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Abstract 

This dissertation presents the synthesis of a series of thermo- and pH-sensitive 

hydrophilic block copolymers and the study of their solution behavior in water. By 

incorporating a small amount of weak acid or base groups into the thermosensitive 

block(s) of a hydrophilic block copolymer, the LCST of the thermosensitive block(s) can 

be modified by changing the solution pH. Accordingly, the critical micellization 

temperature (CMT) and the sol-gel transition temperature (Tsol-gel) of the block copolymer 

in water can be tuned. 

Chapter 1 describes the synthesis of thermo- and pH-sensitive 

poly(methoxydi(ethylene glycol) methacrylate-co-methacrylic acid)-b-PEO-b-

poly(methoxydi(ethylene glycol) methacrylate-co-methacrylic acid) and the study of sol-

gel transitions of its aqueous solutions at various pH values. The CMT of the 0.2 wt% 

solution and the Tsol-gel of the 12.0 wt% solution of this copolymer can be varied over a 

large temperature range. By judiciously controlling temperature and pH, multiple sol-gel-

sol transitions were realized. Chapter 2 presents a systematic study of pH effect on 

rheological properties of micellar gels formed from 10.0 wt% aqueous solutions of 

thermo- and pH-sensitive poly(ethoxydi(ethylene glycol) acrylate-co-acrylic acid)-b-

PEO-b-poly(ethoxydi(ethylene glycol) acrylate-co-acrylic acid). With the increase of pH, 

the sol-gel transition became broader. The plateau moduli (GN) evaluated from frequency 

sweeps at T/Tsol-gel of 1.025, 1.032, and 1.039 decreased with the increase of pH from 

3.00 to 5.40 with the largest drop observed at pH = ~ 4.7. The decrease in GN reflects the 

reduction of the number of bridging chains. The ionization of carboxylic acid introduced 
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charges onto the thermosensitive blocks and made the polymer more hydrophilic, 

facilitating the formation of loops and dangling chains.  

Chapter 3 presents the synthesis of PEO-b-poly(methoxydi(ethylene glycol) 

methacrylate-co-2-(N-methyl-N-(4-pyridyl)amino)ethyl methacrylate) with the 

thermosensitive block containing a catalytic 4-N,N-dialkylaminopyridine and the study of 

the effect of thermo-induced micellization on its activity in the hydrolysis of p-

nitrophenyl acetate. The CMTs of this copolymer at pH of 7.06 and 7.56 were 40 and 37 

°C, respectively. Below CMT, the logarithm of initial hydrolysis rate changed linearly 

with 1/T. Above CMT, the reaction rate leveled off, which is presumably because it was 

controlled by mass transport to the core of micelles above CMT.  
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Abstract  

This chapter describes the synthesis of a well-defined hydrophilic ABA triblock 

copolymer composed of a poly(ethylene oxide) (PEO) middle block and thermo- and pH-

sensitive outer blocks and the study of sol-gel transitions of its aqueous solutions at 

various pH values. The doubly responsive linear triblock copolymer, 

poly(methoxydi(ethylene glycol) methacrylate-co-methacrylic acid)-b-PEO-b-

poly(methoxydi(ethylene glycol) methacrylate-co-methacrylic acid) (P(DEGMMA-co-

MAA)-b-PEO-b-P(DEGMMA-co-MAA)),  was prepared by atom transfer radical 

polymerization of a mixture of DEGMMA and t-butyl methacrylate with a molar ratio of 

100 : 5 from a difunctional PEO macroinitiator and subsequent removal of t-butyl groups 

using trifluoroacetic acid. Dynamic light scattering studies showed that the critical 

micellization temperature (CMT) of this ABA triblock copolymer in a 0.2 wt % aqueous 

solution was dependent on the solution pH and can be varied in a large temperature range 

(> 20 °C). To study the sol-gel transitions, a 12.0 wt% aqueous solution of the triblock 

copolymer with a pH of 4.89 was made; its pH value can be readily changed and well 

controlled by the injection of either a 1.0 M HCl or a 1.0 M KOH solution. From 

rheological measurements, the sol-gel transition temperature (Tsol-gel) versus pH curve 

was found to closely trace the CMT versus pH curve, though there was a shift. By cycling 

the solution pH between 3.2 and 5.4, we showed that the Tsol-gel at a specific pH was 

reproducible. Moreover, multiple sol-gel-sol transitions were realized by judiciously 

controlling the temperature and pH simultaneously, demonstrating the possibility of 

achieving on-demand sol-gel transitions by using two external stimuli. In addition, the 

effect of polymer concentration on Tsol-gel at pH = 4.0 was investigated. The sol-gel 
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transition temperature increased with the decrease of polymer concentration and the 

critical gelation concentration was found to be between 4 and 6 wt%.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 4

1.1 Introduction 

ABA triblock copolymers, composed of a permanently water-soluble B block and 

stimuli-responsive hydrophilic A blocks, can self-assemble in a dilute aqueous solution 

into flower micelles with the outer blocks associating into the core and the central blocks 

forming loops in the corona layer upon application of an external stimulus.1,2 When the 

polymer concentration is sufficiently high, i.e., above the critical gelation concentration 

(CGC), a 3-dimensional micellar network is formed, in which the central block forming 

bridges among neighboring micelles. Consequently, the free-flowing solution is 

transformed into a free-standing micellar gel triggered by the environmental stimulus.1-4 

The block copolymer micellar gels have received growing interest in recent years and 

have found applications, e.g., in controlled release of drugs and tissue engineering.3-6 

Compared with chemically crosslinked hydrogels, stimuli-sensitive aqueous micellar gels 

are more advantageous for many biomedical applications because the in situ sol-gel 

transition and the nature of physical crosslinking allow convenient delivery and removal 

of polymers.  

There have been a number of reports on stimuli-sensitive hydrophilic ABA triblock 

and other multi-block copolymer micellar gels.3-28 For example, using atom transfer 

radical polymerization (ATRP), Armes et al. synthesized a series of ABA triblock 

copolymers that can form gels in water in response to either pH or temperature changes.8-

13 These linear triblock copolymers were composed of a biocompatible 

phosphorylcholine-containing polymer as the central block and pH- or temperature-

sensitive polymers as outer blocks. Kirkland et al. prepared poly(N-isopropylacrylamide)-

b-poly(N,N-dimethyacrylamide)-b-poly(N-isopropylacrylamide) (PNIPAm-b-PDMA-b-
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PNIPAm) by reversible addition fragmentation chain transfer (RAFT) polymerization.14 

Above the lower critical solution temperature (LCST) of PNIPAm, the triblock 

copolymer aqueous solutions underwent sol-gel transitions that led to the formation of 

micellar gels with mechanical properties similar to collagen, a naturally occurring 

polypeptide that has been used as a cell growth scaffold.14   

Of particular interest to us are aqueous block copolymer micellar gels that can 

respond to multiple stimuli, i.e., the sol-gel transition can be induced by at least two 

distinct physical or chemical stimuli.3,4,15-28 Such gels would provide a greater design 

flexibility that is needed in many technological uses including biomedical applications. 

Up to date, there are only a few reports in the literature on multi-sensitive block 

copolymer aqueous gels. Notably, Li et al. reported the synthesis of thermo- and redox-

sensitive ABA triblock copolymers by ATRP using a difunctional initiator that contained 

a redox-sensitive disulfide bond.15 The sol-gel transitions can be triggered biochemically 

and thermally. Temperature- and pH-sensitive block copolymer aqueous gels are 

probably the most studied multi-responsive micellar gels.18-28 The block copolymers were 

usually prepared by either growing pH-sensitive blocks from or introducing pH-

responsive groups to the chain ends of an ABA triblock copolymer that can form 

thermoreversible gels in water (e.g., PEO-b-PPO-b-PEO).18-25 Suh et al. used pyromellitic 

dianhydride to couple PEO-b-PPO-b-PEO to make multiblock copolymers with 

carboxylic acid groups being incorporated at the junction points.26 Very recently, Lee et 

al. reported pH- and thermo-sensitive aqueous gels of multiblock copolymers composed 

of PEO and poly(amino urethane).27,28  
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Here we present a new type of thermo- and pH-responsive ABA triblock copolymer 

aqueous micellar gels. Different from those reported in the literature, our approach is to 

incorporate carboxylic acid groups into the thermosensitive outer blocks of an ABA 

triblock copolymer. The key feature of this type of doubly responsive hydrophilic block 

copolymers is that the LCST of the thermosensitive block can be modulated by 

application of a second stimulus.29-31 It has been reported in the literature that the LCST 

transition temperature of a thermosensitive polymer that contains a small amount of weak 

acid or base groups can be precisely and reversibly tuned by adjusting the solution pH,31-

44 allowing one to reversibly tune the sol-gel transition temperature in a wide temperature 

range. In this work, we synthesized a thermo- and pH-sensitive ABA triblock copolymer, 

poly(methoxydi(ethylene glycol)-co-methacrylic acid)-b-poly(ethylene oxide)-b-

poly(methoxydi(ethylene glycol)-co-methacrylic acid) (P(DEGMMA-co-MAA)-b-PEO-

b-P(DEGMMA-co-MAA)), by ATRP of a mixture of DEGMMA and t-butyl 

methacrylate (tBMA) with a molar ratio of 100 : 5 from a difunctionalized PEO 

macroinitiator and subsequent removal of t-butyl groups of tBMA units (Scheme 1.1). 

PDEGMMA is a biocompatible thermosensitive water-soluble polymer with a LCST at 

25 °C in water, which belongs to a new class of thermo-responsive hydrophilic polymers 

with a short oligo(ethylene glycol) pendant from each repeating unit.45-65 We show that 

the sol-gel transition temperature (Tsol-gel) of aqueous solutions of this ABA triblock 

copolymer can be controlled by pH and multiple sol-gel-sol transitions can be realized 

via the combination of temperature and pH triggers. It should be noted here that very 

recently Lutz and coworkers reported the synthesis of thermosensitive linear triblock 

copolymers and four-arm star-block copolymers by ATRP of mixtures of DEGMMA and  
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Scheme 1.1. Synthesis of Thermo- and pH-Sensitive ABA Triblock Copolymer 

P(DEGMMA-co-MAA)-b-PEO-b-P(DEGMMA-co-MAA).  
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oligo(ethylene glycol) methacrylate from linear and 4-arm star PEO macroinitiators, 

respectively. The thermo-induced sol-gel transitions of aqueous solutions of these 

copolymers were investigated.64,65  

 

1.2 Experimental Part 

1.2.1 Materials  

Methoxydi(ethylene glycol) methacrylate (DEGMMA, or di(ethylene glycol) 

methyl ether methacrylate, 95%, Aldrich), N,N,N′,N′,N′′-pentamethyldiethylenetriamine 

(PMDETA, Aldrich), and ethyl 2-bromoisobutyrate (EBiB, Aldrich) were dried over 

calcium hydride and distilled under reduced pressure. CuBr (98%, Aldrich) was purified 

according to the procedure described in the literature66,67 and was stored in a desiccator. 

Potassium hydrogen phthalate (KHP) and trifluoroacetic acid (99%) were obtained from 

Acros and used without further treatment. Dichloromethane and anisole (99%, Acros) 

were dried with calcium hydride, distilled, and stored in solvent storage flasks. tert-Butyl 

methacrylate (99%, Aldrich) was passed through a basic aluminum oxide column prior to 

use. Poly(ethylene glycol) (HO-PEO-OH, MW = 20,000 g/mol) was obtained from 

Aldrich. All other chemicals were purchased from either Aldrich or Fisher and used 

without further purification. 

1.2.2 General Characterization  

Gel permeation chromatography (GPC) was carried out at ambient temperature 

using PL-GPC 20 (an integrated GPC system from Polymer Laboratories, Inc) with a 

differential refractive index detector, one PLgel 5 μm guard column (50 × 7.5 mm), and 

two PLgel 5 μm mixed-C columns (each 300 × 7.5 mm, linear range of molecular weight 
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from 200 to 2,000,000 according to Polymer Laboratories). The data were processed 

using CirrusTM GPC/SEC software (Polymer Laboratories). THF was used as the carrier 

solvent at a flow rate of 1.0 mL/min. Polystyrene standards (Polymer Laboratories) were 

used for calibration. The 1H (300 MHz) NMR spectra were recorded on a Varian 

Mercury 300 NMR spectrometer and the residual solvent proton signal was used as the 

internal standard.  

1.2.3. Synthesis of Difunctional PEO Macroinitiator (Br-PEO-Br)  

Poly(ethylene oxide) (PEO) with a molecular weight of 20,000 g/mol (21.257 g, 

1.063 mmol) was added into a three-necked flask and dissolved in toluene (250 mL). The 

trace amount of water in PEO was removed by azeotropic distillation of toluene (~ 150 

mL) under the normal atmospheric pressure. After the solution was cooled to room 

temperature, triethylamine (0.934 g, 9.2 mmol) was added and the mixture was stirred for 

30 min under the protection of N2. 2-Bromoisobutyryl bromide (4.208 g, 18.3 mmol) was 

added dropwise from an addition funnel. After the reaction mixture was stirred overnight 

at ambient temperature, the precipitate was removed by vacuum filtration. The filtrate 

was concentrated and precipitated in diethyl ether (200 mL). The polymer was purified 

by precipitation in diethyl ether three times from its dichloromethane solution. The 

macroinitiator was then dissolved in water with a pH of ~ 8. Dichloromethane was used 

to extract the PEO macroinitiator. The organic extracts were combined and dried over 

anhydrous magnesium sulfate overnight. After the removal of magnesium sulfate by 

filtration, the solution was concentrated and precipitated in diethyl ether. The 

macroinitiator was then recrystallized in ethanol twice and dried under high vacuum at an 



 10

elevated temperature. The difunctional macroinitator Br-PEO-Br was obtained as a white 

solid.  

1.2.4. Synthesis of P(DEGMMA-co-tBMA)-b-PEO-b-P(DEGMMA-co-tBMA)  

Copper (I) bromide (14.4 mg, 1.00 ×10-4 mol) and the difunctional PEO 

macroinitiator Br-PEO-Br (1.003 g, 4.95 ×10-5 mol) were weighed into a two-necked 

flask, followed by addition of DEGMMA (3.721 g, 19.8 mmol), tBMA (0.147 g, 1.04 

mmol), and anisole (7.811 g). N,N,N′,N′,N′′-Pentamethyldiethylenetriamine (17.2 mg, 

9.89 ×10-5 mol) was then injected into the flask via a microsyringe. Three freeze-pump-

thaw cycles were employed to degas the reaction mixture.  The reaction was started by 

placing the flask into a 75 °C oil bath. The polymerization was monitored by GPC. After 

100 min, the polymerization was stopped by opening the flask to air and diluting the 

reaction mixture with THF. The copper catalyst was removed from the reaction mixture 

by passing the solution through a short neutral aluminum oxide/silica gel column. The 

polymer was precipitated four times in hexanes and then dried under high vacuum. GPC 

analysis results (polystyrene standards): Mn,GPC = 43000 g/mol, polydispersity (PDI) = 

1.13. The numbers of DEGMMA and tBMA units in the block copolymer were 235 and 

12, respectively, calculated from the 1H NMR spectrum. 

1.2.5. Synthesis of P(DEGMMA-co-MAA)-b-PEO-b-P(DEGMMA-co-MAA) 

P(DEGMMA-co-tBMA)-b-PEO-b-P(DEGMMA-co-tBMA) (2.000 g) was added 

into a 50 mL round bottom flask and dissolved with dichloromethane (10 mL). The 

solution was stirred at room temperature for 2 h to ensure complete dissolution. 

Trifluoroacetic acid (5.470 g) was then added into the flask. After the reaction mixture 

was stirred at ambient temperature for 46 h, the volatiles were removed by a rotavapor. 
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The polymer was precipitated four times in a mixture of hexanes and diethyl ether (10/1, 

v/v), and then dried under high vacuum.  

1.2.6. Preparation of 12.0 wt% Aqueous Solution of P(DEGMMA-co-MAA)-b-PEO-

b-P(DEGMMA-co-MAA) 

P(DEGMMA-co-MAA)-b-PEO-b-P(DEGMMA-co-MAA) was added into a pre-

weighed round bottom flask and dried under high vacuum at 70 °C for 5 h. The weight of 

the dried polymer was 1.143 g. Milli-Q water (8.361 g) was added into the flask and the 

mixture was then sonicated in an ice/water ultrasonic bath (Fisher Scientific Model B200 

Ultrasonic Cleaner) to dissolve the ABA triblock copolymer in water. The flask was then 

stored in a refrigerator (~ 4 °C) overnight and the solution was filtered with a 0.45 μm 

Nylon filter. We then injected 103.5 μL of a 1.0 M KOH aqueous solution to make the 

polymer solution a buffer (-COOH/-COOK). The pH of the obtained polymer solution, 

measured by a pH meter (Accumet AB15 pH meter from Fisher Scientific, calibrated 

with pH = 4.01, 7.00, and 10.01 standard buffer solutions), was 4.89, which is close to 

the pKa value (pKa = 5.59) of carboxylic acid groups in a random copolymer 

P(DEGMMA-co-MAA) with a molar ratio of DEGMMA to MAA similar to that in the 

ABA triblock copolymer.68 This 12.0 wt% polymer aqueous solution was used as the 

starting point for all experiments in this work.  

1.2.7 Dynamic Light Scattering Study of Thermo-Induced Micellization of 0.2 wt% 

Aqueous Solutions of P(DEGMMA-co-MAA)-b-PEO-b-P(DEGMMA-co-MAA) in 

10 mM KHP Buffers with Various pH Values  

The thermo-induced micellization of P(DEGMMA-co-MAA)-b-PEO-b-

P(DEGMMA-co-MAA) at a concentration of 0.2 wt% in 10 mM KHP buffers with 
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various pH values was studied by dynamic light scattering (DLS). The KHP buffers were 

prepared by dissolving KHP in Milli-Q water (KHP concentration: 10 mM) and the pH 

values were adjusted by the addition of a 1.0 M KOH aqueous solution or a 1.0 M HCl 

aqueous solution. A series of 0.2 wt% aqueous solutions of P(DEGMMA-co-MAA)-b-

PEO-b-P(DEGMMA-co-MAA) with different pH values were prepared by diluting a 

certain amount of the aforementioned 12.0 wt% aqueous polymer solution with KHP 

buffers (e.g., 3.357 g of the pH = 3.20 KHP buffer was added into a vial that contained 

56.0 mg of the 12.0 wt% polymer solution). All 0.2 wt% polymer solutions were 

sonicated in an ice/water ultrasonic bath for 2 min to ensure that the solutions were 

homogeneous. The pH values of the solutions were re-measured by a pH meter 

(essentially the same as the pH values of KHP buffers) 

DLS measurements were conducted with a Brookhaven Instruments BI-200SM 

goniometer equipped with a PCI BI-9000AT digital correlator, a temperature controller, 

and a solid-state laser (model 25-LHP-928-249, λ = 633 nm) at a scattering angle of 90o. 

The polymer solutions were filtered into borosilicate glass tubes with an inner diameter 

of 7.5 mm by the use of 0.2 μm filters. The glass tubes were then sealed with PE 

stoppers. The solutions were gradually heated from room temperature. At each 

temperature, the solutions were equilibrated for 30 min prior to data recording. The time 

correlation functions were analyzed with a Laplace inversion program (CONTIN). 

1.2.8 Titration of 12.0 wt% Aqueous Solution of P(DEGMMA-co-MAA)-b-PEO-b-

P(DEGMMA-co-MAA) with a 1.0 M KOH Solution  

A portion of the aforementioned 12.0 wt% triblock copolymer solution (2.887 g) 

was added into a small vial, followed by the injection of the same amount of a 1.0 M HCl 
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solution as that of the previously injected KOH solution for this portion of the polymer 

solution. The pH of the obtained solution was 2.58, measured by a pH meter. 5.0 μL of a 

1.0 M KOH solution was then injected into the vial via a microsyringe. The vial was 

sonicated in an ultrasonic water bath for 2 min and the pH was recorded. This process 

was repeated until a total of 100 μL of 1.0 M KOH solution was added. The total volume 

increased by 3.5 %. A plot of pH versus the amount of KOH was made, which was used 

as a guide to determine the amount of KOH, or equivalently the amount of HCl, that is 

needed to achieve particular pH values and vice versa.  

1.2.9 Rheological Measurements  

Rheological experiments were conducted using a stress-controlled rheometer (TA 

Instruments Model TA AR2000ex). A cone-plate geometry with a cone diameter of 20 

mm and an angle of 2° (truncation 52 μm) was employed; the temperature was controlled 

by the bottom Peltier plate. In each measurement, ~ 85 μL of a polymer solution was 

loaded onto the plate by a micropipette. The solvent trap was filled with water and a 

solvent trap cover was used to minimize water evaporation. Dynamic viscoelastic 

properties (dynamic storage modulus G' and loss modulus G'') of polymer solutions were 

measured by oscillatory shear experiments performed at a fixed frequency of 1 Hz in a 

heating ramp at a heating rate of 2 oC/min. The frequency dependences of G' and G'' of a 

polymer solution at selected temperatures were obtained by frequency sweep tests from 

0.1 to 100 Hz. A strain amplitude of γ = 0.2 % was used in all dynamic tests to ensure 

that the deformation was within the linear viscoelastic regime. At each temperature, the 

solution was equilibrated for at least 2 min prior to data recording.  
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1.3 Results and Discussion 

1.3.1 Synthesis of P(DEGMMA-co-MAA)-b-PEO-b-P(DEGMMA-co-MAA) 

The thermo- and pH-sensitive ABA triblock copolymer, P(DEGMMA-co-MAA)-b-

PEO-b-P(DEGMMA-co-MAA), was synthesized from P(DEGMMA-co-tBMA)-b-PEO-

b-P(DEGMMA-co-tBMA) by the removal of t-butyl groups. P(DEGMMA-co-tBMA)-b-

PEO-b-P(DEGMMA-co-tBMA) was prepared by ATRP of a mixture of DEGMMA and 

tBMA with a molar ratio of 100 : 5 from a difunctional PEO macroinitiator (MW = 

20000 g/mol) at 75 °C in anisole using CuBr/PMDETA as catalyst. The block copolymer 

was purified by repetitive precipitation in hexanes, dried in high vacuum, and 

characterized by GPC and 1H NMR spectroscopy analysis. Figure 1.1a shows the GPC 

traces of macroinitiator Br-PEO-Br and P(DEGMMA-co-tBMA)-b-PEO-b-

P(DEGMMA-co-tBMA); the Mn,GPC and polydispersity index of the obtained ABA 

triblock copolymer were 43000 g/mol  and 1.13, respectively (relative to polystyrene 

standards). Trifluoroacetic acid was then used to remove the t-butyl groups in the 

copolymer. Note that our group previously confirmed that CF3COOH does not affect 

other ester linkages in the polymer.31 The cleavage reaction was conducted in 

dichloromethane with excess trifluoroacetic acid at room temperature for 46 h. 1H NMR 

spectroscopy analysis shows that the t-butyl peak located at 1.39 ppm disappeared 

(Figure 1.1b).69 The numbers of DEGMMA and tBMA units in the copolymer were 

calculated from the 1H NMR spectra using the integral values of the peaks at 4.08 ppm (-

COOCH2CH2- of DEGMMA units), the peak located at 1.39 ppm (COOC(CH3)3 of 

tBMA units, excluding the integral value of the small broad peak shown in the 1H NMR 

spectrum (ii) after the cleavage69), and the peaks from 3.45 to 3.94 ppm (OCH2 from the  
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   (a)       (b) 

Figure 1.1. (a) Gel permeation chromatography analysis of difunctional PEO 

macroinitiator Br-PEO-Br and the ABA triblock copolymer P(DEGMMA-co-tBMA)-b-

PEO-b-P(DEGMMA-co-tBMA), and (b) 1H NMR spectra of (i) P(DEGMMA-co-

tBMA)-b-PEO-b-P(DEGMMA-co-tBMA) and (ii) P(DEGMMA-co-MAA)-b-PEO-b-

P(DEGMMA-co-MAA). CDCl3 was used as the solvent. 
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central PEO block and OCH2CH2OCH2CH2OCH3 of DEGMMA units). The numbers of 

DEGMMA and tBMA units (MAA units) were 235 and 12, respectively. 

