
University of Tennessee, Knoxville
Trace: Tennessee Research and Creative
Exchange

Doctoral Dissertations Graduate School

8-2011

The Biglobal Instability of the Bidirectional Vortex
Joshua Will Batterson
jbatters@utk.edu

This Dissertation is brought to you for free and open access by the Graduate School at Trace: Tennessee Research and Creative Exchange. It has been
accepted for inclusion in Doctoral Dissertations by an authorized administrator of Trace: Tennessee Research and Creative Exchange. For more
information, please contact trace@utk.edu.

Recommended Citation
Batterson, Joshua Will, "The Biglobal Instability of the Bidirectional Vortex. " PhD diss., University of Tennessee, 2011.
https://trace.tennessee.edu/utk_graddiss/1056

https://trace.tennessee.edu
https://trace.tennessee.edu
https://trace.tennessee.edu/utk_graddiss
https://trace.tennessee.edu/utk-grad
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a dissertation written by Joshua Will Batterson entitled "The Biglobal
Instability of the Bidirectional Vortex." I have examined the final electronic copy of this dissertation for
form and content and recommend that it be accepted in partial fulfillment of the requirements for the
degree of Doctor of Philosophy, with a major in Aerospace Engineering.

Joseph Majdalani, Major Professor

We have read this dissertation and recommend its acceptance:

Trevor Moeller, Roy Schulz, Christian Parigger

Accepted for the Council:
Dixie L. Thompson

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

The Biglobal Instability of the

Bidirectional Vortex

A Dissertation

Presented for the

Doctor of Philosophy Degree

The University of Tennessee, Knoxville

Joshua Will Batterson

August 2011

© by Joshua Will Batterson, August 2011

All Rights Reserved.

ii

I know well who shaped my path. This is yours as much as it is mine.

iii

Acknowledgements

First, I would like to acknowledge the University of Tennessee Space Institute for giving me

a very unique opportunity to pursue my academic goals. It is an unparalleled environment

for nurturing challenging and ambitious research and education. More specifically, special

recognition is held for Dr. Majdalani who accompanied me on this grueling path as my advisor

and teacher. Dr. Moeller, Dr. Parigger, and Dr. Schulz were gracious enough to serve on

my committee and lend their expertise to bring my efforts to fruition. Dr. Kupershmidt,

Dr. Flandro, and others built the foundation for me to pursue and excel in truly advanced

research. Several students, including Dr. Eric Jacob, Dr. Tony Saad, and Nadim Zgheib

supported me with mathematical and scientific insight along the way. I must also recognize

the National Science Foundation for funding me briefly during my pursuits, and UTSI for

providing the majority of my funding. Without the cooperative relationship with Dr. Casalis

and Dr. Chedevergne at ONERA this research avenue may have never been possible. Lastly,

where would I be without the support and patience of my family. The anxiousness I have

felt for my graduation is only exceeded by theirs!

iv

To be free is to be simple. I am not simple...

v

Abstract

The paradigm shift toward two-dimensional techniques with the ability to accommodate fully

three-dimensional base flows is a necessary step toward modeling complex, multidimensional

flowfields in modern propulsive applications. Here, we employ a two-dimensional spatial

waveform with sinusoidal temporal dependence to reduce the three-dimensional linearized

Navier-Stokes equations to their biglobal form. Addressing hydrodynamic stability in this

way circumvents the restrictive parallel-flow assumption and admits boundary conditions

in the streamwise direction. Furthermore, the following work employs a full momentum

formulation, rather than the conventional streamfunction form, thus accounting for a nonzero

tangential mean flow velocity.

Specifically, three bidirectional vortex models, stemming from two unique families, are

analyzed for stability. The complex-lamellar model exhibits linear axial and sinusoidal radial

dependence. The two Beltramian type solutions, one axially linear and one harmonic, have

radial dependence of the Bessel type. The three tangential velocity components are arrived

at by matching viscous boundary layers to previously inviscid outer solutions. While all

three match experimental data, the two Beltramian models display remarkable agreement.

Parametric studies are conducted for two values of the inlet parameter, κ. For smaller κ

(greater swirl intensity), an appreciable stabilizing effect is seen in the spectral predictions.

Hydrodynamic frequencies tend to collect nearer the critical line and are lower frequency than

those predicted for larger κ. Significant differences are also found in the unstable waveforms.

vi

When swirl is less dominant, the hydrodynamic wave oscillates about the streamlines of

the base flow. The largest oscillations appear near the headwall and are drawn into the

core vortex. Oscillation amplitudes diminish in the streamwise direction, suggesting spatial

stability. These results disappear as swirl becomes more dominant. The effect of the axial

and radial base flow velocities is apparently negated by a nearly axially invariant tangential

velocity. In this case, when oscillations appear, they are smaller in amplitude and are confined

to regions of increased vorticity (i.e. the sidewall or downstream). In general, we conclude

that the overall stability characteristics can be substantially increased by minimizing the

inlet parameter and maximizing the swirl intensity.

vii

Contents

1 Introduction 1

1.1 The Bidirectional Vortex . 1

1.2 Instability . 4

1.2.1 On the Vortico-Acoustic Wave Formulation 7

1.2.2 On the Hydrodynamic Wave Formulation 8

1.2.3 On Linear Hydrodynamic Stability Theory 14

1.2.4 Parallel Flow Effects . 20

2 Vortex Flows 24

2.1 An Introduction to Vortex Flows . 25

2.2 The Complex Lamellar Bidirectional Vortex 29

2.2.1 The Invsicid Solution . 30

2.2.2 Viscous Corrections . 35

2.3 The Beltramian Bidirectional Vortex . 44

2.3.1 The Linear Beltramian Solution . 48

2.3.2 Viscous Corrections . 50

2.3.3 The Harmonic Beltramian Solution 55

2.4 A Comment on the Existence of Multiple Mantles 60

2.4.1 Experimental Validation . 64

viii

3 Spectral Collocation Methods 66

3.1 Polynomial Approximation and Interpolation 67

3.2 Chebyshev Polynomials . 68

3.3 Pseudo-Spectral Derivatives . 72

3.4 Solving ODEs with Chebyshev Collocation 78

3.4.1 Example: A First Order ODE with Variable Coefficients 82

3.4.2 Example: A Second Order BVP with Variable Coefficients 84

3.4.3 Example: A System of Differential Equations 87

3.5 Eigenvalue Problems with ODEs . 92

3.5.1 Example: Eigenvalues of the Bessel Equation 93

3.6 Solving PDEs with Chebyshev Collocation 98

3.6.1 Example: A Parabolic PDE with Variable Coefficients 108

3.6.2 Example: The 2D Poisson Equation 113

3.6.3 Example: A System of PDEs . 114

3.7 Eigenvalue Problems with PDEs . 119

3.7.1 Example: The Helmholtz equation 120

3.8 Closing Remarks on Spectral Methods . 122

4 Eigensolvers 128

4.1 Calculating Eigenvalues . 129

4.2 Matrix Preconditioning . 130

4.2.1 Balancing a Single Matrix . 132

4.2.2 Balancing the Generalized Eigenvalue Problem 132

4.2.3 Segregating Nonzero Elements . 134

4.3 Matrix Reductions . 135

4.3.1 Reduction of a Single Matrix . 136

4.3.2 Reduction of a Matrix Pencil . 138

ix

4.3.3 Block Decomposition . 139

4.4 Single Matrix Eigensolvers . 141

4.4.1 The Power Method . 141

4.4.2 The Inverse Power Method . 142

4.4.3 The QR and LR Methods . 143

4.5 Generalized Eigensolvers . 145

4.5.1 Example: Implementation of an LZ Eigensolver 149

4.6 Closing Remarks on Eigensolvers . 156

5 Local Nonparallel Stability Analysis of the Bidirectional Vortex 159

5.1 Deriving the Spectral LNP Equations . 160

5.2 Code Validation and Grid Refinement . 165

5.3 The Complex-Lamellar Bidirectional Vortex 167

5.3.1 Axisymmetric Spectrum . 168

5.3.2 Asymmetric Spectrum . 169

5.3.3 Multiple Mantles . 171

5.3.4 Amplified Frequencies . 173

5.4 The Linear Beltramian Bidirectional Vortex 180

5.4.1 Axisymmetric Spectrum . 181

5.4.2 Asymmetric Spectrum . 182

5.4.3 Multiple Mantles . 182

5.4.4 Amplified Frequencies . 184

5.5 The Harmonic Beltramian Bidirectional Vortex 190

5.5.1 Axisymmetric Spectrum . 191

5.5.2 Asymmetric Spectrum . 191

5.5.3 Multiple Mantles . 192

5.5.4 Amplified Frequencies . 192

x

5.6 Closing Remarks on the LNP Applied to the BV 199

6 Biglobal Stability Analysis of the Bidirectional Vortex 203

6.1 Deriving the Spectral Biglobal Equations . 204

6.2 On the Hardware Requirements . 213

6.3 The Complex-Lamellar Bidirectional Vortex 217

6.3.1 Axisymmetric Spectrum . 217

6.3.2 Asymmetric Spectrum . 219

6.3.3 Evolution with Time . 229

6.4 The Linear Beltramian Bidirectional Vortex 231

6.4.1 Axisymmetric Spectrum . 231

6.4.2 Asymmetric Spectrum . 232

6.4.3 Evolution with Time . 240

6.5 The Harmonic Beltramian Bidirectional Vortex 242

6.5.1 Axisymmetric Spectrum . 242

6.5.2 Asymmetric Spectrum . 243

6.5.3 Evolution with Time . 248

6.6 Closing Remarks on the BG Approach . 249

6.6.1 Considering the Waveforms . 249

6.6.2 Data Reduction . 253

6.6.3 On Chamber Length . 255

6.6.4 Quantifying Numerical Error . 256

7 Conclusions 258

7.1 Comparing the LNP and Biglobal Solutions 259

7.1.1 The Effect of the Tangential Velocity 262

7.2 Unstable Frequencies . 266

xi

7.3 Eigensolver Implementation . 268

7.4 Future Work . 268

Bibliography 271

A Derivations 286

A.1 Deriving the 1-D Cylindrical LNP Equations 287

A.2 Deriving the Cylindrical Biglobal Stability Equations 289

B Numerical Codes 293

B.1 Polynomial Interpolation . 294

B.2 Chebyshev Interpolating Polynomial Generator 295

B.3 Chebyshev Pseudo-Spectral Differentiation Matrix Generator 296

B.4 Chebyshev Interpolation . 298

B.5 Computing a Spectral Derivative . 299

B.6 A First order ODE with Chebyshev Collocation 300

B.7 A Second Order BVP with Chebyshev Collocation 301

B.8 Systems of ODEs with Chebyshev Collocation 303

B.9 Eigenvalue Problems for ODEs . 305

B.10 A Parabolic Partial Differential Equation with Variable Coefficients 308

B.11 The Time-Independent Poisson Equation with a Sinusoidal Forcing Function 312

B.12 Systems of PDEs with Chebyshev Collocation 315

B.13 Eigenvalue Problems for PDEs . 321

B.14 Single Matrix Balancing . 324

B.15 Matrix Pencil Balancing . 327

B.16 Segregating Nonzero Elements . 331

B.17 Real Symmetric Matrix to Tridiagonal Form 333

B.18 Real Nonsymmetric Matrix to Upper Hessenberg Form 336

xii

B.19 Real/Complex Nonsymmetric Matrix to Upper Hessenberg Form 339

B.20 Matrix Pencil Reduction . 342

B.21 Block Decomposition . 345

B.22 The Power Method . 346

B.23 The Inverse Power Method . 349

B.24 The QR Method . 352

B.25 The LZ Method . 361

B.26 The Generalized LZ Algorithm . 376

C Unstable Frequencies 384

C.1 The Complex-Lamellar Bidirectional Vortex 386

C.1.1 Axisymmetric Spectrum . 386

C.1.2 Asymmetric Spectrum . 387

C.2 The Linear Beltramian Bidirectional Vortex 390

C.2.1 Axisymmetric Spectrum . 390

C.2.2 Asymmetric Spectrum . 391

C.3 The Harmonic Beltramian Bidirectional Vortex 394

C.3.1 Axisymmetric Spectrum . 394

C.3.2 Asymmetric Spectrum . 395

Vita 398

xiii

List of Tables

2.1 Eigenvalues and corresponding mantle locations for even flow reversal mode

numbers and an odd number of internal mantles. 61

2.2 Comparison of experimental and computational mantle locations with the

complex-lamellar (CL) and Beltramian (BEL) models. 65

3.1 Example collocation points, ξi for increasing polynomial order, N 71

3.2 Spectral roots of J0(μL) for 0 ≤ x ≤ L compared to their accepted values. %

E = |λe − μ|/λe where λe is the root of J0(λe) for 0 ≤ x ≤ 1. 97

3.3 The normalized eigenvalues of the Helmholtz equation for 0 ≤ x ≤ L

compared to their exact values. % E = |λe − μ|/λe where λe is the exact

value. 123

3.4 Applicable error values for all examples. 127

4.1 Eigenvalues computed for the given example compared to those computed via

Lapack. 156

5.1 The first amplified eigenvalues for q = 1, α = 3, Re = 10, 000, and κ = 0.1. . 180

5.2 The first amplified eigenvalues for q = 1, α = 0.5, Re = 10, 000, and κ = 0.1. 190

5.3 The first amplified eigenvalues for q = 1, α = 0.5, Re = 10, 000, l = 2, and

κ = 0.1. 199

xiv

5.4 Backsubstitution and boundary condition error values for all plotted eigen-

vector examples. 202

6.1 The minimum discretization number, N , to characterize the base flow

boundary layer with at least three points and estimated runtime for the QZ

eigensolver. All times estimated for an Intel Core2 CPU Quad 6600 @ 2.4GHz

with 4 Gb RAM and Win 7x64. 215

6.2 Backsubstitution and boundary condition error values for plotted asymmetric

eigenvector examples. 257

C.1 The first 10 unstable circular frequencies (left column) and distributed growth

rate, ω̃i, (right column) tabulated for the axisymmetric complex-lamellar

parametric study in Fig. 6.3 for κ = 0.1. 386

C.2 The first 10 unstable circular frequencies (left column) and distributed

growth rate, ω̃i, (right column) tabulated for the asymmetric complex-lamellar

spectrum for variation in κ (Fig. 6.4). 387

C.3 The first 10 unstable circular frequencies (left column) and distributed

growth rate, ω̃i, (right column) tabulated for the asymmetric complex-lamellar

spectrum for variation in Re (Fig. 6.5). 388

C.4 The first 10 unstable circular frequencies (left column) and distributed

growth rate, ω̃i, (right column) tabulated for the asymmetric complex-lamellar

spectrum for variation in l (Fig. 6.9). 388

C.5 The first 10 unstable circular frequencies (left column) and distributed

growth rate, ω̃i, (right column) tabulated for the asymmetric complex-lamellar

spectrum for multidirectional flow number, m (Fig. 6.11). 389

C.6 The first 10 unstable circular frequencies (left column) and distributed growth

rate, ω̃i, (right column) tabulated for the axisymmetric linear Beltramian

parametric study in Fig. 6.14 for κ = 0.1. 390

xv

C.7 The first 10 unstable circular frequencies (left column) and distributed growth

rate, ω̃i, (right column) tabulated for the asymmetric linear Beltramian

spectrum for variation in κ (Fig. 6.15). 391

C.8 The first 10 unstable circular frequencies (left column) and distributed growth

rate, ω̃i, (right column) tabulated for the asymmetric linear Beltramian

spectrum for variation in Re (Fig. 6.16). 392

C.9 The first 10 unstable circular frequencies (left column) and distributed growth

rate, ω̃i, (right column) tabulated for the asymmetric linear Beltramian

spectrum for variation in l (Fig. 6.20). 392

C.10 The first 10 unstable circular frequencies (left column) and distributed growth

rate, ω̃i, (right column) tabulated for the asymmetric linear Beltramian

spectrum for multidirectional flow number, m (Fig. 6.21). 393

C.11 The first 10 unstable circular frequencies (left column) and distributed growth

rate, ω̃i, (right column) tabulated for the axisymmetric harmonic Beltramian

parametric study in Fig. 6.25 for κ = 0.1. 394

C.12 The first 10 unstable circular frequencies (left column) and distributed growth

rate, ω̃i, (right column) tabulated for the asymmetric harmonic Beltramian

spectrum for variation in κ (Fig. 6.26). 395

C.13 The first 10 unstable circular frequencies (left column) and distributed growth

rate, ω̃i, (right column) tabulated for the asymmetric harmonic Beltramian

spectrum for variation in Re (Fig. 6.27). 396

C.14 The first 10 unstable circular frequencies (left column) and distributed growth

rate, ω̃i, (right column) tabulated for the asymmetric harmonic Beltramian

spectrum for variation in l (Fig. 6.31). 396

C.15 The first 10 unstable circular frequencies (left column) and distributed growth

rate, ω̃i, (right column) tabulated for the asymmetric harmonic Beltramian

spectrum for multidirectional flow number, m (Fig. 6.32). 397

xvi

List of Figures

1.1 VCCWC schematic. 3

1.2 The three identified types of vortex shedding. 5

1.3 A qualitative comparison of the nonparallel effects of several base flows for

r = 0.5. 23

2.1 Normalized swirl velocity for several historic vortex models. 26

2.2 The bidirectional vortex geometry showing the coordinate system, character-

istic dimensions, and general streamline profile. 31

2.3 The inviscid complex-lamellar bidirectional vortex with κ = 0.103 and z = 0.3. 36

2.4 Streamlines of the complex-lamellar BV. 36

2.5 The viscous complex-lamellar bidirectional vortex with κ = 0.103 and z = 0.3. 45

2.6 The inviscid linear Beltramian bidirectional vortex with κ = 0.103 and z = 0.3. 49

2.7 Streamlines of the linear Beltramian BV. 50

2.8 The viscous linear Beltramian bidirectional vortex with κ = 0.103 and z = 1. 55

2.9 The inviscid harmonic Beltramian bidirectional vortex with κ = 0.103, l = 2,

and z = 0.3. 57

2.10 Streamlines of the harmonic Beltramian BV. 58

2.11 The viscous harmonic Beltramian bidirectional vortex with κ = 0.103, l = 2,

and z = 1. 60

xvii

2.12 Vector plots of a) linear Beltramian, b) harmonic Beltramian, and c) complex-

lamellar models. Here l = 2. 63

3.1 Two examples of interpolating polynomials. 67

3.2 Comparison between interpolation with equally spaced (left) and Chebyshev

grids (right). The Runge phenomenon can be easily seen. 69

3.3 Chebyshev polynomials and corresponding weight functions for N = 5. . . . 72

3.4 Spectral differentiation of sin(x) for three polynomial orders plotted against

the exact derivative. 78

3.5 Spectral solution of Eq. (3.31) for three polynomial orders plotted against the

exact solution. 84

3.6 Spectral solution of Eq. (3.34) for three polynomial orders plotted against the

exact solution. 87

3.7 The solution to the system of ODEs given in Eq. (3.38) for three collocation

numbers. 92

3.8 Unforced and sinusoidally forced damped oscillator for ω = 2, Ω = 1, and

c = 1
2
(3.8a) and corresponding FFT showing the damped natural frequency

√
ω2 − c2/2π ≈ 0.308 and the forcing frequency Ω/2π ≈ 0.159 (3.8b). 95

3.9 The eigenvectors plotted against the Bessel function of the first kind for the

first five eigenvalues for N = 15 over the domain 0 ≤ x ≤ 10. 96

3.10 The location of nonzero elements in the product tensor matrix. 101

3.11 The solution to the given parabolic PDE under the boundary conditions given

above for N = 20. 112

3.12 The solution to the time-independent Poisson equation with a sinusoidal

forcing function under the boundary conditions given above for N = 20. . . . 114

3.13 The solution to the system of PDEs under the boundary conditions given

above for N = 20. 120

xviii

3.14 The eigenvectors and their corresponding eigenvalues for the Helmholtz

equation for N = 20. Figures 3.14b–3.14c show the eigenvectors for the double

eigenvalue μ = 5π2/L2. 124

4.1 Eigensolver Flowchart . 129

4.2 Eigensolver Flowchart . 149

5.1 Grid refinement for α = 3, z = 1.5, Re = 10, 000, and κ = 0.1. 166

5.2 Comparison of the spectrum for the inviscid versus the viscous solution with

α = 3, z = 1.5, Re = 10, 000, and κ = 0.1. 167

5.3 Axisymmetric parametric study for several input parameters. Here, q = 0,

α = 3, z = 1.5, Re = 10, 000, and κ = 0.1 unless varied on the graph. 169

5.4 The effect of higher tangential mode numbers with α = 3, z = 1.5, Re =

10, 000, and κ = 0.1. 170

5.5 Asymmetric parametric study for several input parameters. Here q = 1,

α = 3, z = 1.5, Re = 10, 000, and κ = 0.1 unless varied on the graph. 171

5.6 Illustrating the nearly linear axial dependence of the spectrum for the

undamped eigenvalue near ω = 35 + 4i with α = 3, z = 1.5, Re = 10, 000,

and κ = 0.1. 172

5.7 The effect of multiple mantles on the temporal spectrum for α = 3, z = 1.5,

Re = 10, 000, and κ = 0.1. 172

5.8 Axisymmetric eigenvectors for the first undamped frequency, ω = 0.1911 +

0.0625i, with the input parameters q = 0, α = 3, z = 1.5, Re = 10, 000, and

κ = 0.1. See Table 5.4 for error values. 173

5.9 Axisymmetric contour plots, with q = 0, α = 3, Re = 10, 000, and κ = 0.1. . 174

5.10 Asymmetric eigenvectors for the first undamped frequency, ω = 1.6590 +

0.0949i, with the input parameters q = 1, α = 3, z = 1.5, Re = 10, 000, and

κ = 0.1. See Table 5.4 for error values. 175

xix

5.11 Asymmetric contour plots, with q = 1, α = 3, Re = 10, 000, and κ = 0.1. . . 176

5.12 Temporal evolution of the first unstable eigenvalue on the axial velocity for

the complex-lamellar bidirectional vortex with q = 1, α = 3, z = 1.5, Re =

10, 000, and κ = 0.1. 179

5.13 Axisymmetric parametric study for several input parameters. Here, q = 0,

α = 3, z = 1.5, Re = 10, 000, and κ = 0.1 unless varied on the graph. 181

5.14 The effect of higher tangential mode numbers with α = 3, z = 1.5, Re =

10, 000, and κ = 0.1 unless varied on the graph. 182

5.15 Asymmetric parametric study for several input parameters. Here q = 1,

α = 3, z = 1.5, Re = 10, 000, and κ = 0.1 unless varied on the graph. 183

5.16 The effect of multiple mantles on the temporal spectrum for α = 3, z = 1.5,

Re = 10, 000, and κ = 0.1. 184

5.17 Axisymmetric eigenvectors for the first undamped frequency, ω = 0.5645 +

0.2122i, with the input parameters q = 0, α = 0.5, z = 1.5, Re = 10, 000, and

κ = 0.1. See Table 5.4 for error values. 185

5.18 Axisymmetric contour plots, with q = 0, α = 3, Re = 10, 000, and κ = 0.1. . 186

5.19 Asymmetric eigenvectors for the first undamped frequency, ω = 0.6931 +

0.1220i, with the input parameters q = 1, α = 0.5, z = 1.5, Re = 10, 000, and

κ = 0.1. See Table 5.4 for error values. 187

5.20 Asymmetric contour plots, with q = 1, α = 0.5, Re = 10, 000, and κ = 0.1. . 188

5.21 Temporal evolution of the first unstable eigenvalue on the axial velocity for

the linear Beltramian bidirectional vortex with q = 1, α = 0.5, z = 1.5,

Re = 10, 000, and κ = 0.1. 189

5.22 Axisymmetric parametric study for several input parameters. Here, q = 0,

α = 3, z = 1.5, Re = 10, 000, l = 2, and κ = 0.1 unless varied on the graph. . 191

5.23 The effect of higher tangential mode numbers with α = 3, z = 1.5, Re =

10, 000, l = 2, and κ = 0.1 unless varied on the graph. 192

xx

5.24 Asymmetric parametric study for several input parameters. Here q = 1,

α = 3, z = 1.5, Re = 10, 000, l = 2, and κ = 0.1 unless varied on the graph. . 193

5.25 The effect of multiple mantles on the temporal spectrum for α = 3, z = 1.5,

Re = 10, 000, l = 2, and κ = 0.1. 194

5.26 Axisymmetric eigenvectors for the first undamped frequency, ω = 0.1891 +

0.1000i, with the input parameters q = 0, α = 0.5, z = 1.5, Re = 10, 000,

l = 2, and κ = 0.1. See Table 5.4 for error values. 194

5.27 Axisymmetric contour plots, with q = 0, α = 0.5, Re = 10, 000, and κ = 0.1. 195

5.28 Asymmetric eigenvectors for the first undamped frequency, ω = 0.6262 +

0.0331i, with the input parameters q = 1, α = 0.5, z = 1.5, Re = 10, 000,

l = 2, and κ = 0.1. See Table 5.4 for error values. 196

5.29 Asymmetric contour plots, with q = 1, α = 0.5, Re = 10, 000, and κ = 0.1. . 197

5.30 Temporal evolution of the first unstable eigenvalue on the axial velocity for

the Harmonic Beltramian bidirectional vortex with q = 1, α = 0.5, z = 1.5,

Re = 10, 000, l = 2, and κ = 0.1. 198

6.1 Qualitative grid refinement using the linear Beltramian model with l = 2,

Re = 10000, κ = 0.1 and q = 1. 216

6.2 Comparison of the spectrum for the inviscid versus the viscous complex-

lamellar solution with q = 1, l = 2, and κ = 0.1. 216

6.3 Axisymmetric parametric study for several input parameters. Here q = 0,

l = 2, Re = 10, 000, and κ = 0.1 unless varied on the graph. 218

6.4 Asymmetric parametric study for several values of κ. Here q = 1, l = 2, and

Re = 10, 000. 220

6.5 Asymmetric parametric study for several input parameters. Here q = 1, l = 2,

and Re = 10, 000. 221

6.6 Spectral results for higher mode numbers. Here l = 2 and Re = 10, 000. . . . 221

xxi

6.7 Asymmetric eigensolutions for the unstable eigenvalue, ω = 0.2178 + 0.2940i,

with N = 50, q = 1, Re = 10, 000, and κ = 0.1. See Table 6.2 for error values. 222

6.8 Asymmetric eigensolutions for the unstable eigenvalue, 0.3443+0.4257i, with

N = 50, q = 1, Re = 10, 000, and κ = 0.01. 223

6.9 Asymmetric eigenvalues for several aspect ratios. Here q = 1 and Re = 10, 000.225

6.10 Axial waveform of the first unstable eigenvalue of the complex-lamellar

bidirectional vortex for different aspect ratios with q = 1, l = 2, Re = 10, 000,

and κ = 0.1. 226

6.11 Asymmetric parametric study for multi-directional flow. Here q = 1, l = 2,

and Re = 10, 000. 227

6.12 Axial waveform of the first unstable eigenvalue of the complex-lamellar

bidirectional vortex for multidirectional flow with q = 1, Re = 10, 000, and

κ = 0.1. 228

6.13 Temporal evolutions of the instantaneous axial velocity for the first unstable

eigenvalue, ω = 0.2178 + 0.2940i, and eigensolution of the complex-lamellar

bidirectional vortex with N = 50, q = 1, Re = 10, 000, and κ = 0.1. 230

6.14 Axisymmetric parametric study for several input parameters. Here q = 0,

l = 2, Re = 10, 000, and κ = 0.1 unless varied on the graph. 231

6.15 Asymmetric variation with κ. Here q = 1, l = 2, Re = 10, 000. 233

6.16 Asymmetric variation with Reynolds number. Here q = 1, l = 2, and Re =

10, 000. 233

6.17 Spectral results for higher mode numbers. Here l = 2 and Re = 10, 000. . . . 234

6.18 Asymmetric eigensolutions for the unstable eigenvalue, ω = 0.2312 + 0.1096i,

with N = 50, q = 1, Re = 10, 000, and κ = 0.1. See Table 6.2 for error values. 236

6.19 Asymmetric eigensolutions for the unstable eigenvalue, 0.8992+0.1617i, with

N = 50, q = 1, Re = 10, 000, and κ = 0.01. 237

xxii

6.20 Spectral results for several values of the aspect ratio. Here q = 1 and Re =

10, 000. 238

6.21 Spectral results for several values multidirectional flow. Here q = 1, l = 2,

and Re = 10, 000. 238

6.22 Axial waveform of the first unstable eigenvalue of the linear Beltramian

bidirectional vortex for different aspect ratios with q = 1, l = 2, Re = 10, 000,

and κ = 0.1. 239

6.23 Axial waveform of the first unstable eigenvalue of the linear Beltramian

bidirectional vortex for multidirectional flow with q = 1, Re = 10, 000, and

κ = 0.1. 240

6.24 Temporal evolutions of the instantaneous axial velocity for the first unstable

eigenvalue, ω = 0.2312 + 0.1096i, and eigensolution of the linear Beltramian

bidirectional vortex with N = 50, q = 1, Re = 10, 000, and κ = 0.1. 241

6.25 Axisymmetric parametric study for several input parameters. Here q = 0,

l = 2, Re = 10, 000, and κ = 0.1 unless varied on the graph. 242

6.26 Asymmetric variation with κ. Here q = 1, l = 2, and Re = 10, 000. 243

6.27 Asymmetric variation with Reynolds number. Here q = 1, l = 2, and Re =

10, 000. 244

6.28 Spectral results for higher mode numbers. Here l = 2 and Re = 10, 000. . . . 244

6.29 Asymmetric eigensolutions for the unstable eigenvalue, ω = 0.0726 + 0.0549i,

with N = 50, q = 1, Re = 10, 000, and κ = 0.1. See Table 6.2 for error values. 245

6.30 Asymmetric eigensolutions for the unstable eigenvalue, ω = 0.1734 + 0.1602i,

with N = 50, q = 1, Re = 10, 000, and κ = 0.01. 246

6.31 Spectral results for several values of the aspect ratio. Here q = 1 and Re =

10, 000. 247

6.32 Spectral results for multidirectional flow. Here q = 1 and Re = 10, 000. . . . 248

xxiii

6.33 Axial waveform of the first unstable eigenvalue of the harmonic Beltramian

bidirectional vortex for different aspect ratios with q = 1, l = 2, Re = 10, 000,

and κ = 0.1. 249

6.34 Axial waveform of the first unstable eigenvalue of the harmonic Beltramian

bidirectional vortex for multidirectional flow with q = 1, Re = 10, 000, and

κ = 0.1. 250

6.35 Temporal evolutions of the instantaneous axial velocity for the first unstable

eigenvalue, ω = 0.0726 + 0.0549i, and eigensolution of the harmonic

Beltramian bidirectional vortex with N = 50, q = 1, Re = 10, 000, and

κ = 0.1. 251

6.36 Axial wave contour for the first unstable eigenvalue N = 50, q = 1, Re =

2, 000, and κ = 0.1. 253

6.37 Figure by Chedevergne [1] illustrating the effect of chamber length compared

with current results for the complex-lamellar BV. 255

7.1 Asymmetric spectral plots of the Taylor-Culick mean flow, with q = 1, α = 3,

z = 1.5, Re = 10, 000. 259

7.2 A comparison between the LNP and biglobal approach applied to the complex-

lamellar mean flow with α = 3, z = 1.5, Re = 10, 000, and κ = 0.1. 260

7.3 Comparison between the LNP and biglobal asymmetric axial velocity contour

plots, with q = 1, α = 3, Re = 10, 000, and κ = 0.1. 261

7.4 Comparison between the LNP and biglobal asymmetric pressure contour plots,

with q = 1, α = 3, Re = 10, 000, and κ = 0.1. 262

7.5 A comparison between the spectra of the linear Beltramian model to identify

the effect of a swirl component in the mean flow. Here, α = 3, z = 2,

Re = 10, 000, and κ = 0.1. 263

xxiv

7.6 Comparison between the linear Beltramian axial wave contour plots to

illustrate the waveform when Uθ is omitted. Here, α = 0.5 Re = 10, 000,

and κ = 0.1. The axisymmetric biglobal waveform is zero. 265

7.7 The multidirectional, linear Beltramian model for two values of κ. Here q = 1,

Re = 10, 000, and l = 2. 266

7.8 Comparison between the multidirectional linear Beltramian axial wave con-

tour plots for two values of κ. Here q = 1, Re = 10, 000, and l = 2. 267

xxv

Nomenclature

Aij = the operator matrix

B = tangential angular momentum, rUθ

Bi = the forcing function column vector

Bij = the right hand side operator matrix of a matrix pencil

DN = the Chebyshev pseudo-spectral derivative matrix of size N

over the domain [−1, 1]
D̄N = the Chebyshev pseudo-spectral derivative matrix of size N

mapped over arbitrary domain

H = total nondimensional stagnation pressure head, p+ 1
2
u2

IN = the identity matrix of size N

L = dimensional chamber length

M = denotes a base flow component

M̃ = denotes an instantaneous flow component

P = denotes a base flow pressure

P̃ = denotes a instantaneous flow pressure

Qi = nondimensional inlet volumetric flow rate, Q̄i/(Ua
2)

Q̄i = dimensional inlet volumetric flow rate

Re = Reynolds number

S = swirl number, πab/Ai = πβσ

TN = a Chebyshev polynomial of the first kind

U = tangential injection velocity at Ū(a, L)

UN = a Chebyshev polynomial of the second kind

U = base flow velocity vector, Urer + Uθeθ + Uzez

xxvi

Ũ = denotes the instantaneous flow velocity

V = vortex Reynolds number, V = 2πκ/ε

a = dimensional chamber radius

b = dimensional exit port radius

d = weighting coefficients for pseudo-spectral derivative matrices

l = chamber aspect ratio

m = denotes a general amplitude function

m̆ = denotes an hydrodynamic unsteady fluctuation

m̂ = denotes an acoustic unsteady fluctuation

m′ = denotes a general unsteady fluctuation

m̃ = denotes an vortical unsteady fluctuation

p = denotes a pressure amplitude function

p̆ = denotes an hydrodynamic pressure fluctuation

p̂ = denotes an acoustic pressure fluctuation

p′ = denotes a general unsteady pressure fluctuation

p̃ = denotes an vortical pressure fluctuation

q = the azimuthal integer wave number

r = radial nondimensional coordinate

u = denotes a velocity amplitude function

ŭ = denotes an hydrodynamic velocity fluctuation

û = denotes an acoustic velocity fluctuation

u′ = denotes a general unsteady velocity fluctuation

ũ = denotes a vortical velocity fluctuation

x = streamwise spatial variable over arbitrary domain

xxvii

y = transverse spatial variable over arbitrary domain

z = axial nondimensional coordinate

Subscripts

N = Chebyshev polynomial order/number of collocation points

i = denotes the matrix row or vector element

ii = denotes a diagonal matrix or diagonal element

ij = denotes a matrix

j = denotes the matrix column

m = corresponds to the mth root of the Bessel function, J1(x)

o = denotes an outlet condition

r = denotes the radial spatial direction

θ = denotes the tangential spatial direction

z = denotes the axial spatial direction

0 = corresponds to the first root of the Bessel equation, J1(x)

Superscripts

(c) = a composite solution

(i) = a solution in the inner region, core or wall

n = denotes the order of the derivative

¯ = denotes dimensional variables

Symbols

Γ = circulation

xxviii

∇ = gradient operator

Ω = base flow vorticity vector, Ωrer + Ωθeθ + Ωzez

α = longitudinal wave number

α = constant (Ch. 2 only), complex-lamellar:
1

6
π2 − 1,

Beltramian:
λ0

2βJ1(λ0β)

(
1
8
λ20 − 1

)
β = normalized outlet radius, b/a

γ = constant,
λ0

4βJ1(λ0β)

δ = denotes the characteristic boundary layer thickness

ε = 1/Re

η = streamwise Chebyshev variables mapped between [−1, 1]
κ = inflow parameter, Qi/(2πl) = (2πσl)−1

λ = eigenvalue

λm = root of the Bessel function, J1(x)

ν = kinematic viscosity

ω = frequency of oscillation, ωr + ωi

ωr = real component of ω, circular frequency

ωi = imaginary compoment of ω, growth rate

ω̃ = distributed growth rate

θ = tangential nondimensional coordinate

ψ = streamfunction

σ = modified swirl number, Q−1
i = S/(πβ)

ξ = dependent variable transformation (Ch. 2 only)

ξ = radial Chebyshev variables mapped between [−1, 1]

xxix

Abbreviations

BG = biglobal

BV = bidirectional vortex

DNS = direct numeric simulation

LNP = local nonparallel

LNS = linearized Navier-Stokes

NNP = normal nonparallel

NPR = nonparallel ratio

ODE = ordinary differential equation

OSE = Orr-Sommerfeld equations

PDE = partial differential equation

PSE = parabolized stability equations

VCCWC = Vortex Combustion Cold-Wall Chamber

VIHRE = Vortex Injection Hybrid Rocket Engine

Nondimensionalization

z =
z̄

a
; r =

r̄

a
; ∇ = a∇̄; t = t̄

U

a
;

Ũr =
Ūr

U
; Ũθ =

Ūθ

U
; Ũz =

Ūz

U
;

P̃ =
P̄

ρU2
; Qi =

Q̄i

Ua2
; l =

L

a
; Re =

Ua

ν

xxx

Chapter 1

Introduction

1.1 The Bidirectional Vortex

Characterization of unidirectional vortex flows has remained a central topic of interest in

fluid dynamics since its earliest beginnings. The earliest work in print is that of Rankine

[2] in 1858. Other notable advancements may be attributed to Lamb-Oseen [3, 4], Burgers-

Rott [5, 6], Batchelor [7], and others. These original studies are still relevant in a variety of

modern applications. For example, the Rankine vortex is still used as a crude approximation

for describing the bulk motion of hurricanes and other large, atmospheric, swirl-dominated

flows. Both Lamb-Oseen and Burgers-Rott models can be applied to localized atmospheric

swirling flows such as tornados, dust devils, and water spouts [8]. Other recent investigations

by Alekseenko et al. [9], Eloy and Le Dizs [10], Schmid and Rossi [11], Olendraru and Sellier

[12], Prez-Saborid et al. [13], and others reveal the continued interest in these vortical flows.

Sullivan’s 1959 solution of an external two-cell vortex [14] may be the first evidence of

bidirectional vortex modeling. Its usefulness is slightly overshadowed by its characterization

in terms of integral functions. Numerical integration clearly shows the existence of two

fundamental regions common to all vortex models: a forced vortex forming around the axis

1

of rotation and a free, nearly irrotational, vortex tail. While the free vortex is inviscid, the

character of the forced vortex is dominated by viscous stresses. The distinct inner down-

flow of the Sullivan vortex is often seen in tornados and possesses considerable relevance in

meteorological studies [15].

Bloor and Ingham analyzed the conical flow in cyclonic separators. Their solution, albeit

inviscid, may be considered a milestone achievement in advancing the theory of confined

swirl dominated flows. In their 1987 paper [16], they introduce an inviscid approximation

to a conical vortex chamber in the context of cyclonic seperators. Their solution is later

reconstructed and extended by Barber and Majdalani [17]. Both solutions, being inviscid,

displayed a centerline singularity while also allowing slip at the sidewall.

Bidirectional motion was first proposed by Gloyer, Knuth and Goodman [18] as a means

to enhance the burn-rate in hybrid rocket engines. Later, this technology was furthered

by Knuth et al. [19], Chiaverini et al. [20], and others in the development of the Vortex

Injection Hybrid Rocket Engine (VIHRE) and the Vortex Combustion Cold-Wall Chamber

(VCCWC) shown in Fig. 1.1. The latter refers to an internally cooled liquid thrust chamber

driven by a pair of coaxial vortices. The inception of the VCCWC also spurred research

by Vyas and Majdalani [21] and later Majdalani and Rienstra [22] to develop the first

of three analytical models describing its fully three-dimensional motion [21]. Singularities

encountered by Bloor and Ingham [16] also appeared in their purely inviscid profile. Some

of these limitations were remedied by the use of viscous approximations to the core vortex

and tangential sidewall shear layer [23]. Shortly thereafter, Batterson and Majdalani [24]

completed the viscous treatment by incorporating viscous wall corrections in the remaining

axial and radial directions.

Soon following the complete characterization of the first, complex-lamellar model,

Majdalani [26] utilized the incompressible Bragg-Hawthorne equation to produce both

the linear and harmonic Beltramian vortex solutions that display linear and sinusoidal

streamwise dependence, respectively. Solutions of the Beltramian type are characterized by a

2

fuel inlet

fuel
manifold

outer vortex
of cool
oxidizer

combustion
products

oxidizer
inlet

oxidizer
injection
manifold

regenerative
cooling
sleeve

Figure 1.1: VCCWC schematic [25].

zero Lamb vector, ω̄×ū = 0, to the extent that their vorticity and velocity remained directly

proportional through ω̄ = λ0ū [27]. Again, these models shared the inviscid limitations in

regions where fluid friction could not be ignored. Batterson and Majdalani brought closure to

the Beltramian solutions by characterizing the shear layers throughout the chamber [28, 29].

The analysis for the Beltramian viscous layers closely mimicked that of the previous complex-

lamellar study. Certain differences were characterized and directly attributed to the effect

of the unique base flow.

The presence of multi-directional vortex motion was first seen as an artifact of higher

eigensolutions stemming from Vyas and Majdalani’s complex-lamellar model [30]. However,

experimental and numerical evidence gathered by Anderson et al. [31], Rom, Anderson

and Chiaverini [32], and others have corroborated the existence of interchanging flow

3

reversals. Initial observations suggested excellent agreement between the experimental,

numerical, and complex-lamellar results for an even number of flow reversals (four). Further

investigation along with the development of the Beltramian solutions suggested that the

initial comparisons with the experimental data was misguided and that only an odd number

of flow reversals was physical. The recent work by Batterson and Majdalani [33] provided a

more suitable comparison where the Beltramian solutions, rather than the complex-lamellar,

are used to predict the locations of internal mantles associated with each flow reversal.

The key findings from the complex-lamellar and Beltramian bidirectional vortex

solutions can be found in Ch. 2.

1.2 Instability

Instability research stands at the forefront of many modern real-world problems. Hydrody-

namic instability has been in development for well over a century and has fostered ground-

breaking work in many facets of engineering and mathematical research. The pioneers in

the field include names like Helmholtz [34], Kelvin [35], and Rayleigh [36]. Perhaps the most

widely known work is the laminar-turbulent transition experiments published by Reynolds

in 1883 [37]. Therein, Reynolds observed and recorded the conditions for which a stream

of dye entrained in a pipe flow changes from a distinct stream to a uniform mixture with

the surrounding flow. Since then, transitional flow has become a science unto itself with

pertinent applications in aerodynamic flow separation, lift and drag, and even cyclical loading

in aerodynamic structures.

Vortex shedding has been identified as a significant mechanism affecting instability and

the transition from laminar to turbulent flow. It leads directly to turbulence as well as a

tripping mechanism to initiate the formation of hydrodynamic waves. Three types of vortex

shedding are described in Fig. 1.2 [38]. The first, known as obstacle vortex shedding, occurs

when vortices are spun off of the trailing edge of a protrusion into the flow. Angle vortex

4

Figure 1.2: The three identified types of vortex shedding [38].

shedding is characteristic of a backward facing step in which the flow tries to accommodate

a sharp turning angle. Lastly, parietal vortex shedding, coming from the French word ‘paroi’

meaning wall, is a product of fluid/wall interaction and is an intrinsic instability of many

mean flowfields. This type of vortex shedding is an inherent hydrodynamic instability and

acts as a primary mechanism in laminar/turbulent transition. All three types can lead to

serious complications in thrust chambers. As the name suggests, parietal vortex shedding

is characterized by oscillations where the largest amplitudes occur near the surface and

diminish near the centerline. Parietal oscillations associated with the vortico-acoustic wave

are attributed to a vortical boundary layer generated by a reciprocating longitudinal acoustic

wave. Its presence stands to fulfill the no-slip condition on the precluding acoustic wave.

Although nontrivial, this unsteady behavior can be characterized analytically for many

closed-form base flow profiles by employing a series of exact or asymptotic mathematical

techniques. Hydrodynamic wave formation is due to bulk flow vorticity generation. Here,

the no-slip condition is self-satisfied by enforcing the ‘zero’ condition at the boundaries. As

such, this formulation is discussed as a generalized eigenvalue problem and must be solved

numerically. Its solution is addressed by spectral methods where the eigenvalues represent

the circular frequency and the eigenvectors capture the flowfield.

Generally, efforts are taken to reduce and eliminate instability in propulsive applications.

Although the argument could be made that increased flow oscillation and turbulent

breakdown increases combustion efficiency as a avenue toward increased localized mixing of

5

fuel and oxidizer, the costs outweigh the benefits. Thrust oscillations cause fatigue material

failure in the chamber. Oscillations often occur near a natural harmonic of the combustion

chamber and then resonate throughout the entire vehicle. Instability is often accompanied by

an increase in mean pressure, known as the “DC shift.” This sustained increase in pressure

can exceed the maximum hoop stress in the chamber if not properly taken into account.

Vibrational loading can also cause structural failure in other systems as well. Secondary

failures, such as guidance system and targeting failure, are common when unpredicted thrust

oscillations appear. The problem is exacerbated where oscillations can exceed safe g-loading

for manned missions.

The mathematical and physical ideas associated with instability have been collected

from the areas of fluid dynamics and heat transfer. The well known techniques based

on the normal mode approach were already well developed in the realm of dynamical

systems, particle mechanics, and rigid body motion before coming to light in what is now

hydrodynamic instability [39]. Though sound in principle, rigorous analytic solutions are

not easily recovered due to the complexity of realistic mean flowfields. Exact solutions

of the steady inviscid Euler or the viscous Navier-Stokes equations form the basis of the

mathematical instability problem. Since few analytic solutions exist for complex geometries

that would be indicative of obstacle and angle vortex shedding, parietal instability of simple

flow models becomes the frontrunner for analytic research. The fundamental understanding

of this type of instability can naturally be applied to understand the effect of the other two.

In light of increasing computational power, CFD has been successfully used to calculate the

base, or mean, flowfield in which instability analysis is then applied. Theofilis and Sherwin

have successfully applied stability analysis to their computationally resolved base flow along

the trailing edge of an airfoil [40]. In their work, Theofilis and Sherwin remark that numerical

residuals at O(1) become forcing functions in the higher order instabilities [41]. Along similar

lines, Barkley et al. use spectral element discretization to obtain the two-dimensional base

6

flow solution over a backward facing step [42]. Likewise, the base flow around a forward

facing step is determined via finite-volume methods by Stuer and co-workers [43, 44].

Linear stability analysis has produced verifiable results in many practical applications.

The method of application is relatively straightforward. We superimpose a higher order

fluctuating term over the steady base flow. The resulting instantaneous velocity becomes of

the form M̃ = M +m′, with M̃ representing the instantaneous flow: the sum of the base

flow, M , and a corresponding unsteady fluctuation, m′. The Navier-Stokes equations are

perturbed by inserting the instantaneous velocity. Assuming knowledge of an analytical or

computational base flow a priori, the terms consisting of only the base flow can be assumed

to satisfy the leading order solution and are negated from the equation of motion. Also,

terms of O(m′2) are truncated. The remaining terms comprise the Linearized Navier-Stokes

(LNS) equations. The LNS equations denote a set of linear coupled partial differential

equations governing the fluctuation in which the remnants of the base flow appear as variable

coefficients.

1.2.1 On the Vortico-Acoustic Wave Formulation

The mathematical formulation and solution of the vortico-acoustic wave equations is

well understood beginning with the extensive studies of the Stokes boundary layer with

nontranspiring walls [45–48]. The increased complexity incurred when considering wall

injection was thoroughly addressed by Majdalani [49]. While the solution to the one-

dimensional acoustic component is well known, he successfully employed asymptotic

techniques to resolve the otherwise intractable equation for the solenoidal flow component.

As is now the convention, the distinguishing parameters were used to reduce the intractable

exact equation to a system of recursive tractable equations. Concurrently, Flandro employed

a different method to the same problem based on the vorticity transport equation [50]. His

approach was later refined and compared to Majdalani’s model [51].

7

Presently, the formulation of the vortical component to the problem is well understood.

The solution, however, is difficult. Conventional numeric schemes fail for two major

reasons. First, for high Reynolds number flows the equations become stiff and cause

numeric instability. Second, the centerline boundary condition is difficult to secure with

standard shooting methods. Successful attempts have shown that the unsteady vorticity

wave deteriorates to a value near, but not exactly, zero near the centerline. Through

numerical experimentation, we find convergence to be difficult to achieve for many input

parameters. The stiff nature of the equation can be seen to cause numeric instablity as

well as extreme sensitivity in the shooting criteria. In essence, sizeable changes in the wave

form are observed for minuscule changes in the shooting trajectory. For certain parameters

and numerical schemes, it can be shown that convergence can only be accomplished when

changes in the shooting trajectory are kept extremely small (10−16); specifically, below the

code’s precision.

Asymptotic solutions for vortical wave problems with both suction and injection for a

myriad of geometries are now available [49, 51–54]. Simple flow profiles lend themselves to

multiple scales and, in some cases, exact solutions while more general solutions have only

been rendered using WKBJ or generalized scaling methods introduced by Majdalani [54].

1.2.2 On the Hydrodynamic Wave Formulation

Hydrodynamic instability has breached the gap between external flows in aerodynamics and

internal flows in propulsion. Though the formulation for both external and internal flows

is primarily the same, the motivation for research is significantly different. Instead of flow

separation and transition to turbulence being the forefront of stability research, internal flow

analysis is focused on another aspect of hydrodynamic instability: the hydrodynamic wave.

At the heart of classic linear stability lies a one-dimensional normal mode analysis. The

8

fluctuating components take on the ansatz∗

m̆ (r, θ, z, t) = m (r) exp [i (qθ + αz − ωt)] (1.1)

where m(r) is a one-dimensional amplitude function, α is a complex wave number, ω is the

complex circular frequency, and q is the an integer mode number. The exponential term

captures the oscillatory nature and the growth of wave amplitude in both space and time.

Direct substitution of this ansatz into the LNS equations, in which only derivatives with

respect to r are kept, recovers a system of coupled ordinary differential equations known

as the Orr-Sommerfeld equations (OSE) (see Drazin [39]). A closer look at this approach

reveals significant limitations of the Orr-Sommerfeld equations to general flow problems.

The applicability of this type of analysis is determined by the parallel-flow assumption. This

requirement states that the base flow must be a function of the radial component only. In

other words ∂M
∂z

= ∂M
∂θ

= 0. Simple Poiseuille and Couette flow do indeed adhere to this

criterion; however, more interesting flows such as the Taylor plane flow or the Taylor-Culick

axisymmetric flow do not.

Two hydrodynamic theories are born: spatial and temporal theories [55]. Spatial theory

allows growth and decay only in space by setting the imaginary part of the frequency to zero.

Conversely, temporal theory allows only growth in time by setting the imaginary component

of the wavenumber to zero. Gaster has shown that both theories should produce the

same results within a small truncation error by integrating the Cauchy-Riemann relations,

∂ωr/∂αr = ∂ωi/∂αi and ∂ωr/∂αi = −∂βi/∂αr [56].

The restriction of the parallel-flow assumption can be relaxed by suggesting that

∂M
∂z
, ∂M

∂θ
� ∂M

∂r
. In doing so, we are able to extend the normal mode approach to a much

larger range of base flows. This is justified when the parallel-flow assumption is nearly

satisfied locally. This technique is widely known as the Local Nonparallel (LNP) or Normal

∗m̆ (y, x, z, t) = m (y) exp [i (αx+ βz − ωt)]

9

Nonparallel (NNP) approach. A comprehensive study regarding the application of the LNP

approach to solid rocket motors has been presented by Casalis, and Vuillot [55]. Their work

shows excellent agreement with experimental data and suggests that the LNP technique is

a viable predictor of stability in long chambers.

Though the LNP technique has been successfully applied to long solid rocket models,

the localized parallel-flow assumption is not entirely justified. For a two-dimensional base

flow, the axial velocity is related to a nonzero transverse velocity through continuity. This is

why the axial dependence is considered nonparallel [55]. The degree of nonparallelism can

be qualitatively determined by calculating the magnitude of the ratio of the transverse-to-

axial velocities. In the case of the Taylor-Culick profile in solid rocket motors, this ratio

asymptotes to zero downstream. This behavior produces a viable justification for its use in

long chambers along the centerline. However, in the headwall region and near the sidewall

the local parallel-flow assumption remains in question. Also, since the LNP is based on a

one-dimensional amplitude function, it returns a system of ordinary differential equations.

Consequently, it cannot satisfy the boundary conditions at the headwall.

Griffond has shown the LNP approach to be mathematically inconsistent [57]. In his

analysis, he shows that the governing equations, and inevitably the solutions, are formulation

dependent. Converting a primitive variable formulation of the governing equations to a

streamfunction representation leads to an extra term not shown in a direct streamfunction

derivation. Strictly enforcing the parallel flow assumption in either formulation results in the

emergence of the Orr-Sommerfeld equations. He attributes this deficiency to the inability of

both models to satisfy the parallel-flow assumption.

A third approach in the realm of classic linear theory is that of the Parabolized Stability

Equations (PSE) [58]. It was originally developed to reconcile the questions remaining in

the stability of the Blasius boundary layer. Similar to the LNP approach, the formulation

begins with the relaxation of the parallel-flow assumption. Unlike the LNP however, the

10

ansatz takes the form

m̆ (r, θ, z, t) = m (r, z) exp

[∫ z

z0

iα (ξ) dξ + qθ − iωt
]

(1.2)

This method allows for spatial variation of the wavenumber and forces two-dimensional

dependence on the amplitude function. Its two-dimensionality permits the PSE approach to

remain quasi-consistent [59]. Instead of the standard eigenvalue problem produced by the

LNP technique, the PSE approach results in stepped calculations in the streamwise direction

[60]. Regardless, it is shown by Casalis and Vuillot [55] that the PSE and LNP techniques

are in excellent agreement with each other and experimental data for simple base flows.

The difference in the PSE approach from the standard eigenvalue problem leads to an

interesting, but not obvious difficulty with the formulation. Haj-Hariri [61] has analyzed

the mathematical form of the PSE approach and determined that it resulted in a system of

weakly elliptic, rather than parabolic, equations. In his assessment, this renders an explicit

scheme in the streamwise direction numerically unstable. Researchers are forced to use

implicit methods to overcome this deficiency with a large enough step size in the streamwise

direction to suppress the numerical artifacts. Li and Malik address this issue in 1995 and 1996

where they discuss the critical step size [62, 63] needed for convergence. This limitation leads

to a balance of the streamwise accuracy and the numeric stability of the solution. Andersson

and co-workers suggest using a numeric stabilizing technique by first approximating the

streamwise derivative with a first order implicit scheme and including a stabilizing term at

the order of the truncation error [64]. Their techniques have shown a significant increase in

numerical stability.

It should be noted that the relaxed form of the parallel flow assumption is the foundation

of this formulation. For strongly nonparallel flows or nonparallel regions, the validity is still

in question. Also, by allowing the wavenumber to vary, the PSE formulation results in an

ill-posed system of equations. An auxiliary equation known as the normalization condition

11

must be introduced. This equation has two purposes: to produce a well-posed problem and

to shift as much streamwise dependence as possible into the exponential. The latter purpose

supplements the relaxation of the parallel flow assumption by forcing the amplitude function

to slowly vary in the second spatial dimension. The normalization condition appears in many

forms and is often problem dependent. Nonetheless, it produces a viable closure to the PSE

system [58].

Because the integration of the wave number begins at the neutral curve, the initialization

of the problem is very important. It must be initialized in the stable flow within an acceptable

proximity to the neutral curve. If the starting point is too close, transient characteristics may

not be resolved. If too far, an unrealistically large transient region may appear. Likewise, the

onset of stability may be shifted upstream or downstream if the initialization is premature

or tardy. Previous knowledge of the location of the neutral curve can be determined from

the simplified OSE calculations; however, the introduction of nonparallel effects can shift

the neutral curve significantly upstream [60]. Therefore, ambiguity may be seen to influence

the ensuing equations.

The PSE and LNP equations can be written to distinctly show how the OSE equation

takes the role of the leading order solution, with streamwise variations falling into first order

and higher approximations [55, 65, 66]. We have already stated that the use of the Orr-

Sommerfeld equations are not valid because of the parallel-flow assumption for flows such as

the Taylor-Culick profile. Therefore a universally consistent, rigorous approach needs to be

sought to accommodate real flow characteristics at all orders.

The latest advances in hydrodynamic instability have led us to what is known as

biglobal hydrodynamic instability. The idea of modal decomposition continues through this

formulation. In the biglobal context, the ansatz takes yet another form namely,

m̆(r, θ, z, t) = m(r, z) exp [i (qθ − ωt)] (1.3)

12

This form allows for significant variations in the axial and radial directions and periodicity in

the tangential. By allowing the amplitude function to be two-dimensional, we recover a fully

consistent formulation and a well-posed system. Another advantage of a two-dimensional

approach is that the problematic parallel-flow assumption is eliminated. This allows rigorous

solutions to be calculated for a large number of axisymmetric and two-dimensional flows. Like

the PSE equations, this formulation produces a system of partial differential equations rather

than simply the ordinary differential equation sets created by the OSE and LNP approaches.

In doing so, it allows for the satisfaction of no-slip at the headwall. Chedevergne and co-

workers [1] use a linear extrapolation as suggested by Lin and Malik [67] and Theofilis [41] to

deduce boundary conditions at the exit plane. DNS simulation suggests that this formulation

produces accurate results for arbitrary exit plane locations.

The partial differential equation formulation leads to added complexity in the solution

of the biglobal eigenvalue problem. Spectral collocation methods and Arnoldi eigensolvers

currently present the most efficient means of computation. Rather than the powerful QZ

algorithm [68, 69] which captures all the eigenvalues at once, Arnoldi iteration schemes

[70–72] efficiently calculate eigenvalues in a user specified region. The full spectrum can

be solved by repeating the Arnoldi iteration in overlapping regions. In doing so, each run

requires much less storage, memory, and CPU power to produce accurate results.

Theofilis comments that the overall power of biglobal stability predictions is slightly

tempered by its inability to directly handle spatial theory [41]. He states:

“If two spatial directions are resolved, the eigenmodes will not possess a wave-

like character in the general case [73] and it is not clear whether the concept of

a complex wavenumber can be simply borrowed from its counterpart terminology

in one-dimensional linear analysis. . .

. . . Furthermore, from a numerical point of view Heeg and Geurts [74] have

documented that the computing effort of a spatial biglobal eigenvalue problem

13

solved with the Jacobi-Davidson algorithm scales with the size of the problem

solved raised to a power between two and three; this could become excessive

compared with the cost of the respective temporal problem.”

More concisely, Theofilis states that a sinusoidal spatial wave cannot be expected since the

spatial waveform is no longer specified in the ansatz; rather, it is defined in a two-dimensional

amplitude function. In any event, this perspective may be inconsequential given that the

two-dimensional eigenmode is sufficient to describe the spatial evolution of the fluctuations.

The development of biglobal hydrodynamic instability theory has opened the door to

confidently explore increasingly complex flowfields. It is apparent that the alleviation of the

parallel flow assumption through biglobal stability is a significant advancement over classic

theory. With its successful application and validation as a rigorous and accurate method to

predict temporal laminar/turbulent transition and wave propagation, it will continue to be

a pertinent tool for hydrodynamic instability research.

1.2.3 On Linear Hydrodynamic Stability Theory

The instantaneous velocity is considered to be the sum of a steady† and three oscillating

perturbations

M̃ =M + m̂+ m̃+ m̆ (1.4)

M̃ is the instantaneous flow component. Next, m̂, is the compressible, irrotational acoustic

wave. The rotational, incompressible vortical wave is represented by m̃. These two are

inherently related in that m̃ does not exist without the m̂. The sum of these two waves

satisfies the no-slip condition at the wall. Both the wavelengths and frequencies of these two

waves are discernable. Also, the vortical wave is parietal such that its largest magnitudes

†In this context, “steady” is synonymous with non-oscillatory. The flow can be consistently varying in
time but is considered “steady” since the temporal variation of the perturbation is much faster than the base
flow.

14

are exhibited near the wall. Finally, the hydrodynamic wave is given as m̆. It is also a

parietal wave; however, because of its connection with turbulence, it occurs over a spectrum

of frequencies and scales. This instability automatically satisfies the no slip condition at the

wall without the need for additional boundary layer corrections. Thus, spectral methods

must be used to test the range of frequencies and determine the most amplified modes.

The assumption is made here that the hydrodynamic instability waves remain uncoupled

from any of the others and therefore can be summed in a linear fashion. This is because

each wave occurs over unique scales. Speculation exists as to the validity of this assumption

[75]. Since the hydrodynamic wave essentially occurs over a range of scales, it is likely to

couple with the vortico-acoustic wave at some frequencies. However traditional thinking has

shown viable results. This assumption allows us to make progress by analyzing each wave

independently from the others.

The analysis begins with the superposition of the base flow at leading order with the

hydrodynamic wave being represented as a first order perturbation.

M̃ =M + m̆ (1.5)

In strictly mathematical terms, the following shows a pure mathematical derivation to

obtain a linear relation from the Navier-Stokes equations. If we express the complete set of

equations together in terms of a nonlinear operator N , then the condition on m̆ can easily

be identified [55]:

N (M̃) = 0→ N (M + m̆) = 0 (1.6)

However, we must assume a known solution for the base flow can be determined analytically

or computationally a priori. Therefore the base flow alone already satisfies

N (M) = 0 (1.7)

15

This is expressed explicitly through a Taylor expansion

N (M + m̆) = N (M) + L(M) · m̆+O(m̆2) = 0 (1.8)

where we identify the new linear operator, L(M), acting on m̆. Since N (M) = 0 is assumed

to be known a priori and terms of O(m̆2) are truncated, we are left only with the first order

equation for the hydrodynamic fluctuation; namely, L(M) · m̆ = 0. In a strictly perturbative

sense each order is, by definition, identically zero. Applying these concepts to continuity and

the Navier-Stokes equations leads us to the Linearized Navier-Stokes (LNS) equations.

The operator description of the LNS equations given above is general and can encompass

the complete Navier-Stokes equation including rotationality, compressibility, and viscosity.

Conversely, it works for any physical assumptions used to reduce the full equation. The

general hydrodynamic equations are derived under the auspices of rotational, viscous,

incompressible flow. Thus, the hydrodynamic LNS equations can be formulated by

considering the instantaneous continuity and momentum equations of the form

Continuity:
∂Ũr

∂r
+
Ũr

r
+

1

r

∂Ũθ

∂θ
+
∂Ũz

∂z
= 0 (1.9a)

Radial momentum:

∂Ũr

∂t
+ Ũr

∂Ũr

∂r
+
Ũθ

r

∂Ũr

∂θ
− Ũ2

θ

r
+ Ũz

∂Ũr

∂z
+
∂P̃

∂r

=
1

Re

(
∂2Ũr

∂r2
+

1

r

∂Ũr

∂r
− Ũr

r2
+

1

r2
∂2Ũr

∂θ2
− 2

r2
∂Ũθ

∂θ
+
∂2Ũr

∂z2

)
(1.9b)

16

Tangential momentum:

∂Ũθ

∂t
+ Ũr

∂Ũθ

∂r
+
Ũθ

r

∂Ũθ

∂θ
+
ŨrŨθ

r
+ Ũz

∂Ũθ

∂z
+

1

r

∂P̃

∂θ

=
1

Re

(
∂2Ũθ

∂r2
+

1

r

∂Ũθ

∂r
− Ũθ

r2
+

1

r2
∂2Ũθ

∂θ2
+

2

r2
∂Ũr

∂θ
+
∂2Ũθ

∂z2

)
(1.9c)

Axial momentum:

∂Ũz

∂t
+ Ũr

∂Ũz

∂r
+
Ũθ

r

∂Ũz

∂θ
+ Ũz

∂Ũz

∂z
+
∂P̃

∂z
=

1

Re

(
∂2Ũz

∂r2
+

1

r

∂Ũz

∂r
+

1

r2
∂2Ũz

∂θ2
+
∂2Ũz

∂z2

)
(1.9d)

These equations are perturbed by defining the instantaneous velocity as the linear sum

of the base flow and a fluctuation attributed to the hydrodynamic wave. In general terms

we define

M̃ =M +m′, m′ = m̂+ m̃+ m̆ (1.10)

corresponding to the base flow and sum of oscillating perturbations. For hydrodynamic

instability we Here, m′ = m̆ only. This step ends with

Continuity:
∂Ur

∂r
+
Ur

r
+

1

r

∂Uθ

∂θ
+
∂Uz

∂z
+
∂ŭr
∂r

+
ŭr
r

+
1

r

∂ŭθ
∂θ

+
∂ŭz
∂z

= 0 (1.11a)

17

Radial momentum:

∂Ur

∂t
+ Ur

∂Ur

∂r
+
Uθ

r

∂Ur

∂θ
− U2

θ

r
+ Uz

∂Ur

∂z
+
∂P

∂r

+
∂ŭr
∂t

+ Ur
∂ŭr
∂r

+ ŭr
∂Ur

∂r
+
Uθ

r

∂ŭr
∂θ

+
ŭθ
r

∂Ur

∂θ
− 2Uθŭθ

r
+ Uz

∂ŭr
∂z

+ ŭz
∂Ur

∂z
+
∂p̆

∂r

+ ŭr
∂ŭr
∂r

+
ŭθ
r

∂ŭr
∂θ
− ŭ2θ

r
+ ŭz

∂ŭr
∂z

=
1

Re

(
∂2Ur

∂r2
+

1

r

∂Ur

∂r
− Ur

r2
+

1

r2
∂2Ur

∂θ2
− 2

r2
∂Uθ

∂θ
+
∂2Ur

∂z2

+
∂2ŭr
∂r2

+
1

r

∂ŭr
∂r
− ŭr
r2

+
1

r2
∂2ŭr
∂θ2
− 2

r2
∂ŭθ
∂θ

+
∂2ŭr
∂z2

)
(1.11b)

Tangential momentum:

∂Uθ

∂t
+ Ur

∂Uθ

∂r
+
Uθ

r

∂Uθ

∂θ
+
UrUθ

r
+ Uz

∂Uθ

∂z
+

1

r

∂P

∂θ

+
∂ŭθ
∂t

+ Ur
∂ŭθ
∂r

+ ŭr
∂Uθ

∂r
+
Uθ

r

∂ŭθ
∂θ

+
ŭθ
r

∂Uθ

∂θ
+
Urŭθ
r

+
ŭrUθ

r
+ Uz

∂ŭθ
∂z

+ ŭz
∂Uθ

∂z
+

1

r

∂p̆

∂θ

+ ŭr
∂ŭθ
∂r

+
ŭθ
r

∂ŭθ
∂θ

+
ŭrŭθ
r

+ ŭz
∂ŭθ
∂z

=
1

Re

(
∂2Uθ

∂r2
+

1

r

∂Uθ

∂r
− Uθ

r2
+

1

r2
∂2Uθ

∂θ2
+

2

r2
∂Ur

∂θ
+
∂2Uθ

∂z2

+
∂2ŭθ
∂r2

+
1

r

∂ŭθ
∂r
− ŭθ
r2

+
1

r2
∂2ŭθ
∂θ2

+
2

r2
∂ŭr
∂θ

+
∂2ŭθ
∂z2

)
(1.11c)

18

Axial momentum:

∂Uz

∂t
+ Ur

∂Uz

∂r
+
Uθ

r

∂Uz

∂θ
+ Uz

∂Uz

∂z
+
∂P

∂z

+
∂ŭz
∂t

+ Ur
∂ŭz
∂r

+ ŭr
∂Uz

∂r
+
Uθ

r

∂ŭz
∂θ

+
ŭθ
r

∂Uz

∂θ
+ Uz

∂ŭz
∂z

+ ŭz
∂Uz

∂z
+
∂p̆

∂z

+ ŭr
∂ŭz
∂r

+
ŭθ
r

∂ŭz
∂θ

+ ŭz
∂ŭz
∂z

=
1

Re

(
∂2Uz

∂r2
+

1

r

∂Uz

∂r
+

1

r2
∂2Uz

∂θ2
+
∂2Uz

∂z2

+
∂2ŭz
∂r2

+
1

r

∂ŭz
∂r

+
1

r2
∂2ŭz
∂θ2

+
∂2ŭz
∂z2

)
(1.11d)

Two modifications are necessary and reduce these equations significantly. Terms of

O(M) and O(M2) refer to the leading order, base flow solution. Since we begin an analysis

of this type knowing the base flow solution, the collection of these terms sum to exactly zero.

Also, terms of O(m̆2) are second order and can be dismissed from the linear framework. The

results are:

Continuity:
∂ŭr
∂r

+
ŭr
r

+
1

r

∂ŭθ
∂θ

+
∂ŭz
∂z

= 0 (1.12a)

Radial momentum:

∂ŭr
∂t

+ Ur
∂ŭr
∂r

+ ŭr
∂Ur

∂r
+
Uθ

r

∂ŭr
∂θ

+
ŭθ
r

∂Ur

∂θ
− 2Uθŭθ

r
+ Uz

∂ŭr
∂z

+ ŭz
∂Ur

∂z
+
∂p̆

∂r

= ε

(
∂2ŭr
∂r2

+
1

r

∂ŭr
∂r
− ŭr
r2

+
1

r2
∂2ŭr
∂θ2
− 2

r2
∂ŭθ
∂θ

+
∂2ŭr
∂z2

)
(1.12b)

19

Tangential momentum:

∂ŭθ
∂t

+ Ur
∂ŭθ
∂r

+ ŭr
∂Uθ

∂r
+
Uθ

r

∂ŭθ
∂θ

+
ŭθ
r

∂Uθ

∂θ
+
Urŭθ
r

+
ŭrUθ

r
+ Uz

∂ŭθ
∂z

+ ŭz
∂Uθ

∂z
+

1

r

∂p̆

∂θ

= ε

(
∂2ŭθ
∂r2

+
1

r

∂ŭθ
∂r
− ŭθ
r2

+
1

r2
∂2ŭθ
∂θ2

+
2

r2
∂ŭr
∂θ

+
∂2ŭθ
∂z2

)
(1.12c)

Axial momentum:

∂ŭz
∂t

+ Ur
∂ŭz
∂r

+ ŭr
∂Uz

∂r
+
Uθ

r

∂ŭz
∂θ

+
ŭθ
r

∂Uz

∂θ
+ Uz

∂ŭz
∂z

+ ŭz
∂Uz

∂z
+
∂p̆

∂z

= ε

(
∂2ŭz
∂r2

+
1

r

∂ŭz
∂r

+
1

r2
∂2ŭz
∂θ2

+
∂2ŭz
∂z2

)
(1.12d)

where ε = Re−1.

It is at this juncture that the path toward a solution diverges based on the method to

be applied (OSE, LNP, PSE, BG). For complete derivations and further discussion of the

LNP and BG stability equations see App. A.1 and App. A.2, respectively.

1.2.4 Parallel Flow Effects

In the study by Casalis and Vuillot [55], the validity of the normal mode assumption is

discussed, specifically

m′ (r, θ, z, t) = m (r) exp [i (qθ + αz − ωt)] (1.13)

The discussion also addresses its justification (or lack thereof) for two-dimensional base flows.

In short, continuity imposes a dependence of the streamwise velocity on the streamwise

coordinate through the nonzero transverse velocity. This is a nonparallel effect. Thus,

the normal mode remains a valid approximation only for flows weakly dependent on the

20

streamwise coordinate, or
∂M

∂z
,
∂M

∂θ
� ∂M

∂r
(1.14)

This is known as the parallel flow assumption. Setting the left-hand-side of this equality

equal to exactly zero is the basis for deriving the Orr-Sommerfeld equation.

Casalis and Vuillot go further to propose a means of analyzing the degree in which the

parallel flow assumption is violated. Since the degree of the nonparallel effects is related to

the magnitude of the transverse velocity with respect to the streamwise coordinate, we can

simply calculate their ratio to qualify their significance. We define the Nonparallel Ratio

(NPR) as

NPR ≡ Ur

Uz
(1.15)

This calculation is performed for several base flows in Eqs. (1.16a–1.16c).

NPR =

∣∣∣∣ − sin(πr/2)

πz/2 cos(πr/2)

∣∣∣∣ ≈ r

z
+
π2r3

12z
+O(r5) Taylor Plane Flow (1.16a)

NPR =

∣∣∣∣−1/r sin(πr2/2)πz cos(πr2/2)

∣∣∣∣ ≈ r

2z
+O(r5) Taylor-Culick Axisymmetric Flow (1.16b)

NPR =

∣∣∣∣−κ/r sin(πr2)2πκz cos(πr2)

∣∣∣∣ ≈ r

2z
+O(r5) Bidirectional Vortex Flow (1.16c)

A 1/z effect can be clearly seen approaching the headwall. For long chambers 1/z diminishes

significantly and therefore the nonparallel effects follow suit. However, for short chambers

associated with the bidirectional vortex engine (BVE), we can safely assume nonparallel

effects are indeed important. A graphical representation of these results is found in Fig. 1.3a.

The radial coordinate acts as a scaling factor but must be taken away from the centerline

or sidewall. At both r = 0 and r = 1, the radial velocity is strictly zero and the NPR will,

likewise, be zero. The radial coordinate will maximize the NPR where the radial velocity is

maximum but is inconsequential when compared to the effect of streamwise position.

21

For comparison purposes, we introduce another stability analysis performed by Abu-

Irshaid, Majdalani, and Casalis [76]. Their study considers the Taylor-Culick base flow

with uniform headwall injection. The particular configuration is appropriate for hybrid

rockets with headwall injection. A similar calculation can be made to gage the importance

of nonparallel effects, namely,

NPR =

∣∣∣∣ −1/r sin(πr2/2)π(z + uh) cos(πr2/2)

∣∣∣∣ ≈ r

2(z + uh)
+O(r5) (1.17)

Right away we see that this result is slowly changing near the headwall and goes to zero as

z gets large. Furthermore, the NPR remains bounded at the headwall because of a finite uh

and remains small over the entire length of the chamber. This result is plotted alongside the

three previous flowfields for three values of headwall injection in Fig. 1.3b. We can conclude

that this base flow is a viable candidate for a local nonparallel stability analysis where the

previous three may only be for long chambers.

In seeking a biglobal stability analysis, we eliminate the deficiencies of the parallel

flow assumption while sacrificing simplistic formulations and computational time. Solutions

inherently consider both the transverse and streamwise coordinates so the end result is not

sensitive to the streamwise position and is well suited for axisymmetric geometries.

22

a) Nonparallel ratio for three common base flows b) Nonparallel ratio for Taylor-Culick flow with
uniform headwall injection [77]

Figure 1.3: A qualitative comparison of the nonparallel effects of several base flows for r = 0.5.

23

Chapter 2

Vortex Flows

In this chapter, we will review some of the theoretical solutions used to describe swirl

dominated flows in both unidirectional and bidirectional flow orientations. A brief historical

time line discussing the evolution of vortex flow modeling as it developed from the external

one-dimensional Rankine vortex to the most recent developments in confined multidirectional

vortex flows will be presented. Many similarities are found between the models regardless

of the context in which they were derived. The main thrust of this chapter, however, is the

derivation of the multidirectional vortex flows that represent the basis for this hydrodynamic

instability study.

