63 to -

.69) and anxiety (Armento & Hopko, 2007).  

The Beck Anxiety Inventory (BAI; Beck & Steer, 1993) is a 21-item questionnaire 

designed specifically to distinguish cognitive and somatic symptoms of anxiety from 

those of depression. Good psychometric properties have been demonstrated among 

community, medical, and psychiatric outpatient samples (de Beurs, Wilson, Chambless, 

Goldstein, & Feske, 1997; Morin et al., 1999; Wetherell & Areán, 1997).  

The Behavioral Inhibition and Behavioral Activation Scale (BIS/BAS; Kasch, 

Rottenberg, Arnow & Gotlib, 2002) is a 20-item self-report questionnaire that assesses 

how people typically react to certain situations. The scale is subdivided into four 

subscales: Behavioral Inhibition, Behavioral Activation-Reward Responsiveness, 

Behavioral Activation-Drive, and Behavioral Activation-Fun-Seeking. Internal 
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consistencies of all subscales are high (BIS = .78; BAS-RR = .80; BAS-Drive = .83; 

BAS-Fun = .69). The BIS/BAS scales also have good convergent and discriminant 

validity, with scores on the BAS scales typically relating to positive affect and 

extraversion and scores on the BIS scale generally being related to anxiety symptoms, 

negative affect and neuroticism (Carver & White, 1994; Jorm et al., 1999).  

Treatments 

 BATD was derived from an 8-session protocol and consisted of 45–50 minute 

sessions administered over 10 weeks (Hopko & Lejuez, 2007; Lejuez, Hopko & Hopko, 

2001). Initial sessions consisted of assessing the function of depressed behavior, efforts to 

weaken access to positive and negative reinforcement for depressed behavior, and 

introduction of the treatment rationale. A systematic activation approach was then 

initiated to increase the frequency and subsequent reinforcement of healthy behaviors. 

The patient began with a weekly self-monitoring exercise that served as a baseline 

assessment of daily activities, oriented her to the quality and quantity of her activities, 

and generated ideas about activities to target during treatment. Based on a subsequent 

value-based goal assessment, approximately 15 overt behaviors were identified that 

would increase environmental reward and response-contingent positive reinforcement. 

The overt behaviors identified in this treatment entailed increasing such things as exercise 

and intimate and meaningful activities with her husband. Subsequent treatment sessions 

focused on increasing engagement in rewarding activities and monitoring progress.  

 PPP was derived from a psychodynamic psychotherapy guide outlining case 

formulations and treatment techniques (Summers & Barber, 2010), and consisted of 8 45-

50 minute, sessions administered over 13 weeks. PPP approach for treating depression 
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suggests two treatment goals, which are ideographically modified to meet patient 

characteristics, which include: (1) decreasing vulnerability to abandonment, and (2) 

decreasing harsh self-criticism (Summers & Barber, 2010). The initial phase of treatment 

can be brief (e.g. 1 – 2 sessions) and in the present study was comprised of taking a 

history of her depression and deciding on treatment goals: 1) working through multiple 

losses and related resentment, and 2) recovering a sense of pride, resilience, and 

“toughness.” Therapy proceeded in the second phase (sessions 3 - 6), toward working to 

identify key themes of abandonment and loss, resentment about such loss, and conflict 

over self-worth. A Core Conflictual Relational Theme (CCRT; Luborsky, 1977) was 

developed, per PPP guidelines, which concretely conceptualize patient’s maladaptive 

intra- and inter-personal style of relatedness. Specific discussion focuses on personal 

experiences and relationships, with attention to how the past informs the present, and in 

this specific treatment, how cancer and medical treatment influenced her sense of self. 

The final phase of treatment draws to a close by helping the patient to consolidate new 

understandings they have made.  

Patients received treatment on an outpatient basis at the Cancer Institute within 

the University of Tennessee Medical Center. Two advanced male clinical psychology 

graduate students, similar in age and experience in their respective theoretical 

orientations, conducted the therapies. Patients were scanned within one week prior to 

beginning therapy and within one week following completion of therapy.  