1.3.2 pH Dependence of Critical Micellization Temperature of P(DEGMMA-co-

MAA)-b-PEO-b-P(DEGMMA-co-MAA) at a Concentration of 0.2 wt% in 10 mM 

KHP Aqueous Buffers 

Using dynamic light scattering (DLS), we first investigated how the critical 

micellization temperature (CMT) of P(DEGMMA-co-MAA)-b-PEO-b-P(DEGMMA-co-

MAA) in 10 mM aqueous KHP buffers changed with the solution pH. Figure 1.2 shows 

representative data from DLS studies: the intensity of scattered light at scattering angle of 

90° and the hydrodynamic size, obtained by CONTIN analysis, as a function of 

temperature for a 0.2 wt% aqueous solution of P(DEGMMA-co-MAA)-b-PEO-b-

P(DEGMMA-co-MAA) in a pH = 4.93 KHP buffer in the heating process. Below 36 °C, 

the scattering intensity was very low and the hydrodynamic diameter was < 10 nm, 

indicating that the polymer was dissolved molecularly in water, i.e., in the unimer state. 

Above 36 °C, the scattering intensity began to increase; the CMT was 37.5 °C, 

determined from Figure 1.2a. While multiple size distributions were observed in the 

temperature range of 37 – 40 °C, a single size distribution with an average hydrodynamic 

diameter of ~ 72 nm was found at 41 °C and above. Clearly, the thermosensitive 

P(DEGMMA-co-MAA) blocks underwent a hydration-to-dehydration transition and self-

assembled into a hydrophobic core with the central PEO blocks forming loops in the 

corona layer, yielding flower micelles. The single size distribution observed at T ≥ 41 °C 

suggests the absence of PEO bridges among micelles. The thermo-induced micellization 

behaviors of P(DEGMMA-co-MAA)-b-PEO-b-P(DEGMMA-co-MAA) at other pH  
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   (a)            (b) 

Figure 1.2. (a) Scattering intensity at the scattering angle of 90o and (b) apparent 

hydrodynamic diameter, Dh, as a function of temperature, obtained from a DLS study of a 

0.2 wt% solution of P(DEGMMA-co-MAA)-b-PEO-b-P(DEGMMA-co-MAA) in the pH 

= 4.93 KHP buffer. 
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values were also studied and the results are summarized in Figure 1.3. Evidently, the 

CMT of this triblock copolymer initially increased slowly with the increase of pH (only 2 

°C from pH 3.32 to 4.93). Above pH = 5.0, the CMT increased appreciably faster; it 

jumped more than 12 °C in just one pH unit. At pH = 6.60, no CMT was observed in the 

experimentally studied temperature range from room temperature to 70 °C. Thus, the 

CMT of this triblock copolymer can be varied in a wide temperature range by adjusting 

the solution pH. This tunability stems from the behavior of carboxylic acid groups. At 

low pH values, the pendant carboxylic acid groups are protonated and form acid-ether 

complexes via hydrogen bonding with the ether linkages of neighboring DEGMMA 

monomer units,70-72 which depresses the LCST of thermosensitive blocks. With the 

increase of pH, the COOH groups begins to ionize and the acid-ether complexes 

decompose, making thermosensitive P(DEGMMA-co-MAA) blocks more hydrophilic 

and thus resulting in a high LCST for the thermosensitive blocks and a high CMT for 

P(DEGMMA-co-MAA)-b-PEO-b-P(DEGMMA-co-MAA). From the titration of a 

random copolymer P(DEGMMA-co-MAA)  with  a  molar  ratio  of  DEGMMA to MAA 

similar to that in the ABA triblock copolymer, the pKa of COOH groups in P(DEGMMA-

co-MAA) was determined to be 5.59.68 Thus, it appears that when the degree of 

ionization (α) of carboxylic acid groups is < 50 %, the LCST changes slowly. At α > 50 

%, the LCST increases drastically. At even higher pH values, nearly all carboxylic acid 

groups are ionized, causing the polymer chain to be highly hydrophilic and consequently 

exhibit no thermoresponsive property in the studied temperature range. 
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Figure 1.3. Plots of critical micellization temperature (CMT, ) of P(DEGMMA-co-

MAA)-b-PEO-b-P(DEGMMA-co-MAA) in dilute aqueous buffer solutions (polymer 

concentration: 0.2 wt%) and sol-gel transition temperature (Tsol-gel, ) of 12.0 wt% 

aqueous solution of P(DEGMMA-co-MAA)-b-PEO-b-P(DEGMMA-co-MAA) versus 

solution pH. The CMTs were determined by DLS and the Tsol-gels were measured by 

rheometry experiments.   
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1.3.3 Rheometry Study of Sol-Gel Transitions of 12.0 wt% Aqueous Solutions of 

P(DEGMMA-co-MAA)-b-PEO-b-P(DEGMMA-co-MAA) at Various pH Values 

To study the pH-dependence of sol-gel transition, a 12.0 wt% aqueous solution was 

made by dissolving P(DEGMMA-co-MAA)-b-PEO-b-P(DEGMMA-co-MAA) in Milli-

Q water. A small amount of a 1.0 M KOH aqueous solution was then injected to raise the 

pH to 4.89, which is close to the pKa value (5.59) of COOH groups in a random 

copolymer P(DEGMMA-co-MAA) with a molar ratio of DEGMMA to MAA similar to 

that in the triblock copolymer.68 Thus, the solution was an aqueous buffer composed of 

COOH/COOK, allowing the pH value to be well controlled and easily tuned by injection 

of HCl and KOH solutions. In the following rheometry experiments, this solution was 

used as the starting point. Since we needed to change the solution pH, especially in the 

multiple sol-gel-sol transition experiment, and it was not convenient to use a pH meter to 

determine the pH of a small amount of a solution, we studied how the pH of the 12.0 wt% 

polymer solution varied with the addition of HCl or KOH. We took 2.887 g of the 12.0 

wt% polymer solution, added the same amount of a 1.0 M HCl solution as that of the 

previously injected KOH solution for this portion of the polymer solution, and then 

conducted a titration by injecting 5.0 μL of a 1.0 M KOH solution each time and 

subsequently measuring the solution pH with a pH meter. A plot of solution pH versus 

number of μmols of added KOH was constructed and is shown in Figure 1.4. Note that 

after the completion of titration, the solution volume increased by only 3.5 %. To confirm 

that the solution pH can be precisely controlled, we injected calculated amounts of a 1.0 

M HCl solution, which can be viewed as negative amounts of KOH, at the end of titration 

and found from pH measurements that the pH values were right on the curve (the red  



 21

 

   

 

 

 

 

Figure 1.4. The plot of solution pH versus number of μmols of KOH injected into a 12.0 

wt% aqueous solution of P(DEGMMA-co-MAA)-b-PEO-b-P(DEGMMA-co-MAA) 

(2.887 g). The KOH solution was added stepwise; each time, 5.0 μL of a 1.0 M aqueous 

KOH solution was injected via a microsyringe, followed by the measurement of pH with 

a pH meter (solid square symbols, ). After the completion of titration, calculated 

amounts of 1.0 M HCl solutions were added and the pH values were measured (red solid 

circle symbols, ). 
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solid circles in Figure 1.4). Figure 1.4 was used as a guide to determine the amount of 

KOH or HCl needed to achieve a particular pH value. 

Rheological measurements were conducted to study the thermo-induced sol-gel 

transitions and rheological properties of aqueous solutions of P(DEGMMA-co-MAA)-b-

PEO-b-P(DEGMMA-co-MAA) at various pH values. Figure 1.5 shows the data from an 

oscillatory shear measurement of the 12.0 wt% aqueous solution with a pH of 3.59 at a 

constant frequency of 1 Hz in a heating ramp with a heating rate of 2 °C/min. A strain 

amplitude of γ = 0.2 % was used to ensure that the measurement was taken in the linear 

viscoelastic regime. Below 30 °C, both dynamic storage modulus G' and loss modulus G" 

were small and the data points were scattered. In the temperature range of 30 - 39 °C, 

both G' and G" increased sharply with the increase of temperature. The fact that G" was 

larger than G' in this zone indicates that the solution was a viscoelastic liquid. Above 39 

°C, G' became greater than G", suggesting that the triblock copolymer solution turned 

into a gel. The crossover, G' = G", is commonly used as an indicator of the sol-to-gel or 

gel-to-sol transition. Thus, the sol-to-gel transition temperature (Tsol-gel) of this polymer 

solution was 39.0 °C, which is slightly higher than the CMT of the same polymer in a 0.2 

wt % aqueous solution at a similar pH (CMT = 35.5 °C at pH = 3.20 from Figure 1.3). 

Compared with the sharp transitions of 20 wt% aqueous solutions of thermosensitive AB 

diblock copolymers (1 - 2 °C),30 the sol-to-gel transition of the ABA triblock copolymer 

shown here is much broader. This can be attributed to the different gelation mechanisms 

for the two types of block copolymers in solutions. For AB diblock copolymers, gelation 

occurs when the volume fraction of spherical micelles exceeds a critical value. For ABA 

triblock copolymers in moderately concentrated solutions, when the thermosensitive  
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Figure 1.5. Plot of dynamic storage modulus G' ( ), dynamic loss modulus G'' ( ), and 

tanδ versus temperature for the 12.0 wt% aqueous solution of P(DEGMMA-co-MAA)-b-

PEO-b-P(DEGMMA-co-MAA) at pH = 3.59. The data were collected from a temperature 

ramp experiment with a heating rate of 2 °C/min. A strain amplitude of 0.2 % and an 

oscillation frequency of 1 Hz were used. 
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outer blocks become dehydrated and associate into hydrophobic domains, bridges are 

formed by the hydrophilic PEO blocks among neighboring micelles, yielding a 3-

dimensional network gel. This process is not as sharp as the jamming of spherical 

micelles of AB diblock copolymers. 

The transition from a viscoelastic liquid to a 3-dimensional network gel was also 

evidenced by the data collected from frequency sweep experiments (Figure 1.6). At 32 

°C, the solution was a transparent liquid that can flow when tilted. The storage modulus 

G' was smaller than G" in the range from 0.1 to 50 Hz and both exhibited power law 

dependencies on frequency f in the low frequency window: G' ~ f 2 and G" ~ f. This is the 

typical rheological behavior of a liquid.73-75 At 36 °C, which is close to the sol-gel 

transition temperature, G' and G" were of similar magnitudes in the low frequency range 

of 0.1 to 10 Hz and were ~  f 0.5. This is the signature of the transition between liquid-like 

and solid-like behavior and the temperature closely approximates the gelation 

temperature.73-75 At 50 °C, the sample was a transparent free-standing gel. G' was 

significantly greater than G" and was nearly independent of f in the frequency range of 

0.1 to 60 Hz, spanning nearly three orders in magnitude, which is a characteristic of 

solid-like behavior.  

The sol-to-gel transitions of 12.0 wt% aqueous solutions of P(DEGMMA-co-

MAA)-b-PEO-b-P(DEGMMA-co-MAA) at other pH values, ranging from 2.58 to 5.76, 

were also studied by rheological measurements. These solutions were obtained by 

injecting calculated amounts of either a 1.0 M HCl or a 1.0 M KOH solution into the 12.0 

wt% polymer solution with a pH of 4.89. The pH values of the obtained solutions,  
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       (a)       (b) 

        

      (c) 

Figure 1.6. Frequency dependences of dynamic storage modulus G' ( ) and loss modulus 

G'' ( ) of the 12.0 wt% aqueous solution of P(DEGMMA-co-MAA)-b-PEO-b-

P(DEGMMA-co-MAA) with a pH of 3.59 at (a) 32, (b) 36 , and (c) 50 °C. A strain 

amplitude of 0.2 % was used in the frequency sweep experiments. 
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determined by a pH meter, were in good agreement with those predicted from the 

titration curve shown in Figure 1.4. The results from dynamic viscoelastic measurements 

are summarized in Figure 1.3. Similar to the trend for CMT of the triblock copolymer in 

dilute solutions, the Tsol-gel initially increased slowly with the increase of pH in the pH 

range from 2.58 (Tsol-gel = 38.2 °C) to 4.49 (Tsol-gel = 40.1 °C). Above pH = 4.5, the 

increase of the sol-gel transition temperature with pH became faster. In just 1.3 pH units, 

the sol-gel transition temperature jumped by nearly 20 °C, from 40.1 °C at pH = 4.49 to 

58.8 °C at pH 5.76. Thus, the sol-gel transition temperature of an aqueous solution of 

P(DEGMMA-co-MAA)-b-PEO-b-P(DEGMMA-co-MAA) can be tuned in a large 

temperature range by adjusting the solution pH. A striking feature of Figure 1.3 is that the 

CMT curve of the triblock copolymer in 0.2 wt% aqueous solutions and the Tsol-gel curve 

for 12.0 wt% solutions follow the same trend, though there is a shift. At pH < 5.0, the 

Tsol-gel is higher than the CMT at the same pH by 3 – 4 °C. With the increase of pH, the 

difference between Tsol-gel and CMT becomes larger, which can be attributed to the 

different effects of the charges on the thermosensitive blocks on CMT and Tsol-gel. The 

ionization of carboxylic acid groups at a higher pH makes the polymer chain more 

hydrophilic. Different from the micellization of the ABA triblock copolymer in a dilute 

aqueous solution, the gelation requires the formation of an adequately strong 3-

dimensional network, which should possess a sufficient mechanical strength to exhibit 

solid-like properties. Thus, for the 12.0 wt% solution at the same pH, a higher 

temperature is required to transform the solution into a solid-like gel.   
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1.3.4 Cycling the pH Value of 12.0 wt% Aqueous Solution of P(DEGMMA-co-

MAA)-b-PEO-b-P(DEGMMA-co-MAA) between 3.2 and 5.4: Reproducibility of 

Sol-Gel Transition Temperature 

Figure 1.4 shows that the pH of the 12.0 wt% aqueous solution of P(DEGMMA-co-

MAA)-b-PEO-b-P(DEGMMA-co-MAA) can be readily tuned by injection of a 1.0 M 

HCl or KOH solution and can be well controlled. To study the reproducibility of the sol-

gel transition tempeature, we cycled the pH value of a 12.0 wt% polymer solution 

between 3.2 and 5.4 three times by successive addition of HCl and KOH and determined 

Tsol-gel by rheological measurements. A calculated amount of a 1.0 M HCl solution, based 

on the titration curve shown in Figure 1.4, was injected into 1.913 g of the 12.0 wt% 

solution with a pH of 4.89 to bring the pH value to 3.24 (Table 1). The temperature ramp 

performed at a strain amplitude of 0.2 %, a fixed frequency of 1 Hz, and a heating rate of 

2 °C /min showed that the sol-gel transition temperature of the solution at this pH 

occurred at 38.5 °C, which was right on the Tsol-gel curve in Figure 1.3. After weighing the 

remaining solution in the vial, we injected into the polymer solution the calculated 

amount of a 1.0 M KOH solution that was needed to change the pH to 5.36. The 

rheological measurement of the solution showed that the sol-gel transition temperature 

was 46.8 °C, which again fell right on the curve of Tsol-gel versus pH. We then repeated 

this process for additional two cycles by successive addition of the calculated amounts of 

1.0 M HCl and 1.0 M KOH solutions based on the titration curve in Figure 1.4. The 

results from rheological measurements are summarized in Table 1.1. As can be clearly 

seen, the Tsol-gel is very reproducible at a given pH value. The sol-gel transition  
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Table 1.1 Sol-gel transition temperatures of a 12.0 wt% aqueous solution of 

P(DEGMMA-co-MAA)-b-PEO-b-P(DEGMMA-co-MAA) whose pH value was cycled 

between 3.2 and 5.4 by successive injection of calculated amounts of 1.0 M HCl and 1.0 

M KOH solutions. The weight of the initial polymer solution was 1.913 g and its pH was 

4.89. 

 Solution  

weight 

Targeted 

pH 

Calculated a 

 

Injected b Measured 

pH c  

Tsol-gel d 

 

Cycle-1-A 1.913 g 3.24 17.4 μL HCl 17 μL   HCl 3.24 38.5 °C

Cycle-1-B 1.543 g 5.36 21.9 μL KOH 21 μL KOH 5.36 46.8 °C

Cycle-2-A 1.355 g 3.24 19.9 μL HCl 20 μL   HCl 3.19 38.6 °C

Cycle-2-B 1.256 g 5.36 18.5 μL KOH 19 μL  KOH 5.38 46.9 °C

Cycle-3-A 0.967 g 3.24 14.2 μL HCl 14 μL    HCl 3.23 38.9 °C

Cycle-3-B 0.873 g 5.36 12.9 μL KOH  13 μL  KOH 5.39 47.0 °C

a The amount of a 1.0 M HCl or a 1.0 M KOH solution that was needed to change the pH 

to the targeted value was calculated based on the titration curve shown in Figure 1.4.  

b The amount of a 1.0 M HCl or 1.0 M KOH solution that was injected via a 

microsyringe.  

c The solution pH was measured with a pH meter.  

d The sol-gel transition temperature was determined by the rheological measurement 

performed in a temperature ramp with a strain amplitude of 0.2 %, a constant frequency 

of 1 Hz, and a heating rate of 2 °C/min. 
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temperatures at pH = 3.2 in the 1st, 2nd and 3rd cycles are 38.5, 38.6, and 38.9 °C, 

respectively, while at pH = 5.4 they are 46.8, 46.9, and 47.0 °C.  

1.3.5 Multiple Sol-Gel-Sol Transitions by Simultaneously Controlling pH and 

Temperature  

In this section, we demonstrated that multiple sol-gel-sol transitions can be realized 

by judiciously controlling both pH and temperature. We started with 0.994 g of the     

12.0 wt% polymer solution and changed its pH value from 4.89 to 5.60 by injection of 

8.5 μL of a 1.0 M KOH solution according to Figure 1.4. An oscillatory shear 

measurement performed in the temperature ramp mode using a constant frequency of 1 

Hz, a strain amplitude γ of 0.2 %, and a heating rate of 2 °C/min indicated that the sol-gel 

transition temperature of this solution was 51.3 °C, consistent with the prediction from 

the Tsol-gel versus pH curve in Figure 1.3. The vial was placed in a 55 °C bath and as 

expected the solution turned into a clear gel, which upon lowering the temperature from 

55 to 45 °C was converted to a sol (see the digital pictures in Figure 1.7). From the 

temperature ramp, the ratio of G' to G" changed from 1.30 at 55 °C (in a gel state) to 0.47 

at 45 °C (in a sol state). We then weighed the remaining solution in the vial (0.904 g 

solution) and injected the calculated amount of a 1.0 M HCl solution (5.0 μL), based on 

the titration curve in Figure 1.4, to change the pH from 5.60 to 5.12. The solution was 

allowed to equilibrate at 45 °C for 18 h. By visual inspection, the sol turned into a free-

standing gel (Figure 1.7). A portion of the sample was then taken for the rheological 

experiment; the sol-gel transition temperature decreased to 43.5 °C, essentially the same 

as the Tsol-gel (42.9 °C) for the same pH shown in Figure 1.3. We then decreased the 

temperature to 39 °C, which is below the Tsol-gel for this pH (43.5 °C).  
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Figure 1.7. Ratio of dynamic storage modulus G' to loss modulus G" versus temperature 

in an experiment demonstrating multiple sol-gel-sol transitions of the 12.0 wt% aqueous 

solution of P(DEGMMA-co-MAA)-b-PEO-b-P(DEGMMA-co-MAA) that were achieved 

by simultaneously controlling temperature and pH. The ratios of G' to G" at given 

temperatures and pH values were obtained from the temperature ramps of the solutions at 

different pH values. The digital pictures show the states of the polymer solution at given 

temperatures and pH values.  
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After the equilibration at this temperature for 30 min, the gel became a viscous liquid 

(Figure 1.7). 

The solution was weighed again (0.624 g), and the vial was placed back in the 39 

°C water bath. The pH value was adjusted to 2.58 by injection of 10.0 μL of HCl (the 

amount calculated from Figure 1.4 was 9.7 μL) and the solution was equilibrated for 18 

h. As can be seen from the picture in Figure 1.7, the sample turned into a gel. A dynamic 

viscoelastic measurement indicated that the sol-gel transition temperature was 38.0 °C, 

which is essentially identical to the Tsol-gel (38.2 °C) at this pH in Figure 1.3. We then 

lowered the temperature to 28 °C; the gel was transformed into a free-flowing liquid 

(Figure 1.7). Thus, by judiciously controlling the solution pH and temperature, multiple 

sol-gel-sol transitions were achieved, demonstrating the great flexibility in tuning the sol-

gel/gel-sol transitions of the doubly responsive hydrophilic ABA triblock copolymer in 

water by combining two external triggers.   

1.3.6. Concentration Effect on the Sol-Gel Transition of Aqueous Solution of 

P(DEGMMA-co-MAA)-b-PEO-b-P(DEGMMA-co-MAA) at pH = 4.0  

It is known that polymer concentration affects the sol-gel transition temperature and 

the gel characteristics.74,75 To investigate the concentration effect on the sol-gel 

transition, we prepared a series of aqueous solutions of P(DEGMMA-co-MAA)-b-PEO-

b-P(DEGMMA-co-MAA) with concentrations progressively decreasing from 15.0 wt% 

to 3.99 wt%. These solutions were made by concentrating the 12.0 wt% aqueous solution 

with a pH value of 4.0 via evaporation of water or diluting it using Milli-Q water. 

Because the dilution and concentration changed the pH slightly, the pH values of these 

solutions were maintained at pH = 4.0 by adding a very small amount of a 1.0 M HCl or 
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1.0 M KOH aqueous solution in order to eliminate the pH effect in the study of 

concentration effect. Dynamic viscoelastic measurements were performed on all samples. 

Figure 1.8 shows temperature ramps of four selected samples with concentrations of 13.9, 

11.8, 9.0, and 7.0 wt %; the transition temperatures are 36.1, 39.0, 41.1, and 42.1 °C, 

respectively. The plot of Tsol-gel versus concentration is presented in Figure 1.9. As 

expected, the sol-gel transition temperature increased with the decrease of polymer 

concentration, though the obtained curve is not smooth. Above 10 wt %, the change was 

nearly linear, while below 10 wt %, the increase of the sol-gel transition temperature was 

slowed down. Regardless, it is clear that a lower polymer concentration requires a higher 

degree of dehydration of thermosensitive blocks to form a sufficiently mechanically 

strong 3-dimensional network. For the 3.99 wt % aqueous polymer solution, although it 

was observed that G' was greater than G" at T > 46.4 °C, the values of both G' and G" 

were very small (< 4 Pa)76 and no free-standing gel was observed but a viscous liquid, 

implying that the critical gelation concentration for this ABA triblock copolymer in water 

at pH = 4.0 is between 4 and 6 wt % (the lowest concentration in Figure 1.9). This is 

significantly smaller than the critical gelation concentration of AB diblock copolymer 

solutions, which is typically close to 20 wt %. 

