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ABSTRACT 
 
 

Asphalt mixture compaction is an important procedure of asphalt mixture 

construction and can significantly affect the performance of asphalt pavement. Many 

laboratory compaction methods (or devices), have been developed to study the asphalt 

mixture compaction. Nevertheless, the whole process from the selection of aggregate to 

laboratory compaction is still time-consuming and requires significant human and 

material resources. In order to better understand asphalt mixture compaction, some 

researchers began to use finite element method (FEM) to study and analyze mixture 

compaction. However, FEM is a continuum approach and lacks the ability to take into 

account the slippage and interlocking of aggregates during compaction. Discrete Element 

Method (DEM) is a discontinuum analysis method, which can simulate the deformation 

process of joint systems or discrete particle assembly under quasi-static and dynamic 

condition. Therefore, it can overcome the shortcomings of FEM and is a more effective 

tool than FEM to simulate asphalt mixture compaction. 

  In this study, an open source 3D DEM code implemented with the C++ programming 

language was modified and applied to simulate the compaction of hot-mix asphalt 

(HMA). A viscoelastic contact model was developed in the DEM code and was verified 

through comparison with well established analytical solutions. The input parameters of 

the newly developed contact model were obtained through nonlinear regression analysis 

of dynamic modulus test results. Two commonly used compaction methods (Superpave 

gyratory compaction and asphalt vibratory compaction) and one linear kneading 

compaction based on APA machine were simulated using the DEM code, and the DEM 
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compaction models were verified through the comparison between the DEM predicted 

results and the laboratory measured test results. The air voids distribution within the 

asphalt specimens was also analyzed by post processing virtual DEM compaction digital 

specimens and the level of heterogeneity of the air void distribution within the specimens 

in the vertical and lateral directions was studied.  

The DEM simulation results in this study were in a relatively good agreement with 

the experimental data and previous research results, which demonstrates that the DEM is 

a feasible method to simulate asphalt mixture compaction under different loading 

conditions and, with further research, it could be a potentially helpful tool for asphalt mix 

design by reducing the number of physical compactions in the laboratory. 
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CHAPTER 1 INTRODUCTION 
 
 

1.1 Research Background 

With the rapid population growth and economic development, humanity’s scope of 

activities have been significantly expanded, the travel frequency has greatly increased 

and the freight transportation has also sharply risen, which brings huge pressure and 

challenges to our current transportation systems. Pavement is one of the basic 

transportation infrastructures and plays an important role in social development and 

human life. According to the material of surface course, pavements can be divided into 

two types, Portland cement concrete pavement and Hot Mix Asphalt (HMA) pavement. 

Compared with cement concrete pavement, HMA is easy to construct, maintain and 

provides better riding comfort and thus has become the major type of pavement structure 

in the US. The United States has more than 2 million miles of paved roads and highways, 

and 94 percent of those are surfaced with asphalt (NAPA, 2010). 

HMA mixture consist of asphalt cement binder, coarse and fine aggregates, and 

mineral filler mixed together at a high temperature and placed and compacted on the road 

while still hot. Asphalt mixture compaction is an important procedure of asphalt mixture 

construction and can significantly affect the performance of asphalt pavement. The 

quality of an asphalt pavement depends largely on the compaction in the field. A well 

designed and produced asphalt mixture might have bad pavement performance because of 

poor field compaction. The under compaction of asphalt mixture typically results in 



2 

relatively low density. Lower densities mean higher air voids and lower pavement 

strength, which will likely introduce moisture into the open voids and makes the 

pavement susceptible to moisture and other failures (Zube 1962; Santucci, 1985). Linden 

(Linden, 1989) studied the effect of compaction on asphalt concrete performance based 

on three separate sources and pointed out a 1 percent increase in air voids tends to 

produce about a 10 percent loss in pavement life. The over compaction of asphalt mixture 

can also result in some problems. The over compaction can not provide sufficient voids to 

allow asphalt cement to expand and contract as temperature changes and thus induces 

rutting (Huber, 1987; Miller, 1988). Brown (1990) pointed out a properly designed and 

compacted mixture should contain enough air voids to prevent rutting due to plastic flow 

but low enough air voids to prevent permeability of air and water. The density must be 

closely controlled to insure that the voids stay within an acceptable range.  

In order to study the compaction condition effect and produce a realistic laboratory 

test specimen that can represent the structure of the paving mixture, many laboratory 

compaction methods (or devices) have been developed, examples include the Marshall 

impact hammer, Superpave Gyratory compactor, Linear Kneading Compactor, vibratory-

kneading compactor, and the mobile steel wheel simulator. Among these compaction 

devices, the Marshall Impact hammer and Superpave Gyratory compactor are widely 

used in asphalt mixture design to obtain asphalt mixture samples for subsequent mix 

design quality control tests. The kneading compactor can simulate the roller compaction 

process which is closer to the real field compaction pattern since the asphalt mixture is 

kneaded and compressed to desired density during compaction. The most important 

factor of these devices is to adequately simulate field condition. Consuegra (1989) 
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evaluates the ability of five compaction devices to simulate field compaction. These 

compaction devices include the mobile steel wheel simulator, the Texas gyratory 

compactor, the California kneading compactor, the Marshall Impact hammer, and the 

Arizona vibratory-kneading compactor. After laboratory study of resilient moduli, 

indirect tensile strengths and strains at failure, tensile creep data of laboratory-compacted 

samples and field cores, he concluded that the Texas gyratory compactor demonstrated 

the ability to produce mixture with engineering properties nearest those determined from 

field cores. Ziauddin (1998) also compared different laboratory compaction methods 

(Marshall Impact Compaction and Gyratory Shear Compaction) to field compaction and 

concluded that the Gyratory Shear Compaction (angle of gyration 1.25°) method best 

represented the engineering properties of the field cores. Sadasivam (2004) investigated 

the effects of different compaction methods (Superpave Gyratory Compaction and 

Rolling Wheel Compaction) on the performance of mixture and found that the laboratory 

compacted mixture tend to be superior in their performance than the field cores. 

 Compared with field compaction, the scale of these laboratory compaction studies 

are much smaller and thus can greatly reduce the work of producing asphalt mixture 

samples, which need less time and also be relatively easy to control. These laboratory 

methods play important roles in asphalt mixture design and the research of asphalt 

mixture compaction. However, most of these methods usually require costly compaction 

devices and the whole process from the selection of aggregate to compaction is still a 

time consuming process. The laboratory compaction method is also difficult to study the 

movement of aggregates and the development of internal structure during compaction 

process. What’s more, it is hard to simulate the real condition of large scale field 
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compaction condition, like the real compaction boundary. In the laboratory, confinement 

is provided by the sides and bottom of the mold and the hammer. However, in the field, 

confinement is provided by the surrounding HMA material, the underlying layer and the 

compactor area in its zone of influence. In this case, some researchers try to find a more 

simple and effective way to study and analyze asphalt mixture compaction.  

Numerical simulation is an effective tool for finding approximate solutions of 

complicated engineering and physical systems and has been widely used in aviation, 

mechanics, material science, chemistry, bioengineering etc. With the fast development of 

computer technology, the powerful calculation capability of computer makes the 

numerical simulation of asphalt mixture compaction possible, not only the small scale 

laboratory compaction but also the large scale field compaction. Compared with 

laboratory research method, numerical simulation has the advantages of low cost, less 

time consuming, flexible parameter analysis etc. and has been widely used in engineering 

analysis. In order to better understand asphalt mixture compaction, some researchers 

began to utilize numerical methods to study and analyze mixture compaction in recent 

years.  

Koneru (2008) developed a constitutive theory within a thermodynamic setting to 

study compaction of asphalt mixes and used commercial FEM software ABAQUS to 

simulate the Superpave gyratory compactor (SGC) compaction process (Koneru, 2008). 

Zheng (2008) built a mechanical model to simulate pavement vibratory compacting 

process utilizing the FEM software ANSYS. Ter Huerne (2008) used the Finite Element 

Model (FEM) with code DiekA to simulate the compaction process of Hot Mix Asphalt 

under roller compaction conditions. However, hot mix asphalt mixture compaction 
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happens when mixture is still hot and slippages occur between aggregates. So the above 

mentioned FEM simulations consider HMA mixture as continuum media and lack the 

ability to take into account the slippage and interlocking of aggregate particles, which 

makes FEM asphalt mixture compaction simulation differ greatly from the real situation 

and thus limits the ability to simulate the true mixture compaction process.  

Recently, the discrete element method (DEM) has become popular because it can 

capture the behaviour of particulate materials better than the finite element method 

(FEM). Discrete Element Method (DEM) is a discontinuum analysis method, which can 

simulate the deformation process of joint systems or discrete particles assembly under 

quasi-static and dynamic condition. Therefore, it can potentially overcome the 

shortcomings of FEM and is a more effective tool than FEM to simulate asphalt mixture 

compaction.  

 

1.2 Previous and Related Studies 

1.2.1 DEM Application in Asphalt Mixture  

Discrete element method is a powerful numerical tool for computing the motion of a 

large number of particles. With the inherent advantage of DEM, it developed rapidly in 

the past decades and has been widely used to model the behavior of soils and granular 

materials (John et al, 1989; Jing, 2000; Yao and Anandarajah, 2003; Xie and Zhao, 2009). 

However, the application of DEM in asphalt concrete is relatively new (Meegoda and 

Chang, 1994). With the development of computer technology and the appearance of 

commercial DEM software, researchers began to use discrete element method to 
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investigate the mechanical behavior of asphalt materials and achieved remarkable results. 

Most of the current DEM research work mainly includes modulus or dynamic modulus 

prediction, creep property, fracture behavior etc. 

Buttlar and You (2001) applied DEM method to predict creep strains of an HMA 

laboratory specimen subjected to diametral loads in the Superpave indirect tension test 

(IDT). They pointed out micromechanical modeling has tremendous potential benefits in 

the field of asphalt technology for reducing or eliminating costly tests to characterize 

asphalt-aggregate mixture for the design and control of these materials. Dai and You 

(2007) established 2D discrete element models for the prediction of viscoelastic creep 

stiffness of asphalt mixture and acquired reasonable prediction of the creep stiffness 

across the reduced loading time. Collop et al. (2004, 2006) used DEM to simulate the 

behavior of a highly idealized bituminous mixture (single-sized spherical particles mixed 

with bitumen) under uniaxial and triaxial compressive creep loading. The DEM predicted 

results have reasonable agreement with experimental data and are similar to measured 

curves in magnitude and shape demonstrating the applicability of DEM approach on 

asphalt mixture. 

You and Buttlar (2004, 2006) applied a clustered DEM approach to predict the 

asphalt mixture complex modulus by using a 2D DEM simulation and found that the 

DEM approach provides a low modulus prediction compared with the experimental tests 

for some fine mixes due to insufficient aggregate–aggregate contact in the 2-D model. 

You and Buttlar (2005) utilized a 2D clustered discrete element modeling approach to 

simulate hollow cylinder tensile (HCT) test and the DEM simulation results were found 

to be in good agreement with experimental measurements across a range of test 
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temperatures and loading frequencies for the coarse-grained mixture investigated. 

Adhikari and You (2010) further extended the 2D DEM approach and established 3D 

discrete element models of the hollow cylindrical asphalt concrete specimens and found 

that the 3D DEM models yielded a better dynamic modulus prediction than 2D DEM 

models. 

Kim (2005, 2008) utilized the discrete element method to investigate fracture 

mechanisms in asphalt concrete at low temperatures. The DEM simulation results were 

shown to compare favorably with experimental results and can provide more details of 

the fracture process in laboratory fracture tests. Abbas et al. (2007) analyzed the 

viscoelastic response of asphalt mixture using the discrete-element method and the DEM 

model predictions compared favorably with the SPT measurements. DEM approach has 

also been employed to study the effect of air voids on asphalt mixture. You et al. (2010) 

modeled an idealized asphalt mixture with discrete element method for both two-

dimensional (2D) and three-dimensional (3D) cases and proved that the specimens have 

lower modulus when the air voids are higher in the specimens for both 2D and 3D models. 

Most DEM studies have so far mainly focused on the mechanical behavior of cooled 

asphalt concrete. Little researches have been done in hot and loose asphalt mixture by 

using DEM. However, during hot mix asphalt mixture compaction, the compaction 

happens when the mixture is still hot and the slippage occurs between aggregate, which 

make DEM an ideal method to simulate asphalt mixture compaction. Wang et al. (2006) 

first presented the investigation of the compaction mechanics using Discrete Element 

Method (DEM). The DEM simulations can provide a micro view of asphalt mixture 

compaction process in which aggregates particles translate and rotate to positions forming 
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denser packing. The DEM simulation results indicate that DEM can describe the 

compaction phenomena consistently with field observations and empirical experience 

(Wang et al., 2007).  

1.2.2 DEM Codes and Open Source Code YADE 

With the development of DEM theory, many DEM codes were gradually developed 

and became important tools for DEM research, such as Trubal, and GRANULA. These 

DEM codes play an important role in discrete element method research and application. 

After the 1990s, some commercial DEM software like UDEC, 3DEC, PFC2D, PFC3D 

began to appear. With the easy operability and strong post processing capability, PFC2D 

and PFC3D are the most commonly used commercial DEM codes in granular materials 

analysis (Wang et al., 2003; Buttlar and You, 2001). PFC2D/3D has its own FISH 

programming language and specific commands for the DEM simulation, which makes the 

core code a black box for software user and thus restricts the ability of users to extend 

their applications to other fields as they needed. The commercial DEM codes usually are 

quite expensive, which makes them unavailable for many research organizations, 

especially for small research institutions and individual researchers. The open source 

code generally requires no licensing fees and has been advocated widely in many 

research areas. A report by Standish Group states that adoption of open-source software 

models has caused the savings of about $60 billion per year to consumers (Rothwell, 

2008). 

For commercial software, the research objectives and realizable research contents 

depend highly on the software’s functions provided by software vendors, which 
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significantly limits researchers’ flexibility and capability to do more detailed analysis and 

handle more complicated research projects. However, open source code is modifiable and 

allows the user to improve/modify the existing code–base according to the need of 

research, reducing the dependence on software vendors and enabling the unlimited tuning 

and improvement of the software for more complicated projects. For the open source 

code, the code developer/ modifier is also the user of the code. For commercial software, 

the user’s feedback is not so direct and effective for the software developer. In addition, 

due to the common sharing character of opening resource code, the community of users 

can share their code and collaborate with each other, which is helpful to dig and solve the 

early bugs and improve the software. The modifiable character of open source code also 

makes it possible to couple different codes/methods, like coupled DEM-FEM and DEM-

CFD, and thus further enriches researcher’s studying means and expands the research 

scope, which is usually difficult to do with commercial software.  

Although convenient, commercial software usually limits one’s ability to 

improve/modify the existing code–base and is usually costly. A common solution is to 

write one’s own software to perform a simulation. In such circumstances, open source 

DEM codes are catching more and more researchers’ attention and have been 

increasingly used in granular materials analysis in recent years. These open source DEM 

codes include BALL and TRUBAL (Cundall 1978), YADE (Kozicki and Donzé 2008), 

Pasimodo (Popp and Schiehlen 2008), LMGC90 (Renouf, 2006), Esys-particle (2008) etc. 

YADE Open-DEM is a 3D Open Source GNU/GPL Software framework designed 

with dynamic libraries and implemented in C++ language, which started as an offspring 

from SDEC at Grenoble University. It provides a stable and uniform environment for 
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researchers to implement computational algorithms for DEM and has been successfully 

used in composite material and geotechnical field (Donzé, 1999; Camborde, 2000; 

Belheine, 2008; Harthong, 2009; Jerier, 2010). With the extendable and modifiable 

character of open source code, YADE DEM code could also be coupled with other 

codes/methods, which expands the research scope. Rousseau (2008) coupled Discrete 

Element model and Finite Element model to analyze concrete structures and found the 

coupled FEM/DEM model worked more efficiently than DEM model. Chen et al. (2008) 

used coupled open source code YADE-OpenFOAM to investigate upward seepage flow 

and obtained reasonable results for the analysis of a particle-fluid system. In this research, 

the YADE Open-DEM will be modified to simulate the asphalt mixture compaction and 

the output from virtual digital specimens will be further processed to investigate the 

heterogeneous air voids distribution. 

YADE simulation involves bodies between which interactions occur (Figure 1.1). 

These interactions can be detected and processed by certain computational algorithms and 

physical rules. The result of these algorithms can be a moment, a force, a displacement 

etc., which in general produce a response that affects the body state. Figure 1.2 shows the 

basic structure of YADE framework which is divided into several layers. Libraries in the 

lowest layer define functionalities which are not only related to the YADE simulation 

itself but also can be utilized by other codes. The generic layer represents the core of 

YADE which defines the most abstract simulation-related classes, such as bodies 

(particles), interactions, engines. The common layer defines data structures commonly 

used by various simulation types, such as Newton’s law, time integration algorithms, 

damping methods, classes storing information about bodies or interactions etc. 
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Specialized layer is based on the common layer and contains functionality for particular 

simulation methods (DEM, FEM, Lattice Model). The top layer is a Graphical User 

Interface with an interface based on QT provided (Kozicki and Donze, 2008). 

bodies interactions

physicalresponse rules

 

Figure 1.1 Schematics of Simulation Loop (Kozicki and Donze, 2008) 
 

 
…

… 

QT GUI package GTK GUI packageGUI Layer 

Specialized Layer 
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YADE Common 
 Data classes Engine classes Rendering classes

Generic Layer 
YADE Core 

Libraries Layer 

YADE Libraries 
 
Class Factory Serialization (xml, txt, bin) Math OpenGL 

 

Figure 1.2 Layered structure of YADE framework (Kozicki and Donze, 2008) 
 

1.3 Research Objectives and Significance 

The primary objective of the research is to simulate asphalt compaction process by 

using an open source DEM code and to investigate the heterogeneous air voids 
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distribution with the help of DEM simulation. The objectives can be divided into the 

following parts: 

1. To develop a viscoelastic DEM contact model for HMA compaction simulation 

and to validate the viscoelastic contact model code with well established analytical 

solution (Chapter 2); 

2. To determine the input parameters of DEM viscoelastic contact model by fitting 

Burger’s model to dynamic modulus test results (Chapter 3); 

3. To establish a DEM Superpave Gyratory Compaction (SGC) model and validate 

the SGC model by comparing the DEM predicted air voids with laboratory 

compaction test results, and study the effects of different factors (such as compaction 

pressure, gyration angle, temperature, aggregate shape) on SGC compaction  

(Chapter 4); 

4. To establish a DEM Vibratory Compaction model and validate the DEM  model 

by comparing the DEM predicted air voids with laboratory compaction test results, 

and study the effects of different factors (such as vibration pressure, speed) on 

Vibratory  compaction  (Chapter 5); 

5. To develop a laboratory linear kneading compaction test based on the Asphalt 

Pavement Analyzer (APA) machine and simulate the APA linear kneading 

compaction by using open source DEM codes; To evaluate APA linear kneading 

compaction DEM model through a comparison of the predicted and laboratory 

measured results and  investigate the effects of different factors (such as moving load, 

speed, boundary conditions ) on compaction  (Chapter 6); 
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6. To analyze air voids distribution within asphalt specimen by post processing 

virtual DEM compaction digital specimen and investigate the level of heterogeneity 

of the air void distribution within the specimen in the vertical and lateral directions, 

and study the effect of compaction method, aggregate gradation, specimen height, 

mold size and shape on air voids distribution  (Chapter 7). 