Task Design 

The music listening reward responsiveness paradigm was adapted from previous 

neuroimaging studies on music listening, reward, and depression (Menon & Levitin, 



 

 15 

2005; Osuch et al., 2009). The paradigm was approximately 30 minutes and involved 

listening to two music tracks, each of which was 7.5 minutes, followed by a 7.5-minute 

period of silence to collect “resting state” data (Greicius et al., 2007). The first track was 

comprised of 50 seconds of preferred music, 50 seconds of neutral music, then 50 

seconds of silence. This sequence repeated twice more proceeding through the respective 

songs in 50-second segments totaling 7.5 minutes for the first track. The second track was 

identical with the exception of the order of preferred and neutral music being reversed 

(see Figure 1 for visual representation of block design). Track order was reversed for 

time 2 such that tracks began with the neutral stimulus if the previous scan began with the 

preferred stimulus. Patients were also counterbalanced to order such that for the first scan 

one patient heard her preferred passage first where the other heard the neutral first.   

Selection of preferred and neutral music passages was based on previously 

established methodology (Osuch et al., 2009) whereby prior to the day of the scan, 

patients listened to numerous instrumental music passages that they rated on a likert scale 

ranging from -100 (disliked completely) to 0 (neither liked nor disliked) to +100 (liked 

completely). Rankings were obtained in intervals of 20 and considered neutral if rated 

between -40 through +40 and preferred if rated 60 or higher. The neutral music passage 

served as the control condition for brain activity associated with a non-rewarding 

stimulus. Volume and clarity of music was assessed prior to scanning to ensure each 

patient could hear music passages. Patients were given no instructions during scanning 

other than to stay focused and remain still.  

Functional MRI Acquisition 
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Imaging was performed on a 1.5-T Siemens MRI scanner with a standard head coil at the 

University of Tennessee Department of Radiology. In each condition, 150 whole-brain 

functional T2*-weighted echo planar images were acquired, each comprising 35 slices 

parallel to the intercommissural (AC-PC) line: repetition time (TR) 3000 ms; echo time 

(TE) 50 ms; flip angle 90º; slice thickness 3.75 mm; matrix 64 x 64; field of view (FOV) 

220mm x 220mm for a voxel size of 3.44 x 3.44 x 3.75 mm^3. 

Functional MRI Pre-Processing 

Data processing took place using Statistical Parametric Mapping (SPM8) methods 

(Wellcome Department of Cognitive Neurology, London, United Kingdom). High-

resolution anatomical images were registered nonlinearly to the ICBM atlas space using 

the MNI-152 templates. Each volume of the fMRI image series was aligned to the first 

using rigid body registration to correct for head motion. Then the high-resolution 

anatomical image was rigidly registered with the first functional, and the nonlinear 

transformation to atlas space was applied to all functional images. Images were 

subsequently smoothed using a 6 mm FWHM Gaussian kernel.  

Functional MRI Statistical Analysis 

Statistical parametric mapping was also performed using SPM8 software. Pre- 

and post-treatment scans were included in a single massively univariate general linear 

model. Regressors were included for each condition (neutral or preferred) to indicate 

music listening for each run of each session. These images consist of appropriate boxcar 

functions convolved with a canonical hemodynamic response shape. Within each session 

the contrast of BOLD signal during the preferred music relative to the neutral music run 
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was used as a measure of brain response to reward. This measure was compared between 

sessions using relevant contrasts to examine the effect of treatment. 

The SPM T maps of the contrast of interest were set at a threshold of T=2.58 

(voxelwise p<0.005). The statistical significance of the resulting clusters was calculated 

using the approach of random field theory (Worsley, 1994; Friston, Worsley, 

Frackowiak, Mazziotta, & Evans, 1994). With knowledge of the search volume (number 

of total voxels) and the smoothness of the T map images, this methodology allows for 

calculating the probability of a suprathreshold cluster of a particular size occurring by 

chance. To improve sensitivity, this statistical analysis was limited to an a priori region of 

interest using small volume correction methodology (Friston, 1997). By limiting the 

volume searched to only part of the brain, the statistical corrections applied can be less 

stringent, allowing better sensitivity to small changes at the cost of missing activations 

outside the a priori region. The regions of interest included brain areas related to reward 

responsiveness and depression treatment outcome and was defined as the union of 

caudate, putamen, pallidum, accumbens, anterior cingulate, paracingulate, orbital frontal 

cortex, subcallosal, medial frontal, posterior cingulate, middle, inferior (opercularis, 

triangularis), and superior frontral gyrus, and the frontal pole, from the Harvard-Oxford 

probabilistic atlas implemented in FSLView v3.0 

(http://www.fmrib.ox.ac.uk/fsl/fslview/index.html).  Clusters that showed significant 

responses at the uncorrected cluster-level p-value of 0.05 were tabulated and reported 

along with p-values corrected for multiple comparisons at the whole brain level. 
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CHAPTER III 

RESULTS 

Clinical Data 

Clinically relevant changes were observed in both treatments as evidenced by 

reductions in behavioral measures from pre- to post-treatment assessment (see Table 1). 