In the rheological experiments, we noticed that when the polymer concentration 

was above 10 wt%, G' increased with the increase of temperature and a plateau was 

observed up to the highest temperature in the experiment (Figure 1.8a and b). The gels 

were clear or nearly clear.  For the solutions with concentrations below 10 wt%, both G' 

and G" exhibited a noticeable drop at an elevated temperature above the Tsol-gel. This 

phenomenon can be clearly seen from the temperature ramps for aqueous polymer  
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   (a)           (b) 

      

   (c)         (d) 

Figure 1.8. Temperature ramps for aqueous solutions of P(DEGMMA-co-MAA)-b-PEO-

b-P(DEGMMA-co-MAA) with concentrations of (a) 13.9, (b) 11.8, (c) 9.0, and (d) 7.0 

wt%  at pH = 4.0. The rheological data were collected at a constant frequency of 1 Hz, a 

strain amplitude of 0.2 %, and a heating rate of 2 °C/min. The pictures show the states of 

each solution at four different temperatures. 
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Figure 1.9. Concentration effect on the sol-gel transition temperature (Tsol-gel) of aqueous 

solution of P(DEGMMA-co-MAA)-b-PEO-b-P(DEGMMA-co-MAA) at pH = 4.0. 
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solutions with concentrations of 9.0 and 7.0 wt% in Figure 1.8c and d. In particular, the 

values of G' and G" of the 7.0 wt% sample dropped sharply at ~ 53 °C, but G' remained 

larger than G", indicating that the sample was still in a gel state. From the pictures shown 

in the Figure 1.8d, we can see that the sample was a slightly blue/whitish gel at 45 °C but 

became a white gel at 50 °C. With further increasing the temperature, both G' and G" 

continued to drop and phase separation occurred at  65 °C,  where  a  clear  solution  layer 

and a white polymer precipitate were observed. We speculate that at such concentrations, 

there was a significant portion of PEO central blocks forming the loops in the corona 

(flower micelles), resulting in rather weak bridges among micelles. It is known that with 

the increase of temperature, the solubility of PEO in water becomes poor,1,2 which means 

that the PEO bridges in the gel underwent shrinking, causing the macroscopic phase 

separation of polymer solutions.  

 

1.4 Conclusion  

In summary, we synthesized a thermo- and pH-sensitive ABA triblock copolymer 

P(DEGMMA-co-MAA)-b-PEO-b-P(DEGMMA-co-MAA) with the thermosensitive 

outer blocks incorporated with a small amount of carboxylic acid groups by ATRP of 

DEGMMA and tBMA from a difunctional PEO macroinitiator and subsequent removal 

of t-butyl groups of tBMA units.77 DLS studies showed that the CMT of this triblock 

copolymer in KHP buffers at a 0.2 wt% concentration can be tuned in a wide temperature 

range by adjusting the solution pH. To study the sol-gel transition of the moderately 

concentrated polymer solution, a 12.0 wt% aqueous solution of P(DEGMMA-co-MAA)-

b-PEO-b-P(DEGMMA-co-MAA) was made and the pH was raised to 4.89 by the 



 36

injection of a 1.0 M KOH solution. Since the solution was a buffer composed of 

COOH/COOK, its pH value can be readily changed by the injection of HCl or KOH and 

can be well controlled. Dynamic viscoelastic measurements showed that the sol-gel 

transition temperature of the 12.0 wt% polymer solution was determined by the solution 

pH and the Tsol-gel versus pH curve exhibited a similar trend as the CMT vs. pH curve. By 

cycling the solution pH between pH = 3.2 and 5.4 three times, we demonstrated that the 

sol-gel transition temperature was very reproducible at a specific pH. We further showed 

that multiple sol-gel-sol transitions can be achieved by judiciously controlling both 

temperature and pH of the solution. The effect of the ABA triblock copolymer 

concentration on the sol-gel transition of its aqueous solution at pH = 4.0 was 

investigated; the Tsol-gel was found to increase with the decrease of polymer concentration. 

When the concentration was above 10 wt%, a clear or nearly clear gel was observed up to 

65 °C, while below 10 wt%, dynamic storage and loss moduli of the gel were observed to 

decrease at an elevated temperature above Tsol-gel. This is presumably because at a lower 

concentration, fewer PEO middle blocks form bridges among micelles and PEO is known 

to undergo shrinking at higher temperatures, causing the breakdown of the gel and 

eventually phase separation. The work reported here could provide a general principle for 

the design of multi-responsive hydrogels for biomedical applications (e.g., injectable gels 

for controlled release of drugs or as scaffolds for cell growth/tissue engineering) and 

other technological applications.  
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Chapter 2. Rheological Properties of Thermo- and pH-Sensitive ABA 

Triblock Copolymer Aqueous Micellar Gels  

 

 

 

 

 

 

 

 

 

 

 

 

 



 44

Abstract  

This chapter presents a systematic study of the effect of pH on rheological 

properties of aqueous micellar gels formed from 10.0 wt% aqueous solutions of a thermo- 

and pH-sensitive ABA triblock copolymer, poly(ethoxydi(ethylene glycol) acrylate-co-

acrylic acid)-b-poly(ethylene oxide)-b-poly(ethoxydi(ethylene glycol) acrylate-co-acrylic 

acid) (P(DEGEA-co-AA)-b-PEO-b-P(DEGEA-co-AA)). The block copolymer was 

synthesized by atom transfer radical polymerization of DEGEA and t-butyl acrylate with 

a molar ratio of 100 : 5 from a difunctional PEO macroinitiator and subsequent removal 

of t-butyl groups using trifluoroacetic acid. PDEGEA is a thermosensitive water-soluble 

polymer with a cloud point of 9 °C in water. The thermo-induced sol-gel transition 

temperature (Tsol-gel) of the 10.0 wt% aqueous solution of P(DEGEA-co-AA)-b-PEO-b-

P(DEGEA-co-AA) can be continuously and reversibly tuned over a wide temperature 

range by varying the solution pH. The sol-gel transition became broader with the increase 

of pH, which stemmed from the weaker and broader LCST transition of P(DEGEA-co-

AA) blocks at higher pH values. The maximum value of dynamic storage modulus, 

obtained from heating ramp, and the plateau storage moduli (GN), evaluated from 

frequency sweeps at three normalized temperatures (T/Tsol-gel = 1.025, 1.032, and 1.039), 

decreased with the increase of pH from 3.00 to 5.40 with the largest drop observed at pH 

= ~ 4.7. The decrease in GN reflects the reduction of the number of bridging polymer 

chains and simultaneously the increase of numbers of loops and dangling polymer chains. 

The ionization of carboxylic acid groups at higher pH values introduced charges onto the 

thermosensitive blocks and made the polymer chains more hydrophilic, facilitating the 

formation of loops and dangling chains in the gels. The increase in the number of 
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dangling polymer chains with the increase of pH was supported by fluorescence 

spectroscopy studies, which showed that the critical micelle concentration of P(DEGEA-

co-AA)-b-PEO-b-P(DEGEA-co-AA) at a temperature corresponding to Tsol-gel was higher 

at a higher pH value. The results obtained from this work showed that both Tsol-gel and gel 

strength can be tuned by varying the solution pH, providing greater design flexibility for 

potential applications.    
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2.1 Introduction 

Moderately concentrated aqueous solutions of thermosensitive ABA triblock 

copolymers are known to undergo reversible sol-gel transitions upon temperature 

changes.1-3 If the A blocks are permanently water soluble and the B block is 

thermosensitive exhibiting a lower critical solution temperature (LCST) in water, the 

polymer molecules self-assemble into discrete, often spherical, micelles at temperatures 

above the LCST and the sol-to-gel transition is brought about by the packing of micelles 

into an ordered structure. Usually, a concentration of ~ 20 wt% is needed for the 

formation of this type of micellar gels. Representative examples of such polymers are 

poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) (PEO-b-PPO-b-

PEO) triblock copolymers with various compositions; these polymers have been 

intensively investigated in the past decades.1-4 On the other hand, if the A blocks are 

thermosensitive and the B block is permanently water-soluble, a three-dimensional 

network is produced at elevated temperatures with the dehydrated A blocks associated 

into micellar cores and the central B blocks forming bridges. Compared with the first 

type of micellar gels, 3-D network gels can be more advantageous for some applications 

because the critical gelation concentration (CGC) is significantly lower.5-7 For example, 

Kirkland et al. reported that a 7.5 wt% aqueous solution of poly(N-isopropylacrylamide)-

b-poly(N,N-dimethyacrylamide)-b-poly(N-isopropylacrylamide) formed a free-standing 

gel upon heating. Note that poly(N-isopropylacrylamide) exhibits an LCST at 32 °C in 

water8 and poly(N,N-dimethyacrylamide) is water soluble. These thermosensitive 

micellar gels have been investigated for applications in controlled release of substances 
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and tissue engineering because of their unique thermo-induced in situ sol-gel transition 

and the nature of physical crosslinking.9-11  

We have been particularly interested in aqueous micellar gels of block copolymers 

that can respond to two or more physical or chemical stimuli.12-28 Such gels would offer 

greater design flexibility that is needed in many applications. There have been a number 

of reports on multi-responsive block copolymer aqueous micellar gels;9,10,12-28 one 

common feature of these gels is that they are thermosensitive. For example, thermo- and 

redox-sensitive hydrophilic block copolymers have been reported by several research 

groups.14-16 Such polymers can be prepared from a difunctional initiator that contains a 

redox-sensitive disulfide bond; the thermally and biochemically induced sol-gel 

transitions of their aqueous solutions have been demonstrated.15 Temperature- and pH-

sensitive block copolymer aqueous gels are probably the most studied multi-responsive 

gels.17-27 The block copolymers were usually prepared by either growing pH-sensitive 

blocks from or introducing pH-responsive groups to the chain ends of an ABA triblock 

copolymer that can form thermoreversible gels in water (e.g., PEO-b-PPO-b-PEO).17-24 

Suh et al. used pyromellitic dianhydride to couple PEO-b-PPO-b-PEO to make 

multiblock copolymers with carboxylic acid groups incorporated at the junction points.25 

Lee et al. recently reported pH- and thermo-sensitive aqueous gels of multiblock 

copolymers composed of PEO and poly(amino urethane).26,27  

We previously reported a new type of thermo- and pH-sensitive block copolymer 

aqueous micellar gels.28 A small amount of weak acid groups was incorporated into the 

thermsensitive outer blocks of an ABA triblock copolymer, poly(methoxydi(ethylene 

glycol) methacrylate-co-methacrylic acid)-b-PEO-b-poly(methoxydi(ethylene glycol) 
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methacrylate-co-methacrylic acid) (P(DEGMMA-co-MAA)-b-PEO-b-P(DEGMMA-co-

MAA)). PDEGMMA is a biocompatible thermosensitive water-soluble polymer with a 

LCST of 25 °C in water, which belongs to a new class of thermosensitive polymers with 

a short oligo(ethylene glycol) pendant from each repeating unit.28-49 A characteristic 

feature of thermosensitive polymers that contain a small amount of weak acid or base is 

that the LCST is controlled by the solution pH.50-59 We showed that the sol-gel transition 

temperature (Tsol-gel) of a 12.0 wt% aqueous solution of P(DEGMMA-co-MAA)-b-PEO-

b-P(DEGMMA-co-MAA) can be precisely, reversibly, and continuously tuned in a wide 

temperature range by varying the solution pH. Moreover, multiple sol-to-gel/gel-to-sol 

transitions were realized by controlling both temperature and pH, demonstrating the 

possibility of achieving on-demand sol-gel transition by combining two external 

stimuli.28  

In the present work, we carried out a systematic study on rheological properties of 

10.0 wt% aqueous solutions of a thermo- and pH-sensitive ABA triblock copolymer, 

poly(ethoxydi(ethylene glycol) acrylate)-co-acrylic acid)-b-PEO-b-

poly(ethoxydi(ethylene glycol) acrylate-co-acrylic acid)) (P(DEGEA-co-AA)-b-PEO-b-

P(DEGEA-co-AA)). The triblock copolymer was prepared from a difunctional PEO 

macroinitiator with a molecular weight of 20000 g/mol by atom transfer radical 

polymerization of DEGEA and t-butyl acrylate (tBA) with a molar ratio of 100 : 5 and 

subsequent removal of t-butyl groups of tBA units  using trifluoroacetic acid (Scheme 

2.1). We chose PDEGEA rather than PDEGMMA in this work because the LCST of 

PDEGEA in water is 9 °C and thus the sol-to-gel transition occurred in a more 

convenient temperature range for rheological measurements. Consistent with the previous  
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Scheme 2.1. Synthesis of Thermo- and pH-Sensitive ABA Triblock Copolymer 

P(DEGEA-co-AA)-b-PEO-b-P(DEGEA-co-AA) by ATRP of DEGEA and tBA from a 

Difunctional PEO Macroinitiator and Subsequent Treatment with Trifluoroacetic Acid.  
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report, the Tsol-gel of the 10.0 wt% aqueous solution of P(DEGEA-co-AA)-b-PEO-b-

P(DEGEA-co-AA) was dependent on pH. The sol-to-gel transition became broader with 

the increase of pH. Moreover, we found that the plateau dynamic storage moduli, 

obtained from frequency sweeps, decreased with the increase of solution pH with the 

largest drop observed at pH of ~ 4.7. The results showed that both Tsol-gel and gel strength 

can be tuned by varying the pH of the polymer solution. 

 

2.2 Experimental Part 

2.2.1 Materials  

Ethoxydi(ethylene glycol) acrylate (or di(ethylene glycol) ethyl ether acrylate, 

DEGEA, 90%, Aldrich) and tert-butyl acrylate (tBA, 99%, Fisher Scientific) were dried 

with calcium hydride overnight, distilled under reduced pressure, and stored in a 

refrigerator prior to use. CuBr (98%, Aldrich) was stirred in glacial acetic acid, filtered, 

and washed with absolute ethanol and diethyl ether. The purified CuBr was then dried in 

vacuum and stored in a desiccator. N,N,N′,N′,N′′-pentamethyldiethylenetriamine (99%, 

Aldrich), dichloromethane, and anisole (99%, Acros) were dried with calcium hydride, 

vacuum distilled, and stored in storage flasks. Potassium hydrogen phthalate (KHP, 

primary standard, p.a.), trifluoroacetic acid (99%), acetone (HPLC grade), and Nile Red 

(99%) were obtained from Acros and used as received. Poly(ethylene oxide) (HO-PEO-

OH, MW = 20,000 g/mol, Aldrich) was end-functionalized by reacting with 2-

bromoisobutyryl bromide to give a difunctional PEO macroinitiator, Br-PEO-Br, as 

described in a previous publication.28 Hexanes, diethyl ether, 1.0 M KOH solution 

(volumetric standard solution), and 1.0 M HCl solution (volumetric standard solution) 
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were obtained from Fisher Scientific. All other chemicals were purchased from either 

Aldrich or Fisher/Acros and used without further purification.  

2.2.2 General Characterization  

Size exclusion chromatography (SEC) was carried out at ambient temperature using 

PL-GPC 20 (an integrated GPC system from Polymer Laboratories, Inc) with a 

differential refractive index detector, one PLgel 5 μm guard column (50 × 7.5 mm), and 

two PLgel 5 μm mixed-C columns (each 300 × 7.5 mm, linear range of molecular weight 

from 200 to 2,000,000 according to Polymer Laboratories). THF was used as the carrier 

solvent at a flow rate of 1.0 mL/min. Polystyrene standards (Polymer Laboratories) were 

employed for calibration. The data were processed using CirrusTM GPC/SEC software 

(Polymer Laboratories). The 1H (300 MHz) NMR spectra were recorded on a Varian 

Mercury 300 NMR spectrometer.  

2.2.3 Synthesis of P(DEGEA-co-tBA)-b-PEO-b-P(DEGEA-co-tBA)  

Copper (I) bromide (9.9 mg, 6.9 × 10-5 mol) and difunctional macroinitiator Br-

PEO-Br (0.651 g, 3.26 × 10-5 mol) were weighed into a two-necked flask, followed by 

the addition of DEGEA (4.237 g, 22.5 mmol), tBA (0.152 g, 1.19 mmol), and anisole 

(2.147 g). The mixture was stirred under nitrogen atmosphere. N,N,N′,N′,N′′-

Pentamethyldiethylenetriamine (10.5 mg, 6.04 × 10-5 mol) was then injected into the 

flask via a microsyringe. After the reaction mixture was degassed by three freeze-pump-

thaw cycles, the flask was placed into an oil bath with a preset temperature of 90 °C. The 

polymerization was monitored by SEC. After 180 min, the flask was removed from the 

oil bath and opened to air. The polymerization mixture was diluted with THF and the 

copper catalyst was removed by passing the solution through a short basic aluminum 
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oxide/silica gel column. The polymer was purified by precipitation in hexanes four times 

and then dried under high vacuum at 50 °C for 3 h. SEC analysis results (polystyrene 

standards): Mn,SEC = 47,900 g/mol, polydispersity index (PDI) = 1.09.  

2.2.4 Synthesis of P(DEGEA-co-AA)-b-PEO-b-P(DEGEA-co-AA)  

P(DEGEA-co-tBA)-b-PEO-b-P(DEGEA-co-tBA) (1.277 g) was dried in a pre-

weighed round bottom flask for 2 h. Dry dicholoromethane (6 mL) was added into the 

flask to dissolve the polymer, followed by the addition of trifluoroacetic acid (3.321 g). 

After the reaction mixture was stirred at ambient temperature for 67 h, the volatiles were 

removed by a rotary evaporator. The polymer was precipitated four times in a mixture of 

hexanes and diethyl ether (10/4, v/v) and then dried under high vacuum at 50 °C. 1H 

NMR spectroscopy analysis showed that the t-butyl groups in the polymer were removed.   

2.2.5 Preparation of 10.0 wt% Aqueous Solution of P(DEGEA-co-AA)-b-PEO-b-

P(DEGEA-co-AA)  

P(DEGEA-co-AA)-b-PEO-b-P(DEGEA-co-AA) was added into a pre-weighed 

round bottom flask and dried under high vacuum at 50 °C for > 3 h. The mass of the 

dried polymer was 0.958 g. Milli-Q water (8.641 g) was added into the flask and the 

mixture was sonicated in an ice/water ultrasonic bath (Fisher Scientific Model B200 

Ultrasonic Cleaner) to dissolve the ABA triblock copolymer. The flask was then stored in 

a refrigerator (~ 4 °C) overnight and a homogeneous clear solution was obtained. The pH 

value of the polymer solution was 3.00, measured by a pH meter (Accumet AB15 pH 

meter from Fisher Scientific, calibrated with pH = 4.01, 7.00, and 10.01 standard buffer 

solutions) at 0 °C (the solution was placed in an ice/water bath). 
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2.2.6 Dynamic Light Scattering Study of Thermo-Induced Micellization of 0.02 wt% 

Aqueous Solutions of P(DEGEA-co-AA)-b-PEO-b-P(DEGEA-co-AA) in 10 mM 

KHP Buffers with Various pH Values  

The thermo-induced micellization of P(DEGEA-co-AA)-b-PEO-b-P(DEGEA-co-

AA) at a concentration of 0.02 wt% in 10 mM KHP buffers with various pH values was 

studied by dynamic light scattering (DLS). The pH values of 10 mM aqueous KHP 

buffers were adjusted by the addition of a 1.0 M KOH aqueous solution or a 1.0 M HCl 

aqueous solution. Four 0.02 wt% aqueous solutions of P(DEGEA-co-AA)-b-PEO-b-

P(DEGEA-co-AA) with pH values of 3.00, 4.11, 5.07, and 6.00 were prepared by 

diluting a certain amount of the aforementioned 10.0 wt% aqueous polymer solution with 

corresponding KHP buffers. All 0.02 wt% polymer solutions were sonicated in an 

ice/water ultrasonic bath for 2 min to ensure that the solutions were homogeneous. The 

pH values of the solutions were re-measured by a pH meter (essentially the same as the 

pH values of KHP buffers) 

DLS measurements were conducted with a Brookhaven Instruments BI-200SM 

goniometer equipped with a PCI BI-9000AT digital correlator, a temperature controller, 

and a solid-state laser (model 25-LHP-928-249, λ = 633 nm) at scattering angle of 90°. 

The polymer solutions were filtered into borosilicate glass tubes with an inner diameter 

of 7.5 mm by the use of 0.2 μm filters. The glass tubes were then sealed with PE 

stoppers. The solutions were gradually heated. At each temperature, the solutions were 

equilibrated for 30 min prior to data recording. The time correlation functions were 

analyzed with a Laplace inversion program (CONTIN). 
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2.2.7 Rheological Measurements  

Rheological experiments were conducted on a stress-controlled rheometer (TA 

Instruments Model TA AR2000ex). A cone-plate geometry with a cone diameter of 20 

mm and an angle of 2° (truncation 52 μm) was employed; the temperature was controlled 

by the bottom Peltier plate. In each measurement, 85 μL of a polymer solution was 

loaded onto the plate by a micropipette. The solvent trap was filled with water and a 

solvent trap cover was used to minimize water evaporation. Dynamic viscoelastic 

properties (dynamic storage modulus G' and loss modulus G'') of polymer solutions were 

measured by oscillatory shear experiments performed at a fixed frequency of 1 Hz in a 

heating ramp at a heating rate of 3 °C/min. The frequency dependences of G' and G'' of a 

polymer solution at selected temperatures were obtained by frequency sweep tests from 

0.1 to 100 Hz (or 0.001 to 100 Hz at some selected temperatures). At each temperature, 

the solution was equilibrated for at least 2 min prior to data recording. A strain amplitude 

of γ = 0.2 % was used in all dynamic tests to ensure that the deformation was within the 

linear viscoelastic regime.  

2.2.8 Determination of Critical Micelle Concentration (CMC) of P(DEGEA-co-AA)-

b-PEO-b-P(DEGEA-co-AA) in Aqueous Buffers by Fluorescence Spectroscopy  

The critical micelle concentration (CMC) of P(DEGEA-co-AA)-b-PEO-b-

P(DEGEA-co-AA) in water at a specific pH and a temperature that corresponded to the 

sol-to-gel transition temperature of the 10.0 wt% aqueous polymer solution at that pH 

was determined by fluorescence spectroscopy using Nile Red as fluorescence probe. For 

each pH, a series of triblock copolymer solutions with different concentrations in a 10 

mM KHP buffer were prepared by the following procedure. 10 μL of a stock solution of 
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Nile Red in acetone (concentration: 0.63 mg/g, 6.3 mg of Nile Red in 10.007 g of HPLC 

grade acetone) was added into empty vials using a micropipette. The vials were weighed 

immediately and then placed in vacuum for > 3 h to remove the solvent. A calculated 

amount of a stock polymer solution (concentration: 1.46 wt%) was injected into each vial 

via a microsyringe and weighed. A certain amount of the 10.0 mM KHP buffer was then 

added into each vial to bring the total weight of the solution to 2.000 g. The nominal 

concentration of Nile Red was 7.8 × 10-6 M. After the sonication in an ice/water 

ultrasonic bath for 30 min, the solutions were equilibrated overnight in an oil bath at a 

temperature that corresponded to the Tsol-gel of 10.0 wt% polymer solution at the same pH. 

Fluorescence emission spectra of Nile Red in these solutions at a specific temperature 

were recorded from PerkinElmer LS 55 fluorescence spectrometer equipped with a 20 

kW xenon discharge lamp. The excitation wavelength was 550 nm and the fluorescence 

emission spectra were recorded from 560 to 720 nm. The slit width was 10 nm. The 

sample cell was thermostated with an external water bath of a Fisher Scientific Isotemp 

refrigerated circulator for at least 20 min before data recording. The maximum 

fluorescence intensity was then plotted against the logarithm of polymer concentration 

for the determination of CMC.  

2.2.9 Salt Effect on Sol-to-Gel Transition Temperature and Gel Properties of 

Aqueous Solution of P(DEGEA-co-AA)-b-PEO-b-P(DEGEA-co-AA) with pH of 4.64 

and a Nominal Polymer Concentration of 10.0 wt%  

The amount of COOH/COOK in a 10 wt% aqueous solution of the ABA triblock 

copolymer was calculated on the basis of the polymer composition and the polymer 

concentration. 1.0 M KCl aqueous solution was prepared by dissolving KCl (7.456 g, > 
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99.0 %, Fisher Scientific) in Milli-Q water in a 100 mL volumetric flask. The polymer 

solution used here was obtained by changing the pH value of the original 10.0 wt% 

aqueous solution of P(DEGEA-co-AA)-b-PEO-b-P(DEGEA-co-AA) to 6.43 by the 

addition of 1.0 M KOH solution and then to 3.10 by the addition of 1.0 M HCl solution, 

followed by the injection of 1.0 M KOH to increase the pH to 4.64. Calculated amounts 

of 1.0 M KCl aqueous solution were injected via a microsyringe into this polymer 

solution in a stepwise fashion until the total amount of the added KCl was twice that of 

COOH/COOK in the solution (excluding the amount of KCl produced in the processes of 

adding KOH and HCl). After each injection, the polymer solution was sonicated for 2 

min in an ice/water bath to ensure that the solution was homogeneous. The sample was 

then subjected to rheological measurements.   