Although there are many laboratory compaction methods (or devices) now available 

to study the asphalt mixture compaction, the compaction devices are pretty expensive and 

the whole process is also quite time consuming and highly dependent on an engineering’s 

personal experience. Numerical analysis is another important tool to study asphalt 

mixture compaction. The widely used finite element method (FEM) lacks the ability to 

account for the slippage between aggregate particles, thus limit their ability to simulate 

the true mixture compaction process.  

In this study, an open source 3D DEM code was first applied to simulate the 

compaction of hot-mix asphalt (HMA) by using Superpave gyratory compactor, asphalt 

vibration compactor and self developed APA linear kneading compactor. A viscoelastic 

contact model was developed for asphalt mixture and the parameters were obtained 

through nonlinear regression analysis of dynamic modulus test results. The DEM 

simulation results have a good agreement with lab test results, which prove that DEM can 

be used to simulate different kinds of compaction methods. Discrete element method 

provides a new way to study asphalt mixture compaction through internal microscopic 

view and have tremendous potential to help understand asphalt mixture compaction 

process. With the advantage of low cost, modifiability and common sharing, open source 

code significantly reduces researcher’s dependence of software vendor, and greatly 
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enriches researcher’s studying means and expands research scope, and has a wide 

application prospect in scientific research. 

Although some assumptions in this paper are not very close to the real situation and 

the DEM simulation results are still not accurate enough to satisfy the need of asphalt 

mixture design, it is the first try to study asphalt mixture compaction process using 

discrete element method. Therefore, this research provides a good starting point for DEM 

simulation of asphalt mixture compaction and could offer a base studying for further 

research. The finite element method which was used for simple 2D elastic analysis at the 

early stage  and became a widely used tool in more complicated fields (like nonlinear, 

viscoelastic, micro 3D analysis etc) later, with further research (combination with other 

recently developed techniques, like X-ray computed tomography imaging technique, 

fluid-solid coupling, clump technique etc.), DEM simulation could come closer to 

describe the reality of asphalt mixture compaction and have tremendous potential to help 

researchers understand the micro structure of asphalt mixture compaction. 
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CHAPTER 2 BURGERS CONTACT LAW AND 
VERIFICATION 

 
 

2.1 Discrete Element Method 

The Discrete Element Method (DEM) is a discontinuous approach and a powerful 

numerical tool for computing the motion of a large number of particles such as granular 

material. The DEM was first introduced by Cundall (1971) for the analysis of rock-

mechanics problems and then applied to soils by Cundall and Strack (1979). Different 

from traditional continuum computational method, in DEM each element is separated and 

can have independent movement. All particles are assumed rigid bodies and the 

interaction only happens at contacts or interfaces between these bodies. Behavior at the 

contacts uses a soft-contact approach and rigid particles are allowed to overlap one 

another at contact points. According to the force-displacement law, the overlap in every 

contact will generate an interaction force between particles. A set of contact forces acting 

on the particle and the external stresses (like gravity) will cause the motion of particles 

which is calculated by the Newton’s second law. The motion of particles consequently 

change the contact situation and results in the changes of contact forces between particles, 

which continually bring about new motion of particles.  

In order to simplify the calculation process, discrete element method usually uses the 

following assumption: 
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 (1) All particles are considered as rigid bodies and the geometry of particles will not 

change under the extrusion force between particles. The deformation of particle system is 

the summation of deformations in contact points of all particles; 

 (2) The contacts between particles happen at a tiny small area, i.e. contact at point; 

 (3) The contact behavior of particles is soft contact which allows some overlap in the 

contact points between rigid particles. The value of the overlap in each contact can be 

determined by force displacement law. Compared with the size of particles, the overlap 

between particles is small and it is also much smaller than the translation and rotation of 

particles; 

 (4) The interaction only happens at contacts between particles and the time step 

should be small enough to make sure that each particle only has force effect on its 

contacted particles and will not affect other particles.  

 (5) The values of speed and acceleration are constant in each specific time step and 

single rigid particle motion is predicted by Newton’s second law of motion. 

(6) Time step chosen is so small that, during a single time step, disturbances cannot 

propagate from any particle further than its immediate neighbors. Then, at all times, the 

forces acting on any particle are determined exclusively by its interaction with the 

particles with which it is in contact. 
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Figure 2.1 Contact between two particles (Itasca, 2004) 
 

In continuum computational method, stress-strain relation is used to describe the 

physical properties of materials. However, in DEM the overall constitutive behavior of 

material is reflected through the force-displacement law in each contact, which is the key 

component of discrete element method and can significantly influence the correctness and 

rationality of the DEM simulation. The force-displacement law describes the relationship 

between contact force and relative displacement in each contact point xi
[C] (Figure 2.1), 

which includes the relationship between normal contact force and normal displacement, 

shear contact force and shear displacement. Here a simple elastic contact model was 

presented to explain the concept of force-displacement law. The contact force of elastic 

contact model can be calculated by following equations: 

i
nnn

i nUKF =                                                   (2.1) 

sss
i UKF Δ−=Δ                                                 (2.2) 
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   Where Fi
n and ∆Fi

s are the normal contact force and shear contact force increment 

between particles (or wall), Kn and Ks are the normal stiffness [force/displacement] and 

shear stiffness at the contact respectively, Un and ∆Us are normal displacement and shear 

displacement increment between particles (or wall), ni is the unit normal for ball-ball 

contact, or is directed along the line defining the shortest distance for ball-wall contact. 

In each time step, the geometry and motion condition of each particle are known 

values, then the normal displacement Un and shear displacement increment ∆Us can be 

calculated, and thus the normal contact force Fi
n and shear contact force increment ∆Fi

s 

between particles can be obtained with force-displacement law. The resultant contact 

force and external force will result in the new motion of particles and further change 

particles’ geometry and motion condition in next time step.  

In DEM the motion of each rigid body follows the Newton’s laws of motion which 

provides the fundamental relationship between particle motion and the forces causing that 

motion. With Newton’s second law, the acceleration ix
••

 and angular acceleration i

•

ω  can 

be calculated with the following equations: 

)( iii gxmF −= &&            (translational motion)          (2.3) 

Where m is the mass of the particle; gi is the body force acceleration vector; and Fi is 

the resultant force arising from the contact forces and external forces acting on the 

particle. 

2323111 )( ωωω IIIM −+=
•

                                                        

3131222 )( ωωω IIIM −+=
•

          (rotational motion)       (2.4) 
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1212333 )( ωωω IIIM −+=
•

                                                         

Where I1, I2, I3 are the principal mass moments of inertia of the particle; 1

•

ω , 2

•

ω  and 

3

•

ω  are the angular accelerations about the principal axes; and M1, M2, M3 are the 

components of the resultant moment to the principal axes arising from the contact forces 

and external forces acting on the particle. 

For a spherical particle and disk-shaped particle, the rotational motion equation can 

be further simplified as follow: 

••

+= 3
2

333 )( ωβω mRIM                                                (2.5) 
Where β= 2/5 or 1/2 (spherical or disk-shaped particle). 

By using centered finite difference method, the accelerations at time t can be 

expressed as the following form: 
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Solving these expressions and above Newton’s laws of motion simultaneously , the 

velocities at time (t+∆t/2) are obtained. 
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The position of the particle center at time t+∆t can be calculated as follow: 
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In order to account for energy losses during inter-particle or particle/wall collisions, 

viscous damping and local non-viscous damping are commonly used in the discrete 

element method. Local non-viscous damping act on each ball, while viscous damping 

acts at each contact. In this study, Cundall non-viscous damping was used as local non-

viscous damping to dissipate energy by damping the unbalanced force in the system and 

the damping coefficients α=0.3 were chosen empirically on the basis of simulations of 

small numbers of particles. In DEM, viscous damping adds normal and shear dashpots at 

each contact to reflect the energy loss upon collision. In this study, the Burger’s contact 

model was employed and a new viscoelastic contact engine was developed in YADE 

code to simulate asphalt mixture, which has two dashpot components to provide damping 

effect. 

 

Figure 2.2 Calculation cycle in DEM (Itasca, 2004) 
 

From above content, it can be seen that the calculations performed in the DEM 

alternate between the application of Newton’s second law to the particles and a force-



21 

displacement law at the contacts. The calculation cycle of DEM consists of the repeated 

application of the law of motion to each particle, a force-displacement law to each contact, 

and a constant updating of wall positions (Figure 2.2). The steps of DEM calculation can 

be summarized as followings:  

1) Calculate time step for current iteration; 

2) Get geometry and motion properties of particles from last time step results; 

3) Update the velocity and position of walls based on the specified input wall 

velocities or boundary conditions. 

4) Detect collisions between particles and walls with the new updated particles and 

wall geometry and motion properties. 

5) Calculate the contact force between particles based on the relative deformation 

between the two entities at each contact and corresponding force-displacement 

law, and add the force vector to the unbalanced force vector; 

6) Calculate the body force (like gravitational force) of each particles and add to the 

unbalanced force vector; 

7) Apply the damping effect (force) to the resultant unbalanced force; 

8) Apply the calculated unbalanced force to the particles, and calculate particles’ 

new accelerations and angular accelerations with the Newton’s second law; 

9) Update its velocity and position based on the new accelerations and angular 

accelerations 

10) Perform time integrations of particles according to their new accelerations; 

11) Repeat the loop (step 1-10) until the calculation is terminated. 
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2.2 Burgers’ Contact Model 

2.2.1 Contact Model in Asphalt Mixture DEM Simulation 

In DEM all particles are assumed rigid bodies and the interaction only happens at 

contacts or interfaces between these bodies. The overall constitutive behavior of a 

material is simulated by associating the constitutive model with each contact. Therefore, 

the contact behavior is an extremely important aspect and critical factor in DEM, which 

can significantly influence the correctness and rationality of the DEM simulation.  

Due to the advantages of easy realization, simple input parameter and fast calculation 

speed in DEM simulation, elastic contact model has been used to simulate asphalt 

mixture by many researchers. In 2001, Buttlar and You used elastic contact law in DEM 

model to predict strains of a hot mix asphalt laboratory specimen subjected to diametral 

loads in the Superpave Indirect Tension Test (IDT) and did a parametric study on the 

synthetic IDT specimen (Buttlar and You, 2001). You and Buttlar (2004) employed 

elastic contact law in discrete element modeling to predict the asphalt mixture complex 

modulus in extension/compression across a range of test temperatures and load 

frequencies by invoking the correspondence principle. Their research focused on asphalt 

materials tested at lower temperatures, where strain levels are chosen to keep response in 

the linear viscoelastic range. Dai and You (2007) utilized elastic contact model in DEM 

simulation to predict creep stiffness of asphalt mixture at different loading times and test 

temperatures. In their study, the elastic–viscoelastic correspondence principle was used to 

bridge the elastic simulation and mixture viscoelastic response through the input of 

viscoelastic mastic creep stiffness. Collop et al. (2004, 2006) used elastic contact 
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properties to simulate the behaviour of a highly idealized bituminous mixture under 

uniaxial and triaxial compressive creep tests and investigated the effect of the shear and 

normal contact stiffness on bulk material properties. They found that the bulk modulus is 

linearly dependent on the normal contact stiffness and independent of the shear contact 

stiffness and Poisson’s ratio is dependent on only the ratio of the shear contact stiffness to 

the normal contact stiffness. 

However, asphalt mixture is a thermal rheological material which generally behaves 

in a viscoelastic or viscoelastoplastic fashion, and its properties depend upon the 

temperature, loading frequency, and level of strain. Although the elastic contact model 

has some advantages in DEM simulation and can indirectly study the viscoelastic 

behavior of asphalt mixture with the help of elastic–viscoelastic correspondence principle, 

it can not reflect the real viscoelastic property in DEM simulation. In order to truly reflect 

the viscoelastic behavior of asphalt mixture, viscoelastic contact model have been 

increasingly used in the DEM simulation of asphalt mixture. Burgers’ model is a widely 

used viscoelastic model to study the rheological behavior of asphalt mixture, which can 

greatly describe the creep, relaxation and dynamic properties of asphalt mixture and is 

gaining popularity in the DEM simulation of asphalt mixture. 

In order to capture the time dependent behaviour of bitumen, Collop et al. (2006) also 

used Burger’s model to predict axial, volumetric and distortional strain for uniaxial creep 

test and obtained good agreement with measured results. Abbas et al. (2007) used 

Burgers contact law in DEM model which subjected to sinusoidal loads similar to those 

applied in the simple performance test (SPT) and found the DEM predicted dynamic 

moduli compared favorably with the experimentally measured values. Liu et al. (2009) 
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developed a viscoelastic discrete element simulation approach for asphalt mixture based 

on the Burger’s model and conducted discrete element (DE) simulations of uniaxial 

compressive tests. The dynamic moduli and phase angles of asphalt mixture were 

predicted with 2D discrete element simulations under cyclic loading conditions and got 

less than 10 % prediction error. Adhikari and You (2010) employed Burger’s contact 

model to characterize the viscoelastic behaviors of the asphalt mixture and calculated the 

strain response of the asphalt concrete under a tensile haversine load at the inner core of 

the hollow cylindrical specimen to determine the dynamic modulus which was found 

within a 5% range of difference compared with laboratory test results. 

   In this study, in order to simulate the time- and temperature-dependent property of 

asphalt mixture, Burger’s constitutive model was employed and a new constitutive law 

engine was developed in the YADE code to process the calculation. 

2.2.2 Constitutive Behavior of Burger’s Model 

In rheological model theory, elasticity, viscosity and plasticity are considered as the 

basic elements to characterize mechanical behavior of materials. These basic elements 

also known as mechanical constants can be described by using definite mechanical 

models, i.e. mechanical constitutive relations. The basic mechanical elements can form 

more complicated models through parallel and series connection with each other and thus 

can further reflect the real mechanical behaviors of materials. Viscoelastic material has 

both elastic and viscosity behaviors and can be described by elastic and viscosity 

mechanical elements. The simplest mathematics models of elastic and viscosity elements 

are Hooke’s spring and dashpot models (Figure 2.3 and 2.4).  
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Figure 2.3 Hooke’s spring and elastic deformation 

C

f

                       

f

u t

t0 t0

t0

 
Figure 2.4 Dashpot and viscosity flow 

 
The mechanical constitutive relations of Hooke’s spring and dashpot models can be 

expressed as followings: 

εσ K=                Hooke’s spring                   (2.11) 

εσ &C=                 Dashpot                              (2.12) 

Maxwell and Kelvin model are two commonly used combined models for time 

dependent materials. Maxwell model can be represented by a viscous Dashpot and an 
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elastic spring connected in series and is effective for predicting stress relaxation. Kelvin 

model is composed of a Hooke’s spring and a Dashpot connected in parallel and is 

effective for predicting creep. Asphalt mixture has both stress relaxation and creep 

characteristics, which can be described by Burgers’ model. 
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Figure 2.5 Burger’s Model (Itasca, 2004) 
 

Burgers model is four elements viscoelastic model and its mechanical constants are 

shown in Figure 2.5 (both normal and shear directions).  It can be seen that this model 

comprises Maxwell model element and Kelvin model element, which are connected in 

series in both normal and shear directions, respectively. The deformation of Burgers 

model consists of three parts: the displacement of the Kelvin section ( kε ) and that of the 

Maxwell section ( mKε ， mCε ) (Ferry 1970; Tschoegl 1989; Itasca, 2004; Abbs, 2004).  

mCmKk εεεε ++=                                             (2.13) 
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The first and second derivatives of above equation can be expressed as follows: 

 mCmKk εεεε &&&& ++=                                             (2.14) 

mCmKk εεεε &&&&&&&& ++=                                             (2.15) 

The stress σ carried by the mechanistic model and its first derivative can be 

represented by using the Kelvin section as follows: 

kkkk CK εεσ &±±=                                             (2.16) 

kkkk CK εεσ &&&& ±±=                                             (2.17) 

Where the Kk is stiffness for Kelvin section; Ck is viscosity for Kelvin section. In the 

equation the symbols ± and ∓ correspond to the cases of normal direction and shear 

direction, respectively. 

The stress σ carried by the mechanistic model can also be represented by using the 

Maxwell section as follows: 

mKmK εσ ±=                                                  (2.18) 

mKmK εσ && ±=                                                  (2.19) 

mKmK εσ &&&& ±=                                                  (2.20) 

mCmC εσ &±=                                                 (2.21) 

mCmC εσ &&& ±=                                                 (2.22) 

Where the Km is stiffness for Maxwell section; Cm is viscosity for Maxwell section. 

Using equation 2.14-22, the constitutive behavior of Burger’s model can be expressed 

with the following second-order partial differential equation (Itasca, 2004):              
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This equation also can be expressed as follow simple format: 

••••••
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2.3 Implement of Burger’s Contact Model in DEM 

In discrete element method, the constitutive relation is described using force-

displacement pattern instead of stress-strain pattern in continuum approach. So equation 

2.23 can be expressed as follows for Burger’s contact law in DEM: 
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Where f is the contact force at contact point and u is the total displacement of the 

Burger’s model (overlap between particles) 

Since an explicit time stepping algorithm is employed in DEM simulation, above 

constitutive equation 2.25 should be further adapted for the realization in DEM codes. 
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Using a centered finite-difference time-stepping scheme, forces, displacements, and their 

partial derivatives can be expressed as follows: 
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Where t
mu and 1+t

mu  are the displacement of Maxwell section at time step t and t+1 

respectively; t
ku and 1+t

ku  are the displacement of Kelvin section at time step t and t+1 

respectively; tf and 1+tf  are the contact force at time step t and t+1 respectively. 

From the equation 2.16, the first derivative of the deformation in Kelvin section can 

be expressed as follow: 
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With a central difference approximation of the finite difference scheme, this 

equation can be expressed as follow: 
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The deformation and the first derivative of Maxwell section are represented as 

follows: 

mCmKm uuu +=                                            (2.29) 

mCmKm uuu &&& +=                                            (2.30) 

Using equation 2.19, 2.21 and 2.30, 
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With a central difference approximation of the finite difference scheme, this 

equation can be expressed as follow: 
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The total deformation and the first derivative of Burgers model can be represented as 

follows: 

mk uuu +=                                                      (2.34) 

mk uuu &&& +=                                                      (2.35) 

With a central difference approximation of the finite difference scheme, this 

equation can be expressed as follow: 
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Using equation 2.28, 2.33 and 2.36, the contact force ft+1 can be expressed as the 

follow: 
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It should be noted that in the beginning of iterative computation of Burgers model, 

there is no deformation in Kelvin section and all the deformation happens in the Maxwell 

section, so the initial condition of Burgers model at contacts can be expressed as follows: 

00 =ku                                                           (2.38) 
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The initial overlap 0u  can be calculated according to the geometry conditions of 

particles and then the initial contact force 0f  can be obtained from equation 2.40 with 

physical conditions of particles. Under the force effect of 0f  and external force (like 

gravitational force), particles will move to the new positions according to Newton’s 

second law. 