The patient treated with BATD exhibited depressive symptom reduction based on a 

change in her BDI-II score from 24 (moderate depression) to 2 (no depression), a 

reduction on her HRSD from 26 to 0, and increased environmental reward on the EROS 

(21 to 26). The patient receiving PPP also demonstrated clinically significant reductions 

in depression [BDI-II scores from 31 (severe depression) to 3 (no depression), HRSD 

from 21 to 3] and increased environmental reward on the EROS (18 to 30). Both patients 

exhibited an increase in environmental reward and a decrease in depressive symptoms 

throughout the course of treatment as evidenced by self-report measures completed at 

pre-treatment assessment, at each therapy session, and at post-treatment assessment (see 

Figures 2-5). Minimal symptom change was observed on self-report measures of anxiety 

or BIS/BAS scores, however, as indicated in Table 1. 

To further assess changes observed in measures of depression and environmental 

reward, a cross-correlation analyses (CCA) was conducted using the Simulation 

Modeling Analysis software (SMA; Borckardt, 2006) to determine the extent to which 

changes in weekly session measures were related to one another throughout therapy. 

CCA determines the degree that two variables are related to each other at a specified 

interval. For both cases, the two measures were most highly correlated at lag 0, meaning 

that BDI-II scores were most strongly related to EROS scores on a session-by-session 
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basis. CCA statistics for the patient receiving BATD showed that the BDI-II and EROS 

scores were statistically significant at lag 0 (r = -0.92, p = 0.000; see Figure 6) likewise 

the patient receiving the PPP treatment was statistically significant at lag 0 (r=-0.90, p = 

0.001; see Figure 7).  

Functional MRI Data 

To assess changes in BOLD response following treatment, contrasts were run 

with a basic subtraction method where an uncorrected p-value (< 0.05) was applied. 

Assessment of BOLD responses was done through two types of contrast. The first 

contrast was time (pre-treatment, post-treatment) by music (preferred, neutral) to assess 

responsiveness to preferred relative to neutral music. The second contrast examined time 

(pre-treatment, post-treatment) by music, disregarding preference (music, silence) to 

assess responsiveness to music relative to silence. Examination of both contrasts revealed 

no changes in any of the sub-cortical regions implicated in reward responsiveness 

hypothesized to change following treatment. Neither contrast revealed significant BOLD 

responses within the nucleus accumbens, caudate nucleus, ventral striatum, anterior 

cingulate, the posterior cingulate, or the globus pallidus in either patient.  

Contrasts examining music valence, preferred and neutral, did not result in 

significance at the p-corrected level for any regions but did evidence significance in 

several regions at the p-uncorrected level (See Tables 2 & 3). Contrasts that resulted in 

significance at the p-corrected value examined music and silence and evidenced 

significant changes in two different brain regions (See Tables 2 & 3). Common to both 

treatments were changes observed within the subgenual cingulate. The patient receiving 

BATD exhibited elevated subgenual cingulate BOLD response during silence at pre-
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treatment and reduced BOLD response at post-treatment, where activity was not 

distinguishable between music and silence (See Figure 9). The PPP condition also 

exhibited changes in the subgenual cingulate region such that BOLD response here was 

observed to be elevated during music at pre-treatment, and to become elevated during 

silence at post-treatment (See Figure 11). The PPP condition was also associated with 

post-treatment significance, at the p-corrected level, within the superior frontal gyrus. 

BOLD response here was observed to be elevated during music at pre-treatment and was 

reduced during music at post-treatment, or rather, elevated BOLD response during 

silence at post-treatment (See Figure 11).  