24

2.1 An Introduction to Vortex Flows

Coherent vortex structures in naturally occurring phenomena have peaked interest in

their mathematical intricacy and potential practical applications for hundreds of years.

Inducing vortex motion over non-rotating fluid flow is known to affect thermal and transport

properties. Their favorable attributes are leveraged in industrial applications such as swirl

combustors where vortex injection increases residence time and promotes efficient combustion

and cyclonic separators where centrifugal forces cause heavier particles to migrate outwardly.

Meteorological vortex flows are most notable for their destructive power.

Perhaps the first among analytic vortex models was introduced by Rankine in 1858

[2]. This combined vortex solution is a piecewise continuous function identifying two

distinct vortex characteristics. When nondimensionalized by the characteristic boundary

layer thickness, δ, it is expressed as:

Uθ(r) =
Ūθ(

Ūθ

)
max

=

⎧⎨
⎩ r, 0 ≤ r ≤ 1

r−1, r > 1
where r =

r̄

δ
(2.1)

For r̄ > δ we observe what is called the free vortex tail. Here, the velocity is inversely

proportional to r̄. The inviscid free vortex is augmented by the viscous forced core in order

to overcome the r−1 singularity at the centerline and produce a uniformly valid solution over

the entire domain, 0 ≤ r ≤ ∞. The region r̄ ≤ δ is referred to as the forced core vortex.

This domain is indicative of solid body rotation and is defined up to the maximum velocity,(
Ūθ

)
max

. In this region, viscous forces overshadow inertial forces and give rise to a distinctly

different solution from the outer, free vortex. Both pieces can be clearly seen in Fig. 2.1a.

The piecewise nature of the Rankine vortex is, simultaneously, its best and worst

property. Its simplicity lends itself to quick comparisons with experimental data and, perhaps

for this reason, it is still commonly used to curve fit data for swirl velocities in tornadoes [78]

and hurricanes [79]. On the other hand, the one-dimensional model may be oversimplified for

25

a) Rankine vortex (1858) b) Lamb-Oseen (1932)/Burgers-Rott vortex (1948)

c) Sullivan vortex (1959) d) Nondimensional overlay of all four models

Figure 2.1: Normalized swirl velocity for several historic vortex models.

weakly swirl dominated flow regimes. Fortunately, the tangential velocity is at least an order

of magnitude larger than either the radial or axial velocities in most swirling flows. Thus,

it is no stretch to regard these other two vector components as secondary and dismiss them

from the model. Lastly, the piecewise defined solution produces a cusp where the forced core

and free vortex regions meet. This leads to an overshoot in both maximum velocity and

forced core thickness. Experimenters can account for the overshoot by fitting the core and

tail regions independently and extracting the core thickness and maximum velocity directly

from experimental data.

The next vortex model of relevance is that of Oseen [4] and Lamb [3] circa 1932. The

relationship between the two authors, if any, is unclear even though it has become the

26

convention to refer to this model as the Lamb-Oseen vortex. The corresponding formulation

incorporates temporal decay by defining a time dependent characteristic boundary layer

thickness. The model appears nondimensionally as

Uθ (r) =
1

2πr

(
1− e−r2

)
where r =

r̄

δ
; Uθ(r) =

Ūθ(r̄)

Γ/δ
; δ = 2

√
νt; and Γ =

∫∫
S

(∇×U) · dS

Without an energy source to sustain vortex motion, this model succumbs to the dissipative

effects of shear stresses over time. These force the maximum velocity to diminish while

the core thickness increases until the profile is damped to zero. Therefore, this solution

is commonly used to model wing-tip vortices and other dissipative rotating flows [13, 80].

Figure 2.1b illustrates the tangential velocity associated with this model.

A closely related model to the Lamb-Oseen vortex is the 1948 solution developed by

Burgers [5, 81] and Rott [6, 82, 83]. Both the Burgers-Rott and Lamb-Oseen vortex models

are axisymmetric Gaussian vortex solutions of the incompressible Navier-Stokes equations.

They can both be collapsed into the Gaussian form:

Ūθ(r) = ΓG
(r̄
δ

)
; G(x) =

1

4π
e−x2/4 (2.2)

Conversely, these two models differ in two ways: First, the Burger-Rott vortex is commonly

accompanied by an axial and radial velocity component. Second, rather than time

dependence, this model introduces a suction parameter, a, that accounts for any external

strain field where the axial flow is generated by a pressure gradient [8]. The suction

parameter, a, is originally named the “inflow-gradient” by Rott and is actually a constant

gradient of velocity of flow coming into the vortex from the outer field [6]. It is approximated

as a constant even in cases where it possesses weak axial dependence. For sink flow, it can

27

be explicitly defined as

a =
Q

2πh3
(2.3)

where Q is the sink strength and h is the distance to the infinite plane (the undisturbed free

surface). The total nondimensional Burgers-Rott vortex is given as

Uθ(r) =
1

2πr

(
1− e−r2

)
;

Ur(r) = −r; Uz(z) = 2z

where r, z =
r, z

δ
; Uθ(r) =

Ūθ(r)

Γ/δ
; Ur,z =

Ūr,z

aδ
;

δ =
√
2ν/a; and Γ =

∫∫
S

(∇×U) · dS

Note that the nondimensional form of both the Lamb-Oseen and Burgers-Rott models are

identical. Their plot is shared in Fig. 2.1b.

A closer consideration of the axial and radial velocity components identify both as

linear, unbounded functions. This behavior implies that the vortex must be relatively small

compared the strain field in which it is emersed. Often this caveat is circumvented by using

only the tangential velocity as a purely one-dimensional model. One application in which all

three vector components are retains is swirl modeling of tornadoes under a large thunderhead

[84].

The first instance of a bidirectional vortex model dates back to 1959 when an exact

solution of the Navier-Stokes equations in an unbounded domain was developed by Sullivan

[14]. This vortex is characterized by a strong downdraft near the axis of symmetry and a

weaker updraft caused by the outward turning of the core vortex after impinging upon a

solid surface at z = 0. This type of motion was originally denoted as a two-cell vortex and is

ideal for modeling tornadoes. We find this model to be slightly more difficult to apply since

28

it is resolved in terms of integral functions. We have

Uθ(r) =
1

2πr

G (r2)

G (∞)
with G(x) =

∫ x

0

ef(t) dt; f(t) = −t + 3

∫ t

0

(
1− e−y

) dy

y
;

Ur(r) = −r + 3

r

(
1− e−r2

)
; Uz(r, z) = 2z

(
1− 3e−r2

)

where (r, z) =
(r̄, z̄)

δ
; Uθ (r) =

ūθ (r̄)

Γ/δ
; Ur,z =

Ūr,z

aδ
;

δ =
√
2ν/a; and Γ =

∫∫
S

(∇×U) · dS

Once again a refers to the suction strength and ν is the kinematic viscosity. Examination

of the axial velocity shows the mantle location, or position along the radius where the axial

velocity changes direction, to be at r =
√
ln 3 ≈ 1.04815. Figure 2.1c shows the unique

curvature of the forced core vortex as well as the familiar r−1 form of the free vortex region.

2.2 The Complex Lamellar Bidirectional Vortex

Although the bidirectional vortex is derived in the context of of propulsive applications these

models are equally applicable to any bi- or multi-directional vortex flowfield that adheres to

the basic geometry and assumptions introduced by their original developers. In the context

of propulsion, the usage of vortex motion was first proposed to increase the burn-rate in

hybrid rocket engines by Gloyer and coworkers [18]. This study laid the foundation for the

development of the so-called Vortex Injection Hybrid Rocket Engine (VIHRE) and Vortex

Combustion Cold-Wall Chamber (VCCWC) by Knuth et al. [19], Chiaverini et al. [20] and

others.

29

2.2.1 The Invsicid Solution

The original inviscid solution was first presented in the conference paper by Vyas, Majdalani,

and Chiaverini [25] that later appeared in modified form in AIAAJ [21]. It considers the

case of a cylindrical tube of length L and radius a with a closed headwall and an exit port

at the aft end whose dimensional radius is denoted by b. Purely tangential injectors are

located at the base to induce swirl. This geometry is best visualized in Fig. 2.2. The axial

velocity at the injectors is deemed small in comparison to the tangential and negligible in the

mathematical model. Also, the distribution of tangential injection at the base is assumed

to be uniform, thus indicative of a circular line source. This allows for the assumption of

axisymmetry at the onset of injection. In practice, such an assumption can only be realized

in a three-dimensional fluid after the flow has traversed a finite distance away from the aft

end. Our governing equations are devised under the following set of principle conditions:

1. Steady

2. Inviscid

3. Axisymmetric

4. Incompressible

5. Rotational

6. Nonreactive/cold-flow

7. Axially independent swirl velocity

It is helpful to nondimensionalize all lengths by the radius and all velocities by the

characteristic velocity (the tangential injection velocity). Other nondimensionalizations are

devised on the basis of convenience and to eliminate extraneous dimensional constants in

30

inlet

a

r

z

L

b

Figure 2.2: The bidirectional vortex geometry showing the coordinate system, characteristic dimensions, and
general streamline profile.

the governing equations. As usual [21], we rely on the convention

z =
z̄

a
; r =

r̄

a
; ∇ = a∇̄;

Ur =
Ūr

U
; Uθ =

Ūθ

U
; Uz =

Ūz

U
;

P =
P̄

ρU2
; Qi =

Q̄i

Ua2
; l =

L

a
(2.4)

The derivation of this model begins by considering the nondimensional continuity and

Euler equations with the above assumptions already fulfilled. Accordingly they are shown

31

to be

∇H −U ×Ω = 0; H = 1
2
U ·U + P (2.5)

where H denotes the total fluid head. In component form

continuity:
1

r

∂ (rUr)

∂r
+
∂Uz

∂z
= 0 (2.6)

r-momentum:

Ur
∂Ur

∂r
+ Uz

∂Ur

∂z
− U2

θ

r
= −∂P

∂r
(2.7)

θ-momentum:

Ur
∂Uθ

∂r
+
UθUr

r
= 0 or

1

r

∂(rUθ)

∂r
= 0 (2.8)

z-momentum:

Ur
∂Uz

∂r
+ Uz

∂Uz

∂z
= −∂P

∂z
(2.9)

At a glance, we see that Eq. (2.8) is decoupled from its radial and axial counterparts.

This suggests that the tangential velocity is simply the potential vortex solution

Uθ = r−1 (2.10)

such that the boundary condition at the inlet, Uθ(1) = 1, is satisfied.

The axial and radial solutions are devised by replacing the Euler equation with its

equivalent vorticity streamfunction form. Recalling that the curl of a gradient is zero, we

can first eliminate the stagnation pressure head by taking the curl of the momentum equation.

∇× (U ×Ω) = 0 −→ ∂ (UrΩθ)

∂r
+
∂ (UzΩθ)

∂z
= 0 (2.11)

Ω = ∇×U −→ ∂Ur

∂z
− ∂Uz

∂r
= Ωθ (2.12)

32

Equation (2.11) is known as the vorticity transport equation where Eq. (2.12) is simply the

vorticity equation.. Next, it is necessary to define the Stokes streamfunction using

ur = −1
r

∂ψ

∂z
; uz =

1

r

∂ψ

∂r
(2.13)

Even though our problem is fundamentally three-dimensional, we can utilize the streamfunc-

tion since the condition of axisymmetry along with an axially invariant tangential velocity

leave the axial and radial velocities decoupled from their tangential counterpart.

By substituting the streamfunction into Eq. (2.11) and expanding where appropriate,

we find

− ∂ψ

∂z

∂

∂r

(
Ωθ

r

)
+
∂ψ

∂r

∂

∂z

(
Ωθ

r

)
= 0 (2.14)

The tangential component of vorticity is yet to be defined. In general, it is related to

the tangential angular momentum such that it can be defined as Ωθ = rF [ψ(r, z)], where

F [ψ(r, z)] is some general function of the streamfunction. We are free to specify F such that

we do not violate any physical conditions and recover a tractable analytic solution. There is

an infinite number of possibilities but most are intractable or unphysical. To make headway,

we define F to be a linear function, specifically F = C2
mψ. A similar analog was used by

Culick in the context of gas motion in a solid rocket motor [85]. Making this substitution is

the last step needed to convert the Euler equation into its equivalent vorticity streamfunction

representation. We recover the linear, separable partial differential equation,

∂2ψ

∂z2
+
∂2ψ

∂r2
− 1

r

∂ψ

∂r
+ C2

mr
2ψ = 0 (2.15)

33

This equation is subject to the boundary conditions

z = 0; Uz(r, 0) = 0 or
1

r

∂ψ (r, 0)

∂r
= 0 (2.16a)

r = 0; Ur(0, z) = 0 or − 1

r

∂ψ (0, z)

∂z
= 0 (2.16b)

r = 1; Ur(1, z) = 0 or − 1

r

∂ψ (1, z)

∂z
= 0 (2.16c)

z = l; Qi =

∫ β

0

∫ 2π

0

U · n r dr dθ

= 2π

∫ β

0

Uz(r, l)r dr = 2π

∫ β

0

1

r

∂ψ(r, l)

∂r
r dr (2.16d)

By separation of variables we find the general solution to be

ψ = (C1z + C2)

[
C3 sin

(
Cmr

2

2

)
+ C4 cos

(
Cmr

2

2

)]
(2.17)

where the separation constant is specified to be zero for this solution.

Equation (2.16a) is a hardwall boundary condition that prevents axial flow at the

headwall. This condition implies that C2 = 0. We require this condition to be nonzero for

hybrid rockets [26, 77, 86]. The condition enforcing axisymmetry by disallowing crossflow

at the centerline is met by Eq. (2.16b); thus, we can infer that C4 = 0. At present we have

reduced the general solution to

ψ = ψ0z sin

(
1

2
Cmr

2

)
; ψ0 = C1C3 (2.18)

Equation (2.16c) is the condition for nontranspiring sidewalls. It results in the eigenvalue

problem sin(1
2
Cm) = 0. Solutions exist only when Cm = 2λm, where λm = π, 2π, . . . (m+ 1)π.

The fundamental solution is given by Vyas and Majdalani when m = 0 or Cm = 2π. Higher

values of m lead to multi-directional flowfields [30, 33].

34

Lastly, we enforce conservation of mass through Eq. (2.16d). This results in the

remaining constant to be ψ0 = Qi/[2πl sin(πβ
2)] where β serves as the nondimensional

exit port radius and also as the location of the mantle. The selection of the mantle radius to

be the same as that of the exit port is necessary to create an unopposed exit flow [21]. By

collecting the remaining parameters and utilizing the definition of the Stokes streamfunction,

we have

ψ = κz sin
(
πr2
)

(2.19)

U = −κ
r
sin
(
πr2
)
er + r−1eθ + 2πκz cos

(
πr2
)
ez (2.20)

The pressure is found by integrating the momentum equation. We find that

ΔP = − 1

2r2

{
1 +

1

2
κ2
[
8π2r2z2 + 1− cos

(
2πr2

)]}
(2.21)

where κ = Qi/(2πl) is the inlet parameter.

The resulting velocity and pressure distributions are plotted in Fig. 2.3 and the

streamlines in Fig. 2.4. We see clearly that the tangential velocity is singular at the

centerline and, along with the axial velocity, fails to capture the small boundary layer forming

along the sidewall. In the forthcoming section we will illustrate the procedure of boundary

layer characterization via asymptotic methods. We will improve upon the inviscid profile

by generating uniformly valid solutions that eliminate the tangential velocity’s centerline

singularity and encompass the effects of viscosity along the sidewall.

2.2.2 Viscous Corrections

Viscous corrections for the tangential velocity were suggested by Majdalani and Chiaverini

[23] and for the axial and radial by Batterson and Majdalani [24]. These studies show how

the boundary layer equations may be derived starting with the Navier-Stokes equations and

dismissing terms that may be deemed of higher order in the viscous layer [87]. Then following

35

a) b)

c) d)

Figure 2.3: The inviscid complex-lamellar bidirectional vortex with κ = 0.103 and z = 0.3.

Figure 2.4: Streamlines of the complex-lamellar BV.

36

Schlichting [88], Tetervin [89] and others, the boundary layer equations are scaled. Finally,

the new equations are linearized, solved asymptotically, and matched to the outer inviscid

solution. In this section we will detail the analytic techniques used to compute the effects of

viscosity and, in turn, generate the viscous complex-lamellar bidirectional vortex profile.

Tangential Core and Sidewall Corrections

Given the swirl dominated nature of the bidirectional vortex, it is appropriate to first address

the effect of viscosity in the tangential velocity profile. The deficiencies of a purely inviscid

solution can clearly be seen in Fig. 2.3b. First, the solution only generates the free vortex and

possesses a singularity at the centerline. Second, it omits the presence of a shear layer along

the sidewall. Both of these limitations can be addressed through asymptotic boundary layer

analysis. The tangential momentum equation can be reduced by assuming that velocities

and coordinate directions parallel to the primary flow direction are of order unity, while those

perpendicular are order δ. Following convention, the dimensionless viscosity ν/(Ua) may be

taken at O(δ2) [87]. Finally, terms of O(δ) and above may be truncated, thus leaving

Ur

r

∂

∂r
(rUθ) + Uz

∂Uθ

∂z
= ε

{
∂

∂r

[
1

r

∂

∂r
(rUθ)

]}
; ε =

ν

Ua
= Re−1 (2.22)

This equation can be reduced further by noting that the axial invariance of the invisicid

solution translates well to the boundary layer equations, and that derivatives with respect

to z can be eliminated. From the original studies, the ensuing equation is now subject to the

dependent-variable transformation, Uθ = ξθ(r)/r. It can be stated as the transformed ODE

ε

(
d2ξθ
dr2
− 1

r

dξθ
dr

)
− Ur

dξθ
dr

= 0 (2.23)

The radial velocity is not subject to viscous effects along the centerline since this

region is not a site of increased shear for neither the axial nor radial velocity components.

37

Furthermore, previous studies have shown an inconsequential effect of viscosity on the

radial velocity profile along the sidewall. This lends itself to being a reasonable first order

approximation to the convective coefficient in the above equation in the core region and near

the sidewall. By inserting the inviscid radial velocity directly into the governing equation,

we effectively linearize the problem. We have

ε
d

dr

(
r−1 dξθ

dr

)
+ κr−2 sin

(
πr2
) dξθ
dr

= 0 (2.24)

Next, the original authors employed the variable transformation η = πr2 to reduce the

argument of the sine function. This last transformation converts the tangential boundary

layer equation into its final form wherein it is valid for both the core and sidewall upon

proper scaling. This equation is

ε
d2ξθ
dη2

+
κ sin η

2η

dξθ
dη

= 0 (2.25)

The linear scale s = η/δ is applied to Eq. (2.25) to distinguish the viscous core from the

sidewall region. Once again δ represents the characteristic boundary layer thickness. This

layer scales the equation such that 0 ≤ η ≤ δ now corresponds to 0 ≤ s ≤ 1. The new

equation becomes

ε

κδ

d2ξ
(i)
θ

ds2
+

sin (δs)

2δ2s

dξ
(i)
θ

ds
= 0 (2.26)

In order for the diffusive and convective terms to balance, the defining parameters

controlling their respective magnitudes must balance accordingly. Here the three small

parameters, ε, δ, and κ, must be considered. A Taylor series expansion of the sine is employed

to determine the proper order of the convective term. To first order, we identify sin(δs) ≈ δs.

Thus we can represent our equation by

d2ξ
(i)
θ

ds2
+

1

2

dξ
(i)
θ

ds
= 0 (2.27)

38

where the boundary layer thickness is defined by the distinguished limit as δ ∼ ε/κ.

Fortuitously, by only retaining the leading-order expansion of the convective coefficient,

we incur a maximum local error of 2-10% for realistic values of ε and κ when compared to

the numerical solution.

The associated boundary conditions can be written as

⎧⎨
⎩

ξ
(i)
θ (0) = 0

lim
s→∞

ξ
(i)
θ = lim

r→0
ξ
(o)
θ = 1

(2.28)

where ξ
(o)
θ = ru

(o)
θ . The conditions in Eq. (2.28) act to remove the singularity at the centerline

and to asymptotically approach the inviscid profile in the outer domain in accordance with

Prandtl’s matching principle [90].

The general solution to Eq. (2.27) is simply

ξ
(i)
θ = A+Be−s/2 (2.29)

Applying the first boundary condition yields

ξ
(i)
θ = A

(
1− e−s/2

)
(2.30)

Accordingly, the second boundary condition divulges that A = 1 and

ξ
(i)
θ = 1− e−s/2 (2.31)

The sidewall corrections follow a similar procedure but under the sidewall scaling

transformation s = (π − η)/δ.

39

This time Eq. (2.25) becomes

ε

δ2
d2ξ

(w)
θ

ds2
− κ sin (π − δs)

2δ (π − δs)
dξ

(w)
θ

ds
= 0 (2.32)

Again the coefficient in the convective term is expanded via Taylor series. Using the

first two terms of the expansion of sin(x), we find as a brute approximation:

− κ sin (π − sδ)
2δ (π − sδ) ∼ −

κ

2δ (π − sδ)

[
π − sδ − (π − sδ)3

6

]

= − κ

2δ

[
1− (π − sδ)2

6

]
∼ − κ

2δ

(
1− π2

6

)
=
κα

2δ

This expansion identifies the proper scaling and significantly reduces the governing

equation to

ε

δ2
d2ξ

(w)
θ

ds2
+
κα

2δ

dξ
(w)
θ

ds
= 0 (2.33)

As before the distinguished limit is δ ∼ ε/κ and the governing equation becomes

d2ξ
(w)
θ

ds2
+
α

2

dξ
(w)
θ

ds
= 0 (2.34)

Our new boundary conditions are

⎧⎨
⎩

ξ
(w)
θ (0) = 0

lim
s→∞

ξ
(w)
θ (s) = lim

r→1
ξ
(o)
θ (r) = 1

(2.35)

It can be shown that the complete solution to this set is

ξ
(w)
θ = 1− e−αs/2 (2.36)

40

A general, uniformly valid solution over the entire domain can be constructed according

to Erdélyi’s method of composite expansions [91]. This method states that a composite

expansion can be constructed by summing the scaled solutions and subtracting the common

part. Here it translates into

ξ
(c)
θ = ξ

(o)
θ + ξ

(i)
θ + ξ

(w)
θ − lim

s→∞
ξ
(i)
θ (s)− lim

s→∞
ξ
(w)
θ (s) (2.37)

and in terms of original variables,

U
(c)
θ = r−1

[
1− e−V

4
r2−e−V

4
α(1−r2)

]
; V =

2πκ

ε
(2.38)

where V is denoted as the vortex Reynolds number.∗

Axial and Radial Corrections

The characterization of the axial sidewall boundary layer follows that of the tangential. In

fact, the analysis must conform identically. To put this statement in context: Consider the

character of the resultant boundary layer. The profile formed from the vector sum of all three

velocity components will most closely mimic that of the tangential velocity alone. Thus, the

axial and radial velocities must not modify the boundary layer physically or mathematically

from the form predicted in the tangential velocity. From a mathematical perspective, all three

boundary layer equations balance diffusion with equivalent radial convection terms. Hence,

any deviation in analysis would lead to a nonconforming mathematical solution and must

be avoided. For these reasons, the assumptions used to reduce the tangential momentum

equation to the solution of the boundary layer equation must be applied judiciously to the

other two vector directions. It becomes apparent that the governing equation for the axial

∗First defined by Majdalani (see [23])

41

boundary layer must be

εr−1 ∂

∂r

(
r
∂Uz

∂r

)
+ κr−1 sin

(
πr2
) ∂Uz

∂r
= −4π2κ2z (2.39)

where the inviscid radial velocity has already been substituted to linearize the governing

equations. The right-hand-side refers to the inviscid pressure profile. Retention of the

inviscid pressure profile in the viscous boundary layer equation is inconsequential since it

is shown to appear at significantly higher order. The variable transformation η = πr2 is

applied once again to get

ε

(
∂2Uz

∂η2
+

1

η

∂Uz

∂η

)
+

κ

2η
sin (η)

∂Uz

∂η
= −πκ

2z

η
(2.40)

The sidewall scaling transformation, s = (π− η)/δ, is applied to shift the domain to the

wall region. We arrive at

ε

δ2

(
∂2U

(w)
z

∂s2
− δ

π − sδ
∂U

(w)
z

∂s

)
− κ

2δ (π − sδ) sin (π − sδ)
∂Uz

∂s
= − πκ2z

π − sδ (2.41)

The convective coefficient is expanded in the same fashion as in the tangential velocity.

Upon substitution the equation is reduced to

∂2uz
∂s2

+
α

2

∂uz
∂s

= 0 (2.42)

By now the necessity for a dependent variable transformation has been well documented

[8, 24, 28, 29, 33]. In short, for Prandtl’s matching principle to be applicable, the limit

of the outer solution in the inner domain must be bounded and nonzero. This is true

for both the axial and tangential velocity profiles. It is, however, not true for the radial

profile. For the sake of consistency in the final solution, we are required to transform all

three accordingly. Seeking solutions for the tangential and axial velocities without this final

42

variable transformation result in asymptotically equivalent solutions for large V (V > 100).

In general, any transformation that results in a constant limit of the outer solution in the

inner domain is viable; however, it is simpler to define said transformation to resemble

the inviscid solution. Here we set U
(w)
z = ξ

(w)
z (s)πz cos (π − 2πsV −1) which is simply the

functional shape of the inviscid solution scaled to the wall domain. Careful application of

the chain rule shows that the derivatives are transformed into

∂U
(w)
z

∂s
= −πz cos

(
2π

s

V

) dξ
(w)
z

ds
+ 2π2 z

V
sin
(
2π

s

V

)
ξ(w)
z

� −πz cos
(
2π

s

V

) dξ
(w)
z

ds

∂2U
(w)
z

∂s2
= −πz cos

(
2π

s

V

) d2ξ
(w)
z

ds2
+ 4π2 z

V
sin
(
2π

s

V

) dξ
(w)
z

ds
+ 4π3 z

V 2
cos
(
2π

s

V

)
ξ(w)
z

� −πz cos
(
2π

s

V

) d2ξ
(w)
z

ds2

At leading order, this equation is now identical to Eq. (2.34). As such we have

d2ξ
(w)
z

ds2
+
α

2

dξ
(w)
z

ds
= 0 (2.43)

with the boundary conditions

⎧⎨
⎩

ξ
(w)
z (0) = 0

lim
s→∞

ξ
(w)
z (s) = ξ

(o)
z = 2κ

(2.44)

From this point onward, the construction of the composite solution is straight-forward.

After some work, we show that [24]

U (c)
z (r, z) = 2πκz cos

(
πr2
) [

1− e−V
4
α(1−r2)

]
(2.45)

43

The author has shown how the same procedure can be applied to the radial momentum

equation [24] to recover

U (c)
r (r) = −κr−1 sin

(
πr2
) [

1− e−V
4
α(1−r2)

]
(2.46)

The pressure is deduced by integrating the Euler equations with the newly formed composite

velocity profiles. It gives

ΔP = − 1

2r2

{(
1− e− 1

4
V r2
)2

+
[
1− e− 1

4
αV (1−r2)

]2
− 1 + 2e

1
4
V [α+(1−α)r2]

}

− 1

4
V

{
Ei
(−1

2
V r2

)− Ei
(−1

4
V r2

)
+ αe−

1
4
αV
[
Ei
(
1
4
αV r2

)− Ei
(
1
4
αV
)]

−αe− 1
2
αV
[
Ei
(
1
2
αV r2

)− Ei
(
1
2
αV
)]}

(2.47)

Figure 2.5 shows the uniformly valid composite solutions to the complex-lamellar

bidirectional vortex. The centerline singularity in the tangential velocity is clearly absolved

with the formation of a forced core vortex. The sidewall boundary layer is also accounted

for in all three solutions. The effect of our viscous parameter, the so-called vortex Reynolds

number, is displayed clearly. In fact, as V →∞, the inviscid solution is recovered exactly. A

complete study of the viscous complex-lamellar bidirectional vortex is presented by Batterson

and Majdalani [24].

2.3 The Beltramian Bidirectional Vortex

Recent work by Majdalani [26] spurred the advent of a Beltramian class of solutions to

the bidirectional vortex. These two new solutions are characterized by a zero Lamb vector

ω×u = 0, wherein their vorticity and velocity remain directly proportional. Unfortunately,

the inviscid nature of these models is their bane. Similar viscous treatments to the one

44

a) b)

c) d)

Figure 2.5: The viscous complex-lamellar bidirectional vortex with κ = 0.103 and z = 0.3.

presented above are required to properly eliminate the centerline singularity of the tangential

velocity and to characterize the sidewall boundary layers in all three vector directions.

Rather than converting the Euler equations into their vorticity streamfunction represen-

tation, the Beltramian models are derived from a new direction. Here we seek to solve the

Bragg-Hawthorne equation [92] instead of the Helmholtz type used by Vyas and Majdalani

[21]. In reality these equations are very similar but retain enough differences to produce

significantly different models. To begin we consider Eqs. (2.7–2.9) with the addition of the

axisymmetric vorticity equation given by

ω = −∂Uθ

∂z
er +

(
∂Ur

∂z
− ∂Uz

∂r

)
eθ +

1

r

∂(rUθ)

∂r
ez (2.48)

45

As before, the θ−momentum equation can be integrated automatically. This time,

however, we choose to leave it in a more general form, namely,

rUθ = B(ψ) (2.49)

where B(ψ) stands for the tangential angular momentum defined in terms of the stream-

function. This result can be substituted into Eq. (2.48) to give

ωr = −∂uθ
∂z

= −1
r

∂(ruθ)

∂z
= −1

r

∂B

∂z
= −1

r

dB

dψ

∂ψ

∂z
(2.50)

The tangential vorticity may be retrieved from the axial component of Eq. (2.5). We find

∂H

∂z
+ uθωr − urωθ =

dH

dψ

∂ψ

∂z
+ uθωr − urωθ (2.51)

Upon substitution of Eq. (2.13), Eq. (2.49), and Eq. (2.50) into Eq. (2.51), ωθ can be

determined. We find

dH

dψ

∂ψ

∂z
− B

r2
dB

dψ

∂ψ

∂z
+

1

r

∂ψ

∂z
ωθ = 0 or

ωθ

r
= − dH

dψ
+
B

r2
dB

dψ
(2.52)

Finally, ωθ can be substituted into Eq. (2.48) to arrive at the cylindrical Bragg-

Hawthorne equation:
∂2ψ

∂r2
− 1

r

∂ψ

∂r
+
∂2ψ

∂z2
= r2

dH

dψ
−B dB

dψ
(2.53)

The swirl velocity is indirectly included in the Bragg-Hawthorne equation in the

tangential angular momentum term. It is at the discretion of the researcher to specify

its form in accordance with the physical conditions. An infinite number of possibilities exist

but, presently, most lead to intractable analytic solutions. Two simple solutions have already

46

been explored. They are

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

B
dB

dψ
= 0; B = B0 = 1 Vyas and Majdalani [21]

B
dB

dψ
= const; B =

√
B0ψ +B1 Bloor and Ingham [16]

(2.54)

Here we see the close relationship between the Bragg-Hawthorne equation and the vorticity

streamfunction equation used to obtain the complex-lamellar model. New analytic solutions

can be recovered if we allow this term to be a linear function of ψ such that

B
dB

dψ
= f (ψ) = C2

mψ; B =
√
C2

mψ
2 +B1 (2.55)

The constant C2
m is defined in this fashion to reduce clutter in later calculations. Moreover,

the Bragg-Hawthorne equation may be simplified by recalling that total enthalpy is invariant

along individual streamlines, dH/ dψ = 0. We are left with the linear, separable, partial

differential equation,
∂2ψ

∂r2
− 1

r

∂ψ

∂r
+
∂2ψ

∂z2
+ C2

mψ = 0 (2.56)

As is customary, we consider the decomposition ψ(r, z) = f(r)g(z) and substitute the

result into Eq. (2.56). We are left with

− g̈

g
=

1

f

(
f ′′ − 1

r
f ′ + C2

mf

)
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0

+υ2

−υ2
(2.57)

The first eigenvalue constitutes linear axial dependence; the second, harmonic axial

dependence; and the third, a seemingly unphysical result.

47

2.3.1 The Linear Beltramian Solution

The linear Beltramian solution comes from the choice of υ = 0. This choice results in the

general solution for the streamfunction:

ψ = r (C1z + C2) [C3J1 (Cmr) + C4Y1 (Cmr)] (2.58)

The boundary conditions are equivalent to those for the complex-lamellar solution. They

are found in Eq. (2.16). Equation (2.16a) considers a hardwall boundary condition that

prevents injection at the headwall. For zero axial injection at the headwall, we require

C2 = 0. Equation (2.16b) may be used to enforce axisymmetry by disallowing crossflow

along the centerline. However, in conjunction with Eq. (2.16a), this condition serves to

enforce a bounded solution in the case of a Bessel type function. Hence, we must have

C4 = 0. The remaining expression becomes

ψ = ψ0zrJ1 (Cmr) ; ψ0 = C3C1 (2.59)

Now, Eq. (2.16c) may be used to impose zero transpiration along the sidewalls. Like its

predecessor, this condition gives rise to an eigenvalue equation of the form J1(Cm) = 0. Its

eigenvalues correspond to the roots of the Bessel function of the first kind, Cm = λm, where

λm = {3.83171, 7.01559, 10.1735, 13.3237, ...}. Since this section is concerned with simple

bidirectional motions, only the case of λm = λ0 = 3.83171 will be considered here.

Finally, Eq. (2.16d) may be used to enforce mass conservation by requiring the injected

flow to evacuate the chamber through the exit port. This fixes the last constant at ψ0 =

Qi/[2πlβJ1(λ0β)]. Thus, we have

ψ = κzr
J1 (λ0r)

βJ1 (λ0β)
(2.60)

48

a) b)

c) d)

Figure 2.6: The inviscid linear Beltramian bidirectional vortex with κ = 0.103 and z = 0.3.

where κ = Qi/(2πl).

Now that the streamfunction is known, the axial and radial velocities can be calculated

directly through Eq. (2.13). Also, along with the boundary condition Uθ(1, l) = 1, the

tangential velocity can be rectified via Eq. (2.49). The complete inviscid profile becomes

U = −κ J1 (λ0r)

βJ1 (λ0β)
er + r−1

√
1 +

λ20κ
2r2z2J2

1 (λ0r)

β2J2
1 (λ0β)

eθ + λ0κz
J0 (λ0r)

βJ1 (λ0β)
ez (2.61)

ΔP = − 1

2r2
− κ2

2β2J2
1 (λ0β)

{
J2
1 (λ0r) + λ20z

2
[
J2
0 (λ0r) + J2

1 (λ0r)
]}

(2.62)

49

Figure 2.7: Streamlines of the linear Beltramian BV.

2.3.2 Viscous Corrections

Once again in Fig. 2.6 one may observe the same inviscid deficiencies along the centerline

and sidewall that were witnessed with the complex-lamellar solution. To overcome these

problems we will detail the procedure used by Batterson and Majdalani [28]. Being similar

to the previous section and, for the sake of brevity, the analysis will be glossed over quickly

while referring the reader to the original paper or the previous section for detail. The

streamlines in Fig. 2.7 are similar to the those of the complex-lamellar model shown in

Fig. 2.4 but are slightly flatter over the radius.

Tangential Core and Sidewall Corrections

A unique characteristic of the Beltramian solutions is axial dependence in the tangential

velocity. At first, this might thwart the usage of an axially invariant analysis like the one

used for the complex-lamellar solution. Fortunately, a closer look at Fig. 2.6b shows the axial

dependence is confined only to the bulk inviscid flow region while the solution asymptotes to

a functional value of r−1 at both the centerline and the sidewall. Therefore, we can ascertain

that the boundary layers themselves, in fact, remain axially invariant for these solutions as

well. This enables us to start directly with Eq. (2.25) with the coefficient of the convective

50

term modified to reflect the Beltramian radial velocity. We set

ε

(
d2ξθ
dr2
− 1

r

dξθ
dr

)
+ κ

J1 (λ0r)

βJ1 (λ0β)

dξθ
dr

= 0 (2.63)

where ξθ = rUθ.

By scaling to the core and expanding the Bessel function as J1(λ0δs) ≈ λ0δs/2+O(δ2),
we find the distinguished limit to be δ =

√
ε/κ. Substituting these relations into the above

equation gives

d2ξ
(i)
θ

ds2
+

[
λ0s

2βJ1 (λ0β)
− 1

s

]
dξ

(i)
θ

ds
= 0 (2.64)

with boundary conditions ⎧⎨
⎩

ξ
(i)
θ (0) = 0

lim
s→∞

ξ
(i)
θ = lim

r→0
ξ
(o)
θ = 1

(2.65)

Fortuitously, we can reclaim a simple closed form solution to this set. After application

of the boundary conditions we have

ξ
(i)
θ = 1− exp

[
− λ0s

2

4βJ1 (λ0β)

]
(2.66)

Scaling to the sidewall with s = (1− r)/δ and expanding the Bessel function like

J1 (λ0x) ≈ λ0x

2
− λ30x

3

16
≈ −λ0

2

(
λ20
8
− 1

)
+O (δ) ; x = (1− δs) (2.67)

finds the sidewall boundary layer equation to be

d2ξ
(w)
θ

ds2
+ α

dξ
(w)
θ

ds
= 0; α =

λ0
2βJ1 (λ0β)

(
λ20
8
− 1

)
(2.68)

51

with boundary conditions in the wall domain

⎧⎨
⎩

ξ
(w)
θ (0) = 0

lim
s→∞

ξ
(w)
θ (s) = lim

r→1
ξ
(o)
θ (r) = 1

(2.69)

This set leads to the solution

ξ
(w)
θ = 1− exp

[
− λ0
2βJ1 (λ0β)

(
λ20
8
− 1

)
s

]
(2.70)

Finally, by invoking Eq. (2.37), we can construct the composite solution

U
(c)
θ =

1

r

{[
1 +

λ20κ
2r2z2J2

1 (λ0r)

β2J2
1 (λ0β)

]1/2
− exp

[
− λ0V r

2

8πβJ1 (λ0β)

]

− exp

[
− λ0V

4πβJ1 (λ0β)

(
λ20
8
− 1

)
(1− r)

]}
(2.71)

Axial and Radial Corrections

To characterize the axial sidewall boundary layer, we can begin directly with the equation

Ur
∂Uz

∂r
+ Uz

∂Uz

∂z
= −∂p

∂z
+ ε

(
∂2Uz

∂r2
+

1

r

∂Uz

∂r

)
(2.72)

Again, we must adhere to the assumptions defined for the tangential velocity. With the

advent of the complex-lamellar study, we were inclined to reduce this equation at the present

and define a dependent variable transformation later. A more systematic and asymptotically

correct procedure is to substitute uz = ξz(r)zJ0(λ0r) into the governing equation and

judiciously truncate the new equation. This step leads to a much more elaborate equation,

52

namely,

ε

{
zJ0 (λ0r) ξ

′′
z −

zλ20
2

[J0 (λ0r)− J2 (λ0r)] ξz

−2zλ0J1 (λ0r) ξ′z +
1

r
[−zλ0J1 (λ0r) ξz + zJ0 (λ0r) ξ

′
z]

}

+ κ
J1 (λ0r)

βJ1 (λ0β)
[−zλ0J1 (λ0r) ξz + zJ0 (λ0r) ξ

′
z] = 0

In hindsight, this step was also performed with the tangential equation but the result was

somewhat obscured by the obvious choice of a variable transformation, ξθ = rUθ. Upon

scaling, we must expand the coefficients above in order to properly identify the leading order

terms. We use

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

J0 (λ0x) ≈ 1− λ2
0x

2

4
≈ −

(
λ2
0

4
− 1
)
; x = (1− δs)

J1 (λ0x) ≈ λ0x
2
− λ3

0x
3

16
≈ −λ0

2

(
λ2
0

8
− 1
)

J2 (λ0x) ≈ λ2
0x

2

8
− λ4

0x
4

96
≈ −λ2

0

8

(
λ2
0

12
− 1
)

J3 (λ0x) ≈ λ3
0x

3

48
− λ5

0x
5

768
≈ −λ3

0

48

(
λ2
0

16
− 1
)

(2.73)

Clearly, this expansion shows that the Bessel function coefficients have no effect on the

ordering in the sidewall region. Backward substitution reveals that the sidewall boundary

layer equation is

d2ξ
(w)
z

ds2
+ α

dξ
(w)
z

ds
= 0; α =

λ0
2βJ1 (λ0β)

(
λ20
8
− 1

)
≈ 4.91131 (2.74)

Applying similar boundary conditions to those used in the tangential direction and building

the composite solution completes this derivation. We get

U (c)
z =

λ0κzJ0 (λ0r)

βJ1 (λ0β)

{
1− exp

[
− λ0V

4πβJ1 (λ0β)

(
λ20
8
− 1

)
(1− r)

]}
(2.75)

53

The same analysis may be applied in the radial direction to the extent of obtaining

ε

(
∂2Ur

∂r2
+

1

r

∂Ur

∂r
− Ur

r2

)
+ κ

J1 (λ0r)

βJ1 (λ0β)

∂Ur

∂r
= O(κ2) (2.76)

No deviations from the previous analysis exist here. Given that the complete details may be

found in the original paper [28], we jump to the result and write

U (c)
r = − κJ1 (λ0r)

βJ1 (λ0β)

{
1− exp

[
− λ0V

4πβJ1 (λ0β)

(
λ20
8
− 1

)
(1− r)

]}
(2.77)

From the Euler equations, the pressure profile is found to be

ΔP (r, z) =
r2 − 1

2r2
+

1

2
e−

V
π
γ − e− V

2π
γ +

1

r2

(
e−

V
2π

γr2 − 1

2
e−

V
π
γr2
)

+
V

2π
γ

[
Ei

(
−V
π
γ

)
− Ei

(
−V
π
γr2
)
+ Ei

(
− V
2π
γr2
)
− Ei

(
− V
2π
γ

)]

+
1

2
+
V

2π
α− V 2

2π2
α2Ei

(
V

π
α

)
e−

V
π
α

+
1

2r2ε2

(
−e−V

π
α(1−r)ε (ε+ 2rακ) + 4r2α2κ2e−

V
π
αEi

(
V

π
αr

))

− 4π2κ2 + 2παV κ2 − α2κ2Ei
(
V
2π
α
)
e−

V
2π

α

4π2κ2

+
(4π2κ2 + 2πV κ2αr) e−

V
2π

α(1−r) − r2V 2α2κ2e−
V
2π

αEi
(
V
2π
αr
)

4π2κ2r2

+
z2κ2λ20

2β2J1 (λ0β)

[
J2
0 (λ0)− J2

0 (λ0r) + J2
1 (λ0)− J2

1 (λ0r)
]

(2.78)

Figure 2.8 illustrates the uniformly valid viscous profile for the linear Beltramian

bidirectional vortex.

54

a) b)

c) d)

Figure 2.8: The viscous linear Beltramian bidirectional vortex with κ = 0.103 and z = 1.

2.3.3 The Harmonic Beltramian Solution

The sinusoidal axial dependence is generated by taking +υ2 in Eq. (2.57). For this case, the

general solution is found to be [26]

ψ = r [C1 sin (υz) + C2 cos (υz)]
[
C3J1

(
r
√
C2

m − υ2
)
+ C4Y1

(
r
√
C2

m − υ2
)]

; C2
m > υ2

(2.79)

We refer to the boundary conditions given by Eq. (2.16) with the addition of Ur(r, l) = 0

to procure a value for υ. The first two boundary conditions suggest C2 = C4 = 0 and result

in

ψ = ψ0 sin(υz)rJ1

(
r
√
C2

m − υ2
)
; ψ0 = C1C3 (2.80)

55

The third constraint identifies the eigenvalue equation, J1(
√
C2

m − υ2) = 0, wherefrom C2
m =

λm
2+υ2 may be deduced and λm denotes the mth root of the Bessel function of the first kind.

These are given by the standard sequence, λm = {3.83171, 7.01559, 10.1735, 13.3237, ...}. For
bidirectional motion, we only Here, λm = λ0. The streamfunction collapses into

ψ = ψ0 sin (υz) rJ1 (λ0r) ; C2
0 > υ2 (2.81)

Our additional boundary condition can now be employed to determine the separation

constant, υ. We find cos(υjl) = 0 where υj = (j + 1
2
)π/l. To preclude recirculation within

the interval 0 ≤ z ≤ l, we consider only the case of

υj = υ0 =
π

2l
; C2

0 = λ20 +
π2

4l2
(2.82)

Other flow patterns associated with j = 1, 2, 3... or z > l will generate axially periodic vortex

cells that do not correspond to the problem under investigation.

Lastly, the boundary condition requiring conservation of volumetric flow rate is used to

determine that ψ0 = Qi/[2πβJ1(λ0β)]. At length, we collect

ψ = κlr sin
(
1
2
πz/l

) J1 (λ0r)

βJ1 (λ0β)
; C2

0 > υ2 (2.83)

where κ = Qi/(2πl).

Finally, we are able to express the complete inviscid profile as

U = −π
2
κr cos

(
1
2
πz/l

) J1 (λ0r)

βJ1 (λ0β)
er

+ r−1

√
1 +

κ2

β2J2
1 (λ0β)

(
λ20l

2 +
1

4
π2

)
r2sin2

(
1
2
πz/l

)
J2
1 (λ0r) eθ

+ κlλ0 sin
(
1
2
πz/l

) J0 (λ0r)

βJ1 (λ0β)
ez (2.84)

56

a) b)

c) d)

Figure 2.9: The inviscid harmonic Beltramian bidirectional vortex with κ = 0.103, l = 2, and z = 0.3.

Figures 2.9–2.10 show similar profiles to the linear Beltramian model with the exception

of the new, axially dependent, radial velocity. The complete discussion by Batterson and

Majdalani [29] explore this similarity by extending the study further through evaluation over

a variety of flow characteristics.

To include a complete viscous treatment of the harmonic Beltramian solution would be a

lesson in redundancy. We should, however, discuss how we handle the axial dependence in the

radial solution and its role as a viable coefficient in the convective boundary layer term. The

inclusion of Ur as a convective coefficient reintroduces axial dependence into the governing

equation. This is contrary to our original assumptions and must be handled carefully. It

could be speculated that the core vortex in this case may be sensitive to variations in the

57

Figure 2.10: Streamlines of the harmonic Beltramian BV.

crossflow velocity. Nonetheless, we also recall that for an axisymmetric flowfield, continuity

provides the link between the axial and radial velocities only; the tangential velocity is not

affected by crossflow velocity through continuity. Hence, we can Here, Uθ to be unaffected

by an axially varying ur. In order to make headway, we adopt an average value of the radial

velocity in the core region by taking

(Ur)avg = −πκJ1 (λ0r)
2βJ1 (λ0β)

l−1

∫ l

0

cos
(
1
2
πz/l

)
= − κJ1 (λ0r)

βJ1 (λ0β)
(2.85)

Henceforth, the governing equations for all vector directions are reduced to those

discovered in the linear Beltramian analysis and given in Eq. (2.63). The boundary layer

character between the two Beltramian solutions is the same. Its matching to the outer,

inviscid, solution accounts for small differences in the composite solution. At length, the

58

harmonic Beltramian solution is shown to possess the viscous character [29]

U = − πκ

2βJ1 (λ0β)
cos
(
1
2
πz/l

)
J1 (λ0r)×{
1− exp

[
− V
2π
α (1− r)

]}
er

r−1

{[
1 +

κ2

β2J2
1 (λ0β)

(
λ20l

2 +
1

4
π2

)
r2sin2

(
1
2
πz/l

)
J2
1 (λ0r)

]1/2

−exp
(
− V
2π
γr2
)
− exp

[
− V
2π
α (1− r)

]}
eθ

+
λ0κl

βJ1 (λ0β)
sin
(
1
2
πz/l

)
J0 (λ0r)×{

1− exp

[
− V
2π
α (1− r)

]}
ez (2.86)

with the associated pressure profile

ΔP (r, z) =
r2 − 1

2r2
− V

2π
α +

π2 + παV − α2V 2Ei
(
V
π
α
)
e−

V
π
α

2π2

− π (π + V αr) e−
V
π
α(1−r) − r2α2V 2Ei

(
V
π
αr
)
e−

V
π
α

2π2r2

+
1

r2

(
e−

V
2π

γr2 − 1

2
e−

V
π
γr2
)
+

π

2π

(
e−

V
π
γ − 2e−

V
2π

γ
)
+
V γ

2π

[
Ei

(
−V
π
γ

)
− Ei

(
−V
π
γr2
)]

+
V γ

2π

[
Ei

(
− V
2π
γr2
)
− Ei

(
− V
2π
γ

)]
+
α2V 2

4π2
Ei

(
V

2π
α

)
e−

V
2π

α

+
2π (2π + V αr) e−

V
2π

α(1−r) − r2α2V 2Ei
(

V
2π
αr
)
e−

V
2π

α

4r2π2
(2.87)

Figure 2.11 shows the complete viscous solution. Take note to the glaring similarity to

its linear counterpart in Fig. 2.8.

59

a) b)

c) d)

Figure 2.11: The viscous harmonic Beltramian bidirectional vortex with κ = 0.103, l = 2, and z = 1.

2.4 A Comment on the Existence of Multiple Mantles

Experimental and numerical evidence gathered by Anderson et al. [31], Rom, Anderson and

Chiaverini [32], and others have corroborated the existence of interchanging flow reversals.

The presence of multi-layering is evident and has been aforementioned by identifying higher

eigensolutions in previous sections and from Vyas and Majdalani’s complex-lamellar model

[30].

Bidirectional flow is spurred on by the choice of λm = λ0 = 3.832. Each consecutive

eigenvalue will cause one additional flow reversal. For propulsive applications we require

the flow to exit at the aft end of the chamber. Only even eigenvalues with m = 0, 2, 4, . . .

60

Table 2.1: Eigenvalues and corresponding mantle locations for even flow reversal mode numbers and an odd
number of internal mantles.

m λm βm,0 βm,1 βm,2 βm,3 βm,4 βm,5 βm,6

0 π 0.707
2 3π 0.408 0.707 0.913
4 5π 0.316 0.548 0.707 0.837 0.949
6 7π 0.267 0.463 0.598 0.707 0.802 0.886 0.964

a) Complex-lamellar mantles

m λm βm,0 βm,1 βm,2 βm,3 βm,4 βm,5 βm,6

0 3.832 0.628
2 10.174 0.236 0.543 0.851
4 16.471 0.146 0.335 0.525 0.716 0.907
6 22.760 0.106 0.243 0.380 0.518 0.656 0.794 0.932

a) Beltramian mantles

may be considered lest an unphysical setting with implausible inflow and outflow boundary

conditions is returned. Further evidence will be shown to corroborate this ascertation.

For an ideal configuration in which no collisions occur during outflow, the exit port

radius may be chosen in such a way to match the position of the innermost mantle, for any

given flow reversal mode number, m. The flow configuration associated with each increasing

eigenvalue may be linked to a progressively shorter mantle radius, βm,0 {m = 0, 2, 4, · · · }. For
a fixed reversal mode number m, the locations of all internal mantles βm,n {n = 0, 1, · · · , m}
may be extracted from the roots of J1(λmβm,n) = 0 and catalogued in Table 2.1. We must

note that, unlike the complex-lamellar model in which the outlet radius does not appear as

a parameter (where β = 1/
√
2), it is important to retain βm,0 in the Beltramian solutions.

However, in Table 2.1 we denote the respective mantle locations in the same way for both

models.

Although the complete derivation is not shown, viscous corrections to the complex-

lamellar multidirectional vortex first appears in the paper by Batterson and Majdalani [33].

61

Following a similar analysis they arrive at

u = −κ
r
sin[(m+ 1)πr2]

[
1− e−V

4
(m+1)α(1−r2)

]
er

+ r−1
[
1− e−V

4
(m+1)r2 − e−V

4
(m+1)α(1−r2)

]
eθ

+ 2(m+ 1)πκz cos[(m+ 1)πr2]
[
1− e−V

4
(m+1)α(1−r2)

]
ez

where α = 1
6
(m + 1)2π2 − 1 may be associated with the complex-lamellar solution. A

careful comparison of the three multidirectional vortex models resides in the recent paper

by Batterson and Majdalani [33].

As for the Beltramian models, no significant modification needs to be made in the

mathematical formulation itself to characterize multi-directional flow. One may simply put,

λ0 → λm and β → βm,0. This applies equally well to the definitions of γ and α. We have for

the linear case:

U = − κJ1 (λmr)

βJ1 (λmβm,0)

[
1− e− V

2π
α(1−r)

]
er

+
1

r

[(
1 +

λ2mκ
2r2z2J2

1 (λmr)

β2
m,0J

2
1 (λmβm,0)

)1/2

− e− V
2π

γr2 − e− V
2π

α(1−r)

]
eθ

+
λmκzJ0 (λmr)

βm,0J1 (λmβm,0)

[
1− e− V

2π
α(1−r)

]
ez (2.88)

62

z

r

a) Linear Beltramian

z

r

b) Harmonic Beltramian

z

r

c) Complex Lamellar

Figure 2.12: Vector plots of a) linear Beltramian, b) harmonic Beltramian, and c) complex-lamellar models.
Here l = 2.

and for the harmonic case:

U = − πκ

2βm,0J1 (λmβm,0)
cos
(πz
2l

)
J1 (λmr)

(
1− e− V

2π
α(1−r)

)
er

+
1

r

{[
1 +

κ2

β2
m,0J

2
1 (λmβm,0)

(
λ2ml

2 + 1
4
π2
)
r2sin2

(πz
2l

)
J2
1 (λmr)

]1/2

−e− V
2π

γr2 − e− V
2π

α(1−r)

}
eθ

+
λmκl

βm,0J1 (λmβm,0)
sin
(πz
2l

)
J0 (λmr)

(
1− e− V

2π
α(1−r)

)
ez (2.89)

where α = λm
(
1
8
λ2m − 1

)
/[2βm,0J1(λmβm,0)] and γ = λm/[4βm,0J1(λmβm,0)].

In Fig. 2.12, vector diagrams of the three models are displayed. These graphs show

that a higher centerline velocity persists farther downstream in the nonlinear profile than in

any other model. The vector directions also suggest a headwall-skewed crossflow along the

mantle surface in the nonlinear solution. This leads to higher crossflow velocities near the

headwall, and reduced spillage near the endwall. Such behavior is quite advantageous as it

is more desirable to limit mass transport near z = l from the outer vortex into the inner

core. It also serves to satisfy the purely tangential injection boundary condition.

63

2.4.1 Experimental Validation

The available empirical measurements suggest that the Beltramian model outperforms other

models, including numerical simulations, in predicting the location of the internal mantles.

The empirical results in Table 2.2 are taken from Anderson, Rom and coworkers [31, 32, 93].

These seem to suggest that in the presence of three mantles. We see that the original complex-

lamellar model is less precise than the Beltramian solution in capturing mantle locations.

Without knowledge of the Beltramian formulation, Rom, Anderson and Chiaverini note that

the complex-lamellar model with four mantles matches quite remarkably their experimental

and computational predictions. However, based on the present investigation, it does not

appear that four mantles are likely to form without moving the primary injection plane to

the headwall. Instead, it is our belief that the four-mantle case reported by Anderson and

coworkers actually corresponds to a three-mantle configuration with m = 2. The confusion

could be attributed to poor resolution of the experimental measurements in the vicinity of

the sidewall. In Table 2.2, it can be seen that the Beltramian model concurs reasonably

well with both experimental and computation results. It is therefore recommended for use

in modeling multidirectional vortex behavior. Unfortunately, there cannot be any further

differentiation between the physicality of the linear and harmonic models at the time of this

writing.

64

65

Table 2.2: Comparison of experimental and computational mantle locations with the complex-lamellar (CL) and Beltramian (BEL)
models [31, 32, 93].

Experimental Computational

n β
(CL)
2,n β

(BEL)
2,n β

(EXP)
2,n

∣∣∣β(CL)
2,n − β(EXP)

2,n

∣∣∣ ∣∣∣β(BEL)
2,n − β(EXP)

2,n

∣∣∣ β
(CFD)
2,n

∣∣∣β(CL)
2,n − β(CFD)

2,n

∣∣∣ ∣∣∣β(BEL)
2,n − β(CFD)

2,n

∣∣∣
0 0.408 0.236 0.296 0.112 0.060 0.305 0.103 0.069
1 0.707 0.543 0.594 0.113 0.051 0.385 0.322 0.158
2 0.913 0.851 0.803 0.110 0.048 0.787 0.126 0.064

Chapter 3

Spectral Collocation Methods

In this section we will introduce the mathematical aspects required to construct the hydrody-

namic instability problem. To do so, we will formulate the fundamental mathematical basis

for spectral methods applied to one and two-dimensional differential equations. Likewise

we will show the extension of these concepts to numerical programming in Matlab. To

some extent this section could be reduced or even eliminated. However, its inclusion is

threefold. First, it gives validity to the other sections by showing the exact, systematic

methodology used to handle instability problems. Second, collocation methods are extremely

powerful yet only a few publications present their application in a clear, concise manner.

A review of collocation schemes is therefore in order, especially that the development of a

complete spectral stability code is far from trivial. As we shall see, although the fundamental

mathematics behind spectral solvers is not new, their adaptation into functional codes in the

context of instability analysis is still under development. Lastly, the usefulness of spectral

methods in numerical modeling cannot be overstated and this section puts their full range

of uses on display.

66

a) Interpolation of census data (in thousands) [94]. b) Lagrange interpolating polynomial approximations
of the function ex for different resolutions.

Figure 3.1: Two examples of interpolating polynomials.

3.1 Polynomial Approximation and Interpolation

Consider the example of a population census taken every ten years. The exact population

is known only at ten year intervals while the population on off years must be speculated.

It would be helpful to use a function that smoothly fits the given data in order to have a

continuous census record without tabulating populations every year. This process is called

interpolation and is often done through the construction of interpolating polynomials. Figure

3.1 shows two examples of interpolation. Figure 3.1a follows up on the problem of population

growth while Fig. 3.1b shows the Lagrange interpolating polynomial approximation for the

function ex for several degrees of spectral resolution. Clearly, the latter is more relevant

to the hydrodynamic stability problem in that interpolating polynomials are introduced to

approximate the unknown functional solution to the governing equations.

The choice of the type of polynomial used is often problem specific and driven by the

need for localized grid resolution, numerical stability, and accuracy. Algebraic polynomials

(Power or Maclaurin series) can be constructed in a variety of ways including Lagrange

Polynomials, Newton Divided Differences, Padé Approximations, or even straightforward

Taylor Series Expansions of known functions [94]. Trigonometric polynomial interpolators

67

and other orthogonal polynomials such as the set of Chebyshev or Legendre polynomials can

be particularly advantageous for analytic problems involving quadrature and differential

equations. Furthermore, there are distinct advantages of using nonuniformly spaced

interpolating (collocation) points such as Chebyshev (or Gauss-Lobatto) points rather than

equally spaced points. Periodic and equally spaced points tend toward Gibb’s phenomenon

for Fourier spectral methods and Runge phenomenon for algebraic methods such as Lagrange

interpolation. Likewise, if we were to differentiate an equispaced polynomial to find a

derivative approximation, then the errors should be expected to propagate accordingly.

Figure 3.2 and Alg. B.1.1 on page 294 reproduce the example by Trefethen [95]. It

clearly shows the deficiencies found with simple algebraic (equally spaced) polynomial

interpolation. It also identifies the advantages of Chebyshev spectral methods when requiring

high resolution near the boundaries. Boundary layer theory in fluid mechanics is a prime

candidate for Chebyshev grids.

Unlike interpolation for experimental data points, interpolating polynomials constructed

to solve equations are devised to match the exact solution at specific locations called

collocation points. Collocation points coincide with the zeros of the interpolating polynomial.

In the case of Chebyshev polynomials, the collocation points are actually the Gauss-Lobotto

nodes.

3.2 Chebyshev Polynomials

Several trigonometric or orthogonal functions are used in interpolation algorithms. Cheby-

shev polynomials of the first type satisfy the equation

(1− ξ2)T ′′
N−1(ξ)− ξT ′

N−1(ξ) +N2TN−1(ξ) = 0 (3.1)

68

a) b)

Figure 3.2: Comparison between interpolation with equally spaced (left) and Chebyshev grids (right). The
Runge phenomenon can be easily seen.

Its solution is facilitated by appling a change of variables, namely,

ξ = cos θ with
d

dξ
=
−1
sin θ

d

dθ
(3.2)

resulting in
d2TN−1

dθ2
+ (N − 1)2TN−1 = 0 (3.3)

This is a simple harmonic oscillator with the solution TN−1(θ) = cos[(N − 1)θ] =

cos [(N − 1) arccos ξ]. We see from this form that Chebyshev polynomials should therefore

be orthogonal. This is actually only true in the interval [−1, 1] (see [96]).

69

As we will see, it is also necessary to know the general derivative formula for these

polynomials. Consider

TN−1(ξ) = TN−1 [cos(θ)] = cos[(N − 1)θ]; ∀θ (3.4)

Differentiation with respect to θ is then

dTN−1

dθ
= −T ′

N−1(cos θ) sin θ = −(N − 1) sin[(N − 1)θ] (3.5)

Finally, we solve for T ′
N−1, where the prime denotes differentiation with respect to ξ:

T ′
N−1(θ) = (N − 1)

sin[(N − 1)θ]

sin(θ)
for N = 1, 2, 3... with θ = arccos ξ (3.6)

This result is important for spectral representation of derivatives using Chebyshev polyno-

mials.

As a side note, this formula connects Chebyshev polynomials of the first and second

kind in that

T ′
N−1(θ) = (N − 1)UN−1(θ) (3.7)

with UN (θ) being defined as the Chebyshev polynomial of the second kind.

From a more practical perspective, polynomials can be used to approximate known

and unknown functions to degree N . If we define the polynomial representation of degree

infinity of a function f(ξ) as P∞f(ξ∞) then we can step back and define a discrete polynomial

representative of a function, f(ξ), at order N as

PNf(ξN) =

N∑
i=1

f(ξi)λi(ξ) (3.8)

70

Table 3.1: Example collocation points, ξi for increasing polynomial order, N .

N i = 1 2 3 4 5

1 ξi = 0
2 1 -1
3 1 0 -1
4 1 0.5 -0.5 -1
5 1 0.7071 0 -0.7071 -1

where ξi represents the collocation points from i = 1, . . . , N and λi(ξ) defines the weight

functions. The collocation points for the first six Chebyshev polynomials are shown in Table

3.1.

For Chebyshev polynomial interpolation, the weight function takes the form

λi(ξ) = (−1)i
(
1− ξ2
ξ − ξi

)[
T ′
N−1(θ)

di(N − 1)2

]
with

⎧⎨
⎩ξi = cos[(i−1)π

N−1
]

θ = arccos ξ
(3.9)

with

di =

⎧⎨
⎩

2; i = 1 or N (endpoints),

1; otherwise (interior points)
(3.10)

Equation (3.9) leads to a system ofN equations and N unknowns to be solved simultaneously

in order to find the discrete values of the function f at the collocation points ξi. The

distribution of xii is depicted in Fig. 3.2 for N = 17. The resulting polynomial solution is

constructed by multiplying the weight functions by the functional value at the collocation

points. Analytically, this is unreasonable for high resolution solutions but is well suited for

numerical computation. Although time consuming for large systems, Gaussian elimination is

the most available technique. Fortunately the algorithm chebint provided by Weideman and

Reddy [97] will interpolate a coarse solution over a finer grid. It reliably interpolates over the

collocation points and develops the final polynomial solution according to the Barycentric

71

a) Chebyshev polynomials, TN − 1 b) Chebyshev interpolating polynomial weight func-
tions, λi

Figure 3.3: Chebyshev polynomials and corresponding weight functions for N = 5.

Form of the interpolant [98]. This function is provided in App. B.4.1. Figure 3.3 depicts the

first six Chebyshev polynomials and the discrete weight function for sixth order polynomial

interpolation.

3.3 Pseudo-Spectral Derivatives

When considering collocation methods for differential equations, we must be able to represent

the derivatives of functions accurately and efficiently. Classic finite difference methods or

divided differences are often used to compute derivative approximations. This application

is practical and straightforward, but leads one to potentially unstable calculations and

sensitivity to collocation step size. For example, if Lagrange interpolation is used, equally

spaced collocation nodes return unstable approximations for the first derivative of function

f for large N [99]. Therefore, the natural alternative is to use a nonuniformly distributed

scheme akin to a Chebyshev collocation.

If we recall our polynomial approximation defined as PNf , then we can approximate

the first derivative of function f at the collocation nodes, ξ1, . . . , ξN , with the exact first

derivative of PNf mapped to the interval [−1, 1]. We define the pseudo-spectral derivative

72

to be the derivative of PNf defined as

DNf = (PNf)
′ (3.11)

The associated error is of the exponential type; namely, it depends on the smoothness of

the original function f [99]. Thus, similar to the definition of the original interpolating

polynomial, the derivative can be defined as

DNf(ξN) =

N∑
i=1

f(ξi)λ
′
i(ξ) (3.12)

The derivative evaluated at the interpolation nodes can be determined if we know the values

of f (which can be calculated directly) and the derivative of the weight functions, λ′i. These

values can be calculated a priori and stored in the pseudo-spectral differentiation matrix D

where Dij = λ′j(ξi) for i, j = 1, . . . , N . Finally knowing the differential matrix allows us to

define the derivative of a function spectrally as

f ′
N = DNfN (3.13)

This is a general definition where the differentiation matrix is unique for the specific

collocation method employed. Furthermore, the differentiation matrix may be uniquely

defined for even or odd N . Such is the case for Fourier spectral methods. Since such

restrictions are not necessary for the Chebyshev collocation methods utilized here we will

follow the procedure given by Trefethen [95] and examine the case for N = 2 and N = 3 in

an effort to extend our observations to a general case.

Consider the case of N = 2. The collocation nodes are ξ1 = 1 and ξ2 = −1 corresponding
to the data points f1 and f2. Applying the definitions given by Eq. (3.8) and Eq. (3.9) we

73

determine that

PNf(ξ) =
1

2
(1 + ξ)f1 +

1

2
(1− ξ)f2 (3.14)

Algorithm B.2.1 on page 295 can be used to generate the N th order interpolating polynomial

automatically. Taking the derivative gives

DNf(ξ) =
1

2
f1 − 1

2
f2 (3.15)

This result shows that the first row contains the coefficients of the polynomial for the first

collocation point, ξ1, and the second row for the second point. Therefore, from DNf(ξ) at

ξi = {−1, 1}, we determine the 2× 2 pseudo-spectral differentiation matrix [95] to be

D2 =

⎡
⎣1

2
−1

2

1
2
−1

2

⎤
⎦ (3.16)

Now consider the case of N = 3. The collocation points are ξ1 = 1, ξ2 = 0, and ξ3 = −1
and the interpolant is

PNf(ξ) =
1
2
ξ(1 + ξ)f1 + (1 + ξ)(1− ξ)f2 + 1

2
ξ(ξ − 1)f3

DNf(ξ) =
(
ξ + 1

2

)
f1 − 2ξf2 +

(
ξ − 1

2

)
f3

In this instance, the differentiation matrix [95] is defined as

D3 =

⎡
⎢⎢⎢⎣

3
2
−2 1

2

1
2

0 −1
2

−1
2

2 −3
2

⎤
⎥⎥⎥⎦ (3.17)

Again, the ith row of this 3×3 matrix is built by calculating the coefficients of the derivative

polynomial for the ith collocation points (ξi = 1, 0, and -1).

74

The article by Fornberg discusses the connection between the Chebyshev spectral

matrix and the coefficients of several common discretization schemes such as the centered

3-point finite difference discretization as well as the coefficients for the second-order

Adams-Bashforth formula for the numerical solution of ODEs [100]. Higher-order spectral

differentiation matrices are related to higher order finite difference formulas; however, since

these are defined on uneven grids, they are not popular in standard applications [95].

From these two examples we form a basis for generalizing the Chebyshev pseudo-spectral

differentiation matrix. The general formula may have first appeared in the book by Voight

and coworkers [101].

Theorem 3.3.1. Chebyshev Differentiation Matrix For each N ≥ 1, let the rows and

columns of the (N + 1) × (N + 1) Chebyshev spectral differentiation matrix DN be indexed

from 0 to N . The entries of this matrix are:

DN =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(DN)11 =
2(N − 1)2 + 1

6
;

(DN)ii =
−ξi

2 (1− ξ2i)
; i = 2, . . . , N − 1

(DN)ij =
di
dj

(−1)i+j

(ξi − ξj) ; i �= j, i, j = 2, . . . , N − 1

(DN)NN = −2(N − 1)2 + 1

6
;

(3.18)

75

The matrix element formulas can be more clearly understood graphically

DN =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2(N − 1)2 + 1

6
· · · 2(−1)1+j

1− ξj · · · 1

2
(−1)1+N

...
. . . · · · (−1)i+j

ξi − ξj
...

1

2

(−1)i+1

ξi − 1

...
−ξj

2(1− ξ2j)
...

1

2

(−1)i+N

ξi + 1

...
(−1)i+j

ξi − ξj · · · . . .
...

−1
2
(−1)N+1 · · · −2(−1)

N+j

1 + ξj
· · · −2(N − 1)2 + 1

6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.19)

Higher order derivatives can be represented spectrally by simply raising the first order

pseudo-spectral differentiation matrix to the corresponding power:

d

dξ
−→ DN

d2

dξ2
−→ (DN)

2 = DN ×DN

...

dn

dξn
−→ (DN)

n = DN ×DN × . . .×DN n times

Computationally, this operation costs O(N3n) flops. Higher order spectral derivatives can

also be computed via formula [102] or recurrence relations [103, 104] at a cost of onlyO(N2n).

Since this operation needs to be computed only once and stored for later use, the former

operation is generally sufficient.

Furthermore, the collection of spectral differentiation and integration codes detailed in

the article by Weideman and Reddy [97] has become an invaluable tool for those undertaking

spectral analysis in Matlab. Their differentiation matrix suite is hosted by Matlab

76

Central at http://www.mathworks.com/matlabcentral/fileexchange/29. The function

chebdif generates N collocation points and the nth order pseudo-spectral Chebyshev

differentiation matrix according to the syntax [xi,D]=chebdif(N,n) where xi is a vector

defining the collocation points and D(:,:,n) is the N ×N , nth order differentiation matrix.

A copy of this can be found in Alg. B.3.1 on page 296. The following example illustrates

the application of spectral differentiation matrices in finding the derivative of sin(x) over the

interval [0, 2π].

Example: Computing a Spectral Derivative

Since the Cheybshev polynomials and their spectral differentiation matrices are defined over

the interval [−1, 1], we must determine the proper transformation to map the solution over

the domain [0, 2π]. We have

ξ =
x

π
− 1 so

d

dx
=

1

π

d

dξ
(3.20)

First, we determine the N ×N , 1st order spectral differentiation matrix

N=20;

[xi,D]=chebdif(N,1);

Since this is on the interval [−1, 1], we must apply our transform to both the collocation

points and the differentiation matrix:

x=pi*(xi+1);d dx=1/pi*D(:,:,1);

: refer to Eq. (3.20)

Lastly, we plot the results compared to several values of N in Fig. 3.4. Clearly the N = 5

case is insufficient; however, the solution resolves itself well for N = 10 and N = 20.

77

Figure 3.4: Spectral differentiation of sin(x) for three polynomial orders plotted against the exact derivative.

plot(x,d dx*sin(x))

For N = 10, the spectral solution is indistinguishable from the exact. Algorithm B.5.1

computes spectral derivatives and plots the interpolating polynomial.

3.4 Solving ODEs with Chebyshev Collocation

We have successfully formulated all the tools required to solve equations of the form

Q0(x)f
(n)(x) +Q1(x)f

(n−1)(x) + . . .+Qn−1(x)f
′(x) +Qn(x)f(x) = g(x)

with

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
K0(A)f

(n)(A) +K1(A)f
(n−1)(A) + . . .+Kn−1(A)f

′(A) +Kn(A)f(A) = a;

H0(B)f (n)(B) +H1(B)f (n−1)(B) + . . .+Hn−1(B)f ′(A) +Hn(B)f(B) = b;
...

(3.21)

where the number of boundary conditions is adjusted to define a well-posed problem.

To solve equations of this type we must first express it spectrally. This is done by

creating an operator matrix acting on the function, f(x). This is not as daunting as it

seems. In fact, we already have all the tools we need, just not the method. First, we write

78

Eq. (3.21) in the operator form

[
Q0(x)

d(n)

dx(n)
+Q1(x)

d(n−1)

dx(n−1)
+ . . .+Qn−1(x)

d

dx
+Qn(x)

]
f(x) = g(x)

with

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[
K0(A)

d(n)

dx(n)
+K1(A)

d(n−1)

dx(n−1)
+ . . .+Kn−1(A)

d

dx
+Kn(A)

]
f(A) = a;[

H0(B)
d(n)

dx(n)
+H1(B)

d(n−1)

dx(n−1)
+ . . .+Hn−1(B)

d

dx
+Hn(B)

]
f(B) = b;

...

(3.22)

Just as with spectral differentiation, the first step is to determine the appropriate

transformation to map the solution over the interval [−1, 1]. We can formulate a general

equation to map any interval appropriately. It is,

x =
B

2
(ξ + 1)− A

2
(ξ − 1) ←→ ξ =

2x− (B + A)

B −A
likewise,

d

dx
=

2

B −A
d

dξ
(3.23)

Now it becomes simply a task of expressing the operator spectrally. Therefore,

x → xi = {xN , xN−1, . . . , x1}, f(x) → fi = {f(xN), f(xN−1), . . . , f(x1)}, and g(x) → gi =

{g(xN), g(xN−1), . . . , g(x1)}. Be aware that the function chebdif returns collocation points

from right to left. In other words, x1 corresponds to the right bound and xN to the left. It

is important to keep this in mind when applying boundary conditions. The coefficients form

the diagonal matrix, (Qj)ii. Any general function qj(x) will fill the matrix, (Qj)ii according

to

(Qj)ii =

⎡
⎢⎢⎢⎢⎢⎢⎣

qj(xN) 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0

0 · · · 0 qj(x1)

⎤
⎥⎥⎥⎥⎥⎥⎦

(3.24)

79

The derivatives become pseudo-spectral differentiation matrices directly such that the general

differential equation is written spectrally as

[
(Q0)ii(D̄N)

n + (Q1)ii(D̄N)
n−1 + . . .+ (Qn−1)iiD̄N + (Qn)I

]
fi = gi (3.25)

By collecting terms we can write the governing equation in matrix form as

Aijfi = Bi (3.26)

where Aij is the operator matrix and Bi is the vector containing the forcing function.