In next time step (t =1), the displacement 1u  can be calculated with updated geometry 

conditions of particles. From equation 2.37, with the known values 1u , 0u , 0
ku  (equal 0) 

and 0f , the contact force 1f  can be obtained. From equation 2.28, with the known 

values 1f , 0f , and 0
ku , the displacement of Kelvin section 1

ku  can be obtained, which 

will be used for the calculation of next step contact force 2f . 

By using the similar procedure, the contact force at time step t+1 1+tf can be 

calculated from equation 2.28 and 2.37 through iterative computation. Figure 2.6 presents 

the flow diagram of newly programmed Burger’s contact law engine in YADE. The 

developed codes for Burger’s contact law engine in YADE are presented in Appendices 

A, which was implemented by C++ language and would be executed in each contact and 

time step during simulation process. It should be noted that the developed codes are based 

on version YADE-0.12rc1. 
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Add force and moment to cumulative force and 

moment of particle Px and Py 
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Figure 2.6 Flow diagram of Burger’s contact law engine 
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2.4 Verification of Burgers Contact Model  

DEM simulation is a highly intensive computation process, the results of DEM 

models with a large number of particles usually are very difficult to verify. So in DEM 

simulation, in order to gain a better understanding of the solution process, and assure the 

correctness of simulation results, it is often useful to solve simple verification problems 

with well established analytical solutions, especially for the newly developed or modified 

DEM codes. These simplified verification problems usually have a small number of 

particles and have little engineering practice interest, but it can be used to study the effect 

of parameters and mutual relationship between particles, and can also provide guidance 

for selecting the input parameters for larger scale problems, which is helpful in 

debugging, modification and development of DEM codes. 

In order to verify the correctness of new Burger’s contact law engine in YADE, a 

simple test was conducted just as in the PFC2D manual (Itasca Consulting Group, 2004) 

and similar to Chen (Chen et al., 2007). Two balls are created under an overlap condition 

and fixed in position (Figure 2.7), so the deformation is constant value between the two 

balls and stress relaxation occurs in such situation. The analytical solution of contact 

force for this verification problem can be written as following: 

( ) tztz BeAetf 21 +=                                 (2.41) 
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1z and 2z are the roots of the quadratic equation 011
2

2 =++ sasa .  

Assuming 8102.1 ×=kK , 8102.1 ×=mK , 8103×=kC  and 8103×=mC , a comparison of the 

contact force versus time for the analytical and YADE solution is shown in Figure 2.8. 

From Figure 2.8, it can be seen that the YADE solution results agree well with the 

theoretical solution. This simple verification test guarantees the correctness of the 

calculation results for each contact between particles, and thus gives more confidence in 

the simulation results of whole DEM model with large number of particles when using 

Burgers contact model. 
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Figure 2.7 Verification of Burger’s contact model in YADE Code (R=1) 
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Figure 2.8 Comparison between Analytical and YADE Solution 
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CHAPTER 3 DETERMINATION OF BURGERS’ 
MODEL INPUT PARAMETERS 

 

 

3.1 Introduction 

Asphalt mixture is a typical viscoelastic material. This kind of viscoelatic property 

should be considered in viscoelastic contact model of discrete element method. For the 

determination of input parameters of asphalt mixture, the common method is to obtain 

contact model’s parameters through fitting experimental data set of representative 

samples of the composite. So in order to obtain input parameters through regression 

analysis, the rheological relationships should be established between the viscosity 

behavior of asphalt mixture and the parameters of Burgers’ model 

3.2 Rheological Relationships for the Burger’s Model  

In order to establish the rheological relationships for the Burger’s Model, the response 

of asphalt mixture induced by different loading conditions can be investigated through 

the constitutive equation 2.23 presented in last chapter. Typically, the commonly used 

loading conditions are a creep load, a constant strain, and dynamic loading conditions 

(Tschoegl 1989; Ferry 1980; Abbas, 2004).  
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3.2.1 Creep Compliance of Burgers Model  

The response of the Burger model due to the application of a creep load (i.e., constant 

stress) can be characterized through creep compliance, )(tD , which is defined as the 

resulting strain function divided by the applied stress. The creep loading function can be 

described as follow: 

0)( σσ ⋅Δ= t  

Where  
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Substituting the creep load function into the constitute equation 2.23 and making 

laplace transformation results in, 
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   Solving the above equation, results in, 
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Where )(ˆ sε  is laplace transform of total displacement of Burgers model and s is the 

transformation variable 

The creep strain can be obtained by taking the inverse laplace transform of the above 

equation, which can be expressed as follow and the creep curve is shown in Figure 3.1a: 
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Where 
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Above equation can also be expressed by using viscoelastic constants as follow: 
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Creep compliance is equal to the resulting strain function divided by the applied stress 

and can be given by the following equation: 
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                         (a) creep curve                                      (b) stress relaxation curve 
Figure 3.1 Mechanical response of Burger’s Model 

 

3.2.2 Relaxation Modulus of Burgers Model 

The response of the Burger model due to the application of a constant strain can 

be characterized using the relaxation modulus, )(tE , which is defined as the resulting 

stress function divided by the strain value. The constant strain function can be described 

as follow: 

0)( εε ⋅Δ= t  
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Where  
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Substituting the constant strain function into the constitute equation 2.23 and making 

laplace transformation results in, 
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This equation can be expressed in the following format with new parameter α,β: 
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Taking the inverse laplace transform, results in the stress relaxation equation (Figure 

3.1b), 
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Relaxation modulus is equal to the resulting stress function divided by the strain value 

and can be given by following equation: 
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3.2.3 Complex Compliance and Complex Modulus of Burger’s Model 

The response of the Burger’s model due to either dynamic stress or dynamic strain can 

be characterized using the complex modulus, )(* ωE , which is defined as the ratio of the 

dynamic stress to the dynamic strain. Complex compliance )(* ωD  is equal to the 

reciprocal of complex modulus )(* ωE  and vise versa. For Burger’s model, the 

application of dynamic load tiet ωσσ 0)( = will cause a dynamic strain response 

tiet ωεε *)( = , where 0σ and ∗ε  are the stress and strain at time equals zero, ω  is the 

radial frequency, and t is the elapsed time. 

Taking the first and second derivatives of the stress and the strain functions with 

respect to time and substituting them in Equation (3.7), then the complex compliance, 

)(* ωD , can be obtained and expressed as the following equation,  
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The complex compliance consists of real and imaginary components and can be 

written in the following format: 

           )(")(')(* ωωω iDDD −=                                          (3.11) 

Where: 
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)(' ωD is the real component of complex compliance, 
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)(" ωD is the imaginary component of complex compliance,  
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The real component )(' ωD  and imaginary component )(" ωD  of complex compliance 

are also referred to as the storage compliance and loss compliance respectively. The 

dynamic compliance, *D , is equal to the square root of the sum of squares of storage 

and loss compliances: 

22* )"()'( DDD +=                                               (3.12) 

The phase angle, δ , is the direction of complex compliance and is defined as the tan 

inverse of the loss compliance divided by the storage compliance. 

⎟
⎠
⎞

⎜
⎝
⎛= −

'
"tan 1

D
Dδ                                                       (3.13) 

The complex modulus, *E , and the dynamic modulus, *E , are equal to the 

reciprocals of the complex compliance, *D , and the dynamic compliance, *D , 

respectively, and can be expressed as follows: 
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   Equation 3.15 can also be expressed using mechanical constants of Burger’s model as 

follow: 
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3.3 Dynamic Modulus Test 

For the determination of input parameters of asphalt mixture, the commonly used 

laboratory tests usually include uniaxial creep test, stress relaxation test, and dynamic 

modulus test. Dynamic modulus test is a conventional asphalt mixture test and has been 

used to determine the DEM input parameters of Burgers’ model by researchers (Liu et al., 

2009; Abbas, 2004).  

Dynamic modulus *E  is one of the fundamental engineering properties widely used 

to characterize the viscoelastic behavior of HMA mixture and can reflect the temperature 

and frequency dependency of HMA mixture properties, which is one of the important 

material property input parameters for flexible pavement design. In the dynamic modulus 

test, a sinusoidal stress is applied to a cylindrical specimen and a sinusoidal steady-state 

strain is induced, or vice versa. Due to the viscoelastic effect, the stress always leads the 

strain, or the strain always lags the stress (Figure 3.2)  

 

Figure 3.2 Stress and Strain in a Dynamic Modulus Test 
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During the dynamic modulus testing, a cylindrical specimen (usually 100mm in 

diameter and 150mm in height) is subjected to a constant lateral confining pressure and a 

sinusoidal vertical pressure at a range of temperatures and frequencies (Figure 3.3). 

Depending upon the specimen stiffness, the amplitude of vertical pressure varies between 

35 and 2800kPa to keep the strain between 75 and 125 micro-strains. Stresses are 

measured using a load cell, and axial strains at the middle part of the specimen are 

measured using three linear variable differential transformers (LVDT) mounted on studs 

attached to the sides of the specimen. Test specimens were placed in an environmental 

chamber and allowed to equilibrate to the specified testing temperature ranging from –10 

to 54.4oC (14 to 130oF). At each temperature, different frequencies ranging from 0.01Hz 

to 25Hz are applied.  

 

Figure 3.3 Dynamic Modulus Test 
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Prior to testing, two latex membranes are placed between the specimen ends and 

loading platens to reduce the end friction. A contact load equal to 5 percent of the 

dynamic load was first applied to the specimen and a sinusoidal dynamic load was then 

applied. Usually testing is conducted from the lowest to the highest temperature and from 

the highest to the lowest frequency. For each combination of testing temperature and 

frequency, 10 conditioning and 10 testing cycles were applied. A typical rest period 

between each frequency run is 2 minutes. The rest period should not exceed 30 minutes 

for any two successive frequency runs. At the end of testing, the specimen should be 

discarded if excessive deformation greater than 1500 micro strain was accumulated. The 

data from conditioning cycles were used to adjust the amount of dynamic load and those 

from testing cycles to calculate the values of dynamic modulus and phase angle. Figure 

3.4 presents the typical axial stress and strains from the testing cycles. 

 

Figure 3.4 Axial Stress and Strains in Dynamic Modulus Test 
 

The dynamic modulus is equal to the ratio of the axial stress amplitude to the axial 

strain amplitude: 
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Where 

*E  = dynamic modulus; 

0σ  = axial stress amplitude; and 

0ε  = axial strain amplitude; 

In the complex form, the applied sinusoidal stress )(tσ   can be expressed as: 

tietitt ωσωωσσ 00 )sin(cos)( =+=                                (3.18) 

Where 

ω = radian frequency; and  

1−=i . 

The above loading stress can be calculated using the following equation: 

A
P

=0σ                                                      (3.19) 

Where 

P = average loading amplitude (from best-fit sinusoid function); and 

A  = cross sectional area of specimen. 

The axial strain can be calculated through measured deformation as follow: 

GL
Δ

=0ε                                                     (3.20) 

Where 

Δ = average deformation amplitude (from best-fit sinusoid function) calculated after 

removal of the underlying baseline drift deformation; and 
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GL  = gauge length. 

The phase angleφ  can be calculated using the following equation: 

360×=
p

i

t
t

φ                                                 (3.21) 

Where 

φ  = phase angle (in degrees); 

it  = average time lag between the peak stress and the peak strain in seconds, 

calculated as the difference between the best fit load and deformation sinusoid 

functions; and 

pt  = average time for a loading cycle in seconds. 

 

3.4 Construction of Master Curve 

The master curve of different viscoelastic material properties as a function of time or 

frequency can be constructed based on the time-temperature superposition principle 

(Ferry 1980). The measured curves at other temperatures are shifted horizontally along 

the time or frequency axis according to respective horizontal shift factor and then form a 

single master curve at a reference test temperature. If the reference temperature is chosen 

to be in the middle of all test temperatures, then the test data measured at lower 

temperatures are shifted to the right, i.e. to higher frequencies until the ends of adjacent 

temperature curves just meet or partially overlap. In a similar manner, the test data 

measured at higher temperatures are shifted to the left, i.e. to low frequencies. This 

constructed master curve covers a much wider range of frequency than the actual 



48 

experimental data. The construction process of dynamic modulus master curve of HMA 

mixture can be found in Figure 3.5 and 3.6 shown in the next section. The horizontal shift 

factor, Tα , a constant which defines the required horizontal shift from an arbitrary test 

temperature, T , to the reference temperature of master curve, 0T , can be expressed as: 

0TTT ff α=                                                   (3.22) 

Where: 

Tα  = horizontal shift factor; 

Tf  = frequency at a freely chosen temperature T; and 

0Tf  = frequency at the reference temperature T0. 

In general, the Sigmoidal function can be used to fit the dynamic modulus data set at 

a reference test temperature. 

)(log
*

1
)log(

rte
E λβ

αδ ++
+=                                      (3.23) 

Where  

rt = time of loading at the reference temperature; 

δ , α , β , λ  = fitting parameters; for a given set of data, δ  represents the minimum 

value of *E  and αδ +  represents the maximum value of *E  ; β , λ  describes the 

shape of the sigmoidal function. 

With the time-temperature superposition principle, the master curve at any temperature 

can be obtained by shifting horizontally according to the corresponding horizontal shift 

factor at that temperature.  
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3.5 Regression of Burger’s Model Parameters 

As presented earlier in this chapter, the dynamic modulus can be expressed using 

mechanical constants of Burger’s model as equation 3.16. With the dynamic modulus test 

results, the parameters of Buger’s model can be obtained by making multi-element non-

linear regression analysis according to equation 3.16. The steps of determination of 

Burger’s model parameters can be summarized as follows:  

1) Prepare test samples (compaction, coring and cutting); 

2) Perform dynamic modulus test at different temperature and frequencies; 

3) Calculate dynamic modulus according to equation 3.17; 

4) Construct dynamic modulus master curve according to time-temperature 

superposition principle; 

5) Fit the dynamic modulus data set at a reference test temperature with Sigmoidal 

function; 

6) Obtain  master curve at required temperature by horizontally shifting curve 

according to the corresponding horizontal shift factor at that temperature; 

7) Determine parameters of Burger’s model by fitting Burger’s Model to dynamic 

modulus test results; 

Asphalt binder and fine aggregate were assumed to mix together as a special “asphalt 

mastic” and “asphalt mastic” samples were prepared for dynamic modulus testing (Figure 

3.3). Two types of asphalt mixture (Superpave and SMA aggregate gradation shown in 

Figure 4.3) were investigated in this study. The Asphalt Mixture Performance Tester 

(AMPT) produced by IPC Global corporation was used to run the dynamic modulus test. 
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The test was conducted under no confining pressure at 3 temperatures (5°C, 20°C, and 

30°C) and 10 frequencies (0.01, 0.1, 0.2, 0.5, 1, 2.5, 10, 20, 25 Hz). After testing, 

dynamic modulus master curves were constructed by translating the dynamic modulus 

curves at different temperatures to reference temperature according to time-temperature 

superposition principle. Figure 3.5 and 3.6 presents the dynamic modulus test results at 

temperature 5, 20, 30°C and the asphalt mastic master curves of Superpave and SMA 

asphalt mastic at the reference temperature of 20°C.  

The dynamic modulus master curve can be represented by the sigmoidal function and 

be shifted to any particular temperature with the time-temperature superposition principle. 

The master curve of Superpave and SMA asphalt mastic at 20°C and 150°C are shown in 

Figures 3.7 and 3.8.  

1.E+07

1.E+08

1.E+09

1.E+10

1.E+11

0.0001 0.001 0.01 0.1 1 10 100 1000

Loading Freqency (Hz)

D
yn

am
ic

 m
od

ul
us

 (P
a)

  

5℃
20℃ (reference temp.)
30℃

 
Figure 3.5 Dynamic modulus test results of Superpave mastic 
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Figure 3.6 Dynamic test results of SMA mastic 
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Figure 3.7 Master Curve of Superpave mastic 
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Figure 3.8 Master Curve of SMA mastic 

 

The Equation 3.16 provides the basis for fitting Burger’s Model to Data to dynamic 

modulus test data. The burger’s parameter can be obtained using nonlinear regression 

method and the parameters of Burger’s model by fitting dynamic modulus master curve 

at temperature 150°C and the regression results are shown in Table 3.1.  

Table 3.1 Burger’s Model Parameter (at 150°c) 

Parameters E1 (MPa) η1 (MPa.s) E2 (MPa) η2 (MPa.s) 

Superpave 19.960  1030.856  19.255  3.717  
SMA 15.996 652.714  10.891  1.898  
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CHAPTER 4 DEM SIMULATION OF GYRATORY 
COMPACTION  

 
 

4.1 Introduction 

In this chapter, the discrete element method (DEM) was used to simulate the 

compaction of hot-mix asphalt (HMA) with the Superpave gyratory compactor (SGC). 

The Open Source discrete element code, YADE, was modified and implemented with the 

C++ programming language to conduct virtual SGC compaction. The effects of 

compaction pressure, gyration number, gyration angle, gyration angular velocity and 

aggregate gradation during the Superpave gyratory compaction were thoroughly 

investigated. This study showed that the virtual compaction with DEM was potentially 

very helpful in asphalt mix design by significantly reducing the number of samples 

prepared of physical gyratory compaction. 

 

4.2 Asphalt mixture Superpave Gyratory Compaction Method 

Superpave mix design method is one of the final research products of Strategic 

Highway Research Program (SHRP) and has been widely used all over the world since 

the design method was introduced in 1993 (Roberts ea al., 1996). For asphalt mix design, 

it is very important to simulate the field compaction process in the laboratory. One of the 

major advantages of the Superpave mix design method is that it can simulate the field 

compaction with the Superpave Gyratory Compactor (SGC) much better than other mix 
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design methods (such as the Marshall and Hveem design methods). The Superpave 

Gyratory Compactor (SGC) is the key component of Superpave mix design procedure 

and has become a routinely used compactor to prepare specimens for evaluating the 

mechanical properties of hot mix asphalt (HMA) mixture in lab nowadays.  

The Superpave Gyratory Compactor was modified from the Texas Gyratory 

Compactor with the compaction principles of the French Gyratory Compactor and was 

developed in SHRP for several goals: 

1) Realistically compact mix specimens to densities achieved under actual pavement 

climate and traffic loading conditions; 

2) Capable of accommodating large aggregates; 

3) Capable of measuring compactibility so that potential tender mix behavior and 

similar compaction problems could be identified; 

4) Portable enough to allow quality control and quality assurance in mixing facility. 

