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Abstract

Biological data derived from high-throughput microarrays can be transformed into

finite, simple, undirected graphs and analyzed using tools first introduced by the

Langston Lab at the University of Tennessee. Transforming raw data can be broken

down into three main tasks: data normalization, generation of similarity metrics,

and threshold selection. The choice of methods used in each of these steps effect the

final outcome of the graph, with respect to size, density, and structure. A number

of different algorithms are examined and analyzed to illustrate the magnitude of the

effects.

Graph-based tools are then used to extract putative gene networks. These tools are

loosely based on the concept of clique, which generates clusters optimized for density.

Innovative additions to the paraclique algorithm, developed at the Langston Lab, are

introduced to generate results that have highest average correlation or highest density.

A new suite of algorithms is then presented that exploits the use of a priori gene

interactions. Aptly named the anchored analysis toolkit, these algorithms use known

interactions as anchor points for generating subgraphs, which are then analyzed for

their graph structure. This results in clusters that might have otherwise been lost in

noise.

A main product of this thesis is a novel collection of algorithms to generate

exact solutions to the maximum clique problem for graphs that are too large to

fit within core memory. No other algorithms are currently known that produce exact

solutions to this problem for extremely large graphs. A combination of in-core and
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out-of-core techniques is used in conjunction with a distributed-memory programming

model. These algorithms take into consideration such pitfalls as external disk I/O

and hardware failure and recovery.

Finally, a web-based tool is described that provides researchers access the

aforementioned algorithms. The Graph Algorithms Pipeline for Pathway Analysis

tool, GrAPPA, was previously developed by the Langston Lab and provides the

software needed to take raw microarray data as input and preprocess, analyze, and

post-process it in a single package. GrAPPA also provides access to high-performance

computing resources, via the TeraGrid.
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Chapter 1

Introduction

Microarrays are the foundation of many biological experiments designed to identify

and extract putative networks under a given set of conditions. The current trend in

microarray design and development is to generate chips that have an increase in the

number of measuring capabilities while decreasing the overall price per chip. Analyses

of these larger and more abundant datasets require both advanced algorithms and

hardware design. Currently, microarray datasets can be analyzed using a wide

variety of software ranging from complex commercially available tools to open source

statistical packages. The algorithm complexity used by these tools can diverge as

much as the tools themselves, starting with approximation algorithms and culminate

with exact algorithms. In addition to the complexity of the algorithms used, other

factors that influence the results of the experiment include the experimental design,

sample preparation, and the physical microarray chip, just to name a few.

Another important consideration in the analysis of high-throughput microarrays

is the computational requirements of the analysis. Most software currently in use is

designed to run sequentially on a single machine. However, the size and complexity

of the datasets being produced by state-of-the-art technologies will soon require the

use of high-performance computing systems and parallel algorithms to complete the

analysis of experiments in a timely and efficient manner.
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1.1 Motivation

The focus of this dissertation is the analysis of biological datasets using a combination

of out-of-core based tools and high-performance hardware and software. Graph-based

algorithms have been used to analyze high-throughput microarray data [1, 2, 3] and

extract meaningful putative biological networks [1, 4, 5]. These putative biological

networks are produced by clique-centric algorithms [6, 7]. These computationally

intensive algorithms introduce complexities to the analysis of large datasets, such

as requiring the concurrent storage of the entire graph in core memory. Other

important factors to graph-based high-throughput microarray analysis include the

selection of normalization methods, threshold levels, and similarity metrics. Graph-

based algorithms allow for parameters to be tuned to account for the inherent pitfalls

in the data, such as noise.

Large upfront investments are required when generating biological data, with

respect to both time and money. Therefore it is imperative for scientists to have

access to the correct tools necessary to analyze data precisely and efficiently. The

combination of both high-performance hardware and software not only make it

possible to generate exact solutions efficiently, but make the analysis of larger and

more complex datasets a reality. Exact solutions to problems, such as clique, allow for

scientists to get the most accurate results possible from the analysis of their datasets.

1.2 Microarray Basics

Microarrays are used to measure many different biological properties including gene

expression, single nucleotide polymorphisms (SNPs), and alternative splicing [8].

Many publications have presented work derived from microarrays in case/control

studies[9], or in time-series analyses [10]. The results of the microarray experiments

range from the identification of differentially expressed genes [11] to the discovery of

2



SNP association in complex diseases [12]. The remainder of this dissertation refers

to microarrays that measure gene expression levels, unless otherwise noted.

1.2.1 Background

Microarrays have been an invaluable tool for biologists in the past decade and a

half. In 1995, Mark Schena et al. reported the first microarray experiment results in

Science. The experiment measured the expression level of 45 genes in the small

flowering plant, Arabidopsis thaliana, in both a wild-type and a transgenic line

overexpressing the single transcription factor HAT4 [13]. The importance of this

new type of experiment can be seen by the nearly 7,000 citations it has accrued

over the years and by the number of published microarray analyses. The surge of

new microarray data has spawned online data repositories, such as Gene Expression

Omnibus (GEO) [14], in order to allow scientists to publish and share their datasets.

There are currently∗ 23,879 publicly available datasets on GEO, comprising of 9,021

different microarray platforms, 23 different microarray vendors, 16 different species,

and 592,552 different samples across all datasets. The number of datasets has been

growing at an average rate of nearly 47% over the past 6 years, as seen in Figure 1.1.

1.2.2 Data Generation

The basic design of microarray chips is essentially the same across all technologies

and vendors. A typical microarray chip is a large collection of hybridization probes

attached to a solid surface. The length and number of these hybridization probes

differ between chips and vendors [15]. A single hybridization probe is typically

a collection of oligonucleotides arranged in a very specific order so that it bonds

only with the the complementary RNA (cRNA) of the segment of messenger RNA

(mRNA) that is to be measured. Each hybridization probe measures a defined

section of a gene, and a collection of probes, defined as a probe set, measures the

∗As of July 13, 2011
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Figure 1.1: Number of datasets in GEO, listed by number of uploads per year.
GEO started in 2001 with 13 datasets and has grown at a steady rate over the past
decade. It is projected to have over 6,500 uploads in 2011 alone.

expression level of a single gene. Overall, the process of extracting mRNA from a

specimen, reverse transcribing, labeling with a special fluorescent dye, hybridizing to

the microarray chip, and measuring the intensity of the fluorescent signal is fairly

well standardized across all platforms. However, this process of generating data does

allow for many opportunities for variation to be introduced into the experiment and

must be accounted for. Different normalization methods are discussed later in this

dissertation to account for technical variation, or noise.

Microarray Vendors

Microarray vendors have incorporated many different technological designs into their

respective chips. Although there are more than 23 different microarray vendors

currently listed in GEO, only two of the largest vendors will be surveyed, Affymetrix

[16] and Illumina [17]. Affymetrix uses a chip design that places the hybridization

probes in a systematic manner across the entire chip and the location of the probes are

known at the time of manufacture. For each target sequence, there exists a perfect
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match (PM) and a mismatch (MM) probe. The Affymetrix probes are 25-mer in

length, with the PM probe being the exact compliment of the mRNA, cRNA, being

measured. The MM probe differs from the cRNA at the 13th position, as illustrated

in Figure 1.2. Some normalization methods, such as MAS 5.0, use the PM/MM

pairs in the computation of the gene expression level, while other methods, such

as RMA [18, 19], disregard the MM probes completely, thus rendering half of the

Affymetrix chip useless. Positive aspects of the Affymetrix chip include a large user

base, numerous package support and consistently precise results [20]. Some of the

drawbacks of the Affymetrix chip includes identification of SNPs at the 13th position

of the MM probe [21], redundant probe sets, and the large amount of mRNA needed

to measure gene expression levels [22].

A C C T C C T AG

A C C T C C T AC

T G G A G G A TC

T G G A G G A TC

2 31 4 13 22 23 24 25

PM

MM

Sample

Sample

Figure 1.2: Affymetrix incorporates a Perfect Match (PM) probe along with a
Mismatch (MM) probe design. Both probes are 25-mer in length and differ at the
13th position.

Illumina uses a different approach when attaching the hybridization probes to the

chip. Instead of attaching the hybridization probes in a systematic manner, the probes

are attached to silica beads and the beads are then randomly distributed among the

wells on the substrate. The total length of the Illumina hybridization probes are 79-

mer. The 29-mer on the 3’ end is used by Illumina for identification of the probe, and

the 50-mer on the 5’ end is used for measuring mRNA expression level, see Figure 1.3.

Illumina does not incorporate the PM/MM strategy for each target sequence, allowing

for more hybridization probes on the chip. Advantages for the Illumina technology
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include the ability to run more chips at a single time, generally less expensive and

it requires a smaller amount of total mRNA to generate gene expression levels [22].

However, some of the drawbacks to this technology include a small, but growing, user

base, limited software support outside of BeadArray, and less precise than Affymetrix

[23].

Address Probe

Figure 1.3: Illumina probes are 79-mer long and are divided into two sections: the
29-mer address section that is for identification of the probe and a 50-mer probe
section.

Both technologies suffer somewhat from changes in annotation in the ever evolving

field of bioinformatics. The probe sequence used in an Affymetrix chip to measure

a gene is not guaranteed to be the same probe sequence used in the Illumina chip

to measure the same gene. Even using different generations of the same chip design

isn’t guaranteed to use the same sequence to measure the same gene, which could

lead to differences in expression levels when comparing two different experiments

[24]. It is currently estimated that there are approximately 20,000 to 25,000 genes

in the human genome [25], however, coverage of the whole genome is fairly good by

both technologies, measuring around 50K probes each in the Human arrays. Given

the technical aspects of both technologies are generally acceptable, the main forces

behind chip selection for an experiment is still driven by how comfortable the end

user is with the technology and the total expense in generating and analyzing the

data.

1.2.3 Experimental Design

Microarray chip selection is only one of many factors in the experimental design.

While the use of two-color microarrays can reduce the number of overall microarray
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chips required for the experiment, the two-color microarrays also add a level of

complexity to the analysis. The drawbacks of using two-color microarrays include an

increase of data loss due to chip failure, the increase of the effect of an outlier sample,

and a more complex experimental design (eg. saturated design vs single reference

design as seen in Figure 1.4). The use of one-color microarrays require twice the

number of microarray chips needed to perform the experiment, however, the chips are

more robust to the effects of outliers, as only the outlier chip will need to be removed

from the analysis. This does not effect the results of the other chips. One-color

microarrays do not suffer from dye bias and the data can be easily compared to other

arrays from other experiments [9]. The decrease in prices for one-color microarrays

make them an attractive and viable choice for most experiments and the analyses

in the remaining parts of the dissertation focus solely on one-color chip experiments.

Other experimental design factors include the total number of samples, including the

number of technical and biological replicates, and whether or not samples must be

pooled together to generate enough biological matter to complete the experiment.

Reference

Sample 1 Sample 2 Sample 3

Sample 1

Sample 5 Sample 2

Sample 4 Sample 3

Figure 1.4: Two-color microarray experimental designs range in complexity. The
experimental design on the left uses a single reference while the experimental design
on the right uses a saturated model.
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1.2.4 Preprocessing and Statistical Analysis

Once the experimental design is finalized and the biological data has been processed,

the analysis of the data is ready to proceed. The first step in the analysis is

preprocessing the RAW data. There are many software packages available, for either

Illumina or Affymetrix data, such as BeadArray, R [26] with Bioconductor [27], and

Flexarray [28]. R is an open source statistical software package with great user support

for bioinformatics and is used for remainder of the analyses in this dissertation,

where applicable. Preprocessing the data includes reading in all of the RAW data

files, normalizing the data, and then assigning expression levels to the probes. The

expression level of a probe is a function of the luminosity of the probe, as illustrated

in Figure 1.5.

Figure 1.5: Affymetrix CEL file.

Algorithms

The normalization step in the analysis is necessary to correct for effects of variation in

the microarray technology rather than true biological variation between the samples
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[29]. Figure 1.6 illustrates the same dataset before and after normalization was

applied. Many different preprocessing algorithms have been proposed for Affymetrix

chips, such as MAS 5.0 [27], RMA [30], and dChip [31], and are discussed in detail

in Chapter 3. Popular preprocessing algorithms for data derived from Illumina chips

include average, rank invariate, and cubic spline normalizations. It is believed that

different preprocessing algorithms leads to different results [32], and it isn’t the case

that one method always works best on all datasets.

Statistical tests

Basic statistical tests can be applied to identify genes that have a significant impact to

the experiment. The standard statistical method for identifying the set of genes that

are differentially expressed between two datasets of equal size and variance is the t-

test. If the experiment has two or more conditions, the analysis of variance (ANOVA)

model is the most appropriate to use [33]. T-tests and ANOVA models have been

used extensively in the identification of differentially expressed genes with respect

to microarray experiments [34]. The differentially expressed genes are assigned a p-

value, which is the probability of obtaining a test statistic at least as extreme as the

one that was observed, if Ho is true. In other words, how significant are the changes

in the mean expression levels of a gene in the two groups. Given that thousands of

probes are being tested, it is important to correct for multiple comparisons using a

method such as Bonferroni correction or False Discovery Rate (FDR) [35]. Bonferroni

correction is the simpler method and is defined as

padjusted =
p

n
(1.1)

where p is the original p-value of a gene and n is the total number of tests. However,

Bonferroni correction is often too conservative for microarray analysis. FDR limits

the expected proportion of Type I errors resulting from the multiple tests. Much

like p-values, there exists q-values which measures the minimum false discovery rate
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when a test is deemed significant [36]. The results of these statistical tests are used

in conjunction with the graph-based tools in order to winnow lists to include only the

most significant genes [1].

1.3 Clique-centric analysis

A clique-centric analysis has been shown to be effective when analyzing microarray

data [1, 2, 3]. Current microarray chips produce data that is on the order of tens

of thousands of probes, when measuring for gene expression data. Extracting viable

putative networks from datasets of this size is a perfect match for graph algorithms.

The use of these tools to produce these networks is illustrated in Figure 1.7.

The primary step in our analysis is converting the data generated by microarrays

into a graph. A graph G = {V,E} is defined as a set V of vertices and a set E of

edges. For the purpose of this dissertation, only simple, finite and undirected graphs

are considered, see Figure 1.8. The conversion of the microarray data into a graph

transforms the set of probes into vertices and assigns a weight to all pairwise edges.

The weight assigned to an edge is generally denoted by the interaction between the

two vertices, for example the correlation between two vertices. There are multiple

similarity metrics from which to choose, as listed in Table 1.1, and the differences

between these metrics are examined more closely in Chapter 3.

Clique-centric algorithms

Once the microarray data has been transformed into a complete weighted graph, it

is true that

∀u, v ∈ V, ∃{u, v} ∈ E, such that ω(u, v) is defined

where ω is the weight function. It is necessary to apply a threshold to the edges in our

graph and retain only the putatively significant edges and vertices. This filtering step

also transforms the graph from a weighted graph into an unweighted graph. Many
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Similarity Measure Range Type Formula

Pearson [ 1,1] Correlation
(n- 1)SxSy

(Xi - X )(Yi - Y )/

6 d2/
Spearman [ 1,1] Correlation

Kendall Tau [ 1,1] Correlation

Mutual!Information >!0 Correlation

Manhattan!Distance >!0 Distance

p(x,y)log
p1(x)p2(y)

p(x,y); E
x
/

y
/

2

1
n (n- 1)
nc - nd

Xi - Yi/

1 -
n (n2 - 1)

6 di/

Euclidean Distance >!0 Distance

Jaccard Index [0,1] Association
Xj Y

Xk Y

Xi - Yi^ h/
2

Xi Yi/

Table 1.1: Collection of similarity measures.

threshold selection methods have been proposed [37, 38], and several methods are

reviewed in depth in Chapter 3. The threshold selection and filtering steps typically

reduce the size of the graph into a more manageable graph, however, extracting the

densest subgraphs, or networks, from the graph is still very computationally intensive.

By definition, the densest possible subgraph is a clique. A clique is defined to be the

set of fully connected vertices in a graph, with a density of 1, and it is known to be

an NP -complete problem [39]. The extraction of cliques from a graph is sometimes

feasible due to the complimentary dual of clique, vertex cover [40]. Vertex cover is the

set of vertices that cover all edges, and it is known to be fixed-parameter tractable

(FPT) [41]. A problem is said to be FPT if given an input of size n and a parameter k,

there exists an algorithm to solve the problem in O(f(k)n(c)) time. FPT algorithms

also reduce the problem to a kernel, which allows for an even smaller instance size to

be solved. The relationship between clique, vertex cover, and FPT are discussed in

more detail in Chapter 2.