Contrasts examining music preference over neutral did not result in significance 

at the p-corrected level for any regions. However, several regions evidenced significance 

at the p-uncorrected level and are reported here. While these data are not significant at the 

p-corrected level, they may be suggestive of certain patterns of activation relevant to the 

pathophysiology of depression and treatment and are therefore reported. Common to both 

treatments, changes were observed in bilateral dorsolateral prefrontal regions (dlPFC), 

and the medial orbital prefrontal regions (moPFC), with each treatment differentially 

affecting these regions (see Tables 2 & 3). Within the BATD condition, pre- to post-

treatment responses during the preferred relative to neutral music contrast resulted in 

increased BOLD response activations in the bilateral moPFC and right dlPFC/frontal eye 

field (see Figure 8). When comparing the interaction between pre- and post-treatment 

with music and silence, the BATD condition resulted in BOLD response increases in the 

right moPFC and deactivations in the left lateral anterior frontal cortex (see Figure 9). 
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BOLD responses in the left dlPFC were deactivated during music at pre-treatment and 

indistinguishable between music and silence at post-treatment (see Figure 9). 

Within the PPP condition, pre- to post-treatment responses during the preferred 

relative to neutral music contrast resulted in increased BOLD response activations in the 

right moPFC and deactivations in left and right dlPFC relative to neutral music passages. 

(see Figure 10). When comparing the interaction between pre- and post-treatment with 

music and silence, the PPP condition resulted in BOLD response deactivations in the left, 

lateral orbital PFC and the dlPFC/frontal eye field (see Figure 11).  
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CHAPTER IV 

DISCUSSION 

 This study explored changes in depression symptom severity and functional brain 

activation following 8 sessions of two psychosocial treatments for clinical depression. 

Both patients responded favorably to respective treatments, as reflected on both clinician 

and self-report measures of depression. A direct inverse relation between self-reported 

depression and environmental reward, with depression attenuation associated with 

increased environmental reward supports predominant behavioral models of depression 

(Carvalho & Hopko, 2011; Lewinsohn, 1974; Manos, Kanter, & Busch, 2010). Neither 

patient evidenced substantial changes in self-reported behavioral inhibition or behavioral 

activation, however, providing no support for the hypothesis that functional brain 

changes would correspond to changes on behavioral inhibition and activation.  

 Our first hypothesis was unsupported as the music listening fMRI paradigm did 

not sufficiently elicit activity in subcortical regions implicated in reward. No contrast 

revealed significant changes in the several hypothesized regions implicated in reward 

responsiveness and depression. To speculate on this finding, either the rewarding music 

paradigm was insufficient to elicit reward responsiveness and corresponding neural 

underpinnings or the small sample size restricted the power necessary to observe changes 

in these subcortical areas. The latter explanation is suspected as very similar scanner 

paradigms have been previously employed and demonstrated efficacy in eliciting reward 

responsiveness neural activity in both healthy controls and depressed individuals (Osuch 

et al., 2009). A third possibility is that BATD and PPP do not exert their neurobiological 

mechanism of change via direct effect on subcortical neural circuits of reward, and that 
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these regions are affected as a secondary consequence of frontal cortical regions being 

engaged during psychotherapy.  

 Regarding the contrast examining music and silence, statistically significant 

changes at the p-corrected level emerged in two different regions. First, activity in 

regions within, or in close proximity to, the subgenual cingulate was significant for both 

patients. BOLD signal response for the BATD patient was observed to be elevated during 

silence relative to music at pre-treatment, and was observed to attenuate and become 

indistinguishable between music and silence at post-treatment. Elevated activity here has 

been observed to be a hallmark for neurobiological models of depression (Mayberg et al., 

1999, 2000, 2005; Mayberg 2006), and generally is abnormally elevated among 

depressed individuals during resting-state scans (Greicius et al., 2007). Data from 

numerous studies utilizing neuroimaging modalities to evaluate differing mood states 

implicate the subgenual cingulate as a brain region crucial to emotion processing and to 

the pathophysiology of mood disorders (Mayberg et al., 2005; Greicius, et al., 2007). The 

attenuation of subgenual cingulate activity following BATD taken in conjunction with 

other cortical findings may reflect a biological mechanism of change where the patient 

was better able to modulate her emotional experiences, thereby enhancing her capacity to 

enjoy pleasurable stimuli. In either case, subgenual cingulate activity is elevated in 

depressed states (Drevets, Bogers, & Raichle, 2002; Kennedy et al., 2001) and tends to 

decline in activity in depressed patients who respond to treatment (Kennedy et al., 2001; 

Mayberg et al., 2000). A seemingly opposite pattern was observed within the subgenual 

cingulate for the PPP patient. BOLD response was elevated during music relative to 

silence at pre-treatment, and was deactive during music relative to neutral at post-
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treatment. Simply stated, BOLD response within the subgenual cingulate increased 

during neutral music following PPP treatment. This is difficult to interpret in lieu of the 

patient’s reduction in depressive symptoms and requires experimental replication.  