 

     Figure 4.1 Schematic diagram of Superpave Gyratory Compactor (SGC) 
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Superpave Gyratory Compactor is a mechanical compaction device and is basically 

composed of the following components (as shown in Figure 4.1): 

 Reaction frame, rotating base, and motor; 

 Loading system, loading ram, and pressure gauge; 

 Specimen height measurement and recording system; 

  Specimen molds and base plates; 

 Control Panel, initialization, compaction time and height control of the specimen.  

Prior to compaction, both the pre-arranged loose mix and compaction mold are placed 

in an oven at compaction temperature for the specific time. After heating, the pre-

determined weight of loose asphalt mixture is poured into the cylindrical compaction 

mold, and then the mold is moved into the testing chamber of the Superpave Gyratory 

Compactor and placed on the rotating base. A loading mechanism presses against the 

reaction frame and applies a load to the loading ram to produce a compaction pressure on 

the specimen and a pressure gauge measures the ram loading to maintain constant 

pressure during compaction. With the effect of gyratory motion, the asphalt mixture is 

subjected to two simultaneous stresses during compaction: one is the constant 

compression stress and other is a shearing stress which produces a kneading action on the 

specimen.  

The compaction effort applied to the sample by the SGC is controlled by three 

parameters, namely vertical pressure, angle of gyration and number of gyrations. For the 

Superpave design procedure, the typical compaction angle is 1.25 degrees, and the 

applied vertical load to the specimen is 87 psi (600 kPa). The Superpave gyratory 
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specimens are either 6 inches (150 mm) or 4 inches (100 cm) in diameter. The gyrations 

are applied at a rate of 30 revolutions per minute and the number of gyrations is varied 

based on the traffic level. Compaction stops automatically when the desired number of 

gyrations or height of specimen is reached. 

The specimen height is constantly monitored during compaction, which provides a 

measure of specimen density throughout the compaction procedure. Specimen density 

can be estimated during compaction by knowing the mass of material placed in the mold, 

the inside diameter of the mold, and the specimen height. Height is measured by 

recording the position of the ram throughout the test. Using these measurements, a 

specimen’s compaction characteristics are developed. 

      A good laboratory compaction technique should be capable of producing pavement 

with engineering properties very close to those measured from field cores, although there 

is no single laboratory compaction method that always provided the best match with 

engineering properties of the field cores. The gyratory compaction was reported more 

reliable and easy to use for making asphalt mixture specimens, and was identified to be 

the most suitable method for a Superpave mix design project (Monismith, 1993). The 

SGC can orient the aggregate particles in a way that is similar to that observed in the field 

and has the capability to accommodate larger aggregates (up to 50 mm) in the mix 

(Roberts, et. al., 1996). After comparing the physical properties of laboratory-compacted 

samples and field cores, Button et al. (1994) concluded that the gyratory method most 

often produced specimens similar to pavement cores and is more convenient for 

preparing laboratory specimens for routine mixture design and testing of asphalt concrete. 
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4.3 Assumption of Aggregate Simulation 

Due to the limitation of computer processing capability, it is impossible to simulate 

all the aggregate particles in asphalt mixture compaction (tens of millions of small 

particles have to be considered in asphalt mixture). According to Simpson and Tatsuoka 

(2008), DEM analyses to date have been limited to about 105 particles, generally circular 

(2D) or spherical (3D). Although Cundall (2001) has predicted that 1011 particles could be 

available in DEM modeling within 20 years, it is still insufficient to model most real 

boundary value problems on a particle-by-particle basis. One common method in DEM 

simulation is to only simulate the aggregates bigger than a certain particular size and 

assume fine aggregate and asphalt mixing together as mastic which is taken into account 

by the contact law between particles. Collop et al. (2004, 2006) used a 1.18 mm diameter 

spherical balls to simulate aggregate to study bulk material properties and viscoelastic 

behavior of asphalt mixture. Kim et al. (2008) built a homogeneous DEM model by using 

0.35 mm radius particles to simulate asphalt concrete fracture and got reasonable results.  

In this study, the minimum aggregate particle size 2.36mm was select in DEM simulation. 

In fact, coarse aggregates compose the skeleton structure of asphalt mixture, 

undertake the main traffic load and have significant influence on mechanical behavior of 

asphalt mixture (Pan et al., 2005; Huang et al., 2009). For coarse grade and stone mastic 

asphalt mixture, the main role of fine aggregate is to fill the voids between coarse 

aggregates and increase the density of asphalt mixture. Since in this study the maximum 

aggregate size 25mm is much bigger than 2.36mm and both gradations have low 

proportion of fine aggregate smaller than 2.36 mm, only aggregates greater than 2.36mm 
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were simulated in this DEM simulation, which can greatly reduce the calculation work of 

the DEM simulation. The fine aggregates and asphalt binder were supposed to be mixed 

together as special mastic which was taken into account by contact constitutive law 

between coarse aggregates. The coarse aggregates were assumed to be spherical balls 

coated with asphalt mastic. 

Spherical particle has been generally used in DEM modeling (Simpson and Tatsuoka, 

2008), which makes the contact condition simple and greatly eases the calculation 

difficulty. Irregular shape particles make the particle contact conditions more complicated, 

and thus it is difficult to get reasonable results. Although spherical particle is not very 

close to the real shape of aggregates, calculating results by using spherical particles is 

more reliable and have some reference values for learning asphalt mixture compaction 

process and valuable guide for future DEM research of asphalt mixture compaction. The 

spherical particle simplification has also been used in previous asphalt mixture DEM 

simulation and obtained good results (Collop et al. 2004, 2006; Kim et al. 2008). Clump 

technique is a potential tool to simulate irregular-shaped aggregates in DEM simulation. 

In order to appropriately describe the shape of aggregate, usually tens of spherical balls 

should be used to model one aggregate. However, all aggregates in asphalt mixture have 

different shapes, and at least thousands or millions of particles have to be considered in 

DEM simulation depending on the minimum particle size. So it is difficult to subtly 

model all those irregular-shaped aggregates by using clump technique, which still has a 

long way to go before it is put into practice. Therefore, in this study, aggregates are 

simulated by using spherical particles in most DEM simulation and clump technique was 

briefly used to investigate the effect of aggregate shape on asphalt mixture compaction. 
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4.4 SGC Compaction DEM Simulation Process 

Gyratory compaction is the commonly used compaction method to make asphalt 

mixture specimen. In this gyratory compaction DEM simulation, the vertical pressure was 

set at 600 kPa and the angle of gyration was set at 1.25º. The gyration was applied at a 

rate of 30 revolutions per minute. The gyratory kneading action in YADE code was 

applied by a rotary compression plate which is controlled by two separate DEM 

simulation engines, rotation plate engine and constant pressure engine. The rotation plate 

engine applies a constant rotation speed on the compression plate around a specific axis 

and the code of rotation plate engine in YADE code is presented in Appendices B, which 

is an existing engine of original YADE code. The function of constant pressure engine is 

to apply a specific pressure to the underneath particles by specified plate and the code of 

constant pressure engine in YADE code is presented in Appendices C. 

The procedures of the DEM simulation process is summarized as follows: 

• Generate compaction cylinder and funnel  (Figure 4.2a); 

• Calculating particle numbers of each particle size according to gradation curve; 

• Randomly generate particles in specific space (Figure 4.2b); 

• Packing of spheres under gravity force until it is stable (Figures 4.2c and 4.2d); 

• Generate compression plate and gyratory compact asphalt mixture by constant 

pressure (Figures 4.2e and 4.2f); 

• Record the position of compression plate and spheres during compaction process; 

• Calculate air void of the whole mixture or each layer. 
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(a)                                                (b)                      

 

           
(c)                                                (d)                      

       
(e)                                                (f)                      

Figure 4.2 DEM Simulation Process of SGC 
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4.5 Air Voids Prediction and Verification   

As mentioned earlier, the position of the gyratory plate and particles can be recorded 

at specified time steps during the virtual simulations of compaction process and then the 

coarse aggregate compaction density (VCA) can be calculated. Although aggregate 

particles smaller than 2.36mm was not considered as individual particles in DEM 

simulation, the air voids can be roughly estimated according to the proportional 

relationships between compositions. It was assumed all fine aggregates and asphalt 

binder were filled into the voids between coarse aggregates. According to the 

proportional relationship between coarse and fine aggregates, the volume of fine 

aggregate (VFA) in the whole mixture can also be calculated and the volume of asphalt 

(Vasphalt) can be calculated from the asphalt content in the whole mixture. With the known 

value VCA, VFA and Vasphalt, the air voids (Vv) can be roughly estimated through following 

Equation 4.  

asphaltFACAv VVVV −−−= 1                                          (4-1) 

4.5.1 SGC DEM Simulation Results 

Two types of aggregate gradations (Superpave and SMA) were selected for DEM 

simulation in this paper and the gradation curves are shown in Figure 4.3. The coarse 

aggregate compaction density curves are shown in Figure 4.4. The DEM predicted air 

voids of Superpave and SMA mixtures at 208 gyrations are presented in table 4.1. 
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Figure 4.3 Aggregate Gradation Chart (maximum size 1 inch) 
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Figure 4.4 Compaction Curves of Coarse Aggregates 
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Table 4.1 DEM Air Voids Prediction 

Proportion of composition  Coarse aggregate
Fine 

aggregate 
Asphalt binder Air voids

Superpave (volume %) 64.23 22.57 11.96 1.24 

SMA (volume %) 67.13 16.78 14.04 2.05 

 

4.5.2 Laboratory Test and Verification 

Superpave gyratory compaction tests were conducted in the laboratory for SMA and 

Superpave mixture which were prepared according to above aggregate gradation and 

volume proportion. The SGC compactions were conducted by reference to AASHTO 

standard T312. In order to make the compaction test similar to DEM simulation, rounded 

aggregate (un-crushed gravels) were selected for coarse aggregates (Figure 4.5). The 

height of sample was recorded during compaction process to calculate air voids 

compaction curve. The air voids curves of the SGC compaction test and the air voids 

curves predicted through above mentioned method are shown in Figure 4.7. From the 

Figure 4.7, it can be seen that the air void curves of simulations are pretty close to that of 

laboratory test and the final air voids of simulations are a little lower than that of 

laboratory test. The low air voids of simulation probably have two reasons. The first 

reason is the assumption of using spherical particles to model coarse aggregates. 

Although rounded gravels were chosen for laboratory testing, they still have some 

angularity and should be more difficult to compact than pure spherical particles due to the 

interlock effect. The second reason could be the assumption of ideal filling of asphalt 

cement in the voids between coarse aggregates. Fine aggregates and asphalt binder will 
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inevitably have some influence on the packing of coarse aggregates during asphalt 

mixture compaction. 

 
Figure 4.5 Coarse aggregate selection 

 

 
Figure 4.6 Laboratory SGC compaction test 
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  Correlation   Coefficient of Superpave  0.936
  Correlation   Coefficient of SMA            0.963
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Figure 4.7 DEM prediction and Lab test 

 

4.5.3 Effect of Minimum Simulated Particle Size 

       As mentioned above, due to the limitation of computer processing capability, it is 

common to only simulate aggregates bigger than a certain particular size in DEM 

simulation. The above DEM SGC compaction simulation only simulated the aggregates 

larger than 2.36 mm. In order to study the effect of minimum simulated particle size on 

the DEM compaction results, four different aggregate size conditions were simulated and 

the difference between DEM simulation and lab test results were studied: 

Condition I: aggregates bigger than 9.5 mm (simulate 9.5-25mm aggregates); 

Condition II: aggregates bigger than 4.75 mm (simulate 4.75-25mm aggregates); 

Condition III: aggregates bigger than 2.36 mm (simulate 2.36-25mm aggregates); 

Condition IV: aggregates bigger than 1.18 mm (simulate 1.18-25mm aggregates). 
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Figure 4.8 DEM simulation results of Superpave 
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Figure 4.9 DEM simulation results of SMA 

 
Figure 4.8 and 4.9 present the DEM simulation results of the two different gradations 
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(Superpave and SMA shown in Figure 4.3) for different minimum particle sizes used in 

DEM simulation. From these two figures, it can be seen that the simulation results get 

closer to the test result when small minimum aggregate size were used in DEM 

compaction simulation. When only aggregates bigger than 9.5 mm were simulated, there 

have great errors between the DEM prediction air voids and laboratory test results. The 

errors were significantly reduced by considering more small aggregates in asphalt 

mixture compaction during DEM simulation. From the figures, it can be seen that a good 

DEM simulation result can be obtained by simulating aggregates bigger than 2.36mm 

(Condition III) and 1.18mm (Condition IV). However, the DEM simulation of Condition 

IV involves more particles than Condition III and thus results in much more calculating 

amounts and longer calculating time. In addition, usually smaller particle size requires 

smaller time step during DEM simulation, thus increases the calculating time in another 

way. Compared with Condition III, Condition IV may have slightly better accuracy in 

prediction results, but takes much longer time during DEM simulation, which is 

inefficient especially when a large number of DEM calculation are needed. Condition III 

provides very close DEM prediction results as Condition IV and requires less calculation 

time, which was selected for the DEM simulation in this study. 

4.5.4 Effect of Aspect Ratio of Coarse Aggregates 

Simple spherical particles were used in the above DEM simulation. Due to the 

limitations of spheres, the effects of different aggregate shapes could not be reflected in 

such kind of simulation. However, aggregate shape is an important factor in asphalt 

mixture design and has a significant influence during compaction process of asphalt 
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mixture. Clump technique is a common method to model irregular shaped particles in 

DEM simulation. A clump is made of a group of spheres and behaves as a rigid body. 

The contact forces only exist between clumps and the contacts internal to the clump are 

skipped during the calculation to save computer time (Itasca, 2004). In this study, two 

simple non-spherical shape particles were generated by using clump technique to model 

the elongated particles in length-width ratio 2:1 and 3:1 (Figure 4.10).  

 
Figure 4.10 DEM Clumps technique 

 

Two more DEM model, one model with all particles in length-width ratio 2:1 and 

another with all particles in length-width ratio 3:1, were established. The equivalent grain 

size ( 3 /6 πVDe = ) was used as clump particle size when generating particles according 

to the aggregate gradation. The Superpave aggregate gradation was selected here, and the 

simulation results are shown in Figure 4.11. From Figure 4.11, it can be seen that the 

length-width ratio significantly affects the compaction process. The air voids of the 

mixture with length-width ratio 3:1 elongated aggregate is much higher than that of other 

two types of asphalt mixture. Although these non-spherical shapes still can not represent 

the real shape of all aggregates in asphalt mixture, the calculating results demonstrate that 
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clump sensitively reflect the effect of aggregate shapes on asphalt mixture compaction in 

DEM simulation and could be an effective technique for modeling irregular shape 

aggregates in asphalt mixture compaction DEM simulation. 
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Figure 4.11 DEM Clump Simulation Results 

4.5.5 Effect of Gyration Angle  

Gyration angle is an important parameter of the SGC and can greatly affect the 

compaction effort and the final compaction. Butcher used Servopac Gyratory Compactor 

to study the effect of gyration angle on asphalt mixture compaction (Butcher, 1998). In 

order to study the effect of gyration angle on asphalt mixture compaction by DEM, a 

similar DEM simulation was conducted according to the materials’ parameters from 

Butcher’s paper. The AC40 asphalt mixture and 4 angles were simulated here. Butcher’s 

results are illustrated in Figure 4.12 and DEM prediction results are exhibited in Figure 

4.13. Both figures exhibit the same trend, which indicate that the compaction progress of 
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mixture increase with the increase of gyration angle.  The effect of the gyration angle 

does not seem to be so significant when the angle is greater than 2 degrees. At the same 

gyrations, the packing density at 0.25 degree was much lower than that at 1, 2, 3 degrees, 

which means a low gyration angle can not effectively impart enough mechanical energy 

to compact specimen and thus result in poor compaction quality of asphalt mixture. 
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Figure 4.12 Butcher’s test results 
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Figure 4.13 DEM Prediction results 
 

4.5.6 Effect of Burger’s Parameters 

Asphalt mixture is a viscoelasatic material and highly sensitive to temperature. 

Asphalt mixtures become softer with the increase in temperature. In order to consider the 

temperature effect, the contact law parameters should be changed. In this study, DEM 

simulations were simulated at three temperatures (110°, 130°, 150°). The input 

parameters of different temperatures can be obtained by using above mentioned 

regression method and the Burger’s Model Parameter at different temperatures are 

represented in Table 4.2. Figure 4.14 is the packing curves at different temperatures. 

From Figure 4.14, it can be seen that asphalt mixture is easier to be compacted at high 

temperature. Compared with high temperature, the compaction process is relatively slow 

and the final air voids is higher under a lower temperature. The DEM prediction results 
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consist with common sense, which demonstrates that DEM has the capability to study the 

effect of temperature and could be an effective tool for the analyses of asphalt mixtures 

compaction in different temperature conditions. 

 
Table 4.2 Burger’s Model Parameter at different temperatures 

Temperature E1 (MPa) η1 (MPa.s) E2 (MPa) η2 (MPa.s) 

110° 53.227   1085.284  24.711   5.496 

130° 30.006 1031.328 20.505 4.233 

150° 19.960  1030.856  19.255  3.717  
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Figure 4.14 Effects of Temperatures 

4.5.7 Effect of Gyration 

Gyration is an important compaction parameter in SGC compaction and can 

significantly affect mixture compaction process. Figure 4.15 shows the DEM simulation 

result of SMA mixture compaction with and without gyration. It is evident that the 



73 

mixture can obtain better compaction with gyration. In the early compaction stage, there 

is no significant difference between these two compaction molds at the time when 

mixture is still loose and easy to be compacted. However, the mixture is hard to be 

further compacted without the contribution of gyration. Figure 4.16 presents the motion 

trace of particle during the compaction process, which reflects the effect of gyration from 

another point of view. This figure indicates that a particle compacted with gyration has 

more movement in both horizontal and vertical directions, whereas particle compacted 

without gyration almost only moves along vertical direction and has a relatively small 

movement in horizontal direction. The gyratory compaction effort is a multi-directional 

applied stress that encourages aggregate to seek the optimal moving route during 

compaction. The movement of aggregates in more directions is helpful to the slippage 

and filling of aggregates and thus can result in better mixture compaction. 
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Figure 4.15 Compaction with and without Gyration 
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Figure 4.16 Motion trace of particles 
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CHAPTER 5 DEM SIMULATION OF ASPHALT 
VIBRATION COMPACTION  

 
 

5.1 Introduction  

This chapter presents the DEM simulation results of asphalt mixture vibratory 

compaction by using open source DEM code. The asphalt mixture vibratory compaction 

tests at different conditions were also conducted in lab. The prediction accuracy of the 

DEM models in predicting the air voids was evaluated through the comparison between 

the DEM predicted results and the laboratory measured test data. The air voids 

compaction process was studied and the effect of vibration force and vibration speed on 

asphalt mixture compaction was investigated. 