The cliques of a graph are the core structures of the biological networks derived

from the microarray data. However, the requirements for clique that every edge be

present is sometimes too restrictive. There are many points along the way in the

analysis that could allow for a putatively significant edge to be excluded from the
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analysis, such as threshold selection, or noise inherent in the data has influenced the

analysis in such a way that a few key edges have been eliminated from our analysis.

The use of soft-thresholding is one method to try to resolve these missing edges that,

biologically speaking, should be included in our analysis. The paraclique algorithm,

developed by M. A. Langston, is one such example of a soft-thresholding algorithm.

These clique-centric algorithms produce dense putative biological networks. These

networks can then be studied independently, or in parallel to determine difference

between the networks.

Graph-based differential algorithms, similar to differential expression, include

differential correlation and differential topology [1]. These algorithms can be used

to identify genes that belong to a response network of a stimulus or identify the genes

that interact with a completely different network under a given condition. Genes

that have been identified in previous steps or other analyses can be used to refine our

analysis by using methods such as anchored clique, anchored paraclique and anchored

biclique. A review of these algorithms are presented in Chapter 4.

All of the datasets and algorithms up to this point have assumed that the data

fits into core memory on a single machine. This is not always the case, for example,

with datasets measuring SNPs. It is estimated that there are 10 million SNPs in the

Human genome [42] and current Illumina SNP chips measure 2.5 million SNPs, with

the real estate on the chip readily available to measure up to 5 million SNPs. Due

to the data structure requirements of current tools, datasets of this size are simply

too large to fit into core memory on most machines. Therefore it is imperative that

parallel out-of-core algorithms be implemented. The biggest concern with out-of-core

algorithms is the amount of time spent doing I/O and making external passes over

files stored on disk. These and other items are examined in closer detail in Chapter

5.
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1.4 Postprocessing

The postprocessing step in the analysis can include visualization, validation of results,

and to ascertain the function of unknown genes. Visualization of the data allows

the results to be analyzed for network structure and for identification of key genes

in the network. Graphviz [43], a well-known open-source visualization package, is

available from AT&T labs. This particular software package allows for the results

to be visualized in a number of different layouts, depending on the type of graph

provided. Figure 1.9 illustrates one of the layouts plotting non-overlapping maximal

cliques in a graph. The results generated can also be validated using a wide array of

tools. These tools range from open source software, such as Cytoscape [44], DAVID

[45] and Gene Ontology [46], to subscription based software such as Ingenuity Pathway

Analysis [47]. These tools rely on current biological knowledge, usually derived from

current publications, either in an automated manner using text mining tools, or in a

manually curated manner, such as Ingenuity. These tools can be used to determine if

the members of the generated networks are significantly enriched in certain categories

or pathways. Genes in these generated networks could have very little functional

information published. One could ascertain this functional information by combining

the network produced using clique-centric tools and the enrichment information of

the other members in the network. In this manner, new functional information can

be proposed and further studied in a wet lab environment. Figure 1.10 is an example

of a KEGG pathway visualization produced by DAVID.
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(a)

(b)

Figure 1.6: The effects of normalization are illustrated using the pre-normalization
data (a) and the post-normalization data (b).
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Microarray Data Generation

Preprocessing/Normalization

Statistical Analysis Graph-based Analysis

Structure Analysis

Postprocessing

Figure 1.7: High-throughput microarray analysis from data generation to
postprocessing. A combination of clique-centric tools and statistical tests extract
only the most putatively significant networks.
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Figure 1.8: An example of a simple, finite, undirected graph. There are 10 vertices
and 18 edges. This graph will be used as an example graph throughout the rest of
the dissertation.

Figure 1.9: An example of non-overlapping maximal cliques in a graph. It is
typical to see few very large maximal cliques and numerous smaller maximal cliques
in biological data.

16



Figure 1.10: A KEGG pathway generated by the DAVID Bioinformatics tool.
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Chapter 2

Graph-based Tools Overview

2.1 Introduction

Everything can be represented as a graph. This statement is the motivation

behind many centuries of exploring graph theory. In the context of this research,

the interaction of biological elements is represented as a graph and analyzed

using properties of inherent structures, namely clique-centric structures. Generally

speaking, this research focuses on the interaction between transcriptomic data,

however, it is important to note that other types of -omic (genomic, proteomic) data

can easily be substituted in any of the analyses once the data has been transformed

into a graph. The extraction of dense subgraphs using clique-centric based tools

proves to be a successful method of modeling real biological data [1, 3, 5, 6]. This

section will introduced the basic notation and definitions needed to successfully parse

the remainder of this dissertation, followed by basic graph problems such as Vertex

Cover and Clique.

2.2 Definitions

All graphs, unless specifically stated otherwise, are considered to be simple, finite,

and undirected graphs. A graph G = {V,E} is defined as a set V of vertices and
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a set E of edges. An edge is a set of vertices, {u, v}. A subgraph of G is defined

as G′ = {V ′, E ′} where V ′ ⊂ V and E ′ ⊂ E. A graph is defined to be complete,

Kn, if ∀ u, v ∈ V, ∃ {u, v} ∈ E. In other words, all possible edges are present in the

graph. The density, D(G), of a graph is 2|E|
|V |(|V |−1)

, where 0 ≤ D ≤ 1. Vertices u, v are

said to be adjacent if {u, v} ∈ E. The set of vertices adjacent to a vertex, v are the

neighbors of v and constitute the neighborhood of v, N(v). Any vertex not adjacent to

v belongs to N(v). The union of these two sets, N(v)
⋃

N(v) is equal to V − v. The

degree of vertex v, d(v) is |N(v)|, where 0 ≤ d ≤ (|V | − 1). Vertex v with d(v) = 0

is said to be isolated. Vertex, v′ ∈ G′ with d(v′) ≈ |V ′| is said to be a star node.

A path, p(u, v) is the set {{u, w1}, {w1, w2}, ..., {wk, v}}, where w1..k, u, v ∈ V and

{{u, w1}, {w1, w2}, ..., {wk, v}} ∈ E. This simply states that v is reachable from u. A

connected component, CC, is the set of vertices such that ∀ u, v ∈ CC, ∃ p(u, v) ∈ E.

A graph with a single connected component is said to be connected ; otherwise it is

considered disconnected. The complement of G is G = {V,E} where E = [V ]2 − E.

2.3 Vertex cover

In 1972, Karp introduced a list of 21 NP-complete problems [48]. Many of these

problems are still extensively studied today, including vertex cover.

Definition 1. Given a graph G = {V,E}, a vertex cover is a set V C ⊆ V such that

∀ u,v ∈ E, ((u ∈ V C) ∨ (v ∈ V C)).

Like most computational problems in graph theory, there are two well-studied

flavors of the vertex cover problem: the decision problem and the optimization

problem. The decision problem is defined in the usual way:

Input: A graph G = (V,E) and a positive integer k ≤ |V |.

Question: Is there a V ′ ⊆ V for which |V ′| ≤ k such that every edge in E at least
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one endpoint is V ′.

Figure 2.1 shows an example vertex cover. It is well-known that the decision

version of vertex cover is NP-complete and that the optimization version is NP-

hard [39]. This dissertation focuses on the optimization version of the vertex cover

problem as defined below:

Input: A graph G = (V,E).

Question: What is the smallest k such that G has a V C ⊆ V of size k.

Although the optimization version of vertex cover is NP-hard, and the expected

algorithms used to solve such problems must have exponential run times in terms

of the input size, using vertex cover in everyday analyses is feasible due to it also

being FPT [49]. A problem is said to be FPT if there exists an algorithm to solve

it in O(f(k)nc), where c is constant. Since the run time of the algorithm is no

longer dependent on the size of the input n, but rather the parameter k, solutions to

FPT algorithms are more feasible. Also, certain advantages are gained with an FPT

algorithm, namely the reduction of the problem to a kernel, as defined below by [50].
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Figure 2.1: A vertex cover of our basic graph. The cover is {A,C,E,F,H,I}. While
this cover is optimal, it is not unique.
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Definition 2. Given a parameterized problem P with the input pair (I,k), where I is

the problem instance and k is the parameter. Reduction to a problem kernel replaces

the original instance (I,k) with (I ′, k′) such that

k′ ≤ k, and |I ′| ≤ g(k)

for some function g depending solely on k, and

(I, k) ∈ P iff (I ′, k′) ∈ P .

Also, the reduction from (I,k) to (I ′, k′) must be computable in polynomial tim

TK(|I|, k) The function g(k) is called the size of the problem kernel.

This simply states that if a problem is FPT, then there must exist a problem

kernel, which is a reduced instance of the original problem. Conversely, if there

exists a problem kernel, then the problem is FPT. Therefore, there exists a problem

kernel for vertex cover. Many kernelization methods have been proposed for vertex

cover [50, 51], however, the kernelization method used in this dissertation is based

on crown reduction. The most straightforward crown reduction is the 1-degree rule,

where the neighbors of vertices that have degree 1 are placed into the crown. It is

straightforward to see that if d(v) = 1, then placing N(v) into the crown from the

graph yields at least the same result as placing v into the crown. The worst case

only occurs when d(N(v)) = 1. In the case where d(N(v)) > 1, including N(v) in

the crown also covers all edges adjacent to N(N(v)). The high degree rule simply

states that if d(v) > k+1, then v must be included in the crown. Suppose v was not

included in the crown, then all N(v) must be in the cover; however, it is known that

|Nv| > k, and thus a cover of size k cannot exists. Therefore, v must be in the crown

for a cover of size k. The most trivial reduction in the graph is 0-degree rule. Simply

stated, any isolated vertex (d(v) = 0) is removed from the graph. The combination

of these three rules reduces the graph to at most k2 + k vertices and retains at most

k2 edges and the best known bound on vertex cover is O(1.2852k + kn) [50].
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2.4 Clique

Clique also belongs to the list of 21 NP-complete problems introduced by Karp [48].

Definition 3. Given a graph G = {V,E}, a clique is a set C ⊆ V such that ∀ u,v

∈ C, {u, v} ∈ E.

Much like vertex cover, there is a decision version of the clique problem, defined

below:

Input: A graph G = (V,E) and a positive integer k ≤ |V |.

Question: Is there a V ′ ⊆ V for which |V ′| ≥ k and such that ∀ u,v ∈ V , ∃{u, v} ∈ E.

The optimization version of the clique problem seeks to determine the largest

clique in the graph.

Input: A graph G = (V,E).

Question: What is the largest k such that G has a C ⊆ V of size k.

The astute reader will have recognized the close relationship between both vertex

cover and clique. This is due to the fact that clique is the complementary dual to

vertex cover. The relationship between clique and vertex cover is extremely important

because clique is both NP-complete and believed to be fixed-parameter intractable

as clique is, in fact, W [1]-hard in the W -hierarchy [50]. In order to use the fact

that vertex cover is FPT and that it is the complementary dual to clique, the initial

problem instance must undergo a transformation, and this transformation relies on

independent set.

Definition 4. Given a graph G = {V,E}, an independent set is a set IS ⊆ V such

that ∀ u,v ∈ IS, {u, v} 6∈ E.
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As a brief overview of this transformation, the problem instance from vertex cover

to clique is discussed. Vertex cover takes as input the pair (G,k) and a solution, VC,

is generated. This problem instance is then transformed into an independent set by

taking the complement of the vertex cover solution, I = V C. Next, by taking the

graph complement, G = {V, [V ]2 − E}, the problem instance is transformed into a

clique instance, {G, |V | − k}. In other words, a vertex cover of size |V C| in G is

equivalent to a clique of size |V | − |V C| in G and V C = V/C and C = V/V C.

It is also important to note that the solutions to the optimization versions are also

transformable, in the sense that a minimum vertex cover can be transformed into a

maximum clique, and vice versa [49].

2.4.1 Maximal Clique

Given that a clique C in G is a set of fully connected vertices, extremal clique

properties such as maximal clique and maximum clique can be defined.

Definition 5. Given a graph G = {V,E}, a maximal clique is a set C ⊆ V such that

∀ u,v ∈ C, {u, v} ∈ E and C 6⊆ C ′, where C ′ is another clique in G.

Maximal cliques play an important role in analyzing biological data due to the

fact that these are not strictly the largest cliques in the graph, but they are comprised

of the most elements that have a high interaction with each other. Maximal cliques

can overlap each other, so membership to one clique does not prohibit membership

to another clique. In 1965, Moon and Moser [52] showed that a graph with n

vertices can have, at most, 3
n

3 maximal cliques. Algorithms that generate all maximal

cliques are divided into two groups: iterative enumeration and backtracking. Iterative

enumeration algorithms, such as the one proposed by Kose et al [53] must first build

all maximal cliques of size k − 1 before generating any cliques of size k. Memory

requirements are typically prohibitive in this type of algorithm since all maximal

cliques must be stored in memory or on disk. Backtracking algorithms are derived

from the work of Bron and Kerbosch [54]. These algorithms use a ”depth first”
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approach to building maximal cliques. A maximal clique is grown by supplementing

the current clique with vertices from a candidate list. Once the candidate list is

empty, a maximal clique is produced. The vertex added last is removed and the

non-maximal clique selects a vertex from the remaining candidate vertices at this

recursion level. The algorithm recurses all possible levels until the entire search space

has been examined.

2.4.2 Maximum Clique

All maximum cliques are maximal cliques with the largest number of vertices. Figure

2.2 illustrates the difference between a maximal clique and a maximum clique. The

clique number of a graph, ω(G), is the size of a maximum clique of G. There can

be numerous maximum cliques in a graph. All maximum cliques can overlap, but

they all must have the same number of vertices. Maximum cliques are important

to biological data in the sense that they are the largest networks responding to a

given condition or stimulus. By default, any algorithm that enumerates all maximal

cliques also enumerates the list of all maximum cliques. It is straightforward to filter

the enumeration of maximal cliques keep only the maximal cliques of maximum size.

Algorithms that focus solely on enumerating maximum cliques have been proposed

that exploit the clique number of a graph to converge to a solution [55]. Maximum

cliques are also used as the input for other clique-centric algorithms discussed in this

dissertation, such as the paraclique algorithm.

Definition 6. Given a graph G = {V,E}, a maximum clique is a set C ⊆ V such

that ∀ u,v ∈ C, {u, v} ∈ E and |C| is maximum.

2.4.3 Biclique

A graph that has two distinct partitions that allows interpartition edges, but disallows

intrapartition edges, is a bipartite graph. Bipartite graphs are subject to the same

graph property problems, such as vertex cover, clique, etc, but each problem instance
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Figure 2.2: There are two maximal cliques in the graph. The green maximal clique
is size 3 and the red maximal clique is size 5 and is a maximum clique in the graph.

must be tweaked to handle the format of the bipartite graph. For example, a bipartite

graph cannot contain a clique of size 3 or greater, however, a biclique is defined as

being a complete subgraph of a bipartite graph, as defined below.

Definition 7. A bipartite graph G = {V, U, E} has two disjoint sets, V and U , and

a set of edges {u, v} ∈ E, where u ∈ U and v ∈ V .

In the case of a simple graph, all maximum cliques have the same number of

vertices and the same number of edges. However, in a simple bipartite graph, bicliques

can be either edge maximum, or vertex maximum, bicliques. Edge maximum bicliques

are bicliques with the largest number of incident edges within the biclique, and vertex

maximum bicliques have the largest number of vertices. Figure 2.3 illustrates the

difference between the two.
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Figure 2.3: Two bipartite cliques are represented. The green bipartite clique is
vertex maximal with 5 edges and 6 vertices, while the red bipartite clique is edge
maximal with 6 edges and 5 vertices.
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Chapter 3

Preprocessing and Graph Creation

3.1 Introduction

Selecting a preprocessing method, similarity metric and threshold selection algorithm

can have a large influence on the properties of a graph. This chapter reviews some

of the more popular algorithms and metrics to determine the effects each has on

the properties of a graph. In the end, given any combination of each one of these

algorithms and metrics will produce a simple, undirected, finite graph. The effects

of each method are measured using Saccharomyces cerevisiae (baker’s yeast) data

generated on the Affymetrix microarray platform and properties of the graph, such

as density and connectivity, are scrutinized.

3.2 Data and Software

The dataset was generated on the Affymetrix Yeast Genome S98 array. The dataset

is publicly available for download from the GEO website under the series GSE1938

[56]. The open source statistical package, R version 2.11.1 [26], was used for all

of the preprocessing and normalization steps, calculating the Mutual Information,

and multiple testing correction. The qvalues were computed using Qvalue [36]. The

Bioconductor package [27] and libraries were used when necessary to complete the
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analyses using R. Datagen version 1.4a is custom software, written by Jon Scharff,

was used to compute the Pearson, Spearman, and Kendall correlation metrics.