Now the question remains: how do we handle boundary conditions? If we think in terms

of polynomial interpolation, this becomes a fairly easy concept to understand. Recall at each

collocation point the interpolating polynomial will exactly match the function. Since the set

of collocation points include the bounds, it is a matter of overwriting the first and last line

of the operator matrix and forcing function with the appropriate boundary conditions at the

right and left, respectively. This way we still have N equations and N unknowns that ensure

that the interpolating polynomial will match the boundary conditions exactly. In retrospect,

there are a few things to consider:

1. If the ODE is a boundary value problem (Dirichlet conditions), then we must overwrite

the 1st and N th rows of A and B with the 1st and N th rows of the identity matrix. For

example ⎧⎨
⎩f(A) = a

f(B) = b
−→

⎧⎨
⎩[IN,:]fN = a

[I1,:]f1 = b
(3.27)

80

2. If the boundary conditions are Neumann type (derivative conditions), then we use the

spectral differentiation matrix instead of the identity matrix. For example

⎧⎨
⎩f

′(A) = a

f ′(B) = b
−→

⎧⎨
⎩[D̄N,:]fN = a

[D̄1,:]f1 = b
(3.28)

The use the overbar to denote the pseudo-spectral differentiation matrix mapped over

arbitrary domain [A,B], D̄, and reserve D to preserve the differentiation matrix over

the Chebyshev space, [−1, 1].

3. If the problem is an initial value problem, then we still must overwrite the 1st row

in the operator matrix corresponding to the right bound because defining any value

at that collocation point, even through the unmodified operator matrix, renders an

overdetermined system of equations. Thus,

⎧⎨
⎩f(A) = a

f ′(A) = b
−→

⎧⎨
⎩ [IN,:]fN = a

[D̄N,:]fN = b
(3.29)

As we see in all three considerations, we never use the 1st or N th rows of the Aij or Bi.

We could define Ãij = A2:N−1 as others have, but this is not necessary. As an example, the

boundary conditions for a boundary value problem will be written as

⎧⎨
⎩
[
(K0)N,:(D̄N)

n
N,: + (K1)N,:(D̄N)

n−1
N,: + . . .+ (Kn−1)N,:(D̄N)N,: + (Kn)N,:IN,:

]
fN = a;[

(H0)1,:(D̄N)
n
1,: + (H1)1,:(D̄N)

n−1
1,: + . . .+ (Hn−1)1,:(D̄N)1,: + (Hn)1,:I1,:

]
f1 = b;

(3.30)

These examples must be extended to higher order derivative boundary conditions accord-

ingly.

81

3.4.1 Example: A First Order ODE with Variable Coefficients

There is one more caveat to the statements above. Clearly, for a first order ODE we only

have one boundary condition therefore when we solve a first order differential equation

with spectral methods, we are unable to replace both the 1st and N th rows with boundary

condition equations. Rather, we only replace the row corresponding to the boundary in

which the condition is specified. The other row remains unmodified. Consider the first order

ODE

f ′(x) + cos(4x)f(x) = 0; f(0) = 1 (3.31)

with the exact solution

f(x) = e−
1
4
sin(4x) (3.32)

Referring to Eq. (3.23), we can determine the appropriate map over the interval [−1, 1]. It

is,

x =
π

2
(ξ + 1) and

d

dx
=

2

π

d

dξ
(3.33)

Now we define the number of collocation points, the left and right bounds A,B,

respectively, the value at the bounds a, and calculate the differentiation matrix.

N=10;

A=0;B=pi;a=1;

[xi,D]=chebdif(N,1);

Next, we apply the transformation to map the collocation points and the derivative matrix

to the appropriate domain.

x=pi/2*(xi+1);

82

d dx=2/pi*D(:,:,1);

: refer to Eq. (3.33)

Since the right hand side is zero we define Bvec=zeros(N,1). Next define the operator

matrix, A.

Amat=d dx+diag(cos(4*x))*I;

: refer to Eq. (3.31)

The boundary condition is on the left bound so we have only

Amat(N,:)=I(N,:);

Bvec(N)=a;

: refer to Eq. (3.31)

Since there is only one boundary condition, we must let the opposite bound remain

unspecified.

Finally, we solve the system using f=Amat\Bvec. The results are plotted in Fig. 3.5. This

equation requires a higher resolution than some to return accurate results. This is due to

its oscillatory solution. Finding the optimum number N becomes an iterative process and

left up to the researcher. In general, the collocation grid must be fine enough to contain two

points per wavelength [95]. The complete algorithm is found in Alg. B.6.1 on page 300. The

error is less than 5× 10−4 for N = 20.

83

Figure 3.5: Spectral solution of Eq. (3.31) for three polynomial orders plotted against the exact solution.

3.4.2 Example: A Second Order BVP with Variable Coefficients

Consider the boundary value problem

f ′′(x) + xf ′(x) + f(x) = x with

⎧⎨
⎩f(0) = 0

f(4) = 1
(3.34)

The first step is to determine the appropriate transformation to map the solution over

the interval [−1, 1]. Referring to Eq. (3.23), we can determine the appropriate map, namely,

x = 2(ξ + 1) and
d

dx
=

1

2

d

dξ
(3.35)

Now within the code we first define the number of collocation points and calculate the

differentiation matrix.

N=10;

[xi,D]=chebdif(N,1);

Next, we apply the transformation to map the collocation points and the derivative matrix

to the appropriate domain:

84

x=2*(xi+1);

d dx=1/2*D(:,:,1);

d2 dx2=d dxˆ2;

: refer to Eq. (3.35)

The higher order derivatives can be calculated directly by the function chebdif; however, the

coordinate transformation must be calculated for each higher order derivative individually.

By simply applying the transformation to the first order derivative and raising it to the

appropriate power (in this case, 2), the transformation is propagated appropriately and

automatically.

Now we discretize any variable coefficients and forcing functions. Also, for clarity, we

will define the identity matrix as well:

Q=diag(x);

Bvec=x;

I=eye(N);

: refer to Eq. (3.34)

The vector B contains the values of the forcing function evaluated at the collocation

points. Similarly, the first entry corresponds to the right bound and the last to the left. At

this point we can define the operator matrix, A. It will be the sum of the second derivative

spectral matrix, the first derivative multiplied from the left by the coefficient matrix, and

the identity matrix. We have

Amat=d2 dx2+Q*d dx+I;

: refer to Eq. (3.34)

85

Recalling that spectral methods work by setting up and solving a system of N equation

with N unknowns, we can take the boundary conditions as equations and add them to the

operator and forcing function matrices directly. The right boundary corresponds to the first

row of entries and the left to the last so that we can impose these conditions by overwriting

the first and last row in A and B with the right and left boundary condition operators and

values, respectively. We do this with the commands

Amat(1,:)=I(1,:);Bvec(1)=1;

Amat(N,:)=I(N,:);Bvec(N)=0;

: refer to Eq. (3.34)

Lastly, we solve for the solution vector by using the Matlab operation f=Amat\Bvec.

The algorithm to solve this equation is supplied in the appendix as Alg. B.7.1 on page 301.

The results are plotted against the exact solution in Fig. 3.6, specifically

f(x) =
xerfi

(
2
√
2
)− 2e8−

x2

2 erfi
(

x√
2

)
2erfi

(
2
√
2
) =

x

2
−

D+

(
x√
2

)
D+

(
2
√
2
) (3.36)

where D+ is the Dawson function defined as

D+ = e−x2

∫ x

0

et
2

dt =

√
π

2
e−x2

erfi(x) (3.37)

The the maximum local error, defined by ||f(x)−F (x)||∞, is found to be less than 5× 10−4

for N = 10. Another source of error comes from numerically solving the system Aijfi =

Bi. This source is not significant in this example but does become important for solution

matrices requiring a large number of collocation points, systems of ODEs, and any other

operator matrix that is singular or nearly singular. This error can be quantified by calculating

||Af − B||∞.

86

Figure 3.6: Spectral solution of Eq. (3.34) for three polynomial orders plotted against the exact solution.

3.4.3 Example: A System of Differential Equations

Many facets of research cannot be solved with a single differential equation alone. Often we

are faced with a linear system of differential equations that must be solved simultaneously.

Such is the case with classic one-dimensional hydrodynamic stability formulations. In many

cases Runge-Kutta solvers will quickly integrate the equations, but shed little light on their

spectral characteristics (eigenvalues) without requiring further calculations. For this type of

analysis, we must once again resort to collocation methods. While solving single differential

equations is relatively straightforward, systems of differential equations add a significant

level of difficulty in the numeric formulation. For this reason we will carefully detail the

solution to the system

⎧⎨
⎩f

′′(x) + xf ′(x)− g(x) = sin(4x)

g′′(x) + g′(x) + f(x) = cos(4x)
with

⎧⎨
⎩f(0) = 1; f ′(0) = 10

g(0) = 1; g′(0) = 0
(3.38)

87

First, we need to identify the form of the coefficient matrix. We start as before and rewrite

the equation in operator form

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
d2

dx2
+ x

d

dx

)
f(x) + (−1)g(x) = sin(4x)

(1)f(x) +

(
d2

dx2
+

d

dx

)
g(x) = cos(4x)

with BCs

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

(
d

dx

)
f(0) + (0)

(
d

dx

)
g(0) = 10

(1)f(0) + (0)g(0) = 1

(0)

(
d

dx

)
f(0) + (1)

(
d

dx

)
g(0) = 0

(0)f(0) + (1)g(0) = 1

While this may be an awkward way of writing the equations, especially the boundary

conditions, it provides a natural step from the original system to its equivalent spectral

form. From here we can write

⎡
⎢⎢⎣
(

d2

dx2
+ x

d

dx

)
(−1)

(1)

(
d2

dx2
+

d

dx

)
⎤
⎥⎥⎦
⎡
⎣f(x)
g(x)

⎤
⎦ =

⎡
⎣sin(4x)
cos(4x)

⎤
⎦ (3.39)

and ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

(1)

(
d

dx

)
(0)

(
d

dx

)
(1) (0)

(0)

(
d

dx

)
(1)

(
d

dx

)
(0) (1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎣f(0)
g(0)

⎤
⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

10

1

0

1

⎤
⎥⎥⎥⎥⎥⎥⎦

(3.40)

88

Before we proceed with these matrices, lets first consider the transform required to map the

domain to [−1, 1]. Based on Eq. (3.23) we find

x = 5(ξ + 1);
d

dx
=

1

5

d

dξ
(3.41)

The operator matrices may now be written in spectral terms according to the outlined

procedure. The system becomes

⎡
⎣(D̄N)

2 + xiiD̄N (−IN)
(IN) (D̄N)

2 + D̄N

⎤
⎦
⎡
⎣f(xi)
g(xi)

⎤
⎦ =

⎡
⎣sin (4xi)
cos (4xi)

⎤
⎦ (3.42)

where D̄N denotes the Chebyshev spectral differentiation matrix mapped to the original

x domain. Also recall that the subscripts on the coefficient xii define the coefficient as a

diagonal matrix

xii =

⎡
⎢⎢⎢⎢⎢⎢⎣

xN 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0

0 · · · 0 x1

⎤
⎥⎥⎥⎥⎥⎥⎦

(3.43)

and the forcing functions are column vectors.

In Matlab we implement this automatically with the code

N=20;

i=1:1:N;j=1:1:N;

A=0;B=10;

[xi,D]=chebdif(N,1);

x=B/2*(xi+1)-A/2*(xi-1);

d dx=2/(B-A)*D(:,:,1);

d2 dx2=d dxˆ2;

89

I=eye(N);

Bvec(i)=sin(4*x);

Bvec(N+i)=cos(4*x);

Amat(i,j)=d2 dx2+diag(x)*d dx;

Amat(i,N+j)=-I;

Amat(N+i,j)=I;

Amat(N+i,N+j)=d2 dx2+d dx;

Remember that computation for a second order equation occurs over the inner nodes

only with the first and last row being explicitly defined by the boundary conditions. We can

rewrite our matrix to reflect this criterion as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(D̄N)N,: (0)(D̄N)N,:

(D̄N)
2
2:N−1,1,: + (xii)2:N−1,1,:(D̄N)2:N−1,1,: (−IN)2:N−1,1,:

(IN)N,: (0)(IN)N,:

(0)(D̄N)N,: (D̄N)N,:

(I)2:N−1,1,: (D̄N)
2
2:N−1,1,: + (D̄N)2:N−1,1,:

(0)(IN)N,: (IN)N,:

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f(x1)

f(x2:N−1)

f(xN)

g(x1)

g(x2:N−1)

g(xN)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

10

sin (4x2:N−1)

1

0

cos (4x2:N−1)

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.44)

While Eq. (3.44) is not cast in proper matrix form, it offers a visual representation of

what will be required for coding. To clarify, the first column refers to the function f(x) and

the second to g(x). Also, the first three rows are from the first equation and the 4th through

6th come from the second.

90

Now it becomes more evident why we originally stated the boundary conditions in such

an irregular way. In order to spectrally apply boundary conditions, they must span the

entire row of the operator matrix. This is easy to implement for a single equation but for a

system each boundary condition must be thought to have information for each function in

the solution (even if the corresponding contribution is zero). Most of the time a boundary

condition is only specified for one function at a time so any other function has a zero

coefficient. Thus, to ensure the derivative condition in the first row only acts on f(x),

the elements corresponding to g(x) must be zeroed. Also remember that we take the N th

row of the derivative and identity matrices since that corresponds to the left side of the

domain. The boundary conditions are coded as

Amat(1,j)=d dx(N,:); % Define the IV operator on u from BC on u

Amat(1,N+j)=0; % Define the IV operator on y from BC on u

Bvec(1)=10; % Define the IV on u

Amat(N,j)=I(N,:); % Define the BC operator on u from BC on u

Amat(N,N+j)=0; % Define the BC operator on y from BC on u

Bvec(N)=1; % Define the BC on u

Amat(N+1,j)=0; % Define the IV operator on u from BC on y

Amat(N+1,N+j)=d dx(N,:); % Define the IV operator on y from BC on y

Bvec(N+1)=0; % Define the IV on y

Amat(2*N,j)=0; % Define the BC operator on u from BC on y

Amat(2*N,N+j)=I(N,:); % Define the BC operator on y from BC on y

Bvec(2*N)=1; % Define the BC on y

Clearly, this takes great care to position the conditions properly. The complete code is found

in Alg. B.8.1 on page 303. Results are plotted against a 1000 step Runge-Kutta solution in

Fig. 3.7. This system requires approximately 30 collocation points to compute a solution

whose disparity to the 1000 step Runge-Kutta solution is less than 5× 10−4.

91

Figure 3.7: The solution to the system of ODEs given in Eq. (3.38) for three collocation numbers.

3.5 Eigenvalue Problems with ODEs

A very important part of hydrodynamic instability research, and many other areas of science,

is the generalized eigenvalue problem of the form

Aijfi = λBijfi (3.45)

where Aij and Bij (as opposed to vector Bi used above) are operator matrices, λ is an

eigenvalue, and fi is the eigenvector. The expression Aij − λBij is called the matrix pencil.

If Bij is the identity matrix, then the problem becomes Aij − λIN ; which is the eigenvalue

problem for a single matrix. Single matrix eigenvalue problems are certainly important in

their own way. Typically the single matrix consists of the coefficients of a simultaneous

system of algebraic or differential equations. In these cases the eigenvalues appear explicitly

and are found by setting the Wronskian equal to zero.

Generalized eigenvalue problems appear when the eigenvalue itself appears in the

governing equation or system and multiplies an operator acting on the solution function.

A simple example of this equation for an undamped oscillator equation, f̈ + ω2x2f = 0,

where λ = ω2 and correspond to the zeros of the solution. In instability research, the

eigenvalues relate to both the frequency and growth rate of oscillations.

92

For the single matrix eigenvalue problem, the eigenvalues are solved from the equation

det(Aij−λIN). If Bij is nonsingular, then the generalized eigenvalue problem can be reduced

to a single matrix eigenvalue problem by

AijB
−1
ij − λBijB

−1
ij = Dij − λIN = 0; D = AijB

−1
ij (3.46)

To emphasize, Bij clearly cannot be singular. For practical purposes though, this strategy

is ill-advised. For large matrices (actually any matrix greater than 2 × 2), calculating

an inverse analytically becomes daunting. Calculating an inverse numerically introduces

significant errors that are amplified in the calculation of the spectrum. Therefore it becomes

important to employ similarity transformation matrices that reduce both matrix Aij and Bij

to triangular form where the eigenvalues appear as the diagonal elements. This is typically

done by way of the QZ∗ [68, 69] (or LZ [70, 71]) for dense matrices or Arnoldi algorithm

[105–108] for sparse. Matlab implements the QZ and Arnoldi solvers with the commands

eig(A,B) and eigs(A,B), respectively. We will discuss the details of these methods in Ch. 4.

3.5.1 Example: Eigenvalues of the Bessel Equation

Here, we will determine the spectral collocation and solution of the Bessel equation

x2f ′′(x) + xf ′(x) + μ2x2f(x) = 0 with

⎧⎨
⎩f

′(0) = 0

f(L) = 0
(3.47)

The boundary conditions do not admit a clear solution; rather, they imply the condition

J0(μL) = 0 so that the eigenvalue μ must correspond to the zeros of the Bessel function.

∗A generalized eigensolver using similarity transformations to reduce Aij and Bij to upper triangular
where the generalized eigenvalues are known to be aii/bii.

93

Since the equation contains the eigenvalue, we must segregate terms like

(
x2

d2

dx2
+ x

d

dx

)
f(x) + λ

(
x2
)
f(x) = 0 (3.48)

where λ = μ2. If the eigenvalue appears in the boundary conditions, then we must correctly

segregate them as well. Now we write the equations in the spectral matrix form given by

Aijfi = λBijfi with

Aij = x2ii(D̄N)
2 + xii(D̄N) and Bij = x2ii (3.49)

This is implemented with the code

Amat=diag(x.ˆ2)*d2 dx2+diag(x)*d dx;

Bmat=diag(x.ˆ2);

: refer to Eq. (3.49)

Had a forcing function been present we can write it as well but it will not appear in the

generalized eigenvalue equation. To understand this, consider the forced oscillator equation

f̈ + cḟ + ω2f = cos(Ωt) (3.50)

The homogenous solution is found first and with it the eigenvalue, ω, dictating the

unperturbed natural frequency. The forcing function and the frequency Ω persist after the

transient period has expired but appear only as an addition to the overall spectrum of the

homogenous equation. Figure 3.8 distinctly identifies the frequency Ω as an addition to the

spectrum dictated by ω. The same is true for the value of the boundary conditions: Only

their operators are included in the matrices.

94

a) b)

Figure 3.8: Unforced and sinusoidally forced damped oscillator for ω = 2, Ω = 1, and c = 1
2 (3.8a) and

corresponding FFT showing the damped natural frequency
√
ω2 − c2/2π ≈ 0.308 and the forcing frequency

Ω/2π ≈ 0.159 (3.8b).

The boundary conditions are applied according to

⎧⎪⎨
⎪⎩
(

d

dx

)
f(0) + λ (0)

(
d

dx

)
f(0) = 0

f(L) + λ(0)f(L) = 0

−→
⎧⎨
⎩(D̄N)N,:f(0) + λ (0) (D̄N)N,:f(0) = 0

(IN)1,:f(L) + λ(0)(IN)1,:f(L) = 0

(3.51)

The corresponding code looks like

Amat(1,:)=I(1,:);

Amat(N,:)=d dx(N,:);

Bmat(1,:)=0;

Bmat(N,:)=0;

Finally we solve for the eigenvalues and eigenvectors using the built-in command

[V,Lam]=eig(A,-B) where the command eig(A,-B) computes the eigenvectors, V, and the

eigenvalues per interval length, Lam. The B matrix is multiplied by negative one because

it appears positive on the left-hand-side of the generalized eigenvalue equation where we

95

Figure 3.9: The eigenvectors plotted against the Bessel function of the first kind for the first five eigenvalues
for N = 15 over the domain 0 ≤ x ≤ 10.

have defined it as positive on the right. This is important to return the correct form of the

equation to calculate the eigenvalues.

It must remain very clear that the code solves the spectrum for Eq. (3.45). Therefore,

the output from the code is related to the original eigenvalue by μ =
√
λ. Furthermore, the

output automatically computes the eigenvalues for the problem defined over an arbitrary

domain. Comparing eigenvalues over differing domains can only be done by normalizing

over the domain. This is done by taking μL. These conversions are problem specific since

the relationship between μ and λ may differ.

The complete code is found in Alg. B.9.1 on page 306. Table 3.2 shows the spectral values

versus the accepted zeros of the Bessel function of the first kind. Two things to notice: 1)

The spectral values contain two infinite eigenvalues and therefore only return results for

N − 2 physical eigenvalues and 2) as a rule of thumb, approximately N/3 eigenvalues have

a percent error less than 5 × 10−4. This is in conjunction with the practical requirement

of having at least two collocation nodes per wavelength [95]. We see excellent agreement

between the spectral eigenvector and the Bessel function of the first kind for the first five

eigenvalues in Fig. 3.9.

96

Table 3.2: Spectral roots of J0(μL) for 0 ≤ x ≤ L compared to their accepted values. % E = |λe − μ|/λe

where λe is the root of J0(λe) for 0 ≤ x ≤ 1.

μL

λeL N = 5 % E N = 10 % E N = 15 % E N = 20 % E

2.4048 2.4040 0.0323 2.4048 1.305E-08 2.4048 3.342E-12 2.4048 1.455E-11
5.5201 5.6884 3.0493 5.5201 2.781E-05 5.5201 1.833E-10 5.5201 1.818E-12
8.6537 8.4665 2.1641 8.6539 0.0023 8.6537 1.187E-07 8.6537 4.516E-13
11.7915 11.7831 0.0712 11.7915 5.652E-06 11.7915 7.209E-10
14.9309 15.0997 1.1306 14.9309 1.428E-04 14.9309 3.385E-08
18.0711 17.4414 3.4842 18.0717 0.0036 18.0711 1.880E-06
21.2116 27.6179 30.2016 21.1873 0.1147 21.2116 7.371E-06
24.3525 36.4102 49.5133 24.5159 0.6713 24.3523 5.391E-04
27.4935 26.9492 1.9797 27.4952 0.0063
30.6346 33.7323 10.1116 30.6107 0.0781
33.7758 37.6674 11.5218 33.9231 0.4361
36.9171 64.9955 76.0579 36.3381 1.5683
40.0584 86.4115 115.7138 42.1466 5.2128
43.1998 45.2732 4.7995
46.3412 59.8774 29.2098
49.4826 67.4442 36.2988
52.6241 118.6801 125.5244
55.7655 158.2153 183.7154
58.9070
62.0485

97

3.6 Solving PDEs with Chebyshev Collocation

Our discussion on spectral methods for ordinary differential equations is sufficient to cover

one-dimensional stability equations. For higher dimensional stability analysis, we are forced

to breach the realm of partial differential equations. As expected, this will add significant

difficulty to both the analytic formulation of the problem as well as the computational

requirements. To aid us in the solution, we need to introduce some new concepts. A

two-dimensional problem will correlate to a two-dimensional grid based on directionally

independent Chebyshev points. Such a grid is called a “tensor product grid” [95]. This grid

will be most dense at the boundaries and least dense at the middle.

To work with tensor product spectral grids we must know how to use Kronecker products.

The Kronecker product of two matrices is denoted by Aij⊗Bmn = Ci×m j×n where Ci×m j×n

is a block matrix such that each block is built as aijBmn. For clarity the Kronecker product

appears as:

Aij ⊗ Bmn =

⎡
⎢⎢⎢⎣
a11Bmn · · · a1jBmn

...
. . .

...

ai1Bmn · · · ajjBmn

⎤
⎥⎥⎥⎦ (3.52)

so that each element of Aij is multiplied by the entire matrix Bmn.

We can use the Kronecker product in spectral methods to build a single operator matrix

from a two-dimensional collocation. Specifically derivatives with respect to one independent

variable will take the form (IN) ⊗ (DN)
n and derivatives with respect to the other will be

(DN)
n⊗(IN). We can compute this in Matlab with the command kron(X,Y). For example

98

the first derivative with respect to x with N = 3 can be given as

Dξ
3 = D3 ⊗ I3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.5 −2.0 0.5

1.5 −2.0 0.5

1.5 −2.0 0.5

0.5 0.0 −0.5
0.5 0.0 −0.5

0.5 0.0 −0.5
−0.5 2.0 −1.5

−0.5 2.0 −1.5
−0.5 2.0 −1.5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.53)

and the first derivative with respect to y as

Dη
3 = I3 ⊗D3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.5 −2.0 0.5

0.5 0.0 −0.5
−0.5 2.0 −1.5

1.5 −2.0 0.5

0.5 0.0 −0.5
−0.5 2.0 −1.5

1.5 −2.0 0.5

0.5 0.0 −0.5
−0.5 2.0 −1.5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.54)

These Kronecker product definitions of the partial derivatives in x and y can be switched

as long as it is clear and consistent in the numerical solver. In fact, Trefethen defines the

derivatives exactly opposite of that shown above [95]. However, the nature of the equation

with its boundary conditions can require one definition versus another. In some cases a

99

numerical oscillation can be observed in the direction of the derivative defined by IN ⊗DN .

This oscillation can range from minor to significant. For consistency and accuracy we attempt

to use the derivatives as defined above whenever possible. Regardless, these operations are

indicative of the the Kronecker sum

Aij ⊕ Bmn = Aij ⊗ IN + IN ⊗Bmn (3.55)

which will allow us to combine operator matrices from both directions so we can solve the

spectral equation as usual. We see in Fig. 3.10, that these matrices are sparse but not so

sparse that we must resort to special methods for singular or sparse matrices. Boundary

conditions increase the sparsity but only around the outer perimeter. Finite element

discretization would result in much sparser matrices and require hundreds or thousands

of collocation points where as Chebyshev collocation and Kronecker products require tens

to hundreds of points for accurate resolution of the solution [95].

By defining directional derivatives as Kronecker products, we can solve partial differential

equations of the form

Q0(x, y)
∂(n)f

∂x(n)
+Q1(x, y)

∂(n−1)f

∂x(n−1)
+ . . .+Qn−1(x, y)

∂f

∂x
+Qn(x, y)f

P0(x, y)
∂(n)f

∂y(n)
+ P1(x, y)

∂(n−1)f

∂y(n−1)
+ . . .+ Pn−1(x, y)

∂f

∂y
+ Pn(x, y)f = g(x, y) (3.56)

100

0 20 40 60 80 100

0

20

40

60

80

100

a) The operator matrix without boundary conditions
applied

0 20 40 60 80 100

0

20

40

60

80

100

b) The operator matrix with Dirichlet boundary
conditions on all boundaries

0 20 40 60 80 100

0

20

40

60

80

100

c) The operator matrix with Neumann boundary
conditions on all boundaries

Figure 3.10: The location of nonzero elements in the product tensor matrix.

101

with

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K0(A, y)
∂(n)f

∂y(n)
+K1(A, y)

∂(n−1)f

∂y(n−1)
+ . . .+Kn−1(A, y)

∂f

∂y
+Kn(A, y)f = a(x, y)

J0(B, y)
∂(n)f

∂x(n)
+ J1(B, y)

∂(n−1)f

∂x(n−1)
+ . . .+ Jn−1(B, y)

∂f

∂x
+ Jn(B, y)f = b(x, y)

H0(x, C)
∂(n)f

∂y(n)
+H1(x, C)

∂(n−1)f

∂y(n−1)
+ . . .+Hn−1(x, C)

∂f

∂y
+Hn(x, C)f = c(x, y)

G0(x,D)
∂(n)f

∂x(n)
+G1(x,D)

∂(n−1)f

∂x(n−1)
+ . . .+Gn−1(x,D)

∂f

∂x
+Gn(x,D)f = d(x, y)

...

(3.57)

where the set of boundary conditions is adjusted appropriately to define a well-posed

problem. Although Eq. (3.57) is presented in an elaborate general form, it aids to formally

and completely detail the solution to such problems. First we write Eq. (3.56) in the operator

form

[
Q0(x, y)

∂(n)

∂x(n)
+Q1(x, y)

∂(n−1)

∂x(n−1)
+ . . .+Qn−1(x, y)

∂

∂x
+Qn(x, y)

P0(x, y)
∂(n)

∂y(n)
+ P1(x, y)

∂(n−1)

∂y(n−1)
+ . . .+ Pn−1(x, y)

∂

∂y
+ Pn(x, y)

]
f = g(x, y) (3.58)

102

with

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
K0(A, y)

∂(n)

∂y(n)
+K1(A, y)

∂(n−1)

∂y(n−1)
+ . . .+Kn−1(A, y)

∂

∂y
+Kn(A, y)

]
f = a(x, y)

[
J0(B, y)

∂(n)

∂x(n)
+ J1(B, y)

∂(n−1)

∂x(n−1)
+ . . .+ Jn−1(B, y)

∂

∂x
+ Jn(B, y)

]
f = b(x, y)

[
H0(x, C)

∂(n)

∂y(n)
+H1(x, C)

∂(n−1)

∂y(n−1)
+ . . .+Hn−1(x, C)

∂

∂y
+Hn(x, C)

]
f = c(x, y)

[
G0(x,D)

∂(n)

∂x(n)
+G1(x,D)

∂(n−1)

∂x(n−1)
+ . . .+Gn−1(x,D)

∂

∂x
+Gn(x,D)

]
f = d(x, y)

...

(3.59)

For a multidimensional partial differential equation, each independent variable must be

mapped over the interval [−1, 1]. In the two-dimensional case illustrated here we define two

general mapping equations as

⎧⎪⎪⎨
⎪⎪⎩
x =

B

2
(ξ + 1)− A

2
(ξ − 1) ←→ ξ =

2x− (B + A)

B − A
y =

D

2
(η + 1)− C

2
(η − 1) ←→ η =

2y − (D + C)

D − C

(3.60)

hence ⎧⎪⎪⎨
⎪⎪⎩

∂

∂x
=

2

B − A
∂

∂ξ

∂

∂y
=

2

D − C
∂

∂η

(3.61)

Next, we express the operator as a spectral matrix. However, the spectral form here is

significantly different than that for an ODE to smoothly interact with the tensor product

grid. Here we have x, y, f(x, y), and g(x, y) written as

103

xi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xN
...

xN

xN−1

...

xN−1

...

x1
...

x1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, yj =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

yN

yN−1

...

y1

yN

yN−1

...

y1

yN
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, fi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f(xN , yN)

f(xN , yN−1)
...

f(xN , y1)

f(xN−1, yN)

f(xN−1, yN−1)
...

f(xN−1, y1)

f(xN−2, yN)
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, and gi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g(xN , yN)

g(xN , yN−1)
...

g(xN , y1)

g(xN−1, yN)

g(xN−1, yN−1)
...

g(xN−1, y1)

g(xN−2, yN)
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.62)

respectively, where all vectors are length N2. We must keep in mind that the function

chebdif returns collocation points from right to left. This is doubly significant with two

independent variables - each being written from their right bound to the left. We see that the

independent variables are actually written as the column vector {xN , . . . , xN , . . . , x1 . . . , x1}
and {yN , yN−1, . . . , y1} repeated N times. Again, this is a requirement of the tensor product

grid. Matlab’s built-in syntax can achieve these definitions with the commands

[xx,y] = meshgrid(x,y);

xx = xx(:); yy = yy(:);

Even though the final solution will be expressed as the matrix fi,j, the form of the discretized

equation must still be Ai,jfi = Bi. For this reason the solution is calculated as a vector and

then converted into a matrix. In Matlab this is done with the command reshape(f,N,N).

The vector Bi is constructed from the discretized forcing function, g(x, y). The correct vector

form of this term is automatically obtained if the function is defined in terms of xi and yi.

104

Any constant coefficients can be multiplied with impunity. Variable coefficients must be

written as diagonal matrices. Again, these coefficients will automatically match the tensor

product form if they are computed in terms of xi and yi. In general, variable coefficients will

have the form

(Qj)ii =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

qj(xN , yN) 0 · · · · · · · · · · · · · · · 0

0
. . .

. . .
...

...
. . .

. . .
. . .

...
...

. . . qj(x0, y0)
. . .

...
...

. . . qj(xn, yn)
...

...
. . .

. . .
. . .

...
...

. . .
. . . 0

0 · · · · · · · · · · · · · · · 0 qj(x1, y1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.63)

where qj(xi, yi) is the spectral elements of any general function and xi and yj follow the

convention defined above. The complete coefficient matrix will be N2×N2. Equation (3.56)

is defined spectrally as

[
(Q0)ii(D̄

x
N)

n + (Q1)ii(D̄
x
N)

n−1 + . . .+ (Qn−1)iiD̄
x
N +Qn(x, y)IN

(P0)ii(D̄
y
N)

n + (P1)ii(D̄
y
N)

n−1 + . . .+ (Pn−1)iiD̄
y
N + Pn(x, y)

]
fi = gi (3.64)

Now it is easily seen that this spectral equation can be written as

Aijfi = Bi (3.65)

where Aij is the two-dimensional operator matrix and Bi is the forcing function in vector

form defined over the tensor product grid.

105

Even though the equation is discretized to a tensor product form, the boundary

conditions must be imposed at the matrix elements corresponding to the original interval

boundaries. In practice this means that boundary conditions are not applied by rewriting

the first and last rows of the operator matrix as in the case of an ODE, but rather all

rows containing entries corresponding to the boundaries before the operators are written in

tensor product form. This can be coded in two steps: 1) find the elements corresponding to

the boundaries in both x and y and 2) rewrite those rows in the operator matrix with the

appropriate condition. The first step can be accomplished with

Axbc = find(xx==Ax); Bxbc = find(xx==Bx); % Find and store the locations

% of the x boundaries in

% order to find the points

% in the operator matrix

Aybc = find(yy==Ay); Bybc = find(yy==By); % Find and store the locations

% of the y boundaries in

% order to find the points

% in the operator matrix

The Matlab logical command find() allows us to identify the boundaries without looping

over all elements where Ax,Bx,Ay,By define the boundaries. It enables us to compute the

boundaries on the generated grid, xx and yy, by finding and storing the indices of the

locations on the interval bounds. These can be later used to directly impose boundary

conditions at those locations.

With regards to the types of boundary conditions, we must consider:

1. For a boundary value problem, the Dirichlet boundary conditions are applied by

rewriting the appropriate rows of the operator matrix with the corresponding rows

106

of the N2 identity matrix. For instance

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

f(A, y) = a(x, y)

f(B, y) = b(x, y)

f(x, C) = c(x, y)

f(x,D) = d(x, y)

−→

(3.66)

% Define the identity matrix for boundary conditions

II=eye(Nˆ2);

Amat(Axbc,:) = II(Axbc,:);

Amat(Bxbc,:) = II(Bxbc,:);

Amat(Aybc,:) = II(Aybc,:);

Amat(Bybc,:) = II(Bybc,:);

2. For any Neumann (derivative) boundary conditions, the operator matrix is modified

by

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

fx(A, y) = a(x, y)

fx(B, y) = b(x, y)

fy(x, C) = c(x, y)

fy(x,D) = d(x, y)

−→

(3.67)

% Define the differentiation matrix for boundary conditions

DDy=kron(I,d dy);DDx=kron(d dx,I);

Amat(Axbc,:) = DDx(Axbc,:);

Amat(Bxbc,:) = DDx(Bxbc,:);

Amat(Aybc,:) = DDy(Aybc,:);

107

Amat(Bybc,:) = DDy(Bybc,:);

3. For initial value problems we must overwrite the rows in the operator matrix containing

elements corresponding to both the first and last rows of the original domain (i.e. the

same rows of the operator matrix as for boundary value problems) with the rows of

the identity and derivative matrices corresponding to the left bound. This condition

warrants

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

f(A, y) = a(x, y)

fx(A, y) = b(x, y)

f(x, C) = c(x, y)

fy(x, C) = d(x, y)

−→

(3.68)

% Define the identity matrix for boundary conditions

II=eye(Nˆ2);

% Define the differentiation matrix for boundary conditions

DDy=kron(I,d dy);DDx=kron(d dx,I);

Amat(Axbc,:) = II(Axbc,:);

Amat(Bxbc,:) = DDx(Axbc,:);

Amat(Aybc,:) = II(Aybc,:);

Amat(Bybc,:) = DDy(Aybc,:);

Higher order derivatives are defined accordingly.

3.6.1 Example: A Parabolic PDE with Variable Coefficients

This section is designed to illustrate the solution of a parabolic partial differential equation,

similar to the heat equation, with variable coefficients as well as the inclusion of the

undifferentiated function in the original equation. Also, the equation is characterized by

108

derivative boundary conditions to illustrate their proper inclusion into the operator matrix.

We consider the equation

fy = cos(y(1− x))fxx − xf (3.69)

with boundary conditions ⎧⎪⎪⎪⎨
⎪⎪⎪⎩
f(x, 0) = −2 cos(πx)
fx(0, y) = 0

fx(1, y) = −2
(3.70)

To begin we must specify the number of collocation points. The number can be different

in each direction and it might be advantageous to do so if one direction requires much less

resolution. Conversely, it will require considerable care when dealing with the ensuing matrix

operations, boundary conditions, and eigenvalue calculations. Furthermore, we would have

to carry more variables throughout the program, thus increasing hardware requirements. For

these reasons, only equal numbers of collocation points in both directions will be considered.

We define the number of points, the interval and, the derivatives with

N = 20; % Define the number of points in the x and y directions

Ax=-1;Bx=1; % Define the left and right bounds in x, respectively

Ay=0;By=1; % Define the left and right bounds in y, respectively

[xi,D] = chebdif(N,1); % Define the x collocation points

eta = xi; % Define the y collocation points

x=Bx/2*(xi+1)-Ax/2*(xi-1); % Convert back to the original domain

y=By/2*(xi+1)-Ay/2*(xi-1); % Convert back to the original domain

d dx=2/(Bx-Ax)*D(:,:,1); % Convert the x Spectral derivatives

d dy=2/(By-Ay)*D(:,:,1); % Convert the y Spectral derivatives

Since the number of collocation points is the same in both directions we could simply define

one derivative and one collocation grid but for illustrative purposes we will clearly define

each for both x and y directions.

109

Thus far the coding has been nearly the same as for the solution to an ODE. The

command [xx,yy]=meshgrid[x,y] takes the vector x and builds an N × N matrix, xx

where the columns are built by the vector x. Likewise, the rows of yy are built from the

vector y. Simple as it seems, this command builds the x and y grid in which the solution

will be interpolated over. The code looks like

[xx,yy] = meshgrid(x,y); % Mesh the grid

xx = xx(:); yy = yy(:); % Convert the meshed grid to vectors to match

% tensor product form of the governing eq.

% and map the boundary conditions

Next we define the operator matrix via Kronecker products.

II=eye(Nˆ2); % Define an identity matrix the size of Amat

% Define the spectral operator matrix

Amat = kron(I,d dy) -diag(cos((1-xx).*yy)) * kron(d2 dx2,I)+diag(xx)*II;

: refer to Eq. (3.69)

Note the inclusion of the diag() command and the use of the column vectors, xx and yy, to

properly define all variable coefficients.

Per the opening discussion on boundary conditions, we use the Matlab logical command

find() to identify the boundaries automatically. We code

Axbc = find(xx==Ax); Bxbc = find(xx==Bx); % Find and store the locations

% of the x boundaries in

% order to find the points

% in the operator matrix

Aybc = find(yy==Ay); Bybc = find(yy==By); % Find and store the locations

% of the y boundaries in

110

% order to find the points

% in the operator matrix

The conditions are imposed with

% Define the differentiation matrix for boundary conditions

DDy=kron(I,d dy);DDx=kron(d dx,I);

Amat(Axbc,:) = DDx(Axbc,:);

Amat(Bxbc,:) = DDx(Bxbc,:);

Amat(Aybc,:) = II(Aybc,:);

% Amat(Bybc,:) = II(Bybc,:);

: refer to Eq. (3.70)

Since this equation is first order in y we can only include one boundary condition. Here we

define the left interval. Defining both intervals leads to an overdetermined system typically

marred by numeric instability or incorrect values at the boundaries.

Next we can define the right hand side of the equation containing any forcing functions

and boundary conditions. This equation does not have a forcing function so the right hand

side consist zeros except for those elements defined by the boundary conditions. For this

equation we have

Bvec = zeros(Nˆ2,1); % Define the forcing function as the B vector

% Define u(x,y) at x=Ax

Bvec(Axbc) = 0;

% Define u(x,y) at x=Bx

Bvec(Bxbc) = -2;

% Define u(x,y) at y=Ay

Bvec(Aybc) = -2*cos(pi*xx(Aybc));%sin(pi*xx(Aybc));

% Define u(x,y) at y=By

111

a) Three dimensional view b) Profile view to show the boundary conditions

Figure 3.11: The solution to the given parabolic PDE under the boundary conditions given above for N = 20.

% Bvec(Bybc) = 0;

: refer to Eq. (3.70)

What is left is to solve the equation and plot the solution over a refined grid. The

solution is found as usual by f=Amat\Bvec. This produces the solution as a vector. We write

it in matrix form by the command ff=reshape(f,N,N). Now the solution can be interpolated

over a finer grid space in each direction independently. Each row is considered to interpolate

in the x direction then each column is in turn interpolated to refine the y direction. The

code to do this is

for i=1:N

P(i,:)=chebint(ff(i,:),linspace(-1,1,xgrid));

end

for j=1:xgrid

PP(:,j)=chebint(P(:,j),linspace(-1,1,ygrid));

end

Finally, the solution can be plotted with the command mesh(xxx,yyy,PP). The complete

code is given in Alg. B.10.1 on page 308. Figure 3.11 shows that the boundary conditions

112

are satisfied on all edges. This plot was discretized over N = 20 collocation points and

interpolated over a 40× 40 grid.

3.6.2 Example: The 2D Poisson Equation

We will continue with an example from Trefethen [95]. In this example we will consider how

to handle forcing functions with the example of the two-dimensional Poisson equation. This

equation is taken exactly as is from Trefethen, but solved using our code as developed above.

We are considering the equation

fxx + fyy = 10 sin (8x(y − 1)) , −1 ≤ x, y ≤ 1, f = 0 at all boundaries (3.71)

The coding of this solution is the same as shown in the previous example with the

following differences. The operator matrix now appears as

Amat = kron(d2 dx2,I) + kron(I,d2 dy2);

: refer to Eq. (3.71)

and the B vector becomes

Bvec=10*sin(8*xx.*(yy-1))

: refer to Eq. (3.71)

From here, we let all of the boundary conditions equal zero with

Amat(Axbc,:) = II(Axbc,:); Bvec(Axbc) = 0;

Amat(Bxbc,:) = II(Bxbc,:); Bvec(Bxbc) = 0;

Amat(Aybc,:) = II(Aybc,:); Bvec(Bybc) = 0;

113

Figure 3.12: The solution to the time-independent Poisson equation with a sinusoidal forcing function under
the boundary conditions given above for N = 20.

Amat(Bybc,:) = II(Bybc,:); Bvec(Aybc) = 0;

: refer to Eq. (3.71)

The corresponding solution is plotted in Fig. 3.12. The complete code is included as

Alg. B.11.1 on page 312.

3.6.3 Example: A System of PDEs

Systems of PDEs are handled similarly to systems of ODEs while keeping in mind the

properties of the tensor product grid. For the system to be defined in a single operator

matrix, each equation will be allocated N2 rows and each dependent variable will be allocated

N2 columns. This requirement is greater for PDEs than the N ×N block matrices required

for ODEs since the Kronecker products result in an N2 operator matrix for each dependent

variable. One can therefore expect a significant increase in the required computational power

when handling systems of equations. To demonstrate the method of solution for systems of

114

PDEs, we consider the coupled set of equations

⎧⎨
⎩fxx + xfyy − gx = sin(πx)

gxx + gyy + fx = cos(πx)
with

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

f(0, y) = 0; f(1, y) = 0

f(x, 0) = sin(πx); f(x, 1) = 0

g(0, y) = 0; g(1, y) = 0

gy(x, 0) = 0; g(x, 1) = 1

(3.72)

Next, the equations are written, as usual, in operator form:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
∂2

∂x2
+ x

∂2

∂y2

)
f(x, y) + (−1)

(
∂

∂x

)
g(x, y) = sin(πx)

(1)

(
∂

∂x

)
f(x, y) +

(
∂2

∂x2
+

∂2

∂y2

)
g(x, y) = cos(πx)

(3.73)

with boundary conditions

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)f(0, y) + (0)f(0, y) + (0)g(0, y) + (0)g(0, y) = 0

(0)f(1, y) + (1)f(1, y) + (0)g(1, y) + (0)g(1, y) = 0

(0)f(0, y) + (0)f(0, y) + (1)g(0, y) + (0)g(0, y) = 0

(0)f(1, y) + (0)f(1, y) + (0)g(0, y) + (1)g(1, y) = 0

(3.74)

and

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)f(x, 0) + (0)f(x, 0) + (0)g(x, 0) + (0)g(x, 0) = sin(πx)

(0)f(x, 1) + (1)f(x, 1) + (0)g(x, 1) + (0)g(x, 1) = 0

(0)fy(x, 0) + (0)fy(x, 0) + (1)gy(x, 0) + (0)gy(x, 0) = 0

(0)f(x, 1) + (0)f(x, 1) + (0)g(x, 1) + (1)g(x, 1) = 1

(3.75)

115

From this step we can naturally convert the system to its equivalent matrix form,

⎡
⎢⎢⎢⎣
(
∂2

∂x2
+ x

∂2

∂y2

)
(−1)

(
∂

∂x

)

(1)

(
∂

∂x

) (
∂2

∂x2
+

∂2

∂y2

)
⎤
⎥⎥⎥⎦
⎡
⎣f(x, y)
g(x, y)

⎤
⎦ =

⎡
⎣sin(πx)
cos(πx)

⎤
⎦ (3.76)

with boundary conditions expressed as

⎡
⎢⎢⎢⎢⎢⎢⎣

(1) (0) (0) (0)

(0) (1) (0) (0)

(0) (0) (1) (0)

(0) (0) (0) (1)

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

f(0, y)

f(1, y)

g(0, y)

g(1, y)

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎦

(3.77)

and

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

(1) (0) (0) (0)

(0) (1) (0) (0)

(0)

(
∂

∂y

)
(0)

(
∂

∂y

)
(1)

(
∂

∂y

)
(0)

(
∂

∂y

)
(0) (0) (0) (1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

f(x, 0)

f(x, 1)

g(x, 0)

g(x, 1)

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

sin(πx)

0

0

1

⎤
⎥⎥⎥⎥⎥⎥⎦

(3.78)

It is necessary to map both spatial domains over the interval [−1, 1]. We apply Eq. (3.23)

to both independent variables to recover

x =
1

2
(ξ − 1) ←→ ξ = 2x− 1 with

∂

∂x
= 2

∂

∂ξ

y =
1

2
(η − 1) ←→ η = 2y − 1 with

∂

∂y
= 2

∂

∂η

(3.79)

116

At this juncture we can represent the operator matrix in spectral notation,

⎡
⎣(D̄x

N)
2 + xii(D̄

y
N)

2 −D̄x
N

D̄x
N (D̄x

N)
2 + (D̄y

N)
2

⎤
⎦
⎡
⎣f(xi, yi)
g(xi, yi)

⎤
⎦ =

⎡
⎣sin(πx)
cos(πx)

⎤
⎦ (3.80)

It is important to keep in mind that the first column refers to operations on the function

f(x, y) and the second column operates on g(x, y). At the outset, the first row constructs the

first equation and the second row yields the second. For larger systems we will add columns

and rows accordingly. The general scheme will look like

Aij =

f1(x, y) · · · fm(x, y)

↓ ↓
Eq1
...

Eqm

→

→

⎡
⎢⎢⎢⎣
A1,f1 · · · A1,fm

...
. . .

...

Am,f1 · · · Am,fm

⎤
⎥⎥⎥⎦

(3.81)

where m is the number of equations and unknowns and Am,f are block operator matrices for

each variable and equation. Even though PDEs are expressed over a tensor product grid,

the operator matrix has the same for as that of ODEs, the difference being in the definitions

of the derivatives and coefficients. The matrix is constructed for this set of equations by

j=1:1:Nˆ2;

% Define the operator on f from Eq.1

Amat(j,j) = kron(d2 dx2,I)+ diag(xx)*kron(I,d2 dy2);

% Define the operator on g from Eq.1

Amat(j,Nˆ2+j) = -kron(d dx,I);

% Define the operator on f from Eq.2

Amat(Nˆ2+j,j) = kron(d dx,I);

% Define the operator on g from Eq.2

117

Amat(Nˆ2+j,Nˆ2+j) = kron(d2 dx2,I)+ kron(I,d2 dy2);

: refer to Eq. (3.80)

Boundary conditions require significant care to implement. Recall in the example for systems

of ODEs that each boundary condition operator for a specific function is applied to the rows

of a corresponding block matrix while the same rows of the horizontally adjacent block matrix

are zeroed. In the solution of a single PDE, the elements along the boundary are identified

within the tensor product matrix and boundary condition operators are applied across their

rows. Therefore boundary condition operators are applied to a system of PDEs by combining

those two ideas. First the boundary elements are identified. Next the boundary condition

operators are applied to the rows of the correct block matrix while the horizontally adjacent

block matrix is zeroed. In the example given above, the order of the differential equation is

2 for both x and y; thus we see 8 total boundary conditions (4 applied to each of f(x, y) and

g(x, y)). Thus, we apply 4 boundary conditions (the 4 conditions on f(x, y)) to the top two

block matrices and 4 (the 4 conditions on g(x, y)) to the bottom two. The conditions could

be applied differently and at the discretion of the user; however, this convention is proven

effective, as illustrated in the code below

% f(0,y) and f(1,y)

Amat(Axbc,j) = II(Axbc,:); % Define the IV operator on f from BC on f

Amat(Axbc,Nˆ2+j)=0*II(Axbc,:); % Define the IV operator on g from BC on f

Bvec(Axbc) = 0; % Define the IV on f

Amat(Bxbc,j) = II(Bxbc,:); % Define the BC operator on f from BC on f

Amat(Bxbc,Nˆ2+j)=0*II(Bxbc,:); % Define the BC operator on g from BC on f

Bvec(Bxbc) = 0; % Define the BC on f

% f(x,0) and f(x,1)

Amat(Aybc,j) = II(Aybc,:); % Define the IV operator on f from BC on f

Amat(Aybc,Nˆ2+j)=0*II(Aybc,:); % Define the IV operator on g from BC on f

118

Bvec(Aybc) = sin(pi*xx(Aybc)); % Define the IV on f

Amat(Bybc,j) = II(Bybc,:); % Define the BC operator on f from BC on f

Amat(Bybc,Nˆ2+j)=0*II(Bybc,:); % Define the BC operator on g from BC on f

Bvec(Bybc) = sin(pi*xx(Bybc)); % Define the BC on f

% g(0,y) and g(1,y)

Amat(Nˆ2+Axbc,j)=0*II(Axbc,:); % Define the IV operator on f from BC on g

Amat(Nˆ2+Axbc,Nˆ2+j)=II(Axbc,:); % Define the IV operator on g from BC on g

Bvec(Nˆ2+Axbc)=0; % Define the IV on g

Amat(Nˆ2+Bxbc,j)=0*II(Bxbc,:); % Define the BC operator on f from BC on g

Amat(Nˆ2+Bxbc,Nˆ2+j)=II(Bxbc,:); % Define the BC operator on g from BC on g

Bvec(Nˆ2+Bxbc)=0; % Define the BC on g

% g(x,0) and g(x,1)

Amat(Nˆ2+Aybc,j)=0*DDy(Aybc,:); % Define the IV operator on f from BC on g

Amat(Nˆ2+Aybc,Nˆ2+j)=DDy(Aybc,:);% Define the IV operator on g from BC on g

Bvec(Nˆ2+Aybc)=0; % Define the IV on g

Amat(Nˆ2+Bybc,j)=0*II(Bybc,:); % Define the BC operator on f from BC on g

Amat(Nˆ2+Bybc,Nˆ2+j)=II(Bybc,:); % Define the BC operator on g from BC on g

Bvec(Nˆ2+Bybc)=0; % Define the BC on g

: refer to Eq. (3.78)

The complete code is found in Alg. B.12.1 on page 315. The solution is plotted for

N = 20 in Fig. 3.13. The solutions possess an error of 6.5409E-012 and 2.8512E-012 for

f(x, y) and g(x, y), respectively.

3.7 Eigenvalue Problems with PDEs

Much of the discussion regarding eigenvalue problems has been covered in the ODE section.

As per norm, eigenvalue problems involving PDEs are more difficult mainly due to the

119

a) f(x, y) b) g(x, y)

Figure 3.13: The solution to the system of PDEs under the boundary conditions given above for N = 20.

product tensor grid and the application of boundary conditions. However, we have already

developed all of the tools necessary to properly write and solve these problems spectrally.

3.7.1 Example: The Helmholtz equation

In this section we will consider the eigenvalue problem posed by the Helmholtz equation in

two dimensions. It is

fxx + fyy + μf = 0, 0 ≤ x, y ≤ L, f = 0 on all boundaries (3.82)

This equation is solvable via separation of variables and results in the eigenfunction

sin(kxx) sin(kyy) (3.83)

where kx and ky are integer multiples of π/L and the eigenvalues are given by

μ =
π2

L2
(i2 + j2); i, j = 0, 1, 2... (3.84)

120

To proceed, we segregate terms as usual to facilitate a spectral representation. We have

(
∂2

∂x2
+

∂2

∂y2

)
f(x, y) + λf(x, y) = 0 (3.85)

with λ = μ. Substituting the spectral derivative operators into this equation allows us to

write the Helmholtz equation as a generalized eigenvalue problem (Eq. (3.45)) such that

Aij = (D̄x
N)

2 + (D̄y
N)

2 and Bij = IN (3.86)

These matrices are easily constructed with

Amat = kron(d2 dx2,I) + kron(I,d2 dy2);

Bmat = II;

: refer to Eq. (3.86)

The boundary conditions maybe imposed as before by determining the elements within

the product tensor matrix that appear on the boundaries and apply the boundary conditions

accordingly. We use

Amat(Axbc,:) = II(Axbc,:);

Amat(Bxbc,:) = II(Bxbc,:);

Amat(Aybc,:) = II(Aybc,:);

Amat(Bybc,:) = II(Bybc,:);

Bmat(Axbc,:) = 0*II(Axbc,:);

Bmat(Bxbc,:) = 0*II(Bxbc,:);

Bmat(Aybc,:) = 0*II(Bybc,:);

121

Bmat(Bybc,:) = 0*II(Bybc,:);

: refer to Eq. (3.82)

Lastly, the eigenvalues are solved numerically. The eigenvalues can be compared over

an arbitrary domain by considering the group μL2/π2. The example for ODEs is normalized

by multiplying by the domain interval only once. The extra L needed here is due to the

inclusion of the second spatial dimension.

The complete spectral code is presented in Alg. B.13.1 on page 321. The normalized

analytic eigenvalues are compared to the numeric results in Table 3.3. Note that the error

does not increase smoothly with successive increases in the eigenvalue. The product tensor

grid changes the order in which the eigenvalues are computed; thus, they are not computed

from the smallest to the largest as usual. Additionally, the accuracy persists further down the

spectrum for smaller values of N than in the previous ODE example. From this perspective,

we can expect smaller values of N to provide comparable spectral resolution for biglobal

stability calculations than for classic one-dimensional approaches.

3.8 Closing Remarks on Spectral Methods

Our discussion on spectral methods has only dealt with linear equations. Since the

hydrodynamic stability equations are linear, this course of discussion seems appropriate.

It is important to recognize however, that spectral methods also work well with nonlinear

problems. For these problems we must implement a convergence scheme by choosing an

initial guess, v, solving the equation with the nonlinear terms appearing as a forcing function

in the B vector, updating v to be the new initializing vector, and iterating until convergence

occurs. An example is the equation

uxx = eu (3.87)

122

Table 3.3: The normalized eigenvalues of the Helmholtz equation for 0 ≤ x ≤ L compared to their exact
values. % E = |λe − μ|/λe where λe is the exact value.

λe
L2

π2 μL2

π2

N = 5 % E N = 10 % E N = 15 % E N = 20 % E

2 1.9908 0.4622 2.0000 1.440E-06 2.0000 4.496E-12 2.0000 1.500E-11
5 5.8588 17.1759 5.0000 0.0002 5.0000 8.620E-09 5.0000 5.596E-12
5 5.8588 17.1759 5.0000 0.0002 5.0000 8.618E-09 5.0000 3.393E-12
8 8.9163 11.4533 8.0000 0.0003 8.0000 1.077E-08 8.0000 4.130E-12
10 8.9163 10.8374 10.0024 0.0238 10.0000 8.201E-07 10.0000 7.130E-11
10 9.7268 2.7317 10.0024 0.0238 10.0000 8.201E-07 10.0000 7.031E-11
13 12.7843 1.6592 13.0024 0.0183 13.0000 6.341E-07 13.0000 5.538E-11
13 12.7843 1.6592 13.0024 0.0183 13.0000 6.341E-07 13.0000 5.076E-11
17 15.8418 6.8131 16.9193 0.4748 17.0000 0.0001 17.0000 4.890E-09
17 16.9193 0.4748 17.0000 0.0001 17.0000 4.886E-09
18 18.0048 0.0265 18.0000 0.0000 18.0000 7.723E-11
20 19.9193 0.4036 20.0000 0.0001 20.0000 4.155E-09
20 19.9193 0.4036 20.0000 0.0001 20.0000 4.153E-09
25 24.9217 0.3133 25.0000 0.0001 25.0000 3.354E-09
25 24.9217 0.3133 25.0000 0.0001 25.0000 3.350E-09
26 27.4411 5.5428 26.0001 0.0003 26.0000 7.013E-07
26 27.4411 5.5428 26.0001 0.0003 26.0000 7.013E-07
29 30.4411 4.9694 29.0001 0.0003 29.0000 6.287E-07
29 30.4411 4.9694 29.0001 0.0003 29.0000 6.287E-07
32 31.8386 0.5044 32.0000 0.0001 32.0000 5.194E-09

123

a) μ = 2π2/L2 b) μ = 5π2/L2

c) μ = 5π2/L2 d) μ = 8π2/L2

Figure 3.14: The eigenvectors and their corresponding eigenvalues for the Helmholtz equation for N = 20.
Figures 3.14b–3.14c show the eigenvectors for the double eigenvalue μ = 5π2/L2.

An initial guess is defined as ui and the equation is written spectrally as (DN)
2ui+1 = exp ui.

This equation is repeatedly solved for ui+1 with each iteration considering the updated u

vector until some convergence criterion is satisfied.

In certain situations where the problem is sensitive to the number of collocation points,

N , and where N needs to be very large, it may be important to iterate on N to ensure

convergence. Basic error analysis can be done a priori and an estimate for the collocation

number can be determined [99]. Alternatively, convergence can be found iteratively by

successively increasing the collocation number in the code. Iterative convergence can be

done through brute force by incrementally increasing N until the solution no longer changes.

This idea can be much improved by implementing a root finding scheme similar to that used

124

in shooting methods for boundary value problems. In this case we consider the equation

Ni+1 = round

(
g(Ni)

Ni −Ni−1

g(Ni)− g(Ni−1)

)
(3.88)

where g(Ni) = max |f(Ni)− f(Ni−1)| and f(N) is the polynomial solution to the governing

equation for a given N . This is simply the secant method applied to the equation g(N). It

requires two initial values, Ni and Ni−1 and a convergence criterion that stops the iteration

when either a specified tolerance for g(Ni) is met or when Ni+1 = Ni. For many (most)

problems this may not be necessary and for problems with extremely large N this might

be computationally taxing. However, when all sources of potential error must be minimized

this approach can be invaluable.

There are several sources of error to be considered with collocation methods and,

correspondingly, several tests to ensure accuracy. The obvious test is to compare the

numerical solution to the exact result, if one exists. This may be accomplished by

reconstructing the numerical equivalent of the governing equation by differentiating the

numeric solution and substituting it back into the governing equation. This test can be

neatly applied to any equation or system of equations and is especially helpful for those

whose exact solution is not known. It is best applied to the inner nodes for PDEs since

arbitrary boundary conditions can cause numeric stability problems along the ends of the

interval. Of course, boundary conditions can be verified independently as well. Lastly,

solving the matrix Aijfi = Bi can be a source of numeric error. This is especially true if

B is singular or nearly singular. In general, this error increases as N increases and as the

number of equations in the system increases because larger matrices tend to accumulate

larger round-off error. It is easily quantified by computing Aijfi = Bi and determining its

maximum error. Given these various avenues for verification, most if not all of the methods

qualifying error are calculated in the codes included in the appendix.

125

Those familiar with collocation methods may note that the final solution is plotted over

a square grid rather than over the Chebyshev points themselves. This is made possible by

the implementation of the barycentric formula in chebint which allows robust interpolation

of the solution over any collocation grid. If problems with grid spacing do arise, then the

solution can be plotted as is without grid refinement. Further interpolation is simply a way

to smooth coarse solutions without requiring the extra computational time needed to directly

compute the solution over a fine grid from the start.

Lastly, Ch. 4 steps through the mathematics and code development. Ultimately the

final codes produced over the course of the chapter are purely academic in that they cannot

compete with Matlab’s built-in LAPACK routines in terms of computational time. They

serve only to archive the understanding of complete eigensolver routines.

126

127

Table 3.4: Applicable error values for all examples.

Example Back Sub. Max Local E f = Aij\Bi Left x B.C. Right x B.C. Left y B.C. Right y B.C.

1st Order ODE 5.77E-15 4.04E-04 8.76E-15 0
2nd Order ODE 7.77E-14 5.33E-10 8.58E-14 0 6.66E-16
Sys. of ODEs 7.51E-13 7.02E-13 2.84E-14 0

3.43E-13 3.55E-15 0
Bessel 5.63E-10 0 1.61E-12 0
Eigenvalues 5.14E-10 1.46E-12 1.45E-12 0

8.98E-09 2.12E-12 1.58E-12 0
1.36E-05 4.62E-10 1.38E-12 0

Parabolic PDE 2.76E-11 5.81E-11 9.09E-13 3.30E-12 1.63E-11
Poisson Eqn 1.53E-13 6.10E-13 0 8.16E-14 2.73E-14 3.39E-14
Sys. of PDEs 6.34E-12 1.74E-11 5.48E-14 2.92E-13 1.90E-13 3.14E-13

1.72E-12 0 1.04E-13 2.49E-14 1.82E-14
Helmholtz 5.37E-11 0 0 0 0
Eigenvalues 5.96E-11 0 0 0 0

2.36E-11 0 0 0 0
6.98E-11 0 0 0 0

Chapter 4

Eigensolvers

This chapter aims to detail the road map and construction of efficient eigensolvers. Similar

to the discussion of spectral collocation methods, the following review of eigensolvers would

not fit in a traditional journal publication. It is, however, important to understand the

linear algebra and numerical application of eigensolvers in fulfilling the requirements of a

complete study. In an attempt to remain as concise as possible, many elementary points will

be omitted or referenced elsewhere while still illuminating the important details. In brief,

Fig. 4.1 illuminates the necessary steps in completing an efficient and accurate eigensolver.

128

• Upper Hessenberg
• Upper Hessenberg/

Upper Triangular

Matrix
Reductions

• By Ward
• By Lemonnier and

Van Dooren

ard

Norm
Balancing • Deflation

• QR/QZ
• LR/LZ

Eigensolver

Figure 4.1: Eigensolver Flowchart

4.1 Calculating Eigenvalues

The generalized eigenvalue problem has been defined as

Aijfi = λBijfi (4.1)

From linear algebra we know that the eigenvalues of a single matrix can be found by solving

the equation

det(Aij − λIN) = 0 (4.2)

where Aij is any matrix, λ is the eigenvalue and IN is the identity matrix of size N . From

this equation, the characteristic polynomial can be computed by expanding the determinant.

The N eigenvalues can be explicitly determined by computing the zeros of the N th order

characteristic polynomial. Since the solution of a single matrix eigenvalue problem is known,

we should note that the generalized form can be expressed as a single matrix eigenvalue

129

problem if we multiply through by B−1
ij . This action would reformulate the problem as

AijB
−1
ij − λBijB

−1
ij = Cij − λIN = 0; Cij = AijB

−1
ij (4.3)

Then the eigenvalues of Cij are the eigenvalues of the original problem. Clearly, Bij cannot be

singular for this to work. It is not obvious but from a numerical standpoint, this approach will

incur large errors due to the computational accuracy of inverting and solving rather than

solving directly [109]. Moreover, inverting large matrices is a computationally expensive

task which can be circumvented by constructing an eigensolver that handles the generalized

eigenvalue problem directly.

Special cases exist where calculating eigenvalues are extremely easy. Those most

important to the problems discussed here include the situation where Aij is upper triangular.

In this case, the eigenvalues are simply the diagonal elements. It may hence be seen that,

applying similarity transformation matrices∗ to the matrix Aij in an attempt to convert it to

upper triangular form may be more efficient than determining the roots of the characteristic

polynomial of arbitrary order N . This notion can be extended further to the generalized

eigenvalue problem. If both Aij andBij are upper triangular, then the generalized eigenvalues

are simply aii/bii, where aii and bii are the diagonal elements of Aij and Bij, respectively.

This relationship is applicable to singular and nonsingular matrices alike.

4.2 Matrix Preconditioning

In some cases, numeric eigenvalue calculations are sensitive to rounding errors. These errors

are proportional to the sum of the squares of the matrix elements (i.e. the Frobenius norm,

∗Two N × N matrices, A and A∗, are similar if A∗ = Q−1AQ where Q is a change-of-basis matrix. A∗

can be constructed to have a more useful matrix form (upper Hessenberg, upper triangular, tri-diagonal,
etc.) without changing the eigenvalues.

130

‖Aij‖F) [110].

‖Aij‖F =

√√√√ N∑
i=1

N∑
j=1

|aij |2 (4.4)

Eigenvalues are typically sensitive when their modulus is several orders of magnitude smaller

than the norm of the matrix [111]. Therefore, rounding errors can be mitigated if the

overall matrix norm is reduced. Matrix balancing uses similarity transformations that

cause corresponding rows and columns to have comparable norms, thus reducing the overall

Frobenius norm without changing the eigenvalues. This procedure has N2 operations for

each iteration: N operations for rows and N operations for columns. At first it seems

time consuming to run balancing, but in comparison the time to execute a matrix balance

is small compared to the time to solve for the eigenvalues. Typically appropriate similarity

transformations are found in two to three iterations. It is therefore suggested that a balancing

procedure always be run.

From experience, it seems that numeric accuracy can be improved by forcing all columns

and rows containing only zero elements to the left and up respectively. Further, row and

column swapping can be implemented to ensure as many nonzero diagonal elements as

possible. This becomes important when dealing with large and/or sparse matrices. Dense

matrices usually do not have columns or rows of this type so it is not of much concern. If

these ideas are used as a preconditioner, matrix reductions will keep all (or most) of the

zero diagonal elements together. Finding zeros on the diagonal leads to division by zero

in the bulge chasing technique, commonly used to determine the eigenvalues. Furthermore,

a matrix can be decomposed if there are blocks of nonzero elements arranged around the

diagonal and surrounded by zero elements. If this is the case, then the eigenvalues of the

submatrix of nonzero elements become eigenvalues of the total matrix and can be treated

as such. Smaller matrices require far less computations per iteration and, hence, accelerate

convergence of the overall spectrum.

131

4.2.1 Balancing a Single Matrix

The following procedure is discussed thoroughly by Wilkinson and Reinsch [112]. It seeks to

create comparable row and column norms, thus reducing the Frobenius norm. We seek to

find similarity transformations applied in the form

D−1
ii AijDii (4.5)

where Dii is a diagonal matrix. By applying a similarity transformation of diagonal matrices

the matrix norm (Frobenius) is reduced without changing the eigenvalues. To reduce

rounding errors in this procedure, the diagonal elements of the similarity transformations

are restricted to exact powers of the radix† (2 for most machines) [110]. The Matlab code

shown in Alg. B.13.1 on page 321 balances a single matrix Aij . It does not explicitly define

Dii or D
−1
ii , but rather calculates the diagonal elements of Dii (assigned to the variable f

and g, respectively, in the code) and applies them automatically.

4.2.2 Balancing the Generalized Eigenvalue Problem

A regular matrix pencil is one in which det(Aij − λBij) is not identically zero for all values

of λ. The traditional method of balancing matrix pencils is given by Ward [113]. His

method attempts to make the pencil entries as close to unity as possible. It is currently

the standard method for balancing in LAPACK. The method presented here is suggested

by Lemonnier and Van Dooren [111]. It differs from Ward’s by attempting to find a

diagonal similarity transformation matrix that converts the original matrix to a normal

matrix (or as close as possible). A normal matrix is one that commutes with its conjugate

†The radix (or base) is the number of unique digits, including zero, that a numeral system uses to represent
numbers. For example, the decimal system has a radix of ten because it uses the ten digits 0 through 9.

132

transpose,‡ A∗
ijAij = AijA

∗
ij . This technique is fruitful since normal matrices have orthogonal

eigenvectors and therefore well conditioned eigenvalues [114]. Clearly, if one can transform a

poorly conditioned matrix to a normal matrix, then the calculation of the eigenvalues should

be more accurate. In practice, the goal is to make a matrix closer to a normal matrix since an

exact transformation is only realizable in exact arithmetic and cannot be accomplished with

numeric precision. Lemonnier and Van Dooren suggest that this approach will consistently

out-perform that by Ward [111].

As with the single matrix balancing method, we must apply appropriate similiarity

transforms from both the left and the right. To define our resultant equation explicitly, we

seek

A
(k+1)
ij − λB(k+1)

ij = Dii
−1
l (A

(k)
ij − λB(k)

ij)Diir (4.6)

where Diil,r are diagonal matrices and the l and r subscripts represent left and right,

respectively [111].

It may be instructive to comment regarding the choice of Diil,r. Any diagonal matrix

applied in the form Eq. (4.5) becomes a similarity transformation that does not affect the

eigenvalues. When considering a matrix pencil, we cannot simply (nor are we restricted to)

applying Dii
−1(A

(k)
ij − λB

(k)
ij)Dii. In fact it is unlikely that Diil = Diir. The matrix Diil

is designed specifically to modify the rows, while Diir modifies the columns. Collectively

they make up the similarity transformation needed to reduce the norms while preserving the

eigenvalues. By clearing parentheses, we see how to apply the similarity transforms to each

matrix according to

A
(k+1)
ij − λB(k+1)

ij = Dii
−1
l A

(k)
ij Diir − λDii

−1
l B

(k)
ij Diir (4.7)

‡A conjugate transpose, Hermitian transpose, Hermitian conjugate, or adjoint matrix, A∗
ij , of an M ×N

matrix Aij with complex entries is the N ×M matrix formed by taking the transpose of Aij and then taking
the complex conjugate of each entry.

133

Lastly, it should be mentioned that Dii
−1
l is used here rather than simply Diil because, while

the latter does not modify the eigenvalues, it has a tendency to increase the Frobenius norm.

When dealing with matrix inversions, we should always be worried about singularity, albeit

not a concern in this application.

Algorithm B.15.1 on page 327 is a modified version of the one presented by Lemonnier

and Van Dooren [111].

4.2.3 Segregating Nonzero Elements

As discussed previously, grouping columns and rows with only zero elements to the top

and left and constructing as many nonzero diagonal elements as possible is advantageous

to increase computational speed and accuracy, especially for sparse matrices. For a matrix

pencil, the Bij matrix has substantial influence on the accuracy of the eigenvalues and the

stability of the solver. Therefore, we can segregate nonzero elements in Bij to improve

results. This procedure works by first finding any columns or rows with all zero elements

and pushing them to the far left and top by column and row swapping. Then the algorithm

attempts to place nonzero elements on the diagonals by seeking nonzero elements above and

to the left of the diagonal element in question and moving those accordingly. The same

row and column swapping is applied to matrix Aij to retain the correct eigenvalues. This

procedure is completed before matrix reductions are applied.

Since the generalized eigenvalues are calculated by dividing after the diagonal elements

of Bij, this matrix takes priority in this type of algorithm. Ideally, transformations would be

found that completely shift all rows and columns with only zero elements up and to the left

for both constituents, Aij and Bij . Without significant effort exploring this possibility, this ad

hoc method of preconditioning is still beneficial since the first eigenvalues computed (bottom

right) since division by zero (or nearly zero) errors will not propagate into forthcoming

iterations.

134

Algorithm B.16.1 on page 331 implements the segregation scheme on Bij for a matrix

pencil. This scheme is also helpful for the sparse single matrix eigenvalue problem. For a

single matrix, the lines referring to matrix Aij must be omitted.

4.3 Matrix Reductions

Within the limitations of numerical computations, noniterative reductions can only go so far

as to convert a general complex matrix into an upper Hessenberg form. Fortuitously, practical

eigensolvers iteratively reduce the elements of the lower subdiagonal of an upper Hessenberg

matrix in an attempt to convert it to similar upper triangular form in which the eigenvalues

appear on the diagonal. This is done by applying a series of similarity transformations

that appropriately zero the subdiagonal within the bounds of numeric accuracy. For a

matrix pencil, we can achieve upper Hessenberg/upper triangular form for matrices Aij and

Bij , respectively. The application of similarity transformation matrices to the generalized

eigenvalue problem at this juncture allows Bij to be directly reduced to upper triangular

without destroying the upper Hessenberg form of Aij . The eigensolver attempts to further

reduce Aij to upper triangular form without destroying the upper triangular form of Bij

where the eigenvalues are simply aii/bii. In contrast, for a single matrix eigenvalue problem,

the matrix Aij can be reduced to upper triangular form directly within the eigensolver where

the eigenvalues are aii.

For clarity, upper Hessenberg is a nearly triangular matrix in which all elements below

the first subdiagonal are zero. It is of the form

⎡
⎢⎢⎢⎢⎢⎢⎣

a1,1 · · · · · · a1,N

a2,1
. . .

...

0
. . .

. . .
...

0 0 aN,N−1 aN,N

⎤
⎥⎥⎥⎥⎥⎥⎦

(4.8)

135

Likewise, an upper triangluar matrix is of the form

⎡
⎢⎢⎢⎢⎢⎢⎣

b1,1 · · · · · · b1,N

0
. . .

...

0
. . .

. . .
...

0 0 0 bN,N

⎤
⎥⎥⎥⎥⎥⎥⎦

(4.9)

4.3.1 Reduction of a Single Matrix

Three cases may be identified in which the characteristics of the original matrix can be

exploited to facilitate quick computations. These are:

• A real symmetric matrix to tridiagonal form (special form of upper Hessenberg via

Householder transformations (Alg. B.17.1 on page 333) [94].

• A real nonsymmetric matrix to upper Hessenberg form via Householder transforma-

tions (Alg. B.18.1 on page 336) [94].

• A complex nonsymmetric matrix to upper Hessenberg form via elimination techniques

(Alg. B.19.1 on page 339) [110].

Clearly, the third case is the most general and encompasses the breadth of the first

two. It is also the most important for the reduction of matrix pencils. Although, the

first two special cases are achieved by employing Householder transformation matrices,

the third uses Gaussian elimination-like row reductions with pivoting to achieve the same

result. This method appears to be about twice as efficient as forming Householder similarity

transformations for arbitrary complex matrices [110]. Since Gaussian elimination is not a

similarity transformation and therefore changes the eigenvalues, we must apply the opposite

of the row modification to the column. For instance if a subtraction operation is applied to

row 2, then an equivalent addition operation must be applied to column 2. Pivoting means

136

finding the largest element of the column in question and moving it to the lower subdiagonal

position. To ensure the similarity transform, the columns must be switched the same way.