5.2 Asphalt Mixture Vibratory Compaction Method  

Depending on the requirement of laboratory test, asphalt mixture specimens can be 

cylindrical, trapezoidal, or rectangular in shape and compaction can be achieved through 

impact, kneading, or vibration. The asphalt vibratory compactor  (AVC)  can compact 

asphalt mixture specimens at a similar amplitude, frequency and relative mass as applied 

by a construction vibratory roller on the road, and is a common compaction method to 

make asphalt mixture specimens for both cylinder and rectangular in shape for laboratory 

tests (Collins et al., 2003). For example, asphalt mixture specimens compacted by asphalt 

vibratory compactor are widely used in the Asphalt Pavement Analyzer (APA) to 
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evaluate susceptibility to permanent deformation (rutting), fatigue cracking, and moisture 

damage of hot asphalt mixture.  

The asphalt vibratory compactor, as shown in Figure 5.1, consists of the following 

four basic components (Collins et al., 2003): 

(1) Vibrating compaction assembly 

The vibrating compaction assembly is the most important part in the asphalt 

vibratory compactor and is composed of the following components: 

 Pneumatic actuator which drives the vibrating assembly and provides the 

compressive force necessary for compacting loose asphalt mixture; 

 Vibrating assembly consisting of two high efficiency vibrators bolted to the 

base plate; 

 Compaction head attached to the vibrating assembly base plate (a rectangular 

head for 125 mm by 300 mm beam specimens and a circular head for 150 

mm diameter cylindrical specimens; 

 Specimen supporting base, with a recessed area positioned directly below the 

compaction head for the beam mold or the cylinder mold to fit into during 

the compaction operation. 

(2) Specimen mold  

Two types of specimen molds are made of rigid steel material for compaction 

of the beam specimen and the cylindrical specimens. 

(3) Specimen extruding assembly 

Specimen extruding assembly is for extruding the specimen from the 

specimen mold immediately after compaction.  
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(4) Operation control system 

The operation control system is used to perform the specimen compaction and 

extrusion operations, which includes pressure regulator, pressure gauge, control 

unit and control circuit box. 

 

Figure 5.1 Asphalt Vibratory Compactor (AVC) 
 

Prior to compacting asphalt mixture samples, the compaction head of the asphalt 

vibratory compactor needs to be calibrated to produce a sample at pre-determined height 

by adjusting the position of compaction plate. Both the pre-arranged loose mix and 

compaction mold are placed in an oven at compaction temperature for required time. In 

vibration compaction, the pre-determined weight of loose asphalt mixture is poured into 

the cylindrical or rectangular preheated steel mold, and then the mold is transferred to the 

supporting base of the Asphalt Vibratory Compactor and fit into the recessed area. The 
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volume of the mix (in grams) should be determined from target final density, theoretical 

maximum specific gravity of the mix and the mold volume. The electronic control units 

of asphalt vibratory compactor allow to set a testing time and to control the specimen 

height. Once the compaction starts, the compaction head moves downward and the 

vibrating actions will be activated automatically when compaction head reaches the top 

of the steel mold. Under the static compression force and the dynamic vibrating actions, 

the loose asphalt mixture is consolidated and compacted in specimen mold according to 

pre-setting times or heights. After the asphalt mixture sample is compacted, the vibrating 

compaction assembly will automatically retract and asphalt mixture samples are extracted 

with the help of an air cylinder. 

The static compaction force is controlled by the compaction pressure and the counter 

balance pressure. The compactor head comes down at the system pressure (Ex. 90psi). 

When the compaction head reaches the top of the steel mold and the compaction motors 

start, the counter balance valve opens and puts balance pressure to the compaction head 

upward (Ex. 30psi). So 90psi down with 30psi up pressure would translate into a static 

pressure of 60psi (413.64 kPa). The vibrating action is produced by two vibrators 

attached on the compaction head. Each compactor can provide a minimum of 100 lb and 

a maximum of 1600 lb vibration force, which results in a minimum 23.7 kPa and 

maximum 358 kPa pressure for two compactors. During the compaction process, the 

compactor stops automatically at two type conditions, time control and height control. 

When either one of these conditions is satisfied, the compactor stop automatically. In 

order to study the effect of different factors on asphalt mixture vibration compaction, the 

time control termination methods was used here and the control height was set at a low 
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value (Ex. 1 inch) by adjusting compaction head. The compaction time can be adjusted 

from the cycle time counter on the control unit and specimen height was measured after 

asphalt mixture compaction. 

Hurley and Prowell (2006) presented three reasons of using asphalt vibratory 

compactor when producing asphalt mixture specimens. The first reason is the Superpave 

gyratory compactor is insensitive to temperature changes. A second reason is that it is 

easier to produce samples for the Asphalt Pavement Analyzer (APA) with the vibratory 

compactor than with a Marshall hammer (the Marshall hammer is known to be sensitive 

to compaction temperature). The third reason is that the vibratory compactor applies a 

vertical load, frequency, and amplitude that is comparable to those found in a typical 

vibratory roadway compactor. According to Jackson and Owenby’s report, volumetric 

properties were observed to be relatively uniform throughout the vibratory compacted 

specimens and the compaction process using the AVC is similar to the compaction 

process using a vibratory compactor in the field (Jackson and Owenby, 1998). Tarefder 

and Zaman (2002) pointed out SGC has a tendency to compact mixes in excess of what 

can be achieved with conventional paving equipment in the field. The bulk density values 

of the AVC compacted cylindrical specimens are similar to those of field compacted 

specimens. However, some researchers found it is difficult to reach the high level of 

density (like 97%) with asphalt vibratory compactor (Cooley & Kandhal, 1999). Bennert 

et al., (2003) reported that the vibratory compactor has difficulty compacting 19mm 

coarse pills due to the confinement of larger aggregates within the small mold.   
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5.3 Vibration Compaction DEM Simulation Process 

As mentioned above, the asphalt mixture is compacted under a combination effect of 

static force and dynamic vibration force. The dynamic vibration action is produced by 

rotating eccentric weights inside the vibrator and the default rotational speed is 3600 

Vibrations Per Minute (VPM). According to the calculation results of static force and 

dynamic vibration force, the input compaction force can be presented as shown in Figure 

5.2, which is also used as the force function of the compaction plate in DEM vibration 

compaction simulation. It should be noted that, since an explicit time stepping algorithm 

is employed in DEM simulation, the values of compaction force is constant in each 

specific time step and the value of compaction force at different time step will be 

calculated according to the force function. 

f s+f d

f s

f s = value of static force f d = magnitude of vibration force
t0

 
Figure 5.2 Force Function of Compaction Plate 
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The DEM simulation of asphalt mixture vibration compaction can be basically 

divided into two steps. The first step is the packing of particles in specimen mold under 

gravity force and the second step is the vibration compaction of particles under a 

combination effect of dynamic vibration force and static force.  

The procedures of the DEM simulation process is summarized as follows: 

 Generate open top compaction mold according to mold dimensions; 

 Calculate particle numbers of each particle size according to gradation curve; 

 Randomly generate particles in specific space within compaction mold; 

 Packing of spheres under gravity force until stable inside the mold; 

 Generate vibration plates and set vibration force function of vibration plate; 

 Particles compaction under the action of vibration compaction plate. 

 Record the position of compaction plate and particles; 

 Calculate air void of asphalt mixture according to output data. 

 

5.4 DEM Simulation Results 

5.4.1 Compaction with Different Duration Time 

A SMA mixture with the gradation as shown in Figure 4.3 was simulated here and 

verification laboratory vibratory compaction tests were conducted. Figure 5.3 shows the 

DEM simulation results and laboratory test results for asphalt mixture vibration 

compaction with different compaction duration times. It is apparent that the air voids 

decrease with time increase in both DEM simulation and laboratory test and the 

compaction gaining become slower with the time increase. From the figure, it also can be 
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observed that the DEM simulation results are smaller than that of laboratory test results, 

which probably due to the less interlock effect between spherical particles in DEM 

compaction simulation. Less interlock between particles mean less resistance during the 

asphalt mixture compaction process, so the asphalt mixture can be better compacted and 

have relatively low air voids in DEM simulation. 
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Figure 5.3 Air Voids vs. Compaction time 
 

5.4.2 Effect of Vibration Force 

     Vibration force is an important factor which can significantly affect asphalt mixture 

vibration compaction process. The vibration force of vibrators attached on the 

compaction head is adjustable by changing the eccentric settings (Figure 5.4). The 

vibrators have six levels of eccentric setting which will produce different amplitudes of 
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vibration force. The vibration forces of different settings can be found from the VIBCO 

vibrator manual and are presented in Table 5.1. Since the vibration force of setting 5 and 

6 are pretty close, only setting 1~5 were simulated here. The DEM simulation and 

laboratory test results of asphalt mixture compaction under different vibration forces are 

shown in Figure 5.5. As seen in Figure 5.5, DEM simulation and laboratory test results 

follow the same development trend in compaction process. From the figure, it can be seen 

that the air voids decrease with the increase of vibration force and the decrease rate 

becomes slower at high vibration force level. The simulation results indicate that high 

vibration force is required to make low air voids asphalt mixture specimen using 

vibration compaction method. Since the vibratory compaction effort is a one-dimensional 

stress to compact asphalt mixture and it is difficult to reach the high level of density 

(Cooley & Kandhal, 1999), the vibration force is vitally important to asphalt mixture 

compaction. 

 

Figure 5.4 Setting of Vibration Force 
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Table 5.1 Vibration force at different setting 

Setting number 1 2 3 4 5 6 

Force (N) 222.5 2225 4227.5 5785 6675 7565 
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Figure 5.5 Vibration compaction of different vibration force 

 

5.4.3 Effect of Vibration Speed 

Vibration frequency is another factor which may significantly influence the asphalt 

mixture compaction process. However, due to the cost and actual considerations, most of 

laboratory asphalt mixture vibration compactors can not adjust vibration speed to study 

the effect of vibration frequency, which usually require the complete replacement of 

vibrators. In this study, the open source DEM code was employed to study the effect of 
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vibration frequency on the asphalt mixture compaction by simply setting the vibration 

speed value in DEM code, which greatly reduces the research cost without making 

expensive changes to asphalt mixture vibration compactor in lab. Figure 5.6 presents the 

DEM simulation results of vibratory compaction at different vibration speed. The original 

speed of vibrator is 3600 vpm and two more speeds are simulated here, which can be 

simply done by adjusting the force function of compaction plate during DEM simulation. 

As shown in figure 5.6, due to the vibration effect, high vibration speed was found to 

have low air voids and it seems harder to get desired density with the low vibration speed. 

From the figure, it also can be observed that the asphalt mixture can be compacted under 

the effect of high speed vibration action within relatively short time, which is helpful to 

obtain well compacted asphalt mixture. 
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Figure 5.6 Vibration compaction of different vibration speed 
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CHAPTER 6 DEM SIMULATION OF APA LINEAR 
KNEADING COMPACTION 

 
 

6.1 Introduction  

This chapter presents the application of open source DEM code to simulate a self 

developed linear kneading HMA mixture compaction. The modified linear kneading 

compaction was based on Asphalt Pavement Analyzer (APA) machine which originally 

used to test rutting and fatigue behavior of asphalt mixture. The effect of compaction 

pressure, wheel speed and boundary condition on asphalt mixture compaction was 

studied and the predicted air voids obtained from DEM simulation was compared to the 

laboratory measured test results. 

 

6.2 Linear Kneading Compaction Method 

Currently, Asphalt Vibratory Compactor is the most common used method of 

compacting beam asphalt mixture specimens. However, some researchers have used 

linear kneading compactor (LKC) for beams specimens, which can achieve the desired 

density without fracturing aggregates and is more adaptable for producing a larger variety 

of sizes and shapes. For example, linear kneading compactor is a standard compaction 

method of making beam specimens in the Colorado Department of Transportation and the 

specification of this Standard Method was established in 2009 (CDOT, 2009). 



87 

In linear kneading compaction (as seen in Figure 6.1), the pre-heated mold is filled 

with a pre-determined weight of loose hot mix calculated from the target final density, 

theoretical maximum specific gravity of the mix and the mold volume. A series of closely 

fitting rectangular compacting plates are placed in a vertical row across the plant mix. A 

steel roller successively applies force to the top of the compacting plates while the mold 

moves back and forth on a sliding table. The steel roller transmits a rolling action force to 

the plant mix through the steel plates, one plate at a time. So a linear compression wave is 

produced in the mix by the bottom edges of the plates as the roller pushes down on each 

plate. This compacting motion continues until the height of the sample of plant mix is 

reduced to the height calculated to yield the predetermined voids and density.  

Compaction Roller

Compaction Plates

Steel Mold

Asphalt Mixture

Moving Platform

 
Figure 6.1 Schematic diagram of linear kneading compaction 

 

      After comparison of test results from laboratory and field Compacted Samples, 

Stevenson and Aschenbrener (1994) pointed out that kneading action allows the mixture 
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to be compacted without fracturing the aggregates and is probably very similar to a steel 

wheel roller. Masad et al (1999) used DIP to quantify the internal structure parameters of 

specimens compacted using Superpave gyratory compactor and linear kneading 

compactor and found out that LKC specimens had more contacts than the SGC specimens. 

The high contact number means better aggregate structure and may result in higher 

resistance to permanent deformation and higher shear strength (Khosla, 2002).  Four 

types asphalt mixture compaction methods (gyratory compactor, Marshall hammer, ELF 

linear kneading compactor and the gyratory compactor) were used by Button to evaluate 

the probability of producing specimens similar to pavement cores (Button et al., 1994). 

Laboratory-fabricated specimens from each compaction device were tested for 

mechanical properties such as indirect tensile resilient modulus, indirect tensile strength, 

strain at failure, and compressive creep. The test results indicated that there was not a 

great deal of difference between the various compactors 

6.3 APA Linear Kneading Compaction 

    Although linear kneading compaction has been used by many researchers to make 

beam specimens, the cost of linear kneading compactor is pretty high. According to the 

information collected from internet, the price of linear kneading compactor is around 

$60,000~$90,000, which makes it unavailable for many research organizations. In this 

study, a modified kneading compaction was conducted on Asphalt Pavement Analyzer 

(APA) machine and simulated using discrete element method. In the modified test, the 

Asphalt Pavement Analyzer machine, originally used to test rutting and fatigue behavior 

of asphalt mixture (Figure 6.2), was used to compact hot mixed asphalt mixture. The 
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original test mold of the APA machine was modified into steel boxes at different 

dimensions (length 305 mm, height 75 mm, three different width 50, 100, 200 mm). 

Compared with traditional linear kneading compaction, the Asphalt Pavement Analyzer 

machine not only provides an adjustable moving load condition which is more similar 

and close to real field pavement compaction, but also automatic data collection which is 

useful to collect deformation information during compaction and helpful to understand 

the compaction process. With advantages of controllable load conditions and automatic 

data collection, the Asphalt Pavement Analyzer machine can be extend to do some 

researches more than asphalt mixture test rutting and fatigue analysis. For example, Han 

et al. (2008) used Asphalt Pavement Analyzer machine to evaluate geosynthetic-soil 

confinement. In his proposed test, a geosynthetic sheet is placed within a base course to 

form a reinforced base in modified test mold, which is subjected to APA wheel loading. 

The measured rut depth with the number of cycles of wheel loading was then used to 

evaluate the geosynthetic-soil confinement.  

 

Figure 6.2 APA rutting test 
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Similar to traditional linear kneading compactor, in this APA linear kneading 

compaction (as shown in Figure 6.3), a pre-determined weight of hot mix is placed in an 

self designed open top steel mold and a series of vertically aligned steel plates (width 3/4 

inch) are positioned on top of the hot mix, and then a hydraulically-loaded APA steel 

roller moves on the vertically moveable steel plates and produces a rolling action force to 

the underneath mixture through the steel plates. The mixture is then compacted with 

kneading and compressing effect under APA moving roller. The maximum load provided 

by the APA machine is 265 lb and the load can be adjusted to study the compaction with 

different compaction effort. The speed of the APA wheel is also adjustable and the 

position of the APA wheel can be recorded automatically during compaction process. The 

modified APA linear kneading compaction is in a force control compaction condition and 

the moving APA load is closer to the real field compaction pattern. 

 

Figure 6.3 Modified APA linear kneading compactor 



91 

 

Figure 6.4 Asphalt mixture compacted with APA linear kneading compactor 

6.4 DEM Simulation Process 

In DEM simulation of APA linear kneading compaction, the kneading action force 

can be simulated by setting the load function of each plate (Figure 6.5). Take half 

compaction cycle as example, when the compactor begins to compact the asphalt mixture 

and wheel move on plate 1, the plate 1 applies a force equal to pre-setting APA wheel 

load on the underneath particles, while the forces of other plates are set to zero. When the 

wheel moves forward, plate 2 applies a force on underneath particles and other plates 

apply zero force. In the same way, the compaction force will gradually be applied by each 

plate in specific time based on the APA load and speed (Figure 6.6).  
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Figure 6.5 schematic diagram of kneading action force 
 

Time

Force

0 t1
 

Figure 6.6a Force applied by Plate 1 (F1) 

Time

Force

0 tntn-1
 

Figure 6.6b Force applied by Plate n (Fn)    
 

Figure 6.6 Force applied by Plates 
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    The DEM simulation of APA linear kneading compaction can be basically divided into 

two steps. The first step is the packing of particles under gravity force and the second step 

is the compaction under kneading action force. The procedures of the DEM simulation 

process is summarized as follows: 

 Generate open top compaction box according to mold dimensions; 

 Calculate particle numbers of each particle size according to gradation curve; 

 Randomly generate particles in specific space; 

 Packing of particles under gravity force until it is stable inside the mold; 

 Generate compression plates and set compaction force function of each plates 

with above mentioned method; 

 Particles compaction under the action of a series of compaction plates. 

 Record the position of all compression plates and spheres at the end of each 

compaction cycle; 

 Calculate air void of asphalt mixture in each cycle. 

 

6.5 DEM Simulation Results 

6.5.1 Compaction Process of APA Linear Kneading Compaction 

A SMA mixture with the gradation shown in Figure 4.3 was simulated here and 

verification laboratory compaction tests were conducted. Figure 6.7 shows the air voids 

compaction process of APA linear kneading compaction for both DEM simulation and 

laboratory test at speed 30 (1 second/circle) and pressure 600 kPa. From the figure, it can 

be seen that DEM simulation results and laboratory test results have the same 
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development trend in air voids compaction process and the DEM predicted value is also 

close to the laboratory test results. 
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Figure 6.7 Compaction process of APA kneading compaction 
 

6.5.2 Effect of Compaction Pressure 

The compaction pressure between the steel plates and underneath asphalt mixture can 

be adjusted by setting different APA machine wheel load. Figure 6.8 presents the DEM 

simulation results and lab test results of different compaction pressure in 100 mm width 

mold at wheel speed 30 (1 second/cycle). It is apparent that the air voids decrease with 

the increase of compaction pressure in both DEM simulation and lab test. The air voids of 

DEM simulation decrease quicker than that of lab test in beginning stage and slower later. 