3.3 Preprocessing

Preprocessing data is usually completed using pre-built libraries that are publicly

available through software packages such as R and Bioconductor. The most popular

algorithms are listed in Table 3.1. These algorithms are compared using the values

and distribution of the resulting expression levels.

Normalization

Method
PM/MM

Background

Subtraction

Robust Multi Array AverageRobust Multi Array!Average

(RMA)
PM Lowest!signals subtracted!out

GC Robust!Multi Array

Average (GC RMA)
PM

Incorporates!non specific

bindings

GC Robust!Multi Array

A (GC RMA)
Both

Incorporates non specific!

bi diAverage!(GC RMA) bindings

dChip PM Model!based

dChip (w/MM) Both Mismatch subtraction

Microarray Analysis!Suite!5.0!
Both

Mismatch

(MAS!5.0)
Both

subtraction/Imputation

Table 3.1: A sample of the most popular normalization methods for the Affymetrix
microarray. Some methods use the MM probes in the background correction step,
while others ignore them completely.

Preprocessing algorithms have three basic functions: background correction,

normalization, and expression level quantification [57]. Background correction is used

in the removal of unwanted background signal. The methodology employed by the

various algorithms range from the use of the MM probe signals, to the estimation

of the background signal derived from the lowest level signals of the PM probes

[18]. Affymetrix chips come with both PM and MM probes, and any preprocessing

28



algorithm that does not use MM probes are, by default, using only half of the data

generated on the chip. However, in [30], it is shown that the MM signal increases as

the PM signal increases. Therefore, using the MM signal value as the background

correction metric, it is actually effecting the signal of the PM probe. The second

function, normalization, is required to correct for effects of variation introduced by

microarray hardware. A handful of normalization methods are employed by the

algorithms, such as linear scaling and quantile normalization. Finally, quantifying

expression levels include the combination of probe level signals into the expression

level of a probe set, and these signals are typically log transformed to help facilitate

analysis [58]. While most preprocessing algorithms have the same basic functionality,

the details of each algorithm are reviewed:

• RMA - Assumes a signal model with both additive and multiplicative error

components. This method disregards all MM probes and uses only the PM

probes in determining both background signal and expression level values. The

data is quantile normalized between arrays and log transformed.

• MAS 5.0 - This method was distributed by Affymetrix for use with its

hardware, and does exploit the MM probes when computing background signal.

Linear scaling is used to ensure common distribution of the signals over the

arrays; however, the data is generally not log transformed by the algorithm.

• GC-RMA - A derivative of RMA that incorporates a bias correction algorithm

that estimates non-specific bindings [59]. Non-specific bindings are estimated

using probe nucleotide sequences. Like RMA, the data is log transformed and

quantile normalized.

• GC-RMA (MM) - Similar to the GC-RMA algorithm except that MM probe

values are also used in calculating the background signal.

• dChip - One of the first model-based algorithms designed for microarray

analysis [28]. This algorithm uses the invariant set, the set of probes whose
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signal is uniform across all arrays, normalization method. Background signal is

computed by splitting array into zones and computing background signal per

zone.

• dChip (MM) - Same methodology as dChip, except incorporates the signal

produced by the MM probes in the background correction.

3.3.1 Results

The Yeast dataset, comprised of 15 microarrays, was processed using all 6 algorithms.

Figure 3.1 uses the expression levels produced on a single microarray to generate the

expression level histogram. The histogram shows the distribution of the expression

values. The top 30 expressed probes, resulting from the RMA normalization method,

are highlighted in black. Note that these 30 probes are highly expressed in all of the

preprocessing algorithms, as expected, but the list of the top 30 expressed probes are

not identical across all preprocessing algorithms. This is demonstrated by the fact

that the highlighted regions have a larger spread in the histogram of some algorithms

when compared to others. The MAS 5.0 and the dChip (MM) are very similar in

their expression patterns, while the other methods have fairly similar outputs. The

use of the MM probes in the GC-RMA (MM) method does not seem to significantly

influence the histogram, in this case.

Figure 3.2 shows the heatmap of the expression level of the same top 30 probes

generated by the RMA method. Similar patterns are observed in the RMA and GC-

RMA methods, which is to be expected since the GC-RMA is a derivative of the

RMA method.

3.4 Similarity metrics

The subsequent step after preprocessing is the computation of all pairwise similarity

values. With respect to analyzing microarrays, this is computing similarities between
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RMA MAS 5.0

GC-RMA GC-RMA MM

dChip dChip MM

Figure 3.1: The expression levels of the Yeast data derived using the six different
preprocessing methods. The top 30 expressed probes, identified using the RMA
preprocessing algorithm, are highlighted in black in all six histograms.

31



RMA MAS 5.0

GC-RMA GC-RMA MM

dChip dChip MM

Figure 3.2: The heatmap of the expression levels of the top 30 genes. Observe that
the expression values have a different range and heatmap signature for each of the
six different preprocessing methods. This will have an impact in the graph that is
created from the preprocessed data.
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all pairs of transcript probes. Table 1.1 lists a collection of similarity metrics. This

dissertation focuses on a select few metrics that are popular in the bioinformatics

community [60], including Pearson product-moment, Spearman Rank, Kendall’s tau,

Euclidean distance, and mutual information.

3.4.1 Pearson Product-moment

One of the most popular metrics used to determine similarity in microarray analysis

is the Pearson product-moment correlation coefficient, see Equation 3.1. This

correlation produces a measure of linear dependence between random variables, X and

Y, in the range [-1,1]. A positive correlation occurs when variable X increases, then

variable Y increases. If variable X increases and variable Y decreases, then a negative

correlation is produced. A Pearson’s correlation of 1 is a perfect positive correlation,

and -1 being a perfect negative correlation. Perfect correlations occur when the

plotting the variable X against variable Y creates a straight line. A correlation of 0

is interpreted to mean that given the value of variable X, the value of variable Y is

unknown. Pearson’s correlation assumes that the data is normally distributed and

it is very sensitive to outliers. Figure 3.3 illustrates the relationship of a Pearson

correlation between random variables.

Pearson Correlation =

∑

(Xi −X)(Yi − Y )

(n− 1)SxSy

(3.1)

3.4.2 Spearman’s Rank and Kendall’s Tau

Spearman’s rank correlation coefficient and Kendall’s tau rank correlation coefficient

are non-parametric measures of dependence between two random variables, X and

Y. Both of these metrics use the rank of an observation, within the spectrum of

a variable, to determine dependence. Table 3.2 illustrates the ranking function as

applied to two genes. Spearman’s correlation can be calculated using the formula

for Pearson’s correlation, given that if a tie occurs in the ranking, the average of the
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Figure 3.3: Example of Pearson correlation given 3 genes and 10 samples. The
Pearson correlation between Gene 1 and Gene 2 is 0.82. Observe that, generally
speaking, when the expression level of Gene 1 rises, the expression level of Gene 2
also rises, and when the expression level Gene 1 falls, so does the expression level of
Gene 2. The Pearson correlation between Gene 1 and Gene 3 is 0.53 and the Pearson
correlation of Gene 2 and Gene 3 is 0.39. The low correlation value between Gene 2
and Gene 3 can be attributed to the expression levels of Gene 2 rising, when over the
same samples, the expression levels of Gene 3 are falling, and vice versa.

ranking is used. If no ties occur, Spearman’s correlation can be calculated using the

formula in Equation 3.2. Kendall’s tau rank correlation coefficient, Equation 3.3, uses

the number of paired concordant and discordant observations to assign dependence.

Both Spearman and Kendall correlations fall in the range of [-1,1].

Spearman Correlation = 1−
6
∑

d2i
n(n2 − 1)

(3.2)

Kendall Correlation =
nc − nd

(1/2)n(n− 1)
(3.3)

3.4.3 Euclidean Distance

A popular distance metric is Euclidean distance, as calculated by the Pythagorean

formula. This metric measures the distance between a pair of variables in n-

dimensional space, where n is the number of observations, as seen in Equation 3.4.
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S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Gene 1 8.5 8 8.25 9 9.5 10.5 10 9.75 9.25 8.75

Rank 3 1 2 5 7 10 9 8 6 4

Gene 2 10.25 9 10 10.5 11.5 11 12 11.75 11.25 10.75

Rank 3 1 2 4 8 6 10 9 7 5

Table 3.2: Spearman rank correlation converts the expression levels into the
respective rank of the expression level within the given gene. For example, the
expression level of Gene 1 in sample 1 is 8.5. This is the 3rd smallest expression
value within Gene 1 (across all samples), so it is assigned a rank of 3. The Spearman
correlation between these two genes is 0.86, as compared to the Pearson correlation
value of 0.82.

Euclidean Distance =
√

∑

(Xi − Yi)2 (3.4)

Euclidean distance follows all the rules set forth in [61] to be a valid distance

metric and is often used as the default metric for generating hierarchical clustering

dendrograms, as illustrated in Figure 3.4.

3.4.4 Mutual Information

Mutual information is a measure of mutual dependence between two independent

variables, X and Y, that, unlike the previous methods, is not limited to measuring

only linear dependence. Mutual information produces nonnegative correlations, and

is gaining acceptance as a similarity metric in biological analysis [62]. Equation 3.5

gives the formula for Mutual information as presented in [63].

Mutual Information =
∑

y

∑

x

p(x, y)log(
p(x, y)

p1(x)p2(y)))
(3.5)

A drawback to mutual information the requirement that the observations be placed

into n bins, where n is defined by the user. The number of bins chosen has an effect
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Figure 3.4: Euclidean distance is the default metric for the hclust method in R. This
dendrogram uses the Euclidean distance value to cluster the first 10 genes from the
Yeast dataset. Selecting a value on the vertical axis determines how many groups, or
clusters, are defined at that threshold. For example, at height 10, there are 3 clusters.

on the final coefficient value produced by the algorithm. Table 3.3 lists the different

mutual information coefficients between the same two variables, given that the data

is broken into a different number of bins.

Number of 

bins
6 7 8 9 10 11 12 13 14 15

Mutual 

Information

Gene 1 vs

Gene2

1.14 1.33 1.6 1.74 1.88 2.16 2.16 2.3 2.3 2.3

Table 3.3: The similarity measure produced by mutual information is dependent
on the parameter selected for bin size. By default, the bin size is 10. However,
as illustrated above, the bin size can have a large influence in the similarity value
produced.

3.4.5 Results

The results from the six different preprocessing methods are used as input to each

of the above mentioned similarity metrics. The Pearson, Spearman, and Kendall
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correlations are all contained within the range [1,1] and are plotted on the same

graph. Both the Euclidean distance and Mutual information measures have a lower

bound of 0, but they do not have an upper bound and as such, they are plotted on

separate graphs. For all pairwise computations, at least 10 common observations are

required in order to generate the respective measurement.

The distribution of the similarity values using the RMA preprocessing method

is examined in Figure 3.5. In Figure 3.5(a), the distribution of the values for the

Kendall rank correlation has a large spike centered around 0 and has shorter tails,

whereas both the RMA and Spearman correlations have longer tails. The longer tails

are a product of the number of high correlations produced, and the genes of interest

lies within these outermost part of these tails. The Euclidean distance measure, as

applied to the RMA method, shows a spike in similarity values around 2 and slowly

trails off. The genes with the smallest Euclidean distance has the highest similarity

value, therefore, the genes of interest lie close to 0. Finally, the Mutual Information

measure is seen in Figure 3.5(c). The similarity values produced fall within the range

of 0 to around 2. The similarity values that are high represent the genes of interest.

A similar distribution pattern can be seen for the remaining preprocessing

methods: MAS 5.0, GCRMA, GCRMA MM, DCHIP, DCHIP MM, see Figures 3.6

to 3.10. Even though the distributions are similar, there are some slight variations.

For example, the Kendall rank correlation has a higher peak when combined with

certain preprocessing methods, namely MAS 5.0 and GCRMA. The distribution

of the Kendall rank correlation when used in conjunction with the DCHIP MM

preprocessing has the smallest peak at the correlation value of 0, with ∼100,000

correlations, and also has small perturbations in the distribution of the correlation

values. This is a direct impact of the background subtraction method used in the

DCHIP MM algorithm and the requirement that at least 10 observations must be in

common between a the pair of genes/probes being measured.

The distributions of the Pearson correlation values, derived from each of the six

preprocessing methods, are seen in Figure 3.11(a). Recall that Pearson correlation
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(a)

(b)

(c)

Figure 3.5: Distribution of the RMA preprocessed data with (a) Pearson, Spearman,
and Kendall correlations (b) Euclidean distance, and (c) Mutual Information.
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(a)

(b)

(c)

Figure 3.6: Distribution of the MAS 5.0 preprocessed data with (a) Pearson,
Spearman, and Kendall correlations (b) Euclidean distance, and (c) Mutual
Information.
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(a)

(b)

(c)

Figure 3.7: Distribution of the GCRMA preprocessed data with (a) Pearson,
Spearman, and Kendall correlations (b) Euclidean distance, and (c) Mutual
Information.
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(a)

(b)

(c)

Figure 3.8: Distribution of the GCRMA MM preprocessed data with (a)
Pearson, Spearman, and Kendall correlations (b) Euclidean distance, and (c) Mutual
Information.
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(a)

(b)

(c)

Figure 3.9: Distribution of the DCHIP preprocessed data with (a) Pearson,
Spearman, and Kendall correlations (b) Euclidean distance, and (c) Mutual
Information.
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(a)

(b)

(c)

Figure 3.10: Distribution of the DCHIP MM preprocessed data with (a)
Pearson, Spearman, and Kendall correlations (b) Euclidean distance, and (c) Mutual
Information.
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values close to 0 signify a pair of uncorrelated genes, and that it is expected to be

normally distributed around 0. The density of the graphs produced using threshold

values between 0.75 and 0.99 are seen in Figure 3.11(b). Recall that the density of a

graph is defined as

D = 2|E|
|V |(|V |−1)

where 0 ≤ D ≤ 1. Starting with the correlation threshold of 0.99 and lowering the

threshold by 0.01 at each interval, the density tends to increase as the threshold

decreases. A contradiction to this occurs at the highest thresholds where the graph

consists of only a few vertices and edges, thus a spike is seen at the far right of the

plot. After the threshold is lowered and more vertices are included in the graph,

the density of the graph then follows the pattern mentioned above. Table 3.4 lists a

sample of the number of vertices, number of edges and the density for each of the 26

threshold values from the RMA preprocessed data. Similar results for the remaining

five similarity metrics are presented in Figures 3.12 to 3.15.

THRESHOLD LEVEL 0.75 0.80 0.85 0.90 0.95 0.99

Number of Vertices 9308 9010 7858 5251 2298 202

Number of Edges 1628048 973129 507392 202317 38648 259

Density 0.075 0.048 0.033 0.029 0.029 0.026

Table 3.4: Graphs were created from data that were preprocessed using the RMA
algorithm and the similarity measures were generated using Pearson correlations.
Twenty-six different threshold levels [0.75,0.99] were used to generate 26 different
graphs. Graph metrics listed above were extracted from 6 of the 26 graphs.