Problems can occur if zeros are on the diagonal for certain numerical routines. Pivoting can

be used to ensure that these problems are avoided.

The following procedure is quoted directly from page 485 of Numerical Recipes in C

[110]:

• Find the element of maximum magnitude in the rth column below the diagonal. If

it is zero, skip the next two “bullets” and the stage is done. Otherwise, suppose the

maximum element was in row r′

• Interchange rows r′ and r+1. This is the pivoting procedure. To make the permutation

a similarity transformation, also interchange columns r′ and r + 1

• For i = r + 2, r + 3, ..., N , compute the multiplier

ni,r+1 =
ai,r
ar+1,r

(4.10)

Subtract ni,r+1 times row r + 1 from row i. To make the elimination a similarity

transformation, also add ni,r+1 times column i to column r + 1.

Note that these steps are applied N − 2 times for the whole matrix to be reduced. We do

not keep track of the transformations because we are only concerned with the eigenvalues.

If the eigenvectors are required, they can be back-calculated after the eigenvalues are solved.

Algorithm B.19.1 on page 339 is transcribed from the code given by Press [110] and Wilkinson

[112].

137

4.3.2 Reduction of a Matrix Pencil

For the generalized eigenvalue problem, we must reduce a matrix pencil where Aij is

transformed to upper Hessenberg and Bij is transformed to upper triangular. To do so,

we find matrices Lij and Mij that, when applied as LijAijMij , return an upper Hessenberg

matrix, while at the same time LijBijMij becomes upper triangular. This is accomplished

through a series of Gaussian elimination style transformations with partial pivoting - similar

to Alg. B.19.1 on page 339.

This procedure, given in Kaufman’s LZ algorithm [70–72], is a two step process. We

begin by transforming matrix Bij to upper triangular through pivoting and eliminations by

finding a matrix L
(0)
ij such that L

(0)
ij Bij is upper triangular. Since we apply L

(0)
ij to Bij , we

must also apply it the same way to Aij so that Aij is replaced by L
(0)
ij Aij . At this point, a

correct form for Bij emerges although Aij is likely to now be incorrect.

Now we seek another transformation, L
(1)
ij that zeros out Aij while maintaining the

triangular nature of Bij . The complete similarity transformations are built one element at a

time. The resulting matrix, being the product of all single element similarity transforms, can

be constructed and stored, although this step is not necessary because each single element

transformation can be applied directly. Keeping this point in mind: We select an element

lN−1 in Lij
(1) that zeros the (N, 1) element in Aij. When applying the transform to Bij , we

destroy the triangularity by adding a subdiagonal element in the (N,N − 1) position. Thus,

after one transform, the matrices take the form

Aij =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X X X X X

X X X X X

X X X X X

X X X X X

0 X X X X

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Bij =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X X X X X

0 X X X X

0 0 X X X

0 0 0 X X

0 0 0 X X

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.11)

138

This action adds a nonzero subdiagonal element to Bij . In order to clear that element

without destroying the progress in Aij , we seek a matrix Mij such that BijMij is returned to

upper triangular form while keeping AijMij unaffected. This completes the first iteration.

The matrices become

Aij =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X X X X X

X X X X X

X X X X X

X X X X X

0 X X X X

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Bij =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X X X X X

0 X X X X

0 0 X X X

0 0 0 X X

0 0 0 0 X

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.12)

Next, the (N−1, 1) element is zeroed and Bij is returned to upper triangular in the same

way. The process is repeated until the reduction is complete. Kaufman calculates 13N3/6

multiplications and 13N3/6 additions for the reduction calculations. A comparable method

given by Moler and Stewart [68, 69], as a precursor to their QZ algorithm, is more widely used.

However, it is estimated that the matrix reductions for the QZ algorithm require 17N3/3

multiplications and 17N3/3 additions. Both methods are O(N3) and therefore neither bears

a distinct advantage.

These ideas are incorporated in Alg. B.20.1 on page 342

4.3.3 Block Decomposition

A matrix in upper Hessenberg form can be decomposed into smaller, nearly independent

matrices if

1. An element, ε at the order of the machine precision is found on the subdiagonal

139

Aij =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X X X X X X X

X X X X X X X

0 X X X X X X

0 0 X X X X X

0 0 0 ε X X X

0 0 0 0 X X X

0 0 0 0 0 X X

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

2. Two or more moderately small elements (their product is at the order of the machine

precision) are found on the subdiagonal. Decomposing on this contingency may slightly

reduce the accuracy of the final result.

Aij =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X X X X X X X

X X X X X X X

0 X X X X X X

0 0 ε1/2 X X X X

0 0 0 ε1/2 X X X

0 0 0 0 X X X

0 0 0 0 0 X X

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

When either case occurs, the submatrix above and below the element(s) are essentially

independent and the eigensolver can be applied to the smaller submatrices independently.

This often allows for reduced computational time. It also helps identify special cases in

sparse matrices. For matrix pencils, decomposition is determined from Aij but applied to

both Aij and Bij .

Since this type of event is sought at each iteration of the eigensolver rather than a priori,

the actual implementation is not actually preconditioning, but a convergence acceleration.

140

Algorithm B.21.1 on page 345 is included as a verification of the effectiveness of block

decomposition since the actual implementation is a built-in feature of the eigensolver itself.

4.4 Single Matrix Eigensolvers

This section illustrates several eigensolvers of increasing sophistication. Their inclusion is

specifically to identify some subtleties of simple eigensolvers that are built upon to create

more sophisticated ones. Also, more sophisticated eigensolvers are often computational

overkill and are less efficient for simple problems. Special cases, such as tridiagonal matrices,

can be exploited to save computational time with simple, yet still accurate methods.

4.4.1 The Power Method

The power method is classified as a deflation method and is perhaps the simplest approach

available. It does not compute matrix decompositions, nor does it require upper Hessenberg

form to work; hence, it can be used for very large or sparse matrices. Unfortunately, it

only computes the largest eigenvalue and can be very slow to converge (modifications can be

made to compute other eigenvalues and to speed up the iteration). Another benefit is that

the power method calculates the eigenvector automatically and can be adapted to determine

the eigenvector for previously calculated eigenvalues.

The method begins by taking a guess of the dominant eigenvector x and calculating the

associated Rayleigh Quotient, λ =
x′
iAijxi

x′
ixi

. The eigenvector is adjusted according to

xk+1 =
Aijxk
‖Aijxk‖ (4.13)

so that xk is multiplied by Aij and normalized at each iteration. Convergence is determined

when ‖Aijxi − λxi‖ is sufficiently small.

This procedure converges under the correct assumptions that

141

• Aij has an eigenvalue that is strictly greater in magnitude than its other eigenvalues

• The starting vector x0 has a nonzero component in the direction of an eigenvector

associated with the dominant eigenvalue

If these two assumptions hold, then x0 will converge to the eigenvector associated with the

dominant eigenvalue. This solver is listed as Alg. B.22.1 on page 347.

4.4.2 The Inverse Power Method

This method resembles the power method; however, it is known to produce faster convergence

[94]. It is used to compute the eigenvalue of Aij closest to a value q. If matrix Aij has

eigenvalues λ1, . . . , λn, then the eigenvalues of (Aij − qIN)−1, where q �= λ are

1

λ1 − q ,
1

λ2 − q , · · · , 1

λn − q (4.14)

The power method is simply applied to the new formulation, (Aij − qIN)−1.

The method converges to the eigenvalue that maximizes 1/|λk − q|. Clearly, this means

that it converges to the eigenvalue closest to q in order to minimize the denominator, thus

leading to the largest fraction. The guess, q, is known as a shift. It is used to accelerate

convergence in nearly every eigensolver. Although the implementation of a shift in this

method is fairly simple (i.e. q does not need to be updated), more advanced eigensolvers

will update the shift at every iteration in order to accelerate convergence further. Ideally,

q should be close to an eigenvalue of Aij to minimize the number of iterations. The closer

it is to an eigenvalue, the faster the convergence. Therefore, a good estimate of q can be

obtained from the Gers̆gorin Circle Theorem§ or from Raleigh’s Quotient. Both approaches

yield sufficiently accurate a priori estimates. For eigensolvers that update the shift at each

§On a number line, the center of the circle is taken to be the diagonal element aii. The radius of the circle
is the sum of the absolute value of the off-diagonal elements in the ith row. The corresponding eigenvalue
will lie within one radius of aii.

142

iteration, it is also acceptable to start with the eigenvalues of submatrix A
(k)
N−1,N−1 as a

initializing guess [109]. Furthermore, selecting the 2× 2 submatrix in the lower right corner

is beneficial for eigensolvers that return the entire spectrum since it calculates two eigenvalues

and can reduce the overall size of Aij via block decompositions.

The application of the Inverse Power Method is implemented in Alg. B.23.1 on page

349. For the interested reader, Burden and Faires [94] provide a concise and easily followed

discussion of this method.

4.4.3 The QR and LR Methods

Deflation methods are straightforward, but they tend to be impractical in calculating the

whole spectrum if the matrix is singular, or computational time is important. They can also

succumb to round-off error due to the larger number of iterations required for convergence.

The QR Method uses orthogonal similarity transformations devised from QR decompositions

to calculate all the eigenvalues simultaneously by converging to an upper triangular matrix

where the eigenvalues are on the diagonal [94]. This decomposition was first implemented by

Francis to solve single matrix eigenvalue problems [115, 116]. In brief, the QR decomposition

sets

Aij = QijRij (4.15)

where Qij is an orthogonal matrix and Rij is upper triangular. In general terms, it follows

a simple two-step process

1. A
(1)
ij = Aij is factored as Q

(1)
ij R

(1)
ij

2. A
(2)
ij is defined as A

(2)
ij = R

(1)
ij Q

(1)
ij

The process is iterated until A
(k)
ij becomes upper triangular and the eigenvalues appear on

the diagonal.

143

In this case, the details are important in understanding how the method works.

Assuming we can determine the QR decomposition of A
(k)
ij where Q

(k)
ij is orthogonal and

A
(k+1)
ij = R

(k)
ij Q

(k)
ij , then R

(k)
ij = Q

(k)t

ij A
(k)
ij . In this event we can write

A
(k+1)
ij = R

(k)
ij Q

(k)
ij = (Q

(k)t

ij A
(k)
ij)Q

(k)
ij = Q

(k)t

ij A
(k)
ij Q

(k)
ij (4.16)

The eigenvalues of A
(k+1)
ij are equal to those of Aij because A

(k)
ij is only multiplied by

orthogonal matrices.

For further explanation of the QR method with simple examples see Burden and Faires

[94]. Special types, such as symmetric tridiagonal matrices, can be exploited for accelerated

convergence. In general though, the matrix Aij must at least be upper Hessenberg.

The LR decomposition method is a comparable approach. Similar to the QR method,

it seeks transformation matrices that will zero the lower subdiagonal. Where both methods

iteratively build the transformation matrix by zeroing one element at a time, the QR uses

orthogonal matrices whereas the LR uses eliminations with each iteration multiplying the

product of all previous transformations. The method is originally based on the observations

by Rutishauser [117] that, much like the QR decomposition if

Aij = LijRij (4.17)

where Lij is a lower triangular matrix and Rij is upper triangular. Therefore,

A
(k)
ij = L

(k)
ij R

(k)
ij ; A

(k+1)
ij = R

(k)
ij L

(k)
ij (4.18)

where, as with the QR method, R
(k)
ij = L

(k)−1

ij A
(k)
ij . Thus,

A
(k+1)
ij = L

(k)−1

ij A
(k)
ij L

(k)
ij (4.19)

144

is similar to A
(k)
ij .

Recall from linear algebra, that the inverse of an orthogonal matrix is its transpose

(i.e. if Q is an orthogonal matrix, then Qt = Q−1). We could have easily written Eq. (4.16)

as A
(k+1)
ij = Q

(k)−1

ij A
(k)
ij Q

(k)
ij : a form nearly identical to that of Eq. (4.19). The fundamental

difference between the two decompositions is that Lij is not required to be orthogonal.

This allow the freedom to construct it with more elimination-type operations. It remains a

similarity transformation as long as it is paired with its inverse in Eq. (4.19); ensuring the

eigenvalues remain unchanged.

It has been shown that this iterative sequence tends toward upper triangular form given

that Aij has roots of distinct modulii (absolute magnitude), i.e. when the diagonal elements

are the roots arranged in order of decreasing modulus [117, 118]. Furthermore, it has been

suggested that the LR has a slightly faster convergence time than the QR [71]. A more

general version of these solvers, capable of handling complex matrices, are dubbed the QZ

and LZ methods, respectively. Two in-house versions of the QZ and LZ algorithms are found

in Algs. B.24.1 on page 352 and B.25.1 on page 361, respectively.

4.5 Generalized Eigensolvers

Both the QZ and LZ decompositions can be adapted to solve the generalized eigenvalue

problem. Moler and Stewart are responsible for the advent of the generalized QZ algorithm

[68, 69], while the LZ is attributed to Kaufman [70–72]. The latter states that the LZ-

algorithm is based on three observations:

1. If Lij and Mij are nonsingular matrices, the eigenvalue problem LijAijMijyi =

λLijBijMijyi and Aijxi = λBijxi have the same eigenvalues and their eigenvectors

are related by xi =Mijyi.

145

2. If Aij and Bij are triangular matrices with diagonal elements αi and βi, then for

i = 1, 2, . . . , N , αi/βi are eigenvalues of the generalized eigenvalue problem if βi �= 0.

If αi �= 0 and βi = 0, then infinity is an eigenvalue. If both αi = βi = 0, then all scalars

are eigenvalues.

3. There exists matrices Lij and Mij such that LijAijMij and LijBijMij are both upper

triangular and Lij andMij are products of lower triangular and permutation matrices.

Both the QZ and LZ algorithms hinge on similar precepts. In the QZ algorithm,

the matrices Lij and Mij are orthogonal, while in the LZ they are products of stabilized

elementary transformations [71].

The implementation of the LZ algorithm is summarized as the iterative process:

1. Find L
(0)
ij and M

(0)
ij such that A

(1)
ij = L

(0)
ij AijM

(0)
ij is upper Hessenberg and B

(1)
ij =

L
(0)
ij BijM

(0)
ij is upper triangular (see Reduction of a Matrix Pencil on page 138).

2. Iteratively reduce Aij to upper triangular while preserving the triangularity of Bij .

The iterations include:

• Find a shift appropriate for the current eigenvalue, s.

• Find matrices L
(k)
ij and M

(k)
ij such that L

(k)
ij (A

(k)
ij − λkB(k)

ij) and L
(k)
ij B

(k)
ij M

(k)
ij are

upper triangular.

• Set A
(k+1)
ij = L

(k)
ij A

(k)
ij M

(k)
ij and B

(k+1)
ij = L

(k)
ij B

(k)
ij M

(k)
ij . Aij will be reverted back

to upper Hessenberg form with a diminished lower subdiagonal.

The shift can be estimated in a number of ways as previously discussed. To understand

how the matrices Lij and Mij are constructed, we start with upper Hessenberg/upper

triangular matrices Aij and Bij , respectively, and apply L
(1)
ij to both results in matrices

146

of the form

L
(1)
ij A

(1)
ij =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X X X X X

0 X X X X

0 X X X X

0 0 X X X

0 0 0 X X

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

L
(1)
ij B

(1)
ij =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X X X X X

X X X X X

0 0 X X X

0 0 0 X X

0 0 0 0 X

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.20)

Now, M
(1)
ij is applied to return Bij back to upper triangular. Applying this transformation

to Aij , returns it to upper Hessenberg form.

A
(2)
ij = L

(1)
ij A

(1)
ij M

(1)
ij =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X X X X X

X X X X X

0 X X X X

0 0 X X X

0 0 0 X X

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

B
(2)
ij = L

(1)
ij B

(1)
ij M

(1)
ij =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X X X X X

0 X X X X

0 0 X X X

0 0 0 X X

0 0 0 0 X

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.21)

L
(2)
ij is selected to annihilate element (3,2) in A

(2)
ij . Applying L

(2)
ij to B

(2)
ij introduces a nonzero

subdiagonal element in the (3,2) position:

L
(2)
ij A

(2)
ij =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X X X X X

X X X X X

0 0 X X X

0 0 X X X

0 0 0 X X

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

L
(2)
ij B

(2)
ij =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X X X X X

0 X X X X

0 X X X X

0 0 0 X X

0 0 0 0 X

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.22)

147

This new nonzero element in Bij is eliminated by M
(2)
ij and returns Aij to upper Hessenberg:

A
(3)
ij = L

(2)
ij A

(2)
ij M

(2)
ij =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X X X X X

X X X X X

0 X X X X

0 0 X X X

0 0 0 X X

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

B
(3)
ij = L

(2)
ij B

(2)
ij M

(2)
ij =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X X X X X

0 X X X X

0 0 X X X

0 0 0 X X

0 0 0 0 X

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.23)

This is called a “bulge chasing” scheme since the “bulge” created below the diagonal is pushed

down the matrix. This is iterated until the bulge is eliminated completely and the matrices

are returned to upper Hessenberg/upper triangular form. The complete transformation

matrices take the form

Lij = L
(N)
ij L

(N−1)
ij L

(N−2)
ij . . . L

(1)
ij and Mij =M

(1)
ij M

(2)
ij M

(3)
ij . . .M

(N)
ij (4.24)

Since each iteration operates on specific rows and columns matrices Aij and Bij , it is

not necessary to store the completed transformation matrices at each iteration. Doing

so can unnecessarily cost computer resources and should be avoided. Upon completion

of the bulge chasing scheme, Aij should be returned back to upper Hessenberg with

significantly diminished subdiagonal elements. This illustration applies equally well to the

single matrix eigenvalue problem. Remember, in that case, Bij exists but is simply the

identity matrix. The process is iterated and new transformation matrices are constructed

until the subdiagonal elements of Aij are sufficiently close to zero and Aij can be treated as

upper triangular. In this form, the eigenvalues are given as λi = aii/bii.

Since the rate of convergence of the subdiagonal elements to zero is fastest from the

bottom right corner to top left corner, the last row and column can be ignored in subsequent

148

• Upper
Hessenberg/
Upper Triangular
by Kaufman

Matrix
Reductions

• Generalized
Balance by
Lemonnier and Van
Dooren

eralized

Norm
Balancing • Generalized LZ

by Kaufman

Eigensolver

Figure 4.2: Eigensolver Flowchart

calculations once the (N,N − 1) subdiagonal is sufficiently small. This reduces the overall

size of the matrix and accelerates the computation of the remaining eigenvalues.

4.5.1 Example: Implementation of an LZ Eigensolver

For a eigensolver flowchart including algorithm options at each step we refer the reader to

Fig. 4.1. Specifically, we implement a complete eigensolver according to Fig. 4.2. These

selections are based on efficiency and availability of the respective algorithms.

As an example, we consider the eigenvalue problem given by the matrices¶:

Aij =

⎡
⎢⎢⎢⎢⎢⎢⎣

16 2 3 13

5 11 10 8

9 7 6 12

4 14 15 1

⎤
⎥⎥⎥⎥⎥⎥⎦

Bij =

⎡
⎢⎢⎢⎢⎢⎢⎣

4 -6 4 -1

-6 14 -11 3

4 -11 10 -3

-1 3 -3 1

⎤
⎥⎥⎥⎥⎥⎥⎦

(4.25)

¶Collectively, these matrices have no physical significance. Aij is a “magic” matrix with equal row and
column sums and Bij is an inverse symmetric Pascal matrix.

149

The first step is to convert to upper Hessenberg/upper triangular form. We follow the

algorithm presented by Kaufman [70, 71] and found in Alg. B.20.1 on page 342. This results

in matrices of the form:

Aij =

⎡
⎢⎢⎢⎢⎢⎢⎣

5.00 17.75 17.85 10.00

206.0 562.2 671.9 403.0

0.000 −3.838 −17.22 −11.46
0.000 0.000 −3.352 −2.391

⎤
⎥⎥⎥⎥⎥⎥⎦

Bij =

⎡
⎢⎢⎢⎢⎢⎢⎣

−6.000 1.015 6.471 −11.00
0.000 1.000 0.000 0.000

0.000 0.000 0.159 2.667

0.000 0.000 0.000 1.050

⎤
⎥⎥⎥⎥⎥⎥⎦
(4.26)

Next, matrix balancing is applied to ensure accurate results. To do so, we implement

the algorithm by Lemmonier and Van Dooren [111] as coded in Alg. B.15.1 on page 327.

Before applying the algorithm, the Frobenius norms are calculated to be ‖Aij‖ = 986.7 and

‖Bij‖ = 14.46

Aij =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.625 0.555 0.279 0.313

0.805 0.549 0.328 0.394

0.000 −0.240 −0.538 −0.716
0.000 0.000 −0.419 −0.598

⎤
⎥⎥⎥⎥⎥⎥⎦

Bij =

⎡
⎢⎢⎢⎢⎢⎢⎣

−0.750 0.032 0.101 −0.344
0.000 0.001 0.000 0.000

0.000 0.000 0.005 0.167

0.000 0.000 0.000 0.263

⎤
⎥⎥⎥⎥⎥⎥⎦
(4.27)

Now the norms are reduced to ‖Bij‖ = 1.865 and ‖Bij‖ = 0.888: a significant reduction.

There are no zero elements to be segregated so this step is unnecessary. Rather, we begin

the eigensolver by calculating and applying an acceleration shift estimated by the eigenvalue

150

of AN−1,N−1:N,N . Applying the shift to Aij results in the matrices:

A
(1)
ij =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.407 0.564 0.308 0.213

0.805 0.549 0.328 0.394

0.000 −0.240 −0.537 −0.668
0.000 0.000 −0.419 −0.521

⎤
⎥⎥⎥⎥⎥⎥⎦

B
(1)
ij =

⎡
⎢⎢⎢⎢⎢⎢⎣

−0.750 0.032 0.101 −0.344
0.000 0.001 0.000 0.000

0.000 0.000 0.005 0.167

0.000 0.000 0.000 0.263

⎤
⎥⎥⎥⎥⎥⎥⎦

(4.28)

B
(1)
ij is unmodified from Bij .

The transformation matrices Lij andMij are constructed a column at a time. This leads

to the bulge chasing scheme described above. For clarity, we will illustrate one complete

formation of the two transformation matrices. We first find L
(1)
ij to eliminate element (2,1).

We find,

L
(1)
ij A

(1)
ij =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.407 0.564 0.308 0.213

0.000 −0.565 −0.281 −0.027
0.000 −0.240 −0.537 −0.668
0.000 0.000 −0.419 −0.521

⎤
⎥⎥⎥⎥⎥⎥⎦

L
(1)
ij B

(1)
ij =

⎡
⎢⎢⎢⎢⎢⎢⎣

−0.750 0.032 0.101 −0.344
1.481 −0.062 −0.200 0.679

0.000 0.000 0.005 0.167

0.000 0.000 0.000 0.263

⎤
⎥⎥⎥⎥⎥⎥⎦

(4.29)

The (2,1) element in Aij is annihilated at the expense of adding a subdiagonal element to Bij

in the (2,1) position. Bij is returned to upper triangular form through the transformation

151

matrix M
(1)
ij . This operation leaves:

A
(2)
ij = L

(1)
ij A

(1)
ij M

(1)
ij =

⎡
⎢⎢⎢⎢⎢⎢⎣

13.96 0.564 0.308 0.213

−13.57 −0.565 −0.281 −0.027
0.000 −0.240 −0.537 −0.668
0.000 0.000 −0.419 −0.521

⎤
⎥⎥⎥⎥⎥⎥⎦

B
(2)
ij = L

(1)
ij B

(1)
ij M

(1)
ij =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.012 0.032 0.101 −0.344
0.000 −0.062 −0.200 0.679

0.000 0.000 0.005 0.167

0.000 0.000 0.000 0.263

⎤
⎥⎥⎥⎥⎥⎥⎦

(4.30)

Now the subdiagonal element (3,2) is eliminated from A
(2)
ij . We have:

L
(2)
ij A

(2)
ij =

⎡
⎢⎢⎢⎢⎢⎢⎣

13.96 0.564 0.308 0.213

−13.57 −0.565 −0.281 −0.027
0.000 0.000 −0.418 −0.657
0.000 0.000 −0.419 −0.521

⎤
⎥⎥⎥⎥⎥⎥⎦

L
(2)
ij B

(2)
ij =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.012 0.032 0.101 −0.344
0.000 −0.062 −0.200 0.679

0.000 0.026 0.090 −0.122
0.000 0.000 0.000 0.263

⎤
⎥⎥⎥⎥⎥⎥⎦

(4.31)

152

Again, Mij is used to restore Bij to its original form:

A
(3)
ij = L

(2)
ij A

(2)
ij M

(2)
ij =

⎡
⎢⎢⎢⎢⎢⎢⎣

13.96 0.474 0.308 0.213

−13.57 −0.483 −0.281 −0.027
0.000 0.122 −0.418 −0.657
0.000 0.000 −0.419 −0.521

⎤
⎥⎥⎥⎥⎥⎥⎦

B
(3)
ij = L

(2)
ij B

(2)
ij M

(2)
ij =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.012 0.002 0.101 −0.344
0.000 −0.003 −0.200 0.679

0.000 0.000 0.090 −0.122
0.000 0.000 0.000 0.263

⎤
⎥⎥⎥⎥⎥⎥⎦

(4.32)

Finally, we attempt to eliminate the last subdiagonal element in Aij in the (4,3) position.

This results in:

L
(3)
ij A

(3)
ij =

⎡
⎢⎢⎢⎢⎢⎢⎣

13.96 0.474 0.308 0.213

−13.57 −0.483 −0.281 −0.027
0.000 0.122 −0.418 −0.657
0.000 0.000 0.000 0.137

⎤
⎥⎥⎥⎥⎥⎥⎦

L
(3)
ij B

(3)
ij =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.012 0.002 0.101 −0.344
0.000 −0.003 −0.200 0.679

0.000 0.000 0.090 −0.122
0.000 0.000 −0.090 0.385

⎤
⎥⎥⎥⎥⎥⎥⎦

(4.33)

153

Once again, Mij completes the iteration by returning Bij to upper triangular form:

A
(4)
ij = L

(3)
ij A

(3)
ij M

(3)
ij =

⎡
⎢⎢⎢⎢⎢⎢⎣

13.96 0.474 0.358 0.213

−13.57 −0.483 −0.287 −0.027
0.000 0.122 −0.571 −0.657
0.000 0.000 0.032 0.137

⎤
⎥⎥⎥⎥⎥⎥⎦

B
(4)
ij = L

(3)
ij B

(3)
ij M

(3)
ij =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.012 0.002 0.021 −0.344
0.000 −0.003 −0.041 0.679

0.000 0.000 0.061 −0.122
0.000 0.000 0.000 0.385

⎤
⎥⎥⎥⎥⎥⎥⎦

(4.34)

This completes the formation of transformation matrices Lij and Mij . At this point, little

progress appears to be made toward our initial goal of reducing Aij to upper triangular form.

However, applying this process again recovers:

A
(4)
ij =

⎡
⎢⎢⎢⎢⎢⎢⎣

18.34 0.429 0.356 0.305

−0.199 −0.030 0.068 0.088

0.000 0.027 −0.212 −0.129
0.000 0.000 1.8E-4 0.014

⎤
⎥⎥⎥⎥⎥⎥⎦

B
(4)
ij =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.032 0.000 0.016 −0.344
0.000 0.001 −0.016 0.345

0.000 0.000 −0.032 1.826

0.000 0.000 0.000 0.664

⎤
⎥⎥⎥⎥⎥⎥⎦

(4.35)

We see that A4,3 is now much smaller than at the end of the first iteration and A3,2 is also

beginning to diminish. After another iteration, we have

A
(4)
ij =

⎡
⎢⎢⎢⎢⎢⎢⎣

18.23 0.439 0.356 0.312

0.007 −0.023 0.072 0.084

0.000 −0.004 −0.136 −0.080
0.000 0.000 3.8E-9 0.000

⎤
⎥⎥⎥⎥⎥⎥⎦

B
(4)
ij =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.033 0.000 0.016 −0.344
0.000 0.001 −0.016 0.341

0.000 0.000 −0.049 2.186

0.000 0.000 0.000 0.667

⎤
⎥⎥⎥⎥⎥⎥⎦

(4.36)

154

Now, A4,3 is orders of magnitude smaller and A3,2 is also smaller with this iteration. Applying

the scheme again finds

A
(4)
ij =

⎡
⎢⎢⎢⎢⎢⎢⎣

18.23 0.438 0.356 0.313

−3.0E-4 −0.024 0.072 0.083

0.000 4.9E-4 −0.148 −0.095
0.000 0.000 −3.1E-19 0.000

⎤
⎥⎥⎥⎥⎥⎥⎦
B

(4)
ij =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.033 0.000 0.016 −0.344
0.000 0.001 −0.016 0.341

0.000 0.000 −0.046 2.128

0.000 0.000 0.000 0.667

⎤
⎥⎥⎥⎥⎥⎥⎦

(4.37)

After this iteration, we see all the subdiagonal elements in Aij are quickly approaching zero

and A4,3 has fallen beyond numeric zero. Thus, we can focus the forthcoming calculations on

the submatrix A1:3,1:3. Also, Bij is no longer changing by any appreciable amount. Another

iteration gives

A
(4)
ij =

⎡
⎢⎢⎢⎢⎢⎢⎣

18.13 0.438 0.305 1.398

1.5E-5 −0.027 0.123 −0.994
0.000 2.7E-10 0.000 −6.811
0.000 0.000 −3.1E-19 −2.105

⎤
⎥⎥⎥⎥⎥⎥⎦

B
(4)
ij =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.033 0.000 0.016 −0.344
0.000 0.001 −0.016 0.341

0.000 0.000 −0.046 2.128

0.000 0.000 0.000 0.667

⎤
⎥⎥⎥⎥⎥⎥⎦

(4.38)

Iterating again finds

A
(4)
ij =

⎡
⎢⎢⎢⎢⎢⎢⎣

18.13 0.438 0.305 1.398

−7.7E-7 −0.027 0.123 −0.994
0.000 −4.1E-24 0.000 −6.811
0.000 0.000 −3.1E-19 −2.105

⎤
⎥⎥⎥⎥⎥⎥⎦
B

(4)
ij =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.033 0.000 0.016 −0.344
0.000 0.001 −0.016 0.341

0.000 0.000 −0.046 2.128

0.000 0.000 0.000 0.667

⎤
⎥⎥⎥⎥⎥⎥⎦

(4.39)

155

Table 4.1: Eigenvalues computed for the given example compared to those computed via Lapack.

Calculated Lapack Difference

560.808144698150000 560.808144698153000 2.95586E-12
-24.965140100619800 -24.965140100619600 1.98952E-13
3.1569954024660500 3.1569954024660500 0
0.0000000000000000 0.0000000000000002 1.99839E-16

Now A3,2 is sufficiently small and the submatrix can be reduced again by one row and one

column. Applying a final iteration completes the reduction. We have,

A
(4)
ij =

⎡
⎢⎢⎢⎢⎢⎢⎣

19.04 0.438 0.305 1.398

4.1E-24 −0.027 0.123 −0.994
0.000 −4.1E-24 0.000 −6.811
0.000 0.000 −3.1E-19 −2.105

⎤
⎥⎥⎥⎥⎥⎥⎦
B

(4)
ij =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.033 0.000 0.016 −0.344
0.000 0.001 −0.016 0.341

0.000 0.000 −0.046 2.128

0.000 0.000 0.000 0.667

⎤
⎥⎥⎥⎥⎥⎥⎦

(4.40)

The eigenvalues for this problem are given by computing aii/bii. They are listed in

Table 4.1. As we can see, the results are corroborated by standard Lapack routines using

the similar QZ algorithm built intoMatlab with the largest error associated with the largest

eigenvalue. This example is computed by Alg. B.26.1 on page 376.

4.6 Closing Remarks on Eigensolvers

The preceding chapter stands to illuminate the framework of an efficient and accurate

eigensolver. These techniques are not new but the need to fully understand their

implementation has fallen waywardly with the advent of Lapack, Arpack, Blas, and other

linear algebra packages. In practice, it is more efficient to rely on these packaged codes to

solve large scale eigenvalue problems. The same is true here. Although capable of handling

stability problems, the algorithms discussed here have larger time requirements then the

156

optimized codes in Lapack. Therefore, for the sake of computational time, we too utilized

the Lapack functions within Matlab, though we now understand their framework and

implementation.

Another important eigensolver has gone unmentioned. The Arnoldi eigensolver and

its derivatives have become accepted as the defacto method for stability analysis. It can

accommodate sparse matrices with efficient computations. It also resolves only a prespecified

number of eigenvalues closest to a given start value. This approach certainly appears

advantageous; however, it may not be so. Numeric experimentation shows convergence

of the Arnoldi solver in Matlab is not significantly faster for large matrices. Compounded

by the necessity to iterate over several initial eigenvalues to capture the whole spectrum,

the total time to resolve the problem may actually be much longer. These statements

are true for the pseudo-sparse matrices generated by the stability equations discussed in

the forthcoming chapters. For dense matrices with a large number of nonzero/noninfinite

eigenvalues, the QZ/LZ algorithms appear to have an advantage. For extremely sparse

large matrices with very few nonzero/noninfinite eigenvalues, the Arnoldi algorithms may

be worth considering. For stability analysis, the selection of eigensolver is subjective to

the formulation. Arnoldi methods are more accommodating for the matrix size and density

of streamfunction formulations where the entire problem is reduced to a single dependent

variable. In reality, a general stability formulation will disallow the introduction of the

streamfunction and expand the size of the matrices by a factor of sixteen. At this point,

Arnoldi is no longer worthwhile to pursue.

One advantage of the Arnoldi algorithm is that it will compute a predefined number of

eigenvalues. Since the smallest eigenvalues are the first calculated by the LZ algorithm

(assuming no significant block decompositions are available), and recalling that these

eigenvalues are the most physically accurate, the LZ algorithm can simply be interrupted

after a satisfactory set of eigenvalues has been collected. This is mentioned in passing only

and not recommended without closer examination of the actual upper Hessenberg/upper

157

triangular form of the hydrodynamic eigenvalue problem. Its spectral form will be subject

to the formulation and if significant block decompositions are available, interrupting the

eigensolver may be ill-advised.

158

Chapter 5

Local Nonparallel Stability Analysis

of the Bidirectional Vortex

To date, the study by Abu-Irshaid, Majdalani and Casalis is the only attempt to characterize

the hydrodynamic instability of the bidirectional vortex [119]. Their efforts were applied to a

local nonparallel stability analysis and resulted in some interesting findings. Unfortunately,

the validity of their analysis comes under three questions. The first being the physical

validity of a one-dimensional, parallel flow analysis for a strongly two-dimensional flow, the

second coming in the form of typographical errors in the original document undermining the

confidence of the study, and the third refers to the inclusion of three-dimensional boundary

layers along the chamber wall. Regardless of the correctness of the original study, it is

necessary to regenerate this work for comparison purposes.

159

5.1 Deriving the Spectral LNP Equations

The stability analysis begins by considering the Linearized Navier-Stokes equations (LNS)

appropriate for the local nonparallel (LNP) stability analysis. The complete derivation is

found in App. A.1. Here we present the results directly:

Continuity:
dur
dr

+
ur
r

+ iq
uθ
r

+ iαuz = 0 (5.1a)

Radial momentum:

− iωur + Ur
dur
dr

+ ur
∂Ur

∂r
+ iq

Uθur
r

+
uθ
r

∂Ur

∂θ
− 2

Uθuθ
r

+ iαUzur + uz
∂Ur

∂z
+

dp

dr

= ε

[
d2ur
dr2

+
1

r

dur
dr
− ur
r2
− q2ur

r2
− 2iq

uθ
r2
− α2ur

]
(5.1b)

Tangential momentum:

− iωuθ + Ur
duθ
dr

+ ur
∂Uθ

∂r
+ iq

Uθuθ
r

+
uθ
r

∂Uθ

∂θ
+
Uruθ
r

+
urUθ

r
+ iαUzuθ + uz

∂Uθ

∂z
+ iq

p

r

= ε

[
d2uθ
dr2

+
1

r

duθ
dr
− uθ
r2
− q2uθ

r2
+ 2iq

ur
r2
− α2uθ

]
(5.1c)

Axial momentum:

− iωuz + Ur
duz
dr

+ ur
∂Uz

∂r
+ iq

Uθuz
r

+
uθ
r

∂Uz

∂θ
+ iαUzuz + uz

∂Uz

∂z
+ iαp

= ε

[
d2uz
dr2

+
1

r

duz
dr
− q2uz

r2
− α2uz

]
(5.1d)

We see that our governing equations lend themselves to an eigenvalue problem containing

a system of ODEs. To formulate and solve this problem we will refer to Sec. 3.4.3 and

Sec. 3.5.1 as a guide.

160

Rather than two equations as in our example, we have four to contend with. The

procedure is the same; however, the implementation can easily lead to mistakes if care is not

given. Since we still seek to obtain the form of the generalized eigenvalue problem,

Aijfi = λBijfi (5.2)

we must build the operator matrices from the governing system. To do so we build both

operator matrices from the smaller N × N block matrices such that Aij and Bij take the

form

Aij =

ur(r) uθ(r) uz(r) p(r)

↓ ↓ ↓ ↓
Cont.

r −mom.

θ −mom.

z −mom.

→
→
→
→

⎡
⎢⎢⎢⎢⎢⎢⎣

Ac,ur Ac,uθ
Ac,uz Ac,p

Ar,ur Ar,uθ
Ar,uz Ar,p

Aθ,ur Aθ,uθ
Aθ,uz Aθ,p

Az,ur Az,uθ
Az,uz Az,p

⎤
⎥⎥⎥⎥⎥⎥⎦

Bij =

Cont.

r −mom.

θ −mom.

z −mom.

→
→
→
→

⎡
⎢⎢⎢⎢⎢⎢⎣

Bc,ur Bc,uθ
Bc,uz Bc,p

Br,ur Br,uθ
Br,uz Br,p

Bθ,ur Bθ,uθ
Bθ,uz Bθ,p

Bz,ur Bz,uθ
Bz,uz Bz,p

⎤
⎥⎥⎥⎥⎥⎥⎦

where each row is constructed from the equation referenced on the left and each column

from the operators acting on the dependent variable given at the top. The final matrices are

4N × 4N .

161

First we rewrite the governing equations in operator form as usual. They become

Continuity: (
d

dr
+ r−1

)
ur +

(
iqr−1

)
uθ + (ia)uz = 0 (5.3a)

Radial momentum:

{
Ur

d

dr
+
∂Ur

∂r
+ iqUθr

−1 + iαUz − ε
[

d2

dr2
+ r−1 d

dr
− (1 + q2

)
r−2 − α2

]}
ur

+

(
2iqεr−2 − 2Uθr

−1 + r−1∂Ur

∂θ

)
uθ +

(
∂Ur

∂z

)
uz +

(
d

dr

)
p = (iω)ur (5.3b)

Tangential momentum:

(
∂Uθ

∂r
+ Uθr

−1 − 2iqεr−2

)
ur +

{
Ur

d

dr
+ Urr

−1 + iqUθr
−1 + r−1∂Uθ

∂θ
+ iαUz

−ε
[

d2

dr2
+ r−1 d

dr
− (1 + q2

)
r−2 − α2

]}
uθ +

(
∂Uθ

∂z

)
uz +

(
iqr−1

)
p = (iω) uθ (5.3c)

Axial momentum:

(
∂Uz

∂r

)
ur +

(
r−1∂Uz

∂θ

)
uθ +

[
Ur

d

dr
+ iqUθr

−1 +
∂Uz

∂z
+ iαUz

−ε
(

d2

dr2
+ r−1 d

dr
− q2r−2 − α2

)]
uz + (iα) p = (iω)uz (5.3d)

Our domain of interest is 0 ≤ r ≤ 1, thus we require the mapping

r =
1

2
(ξ + 1) ←→ ξ = 2r − 1 likewise,

d

dx
= 2

d

dξ
(5.4)

Following the procedure previously laid out, we can define the block matrices from the

operator form of the governing equations. They are

162

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ac,ur = D̄N + r−1
ii

Ac,uθ
= iqr−1

ii

Ac,uz = iαIN

Ac,p = 0

and

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Bc,ur = 0

Bc,uθ
= 0

Bc,uz = 0

Bc,p = 0

(5.5)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ar,ur = UriiD̄N +

(
∂Ur

∂r

)
ii

+ iqUθiir
−1
ii + iαUzii

−ε [(D̄N)
2+r−1

ii D̄N − (1 + q2) r−2
ii − α2IN

]
Ar,uθ

= 2iqεr−2
ii − 2Uθiir

−1
ii + r−1

ii

(
∂Ur

∂θ

)
ii

Ar,uz =

(
∂Ur

∂z

)
ii

Ar,p = D̄N

and

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Br,ur = iIN

Br,uθ
= 0

Br,uz = 0

Br,p = 0

(5.6)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Aθ,ur =

(
∂Uθ

∂r

)
ii

+ Uθiir
−1
ii − 2iqεr−2

ii

Aθ,uθ
= UriiD̄N + Uriir

−1
ii + iqUθiir

−1
ii

+r−1
ii

(
∂Uθ

∂θ

)
ii

+ iαUzii

−ε [(D̄N)
2 + r−1

ii D̄N − (1 + q2) r−2
ii − α2IN

]
Aθ,uz =

(
∂Uθ

∂z

)
ii

Aθ,p = iqr−1
ii

and

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Bθ,ur = 0

Bθ,uθ
= iIN

Bθ,uz = 0

Bθ,p = 0

(5.7)

163

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Az,ur =

(
∂Uz

∂r

)
ii

Az,uθ
= r−1

ii

(
∂Uz

∂θ

)
ii

Az,uz = UriiD̄N + iqUθiir
−1
ii +

(
∂Uz

∂z

)
ii

+ iαUzii

−ε [(D̄N)
2 + r−1

ii D̄N − q2r−2
ii − α2IN

]
Az,p = iαIN

and

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Bz,ur = 0

Bz,uθ
= 0

Bz,uz = iIN

Bz,p = 0

(5.8)

where ω is the eigenvalue represented as λ in the generalized eigenvalue equation, Aijfi =

λBijfi. Spectral methods can also be used to compute the derivatives of the base flow with

respect to r while derivatives of with respect to θ and z must be defined specifically.

To remain as general as possible we must define two sets of boundary conditions: one

for the case of axisymmetric perturbations (q = 0) and the second for all other cases (q =

1, 2, 3, ...). At all physical boundaries we rely on the standard acoustic boundary conditions

n · u = 0 and n · ∇p = 0. For axisymmetric perturbations, the boundary conditions are

determined to be

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(IN)N,: (0) (0) (0)

(IN)1,: (0) (0) (0)

(0) (IN)N,: (0) (0)

(0) (IN)1,: (0) (0)

(0) (0) (D̄N)N,: (0)

(0) (0) (IN)1,: (0)

(0) (0) (0) (D̄N)N,:

(0) (0) (0) (DN)1,:

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ur(0)

ur(1)

uθ(0)

uθ(1)

uz(0)

uz(1)

p(0)

p(1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.9)

164

Likewise, for nonsymmetric perturbations they are

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(IN)N,: (0) (0) (0)

(IN)1,: (0) (0) (0)

(0) (IN)N,: (0) (0)

(0) (IN)1,: (0) (0)

(0) (0) (IN)N,: (0)

(0) (0) (IN)1,: (0)

(0) (0) (0) (IN)N,:

(0) (0) (0) (DN)1,:

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ur(0)

ur(1)

uθ(0)

uθ(1)

uz(0)

uz(1)

p(0)

p(1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.10)

The difference here (denoted in Eq. (5.10) by bold typeface) is the exclusion of derivative

boundary conditions at the centerline for the axial wave and pressure perturbation. In any

event, the difference in the results is found to be small.

5.2 Code Validation and Grid Refinement

The spectral solutions presented here are derived and coded completely independent of the

original study. They follow the conventions formally laid out in Sec. 3. Figures 5.1a–5.1b

generate results for input values cited by Abu-Irshaid, Majdalani, and Casalis to validate

the correctness of our code. Despite limitations∗ in their paper, the values calculated here

overlay well with those in the original study [119]; however, without their tabulated results,

the exact degree of agreement is unknown. Initial test runs verify the original solution is

correct within the context of the LNP approach for the inviscid (semi-inviscid) base flow and

our new code reproduces those results almost identically.

∗In their paper, they apply the LNP approach to a short chamber in which the parallel flow assumption
appears to be unsuitable.

165

a) Axisymmetric perturbations (q = 0) b) Asymmetric perturbations (q = 1)

Figure 5.1: Grid refinement for α = 3, z = 1.5, Re = 10, 000, and κ = 0.1.

The previous study suggests that convergence occurs for N = 600. Using the present

code, Fig. 5.1 shows that satisfactory convergence can be expected for N ≥ 400 over

the interval in question. Recall from Table 3.2, that N/3 eigenvalues were accurate to

5 × 10−4. If this observation holds, we can expect 100 − 150 eigenvalues to share this

degree of accuracy. This is corroborated by the distinct, noncontinuous line of eigenvalues

defining a boundary above which few eigenvalues exist. Convergence of eigenvalues below

this boundary is indicated by clustering of eigenvalues with successive increases in N . It

is probable that further resolution of these eigenvalues is beyond the limitations of current

computational methods either in terms of machine precision [95] or computing power. Either

way, convergence of these eigenvalues is inconsequential since they do not grow in time.

The original study applies the stability analysis to a semi-inviscid base flow. The

inclusion of the tangential forced core vortex eliminated the singularity emanating from

the r−1 inviscid solution; however their study foes not consider sidewall boundary layers. In

Figs. 5.2a–5.2b, we compare the spectrum for both under similar conditions. The insignificant

disparity for the majority of the spectrum suggests that the inclusion of boundary layers at

the sidewall does not have a large overall effect. It does, however, produce several unstable

modes near [0, 0] that are not present in the inviscid solution. Thus we can conclude, that

166

a) Axisymmetric perturbations (q = 0) b) Asymmetric perturbations (q = 1)

Figure 5.2: Comparison of the spectrum for the inviscid versus the viscous solution with α = 3, z = 1.5,
Re = 10, 000, and κ = 0.1.

while the overall effect is not large, the importance of viscosity in the base flow with regards to

the generation of unstable modes may be. The nature of parietal vortex shedding is consistent

with the generation of low frequency unstable waves caused by from the wall/boundary layer

interactions. It may speculated that the bulk inviscid flow breakdown is inherently stable;

at least for this set of input parameters. Increasing the Reynolds number, the primary

controlling parameter of the boundary layer character, shows a larger disparity between the

inviscid and viscous solutions for low frequency eigenvalues.

For comparison purposes we take z = 1.5 whenever possible. Argument could be made

against this choice but this axial position represents a midpoint between the regions where the

parallel flow assumption is blatantly violated and where it is apparently met (see Fig. 1.3).

5.3 The Complex-Lamellar Bidirectional Vortex

As previously mentioned, the results presented here are in close agreement with those by

Abu-Irshaid, Majdalani, and Casalis [119]. In this section we reproduce those results as well

as identify the axisymmetric and asymmetric hydrodynamic wave form corresponding to a

specific case.

167

5.3.1 Axisymmetric Spectrum

Figures 5.3a–5.3d present a parametric study of the axisymmetric spectrum for four key

parameters. We continue to see coherent structures present in all four subfigures. It is

apparent that if amplified modes are present, they most often occur at very low frequencies.

The near-continuous spectrum of higher frequency eigenvalues remain essentially damped

for the majority of input parameters. Some interesting results are present in Fig. 5.3a. The

results for each axial position examined are nearly the same. This is substantiated by a nearly

identical pseudo-continuous spectral line. This includes an offshoot of the primary spectral

line back toward the zero axis. This structure appears to asymptote to the ωi = 0 axis but,

according to our results, does not cross it. This asymptotic behavior appears in other studies

as well. Clearly, the effect of axial position and wave number are much less influential than

that of κ orRe. For both parameters we see drastic changes in the spectrum including a larger

number of amplified eigenvalues. Interestingly enough, increasing κ flattens the spectral line

but does not necessarily increase the number of amplified eigenvalues. By increasing κ,

the swirl intensity is lowered. Thus, the trend toward greater damping of the eigenvalues

corresponds to a decrease in the swirl intensity of the base flow. In fact, for κ ≤ 0.005,

the spectrum is nearly vertical indicating very small circular frequency coupled with very

high damping. This result could be attributed to greater centrifugal forces inhibiting the

onset of vortex shedding. It becomes apparent that the excitation of specific eigenvalues is

very parameter dependent. Figure 5.3d suggests that very high injection Reynolds numbers

excite an increasingly larger number of eigenvalues. This is an expected result. It should

be noted, however, that even though both κ and Re are characteristic parameters of the

viscous layers, it is there effect on the base flow and LNP equations (not on the boundary

layer profile) that promotes the most pronounced effect on the spectrum and not boundary

layer properties.

168

a) Variation with axial position b) Variation with αr

c) Variation with κ d) Variation with Reynolds number

Figure 5.3: Axisymmetric parametric study for several input parameters. Here, q = 0, α = 3, z = 1.5,
Re = 10, 000, and κ = 0.1 unless varied on the graph.

5.3.2 Asymmetric Spectrum

It comes into question the importance of including asymmetric effects in the hydrodynamic

stability equations. It has been shown that for spatial stability the earliest onset of instability

is attributed to axisymmetric modes for Taylor plane and Taylor-Culick flow [55]. For truly

parallel flows the q = 0 condition is proven to be sufficient by Squire’s Theorem [120]. Gaster

shows this theorem holds for three dimensional inviscid flows [121] but could not extend it

further. Here, however, we include viscosity in both the base flow and the stability equations.

Also, the bidirectional vortex flows are three-dimensional and result in a significantly different

169

Figure 5.4: The effect of higher tangential mode numbers with α = 3, z = 1.5, Re = 10, 000, and κ = 0.1.

spectral decomposition than the closely related Taylor-Culick flow. The inclusion of a third

viscous dimension in the base flow requires a study of asymmetric instability.

Figure 5.4 suggests that higher mode numbers do affect the temporal spectrum by

flattening the spectral line but do not necessarily have a large effect on unstable modes. This

flattening effect increases with increasing q with the largest value plotted here possessing a

saddle shape. The amplified eigenvalue around ω = 35+4i is only present for the q = 1 case

with α = 3. It is not present in Fig. 5.5b nor anywhere else but is still present when all other

parameters are varied. This single point could be an extraneous result, but its persistence

throughout the study suggests otherwise. It reinforces the sensitivity of instability on initial

parameters.

The parametric study of the asymmetric spectrum in Fig. 5.5 once again show the

greatest effects originating from variations κ and Re. Both these parameters show abrupt

bifurcations from the pseudo-continuous spectral lines. For high Reynolds numbers, this

translates to greater amplification of high frequency eigenvalues than previously seen. It can

be shown in Fig. 5.6 that the circular frequency, ωr, is linearly dependent on axial position.

For instance, plotting the real part of the undamped eigenvalue near ω = 35+4i versus axial

170

a) Variation with axial position b) Variation with αr

c) Variation with κ d) Variation with Reynolds number

Figure 5.5: Asymmetric parametric study for several input parameters. Here q = 1, α = 3, z = 1.5,
Re = 10, 000, and κ = 0.1 unless varied on the graph.

position generates a nearly straight line with a positive slope. Likewise, the imaginary part

shows a nearly straight line with negative slope.

5.3.3 Multiple Mantles

Multiple mantle solutions show a greater number of unstable modes for increasing mantle

number, m, in Fig. 5.7. Both show a flattening in the spectral lines with the most drastic

effect seen in the asymmetric case. We also observe a vertical and lateral stretch in the

position of subsequent eigenvalues along the pseudo-continuous spectral line.

171

Figure 5.6: Illustrating the nearly linear axial dependence of the spectrum for the undamped eigenvalue near
ω = 35 + 4i with α = 3, z = 1.5, Re = 10, 000, and κ = 0.1.

a) Axisymmetric perturbations (q = 0) b) Asymmetric perturbations (q = 1)

Figure 5.7: The effect of multiple mantles on the temporal spectrum for α = 3, z = 1.5, Re = 10, 000, and
κ = 0.1.

172

a) b)

c) d)

Figure 5.8: Axisymmetric eigenvectors for the first undamped frequency, ω = 0.1911 + 0.0625i, with the
input parameters q = 0, α = 3, z = 1.5, Re = 10, 000, and κ = 0.1. See Table 5.4 for error values.

5.3.4 Amplified Frequencies

Hydrodynamic wave forms come in a variety of shapes. Figures 5.8–5.10 show two examples.

Close attention should be paid to the axial, tangential, and pressure profile. Both the

axisymmetric and asymmetric cases show a cohesive wave form near the wall with slight

disparity near the centerline. The exact cause of this is unknown. It could be inherent in

the retention of r−1 terms in the LNP equations forcing the interval of analysis to be [eps,1]

where eps=2.2204E-016 is the distance from 1.0 to the next largest double-precision number.

Clearing r−1 from the governing equations produces similar but significantly less accurate

results. In the paper by French and Majdalani [122], this technique was used to resolve

173

a) LNP axisymmetric radial velocity wave for the complex-lamellar model

b) LNP axisymmetric tangential velocity wave for the complex-lamellar model

c) LNP axisymmetric axial velocity wave for the complex-lamellar model

d) LNP axisymmetric pressure wave for the complex-lamellar model

Figure 5.9: Axisymmetric contour plots, with q = 0, α = 3, Re = 10, 000, and κ = 0.1.

174

a) b)

c) d)

Figure 5.10: Asymmetric eigenvectors for the first undamped frequency, ω = 1.6590+0.0949i, with the input
parameters q = 1, α = 3, z = 1.5, Re = 10, 000, and κ = 0.1. See Table 5.4 for error values.

the the r−1 singularity at the centerline. Although the formulation is rigorous, their results

remain inconclusive given that they were unable to reproduce the results of Abu-Irshaid,

Majdalani, and Casalis[119]. It is possible this could be the source of their discrepancy. A

final possibility is the presence and effect of the core boundary layer discussed by Majdalani

[54] generating vorticity and transferring the largest oscillations to the centerline. This is

pure speculation in that this disparity is not observed in all cases. In fact, some input

parameters produce uniformly coherent wave forms reminiscent of the vortico-acoustic wave

throughout the domain. Regardless of the cause, the solutions predicted by the code are

accurate to no less than 10−8 for all examples (see Table 5.4).

175

a) LNP asymmetric radial velocity wave for the complex-lamellar model

b) LNP asymmetric tangential velocity wave for the complex-lamellar model

c) LNP asymmetric axial velocity wave for the complex-lamellar model

d) LNP asymmetric pressure wave for the complex-lamellar model

Figure 5.11: Asymmetric contour plots, with q = 1, α = 3, Re = 10, 000, and κ = 0.1.

176

The pressure shift for the axisymmetric example is also interesting. Although it is fairly

uniform throughout the domain, this pressure shift in the perturbation will increase the total

chamber pressure significantly. Experimentation would be necessary to verify this result.

Figures 5.9–5.11 show the radial, tangential, axial, and pressure waveforms as calculated

by the LNP analysis. These plots are generated by determining the first amplified eigenvalue

and eigenvector at incremental axial locations along the chamber length. The instantaneous

velocity can be constructed in three dimensions by superimposing the perturbation over the

base flow. The axisymmetric solutions in Fig. 5.9 suggest a more apparent and cohesive

axial oscillation with minimal oscillation in the radial direction. This is especially apparent

in the pressure contour where the plot shows oscillations reminiscent of an acoustic wave.

Conversely, the results in Fig. 5.11 are much less axially coherent. They embody a great deal

of oscillation in both the axial and radial directions. For the radial velocity and pressure

profile, the largest oscillations occur near the centerline. The tangential velocity also does,

but demonstrates a similar oscillation near the sidewall as well. The axial velocity shows

the highest amplitude oscillation near the sidewall with a diminishing amplitude as it travels

toward the centerline. The oscillation amplitude is nearly zero from 0 ≤ r ≤ 0.4 for the axial

fluctuation. This is the expected result of a “parietal” instability.

The contour plots in Fig. 5.12 show the spatial degradation as a function of time of

the axial velocities along the length of the chamber. Table 5.1 shows the first amplified

eigenvalues for the given input parameters at each point along the streamwise direction.

Since the spectrum is a function of axial position, it is important to track how the

eigenvalue shifts along the chamber. We see that the greatest effect of hydrodynamic

breakdown is near the headwall rather than the endwall as most spatial results would

suggest. Considering both the radial and axial solutions together we identify the formation

of coherent vortex structures along the sidewall as time increases. The original work by

Abu-Irshaid, Majdalani, and Casalis [119] also concluded the region most susceptible to

hydrodynamic breakdown was near the headwall. This unique result was scrutinized heavily

177

but remained under question. This independent study verifies that this is indeed a probable

occurrence according to an LNP approach by showing that the magnitude of the instability

wave initially exceeds that of the base flow in the headwall region even before amplification

occurs. Traditionally, iso-n plots are used to illustrate the parring of temporal and spatial

instability. However, this lends little visual insight to the effect of the hydrodynamic wave

on the instantaneous velocity. Contour plots of the instantaneous velocity directly show

the location of highest turbulent breakdown where iso-n plots only identify the location of

highest amplification. These two locations may not coincide if the magnitude of the base

flow is also varying axially. Unfortunately, this observation should still be handled with care.

Although this result seems plausible given that the swirling intensity is highest along the

headwall and that the flow undergoes its largest turning of the outer vortex into the inner,

this region of highest instability also coincides with the region where the violation of the

parallel flow assumption is most severe. This question is expected to be rectified with a

bigobal analysis.

178

a) Axial velocity contour plot at 1 second

b) Axial velocity contour plot at 3 seconds

c) Axial velocity contour plot at 5 seconds

d) Axial velocity contour plot at 7 seconds

Figure 5.12: Temporal evolution of the first unstable eigenvalue on the axial velocity for the complex-lamellar
bidirectional vortex with q = 1, α = 3, z = 1.5, Re = 10, 000, and κ = 0.1.

179

Table 5.1: The first amplified eigenvalues for q = 1, α = 3, Re = 10, 000, and κ = 0.1.

z = ω =

0.1 0.68184600813309 + 0.613700646088293i
0.2 0.49132772166657 + 0.587229586013676i
0.3 0.29487685458900 + 0.570099521022216i
0.4 0.09578018608681 + 0.559489701812441i
0.5 1.22198008348298 + 0.730967782541060i
0.6 1.08339271871411 + 0.681517449717813i
0.7 0.94159288566221 + 0.631001125827657i
0.8 0.79859780415616 + 0.579679469005072i
0.9 0.65647739945641 + 0.527005339381296i
1.0 0.51798779045094 + 0.471652699748546i
1.1 0.53377639295402 + 0.110796218049251i
1.2 0.28955595706607 + 0.139908622010756i
1.3 0.02395499346183 + 0.110971728260542i
1.4 0.09404299639000 + 0.360686717212237i
1.5 1.65899741715896 + 0.094888718198153i
1.6 1.53796612918536 + 0.081636458828365i
1.7 1.41240149159865 + 0.070012945628646i
1.8 1.28295889106999 + 0.059504786156763i
1.9 1.15019282233233 + 0.049774919253337i
2.0 1.01456100022404 + 0.040599345159635i

5.4 The Linear Beltramian Bidirectional Vortex

Next we apply the same parametric analysis to the linear Beltramian vortex model. This

model differs greatly from the complex lamellar solution since it takes the form of Bessel

rather than trigonometric functions. This results in a natural linear decay of the magnitude of

axial velocity as the solution travels away from the centerline. Furthermore, the tangential

velocity retains axial dependence: a characteristic not previously shown in the complex

lamellar model. This weak dependence significantly changes the vorticity profile in the

chamber, thus influencing hydrodynamic flow breakdown.

180

a) Variation with axial position b) Variation with αr

c) Variation with κ d) Variation with Reynolds number

Figure 5.13: Axisymmetric parametric study for several input parameters. Here, q = 0, α = 3, z = 1.5,
Re = 10, 000, and κ = 0.1 unless varied on the graph.

5.4.1 Axisymmetric Spectrum

Figure 5.13 refers the same parametric study applied to the complex lamellar profile.

Coherent pseudo-spectral lines are identifiable in all four subfigures. We see an interesting

nodule protruding from the pseudo-continuous spectral line near ωr = 15 for the α = 10 case

in Fig. 5.13b. Although it is a unique spectral structure, it terminates below the stability

boundary. The spacing of eigenvalues in the nodule give it the appearance of being “clipped”

before generating unstable eigenvalues. A smaller, but similar feature is seen for z = 3 in

Fig. 5.13a. The effect of κ and Re are evident in Figs. 5.13c–5.13d and parallel those seen

in the complex-lamellar solution.

181

Figure 5.14: The effect of higher tangential mode numbers with α = 3, z = 1.5, Re = 10, 000, and κ = 0.1
unless varied on the graph.

5.4.2 Asymmetric Spectrum

It appears that increasing the tangential mode number past one has a small effect on the

overall spectrum. For low frequency eigenvalues, the disparity is very small for q ≥ 1. This

increases slightly at higher frequency but does not excite more amplified eigenmodes.

The first asymmetric eigenmode drastically changes the shape of the pseudo-continuous

spectral lines in Fig. 5.15. As we have seen before, it flattens out the spectrum while

exciting low frequency eigenvalues in the unstable region. The variation with α is once

again surprising. The asymmetric mode forces strong coherence back into the spectrum and

actually reduces the number of amplified eigenvalues. The other figures are in agreement

with those for the complex lamellar solutions such that κ and Re have comparable spectra.

5.4.3 Multiple Mantles

Figure 5.16 shows a significant breaking of the coherent spectral line for increased mantles.

The vertical and lateral distance between eigenvalues is increased and the coupled spectral

lines are spread further apart. We also see an increase in the number of unstable modes for

higher mantle numbers. From a physical perspective, it is likely that multidirectional flow

182

a) Variation with axial position b) Variation with αr

c) Variation with κ d) Variation with Reynolds number

Figure 5.15: Asymmetric parametric study for several input parameters. Here q = 1, α = 3, z = 1.5,
Re = 10, 000, and κ = 0.1 unless varied on the graph.

183

a) Axisymmetric perturbations (q = 0) b) Asymmetric perturbations (q = 1)

Figure 5.16: The effect of multiple mantles on the temporal spectrum for α = 3, z = 1.5, Re = 10, 000, and
κ = 0.1.

will be more susceptible to hydrodynamic breakdown due to the increased number of axial

shear layers formed by the concentric vortex tubes. If this argument is plausible, the number

of possible mantles in a sustained vortex chamber may be directly limit by its propensity

toward hydrodynamic breakdown.

5.4.4 Amplified Frequencies

The axisymmetric wave forms in Fig. 5.17 are reminiscent to those for the comparable case

with the complex lamellar base flow. We see slight oscillations near the centerline as well

as the sidewall. The exact causes of the oscillations at the centerline are not fully known;

however the computed eigenvectors solve the governing equations with remarkable accuracy.

Table 5.4 verifies this statement. We do find the expected wave form in Fig. 5.19. The axial

profile seems to represent a parietal instability wave in which large amplitude oscillations

occur near the surface at r = 1. This behavior occurs independently of the radial, tangential,

and pressure oscillations that reach their largest amplitudes near the centerline.

In this case, the axisymmetric contour plots do not show the same acoustic wave

character as seen with the complex-lamellar base flow. Rather, the results in Fig. 5.18 show

little-to-no oscillation throughout the majority of the chamber. In general, if oscillations

184

a) b)

c) d)

Figure 5.17: Axisymmetric eigenvectors for the first undamped frequency, ω = 0.5645 + 0.2122i, with the
input parameters q = 0, α = 0.5, z = 1.5, Re = 10, 000, and κ = 0.1. See Table 5.4 for error values.

occur, they are confined to a region near the centerline. This region corresponds reasonably

well with the forced core region of the tangential velocity. Figure 5.20 illustrates the

asymmetric solution. Again, oscillations are confined to a similar centerline region in

the radial and pressure plots. The tangential velocity shares similar oscillations near the

centerline to those of the pressure, however, it also shows radial oscillations mimicking the

axial waveform deeper in the chamber. Once again, the axial velocity shows the classic

parietal instability waveform with the largest oscillations near the sidewall and diminishing

amplitude toward the centerline. Near the headwall, the waveform appears to be stretched

from the headwall toward the endwall. This shape suggests the effect of the core vortex

185

a) LNP axisymmetric radial velocity wave for the linear Beltramian model

b) LNP axisymmetric tangential velocity wave for the linear Beltramian model

c) LNP axisymmetric axial velocity wave for the linear Beltramian model

d) LNP axisymmetric pressure wave for the linear Beltramian model

Figure 5.18: Axisymmetric contour plots, with q = 0, α = 3, Re = 10, 000, and κ = 0.1.

186

a) b)

c) d)

Figure 5.19: Asymmetric eigenvectors for the first undamped frequency, ω = 0.6931+0.1220i, with the input
parameters q = 1, α = 0.5, z = 1.5, Re = 10, 000, and κ = 0.1. See Table 5.4 for error values.

pulling the outer flow inwardly at the headwall. The oscillations appear to be pulled inward

as well.

Contour plots along the length of the chamber and at discrete cross-sections are shown

in Fig. 5.21. As usual we consider only the first amplified eigenvalue explicitly given in Table

5.2. The higher amplitude base flow is evident in color scale. It can also be inferred that the

amplitudes of these eigenmodes are slightly larger than those of the complex-lamellar in order

to cause such large diversion from the stable streamlines. The density of the contour lines in

certain regions gives further visual perception of the spatial propagation of the hydrodynamic

wave.

187

a) LNP asymmetric radial velocity wave for the linear Beltramian model

b) LNP asymmetric tangential velocity wave for the linear Beltramian model

c) LNP asymmetric axial velocity wave for the linear Beltramian model

d) LNP asymmetric pressure wave for the linear Beltramian model

Figure 5.20: Asymmetric contour plots, with q = 1, α = 0.5, Re = 10, 000, and κ = 0.1.

188

a) Axial velocity contour plot at 1 second

b) Axial velocity contour plot at 3 seconds

c) Axial velocity contour plot at 5 seconds

d) Axial velocity contour plot at 7 seconds

Figure 5.21: Temporal evolution of the first unstable eigenvalue on the axial velocity for the linear Beltramian
bidirectional vortex with q = 1, α = 0.5, z = 1.5, Re = 10, 000, and κ = 0.1.

189

Table 5.2: The first amplified eigenvalues for q = 1, α = 0.5, Re = 10, 000, and κ = 0.1.

z = ω =

0.1 1.003524516285300 + 0.063006699912048i
0.2 0.983203303998358 + 0.070525142990520i
0.3 0.962413560310940 + 0.077126577015609i
0.4 0.941239680763080 + 0.082991388473565i
0.5 0.919740943741555 + 0.088252263574092i
0.6 0.897960793922591 + 0.093009439643143i
0.7 0.875932257905165 + 0.097340366348927i
0.8 0.853681271789386 + 0.101306061549143i
0.9 0.831228811491858 + 0.104955425919258i
1.0 0.808592303430979 + 0.108328255271818i
1.1 0.785786584189617 + 0.111457390382350i
1.2 0.762824567804711 + 0.114370284356712i
1.3 0.739717716521766 + 0.117090163019887i
1.4 0.716476379315972 + 0.119636896906019i
1.5 0.693110037010008 + 0.122027662938465i
1.6 0.669627482111685 + 0.124277451587660i
1.7 0.646036951377310 + 0.126399457087283i
1.8 0.622346225043022 + 0.128405380423409i
1.9 0.598562698236634 + 0.130305662331893i
2.0 0.574693436312902 + 0.132109666991328i

5.5 The Harmonic Beltramian Bidirectional Vortex

Lastly, we present a similar parametric analysis of the harmonic Beltramian vortex model.

There are strong similarities between this model and its linear counterpart. Its unique

characteristics include the axial dependence of its radial velocity profile as well as the

sinusoidal axial dependence of its axial velocity. This sinusoidal dependence corresponds

to a half sine extending between 0 ≤ z ≤ l. This makes direct comparison for long chambers

slightly more challenging in that both l and z must be accounted for.

190

a) Variation with axial position b) Variation with αr

c) Variation with κ d) Variation with Reynolds number

Figure 5.22: Axisymmetric parametric study for several input parameters. Here, q = 0, α = 3, z = 1.5,
Re = 10, 000, l = 2, and κ = 0.1 unless varied on the graph.

5.5.1 Axisymmetric Spectrum

Again we see an abrupt clipping of the spectrum at the ωi = 0 line. Almost no amplified

eigenvalues are predicted for the axisymmetric spectrum under any of the parameter

combinations considered (see Fig. 5.22).

5.5.2 Asymmetric Spectrum

The axisymmetric study suggests this flow is stable for the range of low frequency eigenvalues

shown in Fig. 5.22. Conversely, Figs. 5.23–5.24 show an increase in unstable modes over the

range of parameters for the first asymmetric mode, q = 1. Again, the α = 3 wave number

191

Figure 5.23: The effect of higher tangential mode numbers with α = 3, z = 1.5, Re = 10, 000, l = 2, and
κ = 0.1 unless varied on the graph.

produces a discrete and repeatable unstable mode. For this particular base flow, this mode

occurs near ω = 70+10i. Beyond this mode, the usual range of amplified eigenvalues appear

at low frequency or high Reynolds number.

5.5.3 Multiple Mantles

Figure 5.25 continues to show a breakdown of the coherent spectral line with an increasing

number of mantles. The amplified modes appear at nearly the same circular frequencies

as they do in the linear Beltramian base flow. They do, however, show a lower rate of

amplification due to the smaller complex component of the eigenvalue.

5.5.4 Amplified Frequencies

The axisymmetric modes continue to produce larger oscillations near the centerline than

the wall. Figures 5.26–5.28 are comparable to Figs. 5.17–5.19 in amplitude and waveform,

respectively. Again, the largest oscillations appear near the centerline while the majority of

the chamber remains nearly undisturbed for ur, uθ, uz, and p. This is likely a result of the

192

a) Variation with axial position b) Variation with αr

c) Variation with κ d) Variation with Reynolds number

Figure 5.24: Asymmetric parametric study for several input parameters. Here q = 1, α = 3, z = 1.5,
Re = 10, 000, l = 2, and κ = 0.1 unless varied on the graph.

core vortex shear layer of the tangential velocity. The symmetry between the two Beltramian

solutions is expected given the close relationship between the two base flows.

The results in Fig. 5.27 show little-to-no oscillation throughout the majority of the

chamber for the axisymmetric Beltramian solutions. Once again, confined to a region

near the centerline. Figure 5.29 illustrates the asymmetric solution. Again, oscillations

are confined to a similar centerline region in the radial and pressure plots. The pressure

profile indicates a unique, high amplitude oscillation near the exit plane. This is unique

to this solution. The tangential and axial velocities share similar wave forms but higher

amplitudes are found in the axial solution. The axial velocity fluctuation is not stretched

193

a) Axisymmetric perturbations (q = 0) b) Asymmetric perturbations (q = 1)

Figure 5.25: The effect of multiple mantles on the temporal spectrum for α = 3, z = 1.5, Re = 10, 000,
l = 2, and κ = 0.1.

a) b)

c) d)

Figure 5.26: Axisymmetric eigenvectors for the first undamped frequency, ω = 0.1891 + 0.1000i, with the
input parameters q = 0, α = 0.5, z = 1.5, Re = 10, 000, l = 2, and κ = 0.1. See Table 5.4 for error values.

194

a) LNP axisymmetric radial velocity wave for the harmonic Beltramian model

b) LNP axisymmetric tangential velocity wave for the harmonic Beltramian model

c) LNP axisymmetric axial velocity wave for the harmonic Beltramian model

d) LNP axisymmetric pressure wave for the harmonic Beltramian model

Figure 5.27: Axisymmetric contour plots, with q = 0, α = 0.5, Re = 10, 000, and κ = 0.1.

195

a) b)

c) d)

Figure 5.28: Asymmetric eigenvectors for the first undamped frequency, ω = 0.6262+0.0331i, with the input
parameters q = 1, α = 0.5, z = 1.5, Re = 10, 000, l = 2, and κ = 0.1. See Table 5.4 for error values.

toward the inner vortex as seen in the other figures even though it bears other similarities

to the linear Beltramian solution.

Figure 5.30 shows the temporal development of the hydrodynamic instability along the

chamber length. This model contains no low frequency amplified eigenmodes beyond an

axial position of z = 1.6. Beyond this position, the first amplified eigenvalue jumps outside

the range of numerically accurate eigenvalues. Thus, Fig. 5.30 continues to track the first

eigenvalue as it becomes stable near the endwall. The eigenvalues and corresponding axial

positions are found in Table 5.3.

196

a) LNP asymmetric radial velocity wave for the harmonic Beltramian model

b) LNP asymmetric tangential velocity wave for the harmonic Beltramian model

c) LNP asymmetric axial velocity wave for the harmonic Beltramian model

d) LNP asymmetric pressure wave for the harmonic Beltramian model

Figure 5.29: Asymmetric contour plots, with q = 1, α = 0.5, Re = 10, 000, and κ = 0.1.

197

a) Axial velocity contour plot at 1 second

b) Axial velocity contour plot at 3 seconds

c) Axial velocity contour plot at 5 seconds

d) Axial velocity contour plot at 7 seconds

Figure 5.30: Temporal evolution of the first unstable eigenvalue on the axial velocity for the Harmonic
Beltramian bidirectional vortex with q = 1, α = 0.5, z = 1.5, Re = 10, 000, l = 2, and κ = 0.1.

198

Table 5.3: The first amplified eigenvalues for q = 1, α = 0.5, Re = 10, 000, l = 2, and κ = 0.1.

z = ω =

0.1 0.95717385153943 + 0.15285395453130i
0.2 0.92728649501637 + 0.18168539908038i
0.3 0.89608840607973 + 0.20129801990820i
0.4 0.86513351516908 + 0.21311464789768i
0.5 0.83564202225154 + 0.21811653643692i
0.6 0.80836118817958 + 0.21696584066040i
0.7 0.78358341622263 + 0.21008492814540i
0.8 0.76100539070175 + 0.19777343968856i
0.9 0.73947431528243 + 0.18050440910282i
1.0 0.71736420751419 + 0.15937043137887i
1.1 0.69433779406064 + 0.13591150261076i
1.2 0.67219334632560 + 0.11110814697065i
1.3 0.65294274645569 + 0.08529294081106i
1.4 0.63750380597771 + 0.05894978581570i
1.5 0.62618252009516 + 0.03305088024017i
1.6 0.61955726893038 + 0.00901753689037i
1.7 0.61894802707506 - 0.011480920318842i
1.8 0.62582797648452 - 0.026744920874072i
1.9 0.64167029799103 - 0.035074893466655i
2.0 0.66794817270807 - 0.034771266990080i

5.6 Closing Remarks on the LNP Applied to the BV

When considering these results, it is necessary to understand that these parametric studies

are a small sample of the possible configurations. Without experimental data and fixed input

parameters, real world cases cannot be predicted or verified. The nature of the parametric

studies are still valuable in that they give a qualitative description of the hydrodynamic

stability properties associated with a given flowfield. Specific examples, such as the wave

form plots, are discrete examples. The very nature of turbulent breakdown suggests a

very wide range of wave forms at many scales. We can see the variety of wave forms

by slightly modifying the input parameters and recovering significantly different results.