This may be because of the effect of interlock between aggregates in laboratory 
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compaction tests. However the interlock effect is not so strong in DEM compaction 

simulation due to the spherical assumption of aggregate. When the compaction pressures 

were low, the asphalt mixtures can not be well compacted in both lab test and DEM 

simulation, so both results show high voids in the beginning stage. With the increase of 

compaction force, although both lab test and DEM simulation have the same compaction 

pressure absolute increment, the asphalt mixture can be better compacted in DEM 

simulation due to less interlock effect between round particles, so the DEM prediction air 

voids decrease faster than lab test results. With the continuous increase of compaction 

pressure, there is no space in mixture which can be further compacted in DEM simulation, 

so the DEM prediction air voids decrease slower than that of lab test, and both air voids 

in high compaction pressure are low and close to each other. 
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Figure 6.8 Air Voids vs. Compaction pressure 
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6.5.3 Effect of Wheel Speed 

The wheel speed is adjustable in APA machine and thus the adjustable wheel speed 

can be used to study the effect of kneading frequency on asphalt mixture compaction. The 

period for each wheel speed can be found in APA manual and was shown in Table 6.1.  

Table 6.1 APA wheel speed 

APA wheel speed 10 20 30 40 50 

Period (Second/Cycle) 3 1.5 1 0.75 0.6 
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Figure 6.9 Air voids vs. wheel speed 

 
The DEM simulation and laboratory test results in 100 mm width mold are shown in 

Figure 6.9. Since high compaction pressure usually causes pretty low air voids, it may be 

difficult to tell the difference of compaction at different speed, so compaction pressure 
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300 kPa was used here. From the figure, it can be seen that the air voids are highly 

affected by wheel speed in laboratory compaction test. The high wheel speed means more 

kneading times at a given time during compaction and thus results in lower air voids. The 

air voids of DEM simulation also decrease with the increase of wheel speed, but the 

difference caused by wheel speed is not so significant as that in laboratory compaction 

tests, which may also because of above mentioned  less interlock between particles in 

DEM simulation. 

6.5.4 Effect of Boundary Condition 

      In this APA linear kneading test, the self designed steel mold has three different 

widths (50, 100, 200mm) which can be used to study the effect of boundary condition on 

asphalt mixture compaction. Since the maximum load provided by APA machine is 265 

lb (1178 N), the compaction pressure simulated here is 200 kPa and the wheel speed is 

setting at 30 (1 second/cycle). Figure 6.10 presents the DEM simulation and lab test 

results. From the figure, it can be seen that mold width has certain influence on asphalt 

mixture compaction in both DEM simulation and laboratory tests. The wide mold has less 

boundary constraint and has low air voids. 
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Figure 6.10 Effect of boundary condition 
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CHAPTER 7 AIR VOIDS DISTRIBUTION ANALYSIS 
USING DEM 

 

 

7.1 Introduction  

Heterogeneous air voids distribution is a common phenomenon in asphalt mixture 

and can greatly affect the behavior of asphalt mixture. The air void distribution is related 

with several factors such as compaction effort, method of compaction, aggregate 

gradation etc. In this study, an open source discrete element method (DEM) code was 

used to simulate the compaction of hot-mix asphalt (HMA) and the DEM virtual digital 

specimens were further post processed to investigate the effect of compaction factors on 

air voids distribution. The compaction process of gyratory compaction and vibration 

compaction were simulated, and the effect of aggregate gradation, specimen height, mold 

size, mold shape and compaction method on air voids inhomogeneous distribution were 

studied. 

 

7.2 Air Voids Distribution and Research Method 

      Hot-mix asphalt (HMA) is a multi-phase composite material that consists of asphalt 

binder, coarse aggregate, fine aggregate, mineral filler, and other additives. The asphalt 

mixture behavior is highly related with the volumetric fraction and space distribution of 

these components. Air void is probably the most important volumetric property of asphalt 
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mixture and highly influences its stability and durability. Low air voids usually cause 

rutting of asphalt mixture due to plastic flow and high air voids can result in premature 

cracking or raveling due to moistures and oxidation (Roberts et al., 1996). Although the 

amount of air voids in asphalt mixture greatly affects the behavior of asphalt mixture, 

asphalt mixture specimens with the same total volume of air voids may show distinct 

mechanical behavior because of the air voids distribution. However, due to the limitation 

of laboratory techniques, researchers usually use average volume of air voids to design 

and evaluate asphalt mixture. 

 In recent years, in order to capture internal structure of asphalt mixture and study the 

effect of air voids distribution on asphalt mixture behavior, non-destructive digital image 

analysis techniques, especially X-ray computed tomography technology, have been used 

by researches and have yielded some useful results. As early as 1999, Masad et al. used 

an x-ray computed tomography system along with image analysis techniques to quantify 

the structure of air voids within asphalt mixture. He analyzed the distribution of air void 

size and number of air voids with depth by processing horizontal x-ray tomography 

image of asphalt concrete specimen and studied the effect of several factors, like number 

of gyrations, compaction method and aggregate gradation. He found a “bathtub” vertical 

air void distribution pattern in gyratory compacted specimens based on the images 

captured using the X-ray tomography (Figure 7.1). 
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Figure 7.1 Vertical Voids distribution in Gyratory Specimens (Masad, 1999) 
 

Masad et al. (2002) studied vertical air voids distribution in gyratory compacted 

specimen, linear kneading compacted specimen and field core based on the images 

captured using the X-ray tomography，and found different air voids distribution pattern 

in these asphalt mixture specimens. Muraya (2007) studied the air voids distribution of 

three different types of asphalt mixture (porous asphalt concrete, stone mastic asphalt 

concrete and the dense asphalt concrete) with a more complicated coring pattern in post 

processing stage of X-ray images and got different vertical air voids distribution pattern 

at different rays within asphalt mixture specimen. The air voids distribution in lateral 

direction was also studied. Thyagarajan et al. (2010) employed X-ray computed 

tomography to characterize the lateral air void distribution within asphalt mixture 

specimens prepared with different gyratory compactors and the test results clearly shows 
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the non-uniformity in the lateral air void distribution within HMA specimens. He found 

that air void content increases at an exponential rate as the distance from the specimen 

core increases towards the circumference and regions close to mold boundary have the 

highest air void content (Figure 7.2). 

 
Figure 7.2 Lateral Voids distribution in Gyratory Specimens (Thyagarajan, 2010) 

 
Besides the air voids distribution pattern in asphalt mixture, the inhomogeneous 

degree of air voids distribution had also been studied. Dubois studied the internal 

structure of gyratory and roller compacted specimens by means of gamma-ray 

measurements and used Standard deviation to evaluate the influence of both specimen 

dimensions and the coring direction on compaction homogeneity. Thyagarajana et al. 

(2010) investigated both vertical and lateral air voids distribution in asphalt specimen by 

analyzing successive X-ray images. He developed vertical heterogeneity index and lateral 

heterogeneity index to describe the level of heterogeneity of the air void distribution 

within the specimen in the vertical and lateral directions, and evaluate the effect of 
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compaction factor on heterogeneity of asphalt mixture, like compaction method, 

specimen preparation and height.  

7.3 Air Voids Distribution Analysis by using DEM 

Discrete Element Method (DEM) is a discontinuum analysis approach which can 

simulate the deformation process of joint systems or discrete particles assembly under 

quasi-static and dynamic conditions and gain further insight into the interaction among 

discrete particles. Hot mix asphalt mixture compaction actually is aggregates packing 

process and the slippages occur between aggregates during compaction, which makes 

asphalt mixture compaction a potential research object of discrete element method. This 

paper attempts to use open source DEM code to simulate asphalt mixture compaction and 

virtual digital specimens can be obtained by output of the simulation data. Then, the air 

voids distribution can be investigated by processing the virtual digital specimen. With the 

help of DEM simulation, the effect of compaction factors (like compaction method, 

compaction boundary) on air voids distribution can be investigated.  

7.3.1 Heterogeneity of Air Voids Distribution  

As mentioned above, the asphalt mixture specimens with the same total volume of 

air voids may have distinct mechanical behavior due to heterogeneous air voids 

distribution. During asphalt mixture compaction DEM simulation, the virtual digital 

compaction specimens can be obtained by outputting geometric data of aggregate 

particles at specific time steps. With appropriate post-processing of these digital 

specimens, the air voids distribution within the digital specimen can be investigated. In 
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order to study the air voids distribution in vertical and lateral direction, the virtual digital 

specimen will be divided into ten layers in vertical direction and six equal regions having 

the same cross-sectional area in lateral direction. The virtual cutting and coring pattern of 

digital specimen are shown in Figure 7.3 and the post-processed digital specimens are 

shown in Figure 7.4.  
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Figure 7.3 Virtual cutting and coring pattern of digital specimen 
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Figure 7.4 Post-processing of DEM digital specimen 
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Figure 7.5 presents the DEM prediction results of vertical air voids distribution within 

gyratory compacted specimen. From the figure, it can be seen that the air voids decrease 

as the number of gyrations increase and a “bathtub” vertical air voids distribution can be 

found, which is consistent with other researchers’ X-ray test results as shown in figure 

7.1 (Masad, 1999; Tashman, 2002). Figure 7.6 shows the DEM prediction results of 

lateral air voids distribution within gyratory compacted specimen. In Figure 7.6, obvious 

non-uniform lateral air voids distribution can be found and the air voids decrease from 

outer region to inner region. The air voids in region close to mold boundary are much 

higher than that of other regions. The lateral air voids distribution also has the same 

variation trend as Thyagarajana’s test results as shown in figure 7.2 (Thyagarajana, 2010). 
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Figure 7.5 Air voids distribution in vertical direction 
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Figure 7.6 Air voids distribution in Lateral direction 

 
Air void distribution is related with several factors such as compaction effort, method 

of compaction, aggregate gradation etc (Masad et al. 2002; Tashman et al. 2002). In 

order to quantitatively evaluate the effect of compaction methods, specimen height and 

specimen preparation on air void distribution, Thyagarajana et al. (2010) developed an 

index called heterogeneity index to describe the level of heterogeneity of the air void 

distribution within the specimen in the vertical and lateral directions. For better 

understanding the effect of compaction factors, all the test specimens in his research have 

the air voids around 7% and the heterogeneity index was defined as follow: 

)(1
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HI                                              (7.1) 

Where M is the total number of vertical layers or lateral regions; Vi is the air void 

content in the ith layer or region and VAvg is the overall average air void content of the 

specimen.  
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With the help of DEM simulation, the effect of these factors can be easily 

investigated by analyzing the virtual digital specimens at different compaction conditions. 

In this study, the effect of compaction method, aggregate gradation, specimen height, 

mold size and shape on air voids distribution were studied. The detailed DEM simulation 

plan is listed in Table 7.1 and three DEM digital specimens were generated for each 

compaction condition. From above DEM simulation results, it can be seen that the virtual 

digital specimen with any specific air voids can be obtained by taking the output of the 

simulation data at specific time steps. In this study, the heterogeneity index developed by 

Thyagarajana was used to study the effect of compaction factors and all virtual digital 

specimens have air voids around 5%.  

Table 7.1 DEM simulation plan for air voids distribution analysis 

Specimen 

number 

Compaction 

method 

Aggregate 

gradation 
Height (mm)

Mold size 

(mm) 
Mold shape

1-1,2,3 SGC CA=0.7 160 150 cylinder 

2-1,2,3 SGC CA=0.7 140 150 cylinder 

3-1,2,3 SGC CA=0.7 120 150 cylinder 

4-1,2,3 SGC CA=0.7 100 150 cylinder 

5-1,2,3 SGC CA=0.7 120 175 cylinder 

6-1,2,3 SGC CA=0.7 120 125 cylinder 

7-1,2,3 SGC CA=0.7 120 100 cylinder 

8-1,2,3 SGC CA=0.1 120 150 cylinder 

9-1,2,3 SGC CA=0.3 120 125 cylinder 

10-1,2,3 SGC CA=1.0 120 100 Cylinder 

11-1,2,3 Vibration CA=0.7 120 150 cylinder 

12-1,2,3 Vibration CA=0.7 120 150 rectangular

 Specimen height (#1, 2, 3, 4; gyratory compaction) 
 Aggregate gradation( #3, 8, 9, 10; gyratory compaction) 



108 

 Mold size (#3, 5, 6, 7; gyratory compaction) 
 Mode shape (#11, 12; vibration compactor) 
 Compaction method (#3, 11.) 

 

7.3.2 Effect of Aggregate Gradation 

Many researchers have proposed various ways to improve the performance of asphalt 

mixture through optimizing aggregate gradation and structure (Roque et al, 1997; 

Brigisson et al, 2001; Kim et al., 2006, 2009; Vavrik et al., 2001, 2002). Among the 

many ways, the Bailey method has been getting more and more attention and been 

successfully used in the selection of proper aggregate gradation. The Bailey method is an 

aggregate grading valuation and design method which is based on plane circle mode and 

was originally developed by Robert Bailey from the Illinois Department of Transpiration 

in the early 1980s. The Bailey Method has been proved to be a practical approach to 

select and adjust aggregate gradation in hot-mix asphalt (HMA) design and has been 

successfully applied to coarse-graded, fine-graded, and SMA Mixture all over the world 

(Vavrik et al., 2001, 2002; Peng et al., 2005; Khalid, 2006).  

In the Bailey method, aggregates are divided into three portions (Coarse Aggregate, 

Coarse Portion of Fine Aggregate, and Fine Portion of Fine Aggregate) by a primary 

control sieve and a secondary control sieve. With the proportion relation between the 

divisions, three ratios are defined: Coarse Aggregate Ratio (CA Ratio), Fine Aggregate 

Coarse Ratio (FAc Ratio), and Fine Aggregate Fine Ratio (FAf Ratio). The CA ratio is the 

ratio of the fine part (interceptors) to the coarse part (pluggers) of the overall coarse 

aggregates and has significant effect on asphalt mixture volumetric properties and 

compactability. Vavrik (2002) pointed out that an increase in the CA Ratio will cause a 
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corresponding increase in the air voids and the segregation potential increases with the 

decrease of CA ratio. 

In this study, CA ratio was used to select the coarse aggregate and then the 

relationship between aggregate gradation and heterogeneity of the air voids can be 

established through CA ratio and heterogeneity index. Four mixtures with different CA 

ratios (0.1, 0.4, 0.7, and 1.0) were simulated and the gradations are presented in Figure 

7.7.  
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Figure 7.7 Aggregate gradation (maximum size 25 mm) 

 
Figure 7.8 and 7.9 are the scatter plots of the vertical and lateral heterogeneity index 

with different CA ratios and Table 7.2 is the correlation analysis results of CA ratios. 

From the analysis results, it can be seen that CA ratio has strong and negative correlations 

with vertical heterogeneity index, which means CA ratio has considerable influence on 

vertical air voids distribution and the high CA ratio gradation has more uniform air voids 
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distribution. However, the CA ratio appears to have little effect on lateral air voids 

distribution. 

 
Figure 7.8 Effect of CA ratios on vertical heterogeneity index 
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Figure 7.9 Effect of CA ratios on lateral heterogeneity index 

 
Table 7.2 Correlation analysis of CA ratio 

Correlations 

  

CA ratio

Vertical 

heterogeneity 

index 

Lateral 

heterogeneity 

index 

Pearson Correlation 1 -.894** -.402

Sig. (2-tailed)  .000 .196

Sum of Squares and Cross-

products 

1.350 -.223 -.035

Covariance .123 -.020 -.003

CA ratio 

N 12 12 12

**. Correlation is significant at the 0.01 level (2-tailed). 
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7.3.3 Effect of Specimen Height 

The geometry of the specimen also affects the air void distribution in HMA 

specimens (Thyagarajana, 2010). The vertical and lateral heterogeneity index of digital 

specimens with different heights is presented in Figure 7.10 and 7.11. The Correlation 

analysis results are shown in Table 7.3. From correlation analysis results, a strong and 

positive correlation was found between vertical heterogeneity index and specimen height. 

From Figure 7.10, it is pretty clear that the vertical heterogeneity index increases with the 

increase of specimen height, which is similar as Thyagarajana’s research results. In 

Figure 7.11, it seems that the lateral heterogeneity index decreases slightly with the 

specimen height. However the correlation analysis results shows there is no statistically 

significant correlation between lateral heterogeneity index and specimen height. The 

effect of specimen height on lateral air voids distribution in this study is not so significant, 

consistent with Thyagarajana’s results. 
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Figure 7.10 Effect of specimen height on vertical heterogeneity index 

 
Figure 7.11 Effect of specimen height on lateral heterogeneity index 
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Table 7.3 Correlation analysis of specimen height 

Correlations 

  

Height 

Vertical 

heterogeneity 

index 

Lateral 

heterogeneity 

index 

Pearson Correlation 1 .855** -.384

Sig. (2-tailed)  .000 .218

Sum of Squares and Cross-

products 

6000.000 9.274 -1.996

Covariance 545.455 .843 -.181

Height 

N 12 12 12

**. Correlation is significant at the 0.01 level (2-tailed). 
 

7.3.4 Effect of Mold Size 

Due to the limitation of compaction device, most of previous research focused on the 

effect of compaction parameters related with compaction machine and seldom studied the 

effect of compaction mold. However, from above internal air voids distribution analysis, 

it can be seen that air voids could be affected by mold boundaries. In order to study the 

edge effect on air voids distribution, compaction molds with four different diameters 

were simulated. Figure 7.12 and 7.13 show the post-processing results of virtual digital 

specimen compacted within different size molds (Diameter=100, 125, 150, 175 mm) and 

Table 7.4 presents the correlation analysis results of mold size. Figure 7.12 and 7.13 

clearly shows edge effect on air voids distribution. It can be seen that both vertical and 

lateral heterogeneity index decrease with the mold size and the edge effect is significant 

on lateral air voids distribution, which means the big mold size can make more uniform 

air voids distribution asphalt specimen in both vertical and lateral direction. The 
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correlation analysis results also show strong correlation between mold diameter and both 

vertical and lateral air voids distribution. 