3.5 Multiple testing correction

The values produced by the similarity metrics mentioned above can be submitted to

a significance test. The significance level, denoted by α, is used to determine if the
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Figure 3.11: Pearson correlation values generated using the six different
preprocessing methods RMA, MAS 5.0, GCRMA, GCRMA MM, DCHIP, DCHIP
MM.
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Figure 3.12: Spearman correlation values generated using the six different
preprocessing methods RMA, MAS 5.0, GCRMA, GCRMA MM, DCHIP, DCHIP
MM.
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Figure 3.13: Kendall correlation values generated using the six different
preprocessing methods RMA, MAS 5.0, GCRMA, GCRMA MM, DCHIP, DCHIP
MM.
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Figure 3.14: Euclidean distance values generated using the six different
preprocessing methods RMA, MAS 5.0, GCRMA, GCRMA MM, DCHIP, DCHIP
MM.
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(a)

(b)

Figure 3.15: Mutual information values generated using the six different
preprocessing methods RMA, MAS 5.0, GCRMA, GCRMA MM, DCHIP, DCHIP
MM.
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null hypothesis, H0 is accepted or rejected. The p-value of a test is defined to be

the probability of observing the data at least as extreme as that observed, given that

the null hypothesis is true. If a p-value is lower than α, then H0 is rejected and the

alternative, Ha is accepted. In other words, the p-value is a metric used to determine

whether or not an observation occurred by chance. The levels of α are frequently set

to 0.1, 0.05, 0.01, or 0.001. While the levels of α are arbitrary, α = 0.05 is generally

accepted as the de facto standard. The level of α is sometimes referred to as the

minimum false positive rate, as it is the rate that false positives are expected to

occur. An example of the false positive rate would be testing differential expression

between 20,000 genes. Given α = 0.05, then it is expected that 5%, or 1,000 genes,

will be false positives. That is they are, in fact, not differentially expressed in reality,

but given their p-values, they are classified as being differentially expressed. An

equation for the false positive rate is given in Equation 3.6 [64].

false positive rate ≈
number of false positives

number of true null tests
(3.6)

The Student’s t-test is one test of significance that given a Pearson correlation

value, produces a p-value based on the degrees of freedom. Applying the Student’s

t-test, presented in Equation 3.7, to microarray analysis relies on the assumption

that the correlations generated by the microarray data is normally distributed. If

that is not the case, then another method for generating p-values is permutation

testing. A permutation test is a test of significance that produces the distribution

of the test statistic by permuting the labels of the observed data and generating all

possible values for said test statistic. This distribution is then used to compare the

observed test statistic against the α level to determine significance. Permutation

tests can be used for any test statistic, but they are generally used only when the

distribution is invalid or unknown. A drawback to using permutation tests is they

are computationally expensive.
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t =
X1 − Y 1

Sx1
y1 ∗

√

2
n

(3.7)

The question of significance must also take into account multiple testing. Methods

for correcting multiple tests include Bonferroni and FDR, as discussed in [65]. The

formula for Bonferroni was presented in Equation 1.1 and is, computationally, the

easiest method to generate an adjusted p-value. However, the tradeoff is that

Bonferroni is typically too conservative in its correction method, reducing both the

number of false positives and true discoveries. FDR, presented in Equation 3.8, is

another popular method for multiple testing correction in microarray analysis [66].

FDR introduces a method to control the number of false positives by setting an

acceptable cutoff level, typically 5%, that is restricted only to the tests deemed

significant based on their p-values.

false discovery rate ≈
number of false positives

number of significant tests
(3.8)

It was mentioned previously that p-values are generated based on the null

distribution that is known, such as the t distribution when the data is normal [67],

or the null distribution is generated using permutation tests. The computation of

p-values relies solely on the distribution and is therefore easy to compute. FDR,

however, is not dependent on the null distribution, and the computations are more

complex. Storey showed in [64] that the q-values produced by FDR can be successfully

computed from the distribution of all the p-values at once, or computed directly from

the original data. Q-values are analogous to p-values in the sense that they are the

threshold used to define significance for a test. Like p-values, typical q-value levels

are 0.05 or 0.01. An example of the false discovery rate would be identifying a set

of 1,000 genes to be differentially expressed. Using a q-value threshold of 0.05, 50 of

these discovered genes are expected to be false positive. Figure 3.16 illustrates the

relationship between p-values and q-values.
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(a)

(b)

Figure 3.16: The QVALUE package, along with the Hedenfalk dataset [68], was used
to generate an example of the differences in the set of genes identified as significant
using only the (a)pvalue and (b) qvalue.
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3.6 Threshold Selection

The third and final category in creating a graph is threshold selection. Up to

this point, a complete graph can be generated using any combination of the above

methods. To review the graph creation process, the vertices of the graph are the genes

extracted from the data and all pairs of vertices have a weighted edge, representing

the level of interaction, connecting them. The weight of the edge comes directly

from the combination of the preprocessing algorithm and similarity metric. In order

to reduce the graph, retaining only those genes and interactions that are putatively

biologically significant, a threshold must be applied to the graph. Many threshold

selection algorithms have been proposed and studied [37, 38]. These algorithms range

from simple statistical oriented thresholds, such as p-values and q-values, to graph

based properties, such as the number of maximal cliques in a graph. This dissertation

will incorporate some of the proposed threshold selection methods in [37] to illustrate

the effects of threshold selection on the resulting graph. These methods include:

• Significant p-values - Retain edges such that p− value <= threshold, where

threshold ∈ {0.1, 0.05, 0.01}.

• Significant q-values - Retain edges such that q− value <= threshold, where

threshold ∈ {0.1, 0.05, 0.01}.

• Maximal Clique-2 - Set threshold to the value at which the number of

maximal cliques double from the previous level, and keep any edge with a value

greater than the threshold.

• Maximal Clique-3 - Set threshold to the value at which the number of

maximal cliques triple from the previous level, and keep any edge with a value

greater than the threshold.

• Top 1% - Keep edges with similarity metric value in the top 1% of all possible

values.
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• Top 0.1% - Keep edges with similarity metric value in the top 0.1% of all

possible values.

The threshold selection methods were applied to the same Yeast data, using each

possible combination of preprocessing method and similarity metric. Recall that

there are six different preprocessing methods, five different similarity metrics, and

six different threshold selection methods. All possible combinations leads to the

generation of 180 graphs. The respective threshold levels for each of these 180 graphs

are listed in Tables 3.5 to 3.9. P-values and q-values were both set to 0.05. Though the

selection of 0.05 is an arbitrary value, it is widely accepted in practice as the de facto

standard. The maximal-clique 2 and maximal-clique 3 thresholds were selected as

described in [37], and the thresholds for the top 1% and top 0.1% were selected using

the absolute value of all correlations and the nearest threshold value that contained

the 99th percentile of the correlations was chosen.

The threshold values produced by a given algorithm is heavily dependent on the

preprocessing method and the similarity metric used on the data. Although similar

threshold values are generated, see Maximal-Clique 2 in Table 3.5, the graphs that

are generated from these thresholds vary widely. It is important to note that even if

the same threshold values were produced, that the graphs generated would still differ

in metrics such as number of vertices, number of edges edges, density, etc. This is

due to the fact that the similarity metric and/or preprocessing step was different.
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Pearson Correlation

RMA MAS 5.0 GCRMA GCRMA MM DCHIP DCHIP MM

p!value 0.05 0.05 0.05 0.05 0.05 0.05

q!value 0.05 0.05 0.05 0.05 0.05 0.05

maximal 

clique!2
0.95 0.94 0.95 0.95 0.92 0.9

maximal 
0 94 0 93 0 93 0 94 0 9 0 89

clique!3
0.94 0.93 0.93 0.94 0.9 0.89

top 1% 0.91 0.89 0.91 0.91 0.91 0.9

top 0.1% 0.95 0.94 0.94 0.95 0.95 0.94

Table 3.5: Pearson correlation threshold levels generated using the five different
threshold selection methods p-value, q-value, maximal-clique 2, maximal-clique 3,
top 1%, and top 0.1%

Spearman Correlation

RMA MAS 5.0 GCRMA GCRMA MM DCHIP DCHIP MM

p!value 0.05 0.05 0.05 0.05 0.05 0.05

q!value 0.05 0.05 0.05 0.05 0.05 0.05

maximal 

clique!2
0.88 0.87 0.89 0.88 0.91 0.9

maximal 
0 87 0 86 0 88 0 86 0 89 0 88

clique!3
0.87 0.86 0.88 0.86 0.89 0.88

top 1% 0.87 0.85 0.87 0.84 0.88 0.89

top 0.1% 0.92 0.91 0.93 0.91 0.93 0.93

Table 3.6: Spearman rank threshold levels generated using the five different
threshold selection methods p-value, q-value, maximal-clique 2, maximal-clique 3,
top 1%, and top 0.1%
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Kendall Correlation

RMA MAS 5.0 GCRMA GCRMA MM DCHIP DCHIP MM

p!value 0.05 0.05 0.05 0.05 0.05 0.05

q!value 0.05 0.05 0.05 0.05 0.05 0.05

maximal 

clique!2
0.79 0.77 0.76 0.76 0.76 0.75

maximal 
0 76 0 75 0 74 0 75 0 74 0 74

clique!3
0.76 0.75 0.74 0.75 0.74 0.74

top 1% 0.81 0.79 0.81 0.75 0.82 0.82

top 0.1% 0.88 0.86 0.88 0.81 0.88 0.89

Table 3.7: Kendall tau threshold levels generated using the five different threshold
selection methods p-value, q-value, maximal-clique 2, maximal-clique 3, top 1%, and
top 0.1%

Euclidean Distance

RMA MAS 5.0 GCRMA GCRMA MM DCHIP DCHIP MM

p!value 0.05 0.05 0.05 0.05 0.05 0.05

q!value 0.05 0.05 0.05 0.05 0.05 0.05

maximal 

clique!2
0.7 1.2 0.7 0.7 0.4 0.4

maximal 
0 9 1 4 0 8 0 8 0 5 0 6

clique!3
0.9 1.4 0.8 0.8 0.5 0.6

top 1% 1.04 0.58 0.97 1.02 0.58 1.38

top 0.1% 0.72 0.35 0.61 0.65 0.35 0.86

Table 3.8: Euclidean distance threshold levels generated using the five different
threshold selection methods p-value, q-value, maximal-clique 2, maximal-clique 3,
top 1%, and top 0.1%

56



Mutual Information

RMA MAS 5.0 GCRMA GCRMA MM DCHIP DCHIP MM

p!value 0.05 0.05 0.05 0.05 0.05 0.05

q!value 0.05 0.05 0.05 0.05 0.05 0.05

maximal 

clique!2
1.65 1.65 1.65 1.65 1.65 1.65

maximal 
1 7 1 7 1 7 1 7 1 7 1 7

clique!3
1.7 1.7 1.7 1.7 1.7 1.7

top 1% 1.65 1.65 1.65 1.65 1.65 1.65

top 0.1% 1.75 1.75 1.75 1.75 1.8 1.8

Table 3.9: Mutual information threshold levels generated using the five different
threshold selection methods p-value, q-value, maximal-clique 2, maximal-clique 3,
top 1%, and top 0.1%
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3.7 Graph Creation and Results

Using all possible combinations of the algorithms in the three steps to create a

graph, a total of 180 different graphs were generated from the Yeast data. The

graph properties such as number of vertices, number of edges, density, and number of

connected components are used to discuss the effectiveness of each threshold selection

method. The 30 graphs derived from each of the different threshold selection methods

are presented in Table 3.10 to 3.15.

Restricting focus to the Pearson correlation column in Table 3.12, it can be

observed that the graphs produced vary widely with the number of vertices and

edges ranging from [2686,3038] and [56132,64112], respectively. The densities of these

graphs range from [0.0139,0.016], while the number of connected components fall in

the range of [127, 137].

Comparing the size of the resulting graphs, the p-value threshold selection method

produced the lowest thresholds and thus generated graphs with the largest number of

vertices and edges, see Table 3.10. Although the graphs created using this threshold

levels are statistically significant networks, the graphs are typically very large and

true biological interactions are lost due to the noise in this data. Similar to the p-

value, the q-value threshold selection method method tries to reduce the number of

false-discoveries, however, the graphs generated using this technique also produces

very large, dense graphs, see Table 3.11. The methods that select the top 1% or

top 0.1% of all similarity values tends to produce high threshold values, but lack the

ability to adjust threshold levels in response to different different edge distributions

in the graph, see [38]. The Maximal-Clique based techniques produce thresholds

that generate graphs based not only on statistically significant edges, but on inherent

graph structures in the data.

The preprocessing methods, similarity metrics, and threshold selection tools all

have an effect in the final outcome of the generation of a graph. It is not the case

that a single combination of the three metrics mentioned above will always give the
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best results. It is advisable that all possible combinations of the three different steps

should be attempted whenever possible. This allows the end user to determine which

combination of the methods will produce the graph best suited for their analysis. As

it applies to this particular data, one advisable metric combination would be RMA

normalization, Pearson correlation, and Maximal clique-2 threshold selection. On

average, this metric combination ranks as one of the best when taking into account

graph properties such as size and density.

������

���	

���
���

��

������

����
��

��

������

�������

��

������

���������

��

������

�������

���
�����

���

���������	
��� ���������	
��� ���������	
��� ���������	
��� ���������	
���

�����	���
��� �����	������� �����	������� �����	�
����� �����	�������

��������	����
� ��������	������ ��������	����
 ��������	�����
 ��������	����
�

�����������	� �����������	� �����������	� �����������	� �����������	�

����	��

���������	
��� ���������	
��� ���������	
��� ���������	
��� ���������	
���

�����	��
���� �����	���
��� �����	������� �����	������� �����	����
��

��������	������ ��������	������ ��������	���
�� ��������	������ ��������	������

�����������	� �����������	� �����������	� �����������	� �����������	�

�����

���������	
��� ���������	
��� ���������	
��� ���������	
��� ���������	
���

�����	������� �����	�
����� �����	������� �����	���
��� �����	�������
�����

�����	������� �����	�
����� �����	������� �����	���
��� �����	�������

��������	����� ��������	������ ��������	���
�� ��������	���
� ��������	������

�����������	� �����������	� �����������	� �����������	� �����������	�

������

��

���������	
��� ���������	
��� ���������	
��� ���������	
��� ���������	
���

�����	������� �����	�
����� �����	�����
� �����	����
�� �����	�������

��������	������ ��������	����
 ��������	�����
 ��������	������ ��������	�����


�����������	� �����������	� �����������	� �����������	� �����������	�

�� ��

���������	
��� ���������	
��� ���������	
��� ���������	
��� ���������	
���

�����	������� �����	���
��� �����	������� �����	������� �����	�������

��������	���
�� ��������	����� ��������	����� ��������	������ ��������	�����

�����������	� �����������	� �����������	� �����������	� �����������	�

�� ���

��

���������	
��� ���������	
��� ���������	
��� ���������	
��� ���������	
���

�����	������� �����	�
��
�� �����	������� �����	������� �����	�������

��������	���
�� ��������	����
 ��������	���
�
 ��������	������ ��������	���
��

�����������	� �����������	� �����������	� �����������	� �����������	�

Table 3.10: A p-value of 0.05 was used to threshold the graphs using all combinations
of preprocessing methods and similarity metrics.
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Table 3.11: A q-value of 0.05 was used to threshold the graphs using all combinations
of preprocessing methods and similarity metrics.
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Table 3.12: The threshold value at which the number of maximal cliques doubled
was used to create the graphs using all combinations of preprocessing methods and
similarity metrics.
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Table 3.13: The threshold value at which the number of maximal cliques tripled
was used to create the graphs using all combinations of preprocessing methods and
similarity metrics.
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Table 3.14: The top 1% of all correlation values was used to create the graphs using
all combinations of preprocessing methods and similarity metrics.
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Table 3.15: The top 0.1% of all correlation values was used to create the graphs
using all combinations of preprocessing methods and similarity metrics.
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Chapter 4

Clique-centric Analysis of

Biological Data

4.1 Introduction

Clique-centric based algorithms are an ideal fit for analyzing high-throughput

microarray data. Microarrays can be used to measure a plethora of different biological

data, such as the typical -omic data (transcriptomic, genomic, proteomic). The

previous chapter detailed how the microarray data was transformed from raw data

into an unweighted graph. In total, 180 different graphs were created and examined

using the various preprocessing, correlation, and thresholding methods. The aim of

this chapter is to present graph tools used in the extraction of putative gene networks

from microarray data.

To simplify the analysis, the six graphs generated in the previous chapter using

Pearson correlation and Maximal Clique-2 thresholding will be examined in detail.

It is important to note, however, that the following tools are applicable to any of the

graphs previously generated. The tools are flexible enough to account for noise that

is inherent in the data. They are also able to be tuned to be more conservative in

order to reduce the number of false positives in the data.
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4.2 Graph tools

Chapter 2 introduced the different decision and optimization versions of the Vertex

Cover and Clique problems. These tools rely on the fact that exact solutions to the

optimization versions of these problems can be generated in an efficient and timely

manner. Maximum Clique Finder (MCF ) is used to extract maximum cliques from

graphs and is described in detail in [49]. Clique Enumerator, described in [6] is used

to generate all maximal cliques from the graph. While there may be relatively few

maximum cliques in a graph, there are typically millions, billions, or even trillions of

maximal cliques in the same graph [38].

4.2.1 Maximum Clique

Extracting exact solutions to the the maximum clique problem is a daunting task,

however, using MCF to exploit FPT-like methodologies makes this task feasible. The

result of using MCF is a collection of genes, or gene products, that all co-occur under

the same conditions. This putative gene network has a density of 1, that is, all genes

have a high level of interaction with every other gene in the clique. The maximum

clique sizes for each of the six graphs were generated and the maximum clique profile

is examined in Figure 4.1. The same microarray data, using different preprocessing

and correlation metrics, produced a range of maximum clique sizes from 61 to 88.

Of the maximum cliques that were generated, there were 23 core genes that were

members of the maximum cliques generated for each graph.