 Significance, at the p-corrected level, was also observed in the superior frontal 

gyrus for the PPP condition. This area evidenced elevated BOLD response during music 

compared to silence at pre-treatment and attenuated BOLD response at post-treatment 

during music, such that it was elevated during silence. This region has been observed to 

play a role in executive functioning, affect regulation, self-reference, and laughter among 

other things (Fried, Wilson, MacDonald, & Behnke, 1998; Goldberg, Harel, Malach, 

2006; Koenigs & Gragman, 2009). Interestingly, regional decreased activity within this 

region and in immediately surrounding regions, is associated with depression (Koenigs & 

Grafman, 2009) where increased metabolism here has been associated with recovery 

from depression (Mayberg et al., 1997). The fact that this region increased BOLD signal 

during silent conditions may reflect increased cognitive processes that was adaptive and 

consistent with reduction in depression.  

Of note, several other brain regions evidenced BOLD response that was 

interesting and deserving of speculation despite their not achieving statistical significance 

at the p-corrected level. We feel compelled to report additional results that were observed 

at the p-uncorrected level as these regions were part of our a priori predictions, BOLD 

response changes were observed within similar regions for both patients, and because 

these regions are implicated in the pathophysiology of depression (Mayberg 2003, 2006). 

While these results are speculative, we suspect that, with a larger sample size, many of 

these regions would have reached statistical significance at the p-corrected level.  
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Contrasts examining music preference over neutral resulted in significance at the 

p-uncorrected value in several regions which, although highly speculative, may be 

suggestive of certain patterns of activation relevant to the pathophysiology of depression 

and our treatment. Both treatments evidenced differential changes within similar regions 

of interest. For example, BOLD response in the right dlPFC was observed to increase 

activation during preferred relative to neutral music in the BATD condition, where 

bilateral dlPFC was observed to trend towards deactivation during preferred music in the 

PPP condition. Similar findings were observed with music and silence for left sided 

dlPFC where increased BOLD response was observed in the BATD condition in response 

to music where it was observed to attenuate in response to music for the PPP condition. 

These findings suggest that bilateral dlPFC increases in BOLD response for preferred 

music relative to neutral and silence conditions for the BATD patient, where the opposite 

pattern was observed for the PPP patient.  

The dlPFC has commonly been associated with “cognitive” or “executive” 

functions where hypoactivity has been commonly observed in depressed individuals with 

increased activity reflecting attenuations in depressive symptoms (Koenigs & Grafman, 

2009). One interpretation, while highly speculative, might be that BATD resulted in 

reduced depression severity, thereby allowing the BATD patient to more effectively and 

efficiently utilize cognitive resources to more effectively cope with depression (Eysenck 

& Calvo, 1992). This increased dlPFC activation was seemingly not at the expense of 

experiencing pleasureable music stimuli, as post-treatment scans revealed elevated 

BOLD responses in the moPFC for preferred relative to neutral music.   
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Interestingly, while hypoactivity in the dlPFC is observed in depression, 

decreased glucose metabolism has been observed following CBT and IPT treatment for 

depression (Brody et al., 2001; Goldapple et al., 2004). Therefore, one speculation of the 

dlPFC deactivations observed in the PPP patient might be that treatment resulted in a 

reduction in ruminative depressive affect during passive experiences whereby in the 

patient’s ability to enjoy pleasureable music was enhanced. This is one plausible 

interpretation as the post-treatment assessment revealed BOLD signal response within the 

moPFC to increase, while the dlPFC decreased. In either case, both treatments resulted in 

symptom reduction, and increased activation in the moPFC during preferred music 

passages at post-treatment. The moPFC is a region that has shown to be correlated with 

pleasure ratings of music (Osuch et al., 2009). These disparate findings may plausibly 

reflect differential neural mechanisms of change induced by different treatment 

approaches.  