 
Figure 7.12 Effect of mold size on vertical heterogeneity index 
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Figure 7.13 Effect of mold size on lateral heterogeneity index 

 
Table 7.4 Correlation analysis of mold size 

Correlations 

  

Diameter

Vertical 

heterogeneity 

index 

Lateral 

heterogeneity 

index 

Pearson Correlation 1 -.863** -.950**

Sig. (2-tailed)  .000 .000

Sum of Squares and Cross-

products 

9375.000 -8.879 -24.681

Covariance 852.273 -.807 -2.244

Diameter 

N 12 12 12

**. Correlation is significant at the 0.01 level (2-tailed). 
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7.3.5 Effect of Mold Shape 

From above DEM simulation results, it can be seen that compaction mold size has a 

significant effect on air voids distribution. The mold shape also has edge effect on asphalt 

mixture compaction and air voids distribution. Vibration compaction is one common 

asphalt mixture compaction method for making both cylinder asphalt specimen and 

rectangular specimen. In this study, the vibration compactions with two different mold 

shapes were simulated using DEM code. The tetragonal compaction mold and cylinder 

compaction mold have equal cross-sectional area in vibration compaction DEM 

simulation. In DEM simulation, only flat surface walls are available and curved surface 

walls should be made by combining several flat surface walls. In this study, the tetragonal 

and cylindrical containers were formed by combining 4 and 32 plates respectively. Figure 

7.14 and 7.15 are the scatter plots of the vertical and lateral heterogeneity index with 

different mold shape and Table 7.5 presents the correlation analysis results. From Figure 

7.14 and 7.15, it can be seen that the vertical heterogeneity index of digital specimen 

compacted in tetragonal mold is higher that in cylinder mold, but the effect is not very 

significant. However, the lateral heterogeneity index of digital specimen compacted in 

tetragonal mold is much higher than that in cylinder compaction mold. The correlation 

analysis results show that the lateral heterogeneity index is strongly correlated with mold 

shape and the correlation between vertical index and mold shape didn’t satisfy the level 

of significance equal to 0.01. The uneven lateral air voids distribution within specimen 

compacted in tetragonal mold may be due to the existence of tetragonal corners which 

limit the movement of aggregates in lateral direction during compaction process. Under 

the influence of the corner, it is hard to achieve the required density in this area. 
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Figure 7.14 Effect of mold shape on vertical heterogeneity index 

 
Figure 7.15 Effect of mold shape on lateral heterogeneity index 
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Table 7.5 Correlation analysis of mold shape 

Correlations 

  

Mold shape

Vertical 

heterogeneity 

index 

Lateral 

heterogeneity 

index 

Pearson Correlation 1 .717 .977**

Sig. (2-tailed)  .108 .001

Sum of Squares and Cross-

products 

1.500 .028 .224

Covariance .300 .006 .045

Mold shape 

N 6 6 6

**. Correlation is significant at the 0.01 level (2-tailed). 
 

7.3.6 Effect of Compaction Method 

Gyratory compaction and vibration compaction are two commonly used compaction 

methods to make asphalt mixture specimens. Figure 7.16 and 7.17 shows the vertical and 

lateral heterogeneity index of cylindrical specimens compacted by gyratory and vibration 

compactor. Table 7.6 presents the correlation analysis results of compaction method. 

Form the figures, it can be observed that the gyratory compacted specimens have smaller 

vertical and lateral heterogeneity index than the vibration compacted specimen. The 

correlation analysis results also show that the correlation between compaction method 

and both vertical and lateral heterogeneity index are significant at the level of 0.01 and 

0.05 respectively. The analysis results indicate that the gyratory compacted specimen has 

more homogenous air voids distribution than vibration compaction specimen in both 

vertical and lateral direction. Compared with vibration compaction, the aggregates have 

more movement in horizontal direction with the impact of gyration. The ability for 
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aggregates movement in more directions is helpful to the slippage and filling of 

aggregates and thus can result in better mixture compaction. 

 
Figure 7.16 Effect of compaction method vertical heterogeneity index 
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Figure 7.17 Effect of compaction method lateral heterogeneity index 

 
Table 7.6 Correlation analysis of compaction method 

Correlations 

  
Compaction 

method 

Vertical 

heterogeneity 

index 

Lateral 

heterogeneity 

index 

Pearson Correlation 1 .985** .837*

Sig. (2-tailed)  .000 .038

Sum of Squares and Cross-

products 

1.500 .128 .084

Covariance .300 .026 .017

Compaction method 

N 6 6 6

**. Correlation is significant at the 0.01 level (2-tailed). 

*. Correlation is significant at the 0.05 level (2-tailed). 
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CHAPTER 8 SUMMARY, CONCLUSIONS AND 
RECOMMENDATIONS 

 
 

8.1 Summary 

The primary objective of this study was to simulate asphalt compaction process by 

using discrete element method and investigate the heterogeneous air voids distribution 

with the help of DEM simulation. By completing this study, an open source DEM code, 

YADE, was modified and implemented with the C++ programming language for the 

DEM simulation of asphalt mixture compaction.  

A viscoelastic contact model was developed in DEM code and verified through 

comparing with well established analytical solutions. The input parameters of the new 

developed contact model were obtained through nonlinear regression analysis of dynamic 

modulus test results. Two commonly used compaction methods (Superpave gyratory 

compaction and asphalt vibratory compaction) and one self developed APA linear 

kneading compaction were simulated using DEM code YADE and the DEM compaction 

model were verified through the comparison between the DEM predicted results and the 

laboratory measured test data. The air voids distribution within asphalt specimen was 

analyzed by post processing virtual DEM compaction digital specimen and the level of 

heterogeneity of the air void distribution within the specimen in the vertical and lateral 

directions was studied. The DEM simulation results have a good agreement with 

laboratory test results, which demonstrates that DEM can be used to simulate asphalt 
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mixture compaction under different loading conditions and is a potentially helpful tool 

for asphalt mixture compaction analysis. 

8.2 Conclusions 

Conclusions obtained from this study are presented in four parts: (1) DEM 

simulation of Superpave gyratory compaction; (2) DEM simulation of asphalt vibratory 

compaction; (3) DEM simulation of APA linear kneading compaction; and (4) DEM 

analysis of air voids distribution. 

8.2.1 DEM Simulation of Superpave Gyratory Compaction 

A 3D DEM simulation has been carried out to study compaction process of 

Superpave gyration compactor. A sensitivity analysis and comparisons of DEM 

simulations to laboratory experiments and published results indicated highly agreeable 

results or trends.  Based on the DEM simulation results, the following conclusions can be 

found. Although some findings in this DEM simulation are well known, they have also 

been reflected through DEM simulation: 

 With inherent advantages in granular materials analysis, the discrete element 

method can be used to examine the effect of aggregate gradation, shape, the 

properties of asphalt mixture and the parameter of compaction machine. The 

simulation results in this paper were in a good agreement with the experimental 

data and previous research results, which demonstrates that the DEM simulation 

could be a potentially helpful tool for asphalt mix design by reducing the number 

of physical compaction in the laboratory. 
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 Based on the study of minimum particle size, the finer the size of aggregate used 

in the DEM simulation, the better the simulation results. The errors were 

significantly reduced by considering more fine aggregates. Compared with 

minimum particle size 1.36 mm, a good DEM simulation result also can be 

obtained by simulating aggregates bigger than 2.36 mm for the mixture used in 

this study, which greatly reduces the computational complexity in DEM 

simulation. 

 Aggregate gradation is an important factor in asphalt mixture compaction. DEM 

simulation in this paper successfully predicted compaction curves of two asphalt 

mixture (Superpave and SMA) with reasonable accuracies.   

 The aggregate shape plays an important role in asphalt mixture compaction. DEM 

simulation results show that the air voids increase significantly with the aspect 

ratio of elongation, which agrees with common knowledge. 

 Gyration angle can significantly affect asphalt mixture compaction. The packing 

density increased with the gyration angle and asphalt mixture became more 

difficult for compaction when the gyration angle was set too low. 

 The Burger’s model parameters can reflect the effect of temperature on mixture 

compaction. In the DEM simulation, asphalt mixture would be compacted faster at 

higher temperature than at lower temperature, which agrees with common 

knowledge. 

 The motion trace indicates that aggregates compacted without gyration have less 

movement in horizontal directions, which is unfavorable for slippage and filling 

of aggregates and thus leads to hard mixture compaction. 
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8.2.2 DEM Simulation of Asphalt Vibratory Compaction 

In this section, the asphalt vibratory compaction was simulated using DEM code and 

the asphalt mixture vibratory compaction tests at different conditions were also conducted 

in the lab. The air voids compaction process was studied and the effect of vibration force 

and vibration speed on asphalt mixture compaction was investigated. Based on the DEM 

simulation results, the following conclusions can be found or confirmed: 

 Both DEM simulation and laboratory test results exhibit the same development 

trend in air voids compaction process and the compaction gaining become slower 

with the time increase. DEM simulation results are smaller than that of laboratory 

test results, which is probably due to the less interlock effect between particles in 

DEM simulation. 

 For the vibration compaction at different vibration force, both DEM simulation 

and laboratory test results have the same trend, the air voids decrease with the 

increase of vibration force, which demonstrate that DEM can be used to study 

asphalt mixture compaction under different compaction effort. 

 The DEM simulation results show that vibration speed can significantly influence 

the compaction results and low vibration speed is harder to compact asphalt 

mixture to desired density with limited time. 

8.2.3 DEM Simulation of APA Linear Kneading Compaction 

In this section, the open source code, YADE, was applied to study asphalt mixture 

compaction by using modified APA linear kneading compactor. The effect of compaction 

pressure, wheel speed and boundary condition on asphalt mixture compaction was 
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studied and the predicted air voids obtained from DEM simulation were compared to the 

laboratory measured test results. Based on the DEM simulation results, the following 

conclusions can be found or confirmed: 

 DEM simulation results and laboratory test results have the same development 

trend in air voids compaction process and the DEM predicted value is also close 

to the laboratory test results. 

 By adjusting APA wheel load, the compaction pressure between steel plates and 

mixture can be studied. The air voids of DEM simulation decrease quicker than 

that of lab test in beginning stage and slower later. This difference may be because 

of different interlock effect of aggregates in lab test and DEM simulation. 

 The kneading frequency has certain influence on asphalt mixture compaction and 

high kneading speed results in better asphalt mixture compaction due to the 

kneading effect. 

 Both DEM simulation and test results show that compaction boundary condition 

can greatly affect asphalt mixture compaction results. The DEM results show that 

DEM simulation can be used to predict mixture compaction under different 

boundary conditions, which means DEM has potential to investigate mixture 

compaction under field boundary conditions with enough processing power of 

computer. 

8.2.4 DEM Analysis of Air Voids Distribution 

In this section, the air voids distribution within an asphalt specimen was analyzed by 

post processing virtual DEM compaction digital specimen and the level of heterogeneity 
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of the air void distribution within the specimen in the vertical and lateral directions was 

studied. Based on the DEM simulation results, the following conclusions can be drawn: 

 From the DEM digital specimen post-processing results, it can be seen that a 

“bathtub” vertical air voids distribution can be found in gyratory compacted 

specimens and the air voids in the region close to the mold boundary are much 

higher than that of other regions due to the edge effect. 

 CA ratio has considerable influence on vertical air voids distribution and the 

gradation with high CA ratio has more uniform air voids distribution, and the 

effect of CA ratio on lateral air voids distribution is not statistically significant. 

 According to the DEM post-processing and correlation analysis results, the 

asphalt mixture height has significantly effect on the vertical air void distribution. 

The high asphalt specimen resulted in more uneven air voids distribution in the 

vertical direction and more even air voids distribution in the lateral direction. 

 From the DEM simulation results, it can be seen that both the vertical and lateral 

heterogeneity index decrease with the mold size and the edge effect is pretty 

significant on lateral air voids distribution. 

 The mold shape also has an edge effect on asphalt mixture compaction and air 

voids distribution. The asphalt mixture compacted in cylinder mold has more even 

air voids distribution in lateral direction than that in tetragonal mold. 

 The compaction methods have obvious effect on air voids distribution in both 

vertical and lateral distribution. The gyratory compacted specimen has more 

homogenous air voids distribution than vibration compaction specimen. 
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8.3 Recommendation 

This study focuses on the application of discrete element method on asphalt mixture 

compaction and the air voids distribution within asphalt mixture compaction using open 

source DEM code. The laboratory compaction tests were conducted to verify the DEM 

simulation results. This study provides a new way to study asphalt mixture compaction 

through internal microscopic view and also gives a direction for future DEM research of 

asphalt mixture compaction. Some recommendations are provided here for further 

research work: 

 Due to the limitation of computer processing capability, it is still difficult to 

simulate all the aggregate particles in asphalt mixture compaction (tens of millions 

of small particles have to be considered in asphalt mixture). In this study, after 

studying the effect of minimum simulated particle size on the compaction results, 

it found that the prediction errors were reduced by considering more fine 

aggregates in DEM simulation. Nowadays, the DEM analyses have been limited 

to about 105 particles. The minimum size of aggregates simulated in this study is 

2.36 mm, which still has certain influence on the prediction results of air voids 

during DEM simulation. Although Cundall (2001) has suggested that 1011 

particles could be available within 20 years, currently, the most direct and apparent 

solution is the use of parallel processing, which will allow analyses of 106 or even 

109 particles, depending on 2D or 3D. 

 As seen from the previous chapters, spherical particles were used in most of the 

DEM simulations in this study, which makes the contact condition simple and 
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greatly eases the calculation difficulty. However, aggregate shape is an important 

factor in asphalt mixture design and has a significant influence during compaction 

process of asphalt mixture. The X-ray computed tomography technology is non-

destructive digital image analysis techniques and has been used by researchers to 

characterize the geometrical property of aggregates (Masad, 2002). Clump 

technique is a common method to model irregular shaped particles in DEM 

simulation. With the combination of X-ray computed tomography technology and 

Clump technique, the shape of aggregates can be better simulated and DEM 

simulation of asphalt mixture compaction could come closer to describing the 

reality of asphalt mixture compaction. However, the use of clump technique will 

further increase the number of particles in DEM simulation, since one aggregate 

may consist of several spherical particles. 
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Appendices-A1 Hpp File of Burgers’ Model in YADE Code  

#ifndef Burgers_CONTACT_LAWNew_HPP 
#define Burgers_CONTACT_LAWNew_HPP 
 
#include<yade/core/InteractionSolver.hpp> 
#include<yade/core/PhysicalAction.hpp> 
 
#include <set> 
#include <boost/tuple/tuple.hpp> 
 
class PhysicalAction; 
 
class BurgersContactLawNew : public InteractionSolver 
{ 
 
 private : 
  shared_ptr<PhysicalAction> actionForce; 
  shared_ptr<PhysicalAction> actionMomentum; 
  int actionForceIndex; 
  int actionMomentumIndex; 
   
 public : 
 
  Real BurEmn;// burger's E parameters for maxwell in normal 
direction 
  Real BurEkn;// burger's E parameters for kelvin in normal 
direction 
  Real BurEms; 
  Real BurEks; 
  Real BurDmn;// burger's Dashpot parameters for maxwell in 
normal direction 
  Real BurDkn;// burger's Dashpot parameters for kelvin in 
normal direction 
  Real BurDms; 
  Real BurDks; 
  Real BurPoi;// burger's Poisson ratio 
                int sdecGroupMask; 
  bool momentRotationLaw;  
  BurgersContactLawNew(); 
  void action(MetaBody*); 
 
 protected : 
  void registerAttributes(); 
 NEEDS_BEX("Force","Momentum"); 
 REGISTER_CLASS_NAME(BurgersContactLawNew); 
 REGISTER_BASE_CLASS_NAME(InteractionSolver); 
}; 
 
REGISTER_SERIALIZABLE(BurgersContactLawNew,false); 
 
#endif // Burgers_CONTACT_LAWNew_HPP 
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Appendices-A2 Cpp File of Burgers’ Model in YADE Code  

#include"BurgersContactLawNew.hpp" 
#include<yade/pkg-dem/BodyMacroParameters.hpp> 
#include<yade/pkg-dem/SpheresContactGeometry.hpp> 
#include<yade/pkg-dem/SDECLinkGeometry.hpp> 
#include<yade/pkg-dem/ElasticContactInteraction.hpp> 
#include<yade/pkg-dem/SDECLinkPhysics.hpp> 
#include<yade/core/Omega.hpp> 
#include<yade/core/MetaBody.hpp> 
#include<yade/pkg-common/Force.hpp> 
#include<yade/pkg-common/Momentum.hpp> 
#include<yade/core/PhysicalAction.hpp> 
 
BurgersContactLawNew::BurgersContactLawNew() : InteractionSolver() , 
actionForce(new Force) , actionMomentum(new Momentum) 
{ 
 sdecGroupMask=1; 
 momentRotationLaw = true; 
 actionForceIndex = actionForce->getClassIndex(); 
 actionMomentumIndex = actionMomentum->getClassIndex(); 
} 
 
 
void BurgersContactLawNew::registerAttributes() 
{ 
 InteractionSolver::registerAttributes(); 
 REGISTER_ATTRIBUTE(sdecGroupMask); 
 REGISTER_ATTRIBUTE(momentRotationLaw); 
 REGISTER_ATTRIBUTE(BurEmn); 
 REGISTER_ATTRIBUTE(BurEkn); 
 REGISTER_ATTRIBUTE(BurEms); 
 REGISTER_ATTRIBUTE(BurEks); 
 REGISTER_ATTRIBUTE(BurDmn); 
 REGISTER_ATTRIBUTE(BurDkn); 
 REGISTER_ATTRIBUTE(BurDms); 
 REGISTER_ATTRIBUTE(BurDks); 
 REGISTER_ATTRIBUTE(BurPoi); 
} 
 
 
void BurgersContactLawNew::action(MetaBody* ncb) 
{ 
 shared_ptr<BodyContainer>& bodies = ncb->bodies; 
 Real dt = Omega::instance().getTimeStep(); 
 
 InteractionContainer::iterator ii    = ncb->transientInteractions-
>begin(); 
 InteractionContainer::iterator iiEnd = ncb->transientInteractions-
>end(); 
 for(  ; ii!=iiEnd ; ++ii ) 
 { 
  if ((*ii)->isReal) 
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  { 
   const shared_ptr<Interaction>& contact = *ii; 
   int id1 = contact->getId1(); 
   int id2 = contact->getId2(); 
    
   if( !( (*bodies)[id1]->getGroupMask() & 
(*bodies)[id2]->getGroupMask() & sdecGroupMask) ) continue; 
 
   SpheresContactGeometry*    currentContactGeometry= 
YADE_CAST<SpheresContactGeometry*>(contact->interactionGeometry.get()); 
   ElasticContactInteraction* currentContactPhysics = 
YADE_CAST<ElasticContactInteraction*> (contact-
>interactionPhysics.get()); 
   if((!currentContactGeometry)||(!currentContactPhysics)) 
continue; 
  
   BodyMacroParameters* de1     = 
YADE_CAST<BodyMacroParameters*>((*bodies)[id1]-
>physicalParameters.get()); 
   BodyMacroParameters* de2     = 
YADE_CAST<BodyMacroParameters*>((*bodies)[id2]-
>physicalParameters.get()); 
 
   bool isDynamic1 = (*bodies)[id1]->isDynamic; 
   bool isDynamic2 = (*bodies)[id2]->isDynamic; 
 
   Real Da  = currentContactGeometry->radius1; 
   Real Db  = currentContactGeometry->radius2; 
 