2.2.10 Differential Scanning Calorimetry (DSC) Study of Thermo-Induced Phase 

Transitions of 10.0 wt% Aqueous Solutions of P(DEGEA-co-AA)-b-PEO-b-

P(DEGEA-co-AA)  

Differential scanning calorimetry analysis of polymer solutions was conducted on a 

TA Q-1000 DSC instrument that was calibrated with sapphire disks. Polymer solutions 

(20 μL, ~ 20 mg) were loaded into pre-weighed aluminum hermetic pans and sealed 

carefully. A heating rate of 1 °C/min was used to obtain DSC thermograms with an 

empty pan as reference. 

 

2.3 Results and Discussion 

2.3.1 Synthesis of Thermo- and pH-Sensitive ABA Triblock Copolymer P(DEGEA-

co-AA)-b-PEO-b-P(DEGEA-co-AA)  
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The doubly responsive ABA triblock copolymer P(DEGEA-co-AA)-b-PEO-b-

P(DEGEA-co-AA) was prepared by a two-step procedure (Scheme 2.1). The precursor 

polymer P(DEGEA-co-tBA)-b-PEO-b-P(DEGEA-co-tBA) was synthesized from a 

difunctional PEO macroinitiator by ATRP of DEGEA and tBA with a molar ratio of 100 

: 5 at 90 °C using CuBr/N,N,N′,N′,N′′-pentamethyldiethylenetriamine as catalyst. Figure 

2.1A shows the SEC traces of PEO macroinitiator and P(DEGEA-co-tBA)-b-PEO-b-

P(DEGEA-co-tBA). The peak shifted to the high molecular weight side and remained 

narrow, indicating that the polymerization was well controlled. The number average 

molecular weight and polydispersity index of the triblock copolymer were 47.9 kDa and 

1.09, respectively (relative to polystyrene standards). The t-butyl groups in the copolymer 

were then removed using trifluoroacetic acid (TFA). We previously confirmed that other 

ester bonds were not affected by TFA.28,29 Figure 2.1B shows the 1H NMR spectra of the 

triblock copolymer before and after the treatment with TFA. The successful removal of t-

butyl groups was evidenced by the disappearance of the t-butyl peak in the 1H NMR 

spectrum. By using the integrals of the peak located at 1.2 ppm, which was from the 

methyl group of DEGEA unit, and the peak at 3.2 – 4.0 ppm, which was from the PEO 

block and –OCH2CH2OCH2CH2OCH2CH3 of DEGEA units, along with the difference 

between the integrals of the peaks at 1.3 – 1.5 ppm before and after the removal of t-butyl 

groups of tBA units, the numbers of DEGEA and tBA (or AA) units in the ABA triblock 

copolymer were calculated and they were 140 and 7, respectively. The molar ratio of tBA 

to DEGEA units in the copolymer was essentially the same as in the feed.    
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Figure 2.1. (A) Size exclusion chromatography traces of PEO macroinitiator and ABA 

triblock copolymer poly(ethoxydi(ethylene glycol) acrylate-co-t-butyl acrylate)-b-

poly(ethylene oxide)-b-poly(ethoxydi(ethylene glycol) acrylate-co-t-butyl acrylate) 

(P(DEGEA-co-tBA)-b-PEO-b-P(DEGEA-co-tBA) and (B) 1H NMR spectra of 

P(DEGEA-co-tBA)-b-PEO-b-P(DEGEA-co-tBA (i) before and (ii) after the removal of t-

butyl groups using trifluoroacetic acid.  
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2.3.2 Thermo-Induced Sol-Gel Transition of 10.0 wt% Solution of P(DEGEA-co-

AA)-b-PEO-b-P(DEGEA-co-AA) in Milli-Q water  

A 10.0 wt% aqueous solution of P(DEGEA-co-AA)-b-PEO-b-P(DEGEA-co-AA) 

was made using Milli-Q water. The pH value of the solution was 3.00, measured with a 

pH meter (Accumet AB15 from Fisher Scientific) in an ice/water bath. The sample was a 

free-flowing liquid at ~ 0 °C; upon warming to room temperature, it turned into a clear 

gel that remained immobile even when the vial was inverted. This thermo-induced sol-gel 

transition was reversible; lowering the temperature converted the gel into a free-flowing 

liquid. To study its rheological properties, we carried out an oscillatory shear experiment 

at a fixed frequency of 1 Hz in a heating ramp at a heating rate of 3 °C/min. A strain 

amplitude of γ = 0.2 % was used to ensure that the measurement was taken in the linear 

viscoelastic regime. As shown in Figure 2.2, when the temperature was below 15 °C, the 

values of dynamic storage modulus G' and loss modulus G" were small and the data 

points were scattered. In the range of 15 – 23 °C, both G' and G" increased with the 

increase of temperature; the value of G" was larger than G', indicating that the sample 

was a viscous liquid. Above 23 °C, G' became greater than G", suggesting that the 

solution turned into a gel. The crossover, G' = G", has been commonly used as an 

indicator of the sol-gel transition. Therefore, the sol-to-gel transition temperature (Tsol-gel) 

of this 10.0 wt % aqueous solution is 23.1 °C.  

This temperature-induced sol-gel transition stems from the LCST behavior of 

thermosensitive outer blocks of the ABA triblock copolymer. When the temperature is 

raised above the LCST of P(DEGEA-co-AA) blocks, they undergo a hydration-to-

dehydration transition and self-assemble into hydrophobic domains (micellar cores). At  a 
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Figure 2.2. Plot of dynamic storage modulus G' ( ), dynamic loss modulus G'' ( ), and 

tanδ ( ) versus temperature for a 10.0 wt % aqueous solution of P(DEGEA-co-AA)-b-

PEO-b-P(DEGEA-co-AA) with pH of 3.00. The data were collected from a temperature 

ramp experiment performed by using a fixed frequency of 1 Hz, a strain amplitude of 0.2 

%, and a heating rate of 3 °C/min. 
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sufficiently high concentration (i.e., > CGC), a 3-dimensional network is formed with the 

central PEO blocks forming bridges among micellar cores. Decreasing temperature 

dissolves the P(DEGEA-co-AA) blocks and dissociates the network, resulting in a gel-to-

sol transition. The origin of the thermo-induced gelation can be seen from the differential 

scanning calorimetry (DSC) analysis of the sample (Figure 2.3A). An endothermic peak 

was observed in the DSC thermogram with the onset temperature at ~ 8 °C and the peak 

position located at ~ 16 °C, indicating that the transition was an entropically driven 

process. To further confirm the thermo-induced micellization, we conducted a dynamic 

light scattering (DLS) study of a 0.02 wt% solution of P(DEGEA-co-AA)-b-PEO-b-

P(DEGEA-co-AA) in an aqueous potassium hydrogen phthalate (KHP) buffer at pH = 

3.00 (Figure 2.4). Below 15 °C, the scattering intensity was low and the apparent 

hydrodynamic size (Dh), obtained from CONTIN analysis, was < 10 nm, confirming that 

the triblock copolymer was dissolved molecularly in water. With the increase of 

temperature above 15 °C, the scattering intensity began to increase. The critical 

micellization temperature (CMT) determined from the plot of scattering intensity versus 

temperature was 15 °C, slightly higher than the onset temperature in the DSC 

thermogram (~ 8 °C), which can be attributed to the concentration effect. The apparent 

Dh of micelles at 25 °C was 64 nm. Note that the transition temperatures from both DSC 

and DLS studies were lower than the Tsol-gel (23.1 °C) of the 10.0 wt% solution. This is 

understandable because the sol-gel transition is closely related to the mechanical property 

of the 3-D network gel and a slightly higher temperature is usually needed for the sample 

to exhibit a sufficient elastic property.  
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Figure 2.3. Differential scanning calorimetry thermograms of the 10.0 wt% aqueous 

solution of P(DEGEA-co-AA)-b-PEO-b-P(DEGEA-co-AA) at pH of (A) 3.00, (B) 4.40, 

(C) 5.23, and (D) 6.02. The heating rate was 1 °C/min. For the sake of clarity, the 

thermograms were shifted vertically.  
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Figure 2.4. Scattering intensity at scattering angle of 90° (A) and apparent hydrodynamic 

size Dh (B), obtained from CONTIN analysis, as a function of temperature in a dynamic 

light scattering study of a 0.02 wt% solution of P(DEGEA-co-AA)-b-PEO-b-P(DEGEA-

co-AA) in an aqueous KHP buffer with pH = 3.00. 
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A consequence of the formation of bridges by the midblock of an ABA triblock 

copolymer among micellar cores is that the gel exhibits stronger strain robustness 

compared with diblock copolymer micellar gels.60 Figure 2.5 shows dynamic strain 

amplitude sweeps of the 10.0 wt% aqueous solution of P(DEGEA-co-AA)-b-PEO-b-

P(DEGEA-co-AA) at pH of 3.00 and 30.5 °C at frequencies of 0.5, 1.0, 2.5, and 5.0 Hz. 

For all four frequencies, the gel exhibited a linear response up to at least 15 % strain, 

which was almost the same as supramolecular ABA triblock copolymer ion gels reported 

by Lodge et al.60 In contrast, diblock copolymer ion gels showed nonlinear viscoelasticity 

above 4-5 % strain.60 Thus, the dynamic strain sweep study also suggested the formation 

of a 3-dimensional network with the central PEO blocks forming bridges among micellar 

cores at temperatures above the Tsol-gel. 

To further look into the sol-gel transition and gel characteristics, we conducted 

frequency sweeps at various temperatures using a strain amplitude of 0.2 % for the 10.0 

wt% aqueous solution of the triblock copolymer. At 18 °C, G' and G" exhibited different 

power law dependences on frequency f in the low frequency region of 0.1 – 3 Hz: G' ~ f 2 

and G" ~ f (Figure 2.6A). This is the typical rheological behavior of a viscous liquid.61 At 

24.5 °C, just above the Tsol-gel (23.1 °C), a frequency sweep in a wider range (0.001 to 100 

Hz, spanning five orders in magnitude) was collected and both the terminal flow and gel 

behavior were observed (Figure 2.6B). In the extremely low frequency region, G' and G" 

exhibited power law dependences on f, the characteristic of terminal flow behavior. At 

higher frequencies, G' became larger than G" and both G' and G" showed much weaker 

frequency dependences; these are the gel characteristics. Clearly, the gel was a transient 

network possessing physical crosslinks of a finite dissociation time. The crossover of G'  
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Figure 2.5. Dynamic strain amplitude sweeps for the 10.0 wt% aqueous solution of 

P(DEGEA-co-AA)-b-PEO-b-P(DEGEA-co-AA) with pH of 3.00 at 30.5 °C at 

frequencies of 0.50 Hz (dynamic storage modulus G',  and dynamic loss modulus G'', 

), 1.00 Hz (G',  and G'', ), 2.50 Hz(G',  and G'', ), and 5.00 Hz (G',  and G'', ). 
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Figure 2.6. Frequency dependences of dynamic storage modulus G' ( ) and loss modulus 

G'' ( ) of the 10.0 wt% aqueous solution of P(DEGEA-co-AA)-b-PEO-b-P(DEGEA-co-

AA) with a pH of 3.00 at (A) 18, (B) 24.5, (C) 30.5, (D) 32.6, and (E) 34.6 °C. A strain 

amplitude of 0.2 % was used in the frequency sweep experiments. 
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and G" versus frequency curves occurred at f = 0.02 Hz, from which we can estimate the 

terminal relaxation time τ of polymer chains or the average life time of a thermosensitive 

P(DEGEA-co-AA) block in a micellar core at this temperature through 

τ = 1/(2πf)  

where f is the frequency at the crossover point.60 The estimated τ at this temperature was 

8.0 s. With further increasing temperature, the relaxation time would become longer and 

the crossover point would shift to an even lower frequency.  

At 30.5, 32.6, and 34.6 °C, the sample was a transparent gel. G' was significantly 

higher than G" and was nearly independent of f in the frequency range of 0.1 to 100 Hz 

(Figure 2.6C, D, and E), which are the characteristics of elastic solid-like behavior. The 

plateau modulus GN of the gel can be obtained from the frequency sweep and it is known 

that the GN of a transient gel is a measure of the number density of elastically active 

polymer chains (or effective gel network strands):  

GN = υkBT  

where υ is the number density of elastically active polymer chains (number of elastically 

active bridging chains per unit volume), kB is Boltzmann constant, and T is the absolute 

temperature. The GN is usually evaluated as the G' value at the frequency where G" 

exhibits the minimum value, because the increase of G" at higher frequencies indicates a 

fast relaxation process separate from the terminal flow process. This method for the 

determination of GN is well established for the entangled homopolymer melts and has 

also been recently used in the study of thermoreversible transient gels.62 The frequencies 

at which G" exhibited minimum values at 30.5, 32.6, and 34.6 °C were 12.59, 10, and 

12.59 Hz, respectively; therefore, the values of GN were 4.9 × 103 Pa, 5.0 × 103 Pa, and 
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5.3 × 103 Pa, respectively, which were close to the modulus in the plateau zone in the 

heating ramp (4.6 × 103 Pa, Figure 2.2). If the central block of every polymer chain is 

elastically active in the gel, calculations show that the value of GN is 5.4 × 103 Pa at 30.5 

°C, 5.4 × 103 Pa at 32.6 °C, and 5.5 × 103 Pa at 34.6 °C. This means that 91, 93, and 96% 

of polymer chains formed effective network strands in the gel at 30.5, 32.6, and 34.6 °C, 

respectively. The observed high percentages of polymer chains that were elastically 

active in the gels might result from the well-defined architecture of the ABA triblock 

copolymer and the relatively hydrophobic outer blocks (the LCST of PDEGEA is 9 °C).  

2.3.3 pH Effect on Sol-Gel Transition of 10.0 wt% Aqueous Solution of P(DEGEA-

co-AA)-b-PEO-b-P(DEGEA-co-AA)  

To investigate the pH effects on sol-to-gel transition temperature (Tsol-gel) and gel 

properties, we gradually increased the pH value of the 10.0 wt% aqueous solution of 

P(DEGEA-co-AA)-b-PEO-b-P(DEGEA-co-AA) by injecting a small amount of 1.0 M 

KOH solution via a microsyringe in a stepwise fashion. Each time, the sample was 

sonicated in an ice/water ultrasonic bath for a few minutes to ensure that the solution was 

homogeneous before the pH value was measured. The sample was then subjected to 

dynamic viscoelastic measurements using the same conditions as for the original polymer 

solution. Figure 2.7 shows the sol-gel transition temperature as a function of pH (the 

original rheological data can be found in Appendix B). Similar to our previous 

observation for the 12.0 wt% aqueous solution of thermo- and pH-sensitive 

P(DEGMMA-co-MAA)-b-PEO-b-P(DEGMMA-co-MAA),28 the Tsol-gel initially 

increased slowly with the increase of pH, from 23.1 °C at pH = 3.00, to 26.4 °C at pH = 

4.11, to 28.7 °C at pH = 4.40, to 30.1 °C at pH = 4.70, and 31.5 °C at pH = 4.95. Above  
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Figure 2.7. Sol-gel transition temperature (Tsol-gel) of 10.0 wt% aqueous solution of 

P(DEGEA-co-AA)-b-PEO-b-P(DEGEA-co-AA) as a function of pH in the processes of 

increasing ( ) and decreasing pH ( ), and the plot of critical micellization temperature 

(CMT, ) of the triblock copolymer in the aqueous buffer at a concentration of 0.02 wt% 

versus pH. The sol-to-gel transition temperatures were determined by dynamic 

viscoelastic measurements using a heating rate of 3 °C/min, a strain amplitude of 0.2 %, 

and a fixed frequency of 1 Hz. The CMTs were determined by dynamic light scattering. 
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pH = 4.95, the increase of the sol-gel transition temperature with pH became slightly 

faster. In 1.5 pH units, the sol-gel transition temperature jumped by nearly 20 °C, from 

31.5 °C at pH = 4.95 to 50.5 °C at pH 6.43. The pH of the polymer solution was then 

gradually brought back to 3.10 by injection of a 1.0 M HCl solution in a similar stepwise 

fashion. As shown in Figure 2.7, the sol-gel transition temperatures from the process of 

decreasing pH were essentially right on the curve of Tsol-gel versus pH from the process of 

increasing pH, indicating that the Tsol-gel can be precisely controlled by solution pH and 

can be continuously and reversibly tuned in a large temperature range.  

To confirm that the tunability of Tsol-gel of the 10.0 wt% aqueous solution of 

P(DEGEA-co-AA)-b-PEO-b-P(DEGEA-co-AA) originated from the pH dependence of 

the LCST of thermosensitive P(DEGEA-co-AA) blocks, we conducted DLS studies of 

the triblock copolymer in aqueous buffers with a concentration of 0.02 wt% at three more 

pH values. The CMT of P(DEGEA-co-AA)-b-PEO-b-P(DEGEA-co-AA) gradually 

increased with the increase of pH, from 15 °C at pH = 3.00, to 16.5 °C at pH = 4.11, to 

18 °C at pH = 5.07, and 23 °C at pH = 6.00 °C.63 The CMT curve of the triblock 

copolymer in 0.02 wt % aqueous solutions exhibited a trend similar to the Tsol-gel curve 

but there was a shift. It is understandable that at a particular pH the Tsol-gel is higher than 

the CMT because the gelation requires the formation of a 3-dimensional network with a 

sufficient mechanical strength, while the CMT is the temperature at which the 

thermosensitive P(DEGEA-co-AA) blocks begins to self-assemble to form micelles in a 

dilute aqueous solution. The wider gap between CMT and Tsol-gel curves at high pH 

values can be attributed to the different effects of charges, formed from the ionization of 

carboxylic acid groups, on CMT and Tsol-gel. Although these results were similar to our 
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previous report, the increase of CMT with pH (from 15 °C at pH = 3.00 to 23 °C at pH = 

6.00) was slower compared with a similar thermo- and pH-sensitive ABA triblock 

copolymer, P(DEGMMA-co-MAA)-b-PEO-b-P(DEGMMA-co-MAA),28 where the CMT 

jumped by 14 °C from pH = 3.2 to 6.0. We speculate that this is because PDEGEA (cloud 

point: 9 °C) is less hydrophilic than PDEGMMA (cloud point: 25 °C); the ionization of a 

small amount of carboxylic acid groups (3.5 carboxylic acid groups per thermosensitive 

block) did not increase the hydrophilicity of thermosensitive blocks as much as for 

P(DEGMMA-co-MAA).  

In the examination of heating ramps for different pH values, we noticed that the sol-

to-gel transition became broader with the increase of pH. This can be better seen from the 

curves of G' normalized by the maximum value of G' versus absolute temperature 

normalized by Tsol-gel and the curves of tanδ (= G"/G') versus normalized temperature 

(T/Tsol-gel) for four selected pH values (3.00, 4.11, 5.23, and 6.13) in Figure 2.8. The 

graphs illustrate how sharply the solution is transformed into a gel and how closely it 

approaches the elastic limit. From both plots in Figure 2.8, the sample at the original pH 

(3.00) exhibited the sharpest liquid-to-solid transition and the sol-to-gel transition at pH = 

6.13 was significantly broader. This phenomenon stems from the weaker and broader 

LCST transition of thermosensitive P(DEGEA-co-AA) blocks at a higher pH, which can 

be seen from DSC thermograms in Figure 2.3. With the increase of pH, the maximum 

peak position shifted to a higher temperature and the peak became significantly broader, 

similar to the observation reported in the literature.64 As discussed by Urry,64 the 

introduction of charges onto a thermosensitive polymer disrupts the structured water, 

weakening the LCST transition. In addition, the random distribution of a small amount of  
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Figure 2.8. Plot of (A) normalized dynamic storage modulus G'/G'max, where G'max is the 

maximum value of G' observed in the heating ramp experiment, and (B) tanδ (= G"/G') 

versus normalized temperature T/Tsol-gel, where T and Tsol-gel are absolute temperatures, for 

the 10.0 wt% aqueous solution of P(DEGEA-co-AA)-b-PEO-b-P(DEGEA-co-AA) with 

pH values of 3.00 ( ), 4.11 ( ), 5.23 ( ), and 6.13 ( ). 
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charges along the polymer chain also contributes to the broader LCST transition (on 

average there were only 3.5 carboxylic acid groups per P(DEGEA-co-AA) block). 

2.3.4 pH Effect on Gel Property of 10.0 wt% Aqueous Solution of P(DEGEA-co-

AA)-b-PEO-b-P(DEGEA-co-AA)  

Three normalized temperatures, T/Tsol-gel = 1.025, 1.032, and 1.039, where T and 

Tsol-gel were absolute temperatures, were chosen to conduct frequency sweeps to compare 

the gel properties at a series of pH values in the processes of both increasing and 

decreasing pH.63 Because the sol-gel transition became broader with the increase of pH, 

we found that above pH 5.40 the minimum value of G" was not observed in the studied 

frequency range for all three normalized temperatures and thus the plateau value of G' 

could not be determined by the aforementioned method for the original pH. In the 

examination of frequency sweeps from pH 3.00 to 5.23, we noticed that most of plateau 

values of G' appeared at ~ 10 Hz. To make the comparison easier, we used the value of G' 

at f = 10 Hz as GN for all pH values and made a plot of GN versus pH for each normalized 

temperature (Figure 2.9). In addition, a plot of the maximum G' obtained from the heating 

ramp versus pH was included.   

As can be seen from Figure 2.9, the highest moduli appeared at pH = 3.00, which 

were ~ 5 × 103 Pa. At a particular pH, the GN value either remained about the same or 

increased slightly with the increase of normalized temperature T/Tsol-gel from 1.025 to 

1.039. For example, the GN at pH = 4.40 was 3.0 × 103 Pa at T/Tsol-gel = 1.025, 3.2 × 103 

Pa at T/Tsol-gel = 1.032, 3.2 × 103 Pa at T/Tsol-gel = 1.039. These GN values were close to 

the maximum G' from the heating ramp (2.9 × 103 Pa) at this pH. With the increase of pH 

from 3.00 to ~ 5.40, the values of GN at three normalized temperatures evaluated from  
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Figure 2.9. The maximum G' from heating ramp (A) and plateau moduli GN at three 

normalized temperatures, T/Tsol-gel = 1.025 (B), 1.032 (C), and 1.039 (D), obtained from 

frequency sweeps as a function of pH obtained from the processes of gradually increasing 

pH (up to 6.43, ) by the addition of 1.0 M KOH solution and then gradually decreasing 

pH ( ) by the addition of 1.0 M HCl. T and Tsol-gel are absolute temperatures. 
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frequency sweeps and the maximum G' obtained from the heating ramp all decreased and 

the sharpest drop occurred at pH of ~ 4.7. For example, the GN at T/Tsol-gel = 1.025 was 

only 1.1 × 103 Pa at pH = 5.40, significantly lower than that at pH = 3.00 (4.9 × 103 Pa). 

Clearly, at all three normalized temperatures, the gel became weaker with the increase of 

pH. When the pH was above 5.5, the dynamic moduli appeared to level off. This is 

somewhat different from the pH effect on Tsol-gel, which continued to increase (Figure 

2.7). For the process of decreasing pH by the addition of HCl, the moduli exhibited a pH 

dependence similar to that in the process of increasing pH, but appeared to be slightly 

lower, especially in the low pH region (e.g., at pH = 4.12 and 3.10).  

As mentioned earlier, the GN of a 3-dimensional physical network gel is a measure 

of the number density of elastically active polymer chains (GN = υkBT). The decrease in 

GN means the reduction of the number of bridging polymer chains in the gel. To better 

view how pH affected the gel property, we calculated the percentages of PEO blocks that 

were elastically active at three normalized temperatures (Figure 2.10). The percentage of 

effective network strands decreased with the increase of pH for all three normalized 

temperatures in the pH range of 3.00 to 5.40. Below pH = 4.0, the change was moderate. 