199

Numeric backsubstitution shown in Table 5.4 justifies any unusual results by verifying the

accuracy in which the eigenvector solves the equations and boundary conditions. It is difficult

(if at all possible) to present an all-encompassing result that accounts for the large disparity

in scales and wave forms. The problem of flow breakdown to large vortices and then into

successively smaller vortices is simply too complex. Thus, we should focus on the most

amplified and lowest frequency (lowest energy) eigenvalues and eigenmodes. From these

results we can present tools that suggest the most problematic design parameters for real

applications.

Little discussion is made regarding the tangential velocity perturbations. Even though

this is a swirl dominated base flow, this fluctuation is minuscule compared to the base flow

for small time. Its inclusion is merely for completeness. The inclusion of the tangential

component of the base flow, however, holds significant influence over the spectral results

and cannot be neglected. When compared to the LNP results for the Taylor-Culick flow,

the presence of a tangential mean flow velocity reduces the number of amplified eigenvalues.

This idea of centrifugal flow promoting stable behavior as suggested by Eloy and Le Dizès

[10] is corroborated.

This chapter is overshadowed by the forthcoming biglobal analysis; however, it confirms

the results obtained in the original hydrodynamic study by Abu-Irshaid, Majdalani, and

Casalis [119]. This preliminary investigation suggests that parietal vortex shedding is

indicative of asymmetric hydrodynamic instability. It also suggests that axisymmetric modes

tend to be more stable than higher modes though all three mean flow models appear to be

inherently stable. At first, the presence of amplified eigenvalues existing in many of the

case studies presented in this chapter appear to be in contradiction with this statement.

However, each amplified eigenvalue is accompanied by one or more damped eigenvalues at

or very near the same circular frequency. In all cases the average growth rate near a given

circular frequency is negative; thus implying overall stability. While it is possible to excite

a specific amplified frequency, any deviation will return the flow to a stable state. If the

200

flow is driven at an undamped frequency, Fig. 5.12 indicated a quicker turbulization of the

complex-lamellar flow than either Beltramian solution (see Fig. 5.21 and Fig. 5.30). This

occurs despite the initial Beltramian asymmetric axial wave amplitudes exceeding those of

the complex-lamellar. The growth rate of the first unstable eigenvalue is notably larger for

the complex-lamellar than the Beltramian models. This, along with the higher velocity mean

flow of the Beltramian solutions, accounts for the accelerated degradation of the complex-

lamellar flow.

201

Table 5.4: Backsubstitution and boundary condition error values for all plotted eigenvector examples.

Example Equation Boundary Conditions

Cont. r-mom. θ-mom. z-mom. m(0) m(1)

Axisymmetric:
Complex-Lamellar 8.33E-11 1.63E-10 2.38E-10 7.33E-10

ur(r) 0.00E+00 0.00E+00
uθ(r) 0.00E+00 0.00E+00
uz(r) 3.24E-10 0.00E+00
p(r) 1.18E-10 5.89E-11

Linear Beltramian 1.48E-11 9.72E-11 1.14E-10 1.01E-10
ur(r) 0.00E+00 0.00E+00
uθ(r) 0.00E+00 0.00E+00
uz(r) 8.90E-12 0.00E+00
p(r) 1.46E-10 2.47E-12

Harmonic Beltramian 1.36E-11 4.89E-11 1.69E-10 1.19E-10
ur(r) 0.00E+00 0.00E+00
uθ(r) 0.00E+00 0.00E+00
uz(r) 7.56E-11 0.00E+00
p(r) 1.06E-10 1.16E-11

Asymmetric:
Complex-Lamellar 2.03E-10 5.32E-10 7.08E-10 4.87E-10

ur(r) 0.00E+00 0.00E+00
uθ(r) 0.00E+00 0.00E+00
uz(r) 0.00E+00 0.00E+00
p(r) 0.00E+00 7.60E-11

Linear Beltramian 9.85E-11 4.10E-10 4.63E-09 9.99E-10
ur(r) 0.00E+00 0.00E+00
uθ(r) 0.00E+00 0.00E+00
uz(r) 0.00E+00 0.00E+00
p(r) 0.00E+00 3.32E-11

Harmonic Beltramian 1.73E-10 5.74E-10 3.77E-09 7.38E-10
ur(r) 0.00E+00 0.00E+00
uθ(r) 0.00E+00 0.00E+00
uz(r) 0.00E+00 0.00E+00
p(r) 0.00E+00 2.85E-11

202

Chapter 6

Biglobal Stability Analysis of the

Bidirectional Vortex

The previous chapter discussed the applicability of a one-dimensional stability analysis to

the bidirectional vortex. This chapter is dedicated to the development of a general biglobal

stability code that is suitable for the treatment of bidirectional vortex motion. At the

outset, the deficiencies of the one-dimensional approach will be alleviated and a more precise

understanding of bidirectional vortex turbulent breakdown will be achieved. The background

work has been covered in Ch. 3, specifically Secs. 3.6.1–3.7. In these sections we laid the

groundwork for the discretization and solution of PDEs via Chebyshev spectral collocation

methods. In what follows, we will simply adapt our existing codes to solve the spectral

form of Eqs. (A.9a–A.9d). The culmination of this chapter will consist of a complete two-

dimensional, hydrodynamic stability code that is sufficiently generalized to handle any three-

dimensional, axisymmetric, cylindrical base flow.

203

6.1 Deriving the Spectral Biglobal Equations

We consider the two-dimensional LNS equations as derived in App. A.2. These are repeated

here for convenience:

Continuity:
∂ur
∂r

+
ur
r

+ iq
uθ
r

+
∂uz
∂z

= 0 (6.1a)

Radial momentum:

− iωur + Ur
∂ur
∂r

+ ur
∂Ur

∂r
+ iq

Uθur
r

+
uθ
r

∂Ur

∂θ
− 2Uθuθ

r
+ Uz

∂ur
∂z

+ uz
∂Ur

∂z
+
∂p

∂r

= ε

(
∂2ur
∂r2

+
1

r

∂ur
∂r
− ur
r2
− q2

r2
ur − 2iq

r2
uθ +

∂2ur
∂z2

)
(6.1b)

Tangential momentum:

− iωuθ + Ur
∂uθ
∂r

+ ur
∂Uθ

∂r
+ iq

Uθuθ
r

+
uθ
r

∂Uθ

∂θ
+
Uruθ
r

+
urUθ

r
+ Uz

∂uθ
∂z

+ uz
∂Uθ

∂z
+ iq

p

r

= ε

(
∂2uθ
∂r2

+
1

r

∂uθ
∂r
− uθ
r2
− q2

r2
uθ +

2iq

r2
ur +

∂2uθ
∂z2

)
(6.1c)

Axial momentum:

− iωuz + Ur
∂uz
∂r

+ ur
∂Uz

∂r
+ iq

Uθuz
r

+
uθ
r

∂Uz

∂θ
+ Uz

∂uz
∂z

+ uz
∂Uz

∂z
+
∂p

∂z

= ε

(
∂2uz
∂r2

+
1

r

∂uz
∂r
− q2

r2
uz +

∂2uz
∂z2

)
(6.1d)

Our interest lies in the spectral decomposition and solution to this system given that ω

is the circular frequency and an eigenvalue of the system. To discretize this system we follow

the steps outlined in Sec. 3.6.3 and Sec. 5. The first builds a general outline that may be

used, and the second extends the problem to a larger system. As usual we seek to formulate

204

the system in terms of the generalized eigenvalue problem:

Aijfi = λBijfi (6.2)

To do so, we build the operator matrices, Aij and Bij , from smaller N2×N2 block matrices.

Each block matrix refers to the operator of a specific dependent variable in one of the four

governing equations. A general block decomposition is shown in Ch. 5 and given here as:

Aij =

ur(r) uθ(r) uz(r) p(r)

↓ ↓ ↓ ↓
Cont.

r −mom.

θ −mom.

z −mom.

→
→
→
→

⎡
⎢⎢⎢⎢⎢⎢⎣

Ac,ur Ac,uθ
Ac,uz Ac,p

Ar,ur Ar,uθ
Ar,uz Ar,p

Aθ,ur Aθ,uθ
Aθ,uz Aθ,p

Az,ur Az,uθ
Az,uz Az,p

⎤
⎥⎥⎥⎥⎥⎥⎦

Bij =

Cont.

r −mom.

θ −mom.

z −mom.

→
→
→
→

⎡
⎢⎢⎢⎢⎢⎢⎣

Bc,ur Bc,uθ
Bc,uz Bc,p

Br,ur Br,uθ
Br,uz Br,p

Bθ,ur Bθ,uθ
Bθ,uz Bθ,p

Bz,ur Bz,uθ
Bz,uz Bz,p

⎤
⎥⎥⎥⎥⎥⎥⎦

From this diagram we see that the final matrices are 4N2 × 4N2. This implies a significant

increase in computing power to render solutions at the same resolution as the LNP approach

where the matrices are only 4N × 4N . The factor of N in the biglobal matrices comes

from the use of the Kronecker product to map spatial derivatives onto a product tensor grid.

Fortuitously, the work by Chedevergne suggests that as much as an order of magnitude fewer

collocation points can be used for each independent variable to converge to a viable solution

[123]. This observation has yet to be verified.

205

At this point it is helpful to rewrite the governing equations in operator form. They can

be expressed as

Continuity: (
∂

∂r
+ r−1

)
ur +

(
iqr−1

)
uθ +

(
∂

∂z

)
uz = 0 (6.3a)

Radial momentum:

{
Ur

∂

∂r
+
∂Ur

∂r
+ iqUθr

−1 +Uz

∂

∂z
− ε

[
∂2

∂r2
+ r−1 ∂

∂r
− (1 + q2

)
r−2 +

∂2

∂z2

]}
ur

+

(
2iqεr−2 − 2Uθr

−1 + r−1∂Ur

∂θ

)
uθ +

(
∂Ur

∂z

)
uz +

(
∂

∂r

)
p = (iω) ur (6.3b)

Tangential momentum:

(
∂Uθ

∂r
+ Uθr

−1 − 2iqεr−2

)
ur +

{
Ur

∂

∂r
+ Urr

−1 + iqUθr
−1 + r−1∂Uθ

∂θ
+Uz

∂

∂z

−ε
[
∂2

∂r2
+ r−1 ∂

∂r
− (1 + q2

)
r−2 +

∂2

∂z2

]}
uθ +

(
∂Uθ

∂z

)
uz +

(
iqr−1

)
p = (iω) uθ (6.3c)

Axial momentum:

(
∂Uz

∂r

)
ur +

(
r−1∂Uz

∂θ

)
uθ +

[
Ur

∂

∂r
+ iqUθr

−1 +
∂Uz

∂z
+Uz

∂

∂z

−ε
(
∂2

∂r2
+ r−1 ∂

∂r
− q2r−2 +

∂2

∂z2

)]
uz +

(
∂

∂z

)
p = (iω) uz (6.3d)

Clearly, these are very similar to the LNP equations. Here the axial dependence on the

fluctuation is included by retaining derivatives of the fluctuations with respect to z. Their

terms are bolded in the preceding equations. By appropriately applying the normal mode to

the longitudinal derivatives, we see that the LNP system is actually a subset of these. This

detail gives us confidence in our formulation thus far.

206

The domain must be transformed for both the r and z independent variables. For

arbitrary chamber length, we consider the domain to be 0 ≤ r ≤ 1 and 0 ≤ z ≤ ZN . The

arbitrary specification of the location of the exit plane is necessary to properly transform the

domain as well as generalize the formulation. We refer to Eq. (3.60) for a two-dimensional

mapping formula. It gives

⎧⎪⎪⎨
⎪⎪⎩
r =

1

2
(ξ + 1) ←→ ξ = 2r − 1

z =
ZN

2
(η + 1) ←→ η =

2z − ZN

ZN

and,

⎧⎪⎪⎨
⎪⎪⎩
∂

∂r
= 2

∂

∂ξ

∂

∂z
=

2

ZN

∂

∂η

(6.4)

where −1 ≤ ξ ≤ 1 and −1 ≤ η ≤ 1 are required to use Chebyshev polynomial collocation.

At this point we are able to define the block matrices. We find

Continuity:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ac,ur = D̄r
N + r−1

ii

Ac,uθ
= iqr−1

ii

Ac,uz = D̄z
N

Ac,p = 0

and

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Bc,ur = 0

Bc,uθ
= 0

Bc,uz = 0

Bc,p = 0

(6.5)

207

Radial momentum:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ar,ur = UriiD̄
r
N +

(
∂Ur

∂r

)
ii

+ iqUθiir
−1
ii + UziiD̄

z
N

−ε [(D̄r
N)

2+r−1
ii D̄

r
N − (1 + q2) r−2

ii + (D̄z
N)

2
]

Ar,uθ
= 2iqεr−2

ii − 2Uθiir
−1
ii + r−1

ii

(
∂Ur

∂θ

)
ii

Ar,uz =

(
∂Ur

∂z

)
ii

Ar,p = D̄r
N

and

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Br,ur = iIN

Br,uθ
= 0

Br,uz = 0

Br,p = 0

(6.6)

Tangential momentum:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Aθ,ur =

(
∂Uθ

∂r

)
ii

+ Uθiir
−1
ii − 2iqεr−2

ii

Aθ,uθ
= UriiD̄

r
N + Uriir

−1
ii + iqUθiir

−1
ii

+r−1
ii

(
∂Uθ

∂θ

)
ii

+ UziiD̄
z
N

−ε [(D̄r
N)

2 + r−1
ii D̄

r
N − (1 + q2) r−2

ii + (D̄z
N)

2
]

Aθ,uz =

(
∂Uθ

∂z

)
ii

Aθ,p = iqr−1
ii

and

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Bθ,ur = 0

Bθ,uθ
= iIN

Bθ,uz = 0

Bθ,p = 0

(6.7)

208

Axial momentum:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Az,ur =

(
∂Uz

∂r

)
ii

Az,uθ
= r−1

ii

(
∂Uz

∂θ

)
ii

Az,uz = UriiD̄
r
N + iqUθiir

−1
ii +

(
∂Uz

∂z

)
ii

+ UziiD̄
z
N

−ε [(D̄r
N)

2 + r−1
ii D̄

r
N − q2r−2

ii + D̄z
N

]
Az,p = D̄z

N

and

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Bz,ur = 0

Bz,uθ
= 0

Bz,uz = iIN

Bz,p = 0

(6.8)

We remain consistent with LNP boundary conditions and those dictating an acoustically

closed chamber. The radial conditions are identical to those in the LNP solution while the

new streamwise boundary conditions can be drawn from the general acoustic boundary

conditions, n ·u = 0 and n ·∇p = 0, in the lateral direction. The work by Chedevergne [123]

uses a two-dimensional streamfunction formulation with comparable, albeit slightly different,

set of boundary conditions. Robitaillié-Montané and Casalis [124] develop a velocity-based

formulation with a two-dimensional base flow in Cartesian coordinates. Their discussion is

helpful, although it does not directly consider a three-dimensional mean flow. Finally, we

determine that, for an eigenvalue problem in which the boundary conditions must be zero,

the axisymmetric system must be closed by the boundary conditions and implemented in

the respective code:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ur(0, z) = 0 axisymmetry across the centerline

ur(1, z) = 0 acoustically closed condition at the sidewall

ur(r, 0) = 0 no-slip at the headwall

ur(r, Zf) = 0 no-slip across the acoustic boundary

(6.9)

209

% ur(0,z) and ur(1,z)

Amat(Arbc,j) = II(Arbc,:); % The IV operator on ur from BC on ur

Bmat(Arbc,j) = 0*II(Arbc,:); % The IV operator on ur from BC on ur

Amat(Brbc,j) = II(Brbc,:); % The BC operator on ur from BC on ur

Bmat(Brbc,j) = 0*II(Brbc,:); % The BC operator on ur from BC on ur

% ur(r,0) and ur(r,Zf)

Amat(Azbc,j) = II(Azbc,:); % The IV operator on ur from BC on ur

Bmat(Azbc,j) = 0*II(Azbc,:); % The IV operator on ur from BC on ur

Amat(Bzbc,j) = II(Bzbc,:); % The BC operator on ur from BC on ur

Bmat(Bzbc,j) = 0*II(Bzbc,:); % The BC operator on ur from BC on ur

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

uθ(0, z) = 0 axisymmetry across the centerline

uθ(1, z) = 0 no-slip at the sidewall

uθ(r, 0) = 0 no-slip at the headwall

uθ(r, Zf) = 0 no-slip across the acoustic boundary

(6.10)

% uq(0,z) and uq(1,z)

Amat(Nˆ2+Arbc,Nˆ2+j)=II(Arbc,:); % The IV operator on uq from BC on uq

Bmat(Nˆ2+Arbc,Nˆ2+j)=0*II(Arbc,:); % The IV operator on uq from BC on uq

Amat(Nˆ2+Brbc,Nˆ2+j)=II(Brbc,:); % The BC operator on uq from BC on uq

Bmat(Nˆ2+Brbc,Nˆ2+j)=0*II(Brbc,:); % The BC operator on uq from BC on uq

% uq(r,0) and uq(r,1)

Amat(Nˆ2+Azbc,Nˆ2+j)=II(Azbc,:); % The IV operator on uq from BC on uq

Bmat(Nˆ2+Azbc,Nˆ2+j)=0*II(Azbc,:); % The IV operator on uq from BC on uq

Amat(Nˆ2+Bzbc,Nˆ2+j)=II(Bzbc,:); % The BC operator on uq from BC on uq

Bmat(Nˆ2+Bzbc,Nˆ2+j)=0*II(Bzbc,:); % The BC operator on uq from BC on uq

210

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂ruz(0, z) = 0 axisymmetry across the centerline

uz(1, z) = 0 no-slip at the sidewall

uz(r, 0) = 0 acoustically closed condition at the headwall

uz(r, Zf) = 0 acoustically closed condition at the endwall

(6.11)

% uz(0,z) and uz(1,z)

Amat(2*Nˆ2+Arbc,Nˆ2+j)=0*DDr(Arbc,:); % The IV operator on uq from BC on uz

Bmat(2*Nˆ2+Arbc,2*Nˆ2+j)=0*II(Arbc,:); % The IV operator on uz from BC on uz

Amat(2*Nˆ2+Brbc,2*Nˆ2+j)=II(Brbc,:); % The BC operator on uz from BC on uz

Bmat(2*Nˆ2+Brbc,2*Nˆ2+j)=0*II(Brbc,:); % The BC operator on uz from BC on uz

% uz(r,0) and uz(r,1)

Amat(2*Nˆ2+Azbc,2*Nˆ2+j)=II(Azbc,:); % The IV operator on uz from BC on uz

Bmat(2*Nˆ2+Azbc,2*Nˆ2+j)=0*II(Azbc,:); % The IV operator on uz from BC on uz

Amat(2*Nˆ2+Bzbc,2*Nˆ2+j)=II(Bzbc,:); % The BC operator on uz from BC on uz

Bmat(2*Nˆ2+Bzbc,2*Nˆ2+j)=0*II(Bzbc,:); % The BC operator on uz from BC on uz

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂rp(0, z) = 0 axisymmetry across the centerline

∂rp(1, z) = 0 acoustically closed condition at the sidewall

∂zp(r, 0) = 0 acoustically closed condition at the headwall

∂zp(r, Zf) = 0 acoustically closed condition at the endwall

(6.12)

% p(0,z) and p(1,z)

Amat(3*Nˆ2+Arbc,3*Nˆ2+j)=DDr(Arbc,:); % The IV operator on p from BC on p

Bmat(3*Nˆ2+Arbc,3*Nˆ2+j)=0*II(Arbc,:); % The IV operator on p from BC on p

211

Amat(3*Nˆ2+Brbc,3*Nˆ2+j)=DDr(Brbc,:); % The BC operator on p from BC on p

Bmat(3*Nˆ2+Brbc,3*Nˆ2+j)=0*II(Brbc,:); % The BC operator on p from BC on p

% p(r,0) and p(r,1)

Amat(3*Nˆ2+Azbc,3*Nˆ2+j)=DDz(Azbc,:); % The IV operator on p from BC on p

Bmat(3*Nˆ2+Azbc,3*Nˆ2+j)=0*II(Azbc,:); % The IV operator on p from BC on p

Amat(3*Nˆ2+Bzbc,3*Nˆ2+j)=DDz(Bzbc,:); % The BC operator on p from BC on p

Bmat(3*Nˆ2+Bzbc,3*Nˆ2+j)=0*II(Bzbc,:); % The BC operator on p from BC on p

Recall from Ch. 3 that Arbc, Brbc, Azbc, Bzbc are vectors designed to track the matrix

elements at the boundaries after the product tensor grid is generated. They are necessary

since the boundary elements do not appear on the outermost rows and columns as in the

LNP formulation. The streamwise conditions on all velocities at the headwall are zero as a

means of satisfying no slip. At the endwall, the boundary conditions on velocity and pressure

are selected to represent an acoustically closed chamber. This is a difference between the

streamfunction and velocity-based formulations. An acoustically closed boundary condition

appears to be physically consistent with a choked rocket chamber. The reader is cautioned

that the code given is not the complete implementation of the boundary conditions and is

included as an example only. In actuality, whenever a specific condition is imposed on one

variable, the operators acting on the other dependent variables must be set to zero.

212

The asymmetric analog is given as:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ur(0, z) = 0

ur(1, z) = 0

ur(r, 0) = 0

ur(r, Zf) = 0

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

uθ(0, z) = 0

uθ(1, z) = 0

uθ(r, 0) = 0

uθ(r, Zf) = 0

(6.13)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

uz(0, z) = 0

uz(1, z) = 0

uz(r, 0) = 0

uz(r, Zf) = 0

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

p(0, z) = 0

∂rp(1, z) = 0

∂zp(r, 0) = 0

∂zp(r, Zf) = 0

(6.14)

The asymmetric boundary conditions are the same as the axisymmetric except the for axial

velocity and pressure fluctuations that must now exhibit a node point to allow for higher

tangential modes to exist. We can implement this scenario by simply adding the conditional

statement:

if q �=0

Amat(2*Nˆ2+Arbc,2*Nˆ2+j)=II(Arbc,:); % The IV operator on uz from BC on uz

Amat(3*Nˆ2+Arbc,3*Nˆ2+j)=II(Arbc,:); % The IV operator on p from BC on p

end

6.2 On the Hardware Requirements

The hardware requirements are significantly higher for the biglobal approach than the LNP.

Unlike the LNP operator matrices, those for the BG approach require the conversion into

product tensor form. Each equation has four operator submatrices: one for each dependent

variable. Rather than a complete operator matrix of size 4N × 4N for the LNP approach,

213

the biglobal operator matrices are 4N2 × 4N2 because the use of Kronecker products to

map the spectral derivatives to a product tensor grid increases both rows and columns

by a factor of N . According to Theofilis, we can expect at least 30 to 35 discretization

points (N) for each fluctuating variable in the governing equation to adequately describe

the spatial structure of the eigenfunction [41]. The degree of computational power required

to handle approximately 40-50 points is at the edge of what current desktop computers

are capable of supporting. Furthermore, Fig. 6.1 suggests that this level of refinement is

still insufficient. Some computing load can be alleviated through the use of a streamfunction

formulation for a two-dimensional solution. Unfortunately, the general formulation presented

here cannot take advantage of a strictly two-dimensional streamfunction formulation while

still accommodating a three-dimensional perturbation and mean flow. Furthermore, more

primitive formulations such as the Rayleigh equation that ignores viscosity offer little relief

when resolved using the biglobal approach. This is true since the total number of variables

remain unchanged and it is this that controls the size of the matrices. The only gain

associated with an inviscid formulation is a potential reduction in the number of collocation

points required to resolve the domain in the absence of thin boundary layers. It can

potentially reduce the overall required discretization points since it neglects boundary layers.

This route may be ill-advised given the influence of shear layer vorticity generation and its

effect on flow breakdown.

The bulk of the computational load is housed in the eigensolver. Traditional QZ and LZ

algorithms compute the entire spectrum but are much more time consuming than Krylov

subspace methods. In this vein, Arnoldi algorithms are typically substituted. Arnoldi

methods compute a specified number of eigenvalues located around a guess value. A common

way of determining guess values is to revert to low resolution QZ or LZ algorithms. This is

a potentially pitfall. It is shown in Fig. 5.1 and Fig. 6.1 that grid refinement is necessary to

determine the minimum number of collocation points for convergence. Below the minimum

number of collocation points, the spectrum shows significant dependence N . Figure 6.1

214

Table 6.1: The minimum discretization number, N , to characterize the base flow boundary layer with at
least three points and estimated runtime for the QZ eigensolver. All times estimated for an Intel Core2 CPU
Quad 6600 @ 2.4GHz with 4 Gb RAM and Win 7x64.

Re = 1000 5000 10000 50000 100000
V = 628 3142 6283 31416 62832

Complex Lamellar
δw = 0.0230 0.0046 0.0023 0.0005 0.0002
N ≈ 21 44 57 150 200
estimated runtime (hrs) 0.04 20 - - -

Beltramian
δw = 0.0094 0.0019 0.0009 0.0002 0.0001
N ≈ 40 80 100 250 350
estimated runtime (hrs) 6 - - - -

does not show the precise convergence achieved with the one-dimensional approach. Due

to computational and run-time limitations, a complete parametric study with significantly

more collocation points is unfeasible at the present. Nonetheless, even though the spectrum

appears to lack convergence, the waveforms predicted by the eigenfunctions are convergent.

To further exacerbate the need for a fine spectral grid, we realize that high Reynolds

numbers lead to an increasingly diminished boundary layer thickness. The collocation near

the wall must be such that the correct boundary layer profile is realized. Poor spacing

within the boundary layer equates to an inaccurate profile and, more significantly, incorrect

characterization of the shear stresses generated by the base flow. Large Reynolds numbers

can also cause unphysical oscillations in the interpolating polynomial due to the steepness of

the boundary layer profile and inability to achieve proper collocation. Table 6.1 approximates

the minimum collocation number to characterize the boundary layer with at least three

points. Actual case studies require significantly more RAM to complete. Omitted cells in

Table 6.1 indicate where a typical high performance desktop is no longer able to complete

the study.

215

Figure 6.1: Qualitative grid refinement using the linear Beltramian model with l = 2, Re = 10000, κ = 0.1
and q = 1.

a) Re = 2000 b) Re = 10000

Figure 6.2: Comparison of the spectrum for the inviscid versus the viscous complex-lamellar solution with
q = 1, l = 2, and κ = 0.1.

In order to assess the influence of viscosity on our base flow model, Fig. 6.2 is used

to compare the spectra predicted by the biglobal instability framework using both inviscid

and viscous mean flow representations at two values of the Reynolds number. Due to the

overlap between inviscid and viscous eigenvalues in Fig. 6.2, it is clear that the inclusion of

viscosity in the base flow has a negligible effect on the spectral results to the extent that the

inviscid and viscous spectra are nearly indiscernible. Sporadic exceptions are identified by

circles in Fig. 6.2. The two values of the Reynolds number are considered to illuminate the

aforementioned problem of grid spacing for a diminishing boundary layer thickness (Table

216

6.1). We see that even though Fig. 6.2b considers a higher Reynolds number that falls outside

of the acceptable range, no appreciable difference may be identified. Also, the inverse is true

for Fig. 6.2a. Similar findings were shown for the one-dimensional analysis in Ch. 5. These

results suggest that the inclusion of a sidewall shear layer in the mean flow may not be

necessary to characterize the hydrodynamic stability.

6.3 The Complex-Lamellar Bidirectional Vortex

The following results are for the viscous complex-lamellar bidirectional vortex. The

trigonometric composition of the base flow separates itself from the two Beltramian solutions.

Although similarities can and should be expected, there will likely be definite differences as

well. For reference, the LNP results can be found in Ch. 5.

6.3.1 Axisymmetric Spectrum

Figure 6.3a shows very small variation with κ. It also illustrates very “straight-line” spectral

structures, most of which occurring horizontally and very near the critical line of ωi =

0. A much greater disparity occurs when varying the Reynolds number seen in Fig. 6.3b.

Specifically, we see a shift in the overall spectrum toward damped eigenvalues with a decrease

in Re. This is to be expected given that increases in Re correlate to smaller diffusive viscosity

and, more practically, higher velocity and more energetic injection. Continuing with Fig. 6.3,

we see in Fig. 6.3c that only subtle differences exist between chambers of different aspect

ratio. The figure suggests that shorter aspect ratio chambers entail smaller amplification

of undamped eigenvalues at similar circular frequencies. Overall, differences between these

spectral results are small for the majority of eigenvalues. One thing to notice, however, is

that small aspect ratio chambers (0 ≤ l ≤ 1.5) share spectral structures that larger aspect

ratios (1.5 ≤ l ≤ 2.5) do not exhibit and vice versa. Lastly, there are very apparent changes

217

a) Variation with κ b) Variation with Reynolds number

c) Variation with aspect ratio d) Multiple mantles

Figure 6.3: Axisymmetric parametric study for several input parameters. Here q = 0, l = 2, Re = 10, 000,
and κ = 0.1 unless varied on the graph.

in the spectrum for higher mode, multidirectional flows seen in Fig. 6.3d. Though the straight

line spectral structures are still apparent, increases in the number of flow reversals extend

these structures to higher and higher circular frequencies. Many of these higher frequency

eigenvalues are accompanied by larger amplification and damping as well.

Although each of the studies in Fig. 6.3 show amplified eigenvalues, their spectral

results correspond to zero or very near-zero eigenvectors in all directions. This is a very

interesting result for a variety of reasons. The first being that axisymmetric modes are

seemingly unimportant for this particular flowfield. This is not the case for the LNP

results shown in Fig. 5.8. Those results suggest that the amplified waveforms are actually

large and three dimensional. Clearly we are seeing a significant difference between the

218

two results. Moreover, past research has concluded that the axisymmetric mode is most

relevant. This is clearly not the case shown in these results. We cannot, however, conclude

that the omission of asymmetric modes is incorrect given that the vast majority of work

in one and two-dimensional hydrodynamic instability considers two-dimensional base flows

and streamfunction representations of the stability equations. In those formulations the

axisymmetric fluctuations may be sufficient; however, the zero amplitude eigenvectors

computed here for the first tangential mode are not sufficient to characterize hydrodynamic

instability for swirl driven base flows.

6.3.2 Asymmetric Spectrum

The distribution of eigenmodes for 0.001 ≤ κ ≤ 0.1 is illustrated in Fig. 6.4 where small

disparities may be noted at different values of κ. Both undamped and damped modes may

be seen although the most undamped modes correspond to large values of κ. For all the cases

considered, the eigenvalues circulate near and around the abscissa and are less sensitive to

variations in κ than Re. On the other hand, Fig. 6.5 shows a larger difference in the spectrum

with regards to the Reynolds number. The low Reynolds number case exhibits the highest

undamped eigenvalues near the origin but does not extend into the higher frequency region as

the larger Reynolds number cases do. In general, we see the larger the Reynolds number gets,

the farther into the high frequency domain the spectrum persists. Arguably, κ = 0.01 may

be a more physical choice. This parameter quantifies the relative size between the tangential

and the axial and radial velocities by giving a measure of the swirl intensity. As κ decreases,

the swirl intensity increases. This means the overall flowfield becomes more swirl dominated.

One could expect greater swirl would stabilize the flow through increased centrifugal forces

acting to inhibit vortex generation. For this reason, it is fruitful to consider our parametric

study for two values of κ that encloses the set of physical parameters. Figure 6.5b reconsiders

the effect of varying Re for κ = 0.01. The differences are immediately evident. First, we

219

a) Variation with κ

Figure 6.4: Asymmetric parametric study for several values of κ. Here q = 1, l = 2, and Re = 10, 000.

observe that the spectral results are confined to lower frequencies. Furthermore, nearly all

predicted eigenvalues fall below the stability line. The growth of those few outliers appearing

in the undamped region is coupled by many highly damped eigenvalues appearing at the same

or similar circular frequencies. The overall effect is a stable prediction for all values of Re.

Axisymmetric modes have a slightly different spectral character than higher mode

numbers. Figure 6.6a shows a general overlap of the spectrum in the low frequency

eigenvalues for mode numbers greater than zero. This overlap is not so apparent at higher

frequency. No definitive statement can be made about the difference in stability between

mode numbers. Very little difference can be seen between the two tangential mode numbers

when κ is decreased in Fig. 6.6b. Again, most eigenvalues appear below the critical line and

those appearing above are damped by stable eigenvalues at similar circular frequencies.

Figure 6.7 depicts a typical waveform of each velocity component with κ = 0.1. Here,

the graphs depict contour plots representing the magnitude of ur, uθ, uz, and p for the

first unstable eigenvalue. If we recall Fig. 2.3, we can make a key observation about the

stability of the complex-lamellar vortex. The first should be that the unmodified amplitude

of the hydrodynamic wave is of the same order as the base flow itself for the axial and radial

components. In fact, the maximum value of the radial perturbation exceeds that of the base

220

a) Variation with Reynolds number, κ = 0.1 b) Variation with Reynolds number, κ = 0.01

Figure 6.5: Asymmetric parametric study for several input parameters. Here q = 1, l = 2, and Re = 10, 000.

a) Variation with tangential mode number, κ = 0.1 b) Variation with tangential mode number, κ = 0.01

Figure 6.6: Spectral results for higher mode numbers. Here l = 2 and Re = 10, 000.

221

a) Biglobal radial velocity wave for the complex-lamellar model

b) Biglobal tangential velocity wave for the complex-lamellar model

c) Biglobal axial velocity wave for the complex-lamellar model

d) Biglobal pressure wave for the complex-lamellar model

Figure 6.7: Asymmetric eigensolutions for the unstable eigenvalue, ω = 0.2178 + 0.2940i, with N = 50,
q = 1, Re = 10, 000, and κ = 0.1. See Table 6.2 for error values.

222

a) Biglobal radial velocity wave for the complex-lamellar model

b) Biglobal tangential velocity wave for the complex-lamellar model

c) Biglobal axial velocity wave for the complex-lamellar model

d) Biglobal pressure wave for the complex-lamellar model

Figure 6.8: Asymmetric eigensolutions for the unstable eigenvalue, 0.3443 + 0.4257i, with N = 50, q = 1,
Re = 10, 000, and κ = 0.01.

223

flow. This suggests that even without amplification, this flowfield will have a propensity

toward turbulent breakdown with the possibility of destroying the coherent bidirectional

motion completely.

When comparing each waveform against the others we witness consistent flow patterns

for each perturbation. For instance largest amplitude waves occur near the headwall;

however, the radial position of maximum oscillation varies in each direction. Perhaps the

most interesting characteristic is the apparent oscillations around the streamlines of the base

flow shown by the solid black lines. Recall that this analysis was not constructed from a

streamfunction approach, yet the oscillation contours most strikingly follow the streamlines

throughout the majority of the chamber length. This feature is seen in all three components,

though not always present in the pressure profile. It does however, only show up for high

Reynolds number studies. At low Re, the waveforms look much similar to those in the LNP

approach.

In general, the pressure perturbation hovers very near zero for the majority of the

chamber. From this, we can conclude that the instantaneous pressure is nearly unmodified

with the exception of a thin region in which the pressure oscillates along the streamwise

direction very near the centerline. This region corresponds to the largest gradient in the

base flow pressure profile. Even so, the average over the entire domain is nearly zero.

Lastly, we note that a funnel shape is apparent near the centerline. The boundary of the

funnel is identified in Fig. 6.7 by the dashed line. This indicates a somewhat stable region

where the outer vortex spills inwardly to become the inner vortex. This is consistent with

early speculation as to the shape of the headwall boundary layer.

When κ is reduced, the tangential velocity becomes the dominant contributor to the

wave form. The contours in Fig. 6.8 no longer show oscillations about the streamlines

as in the previous case. Rather, the highest amplitudes appear in the wall region and

are attenuated. This indicates that the tangential velocity is hindering wave formation

throughout the majority of the chamber and centrifugal forces are confining oscillations near

224

a) Variation with aspect ratio, κ = 0.1 b) Variation with aspect ratio, κ = 0.01

Figure 6.9: Asymmetric eigenvalues for several aspect ratios. Here q = 1 and Re = 10, 000.

the sidewall. This is distinctly different from the previous contour plots where the maximum

values of the axial and radial velocities were appreciable compared to the tangential velocity.

Changing the Aspect Ratio

Changing the aspect ratio is similar to considering different axial positions in the LNP

analysis. Figure 6.9 illustrates the effect of variable l on the spectrum. Upon careful

examination, we can suggest that the smallest aspect ratio considered, l = 0.5, shows a unique

pattern when compared to the other test cases. This pattern is identified by the undamped

pseudo-continuous spectral line ranging from about ω = 200 + 200i to ω = 750 + 0i. This

spectral pattern is reflected about the line ωi = 0. While eigenvalues resulting from other

chamber lengths fall on or near this line, it is distinctly constructed from the spectrum for

l = 0.5. The four other test cases show very small variations in their spectral results. Each

case is characterized by similar spectral structures and pseudo-continuous spectral lines.

This plot seems to suggest that the small aspect ratio chamber will be more susceptible to

temporal instability than its longer counterparts. Given the unique spectral structures for

l = 0.5, it could also be insinuated that the stability of chambers with aspect ratios less than

one may behave differently than those that are more slender.

225

a) l = 0.5

b) l = 1.5

c) l = 2.5

Figure 6.10: Axial waveform of the first unstable eigenvalue of the complex-lamellar bidirectional vortex for
different aspect ratios with q = 1, l = 2, Re = 10, 000, and κ = 0.1.

Conversely, when κ = 0.01, very little difference between aspect ratios is seen in the

spectral plots. The aspect ratio seems to be uninfluential when compared to other test

parameters when κ is small. By considering the overall growth at discrete circular frequencies

we find that when ωr = 90 the average growth rate returns a slightly undamped value of

0.0428 for l = 2.5, indicating slow linear growth about that frequency. This is the only

parameter combination that predicts positive growth in this figure. For comparison, when

226

a) Variation with multiple mantles, κ = 0.1 b) Variation with multiple mantles, κ = 0.01

Figure 6.11: Asymmetric parametric study for multi-directional flow. Here q = 1, l = 2, and Re = 10, 000.

κ = 0.1, many (100+) discrete frequencies can be expected to be unstable. Again, the

stabilizing effect of an increased swirl number is evident.

The axial waveform sheds more light on the question of aspect ratio. Figure 6.10 shows

contour plots at three increasing aspect ratios. All show the region of largest instability

located near the headwall and significantly reduced wave amplitudes following the lateral

direction. While the high amplitude region is a significant portion of the small aspect ratio

chamber, this region appears to be drawn downstream as the chamber lengthens. Cross-

sections near the headwall show a similar oscillatory behavior with a slight variation to the

radial shape of the axial wave.

Multiple Mantles

As previously discussed, the existence of multidirectional flow is a definite possibility when

considering only the base flow. From physical speculations, we could assume that increasing

the number of flow reversals would increase the effect of hydrodynamic instability. This

effect could be in the form of higher amplitudes, more destructive waveforms, or both.

With respect to the possibility of higher amplitudes, Fig. 6.11 shows that higher

amplitude waves should be expected for successive increases in flow reversals. Similar spectral

227

a) m = 0

b) m = 2

c) m = 4

Figure 6.12: Axial waveform of the first unstable eigenvalue of the complex-lamellar bidirectional vortex for
multidirectional flow with q = 1, Re = 10, 000, and κ = 0.1.

structures appear in both the m = 2 and m = 4 cases with the apparent shift toward

both higher damped and undamped waves. To complement the increased amplitudes, the

waveforms shown in Fig. 6.12 are significantly more disheveled than those for bidirectional

flow. Oscillations continue to occur around the base flow streamlines but over increasingly

smaller regions with more flow reversals. However, this paired with increased amplitudes,

will promote a much greater hydrodynamic flow breakdown.

228

Decreasing κ confines the range of eigenvalues much nearer to the critical line and reduces

the number of unstable circular frequencies. Form = 0, no instability is expected. Increasing

to two and four is accompanied by successive increases in the number of unstable circular

frequencies.

6.3.3 Evolution with Time

To understand the temporal evolution of the complex-lamellar flow breakdown, Fig. 6.13

shows the time evolution of the instantaneous axial velocity at t = 10, 20, 30, and 40

seconds. We have already observed that the magnitude of the perturbation is of the same

order as the base flow and will destroy the base flow even without amplification. The axial

velocity base flow profile can be seen for t = 10 sec but is unrecognizable for the other plots.

Keep in mind that these plots are generated from the first (smallest) amplified eigenvalue at

the specified parameters.

By turning our attention to the scale used in each figure, it becomes apparent that the

amplified disturbances are so large that they exceed the range of applicability of the present,

linear framework. From one perspective, we treat the fluctuation as a small amplitude

perturbation. This stands in contradiction with the results. The other perspective is that

oscillations remain predominantly linear and that nonlinear (higher order) contributions can

be ignored. According to the latter perspective, these results remain acceptable. Either

way, both views consider only exponential (linear) amplification as a result of the normal

mode approach. Without nonlinear effects to impose a limit cycle amplitude, we can see

amplification to the extremes shown here where in reality they would reach an asymptotic

limit.

229

a) Biglobal Ũz at 10 seconds for the complex-lamellar model

b) Biglobal Ũz at 20 seconds for the complex-lamellar model

c) Biglobal Ũz at 30 seconds for the complex-lamellar model

d) Biglobal Ũz at 40 seconds for the complex-lamellar model

Figure 6.13: Temporal evolutions of the instantaneous axial velocity for the first unstable eigenvalue, ω =
0.2178 + 0.2940i, and eigensolution of the complex-lamellar bidirectional vortex with N = 50, q = 1,
Re = 10, 000, and κ = 0.1.

230

6.4 The Linear Beltramian Bidirectional Vortex

The same parametric study is now applied to the linear Beltramian vortex. Given the notable

difference in the vorticity profile between the Beltramain vortex base flows and the complex-

lamellar due to the inclusion of axial dependence in the tangential velocity, we can expect

slightly different behavior regarding hydrodynamic breakdown.

6.4.1 Axisymmetric Spectrum

Figure 6.14 illustrates a parametric study of several key parameters. Similar to the complex

lamellar results, variations with respect to κ appear to be small when compared to other

a) Variation with κ b) Variation with Reynolds number

c) Variation with aspect ratio d) Multiple mantles

Figure 6.14: Axisymmetric parametric study for several input parameters. Here q = 0, l = 2, Re = 10, 000,
and κ = 0.1 unless varied on the graph.

231

factors. Our results produce straight lines emanating from the origin with most eigenvalues

falling near or below the critical line. The orientation of these straight line structures

compares nicely with the previous model but extend further into the high frequency domain,

especially for large κ. Changing the Reynolds number introduces a wider scattering of the

spectrum below the critical line, as shown in Fig. 6.14b. Therein, the specra are given at five

successive values of the Reynolds number ranging from 100 to 10000. Again, changing the

aspect ratio brings about insubstantial changes in the amplification, but nearly no change

in circular frequency for many of the eigenvalues. Here, the aspect ratio of one more closely

relates to aspect ratios larger than one where the opposite was true for the complex-lamellar

results. Finally, multiple mantle spectral results appear to be quite scattered. Coherent line-

like structures still appear but are widely stretched over the frequency domain compared to

the complex-lamellar model, except for the κ = 0.01 case. This property was seen in the

LNP parametric study as well.

The associated waveforms with the axisymmetric results are identically (or very nearly

zero) for all vector directions. As such, we must consider higher mode numbers to extract

non-vanishing stability results.

6.4.2 Asymmetric Spectrum

Variations with respect to κ are shown in Fig. 6.15. Being analogous to the complex-lamellar

case, the linear Beltramian spectrum is most densely populated near the origin. Eigenvectors

for larger values of κ persist further into the high frequency domain and form interesting

spectral structures around the abscissa. There is some evidence that smaller values of κ

may be more stable than their larger counterparts. This suggests that increasing swirl has

a stabilizing effect. Changing the Reynolds number in Fig. 6.16a leads to a greater degree

of spectral disparity among the test cases. First, we see that smaller Reynolds numbers

shift the spectrum to a lower frequency domain. Conversely, high frequency oscillations

232

Figure 6.15: Asymmetric variation with κ. Here q = 1, l = 2, Re = 10, 000.

a) Variation with Reynolds number, κ = 0.1 b) Variation with Reynolds number, κ = 0.01

Figure 6.16: Asymmetric variation with Reynolds number. Here q = 1, l = 2, and Re = 10, 000.

appear for larger values of Re. Furthermore, it can be seen that higher Reynolds numbers

will induce higher amplitude instabilities. The corresponding study for κ = 0.01 is shown

in Fig. 6.16b. Similar trends found in the complex-lamellar solutions are also seen here.

Decreasing κ reduces the number of unstable eigenvalues significantly. Potentially unstable

circular frequencies reside near ωr = 100, 150, and 185 for Re = 10000. The other two cases

of Re = {5000, 1000} have no expected unstable frequencies. Also, as the Reynolds number

decreases, the spectrum coalesces closer to the origin.

Again we see a substantial overlap of the spectra associated with higher mode numbers

in Fig. 6.17. The axisymmetric spectrum (q = 0) is mostly confined to the lower

233

a) Variation with tangential mode number, κ = 0.1 b) Variation with tangential mode number, κ = 0.01

Figure 6.17: Spectral results for higher mode numbers. Here l = 2 and Re = 10, 000.

frequency domain and is largely damped or slightly undamped in this region. It possesses

higher frequency undamped eigenvalues, but these carry larger error related to the spectral

resolution and may be misleading. The first asymmetric mode produces the most clearly

defined spectral structures as well as a higher overall amplification than the remaining test

cases. The higher transverse modes can be seen to exhibit similar spectral patterns as their

predecessors with comparable moduli. The smaller value of κ confines the spectrum to a

narrow band near the critical line for both tangential mode numbers considered and increases

the overall stability.

Waveforms for the first amplified eigenvalue are shown in Fig. 6.18. These solutions bear

familiar characteristics to that of the complex-lamellar solution. In particular, the regions

and amplitudes of highest oscillation coincide for the two solutions. Again, the oscillations

appear to concentrate along the streamlines of the base flow as noted by the solid lines; here

too, the pressure fluctuation seems to have no appreciable effect. Furthermore, the funnel

shaped contour of the inner vortex, marked by a dashed line, remains nearly undisturbed.

Unlike the previous results, the natural amplitude of these oscillations is not of the same

order as the base flow for the axial velocity. Therefore, the higher magnitude instantaneous

velocity is less dominated by the hydrodynamic oscillation. The radial component does,

234

however, appear at the same order as the base flow radial velocity, especially near the

headwall (Fig. 6.18a).

Representative contour plots for κ = 0.01 are shown in Fig. 6.19. Unlike the spectral

results, the wave form does not exhibit the same similarities between the complex-lamellar

and linear Beltramian figures. Here, oscillations occur within the chamber volume rather

than only along the sidewall. Also, these solutions indicate spatial instability in the

streamwise direction. This is not the case for larger κ nor the complex-lamellar solution.

We can conclude that, once again, the greater influence of the tangential base flow velocity

disallows the flow to oscillate around the base flow streamlines. It may be fruitful to note that

the oscillations occur within the axially variant portion of the tangential velocity component.

This region is rotational and could explain why volumetric oscillations were unable to form

in the irrotational complex-lamellar solution. The pressure oscillations are small and are

confined to the centerline and slowly oscillates in the axial direction.

Changing the Aspect Ratio and Multiple Mantles

The effect of varying aspect ratio remains an interesting parametric study. Figure 6.20

shows a less amplified overall spectrum for an aspect ratio of 0.5. The spectral character

overlaps closely for the remaining cases. The waveforms in Fig. 6.22 show similarities with the

complex-lamellar results in that the highest amplitude oscillations occur near the headwall

and appear to be drawn further downstream with larger l. Reducing κ improves the stability

by reducing the number of unstable eigenvalue. Careful consideration suggests that unstable

modes are possible near ωr = 100, 130, 185 for l = 2.5 although few sporadic unstable modes

appear for the other two cases. Interestingly, the number of unstable eigenvalues reduces

from l = 2.5 to 1.5 and then increases again for l = 0.5 This reinforces the observation that

short chambers (l < 1) may behave differently from longer chambers.

235

a) Biglobal radial velocity wave for the linear Beltramian model

b) Biglobal tangential velocity wave for the linear Beltramian model

c) Biglobal axial velocity wave for the linear Beltramian model

d) Biglobal pressure wave for the linear Beltramian model

Figure 6.18: Asymmetric eigensolutions for the unstable eigenvalue, ω = 0.2312 + 0.1096i, with N = 50,
q = 1, Re = 10, 000, and κ = 0.1. See Table 6.2 for error values.

236

a) Biglobal radial velocity wave for the linear Beltramian model

b) Biglobal tangential velocity wave for the linear Beltramian model

c) Biglobal axial velocity wave for the linear Beltramian model

d) Biglobal pressure wave for the linear Beltramian model

Figure 6.19: Asymmetric eigensolutions for the unstable eigenvalue, 0.8992 + 0.1617i, with N = 50, q = 1,
Re = 10, 000, and κ = 0.01.

237

a) Variation with aspect ratio, κ = 0.1 b) Variation with aspect ratio, κ = 0.01

Figure 6.20: Spectral results for several values of the aspect ratio. Here q = 1 and Re = 10, 000.

a) Variation with multiple mantles, κ = 0.1 b) Variation with multiple mantles, κ = 0.01

Figure 6.21: Spectral results for several values multidirectional flow. Here q = 1, l = 2, and Re = 10, 000.

The multiple mantle spectral results in Fig. 6.21 and the waveforms in Fig. 6.23 show an

increase in scatter compared to the complex-lamellar solutions. The largest concentration

of eigenvalues appears near the centerline. Spectral structures are present but much more

spread out. Although not conclusive from Fig. 6.21, increasing the number of flow reversals

seems to increase the amplification of the undamped frequencies. This is consistent with the

behavior displayed by the previous flow models. An expected increase in disorganization of

the hydrodynamic wave accompanies successive increases in flow reversals, despite the small

initial amplitudes captured here relative to the complex-lamellar model. Multi-directional

238

a) l = 0.5

b) l = 1.5

c) l = 2.5

Figure 6.22: Axial waveform of the first unstable eigenvalue of the linear Beltramian bidirectional vortex for
different aspect ratios with q = 1, l = 2, Re = 10, 000, and κ = 0.1.

flow exhibits regular oscillations along the streamwise direction. This is not evident in the

bidirectional results.

As expected, smaller κ reduces the number of unstable eigenvalues. While all cases of

m contain unstable eigenvalues, the number of dangerous circular frequencies increases with

increasing flow reversals, as does the expected growth rates.

239

a) m = 0

b) m = 2

c) m = 4

Figure 6.23: Axial waveform of the first unstable eigenvalue of the linear Beltramian bidirectional vortex for
multidirectional flow with q = 1, Re = 10, 000, and κ = 0.1.

6.4.3 Evolution with Time

From Fig. 6.24, we see the steady degradation of the instantaneous axial velocity with time.

Unlike the complex-lamellar solution, we see a much slower transition to turbulence here. In

fact, after 10sec, there is only a minimal appearance of oscillations while at 30sec, the axial

base flow is still a predominant component of the instantaneous velocity.

240

a) Biglobal Ũz at 10 seconds for the linear Beltramian model

b) Biglobal Ũz at 20 seconds for the linear Beltramian model

c) Biglobal Ũz at 30 seconds for the linear Beltramian model

d) Biglobal Ũz at 40 seconds for the linear Beltramian model

Figure 6.24: Temporal evolutions of the instantaneous axial velocity for the first unstable eigenvalue, ω =
0.2312 + 0.1096i, and eigensolution of the linear Beltramian bidirectional vortex with N = 50, q = 1,
Re = 10, 000, and κ = 0.1.

241

6.5 The Harmonic Beltramian Bidirectional Vortex

Spectral results for the harmonic Beltramian model mirror the linear model to a high degree.

While similar comparisons were found for both Beltramian models using the LNP approach

these similarities become even more exacting with the biglobal approach. There are, however,

differences in the waveforms to be reported.

6.5.1 Axisymmetric Spectrum

The parametric study for the harmonic Beltramian base flow in Fig. 6.25 presents nearly

identical results to those reported for the linear Beltramian model in Fig. 6.14. As before,

a) Variation with κ b) Variation with Reynolds number

c) Variation with aspect ratio d) Multiple mantles

Figure 6.25: Axisymmetric parametric study for several input parameters. Here q = 0, l = 2, Re = 10, 000,
and κ = 0.1 unless varied on the graph.

242

Figure 6.26: Asymmetric variation with κ. Here q = 1, l = 2, and Re = 10, 000.

overlap of the spectral results accompanies variations in κ, with eigenvalues appearing at

higher frequencies for large κ. The scatter of the overall spectrum with respect to Re is

reminiscent of that in Fig. 6.14b. For both aspect ratio variations and multiple mantles, the

results almost exactly coincide with those for the linear Beltramian case.

Consistent with all axisymmetric cases studied thus far, the waveforms associated with

these spectral results are identically zero or very nearly zero. Regardless of how far above the

critical line an amplified eigenvalue falls, it causes little to no hydrodynamic flow breakdown.

6.5.2 Asymmetric Spectrum

Following with the results of the linear Beltramian model, Fig. 6.26 shows variations in the

spectrum with changes in κ. The effect of Reynolds number is evident in the large scatter

of the spectrum for lower Re. Figure 6.27 suggests that lower Reynolds number solutions

will tend to be more stable given that the majority of eigenvalues fall below the critical line

of ωi = 0. The effect of reducing κ is consistent with the previous studies. The spectrum is

more stable overall and does not contain high frequency eigenvalues.

Consistent results are found for mode numbers greater than zero in Fig. 6.28 with a

slightly larger predicted amplitude for the q = 1 mode. This increase in the range of amplified

modes at higher tangential mode numbers is moderate as the majority of eigenvalues recorded

243

a) Variation with Reynolds number, κ = 0.1 b) Variation with Reynolds number, κ = 0.01

Figure 6.27: Asymmetric variation with Reynolds number. Here q = 1, l = 2, and Re = 10, 000.

a) Variation with tangential mode number, κ = 0.1 b) Variation with tangential mode number, κ = 0.01

Figure 6.28: Spectral results for higher mode numbers. Here l = 2 and Re = 10, 000.

fall near or below the critical line. The smaller value of κ indicates an increase in overall

stability.

Although the spectra are nearly identical between the two Beltramian solutions, the

resulting waveforms are notably different (Fig. 6.29). The regions most affected by the

hydrodynamic wave are significantly reduced and distributed slightly differently. However,

the appearance of the base flow streamlines is still apparent throughout this analysis.

The relative size between the oscillations and the base flow is even smaller yet for this

base flow. Although the difference is not significant, the resulting instantaneous velocity is

even less characterized by the hydrodynamic solution than the previous examples. Coupled

244

a) Biglobal radial velocity wave for the harmonic Beltramian model

b) Biglobal tangential velocity wave for the harmonic Beltramian model

c) Biglobal axial velocity wave for the harmonic Beltramian model

d) Biglobal pressure wave for the harmonic Beltramian model

Figure 6.29: Asymmetric eigensolutions for the unstable eigenvalue, ω = 0.0726 + 0.0549i, with N = 50,
q = 1, Re = 10, 000, and κ = 0.1. See Table 6.2 for error values.

245

a) Biglobal radial velocity wave for the harmonic Beltramian model

b) Biglobal tangential velocity wave for the harmonic Beltramian model

c) Biglobal axial velocity wave for the harmonic Beltramian model

d) Biglobal pressure wave for the harmonic Beltramian model

Figure 6.30: Asymmetric eigensolutions for the unstable eigenvalue, ω = 0.1734 + 0.1602i, with N = 50,
q = 1, Re = 10, 000, and κ = 0.01.

246

a) Variation with aspect ratio, κ = 0.1 b) Variation with aspect ratio, κ = 0.01

Figure 6.31: Spectral results for several values of the aspect ratio. Here q = 1 and Re = 10, 000.

with the smaller regions of high amplitude oscillation, the overall flow can be assumed to be

less prone to turbulent breakdown.

Contour plots involving a smaller value of κ in Fig. 6.30 show an obvious similarity to

those in the linear Beltramian model. Specifically, oscillations appear away from the radial

boundaries and increase in amplitude in the streamwise direction. Pressure oscillations are

confined to the centerline and are characterized by a slow axial oscillation.

Changing the Aspect Ratio and Multiple Mantles

The spectrum shown in Fig. 6.31 considers varying aspect ratios. Since the harmonic

Beltramian base flow is only defined up to l, this could be expected to cause a more significant

effect on the spectral character than what actually results. This plot is very similar to the

corresponding linear Beltramian plot. The eigenfunction contours in Fig. 6.33 do show

a small difference between the two Beltramian solutions. We witness a large amplitude

oscillation at the endwall for the l = 0.5 case which is not present in the previous examples.

Also, the flow away from the wall is less oscillatory around the base flow streamlines than

either the complex-lamellar or linear solutions. As for headwall oscillations, they are still

drawn farther downstream with increased chamber length.

247

a) Multidirectional flow, κ = 0.1 a) Multidirectional flow, κ = 0.01

Figure 6.32: Spectral results for multidirectional flow. Here q = 1 and Re = 10, 000.

Figure 6.32 gives the spectrum for multidirectional flow. Its apparent similarity to its

linear Beltramian counterpart is somewhat lost in the eigenvector contours of Fig. 6.34.

Although the contours match the linear Beltramian counterpart less closely than the

corresponding spectrum, they still suggest that increased flow reversals will increase the

effect of the hydrodynamic wave breakdown and lead to greater disruption of the base flow.

6.5.3 Evolution with Time

The time evolution plots in Fig. 6.35 are the best example yet of a slowly degrading flowfield.

Even for t = 30 sec, hydrodynamic breakdown of the axial velocity does not degrade the

base flow profile appreciably. Along with the small regions of high oscillation, the very low

frequency amplified eigenvalue considered here will not be a major source of oscillation over

short durations.

248

a) l = 0.5

b) l = 1.5

c) l = 2.5

Figure 6.33: Axial waveform of the first unstable eigenvalue of the harmonic Beltramian bidirectional vortex
for different aspect ratios with q = 1, l = 2, Re = 10, 000, and κ = 0.1.

6.6 Closing Remarks on the BG Approach

6.6.1 Considering the Waveforms

This chapter highlights results derived from biglobal stability analysis. To be slightly more

complete, we continue our discussion here. The axisymmetric results are a clear example

of how an amplified eigenvalue accompanied with a zero waveform does not contribute to

249

a) m = 0

b) m = 2

c) m = 4

Figure 6.34: Axial waveform of the first unstable eigenvalue of the harmonic Beltramian bidirectional vortex
for multidirectional flow with q = 1, Re = 10, 000, and κ = 0.1.

hydrodynamic breakdown. It goes without saying that the overall stability is dependent on

the total sum of all physical transverse and lateral disturbances. Thus it is important to

consider the higher mode (q > 0) results.

In this vein, it is important to see that while the eigenvalues control frequency and

amplification, the original wave form is very important too. In fact, the waveforms shown

above are for plausible configurations in propulsion but, outside of the expected domain, very

250

a) Biglobal Ũz at 10 seconds for the harmonic Beltramian model

b) Biglobal Ũz at 20 seconds for the harmonic Beltramian model

c) Biglobal Ũz at 30 seconds for the harmonic Beltramian model

d) Biglobal Ũz at 40 seconds for the harmonic Beltramian model

Figure 6.35: Temporal evolutions of the instantaneous axial velocity for the first unstable eigenvalue, ω =
0.0726 + 0.0549i, and eigensolution of the harmonic Beltramian bidirectional vortex with N = 50, q = 1,
Re = 10, 000, and κ = 0.1.

251

different results can be shown. One good example is the difference between the waveforms

of a high and low Reynolds number flow. The variation of the spectrum is shown to be

significant in the first place, but the character of the waveform is equally significant. From

Fig. 6.36, we can compare a low Reynolds number solution for the linear Beltramian vortex to

the high Re solution of the axial velocity in the previous contour plots. Immediate differences

are at hand. First we do not see the region of high magnitude oscillations near the headwall.

Small wavelength oscillations occur much further downstream and over much smaller regions.

Furthermore, these oscillations produce a subtle grid-like effect in the contour plot. This

type of waveform also appeared sporadically in the solutions by Chedevergne [123].

The spatial stability analysis by Abu-Irshaid, Majdalani, and Casalis [119] showed

higher growth near the headwall. At the time, this result was difficult to justify given

the downstream location of spatial growth in all previous studies. It was expected that since

the inner region appears to be a truncated Taylor-Culick flow with the mantle replacing the

transpiring wall, a similar spatial stability regime would develop. The biglobal waveform

confirms that the region of largest spatial wave amplitudes are indeed near the headwall

for large Reynolds number flows. Casalis and Vuillot [55] assert that flow patterns with

severe curvature of their streamlines will tend to be more unstable than those with parallel

flow. From this perspective, the region where the bidirectional vortex streamlines experience

the most severe curvature appears at the headwall where the flow negotiates a 180 degree

turn. Upon seeing this coincide with the region of largest amplitude waveforms, the one-

dimensional results by Abu-Irshad should no longer be a surprise. We also note that

downstream oscillations reach highest amplitudes at the top of the streamlines. These are

also locations where the curvature of the mean flow streamlines is most severe.

252

a) Complex-Lamellar

b) Linear Beltramian

c) Harmonic Beltramian

Figure 6.36: Axial wave contour for the first unstable eigenvalue N = 50, q = 1, Re = 2, 000, and κ = 0.1.

6.6.2 Data Reduction

The dense scatter of eigenvalues, especially near the origin and neutral line of ωi = 0, makes

stability predictions of the flowfield difficult. This will remain a difficult achievement for any

analysis in which the streamfunction formulation, and therefore a significantly less dense

spectrum, cannot be used. When considering the effect of hydrodynamic stability from a

combustion instability framework where solutions are of the form exp(αt), and α represents

253

the total growth rate, we are inclined to consider the overall spectral character. By simply

averaging the imaginary component, we find that the spectrum has an overall negative

growth rate for all cases considered. This is merely a qualitative means of discussing the

results. While only one eigenvalue needs to be undamped to cause serious instabilities, the

cumulative contributions of their imaginary components at a discrete circular frequencies

makes up the real growth rate. For a densely populated spectrum where several unique

circular frequencies overlap or nearly overlap, post processing of the spectral results can be

performed to identify potentially dangerous circular frequencies. Specifically, the average

growth rate for discrete intervals can be calculated to identify unstable circular frequencies.

By considering all eigenvalues falling within a small interval, the densely populated spectra

can be reduced to a more manageable set. While a level of uncertainty still exists, unstable

frequencies can more precisely be identified. These calculations have been applied as a post-

process computation for all spectral plots presented in this chapter. The results are tabulated

in App. C.

When considering the example eigenvalue problems in Ch. 3, we acknowledged that

the first N/3 eigenvalues were accurate for a single equation eigenvalue problem. This

notion allows some data reduction by considering only the first 4N2/3 eigenvalues. This

number is an extrapolated value given the increase from one equation to four and one

coordinate domain to two. For N = 50, we would consider the first 3000 eigenvalues.

This is still a very densely populated grid that is burdened by the same challenges of the

full spectrum. By incrementally reducing the number of eigenvalues considered, we find that

the computed eigenvalues emanate from the origin and generate larger modulus eigenvalues

(and presumably less accurate) eigenvalues with increases in N . The first eigenvalues and,

presumably, the most accurately calculated, lie within a narrow band along the critical line.

Furthermore, most of those are damped.

254

a) Chedevergne’s results with respect to chamber
length

b) Complex-lamellar results with respect to aspect
ratio

Figure 6.37: Figure by Chedevergne [1] illustrating the effect of chamber length compared with current
results for the complex-lamellar BV.

6.6.3 On Chamber Length

The streamfunction formulation by Chedevergne and coworkers requires them to define

an extrapolating boundary condition at the exit plane [1, 123]. As previously discussed

the present formulation makes use of a different physical requirement. Here, we apply

an acoustically closed condition. This difference modifies the shape of the wave at the

endwall. While the waves shown here (or their derivatives) are always forced to zero, those

of Chedevergne and coworkers are not. They conclude that the wave is consistent for any

chamber length and simply clipped at different points for different chamber lengths. This

could be a direct result of an open aft end boundary condition rather than an acoustically

closed condition or more importantly, this could easily be an artifact of an extrapolation

at the endwall. Elsewhere in their discussion, they show that for varying chamber lengths,

the amplification (ωi) increases while ωr associated with each eigenmode remains nearly

unchanged for all chamber lengths. Chedevergne’s result obtained for the Taylor-Culick

255

mean flow is depicted in Fig. 6.37a [123]. Similarly, selected spectra for the complex-lamellar

bidirectional vortex are presented in Fig. 6.37b. Despite differences in formulation, we can

also conclude that increasing the aspect ratio increases the amplification but leaves the

frequency nearly unchanged. The large amount of overlap and scatter near and around the

origin makes it difficult to confirm this for all frequencies, however, the region depicted here

appears to share his conclusion. Similar correlations can be seen in the asymmetric spectra

as well.

6.6.4 Quantifying Numerical Error

Our results can be numerically differentiated and backsubstituted into the governing

equations as a means of error checking. Table 6.2 tabulates the maximum error incurred by

backsubstituting for the contour plots shown in their respective sections. Recall that the

actual error is likely better than those posted here since backsubstitution compounds the

error of numerically differentiating the solution on top of the numeric error already incurred.

Regardless, per Table 6.2, errors for the contour plots previously shown seem to be negligible

and well within acceptable values to confirm the correctness of the given solutions.

256

257

Table 6.2: Backsubstitution and boundary condition error values for plotted asymmetric eigenvector examples.

Example Linearized N-S Equations Boundary Conditions

Cont. r-mom. θ-mom. z-mom. m(0, z) m(1, z) m(r, 0) m(r, l)

CL 1.77E-012 6.20E-011 8.48E-011 9.49E-011
ur(r, z) 0.00E+00 0.00E+00 0.00E+00 0.00E+00
uθ(r, z) 0.00E+00 0.00E+00 0.00E+00 0.00E+00
uz(r, z) 0.00E+00 0.00E+00 0.00E+00 0.00E+00
p(r, z) 0.00E+00 3.18e-012* 3.58E-012* 1.19E-012*

LB 7.14E-013 2.1361E-011 1.46E-011 3.21E-011
ur(r, z) 0.00E+00 0.00E+00 0.00E+00 0.00E+00
uθ(r, z) 0.00E+00 0.00E+00 0.00E+00 0.00E+00
uz(r, z) 0.00E+00 0.00E+00 0.00E+00 0.00E+00
p(r, z) 0.00E+00 4.44E-013* 1.51E-012* 3.62E-013*

HB 1.45E-012 1.38E-011 1.34E-011 2.36E-011
ur(r, z) 0.00E+00 0.00E+00 0.00E+00 0.00E+00
uθ(r, z) 0.00E+00 0.00E+00 0.00E+00 0.00E+00
uz(r, z) 0.00E+00 0.00E+00 0.00E+00 0.00E+00
p(r, z) 0.00E+00 9.21E-013* 1.35E-012* 1.06E-012*

*Derivative conditions are used along these boundaries.

Chapter 7

Conclusions

Both the LNP and biglobal analyses suggest an overall stable mean flow. This conclusion can

only be made by considering the average growth rate near each discrete circular frequency.

We observe that few unstable discrete frequencies exist. By decreasing the inlet parameter,

κ, and inversely increasing the swirl number, the small number of unstable frequencies can be

reduced or eliminated completely. While it is true that the hydrodynamic wave will grow if

an unstable eigenvalue is excited, damped eigenvalues appear at similar circular frequencies.

Very small deviations from an unstable eigenvalue will return the system to a stable state.

Also, the overall growth rate for all circular frequencies is negative for both formulations.

While this alone does not ensure stability, it may be an indicator. In contrast, the Taylor-

Culick spectrum shown in Fig. 7.1 suggests a positive growth rate over a wide range of

circular frequencies.

258

a) LNP spectrum for the Taylor-Culick model b) Biglobal spectrum for the Taylor-Culick model

Figure 7.1: Asymmetric spectral plots of the Taylor-Culick mean flow, with q = 1, α = 3, z = 1.5, Re =
10, 000.

7.1 Comparing the LNP and Biglobal Solutions

Since the size of the computed spectrum is drastically increased for the biglobal formulation,

it is difficult to directly compare the spectral results of the LNP and biglobal methods.

Furthermore, the LNP approach requires the specification of both an axial position and

a spatial wave number whereas the biglobal method does not. Fortunately, neither axial

position nor wave number greatly affects the spectrum. Figure 7.2 attempts to make a

comparison near the origin for a constant Reynolds number. Two lines are overlayed to

identify and compare dense spectral structures for each approach. Although, the biglobal

approach does not render nearly as well defined spectral formations, a similar pseudo-

continuous spectral line can be identified for the two figures. Both emanate from the origin

and retain a downward inflection. Neither spectral line possess unstable eigenvalues but the

biglobal line is flatter and, in general, less damped than the LNP line. Better agreement

may be found by increasing the grid resolution for the biglobal formulation.

A more revealing comparison can be made between the waveforms. The biglobal solution

identifies well defined oscillations near the headwall that are drawn from the outer region into

the core and down the chamber. This behavior is somewhat apparent in the LNP solutions

259

Figure 7.2: A comparison between the LNP and biglobal approach applied to the complex-lamellar mean
flow with α = 3, z = 1.5, Re = 10, 000, and κ = 0.1.

but is much less defined. We see these oscillations most clearly in the linear Beltramian

axial velocity profile. Figure 7.3 compares both LNP and biglobal axial contours for the first

undamped eigenvalue. Off hand we see, the initial oscillation amplitudes are comparable

for both solutions. This graph identifies three glaring differences. First, the LNP solution

predicts the hydrodynamic fluctuation will persist throughout the length of the chamber

while the biglobal solution shows no significant fluctuations past a distance of about 0.25l.

This characteristic of the biglobal contour plots suggests that the bidirectional vortex is

spatially unstable as the outer vortex travels toward the headwall and spatially stable as the

inner vortex travels downstream. Second, the fluctuations in the LNP solution penetrate

radially from the sidewall a consistent radial distance throughout the length of the chamber.

The headwall oscillations of the biglobal solution penetrate farther toward the centerline

and are not a consistent distance from the sidewall. They are mated with oscillations that

appear to emanate from the core vortex near the centerline to form a “V” at their interface.

Lastly, the biglobal analysis suggests that oscillations occur around the streamlines of the

mean flow. This pattern is not identifiable in the LNP analysis.

Being covered in passing only, the results obtained from the LNP formulation should

be taken with caution for this class of mean flow solutions. Recall that this formulation is

260

a) LNP asymmetric axial velocity wave for the linear Beltramian model

b) Biglobal asymmetric axial velocity wave for the linear Beltramian model

Figure 7.3: Comparison between the LNP and biglobal asymmetric axial velocity contour plots, with q = 1,
α = 3, Re = 10, 000, and κ = 0.1.

in violation of the parallel-flow assumption and cannot properly analyze short, bidirectional

vortex flowfields. In light of the strong physical arguments accompanying the biglobal results,

solutions of this type are better predictors of physical hydrodynamic breakdown.

Similarities between the predicted waveforms in the radial and tangential directions are

less evident. However, one notable similarity is found in the pressure fluctuation. While

the majority of the chamber is steady, pressure fluctuations are confined to the centerline

with oscillations occurring along the axial direction. The reader is referred to Fig. 7.4 for

visual confirmation of this observation. As shown in the figure, oscillations predicted by the

biglobal approach are closer to the centerline than those predicted by the LNP formulation.

Also, the LNP solution suggests slightly higher amplitude fluctuations. This is likely a result

of streamwise derivatives being omitted in favor of a discrete wave number. In either case,

the pressure fluctuations appear in the region where the magnitude of mean flow pressure

261

a) LNP asymmetric pressure wave for the linear Beltramian model

b) Biglobal asymmetric pressure wave for the linear Beltramian model

Figure 7.4: Comparison between the LNP and biglobal asymmetric pressure contour plots, with q = 1,
α = 3, Re = 10, 000, and κ = 0.1.

is greatest. The perturbation is an insignificant component in the resulting instantaneous

pressure. An attempt to determine the wave number in the LNP formulation that best agrees

with the streamwise period in the biglobal solution would be an opportunity for further study.

7.1.1 The Effect of the Tangential Velocity

The inclusion of a tangential velocity is a unique aspect of this work. A high speed swirling

velocity will introduce two obvious physical attributes to the problem: a shear layer near

the centerline and centrifugal forces. While the new centerline shear layer will introduce

vorticity and potentially instigate flow breakdown emanating from r = 0, the centrifugal

forces will act to negate vortex generation along the sidewall. The ensuing behavior may

warrant further investigation and parametrization to resolve its unique characteristics. In

brief, Fig. 7.5 suggests that the pseudo-continuous spectral lines of both axisymmetric and

262

a) LNP spectral comparison b) BG spectral comparison

Figure 7.5: A comparison between the spectra of the linear Beltramian model to identify the effect of a swirl
component in the mean flow. Here, α = 3, z = 2, Re = 10, 000, and κ = 0.1.

asymmetric models are nearly identical when swirl is not included. Both of these spectra

resemble the axisymmetric solution with swirl quite closely. Recalling that q = 0 is commonly

assumed from the onset, this close overlap suggests that this assumption is acceptable for two-

dimensional base flows; however, the inclusion of a tangential velocity component changes the

spectral characteristics for asymmetric flow. This is an expected behavior when reconsidering

the stability equations. Nearly the same terms are negated when either Uθ = 0 or q = 0;

hence, the similarity in the spectral results. For similar reasons, the biglobal results show

no significant difference between the cases of q = 0 and q = 1 when the tangential mean

flow velocity is not included while the two spectra overlap well when Uθ is included. The

greatest difference is the appearance of eigenvalues below ωi = 0 when Uθ is included. These

eigenvalues are present for both the q = 0 and q = 1 cases. This is important when drawing

conclusions about the overall stability. When the tangential velocity is included, the unstable

eigenvalues at approximately ωi ≥ 300 are paired with stable, damped eigenvalues in the

same range. Together, the net result is stable. This is not the case when the tangential

velocity is included.

For the LNP waveforms shown in Fig. 7.6, we see a significant difference in the spatial

shape of the axial solution compared to those in Fig. 5.18 and Fig. 5.20. For the axisymmetric

263

solution, we find much larger amplitude oscillations for the case without swirl included than

previously reported. The overall waveform appears to be much more turbulent throughout

the chamber length as well. However, the asymmetric solution is significantly different.