Consistent with a priori hypotheses, activity within bilateral regions of the medial 

orbital frontal cortex increased during preferred music following BATD treatment. Right-

sided activations in this region also became more active for music relative to silence at 

post-treatment. This region has been implicated in models of depression (Mayberg 2003, 

2006), and distinguishes depressed and healthy individuals during music listening tasks 

(Osuch et al., 2009). Change observed in the BATD patient might plausibly reflect an 

increased capacity to experience reward as the moPFC plays a role in relative rather than 

absolute reward (Elliott, Agnew & Deakin, 2008). These bilateral elevations in the 

moPFC may reflect a greater ability of the BATD patient’s capacity to experience 

pleasure as this region has been implicated in a conscious regulation of emotional states 
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(Phillips, Drevets, Rauch, & Lane, 2003). The PPP patient also experienced a somewhat 

similar activation pattern of right sided medial orbital activity that involved increased 

BOLD signal response for preferred relative to neutral music at post-treatment. We 

speculate that these regional activations might reflect an increased capacity to experience 

affectively arousing music during scanning. It is difficult to state this with confidence, 

however, as our results are interpreted based of p-uncorrected values and are derived 

from a sample size of 1 patient per treatment.  

Importantly, within all contrasts examined, similarities were not noted with those 

reported in other studies examining BOLD responses to reward responsiveness following 

BATD (Dichter et al., 2009). Our interpretation of the distinct findings observed is that 

we employed a relatively simple reward response paradigm that assessed a more passive 

pleasurable experience, rather than a more sophisticated reward paradigm that required 

engagement in tasks to elicit components related to reward selection, feedback and 

response (Smoski et al., 2009). Moreover, this study assessed BOLD response change 

and depression symptom attenuation among two patients, a very small sample size that 

might have restricted power to detect changes in sub-cortical regions implicated in 

reward responsiveness.  

Although this study demonstrated functional brain changes assessed by fMRI 

BOLD response, several limitations must be addressed. First, due to the small sample 

size, this study requires replication to assess external validity. Second, changes were 

assessed between two patients receiving disparate interventions for depression, with 

neural changes interpreted based on intervention characteristics. In addition to a larger 

sample size, a stronger research design would include a no-treatment control group to 
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control for the passage of time in the attenuation of depressive symptoms or changes in 

functional brain activity. Furthermore, neither treatment was independently evaluated to 

measure and assess therapist competence or treatment adherence. Third, although both 

treatments demonstrated efficacy in ameliorating depression, the PPP patient data may be 

somewhat confounded by the discontinuation of Tamoxifen, a hormone treatment for 

breast cancer that has depression listed as a side-effect for 15% of women (Demissie, 

Silliman, & Lash, 2001). It can therefore not be ruled out that attenuation in depressive 

symptoms and corresponding changes in neurobiological activity observed from pre- to 

post-treatment was due in some part to hormone fluctuation. Likewise, it is not clear to 

what extent the consistent regimen of allergy and sleep medication constitutes and artifact 

for each patient’s depression, their respective treatments, or the results of their brain 

scans. Finally, while attempts were made to include participants that matched as close as 

possible, important differences deserve mention. Patient differences included co-morbid 

psychiatric diagnosis of generalized anxiety disorder for the BATD patient who 

evidenced slightly elevated BAI at pre-treatment that did not attenuate following 

treatment. Moreover, both patients were also in substantially different stages of the 

cancer treatment and recovery such that the patient receiving PPP was two years cancer 

remised where the BATD patient was in the midst of her chemotherapy treatment.  

While the music paradigm used in this study did not effectively elicit subcortical 

activations associated with reward responsiveness, it did effectively elicit cortical 

activations, at the p-uncorrected level, implicated in reward, affect regulation, and 

executive function. It is therefore a viable scanner paradigm that should be employed in 

future studies using larger samples of depressed individuals. Moreover, this is the second 
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study demonstrating that when BATD is associated with positive treatment outcome, 

functional brain changes are identified. This was also the first study assessing PPP and 

associated functional brain changes. While these results are preliminary, this study may 

be suggestive that while two treatment approaches may effectively attenuate symptoms of 

depression, they may do so through distinct neurobiological mechanisms. This bares 

relevance as the pathophysiology of depression is hypothesized to be a neural network 

distributed through cortical and subcortical regions of the brain with differential 

components of the network playing roles in subtypes of depression (Mayberg, 2003, 