For example, for T/Tsol-gel = 1.025, the fraction decreased from 90% at pH 3.00 to 71% at 

pH = 4.11. With the increase of pH from 4.11 to 5.40, a dramatic drop in the fraction of 

bridging chains was observed, e.g., from 71% at pH 4.11 to 21% at pH 5.70 at the 

normalized temperature of T/Tsol-gel = 1.025. Above pH 5.4, the apparent number of 

bridging polymer chains changed little with pH.  
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Figure 2.10. Percentage of PEO blocks that were elastically active in the gels at 

normalized temperature T/Tsol-gel = 1.025 (A), 1.032 (B), and 1.039 (C), respectively, in 

the processes of increasing ( ) and decreasing pH ( ). 
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Decreasing the solution pH from 6.43 to 3.10 gave essentially the same pH 

dependence as in the process of increasing pH. However, just like the GN, the fraction of 

elastically active polymer chains at a particular pH (below 5.0) in the process of 

decreasing pH appeared to be slightly lower than those at the same pH in the process of 

increasing pH. We speculate that two factors could be responsible for this observation. 

(1) The addition of 1.0 M KOH and later 1.0 M HCl aqueous solution to change the pH 

diluted the polymer solution. Calculations show that the polymer concentration decreased 

from 10.0% to 9.7% if the carboxylic acid groups were fully ionized by KOH and then 

fully protonated by HCl. Everything being equal, the value of GN would decrease by 3 %. 

This means that at pH = 3.00, the GN would be 4869 Pa × 97% = 4722 Pa. (2) KCl, an 

inorganic salt, was produced when 1.0 M HCl was added to decrease the solution pH to 

3.10. The presence of a salt could affect sol-to-gel transition and gel characteristics. To 

look into the possible salt effect, we conducted a study by gradually adding 1.0 M KCl 

solution into a polymer solution with pH = 4.64. This polymer solution was obtained by 

changing the pH value of the original 10.0 wt% aqueous solution of P(DEGEA-co-AA)-

b-PEO-b-P(DEGEA-co-AA) to 6.43 by the addition of 1.0 M KOH solution and then to 

3.10 by the addition of 1.0 M HCl solution, followed by the injection of 1.0 M KOH until 

the solution pH reached 4.64. 

As shown in Figure 2.11A, there was very little change in the Tsol-gel even after the 

addition of KCl twice the amount of COOH/COOK in the solution (the Tsol-gel decrease ≤ 

0.6 °C). Similarly, the values of GN only decreased slightly with the addition of KCl at 

three normalized temperatures except for [KCl]/[AA] = 200%, where noticeable 

decreases were observed. Nevertheless, there seemed to be a trend that the GN decreased  
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Figure 2.11. Effect of the amount of added KCl relative to the calculated amount of 

COOH/COOK on the ABA triblock copolymer chains on (A) Tsol-gel and plateau moduli 

GN at three normalized temperatures, T/Tsol-gel = 1.025 (B), 1.032 (C), and 1.039 (D). 
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with the increase of the amount of added KCl, though quite small. Again, the situation 

was complicated by the dilution; the polymer concentration decreased by 3 % after the 

addition of KCl twice the amount of COOH/COOK. From this control experiment, it 

appeared that both the dilution and the formation of KCl from the injection of 1.0 M 

KOH and HCl contributed to the difference in the values of GN at a particular pH in the 

processes of increasing and decreasing pH and likely the dilution was the main factor.  

The decrease of the fraction of bridging polymer chains with the increase of pH was 

undoubtedly accompanied by the increase in the numbers of loops (the two outer blocks 

of an ABA triblock copolymer located in the same micelle core) and dangling chains (one 

outer block staying in bulk water rather than in a micellar core) (see Scheme 2.2 for the 

schematic illustration of the gel structures of the ABA triblock copolymer at a low pH 

and a high pH value). Despite that the DLS studies showed that there were no significant 

differences in micelle sizes at pH of 3.00 (apparent Dh = ~ 64 nm, Figure 2.4B), 4.11 

(apparent Dh = ~ 64 nm), 5.07 (apparent Dh = ~ 69 nm), and 6.00 (apparent Dh = ~ 60 

nm) at the concentration of 0.02 wt%,63 we speculated that in the 10.0 wt% polymer 

solution the size of micellar cores formed by the dehydrated P(DEGEA-co-AA) blocks 

increased slightly at higher pH values because of the charge-charge interaction inside the 

micellar core. A larger micellar core would facilitate the formation of loops because the 

larger core size lowers the entropy penalty for polymer chains to loop back to the same 

core. On the other hand, the ionization of carboxylic acid groups increases the overall 

hydrophilicity of polymer chains, which may increase the number of dangling polymer 

chains in water. To look into this possibility, we measured the critical micellization 

concentrations (CMC) of P(DEGEA-co-AA)-b-PEO-b-P(DEGEA-co-AA) at four pH  
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Scheme 2.2. Schematic illustration of the gel structures of 10.0 wt% aqueous solution of 

P(DEGEA-co-AA)-b-PEO-b-P(DEGEA-co-AA) at a low pH (a) and a high pH (b) value. 

The increased formation of loops and dangling chains contribute to the decrease in the gel 

strength at high pH values. 

 

 

 

 

 

 



 82

values (pH = 3.00, 4.01, 5.00, and 6.02) and at temperatures corresponding to the sol-gel 

transition temperatures of the 10.0 wt% polymer solution by fluorescence spectroscopy 

using Nile Red as fluorescence probe. The fluorescence spectra and the plot of 

fluorescence intensity versus polymer concentration for each pH are shown in Figure 

2.12. Figure 2.13 displays the plot of CMC versus pH. The CMC of the triblock 

copolymer was 0.019 mg/mL at pH = 3.00 (23 °C), 0.020 mg/mL at pH = 4.01 (26 °C), 

0.023 mg/mL at pH = 5.00 (32 °C), and 0.024 mg/mL at pH 6.02 (47 °C). Although the 

increase of the CMC with the increase of pH was small, the trend was discernable, 

indicating that the polymer chains became more hydrophilic at higher pH values and 

likely more thermosensitive end blocks were located in bulk water as dangling chains.  

It is believed that both the loop formation and the increased presence of dangling 

chains contribute to the observed decreases of GN and the percentage of elastically active 

polymer chains with the increase of pH from 3.00 to 5.40. Above pH = 5.4, it appeared 

that the ionization of the remaining carboxylic acid groups on the thermosensitive blocks 

had a negligible effect on the gel characteristics.   

  

2.4 Conclusions 

We synthesized a well-defined thermo- and pH-sensitive ABA triblock copolymer, 

P(DEGEA-co-AA)-b-PEO-b-P(DEGEA-co-AA), and conducted a systematic study on 

thermo-induced sol-gel transitions and gel properties of 10.0 wt% aqueous solution of 

this block copolymer at various pH values. The Tsol-gel can be continuously and reversibly 

tuned in a large temperature range by changing the solution pH. The sol-gel transition 

became broader with the increase of pH, which was caused by the weaker and broader  



 83

 

 

550 600 650 700 750 800
0

100

200

300

400

500
 

-2.4 -2.1 -1.8 -1.5 -1.2 -0.9
0

150

300

450

600

CMC: 0.019 mg/mL

 

 

Em
is

si
on

 In
te

ns
ity

 (a
.u

.)

LogC (log(mg/mL))

Wavelength (nm)

Em
is

si
on

 In
te

ns
ity

 (a
.u

.) pH = 3.00
T = 23 oC

 
550 600 650 700 750 800
0

150

300

450

600

750
 

-2.4 -2.1 -1.8 -1.5 -1.2 -0.9
0

200

400

600

800

CMC: 0.020 mg/mL

 

 

Em
is

si
on

 In
te

ns
ity

 (a
.u

.)

LogC (log(mg/mL))

pH = 4.01
T = 26 oC

Wavelength (nm)
Em

is
si

on
 In

te
ns

ity
 (a

.u
.)

 

550 600 650 700 750 800
0

150

300

450

600

750

900 pH = 5.00
T = 32 oC

Wavelength (nm)

Em
is

si
on

 In
te

ns
ity

 (a
.u

.)

 

-2.4 -2.1 -1.8 -1.5 -1.2 -0.9
0

200

400

600

800

1000

CMC: 0.023 mg/mL

 

 

Em
is

si
on

 In
te

ns
ity

 (a
.u

.)

LogC (log(mg/mL))

 
550 600 650 700 750 800
0

200

400

600

800

1000

1200
 

-2.4 -2.1 -1.8 -1.5 -1.2 -0.9
0

300

600

900

1200

CMC: 0.024 mg/mL

 

 

Em
is

si
on

 In
te

ns
ity

 (a
.u

.)
LogC (log(mg/mL))

pH = 6.02
T = 47 oC

Wavelength (nm)

Em
is

si
on

 In
te

ns
ity

 (a
.u

.)

 

Figure 2.12. Fluorescence spectra of Nile Red and plot of maximum fluorescence 

emission intensity of Nile Red in aqueous solutions of P(DEGEA-co-AA)-b-PEO-b-

P(DEGEA-co-AA) versus logarithm of polymer concentration (inset in each plot) at (A) 

pH = 3.00 and 23 °C, (B) pH 4.01 and 26 °C, (C) pH = 5.00 and 32 °C, and (D) pH = 

6.02 and 47 °C.   
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Figure 2.13. The plot of critical micelle concentration (CMC) of P(DEGEA-co-AA)-b-

PEO-b-P(DEGEA-co-AA) at the sol-gel transition temperature of 10.0 wt% polymer 

solution versus pH. 
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LCST transition of P(DEGEA-co-AA) blocks at higher pH values. The plateau moduli  

GN of the gels at three normalized temperature (T/Tsol-gel = 1.025, 1.032, and 1.039) 

decreased with the increase of pH with the largest changes observed at pH = ~ 4.7; 

accordingly, the percentages of elastically active polymer chains, calculated from GN 

through GN = υkBT, dropped from ~ 90% at pH 3.00 to ~ 25% at pH of 5.23. Above 

pH5.4, the GN and the fraction of bridging polymer chains leveled off. Decreasing the pH 

gave a pH dependence of GN similar to that in the process of increasing pH, but the value 

of GN at a particular pH appeared to be slightly lower. This is believed to result from the 

dilution of the polymer solution and the formation of KCl in the process of changing the 

solution pH. The reduction of the number density of bridging polymer chains at a higher 

pH was undoubtedly accompanied by the increase of number of non-bridging chains 

(loops and dangling polymer chains). With the increase of pH, the carboxylic acid groups 

on the polymer chains were ionized and the polymer became more hydrophilic. The 

charge-charge interaction in the micellar core could cause the core to be larger, which 

could facilitate the loop formation. The increase in the number of dangling polymer 

chains with the increase of pH was supported by the results from fluorescence 

spectroscopy studies, which showed that the CMC of P(DEGEA-co-AA)-b-PEO-b-

P(DEGEA-co-AA) at a temperature corresponding to Tsol-gel increased with the increase 

of pH. The results reported in this article showed that both the sol-gel transition 

temperature and gel strength can be tuned by varying the solution pH.65 Consider that the 

type and amount of weak acid or base groups on thermosensitive end blocks can be easily 

changed, this type of doubly responsive ABA triblock copolymers could offer greater 

design flexibility for many potential applications.  
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Chapter 3. Catalytic Activity of a Thermosensitive Hydrophilic Diblock 

Copolymer-Supported 4-N,N-Dialkylaminopyridine in Hydrolysis of p-

Nitrophenyl Acetate in Aqueous Buffers 
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Abstract 

This chapter presents the synthesis of a thermosensitive hydrophilic diblock 

copolymer with the thermosensitive block containing a catalytic 4-N,N-

dialkylaminopyridine and the study of the effect of thermo-induced micellization on its 

catalytic activity in the hydrolysis of p-nitrophenyl acetate (NPA). The block copolymer, 

poly(ethylene oxide)-b-poly(methoxydi(ethylene glycol) methacrylate-co-2-(N-methyl-N-

(4-pyridyl)amino)ethyl methacrylate), was synthesized by ATRP. The critical 

micellization temperatures (CMTs) of this block copolymer in the pH 7.06 and 7.56 

buffers were 40 and 37 oC, respectively. The polymer was used as the catalyst for the 

hydrolysis of NPA. We found that below CMT, the logarithm of initial hydrolysis rate 

changed linearly with inverse temperature. With the increase of temperature above CMT, 

the plot of logarithm of reaction rate versus 1/T leveled off, i.e., the hydrolysis rate did 

not increase as much as anticipated from the Arrhenius equation. This is likely because 

the reaction rate at temperatures above CMT was controlled by mass transport of NPA 

from bulk water phase to the core of micelles where the catalytic sites were located. 
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3.1 Introduction 

Polymer-supported organic catalysts have been a subject of intensive research in the 

past decades.1-3 In addition to offering the advantages of facile recovery and reuse of the 

catalysts, polymers create a distinct microenviroment, which can be tailored by varying 

polymer structures, allowing the tuning of catalytic activities of supported catalysts and 

the control of the compatibility between different types of catalytic groups.1-22 Of great 

interest are stimuli-responsive polymer catalysts, which exhibit tunable or switchable 

catalytic activities in response to environmental stimuli.23-25 These catalysts are highly 

desired for many applications as the reaction rates can be conveniently controlled by 

environmental stimuli. Up to date, there are only a few examples of such polymer 

organocatalysts in the literature. Tanaka and coworkers reported an imidazole-containing 

polymer gel consisting of N-isopropylacrylamide (NIPAm), 4(5)-vinylimidazole, and a 

crosslinker.23 The gel can undergo reversible swelling and shrinking in response to the 

composition changes of the mixed solvent of water and methanol. They observed that 

when the gel collapsed, the catalytic activity for esterolysis was dramatically enhanced, 

which was believed to result from the increased affinity of the substrate to the collapsed 

hydrophobic network. Khokhlov et al. synthesized thermosensitive random copolymers 

of 1-vinylimidazole and N-vinylcaprolactam or NIPAm, and found that above the lower 

critical solution temperatures (LCSTs) of the copolymers, the hydrolysis rates of an 

activated ester were higher than predicted from the Arrhenius equation, presumably 

because both the substrate and the catalytic imidazole units were enriched at the interface 

of polymer aggregates.24. The observed effect was larger for the copolymer of NIPAm 

and 1-vinylimidazole than for the copolymer of N-vinylcaprolactam and 1-
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vinylimidazole. With further increasing temperature, the aggregates became unstable and 

the activities decreased appreciably.  

Compared with thermosensitive catalyst-containing random copolymers, which 

form unstable large aggregates at temperatures above the LCSTs, block copolymers are 

more advantageous for developing polymer catalysts with tunable or switchable activities 

as they can self-assemble into well-defined stable micelles upon application of external 

stimuli. Patrickios et al. synthesized poly(2-(N,N-dimethylamino)ethyl methacrylate)-b-

poly(2-(1-imidazolyl)ethyl methacrylate) (PMAEMA-b-PImEMA) by group transfer 

polymerization.26-28 Different from their original speculation that the micellization of 

block copolymers with PImEMA forming the core would accelerate the reaction, they did 

not observe enhanced catalytic activities of the block copolymers compared with the 

random copolymers, likely because the hydrophobicity of short PImEMA blocks was not 

sufficient for extensive micellization. Using reversible addition-fragmentation chain 

transfer polymerization, Liu et al. synthesized doubly hydrophilic thermosensitive 

diblock copolymers, PNIPAm-b-poly(N-vinylimidazole), which self-assembled into 

micelles with the PNIPAm block forming the core and the catalytic block forming the 

corona at elevated temperatures.25 They found that the esterolysis rates were enhanced 

pronouncedly at temperatures above the critical micellization temperatures (CMTs).  

Despite these efforts, the issue, how the micellization affects the catalytic activity of 

a stimulus-responsive block copolymer with an organic catalyst being incorporated into 

the core-forming block, has not been elucidated. Understanding this issue will enable a 

rational design of stimuli-responsive polymeric catalysts. One can envision that if the 

partition coefficient of the substrate between micelles and bulk water phase is sufficiently 
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high, it could be concentrated in the core of micelles, resulting in a higher reaction rate. 

On the other hand, the formation of micelles with the catalyst buried inside the core could 

impose a mass transport limitation, which might suppress the reaction rate. In the present 

work, we synthesized a thermosensitive hydrophilic diblock copolymer with the 

thermosensitive block containing catalytic 4-N,N-dialkylaminopyridine (DAAP) units 

and studied the effect of thermo-induced micellization of the block copolymer on the 

hydrolysis rate of p-nitrophenyl acetate (NPA), an activated ester, in aqueous buffers. 

DAAPs are highly efficient nucleophilic catalysts for many organic reactions, including 

acylation of sterically hindered alcohols, hydrolysis of activated esters, and Baylis-

Hillman reaction.6-22,29-32 Scheme 3.1 illustrates the synthesis of block copolymer 

poly(ethylene oxide)-b-poly(methoxydi(ethylene glycol) methacrylate-co-2-(N-methyl-N-

(4-pyridyl)amino)ethyl methacrylate) (PEO-b-P(DEGMMA-co-MAPMA) from a PEO 

macroinitiator by atom transfer radical polymerization (ATRP). PDEGMMA is a 

thermosensitive water-soluble polymer with a LCST of 25 oC in water; it belongs to a 

new family of thermosensitive hydrophilic polymers that contain a short oligo(ethylene 

glycol) pendant in each monomer unit.33-42 The thermo-induced micellization of the block 

copolymer in aqueous buffers (Scheme 3.2) was studied by dynamic light scattering. The 

block copolymer was then used as catalyst for the hydrolysis of NPA at various 

temperatures from below to above the CMT and the hydrolysis rates of NPA were 

measured by UV-vis spectrometry. 
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Scheme 3.1. Synthesis of Thermosensitive Block Copolymer PEO-b-P(DEGMMA-co-

MAPMA) with the Thermosensitive Block Containing a Catalytic 4-N,N-

Dialkylaminopyridine by Atom Transfer Radical Polymerization. 
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Scheme 3.2. Thermo-Induced Micellization of PEO-b-P(DEGMMA-co-MAPMA) in an 

Aqueous Buffer. 
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3.2. Experimental Section 

3.2.1 Materials  

Methoxydi(ethylene glycol) methacrylate (DEGMMA, or di(ethylene glycol) 

methyl ether methacrylate, 95%, Aldrich) was dried with calcium hydride, distilled under 

a reduced pressure, and stored in a refrigerator prior to use. CuCl (99.995%, Aldrich) was 

purified according to the procedure described in the literature43-45 and stored in a 

desiccator. CuCl2 (anhydrous, 99%), p-nitrophenyl acetate (NPA, 97%), acetonitrile 

(99.5%), N,N-dimethylformamide (extra dry, with molecular sieves), and sodium 

tetraborate decahydrate were purchased from Acros and used as received. Potassium 

dihydrogen phosphate (≥ 99%) and 1,1,4,7,10,10-hexamethyltriethylenetetramine (97%) 

were obtained from Aldrich-Sigma and used as received. Ethyl 2-bromoisobutyrate (98%, 

Aldrich) was dried over calcium hydride, distilled under a reduced pressure, and stored in 

a desiccator prior to use. The synthesis and characterization of 4-(N-methyl-N-(2-

hydroxyethyl)amino)pyridine, 2-(N-methyl-N-(4-pyridyl)amino)ethyl methacrylate 

(MAPMA), and macroinitiator PEO-Br (PEO with molecular weight of 5000 Da and one 

end functionalized with an ATRP initiator) can be found in previous publications.31,32,46,47 

3.2.2 Characterization  

Size exclusion chromatography (SEC) was carried out at ambient temperature using 

PL-GPC 50 Plus (an integrated GPC/SEC system from Polymer Laboratories, Inc) with a 

differential refractive index detector, one PSS GRAL guard column (50 × 8 mm, 10 

micron particles, Polymer Standards Service-USA, Inc.), and two PSS GRAL linear 

columns (each 300 × 8 mm, 10 micron, molecular weight range from 500 to 1,000,000 

according to Polymer Standards Service-USA, Inc.). The data were processed using 
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CirrusTM GPC/SEC software (Polymer Laboratories, Inc.). N,N-Dimethylformamide 

(DMF) was used as the carrier solvent at a flow rate of 1.0 mL/min. Standard 

monodisperse polystyrenes (Polymer Laboratories, Inc.) were used for calibration. 1H 

NMR (300 MHz) spectra were recorded on a Varian Mercury 300 NMR spectrometer 

and the residual solvent proton signal was used as the internal standard.  

The cloud points of poly(methoxydi(ethylene glycol) methacrylate-co-2-(N-methyl-

N-(4-pyridyl)amino)ethyl methacrylate) (P(DEGMMA-co-MAPMA)) in 10 mM aqueous 

phosphate buffers with pH values of 7.06 and 7.56 at a concentration of 0.020 wt% were 

measured by turbidimetry. The optical transmittances of polymer solutions at various 

temperatures were recorded at wavelength of 500 nm with a UV-vis spectrometer 

(Biomate 5 from Thermospectronic, Inc.). The sample cell was thermostated with an 

external water bath of a Fisher Scientific Isotemp refrigerated circulator. At each 

temperature, the solutions were equilibrated for 5 min.  

3.2.3. Synthesis of PEO-b-P(DEGMMA-co-MAPMA)  

Copper (I) chloride (4.9 mg, 4.9 × 10-5 mol), copper (II) chloride (2.9 mg, 2.2 × 10-5 

mol), macroinitiator PEO-Br (223.6 mg, 4.34 × 10-5 mol), DEGMMA (1.005 g, 5.34 

mmol), MAPMA (82.7 mg of a 53.0 wt % solution of MAPMA in DMF, 43.8 mg 

MAPMA, 1.99 × 10-4 mol), and DMF (1.004 g) were added into a two-necked flask. The 

reaction mixture was stirred under a dry nitrogen atmosphere. 1,1,4,7,10,10-

Hexamethyltriethylenetetramine (HMTETA, 16.2 mg, 7.03 × 10-5 mol) was injected via a 

microsyringe; the solution turned light green immediately. After the reaction mixture was 

degassed by three freeze-pump-thaw cycles, the flask was placed in a 75 oC oil bath. The 

polymerization was stopped after 156 min by removing the flask from the oil bath and 
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opening it to air. The mixture was diluted with THF and passed through a short neutral 

aluminum oxide/silica gel column to remove the copper catalyst. The polymer was 

precipitated in hexanes three times from its THF solution. The polymer was then 

dissolved in THF and the solution was stored in a refrigerator (temperature: ~ 4 oC). The 

precipitate was removed by filtration. The solution was then concentrated and 

precipitated in a mixture of hexanes/diethyl either (v/v : 50/50). After being dried in high 

vacuum, the block copolymer was obtained as a very viscous liquid (0.696 g). SEC 

analysis results (polystyrene standards): Mn,SEC = 26600 Da, polydispersity index (PDI) = 

1.12. The numbers of DEGMMA and MAPMA units in the block copolymer were 

calculated from the 1H NMR spectrum using the integral values of the peak at 8.2 ppm 

(N(CHCH)2 of MAPMA units), the peaks from 3.9 to 4.5 ppm (CH2OCO of DEGMMA 

and MAPMA units), and the peaks from 3.0 to 3.9 ppm (OCH2 from the PEO block and 

DEGMMA units plus CH2OCH3 of DEGMMA units and the C-N(CH3)CH2 of MAPMA 

units). The numbers of DEGMMA (nDEGMMA) and MAPMA units (nMAPMA) in the block 

copolymer were 117 and 3, respectively. A random copolymer P(DEGMMA-co-

MAPMA) was prepared by ATRP using ethyl 2-bromoisobutyrate as initiator under the 

same conditions for the synthesis of PEO-b-P(DEGMMA-co-MAPMA). Mn,SEC = 19100 

Da, PDI = 1.11, nDEGMMA = 92 and nMAPMA = 3. 