The absence of a tangential base flow component simultaneously increases the oscillation

amplitude while decreasing the degree of radial oscillations. The parietal form previously

found gives way to a more volumetric breakdown across the radius. Even though the

spectrum is not significantly different, the large initial amplitude suggests that the presence

of a swirl velocity in the mean flow inhibits the transition to turbulence. Surprisingly,

the axisymmetric solution is more turbulent. This is not seen elsewhere in this work,

but is in agreement with similar solutions that employ the spatial theory of one and two-

dimensional base flows. Similar results can be shown for ur, uq, and p. As before, the

axisymmetric biglobal solution remains nearly zero throughout the domain. The asymmetric

solution shows a distinct axial standing wave where the period is longest near the centerline

and shortest at both the headwall and endwall. This is also seen in the LNP solution.

The maximum amplitude is comparable to the solution with swirl included. The highest

amplitude oscillations occur near the endwall rather than the headwall and there appears

to be less distinct oscillation around the streamlines of the base flow. Close observation

suggests the mantle separates two distinct instability regions. Radially, the wave changes

sign near the mantle. This is consistent along the the length of chamber. While the spectra

are similar, this analysis approach reaffirms previous arguments stating the overall stability

is likely to improve when swirl exists. The waveforms suggest a more distinct axial wave

when swirl is omitted but the amplitudes and growth rates are comparable.

The results in the previous chapter where two values of the inflow parameter, κ, identify

a more conclusive avenue to determine the contribution of tangential velocity on the stability.

This parameter is related to the swirl intensity through the modified swirl number, σ.

Increasing values of κ reflect a less swirl dominated flow. Decreasing κ intensifies the swirl

and increases the centrifugal forces that tend to stabilize the flow in the chamber. It is

264

a) LNP axisymmetric axial wave for the linear Beltramian model with Uθ omitted

b) LNP asymmetric axial wave for the linear Beltramian model with Uθ omitted

c) BG asymmetric axial wave for the linear Beltramian model with Uθ omitted

Figure 7.6: Comparison between the linear Beltramian axial wave contour plots to illustrate the waveform
when Uθ is omitted. Here, α = 0.5 Re = 10, 000, and κ = 0.1. The axisymmetric biglobal waveform is zero.

evident in the last chapter that decreasing κ acts to stabilize the flow. To further show this

effect, we consider the effect of κ on multidirectional flow. This particular parameter shows

the greatest scatter of eigenvalues. Specifically, the solutions reported for multidirectional

flow of the linear Beltramian model in Fig. 6.21 suggested an increase in unstable eigenvalues

with increasing flow reversals. Figure 7.7 identifies the spectrum for yet a smaller value of

κ than reported in Ch. 6. In Fig. 7.7, we identify that while decreasing κ to 0.01 retains

265

a) κ = 0.01 b) κ = 0.001

Figure 7.7: The multidirectional, linear Beltramian model for two values of κ. Here q = 1, Re = 10, 000,
and l = 2.

some amplified circular frequencies, κ = 0.001 drastically reduces the number of unstable

eigenvalues. This is consistent with the hypothesis that increasing swirl intensity will increase

stability. Likewise, axial contour plots for the first unstable eigenvalue are shown in Fig. 7.8.

The maximum amplitude for κ = 0.01 is comparable to those shown for κ = 0.1. The

amplitudes for κ = 0.001 are slightly lower. We also see that decreasing κ seems to force the

oscillations closer to the wall. In the κ = 0.001 case, oscillations are only apparent in the

region of negative axial mean flow with decreasing magnitude toward the centerline. Once

again, we can conclude that increasing swirl does indeed have a stabilizing effect on the

hydrodynamic predictions. This result is significant and suggests that inducing swirl will

improve the hydrodynamic stability in propulsive devices.

7.2 Unstable Frequencies

The difficulty of identifying unstable circular frequencies amidst such densely populated

spectra has been articulated in Ch. 6 and attempts at data reduction have been tabulated

in App. C. For the sake of brevity only the first ten computed circular frequencies and their

distributed growth rate are compiled for each plot. No unstable frequencies are predicted for

266

a) κ = 0.01

b) κ = 0.001

Figure 7.8: Comparison between the multidirectional linear Beltramian axial wave contour plots for two
values of κ. Here q = 1, Re = 10, 000, and l = 2.

any parametric result for ωr < 60 where the onset is predicted between 75 and 105 for most

parameters studied. This is an indicator that the hydrodynamic breakdown is most prevalent

in the high frequency domain. Several other interesting results can be identified within the

tables. As we have already seen, a decrease in κ drastically improves the stability. Likewise,

lowering the Reynolds number has a similar effect. Decreasing the chamber aspect ratio

increases the overall stability but it is decreased by increasing the number of flow reversals.

In this case, asm increases, instability is predicted for successively lower circular frequencies.

A particularly interesting result is shown in Table C.9 and Table C.14. For the case of

κ = 0.01, many unstable eigenvalues are expected for l = 2.5 and 0.5 but only one is predicted

for l = 1.5. It has previously been suggested that future studies should consider the stability

near an aspect ratio of unity. Spectra for l < 1 appear to possess unique characteristics not

seen for l > 1. It is apparent that the stability of short chambers is dictated primarily by

267

the tangential velocity. In long chambers, where the axial velocity is significantly larger at

the exit plane, the axial velocity adds a greater contribution to the stability.

7.3 Eigensolver Implementation

In retrospect, accelerated convergence could be obtained with an Arnoldi type solver

if one limits oneself to the first few eigenvalues only. Assuming that the first N/3

eigenvalues are physically viable, an Arnoldi solver can be set up in Matlab with the

command [V Lam]=eigs(Amat,Bmat,round(N/3),0). This will calculate only the smallest

N/3 eigenvalues. Initial tests suggest that this procedure could significantly reduce the run

time without sparing accuracy. Of course, the trade-off is an incomplete spectrum: this

being the original motivation away from an Arnoldi solver. The process could be automated

by restarting the solver at successive circular frequencies but the calculation of a complete

spectrum is likely to be as time consuming as the QZ or LZ methods. Implementation

of an Arnoldi eigensolver may become necessary as the matrices become larger and more

sophisticated to include equations that quantify particle effects, thermal properties, and

combustion reactions.

7.4 Future Work

The future of this work is open. Biglobal instability is still in its infancy but will become

more prevalent as high-speed computing resources become more widely available. At the

time of this writing, the majority of research uses a streamfunction formulation rather than

the velocity formulation used here. A comparative study should be conducted to validate

both methods and help to reduce the clutter of the spectra in the velocity formulation. Since

the streamfunction formulation requires significantly less computational time, it could be the

superior method when applicable. For axisymmetric flows, a hybrid model could be erected.

268

Since the axial and radial velocities of the mean flow are decoupled from uθ, a streamfunction

representation is adequate to calculate the base flow. This formulation could be extrapolated

to the axisymmetric stability equations as well. The mean flow streamfunction and tangential

velocity would appear as coefficients in the stability equations. This would result in a system

of equations with two equations and two unknowns (the hydrodynamic streamfunction, ψ,

and the tangential fluctuation, uθ). This would cut the matrix size in half and allow for finer

resolution for a very specific base flow; namely, one similar to the bidirectional vortex. To

the author’s knowledge, mixing the streamfunction with a decoupled tangential velocity has

not been attempted, nor has this type of formulation been validated.

Hydrodynamic breakdown is vorticity driven and, as such, justifies the omission of

dilatational terms from the LNS equations. Compressibility could be easily included by

amending the existing spectral equations. This would disallow a simple streamfunction

formulation, but would not add any increased size to the operator matrices. In doing so,

we could identify how compressibility affects turbulent breakdown. Similarly, the effect of

particle entrainment would be an interesting stability study. Particles are assumed to have

a damping effect on combustion instability and would likely have the same effect here. The

inclusion of particles requires an additional equation beyond momentum and continuity.

Another equation would increase the LNP matrices to 5N×5N and the biglobal matrices to

5N2×5N2. At present, this increase in matrix size would exceed the computational capacity

of available high-end desktop computers. LNP solutions would still be tractable, although

more time consuming than before. Ideally, thermal properties and chemical processes would

be included to more completely model fully reacting flows.

Conventional one and two-dimensional hydrodynamic stability studies only predict

standing waves evolving in time. Standing wave solutions are appropriate for modeling

transition to turbulence in a simple pipe flow as was shown by Reynolds’ classic experiment

[37], however, traveling waves are an important component of combustion chamber dynamics.

The results presented here show where circulation zones are likely to occur but do not track

269

the subsequent vortices as they translate downstream. The ability to track the traveling

perturbations is beyond the scope of this formulation and would be worthwhile to pursue in

future work. Likewise, interactions between the hydrodynamic instability and the vortico-

acoustic wave would be beneficial to explore. It could be speculated that the formation of

the acoustic wave and subsequent vortical boundary layer could initialize and/or accelerate

the onset of hydrodynamic breakdown. It could be beneficial to define the base flow as the

sum of the mean flow and the vortico-acoustic wave for comparison purposes. Unfortunately,

without experimental data, these ideas cannot be fully substantiated.

270

Bibliography

271

[1] F. Chedevergne, G. Casalis, and T. Féraille, “Biglobal Linear Stability Analysis of the

Flow Induced by Wall Injection,” Physics of Fluids, vol. 18, p. 014103, 2006.

[2] W. Rankine, A Manual of Applied Mechanics. Griffin, 1877.

[3] H. Lamb, Hydrodynamics. Dover Publications, 1932.

[4] C. W. Oseen, “Über Wirbelbewegung in Einer Reibenden Flüssigkeit,” Arkiv foer

Matematik, Astronomi, och Fysik, vol. 7, pp. 1–13, 1911.

[5] J. Burgers, “A Mathematical Model Illustrating the Theory of Turbulence,” Advances

in Applied Mechanics, vol. 1, pp. 171–199, 1948.

[6] N. Rott, “On the Viscous Core of a Line Vortex,” Zeitschrift für Angewandte

Mathematik und Physik (ZAMP), vol. 9, no. 5, pp. 543–553, 1958.

[7] G. Batchelor, “Axial flow in trailing line vortices,” Journal of Fluid Mechanics. n,

vol. 20, no. 04, pp. 645–658, 2006.

[8] J. W. Batterson, B. A. Maicke, and J. Majdalani, “Advancements in Theoretical

Models of Confined Vortex Flowfields,” in 2007 JANNAF Propulsion Conference,

JANNAF Paper TP-2007-222, (Denver, Colorado), May 2007.

[9] S. Alekseenko, P. Kuibin, V. Okulov, and S. Shtork, “Helical vortices in swirl flow,”

Journal of Fluid Mechanics. n, vol. 382, pp. 195–243, 1999.

[10] C. Eloy and S. Le Dizès, “Three-Dimensional Instability of Burgers and Lamb-Oseen

Vortices in a Strain Field,” Journal of Fluid Mechanics, vol. 378, pp. 145–166, 1999.

[11] P. Schmid and M. Rossi, “Three-dimensional stability of a Burgers vortex,” Journal

of Fluid Mechanics. n, vol. 500, pp. 103–112, 2004.

272

[12] C. Olendraru and A. Sellier, “Viscous effects in the absolute–convective instability of

the Batchelor vortex,” Journal of Fluid Mechanics. n, vol. 459, pp. 371–396, 2002.

[13] M. Perez-Saborid, M. Herrada, A. Gomez-Barea, and A. Barrero, “Downstream

Evolution of Unconfined Vortices: Mechanical and Thermal Aspects,” Journal of Fluid

Mechanics. n, vol. 471, pp. 51–70, 2002.

[14] R. Sullivan, “A Two-Cell Vortex Solution of the Navier-Stokes Equations,” Journal of

Aerospace Sciences, vol. 26, pp. 767–768, 1959.

[15] J. Wu, “Conical Turbulent Swirling Vortex with Variable Eddy Viscosity,” Proceedings

of the Royal Society of London. Series A, Mathematical and Physical Sciences, vol. 403,

no. 1825, pp. 235–268, 1986.

[16] M. Bloor and D. Ingham, “The Flow in Industrial Cyclones,” Journal of Fluid

Mechanics, vol. 178, pp. 507–519, 1987.

[17] T. A. Barber and J. Majdalani, “Exact Eulerian Solution of the Conical Bidirectional

Vortex,” in 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit,

AIAA Paper 2009-5306, (Denver, Colorado), Aug. 2009.

[18] P. W. Gloyer, W. H. Knuth, and J. Goodman, “Overview of Initial Research into

the Effects of Strong Vortex Flow on Hybrid Rocket Combustion and Performance,”

in CSTAR Fifth Annual Symposium, Paper N96-16953, (Tullahoma, Tennessee), Jan.

1993.

[19] W. Knuth, M. Chiaverini, J. Sauer, and D. Gramer, “Solid-Fuel Regression Rate

Behavior of Vortex Hybrid Rocket Engines,” Journal of Propulsion and Power, vol. 18,

no. 3, pp. 600–609, 2002.

[20] M. Chiaverini, M. Malecki, J. Sauer, W. Knuth, and J. Majdalani, “Vortex

Thrust Chamber Testing and Analysis for O2-H2 Propulsion Applications,” in 39th

273

AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA Paper

2003-4473, (Huntsville, Alabama), July 2003.

[21] A. Vyas and J. Majdalani, “Exact Solution of the Bidirectional Vortex,” AIAA Journal,

vol. 44, no. 10, p. 2208, 2006.

[22] J. Majdalani and S. Rienstra, “On the Bidirectional Vortex and Other Similarity

Solutions in Spherical Coordinates,” Journal of Applied Mathematics and Physics

(ZAMP), vol. 58, no. 2, pp. 289–308, 2007.

[23] J. Majdalani and M. J. Chiaverini, “On Steady Rotational Cyclonic Flows: The

Viscous Bidirectional Vortex,” Physics of Fluids, vol. 21, no. 10, p. 103603, 2009.

[24] J. W. Batterson and J. Majdalani, “Sidewall Boundary Layers of the Bidirectional

Vortex,” Journal of Propulsion and Power, vol. 26, no. 1, pp. 102–112, 2009.

[25] A. Vyas, J. Majdalani, and M. Chiaverini, “The Bidirectional Vortex. Part 1: An Exact

Inviscid Solution,” in 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and

Exhibit, AIAA Paper 2003-5052, p. 39, 2003.

[26] J. Majdalani, “Exact Eulerian Solutions of the Cylindrical Bidirectional Vortex,” in

45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA Paper

2009-5307, (Denver, Colorado), Aug. 2009.

[27] J. Wu, H. Ma, and M. Zhou, Vorticity and Vortex Dynamics. New York: Springer,

New York, 2006.

[28] J. W. Batterson and J. Majdalani, “On the Viscous Bidirectional Vortex. Part

1: Linear Beltramian Motion,” in 46th AIAA/ASME/SAE/ASEE Joint Propulsion

Conference and Exhibit, AIAA Paper 2010-6763, (Nashville, Tennessee), July 2010.

274

[29] J. W. Batterson and J. Majdalani, “On the Viscous Bidirectional Vortex. Part 2:

Noninear Beltramian Motion,” in 46th AIAA/ASME/SAE/ASEE Joint Propulsion

Conference and Exhibit, AIAA Paper 2010-6764, (Nashville, Tennessee), July 2010.

[30] A. Vyas, J. Majdalani, and M. Chiaverini, “The Bidirectional Vortex. Part 3:

Multiple Solutions,” in 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference

and Exhibit, AIAA Paper 2003-5054, (Huntsville, Alabama), July 2003.

[31] M. Anderson, R. Valenzuela, C. Rom, R. Bonazza, and M. Chiaverini, “Vortex

Chamber Flow Field Characterization for Gelled Propellant Combustor Applications,”

in 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA

Paper 2003-4474, (Huntsville, Alabama), p. 39, July 2003.

[32] C. J. Rom, M. H. Anderson, and M. J. Chiaverini, “Cold Flow Analysis of a

Vortex Chamber Engine for Gelled Propellant Combustor Applications,” in 40th

AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA Paper

2004-3359, 2004.

[33] J. W. Batterson and J. Majdalani, “On the Viscous Bidirectional Vortex. Part 3:

Multiple Mantles,” in 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference

and Exhibit, AIAA Paper 2010-6765, (Nashville, Tennessee), July 2010.

[34] H. Helmholtz, “Über diskontinuierliche Flüssigkeits-Bewegungen,” Monatsberichte der

Königlich Preussische Akademie der Wissenschaften zu Berlin, pp. 215–228, 1868.

[35] W. Kelvin, “The Influence of Wind on Waves in Water Supposed Frictionless,”

Philosophical Magazine, vol. 4, no. 42, pp. 368–374, 1871.

[36] J. W. S. Rayleigh, “On the Stability, or Instability of Certain Fluid Motions,”

Proceedings of the London Mathematical Society, vol. XI, pp. 57–70, 1880.

275

[37] O. Reynolds, “An Experimental Investigation of the Circumstances which Determine

whether the Motion of Water shall be Direct of Sinuous, and of the Law of Resistance in

Parallel Channels,” Philosophical Transactions of the Royal Society of London, vol. II,

pp. 51–105, 1883.

[38] F. Chedevergne, G. Casalis, and J. Majdalani, “DNS investigation of the Taylor-

Culick flow stability,” in 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference

and Exhibit, AIAA Paper 2007-5796, (Cincinnati, OH), 2007.

[39] P. Drazin, Introduction to Hydrodynamic Stability. Cambridge U. Press, 2002.

[40] V. Theofilis and S. J. Sherwin, “Global Instabilities in Trailing Edge Laminar Separated

Flow on a N.A.C.A. 0012 Aerofoil,” in 15th International Symposium on Airbreathing

Engines, (Bangalore, India), 2001.

[41] V. Theofilis, “Advances in Global Linear Instability Analysis of Nonparallel and Three-

Dimensional Flows,” Progress in Aerospace Sciences, vol. 39, no. 4, pp. 249–316, 2003.

[42] D. Barkley, G. Gomes, and R. Henderson, “Three-Dimensional Instability in a Flow

Over a Backward Facing Step,” Journal of Fluid Mechanics, vol. 473, pp. 167–190,

2002.

[43] H. Stüer, Investigation of Separation on a Forward Facing Step. PhD thesis, Swiss

Federal Institute of Technology Zürich, 1999.

[44] H. Stüer, A. Gyr, and W. Kinzelbach, “Laminar-Turbulent Transition of a Separating

Flow on a Forward Facing Step,” in Proceedings of the IUTAM Laminar-Turbulent

Symposium, (Sedona, AZ, USA), pp. 541–546, 2000.

[45] B. L. Jensen, B. M. Sumer, and J. Fredsoe, “Turbulent Oscillatory Boundary Layers

at High Reynolds Numbers,” Journal of Fluid Mechanics, vol. 206, no. -1, pp. 265–297,

1989.

276

[46] P. Merkli and H. Thomann, “Transition to Turbulence in Oscillating Pipe Flow,”

Journal of Fluid Mechanics, vol. 68, no. 03, pp. 567–576, 1975.

[47] S. I. Sergeev, “Fluid Oscillations in Pipes at Moderate Reynolds Numbers,” Fluid

Dynamics, vol. 1, pp. 121–122, 1966.

[48] S. Uchida, “The Pulsating Viscous Flow Superposed on the Steady Laminar Motion of

Incompressible Fluid in a Circular Pipe,” Zeitschrift fr Angewandte Mathematik und

Physik (ZAMP), vol. 7, pp. 403–422, 1956. 10.1007/BF01606327.

[49] J. Majdalani, Improved Flowfield Models in Rocket Motors and the Stokes Layer with

Sidewall Injection. PhD thesis, The University of Utah, 1995.

[50] G. A. Flandro, “On Flow Turning,” in AIAA 31st Joint Propulsion Conference, 95-

2730, 1995.

[51] J. Majdalani and G. A. Flandro, “The oscillatory pipe flow with arbitrary wall

injection,” Proceedings of the Royal Society A: Mathematical, Physical and Engineering

Sciences, vol. 458, no. 2023, pp. 1621–1651, 2002.

[52] T. Jankowski and J. Majdalani, “Vortical and acoustical mode coupling inside a porous

tube with uniform wall suction,” The Journal of the Acoustical Society of America,

vol. 117, pp. 3448–3458, 2005.

[53] J. Majdalani and S. Rienstra, “Two asymptotic forms of the rotational solution

for wave propagation inside viscous channels with transpiring walls,” The Quarterly

Journal of Mechanics and Applied Mathematics, vol. 55, no. 1, pp. 141–162, 2002.

[54] J. Majdalani, “Multiple Asymptotic Solutions for Axially Travelling Waves in Porous

Channels,” Journal of Fluid Mechanics, vol. 636, pp. 59–89, 2009.

277

[55] G. Casalis and F. Vuillot, “Motor Flow Instabilities - Part 2 Intrinsic Linear Stability

of the Flow Induced by Wall Injection,” tech. rep., ONERA, 2002.

[56] M. Gaster, “A Note on the Relation Between Temporally-Increasing and Spatially-

Increasing Disturbances in Hydrodynamic Stability,” Journal of Fluid Mechanics. n,

vol. 14, no. 02, pp. 222–224, 1962.

[57] J. Griffond and G. Casalis, “On the Dependence on the Formulation of Some

Nonparallel Stability Approaches Applied to the Taylor Flow,” Physics of Fluids,

vol. 12, p. 466, 2000.

[58] P. Andersson, “Modelling of Boundary Layer Stability,” tech. rep., Royal Institute of

Technology, 1999.

[59] C. Airiau and G. Casalis, “Stabilité Linéaire de la Couche Limite par un Système

d’Éuestions Parabolique,” La Rechereche Aérospatiale, vol. 5, 1993.

[60] M. Langlois, G. Casalis, and D. Arnal, “On the Practical Application of the P.S.E.

Approach to Linear Stability Analysis,” Journal of Aerospace Science and Technology,

vol. 2, no. 3, pp. 167–176, 1998.

[61] H. Haj-Hariri, “Characteristics Analysis of the Parabolized Stability Equations,”

Studies in Applied Mathematics, vol. 92, pp. 41–53, 1994.

[62] F. Li and M. R. Malik, “Mathematical Nature of Parabolized Stability Equations,” in

Laminar-Turbulent Transition. Proc. 4th IUTAM Symposium, pp. 205–212, 1995.

[63] F. Li and M. R. Malik, “On the Nature of the PSE Approximation,” Theoretical and

Computational Fluid Dynamics, vol. 8, pp. 253–273, 1996.

278

[64] P. Andersson, D. S. Henningson, and A. Hanifi, “On the Stabilization Procedure for the

Parabolic Stability Equations,” Journal of Engineering Mathematics, vol. 33, pp. 311–

332, 1998.

[65] T. Herbert, “Parabolized Stability Equations,” Annual Review of Fluid Mechanics,

vol. 29, no. 1, pp. 245–283, 1997.

[66] C. Yen and N. Messersmith, “Application of Parabolized Stability Equations to the

Prediction of Jet Instabilities,” AIAA Journal, vol. 36, no. 8, pp. 1541–1544, 1998.

[67] S. R. Lin and M. R. Malik, “On the Stability of Attachment-Line Boundary Layers.

Part 1. The Incompressible Swept Hiemenz Flow,” Journal of Fluid Mechanics,

vol. 311, pp. 239–255, 1996.

[68] C. B. Moler and G. W. Stewart, “An Algorithm for Generalized Matrix Eigenvalue

Problems,” SIAM Journal on Numerical Analysis, vol. 10, pp. 241–256, 1973.

[69] C. B. Moler and G. W. Stewart, “An Algorithm for the Generalized Matrix Eigenvalue

Problem Ax = λBx,” tech. rep., Stanford, 1971.

[70] L. Kaufman, “Algorithm 496: The LZ Algorithm to Solve the Generalized Eigenvalue

Problem for Complex Matrices,” ACM Transactions on Mathematical Software, vol. 1,

no. 3, pp. 271–281, 1975.

[71] L. Kaufman, “The LZ-Algorithm to Solve the Generalized Eigenvalue Problem,” SIAM

Journal on Numerical Analysis, vol. 11, pp. 997–1024, 1974.

[72] L. Kaufman, “A Generalization of the LR Algorithm to Solve AX=Lambda BX,” tech.

rep., Stanford, 1972.

279

[73] V. Theofilis, “On the Spatial Structure of Global Linear Instabilities and their

Experimental Identification,” Journal of Aerospace Science and Technology, vol. 4,

no. 4, pp. 249–262, 2000.

[74] R. Heeg and B. Geurts, “Spatial Instabilities of the Incompressible Attachment-Line

Flow Using Sparse Matrix Jacobi-Davidson Techniques,” Applied Scientific Research,

vol. 59, pp. 315–329, 1998.

[75] J. Griffond, “Receptivity and aeroacoustic resonance in channels with blowing walls,”

Physics of Fluids, vol. 14, p. 3946, 2002.

[76] E. Abu-Irshaid, J. Majdalani, and G. Casalis, “Hydrodynamic Stability of Rockets

with Headwall Injection,” Physics of Fluids, vol. 19, p. 024101, 2007.

[77] J. Majdalani and T. Saad, “The Taylor-Culick Profile with Arbitrary Headwall

Injection,” Physics of Fluids, vol. 19, p. 093601, 2007.

[78] M. Bertato, D. Giaiotti, A. Manzato, and F. Stel, “An Interesting Case of Tornado in

Friuli-Northeastern Italy,” Atmospheric Research, vol. 67, pp. 3–21, 2003.

[79] K. Mallen, M. Montgomery, and B. Wang, “Reexamining the Near-Core Radial

Structure of the Tropical Cyclone Primary Circulation: Implications for Vortex

Resiliency,” Journal of the Atmospheric Sciences, vol. 62, no. 2, pp. 408–425, 2005.

[80] W. Devenport, M. Rife, S. Liapis, and G. Follin, “The Structure and Development of

a Wing-Tip Vortex,” Journal of Fluid Mechanics. n, vol. 312, pp. 67–106, 2006.

[81] J. M. Burgers, “On the Resistance of Fluids and Vortex Motion,” Koninklijke

Nederlandsche Akademie van Wetenschappen Proceedings, vol. 23, no. 1, pp. 774–782,

1921.

280

[82] N. Rott, “High Speed Aerodynamics and Jet Propulsion - Theory of time-dependent

laminar flows,” in Theory of Laminar Flows (F. Moore, ed.), vol. IV, Princeton

University Press, 1964.

[83] N. Rott, “Boundary Layers and their Interactions in Rotating Flows,” Progress in

Aerospace Sciences, vol. 7, pp. 111–144, 1966.

[84] J. W. Batterson, “Investigation of the Sidewall Boundary Layers in the Bidirectional

Vortex Liquid Rocket Engine,” Master’s thesis, The University of Tennessee Space

Institute, 2007.

[85] F. Culick, “Rotational Axisymmetric Mean Flow and Damping of Acoustic Waves in

a Solid Propellant Rocket,” AIAA Journal, vol. 4, no. 8, pp. 1462–1464, 1966.

[86] J. Majdalani, “Vortex Injection Hybrid Rockets,” in Fundamentals of Hybrid Rocket

Combustion and Propulsion (K. Kuo and M. J. Chiaverini, eds.), Progress in

Astronautics and Aeronautics, ch. Chap. 6, pp. 247–276, Washington, DC: AIAA

Progress in Astronautics and Aeronautics, 2007. NSF.

[87] L. Prandtl, “Zur Berechnung der Grenzschichten,” Zeitschrift für angewandte

Mathematik und Mechanik (ZAMM), vol. 18, no. 1, pp. 77–82, 1938.

[88] H. Schlichting, “Lecture Series: Boundary Layer Theory Part 1 - Laminar Flow,” tech.

rep., NACA, 1949.

[89] N. Tetervin, “Boundary-Layer Momentum Equations for Three-dimensional Flow,”

tech. rep., National Advisory Committee for Aeronautics, 1947.

[90] A. H. Nayfeh, Perturbation Methods. Wiley, 1973.

[91] A. Erdélyi, Asymptotic Expansions. Dover publications, 1956.

281

[92] S. L. Bragg and W. R. Hawthorne, “Some Exact Solutions of the Flow Through

Annular Cascade Actuator Discs,” Journal of the Aeronautical Sciences, vol. 17, p. 243,

1950.

[93] A. Murray, A. Gudgen, M. Chiaverini, J. Sauer, and W. Knuth, “Numerical Code

Development for Simulating Gel Propellant Combustion Processes,” in JANNAF, 2004.

[94] R. L. Burden and J. D. Faires, Numerical Analysis. PWS-KENT Publishing Company,

Boston, USA, 1989.

[95] L. N. Trefethen, Spectral Methods in Matlab. Society for Industrial Mathematics, 2000.

[96] G. Arfken, G. Arfken, and H. Weber, Mathematical Methods for Physicists. Academic

Press, 2001.

[97] J. Weideman and S. Reddy, “A Matlab Differentiation Matrix Suite,” ACM

Transactions on Mathematical Software, vol. 26, no. 4, p. 519, 2000.

[98] P. Henrici, Essentials of Numerical Analysis With Pocket Calculator Demonstrations.

John Wiley & Sons, Inc., 1982.

[99] A. Quarteroni, R. Sacco, and F. Saleri, Numerical Mathematics. Springer Verlag, 2007.

[100] B. Fornberg, “Generation of Finite Difference Formulas on Arbitrarily Spaced Grids,”

Mathematics of computation, vol. 51, no. 184, pp. 699–706, 1988.

[101] R. Voigt, D. Gottlieb, and M. Hussaini, Spectral Methods for Partial Differential

Equations. Society for Industrial & Applied Mathematics, 1984.

[102] D. Gottlieb and L. Lustman, “The DuFort-Frankel Chebyshev Method for Parabolic

Initial Boundary Value Problems,” Computers and Fluids, vol. 11, no. 2, pp. 107–120,

1983.

282

[103] B. D. Welfert, “Generation of Pseudospectral Differentiation Matrices I,” SIAM

Journal on Numerical Analysis, vol. 34, no. 4, pp. 1640–1657, 1997.

[104] E. M. Elbarbary and S. M. El-Sayed, “Higher Order Pseudospectral Differentiation

Matrices,” Applied Numerical Mathematics, vol. 55, no. 4, pp. 425–438, 2005.

[105] T. Braconnier, V. Fraysse, and J. Rioual, “ARNCHEB users’ guide: Solution of Large

Non Symmetric or Non Hermitian Eigenvalue Problems by the Arnoldi-Tchebycheff

Method,” tech. rep., University of Minnesota, 1997.

[106] R. J. Radke, “A Matlab Implementation of the Implicitly Restarted Arnoldi Method

for Solving Large-Scale Eigenvalue Problems,” Master’s thesis, Rice University, 1996.

[107] J. Scott, “An Arnoldi Code for Computing Selected Eigenvalues of Sparse, Real,

Unsymmetric Matrices,” ACM Transactions on Mathematical Software, vol. 21, no. 4,

pp. 432–475, 1995.

[108] D. Sorensen, “Implicit Application of Polynomial Filters in a k-Step Arnoldi method,”

SIAM Journal on Matrix Analysis and Applications, vol. 13, no. 1, pp. 357–385, 1992.

[109] D. Watkins, The Matrix Eigenvalue Problem: GR and Krylov Subspace Methods.

Society for Industrial and Applied Mathematics Philadelphia, PA, USA, 2007.

[110] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes

in C: The Art of Scientific Programming. Cambridge U. Press, 1992.

[111] D. Lemonnier and P. Van Dooren, “Balancing Regular Matrix Pencils,” SIAM Journal

on Matrix Analysis and Applications, vol. 28, no. 1, pp. 253–263, 2007.

[112] J. Wilkinson and C. Reinsch, Handbook for Automatic Computation.-Vol. 2: Linear

Algebra. Springer, 1971.

283

[113] R. C. Ward, “Balancing the Generalized Eigenvalue Problem,” SIAM Journal on

Scientific and Statistical Computing, vol. 2, no. 2, pp. 141–152, 1981.

[114] B. Parlett and C. Reinsch, “Balancing a Matrix for Calculation of Eigenvalues and

Eigenvectors,” Numerische Mathematik, vol. 13, no. 4, pp. 293–304, 1969.

[115] J. C. F. Francis, “The QR Transformation-Part 2,” The Computer Journal, vol. 4,

pp. 332–345, 1962. article.

[116] J. C. F. Francis, “The QR Transformation: A Unitary Analogue to the LR

Transformation-Part 1,” The Computer Journal, vol. 4, pp. 265–272, 1961. article.

[117] H. Rutishauser, “Solution of Eigenvalue Problems with the LR Transformation,”

National Bureau Standards Applied Mathematics Series, vol. 49, pp. 47–81, 1958.

article.

[118] J. Wilkinson, The Algebraic Eigenvalue Problem. London: Oxford University Press,

1965.

[119] E. Abu-Irshaid, J. Majdalani, and G. Casalis, “Hydrodynamic Instability of the

Bidirectional Vortex,” in 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference

and Exhibit, AIAA Paper 2005-4531, (Tuscon, Arizona), July 2005.

[120] P. Drazin and W. Reid, Hydrodynamic Stability. Cambridge University, 1985.

[121] M. Gaster, “The Growth of Three-Dimensional Disturbances in Inviscid Flows,”

Journal of Fluid Mechanics, vol. 43, no. 04, pp. 837–839, 1970.

[122] J. C. French and J. Majdalani, “Hydrodynamic Stability Analysis of Solid Rocket

Motors with Arbitrary Grain Design,” in 43rd AIAA/ASME/SAE/ASEE Joint

Propulsion Conference and Exhibit, AIAA Paper 2007-5808, 2007.

284

[123] F. Chedevergne, Instabilités Intrinsèques des Moteurs à Propergol Solide. PhD thesis,

L’école Nationale Supérieure de L’aéronautique et de L’espace, Sept 21, 2007 2007.

[124] C. Robitaillié-Montané and G. Casalis, “Méthode de Collocation Spectrale Appliquée

à un Problème de Stabilité donné sous Forme d’équations aux Dérivées Partielles,”

Tech. Rep. RT-1/07895 DMAE, ONERA, March 2003.

[125] E. Merzari, S. Wang, H. Ninokata, and V. Theofilis, “Biglobal Linear Stability Analysis

for the Flow in Eccentric Annular Channels and a Related Geometry,” Physics of

Fluids, vol. 20, p. 114104, 2008.

285

Appendix A

Derivations

286

A.1 Deriving the 1-D Cylindrical LNP Equations

The LNP equations are given by Eqs. (1.12a–1.12d) where they are presented for an

incompressible, viscous, non-reacting flow. We have Continuity:

∂ŭr
∂r

+
ŭr
r

+
1

r

∂ŭθ
∂θ

+
∂ŭz
∂z

= 0 (A.1a)

Radial momentum:

∂ŭr
∂t

+ Ur
∂ŭr
∂r

+ ŭr
∂Ur

∂r
+
Uθ

r

∂ŭr
∂θ

+
ŭθ
r

∂Ur

∂θ
− 2Uθŭθ

r
+ Uz

∂ŭr
∂z

+ ŭz
∂Ur

∂z
+
∂p̆

∂r

= ε

(
∂2ŭr
∂r2

+
1

r

∂ŭr
∂r
− ŭr
r2

+
1

r2
∂2ŭr
∂θ2

− 2

r2
∂ŭθ
∂θ

+
∂2ŭr
∂z2

)
(A.1b)

Tangential momentum:

∂ŭθ
∂t

+ Ur
∂ŭθ
∂r

+ ŭr
∂Uθ

∂r
+
Uθ

r

∂ŭθ
∂θ

+
ŭθ
r

∂Uθ

∂θ
+
Urŭθ
r

+
ŭrUθ

r
+ Uz

∂ŭθ
∂z

+ ŭz
∂Uθ

∂z
+

1

r

∂p̆

∂θ

= ε

(
∂2ŭθ
∂r2

+
1

r

∂ŭθ
∂r
− ŭθ
r2

+
1

r2
∂2ŭθ
∂θ2

+
2

r2
∂ŭr
∂θ

+
∂2ŭθ
∂z2

)
(A.1c)

Axial momentum:

∂ŭz
∂t

+ Ur
∂ŭz
∂r

+ ŭr
∂Uz

∂r
+
Uθ

r

∂ŭz
∂θ

+
ŭθ
r

∂Uz

∂θ
+ Uz

∂ŭz
∂z

+ ŭz
∂Uz

∂z
+
∂p̆

∂z

= ε

(
∂2ŭz
∂r2

+
1

r

∂ŭz
∂r

+
1

r2
∂2ŭz
∂θ2

+
∂2ŭz
∂z2

)
(A.1d)

An arbitrary fluctuation can be further defined to assume the form of the one-dimensional

normal mode such that

m̆(r, θ, z, t) = m(r) exp[i(qθ + αz − ωt)] (A.2)

287

In general m(r) is a complex amplitude function representing the amplitude of oscillations.

The tangential wave number, q, must take integer values. Although it is often set to zero

at the onset of analysis, we will include it for completeness. The wave number, α, and the

frequency, ω, are further identified as the combination of a real and imaginary component

α = αr + iαi; ω = ωr + iωi (A.3)

where αr is the longitudinal wave number, and ωr is the circular frequency. Simple factoring

of Eq. (A.2) clearly shows that the amplitude growth depends on ωi with respect to time

and αi with respect to z:

m̆(r, θ, z, t) = m(r)e−αiz+ωitei(qθ+αrz−ωrt) (A.4)

Either a positive ωi or a negative αi would signal wave amplification in time or space,

respectively. The spatial period is then dictated by αr and the temporal frequency by ωr.

Making these substitutions into Eqs. (1.9a–1.9d) results in the cylindrical Local

nonparallel (LNP) equations for one-dimensional stability analysis. We find

Continuity:
dur
dr

+
ur
r

+ iq
uθ
r

+ iαuz = 0 (A.5a)

Radial momentum:

− iωur + Ur
dur
dr

+ ur
∂Ur

∂r
+ iq

Uθur
r

+
uθ
r

∂Ur

∂θ
− 2

Uθuθ
r

+ iαUzur + uz
∂Ur

∂z
+

dp

dr

= ε

(
d2ur
dr2

+
1

r

dur
dr
− ur
r2
− q2ur

r2
− 2iq

uθ
r2
− α2ur

)
(A.5b)

288

Tangential momentum:

− iωuθ + Ur
duθ
dr

+ ur
∂Uθ

∂r
+ iq

Uθuθ
r

+
uθ
r

∂Uθ

∂θ
+
Uruθ
r

+
urUθ

r
+ iαUzuθ + uz

∂Uθ

∂z
+ iq

p

r

= ε

(
d2uθ
dr2

+
1

r

duθ
dr
− uθ
r2
− q2uθ

r2
+ 2iq

ur
r2
− α2uθ

)
(A.5c)

Axial momentum:

− iωuz + Ur
duz
dr

+ ur
∂Uz

∂r
+ iq

Uθuz
r

+
uθ
r

∂Uz

∂θ
+ iαUzuz + uz

∂Uz

∂z
+ iαp

= ε

(
d2uz
dr2

+
1

r

duz
dr
− q2uz

r2
− α2uz

)
(A.5d)

These equations have no assumptions beyond the stability theory applied. They allow for

nonsymmetric, fully three dimensional, base flow with incompressible instabilities in all three

directions.

A.2 Deriving the Cylindrical Biglobal Stability Equa-

tions

In general, the derivation of the biglobal stability equations follows that of the LNP equations

with the exception of the inclusion of a two-dimensional, biglobal, normal mode rather than

the traditional one-dimensional form. In fact, we can begin with Eqs. (1.12a–1.12d) and

consider a modal ansatz of the form

m̆ = m (r, z) exp [i (qθ − ωt)] (A.6)

To understand the applicability of this type of modal decomposition, we consider the parallel

flow assumption as it pertains to classic, one-dimensional stability given by Eq. (1.14).

289

Accordingly, we assume a weak (or no) dependence of the base flow on the axial and

tangential coordinates. This situation represents one extreme. The other being no

assumptions about the base flow by allowing the amplitude function to be dependent on

all three coordinates. For most analytic base flows, this is not necessary. For instance, the

Taylor-plane or Taylor-Culick flows are two-dimensional and, as such, a two-dimensional

perturbation becomes a natural assumption. Biglobal theory lies between the two extremes.

The criterion for parallel-flow is modified to include streamwise variations. Here we assume

∂M

∂θ
� ∂M

∂r
and

∂M

∂θ
� ∂M

∂z
(A.7)

At the outset, the variation in the third direction becomes small compared to the first two

[41]. Here we also insist that perturbations in the third direction are periodic given that q

is an integer mode number. In the limit as ∂M/∂z → 0, the one-dimensional normal mode

analysis is recovered. This confirms that the LNP stability equations are a subset of a larger

system of partial differential equations.

Since the normal mode no longer includes a spatial wave number, we no longer have a

“spatial” theory similar to the one-dimensional approach. Rather, we have a fully computed,

two-dimensional spatial waveform. This approach captures spatial instability globally and,

hence, is more illuminating as to the spatial character of the hydrodynamic wave. It is

important to realize that a waveform with an initially high amplitude and low growth rate

may be as destructive to the instantaneous velocity as a small amplitude wave with high

growth rate. Historically, the physical waveform is neglected in favor of considering only

the growth rate. The lack of a clear spatial theory forces us to reconsider the balance

between waveform and growth rate when comparing one and two-dimensional results. We

do, however, retain the familiar temporal theory by defining ω = ωr + iωi. Then the normal

mode takes the form

m̆(r, θ, z, t) = m(r)eωitei(qθ−ωrt) (A.8)

290

To make progress, we apply the biglobal ansatz to return our general biglobal stability

equations. After much scrutiny we find

Continuity:
∂ur
∂r

+
ur
r

+ iq
uθ
r

+
∂uz
∂z

= 0 (A.9a)

Radial momentum:

− iωur + Ur
∂ur
∂r

+ ur
∂Ur

∂r
+ iq

Uθur
r

+
uθ
r

∂Ur

∂θ
− 2Uθuθ

r
+ Uz

∂ur
∂z

+ uz
∂Ur

∂z
+
∂p

∂r

= ε

(
∂2ur
∂r2

+
1

r

∂ur
∂r
− ur
r2
− q2

r2
ur − 2iq

r2
uθ +

∂2ur
∂z2

)
(A.9b)

Tangential momentum:

− iωuθ + Ur
∂uθ
∂r

+ ur
∂Uθ

∂r
+ iq

Uθuθ
r

+
uθ
r

∂Uθ

∂θ
+
Uruθ
r

+
urUθ

r
+ Uz

∂uθ
∂z

+ uz
∂Uθ

∂z
+ iq

p

r

= ε

(
∂2uθ
∂r2

+
1

r

∂uθ
∂r
− uθ
r2
− q2

r2
uθ +

2iq

r2
ur +

∂2uθ
∂z2

)
(A.9c)

Axial momentum:

− iωuz + Ur
∂uz
∂r

+ ur
∂Uz

∂r
+ iq

Uθuz
r

+
uθ
r

∂Uz

∂θ
+ Uz

∂uz
∂z

+ uz
∂Uz

∂z
+
∂p

∂z

= ε

(
∂2uz
∂r2

+
1

r

∂uz
∂r
− q2

r2
uz +

∂2uz
∂z2

)
(A.9d)

In some cases, it may be preferable to express these equations in terms of the streamfunction

because many base flows are two-dimensional or three dimensional but decoupled. If applica-

ble, this has distinct advantages. The first being the reduced computational requirements for

the resolution of less dependent variables. Related to the first, differentiating and summing

the streamfunction equations can eliminate the pressure terms and reduce the system of

four equations to a single equation [1, 123]. However, by keeping this system in general

291

form, we can construct a general algorithm that extends our capabilities to analyze base

flows including weakly asymmetric properties and three-dimensional vector fields. A similar

construction for the biglobal stability equations in Cartesian coordinates is discussed by

Robitaillié-Montané and Casalis [124] and in Bipolar coordinates by Merzari et al. [125].

292

Appendix B

Numerical Codes

293

B.1 Polynomial Interpolation

This code generates Fig. 3.2. Its purpose is to illustrate the errors accrued by the Runge

phenomenon; however, it works equally well in forming equispaced or Chebyshev polynomial

approximations by changing the function f .

Algorithm B.1.1. Equispaced and Chebyshev Interpolation (Matlab)

input : The polynomial order N

output : Interpolating polynomials plotted against the original function

% Equ i s v s Cheb In t e r po l a t i on .m

% Find equispaced and Chebyshev polynomial s

close a l l ;

N = 16 ; i =1;

xx = - 1 . 0 1 : . 0 0 5 : 1 . 0 1 ;

i f i ==1, x = - 1 + 2∗ (0 :N)/N; end % equispaced po ints

i f i ==2, x = cos (pi ∗ (0 :N)/N) ; end % Chebyshev po ints

f = 1./(1+16∗x . ˆ 2) ;

p = polyfit (x , f ,N) ; % i n t e r p o l a t i o n

pp = polyval (p , xx) ; % eva luat i on o f i n t e r po l an t

plot (x , f , ' . ' , ' marker s i ze ' , 13)

l ine (xx , pp , ' l i newidth ' , . 8)

f igure

s c a t t e r (x , zeros (1 ,N+1))

Here we introduce two new functions, polyfit and polyval. The first determines the

coefficients of the N th order polynomial with the value f at the collocation points x. The

second evaluates the polynomial at all points contained within xx. This function allows a

smooth function to be plotted even with a coarse collocation grid. We will refrain from

using this in further examples in favor of more stable methods. Algorithm B.4.1 employs

barycentric interpolation, which if applied here, returns a stable result even for the equally

spaced discretization but this defeats the purpose of the example.

294

B.2 Chebyshev Interpolating Polynomial Generator

This code will generate the N th order Chebyshev polynomial defined by Eqs. (3.8–3.9) in

the text and restated here as

ΠNf(ξ) =

N∑
i=0

f(ξi)λi(ξ) (B.1)

and

λi(ξ) = (−1)i+1

(
1− ξ2
ξ − ξi

)[
T ′
N−1(θ)

diN2

]
(B.2)

where ξ = cos(iπ/N) and θ = arccos ξ.

Please note that throughout the document we used the nomenclature N to denote the

order of discretization. However, N is protected in Mathematica so we concede to using

simply n.

Algorithm B.2.1. Chebyshev Interpolating Polynomials (Mathematica)

input : The order n of Chebyshev polynomial to be used

295

output : The nth order Chebyshev interpolating polynomial

(*Trefethen-Chebyshev Polynomial Generator.nb*)

(*Find Chebyshev Polynomials of order n*)

n = 2;

For [j = 2, j < n− 1, j++, dj = 1]

d1 = 2; dn = 2;

For[j = 1, j < n+ 1, j ++, ξj = Cos[(j + 1)π/(n− 1)]];

θ = ArcCos[ξ];

Tp[n]:=(n− 1)
Sin[(n− 1)θ]

Sin[θ]
;

Simplify

[
n∑

i=1

(−1)i1− ξ
2

ξ − ξi
Tp[n]

di(n− 1)2
fi

]

B.3 Chebyshev Pseudo-Spectral Differentiation Ma-

trix Generator

This section of code is the work of Weideman and Reddy [97] and can be downloaded

at http://www.mathworks.com/matlabcentral/fileexchange/29. It is a powerful tool and

utilized throughout this research. For completeness, it is listed here as well.

Algorithm B.3.1. Chebyshev Pseudo-Spectral Differentiation Matrix (Matlab)

input : The number of collocation points, N and the number of derivatives to compute, M

output : The N ×N , 1−M th order Chebyshev pseudo-spectral differentiation matrix

296

function [x , DM] = chebd i f (N, M)

% The f unc t i on [x , DM] = chebd i f (N,M) computes the d i f f e r e n t i a t i o n

% matr i ces D1 , D2 , . . . , DM on Chebyshev nodes .

%

% Input :

% N: S i z e o f d i f f e r e n t i a t i o n matrix .

% M: Number o f d e r i v a t i v e s r equ i r ed (i n t e g e r) .

% Note : 0 < M ≤ N- 1 .

%

% Output :

% DM: DM(1 :N, 1 :N, e l l) conta ins e l l - th d e r i v a t i v e matrix , e l l =1. .M.

%

% The code implements two s t r a t e g i e s f o r enhanced

% accuracy sugges ted by W. Don and S . Solomonoff i n

% SIAM J . Sc i . Comp. Vol . 6 , pp . 1253 - - 1268 (1994) .

% The two s t r a t e g i e s are (a) the use o f t r i g onomet r i c

% i d e n t i t i e s to avoid the computation o f d i f f e r e n c e s

% x(k) - x(j) and (b) the use o f the ” f l i p p i n g t r i c k ”

% which i s neces sary s i n c e s i n t can be computed to high

% r e l a t i v e p r e c i s i o n when t i s smal l whereas s i n (p i - t) cannot .

% Note added May 2003: I t may , in f act , be s l i g h t l y be t t e r not to

% implement the s t r a t e g i e s (a) and (b) . P l ease con su l t the f o l l ow i ng

% paper f o r d e t a i l s : ” Spec t r a l D i f f e r e n c i n g with a Twist ” , by

% R. Bal tensperger and M.R. Trummer , to appear in SIAM J . Sc i . Comp.

% J .A.C. Weideman , S .C. Reddy 1998. Help notes modi f i ed by

% JACW, May 2003.

I = eye (N) ; % Iden t i ty matrix .

L = l o g i c a l (I) ; % Log i ca l i d e n t i t y matrix .

n1 = f loor (N/2) ; n2 = ce i l (N/2) ; % Ind i c e s used f o r f l i p p i n g t r i c k .

k = [0 :N- 1] ' ; % Compute theta vector .

th = k∗pi /(N- 1) ;

x = sin (pi ∗ [N- 1 : - 2 : 1 -N] ' / (2 ∗ (N- 1))) ; % Compute Chebyshev po ints .

T = repmat (th /2 ,1 ,N) ;

DX = 2∗ sin (T'+T) . ∗ sin (T ' -T) ; % Tr igonometr ic i d e n t i t y .

DX = [DX(1 : n1 , :) ; - rot90 (DX(1 : n2 , :) , 2)] ; % Fl ipp ing t r i c k .

DX(L) = ones (N, 1) ; % Put 1 ' s on the main d iagona l o f DX.

C = toepl itz ((- 1) . ˆ k) ; % C i s the matrix with

297

C(1 , :) = C(1 , :) ∗ 2 ; C(N, :) = C(N, :) ∗ 2 ; % e n t r i e s c (k)/ c (j)

C(: , 1) = C(: , 1) / 2 ; C(: ,N) = C(: ,N)/2 ;

Z = 1./DX; % Z conta ins e n t r i e s 1/(x (k) - x(j))

Z(L) = zeros (N, 1) ; % with ze r o s on the d iagona l .

D = eye (N) ; % D conta ins d i f f . matr i ce s .

for e l l = 1 :M

D = e l l ∗Z .∗ (C.∗ repmat (diag (D) , 1 ,N) - D) ; % Off - d i agona l s

D(L) = -sum(D ') ; % Correct main d iagona l o f D

DM(: , : , e l l) = D; % Store cur r ent D in DM

end

B.4 Chebyshev Interpolation

This section of code is the work of Weideman and Reddy [97] and can be downloaded

at http://www.mathworks.com/matlabcentral/fileexchange/29. It is acts to calculate the

polynomial interpolant from discretized equations.

Algorithm B.4.1. Chebyshev Interpolation (Matlab)

input : The collocation points, ξ, and the function values, f

output : The polynomial interpolant

function p = cheb int (fk , x)

% The f unc t i on p = cheb int (fk , x) computes the polynomial i n t e r po l an t

% of the data (xk , f k) , where xk are the Chebyshev nodes .

% Two or more data po ints are assumed .

%

% Input :

% fk : Vector o f y - c oo r d i na t e s o f data , at Chebyshev po ints

% x(k) = cos ((k - 1)∗ pi /(N- 1)) , k = 1 . . .N.

% x : Vector o f x - va lues where polynomial i n t e r po l an t i s to be eva luated .

%

% Output :

% p : Vector o f i n t e r po l a t ed va lues .

%

298

% The code implements the ba r yc en t r i c formula ; s ee page 252 in

% P. Henr ic i , E s s e n t i a l s o f Numerical Analys i s , Wiley , 1982.

% (Note that i f some fk > 1/ eps , with eps the machine eps i l on ,

% the value o f eps in the code may have to be reduced .)

% J .A.C. Weideman , S .C. Reddy 1998

fk = fk (:) ; x = x (:) ; % Make sur e data are column vec to r s .

N = length (f k) ;

M = length (x) ;

xk = sin (pi ∗(N- 1 : - 2 : 1 -N) '/ (2∗ (N- 1))) ; % Compute Chebyshev po ints .

w = ones (N, 1) . ∗ (- 1) . ˆ (0 :N- 1) ' ; % w = weights f o r Chebyshev formula

w(1) = w(1) / 2 ; w(N) = w(N)/2 ;

D = x (: , ones (1 ,N)) - xk (: , ones (1 ,M)) ' ; % Compute quan t i t i e s x - x (k)

D = 1 . / (D+eps ∗(D==0)); % and th e i r r e c i p r o c a l s .

p = D∗(w.∗ f k) . / (D∗w) ; % Evaluate i n t e r po l an t as

% matr ix - vector products .

The key to effectively using this code is to realize that it is only useful if the input xk

is defined between [−1, 1] even though any other calculations can be done over any interval.

B.5 Computing a Spectral Derivative

This code calculates the spectral derivative of sin(x) from [0, 2π].

Algorithm B.5.1. Computing a Spectral Derivative

input : The number of collocation points, N and the function, f to differentiate

output : The spectral derivative of function f

% App of Spec Di f f .m

% Finding a s p e c t r a l d e r i v a t i v e

close a l l ; clc ; clear

N=7; % Def ine Number o f Points

A=0;B=2∗pi ; % Def ine the l e f t and r i gh t bounds , r e s p e c t i v e l y

[xi ,D]= chebd i f (N, 1) ; % Compute Co l l o ca t i on po ints and Der i vat i ve Matrix

299

x=B/2∗(x i+1) -A/2∗(x i - 1) ; % Convert back to the o r i g i n a l domain

d dx=2/(B-A)∗D(: , : , 1) ;% Convert the Spec t r a l d e r i v a t i v e s back to the domain

f=d dx∗ sin (x) ;

xx=linspace (0 ,2∗ pi) ; % Def ine a f i n e r g r i d spac ing f o r smooth p l o t t i n g

plot (xx , cos (xx) , 'b ')

hold on

plot (xx , cheb int (f , linspace (- 1 , 1)) , ' r ') % Plot the r e s u l t s

B.6 A First order ODE with Chebyshev Collocation

This code uses spectral methods to solve the first order ODE given by

f ′(x) + cos(x)f(x) = 0 with f(0) = 1 (B.3)

Algorithm B.6.1. Example: A First Order ODE with Chebyshev Collocation

input : The number of collocation points, N , the spectral operator matrices, and boundary

conditions

output : The solution to the ODE

% Cheb 1st Order ODE .m

% ODE Solver us ing Chebyshev Co l l o ca t i on Methods

close a l l ; clc ; clear

N=20; % Def ine Number o f Points

A=0;B=pi ; % Def ine the l e f t and r i gh t bounds , r e s p e c t i v e l y

a=1; % Def ine the f unc t i on at the bounds

[xi ,D]= chebd i f (N, 1) ; % Compute Co l l o ca t i on po ints and Der i vat i ve Matrix

x=B/2∗(x i+1) -A/2∗(x i - 1) ; % Convert back to the o r i g i n a l domain

d dx=2/(B-A)∗D(: , : , 1) ;% Convert the Spec t r a l d e r i v a t i v e s back to the domain

I=eye (N) ; % Def ine the i d en t i t y matrix

Bvec=zeros (N, 1) ; % Def ine the f o r c i n g f unc t i on

Amat=d dx+diag (cos (4∗ x))∗ I ; % Def ine the matrix 'A'

Amat(N, :)= I (N , :) ; % Def ine the l e f t B.C. operator

Bvec (N)=a ; % Def ine the l e f t B.C. value

f=Amat\Bvec ; % Solve the equat ion Af=B

300

s c a t t e r (x , f , ' . ' , ' r ') % Plot the s p e c t r a l s o l u t i o n

hold on % Plot the exact s o l u t i o n

xx=linspace (A,B) ; % Def ine a f i n e r g r i d spac ing f o r smooth p l o t t i n g

F=exp (- 1/4∗ sin (4∗ xx)) ;

P=cheb int (f , linspace (- 1 , 1)) ;

plot (xx ,F, 'b ' , xx ,P, ' r ') % Plot the r e s u l t s

[V, I]=max(F ' -P) ; % Determine the Maximum Local Error

% ===

% Test f o r c o r r e c t s o l u t i o n v ia numer i ca l l y s ub s t i t u t i n g i n to gov eq .

% ===

% Test the inner nodes

% -

s ub t e s t=d dx∗ f+diag (cos (4∗ x))∗ f ; i =2:N- 1 ;

disp (['Back s ub s t i t u t i o n r e s u l t s i n ' num2str(max(max(abs (s ub t e s t (i)))))])

% -

% Test the boundary cond i t i on s

% -

% Ax,Bx - ->

Ax check=Bvec (N) - f (N) ;

disp ('Boundary cond i t i on check : ')

disp (['Ax er r o r ' num2str(max(abs (Ax check)))])

% ===

% Test f o r c o r r e c t s o l u t i o n v ia comparison with the Exact s o l u t i o n

% ===

disp (['Max Local Error : ' , num2str(V) , ' at ' , num2str(xx (I))])

disp ([' Error from Solv ing Af=B: ' num2str(norm(Amat∗ f - Bvec))])

B.7 A Second Order BVP with Chebyshev Collocation

This code uses spectral methods to solve the BVP given by

f ′′(x) + xf ′(x) + f(x) = x with

⎧⎨
⎩f(0) = 0

f(4) = 1
(B.4)

Algorithm B.7.1. Example: A Second Order BVP with Chebyshev Collocation

input : The number of collocation points, N , the spectral operator matrices, and boundary

301

conditions

output : The solution to the BVP

% Cheb 2nd Order ODE .m

% ODE Solver us ing Chebyshev Co l l o ca t i on Methods

clc ; c l f ; clear ;

N=20; % Def ine Number o f Points

A=0;B=4; % Def ine the l e f t and r i gh t bounds , r e s p e c t i v e l y

a=0;b=1; % Def ine the f unc t i on at the bounds

[xi ,D]= chebd i f (N, 1) ; % Compute Co l l o ca t i on po ints and Der i vat i ve Matrix

x=B/2∗(x i+1) -A/2∗(x i - 1) ; % Convert back to the o r i g i n a l domain

d dx=2/(B-A)∗D(: , : , 1) ;% Convert the Spec t r a l d e r i v a t i v e s back to the domain

d2 dx2=d dx ˆ2 ;

Q=diag (x) ; % Def ine the c o e f f i c i e n t

Bvec=x ; % Def ine the f o r c i n g f unc t i on

I=eye (N) ; % Def ine the i d en t i t y matrix

Amat=d2 dx2+Q∗d dx+I ; % Def ine the matrix 'A'

Amat(1 , :)= I (1 , :) ; % Def ine the r i gh t B.C. operator

Amat(N, :)= I (N , :) ; % Def ine the l e f t B.C. operator

Bvec(1)=b ; % Def ine the r i gh t B.C. value

Bvec (N)=a ; % Def ine the l e f t B.C. value

f=Amat\Bvec ; % Solve the equat ion Af=B

s c a t t e r (x , f , ' . ' , ' r ') % Plot the s p e c t r a l s o l u t i o n

hold on % Plot the exact s o l u t i o n

xx=linspace (A,B) ; % Def ine a f i n e r g r i d spac ing f o r smooth p l o t t i n g

F=xx/2 -mfun('dawson ' , xx/ sqrt (2)) /mfun ('dawson ' ,2∗ sqrt (2)) ;

P=cheb int (f , linspace (- 1 , 1)) ;

plot (xx ,F, 'b ' , xx ,P, ' r ') % Plot the r e s u l t s

[V, I]=max(F ' -P) ; % Determine the Maximum Local Error

% ===

% Test f o r c o r r e c t s o l u t i o n v ia numer i ca l l y s ub s t i t u t i n g i n to gov eq .

% ===

% Test the inner nodes

% -

s ub t e s t=d2 dx2 ∗ f+Q∗d dx∗ f+f - Bvec ; i =2:N- 1 ;

disp (['Back s ub s t i t u t i o n r e s u l t s i n ' num2str(max(max(abs (s ub t e s t (i)))))])

% -

% Test the boundary cond i t i on s

302

% -

% Ax,Bx - ->

Ax check=Bvec (N) - f (N) ;

Bx check=Bvec (1) - f (1) ;

disp ('Boundary cond i t i on check : ')

disp (['Ax er r o r ' num2str(max(abs (Ax check))) . . .

' Bx er r o r ' num2str(max(abs (Bx check)))])

% ===

% Test f o r c o r r e c t s o l u t i o n v ia comparison with the Exact s o l u t i o n

% ===

disp (['Max Local Error : ' , num2str(V) , ' at ' , num2str(xx (I))])

disp ([' Error from Solv ing Af=B: ' num2str(norm(Amat∗ f - Bvec))])

B.8 Systems of ODEs with Chebyshev Collocation

This code uses spectral methods to solve the system of ODEs

⎧⎨
⎩f

′′(x) + xf ′(x)− g(x) = sin(4x)

g′′(x) + g′(x) + f(x) = cos(4x)
with

⎧⎨
⎩f(0) = 1; f ′(0) = 10

g(0) = 1; g′(0) = 0
(B.5)

Algorithm B.8.1. Example: A System of ODEs with Chebyshev Collocation

input : The number of collocation points, N , the spectral operator matrices, and boundary

conditions

output : The solution to the System of ODES

% Systems of ODEs .m

% ODE Solver us ing Chebyshev Co l l o ca t i on Methods

clc ; c l f ; clear ;

N=20; % Def ine Number o f Points

i =1:1 :N; j =1:1 :N; % Def ine i t e r a t o r s f o r s imp l i c i t y o f programming

A=0;B=10; % Def ine the l e f t and r i gh t bounds , r e s p e c t i v e l y

[xi ,D]= chebd i f (N, 1) ; % Compute Co l l o ca t i on po ints and Der i vat i ve Matrix

x=B/2∗(x i+1) -A/2∗(x i - 1) ; % Convert back to the o r i g i n a l domain

d dx=2/(B-A)∗D(: , : , 1) ;% Convert the Spec t r a l d e r i v a t i v e s back to the domain

303

d2 dx2=d dx ˆ2 ;

I=eye (N) ; % Def ine the i d en t i t y matrix

Bvec=zeros (2∗N, 1) ; % A l l o ca t e space f o r B

Amat=zeros (2∗N,2∗N) ; % Al l o ca t e space f o r A

% -

Bvec (i)=sin (4∗x) ; % Def ine the f o r c i n g f unc t i on from Eq . 1

Bvec (N+i)=cos (4∗x) ; % Def ine the f o r c i n g f unc t i on from Eq . 2

Amat(i , j)=d2 dx2+diag (x)∗ d dx ; % Def ine the operator on f from Eq . 1

Amat(i ,N+j)= - I ; % Def ine the operator on g from Eq . 1

Amat(N+i , j)= I ; % Def ine the operator on f from Eq . 2

Amat(N+i ,N+j)=d2 dx2+d dx ; % Def ine the operator on g from Eq . 2

Amat(1 , j)=d dx (N, :) ; % Def ine the IV operator on f from BC on f

Amat(1 ,N+j)=0; % Def ine the IV operator on g from BC on f

Bvec (1)=10; % Def ine the IV on f

Amat(N, j)=I (N , :) ; % Def ine the BC operator on f from BC on f

Amat(N,N+j)=0; % Def ine the BC operator on g from BC on f

Bvec (N)=1; % Def ine the BC on f

Amat(N+1, j)=0; % Def ine the IV operator on f from BC on g

Amat(N+1,N+j)=d dx (N, :) ; % Def ine the IV operator on g from BC on g

Bvec (N+1)=0; % Def ine the IV on g

Amat(2∗N, j)=0; % Def ine the BC operator on f from BC on g

Amat(2∗N,N+j)=I (N, :) ; % Def ine the BC operator on g from BC on g

Bvec (2∗N)=1; % Def ine the BC on g

% -

f=Amat\Bvec ; % Solve the equat ion Af=B

% f=pinv (Amat)∗Bvec ;

s c a t t e r (x , f (i) , ' . ' , ' r ') % Plot the s p e c t r a l s o l u t i o n f o r u

hold on

s c a t t e r (x , f (N+i) , ' . ' , ' c ') % Plot the s p e c t r a l s o l u t i o n f o r y

xx=linspace (A,B) ; % Def ine a f i n e r g r i d spac ing f o r smooth p l o t t i n g

P1=cheb int (f (1 :N) , linspace (- 1 , 1)) ; % In t e r p o l a t e f o r u

P2=cheb int (f (N+1:2∗N) , linspace (- 1 , 1)) ; % In t e r p o l a t e f o r y

plot (xx , P1 , ' r ' , xx , P2 , ' c ') % Plot the r e s u l t s

% ===

% Test f o r c o r r e c t s o l u t i o n v ia numer i ca l l y s ub s t i t u t i n g i n to gov eq .

% ===

% Test the inner nodes

% -

s ub t e s t1=d2 dx2∗ f (1 :N)+diag (x)∗ d dx∗ f (1 :N) - f (N+1:2∗N) - sin (4∗x) ;

s ub t e s t2=d2 dx2∗ f (N+1:2∗N)+d dx∗ f (N+1:2∗N)+ f (1 :N) - cos (4∗x) ;

304

i =2:N- 1 ;

disp (['Back s ub s t i t u t i o n r e s u l t s i n ' . . .

num2str(max(max(abs (s ub t e s t1 (i)))))])

disp (['Back s ub s t i t u t i o n r e s u l t s i n ' . . .

num2str(max(max(abs (s ub t e s t2 (i)))))])

% -

% Test the boundary cond i t i on s

% -

% Ax,Bx - ->

Ax check=Bvec (1) - d dx (N, :) ∗ f (1 :N) ;

Bx check=Bvec (N) - f (N) ;

Ay check=Bvec (N+1) - d dx (N, :) ∗ f (N+1:2∗N) ;

By check=Bvec (2∗N) - f (2∗N) ' ;

disp ('Boundary cond i t i on check : ')

disp (['Ax er r o r ' num2str(max(abs (Ax check))) . . .

' Bx er r o r ' num2str(max(abs (Bx check)))])

disp (['Ax er r o r ' num2str(max(abs (Ay check))) . . .

' Bx er r o r ' num2str(max(abs (By check)))])

% ===

disp ([' Error from Solv ing Af=B: ' num2str(norm(Amat∗ f - Bvec))])

This system can still use Matlab’s built-in Gaussian elimination command Amat\Bvec
to solve the system. For singular or nearly singular systems it becomes necessary to

approximate the inverse with the command pinv(Amat) ∗ Bvec. This command is slower

and slightly less accurate, but may be the only option for some problems.

B.9 Eigenvalue Problems for ODEs

This code uses spectral methods to solve the eigenvalue problem

x2f ′′(x) + xf ′(x) + μ2x2f(x) = 0 with

⎧⎨
⎩f ′(0) = 0

f(10) = 0
(B.6)

305

Algorithm B.9.1. Example: Eigenvalue Problems for ODEs

input : The number of collocation points, N , the spectral operator matrices

output : The eigenvalues and eigenvectors

% Cheb Bes se l E igs .m

% ODE Eigenvalue Problem So lver us ing Chebyshev Co l l o ca t i on Methods

% Besse l Equation

clear ; clc ; close a l l

N=20; % Def ine Number o f Points

A=0;B=10; % Def ine the l e f t and r i gh t bounds , r e s p e c t i v e l y

a=0;b=1; % Def ine the f unc t i on at the bounds

[xi ,D]= chebd i f (N, 1) ; % Compute Co l l o ca t i on po ints and Der i vat i ve Matrix

x=B/2∗(x i+1) -A/2∗(x i - 1) ; % Convert back to the o r i g i n a l domain

d dx=2/(B-A)∗D(: , : , 1) ;% Convert the Spec t r a l d e r i v a t i v e s back to the domain

d2 dx2=d dx ˆ2 ;

I=eye (N) ; % Def ine the i d en t i t y matrix

% -

% Def ine the Genera l i ze Eigenvalue Problem Af - lam∗Bf=0

% -

Amat=diag (x . ˆ2)∗ d2 dx2+diag (x)∗ d dx ; % Def ine the matrix 'A'

Bmat=diag (x . ˆ 2) ; % Def ine the matrix 'B '

Amat(1 , :)= I (1 , :) ; % Def ine the r i gh t B.C. in the 'A' matrix

Amat(N, :)= d dx (N, :) ; % Def ine the l e f t B.C. in the 'A' matrix

Bmat(1 , :)=0 ; % Def ine the r i gh t B.C. in the 'B ' matrix

Bmat(N, :)=0 ; % Def ine the l e f t B.C. in the 'B ' matrix

% -

[V,Lam]=eig (Amat , -Bmat) ;

Lam = diag (Lam) ; Lam2=Lam; % th i s f o r c e s +- i n f i n t y to the bottom

[foo , i i] = sort (abs (Lam2)) ; % so r t and index the e i g enva l u e s

% -

lam = sqrt (Lam(i i)) ; % Compute the e i g o f the o r i g i n a l problem and

V = V(: , i i) ; % r eo r de r the e i g enva l u e s and e i g envec to r s

disp ('The f i r s t 5 e i g enva l u e s are ')

format l ong ; disp (lam (1 : 5)) ; format shor t ;

for j = 1 : 1 : 5 % Plot the e i g envec to r s aga i n s t the Be s s e l J 0 s o l u t i o n

i f V(N, j)<0; V(: , j)= -V(: , j) ; end % Correct the s i gn s o f the e i g envec to r s

% ===

% Test f o r c o r r e c t s o l u t i o n v ia numer i ca l l y s ub s t i t u t i n g i n to gov eq .

306

% ===

% Test the inner nodes

% -

s ub t e s t=diag (x . ˆ2)∗ d2 dx2 ∗V(: , j)+ . . .

diag (x)∗ d dx∗V(: , j)+lam (j)ˆ2∗diag (x . ˆ2)∗V(: , j) ;

disp (['Back s ub s t i t u t i o n r e s u l t s i n ' . . .

num2str(max(max(abs (s ub t e s t))))])

% -

% Test the boundary cond i t i on s

% -

% Ax,Bx - ->

Dx=d dx∗V(: , j) ;

Ax check=0-Dx(N) ;

Bx check=0-V(1 , j) ;

% Bx ,By - ->

disp ('Boundary cond i t i on check : ')

disp (['Ax er r o r ' num2str(max(abs (Ax check))) . . .

' Bx er r o r ' num2str(max(abs(Bx check)))])

% ===

plot (x ,V(: , j) , ' . ' , ' marker s i ze ' , 1 2) ;hold on

xx = linspace (A,B) ; P=cheb int (V(: , j) , linspace (- 1 , 1)) ;

F=b e s s e l j (0 , lam (j)∗xx) ;

plot (xx ,F , 'b ' , xx ,P, ' r ') % Plot the r e s u l t s

[E, I]=max(F ' -P) ; % Determine the Maximum Local Error

disp (['Max Local Error : ' , num2str(E) , ' at ' , num2str(xx (I))])

end

disp (' Normalized Eigenvalues : ') % Display the normal ized e i g enva l u e s

format l ong ; disp (lam (1 : 5)∗ (B-A)) ; format shor t ;

The eigenvectors V are the solution to the differential equation with the corresponding

eigenvalues. In this case, it returns the Bessel function of the first kind.

307

B.10 A Parabolic Partial Differential Equation with

Variable Coefficients

This code uses spectral methods to solve the PDE

fy = cos[y(1− x)]fxx − xf (B.7)

with boundary conditions ⎧⎪⎪⎪⎨
⎪⎪⎪⎩
f(x, 0) = −2 cos(πx)
fx(0, y) = 0

fx(1, y) = −2
(B.8)

Algorithm B.10.1. Example: Parabolic PDE w/ Variable Coefficients

input : The number of collocation points, N , the spectral operator matrices, and boundary

conditions

output : The two-dimensional solution

% Cheb Heat PDE V3 .m

% PDE Solver us ing Chebyshev Co l l o ca t i on Methods with nonzero BC' s

% f y - cos (y∗(1 - x))∗ f xx+x∗ f=0

clc ; c l f ; clear ;

%% Set up the Grid and Independent Var i ab l e s and th e i r De r i va t i v e s :

% ===

N = 20; % Def ine the number o f po ints in the x and y d i r e c t i o n s

Ax=0;Bx=1; % Def ine the l e f t and r i gh t bounds in x , r e s p e c t i v e l y

Ay=0;By=1; % Def ine the l e f t and r i gh t bounds in y , r e s p e c t i v e l y

[xi ,D] = chebd i f (N, 1) ; % Def ine x c o l l o c a t i o n nodes and s p e c t r a l d e r i v a t i v e

eta = xi ; % Def ine the y c o l l o c a t i o n po ints

x=Bx/2∗(x i +1) -Ax/2∗(x i - 1) ; % Convert back to the o r i g i n a l domain

y=By/2∗(eta+1) -Ay/2∗(eta - 1) ; % Convert back to the o r i g i n a l domain

d dx=2/(Bx-Ax)∗D(: , : , 1) ; % Convert the x d e r i v a t i v e s back to the domain

d dy=2/(By-Ay)∗D(: , : , 1) ; % Convert the y d e r i v a t i v e s back to the domain

d2 dx2=d dx ˆ2 ; % Compute h igher d e r i v a t i v e s

308

d2 dy2=d dy ˆ2 ;

I = eye (N) ; % Def ine the i d en t i t y matrix

[xx , yy] = meshgrid(x , y) ; % Mesh the g r i d

xx = xx (:) ; yy = yy (:) ; % Convert the meshed g r i d to vec to r s to match the

% tensor product form of the governing eq .

% and map the boundary cond i t i on s

%% Def ine the Operator Matrix

% ===

I I=eye (Nˆ2) ; % Def ine an i d en t i t y matrix the s i z e o f Amat

% Def ine the s p e c t r a l operator matrix

Amat = kron (I , d dy) -diag (cos ((1 - xx) . ∗ yy)) ∗ kron (d2 dx2 , I)+diag (xx)∗ I I ;

% -

% Impose boundary cond i t i on s by r ep l a c i ng appropr i a te e lements

% -

Axbc = find (xx==Ax) ; Bxbc = find (xx==Bx) ; % Find and s to r e the l o c a t i o n s

% of the x boundar ies in

% order to f i nd the po ints

% in the operator matrix

Aybc = find (yy==Ay) ; Bybc = find (yy==By) ; % Find and s to r e the l o c a t i o n s

% of the y boundar ies in

% order to f i nd the po ints

% in the operator matrix

% -

% Def ine the d i f f e r e n t i a t i o n matrix f o r boundary cond i t i on s

DDy=kron (I , d dy) ;DDx=kron (d dx , I) ;

% -

% Superimpose rows cor r espond ing to the boundary cond i t i on s over the

% operator matrix . The rows have been found and s tor ed

% in Axbv Bxbc Aybc Bybc

% -

Amat(Axbc , :) = DDx(Axbc , :) ;

Amat(Bxbc , :) = DDx(Bxbc , :) ;

Amat(Aybc , :) = I I (Aybc , :) ;

% Amat(Bybc , :) = I I (Bybc , :) ;

% ===

%% Def ine the RHS f o r c i n g f unc t i on

% ===

Bvec = zeros (Nˆ2 , 1) ; % Def ine the f o r c i n g f unc t i on as the B vector

% -

% Def ine the value o f the Boundary Condit ions

309

% -

Bvec (Axbc) = 0 ; % Def ine u(x , y) at x=Ax

Bvec (Bxbc) = - 2 ; % Def ine u(x , y) at x=Bx

Bvec (Aybc) = - 2∗cos (pi∗xx (Aybc)) ; % Def ine u(x , y) at y=Ay

% Bvec (Bybc) = 0 ; % Def ine u(x , y) at y=By

% ===

% Solve the equat ion and reshape to 2D

% ===

f = Amat\Bvec ; % Solve the equat ion

% f=pinv (Amat)∗Bvec ;

f f = reshape (f ,N,N) ; % Convert the vector s o l u t i o n to x and y matrix form

% ===

% Test f o r c o r r e c t s o l u t i o n v ia numer i ca l l y s ub s t i t u t i n g i n to gov eq .