2006). Future studies might consider evaluating how different treatment approaches 

differentially target specific neural components of depression. The future treatment of 

psychiatric disorders may greatly benefit from basing treatment selections on 

neurobiological features that are known to respond more to one treatment relative to other 

available options. 
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Table 1  
Symptom Measures At Pre-assessment and Post-treatment 

_________________________________________________________________ 

          BATD     PPP 

        _____________________         ___________________ 

Measures                       Pre      Post           Pre          Post 

_________________________________________________________________ 

 

  

BDI-II    24  2  31       3       

EROS        21  27  18  30  

HAM-D   26  0  21      3 

BAI    16  17  5  2 

BIS    9  10  12  16 

BAS-Drive   9  10  15  15  

BAS-Fun   7  7  11  12 

BAS-Reward Response 7  7  12  11  

________________________________________________________________ 

Note. BATD = Behavioral Activation Treatment for Depression; PPP = Pragmatic 

Psychodynamic Psychotherapy. All scores listed are raw scores.  
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Table 2  

BOLD response between pre- and post-treatment for BATD condition.  

________________________________________________________________________ 

 

Region            Side      MNI          size     p(cor)    p(unc.)    T-Value                                                                      

                                                            x     y     z    

________________________________________________________________________ 

 

Pre > Post (Pref. > Neu.)  

Middle Frontal Gyrus  R 42     17     31        35        .219        .016*          4.48 

Frontal eye field/Dorsolateral PFC 

 

Inferior Frontal Gyrus  L -27    35     -8        38        .178        .013*          4.09 

Medial orbital frontal 

 

Inferior Frontal Gyrus  R 24     32    -20       18        .663        .070            4.23 

Medial orbital Frontal 

                   

Post>Pre (Music > Slience) 

Subgenual cingulate/moPFC   -3     35     -20       79        .012**    .001*          4.73 

 

Inferior Frontal Gyrus  L -51   38     16        36        .204        .015*          4.37 

Dorsolateral PFC 

 

Middle Frontal Gyrus  R 21    32     -20 27         .379       .031*          4.73 

Medial orbital frontal 

 

Pre>Post (Music > Slience) 

Middle Frontal Gyrus  L -36   44     19        46        .102        .007*         4.32 

Lateral Anterior frontal PFC 

________________________________________________________________________ 

Note. MNI corresponds to Montreal Neurological Institute coordinates. Size corresponds 

to the number of voxels within a given activation cluster, where T-Value denotes peak T-

Value activation within that cluster. Significance at the p-corrected level of .05 is denoted 

by ** where significance at the p-uncorrected level of .05 is denoted by *. 
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Table 3  

BOLD response between pre- and post-treatment for PPP condition  

________________________________________________________________________ 

 

Region            Side      MNI          size     p(cor)    p(unc.)    T-Value                                                 

                                                            x     y     z    

________________________________________________________________________  

 

Pre>Post (Neu. > Pref)  

Medial Frontal Gyrus  R  9      41     -20      21         .546          .05*            4.05 

Medial orbital frontal  

 

Pre>Post (Pref. > Neu.)  

Middle Frontal Gyrus  L -33    56     -2        33         .241         .017*           3.85 

Dorsolateral PFC 

  

Middle Fontal Gyrus   R 36     47      25       36        .194          .014*          3.60 

Dorsolateral PFC 

                   

Pre>Post (Music – Slience) 

Superior Frontal Gyrus  L -3     53      13        103       <.001**   .003*          3.67 

 

Middle Frontal Gyrus  L -24   29     -17   27        .367          .029*          3.61 

Lateral orbital frontal PFC 

 

Middle Frontal Gyrus  L -48   11      46        21         .546         .05*        3.47 

Frontal eye field/Dorsolateral PFC 

 

Subgenual Cingulate      0    29     -23  167       <.001**   <.001*         4.91  

________________________________________________________________________ 

Note. MNI corresponds to Montreal Neurological Institute coordinates. Size corresponds 

to the number of voxels within a given activation cluster, where T-Value denotes peak T-

Value activation within that cluster. Significance at the p-corrected value of .05 is 

denoted by ** where significance at the p-uncorrected value of .05 is denoted by *. 
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Figure 1. Visual Representation of Block Design completed by participants during their 

30 minute functional MRI scan prior to an following their treatment. P1 denotes the first 

50 seconds of the preferred music passage where P2 and P3 denotes 51 through 1.40 

seconds and 1.41 through 2.30 seconds of that preferred song. N denotes neutral music 

passages, S to silence, and s to seconds.  