4.2.2 Maximum Clique Enumeration

The previous analysis generated the size of the maximum clique for each of the graphs

and a single instance of a maximum clique. The size of the maximum clique does

not provide any information on the number of maximum cliques. In fact, there are

many instances where there are numerous maximum cliques, often overlapping. It
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Figure 4.1: The maximum clique size for each of the graphs range from 61 to 88.
The different normalization methods used to generate these graphs can have a large
impact on the final results of the analysis.

has been observed that most, if not all, maximum cliques in biological data overlap,

with at least one member belonging to all maximum cliques [55]. The Maximum

Clique Enumeration problem asks to generate all maximum cliques in a simple, finite

graph. Using the same graphs as above, all maximum cliques were generated. Figure

4.6 illustrates the the number of maximum cliques for each of the graphs.

One of the many reasons it is desirable to generate all maximum cliques in a

graph is to determine if there are many disjoint maximum cliques that have different

responses to experimental conditions, or, due to the pleotropic nature of genes, a few

key genes are involved in a number of different responses in different putative gene

networks. The percentage of the maximum clique overlap is listed in Table 4.1

4.2.3 Maximal Clique Enumeration

Recall that a maximum clique is just a special version of a maximal clique. Maximal

cliques are the set of genes that work together in response to a stimuli, but unlike
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Figure 4.2: The number of maximum cliques range from 1 to 27. Note the lack of
correlation between maximum clique size and the number of maximum cliques.

Normalization

Maximum 

Clique 

Size

Number of

Maximum

Cliques

Maximum

Overlap

Minimum 

Overlap

Average 

Overlap

RMA 73 27 98.63% 90.41% 96.00%

GCRMA 80 8 98.75% 96.25% 97.86%

GCRMA MM 88 4 98.86% 96.59% 98.11%

DCHIP 78 1 N/A N/A N/ADCHIP 78 1 N/A N/A N/A

DCHIP MM 85 18 98.82% 94.12% 97.29%

MAS 5.0 61 3 98.36% 96.72% 97.81%

Table 4.1: Most maximum cliques have a high level of overlap (>90%). Given the
amount of overlap between maximum cliques in a single graph, it is representative of
a large number of genes working together.

maximum clique, they are not required to be the largest response network in the

graph. Maximal cliques can be thought of as a local maxima, while maximum cliques

can be thought of a global maxima. Whereas the maximum cliques for the six graphs

ranged in size of 61 to 88, the size of maximal cliques range from size 3 to 88. The
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number of maximum cliques produced from graphs above were also relatively small,

ranging from 1 to 27. The number of maximal cliques in the same graphs range from

357,444 to 1,399,801. The maximal clique profile for each of the graphs can be seen

in Figure 4.3(a) to 4.3(f).

4.2.4 Paraclique

If any two cliques overlap, they can overlap at a single vertex to all but two vertices

overlapping, as seen in Figure 4.4. The biological responses associated with each of

these putative networks may or may not regulate the same pathways. However, in the

case where two cliques are almost identical, it would be useful to be able to collapse

these two networks into a single network for analysis. Missing edges in a graph could

be the result of inherent noise in the data, missing data, corrupt data, or could simply

be the result of the parameter selection at each step of the analysis. A single missing

edge could be the difference between a larger maximum clique of size k, or multiple

maximum cliques of size k − 1, as seen in Figure 4.5. In order to correct for these

anomalies, a clique-centric tool named paraclique was introduced in [69].

Paraclique relaxes the strict requirements of clique, which states that all possible

edges must be present between all vertices, by allowing for vertices with missing edges

to supplement the members of the original clique. The paraclique algorithm takes as

input a simple, finite graph and generates a maximum clique. It can also be tuned to

produced either overlapping or non-overlapping clusters. Overlapping clusters allow

for a single gene to be in multiple clusters, while non-overlapping clusters require that

a gene be in one and only one cluster. Any vertex in the original graph, but not in the

maximum clique, is defined to be a candidate vertex. The list of candidate vertices is

examined, one vertex at a time. The edge structure between a candidate vertex and

all vertices in the maximum clique is examined. The glom factor, g, of a paraclique is

defined as the allowable number of missing edges between the candidate vertex and

all the vertices in the maximum clique. If a candidate vertex is missing ≤ g edges,

67



60000

RMA

40000

50000

60000

RMA

30000

40000

50000

60000

RMA

10000

20000

30000

40000

50000

60000

RMA

0

10000

20000

30000

40000

50000

60000

3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72

RMA

0

10000

20000

30000

40000

50000

60000

3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72

RMA

0

10000

20000

30000

40000

50000

60000

3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72

RMA

(a)

80000

GCRMA

60000

70000

80000

GCRMA

30000

40000

50000

60000

70000

80000

GCRMA

10000

20000

30000

40000

50000

60000

70000

80000

GCRMA

0

10000

20000

30000

40000

50000

60000

70000

80000

3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78

GCRMA

0

10000

20000

30000

40000

50000

60000

70000

80000

3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78

GCRMA

0

10000

20000

30000

40000

50000

60000

70000

80000

3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78

GCRMA

(b)

Figure 4.3: The number of maximal cliques in a graph can vary widely. The graphs
that were generated using different normalization methods produced have a wide
range of maximal cliques ranging from 357,444 to 1,399,801.
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Figure 4.3: Continued.

69



25000

DCHIP MM

20000

25000

DCHIP MM

10000

15000

20000

25000

DCHIP MM

5000

10000

15000

20000

25000

DCHIP MM

0

5000

10000

15000

20000

25000

3 6 9 12151821242730333639424548515457606366697275788184

DCHIP MM

0

5000

10000

15000

20000

25000

3 6 9 12151821242730333639424548515457606366697275788184

DCHIP MM

0

5000

10000

15000

20000

25000

3 6 9 12151821242730333639424548515457606366697275788184

DCHIP MM

(e)

80000

MAS 5.0

60000

70000

80000

MAS 5.0

30000

40000

50000

60000

70000

80000

MAS 5.0

10000

20000

30000

40000

50000

60000

70000

80000

MAS 5.0

0

10000

20000

30000

40000

50000

60000

70000

80000

3 5 7 9 1113151719212325272931333537394143454749515355575961

MAS 5.0

0

10000

20000

30000

40000

50000

60000

70000

80000

3 5 7 9 1113151719212325272931333537394143454749515355575961

MAS 5.0

0

10000

20000

30000

40000

50000

60000

70000

80000

3 5 7 9 1113151719212325272931333537394143454749515355575961

MAS 5.0

(f)

Figure 4.3: Continued.
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A B

CF

E D

A B
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E D

Figure 4.4: Two maximum cliques of size 5 are shown, one in yellow on the left and
one in blue on the right. Note that these two maximum cliques overlap at 4 of the 5
vertices.

then it is included in paraclique result. Figure 4.6 illustrates the original clique and

the resulting paraclique.

The glom factor parameter is typically set to a low value, such as 1, allowing

for a minimal number of edges to be missing in our final cluster. However, in some

instances it is ideal to to increase this value, or to even use a glom factor proportional

to the size of the maximum clique, as proposed in [70]. When used in this manner,

the number of missing edges can grow or shrink dynamically depending on the size of

the initial clique. Selecting a glom factor that is too large will result in an exorbitant

(a) (b)

Figure 4.5: The existence, or non-existence, of a single edge can have a dramatic
effect on the size and number of maximum cliques in a graph. There exists a single
maximum clique of size 5 in (a). However, removal of a single edge in the graph
results in 4 maximum cliques, all of size 4.
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(a) (b)(a) (b)

Figure 4.6: A maximum clique of size 5 is shown in part (a). After the maximum
clique is generated, the remaining candidate vertices are processed to create a
paraclique. The black and green vertices represent candidate vertices, with the
solid yellow and blue lines representing edges between the candidate vertices and
the vertices of the original clique. Using a glom factor of 1, a paraclique of size 6 is
generated, with all the red vertices and the single green vertex as members (b). Only
the green vertex was missing at most 1 edge (represented by the dashed red line).

amount of vertices being added to the original cluster and will introduce false positives

into the cluster. Another method used to select the value of the glom factor is to

determine the lowest density for the paraclique at which the results would still be

considered acceptable. For instance, given that the initial clique has a density of 1,

then, depending on the application, a cluster with a density of 0.90 might also be

considered an acceptable. In this case, the glom factor would be derived by applying

Equation 4.1,

g = ⌈D ∗ (|Ec|+ |Vc|)⌉ (4.1)

where D is the required density, Ec are the edges in original clique, and Vc are the

vertices in original clique. Regardless of the glom factor selection method, a glom

factor must have a value of at least 1, or no edges will ever be added to the cluster

to supplement the original clique results. Also, it is advisable to never select a glom
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factor larger than the number of vertices in the original clique or the paraclique

generated will simply be the original graph.

In addition to the glom factor, the initial clique that is given as input to the

paraclique algorithm is crucial to the number and types of paracliques generated.

This initial clique will from this point forward be referred to as the seed clique.

One of the parameters for paraclique is the minimum size of the seed clique. A

simple method of generating the seed clique is to extract the first maximum clique

encountered in a graph. While this is technically a valid starting point, it is not

always the best option, especially when the paraclique algorithm is tuned to produce

non-overlapping clusters. Given that all maximum cliques have a density of 1, one

way to rank all maximum cliques is to use the highest average correlation, HAC, for

each clique. The HAC is defined to be the average correlation value for all edges in

a clique. The Maximum Clique Enumeration algorithm in [55] is used to generate

all maximum cliques, then a simple calculation ranks the maximum cliques by their

respective HAC value. The maximum clique with the highest rank is then used as

the seed clique. The largest HAC values for each of the test graphs are listed in Table

4.7

M i Cli HAC
Normalization

Maximum Clique 

Size

HAC 

Values

RMA 73 0.976

GCRMA 80 0.976

GCRMA MM 88 0.978

DCHIP 78 0.977

DCHIP MM 85 0.982

MAS 5.0 61 0.969

Figure 4.7: The maximum cliques are ranked in order by their HAC value, and the
maximum clique with the largest HAC value is selected to be the seed clique for the
paraclique algorithm. The HAC value is just one way to rank the importance of the
seed clique with respect to one another.

73



Although this is an improvement on the method of assigning the first maximum

clique as the seed clique, it does not guarantee that the paraclique produced has the

highest density. Therefore, a more detailed analysis is needed that will produce the

best paracliques at each step with respect to density. First, all maximum cliques

must be generated. Then, in parallel, all maximum cliques are used as seed cliques,

and the first round of paracliques are generated. Before advancing to the second

iteration of the paraclique algorithm, the density of the resulting paracliques are

examined, and only the paraclique with the highest density is retained. At this point

all other paraclique algorithms are stopped, and the remaining algorithm proceeds

to the next iteration. The process of generating all maximum cliques and running

parallel instances of the paraclique algorithm with these new maximum cliques as the

seed cliques is repeated until the paraclique algorithm completes. The algorithm stops

when no more paracliques can be generated with a size greater than a user-defined

minimum paraclique size parameter. Note that this analysis isn’t restricted to using

only the HAC value and density to rank the seed cliques and the paracliques, but any

combination of graph metrics could be used.

Paraclique results are generated for the graphs above using a glom factor of 1,

the maximum clique with the largest HAC value as the seed clique, keeping the best

paraclique, in terms of density at each step, and tuned to produce non-overlapping

paracliques. The paraclique algorithm is stopped after no seed cliques of size 10 exists

or no paracliques of size 10 or greater can be generated. The results are in Figure

4.9. With respect to the largest paraclique produced for each graph, the densities of

these paracliques ranged from 0.99 to 1, resulting from the addition of 0 to 4 vertices.

Biological graphs have been observed to usually contain a single large connected

component [55], and many smaller disconnected components. It is common to find

a few large non-overlapping paracliques and a vast majority of the non-overlapping

paracliques to be of relatively smaller size.
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4.3 Anchored Analysis

All of the aforementioned clique-centric algorithms can be tuned to include prior

knowledge of gene interactions. These algorithms take as input a simple, finite

graph along with a set of genes of interest. Using the genes in this set, the induced

neighborhoods of these genes of interest are extracted. This new graph is said to

have anchors, the genes of interest, and to be anchored at these genes. This type of

anchored analysis is useful when genes with known interactions to a stimuli are not

included in maximum cliques in the graph and a more in-depth analysis is needed.

Due to the nature of the anchored analysis and the type of microarray data used in the

current test graphs, results of applying an anchored analysis to a different biological

dataset is presented later in this chapter.

Normalization
Paraclique

Normalization
Density

RMA 0.9979

GCRMA 0.9991

GCRMA MM 0.9992

DCHIP 1

DCHIP MM 0.9989

MAS 5.0 0.9994

Figure 4.8: Paraclique can use the results of a single iteration to improve the results
for the rest of the analysis. For instance, the RMA graph has 27 different maximum
cliques. 27 parallel instances of paraclique are initiated, each using a different
maximum clique as a seed clique, and the resulting paraclique with the highest density
is extracted and this instance of paraclique continues while the remaining 26 instances
are killed. The densities of the selected paracliques for each graph are reported.
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Figure 4.9: Paraclique typically generates few large, dense clusters, and many
smaller, less dense, clusters. The largest paracliques for each graph are illustrated on
the right hand side of the graph. Note that there are numerous smaller paracliques
with size 15 to 35.

4.3.1 Anchored Maximum Clique

An anchored maximum clique is defined to be the largest clique in the graph which

all anchors are members. Depending on the anchors in question, the graph being

analyzed may require its parameters be adjusted to include all of the anchors, namely

the threshold must be lowered. For example, the thresholds selected for the test

graphs ranged from 0.94 to 0.96. It is feasible that one of the anchors would not have

a single correlation value above 0.94, or it is not correlated to all of the other anchors

at the selected threshold. To adjust for this case, the threshold levels would need to

be lowered to the threshold level where all anchors are correlated with one another.

Once the graph contains all edges between all anchors, the maximum clique analysis

is initiated. Note that any resulting maximum clique from this graph is guaranteed

to return a maximum clique with all anchors as members.
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4.3.2 Anchored Maximum Clique Enumeration

The anchored maximum clique enumeration algorithm takes as input the same graph

generated for the anchored maximum clique algorithm. However, instead of simply

computing the size of the largest clique in the graph that contains all of the anchors,

the entire set of maximum cliques that contain all of the anchors are enumerated.

Using a similar approach as the regular maximum clique enumeration, the tools in

[55] are given as input the newly created graph and only maximum cliques that

contain all of the anchors are retained for further analysis.

4.3.3 Anchored Maximal Clique

An anchored maximal clique is defined to be the largest clique that contains all

anchors and is not a subgraph of a larger clique. Like the anchored maximum

clique, the threshold of the graph may need to be readjusted in order to included

all edges between the anchors. Once an appropriate graph is in place, the anchored

maximal clique analysis uses a Bron-Kerbosh [54] based algorithm to generate all

maximal cliques using the anchors as the starting point for the algorithm. Using the

anchors as the starting set guarantees that any maximal cliques generated included

the anchors. The algorithm then examines all possible candidate genes to determine

if any candidate gene be added to increase the current clique. Once the algorithm

reaches the point that no more candidate genes can be added to the current clique,

a maximal clique is produced. The last gene to be added to the maximal clique is

removed and the process is repeated until all possibilities have been exhausted.

4.3.4 Anchored Paraclique

An anchored paraclique is defined to be a dense cluster that contains all of the anchors

and have at most g missing edges between any vertex and any other vertex in the

cluster. Given that the set of anchors have a known interaction, an extra stipulation

is put into place that requires all anchors to have edges to one another, whereas
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in a typical paraclique any edge is allowed to be missing. Similar to the standard

paraclique analysis, an anchored paraclique will have a seed clique as input. This can

be generated using the anchored maximum clique algorithm or using a more advanced

method involving the anchored maximum clique enumeration algorithm to generate

all anchored maximum cliques and selecting the seed clique that produced the best

result, similar to the regular paraclique analysis in the previous chapter.

4.4 Results

Up to this point all of the graph-based analyses have been focused on data generated

from a Yeast dataset. The following analysis is completed on a dataset derived from

Mus musculus, a more complex organism that has approximately 25,000 genes which

is a 4-fold increase over Yeast. Mus musculus is an important organism to researchers

because they are very similar to Homo sapiens. The dataset is publicly available for

download from the GEO website under the series GSE19935 [4]. The dataset consists

both immunophenotype and gene expression data. This dataset was analyzed in the

same manner as the Yeast dataset, however, this dataset was also analyzed using

methods based on the biclique algorithm presented above.