% ===

% Test the inner nodes

% -

Dx=zeros (N,N) ;

Dy=zeros (N,N) ;

for i =1:N

Dx(i , :)= (d2 dx2∗ f f (i , :) ') ;

Dy (: , i)=d dy∗ f f (: , i) ;

end

yy=reshape (yy ,N,N) ; xx=reshape (xx ,N,N) ; % Reshape back to matrix form

sub te s t=Dy- cos (yy .∗ (1 - xx)) . ∗Dx+xx .∗ f f - reshape (Bvec ,N,N) ; i =2:N- 1 ;

disp (['Back s ub s t i t u t i o n r e s u l t s i n ' . . .

num2str(max(max(abs (s ub t e s t (i , i)))))])

% -

% Test the boundary cond i t i on s

% -

% Ax,Bx - ->

for i =1:N

Dx(i , :)= (d dx∗ f f (i , :) ') ;

end

Ax check=Bvec (Axbc) -Dx(: ,N) ; % This i s the f i r s t column

Bx check=Bvec (Bxbc) -Dx (: , 1) ;

% Bx ,By - ->

Ay check=Bvec (Aybc) - f f (N, :) ' ;

By check=Bvec (Bybc) - f f (1 , :) ' ;

disp ('Boundary cond i t i on check : ')

disp (['Ax er r o r ' num2str(max(abs (Ax check (1 :N- 1)))) . . .

310

' Bx er r o r ' num2str(max(abs (Bx check (1 :N- 1))))])

disp (['Ay er r o r ' num2str(max(abs (Ay check)))])

% ===

% Set up f i n e r gr id , i n t e r p o l a t e over f i n e gr id , and p l o t

% ===

xgr id=2∗N; ygr id=2∗N; % Def ine the number i f i n t e r p l a t i o n po ints

gr idspacex=linspace (Ax ,Bx , xgr id) ; % Def ine a f i n e r g r i d spac ing f o r x space

gr idspacey=linspace (Ay ,By , ygr id) ; % Def ine a f i n e r g r i d spac ing f o r y space

[xxx , yyy] = meshgrid(gr idspacex , gr idspacey) ; % Def ine the f i n e r g r i d mesh

P=zeros (N, xgr id) ; % Pr ea l l o ca t e the x i n t e r p o l a t i o n polynomial

PP=zeros (ygr id , xgr id) ; % Pr ea l l o ca t e the y i n t e r p o l a t i o n polynomial

% -

% I t e r p o l a t e in the s o l u t i o n in the x d i r e c t i o n

% -

for i =1:N

P(i , :)= cheb int (f f (i , :) , linspace (- 1 , 1 , xgr id)) ;

end

% -

% I t e r p o l a t e in the s o l u t i o n in the y d i r e c t i o n

% -

for j =1: xgr id

PP(: , j)=cheb int (P(: , j) , linspace (- 1 , 1 , ygr id)) ;

end

% -

% Plot the s o l u t i o n

% -

mesh(xxx , yyy ,PP) , colormap ([0 0 0])

% ax i s ([0 1 0 1 0 1])

xlabel x , ylabel y , zlabel f

disp ([' Error from Solv ing Af=B: ' num2str(norm(Amat∗ f - Bvec))])

311

B.11 The Time-Independent Poisson Equation with a

Sinusoidal Forcing Function

This code uses spectral methods to solve the PDE

fxx + fyy = 10 sin [8x(y − 1)] , −1 < x, y < 1, f = 0 at all boundaries (B.9)

Algorithm B.11.1. Example: Poisson’s Equation

input : The number of collocation points, N , the spectral operator matrices, and boundary

conditions

output : The two-dimensional solution

% Cheb Poisson PDE .m

% PDE Solver us ing Chebyshev Co l l o ca t i on Methods

% f {xx}+ f {yy}=10∗ s i n (8 x (y - 1))

%% Set up the Grid and Independent Var i ab l e s and th e i r De r i va t i v e s :

% ===

clc ; c l f ; clear ;

N = 20 ; % Def ine the number o f po ints in the x and y d i r e c t i o n s

Ax=- 1 ;Bx=1; % Def ine the l e f t and r i gh t bounds in x , r e s p e c t i v e l y

Ay=- 1 ;By=1; % Def ine the l e f t and r i gh t bounds in y , r e s p e c t i v e l y

[xi ,D] = chebd i f (N, 1) ; % Def ine x c o l l o c a t i o n nodes and s p e c t r a l d e r i v a t i v e

eta = xi ; % Def ine the y c o l l o c a t i o n po ints

x=Bx/2∗(x i +1) -Ax/2∗(x i - 1) ; % Convert back to the o r i g i n a l domain

y=By/2∗(eta+1) -Ay/2∗(eta - 1) ; % Convert back to the o r i g i n a l domain

d dx=2/(Bx-Ax)∗D(: , : , 1) ; % Convert the x d e r i v a t i v e s back to the domain

d dy=2/(By-Ay)∗D(: , : , 1) ; % Convert the y d e r i v a t i v e s back to the domain

d2 dx2=d dx ˆ2 ; % Compute h igher d e r i v a t i v e s

d2 dy2=d dy ˆ2 ;

I = eye (N) ; % Def ine the i d en t i t y matrix

[xx , yy] = meshgrid(x , y) ; % Mesh the g r i d

xx = xx (:) ; yy = yy (:) ; % Convert the meshed g r i d to vec to r s to match the

% tensor product form of the governing eq .

% and map the boundary cond i t i on s

312

%% Def ine the Operator Matrix

% ===

% Def ine the s p e c t r a l operator matrix

Amat = kron (d2 dx2 , I) + kron (I , d2 dy2) ;

% -

% Impose boundary cond i t i on s by r ep l a c i ng appropr i a te e lements

% -

Axbc = find (xx==Ax) ; Bxbc = find (xx==Bx) ; % Find and s to r e the l o c a t i o n s

% of the x boundar ies in

% order to f i nd the po ints

% in the operator matrix

Aybc = find (yy==Ay) ; Bybc = find (yy==By) ; % Find and s to r e the l o c a t i o n s

% of the y boundar ies in

% order to f i nd the po ints

% in the operator matrix

% -

% Superimpose rows cor r espond ing to the boundary cond i t i on s over the

% operator matrix . The rows have been found and s tor ed

% in Axbv Bxbc Aybc Bybc

% -

I I=eye (Nˆ2) ; % Def ine an i d en t i t y matrix the s i z e o f Amat

% DDx=kron (I , d dx) ; % Def ine the l a r g e r d i f f e r e n t i a t i o n matrix

% DDy=kron (d dy , I) ;

Amat(Axbc , :) = I I (Axbc , :) ;

Amat(Bxbc , :) = I I (Bxbc , :) ;

Amat(Aybc , :) = I I (Aybc , :) ;

Amat(Bybc , :) = I I (Bybc , :) ;

%% Def ine the RHS f o r c i n g f unc t i on

% ===

Bvec = 10∗ sin (8∗ xx . ∗ (yy - 1)) ; % Def ine the f o r c i n g f unc t i on as the B vector

% -

% Def ine the value o f the Boundary Condit ions

% -

Bvec (Axbc) = 0 ; % Def ine f (x , y) at x=Ax

Bvec (Bxbc) = 0 ; % Def ine f (x , y) at x=Bx

Bvec (Aybc) = 0 ; % Def ine f (x , y) at y=Ay

Bvec (Bybc) = 0 ; % Def ine f (x , y) at y=By

% ===

% Solve the equation , reshape to 2D, and p l o t :

% ===

313

f = Amat\Bvec ; % Solve the equat ion

% f = pinv (Amat)∗Bvec ;

f f = reshape (f ,N,N) ; % Convert the vector s o l u t i o n to x and y matrix form

% ===

% Test f o r c o r r e c t s o l u t i o n v ia numer i ca l l y s ub s t i t u t i n g i n to gov eq .

% ===

% Test the inner nodes

% -

Dx=zeros (N,N) ;

Dy=zeros (N,N) ;

for i =1:N

Dx(i , :)= (d2 dx2∗ f f (i , :) ') ;

Dy (: , i)=d2 dy2 ∗ f f (: , i) ;

end

s ub t e s t=Dy+Dx- reshape (Bvec ,N,N) ; i =2:N- 1 ;

disp (['Back s ub s t i t u t i o n r e s u l t s i n ' . . .

num2str(max(max(abs (s ub t e s t (i , i)))))])

% -

% Test the boundary cond i t i on s

% -

% Ax,Bx - ->

Ax check=Bvec (Axbc) - f f (: ,N) ;

Bx check=Bvec (Bxbc) - f f (: , 1) ;

% Bx ,By - ->

Ay check=Bvec (Aybc) - f f (N, :) ' ;

By check=Bvec (Bybc) - f f (1 , :) ' ;

disp ('Boundary cond i t i on check : ')

disp (['Ax er r o r ' num2str(max(abs (Ax check))) . . .

' Bx er r o r ' num2str(max(abs (Bx check)))])

disp (['Ay er r o r ' num2str(max(abs (Ay check))) . . .

' By er r o r ' num2str(max(abs (By check)))])

% ===

% Set up f i n e r gr id , i n t e r p o l a t e over f i n e gr id , and p l o t

% ===

xgr id=2∗N; ygr id=2∗N; % Def ine the number i f i n t e r p l a t i o n po ints

gr idspacex=linspace (Ax ,Bx , xgr id) ; % Def ine a f i n e r g r i d spac ing f o r x space

gr idspacey=linspace (Ay ,By , ygr id) ; % Def ine a f i n e r g r i d spac ing f o r y space

[xxx , yyy] = meshgrid(gr idspacex , gr idspacey) ; % Def ine the f i n e r g r i d mesh

P=zeros (N, xgr id) ; % Pr ea l l o ca t e the x i n t e r p o l a t i o n polynomial

PP=zeros (ygr id , xgr id) ; % Pr ea l l o ca t e the y i n t e r p o l a t i o n polynomial

314

% -

% I t e r p o l a t e in the s o l u t i o n in the x d i r e c t i o n

% -

for i =1:N

P(i , :)= cheb int (f f (i , :) , linspace (- 1 , 1 , xgr id)) ;

end

% -

% I t e r p o l a t e in the s o l u t i o n in the y d i r e c t i o n

% -

for j =1: xgr id

PP(: , j)=cheb int (P(: , j) , linspace (- 1 , 1 , ygr id)) ;

end

% -

% Plot the s o l u t i o n

% -

mesh(xxx , yyy ,PP) , colormap ([0 0 0])

xlabel x , ylabel y , zlabel f

disp ([' Error from Solv ing Af=B: ' num2str(norm(Amat∗ f - Bvec))])

B.12 Systems of PDEs with Chebyshev Collocation

This code uses spectral methods to solve the system of PDEs

⎧⎨
⎩fxx + xfyy − gx = sin(πx)

gxx + gyy + fx = cos(πx)
with

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

f(0, y) = 0; f(1, y) = 0

f(x, 0) = sin(πx); f(x, 1) = 0

g(0, y) = 0; g(1, y) = 0

gy(x, 0) = 0; g(x, 1) = 1

(B.10)

Algorithm B.12.1. Example: Systems of PDEs

input : The number of collocation points, N , the spectral operator matrices, and boundary

conditions

output : The two-dimensional solution

315

% Systems of PDEs .m

% PDE Solver us ing Chebyshev Co l l o ca t i on Methods with nonzero BC' s

clc ; close a l l ; clear ;

%% Set up the Grid and Independent Var i ab l e s and th e i r De r i va t i v e s :

% ===

N = 20; % Def ine the number o f po ints in the x and y d i r e c t i o n s

Ax=0;Bx=1; % Def ine the l e f t and r i gh t bounds in x , r e s p e c t i v e l y

Ay=0;By=1; % Def ine the l e f t and r i gh t bounds in y , r e s p e c t i v e l y

[xi ,D]= chebd i f (N, 1) ;% Def ine the c o l l o c a t i o n po ints and s p e c t r a l d e r i v a t i v e

eta = xi ; % Def ine the y c o l l o c a t i o n po ints

x=Bx/2∗(x i +1) -Ax/2∗(x i - 1) ; % Convert back to the o r i g i n a l domain

y=By/2∗(eta+1) -Ay/2∗(eta - 1) ; % Convert back to the o r i g i n a l domain

d dx=2/(Bx-Ax)∗D(: , : , 1) ; % Convert the x d e r i v a t i v e s back to the domain

d dy=2/(By-Ay)∗D(: , : , 1) ; % Convert the y d e r i v a t i v e s back to the domain

d2 dx2=d dx ˆ2 ; % Compute h igher d e r i v a t i v e s

d2 dy2=d dy ˆ2 ;

I = eye (N) ; % Def ine the i d en t i t y matrix

[xx , yy] = meshgrid(x , y) ; % Mesh the g r i d

xx = xx (:) ; yy = yy (:) ; % Convert the meshed g r i d to vec to r s to match the

% tensor product form of the governing eq .

% and map the boundary cond i t i on s

%% Def ine the Operator Matrix

% ===

j =1:1:Nˆ2 ;

% Def ine the operator on f from Eq . 1

Amat(j , j) = kron (d2 dx2 , I)+ diag (xx)∗kron (I , d2 dy2) ;

% Def ine the operator on g from Eq . 1

Amat(j ,Nˆ2+ j) = -kron (d dx , I) ;

% Def ine the operator on f from Eq . 2

Amat(Nˆ2+j , j) = kron (d dx , I) ;

% Def ine the operator on g from Eq . 2

Amat(Nˆ2+j ,Nˆ2+ j) = kron (d2 dx2 , I)+ kron (I , d2 dy2) ;

%% Def ine Boundary Condit ions

% -

% Impose boundary cond i t i on s by r ep l a c i ng appropr i a te e lements

% -

Axbc = find (xx==Ax) ; Bxbc = find (xx==Bx) ; % Find and s to r e the l o c a t i o n s

% of the x boundar ies in

% order to f i nd the po ints

% in the operator matrix

316

Aybc = find (yy==Ay) ; Bybc = find (yy==By) ; % Find and s to r e the l o c a t i o n s

% of the y boundar ies in

% order to f i nd the po ints

% in the operator matrix

% -

% Superimpose rows cor r espond ing boundary cond i t i on s over the operator

% matrix . The rows have been found and s tor ed in Axbv Bxbc Aybc Bybc

% -

I I=eye (Nˆ2) ; % Def ine an i d en t i t y matrix the s i z e o f Amat

DDy=kron (I , d dy) ;

DDx=kron (d dx , I) ; % Def ine the d i f f e r e n t i a t i o n matrix f o r BCs

% ===

%% Def ine the RHS f o r c i n g f unc t i on

% ===

Bvec (j ,1)= sin (pi∗xx) ; % Def ine the f o r c i n g f unc t i on from Eq . 1

Bvec (Nˆ2+j ,1)= cos (pi∗xx) ; % Def ine the f o r c i n g f unc t i on from Eq . 2

% -

% Impose the ' f ' boundary cond i t i on s on the block matr i ce s r ep r e s en t i ng the

% f i r s t equation

% -

% f (0 , y) and f (1 , y)

Amat(Axbc , j) = I I (Axbc , :) ; % Def ine the IV operator on f from BC on f

Amat(Axbc ,Nˆ2+ j)=0∗ I I (Axbc , :) ; % Def ine the IV operator on g from BC on f

Bvec (Axbc) = 0 ; % Def ine the IV on f

Amat(Bxbc , j) = I I (Bxbc , :) ; % Def ine the BC operator on f from BC on f

Amat(Bxbc ,Nˆ2+ j)=0∗ I I (Bxbc , :) ; % Def ine the BC operator on g from BC on f

Bvec (Bxbc) = 0 ; % Def ine the BC on f

% f (x , 0) and f (x , 1)

Amat(Aybc , j) = I I (Aybc , :) ; % Def ine the IV operator on f from BC on f

Amat(Aybc ,Nˆ2+ j)=0∗ I I (Aybc , :) ; % Def ine the IV operator on g from BC on f

Bvec (Aybc) = sin (pi∗xx (Aybc)) ; % Def ine the IV on f

Amat(Bybc , j) = I I (Bybc , :) ; % Def ine the BC operator on f from BC on f

Amat(Bybc ,Nˆ2+ j)=0∗ I I (Bybc , :) ; % Def ine the BC operator on g from BC on f

Bvec (Bybc) = sin (pi∗xx (Bybc)) ; % Def ine the BC on f

% g (0 , y) and g (1 , y)

Amat(Nˆ2+Axbc , j)=0∗ I I (Axbc , :) ; % Def ine the IV operator on f from BC on g

Amat(Nˆ2+Axbc ,Nˆ2+ j)= I I (Axbc , :) ; % Def ine the IV operator on g from BC on g

Bvec (Nˆ2+Axbc)=0; % Def ine the IV on g

317

Amat(Nˆ2+Bxbc , j)=0∗ I I (Bxbc , :) ; % Def ine the BC operator on f from BC on g

Amat(Nˆ2+Bxbc ,Nˆ2+ j)= I I (Bxbc , :) ; % Def ine the BC operator on g from BC on g

Bvec (Nˆ2+Bxbc)=0; % Def ine the BC on g

% g(x , 0) and g (x , 1)

Amat(Nˆ2+Aybc , j)=0∗DDy(Aybc , :) ; % Def ine the IV operator on f from BC on g

Amat(Nˆ2+Aybc ,Nˆ2+ j)=DDy(Aybc , :) ;% Def ine the IV operator on g from BC on g

Bvec (Nˆ2+Aybc)=0; % Def ine the IV on g

Amat(Nˆ2+Bybc , j)=0∗ I I (Bybc , :) ; % Def ine the BC operator on f from BC on g

Amat(Nˆ2+Bybc ,Nˆ2+ j)= I I (Bybc , :) ; % Def ine the BC operator on g from BC on g

Bvec (Nˆ2+Bybc)=0; % Def ine the BC on g

% ===

% Solve the equat ion and reshape to 2D

% ===

f = Amat\Bvec ; % Solve the equat ion

% f=pinv (Amat)∗Bvec ;

f f = reshape (f (j) ,N,N) ;% Convert the vector s o l u t i o n to x and y matrix form

gg = reshape (f (Nˆ2+ j) ,N,N) ;

% ===

% Test f o r c o r r e c t s o l u t i o n v ia numer i ca l l y s ub s t i t u t i n g i n to gov eq .

% ===

% Test the inner nodes

% -

Dxf=zeros (N,N) ;

Dyf=zeros (N,N) ;

Dxxf=zeros (N,N) ;

Dyyf=zeros (N,N) ;

Dxg=zeros (N,N) ;

Dyg=zeros (N,N) ;

Dxxg=zeros (N,N) ;

Dyyg=zeros (N,N) ;

for i =1:N

Dxxf (i , :)= (d2 dx2 ∗ f f (i , :) ') ;

Dxf (i , :)= (d dx∗ f f (i , :) ') ;

Dyyf (: , i)=d2 dy2∗ f f (: , i) ;

Dyf (: , i)=d dy∗ f f (: , i) ;

318

Dxxg(i , :)= (d2 dx2 ∗gg (i , :) ') ;

Dxg(i , :)= (d dx∗gg (i , :) ') ;

Dyyg (: , i)=d2 dy2∗gg (: , i) ;

Dyg (: , i)=d dy∗gg (: , i) ;

end

yy=reshape (yy ,N,N) ; xx=reshape (xx ,N,N) ; % Reshape back to matrix form

sub te s t1=Dxxf+xx .∗Dyyf -Dxg - reshape (Bvec (j) ,N,N) ;

s ub t e s t2=Dxxg+Dyyg+Dxf - reshape (Bvec (Nˆ2+ j) ,N,N) ; i =2:N- 1 ;

disp (['Back s ub s t i t u t i o n r e s u l t s i n ' . . .

num2str(max(max(abs (s ub t e s t1 (i , i)))))])

disp (['Back s ub s t i t u t i o n r e s u l t s i n ' . . .

num2str(max(max(abs (s ub t e s t2 (i , i)))))])

% -

% Test the boundary cond i t i on s

% -

% BCs on f

Ax check=Bvec (Axbc) - f f (: ,N) ;

Bx check=Bvec (Bxbc) - f f (: , 1) ;

Ay check=Bvec (Aybc) - f f (N, :) ' ;

By check=Bvec (Bybc) - f f (1 , :) ' ;

disp ('Boundary cond i t i on check f o r f (x , y) : ')

disp (['Ax er r o r ' num2str(max(abs (Ax check))) . . .

' Bx er r o r ' num2str(max(abs (Bx check)))])

disp (['Ay er r o r ' num2str(max(abs (Ay check))) . . .

' By er r o r ' num2str(max(abs (By check)))])

% -

% BCs on g

Ax check=Bvec (Nˆ2+Axbc) - gg (: ,N) ;

Bx check=Bvec (Nˆ2+Bxbc) - gg (: , 1) ;

Ay check=Bvec (Nˆ2+Aybc) -Dyg(N, :) ' ;

By check=Bvec (Nˆ2+Bybc) - gg (1 , :) ' ;

disp ('Boundary cond i t i on check f o r g (x , y) : ')

disp (['Ax er r o r ' num2str(max(abs (Ax check (1 :N- 1)))) . . .

' Bx er r o r ' num2str(max(abs (Bx check)))])

disp (['Ay er r o r ' num2str(max(abs (Ay check))) . . .

' By er r o r ' num2str(max(abs (By check)))])

% ===

319

% Set up f i n e r gr id , i n t e r p o l a t e over f i n e gr id , and p l o t

% ===

xgr id=2∗N; ygr id=2∗N; % Def ine the number i f i n t e r p l a t i o n po ints

gr idspacex=linspace (Ax ,Bx , xgr id) ; % Def ine a f i n e r g r i d spac ing f o r the x

gr idspacey=linspace (Ay ,By , ygr id) ; % Def ine a f i n e r g r i d spac ing f o r the y

[xxx , yyy] = meshgrid(gr idspacex , gr idspacey) ; % Def ine the f i n e r g r i d mesh

Pf=zeros (N, xgr id) ; % Pr ea l l o ca t e the x i n t e r p o l a t i o n polynomial

PPf=zeros (ygr id , xgr id) ; % Pr ea l l o ca t e the y i n t e r p o l a t i o n polynomial

Pg=zeros (N, xgr id) ; % Pr ea l l o ca t e the x i n t e r p o l a t i o n polynomial

PPg=zeros (ygr id , xgr id) ; % Pr ea l l o ca t e the y i n t e r p o l a t i o n polynomial

% -

% In t e r p o l a t e in the s o l u t i o n in the x d i r e c t i o n

% -

for i =1:N

Pf (i , :)= cheb int (f f (i , :) , linspace (- 1 , 1 , xgr id)) ;

Pg(i , :)= cheb int (gg (i , :) , linspace (- 1 , 1 , xgr id)) ;

end

% -

% In t e r p o l a t e in the s o l u t i o n in the y d i r e c t i o n

% -

for j =1: xgr id

PPf (: , j)=cheb int (Pf (: , j) , linspace (- 1 , 1 , ygr id)) ;

PPg (: , j)=cheb int (Pg (: , j) , linspace (- 1 , 1 , ygr id)) ;

end

% -

% Plot the s o l u t i o n

% -

f igure

mesh(xxx , yyy , PPf) , colormap ([0 0 0])

xlabel x , ylabel y , zlabel f

f igure

mesh(xxx , yyy ,PPg) , colormap ([0 0 0])

xlabel x , ylabel y , zlabel g

disp ([' Error from Solv ing Af=B: ' num2str(norm(Amat∗ f - Bvec))])

320

B.13 Eigenvalue Problems for PDEs

This code uses spectral methods to solve the Helmholtz equation

fxx + fyy + μf = 0, 0 ≤ x, y ≤ L, f = 0 on all boundaries (B.11)

Algorithm B.13.1. Example: Eigenvalue Problems for PDEs

input : The number of collocation points, N , the spectral operator matrices

output : The eigenvalues and eigenvectors

% Cheb PDE Eigs .m

% Set up tensor product Laplacian and compute 4 eigenmodes :

% f xx+f yy+\lambda∗ f=0

clc ; c l f ; clear ;

% ===

N = 30; % Def ine the number o f po ints in the x and y d i r e c t i o n s

Ax=0;Bx=1; % Def ine the l e f t and r i gh t bounds in x , r e s p e c t i v e l y

Ay=0;By=1; % Def ine the l e f t and r i gh t bounds in y , r e s p e c t i v e l y

[xi ,D] = chebd i f (N, 1) ; % Def ine x c o l l o c a t i o n nodes and s p e c t r a l d e r i v a t i v e

eta = xi ; % Def ine the y c o l l o c a t i o n po ints

x=Bx/2∗(x i +1) -Ax/2∗(x i - 1) ; % Convert back to the o r i g i n a l domain

y=By/2∗(eta+1) -Ay/2∗(eta - 1) ; % Convert back to the o r i g i n a l domain

d dx=2/(Bx-Ax)∗D(: , : , 1) ; % Convert the x d e r i v a t i v e s back to the domain

d dy=2/(By-Ay)∗D(: , : , 1) ; % Convert the y d e r i v a t i v e s back to the domain

d2 dx2=d dx ˆ2 ; % Compute h igher d e r i v a t i v e s

d2 dy2=d dy ˆ2 ;

I = eye (N) ; % Def ine the i d en t i t y matrix

[xx , yy] = meshgrid(x , y) ; % Mesh the g r i d

xx = xx (:) ; yy = yy (:) ; % Convert the meshed g r i d to vec to r s to match the

% tensor product form of the governing eq .

I I=eye (Nˆ2) ; % Def ine an i d en t i t y matrix the s i z e o f Amat

Amat = kron (d2 dx2 , I) + kron (I , d2 dy2) ; % Laplac ian

% Amat=kron (d2 dx2 , I)+kron (I , d2 dy2) - diag (exp (20∗(yy - xx - 1)));%+ per turbat i on

Bmat = I I ;

Cvec=zeros (Nˆ2 , 1) ;

% -

321

% Impose boundary cond i t i on s by r ep l a c i ng appropr i a te e lements

% -

Axbc = find (xx==Ax) ; Bxbc = find (xx==Bx) ; % Find and s to r e the l o c a t i o n s

% of the x boundar ies in

% order to f i nd the po ints

% in the operator matrix

Aybc = find (yy==Ay) ; Bybc = find (yy==By) ; % Find and s to r e the l o c a t i o n s

% of the y boundar ies in

% order to f i nd the po ints

% in the operator matrix

% -

% Superimpose rows cor r espond ing to the boundary cond i t i on s over the

% operator matrix . The rows have been found and s tor ed

% in Axbv Bxbc Aybc Bybc

% -

I I=eye (Nˆ2) ; % Def ine an i d en t i t y matrix the s i z e o f Amat

DDx=kron (I , d dx) ; % Def ine the l a r g e r d i f f e r e n t i a t i o n matrix

DDy=kron (d dy , I) ;

Amat(Axbc , :) = I I (Axbc , :) ;

Amat(Bxbc , :) = I I (Bxbc , :) ;

Amat(Aybc , :) = I I (Aybc , :) ;

Amat(Bybc , :) = I I (Bybc , :) ;

Bmat(Axbc , :) = 0∗ I I (Axbc , :) ;

Bmat(Bxbc , :) = 0∗ I I (Bxbc , :) ;

Bmat(Aybc , :) = 0∗ I I (Bybc , :) ;

Bmat(Bybc , :) = 0∗ I I (Bybc , :) ;

Cvec (Axbc , :) = 0 ;

Cvec (Bxbc , :) = 0 ;

Cvec (Aybc , :) = 0 ;

Cvec (Bybc , :) = 0 ;

% -

[V,Lam] = eig (Amat , -Bmat) ;

Lam = diag (Lam) ; Lam2=Lam; % th i s f o r c e s +- i n f i n t y to the bottom

[foo , i i] = sort (abs (Lam2)) ;

% -

lam=Lam(i i) ;

V = V(: , i i) ;

322

disp ('The f i r s t 5 e i g enva l u e s are ')

format l ong ; disp (lam (1 : 5)) ; format shor t ;

% ===

% Set up f i n e r gr id , i n t e r p o l a t e over f i n e gr id , and p l o t

% ===

xgr id=2∗N; ygr id=2∗N; % Def ine the number i f i n t e r p l a t i o n po ints

gr idspacex=linspace (Ax ,Bx , xgr id) ; % Def ine a f i n e r g r i d spac ing f o r x space

gr idspacey=linspace (Ay ,By , ygr id) ; % Def ine a f i n e r g r i d spac ing f o r y space

[xxx , yyy] = meshgrid(gr idspacex , gr idspacey) ; % Def ine the f i n e r g r i d mesh

P=zeros (N, xgr id) ; % Pr ea l l o ca t e the x i n t e r p o l a t i o n polynomial

PP=zeros (ygr id , xgr id) ; % Pr ea l l o ca t e the y i n t e r p o l a t i o n polynomial

xx = reshape (xx ,N,N) ; yy = reshape (yy ,N,N) ;

[ay , ax] = meshgrid ([. 5 6 . 0 4] , [. 1 . 5]) ;

for k = 1:4

f f = reshape (V(: , k) ,N,N) ;

% Test f o r c o r r e c t s o l u t i o n v ia numer i ca l l y s ub s t i t u t i n g i n to gov eq .

% ===

% Test the inner nodes

% -

Dx=zeros (N,N) ;

Dy=zeros (N,N) ;

for i =1:N

Dx(i , :)= (d2 dx2∗ f f (i , :) ') ;

Dy(: , i)=d2 dy2∗ f f (: , i) ;

end

s ub t e s t=Dy+Dx+lam (k)∗ f f ;

% sub t e s t=Dy+Dx+(lam (k) - exp (20∗(yy - xx - 1))) . ∗ f f ;

disp (['Back s ub s t i t u t i o n r e s u l t s i n ' . . .

num2str(max(max(abs (s ub t e s t (2 :N- 1 , 2 :N- 1)))))])

% -

% Test the boundary cond i t i on s

% -

% Ax,Bx - ->

Ax check=0- f f (: , end) ;

Bx check=0- f f (: , 1) ;

% Bx ,By - ->

Ay check=0- f f (end , :) ;

By check=0- f f (1 , :) ;

disp ('Boundary cond i t i on check : ')

323

disp (['Ax er r o r ' num2str(max(abs (Ax check))) . . .

' Bx er r o r ' num2str(max(abs(Bx check)))])

disp (['Ay er r o r ' num2str(max(abs (Ay check))) . . .

' By er r o r ' num2str(max(abs(By check)))])

% -

% I t e r p o l a t e in the s o l u t i o n in the x d i r e c t i o n

% -

for i =1:N

P(i , :)= cheb int (f f (i , :) , linspace (- 1 , 1 , xgr id)) ;

end

% -

% I t e r p o l a t e in the s o l u t i o n in the y d i r e c t i o n

% -

for j =1: xgr id

PP(: , j)=cheb int (P (: , j) , linspace (- 1 , 1 , ygr id)) ;

end

subplot (' po s i t i o n ' , [ax (k) ay (k) . 38 . 3 8])

% contour (xxx , yyy ,PP, - . 9 : . 2 : . 9) , colormap ([0 0 0]) , ax i s square

mesh(xxx , yyy ,PP)%, colormap ([0 0 0])

t i t l e ([' e i g = ' num2str(lam (k)/(pi ˆ2/((Bx-Ax)∗ (By-Ay))) , '%18.12 f ') . . .

' \pi ˆ2/Lˆ2 '])

end

disp (' Normalized Eigenvalues : ') % Display the normal ized e i g enva l u e s

format l ong ; disp (lam (1 : 5) ∗ ((Bx-Ax)∗ (By-Ay))) ; format shor t ;

disp ('For the tab l e : ') % Display the normal ized e i g enva l u e s

format l ong ; disp (lam (1 : 2 0) / (pi ˆ2/((Bx-Ax)∗ (By-Ay)))) ; format shor t ;

B.14 Single Matrix Balancing

This code balances the norm of a single matrix following the procedure discussed by

Wilkinson and Reinsch [112].

Algorithm B.14.1. Single Matrix Balancing

input : Matrix Aij

output : The similar, balanced matrix Aij

324

%% Matrix Balancing

% ===

% This algor i thm ' balances ' nonsymmetric matr i ce s . This procedure i s o f

% order Nˆ2 ope r a t i on s . The time taken i s smal l i n comparison to other

% algor i thms invo lved in c a l c u l a t i n g e i g enva l u e s . I t i s recommended to

% ALWAYS balance nonsymmetric matr i ce s . I t doesn ' t hurt and can

% s i g n i f i c a n t l y inprove the accuracy in some ca s e s .

% ”The e r r o r s in the eigensystem found by a numer ical procedure are

% gene r a l l y p r opo r t i ona l to the Eucl idean norm of the matrix , that i s ,

% to the square root o f the sum of the squar es o f the el ements . The idea

% of ba l anc ing i s to use s im i l a r i t y t rans f ormat i ons to make cor r espond ing

% rows and columns o f the matrix have compar ible norms , thus reducing the

% o v e r a l l norm of the matrix whi le l e av i ng the e i g enva l u e s unchanged . ”

% - from Numerical Recipes in C: The Art o f S c i e n t i f i c Computing .

% This method works works f o r any matrix , r e a l or complex . I f being

% tr an s f e r ed to another language a method f o r c a l c u l a t i n g the abs () o f a

% complex number must be wr i t ten . | x+i ∗y|= sqr t (xˆ2+yˆ2)=modulus

clear ; close a l l ; clc ;

%% Def ine Matrix

% ===

A=rand (5) ; % Generate a random matrix

disp (e i g s (A)) % Display the o r i g i n a l e i g enva l u e s

%% I n i t i a l i z e Parameters

% ===

RADIX=2; % the base or rad ix i s u sua l l y the number o f unique d i g i t s ,

% inc l ud i ng zero , that a p o s i t i o n a l numeral system uses to r ep r e s en t

% numbers . For example , f o r the decimal system (the most common system

% in use today) the rad ix i s 10 , because i t uses the 10 d i g i t s from

% 0 through 9 . To avoid rounding e r r o r s , exact powers o f the rad ix base

% are used f o r f l o a t i n g point a r i thmet i c .

sqrdx=RADIX∗RADIX;

l a s t =0;

[m n]= size (A) ;

325

%% Begin Algorithm

% ===

while l a s t==0

l a s t =1;

for I =1:1:n

r=0; c=0;

% Cal cu l ate the ' taxicab ' norms o f the matrix | | x | |=sum (| x |)
% ===

for J=1:1:n

i f J �=I

c=c+abs (A(J , I)) ; % abs () i s the abso lute modulus f o r

% complex numbers

r=r+abs (A(I , J)) ; % same goes f o r t h i s one

end

end

i f c �=0 && r �=0 % i f both are nonzero

g=r /RADIX;

f =1;

s=c+r ;

% Find the i n t e g e r power o f the machine rad ix that i s c l o s e s t to ba lanc ing

% the matrix

% ===

while c<g

f=f ∗RADIX;

c=c∗ sqrdx ;

end

g=r ∗RADIX;

while c>g

f=f /RADIX;

c=c/ sqrdx ;

end

i f (c+r)/ f <0.95∗ s

l a s t =0;

g=1/ f ;

% Apply s im i l a r i t y t rans f ormat i on

% ===

326

for J=1:1:n

A(I , J)=A(I , J)∗ g ;

end

for J=1:1:n

A(J , I)=A(J , I)∗ f ;

end

% ===

end

end

end

end

disp (e i g s (A)) % Ver i f y the e i g enva l u e s have not changed

B.15 Matrix Pencil Balancing

This code balances the norm of a matrix pencil following the procedure by Lemonnier and

Van Dooren [111].

Algorithm B.15.1. Matrix Pencil Balancing

input : Matrix pencil matrices Aij and Bij

output : The similar, balanced matrix pencil matrices Aij and Bij

function [A B] = Genera l i zed Ba lance (A,B)

% Lemonnier and Van Dooren

% Performs two - s ided s c a l i n g DL\A∗DR, DL\B∗DR in order to improve

% the s e n s i t i v i t y o f g ene r a l i z ed e i g enva l u e s . The d iagona l matr i ce s

% DL and DR are cons tra ined to powers o f 2 and are computed i t e r a t i v e l y

% un t i l the number o f i t e r a t i o n s max iter i s met or un t i l the norms are

% between 1/2 and 2 . Convergence i s o f ten reached a f t e r 2 or 3 s t ep s .

% The d iagona l s o f the s c a l i n g matr i ce s are returned in DL and DR

% and so i s i t e r , the number o f i t e r a t i o n s s t ep s used by the method .

% c l c ;

% c l e a r ;

% %% Def ine the matrix

% % ===

327

% d=.2; N=7; % dens i ty and matrix s i z e f o r spar ce matrix generat i on

% A=f u l l (sprand (N,N, d)) ;A(2 ,5)=10000; % A, modi f i ed to have poor ba l anc ing

% B=f u l l (sprand (N,N, d)) ;B(6 ,4)=150; % B, modi f i ed to have poor ba l anc ing

% di sp (' Frobenius Norm ') ; d i sp (norm(A, ' f r o ')) ; d i sp (norm(B, ' f r o '))

% e i g (A,B) % o r i g i n a l e i g enva l u e s

%% Def ine Parameters

% ===

max iter =20;

N=size (A, 1) ; % de f i n e the s i z e o f matr ix A

change=zeros (2 ,N) ;

DL=ones (1 ,N) ; DR=ones (1 ,N) ; % i n i t i a l i z e the d iagona l s o f the

% s im i l a r i t y matrix

M=abs (A).ˆ2+abs (B) . ˆ 2 ;

%% Begin Formation o f DL and DR

% ===

for i t e r =1: max iter ,

emax=0; emin=0;

for I =1:N;

% s c a l e the rows o f M to have approximate row sum 1

d=sum(M(I , :)) ;

e=-round (log2 (abs (d)) / 2) ;

M(I , :)=pow2(M(I , :) , 2 ∗ e) ;

% apply the square root s c a l i n g a l s o to A, B and DL

DL(I)=pow2(DL(I) , - e) ;

% th i s i s needed to avoid s i n g u l a r i t y in DL with spar s e matr i ce s

% -

i f DL(I)==i n f | | DL(I)==0

DL(I)=2;

end

% -

i f e > emax , emax=e ; end ;

i f e < emin , emin=e ; end

end

for I =1:N;

% s c a l e the columns o f M to have approximate column sum 1

d=sum(M(: , I)) ; e=-round (log2 (abs (d)) / 2) ;

M(: , I)=pow2(M(: , I) , 2∗ e) ;

% apply the square root s c a l i n g a l s o to A, B and DR

DR(I)=pow2(DR(I) , e) ;

% th i s i s needed to avoid s i n g u l a r i t y in DL with spar s e

328

% matr i ces

% -

i f DR(I)==i n f | | DR(I)==0

DR(I)=1;

end

% -

i f e > emax , emax=e ; end ;

i f e < emin , emin=e ; end

end

i f (emax≤emin+2) , break ; end

% Stop i f norms are a l l between 1/2 and 2

i f i t e r >1 % Stop i f va lues o f DL or DR are not changing

change (1 , 1 :N)=DL; change (2 , 1 :N)=DR;

TEST(1 , 1 :N)=abs (change (1 , 1 :N) -DL) ;

TEST(2 , 1 :N)=abs (change (2 , 1 :N) -DR) ;

i f any(TEST)==0

break ;

end

change (1 , 1 :N)=DL; change (2 , 1 :N)=DR;

end

end

% ===

DR=diag (DR, 0) ; % form the matrix DR

DLI=diag (1 . /DL, 0) ; % ca l c DLˆ(- 1)

A=DLI∗A∗DR;B=DLI∗B∗DR;

% ===

disp (' Frobenius Norm ') ; disp (norm(A, ' f r o ')) ; disp (norm(B, ' f r o '))

% e i g (A,B)

end

The code

% A=rand (1 0) ;A(2 ,5)=100;

% B=rand (1 0) ;B(6 ,4)=150;

A=f u l l (sprand (1 0 , 1 0 , . 1)) ;A(2 ,5)=1000;

B=f u l l (sprand (1 0 , 1 0 , . 1)) ;B(6 ,4)=150;

defines a random matrix of size 10× 10. The function rand creates a random dense matrix,

while sprand creates a sparse matrix of nonzero element density of 0.1. The higher the

329

density number, the less dense the matrix. Since the generalized eigenvalue problem can

exhibit sparsity, it is important to code for both. Both commands generate matrices for

which balancing is unnecessary. The explicitly defined elements A(2, 5) and B(6, 4) are large

and therefore cause imbalance and large norms.

The definitionM = abs(A)2+abs(B)2 is in tune with calculating the norm. The variable

d handles the rest. All calculations are done in M rather than on A and B.

The code snippets

i f DL(I)==i n f | | DL(I)==0

DL(I)=2;

end

% -

i f DR(I)==i n f | | DR(I)==0

DR(I)=1;

end

are required to ensure nonsingular behavior for sparse matrices. From time to time, a zero

element will appear on the diagonal. Since the inverse of a diagonal matrix (the variable

DLI in the code) is 1./diag (i.e. 1/a1,1, 1/a2,2, · · ·1/an,n), a zero on the diagonal will cause

singularity. The code checks for this and replaces it by a small positive number. The selection

of the small positive number is somewhat arbitrary. If we adhere to the powers of the radix,

then 2 is a good candidate. The selection of 1 for DR rather than 2 comes from observing

that for dense matrices, a value of 1 is common and will minimize the norm. Mathematically,

there is little basis for these choices. It is at the discretion of the programmer to select the

best criteria to reduce the norm. The similarity transformation, as defined, is not directly

determined by the diagonal matrices. As long as the desired norm reduction is achieved, any

diagonal matrix is sufficient.

330

Convergence is determined when all the norms are between 1/2 and 2. This usually

takes only two or three iterations. A second stopping criterion occurs if the values of DL

and DR no longer change but this circumstance is rare.

One can verify the effectiveness of this code by calculating the norms before and after

convergence. To further verify, the Matlab command eig(A,′ nobalance′) can be used. This

command only works with a single matrix so we must define Bij = IN (remember to remove

the user defined, large value from Bij . We add the following code before and after the

transformations are applied.

disp (' Frobenius Norm ') ; disp (norm(A, ' f r o ')) ;

eig (A, ' nobalance ') % ONLY BEFORE THE TRANSFORMATIONS ARE APPLIED

eig (A,B)

The first line displays the Frobenius norms of A before balancing is applied. The second

line calculates the eigenvalues of Aij without balancing, therefore computing the eigenvalues

of a poorly conditioned matrix. The third line calculates the balanced eigenvalues of Aij

(remember Bij = IN).

After the transformations are applied Bij �= IN but the eigenvalues are still unchanged.

One can see the significant norm reduction and agreement with the original call, eig(A,B).

B.16 Segregating Nonzero Elements

This algorithm pushes rows and columns containing nonzero elements up and to the left,

respectively, and forces as many nonzero diagonal elements as possible. This increases

stability in the eigensolver and should be implemented before matrix reductions.

Algorithm B.16.1. Segregating Nonzero Elements

input : Matrix pencil matrices Aij and Bij

output : The similar, balanced matrix pencil matrices Aij and Bij

331

%% B Matrix Modi f i cat i on

% ===

% This f unc t i on determines i f ther e i s a zero on the d iagona l . I f ther e

% i s , i t t e s t s the other e lements above i t i n the same column to see i f the

% rows can be swapped to make a nonzero d iagona l element . I f no s u i t a b l e

% element i s found , i t s h i f t s one column to the l e f t and t r i e s again . I f

% an element i s found , i t i s moved from i t s o r i g i n a l l o c a t i o n to the

% diagona l p o s i t i o n in ques t i on by row and column swapping .

function [A B]=B Mod(A,B,N)

% Hessenberg t rans f ormat i on can s t i l l put z e r o s on the d iagona l s

% Zero Column/row t e s t

% This f o r c e s any columns or rows with no nonzero elements to the l e f t and

% top . This should help with d i v i s i o n by zero problems in the trans f orms

% func t i on .

for I=N: - 1 : 2

i f any(B(: , I))== f a l s e % Column t e s t

for J=I - 1 : - 1 : 1

i f any(B(: , J))==true

Y=A(: , I) ;A(: , I)=A(: , J) ;A(: , J)=Y;

Y=B(: , I) ;B(: , I)=B(: , J) ;B(: , J)=Y;

break ;

end

end

end

i f any(B(I , :))== f a l s e % Row t e s t

for J=I - 1 : - 1 : 1

i f any(B(J , :))== true

Y=A(I , :) ; A(I , :)=A(J , :) ; A(J , :)=Y;

Y=B(I , :) ; B(I , :)=B(J , :) ; B(J , :)=Y;

break ;

end

end

end

end

for I=N: - 1 : 2

FLAG=0;

i f B(I , I)==0

for K=I : - 1 : 1

332

for J=I : - 1 : 1

i f B(J ,K) �=0

Y=A(I , :) ; A(I , :)=A(J , :) ; A(J , :)=Y;

Y=B(I , :) ; B(I , :)=B(J , :) ; B(J , :)=Y;

i f K�=I

Y=A(: , I) ;A(: , I)=A(: ,K) ;A(: ,K)=Y;

Y=B(: , I) ;B(: , I)=B(: ,K) ;B(: ,K)=Y;

end

FLAG=1;

break ;

end

end

i f FLAG==1;

break ;

end

end

end

end

end

B.17 Real Symmetric Matrix to Tridiagonal Form

This algorithm converts a real symmetric matrix to real symmetric tridiagonal form using

Householder transformations.

Algorithm B.17.1. Real Symmetric to Tridiagonal

input : Symmetric matrix Aij

output : Symmetric tridiagonal matrix Aij

%% HOUSEHOLDER' S METHOD FOR SYMMETRIC MATRICES

%==

% See ”Householder . pdf ” f o r f u l l a lgor i thm

333

% Householder ' s method i s used f o r s e v e r a l purposes . One being

% or thogona l i z a t i on and one being a method f o r reducing an a rb i t r a r y

% SYMMETRIC matrix to a s im i l a r t r i d i a g ona l matr ix . This i s a neces sary

% form f o r many e i g e n s o l v e r s

% This method al low us to change a REAL, SYMMETRIC n x n matrix A=a(i , j)

% in to a t r i d i a g ona l matr ix with the same s e t o f e i g enva l u e s .

% Let v be a column

% vector with | | v | | 2=1 (| | v | | 2 = sq r t (| v1 |ˆ2+ | v2 |ˆ2+. . .+) b a s i c a l l y the

% magnitude o f the vector) . The Householder t r ans f ormat i on cor r espond ing

% to the vector ”v” i s the or thogona l matr ix

% $$H=I n - 2vv ' $$

% Convention f o r v a r i a b l e s

% a (x , y) : x=row number

% y=column number

% REMINDER: The vec to r s are d i sp l ayed ho r i z o n t a l l y in the matr ix (input and

% output)

% p r o f i l e on

%% DEFINE THE INPUT MATRIX

%==

clear ; close a l l ; clc ; t ic

A = [1 - 1 2 2 ; - 1 2 1 - 1 ; 2 1 3 2 ; 2 - 1 2 1] ;

% A=sprandsym (10 ,10)

%% INITIALIZE PARAMETERS

%==

t o l =10ˆ(- 10) ; % to l e r ance to determine what i s numer i ca l l y zero

[m n]= size (A) ; % automat i ca l l y d e f i n e s the stopping c r i t e r i a f o r the loop

v=zeros (1 , n) ; % i n i t i a l i z e s the vector

k=1;

%% BEGIN CALCULATIONS

%==

while k<n - 1

s=sqrt (sum(A(k+1:n , k) . ˆ 2)) ;

i f s==0

k=k+1;

s=sqrt (sum(A(k+1:n , k) . ˆ 2)) ;

334

end

i f A(k+1,k)<0

SG=- 1 ;

else

SG=1;

end

z=1/2∗(1+SG∗A(k+1,k)/ s) ;

for i =1:k

v (i)=0;

end

v (k+1)=sqrt (z) ;

for i=k+2:n

v (i)=SG∗A(k , i)/(2∗ v (k+1)∗ s) ;

end

v=v ' ;

H=eye (n) - 2∗(v)∗v ' ; % Cal cu l at ing H=I n - 2v ' v

v=v ' ;

A=H∗A∗H; % Def in ing the updated A

k=k+1;

end

% IDENTIFYING NUMERICAL ZERO

%==

% This i s an op t i ona l s e c t i o n that i d e n t i f i e s va lues that are numer i ca l l y

% zero and e x p l i c i t l y s e t s them to zero . This might be important s i n c e

% those va lues COULD introduce s i gn e r r o r s . I don ' t think i t should matter

% though . For l a r g e matr i ce s t h i s could be slow and unnecessary . On

% average t h i s s e c t i o n o f code takes about 0.065 sec f o r a 100 x100 matrix

for i =1:n

for j =1:n

i f abs (A(i , j))≤t o l

A(i , j)=0;

end

end

end

disp (A)

toc

% p r o f i l e viewer

335

B.18 Real Nonsymmetric Matrix to Upper Hessenberg

Form

This algorithm converts a real nonsymmetric matrix to real upper Hessenberg form using

Householder transformations.

Algorithm B.18.1. Real Nonsymmetric to Upper Hessenberg

input : Real nonsymmetric matrix Aij

output : Real upper Hessenberg matrix Aij

%% HOUSEHOLDER' S METHOD FOR ARBITRARY REAL∗ MATRICES

%==

% See Burden and Fai r e s ”Numerical Ana lys i s ” f o r f u l l a lgor i thm . This code

% i s optimized f o r matlab

% Householder ' s method i s used f o r s e v e r a l purposes . One being

% or thogona l i z a t i on and one being a method f o r reducing an a rb i t r a r y

% matrix to an UPPER HESSENBERG matrix . This i s a neces sary

% form f o r many e i g e n s o l v e r s . I f the o r i g i n a l matr ix i s symmetric

% Householder ' s Method w i l l produce a SIMILAR TRIDIAGONAL MATRIX.

% This method al low us to change an a rb i t r a r y n x n matrix A=a(i , j) i n to

% an UPPER HESSENBERG matrix with the same s e t o f e i g enva l u e s . Let w be a

% column vector with | |w | | 2=1 (| |w | | 2 = sq r t (|w1 |ˆ2+ |w2 |ˆ2+. . .+)

% b a s i c a l l y the magnitude o f the vector) .

% The Householder t rans f ormat i on cor r espond ing to the vector ”w” i s the

% or thogona l matr ix

% P=I - 2ww'

% Convention f o r v a r i a b l e s

% a (x , y) : x=row number

% y=column number

% REMINDER: The vec to r s are d i sp l ayed ho r i z o n t a l l y in the matr ix (input and

% output) . Be sur e to transpose the matrix i f t h i s code i s being used as a

% func t i on and vec to r s are pas s es v e r t i c a l l y ! ! ! ! I t ' s done t h i s way f o r

336

% s imp l i c i t y o f input only ! Just be CAREFUL!

% For some reason running t h i s on a upper Hessenberg Matrix r e tu r n s

% oppos i te s i gn s f o r some elements

% ∗ I t works f o r complex matr i ce s as long as the elements below the lower

% subdiagonal are REAL ! ! ! For a complete ly g ene r a l s o l u t i on , t h i s needs

% modi f i ed

close a l l ; clc ; clear

t ic

% p r o f i l e on

%% DEFINE THE INPUT MATRIX

%==

A=rand (1 0) ;

disp (A)

e i g s (A)

%% INITIALIZE PARAMETERS

%==

t o l =10ˆ(- 10) ; % to l e r ance to determine what i s numer i ca l l y zero

[m n]= size (A) ; % automat i ca l l y d e f i n e s the stopping c r i t e r i a f o r the loop

v=zeros (1 , n) ;

%% BEGIN CALCULATIONS

%==

for k=1:n - 2

% CALCULATE ALPHA & RSQ

%==

q=0;

for j=k+1:n

q=q+A(j , k)ˆ2 ;

end

i f A(k+1,k)==0

alpha=- sqrt (q) ;

else

alpha=- (sqrt (q)∗A(k+1,k))/ abs (A(k+1,k)) ;

end

RSQ=alpha ˆ2 - alpha ∗A(k+1,k) ;

337

% CALCULATE THE VECTORS

%==

v(k)=0; v (k+1)=A(k+1,k) - alpha ;

v (k+2:n)=A(k+2:n , k) ;

u=1/RSQ∗A∗v ' ;

y=1/RSQ∗v∗A;

PROD=v∗u ;

z=u - 1/RSQ∗PROD∗v ' ;

% CALCULATE THE MATRIX

%==

for L=k+1:n

A(L , 1 : k)=A(L , 1 : k) - y (1 : k)∗v (L) ;

A(1 : k ,L)=A(1 : k , L) - z (1 : k)∗v (L) ;

A(k+1:n ,L)=A(k+1:n ,L) - z (k+1:n)∗v (L) - y (L)∗v (k+1:n) ' ;

end

end

% IDENTIFYING NUMERICAL ZERO

%==

% This i s an op t i ona l s e c t i o n that i d e n t i f i e s va lues that are numer i ca l l y

% zero and e x p l i c i t l y s e t s them to zero . This might be important s i n c e

% those va lues COULD introduce s i gn e r r o r s . I don ' t think i t should matter

% though . For l a r g e matr i ce s t h i s could be slow and unnecessary . On

% average t h i s s e c t i o n o f code takes about 0.065 sec f o r a 100 x100 matrix

for i =1:m

for j =1:n

i f abs (A(i , j))≤t o l

A(i , j)=0;

end

end

end

e i g s (A)

% di sp (A) ;

338

% The f o l l ow i ng does the same thing as the pr ev i ous l oops us ing bu i l t i n

% matlab commands . On average i t takes 0.078 f o r a 100 x100 matrix

% -

% r=abs (A)≤ t o l ;

% A(r)=0;

% -

toc

B.19 Real/Complex Nonsymmetric Matrix to Upper

Hessenberg Form

This algorithm converts a real or complex nonsymmetric matrix to real upper Hessenberg

form using eliminations with pivoting.

Algorithm B.19.1. Real/Complex Nonsymmetric to Upper Hessenberg

input : Real/complex nonsymmetric matrix Aij

output : Real/complex upper Hessenberg matrix Aij

%% Reduction o f a Real or Complex Nonsymmetric Matrix to Hessenberg Form

% ===

% This works f o r every matrix i ' ve t e s t ed . Real , Complex , balanced ,

% unbalanced , upper hessenberg , symmetric . A l l o f them without any e r r o r s .

% see Wilkinson ' s Handbook f o r Automatic Computations Vol 2 : Linear Algebra

% and Numerical Recipes in C: The Art o f S c i e n t i f i c Computing f o r

% methodology

% S tab i l i z e d elementary s im i l a r i t y t rans f ormat i ons are used f o r reducing an

% unsymmetric complex matrix to an UPPER HESSENBERG matrix . This i s a

% neces sary form f o r many e i g e n s o l v e r s . I f the o r i g i n a l matr ix i s symmetric

% th i s Method w i l l produce a SIMILAR TRIDIAGONAL MATRIX.

% This procedure i s s im i l a r to Gaussian e l im i na t i on with p i vo t i ng . I t i s

339

% about a f a c t o r o f 2 more e f f i c i e n t that Householder ' s Method (see other

% codes) . This i s a c tua l l y a non - or thogona l method and a matrix can be

% cons tructed that t h i s s t r a t egy i s not s t ab l e and the or thogona l

% Householder ' s method i s . The matr i ce s are extremely r a r e in p r a c t i c e so

% th i s method can be used with con f idence .

% Gaussian e l im ina t i on i s not a s im i l a r i t y t rans f ormat i on so t h i s i s

% s l i g h t l y d i f f e r e n t . Before the rth stage , the o r i g i n a l matr ix A=A1

% becomes Ar (upper Hessenberg) in i t s f i r s t r - 1 rows and columns . The rth

% stage c on s i s t s o f the f o l l ow i ng ope r a t i on s :

% 1) Find the element o f maximum magnitude in the rth column below the

% diagona l . I f i t i s zero , sk ip the next two b u l l e t s and the s tage i s done

% Otherwise , suppose the maximum element was in row r ' .

% 2) Inter change rows r ' and r + 1 . This i s the p i vo t i ng procedure . To make

% the permutation a s im i l a r i t y trans formation , a l s o inter change columns r '

% and r + 1 .

% 3) For i = r + 2 , r + 3 , . . . ,N, compute the mu l t i p l i e r

% n(i , r+1) = a (i , r)/ a (r+1, r)

% Subtract n(i , r+1) t imes row r + 1 from row i . To make the e l im i na t i on a

% s im i l a r i t y trans formation , a l s o add n(i , r+1) t imes column i to column r+1

% This method al low us to change an a rb i t r a r y r e a l or complex

% n x n matrix A=a(i , j) i n to an UPPER HESSENBERG matrix with the same s e t

% of e i g enva l u e s . Because o f the p o t e n t i a l l y complex nature o f the o r i g i n a l

% matr ix t h i s a lgor i thm uses s t a b i l i z e d elementary s im i l a r i t y

% trans f ormat i on

% Convention f o r v a r i a b l e s

% a (x , y) : x=row number

% y=column number

% REMINDER: The vec to r s are d i sp l ayed ho r i z o n t a l l y in the matr ix (input and

% output) . Be sur e to transpose the matrix i f t h i s code i s being used as a

% func t i on and vec to r s are pas s es v e r t i c a l l y ! ! ! ! I t ' s done t h i s way f o r

% s imp l i c i t y o f input only ! Just be CAREFUL!

close a l l ; clc ; clear

t ic

% p r o f i l e on

%% DEFINE THE INPUT MATRIX

%==

340

A=rand(5)+1 i ∗rand (5) ;

% di sp (A)

e i g s (A)

%% INITIALIZE PARAMETERS

%==

[m n]= size (A) ; % automat i ca l l y d e f i n e s the stopping c r i t e r i a f o r the loop

inter change=zeros (1 , n) ;

% The f o l l ow i ng parameters are output from a ' balancing ' procedure to

% prepare 'A ' . I f that procedure i s not used , k=1 and L=n .

%% BEGIN CALCULATIONS

%==

for m=2:1:n

% A=Ar+i ∗Ai ;

% di sp (A)

I=m; x=0;

% Find the p ivot

% ===

for J=m: 1 : n

i f abs (A(J ,m- 1))>abs (x)

x=A(J ,m- 1) ;

I=J ;

end

end

i n te r change (m)=I ;

% Inter change rows and columns o f ar rays 'Ar ' and 'Ai '

% ===

i f I �=m

for J=m- 1 : 1 : n

y=A(I , J) ; A(I , J)=A(m, J) ; A(m, J)=y ;

end

for J=1:1:n

y=A(J , I) ; A(J , I)=A(J ,m) ; A(J ,m)=y ;

end

end

% Carry out e l im ina t i on

341

% ===

i f x �=0

for I=m+1:1:n

y=A(I ,m- 1) ;

i f y �=0

y=y/x ;

% Complex d i v i s i o n i s handled automat i ca l l y in Matlab

A(I , :)=A(I , :) - y∗A(m, :) ;

A(: ,m)=A(: ,m)+y∗A(: , I) ;

end

end

end

end

% Zero out e lements below the lower subdiagonal

% ===

% This method l eave s a r t i f a c t s below the lower subdiagonal that

% are numer i ca l l y zero . The actua l upper Hessenberg matrix i s

% preserved and these va lues should be thought o f as zero . The f o l l ow i ng

% code ' zeros ' out these e lements .

for C=1:n

for R=C+2:n

A(R,C)=0;

end

end

disp (A)

e i g s (A)

B.20 Matrix Pencil Reduction

This algorithm converts a real or complex nonsymmetric matrix to real upper Hessenberg

form using eliminations with pivoting.

Algorithm B.20.1. Matrix Pencil Reduction

input : Matrix pencil matrices Aij and Bij

output : Similar upper Hessenberg matrix Aij and upper triangular matrix Bij

342

%% Matrix Reductions

% ===

% This f unc t i on s imul taneous ly r educes matrix A to upper Hessenberg and

% matrix B to t r i a n gu l a r form and outputs the new A, B, and the vector X

% conta in ing the trans f ormat i ons used in the r educ t i on s in order to

% ca l c u l a t e the e i g envec to r s .

% INPUT VARIABLES

% -

% N = s i z e o f A and B

% A,B = nXn complex matrix

% -

% OUTPUT VARIABLES

% -

% A = complex upper Hessenberg matrix - the o r i g i n a l i s destroyed

% B = complex upper t r i a n gu l a r matrix - the o r i g i n a l i s destroyed

function [A B N] = LZ HESS(A,B,N)

% Reduce B to Tr i angu lar form us ing Elementary trans f ormat i ons

% ===

for I =1:N- 1

% Find the Pivot

% -

PIVOT=I ;D=0; % an arb i t r a r y value to i n i t i a l i z e the loop

for K=I+1:N

i f abs (B(K, I))>abs (D)

D=B(K, I) ;

PIVOT=K; % PIVOT i s the p ivot row index

end

end

% -

% Do we have to inter change rows? YES i f PIVOT=¬I

% -

i f PIVOT�=I

Y=A(I , :) ; A(I , :)=A(PIVOT , :) ; A(PIVOT, :)=Y;

Y=B(I , :) ; B(I , :)=B(PIVOT , :) ; B(PIVOT, :)=Y;

end

% -

343

% Apply El im inat i on Trans formations

% -

i f D�=0

for J=I+1:N

Y=B(J , I)/B(I , I) ;

i f Y�=0

A(J , :)=A(J , :) -Y∗A(I , :) ;

B(J , :)=B(J , :) -Y∗B(I , :) ;

end

end

end

B(I+1:N, I)=0;

end

% ===

% Reduce A to upper Hessenberg form

% -

i f N- 2≥1

for J=1:N- 2

for PIVOT=1:N- 1 - J

I=N+1-PIVOT;

% -

% Do we have to inter change rows? YES i f abs (A(I , J))> abs (A(I - 1 , J))

% -

i f abs (A(I , J))>abs (A(I - 1 , J))

Y=A(I , :) ; A(I , :)=A(I - 1 , :) ; A(I - 1 , :)=Y;

Y=B(I , :) ; B(I , :)=B(I - 1 , :) ; B(I - 1 , :)=Y;

end

% -

% Carry out e l im ina t i on

% -

i f A(I , J) �=0

Y=A(I , J)/A(I - 1 , J) ;

A(I , :)=A(I , :) -Y∗A(I - 1 , :) ;

B(I , :)=B(I , :) -Y∗B(I - 1 , :) ;

end

% -

% Do we have to inter change columns? YES i f abs (B(I , I - 1))> abs (B(I , I))

% -

i f abs (B(I , I - 1))>abs (B(I , I))

Y=B(: , I) ; B(: , I)=B(: , I - 1) ; B(: , I - 1)=Y;

344

Y=A(: , I) ; A(: , I)=A(: , I - 1) ; A(: , I - 1)=Y;

end

% -

% Carry out e l im i na t i on to r eturn B to upper t r i a n gu l a r

% -

i f B(I , I - 1) �=0

Y=B(I , I - 1)/B(I , I) ;

B(: , I - 1)=B(: , I - 1) -Y∗B(: , I) ;

B(I , I - 1)=0;

A(: , I - 1)=A(: , I - 1) -Y∗A(: , I) ;

end

end

A(J+2:N, J)=0;

end

end

% sor t (e i g (A,B))

end

B.21 Block Decomposition

This algorithm pushes rows and columns containing nonzero elements up and to the left,

respectively, and forces as many nonzero diagonal elements as possible. This increases

stability in the eigensolver and should be implemented before matrix reductions.

Algorithm B.21.1. Block Decomposition

input : An upper Hessenberg matrix Aij , an upper triangular matrix Bij , and the positions

of the adjoining small subdiagonal elements

output : The original and decomposed eigenvalues

% BLOCK DECOMPOSITION

% ===

% This code v e r i f i e s block decompos i t ion when ther e e x i s t s a smal l

% subdiagonal element

clc ; close a l l ; clear ;

345

A=hess (rand (1 0)) ;B=triu (rand (1 0)) ;

[M N]= size (A) ;

J=4;

A(J+1,J)=10ˆ(- 8) ;

A(J+2,J+1)=10ˆ(- 8) ;

ORIG=eig (A,B) ;

disp (' Or i g i na l Eigenvalues ')

disp (ORIG)

% DIAG=diag (A) . / diag (B) ;

% di sp (' diag (A) . / diag (B) ')

% di sp (DIAG)

% di sp (' Di f f e r enc e between the two ')

% di sp (ORIG-DIAG)

G=A(1 : J , 1 : J) ;H=B(1 : J , 1 : J) ;

UPPER=eig (G,H) ;

disp ('The Eigs o f the Upper Block ')

disp (UPPER)

Q=A(J+1:N, J+1:N) ;R=B(J+1:N, J+1:N) ;

LOWER=eig (Q,R) ;

disp ('The Eigs o f the Lower Block ')

disp (LOWER)

EIG(1 : J)=UPPER;

EIG(J+1:N)=LOWER;

disp ('The o r i g i n a l Eigs are ')

disp (ORIG)

disp ('The Block decomposed Eigs are ')

disp (EIG ')

disp ('The d i f f e r e n c e i s ')

format l ong

disp (sort (ORIG) - sort (EIG '))

format shor t

B.22 The Power Method

This algorithm calculates the largest eigenvalue using deflation techniques.

346

Algorithm B.22.1. The Power Method

input : Matrix Aij and a guess eigenvector x

output : The largest eigenvalue and its associated eigenvector

%% THE POWER METHOD

% ===

close a l l ; clc ; clear

% This m- f i l e uses the Power Method to determine the l a r g e s t magnitude

% eigenva lue o f the n x n matrix A given a nonzero vector x .

% Aitken ' s procedure i s used to speed up convergence

% The system must po s s e s s a e i genva lue that i s d i s t i n c t l y l a r g e r than the

% other s such that | L1 |> |L2 | > . . . |Ln |

% One u s e f u l f e a tu r e o f the Power Method i s that i t produces both the

% eigenva lue and the e i g envec to r . This method can be app l i ed to a known

% se t o f predetermined e i g enva l u e s to determine t h e i r e i g envec to r s .

% REMINDER: The vec to r s are d i sp l ayed ho r i z o n t a l l y in the matrix . Be sur e

% to transpose the matrix i f t h i s code i s being used as a

% func t i on and vec to r s are pas s es v e r t i c a l l y ! ! ! ! I t ' s done t h i s way f o r

% s imp l i c i t y o f input only !

% The i n i t i a l vector 'x ' must be s tated as the transpose

%% DEFINE THE INPUT MATRIX 'A' & INITIALIZATION VECTOR 'x '

% ===

A=rand (4) ;

n=size (A, 1) ;

eig (A)

x=ones (n , 1) ; % ”Guess ” vector x (1 , :)

%% INITIALIZE PARAMETERS

% ===

t o l =10ˆ(- 6) ; % convergence to l e r ance

N=2000; % max i t e r a t i o n s

k=1;

347

%% THE SOLUTION

% ===

while k≤N

% This a l l ows any vector o f proper s i z e to be the i n i t i a l i z a t i o n vector

% ===

[val , p]=max(abs (x)) ; % th i s determines the p o s i t i o n o f p and saves i t

x=x/x (p) ; % th i s normal i ze s the vector

% This i s the i t e r a t i o n on 'x '

% ===

x=(A∗x) ;

% This r enormal i ze s the new vector

% ===

[val , p]=max(abs (x)) ; % th i s determines the p o s i t i o n o f p and saves i t

i f x (p)==0

disp (' Eigenvector ')

disp (x ')

disp (' ”A” has the e i genva lue 0 , s e l e c t a new vector x and r e s t a r t ')

break ;

end

x=x/x (p) ; % th i s normal i ze s the vector

% This c a l c u l a t e s the e i genva lue ' lamda ' v ia the Rayle igh Quotient

% ===

lamda=(x ' ∗A∗x)/(x ' ∗ x) ;

% This t e s t s the e r r o r and ends the c a l c u l a t i o n s

% ===

i f max(abs (A∗x - (x∗ lamda)))< t o l ∗abs(lamda)

disp ('The procedure was s u c c e s s f u l ')

disp (' Eigenvalue ')

disp (lamda)

disp (' Eigenvector ')

disp (x ')

break ;

end

k=k+1;

i f k==N+1

disp ('Max i t e r a t i o n s exceeded ')

348

disp ('The procedure f a i l e d ')

break ;

end

end

B.23 The Inverse Power Method

This algorithm calculates the closest eigenvalue to an initial guess, q, using deflation

techniques.

Algorithm B.23.1. The Inverse Power Method

input : Matrix Aij and a guess eigenvector x

output : The largest eigenvalue and its associated eigenvector

%% THE INVERSE POWER METHOD

% ===

close a l l ; clc ; clear

% This m- f i l e uses the Inve r s e Power Method to determine the l a r g e s t

% magnitude e i genva lue o f the n x n matrix A given a nonzero vector x .

% Aitken ' s procedure i s used to speed up convergence

% The system must po s s e s s a e i genva lue that i s d i s t i n c t l y l a r g e r than the

% other s such that | L1 |> |L2 | > . . . |Ln |

% One u s e f u l f e a tu r e o f the Power Method i s that i t produces both the

% eigenva lue and the e i g envec to r . This method can be app l i ed to a known

% se t o f predetermined e i g enva l u e s to determine t h e i r e i g envec to r s .

% The Inve r s e Power Method i s used to approximate an e i genva lue c l o s e s t to

% a s p e c i f i e d guess value . I t i s o f ten used when a gene r a l i dea o f the

% eigenva lue i s a l r eady known .

% REMINDER: The vec to r s are d i sp l ayed ho r i z o n t a l l y in the matr ix (input and

% output) . Be sur e to transpose the matrix i f t h i s code i s being used as a

349

% func t i on and vec to r s are pas s es v e r t i c a l l y ! ! ! ! I t ' s done t h i s way f o r

% s imp l i c i t y o f input only !

% The i n i t i a l vector 'x ' must be s tated as the transpose

% t i c

% p r o f i l e on

%% DEFINE THE INPUT MATRIX 'A' & INITIALIZATION VECTOR 'x '

% ===

A=rand (4) ;

n=size (A, 1) ;

x=ones (n , 1) ; % ”Guess ” vector x (1 , :)

[V,D]=eig (A)

%% INITIALIZE PARAMETERS

% ===

t o l =10ˆ(- 10) ; % convergence to l e r ance

N=2000; % max i t e r a t i o n s

[m n]= size (A) ; % automat i ca l l y computes the s i z e o f A

k=1;

FLAG=0;

%% STEP 1 : DETERMINE A GUESS EIGENVALUE FROM THE INITIAL VECTOR

% ===

q=(x ' ∗A∗x)/(x ' ∗ x) ; % th i s determines an appropr i a te guess e i genva lue

% the algor i thm converges to the e i genva lue c l o s e s t to 'q ' . I t may not be

% the l a r g e s t . A user de f i ned quanti ty o f 'q ' can be enter ed here to get a

% d i f f e r e n t e i genva lue .

%% THE SOLUTION

% ===

while k≤N

% This a l l ows any vector o f proper s i z e to be the i n i t i a l i z a t i o n vector

% ===

[val , p]=max(abs (x)) ; % th i s determines the p o s i t i o n o f p and saves i t

x=x/x (p) ; % th i s normal i ze s the vector

% This i s the i t e r a t i o n on 'x '

% ===

x=((A- q∗eye (n))\ x) ;

i f k==1 % th i s t e s t s i f q i s an e i genva lue

350

for i =1:n

i f isnan (x (i))==1 | | i s i n f (x (i))==1

disp (' ”q” i s an e i genva lue ')

disp ('The e i genva lue i s ')

disp (q)

disp ('The e i g envec to r i s ')

disp (x)

FLAG=1;

disp . . .

(' Restar t ing with a per turbat i on on q to c a l c u l a t e the e i g envec to r ')

q=q+.01;

x=ones (n , 1) ;

break ;

end

end

end

% This r enormal i ze s the new vector

% ===

[val , p]=max(abs (x)) ; % th i s determines the p o s i t i o n o f p and saves i t

i f x (p)==0

disp (' Eigenvector ')

disp (x)

disp (' ”A” has the e i genva lue 0 , s e l e c t a new vector x and r e s t a r t ')

break ;

end

x=x/x (p) ; % th i s normal i ze s the vector

% This c a l c u l a t e s the e i genva lue ' lamda ' v ia the Rayle igh Quotient

% ===

lamda=(x ' ∗A∗x)/(x ' ∗ x) ;

% This t e s t s the e r r o r and ends the c a l c u l a t i o n s

% ===

i f max(abs (A∗x - (x∗ lamda)))< t o l ∗abs(lamda)

disp ('The procedure was s u c c e s s f u l ')

disp (' Eigenvalue ')

disp (lamda)

disp (' Eigenvector ')

disp (x)

351

break ;

end

k=k+1;

i f k==N+1

disp ('Max i t e r a t i o n s exceeded ')

disp ('The procedure f a i l e d ')

break ;

end

end

B.24 The QR Method

This algorithm calculates the spectrum of the real upper Hessenberg matrix Aij using QR

decompositions.

Algorithm B.24.1. The QR Method

input : Matrix Aij

output : The spectrum

%% QR Algorithm f o r Real Upper Hessenberg Matr ices

% ===

% This code c a l c u l a t e s the e i g enva l u e s o f a r e a l upper Hessenberg Matrix .

% Unl ike the s imp l i e r symmetric v e r s i on o f t h i s code , the o r i g i n a l matr ix

% must be o f the upper Hessenberg . This form w i l l l i k e l y r eturn complex

% e i g enva l u e s . Because o f th i s , the f o l l ow i ng code i s s i g n i f i c a n t l y

% d i f f e r e n t . I f the o r i g i n a l matr ix i s not Upper Hessenberg , then the

% matrix must f i r s t be cond i t i oned by Househo lder Arb i t r ary .m.

% This code i s i t e r a t i v e , but without a gene r a l loop . The i t e r a t i o n i s

% performed when cond i t i ona l statements point the in f ormat i on to d i f f e r e n t

% subfunct i ons . Ult imately , the code w i l l f i n i s h and break the loop .