3.2.4 Determination of pKa of the MAPMA Units in PEO-b-P(DEGMMA-co-

MAPMA)  

A series of 10 mM aqueous buffer solutions were made by dissolving sodium 

tetraborate decahydrate (borax) or potassium dihydrogen phosphate in deionized water. 

The pH values of buffer solutions were adjusted by the addition of a 1.0 M NaOH or a 
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1.0 M HCl solution and measured by a pH meter. To determine the pKa of the MAPMA 

units in PEO-b-P(DEGMMA-co-MAPMA) at room temperature, the UV-vis spectra of 

the block copolymer in these buffer solutions were recorded at room temperature with a 

UV-vis spectrometer (Biomate 5 from Thermospectronic, Inc.). A typical UV-vis 

experiment is described below. A phosphate buffer (pH = 7.14, 1.069 g) was added into a 

quartz cuvette, followed by the injection of an aqueous polymer solution (24.8 mg, 0.95 

wt %) via a microsyringe. The solution was then agitated with a glass pipette. The cuvette 

was placed into the cell holder of the instrument and the UV-vis spectrum of the block 

copolymer was recorded. DAAPs are known to exhibit a 20 nm shift in λmax when the 

basic (B, nonporotonated) and conjugated acid forms (BH+, protonated) are compared. 

The absorbances at 280 nm (from protonated MAPMA, BH+) and 260 nm (from 

nonprotonated MAPMA, B) were used for the calculation of pKa.9 The absorbances of 

PEO-b-P(DEGMMA-co-MAPMA) at pH = 1 and 13 were measured from 0.1 N aqueous 

HCl and 0.1 N NaOH solutions, respectively. A similar procedure was used to measure 

the pKa of MAPMA units in PEO-b-P(DEGMMA-co-MAPMA) at 44 oC. 

3.2.5 Dynamic Light Scattering Study of Thermo-Induced Micellization of PEO-b-

P(DEGMMA-co-MAPMA) in Aqueous Buffer Solutions  

The thermo-induced micellization of PEO-b-P(DEGMMA-co-MAPMA) in aqueous 

buffers was studied by dynamic light scattering (DLS). The block copolymer PEO-b-

P(DEGMMA-co-MAPMA) was dried in high vacuum for > 3 h. Aqueous solutions of 

PEO-b-P(DEGMMA-co-MAPMA) with a concentration of 0.020 wt % were prepared by 

use of 10 mM phosphate buffers with pH of 7.06 and 7.56. The polymer solutions were 

sonicated in an ultrasonic ice/water bath for 5 min to ensure complete dissolution. Note 
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that in the hydrolysis experiments, a solution of NPA in acetonitrile was injected into the 

polymer solution via a microsyringe; the concentration of acetonitrile in the final solution 

was 1.6 wt%. Considering that the LCST transition of the thermosensitive block of PEO-

b-P(DEGMMA-co-MAPMA) could be affected by the presence of a small amount of 

acetonitrile, we injected a calculated amount of acetonitrile into the polymer solutions for 

DLS study to ensure that the concentration of acetonitrile was the same as that in the 

hydrolysis experiments.  

DLS measurements were conducted with a Brookhaven Instruments BI-200SM 

goniometer equipped with a PCI BI-9000AT digital correlator, a temperature controller, 

and a solid-state laser (model 25-LHP-928-249, λ = 633 nm) at a scattering angle of 90o. 

The polymer solutions, containing 1.6 wt% acetonitrile, were filtered into borosilicate 

glass tubes with an inner diameter of 7.5 mm by the use of 0.2 μm filters. The glass tubes 

were then sealed with a PE stopper. The solutions were gradually heated from room 

temperature to 50 oC. At each temperature, the solutions were equilibrated for 30 min 

prior to data recording. The time correlation functions were analyzed with a Laplace 

inversion program (CONTIN). 

3.2.6 Kinetics Studies of the Hydrolysis of p-Nitrophenyl Acetate in Aqueous Buffers 

Using PEO-b-P(DEGMMA-co-MAPMA) as Catalyst  

The hydrolysis reactions of NPA were performed in 10 mM aqueous phosphate 

buffer solutions with pH of 7.06 and 7.56. The buffers were made by dissolving KH2PO4 

in deionized water and the pH values were adjusted by addition of an aqueous NaOH 

solution and measured with a pH meter (Accumet AB 15 pH meter from Fisher 

Scientific, calibrated with pH = 4.01, 7.00, and 10.01 standard buffer solutions). 
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The kinetics studies of the hydrolysis of NPA were conducted in a quartz cuvette 

using a Hewlett Packard 8542A Diode Array UV-vis spectrophotometer equipped with a 

Hewlett Packard 89090A Peltier temperature controller. In all hydrolysis experiments, the 

concentrations of NPA and the MAPMA units of the block copolymer in the reaction 

medium were 2.9 × 10-4 M and 2.2 ×10-5 M, respectively. The absorbance of the ionized 

form of the hydrolysis product p-nitrophenol at 400 nm was recorded as a function of 

time by a computer program. A typical procedure for the NPA hydrolysis experiment is 

described below. A 0.020 wt % solution of PEO-b-P(DEGMMA-co-MAPMA) in a 10 

mM phosphate buffer with pH of 7.06 (1.100 g) was added into a quartz cuvette equipped 

with a small magnetic stir bar. The cuvette was then placed into the cell holder of the 

UV-vis spectrometer with a preset temperature. After the solution was equilibrated for 25 

min, a background scan was performed to record the absorbance of the polymer solution. 

A solution of NPA in acetonitrile (17.5 mg, 0.34 wt %) was injected into the cuvette via a 

microsyringe and the reaction mixture was immediately agitated with a glass pipette for 5 

sec. The UV-vis spectra of the reaction mixture were recorded as a function of time by a 

computer program. The time at which the NPA solution was injected was taken as t = 0 

sec. The absorbance at 400 nm was plotted vs. time and the initial slope was obtained by 

linear regression of the first five points. The initial rates of the hydrolysis of NPA were 

calculated by using equation 1.24,32 

V = 
dA400

dt

1

εb
1

f
(1)V = 

dA400

dt

1

εb
1

f
(1)

 

where dA400/dt is the initial slope of the variation of the absorbance at 400 nm (A400) with 

time, ε is the extinction coefficient of ionized p-nitrophenol, b is the optical path length 
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(1 cm), and f is the fraction of ionized p-nitrophenol in the buffer used in the hydrolysis 

experiment. The product of extinction coefficient ε and fraction of ionized p-nitrophenol f 

is equal to the apparent coefficient ε' of p-nitrophenol in a buffer with a specific pH, 

which can be obtained by using the concentration of p-nitrophenol instead of the 

concentration of ionized p-nitrophenol in the calculations. The apparent extinction 

coefficients ε' (= εf) of p-nitrophenol in the pH 7.06 and 7.56 buffers were 9446 and 

12025 Lmol-1cm-1, respectively, obtained by a method described below. A series of 

solutions of p-nitrophenol with different concentrations were made by the use of a buffer 

with pH of either 7.06 or 7.56, and their absorbances at 400 nm were recorded with a 

UV-vis spectrometer. The apparent extinction coefficient was obtained by linear 

regression of the plot of the absorbance at 400 nm versus nominal concentration of p-

nitrophenol. 

 

3.3 Results and Discussion 

3.3.1 Synthesis of Thermosensitive Hydrophilic Block Copolymer PEO-b-

P(DEGMMA-co-MAPMA) with the Thermosensitive Block Containing a DAAP 

Catalyst 

This work is intended to study the effect of thermo-induced micellization of a 

hydrophilic block copolymer in aqueous buffers on the catalytic activity of a DAAP 

catalyst that is incorporated into the thermosensitive block. DAAPs are highly efficient 

nucleophilic catalysts widely used in many organic reactions including hydrolysis of 

activated esters.6-22,29-32 We chose the hydrolysis of p-nitrophenyl acetate, an activated 

ester, in aqueous buffers for studying the catalytic activity of a thermosensitive block 



 106

copolymer-supported DAAP catalyst because this reaction proceeds cleanly to yield p-

nitrophenol via a known pathway (Scheme 3.3) and the reaction can be conveniently 

followed by UV-vis spectrometry due to the absorbance of ionized p-nitrophenol at 400 

nm.9,24,32  

The thermosensitive hydrophilic block copolymer, PEO-b-P(DEGMMA-co-

MAPMA), was synthesized from macroinitiator PEO-Br by ATRP of a mixture of 

DEGMMA and MAPMA with a molar ratio of 100 : 3.7  at 75 oC using 

CuCl/CuCl2/HMTETA as catalytic system in DMF. We used a small amount of MAPMA 

in the copolymerization for two reasons: (i) it is known that DAAPs are superior 

nucleophilic organocatalysts for the hydrolysis of p-nitrophenyl esters;6-9 (ii) the 

incorporation of a small amount of MAPMA into the thermosensitive block will not 

change the thermosensitive property too much.32 Size exclusion chromatography analysis 

of the purified block copolymer showed a monomodal peak with a number average 

molecular weight Mn,SEC of 26600 Da (relative to polystyrene standards) and a 

polydispersity index of 1.12 (Figure 3.1a). On the basis of the degree of polymerization 

of the PEO block (DP of PEO block = 113), the numbers of DEGMMA and MAPMA 

units in the thermosensitive block were calculated from the 1H NMR spectrum (Figure 

3.1b) and they were 117 and 3, respectively. The molar ratio of DEGMMA to MAPMA 

units in the block copolymer (100 : 2.6) is close to the feed ratio in the polymerization 

mixture (100 : 3.7). For comparison of thermoresponsive properties, a random copolymer 

of DEGMMA and MAPMA, P(DEGMMA-co-MAPMA), was synthesized by ATRP 

using a small molecule initiator, ethyl 2-bromoisobutyrate, under the same conditions for 

the synthesis of the block copolymer. The Mn,SEC determined by SEC using polystyrene  
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Scheme 3.3. Hydrolysis of p-Nitrophenyl Acetate Catalyzed by a N,N-

Dialkylaminopyridine. 
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          (a)      (b) 

Figure 3.1. (a) Size exclusion chromatography analysis of macroinitiator PEO-Br and the 

block copolymer PEO-b-P(DEGMMA-co-MAPMA), and (b) 1H NMR spectrum of PEO-

b-P(DEGMMA-co-MAPMA) in CDCl3. 
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calibration is 19100 Da and the PDI is 1.11. The numbers of DEGMMA and MAPMA 

units in the random copolymer are 92 and 3, respectively. 

3.3.2. pKa of the MAPMA units in Block Copolymer PEO-b-P(DEGMMA-co-

MAPMA) 

The hydrolysis rate of an activated ester in an aqueous solution with a DAAP as 

catalyst is heavily dependent on the concentration of nonprotonated DAAP, which is in 

turn dependent on the solution pH.6-9,32 Thus, it is necessary to study its pKa. The pKa 

value of the MAPMA units in PEO-b-P(DEGMMA-co-MAPMA) was determined 

spectrophotometrically following a method described in the literature.9 DAAPs are 

known to exhibit a 20 nm shift in λmax when the basic (B, nonporotonated) and 

conjugated acid forms (BH+, protonated) are compared, the peaks appearing typically at 

260 and 280 nm, respectively.6-9,32 The following equation was used to calculate the 

molar fraction of nonprotonated DAAP units, x(B), at pH = p:9 

 

where A280 and A260 are the absorbances at 280 and 260 nm, respectively. The 

absorbances at pH = 1 and 13 were obtained from the UV-vis spectra of the block 

copolymer in a 0.1 N aqueous HCl solution and a 0.1 N NaOH solution, respectively. A 

series of aqueous buffers with salt concentrations of 10 mM and various pH values were 

prepared and used to make solutions of PEO-b-P(DEGMMA-co-MAPMA) for UV-vis 

measurements. The ratio of [B]/[BH+] at each pH was calculated, and the pKa value was 

then determined by the use of Henderson-Hasselbalck equation: 

pH = pKa + n log([B]/[BH+])                             (3) 

x(B) =  
[A280/A260]pH 1 – [A280/A260]pH 13

[A280/A260]pH 1 – [A280/A260]pH p
(2) 
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where n is a measure of deviation from ideal titration behavior.9,32  

Figure 3.2 shows the plot of log([B]/[BH+]) versus pH for PEO-b-P(DEGMMA-co-

MAPMA) in aqueous buffers at room temperature. The pKa of the MAPMA units in the 

block copolymer, obtained by linear regression (R = 0.999, n = 1.29, Figure 3.2), was 

7.91. Our group previously reported that the pKa of small molecule 4-(N-methyl-N-(2-

hydroxyethyl)amino)pyridine (EGMAP) was 9.31.32 Note that EGMAP is the precursor 

for the synthesis of monomer MAPMA. Thus, the pKa value of the MAPMA units in the 

block copolymer is 1.40 pH units lower than that of EGMAP, indicating that the 

incorporation of a DAAP into a polymer has a significant effect on its pKa value. This 

observation is consistent with the results reported in the literature for the polymer-

supported DAAPs.6-9,32 Since the molar content of MAPMA units in the thermosensitive 

block was very small, only 2.5 % (approximately one MAPMA unit every 40 monomer 

units in the P(DEGMMA-co-MAPMA) block), the electrostatic repulsive interaction 

among protonated DAAP units, which has been used to explain the lower pKa values of 

polymer-supported DAAPs,8 is unlikely the predominant cause of the decreased pKa 

value of PEO-b-P(DEGMMA-co-MAPMA). We believe that the main reason, as 

discussed by Urry,48 is that the introduction of charges (protonation of DAAP) onto a 

thermosensitive water-soluble polymer chain disrupts the "ordered" water structures 

around the hydrophobic moieties of the thermosensitive block and the charges on the 

MAPMA units compete with the hydrophobic groups for water molecules for hydration. 

Thus, to achieve the same degree of protonation of MAPMA units on a thermosensitive 

polymer chain, a lower solution pH, compared with small molecule EGMAP, is required. 

Since the nonprotonated DAAP is the actual nucleophilic catalyst, a  
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Figure 3.2. Plot of log([B]/[BH+]) versus pH for the MAPMA units in the block 

copolymer PEO-b-P(DEGMMA-co-MAPMA) in aqueous buffers with various pH values 

at room temperature, where [B] and [BH+] are the concentrations of nonprotonated and 

protonated MAPMA units, respectively.  
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lower pKa makes the polymer catalyst more attractive than small molecule DAAPs  

because the reaction can be carried out at a milder pH at a reaction rate that can only be 

obtained at a higher pH with a small molecule DAAP as catalyst. For the same reason, we 

chose phosphate buffers with pH of 7.06 and 7.56, which are close to the pKa of PEO-b-

P(DEGMMA-co-MAPMA), as reaction media for the hydrolysis of NPA with the block 

copolymer as catalysts. 

3.3.3. Cloud Points of Random Copolymer P(DEGMMA-co-MAPMA) in Aqueous 

Phosphate Buffers with pH of 7.06 and 7.56  

We first studied the thermosensitive property of a random copolymer of DEGMMA 

and MAPMA with a similar molar ratio as in the block copolymer. The cloud points 

(CPs) of P(DEGMMA-co-MAPMA) in aqueous phosphate buffers with pH of 7.06 and 

7.56 were determined by turbidimetry. Figure 3.3 shows the optical transmittances of 

0.020 wt% solutions of P(DEGMMA-co-MAPMA) in the two buffers at wavelength of 

500 nm as a function of temperature in both heating and cooling processes. The optical 

transmittance began to decrease at 30 oC for the pH 7.56 polymer solution and 32.5 oC for 

the pH 7.06 solution upon increasing temperature. If 50 % of the transmittance change is 

used for the determination of CP, the CP of the random copolymer was 34 oC in the pH 

7.06 buffer and 31 oC in the pH 7.56 aqueous buffer. The cloud point of P(DEGMMA-

co-MAPMA) in the pH 7.06 buffer is 3 oC higher than that at pH = 7.56. This is 

reasonable because at pH = 7.06 more MAPMA units are protonated, making the 

polymer more hydrophilic, and thus the coil-to-globule transition occurs at a higher 

temperature. From Figure 3.3, one can also find that for both solutions there was  
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Figure 3.3. Optical transmittance of 0.020 wt% solutions of P(DEGMMA-co-MAPMA) 

in 10 mM phosphate buffers with pH of 7.56 (  heating and  cooling) and 7.06 (  

heating and  cooling) as a function of temperature. The transmittances were recorded at 

wavelength of 500 nm with a UV-vis spectrometer. 
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essentially no hysteresis between the heating and cooling processes. The thermo-induced 

LCST transitions of this random copolymer in the two buffers were reversible. 

3.3.4. Thermo-Induced Micellization of PEO-b-P(DEGMMA-co-MAPMA) in 

Aqueous Buffer Solutions with pH of 7.06 and 7.56  

Dynamic light scattering was employed to study the thermo-induced micellization 

of PEO-b-P(DEGMMA-co-MAPMA) in 10 mM phosphate buffers with pH of 7.06 and 

7.56, the solutions used as reaction media for the hydrolysis of NPA. The block 

copolymer concentration in both buffers was 0.020 wt%, same as that in the hydrolysis 

experiments. It should be noted that in the hydrolysis experiments, NPA was added in the 

form of its solution in acetonitrile; the final solution contained 1.6 wt% acetonitrile. Since 

the presence of a small amount of acetonitrile could affect the thermoresponsive 

properties of the thermosensitive block and thus the CMT of the block copolymer in the 

aqueous buffers, we added a predetermined amount of acetontrile into the polymer 

solutions for the DLS experiments such that the acetonitrile concentration was the same 

as that in the hydrolysis experiments.  

Figure 3.4 shows the results from a DLS study of a 0.020 wt% solution of PEO-b-

P(DEGMMA-co-MAPMA) in the pH 7.06 phosphate buffer. When the temperature was 

below 39 oC, the scattering intensity was very low and the hydrodynamic size of the 

block copolymer was small, < 8 nm, suggesting that the block copolymer was 

molecularly dissolved in the aqueous buffer solution. When the temperature reached 40 

oC, the scattering intensity began to increase and the hydrodynamic size jumped to ~ 80 

nm, indicating that the thermosensitive block was undergoing a temperature-induced  

hydration-dehydration transition. With further increasing the temperature to 41 oC and  
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   (a)       (b) 

Figure 3.4. (a) Scattering intensity at the scattering angle of 90o and (b) apparent 

hydrodynamic diameter, Dh, as a function of temperature, obtained from a dynamic light 

scattering study of a 0.020 wt% solution of PEO-b-P(DEGMMA-co-MAPMA) in the pH 

= 7.06 aqueous phosphate buffer (  heating;  cooling). 
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beyond, the value of Dh became stabilized around 43 nm. The CMT determined from the 

plot of scattering intensity versus temperature in the heating process is 40 oC (Figure 

3.4a). The data from the cooling process essentially superimposed the heating curve. 

When the temperature was decreased to 39 oC, the block copolymer micelles dissociated 

into the unimers.  

Figure 3.5 shows the data from a DLS study of a 0.020 wt % solution of PEO-b-

P(DEGMMA-co-MAPMA) in the pH 7.56 buffer. Similar to the observations for the pH 

7.06 buffer, the block copolymer self-assembled into micelles with an apparent 

hydrodynamic diameter of ~ 43 nm when the temperature was higher than 40 oC. This 

thermo-induced micellization was reversible. Decreasing the temperature caused the 

micelles to dissociate into the unimers (Figure 3.5). The CMT, determined from the 

heating curve in Figure 3.5a, was 37 oC, which is 3 oC lower than that in the pH 7.06 

buffer, consistent with our observations of the cloud points of random copolymer 

P(DEGMMA-co-MAPMA) in the two buffers. At a lower pH, more MAPMA monomer 

units were protonated, rendering the thermosensitive block more hydrophilic and thus a 

higher LCST transition temperature. Calculations show that 82 % of MAPMA units were 

protonated at pH = 7.06, while 65 % MAPMA units were protonated in the pH 7.56 

buffer. Note that the CMT of PEO-b-P(DEGMMA-co-MAPMA) in each buffer was 6 oC 

higher than the CP of the corresponding random copolymer solution. This is consistent 

with the observations previously reported by our group.46,47 It is known that the LCST 

transition temperature is slightly higher when a thermosensitive polymer is attached to a 

hydrophilic block.49-51 
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     (a)         (b)   

Figure 3.5. (a) Scattering intensity at the scattering angle of 90o and (b) apparent 

hydrodynamic diameter, Dh, as a function of temperature, obtained from a dynamic light 

scattering study of a 0.020 wt% solution of PEO-b-P(DEGMMA-co-MAPMA) in a pH = 

7.56 aqueous buffer solution  (  heating;  cooling). 
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3.3.5. Hydrolysis of p-Nitrophenyl Acetate with PEO-b-P(DEGMMA-co-MAPMA) 

as Catalyst in the pH 7.06 and 7.56 Buffer solutions at Various Temperatures  

The hydrolysis reactions of p-nitrophenyl acetate with PEO-b-P(DEGMMA-co-

MAPMA) as catalyst were carried out in 10 mM aqueous phosphate buffers with pH of 

7.06 and 7.56 under the stirring condition in the temperature range of 30-48 oC. The 

reactions were monitored by recording the absorbance at 400 nm (A400nm) as a function of 

time by a UV-vis spectrometer via a computer program. For all hydrolysis experiments, 

[NPA] = 2.9 × 10-4 M and [MAPMA] = 2.2 × 10-5 M. Figure 3.6 shows A400nm as a 

function of time for the hydrolysis of NPA in the pH 7.56 buffer at (a) 30 oC, which was 

below the CMT, and (b) 44 oC, which was above the CMT. Clearly, the absorbance 

A400nm increased smoothly and, in the beginning, linearly with the increase of time at both 

temperatures. The initial hydrolysis rate was derived by a linear regression of the first 

five points and the use of equation (1) as described in the experimental section. Since the 

buffer might also contribute to the initial rate of the hydrolysis of NPA, we also measured 

the background rates by performing the reactions at the same conditions except without 

addition of any DAAP catalyst. We found that the background rate accounted for a small 

fraction of the total rate, e.g., 5.3 % of the total rate catalyzed by the block copolymer in 

the pH 7.56 buffer at 30 oC and 16.5 % at 48 oC. To better understand the catalytic 

activity of the block copolymer-supported DAAP catalyst before and after the thermo-

induced micellization, we derived the net initial rates of the hydrolysis of NPA by 

subtracting the corresponding background rates from the overall rates for all 

temperatures.   
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                 (a)               (b) 
Figure 3.6. Absorbance at 400 nm (A400) recorded with a UV-vis spectrometer by a 

computer program as a function of time for the hydrolysis of p-nitrophenyl acetate using 

PEO-b-P(DEGMMA-co-MAPMA) as catalyst in the pH = 7.56 buffer at (a) 30 oC, which 

was below CMT, and (b) 44 oC, which was above CMT.  
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The effect of temperature on reaction rate constant is usually expressed by 

Arrhenius equation, that is, lnk changes linearly with inverse temperature 1/T.24,25,32 

Figure 3.7 shows the plots of logarithm of net initial rate (logV) versus 1/T for the 

hydrolysis of NPA using PEO-b-P(DEGMMA-co-MAPMA) as catalyst. A linear 

relationship between logV and 1/T was observed in the range of 30-38 oC for the 

reactions in the pH 7.56 buffer and 30-40 oC for the reactions in the pH 7.06 buffer, 

indicating that the hydrolysis of NPA with PEO-b-P(DEGMMA-co-MAPMA) as catalyst 

in these temperature ranges followed the Arrhenius behavior. The two curves in these 

ranges were essentially in parallel. From DLS studies, the CMT of PEO-b-P(DEGMMA-

co-MAPMA) was 37 oC in the pH 7.56 buffer and 40 oC in the pH 7.06 buffer. Thus, the 

block copolymer was in the unimer state at these temperatures except 38 oC in the pH 

7.56 buffer. 