4.4.1 Data Generation∗

A total of 41 BXD strains were immunophenotyped, measuring the proportion of a

variety of cells in the blood including the circulating T cells (%CD3), CD4+ T cells

(%CD4), CD8+ T cells (%CD8), and B cells (%CD79). The log ratio of T cells

to B cells (LN T:B), along with the log ratio of CD4 to CD8 (LN CD4:CD8) cells

were computed. The gene expression data for 38 BXD strains, 34 which were also

immunophenotyped, were measured using the Illumina WG-6 v1.1 Beadchip array.

The gene expression data was normalized using the lumi [71] package in R with the

∗This analysis was previously published in [4]
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variance stabilization and robust spline normalization parameters used. The data

was then filtered to retain only the transcripts that had at least half of the samples

with a detection p-value of 0.25, resulting in a dataset of 2̃0,000 transcripts. These

transcripts were then correlated using Pearson correlation. The histogram of these

coefficients are depicted in Figure 4.10. The resulting graph was thresholded using

a q-value of 0.05. Next, all pairwise Pearson correlation coefficients were computed

between the gene expression data and the immunophenotype data. A bipartite graph

was then generated using the vertices from the gene expression data as one set, and

the immunophenotype measurements as the second set. Edges in this graph were

thresholded with a p-value of 0.001.
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Figure 4.10: The Pearson correlation coefficients were computed pairwise among
the 20,000 transcripts. The data is normally distributed with a slight positive bias,
as is typical with this type of data.

4.4.2 Anchored Maximum Clique

The anchored maximum clique algorithm was used to extract maximum cliques

anchored at Acp1 and Ptprk. These genes were previously identified as quantitative

trait transcripts in [4] The anchored maximum clique analysis used both genes
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independently of each other, resulting in two independently anchored graphs, one

around Acp1 and another around Ptprk. The histogram of the Pearson correlation

coefficients are presented in Figures 4.11 and 4.12, respectively. The anchored

maximum clique algorithm extracted a maximum clique of size 500 when anchored

at Acp1. The correlation coefficients are in the range |r| = [0.515,0.917]. The genes

in this maximum clique were analyzed using GO enrichment and were found to be

involved with cell cycle, cell division, and DNA replication. The anchored maximum

clique algorithm generated a maximum clique of size 297 when anchored at Ptprk.

The correlations in this maximum clique fell in the range |r| = [0.474,0.68]. These

genes were also analyzed using GO enrichment, however no significant GO enrichment

was observed.
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Figure 4.11: The Pearson correlation coefficients were computed pairwise among
the 20,000 transcripts. The data is normally distributed with a slight positive bias,
as is typical with this type of data.
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Figure 4.12: The Pearson correlation coefficients were computed pairwise among
the 20,000 transcripts. The data is normally distributed with a slight positive bias,
as is typical with this type of data.

4.4.3 Biclique

The bipartite graph, described above, was created to identify the relationship between

gene coexpression networks and immune function. Five of the phenotypes were

retained in the biclique analysis including %CD4, %CD8, %CD3, LN T:B, and LN

CD4:CD8. All of the gene expression values described above were also used in the

biclique analysis. The resulting bipartite graph was analyzed using the biclique

algorithm presented previously to generate both the size of the maximum clique

and all maximal cliques. Figure 4.13 shows all maximal bicliques generated. The

maximal clique that interacts with the largest number of immunophenotypes includes

4 immunophenotypes and 14 transcripts. The maximal biclique with the most edges

interacts with only 2 immunophenotypes and 80 transcripts.

4.5 Conclusion

Two analyses of biological data by clique-centric tools were presented. The Yeast

dataset was converted into graphs using the RMA normalization method and
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Figure 4.13: The resulting maximal bicliques are represented using the 5
immunophenotypes and 20,000 transcript expression. Immunophenotypess are listed
in the center of the graph and are symbolized by hexagons. The number of transcripts
in the maximal bicliques are listed in the circles. The white circles represent maximal
bicliques with a single immunophenotype. The gray circles represent the transcripts
that belong to a maximal biclique with more than 1 immunophenotype[4].

processed using Pearson correlation. The resulting graph contained maximum cliques

with sizes ranging from 61 to 88. The number of maximum cliques in these graphs

ranged from 1 to 27. Another clique-centric tool, paraclique, was used to analyze the

different Yeast graphs. This tool corrects for noise inherent in the data and softens the

strict requirements of the clique algorithm. The resulting paracliques ranged in size

from 62 to 90, using a glom factor of 1. The effects of the graph creation parameters,

such as the normalization method and similarity metric, are seen by the size and
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number of maximum cliques in the graphs. This also extends to other clique-like

structures, such as paraclique.

An analysis that included anchor genes and a bipartite graph was also presented.

This analysis used a more complex dataset generated from Mus musculus. The

approach of using anchors in the analysis allows for previous knowledge to supplement

the clique-centric algorithms. The biclique analysis allows for data of different types

to be integrated together and analyzed meaningful network interactions. A network

involving gene expression and immunophenotypes was identified with positive results.

Overall, the use of clique-centric algorithms to analyze biological datasets has been

shown to be feasible and to produce extremely dense clusters. Most of the clique-

centric tools presented above are guaranteed to generate clusters with a density of

1, with a few generating clusters with a density near 1. It is important to note that

very few clustering algorithms can consistently produce clusters with densities in this

range [49].
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Chapter 5

Out-of-Core Methods

A preliminary version of this chapter was first published in 2009 IEEE/ACS

International Conference on Computer Systems and Applications :

G. L. Rogers, C. A. Phillips, J. D. Eblen, A. D. Perkins, F. N. Abu-Khzam

and M. A. Langston. Using Out-of-Core Techniques to Produce Exact Solutions

to the Maximum Clique Problem on Extremely Large Graphs, in 2009 ACS/IEEE

International Conference on Computer Systems and Applications, 2009.

Only minor modifications have been made to the published work. My contribution

to this paper was implementing the out-of-core algorithms, running all of the

experiments, and the majority of the writing and revisions.

5.1 Introduction

New microarray technologies generate an abundant amount of data, which must be

analyzed in a timely manner. The first microarray experiment published in Science

measured only 45 probes, while current microarray chips measure on the order of 50K

probes for genes and millions of probes for SNPs. Given the state of the technology

today, and the prediction of the new technologies on the horizon, changes must be

implemented in the current methodology of analyzing high-throughput microarray

data. One of the changes that must be made is the creation of algorithms that can
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handle extremely large datasets that are too large to store in core memory. With

high-performance computing moving towards a more distributed memory working

environment, algorithms that once ran on large monolithic memory machines must

be rewritten to exploit the new memory hierarchy. This chapter reviews algorithms

that builds upon the current analysis of biological data using clique-centric tools and

will examine some of the pitfalls of analyzing large datasets.

5.2 Motivation

As newer technologies produce cleaner and more accurate data, the size of data

produced increases. The type and amount of biological data is growing at such a rate

that the methods to analyze and store the data is becoming more important everyday.

Current microarray technologies measure around 50K probes for gene expression data,

and approximately 2 million probes for SNP data. These datasets measure anywhere

from a few hundred megabytes (MB) to a few gigabytes (GB) in size. However,

new technologies, such as Next Generation Sequencing, produce datasets that are

measured in terabytes (TB).

The concern with analyzing this amount of data doesn’t only effect the time it

takes to process the data, but the lack of ability for current algorithms to handle

this much data. Even if the algorithms were designed to handle these datasets, the

average computer system isn’t equipped with the proper hardware for this type of

analysis. With respect to the aforementioned graph tools, the amount of memory

required to store and analyze these datasets grows polynomially, since each gene-gene

pair must be correlated. Figure 5.1 illustrates the amount of correlations required for

varying number of probes on microarrays.

It is easy to see that with this type of growth in the size of raw data being

produced, that a new approach is necessary to analyze the vast amount of data.

The hardware requirements are examined in section 5.3. The out-of-core algorithm
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Figure 5.1: The number of correlations, or edges in a graph, grows polynomially
with respect to the size of the input graph. While current computational power is
sufficient for analyzing graph with approximately 50K probes in a timely fashion, the
advent of newer technologies will produce datasets that so large in size that they will
need special hardware and algorithms in order to be analyzed.

for computing exact solutions to the maximum clique problem is then introduced.

Finally, the results of running these out-of-core algorithms on real data are analyzed.

5.3 Hardware Considerations

As computer hardware changes, so must the algorithms that run on them. Datasets

have increased in size over the years, and one solution to analyzing these larger

datasets was to get access to a larger machine that had more processing power and

more memory, such as the Altix 3700. However, in recent times high-performance

computing has shifted from large monolithic memory machines to a more distributed

memory model. Algorithms that once had access to several TB of shared memory,

now only have access to a few GB of local memory per core. This prohibits the size of

the datasets that algorithms can analyze at a single time point. Compute clusters also

have grown in popularity in labs across the world, and these clusters share the same
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type of distributed memory design as the high-performance computers. Therefore, it is

necessary to redesign algorithms to take into account the new hardware requirements

in this new computing environment.

Memory hierarchy has a large impact on the running time of any algorithm. The

faster data can be transferred to the CPU registers to be processed, the faster the

analysis will be completed. The typical memory hierarchy is depicted in Figure 5.2. It

is generally accepted that as you increase the levels of memory from disk to registers,

that the memory gets more expensive and there is less of it. Therefore it is a necessity

to design algorithms that would take advantage of this concept. However, cases do

arise where the data is too large to fit into core memory, therefore out-of-core memory

algorithms must be implemented to analyze the data.

CPUCPU

Cache 

(L1,L2,L3)

Main Memory 

(RAM)

Hard Drive (Disk)Hard Drive (Disk)

Figure 5.2: Memory speed is typically inverse with the amount of memory available.
The larger, slower disk is an inexpensive means of storing data long term, however,
sometimes it is necessary to use this slow memory in order to analyze large datasets.

In addition to the size of memory on machines, other issues to consider would be

the failure of hardware such as disk or network controllers. The question of hardware

failure isn’t if the hardware will fail, but when it will fail. Mean time to failure,

MTTF, is the industry standard as the expected lifespan of a given piece of hardware.

Consumer grade hard drives currently ship with a MTTF between 1,000,000 to

1,500,000 hours, which translates into a failure rate roughly less than 1%. However,

[72] shows that at several computing locations, these failure rates were typically
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between 2 and 4%, and sometimes were as high as 13%. Given that compute nodes

are simply collections of smaller hardware components, it is a statistical certainty

that it will fail sometime, and software should be designed to handle such failures.

These and other hardware issues are considered when implementing the out-of-core

algorithms

5.4 Sampling the Data to Fit in Core Memory

One method to try to analyze the data using existing hardware and software is to

sample the data so it fits in core memory. To test the hypothesis that taking random

samples of the data does not drastically effect the results of the graph analysis, sample

sizes of 3,000, 6,000, and 9,000 genes were taken from the Yeast dataset and compared

against the original dataset of 9,335 genes. All of the graphs were generated by using

the RMA normalization method, Pearson correlation, and the Maximum clique-2

thresholding algorithm. Recall that the original dataset contained a maximum clique

size of 73, and there were 27 different maximum cliques of this size. The resulting

maximum clique sizes, along with the number of maximum cliques of that size, are

listed in Table 5.1. One can conclude that taking samples of the data, even at a very

high sampling rate, has an affect on the structures found within the graph. Therefore,

it is unadvisable to use sampling in the analysis of biological graphs.

5.5 Available Software to Analyze Large Graphs

Software packages Pregel[73] and Pegasus[74] were reviewed to determine if they

met the basic requirements for the analysis presented in this dissertation. Pregel

was developed by Google to be a scalable software platform on which large-scale

graphs can be analyzed. The framework is similar to that found in the Map/Reduce

model, but with a few improvements that help reduce both I/O and internode

communication. While Pregel looks promising for the analysis of large-scale graphs,
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Sample Size
Maximum 

Clique Size

Maximum 

Clique Countq q

3000 48 2

6000 51 92

9000 55 8

9335 73 27

Table 5.1: The maximum clique sizes derived from sampling the data at intervals
3000, 6000, and 9000. Note that both the size and the count of the maximum cliques
are affected by the sampling.

this framework is not well suited for the Maximum clique problem. It is, however,

well suited for analyzing graphs properties such as PageRank, graph connectedness,

and shortest path problems. Pegasus was developed at Carnegie Melon University to

analyze large graphs. This software is build on the open source Map/Reduce software,

Hadoop. Much like Pregel, this software allows the user to analyze large graphs in

an efficient manner, however, the software is limited to a handful of algorithms, none

which are near the complexity of the maximum clique problem. Pegasus provides

methods for extracting the following graph properties: degree structure, PageRank,

random walks with restart, radius, and connected components. A few other software

packages were reviewed, such as GoldenOrb, but they too lacked the necessary tools.

Therefore, it is necessary to implement new algorithms that will generate results for

the graph based analysis presented in this dissertation on large graphs.

5.6 Out-of-Core Maximum Clique Algorithm

Novel algorithms are presented that generate exact solutions to the maximum clique

problem for graphs that are too large to fit within core memory. A combination of in-

core and out-of-core techniques are exploited to dissect these large graphs into smaller
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and more manageable segments. A global solution to the maximum clique problem is

extracted from the set of local solutions generated for each of the smaller segments.

Parallelizing the search for the maximum clique size within these components is

essential to improving the overall run times for these algorithms.

Approximations to the maximum clique problem using out-of-core approaches

have previously been studied. See, for example,[75, 76]. However, given the expense

of generating data, approximations to the maximum clique problem can be poor

substitutes and thus this dissertation focuses entirely on finding exact solutions [77,

78].

The custom software package, MCF [49], is used as the foundation for the proposed

algorithms. MCF takes a simple, finite graph as input and returns the maximum

clique size. MCF uses bit adjacency matrices to store graphs efficiently in core

memory, while keeping the ability to check a multitude of data items, including

the existence of edges between pairs of vertices and common neighbors for two or

more vertices. Figure 5.3 illustrates the advantage of storing graphs as bit matrices

as compared to integer matrices. The MCF is based on algorithms for vertex cover

(VC) derived from previous work as reported in [77]. Preprocessing and branching

serve as the basis for the computational approach used in MCF. To utilize the

MCF software, the graphs are dissected into segments small enough to store in main

memory. Depending on the size of the graph, one of the following cases will apply:

• Case 1. The graph can be stored in main memory as a bit adjacency matrix.

This case is straightforward and can be solved using current tools and existing

hardware.

• Case 2. The graph cannot be stored in main memory as a bit adjacency matrix,

but is sparse enough to be stored as an adjacency list. In this case we use the

edges-in-core (EIC) algorithm, to follow.

• Case 3. The graph is too large to store in main memory even as an adjacency

list, but we can store its vertex list in main memory. Thus the edge list must be
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stored in external memory, where access times are orders of magnitude slower

than main memory. In this case we use the edges-out-of-core (EOC) algorithm,

to follow.

• Case 4. The graph is so large that even its list of vertices will not fit into main

memory. This case is beyond the scope of this dissertation and unlikely to be

encountered in practice.
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Figure 5.3: Storing the graph as a bit matrix not only allows a larger graph to be
stored in core memory at a single time point, but also allows for fast bit operators on
the graph.

The EIC and EOC algorithms take extremely large simple, finite graphs as input

and return the maximum clique size as output. Both algorithms break the graph

into a multitude of smaller segments and solve maximum clique for each segment.

The algorithms use a distributed memory model to parallelize the runs of the MCF

software on each of the smaller segments, independently. Distributed memory systems

are capable of message passing, such as MPI [79, 80], between nodes that have their

own private memory space. The proposed model dictates that messages are sent

between a single node, that is defined as the master node, and each of the other
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nodes, that are defined as worker nodes. MCF currently returns only the size of

the maximum clique found, but can easily be extended to return the elements of the

maximum clique, if so desired.

The master node is responsible for preprocessing the graph, identifying connected

components, and constructing workloads to send to the worker nodes. Given N worker

nodes in the system, each with M bytes of memory, there will be N bins, each capable

of containing a subgraph of the original graph that is less than M bytes in size. Each

bin may contain a mixture of connected components and any number of vertices,

along with their induced neighborhoods, as long as the memory constraints are not

violated. Bin construction techniques differ between the two proposed algorithms,

EIC and EOC, and will be described below.

After the primary invocation of a worker node, an initial request for work is sent

to the master node. Once the master node receives the request for work, a workload

is generated by the master node and sent to the waiting worker node. The worker

node then uses a local instance of MCF to compute the size of the maximum clique

for its workload. The worker node then returns its local solution to the master node,

and then requests more work. The master node processes the entire graph until the

search space is exhausted. Once the entire graph is processed, the master node sends

a broadcast message to all worker nodes to finalize and exit.