 

 

 
Figure 2. BDI-II scores completed at pre-assessment, during each of the 8 therapy 

sessions, and following completion of BATD.  

 

 

 
Figure 3. EROS scores completed at pre-assessment, during each of the 8 therapy 

sessions, and following completion of BATD.  
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Figure 4. BDI-II scores completed at pre-assessment, during each of the 8 therapy 

sessions, and following completion of PPP. 

 

 

  
Figure 5. EROS scores completed at pre-assessment, during each of the 8 therapy 

sessions, and following completion of PPP. 

 

 

 
Figure 6. Cross-correlational analyses of EROS and BDI-II from pre-assessment, though 

each of the 8 therapy sessions, and following completion of BATD. CCA statistics for the 
patient receiving BATD showed that the BDI-II and EROS scores were statistically 
significant at lag 0 (r = -0.92, p = 0.000).  
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Figure 7. Cross-correlational analyses (CCA) of EROS and BDI-II from pre-assessment, 

though each of the 8 therapy sessions, and following completion of PPP. CCA statistics 
for the patient receiving PPP showed that the BDI-II and EROS scores were statistically 
significant at lag 0 (r=-0.90, p = 0.001).  
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A.  

B.   

C.   

Figure 8. T-Maps and plots denoting BOLD response for interaction contrast of treatment (pre, post) by 

music (preferred, neutral) for BATD. Contrasts denote that BOLD response was indistinguishable between 

preferred and neutral pre-treatment in the (A) right dorsolateral cortex (42 17 31) and (B) left medial orbital 

frontal cortex (-27 35 -8) where each region evidenced elevated BOLD response during preferred, relative 

to neutral, at post-treatment. BOLD response was deactive in the (C) right medial orbital frontal cortex (24 

32 -20) during preferred music, relative to neutral, at pre-treatment, and evidenced elevated BOLD 

response during preferred, relative to neutral, at post-treatment. Neurological convention (right on right) is 

used and coordinates are in Montreal Neurological Institute space.  
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A.  

B.  

C.  

D.  

Figure 9. T-Maps and plots denoting BOLD response for interaction contrast of treatment (pre, post) by 

music, agnostic to valence (music, silence) for BATD. Contrasts denote that pre-treatment BOLD 

responses were deactive for music, relative silence, within the (A) subgenual cingulate (-3 35 -20), the (B) 

left dorsolateral prefrontal cortex (-51 38 16), and the (C) right medial orbital frontal cortex (21 32 -20), 

and, at post-treatment, these regions trended towards higher BOLD response for music, relative to silence, 

though, the activations evidenced little distinctiveness between music and silence at post-treatment. BOLD 

response was slightly elevated in the (D) left lateral anterior frontal cortex (-36 44 19) during music, 

relative silence, at pre-treatment and was deactive during music, relative to silence, at post-treatment.  
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A.  

B.  

C.  

Figure 10. T-Maps and plots denoting BOLD response for interaction contrast of treatment (pre, post) by 

music (preferred, neutral) for PPP. Contrasts denote that BOLD response was indistinguishable between 

preferred and neutral pre-treatment in the (A) right medial orbital (9 -41 -20) and (B) left lateral anterior 

PFC (-33 56 -2) where it evidenced elevated BOLD response and decreased BOLD response, relative to 

neutral, in these respective areas at post-treatment. BOLD response was slightly elevated in for preferred 

music, relative to neutral, at pre-treatment, and was deactive during preferred, relative to neutral, at post-

treatment in the (C) right dorsolateral prefrontal cortex (36 47 25).  
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A.   

B.  

C.  

D.   

Figure 11. T-Maps and plots denoting BOLD response for interaction contrast of treatment (pre, post) by 

music, agnostic to valence (music, silence) for PPP. Contrasts denote that BOLD response elevated for 

music, relative silence, at pre-treatment within the left sided (A) medial anterior frontal (-3 53 13), the (C) 

dorsolateral PFC (-48 11 46), and the (D) subgenual cingulate (0 29 -23), and was deactive in these regions, 

during music relative silence, at post-treatment. BOLD response was indistinguishable between music and 

silence at pre-treatment within the (B) left ventral medial frontal cortex (-24 29 13) and was more deactive 

during music, relative silence, at post-treatment.  
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