% This algor i thm f o l l ow s Wilkinson ' s text 'Handbook f o r Automatic

352

% Computation Vol 2 Linear Algebra

% To automate t h i s code in con junct i on with Househo lder Arb i t r ary .m simply

% input the upper Hessenberg matrix from Househo lder Arb i t r ary .m 'A' as the

% input matrix 'A' i n t h i s program . Matrix 'A' i s pr es e rved in the

% program .

% ! i f ther e i s a problem pas s ing v a r i a b l e s remember that not a l l the

% func t i on s are pas s ing the same va r i a b l e s .

function []= Real Upper Hessenberg QR ()

% I n i t i a l i z e the Program

% ===

clear ; close a l l ; clc ;

t ic

%% Def ine the Matrix

% ===

% The o r i g i n a l matr ix i s de f i ned and preserved as 'A'

J=5;

A=rand (J) ;

B=eye (J) ;

[A,B]=LZ HESS(A,B, J) ;

% Def ine 'H' as 'A' to pr es e rve 'A ' . A l l c a l c u l a t i o n s are done on 'H'

H=A;

% e i g s (H)

% I n i t i a l i z e Parameters

% ===

t=0; % This i s the ' exc ep t i ona l s h i f t ' parameter f o r redundant s h i f t l oops

na=0; % This i s a p l ace ho lder r e l a t e d to 'n '

i t s =0; % This i s the i t e r a t i o n counter . I t determines the n e c e s s i t y to

% perform an excep t i ona l s h i f t .

[m n]= size (H) ; % This automat i ca l l y determines the s i z e o f 'H'

lambda=zeros (1 , n) ; % These are the e i g enva l u e s

% These are a r b i t r a r y ass ignments that are a p l a c eho l d e r f o r va r i ab l e

% pas s ing in the f i r s t i t e r a t i o n . They are r ewr i t t en with qu i ck ly .

p=0;q=0; r=0; s=0;w=0;x=0;y=0; z=0;L=0;

353

% Begin the So lut i on

% ===

nextw (n ,H, lambda , p , q , r , s , t ,w, x , y , z , L ,m, na , i t s) ;

end

%% Continuat ion Subfunct ion

% ===

% This subfunct i on t e s t s i f a l l the e i g enva l u e s have been so lved . I f so i t

% breaks the loop and d i s p l ay s the r e s u l t s . I f not i t r e s t a r t s the

% ca l c u l a t i o n to determine the next e i genva lue .

function [n H lambda p q r s t w x y z L m na i t s] . . .

=nextw (n ,H, lambda , p , q , r , s , t ,w, x , y , z , L ,m, na , i t s)

i f n==0

disp (' Calcu lat i on Succ e s s f u l ')

disp ('The Eigenvalues are ')

format l ong % To i n c r e a s e the d i sp l ayed d i g i t s

disp (lambda ')

format shor t % To return the output d i g i t s back to normal

toc

else

i t s =0; na=n - 1 ;

[n H lambda p q r s t w x y z L m na i t s] . . .

=nex t i t (n ,H, lambda , p , q , r , s , t ,w, x , y , z , L ,m, na , i t s) ;

end

end

%% Begin the next i t e r a t i o n

% ===

function [n H lambda p q r s t w x y z L m na i t s] . . .

=nex t i t (n ,H, lambda , p , q , r , s , t ,w, x , y , z , L ,m, na , i t s)

i f n�=0

% Look f o r a s i n g l e smal l subdiagonal element

354

% ===

% I f a s i n g l e smal l subdiagonal element i s found , then the matrix i s

% reduced to c a l c u l a t e the e i g enva l u e s o f the submatrix below the smal l

% subdiagonal . This a c c e l e r a t e s the convergence o f the algor i thm

for L=n : - 1 : 2

i f abs (H(L ,L- 1))≤eps ∗(abs (H(L- 1 ,L - 1))+abs (H(L ,L)))

[n H lambda p q r s t w x y z m na i t s] . . .

=cont1 (n ,H, lambda , p , q , r , s , t ,w, x , y , z , L ,m, na , i t s) ;

end

end

% I f no s i n g l e smal l subdiagonal element i s found , then 'L ' i s r e s e t to '1 '

% and the c a l c u l a t i o n s cont inue as normal , without being ab l e to take

% advantage o f a reduced submatrix .

L=1;

[n H lambda p q r s t w x y z m na i t s] . . .

=cont1 (n ,H, lambda , p , q , r , s , t ,w, x , y , z , L ,m, na , i t s) ;

% the subfunct i on c a l l e d in e i t h e r case i s ' cont1 ' . The d i f f e r e n c e i s the

% value o f 'L ' which determines where the c a l c u l a t i o n w i l l begin from ; i . e .

% the e n t i r e matrix or a submatrix .

end

end

%% Continue 1 : Test ing f o r Convergence

% ===

% This subfunct i on beg ins by t e s t i n g i f the e i g enva l u e s are e x p l i c i t l y

% ca l cu l a t ed because e i t h e r the o r i g i n a l matr ix or a submatrix has be

% complete ly reduced and the e i genva lue appears e x p l i c i t l y on the d iagona l

% elements . I f an e i genva lue i s not determined , then the e i t h e r an

% excep t i ona l s h i f t i s performed to avoid redundant s h i f t i n g or two

% cons e cu t i v e subdiagonal e l ements are t e s t ed f o r . I f two are found , they

% con s t i t u t e the same a f f e c t as a s i n g l e smal l subdiagonal . This

% subfunct i on cont inues u n t i l the p o s s i b l e a c c e l e r a t i o n techn iques are

% exhausted . At t h i s point , i t cont inues on as normal .

355

function [n H lambda p q r s t w x y z m na i t s] . . .

=cont1 (n ,H, lambda , p , q , r , s , t ,w, x , y , z , L ,m, na , i t s)

i f n�=0

x=H(n , n) ;

% Determine i f a s i n g l e e i genva lue has been found

% ===

i f L==n

[n H lambda p q r s t w x y z L m na i t s] . . .

=onew(n ,H, lambda , p , q , r , s , t ,w, x , y , z , L ,m, na , i t s) ;

end

% Completion t e s t

% ===

% Since t h i s code doesn ' t have a con t r o l i ng loop to end the computation , i t

% w i l l g i ve out o f bounds e r r o r s a f t e r the code s u c c e s s f u l l y c a l c u l a t e s the

% l a s t e i genva lue . The f o l l ow i ng statement avo ids the e r r o r by c an c e l l i n g

% the c a l l to any f o l l ow i ng statements i f the computation i s complete . The

% er r o r happens to occur here f i r s t . It ' s r e a l l y an e r r o r o f poor

% or gan i za t i on in the program . oops . Another one shows up in a few l i n e s .

% They work with the ' i f n�=0 ' statements at the top o f each f unc t i on .

i f n==0 | | na==0

return

end

% Determine i f two e i g enva l u e s have been found

% ===

y=H(na , na) ;

w=H(n , na)∗H(na , n) ;

i f L==na

[n H lambda p q r s t w x y z L m na i t s] . . .

=twow(n ,H, lambda , p , q , r , s , t ,w, x , y , z , L ,m, na , i t s) ;

end

i f n==0 | | na==0

return

end

% This t e s t s f o r f a i l u r e with the cur r ent exc ep t i ona l s h i f t app l i ed

% ===

356

% Did not converge

i f i t s==30

disp ('FAIL ! Max i t e r a t i o n s exceeded ')

end

% Did not converge with cur r ent s h i f t

i f i t s==10 | | i t s==20

t=t+x ; % Form excep t i ona l s h i f t

for i =1:1 :n

H(i , i)=H(i , i) - x ;

end

s=abs (H(n , na))+abs (H(na , n - 2)) ;

x=.75∗ s ;

y=x ;

w=- .4375∗ s ˆ2 ;

end

i t s=i t s +1; % Inc r ea s e counter

% Look f o r two con s e cu t i v e smal l subdiagonal e l ements

% ===

for m=n - 2 : - 1 :L

z=H(m,m) ;

r=x - z ;

s=y - z ;

p=(r∗ s -w)/H(m+1,m)+H(m,m+1);

q=H(m+1,m+1) - z - r - s ;

r=H(m+2,m+1);

s=abs (p)+abs (q)+abs (r) ;

p=p/ s ; q=q/ s ; r=r / s ;

i f m==L | | abs (H(m,m- 1))∗ (abs (q)+abs (r))≤ . . .

eps∗abs (p)∗ (abs (H(m- 1 ,m- 1))+abs (z)+abs (H(m+1,m+1)))

[n H lambda p q r s t w x y z L na i t s] . . .

=cont2 (n ,H, lambda , p , q , r , s , t ,w, x , y , z , L ,m, na , i t s) ;

end

end

end

end

%% One Eigenvalue Found

% ===

357

% I f one e i genva lue i s found , i t must be a r e a l number

function [n H lambda p q r s t w x y z L m na i t s] . . .

=onew(n ,H, lambda , p , q , r , s , t ,w, x , y , z , L ,m, na , i t s)

i f n�=0

lambda (n)=x+t ; % The e i genva lue i s determined from the excep t i ona l s h i f t

n=na ; % The l a s t row and column i s e l im inated by th i s statement

% After a s u c c e s s f u l c a l cu l a t i on , the procedure i s r e s t a r t e d

[n H lambda p q r s t w x y z L m na i t s] . . .

=nextw (n ,H, lambda , p , q , r , s , t ,w, x , y , z , L ,m, na , i t s) ;

end

end

%% Two Eigenvalues are Found

% ===

% In the case o f two Eigenvalues being found s imul taneous ly they can be

% r e a l or complex .

function [n H lambda p q r s t w x y z L m na i t s] . . .

=twow(n ,H, lambda , p , q , r , s , t ,w, x , y , z , L ,m, na , i t s)

i f n�=0

p=(y - x)/2 ; q=pˆ2+w; y=sqrt (abs (q)) ; x=x+t ;

% This determines what type o f e i g enva l u e s have been determined

% ===

i f q>0

% A Real Pai r

i f p<0

y=- y ;

y=p+y ; lambda (na)=x+y ; lambda (n)=x -w/y ;

end

else

% A Complex Pair

358

lambda (na)=x+p+1 i ∗y ; lambda (n)=x+p - 1 i ∗y ;

end

n=n - 2 ; % This removes the l a s t two rows and columns

% After a s u c c e s s f u l c a l cu l a t i on , the procedure i s r e s t a r t e d

[n H lambda p q r s t w x y z L m na i t s] . . .

=nextw (n ,H, lambda , p , q , r , s , t ,w, x , y , z , L ,m, na , i t s) ;

end

end

%% Continue 2 : Apply the QR S im i l a r i t y Trans formations

% ===

% This sub funct i on does the bulk o f the work . I t a pp l i e s s u c c e s s i v e

% trans f ormat i ons to the o r i g i n a l matr ix to maintain upper Hessenberg form

% whi le f o r c i n g the appearance o f the e i g enva l u e s .

function [n H lambda p q r s t w x y z L na i t s] . . .

=cont2 (n ,H, lambda , p , q , r , s , t ,w, x , y , z , L ,m, na , i t s)

i f n�=0

% This z e r o s the subdiagonal e l ements

% ===

for i=m+2:1:n

H(i , i - 2)=0;

end

for i=m+3:1:n

H(i , i - 3)=0;

end

% Double QR step i nvo l v i ng rows 'L ' to 'n ' and columns 'm' to 'n '

% ===

% This app l i e s what i s c a l l e d the ' double QR step ' . In doing so , a l l the

% c a l c u l a t i o n s can be done with r e a l numbers whi l e the complex par ts appear

% as we l l .

for k=m: 1 : na

i f k �=m

p=H(k , k - 1) ; q=H(k+1,k - 1) ;

i f k �=na

359

r=H(k+2,k - 1) ;

else

r=0;

end

x=abs (p)+abs (q)+abs (r) ;

% Determining numeric zero

% ===

% make sur e the next s tep doesn ' t g i ve problems . b a s i c a l l y i t says

% i f x==0 then r e s t a r t the process , but with numeric roundof f ther e could

% be a problem with e x p l i c i t l y c a l l i n g a trancendenta l number ' zero '

i f abs (x)≤eps

[n H lambda p q r s t w x y z L m na i t s] . . .

=nex t i t (n ,H, lambda , p , q , r , s , t ,w, x , y , z , L ,m, na , i t s) ;

end

p=p/x ; q=q/x ; r=r /x ;

end

s=sqrt (pˆ2+qˆ2+r ˆ2) ;

i f p<0

s=- s ;

end

i f k �=m

H(k , k - 1)= - s ∗x ;

e l s e i f L�=m

H(k , k - 1)= -H(k , k - 1) ;

end

p=p+s ; x=p/ s ; y=q/ s ; z=r / s ; q=q/p ; r=r /p ;

% Row Modi f i cat i on

% ===

for j=k : 1 : n

p=H(k , j)+q∗H(k+1, j) ;

i f k �=na

p=p+r∗H(k+2, j) ;

H(k+2, j)=H(k+2, j) - p∗z ;

end

H(k+1, j)=H(k+1, j) - p∗y ;

H(k , j)=H(k , j) - p∗x ;

end

i f k+3<n

360

j=k+3;

else

j=n ;

end

% Column Modi f i cat i on

% ===

for i=L : 1 : j

p=x∗H(i , k)+y∗H(i , k+1);

i f k �=na

p=p+z∗H(i , k+2);

H(i , k+2)=H(i , k+2) - p∗ r ;

end

H(i , k+1)=H(i , k+1) - p∗q ;

H(i , k)=H(i , k) - p ;

end

end

% Continue with the next i t e r a t i o n

[n H lambda p q r s t w x y z L m na i t s] . . .

=nex t i t (n ,H, lambda , p , q , r , s , t ,w, x , y , z , L ,m, na , i t s) ;

end

end

B.25 The LZ Method

This algorithm calculates the spectrum of the real/complex upper Hessenberg matrix Aij

using LZ elimination transformations.

Algorithm B.25.1. The LZ Method

input : Matrix Aij

output : The spectrum

%% LR Algorithm f o r Complex Matr ices - 2

361

% ===

% This code has the complete algor i thm given by Wilkinson . I t uses some

% bu i l t i n Matlab commands , but in many ca s e s the o r i g i n a l code i s g iven

% and commented out . The e i g envec to r s don ' t c a l c u l a t e c o r r e c t l y though ! !

% This code c a l c u l a t e s the e i g enva l u e s o f a r e a l or complex upper Hessenberg Matrix .

% The o r i g i n a l matr ix must be converted to upper hessenberg form us ing

% This form w i l l l i k e l y r e turn complex e i g enva l u e s . This code uses complex a l gebra

% to handle the matrix t rans f ormat i ons . I f the o r i g i n a l matr ix

% i s not Upper Hessenberg , then the matrix must f i r s t be cond i t i oned by

% Complex Nonsymmetric to Hessenberg .m

% This code i s i t e r a t i v e , but without a gene r a l loop . The i t e r a t i o n i s

% performed when cond i t i ona l statements point the in f ormat i on to d i f f e r e n t

% subfunct i ons . Ult imately , the code w i l l f i n i s h and break the loop .

% This algor i thm f o l l ow s Wilkinson ' s text 'Handbook f o r Automatic

% Computation Vol 2 Linear Algebra

% To automate t h i s code in con junct i on with simply

% input the upper Hessenberg matrix from 'A' as the

% input matrix 'A' i n t h i s program . Matrix 'A' i s pr es e rved in the

% program .

% ! i f ther e i s a problem pas s ing v a r i a b l e s remember that not a l l the

% func t i on s are pas s ing the same va r i a b l e s .

%% I n i t i a l i z e the Program

% ===

function []=Complex LR 2 ()

clear ; close a l l ; clc ;

t ic ;

% Def ine the Matrix

% ===

J=5;

A=rand (J)+1 i ∗rand(J) ;

H=A; % Def ine 'H' as 'A' to pr es e rve 'A ' . A l l c a l c u l a t i o n s are done on 'H'

362

% I n i t i a l i z e Parameters

% ===

[m n]= size (H) ; % This automat i ca l l y c a l c u l a t e s the s i z e o f H

w=zeros (1 , n) ; % This i n i t i a l i z e s the e i genva lue vector

i t s =0; % This i s the i t e r a t i o n counter to determine the s h i f t s or f a i l u r e

t =0; % This i s the ' exc ep t i ona l s h i f t ' va r i ab l e

% These are a r b i t r a r y p l a c eho l d e r s f o r v a r i a b l e s used l a t e r in the s o l u t i o n

s=0;x=0;y=0; z=0;nrm=0;M=0;

done=0;

% This c l e an l y s tops the c a l c u l a t i o n s once a l l the e i g enva l u e s are found

% These are the i n t e g e r s produced by ' balance ' i f Wilkinson ' s a l go r i th im i s

% used . low=1, upp=n i f ba l anc ing has not been used or a d i f f e r e n t

% algor i thm was employed .

low=1;upp=n ;

% ' interchange ' i s an n X 1 array produced by complex hessenberg

% trans f ormat i ons . I f the primary matrix i s a l r eady Hessenberg then s e t

% inter change (i)= i ;

i n te r change=zeros (1 , n) ;

for I =1:1:n

inte r change (I)=I ;

end

% The f o l l ow i ng i s from the algor i thm . I t d e f i n e s vr=eye (n) v i=ze r o s (n , n)

% f o r I =1:1:n

% f o r J=1:1:n

% vr (I , J)=0;

% vi (I , J)=0;

% end

% vr (I , I)=1;

% end

% vr=eye (n) ; v i=ze r o s (n , n) ;

v=eye (n) ;

363

% Eigenvector Ca l cu l a t i on s

% ===

for I=upp - 1 : - 1 : low+1

J=inter change (I) ;

for K=I +1:1:upp

v (K, I)=H(K, I - 1) ;

end

i f I �=J

for K=I : 1 : upp

v(I ,K)=v(J ,K) ;

v (J ,K)=0;

end

v (J , I)=1+1 i ∗imag(v (J , I)) ;

end

end

% ===

% I s o l a t e d Roots

% ===

% This s e c t i o n doesn ' t matter i f I don ' t have ' low ' and 'upp ' de f ined from

% the complex hessenberg r educt i on r ou t i n e . I have no idea what the syntax

% means and can ' t r e a l l y t e s t i t because i 'm using a d i f f e r e n t balance

% algor i thm - one that doesn ' t produce ' low ' and 'upp ' . I t might be BOTH

% with the same commands . I t doesn ' t matter because without actua l input

% f o r low and upp then those l oops are never enter ed .

% This syntax i s f o r ALGOL 60 . I don ' t know what i t a c tua l l y means

for I =1:1: low - 1

w=Hr(I , I) ;

end

for I=upp+1:1:n ;

w=Hr(I , I) ;

end

% ===

en=upp ;

nextw (n , low , upp , interchange ,H,w, v , I , J ,K,M, i t s , en , s , t , x , y , z , nrm , done) ;

end

364

%% Continuat ion Subfunct ion

% ===

% This subfunct i on t e s t s i f a l l the e i g enva l u e s have been so lved . I f so i t

% breaks the loop and d i s p l ay s the r e s u l t s . I f not i t r e s t a r t s the

% ca l c u l a t i o n to determine the next e i genva lue .

function [n low upp inter change H w v I J K M i t s en s t x , y z nrm done] = . . .

nextw (n , low , upp , interchange ,H,w, v , I , J ,K,M, i t s , en , s , t , x , y , z , nrm , done)

i f done==0

% This determines i f the a l l the e i g enva l u e s are ca l cu l a t ed and ends the

% computation i f they are .

% ===

i f en<low

[n low upp inter change H w v I J K M i t s en s t x , y z nrm done] = . . .

f i n i s h (n , low , upp , interchange ,H,w, v , I , J ,K,M, i t s , en , s , t , x , y , z , nrm , done) ;

end

i t s =0;

% Begin the next i t e r a t i o n

% ===

[n low upp inter change H w v I J K M i t s en s t x , y z nrm done] = . . .

n ex t i t (n , low , upp , interchange ,H,w, v , I , J ,K,M, i t s , en , s , t , x , y , z , nrm , done) ;

end

end

%% Begin the next i t e r a t i o n

% ===

function [n low upp inter change H w v I J K M i t s en s t x , y z nrm done] = . . .

n ex t i t (n , low , upp , interchange ,H,w, v , I , J ,K,M, i t s , en , s , t , x , y , z , nrm , done)

i f done==0

% Look f o r a s i n g l e smal l subdiagonal element

% ===

365

% I f a s i n g l e smal l subdiagonal element i s found , then the matrix i s

% reduced to c a l c u l a t e the e i g enva l u e s o f the submatrix below the smal l

% subdiagonal . This a c c e l e r a t e s the convergence o f the algor i thm

for K=en : - 1 : low+1

i f abs (H(K,K- 1))≤eps ∗(abs (H(K- 1 ,K- 1))+abs (H(K,K)))

[n low upp inter change H w v I J M i t s en s t x , y z nrm done] = . . .

cont1 (n , low , upp , interchange ,H,w, v , I , J ,K,M, i t s , en , s , t , x , y , z , nrm , done) ;

end

end

K=low ;

[n low upp inter change H w v I J M i t s en s t x , y z nrm done] = . . .

cont1 (n , low , upp , interchange ,H,w, v , I , J ,K,M, i t s , en , s , t , x , y , z , nrm , done) ;

end

end

%% Continue 1 : Test ing f o r Convergence

% ===

% This subfunct i on beg ins by t e s t i n g i f the e i g enva l u e s are e x p l i c i t l y

% ca l cu l a t ed because e i t h e r the o r i g i n a l matr ix or a submatrix has be

% complete ly reduced and the e i genva lue appears e x p l i c i t l y on the d iagona l

% elements . I f an e i genva lue i s not determined , then the e i t h e r an

% excep t i ona l s h i f t i s performed to avoid redundant s h i f t i n g or two

% cons e cu t i v e subdiagonal e l ements are t e s t ed f o r . I f two are found , they

% con s t i t u t e the same a f f e c t as a s i n g l e smal l subdiagonal . This

% subfunct i on cont inues u n t i l the p o s s i b l e a c c e l e r a t i o n techn iques are

% exhausted . At t h i s point , i t cont inues on as normal .

function [n low upp inter change H w v I J M i t s en s t x , y z nrm done] = . . .

cont1 (n , low , upp , interchange ,H,w, v , I , J ,K,M, i t s , en , s , t , x , y , z , nrm , done)

i f done==0;

% This determines i f a root has been found

% ===

i f K==en

366

[n low upp inter change H w v I J K M i t s en s t x , y z nrm done] = . . .

r oot (n , low , upp , interchange ,H,w, v , I , J ,K,M, i t s , en , s , t , x , y , z , nrm , done) ;

end % maybe could use e l s e i f

% This determines i f the c a l c u l a t i o n has f a i l e d

% ===

i f i t s==30

disp ('Max i t e r a t i o n s exceeded . Ca l cu l a t i on s f a i l e d . ')

done=1;

end

% Form Except i ona l Sh i f t

% ===

i f i t s==30

disp ('Convergence Fa i l ed ')

done=1;

e l s e i f i t s==10 | | i t s==20

s=abs (H(en , en - 1))+abs (H(en - 1 , en - 2)) ;

else

s=H(en , en) ;

x=H(en - 1 , en)∗H(en , en - 1) ;

i f abs (x) �=0

y=(H(en - 1 , en - 1) - s) /2 ;

z=sqrt (y) ;

% The f o l l ow i ng c a l c u l a t e s the same value o f ' z ' as the code above without

% using any matlab i n t e r n a l commands

% ===

% z=csq r t (r e a l (y) , imag (y)) ;

% ===

i f real (y)∗ real (z)+imag(y)∗ imag(z)<0

z=- z ;

end

x=x/(y+z) ;

% The f o l l ow i ng c a l c u l a t e s the same value o f 'x ' as the code above without

% using any matlab i n t e r n a l commands . Be sur e to comment out the above

% command be f o r e t r y i ng to use the f o l l ow i ng code

367

% ===

% x=cdiv (r e a l (x) , imag (x) , r e a l (y)+ r e a l (z) , imag (y)+imag (z)) ;

% ===

s=s - x ;

end

end

for I=low : 1 : en

H(I , I)=H(I , I) - s ; % This modi f i e s some of the d iagona l e l ements only

end

t=t+s ; % This i s the exc ep t i ona l s h i f t

i t s=i t s +1; J=K+1; % th i s increments the i t e r a t i o n counter

% Look f o r two con s e cu t i v e smal l subdiagonal e l ements

% ===

% I f two con s e cu t i v e smal l subdiagonal element are found , then the matrix i s

% reduced to c a l c u l a t e the e i g enva l u e s o f the submatrix below the smal l

% subdiagonal e l ements . This a c c e l e r a t e s the convergence o f the algor i thm

% These are r e a l numbers

x=abs (H(en - 1 , en - 1)) ;

y=abs (H(en , en - 1)) ;

z=abs (H(en , en)) ;

for M=en - 1 : - 1 : J

y=real (y)+1 i ∗ real (y) ;

y=abs (H(M,M- 1))+1 i ∗imag(y) ;

x=real (x)+1 i ∗ real (z) ;

z=real (x)+1 i ∗imag(z) ;

x=abs (H(M- 1 ,M- 1))+1 i ∗imag(x) ;

i f real (y)≤eps∗ real (z)/ imag(y)∗ (real (z)+real (x)+imag(x))

[n low upp inter change H w v I J K i t s en s t x , y z nrm done] = . . .

cont2 (n , low , upp , interchange ,H,w, v , I , J ,K,M, i t s , en , s , t , x , y , z , nrm , done) ;

end

end

M=K;

[n low upp inter change H w v I J K i t s en s t x , y z nrm done] = . . .

cont2 (n , low , upp , interchange ,H,w, v , I , J ,K,M, i t s , en , s , t , x , y , z , nrm , done) ;

end

368

end

%% Continuat ion 2 : Apply the Trans formations

% ===

% This sub funct i on does the bulk o f the work . I t a pp l i e s s u c c e s s i v e

% trans f ormat i ons to the o r i g i n a l matr ix to maintain upper Hessenberg form

% whi le f o r c i n g the appearance o f the e i g enva l u e s .

function [n low upp inter change H w v I J K i t s en s t x , y z nrm done] = . . .

cont2 (n , low , upp , interchange ,H,w, v , I , J ,K,M, i t s , en , s , t , x , y , z , nrm , done)

i f done==0

% Tr iangu lar Decomposition H=LxR

% ===

for I=M+1:1: en

x=H(I - 1 , I - 1) ;

y=H(I , I - 1) ;

% I think I can wr i te modulus f o r the next cond i t i ona l

% ===

% i f abs (r e a l (x))+ abs (imag (x))< abs (r e a l (y))+ abs (imag (y))

i f abs (x)<abs (y)

% Inter change rows o f H

% ===

for J=I - 1 : 1 : n

z=H(I - 1 , J) ;H(I - 1 , J)=H(I , J) ;H(I , J)=z ;

end

% This i s the vec to r i z ed ve r s i on o f the above f o r loop . I t i s s l ower though

% ===

% z=H(I - 1 , I - 1 : n) ;H(I - 1 , I - 1 : n)=H(I , I - 1 : n) ;H(I , I - 1 : n)=z ;

% ===

z=x/y ; w(I)=1;

% The f o l l ow i ng c a l c u l a t e s the same value o f ' z ' as the code above without

% using any matlab i n t e r n a l commands

% ===

369

% z=cdiv (r e a l (x) , imag (x) , r e a l (y) , imag (y)) ; w(I)=1;

% ===

else

z=y/x ; w(I)= - 1 ;

% The f o l l ow i ng c a l c u l a t e s the same value o f ' z ' as the code above without

% using any matlab i n t e r n a l commands

% ===

% z=cdiv (r e a l (y) , imag (y) , r e a l (x) , imag (x)) ; w(I)= - 1 ;

% ===

end

H(I , I - 1)=z ;

for J=I : 1 : n

H(I , J)=H(I , J) - z∗H(I - 1 , J) ;

end

% The f o l l ow i ng i s how the text i s wr i t ten does the same c a l c u l a t i o n as the

% prev i ous loop

% ===

% f o r J=I : 1 : n

% hr=r e a l (H(I , J)) - r e a l (z)∗ r e a l (H(I - 1 , J))+ imag (z)∗ imag (H(I - 1 , J)) ;

% hi=imag (H(I , J)) - r e a l (z)∗ imag (H(I - 1 , J)) - imag (z)∗ r e a l (H(I - 1 , J)) ;

% H(I , J)=hr+i ∗ hi ;

% end

% ===

end

% Composition RxL=H

% ===

for J=M+1:1: en

x=H(J , J - 1) ; H(J , J - 1)=0;

% Inter change Columns o f H and v i f neces sary

% ===

i f real (w(J))>0

for I =1:1: J

z=H(I , J - 1) ; H(I , J - 1)=H(I , J) ; H(I , J)=z ;

370

end

for I=low : 1 : upp

z=v (I , J - 1) ; v (I , J - 1)=v(I , J) ; v (I , J)=z ;

end

end

% ===

% Begin Accumulated Transformation

% ===

for I =1:1: J

H(I , J - 1)=H(I , J - 1)+x∗H(I , J) ;

end

% The f o l l ow i ng i s how the text i s wr i t ten does the same c a l c u l a t i o n as the

% prev i ous loop

% ===

% f o r I =1:1: J

% hr=r e a l (H(I , J - 1))+ r e a l (x)∗ r e a l (H(I , J)) - imag (x)∗ imag (H(I , J)) ;

% hi=imag (H(I , J - 1))+ r e a l (x)∗ imag (H(I , J))+ imag (x)∗ r e a l (H(I , J)) ;

% H(I , J - 1)=hr+i ∗hi ;

% end

% ===

for I=low : 1 : upp

v (I , J - 1)=v (I , J - 1)+x∗v (I , J) ;

end

% End Accumulated Transformation

% ===

end

% Begin next i t e r a t i o n

[n low upp inter change H w v I J K M i t s en s t x , y z nrm done] = . . .

n ex t i t (n , low , upp , interchange ,H,w, v , I , J ,K,M, i t s , en , s , t , x , y , z , nrm , done) ;

end

end

%% Eigenvalues are determined

371

% ===

% This sub funct i on simply s t o r e s the e i g enva l u e s

function [n low upp inter change H w v I J K M i t s en s t x , y z nrm done] = . . .

r oot (n , low , upp , interchange ,H,w, v , I , J ,K,M, i t s , en , s , t , x , y , z , nrm , done)

i f done==0

% A root found

% ===

w(en)=H(en , en)+t ; w(en)=real (w(en)) - 1 i ∗imag(w(en)) ;

en=en - 1 ;

% Begin l ook ing f o r the next e i genva lue

[n low upp inter change H w v I J K M i t s en s t x , y z nrm done] = . . .

nextw (n , low , upp , interchange ,H,w, v , I , J ,K,M, i t s , en , s , t , x , y , z , nrm , done) ;

end

end

%% Fin i sh

% ===

% The ' f i n i s h ' f unc t i on i s c a l l e d once a l l the e i g enva l u e s have been

% accounted f o r . I t a l s o back c a l c u l a t e s the e i g envec to r s o f the o r i g i n a l

% matrix from back subs t i tu t i on and trans f ormat i ons

function [n low upp inter change H w v I J K M i t s en s t x , y z nrm done] = . . .

f i n i s h (n , low , upp , interchange ,H,w, v , I , J ,K,M, i t s , en , s , t , x , y , z , nrm , done)

i f done==0

% Al l r oo t s found

% ===

nrm=0;

for I =1:1:n

nrm=nrm+abs (real (w(I)))+abs (imag(w(I))) ;

for J=I +1:1:n

nrm=nrm+abs (real (H(I , J)))+abs (imag(H(I , J))) ;

372

end

end

% Backsubs t i tute to f i nd vec to r s o f upper t r i a g u l a r form

% ===

for en=n : - 1 : 2

x=w(en) ;

for I=en - 1 : - 1 : 1

z=H(I , en) ;

for J=I +1:1: en - 1

z=z+H(I , J)∗H(J , en) ;

end

y=x -w(I) ;

i f abs (y)==0

y=eps∗nrm+1 i ∗imag(y) ;

end

H(I , en)=z/y ;

% The f o l l ow i ng c a l c u l a t e s the same value o f 'H(I , en) ' as the code

% above without us ing any matlab i n t e r n a l commands

% ===

% H(I , en)=cdiv (r e a l (z) , imag (z) , r e a l (y) , imag (y)) ;

% ===

end

end

% End Backsubs t i tute

% ===

% Mult iply by trans f ormat i on matr ix to g ive ve c to r s o f o r i g i n a l f u l l matr ix

% ===

% This s e c t i o n doesn ' t matter i f I don ' t have ' low ' and 'upp ' de f ined from

% the complex hessenberg r educt i on r ou t i n e . I have no idea what the syntax

% means and can ' t r e a l l y t e s t i t because i 'm using a d i f f e r e n t balance

% algor i thm - one that doesn ' t produce ' low ' and 'upp ' . I t should never be

% ca l l e d without the o r i g i n a l ' balance ' r ou t i n e . I t might be BOTH with the

% same command

for I =1:1: low - 1

373

for J=I +1:1:n

v (I , J)=H(I , J) ;

end

end

for I=upp+1:1:n ;

for J=I +1:1:n

v (I , J)=H(I , J) ;

end

end % vec to r s o f i s o l a t e d r oo t s

for J=n : - 1 : low

for I=low : 1 : upp

z=v(I , J) ;

i f upp<J

M=upp ;

else

M=J - 1 ;

end

for K=low : 1 :M

z=z+v(I ,K)∗H(K, J) ; % not as coded , us ing MatLab syntax

end

v (I , J)=z ;

end

end

disp (' Cal cu lat i on Succe s s f u l ')

format l ong % To i n c r e a s e the d i sp l ayed d i g i t s

% Display the Eigenvalues

% ===

disp ('The Eigenvalues are ')

disp (w ')

% Display the E igenvector s

% ===

% di sp ('The Eigenvector s are ')

% di sp (v ')

i t s t e s t =0;

i f i t s==10 | | i t s==20

i t s t e s t =1;

374

end

i f en≤2 && i t s t e s t==1

disp ('Convergence occured in a nontyp i ca l way . ')

disp (' I t may have occured on an i t e r a t i o n f l agged to apply a s h i f t ')

disp (' I f t h i s i s the case , the c a l c u l a t i o n should be cor r ect , ')

disp (' but use caut i on ')

end

format shor t

done=1;

toc

end

end

%% Appendix

% ===

% The f o l l ow i ng subfunct i ons are e x p l i c i t l y programed r ou t i n e s to c a l c u l a t e

% the complex square root and complex d i v i s i o n . Matlab has these bu i l t i n

% and I am using them now . These were j u s t to t e s t and make sur e I hadn ' t

% f o r go t t en my complex a l gebra and that I understood the ALGOL 60 syntax .

function z=csq r t (xr , x i)

% This s e c t i o n o f code i s the given algor i thm f o r c s q r t from the text . I t

% matches with my shortened ve r s i on above . I 'm not 100% sure i 'm

% ca l c u l a t i n g the c o r r e c t va lues though . The inputs are con fus ing .

% ===

h=sqrt ((abs (xr)+abs (xr+1 i ∗ x i)) / 2) ;

i f x i �=0

x i=xi /(2∗h) ;

end

i f xr≥0

xr=h ;

else

i f x i≥0

xr=xi ; x i=h ;

375

else

xr=- x i ; x i=-h ;

end

end

z=xr+1i ∗ x i ;

% ===

end

function z=cdiv (xr , xi , yr , y i)

% Be c a r e f u l with the inputs . This code i s g ene r a l and uses some of the

% same va r i a b l e s as the main code . They don ' t n e c e s s a r i l y mean anything .

% Just t r u s t the code i s c o r r e c t . The ba s i c order to c a l l w i l l be

% z=cdiv (y , x) i s the same as z=y/x

% ===

i f abs (yr)>abs (y i)

h=yi / yr ; yr=h∗ y i+yr ; z r=(xr+h∗ x i)/ yr ; z i =(x i - h∗xr)/ yr ;

else

h=yr/ y i ; y i=h∗yr+yi ; z r=(h∗xr+xi)/ y i ; z i =(h∗ x i - xr)/ y i ;

end

z=zr+1i ∗ z i ;

% ===

end

B.26 The Generalized LZ Algorithm

This algorithm calculates the spectrum of the real/complex matrix pencil Aij −λBij for the

generalized eigenvalue problem.

Algorithm B.26.1. The Generalized LZ Algorithm

input : The upper Hessenberg matrix Aij and the upper triangular matrix Bij

output : The spectrum

376

%% The LZ Algorithm f o r So lv ing Eigenvalues o f Ax=lambda∗Bx REDUX

% ===

% This code i s des igned to f i nd the eigensystem f o r two complex matr i ce s A

% and B. I t i s t r an s l a t ed from Kaufman-The LZ Algorithm to Solve the

% Genera l i zed Eigenvalue Problem f o r Complex Matr i ces . I t c o n s i s t s o f two

% separate subrout ines : LZ HESS and LZ IT . LZ HESS i s c a l l e d to reduce A to

% upper Hessenberg and B to t r i a n gu l a r form outputt ing the reduced

% eigensystem . LZ IT r e tu rn s the d iagona l e l ements o f the t r angu l a r i z ed

% matr i ces . The e i g enva l ue s o f the ' system ' are found by d i v i d i ng the

% cor r espond ing d iagona l e l ements e i g (A)/ e i g (B) . The e i g envec to r s produced

% by LZ IT are normal ized so the modulus o f the l a r g e s t component i s 1 .

% The e i g envec to r s o f the problem are computed by computing the

% e i g envec to r s o f the t r i a n gu l a r i z e d A and B matr i ce s and mul t ip ly ing them

% by the product o f a l l column trans f ormat i ons .

% This s o l v e r works and g i v e s accuracy compared to the bu i l t i n matlab

% s o l v e r o f 10ˆ(- 11) as the abso lute worst case . Typ i ca l l y 10ˆ(- 14)

% Since the s h i f t i s c a l cu l a t ed as the e i genva lue approximation o f the

% lower 2x2 submatrix , the f i r s t e i genva lue to converge should be at the

% bottom . This algor i thm de f l a t e s from the bottom up . I t a l s o

% inco rpo r a t e s a new s t r a t egy f o r block decompos i t ion

% This v e r s i on has a d i f f e r e n t g ene r a l i z ed balance algor i thm . I t handles

% i n f i n i t y and NaN by r ep l a c i ng them by a number a f t e r the D matr i ces are

% determined

%% I n i t i a l i z e the Program

% ===

% Def ine the Matrices , i n i t i a l i z e the va r i ab l e s , and t e s t to ensure that

% s i z e (A)= s i z e (B)

function []= General i zed LZ (A,B)

clear ; close a l l ; clc ;

% Def ine the Matr ices

% ===

% -

377

% d=.25;

% J=10;

% A=rand (J)+1 i ∗ rand (J) ;

% B=rand (J)+1 i ∗ rand (J) ;

% A=f u l l (sprand (J , J , d)+1 i ∗ sprand (J , J , d)) ;

% B=f u l l (sprand (J , J , d)+1 i ∗ sprand (J , J , d)) ;

% A=magic (4) ;B=pasca l (4) ˆ (- 1) ;

A=rand (1000) ;B=rand (1000) ;

t ic ;

ORIGINAL=eig (A,B) ;

disp ('The o r i g i n a l e i g enva l u e s are ')

disp (ORIGINAL) ;

toc

t ic ;

% I n i t i a l i z e Parameters

% ===

N=size (A, 1) ; % N i s the s i z e o f A. I t i s d e f l a t ed as the s o l u t i o n converges

SIZE=N;

EIGEN=zeros (N, 1) ;

[A B N]=LZ HESS(A,B,N) ;

disp (norm(A, ' f r o ')) ;

disp (norm(B, ' f r o '))

[A B]=Genera l i zed Ba lance (A,B) ;

[A B]=B Mod(A,B,N) ;

ITS=0; % This i s to i n i t i a l i z e the i t e r a t i o n counter be f o r e the r educ t i on s

SHIFT=0;

M=1;

while N>0

[A B N M ITS SHIFT EIGEN] . . .

=LZ CONVERGENCE(A,B,N,M, ITS , SHIFT,EIGEN) ;

i f N==1

break ;

end

[A B N M ITS SHIFT] . . .

=LZ SHIFT(A,B,N,M, ITS , SHIFT,EIGEN, SIZE) ;

[A B N M] . . .

=LZ TRANSFORMS(A,B,N,M) ;

% [A B]=Genera l i zed Ba lance (A,B) ;

378

end

EIGEN(1)=A(1 ,1)/B(1 ,1)+SHIFT;

for K=1:SIZE

i f abs (EIGEN(K))≥10ˆ7

EIGEN(K)=Inf ;

e l s e i f abs (EIGEN(K))≤10ˆ(- 6)

EIGEN(K)=0;

e l s e i f isnan (abs (EIGEN(K)))==1

EIGEN(K)=NaN;

end

end

disp ('The Eigenvalues are ')

disp (EIGEN)

disp (max(sort (abs (ORIGINAL)) - sort (abs (EIGEN))))

disp (' done ')

toc

end

%% Convergence Test

% ===

% This s e c t i o n w i l l t e s t f o r convergence at the cur r ent bottom r i gh t corner as

% we l l as t e s t f o r p o s s i b l e double root or block decompos i t ion p o s s i b i l i t i e s to

% i n c r e a s e convergence speed .

function [A B N M ITS SHIFT EIGEN]=LZ CONVERGENCE(A,B,N,M, ITS , SHIFT,EIGEN)

FLAG=0;

while FLAG==0;

FLAG=1;

for K=N: - 1 : 2

i f abs (A(K,K- 1))≤10ˆ(- 15)

break ;

end

end

% This i s so i t e r a t i o n s are only added when decompos i t ions don ' t occur

i f K==M+1

ITS=ITS+1;

else

M=K- 1 ;

ITS=0;

379

end

i f M==N- 1

i f abs (B(N,N))≤eps

B(N,N)=0;

end

EIGEN(N)=A(N,N)/B(N,N)+SHIFT ; % A s i n g l e root has been found

N=N- 1 ; % Def l a te one row and one column

M=1; % Reset M

ITS=0; % The counter i s r e i n i t i a l i z e d

i f N>2;

FLAG=0;

end

e l s e i f M==N- 2 && N�=3 && A(N,N- 1) . . .

≤sqrt (eps) % SPECIAL CASE: A 2x2 block decompos i t ion

detB2x2=B(N- 1 ,N- 1)∗B(N,N) -B(N- 1 ,N)∗B(N,N- 1) ;

i f abs (detB2x2)>eps ;

BI=1/(detB2x2) ∗ . . .

[B(N,N) -B(N- 1 ,N) ; -B(N,N- 1) B(N- 1 ,N- 1)] ;

% BI i s the i nve r s e o f the lower 2x2 submatrix o f B

C=BI∗A(N- 1 :N,N- 1 :N) ; % This i s A {2 ,2}∗B {2 ,2}ˆ{ - 1}
Z=sqrt ((C(1 ,1)+C(2 , 2)) ˆ2 - 4∗(C(1 , 1)∗C(2 , 2) -C(1 , 2)∗C(2 , 1))) ;

% Z i s the square root o f the c h a r a c t e r i s t i c polynmial

EIGEN(N)=.5∗(C(1 ,1)+C(2 ,2)+Z)+SHIFT;

EIGEN(N- 1)=.5∗(C(1 ,1)+C(2 , 2) -Z)+SHIFT;

% A double root has been found

N=N- 2 ; % Def l a te 2 rows and 2 columns

M=1; % Reset M

ITS=0; % The counter i s r e i n i t i a l i z e d

i f N>2

FLAG=0;

end

end

end

end

end

%% Sh i f t

% ===

380

% This f unc t i on forms the s h i f t r equ i r ed to a c c e l e r a t e convergence and to

% al low f o r imaginary e i g enva l u e s to be determined

function [A B N M ITS SHIFT]=LZ SHIFT(A,B,N,M, ITS , SHIFT,EIGEN, SIZE)

MAX=1000;

i f ITS==MAX

disp ('Max i t e r a t i o n s exceeded . Ca l cu l a t i on s f a i l e d . ')

disp ('The c a l c u l a t i o n i s expected to be i nac cu r a t e . ')

for K=1:SIZE

i f abs (EIGEN(K))≥10ˆ8

EIGEN(K)=Inf ;

e l s e i f abs (EIGEN(K))≤10ˆ(- 6)

EIGEN(K)=0;

end

end

disp ('The number o f s u c c e s s f u l l y computed Eigenvalues i s ')

disp (SIZE -N) ;

disp ('The Su c c e s s f u l l y Computed Eigenvalues are ')

disp (EIGEN(N: SIZE))

N=1;

S=0;

e l s e i f ITS==1∗MAX | | ITS==2∗MAX | | ITS==3∗MAX | | ITS==4∗MAX

% Form ad - hoc Sh i f t

% -

S=abs (A(N,N- 1))+abs (A(N- 1 ,N- 2)) ; % Bottom r i gh t corner

else

% -

% Form Except i ona l Sh i f t

% The s h i f t i s c a l cu l a t ed as the approximation to the e i genva lue o f the

% lower 2x2 submatrix o f A∗Bˆ(- 1)

% Force the s h i f t to converge to the e i genva lue in the bottom corner

% so that the e i genva lue i s always de f l a t ed from the bottom r i gh t up .

% -

detB2x2=B(N- 1 ,N- 1)∗B(N,N) -B(N- 1 ,N)∗B(N,N- 1) ;

i f abs (detB2x2)>eps

BI=1/(detB2x2) ∗ . . .

[B(N,N) -B(N- 1 ,N) ; -B(N,N- 1) B(N- 1 ,N- 1)] ;

% BI i s the i nve r s e o f the lower 2x2 submatrix o f B

C=BI∗A(N- 1 :N,N- 1 :N) ; % This i s A {2 ,2}∗B {2 ,2}ˆ{ - 1}
Z=sqrt ((C(1 ,1)+C(2 , 2)) ˆ2 - 4∗(C(1 , 1)∗C(2 , 2) -C(1 , 2)∗C(2 , 1))) ;

381

% Z i s the square root o f the c h a r a c t e r i s t i c polynmial

S1=.5∗(C(1 ,1)+C(2 ,2)+Z) ;

S2=.5∗(C(1 ,1)+C(2 , 2) -Z) ;

% Below develop the c ond i t i o n a l s to ensure convergence to the

% bottom r i gh t corner only .

D(1)=abs (C(2 , 2) - S1) ;

D(2)=abs (C(2 , 2) - S2) ;

[D I]=min(D) ;

i f I==1

S=S1 ;

else

S=S2 ;

end

e l s e i f N>2

S=abs (A(N,N- 1))+abs (A(N- 1 ,N- 2)) ; % Bottom r i gh t corner

else

S=0;

end

end

% -

% Apply the s h i f t

% -

i f isnan (S) �=1

SHIFT=SHIFT+S ;

A=A-S∗B;

end

end

%% Transforms

% ===

% This f unc t i on app l i e s the row and column trans f orms to A and B

function [A B N M]=LZ TRANSFORMS(A,B,N,M)

NZERO=eps ˆ (1) ; % NZERO i s numeric zero .

for K=M: 1 :N- 1

% -

% Annih i l a te the subdiagonal element in A with row trans f ormat i ons

% Apply the t rans f ormat i on to both A and B

382

% -

i f A(K,K)==0

A(K,K)=NZERO; DIV=A(K,K) ;

else

DIV=A(K,K) ;

end

Y=A(K+1,K)/DIV ;

A(K+1,K:N)=A(K+1,K:N) -Y∗A(K,K:N) ;

B(K+1,K:N)=B(K+1,K:N) -Y∗B(K,K:N) ;

% -

% Restore B to t r i a n gu l a r form with column trans f ormat i ons

% Apply the t rans f ormat i on to both B and A

% -

i f B(K+1,K+1)==0

B(K+1,K+1)=-NZERO; DIV=B(K+1,K+1);

else

DIV=B(K+1,K+1);

end

Y=B(K+1,K)/DIV ;

A(M:K+1,K)=A(M:K+1,K) -Y∗A(M:K+1,K+1);

B(M:K+1,K)=B(M:K+1,K) -Y∗B(M:K+1,K+1);

end

end

383

Appendix C

Unstable Frequencies

384

The spectral results for the biglobal analysis are densely populated, making the

identification of unstable circular frequencies difficult. While most spectral figures in Ch. 6

show eigenvalues above the critical line, many of these eigenvalues appear at similar circular

frequencies as damped eigenvalues. The overall stability of a discrete circular frequency

is contingent on the contribution of all eigenvalues at or near its value. As a means

of data reduction and post processing, the spectral results of the parametric studies are

analyzed to identify small intervals where the overall growth is expected to be positive.

This post processing technique is similar to computing a histogram where eigenvalues falling

within a predefined small interval are collected. Rather than seeking the distribution of

circular frequencies, the growth rates of the collected eigenvalues are averaged to obtain a

distributed growth rate, ω̃i. In this way, more quantitative trends can be identified within

the spectrum. These results are gathered in the subsequent sections and can be referenced

to their corresponding figures in Ch. 6. Frequencies are tested at intervals of 2.5± 2.5 for all

tables. The general equation used to calculate the distributed growth rate is given as:

ω̃i =
1

N

N∑
j=1

(ωi)j (C.1)

where N is the number of eigenvalues falling in the interval a ≤ ωr ≤ b.

385

C.1 The Complex-Lamellar Bidirectional Vortex

This section tabulates the predicted unstable circular frequencies for the complex-lamellar

bidirectional vortex.

C.1.1 Axisymmetric Spectrum

Table C.1: The first 10 unstable circular frequencies (left column) and distributed growth rate, ω̃i, (right
column) tabulated for the axisymmetric complex-lamellar parametric study in Fig. 6.3 for κ = 0.1.

κ = 0.1 0.01 0.001

132.5 2.5 None None
157.5 7.2
177.5 20.9
195.0 17.0
225.0 18.6
252.5 5.9
255.0 44.3
257.5 41.9
260.0 21.0
262.5 15.2

Re = 10000 5000 1000

132.5 2.5 None None
157.5 7.2
177.5 20.9
195.0 17.0
225.0 18.6
252.5 5.9
255.0 44.3
257.5 41.9
260.0 21.0
262.5 15.2

l = 2.5 1.5 0.5

130.0 0.2 125.0 1.2 None
155.0 14.5 127.5 5.3
177.5 3.5 130.0 1.8
180.0 7.4 162.5 4.8
195.0 42.2 180.0 23.4
220.0 10.1 250.0 41.9
255.0 35.8 257.5 35.1
257.5 45.1 260.0 25.9
260.0 48.1 262.5 4.6
262.5 59.2 265.0 27.3

m = 0 2 4

132.5 2.5 97.5 4.8 82.5 1.9
157.5 7.2 117.5 5.5 85.0 0.2
177.5 20.9 120.0 2.1 97.5 0.3
195.0 17.0 140.0 1.0 112.5 0.5
225.0 18.6 147.5 0.9 140.0 0.4
252.5 5.9 157.5 3.3 142.5 0.1
255.0 44.3 165.0 8.6 155.0 2.1
257.5 41.9 167.5 5.3 157.5 3.3
260.0 21.0 182.5 5.4 165.0 3.6
262.5 15.2 185.0 0.5 167.5 4.2

386

C.1.2 Asymmetric Spectrum

Table C.2: The first 10 unstable circular frequencies (left column) and distributed growth rate, ω̃i, (right
column) tabulated for the asymmetric complex-lamellar spectrum for variation in κ (Fig. 6.4).

κ = 0.1 0.01 0.001

67.5 1.0 None None
77.5 2.2
95.0 2.1
97.5 3.4
130.0 4.5
132.5 2.6
135.0 1.1
137.5 2.9
140.0 0.3
157.5 6.6

387

Table C.3: The first 10 unstable circular frequencies (left column) and distributed growth rate, ω̃i, (right
column) tabulated for the asymmetric complex-lamellar spectrum for variation in Re (Fig. 6.5).

κ = 0.1

Re = 10000 5000 1000

67.5 1.0 None None
77.5 2.2
95.0 2.1
97.5 3.4
130.0 4.5
132.5 2.6
135.0 1.1
137.5 2.9
140.0 0.3
157.5 6.6

κ = 0.01

Re = 10000 5000 1000

None None None

Table C.4: The first 10 unstable circular frequencies (left column) and distributed growth rate, ω̃i, (right
column) tabulated for the asymmetric complex-lamellar spectrum for variation in l (Fig. 6.9).

κ = 0.1

l = 2.5 1.5 0.5

65.0 0.2 85.0 0.0 117.5 0.5
85.0 1.1 87.5 1.1 155.0 0.1
87.5 2.0 90.0 1.9 180.0 10.3
95.0 1.4 97.5 0.3 182.5 35.4
97.5 1.7 130.0 5.4 215.0 38.9
105.0 0.1 132.5 5.2 247.5 3.3
107.5 3.1 135.0 2.5 250.0 7.1
127.5 1.3 155.0 3.1 282.5 40.7
130.0 2.4 157.5 2.4 315.0 1.5
132.5 5.5 160.0 4.8 317.5 29.4

κ = 0.01

l = 2.5 1.5 0.5

90.0 0.1 None None
332.5 1.0

388

Table C.5: The first 10 unstable circular frequencies (left column) and distributed growth rate, ω̃i, (right
column) tabulated for the asymmetric complex-lamellar spectrum for multidirectional flow number, m
(Fig. 6.11).

κ = 0.1

m = 0 2 4

67.5 1.0 82.5 2.6 75.0 2.0
77.5 2.2 92.5 1.1 87.5 0.8
95.0 2.1 95.0 8.5 100.0 2.8
97.5 3.4 107.5 1.6 102.5 8.9
130.0 4.5 117.5 3.2 112.5 5.1
132.5 2.6 120.0 0.5 142.5 6.4
135.0 1.1 125.0 4.7 152.5 8.9
137.5 2.9 127.5 8.4 155.0 18.0
140.0 0.3 145.0 3.0 157.5 10.8
157.5 6.6 147.5 1.9 160.0 12.5

κ = 0.01

m = 0 2 4

None 90.0 0.0 75.0 0.5
105.0 1.9 92.5 0.1
107.5 2.3 102.5 0.7
110.0 0.6 127.5 2.1
115.0 1.4 135.0 3.1
117.5 3.5 137.5 7.0
125.0 0.3 142.5 2.1
127.5 0.3 150.0 6.8
130.0 2.3 152.5 8.0
132.5 1.0 155.0 2.3

389

C.2 The Linear Beltramian Bidirectional Vortex

This section tabulates the predicted unstable circular frequencies for the linear Beltramian

bidirectional vortex.

C.2.1 Axisymmetric Spectrum

Table C.6: The first 10 unstable circular frequencies (left column) and distributed growth rate, ω̃i, (right
column) tabulated for the axisymmetric linear Beltramian parametric study in Fig. 6.14 for κ = 0.1.

κ = 0.1 0.01 0.001

72.5 1.6 295.0 0.3 None
75.0 2.1 455.0 5.1
107.5 7.2
110.0 3.9
112.5 5.2
125.0 7.9
135.0 15.7
137.5 5.2
142.5 9.3
145.0 15.9

Re = 10000 5000 1000

72.5 1.6 None None
75.0 2.1
107.5 7.2
110.0 3.9
112.5 5.2
125.0 7.9
135.0 15.7
137.5 5.2
142.5 9.3
145.0 15.9

l = 2.5 1.5 0.5

72.5 1.7 102.5 0.5 None
75.0 0.8 105.0 7.6
112.5 2.3 117.5 0.8
115.0 16.4 120.0 22.1
117.5 0.5 122.5 26.0
132.5 0.4 135.0 8.8
142.5 9.5 137.5 7.8
152.5 5.7 145.0 6.8
155.0 18.5 147.5 0.5
207.5 17.3 152.5 9.1

m = 0 2 4

72.5 1.6 22.5 0.1 40.0 2.5
75.0 2.1 40.0 0.9 42.5 3.2
107.5 7.2 50.0 1.1 70.0 9.1
110.0 3.9 77.5 2.2 90.0 7.3
112.5 5.2 92.5 2.5 92.5 1.1
125.0 7.9 95.0 5.5 100.0 3.4
135.0 15.7 105.0 5.1 102.5 8.2
137.5 5.2 107.5 11.3 125.0 2.6
142.5 9.3 110.0 1.9 127.5 4.4
145.0 15.9 117.5 3.4 135.0 16.1

390

C.2.2 Asymmetric Spectrum

Table C.7: The first 10 unstable circular frequencies (left column) and distributed growth rate, ω̃i, (right
column) tabulated for the asymmetric linear Beltramian spectrum for variation in κ (Fig. 6.15).

κ = 0.1 0.01 0.001

72.5 0.6 92.5 0.3 None
105.0 1.3 100.0 1.8
110.0 0.6 102.5 0.2
112.5 4.2 107.5 0.1
125.0 5.1 152.5 0.2
127.5 5.4 175.0 0.3
130.0 1.3 182.5 1.0
135.0 3.8 187.5 0.9
137.5 14.3 190.0 0.8
140.0 1.7 535.0 0.2

391

Table C.8: The first 10 unstable circular frequencies (left column) and distributed growth rate, ω̃i, (right
column) tabulated for the asymmetric linear Beltramian spectrum for variation in Re (Fig. 6.16).

κ = 0.1

Re = 10000 5000 1000

72.5 0.6 None None
105.0 1.3
110.0 0.6
112.5 4.2
125.0 5.1
127.5 5.4
130.0 1.3
135.0 3.8
137.5 14.3
140.0 1.7

κ = 0.01

Re = 10000 5000 1000

92.5 0.3 None None
100.0 1.9
102.5 0.2
107.5 0.1
152.5 0.2
175.0 0.3
182.5 1.0
187.5 0.9
190.0 0.8
535.0 0.3

Table C.9: The first 10 unstable circular frequencies (left column) and distributed growth rate, ω̃i, (right
column) tabulated for the asymmetric linear Beltramian spectrum for variation in l (Fig. 6.20).

κ = 0.1

l = 2.5 1.5 0.5

72.5 0.8 57.5 0.7 182.5 0.1
75.0 1.6 97.5 1.0 227.5 0.3
100.0 0.0 110.0 3.4 262.5 0.5
110.0 3.4 122.5 2.3 265.0 2.8
112.5 0.4 125.0 2.5 270.0 0.7
115.0 1.7 130.0 0.9 282.5 19.6
117.5 0.8 137.5 4.4 285.0 36.9
127.5 2.4 160.0 0.7 302.5 25.5
130.0 4.8 197.5 17.7 317.5 23.7
132.5 3.1 200.0 22.9 320.0 75.4

κ = 0.01

l = 2.5 1.5 0.5

87.5 0.0 107.5 1.3 77.5 0.7
90.0 0.0 87.5 2.2
100.0 0.2 90.0 6.5
130.0 0.5 117.5 5.0
177.5 0.7 125.0 1.8
180.0 0.8 127.5 6.9
182.5 1.4 145.0 7.7
190.0 6.5 152.5 6.1
497.5 0.6 185.0 3.5
540.0 2.4 192.5 1.0

392

Table C.10: The first 10 unstable circular frequencies (left column) and distributed growth rate, ω̃i, (right
column) tabulated for the asymmetric linear Beltramian spectrum for multidirectional flow number, m
(Fig. 6.21).

κ = 0.1

m = 0 2 4

72.5 0.6 65.0 0.1 52.5 2.0
105.0 1.3 115.0 9.7 67.5 5.5
110.0 0.6 135.0 0.9 70.0 7.1
112.5 4.2 137.5 11.2 72.5 2.5
125.0 5.1 155.0 6.8 95.0 7.9
127.5 5.4 157.5 21.3 110.0 0.2
130.0 1.3 167.5 6.3 112.5 0.0
135.0 3.8 170.0 4.1 120.0 2.4
137.5 14.3 185.0 27.4 122.5 14.8
140.0 1.7 187.5 20.2 125.0 18.3

κ = 0.01

m = 0 2 4

92.5 0.3 87.5 1.7 62.5 1.1
100.0 1.9 90.0 0.2 77.5 2.9
102.5 0.2 100.0 1.0 92.5 0.5
107.5 0.1 107.5 2.5 122.5 1.1
152.5 0.2 110.0 1.0 125.0 4.8
175.0 0.3 112.5 0.0 127.5 11.8
182.5 1.0 120.0 3.3 140.0 2.5
187.5 0.9 137.5 0.7 165.0 0.3
190.0 0.8 147.5 5.6 182.5 1.3
535.0 0.3 150.0 0.1 197.5 14.7

393

C.3 The Harmonic Beltramian Bidirectional Vortex

This section tabulates the predicted unstable circular frequencies for the harmonic Bel-

tramian bidirectional vortex.

C.3.1 Axisymmetric Spectrum

Table C.11: The first 10 unstable circular frequencies (left column) and distributed growth rate, ω̃i, (right
column) tabulated for the axisymmetric harmonic Beltramian parametric study in Fig. 6.25 for κ = 0.1.

κ = 0.1 0.01 0.001

72.5 1.0 295.0 0.3 None
97.5 2.7 367.5 0.0
110.0 3.7 455.0 5.3
117.5 5.6
130.0 11.8
137.5 2.8
140.0 14.9
142.5 8.4
145.0 7.2
152.5 7.8

Re = 10000 5000 1000

72.5 1.0 None 395.0 0.0
97.5 2.7 397.5 0.0
110.0 3.7 520.0 4.1
117.5 5.6 522.5 4.1
130.0 11.8 652.5 5.8
137.5 2.8 655.0 5.8
140.0 14.9
142.5 8.4
145.0 7.2
152.5 7.8

l = 2.5 1.5 0.5

70.0 1.2 80.0 2.2 None
72.5 0.1 105.0 1.2
100.0 2.6 117.5 6.4
117.5 10.2 120.0 10.9
120.0 7.8 122.5 1.9
127.5 3.7 130.0 9.0
130.0 6.7 137.5 3.0
137.5 4.7 152.5 10.1
145.0 4.3 160.0 2.3
147.5 7.0 167.5 11.9

m = 0 2 4

72.5 1.0 35.0 1.4 60.0 3.6
97.5 2.7 37.5 3.9 62.5 7.9
110.0 3.7 40.0 1.4 65.0 0.5
117.5 5.6 90.0 11.5 90.0 2.2
130.0 11.8 92.5 6.2 110.0 2.6
137.5 2.8 122.5 9.5 120.0 1.2
140.0 14.9 125.0 0.3 135.0 5.2
142.5 8.4 130.0 3.2 137.5 1.3
145.0 7.2 137.5 0.3 142.5 16.8
152.5 7.8 150.0 8.4 145.0 7.7

394

C.3.2 Asymmetric Spectrum

Table C.12: The first 10 unstable circular frequencies (left column) and distributed growth rate, ω̃i, (right
column) tabulated for the asymmetric harmonic Beltramian spectrum for variation in κ (Fig. 6.26).

κ = 0.1 0.01 0.001

105.0 0.9 90.0 0.5 None
112.5 3.4 92.5 1.6
115.0 3.1 100.0 1.7
120.0 5.1 102.5 0.6
127.5 5.2 135.0 0.1
130.0 0.2 152.5 0.1
135.0 13.7 182.5 0.9
137.5 9.4 187.5 0.8
145.0 8.2 190.0 0.8
147.5 3.1 535.0 0.3

395

Table C.13: The first 10 unstable circular frequencies (left column) and distributed growth rate, ω̃i, (right
column) tabulated for the asymmetric harmonic Beltramian spectrum for variation in Re (Fig. 6.27).

κ = 0.1

Re = 10000 5000 1000

105.0 0.9 None None
112.5 3.4
115.0 3.1
120.0 5.1
127.5 5.2
130.0 0.2
135.0 13.7
137.5 9.4
145.0 8.2
147.5 3.1

κ = 0.01

Re = 10000 5000 1000

90.0 0.6 None None
92.5 1.7
100.0 1.7
102.5 0.6
135.0 0.2
152.5 0.2
182.5 1.0
187.5 0.9
190.0 0.8
535.0 0.4

Table C.14: The first 10 unstable circular frequencies (left column) and distributed growth rate, ω̃i, (right
column) tabulated for the asymmetric harmonic Beltramian spectrum for variation in l (Fig. 6.31).

κ = 0.1

l = 2.5 1.5 0.5

75.0 0.3 80.0 1.0 155.0 0.2
77.5 0.1 110.0 0.2 157.5 1.5
82.5 0.1 112.5 0.0 282.5 23.3
102.5 0.4 122.5 0.6 285.0 66.2
112.5 0.6 125.0 2.1 317.5 17.8
117.5 3.9 127.5 0.2 320.0 23.0
120.0 4.5 135.0 5.8 322.5 74.9
125.0 5.8 137.5 3.6 325.0 98.2
127.5 7.5 170.0 6.5 362.5 35.8
132.5 3.6 192.5 10.5 365.0 4.5

κ = 0.01

l = 2.5 1.5 0.5

87.5 1.3 107.5 1.3 77.5 0.6
100.0 0.3 87.5 2.1
130.0 0.5 90.0 6.5
162.5 0.5 117.5 0.6
177.5 1.2 125.0 1.8
180.0 0.8 127.5 6.9
182.5 1.4 145.0 7.7
190.0 6.5 152.5 3.1
192.5 0.1 192.5 1.0
497.5 0.7 215.0 0.7

396

Table C.15: The first 10 unstable circular frequencies (left column) and distributed growth rate, ω̃i, (right
column) tabulated for the asymmetric harmonic Beltramian spectrum for multidirectional flow number, m
(Fig. 6.32).

κ = 0.1

m = 0 2 4

105.0 0.9 87.5 1.2 45.0 1.7
112.5 3.4 112.5 2.0 60.0 2.9
115.0 3.1 115.0 6.5 62.5 6.1
120.0 5.1 135.0 5.3 65.0 3.8
127.5 5.2 137.5 4.0 67.5 0.1
130.0 0.2 142.5 2.9 105.0 1.5
135.0 13.7 157.5 1.6 107.5 7.5
137.5 9.4 192.5 21.1 110.0 0.9
145.0 8.2 195.0 33.7 117.5 19.9
147.5 3.1 207.5 20.1 120.0 7.0

κ = 0.01

m = 0 2 4

90.0 0.6 62.5 2.7 77.5 4.0
92.5 1.7 87.5 0.6 120.0 3.2
100.0 1.7 100.0 1.2 122.5 3.2
102.5 0.6 107.5 2.4 125.0 14.0
135.0 0.2 110.0 7.0 127.5 14.1
152.5 0.2 112.5 6.6 142.5 7.1
182.5 1.0 115.0 0.5 172.5 9.9
187.5 0.9 147.5 0.4 180.0 1.9
190.0 0.8 160.0 2.5 182.5 12.3
535.0 0.4 162.5 3.1 185.0 29.6

397

Vita

Joshua Will Batterson was born on April 11th, 1983 to Richard and Mary Batterson of

Huntington, Indiana. He began his undergraduate studies at Trine University (formerly Tri-

State University) in mechanical engineering in the Fall of 2001. In 2005 he completed his B.S.

in Mechanical Engineering at Tri-State and began pursuing his graduate education at the

University of Tennessee Space Institute under the tutelage of Dr. Joseph Majdalani. Josh

received his Master of Science in Aerospace Engineering from the University of Tennessee,

Knoxville in November of 2007 after completing a thesis on boundary layers in bidirectional

vortex flowfields. His doctorate considered an up-and-coming approach to hydrodynamic

stability in which he successfully developed general codes for three-dimensional flow analysis.

During his graduate studies, Josh filled many service rolls. He transitioned from student

senator to VP of Records and Finance to student body President. During his time with

the student government, he was involved with various leadership and representative roles

throughout the UT system. He also was awarded the privilege of hosting the AIAA Region

II student conference in 2009. Through his efforts, campus wide participation in AIAA

increased. His rising position among his peers secured him an invitation to address members

of congress in Washington D.C. on the merits of a well funded space program in the areas

of technology development, education, and international commerce.

Josh’s academic accomplishments included several conference publications in the field of

vortex technologies and hydrodynamic instability in propulsive applications. Lastly, he has

398

made advances in asymptotic mathematics including solutions of transcendental equations

and singular perturbations.

399

	University of Tennessee, Knoxville
	Trace: Tennessee Research and Creative Exchange
	8-2011

	The Biglobal Instability of the Bidirectional Vortex
	Joshua Will Batterson
	Recommended Citation

	FrontMatter
	Title
	Dedication
	Acknowledgments
	Quote
	Abstract

	Table of Contents
	1 Introduction
	1.1 The Bidirectional Vortex
	1.2 Instability
	1.2.1 On the Vortico-Acoustic Wave Formulation
	1.2.2 On the Hydrodynamic Wave Formulation
	1.2.3 On Linear Hydrodynamic Stability Theory
	1.2.4 Parallel Flow Effects

	2 Vortex Flows
	2.1 An Introduction to Vortex Flows
	2.2 The Complex Lamellar Bidirectional Vortex
	2.2.1 The Invsicid Solution
	2.2.2 Viscous Corrections

	2.3 The Beltramian Bidirectional Vortex
	2.3.1 The Linear Beltramian Solution
	2.3.2 Viscous Corrections
	2.3.3 The Harmonic Beltramian Solution

	2.4 A Comment on the Existence of Multiple Mantles
	2.4.1 Experimental Validation

	3 Spectral Collocation Methods
	3.1 Polynomial Approximation and Interpolation
	3.2 Chebyshev Polynomials
	3.3 Pseudo-Spectral Derivatives
	3.4 Solving ODEs with Chebyshev Collocation
	3.4.1 Example: A First Order ODE with Variable Coefficients
	3.4.2 Example: A Second Order BVP with Variable Coefficients
	3.4.3 Example: A System of Differential Equations

	3.5 Eigenvalue Problems with ODEs
	3.5.1 Example: Eigenvalues of the Bessel Equation

	3.6 Solving PDEs with Chebyshev Collocation
	3.6.1 Example: A Parabolic PDE with Variable Coefficients
	3.6.2 Example: The 2D Poisson Equation
	3.6.3 Example: A System of PDEs

	3.7 Eigenvalue Problems with PDEs
	3.7.1 Example: The Helmholtz equation

	3.8 Closing Remarks on Spectral Methods

	4 Eigensolvers
	4.1 Calculating Eigenvalues
	4.2 Matrix Preconditioning
	4.2.1 Balancing a Single Matrix
	4.2.2 Balancing the Generalized Eigenvalue Problem
	4.2.3 Segregating Nonzero Elements

	4.3 Matrix Reductions
	4.3.1 Reduction of a Single Matrix
	4.3.2 Reduction of a Matrix Pencil
	4.3.3 Block Decomposition

	4.4 Single Matrix Eigensolvers
	4.4.1 The Power Method
	4.4.2 The Inverse Power Method
	4.4.3 The QR and LR Methods

	4.5 Generalized Eigensolvers
	4.5.1 Example: Implementation of an LZ Eigensolver

	4.6 Closing Remarks on Eigensolvers

	5 Local Nonparallel Stability Analysis of the Bidirectional Vortex
	5.1 Deriving the Spectral LNP Equations
	5.2 Code Validation and Grid Refinement
	5.3 The Complex-Lamellar Bidirectional Vortex
	5.3.1 Axisymmetric Spectrum
	5.3.2 Asymmetric Spectrum
	5.3.3 Multiple Mantles
	5.3.4 Amplified Frequencies

	5.4 The Linear Beltramian Bidirectional Vortex
	5.4.1 Axisymmetric Spectrum
	5.4.2 Asymmetric Spectrum
	5.4.3 Multiple Mantles
	5.4.4 Amplified Frequencies

	5.5 The Harmonic Beltramian Bidirectional Vortex
	5.5.1 Axisymmetric Spectrum
	5.5.2 Asymmetric Spectrum
	5.5.3 Multiple Mantles
	5.5.4 Amplified Frequencies

	5.6 Closing Remarks on the LNP Applied to the BV

	6 Biglobal Stability Analysis of the Bidirectional Vortex
	6.1 Deriving the Spectral Biglobal Equations
	6.2 On the Hardware Requirements
	6.3 The Complex-Lamellar Bidirectional Vortex
	6.3.1 Axisymmetric Spectrum
	6.3.2 Asymmetric Spectrum
	6.3.3 Evolution with Time

	6.4 The Linear Beltramian Bidirectional Vortex
	6.4.1 Axisymmetric Spectrum
	6.4.2 Asymmetric Spectrum
	6.4.3 Evolution with Time

	6.5 The Harmonic Beltramian Bidirectional Vortex
	6.5.1 Axisymmetric Spectrum
	6.5.2 Asymmetric Spectrum
	6.5.3 Evolution with Time

	6.6 Closing Remarks on the BG Approach
	6.6.1 Considering the Waveforms
	6.6.2 Data Reduction
	6.6.3 On Chamber Length
	6.6.4 Quantifying Numerical Error

	7 Conclusions
	7.1 Comparing the LNP and Biglobal Solutions
	7.1.1 The Effect of the Tangential Velocity

	7.2 Unstable Frequencies
	7.3 Eigensolver Implementation
	7.4 Future Work

	Bibliography
	A Derivations
	A.1 Deriving the 1-D Cylindrical LNP Equations
	A.2 Deriving the Cylindrical Biglobal Stability Equations

	B Numerical Codes
	B.1 Polynomial Interpolation
	B.2 Chebyshev Interpolating Polynomial Generator
	B.3 Chebyshev Pseudo-Spectral Differentiation Matrix Generator
	B.4 Chebyshev Interpolation
	B.5 Computing a Spectral Derivative
	B.6 A First order ODE with Chebyshev Collocation
	B.7 A Second Order BVP with Chebyshev Collocation
	B.8 Systems of ODEs with Chebyshev Collocation
	B.9 Eigenvalue Problems for ODEs
	B.10 A Parabolic Partial Differential Equation with Variable Coefficients
	B.11 The Time-Independent Poisson Equation with a Sinusoidal Forcing Function
	B.12 Systems of PDEs with Chebyshev Collocation
	B.13 Eigenvalue Problems for PDEs
	B.14 Single Matrix Balancing
	B.15 Matrix Pencil Balancing
	B.16 Segregating Nonzero Elements
	B.17 Real Symmetric Matrix to Tridiagonal Form
	B.18 Real Nonsymmetric Matrix to Upper Hessenberg Form
	B.19 Real/Complex Nonsymmetric Matrix to Upper Hessenberg Form
	B.20 Matrix Pencil Reduction
	B.21 Block Decomposition
	B.22 The Power Method
	B.23 The Inverse Power Method
	B.24 The QR Method
	B.25 The LZ Method
	B.26 The Generalized LZ Algorithm

	C Unstable Frequencies
	C.1 The Complex-Lamellar Bidirectional Vortex
	C.1.1 Axisymmetric Spectrum
	C.1.2 Asymmetric Spectrum

	C.2 The Linear Beltramian Bidirectional Vortex
	C.2.1 Axisymmetric Spectrum
	C.2.2 Asymmetric Spectrum

	C.3 The Harmonic Beltramian Bidirectional Vortex
	C.3.1 Axisymmetric Spectrum
	C.3.2 Asymmetric Spectrum

	Vita