Reducing the size of the graph via preprocessing is an essential first step in solving

maximum clique via the proposed algorithms. Both the EIC and the EOC algorithms

preprocess the graph to eliminate vertices that cannot be members of a clique larger

than the current maximum clique size (CMCS). One way to eliminate these vertices is

to remove all vertices that have a degree less than CMCS-1. By default, the CMCS is

initially set at 2, representative of an edge between two vertices, and increases when

a new maximum clique size is returned to the master node. The preprocessing step

is also interleaved [81] at predefined intervals during processing, depending on which

algorithm is used.
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After preprocessing, the next step in both EIC and EOC algorithms is to compute

the connected component structure of the graph. Both algorithms use an array-based

union-find (also known as disjoint set) algorithm with path compression similar to that

described in [82]. While typical union-find implementations employ a tree-based data

structure, this implementation uses an array that is faster and is at least as memory

efficient. The worst-case runtime is O(|E|α(|V |)), and the average-case runtime is

O(|E|).

5.6.1 Fault Tolerance Design

Both algorithms are designed to handle hardware failures that are typical in the

high-performance computing environment. The algorithms are implemented using

a master/worker scheme where there is typically a single master node and multiple

worker nodes. The master node keeps a log of the work assigned to each worker node.

If a worker node becomes unresponsive, the master node simply removes the worker

node from its list of available resources and then resubmits the unfinished work to

another node. However, if the master node was to fail, then all work would be lost.

Therefore, the worker node periodically checkpoints the current state of the anlysis.

The master node can simply restart the analysis at the previous checkpoint in case

of hardware or software failure.

5.6.2 Edge-in-Core Algorithm

The EIC algorith is deployed to solve the maximum clique problem on graphs that

are too large to fit into core memory as a bit adjacency matrix, but is able to be

stored in main memory using an adjacency list. Only a single pass over the external

file is needed to input the entire graph into main memory. Given that the algorithm

can store both the vertex list and the entire set of edges in memory at once, the

EIC algorithm has access to edge information and is able to dissect the graph in an
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efficient and intelligent manner. The basic concept of the EIC algorithm is illustrated

in Figure 5.4 and pseudocode is presented in Algorithm 1.
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Figure 5.4: The EIC algorithm is a master/worker model, where only the master
node needs disk access. The remaining data transfers are done via message passing.

Master Node - Edge-in-Core

The first step for the master node in the EIC algorithm is make an external pass

over the file and read in the graph. The graph should be stored in a memory efficient

data structure, such as an adjacency list. Next the graph undergoes preprocessing.

Preprocessing consists of recursively removing all vertices with degree less than

CMCS-1 or, in the case where CMCS is equal to 2, any vertex that has a degree

of 1. The following step is to identifying the number of connected components. The

connected component structure of the graph must yield one of the two following

results: either all connected components have size at most M, or there is at least one

connected component whose size exceeds M, which will be referred to as the large

components. The former case is straightforward to process. The master node will pack

as many connected components into a workload as possible and send to an available

worker node. Each worker node then invokes MCF to compute the maximum clique

size of the workload and returns the answer to the master node. The solution to
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Input: Graph G = (V,E)
Output: Maximum clique size of G

Master Code
Read Graph G into memory and store as adjacency list
Run Preprocessing
Run Connected Component and Degree Structure
while Unprocessed vertices exist do

foreach Request for work from processor i do
Insert as many connected components (or neighborhoods of vertex r) as
possible.
Eliminate all possible vertices from search space
Send bin to worker node i
if Worker node i returns a maximum clique size that exceeds CMCS
then

Update CMCS
Run Preprocessing
Run Connected Components

end

end
if All workers have had at least one work segment or each connected
component has had cut vertices removed then

Run Preprocessing
Run Connected Components

end

end

Worker Code
while Available work do

Send request for work to master node
foreach Job received from master node do

Run Maximum Clique Solver on subgraph
Send job results to master node

end

end

Algorithm 1: The EIC algorithm is used for the case in which edge information
is stored in core memory
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maximum clique problem for the original graph is simply the largest maximum clique

size of the connected components.

The second case, in which at least one connected component does not fit into

main memory as a bit adjacency matrix, is not as straightforward. Like the previous

case, EIC begins by sending all connected components small enough to fit in core

to worker nodes. After these connected components are removed from the search

space, the algorithm must extract subgraphs from the large connected component(s).

These subgraphs are selected by extracting the induced neighborhoods of vertices.

One important property that is exploited is the fact that solving the maximum clique

problem on a subgraph that contains a vertex v and its neighborhood allows the

algorithm to eliminate vertex v from the search space. Cut vertices in the connected

component are selected first [83]. The master node adds the cut vertex, along with

its induced neighborhood, to the bin to send to a worker node. Selecting a cut vertex

of the large component guarantees that it will be split into two or more components,

each one may or may not fit entirely into core memory as a bit adjacency matrix. If

a bin is filled to capacity after adding the all cut vertices, it is sent to a worker node.

Otherwise, subgraphs are extracted using the induced neighborhood of a root vertex

r selected from one of the methods below:

• selecting a vertex of highest degree

• selecting a vertex of lowest degree

• selecting a random vertex

Selecting a vertex is contingent upon |NG(r)| < mB, where mB is the size of

available memory in the bin B. Once a root vertex has been selected, the search space

is expanded by using a breadth-first search to find neighborhoods that either overlap

or are disjoint from one another.

Regardless of the root vertex selection method, the approaches used to expand

the search space are the same. Expanding the search space to include overlapping
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neighborhoods begins by inserting the NG(r) into the bin along with every NG(w)

where w is a neighbor of r and |NG(w)| < mB. Note that ifNG(w) is fully contained in

NG(r) then both vertices w and r can be eliminated from the search space. Therefore,

if the induced neighborhood of the root vertex is dense, then expanding the search

space to include the induced neighborhoods of the low degree neighbors of the root

vertex allows the algorithm to eliminate multiple vertices in a single step. On the

other hand, if the induced neighborhood of the root vertex is sparse, then expanding

the search space to include disjoint neighborhoods allows the aglorithm to eliminate

at least one more vertex in addition to the root vertex. Disjoint neighborhoods

are explored by first adding NG(r) into the bin and then performing a breadth-first

search with the vertex r as the source node. Once a vertex w is discovered with a

minimum distance of three from r, NG(w) is inserted into the bin contingent upon

|NG(w)| < mB. Therefore, at least one vertex is removed from the search space

for each neighborhood selected. After the bin is filled to capacity or all remaining

vertices in the search space are in the current bin, the bin containing the subgraph

G′is sent to a worker node. After each worker gets at least one workload or each

connected component has had all cut vertices removed, the master node interleaves

the preprocessing step and recomputes the connected component structure.

Worker Node - Edge-in-Core

The worker nodes are able to receive the applicable workload from the master via

message passing. After receiving a workload, the worker node will invoke a local

instance of the MCF program to compute the maximum clique. The result generated

by MCF is returned from the worker node to the master node and a new request

for work is sent The master node will compare the result from the worker node

against the current value of CMCS and update the value of CMCS accordingly. If

the CMCS is updated, the master node immediately interleaves the preprocessing

step, removing any vertices with degree less than CMCS-1. Following the completion

of the preprocessing, the connected component structure of the graph is recomputed
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and any worker nodes waiting for work are sent workloads based upon the reduced

graph. The master node continues to process components until all vertices in G have

been eliminated from the search space. Figure 5.5 illustrates the necessary hardware

and overall workflow of the EOC algorithm.
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Figure 5.5: The EOC algorithm has the same basic master/worker setup as the
EIC algorithm. Notice, however, the largest difference between these two algorithms
is the need all the worker nodes to have access to the original graph on disk.

5.6.3 Edge-Out-of-Core Algorithm

The EOC algorithm is required for graphs for which the edge list will not fit in core

memory, but the vertices and properties of the vertices and graph can be. Thus

the algorithm must make multiple passes over the external file and recompute the

connected components and degree structure on each pass. The degree structure is

simply the degree of every vertex still in the search space. Since the edge list is not

stored in core memory, the master node lacks the ability to build subgraphs based

on neighborhoods of vertices. Note that unlike the EIC algorithm, where only the
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master node needed access to the external file, the EOC algorithm requires every

worker node, in addition to the master node, to have access to the external file. This

requires each worker node to have either a local copy of the external file or needs

to have access to a centrally shared file. The upside of having a local copy for each

worker node is the ability to parallelize access to the external file across the N worker

nodes and the master node. The downside of using local copies of the original file

is the amount of external storage space needed to make N copies of the same data.

Conversely, using a centrally located file, to which all nodes have access, requires only

a single copy of the external file be stored on disk. However, access times for this

file will not be nearly as efficient as having a local copy. In addition to the original

external file, the master node also maintains a list of the vertices that have been

removed from the search space, aptly named the do not read (DNR) list. This list

allows any copy of the original graph to remain unchanged. Any edge that contains a

vertex in the DNR list can be discarded when parsing the file. Before each workload is

sent to the worker node, the current DNR list is sent to the worker node. Pseudocode

for the EOC algorithm is presented in Algorithm 2.

Master Node - Edge-Out-of-Core

The underlying principles for the master node is similar for the EIC algorithm and

the EOC algorithm. The master node begins its work by making an initial pass over

the external file, only reading in valid edges with respect to the DNR list. During

the initial pass, the DNR file is empty, thus all vertices and edges are read. Both the

connected component and degree structures are computed during the first pass of the

file. Unlike the EIC algorithm, the preprocessing for the EOC algorithm does not

recursively remove vertices with degree less than CMCS-1. Only vertices that have

degree less than CMCS-1 at the beginning of the preprocessing step are removed due

to the fact that one pass over the external file is required for each recursive call.

For large graphs, the external I/O time quickly becomes prohibitive. Therefore, in
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Input: Graph G = (V,E)
Output: Maximum clique size of G

Master Code
while Unprocessed vertices exist do

Read Graph G and get degree structure and connected components
information
foreach Request for work from processor i do

Insert as many connected components (or neighborhoods of vertex r) as
possible.
Send DNR to processor i
Send bin to processor i
Add all possible vertex elements in bin to DNR
if Worker node i returns a clique size exceeding CMCS then

update CMCS
end
if Worker node i returns an updated list of vertices to eliminate then

add set of vertices to DNR
end

end

end

Worker Code
while Available work do

Send request for work to master node
foreach Job received from master node do

Read in subgraph G
′

from original graph file
Run Maximum Clique Solver on subgraph of G

′

Send job results to master node Send set of vertices to master node to
eliminate

end

end

Algorithm 2: The EOC algorithm is used for the case in which edge information
will not fit into core memory.
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order to keep the number of external passes over a file to a minimum, the connected

components and degree structures are computed at predefined intervals.

Like the EIC algorithm, if the graph is constructed of multiple connected

components, each with size at most M when stored as a bit adjacency matrix, then

each worker node is assigned a workload comprised of connected components until

every connected component is eliminated from the search space. Otherwise, if there

is at least one connected component whose size exceeds M, then the master node

must dissect this connected component into multiple, smaller components. It begins

the dissection by selecting key vertices from these large components and building

subgraphs around them.

Similarly to the EIC algorithm, different approaches may be used to select a

root vertex to build a subgraph around. Unlike the EIC algorithm, however, it is

not feasible to expand the search space around a selected vertex r in an efficient

manner since edge information is not stored in core memory. Due to the lack of edge

information in core memory, the neighborhood of vertex r must be read from the

external file by the worker node, not the master node. Another difference is that

only vertex r is placed in the bin to be sent to the worker node and not NG(r). The

available space in the bin, mB, is still reduced by |NG(r)|.

Any additional vertices that will be added to the bin will be selected from the

same connected component from above. However, it is impossible to select a new

vertex to add to the bin based on its connectivity to previously added vertices. For

example, with respect to previously selected vertices, new candidates that will overlap

with existing neighborhoods or are disjoint from existing neighborhoods cannot be

guaranteed to be selected. This restricts the ability to fine tune the vertex selection

mechanism due to the structure of the graph.

After the bin is filled to capacity, or all remaining vertices in the current search

space are in the current bin, the vertices contained within the bin are added to the

DNR list. Both the DNR list and the current workload are sent to the appropriate

worker node. Once all workers have completed at least one workload, or if there
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are multiple connected components, at least one neighborhood from each connected

component has been processed, then the master node parses the external file to

recompute the connected component and degree structures. The master node repeats

this process until all vertices are eliminated from the search space.

Worker Node - Edge-Out-of-Core

The worker node in the EOC algorithm has a slightly more demanding role than it

does in the EIC algorithm. The worker node must make a new pass over the external

file each time a new workload is received, and it must also keep track of the DNR

list. In the EOC algorithm, the worker node no longer receives the entire dataset

from the master node via messages. Instead the worker node receives the DNR list

along with a list of vertices that the worker node must build subgraphs around. The

worker node must parse the external file, only reading in edges that contain at least

one vertex present in the workers bin but not present in the DNR list.

The worker node must also keep track of the vertices that are entirely contained

in the subgraphs that are being created. For example, if NG(r) is being processed

and NG(w) is contained completely within NG(r), then vertex w can be added to the

DNR list. It is the responsibility of the worker node to inform the master node of

the set of vertices that were discovered in this manner and that they should be added

to the global DNR list so they can be eliminated from the global search space. The

worker node also returns the solution to the maximum clique problem to the master

node and requests more work. After all of the vertices have been eliminated from the

search space, the worker node will receive a broadcast message to finalize and exit.

5.7 Results

In order to demonstrate the scalability of the EIC and EOC algorithms, the Yeast

dataset is once again analyzed. The tests were executed on a cluster of 32 nodes, each

node containing two Intel Xeon 3.20 GHz processors with 4 GB of main memory and
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connected via Myrinet. This is comparable to a typical setup of a compute cluster

for a modest size lab. Given the modest size of this dataset, it is necessary to reduce

the available memory to the bins, during the bin packing phase, in order to illustrate

the scalability of the algorithms. Both algorithms were given the same input graph

and the same memory restrictions. As seen in Figure 5.6, both algorithms scale well

when increasing the size of the bins. Note that the minimum number of iterations

over the graph is two, unless the entire graph fits into core memory, in which case

there is no need to run the out-of-core algorithms as there is an impact in the running

times associated with starting MPI processes.
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Figure 5.6: The effect of bin size for both the EIC and EOC algorithms are
presented. Note that as the size of the bin increases, the number of iterations
decreases.

Recall that for this particular graph the maximum clique size is 73 and that there

are 27 distinct maximum cliques. All of the different experiments produced maximum

cliques of size 73, however, different maximum cliques were produced. This is due

to the fact that partitioning the graph into bins of different sizes results in different

subgraphs. Given that both algorithms use local maximum clique sizes to prune
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the remaining graph, the quicker an algorithm converges on a large clique, the more

the algorithm can prune the search tree. This results in quicker convergence to the

maximum clique size of the original graph. Figure 5.7 compares the relative speedup

for both algorithms. In order to make fair comparisons, the maximum bin size was

set to 100.
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Figure 5.7: The relative speedup for both the EIC and EOC algorithms are
presented. The algorithms start to diverge from linear speedup around 16 processors
and begins to fall around 32 processors. This is due to the fact that the overhead
associated with starting MPI processes begins to be significant with respect to the
overall running times.

Although both algorithms do scale well, the results demonstrate that having the

ability to select candidate vertices based upon connectivity properties, and not being

required to make multiple passes external files, greatly improve the running times of

out-of-core algorithms. Figure 5.8 breaks down the proportionality of time spent on

tasks for each algorithm running on the master node. The most important factor is

the time the EOC algorithm spends on disk access versus the EIC algorithm.
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Figure 5.8: The EOC algorithm has the same basic master/worker setup as the
EIC algorithm. Notice since the EOC algorithm cannot store edge information in
memory, disk access takes up a significant portion of the running time.

In conclusion, these results show that the EIC algorithm is more efficient at solving

the maximum clique problem than the EOC algorithm. However, it is important to

note that the EOC algorithm can analyze much larger graphs than the EIC algorithm.

The results of the experiments also show that both algorithms scale well with respect

to memory requirements and they also scale well with the number of processors,

relative to the difficulty of the problem. Given that no other algorithms exist to solve

the maximum clique algorithm, it is not possible to compare the running time of these

algorithms with anything else.