From Figure 3.7, one can also find that the reaction at any temperature in the pH = 

7.56 buffer was consistently faster than that at pH = 7.06. For example, the net initial 

hydrolysis rate in the pH 7.56 buffer at 30 oC was 8.4 × 10-8 molL-1sec-1, which was ~ 1.6 

times the initial rate in the pH 7.06 buffer at the same temperature (5.1 × 10-8 molL-1sec-

1). This is because the concentration of the nonprotonated MAPMA units of the block 

copolymer in the pH 7.56 buffer was higher than that in the 7.06 buffer. Calculations 

show that about 35 % of the MAPMA units were in the nonprotonated state in the pH 

7.56 buffer while 18 % of the MAPMA units were nonprotonated in the pH 7.06 buffer. 

For the reactions in both buffers, the plot of logV versus 1/T did not follow the 

Arrhenius equation in the entire studied temperature range but leveled off with the 

increase of temperature above a certain point, i.e., the reaction rate did not increase as  
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Figure 3.7. Plot of the logarithm of net initial rate (logV) versus 1/T for the hydrolysis of 

p-nitrophenyl acetate catalyzed by PEO-b-P(DEGMMA-co-MAPMA) in the pH 7.56 

buffer ( ) and pH 7.06 aqueous buffer ( ). 
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much as anticipated from the Arrhenius equation. For the hydrolysis reactions in the pH 

7.56 buffer, the transition temperature was ~ 39 oC, just above the CMT of the block 

copolymer in this buffer (37 oC), while the transition for the reactions in the pH 7.06 

buffer occurred at ~ 42 oC, 2 oC above the CMT of the block copolymer in this buffer. 

Clearly, the thermo-induced micellization of PEO-b-P(DEGMMA-co-MAPMA) exerted 

an appreciable effect on the hydrolysis rate of NPA; the net initial rate was suppressed by 

the formation of micelles with the catalyst-containing block P(DEGMMA-co-MAPMA) 

forming the core in the aqueous buffers. 

Since the pKa of MAPMA units in the core of micelles could be different from that 

in water, we determined its value at 44 oC by the same method described in the 

experimental section and found that it was 7.10, slightly lower than that at room 

temperature (7.91). Thus, the change of the pKa before and after micellization cannot 

account for the suppression of the initial hydrolysis rate at temperatures above the CMT 

because a lower pKa value means that the fraction of nonprotonated MAPMA units is 

higher, which should result in a higher reaction rate.     

In our hydrolysis experiments, the polymer solution was equilibrated at each 

temperature for 25 min before the injection of the NPA solution. Thus, at temperatures 

above the CMT, micelles were already formed and the catalytic MAPMA units were 

buried inside the core of micelles. Therefore, the initial hydrolysis rate depends on how 

fast the reactants (NPA and water) can diffuse into the core of micelles. The study by 

Vaidya and Mathias has established that the first step in the hydrolysis mechanism is the 

rate-determining step (Scheme 3.3), which involves only NPA and DAAP, and the 

second step, the deacylation of acylpyridinium species in the presence of water, is the 
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faster step.8 In addition, there is a significant amount of water molecules associated with 

the thermosensitive block even at temperatures above the LCST. Thus, the initial 

hydrolysis rate or the rate of the formation of p-nitrophenoxide is dependent on the 

diffusion rate of NPA, not water molecules. NPA is an amphiphilic substrate with a 

partition coefficient of 7.4 between hexane and water (logP = 0.87 at 25 oC) according to 

the literature.24 Our thermosensitive block is a polymethacrylate with an oligo(ethylene 

glycol) pendant from each repeat unit. Considering that its hydrophobicity is much lower 

than hexane even at temperatures above the LCST, we believe that the partition 

coefficient of NPA between the core of micelles and bulk water phase should be 

appreciably lower than 7.4. Thus, NPA is not strongly favored in the core of the micelles 

compared with the bulk water phase, i.e., the driving force for NPA molecules to diffuse 

into the core of micelles is not strong. On the other hand, DAAPs are known to be 

superior nucleophilic organic catalysts for the hydrolysis of activated esters.6-9 

Combining these two factors, it is very likely that the hydrolysis rate of NPA with PEO-

b-P(DEGMMA-co-MAPMA) at temperatures above the CMT is controlled by the 

diffusion rate of NPA from bulk water phase to the core of micelles. In other words, the 

reaction rate is determined by the mass transport limitation of NPA from bulk water 

phase to the core of micelles, which is imposed by the micellization of the block 

copolymer, resulting in the suppression of reaction rates compared with those predicted 

from the Arrhenius equation. Thus, the curve of logV versus 1/T leveled off with the 

increase of temperature. 

 From Figure 3.7, one can also find that above the transition temperature the 

magnitude of the slope of the pH 7.56 curve is smaller than that of the pH 7.06 curve, i.e., 
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the increase of reaction rate with temperature in the pH 7.56 buffer is more suppressed 

than that in the pH 7.06 buffer. This is likely because more MAPMA units of the block 

copolymer are protonated in the pH 7.06 buffer and thus are not active in the catalysis, 

causing the reaction rate to be more comparable to the diffusion rate of NPA than in the 

pH 7.56 buffer. In addition, the micelles might not be as tight as those in the pH 7.56 

buffer because of more charged MAPMA units in the core; it could be slightly easier for 

NPA to diffuse into the core of micelles to access the buried catalytic sites. 

 

3.4. Conclusions  

A thermosensitive hydrophilic block copolymer with the thermosensitive block 

containing catalytic DAAP units, PEO-b-P(DEGMMA-co-MAPMA), was synthesized 

from macroinitiator PEO-Br by ATRP.52 The pKa of the block copolymer at room 

temperature was 7.91, which was 1.40 pH units lower than that of EGMAP. DLS studies 

showed that the CMTs of PEO-b-P(DEGMMA-co-MAPMA) in the pH 7.06 and 7.56 

buffers at a concentration of 0.020 wt % were 40 and 37 oC, respectively. Above 42 oC, 

well-defined micelles with the thermosensitive catalytic block forming the core were 

observed in both buffer solutions. The block copolymer was used as catalyst for the 

hydrolysis of NPA and the reactions were monitored by a UV-vis spectrometer. We 

found that the plot of logarithm of net initial hydrolysis rate vs. inverse temperature did 

not follow the Arrhenius equation in the entire studied temperature range (30-48 oC), but 

leveled off with the increase of temperature above the CMT of the block copolymer in 

the buffer. Considering that NPA molecules must diffuse into the core of micelles and the 

DAAPs are superior nucleophilic organic catalysts for the hydrolysis of activated esters, 
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the observed phenomenon is likely because the hydrolysis rate of NPA is controlled by 

the mass transport limitation of NPA from bulk water phase to the core of micelles. The 

block copolymer reported in this work represents a new type of stimuli-responsive 

polymer organocatalysts. 
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4.1 Summary 

Well-defined thermo- and pH-sensitive hydrophilic ABA triblock and AB diblock 

copolymers were prepared via the incorporation of a small amount of weak acid or base 

groups into the thermosensitive block(s) of block copolymers in a random/statistical 

distribution fashion.1-3 Compared with the methods reported in the literature for the 

synthesis of thermo- and pH-sensitive block copolymers (e.g., copolymers made of 

thermosensitive blocks and pH-responsive blocks),4-6 our approach allowed the lower 

critical solution temperature (LCST) of thermosensitive block(s) of block copolymers 

to be tuned and thus micellization to be precisely controlled by solution pH.     

The carboxylic acid-containing ABA triblock copolymers were made by 

copolymerization of methoxydi(ethylene glycol) methacrylate (DEGMMA) and tert-

butyl methacrylate (tBMA) or ethoxydi(ethylene glycol) acrylate (DEGEA) and tert-

butyl acrylate (tBA) from a difunctional poly(ethylene oxide) (PEO) macroinitiator with 

a molecular weight of 20000 g/mol via atom transfer radical polymerization and 

subsequent removal of tert-butyl groups using trifluoroacetic acid (TFA).1,2 The sol-gel 

transition temperatures (Tsol-gel) of moderately concentrated aqueous solutions of these 

ABA triblock copolymers can be precisely controlled and reversibly tuned over a wide 

temperature range by changing the solution pH. The tunability of sol-gel transition 

temperature stemmed from the pH dependence of the LCST of thermosensitive outer 

blocks of triblock copolymers. The critical micellization temperature (CMT), determined 

by dynamic light scattering, versus pH curve exhibited the same trend as the Tsol-gel versus 

pH curve, though there was a shift. We showed that a 12.0 wt % aqueous solution of 

P(DEGMMA-co-methacrylic acid)-b-PEO-b-P(DEGMMA-co-methacrylic acid) 
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underwent multiple sol-gel-sol transitions in response to environmental variations, 

demonstrating the possibility of achieving on-demand sol-gel-sol transitions using two 

external stimuli.  

To look into how sol-gel transition and gel property were affected by solution pH, 

we conducted an in-depth rheological study from which the following conclusions were 

drawn. (i) The gel was a 3-dimensional micellar network as dynamic strain amplitude 

sweep tests showed that the gel exhibited a linear response up to at least 15 % strain. (ii) 

The gel was a physically crosslinked thermoreversible gel with a finite relaxation time. 

(iii) The sol-gel transition became broader with the increase of pH, which originated from 

the broader and weaker LCST transitions of thermosensitive blocks at higher pH values. 

(iv) The gel strength decreased with the increase of pH with the sharpest drop observed at 

pH = ~ 4.7; accordingly, the percentage of elastically active polymer chains decreased 

from ~ 90% at pH 3.00 to ~ 25% at pH of 5.23. Above pH 5.4, the gel strength and the 

fraction of bridging polymer chains leveled off. The decrease of the fraction of bridging 

polymer chains with the increase of pH was accompanied by the increase in the numbers 

of loops and dangling chains. This study provides insights into how the gel properties are 

affected by solution pH, which can be useful for the design of multi-responsive injectable 

micellar hydrogels for biomedical applications. 

In the AB diblock copolymer work,3 we incorporated a small amount of N, N-

dialkylaminopyridine (DAAP), a weak base and also an organic catalyst, into the 

thermosensitive block of a PEO-based diblock copolymer and studied how the thermo-

induced micellization at two different pH values affected the catalytic activity of DAAP 

in the hydrolysis of p-nitrophenyl acetate (NPA), an activated ester. DLS studies showed 
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that the CMT of the diblock copolymer was lower when the pH value was higher. The 

block copolymer was used as catalyst for the hydrolysis of NPA at two different pH 

values and the reactions were monitored by a UV-vis spectrometer. We found that the 

plot of logarithm of net initial hydrolysis rate vs. inverse temperature did not follow the 

Arrhenius equation in the entire studied temperature range (30-48 °C), but leveled off 

with the increase of temperature above the CMT of the block copolymer in the buffer. 

This is the first time that the effect of micellization on the catalytic activity of a stimulus-

responsive block copolymer with an organic catalyst incorporated into the core-forming 

block was elucidated, which could be valuable for the design of stimuli-responsive block 

copolymer catalysts.         

A characteristic feature of thermo- and pH-sensitive hydrophilic block copolymers 

presented in this dissertation is that the LCST of the thermosensitive block(s) is 

determined by solution pH, allowing us to actively and precisely control the self-

assembly of block copolymers in water. The ionization and protonation of weak acid or 

weak base groups reversibly shifted the hydrophilic-hydrophobic balance of whole 

thermosensive blocks, changed the amount of structured water around the hydrophobic 

moieties of polymer chains, and consequently modified their LCSTs.7-9 Differential 

scanning calorimetry analysis of aqueous solutions of a doubly responsive ABA triblock 

copolymer showed that the LCST transition was an entropically driven process as an 

endothermic peak appeared in the DSC thermogram.2 From the results presented in this 

dissertation, we can conclude that it is a viable approach to design multiresponsive 

hydrophilic block copolymers by incorporating a small amount of stimuli-sensitive 

groups into the thermosensitive blocks of block copolymers. 
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4.2 Future Work 

Owing to the in situ sol-gel transitions, stimuli-responsive, especially 

thermosensitive, block copolymer aqueous micellar gels hold great promise in sustained 

drug delivery as they can be administered via syringe and needle, a minimally invasive 

method. Compared with injectable thermosensitive hydrogels that respond to only one 

external stimulus, thermo- and pH-responsive block copolymer micellar gels offer more 

advantages and greater design flexibility, e.g., tunable sol-gel transition temperature and 

gel strength, which are important for controlled release in living systems.  

It is known that the diseased tissues exhibited unusual acidic pH values.10 Thus, to 

use injectable hydrogels as drug delivery systems to battle certain diseases, we need to 

employ a weak base with a suitable pKa for the thermo- and pH-sensitive ABA triblock 

copolymers, which would allow the drugs loaded into the gels to be released at a greater 

rate at acidic pH values. Although 2-(N-methyl-N-(4-pyridyl)amino)ethyl methacrylate, 

the monomer presented in Chapter 3, can be used for copolymerization with another 

monomer, it is not commercially available and the synthesis is tedious.3 Herein, I propose 

to synthesize thermo- and pH-sensitive hydrophilic ABA triblock copolymers from a 

difunctional PEO macroinitiator with the thermosensitive outer blocks incorporated with 

a tertiary amine-containing monomer, either N,N-diethylaminoethyl methacrylate 

(DEAEMA) or N,N-diisopropylaminoethyl methacrylate (DPAEMA). The values of pKa 

of poly(DEAEMA) and poly(DPAEMA) in water have been reported to be 7.2 and 6.3.11 

To form aqueous micellar gels at the physiological temperature (37 °C), it is necessary to 

use a thermosensitive polymer with a relatively lower LCST. Since the cloud points of 

poly(DEGMMA) and poly(ethoxydi(ethylene glycol) methacrylate) (poly(DEGEMA)) in 
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water are 25 and 4 °C, respectively,12 the copolymerization of DEGMMA and DEGEMA 

might be a good choice. Therefore, the targeted thermo- and pH-responsive ABA triblock 

copolymers are poly(DEGMMA-co-DEGEMA-co-DEAEMA)-b-PEO-b-

poly(DEGMMA-co-DEGEMA-co-DEAEMA) and poly(DEGMMA-co-DEGEMA-co-

DPAEMA)-b-PEO-b-poly(DEGMMA-co-DEGEMA-co-DPAEMA) with various 

compositions for the thermosensitive blocks. It is expected that the sol-gel transition 

temperatures of moderately concentrated aqueous solutions of these two thermo- and pH-

sensitive ABA triblock copolymers increase with the decrease of solution pH. These 

micellar gels might be more suitable for biomedical applications. 
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A.1. Synthesis of Poly(methoxydi(ethylene glycol) methacrylate-co-t-butyl 

methacrylate) (P(DEGMMA-co-tBMA)). Copper (I) bromide (5.7 mg, 4.0 × 10-5 mol), 

DEGMMA (2.057 g, 10.9 mmol), tBMA (0.083 g, 5.85 × 10-4 mol), N,N,N',N',N''-

pentamethyldiethylenetriamine (PMDETA) (6.0 mg, 3.45 × 10-5 mol), and anisole (4.307 

g) were added into a two-necked flask and stirred under a dry nitrogen atmosphere. Ethyl 

2-bromoisobutyrate (EBiB, 7.5 mg, 3.85 × 10-5 mol) was injected into the flask via an 

argon-purged microsyringe. After the reaction mixture was degassed by three freeze-

pump-thaw cycles, the flask was placed into a 75 °C oil bath. 1H NMR spectroscopy was 

used to monitor the polymerization. After 110 min, the reaction was stopped by opening 

the flask to air and diluting the mixture with THF. The copper catalyst was removed by 

passing the solution through a short basic aluminum oxide/silica gel column. The 

polymer was purified by precipitation in hexanes (100 mL × 3). The polymer was then 

dried under vacuum. GPC analysis results (polystyrene standards): Mn,GPC = 24,500 Da, 

polydispersity index (PDI) = 1.15. The numbers of DEGMMA and tBMA units in the 

copolymer were 148 and 7, respectively, which were calculated from the 1H NMR 

spectrum using the integral values of the peak at 4.1 ppm (COOCH2CH2 of the 

DEGMMA units), and the peak at 1.4 ppm (COOC(CH3)3 of the tBMA units, excluding 

the integral value of the remaining broad peak in the 1H NMR spectrum of P(DEGMMA-

co-MAA) after the cleavage of t-butyl groups).   
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   (a)          (b) 

Figure A.1. (a) Gel permeation chromatography trace of P(DEGMMA-co-tBMA) and (b) 

1H NMR spectrum of P(DEGMMA-co-tBMA) in CDCl3. 
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A.2. Synthesis of P(DEGMMA-co-MAA). Dry P(DEGMMA-co-tBMA) (0.698 g) was 

added into a 25 mL round bottom flask and dissolved with dry dichloromethane (3.5 mL). 

The mixture was stirred for 45 min to ensure complete dissolution. Triflouroacetic acid 

(TFA, 1.721 g, 15.1 mmol) was added into the flask. After being stirred at room 

temperature for 52 h, the reaction mixture was diluted with dichloromethane (100 mL). 

Most of TFA was removed under a reduced pressure. The polymer was repeatedly 

precipitated in a mixture of hexanes : diethyl either (10 : 1) to completely remove TFA. 

The polymer was then dried under vacuum at 70 °C for 5 h.   
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Figure A.2. 1H NMR spectrum of P(DEGMMA-co-MAA) in CDCl3. 
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A.3. Determination of pKa value of Carboxylic Acid in P(DEGMMA-co-MAA). 

P(DGEMMA-co-MAA) (0.221 g) was thoroughly dried in a round bottom flask under 

high vacuum. Mili-Q water (2.220 g) was added into the round bottom flask and the 

mixture was sonicated in an ice/water ultrasonic bath to dissolve the polymer in water, 

yielding an aqueous solution of P(DEGMMA-co-MAA) with a concentration of 9.1 wt%. 

The solution was then transferred into a small vial. The pH of the solution was measured 

with a pH meter (Accumet AB15 pH meter from Fisher Scientific, calibrated with pH = 

4.01, 7.00, and 10.01 standard buffer solutions) equipped with a temperature probe. 5.0 

μL of a 1.0 M KOH solution was injected into the vial via a microsyringe. The vial was 

sonicated in an ice/water ultrasonic bath for 2 min to ensure that the solution was 

homogeneous and the pH was recorded. This process was repeated until a total of 70.0 

μL of a 1.0 M KOH solution was added. A plot of pH versus the number of μmol of 

KOH was constructed and the pKa was determined to be 5.59.  
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Figure A.3. The plot of solution pH versus number of μmols of KOH injected into a 9.1 

wt% aqueous solution of P(DEGMMA-co-MAA) (2.441 g). The KOH aqueous solution 

was added stepwise; each time, 5.0 μL of a 1.0 M aqueous KOH solution was injected via 

a microsyringe, followed by the measurement of pH with a pH meter. 
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A.4. Synthesis of PDEGMMA. A procedure similar to that for the synthesis of 

P(DEGMMA-co-tBMA) was used to prepare PDEGMMA. GPC analysis showed that 

Mn,GPC was 12,700 Da and polydispersity index (PDI) was 1.14. The GPC trace and 1H 

NMR spectrum are shown in Figure A.4. A small broad peak at ~ 1.4 ppm can be seen 

from 1H NMR spectrum. 
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Figure A.4. (a) Gel permeation chromatography trace and (b) 1H NMR spectrum of 

PDEGMMA. 
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A.5. Concentration Effect on the Sol-Gel Transition of Aqueous Solution of 

P(DEGMMA-co-MAA)-b-PEO-b-P(DEGMMA-co-MAA) at pH = 4.0. 
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Figure A.5. Temperature ramps for aqueous solutions of P(DEGMMA-co-MAA)-b-

PEO-b-P(DEGMMA-co-MAA) with various concentrations at pH = 4.0 performed at a 

constant frequency of 1 Hz, a strain amplitude of 0.2 %, and a heating rate of 2 °C/min. 
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for 

Chapter 2. Rheological Properties of Thermo- and pH-Responsive ABA 

Triblock Copolymer Aqueous Micellar Gels 
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Figure B.1. Plot of dynamic storage modulus G' ( ), dynamic loss modulus G'' ( ), and 

tanδ ( ) versus temperature for a 10.0 wt% aqueous solution of P(DEGEA-co-AA)-b-

PEO-b-P(DEGEA-co-AA) with a pH value of 3.96. The data were collected from a 

temperature ramp experiment using a heating rate of 3 °C/min, a strain amplitude of 0.2 

%, and an oscillation frequency of 1 Hz. 
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Figure B.2. Frequency dependences of dynamic storage modulus G' ( ) and loss 

modulus G'' ( ) of the 10.0 wt% aqueous solution of P(DEGEA-co-AA)-b-PEO-b-

P(DEGEA-co-AA) with a pH of 3.96 at (A) 22.0 °C, (B) 27.0 °C, (C) 33.2 °C (T/Tsol-gel = 

1.025), (D) 35.3 °C (T/Tsol-gel = 1.032), and (E) 37.4 °C (T/Tsol-gel = 1.039). A strain 

amplitude of 0.2 % was used in the frequency sweep experiments. 
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Figure B.3. Plot of dynamic storage modulus G' ( ), dynamic loss modulus G'' ( ), and 

tanδ ( ) versus temperature for a 10.0 wt% aqueous solution of P(DEGEA-co-AA)-b-

PEO-b-P(DEGEA-co-AA) with a pH value of 4.11. The data were collected from a 

temperature ramp experiment using a heating rate of 3 °C/min, a strain amplitude of 0.2 