   Vector3r& shearForce   = currentContactPhysics-
>shearForce; 
   Vector3r& normalForce   = currentContactPhysics-
>normalForce; 
   Vector3r& ukkn    = currentContactPhysics-
>ukkn; 
   Vector3r& shearForceT1   = currentContactPhysics-
>shearForceT1; 
   Vector3r& normalForceT1  = currentContactPhysics-
>normalForceT1; 
   Vector3r& ukks    = currentContactPhysics-
>ukks; 
   int& Ite    = currentContactPhysics->Ite; 
 
   Real    Dinit = Da+Db;  
          Real knk = BurEkn*Dinit; 
          Real cnk = BurDkn*Dinit; 
          Real knm = BurEmn*Dinit; 
          Real cnm = BurDmn*Dinit; 
          Real ksk = BurEks*Dinit/(2.0+2.0*BurPoi); 
          Real csk = BurDks*Dinit/(2.0+2.0*BurPoi); 
          Real ksm = BurEms*Dinit/(2.0+2.0*BurPoi); 
          Real csm = BurDms*Dinit/(2.0+2.0*BurPoi); 
 
   Real un=currentContactGeometry->penetrationDepth; 
   Real burnA=1.0+knk*dt/(2.0*cnk); 
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   Real burnB=1.0-knk*dt/(2.0*cnk); 
   Real burnC=dt/(2.0*cnk*burnA)+1.0/knm+dt/(2.0*cnm); 
   Real burnD=dt/(2.0*cnk*burnA)-1.0/knm+dt/(2.0*cnm); 
   Real bursA=1.0+ksk*dt/(2.0*csk); 
   Real bursB=1.0-ksk*dt/(2.0*csk); 
   Real bursC=dt/(2.0*csk*bursA)+1.0/ksm+dt/(2.0*csm); 
   Real bursD=dt/(2.0*csk*bursA)-1.0/ksm+dt/(2.0*csm); 
 
   if (contact->isNew)  
                        {   ukkn=Vector3r(0,0,0); 
                            ukks=Vector3r(0,0,0); 
                            shearForce=Vector3r(0,0,0); 
                            normalForce=knm*std::max(un,(Real) 
0)*currentContactGeometry->normal; 
                         }    
   
   Vector3r axis; 
   Real angle;    
   axis = currentContactPhysics-
>prevNormal.Cross(currentContactGeometry->normal); 
   shearForce -= shearForce.Cross(axis); 
   Vector3r summaryAngularVelocity(0,0,0); 
   if (isDynamic1) summaryAngularVelocity += de1-
>angularVelocity; 
   if (isDynamic2) summaryAngularVelocity += de2-
>angularVelocity; 
   angle = dt*0.5*currentContactGeometry-
>normal.Dot(summaryAngularVelocity); 
   axis = angle*currentContactGeometry->normal; 
   shearForce -= shearForce.Cross(axis); 
  
   Vector3r x    = 
currentContactGeometry->contactPoint; 
   Vector3r c1x    = (x - de1-
>se3.position); 
   Vector3r c2x    = (x - de2-
>se3.position); 
              Vector3r _c1x_ = (isDynamic1) ? 
currentContactGeometry->radius1*currentContactGeometry->normal : x - 
de1->zeroPoint; 
              Vector3r _c2x_ = (isDynamic2) ? -
currentContactGeometry->radius2*currentContactGeometry->normal : x - 
de2->zeroPoint; 
   Vector3r relativeVelocity  = (de2-
>velocity+de2->angularVelocity.Cross(_c2x_))-(de1->velocity+de1-
>angularVelocity.Cross(_c1x_)); 
                        Vector3r normalVelocity = 
std::abs(currentContactGeometry-
>normal.Dot(relativeVelocity))*currentContactGeometry->normal; 
                        Vector3r shearVelocity   = 
relativeVelocity-normalVelocity; 
   Vector3r shearDisplacement  = shearVelocity*dt; 
   Vector3r normalDisplacement  = 
normalVelocity*dt; 
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                        if (contact->isNew) 
Ite=Omega::instance().getCurrentIteration(); 
   normalForceT1 = (normalDisplacement+ukkn*(1.0-
burnB/burnA)-normalForce*burnD)/burnC; 
   ukkn = 
(ukkn*burnB+(normalForceT1+normalForce)*dt/(2.0*cnk))/burnA; 
   normalForce = normalForceT1; 
                         
   shearForceT1 = -1.0*(shearDisplacement+ukks*(1.0-
bursB/bursA)+bursD*shearForce)/bursC; 
   ukks = (ukks*bursB-
(shearForceT1+shearForce)*dt/(2.0*csk))/bursA; 
   shearForce = shearForceT1; 
 
   Real maxFs = normalForce.SquaredLength() * 
std::pow(currentContactPhysics->tangensOfFrictionAngle,2); 
   if( shearForce.SquaredLength() > maxFs ) 
   { 
    maxFs = Mathr::Sqrt(maxFs) / shearForce.Length(); 
    shearForce *= maxFs; 
   } 
 
  
   Vector3r f    = normalForce + 
shearForce; 
    
   static_cast<Force*>   ( ncb->physicalActions-
>find( id1 , actionForceIndex).get() )->force    -= f; 
   static_cast<Force*>   ( ncb->physicalActions-
>find( id2 , actionForceIndex ).get() )->force    += f; 
    
   static_cast<Momentum*>( ncb->physicalActions-
>find( id1 , actionMomentumIndex ).get() )->momentum -= c1x.Cross(f); 
   static_cast<Momentum*>( ncb->physicalActions-
>find( id2 , actionMomentumIndex ).get() )->momentum += c2x.Cross(f); 
    
   currentContactPhysics->prevNormal = 
currentContactGeometry->normal; 
  } 
 } 
} 
 
YADE_PLUGIN(); 
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Appendices-B1 Hpp File of Rotation Plate Engine in YADE Code 

#ifndef ROTATIONENGINE_HPP 
#define ROTATIONENGINE_HPP 
 
#include<yade/core/DeusExMachina.hpp> 
#include <Wm3Vector3.h> 
#include<yade/lib-base/yadeWm3.hpp> 
 
class RotationEngine : public DeusExMachina 
{ 
 public : 
  RotationEngine(); 
 
  Real angularVelocity; 
  Vector3r rotationAxis; 
  bool rotateAroundZero; 
  Vector3r zeroPoint; 
 
  void applyCondition(MetaBody * ); 
 
 protected : 
  void registerAttributes(); 
  void postProcessAttributes(bool deserializing); 
 REGISTER_CLASS_NAME(RotationEngine); 
 REGISTER_BASE_CLASS_NAME(DeusExMachina); 
}; 
 
REGISTER_SERIALIZABLE(RotationEngine,false); 
 
#endif // ROTATIONENGINE_HPP 
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Appendices-B2 Cpp File of Rotation Plate Engine in YADE Code 

#include "RotationEngine.hpp" 
#include<yade/pkg-common/RigidBodyParameters.hpp> 
#include<yade/core/MetaBody.hpp> 
#include<yade/lib-base/yadeWm3Extra.hpp> 
 
 
RotationEngine::RotationEngine() 
{ 
 rotateAroundZero = false; 
 zeroPoint = Vector3r(0,0,0); 
} 
 
 
void RotationEngine::registerAttributes() 
{ 
 DeusExMachina::registerAttributes(); 
 REGISTER_ATTRIBUTE(angularVelocity); 
 REGISTER_ATTRIBUTE(rotationAxis); 
 REGISTER_ATTRIBUTE(rotateAroundZero); 
 REGISTER_ATTRIBUTE(zeroPoint); 
} 
 
void RotationEngine::postProcessAttributes(bool deserializing) 
{ 
  if (!deserializing) return; 
  rotationAxis.Normalize(); 
} 
 
void RotationEngine::applyCondition(MetaBody *ncb) 
{ 
 
 shared_ptr<BodyContainer> bodies = ncb->bodies; 
 
 std::vector<int>::const_iterator ii = subscribedBodies.begin(); 
 std::vector<int>::const_iterator iiEnd = subscribedBodies.end(); 
 
 Real dt = Omega::instance().getTimeStep(); 
 // time = dt; 
 
 Quaternionr q; 
 q.FromAxisAngle(rotationAxis,angularVelocity*dt); 
 
 Vector3r ax; 
 Real an; 
  
 for(;ii!=iiEnd;++ii) 
 { 
  RigidBodyParameters * rb = 
static_cast<RigidBodyParameters*>((*bodies)[*ii]-
>physicalParameters.get()); 
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  if(rotateAroundZero) 
   rb->se3.position = q*(rb->se3.position-
zeroPoint)+zeroPoint; // for RotatingBox 
  
  rb->se3.orientation = q*rb->se3.orientation; 
  rb->se3.orientation.Normalize(); 
  rb->se3.orientation.ToAxisAngle(ax,an); 
   
  rb->angularVelocity = rotationAxis*angularVelocity; 
  rb->velocity  = Vector3r(0,0,0); 
 } 
 
 
} 
 
YADE_PLUGIN(); 
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Appendices-C1 Hpp File of Constant Pressure Engine in YADE 

Code 

#ifndef COMPRESSION_PLATE_HPP 
#define COMPRESSION_PLATE_HPP 
 
#include<yade/core/DeusExMachina.hpp> 
#include <Wm3Vector3.h> 
#include<yade/lib-base/yadeWm3.hpp> 
#include <string> 
 
#define TR {if (Omega::instance().getCurrentIteration()%100==0) TRACE; } 
class PhysicalAction; 
class MetaBody; 
class PhysicalParameters; 
 
class CompressionPlate : public DeusExMachina  
{ 
 private : 
  int ForceClassIndex; 
  
        public : 
                Real       stiffnessCompressionPlate; 
         int        Plate_id, UpdateInterval; 
                int        &CompressionPlate_id; 
                Vector3r   normalCompressionPlate; 
                Vector3r   previousTranslationCompressionPlate; 
                Real       wallDamping; 
                Real       sigma_iso; 
         Real       depth; 
         Real       width; 
                Real       platedeg; 
  std::string  outputFile; 
                bool       CompressionPlate_activated; 
                Real       max_vel; 
 
  Real angularVelocity; 
  Vector3r rotationAxis; 
  bool rotateAroundZero; 
  Vector3r zeroPoint; 
                int        Ite; 
 
                CompressionPlate(); 
  virtual ~CompressionPlate(); 
 
  virtual void applyCondition(MetaBody*); 
  //! Regulate the stress applied on walls with flag 
wall_XXX_activated = true 
  void controlExternalStress(MetaBody* ncb, Vector3r 
resultantForce, PhysicalParameters* p, Real wall_max_vel); 
  void updateStiffness(MetaBody* ncb); 
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  DECLARE_LOGGER;   
  
 protected : 
  virtual void registerAttributes(); 
 NEEDS_BEX("Force"); 
 REGISTER_CLASS_NAME(CompressionPlate); 
 REGISTER_BASE_CLASS_NAME(DeusExMachina); 
}; 
 
REGISTER_SERIALIZABLE(CompressionPlate,false); 
 
#endif // COMPRESSION_PLATE_HPP 
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Appendices-C2 Cpp file of Constant Pressure Engine in YADE 

Code 

#include"CompressionPlate.hpp" 
#include<yade/pkg-common/InteractingSphere.hpp> 
#include<yade/pkg-common/InteractingBox.hpp> 
#include<yade/pkg-dem/SpheresContactGeometry.hpp> 
#include<yade/pkg-dem/ElasticContactInteraction.hpp> 
#include<yade/pkg-common/Force.hpp> 
#include<yade/pkg-common/RigidBodyParameters.hpp> 
#include<yade/pkg-common/ParticleParameters.hpp> 
 
#include<yade/core/MetaBody.hpp> 
#include<yade/pkg-common/Sphere.hpp> 
#include<yade/extra/Shop.hpp> 
#include<boost/lexical_cast.hpp> 
#include <string> 
 
CREATE_LOGGER(CompressionPlate); 
 
CompressionPlate::CompressionPlate():CompressionPlate_id(Plate_id) 
{ 
   shared_ptr<Force> tmpF(new Force); 
   ForceClassIndex=tmpF->getClassIndex(); 
 
        stiffnessCompressionPlate = 0; 
   Plate_id = 0; 
        normalCompressionPlate = Vector3r::ZERO; 
        previousTranslationCompressionPlate = Vector3r::ZERO; 
        wallDamping = 0; 
        sigma_iso = 0; 
   depth = 0; 
   width = 0; 
        platedeg=0; 
        CompressionPlate_activated = true; 
        max_vel = 0.001; 
   outputFile = "0D"; 
   rotateAroundZero = false; 
   zeroPoint = Vector3r(0,0,0); 
        UpdateInterval = 2000; 
        Ite=90000000; 
} 
 
CompressionPlate::~CompressionPlate() 
{  
} 
 
void CompressionPlate::registerAttributes() 
{ 
 DeusExMachina::registerAttributes(); 
 REGISTER_ATTRIBUTE(stiffnessCompressionPlate); 
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 REGISTER_ATTRIBUTE(CompressionPlate_id); 
 REGISTER_ATTRIBUTE(normalCompressionPlate); 
 REGISTER_ATTRIBUTE(wallDamping); 
  REGISTER_ATTRIBUTE(previousTranslationCompressionPlate); 
 REGISTER_ATTRIBUTE(CompressionPlate_activated); 
 REGISTER_ATTRIBUTE(max_vel); 
 REGISTER_ATTRIBUTE(width); 
 REGISTER_ATTRIBUTE(depth);  
 REGISTER_ATTRIBUTE(sigma_iso); 
 REGISTER_ATTRIBUTE(platedeg); 
 REGISTER_ATTRIBUTE(outputFile); 
 REGISTER_ATTRIBUTE(angularVelocity); 
 REGISTER_ATTRIBUTE(rotationAxis); 
 REGISTER_ATTRIBUTE(rotateAroundZero); 
 REGISTER_ATTRIBUTE(zeroPoint); 
 REGISTER_ATTRIBUTE(Ite); 
} 
 
void CompressionPlate::updateStiffness (MetaBody * ncb) 
{ 
 stiffnessCompressionPlate = 0; 
 InteractionContainer::iterator ii    = ncb->transientInteractions-
>begin(); 
 InteractionContainer::iterator iiEnd = ncb->transientInteractions-
>end(); 
 for(  ; ii!=iiEnd ; ++ii ) 
 { 
  if ((*ii)->isReal) 
  { 
   const shared_ptr<Interaction>& contact = *ii; 
   Real fn = (static_cast<ElasticContactInteraction*>
 (contact->interactionPhysics.get()))->normalForce.Length(); 
 
   if (fn!=0) 
   { 
    int id1 = contact->getId1(), id2 = contact-
>getId2(); 
     
     if ( Plate_id==id1 || Plate_id==id2 ) 
     { 
      ElasticContactInteraction* 
currentContactPhysics = 
     
 static_cast<ElasticContactInteraction*> ( contact-
>interactionPhysics.get() ); 
      stiffnessCompressionPlate  += 
currentContactPhysics->kn; 
 
     } 
   } 
  } 
 } 
} 
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void CompressionPlate::controlExternalStress(MetaBody* ncb, Vector3r 
resultantForce, PhysicalParameters* p, Real wall_max_vel) 
{ 
 Real 
translation=normalCompressionPlate.Dot(static_cast<Force*>( ncb-
>physicalActions->find(Plate_id,ForceClassIndex).get() )->force - 
resultantForce); 
 Real dt = Omega::instance().getTimeStep(); 
 // time = dt; 
 Quaternionr q; 
 q.FromAxisAngle(rotationAxis,angularVelocity*dt); 
 if (translation!=0) 
 { 
 
    if (stiffnessCompressionPlate!=0) 
    { 
           if (Ite>Omega::instance().getCurrentIteration()) 
Ite=Omega::instance().getCurrentIteration(); 
   translation /= stiffnessCompressionPlate; 
   translation = std::min( std::abs(translation), 
wall_max_vel*Omega::instance().getTimeStep() ) * 
Mathr::Sign(translation); 
    } 
    else 
  translation = wall_max_vel * 
Mathr::Sign(translation)*Omega::instance().getTimeStep(); 
 } 
 previousTranslationCompressionPlate = (1-
wallDamping)*translation*normalCompressionPlate + 
previousTranslationCompressionPlate; 
        p->se3.position= q*(p->se3.position + 
previousTranslationCompressionPlate-zeroPoint)+zeroPoint; 
        p->se3.orientation = q*p->se3.orientation; 
         if (Ite>Omega::instance().getCurrentIteration() && 
Omega::instance().getCurrentIteration() % 20000 == 0) 
    { 
                string fileName="./outputdata/"+lexical_cast<string> 
(outputFile)+".sp"+lexical_cast<string> 
( Omega::instance().getCurrentIteration() ); 
  LOG_INFO ( "saving spheres: "<<fileName ); 
  Shop::saveSpheresToFile ( fileName ); 
    } 
        if (Ite<=Omega::instance().getCurrentIteration() && 
(Omega::instance().getCurrentIteration()-Ite)% 2500 == 0) 
    { 
                string fileName="./outputdata/"+lexical_cast<string> 
(outputFile)+".sp"+lexical_cast<string> 
( Omega::instance().getCurrentIteration() ); 
  LOG_INFO ( "saving spheres: "<<fileName ); 
  Shop::saveSpheresToFile ( fileName ); 
    } 
} 
 
 
void CompressionPlate::applyCondition(MetaBody* ncb) 
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{ 
   
 shared_ptr<BodyContainer>& bodies = ncb->bodies; 
 PhysicalParameters* p_CompressionPlate = 
static_cast<PhysicalParameters*>((*bodies)[CompressionPlate_id]-
>physicalParameters.get()); 
  Vector3r wallForce (0, sigma_iso*width*depth, 0); 
  if (CompressionPlate_activated)  
                {    
                 updateStiffness(ncb); 
                 controlExternalStress(ncb, wallForce, 
p_CompressionPlate, max_vel); 
                } 
} 
YADE_PLUGIN();



161 

 

VITA 
 
 

Jingsong Chen was born in Anqing, Anhui Province, China on October, 1981. He 

graduated from Taihu middle school in July 1999. In September 1999, he started his 

undergraduate studies at Central south University in Changsha, China, and received his 

Bachelor Degree in Civil Engineering in 2003. After the completion of undergraduate 

study, he entered the master program at Central south University and received Master’s 

Degree in geotechnical engineering in June 2006. In September 2006, he entered Tongji 

University and studied one year there for Ph.D. program. In 2007, he entered the University 

of Tennessee at Knoxville to pursue his Ph.D. degree in civil engineering. Under the 

guidance of Dr. Baoshan Huang, he performed research using discrete element method 

(DEM) to simulate asphalt mixture compaction and analyze heterogeneous air voids 

distribution with asphalt mixture specimen. 


	Discrete Element Method (DEM) Analyses for Hot-Mix Asphalt (HMA) Mixture Compaction
	Recommended Citation

	Microsoft Word - Dissertation-Jingsong-0407C.doc