5.8 Applying Other Graph Based Algorithms to

the Out-of-Core Framework

The EIC and EOC algorithms presented above can be extended to solve other graph

algorithms such as paraclique. The only tweak needed to extend both of these
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algorithms to solve paraclique lie in the method of splitting the graph into manageable

segments. Where only the induced neighborhood of a root vertex is needed for the

maximum clique algorithms, the induced neighborhood of the neighbors of the root

vertex is needed for the paraclique algorithm. Another clique-centric algorithm that

is trivially derived from the EIC and EOC algorithms is the anchored clique. An

anchored clique approach can actually reduce the search space of an input graph since

only the subgraphs that interact with the anchors need to be explored. However, it

is feasible that these anchors are highly connected vertices in the graph and thus the

entire graph would still have to be dissected into manageable segments in order to

explore the entire search space.

5.9 Conclusion

This chapter reviewed two parallel algorithms aimed at solving the maximum clique

problem on graphs that are too large to store in core memory. The first algorithm

proposed, EIC, uses in-core techniques to dissect graphs into segments of manageable

size. The second algorithm, EOC, requires multiple passes over external files for

the master and worker nodes. Given the prohibitively expensive access to disk, this

algorithm is deployed only on those graphs that are too large to exploit the in-core

techniques used by the EIC algorithm.

5.10 Future Work

As the high-performance computing environment continues to change, so must the

algorithms used on these systems. The algorithms above provide a solid foundation

for future work of adapting and extending graph-based analyses to more advanced

computing environments. These algorithms were designed and tested on machines

that used commodity hardware such as standard hard drives, RAM, and network

interfaces. Future work in exploring the analysis of large graphs might include
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tweaking the above algorithms for use with special hardware such as solid-state drives,

which would reduce the amount of time each algorithm would spend on disk I/O.
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Chapter 6

Graph Algorithms Pipeline for

Pathway Analysis

6.1 Introduction

The aforementioned algorithms are efficient at analyzing data, however, they lack an

easy to use graphical user interface. The end user must download the source code,

recompile the code for the machine architecture on which the code will run, and learn

the applicable command line arguments for each of the tools. This is a daunting

task for most users. Therefore, a new graphical interface toolkit is presented: the

Graph Algorithms Pipeline for Pathway Analysis, GrAPPA. GrAPPA is an easy to

navigate interface based on the Galaxy [84, 85] framework. The Galaxy framework

allows for scientists and software developers to integrate data and software tools and

it is becoming increasingly popular in the bioinformatics community. GrAPPA not

only provides a graphical interface to the graph-based algorithms, but also provides

computational resources to end users that might not have the appropriate resources

readily available to them to deploy such analyses.
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6.2 Motivation

In order for any software to be successful, it must be readily available to end users

and it must be intuitive to use. GrAPPA accomplishes both of these requirements by

providing an easy to use point-and-click environment accessible via the internet and

gives even the most novice user the ability to upload data generated from microarrays

and complete an entire analysis including preprocessing raw data, using the graph-

based tools to analyze the data, and postprocessing using visualization. GrAPPA also

allows for users to share datasets, workflows, and results. This enables other scientists

easy access to run their own analysis and provides an easy method to reproduce the

results of previous experiments.

6.3 Interface

GrAPPA’s user interface is based on the basic design provided by the Galaxy

framework, thus allowing users with familiarity of other tools based on the Galaxy

framework to begin using GrAPPA without a steep learning curve. The basic interface

is separated into four distinct regions, as seen in Figure 6.1. The topmost region is

reserved for dataset management and user account information. The leftmost region

is the location of all available tools. These tools are listed in a top-down order in

which users should use them in the analysis of microarray data. The rightmost region

of screen is the user’s history. The history makes a record of the results at each step

during the analysis and provides quick access to the data generated by each tool.

Finally, the center area is working area. This is the main area and it is where the

user completes such tasks as uploading raw microarray data, setting parameters for

each of the different tools, and viewing the results of the analysis.
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Figure 6.1: GrAPPA is implemented on the Galaxy framework. This enables
users familiar with any tool based on the Galaxy framework to quickly navigate
the GrAPPA interface.

6.3.1 Uploading Data

Data being analyzed by the GrAPPA tool can be submitted in one of two ways. First,

the user can use the standard upload method, which allows data stored on the user’s

computer to be directly uploaded to the GrAPPA server. Secondly, data that is stored

online can easily be retrieved by GrAPPA, avoiding the needless download and then

upload step on the user’s part. Once data has been uploaded to GrAPPA, the end user

has a variety of options available to share the data. The most protected settings will

allow access only to the user that uploaded the data. Data access can also be granted

by the uploader of the data to any number of users in the GrAPPA database. Finally,

data access can be granted to all users in the GrAPPA community. This restriction

of data access grants users the privacy needed when first analyzing data, and then

allows them to share the data and workflows with the general public once the results

of the analysis are published. The types of data accepted by the GrAPPA toolkit

range from raw microarray files (eg. Affymetrix CEL files) to DIMACS formatted

graph files. The end user can chose to complete the entire analysis of microarray data
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using GrAPPA or can input the correctly formatted data into any of the available

tools anywhere in the analysis toolchain. This flexibility provides both novice and

advanced users a quick and easy option to analyze their data.

6.3.2 Tools

The real substance behind the GrAPPA toolkit is the algorithms that are used behind

the scenes. GrAPPA incorporates a mix of open-source software, such as R and

GraphViz, as well as a large collection of custom software, such as the tools presented

earlier in this dissertation. Incorporating this mix of different software modules gives

GrAPPA the versatility to grow when new software is available to the bioinformatics

community and to supplement existing tools when necessary. The tools currently

available in GrAPPA are discussed in detail in the sections to follow.

6.3.3 Data Preparation

With respect to graph-based analysis, data preparation can be broken down into

two distinct categories: data preprocessing and graph generation. Both of these

categories were covered in detail in Chapter 3. GrAPPA provides access to the most

popular algorithms available when preprocessing raw microarray data. For example,

when preprocessing Affymetrix CEL files, the user has the option of using a wide

variety of normalization methods, including RMA, MAS 5.0, and GCRMA. Options

for generating boxplots of the data before and after normalization, and for generating

a histogram of the log intensities of the data, are provided for a quick visualization of

the data to determine the presence of any outliers or abnormalities. See Figure 6.2.

Generating a graph from the preprocessed microarray data can be a cumbersome

task [38]. A plethora of different parameters in the generation of the graphs include

the selection of a similarity metric and the selection of an appropriate threshold.

GrAPPA enables the user to select from a list of the most popular similarity metrics

and a user-defined threshold to generate the graph. If the user chooses to use a metric
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Figure 6.2: Visual outputs, such as this histogram, provide the user a snapshot of
the data to quickly verify the existence of any corrupt data. The log intensities of
the gene expressions derived from the Yeast data are plotted.

not listed, they can simply generate the graph offline using whichever criteria they

would like and upload the final version of their graph in the proper format.

6.3.4 Graph Decomposition

Regardless if the graph was generated using the available GrAPPA tools or uploaded

by the user, the graph can be analyzed using the available clique-centric tools to

identify the underlying structures in the graph, namely the extremely dense regions.

The tools in the graph decomposition section generally take a graph in DIMACS

format as input, along with a set of parameters. Certain tools do not need input

parameters, such as the Maximum Clique tool, while others have a large set of

parameters that can be tweaked, such as the Paralique tool. GrAPPA restricts the

list of input files to only those matching the proper format for the respective tool.

This reduces the amount of user introduced errors while analyzing data. By default,
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GrAPPA will set the parameter values to a generally acceptable level. Users have the

ability to change these parameters, but are warned when selecting values that will

effect the usability of the results. An example of this would include selecting a glom

factor for the Paraclique tool that is larger than the size of the maximum clique. This

would result in the inclusion of all vertices in the graph, thus rendering the analysis

useless. Another example of unadvisable parameter selection would be to generate all

maximal cliques in a large, dense graph. This would produce maximal clique results

numbering in the billions, or even trillions, and would require large amounts of disk

space to store.

6.3.5 Visualization

The visualization component of postprocessing provides a convenient way to interpret

the structures in the resulting biological networks generated by the graph decomposi-

tion tools above. GrAPPA provides its visualization component using the GraphViz

program. GraphViz provides a number of different graph layouts depending on the

structure of the graph. For example, the circo layout method generates results where

vertices and edges are in a circular pattern, while the neato layout method uses a

spring based model to place the nodes and edges. See Figure 6.3.

6.3.6 History

One of the most useful features in GrAPPA is the ability to track the history of an

analysis. Each step in the analysis is recorded, including the input, parameters, and

the result. This enables a user to rerun a portion of the same analysis quickly at a

later date, or to tweak a previous analysis when only one or two parameters needs to

be adjusted. A user’s history also provides a methodology for others to reproduce any

result generated using GrAPPA. Similarly to the ability to share datasets, mentioned

above, a user can chose to not allow anyone else to access their history or to share
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(a)

(b)

Figure 6.3: GraphViz is used to generate visual representations of the resulting
networks. The overlapping maximal cliques generated from the Yeast data can be
seen in (a). The non-overlapping paraclique results on the same graph can be seen in
(b).
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their history with other users. A single history is typically associated with a single

analysis, although a user can save multiple histories.

6.3.7 Workflow

The workflow in GrAPPA provides a visualization of the history as well as a method

to rerun the same analysis, using the same parameters, but with different data. The

visualization aspect enables the user to quickly identify the input and output of every

step in the analysis along with the overall flow of data from the preprocessing of

microarray data to visualization of the results generated by the clique-centric tools.

The ability to rerun the same analysis on different input, while not having to set the

parameters, allows the user to compare results from two separate inputs in a quick

and efficient manner. An example workflow is seen in Figure 6.4. The workflow and

history are deeply related. Workflows can be automatically generated from a history,

and both provide the user with the ability to rerun previous analyses.

Figure 6.4: Workflows in GrAPPA allow for the same analysis to be quickly
recomputed. It is also a way to visually design the analysis, from data input to
postprocessing.
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6.4 Computational Resources

In addition to providing an intuitive interface to analyze microarray data, GrAPPA

also provides the computational resources needed to run the tools that exploit the

combinatorial algorithms. GrAPPA is currently hosted on a server with 8 cores

running at 2.40 GHz with 12 GB of DDR3 RAM. This machine serves as both

the web interface and the primary computational resource. All preprocessing and

postprocessing occurs on this machine, as well as any serially enabled job instance

of the tools listed above. If a job requires a large computational component, then

GrAPPA will deploy parallel versions of the algorithms and farm the work an available

machine on the TeraGrid [86]. GrAPPA currently has access to four HPC machines

including Lonestar at Texas Advanced Computing Center (TACC), Abe at National

Center for Supercomputing Applications (NCSA), Steele at Purdue University, and

Queen Bee at Louisiana Optical Network Initiative (LONI). The machines have a

computational peak performance range from 50.7 Petaflops at Queen Bee to 302

Petaflops at Lonestar. GrAPPA acts as a science gateway for these TereGrid

resources, which allows researchers without access to HPC machines to analyze large

datasets which otherwise would be impossible. A diagram of the typical workflow

of an analysis on GrAPPA is illustrated in Figure 6.5. Note that the choice of

TeraGrid machines are not the largest available supercomputers on the TeraGrid

network. The selected machines were based on a wide variety of factors such as

uptime, availability, and utilization. These machines provide the end user a good

balance between computational power and quick response time. GrAPPA strives to

provide an environment that is as near to real-time as possible, therefore scheduling

parallel jobs on compute resources that are heavily utilized could result in long queue

times.
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Figure 6.5: A researcher uploads raw microarray data to GrAPPA via the
internet(1). The preprocessing of the data and any serial jobs are ran on GrAPPA(2).
The computationally difficult jobs are offloaded to one of the many HPC resources
available via the TeraGrid(3). The jobs are queued at the HPC center and results are
returned to GrAPPA once completed(4). The postprocessing, including visualization,
is completed on the GrAPPA server(5). Final results of the analysis are returned
to the user(6). The only hardware resource required of the end user is a computer
connected to the internet. All other hardware and software requirements are provided
by GrAPPA.

6.5 Future Work

GrAPPA currently provides an easy to use graphical interface for members in the

bioinformatics community to efficiently analyze microarray data using graph-based

methods. Future work in GrAPPA could include growing its user base by providing

support for other popular network based methods, such as Bayesian networks.

Extending GrAPPA to interact with other Galaxy based tools would provide users

with many different analytical tools. Finally, GrAPPA could grow support other

biological data sources such as Next Generation Sequencing. Parallel tools are

currently coming online to process this type of data, and the amount of computational
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power and storage area needed to analyze this type of data would be a perfect fit for

a tool such as GrAPPA.
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Chapter 7

Conclusions

7.1 Review

Different methods of analyzing high-throughput microarray data using clique-centric

tools were presented in this dissertation. The first step in this process was to

transform the graph from raw data, generated by a collection microarray chips, to

a simple, finite, undirected graph. This process is the summation of three distinct

subprocesses. The first subprocess is the normalization of the raw data. This is

necessary to correct for effects of variation in the microarray technology rather than

true biological variation between the samples. A variety of normalization methods

were tested using a Saccharomyces cerevisiae dataset to illustrate the different

expression values produced. The data is then subjected to the second subprocess,

which is the computation of all pairwise correlations between the probes on the chips.

The data generated by each of the normalization methods was the input for each of the

similarity metrics studied. The combination of both the normalization method and

the similarity metric produced a complete graph, where the vertices represented the

probes on the chip and the edges were weighted using the applicable similarity value.

The third subprocess in the graph transformation was the threshold selection, which

generates a graph that retains only putatively biologically-significant edges. Different
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threshold selection methods surveyed, ranging from the use of statistical significant

correlations to the value at which underlying graph structures doubled or tripled in

size. In total, there were six normalization methods, five similarity metrics, and six

thresholding procedures examined. All possible combinations of the aforementioned

methods were used to generate a total of 180 graphs. These graphs were scrutinized

for differences in size, density, and connectivity. It is concluded that it is simply

not the case that one method from each of the three transformation steps always

produces the best results. A wide range of these methods should be examined for

each high-throughput microarray analysis in order to determine which collection of

the methods is most applicable for the data being analyzed.

A subset of the Saccharomyces cerevisiae graphs were examined for their

underlying graph structures. A suite of clique-centric tools were used to extract

dense clusters, such as maximum cliques, from the graphs. Maximal clique profiles

were also analyzed, along with the size and density of paracliques. Methods for tuning

the Paraclique algorithm to generate results based on parameters such as maximum

density and maximum edge weight were reviewed. A suite of tools based on a priori

interactions between a set of genes was presented and applied to a dataset generated

from Mus musculus. The underlying structures of all graphs examined varied widely

depending on the methods used to generate the graphs.

Two algorithms were introduced that expanded the suite of clique-centric

algorithms to use in-core and out-of-core techniques in order to analyze graphs that

were simply too large to store in core memory. These algorithms used a distributed-

memory programming model and the structure of the graph to solve local instances

of the global problem. Pitfalls in this type of analysis, such as the required use of

external memory, were examined. These algorithms were tested on two large graphs.

The smaller of the two graphs was able to exploit the use of in-core techniques

in the analysis, while the second graph was relegated to using strictly out-of-core

techniques. The algorithms successfully analyzed both graphs and generated the size

of the maximum clique in each.
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Finally, the web-base tool GrAPPA was introduced. GrAPPA enables researchers

to analyze microarray data without having to deal with installing software or setting

up hardware. This results in more real analysis being completed by researchers. The

graphical user interface is a point-and-click environment where researchers can upload

raw microarray data and extract dense putative biological networks. GrAPPA also

provides the same researchers access to high-performance computers on which to run

the most computationally difficult algorithms in the graph-based toolchain.

7.2 Future work

The work presented in this dissertation illustrates that the methods used to transform

biological data into a graph do not always generate the same type of graphs. Future

work in this area would include research in different normalization methods, similarity

metrics, and thresholding tools to determine if the resulting graphs provide better

results than the current methods. Also, the analysis focused primarily on graphs

generated from high-throughput microarrays measuring gene expression of different

eukaryotes. Extending this analysis to other biological data would be of extreme

interest.

The use of the out-of-core methods can be supplemented by the use of faster

implementations of the underlying clique-centric tools, more memory-efficient data

structures, and the exploitation of new technologies that reduce the amount of time

spent on disk I/O. Different hardware designs will require tweaks to the current

algorithms. The shift towards high-performance hybrid systems, that include both

CPUs and GPUs, will require a new approach to these algorithms.

Lastly, GrAPPA can be extended to incorporate any new graph-based analysis

tools tools. This will ensure that GrAPPA is a successful bioinformatics tool for

years to come. GrAPPA can also be integrated with other Galaxy based tools in

order to offer the non-GrAPPA users an opportunity to analyze their data using

efficient graph-based network analysis.
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