%, and an oscillation frequency of 1 Hz. 
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Figure B.4. Frequency dependences of dynamic storage modulus G' ( ) and loss 

modulus G'' ( ) of a 10.0 wt% aqueous solution of P(DEGEA-co-AA)-b-PEO-b-

P(DEGEA-co-AA) with pH of 4.11 at (A) 33.9 °C (T/Tsol-gel = 1.025), (B) 36.0 °C (T/Tsol-

gel = 1.032), and (C) 38.1 °C (T/Tsol-gel = 1.039). A strain amplitude of 0.2 % was used in 

the frequency sweep experiments. 
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Figure B.5. Plot of dynamic storage modulus G' ( ), dynamic loss modulus G'' ( ), and 

tanδ ( ) versus temperature for a 10.0 wt% aqueous solution of P(DEGEA-co-AA)-b-

PEO-b-P(DEGEA-co-AA) with a pH value of 4.40. The data were collected from a 

temperature ramp experiment performed using a heating rate of 3 °C/min, a strain 

amplitude of 0.2 %, and an oscillation frequency of 1 Hz. 
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Figure B.6. Frequency dependences of dynamic storage modulus G' ( ) and loss 

modulus G'' ( ) of a 10.0 wt% aqueous solution of P(DEGEA-co-AA)-b-PEO-b-

P(DEGEA-co-AA) with pH of 4.40 at (A) 36.3 °C (T/Tsol-gel = 1.025), (B) 38.6 °C (T/Tsol-

gel = 1.032), and (C) 40.5 °C (T/Tsol-gel = 1.039). A strain amplitude of 0.2 % was used in 

the frequency sweep experiments. 
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Figure B.7. Plot of dynamic storage modulus G' ( ), dynamic loss modulus G'' ( ), and 

tanδ ( ) versus temperature for a 10.0 wt% aqueous solution of P(DEGEA-co-AA)-b-

PEO-b-P(DEGEA-co-AA) with a pH value of 4.70. The data were collected from a 

temperature ramp experiment performed using a heating rate of 3 °C/min, a strain 

amplitude of 0.2 %, and an oscillation frequency of 1 Hz. 
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Figure B.8. Frequency dependences of dynamic storage modulus G' ( ) and loss 

modulus G'' ( ) of the 10.0 wt% aqueous solution of P(DEGEA-co-AA)-b-PEO-b-

P(DEGEA-co-AA) with pH of 4.70 at (a) 37.9 °C (T/Tsol-gel = 1.025), (b) 40.0 °C (T/Tsol-

gel = 1.032), and (c) 42.1 °C (T/Tsol-gel = 1.039). A strain amplitude of 0.2 % was used in 

the frequency sweep experiments. 
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Figure B.9. Plot of dynamic storage modulus G' ( ), dynamic loss modulus G'' ( ), and 

tanδ ( ) versus temperature for a 10.0 wt% aqueous solution of P(DEGEA-co-AA)-b-

PEO-b-P(DEGEA-co-AA) with a pH value of 4.95. The data were collected from a 

temperature ramp experiment performed using a heating rate of 3 °C/min, a strain 

amplitude of 0.2 %, and an oscillation frequency of 1 Hz. 
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Figure B.10. Frequency dependences of dynamic storage modulus G' ( ) and loss 

modulus G'' ( ) of a 10.0 wt% aqueous solution of P(DEGEA-co-AA)-b-PEO-b-

P(DEGEA-co-AA) with pH of 4.95 at (A) 39.1 °C (T/Tsol-gel = 1.025), (B) 41.3 °C (T/Tsol-

gel = 1.032), and (C) 43.4 °C (T/Tsol-gel = 1.039). A strain amplitude of 0.2 % was used in 

the frequency sweep experiments. 
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Figure B.11. Plot of dynamic storage modulus G' ( ), dynamic loss modulus G'' ( ), and 

tanδ ( ) versus temperature for a 10.0 wt% aqueous solution of P(DEGEA-co-AA)-b-

PEO-b-P(DEGEA-co-AA) with pH of 5.23. The data were collected from a temperature 

ramp experiment performed using a heating rate of 3 °C/min, a strain amplitude of 0.2 %, 

and an oscillation frequency of 1 Hz. 
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Figure B.12. Frequency dependences of dynamic storage modulus G' ( ) and loss 

modulus G'' ( ) of a 10.0 wt% aqueous solution of P(DEGEA-co-AA)-b-PEO-b-

P(DEGEA-co-AA) with  pH of 5.23 at (A) 41.8 °C (T/Tsol-gel = 1.025), (B) 43.9 °C (T/Tsol-

gel = 1.032), and (C) 46.1 °C (T/Tsol-gel = 1.039). A strain amplitude of 0.2 % was used in 

the frequency sweep experiments. 
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Figure B.13. Plot of dynamic storage modulus G' ( ), dynamic loss modulus G'' ( ), and 

tanδ ( ) versus temperature for a 10.0 wt% aqueous solution of P(DEGEA-co-AA)-b-

PEO-b-P(DEGEA-co-AA) with a pH value of 5.40. The data were collected from a 

temperature ramp experiment performed using a heating rate of 3 °C/min, a strain 

amplitude of 0.2 %, and an oscillation frequency of 1 Hz. 
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Figure B.14. Frequency dependences of dynamic storage modulus G' ( ) and loss 

modulus G'' ( ) of a 10.0 wt% aqueous solution of P(DEGEA-co-AA)-b-PEO-b-

P(DEGEA-co-AA) with pH of 5.40 at (A) 45.9 °C (T/Tsol-gel = 1.025), (B) 48.1 °C (T/Tsol-

gel = 1.032), and (C) 50.2 (T/Tsol-gel = 1.039). A strain amplitude of 0.2 % was used in the 

frequency sweep experiments. 
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Figure B.15. Plot of dynamic storage modulus G' ( ), dynamic loss modulus G'' ( ), and 

tanδ ( ) versus temperature for a 10.0 wt% aqueous solution of P(DEGEA-co-AA)-b-

PEO-b-P(DEGEA-co-AA) with a pH value of 5.70. The data were collected from a 

temperature ramp experiment performed using a heating rate of 3 °C/min, a strain 

amplitude of 0.2 %, and an oscillation frequency of 1 Hz. 
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Figure B.16. Frequency dependences of dynamic storage modulus G' ( ) and loss 

modulus G'' ( ) of a 10.0 wt% aqueous solution of P(DEGEA-co-AA)-b-PEO-b-

P(DEGEA-co-AA) with pH of 5.70 at (A) 49.3 °C (T/Tsol-gel = 1.025), (B) 51.5 °C (T/Tsol-

gel = 1.032), and (C) 53.7 °C (T/Tsol-gel = 1.039). A strain amplitude of 0.2 % was used in 

the frequency sweep experiments. 
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Figure B.17. Plot of dynamic storage modulus G' ( ), dynamic loss modulus G'' ( ), and 

tanδ ( ) versus temperature for a 10.0 wt% aqueous solution of P(DEGEA-co-AA)-b-

PEO-b-P(DEGEA-co-AA) with a pH value of 6.02. The data were collected from a 

temperature ramp experiment performed using a heating rate of 3 °C/min, a strain 

amplitude of 0.2 %, and an oscillation frequency of 1 Hz. 
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Figure B.18. Frequency dependences of dynamic storage modulus G' ( ) and loss 

modulus G'' ( ) of a 10.0 wt% aqueous solution of P(DEGEA-co-AA)-b-PEO-b-

P(DEGEA-co-AA) with pH of 6.02 at (A) 54.5 °C (T/Tsol-gel = 1.025), (B) 56.7 °C (T/Tsol-

gel = 1.032), and (C) 59.0 °C (T/Tsol-gel = 1.039). A strain amplitude of 0.2 % was used in 

the frequency sweep experiments. 
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Figure B.19. Plot of dynamic storage modulus G' ( ), dynamic loss modulus G'' ( ), and 

tanδ ( ) versus temperature for a 10.0 wt% aqueous solution of P(DEGEA-co-AA)-b-

PEO-b-P(DEGEA-co-AA) with a pH value of 6.13. The data were collected from a 

temperature ramp experiment performed using a heating rate of 3 °C/min, a strain 

amplitude of 0.2 %, and an oscillation frequency of 1 Hz. 
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Figure B.20. Frequency dependences of dynamic storage modulus G' ( ) and loss 

modulus G'' ( ) of a 10.0 wt% aqueous solution of P(DEGEA-co-AA)-b-PEO-b-

P(DEGEA-co-AA) with pH of 6.13 at (A) 55.6 °C (T/Tsol-gel = 1.025), (B) 57.9 °C (T/Tsol-

gel = 1.032), and (C) 60.1 °C (T/Tsol-gel = 1.039). A strain amplitude of 0.2 % was used in 

the frequency sweep experiments. 
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Figure B.21. Plot of dynamic storage modulus G' ( ), dynamic loss modulus G'' ( ), and 

tanδ ( ) versus temperature for a 10.0 wt% aqueous solution of P(DEGEA-co-AA)-b-

PEO-b-P(DEGEA-co-AA) with a pH value of 6.43. The data were collected from a 

temperature ramp experiment performed using a heating rate of 3 °C/min, a strain 

amplitude of 0.2 %, and an oscillation frequency of 1 Hz. 
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Figure B.22. Frequency dependences of dynamic storage modulus G' ( ) and loss 

modulus G'' ( ) of a 10.0 wt% aqueous solution of P(DEGEA-co-AA)-b-PEO-b-

P(DEGEA-co-AA) with pH of 6.43 at (A) 58.6 °C (T/Tsol-gel = 1.025), (B) 60.9 °C (T/Tsol-

gel = 1.032), and (C) 63.1 °C (T/Tsol-gel = 1.039). A strain amplitude of 0.2 % was used in 

the frequency sweep experiments. 
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Figure B.23. Plot of dynamic storage modulus G' ( ), dynamic loss modulus G'' ( ), and 

tanδ ( ) versus temperature for a 10.0 wt% aqueous solution of P(DEGEA-co-AA)-b-

PEO-b-P(DEGEA-co-AA) with a pH value of 6.07, which was obtained by injecting 1.0 

M HCl into the 10.0 wt% solution with pH of 6.43. The data were collected from a 

temperature ramp experiment performed using a heating rate of 3 °C/min, a strain 

amplitude of 0.2 %, and an oscillation frequency of 1 Hz. 
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Figure B.24. Frequency dependences of dynamic storage modulus G' ( ) and loss 

modulus G'' ( ) of a 10.0 wt% aqueous solution of P(DEGEA-co-AA)-b-PEO-b-

P(DEGEA-co-AA) with pH of 6.07, which was obtained by injecting 1.0 M HCl into the 

10.0 wt% solution with pH of 6.43, at (A) 54.5 °C (T/Tsol-gel = 1.025), (B) 56.7 °C (T/Tsol-

gel = 1.032), and (C) 59.0 °C (T/Tsol-gel = 1.039). A strain amplitude of 0.2 % was used in 

the frequency sweep experiments. 
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Figure B.25. Plot of dynamic storage modulus G' ( ), dynamic loss modulus G'' ( ), and 

tanδ ( ) versus temperature for a 10.0 wt% aqueous solution of P(DEGEA-co-AA)-b-

PEO-b-P(DEGEA-co-AA) with a pH value of 5.76 obtained in the process of decreasing 

pH. The data were collected from a temperature ramp experiment performed using a 

heating rate of 3 °C/min, a strain amplitude of 0.2 %, and an oscillation frequency of 1 

Hz. 
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Figure B.26. Frequency dependences of dynamic storage modulus G' ( ) and loss 

modulus G'' ( ) of a 10.0 wt% aqueous solution of P(DEGEA-co-AA)-b-PEO-b-

P(DEGEA-co-AA) with pH of 5.76, which was obtained in the process of decreasing pH, 

at (A) 51.5 °C (T/Tsol-gel = 1.025), (B) 53.7 °C (T/Tsol-gel = 1.032), and (C) 56.0 °C (T/Tsol-

gel = 1.039). A strain amplitude of 0.2 % was used in the frequency sweep experiments. 
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Figure B.27. Plot of dynamic storage modulus G' ( ), dynamic loss modulus G'' ( ), and 

tanδ ( ) versus temperature for a 10.0 wt% aqueous solution of P(DEGEA-co-AA)-b-

PEO-b-P(DEGEA-co-AA) with a pH value of 5.37, which was obtained in the process of 

decreasing pH. The data were collected from a temperature ramp experiment performed 

using a heating rate of 3 °C/min, a strain amplitude of 0.2 %, and an oscillation frequency 

of 1 Hz. 
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Figure B.28. Frequency dependences of dynamic storage modulus G' ( ) and loss 

modulus G'' ( ) of a 10.0 wt% aqueous solution of P(DEGEA-co-AA)-b-PEO-b-

P(DEGEA-co-AA) with pH of 5.37 obtained in the process of decreasing pH at (A) 45.4 

°C (T/Tsol-gel = 1.025), (B) 47.5 °C (T/Tsol-gel = 1.032), and (C) 49.7 °C (T/Tsol-gel = 1.039). 

A strain amplitude of 0.2 % was used in the frequency sweep experiments. 
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Figure B.29. Plot of dynamic storage modulus G' ( ), dynamic loss modulus G'' ( ), and 

tanδ ( ) versus temperature for a 10.0 wt% aqueous solution of P(DEGEA-co-AA)-b-

PEO-b-P(DEGEA-co-AA) with a pH value of 4.66 obtained in the process of decreasing 

pH. The data were collected from a temperature ramp experiment performed using a 

heating rate of 3 °C/min, a strain amplitude of 0.2 %, and an oscillation frequency of 1 

Hz. 
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Figure B.30. Frequency dependences of dynamic storage modulus G' ( ) and loss 

modulus G'' ( ) of a 10.0 wt% aqueous solution of P(DEGEA-co-AA)-b-PEO-b-

P(DEGEA-co-AA) with pH of 4.66 obtained in the process of decreasing pH at (A) 37.2 

°C (T/Tsol-gel = 1.025), (B) 39.3 °C (T/Tsol-gel = 1.032), and (C) 41.4 °C (T/Tsol-gel = 1.039). 

A strain amplitude of 0.2 % was used in the frequency sweep experiments. 
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Figure B.31. Plot of dynamic storage modulus G' ( ), dynamic loss modulus G'' ( ), and 

tanδ ( ) versus temperature for a 10.0 wt% aqueous solution of P(DEGEA-co-AA)-b-

PEO-b-P(DEGEA-co-AA) with a pH value of 4.12, which was obtained in the process of 

decreasing pH. The data were collected from a temperature ramp experiment performed 

using a heating rate of 3 °C/min, a strain amplitude of 0.2 %, and an oscillation frequency 

of 1 Hz. 

 
 
 
 
 
 
 
 
 
 
 



 179

 
 
 

10-1 100 101 102
10-2

10-1

100

101

102

103

104
 

G
' a

nd
 G

" 
(P

a)

Frequency (Hz)

pH = 4.12
(A) T = 32.6 oC
T/Tsol-gel = 1.025

 

10-2 10-1 100 101 102
10-2

10-1

100

101

102

103

104

G
' a

nd
 G

" 
(P

a)

Frequency (Hz)

pH = 4.12
(B) T = 34.6 oC
T/Tsol-gel = 1.032

 
 

10-1 100 101 102
10-2

10-1

100

101

102

103

104

G
' a

nd
 G

" 
(P

a)

Frequency (Hz)

pH = 4.12
(C) T = 36.6 oC
T/Tsol-gel = 1.039

 
 
Figure B.32. Frequency dependences of dynamic storage modulus G' ( ) and loss 

modulus G'' ( ) of the 10.0 wt% aqueous solution of P(DEGEA-co-AA)-b-PEO-b-

P(DEGEA-co-AA) with pH of 4.12, obtained by the injection of 1.0 M HCl solution in 

the process of decreasing pH, at (A) 32.6 °C (T/Tsol-gel = 1.025), (B) 34.6 °C (T/Tsol-gel = 

1.032),  and (C) 36.6 °C (T/Tsol-gel = 1.039). A strain amplitude of 0.2 % was used in the 

frequency sweep experiments. 
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Figure B.33. Plot of dynamic storage modulus G' ( ), dynamic loss modulus G'' ( ), and 

tanδ ( ) versus temperature for a 10.0 wt% aqueous solution of P(DEGEA-co-AA)-b-

PEO-b-P(DEGEA-co-AA) with a pH value of 3.10, which was obtained by the injection 

of 1.0 M HCl solution in the process of decreasing pH. The data were collected from a 

temperature ramp experiment performed using a heating rate of 3 °C/min, a strain 

amplitude of 0.2 %, and an oscillation frequency of 1 Hz. 
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Figure B.34. Frequency dependences of dynamic storage modulus G' ( ) and loss 

modulus G'' ( ) of the 10.0 wt% aqueous solution of P(DEGEA-co-AA)-b-PEO-b-

P(DEGEA-co-AA) with pH of 3.10, which was obtained by the injection of 1.0 M HCl 

solution in the process of decreasing pH, at (A) 30.4 °C (T/Tsol-gel = 1.025), (B) 32.5 °C 

(T/Tsol-gel = 1.032), and (C) 34.6 °C (T/Tsol-gel = 1.039). A strain amplitude of 0.2 % was 

used in the frequency sweep experiments. 
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Figure B.35. Scattering intensity at scattering angle of 90° (A) and apparent 

hydrodynamic size Dh (B), obtained from CONTIN analysis, as a function of temperature 

in a dynamic light scattering study of 0.02 wt% solution of P(DEGEA-co-AA)-b-PEO-b-

P(DEGEA-co-AA) in 10 mM KHP aqueous buffer at pH = 4.11. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 183

 
 
 
 
 
 
 
 
 
 

10 12 14 16 18 20 22 24 26 28 30 32

0

20

40

60

80

100

120

Sc
at

te
rin

g 
In

te
ns

ity
 (a

.u
.)

Temperature (oC)

CMT: 18 oC

10 12 14 16 18 20 22 24 26 28 30 320

20

40

60

80

100

D
h 

(n
m

)

Temperature (oC)  
Figure B.36. Scattering intensity at scattering angle of 90° (A) and apparent 

hydrodynamic size Dh (B), obtained from CONTIN analysis, as a function of temperature 

in a dynamic light scattering study of 0.02 wt% solution of P(DEGEA-co-AA)-b-PEO-b-

P(DEGEA-co-AA) in 10 mM KHP aqueous buffer at pH = 5.07. 
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Figure B.37. Scattering intensity at scattering angle of 90° (A) and apparent 

hydrodynamic size Dh (B), obtained from CONTIN analysis, as a function of temperature 

in a dynamic light scattering study of 0.02 wt% solution of P(DEGEA-co-AA)-b-PEO-b-

P(DEGEA-co-AA) in 10 mM KHP aqueous buffer at pH = 6.00. 
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Figure B.38. Plot of dynamic storage modulus G' ( ), dynamic loss modulus G'' ( ), and 

tanδ ( ) versus temperature for a 10.0 wt% aqueous solution of P(DEGEA-co-AA)-b-

PEO-b-P(DEGEA-co-AA) with a pH value of 4.64 without addition of KCl. The data 

were collected from a temperature ramp experiment performed using a heating rate of 3 

°C/min, a strain amplitude of 0.2 %, and an oscillation frequency of 1 Hz. 

 
 
 
 
 
 
 
 
 
 
 
 
 



 186

 
 
 
 
 

10-1 100 101 102
10-2

10-1

100

101

102

103

 

pH = 4.64
(A) T = 38.1 oC
T/Tsol-gel = 1.025
Without Addition of KCl

G
' a

nd
 G

" 
(P

a)

Frequency (Hz)       

10-1 100 101 102
10-2

10-1

100

101

102

103

pH = 4.64
(B) T = 40.2 oC
T/Tsol-gel = 1.032
Without Addtion of KCl

G
', 

G
"

Frequency (Hz)  

10-1 100 101 102
10-2

10-1

100

101

102

103

pH = 4.64
(C) T = 42.3 oC
T/Tsol-gel = 1.039
Without Addition of KCl

G
' a

nd
 G

" 
(P

a)

Frequency (Hz)  
Figure B.39. Frequency dependences of dynamic storage modulus G' ( ) and loss 

modulus G'' ( ) of a 10.0 wt% aqueous solution of P(DEGEA-co-AA)-b-PEO-b-

P(DEGEA-co-AA) with pH of 4.64 without addition of KCl at (A) 38.1 °C (T/Tsol-gel = 

1.025), (B) 40.2 °C (T/Tsol-gel = 1.032), and (C) 42.3 °C (T/Tsol-gel = 1.039). A strain 

amplitude of 0.2 % was used in the frequency sweep experiments. 
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Figure B.40. Plot of dynamic storage modulus G' ( ), dynamic loss modulus G'' ( ), and 

tanδ ( ) versus temperature for a 10.0 wt% aqueous solution of P(DEGEA-co-AA)-b-

PEO-b-P(DEGEA-co-AA) with a pH value of 4.64 after the addition of 20.4 mol% KCl 

with respect to the calculated amount of COOH/COOK. The data were collected from a 

temperature ramp experiment performed using a heating rate of 3 °C/min, a strain 

amplitude of 0.2 %, and an oscillation frequency of 1 Hz. 
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Figure S41. Frequency dependences of dynamic storage modulus G' ( ) and loss 

modulus G'' ( ) of a 10.0 wt% aqueous solution of P(DEGEA-co-AA)-b-PEO-b-

P(DEGEA-co-AA) with pH of 4.64 after the addition of 20.4 mol% KCl with respect to 

the calculated amount of COOH/COOK at (A) 38.1 °C (T/Tsol-gel = 1.025), (B) 40.2 °C 

(T/Tsol-gel = 1.032), and (C) 42.3 °C (T/Tsol-gel = 1.039). A strain amplitude of 0.2 % was 

used in the frequency sweep experiments. 
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Figure B.42. Plot of dynamic storage modulus G' ( ), dynamic loss modulus G'' ( ), and 

tanδ ( ) versus temperature for a 10.0 wt% aqueous solution of P(DEGEA-co-AA)-b-

PEO-b-P(DEGEA-co-AA) with a pH value of 4.64 after the addition of 59.6 mol% KCl 

with respect to the calculated amount of COOH/COOK. The data were collected from a 

temperature ramp experiment performed using a heating rate of 3 °C/min, a strain 

amplitude of 0.2 %, and an oscillation frequency of 1 Hz. 
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Figure B.43. Frequency dependences of dynamic storage modulus G' ( ) and loss 

modulus G'' ( ) of a 10.0 wt% aqueous solution of P(DEGEA-co-AA)-b-PEO-b-

P(DEGEA-co-AA) with pH of 4.64 after the addition of 59.6 mol% KCl with respect to 

the calculated amount of COOH/COOK at (A) 38.1 °C (T/Tsol-gel = 1.025), (B) 40.2 °C 

(T/Tsol-gel = 1.032), and (C) 42.3 °C (T/Tsol-gel = 1.039). A strain amplitude of 0.2 % was 

used in the frequency sweep experiments. 
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Figure B.44. Plot of dynamic storage modulus G' ( ), dynamic loss modulus G'' ( ), and 

tanδ ( ) versus temperature for a 10.0 wt% aqueous solution of P(DEGEA-co-AA)-b-

PEO-b-P(DEGEA-co-AA) with a pH value of 4.64 after the addition of 100.9 mol% KCl 

with respect to the calculated amount of COOH/COOK. The data were collected from a 

temperature ramp experiment performed using a heating rate of 3 °C/min, a strain 

amplitude of 0.2 %, and an oscillation frequency of 1 Hz. 
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Figure B.45. Frequency dependences of dynamic storage modulus G' ( ) and loss 

modulus G'' ( ) of a 10.0 wt% aqueous solution of P(DEGEA-co-AA)-b-PEO-b-

P(DEGEA-co-AA) with pH of 4.64 after the addition of 100.9 mol% KCl with respect to 

the calculated amount of COOH/COOK at (A) 37.5 °C (T/Tsol-gel = 1.025), (B) 39.6 °C 

(T/Tsol-gel = 1.032), and (C) 41.7 °C (T/Tsol-gel = 1.039). A strain amplitude of 0.2 % was 

used in the frequency sweep experiments. 
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Figure B.46. Plot of dynamic storage modulus G' ( ), dynamic loss modulus G'' ( ), and 

tanδ ( ) versus temperature for a 10.0 wt% aqueous solution of P(DEGEA-co-AA)-b-

PEO-b-P(DEGEA-co-AA) with a pH value of 4.64 after the addition of 151.4 mol% KCl 

with respect to the calculated amount of COOH/COOK. The data were collected from a 

temperature ramp experiment performed using a heating rate of 3 °C/min, a strain 

amplitude of 0.2 %, and an oscillation frequency of 1 Hz. 
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Figure B.47. Frequency dependences of dynamic storage modulus G' ( ) and loss 

modulus G'' ( ) of a 10.0 wt% aqueous solution of P(DEGEA-co-AA)-b-PEO-b-

P(DEGEA-co-AA) with pH of 4.64 after the addition of 151.4 mol% KCl with respect to 

the calculated amount of COOH/COOK at (A) 37.5 °C (T/Tsol-gel = 1.025), (B) 39.6 °C 

(T/Tsol-gel = 1.032), and (C) 41.7 °C (T/Tsol-gel = 1.039). A strain amplitude of 0.2 % was 

used in the frequency sweep experiments. 
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Figure B.48. Plot of dynamic storage modulus G' ( ), dynamic loss modulus G'' ( ), and 

tanδ ( ) versus temperature for a 10.0 wt% aqueous solution of P(DEGEA-co-AA)-b-

PEO-b-P(DEGEA-co-AA) with a pH value of 4.64 after the addition of 200.8 mol% KCl 

with respect to the calculated amount of COOH/COOK. The data were collected from a 

temperature ramp experiment performed using a heating rate of 3 °C/min, a strain 

amplitude of 0.2 %, and an oscillation frequency of 1 Hz. 
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Figure B.49. Frequency dependences of dynamic storage modulus G' ( ) and loss 

modulus G'' ( ) of a 10.0 wt% aqueous solution of P(DEGEA-co-AA)-b-PEO-b-

P(DEGEA-co-AA) with pH of 4.64 after the addition of 200.8 mol% KCl with respect to 

the calculated amount of COOH/COOK at (A) 37.2 °C (T/Tsol-gel = 1.025), (B) 39.3 °C 

(T/Tsol-gel = 1.032), and (C) 41.4 °C (T/Tsol-gel = 1.039). A strain amplitude of 0.2 % was 

used in the frequency sweep experiments. 
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