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Abstract 
This dissertation describes the development and results of a physiological rigid body forward 

solution mathematical model that can be used to predict normal knee and total knee 

arthroplasty (TKA) kinematics and kinetics.  The simulated activities include active extension 

and weight-bearing deep knee bend.  The model includes both the patellofemoral and 

tibiofemoral joints.  Geometry of the normal or implanted knee is represented by multivariate 

polynomials and modeled by constraining the velocity of lateral and medial tibiofemoral and 

patellofemoral contact points in a direction normal to the geometry surface.  

Center of mass, ligament and muscle attachment points and normal knee geometry were found 

using computer aided design (CAD) models built from computer tomography (CT) scans of a 

single subject.  Quadriceps forces were the input for this model and were adjusted using a 

unique controller to control the rate of flexion, embedded with a controller which stabilizes the 

patellofemoral joint.  The model was developed first using normal knee parameters.  Once the 

normal knee model was validated, different total knee arthroplasty (TKA) designs were virtually 

implanted. 

The model was validated using in vivo data obtained through fluoroscopic analysis.  In vivo data 

of the extension and deep knee bend activities from five non-implanted knees were used to 

validate the normal model kinematics.  In vivo kinematic and kinetic data from a telemetric TKA 

with a tibia component instrumented with strain gauges was used to validate the kinematic and 
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kinetic results of the model implanted with the TKA geometry.  The tibiofemoral contact 

movement matched the trend seen in the in vivo data from the one patient available with this 

implant.  The maximum axial tibiofemoral force calculated with the model was in 3.1% error 

with the maximum force seen in the in vivo data, and the trend of the contact forces matched 

well.  Several other TKA designs were virtually implanted and analyzed to determine kinematics 

and bearing surface kinetics.  The comparison between the model results and those previously 

assessed under in vivo conditions validates the effectiveness of the model and proves that it 

can be used to predict the in vivo kinematic and kinetic behavior of a TKA.   
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Chapter 1: Background 
The knee is a large diarthroidal or synovial joint serving as the attachment between two of the 

longest bones in the human body, the femur and the tibia.  The joint is free to move, lubricated 

by synovial fluid, constrained by the joint geometry and soft tissue structures such as the 

meniscus and collateral and cruciate ligaments and contained in a joint capsule.  The joint 

consists of three articulating surfaces.  Between the tibia and femur, or the femorotibial joint, 

are articulating surfaces between the medial and lateral condyles.  There is also a surface 

between the patella and femur called the patellofemoral joint. 

The knee carries much of the load of the human body.   During static standing, the two knees 

share the load from more than 80% of total body weight (BW).  During daily activities like 

walking, running and playing sports the dynamic loads on the joints increase dramatically from 

the static loads experienced while standing.  These increased loads can make the knee 

susceptible to osteoarthritis which breaks down the lubrication mechanism resulting in pain 

and stiffness at the knee joint.  The breakdown of the cartilage between the femur and tibia 

and femur and patella can be extremely painful and debilitating resulting in the inability to 
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perform daily tasks and loss of productivity.  Osteoarthritis is ranked second only to heart 

disease as the leading cause of work disability. 

Artificial joints are a last resort for the treatment of osteoarthritis.  When the pain is too 

debilitating and all other treatments have been exhausted the articulating surfaces of the knee 

are replaced.  The first artificial knee joints were designed 60 years ago.  These were highly 

constrained hinge-like devices.  Since then, increased knowledge of the mechanics of the knee 

has resulted in modern designs that allow for translational and rotational motion, intended to 

allow more natural movement. 

In the modern knee replacement or total knee arthroplasty (TKA), the articulating surfaces of 

the knee are replaced by four components (Figure 1).  A component manufactured with a 

biocompatible metal consisting of titanium or cobalt chromium alloy is used to resurface the 

distal end of the femur.  The geometry of this component varies between manufacturer’s 

designs and has evolved with increasing knowledge of the in vivo mechanics of TKA.  Earlier 

components had a close to circular sagittal profile but lately the trend has been to more closely 

mimic the natural knee by reducing the radius of sagittal curvature of the articulating surface 

towards the posterior femur.  Manufacturers also use different profiles for the medial and 

lateral condyles.  All new designs have a rounded profile in the coronal plane on each condyle 

although the radius of curvature varies between designs. 
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Figure 1: Diagram of a knee replacement or total knee arthroplasty (TKA). 

 

The tibial component is typically a flat tray made of the same material as the femoral 

component and attaches to the boney architecture of the tibia in various ways depending on 

the manufacturer.  This tray holds a piece of plastic, often referred to as a “tibial insert” or 

“polyethylene insert”, manufactured from wear resistant, cross-linked ultra-high molecular 

weight polyethylene (UHMWPE).   The tibial insert acts as the bearing between the femur and 

tibia.  The backside of the patella is resurfaced with a piece of plastic, sometimes referred to as 

a “patella button”.  This button lies in a groove on the anterior surface of the femoral 

component and mimics the interaction between the normal patella and the trochlear groove on 
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the non-implanted femur.  This groove guides the motion of the patella which transfers force 

from the quadriceps to the tibia and acts as the extensor mechanism of the knee.  The shape of 

the femur, the geometry of the insert and button, and the changes made to the soft tissue 

structures during the surgical procedure affect the mechanics (kinetics and kinematics) of the 

knee after replacement. 

There exist several types of TKA devices and surgical procedures to implant them.  Some 

implants use bone cement to secure the components to the naturally occurring boney 

architecture while others use a porous coating which is intended to promote bone growth into 

the component for fixation.  Some use a hybrid approach which cements some components 

while, in the same knee, others are not cemented. 

Different TKA also resect or retain the cruciate ligament structures.  The cruciate ligaments, 

consisting of the anterior cruciate ligament (ACL) and the posterior cruciate ligament (PCL), 

provide stabilization to the knee. The ligaments have been extensively studied in vitro, but 

there are limitations to gathering in vivo data from the ligaments. Imaging studies have shown 

that the cruciate ligaments are taught and provide stabilization during certain stages of daily 

activity, but it is still unclear the extensive role each cruciate ligament plays and contributes to 

the overall motion patterns of the healthy knee.  A question which still has not been answered 

definitively is, “How much does the geometry of the articulating surface and the soft tissue 

structures each affect knee motion?”   

Goodfellow and O’Connor in their seminal 1978 article stated “The normal joint invites analogy 

with a well pitched tent which resists all forces tending to distort it by the development of 
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tension in its guy ropes and compression in its pole.” [Goodfellow and O’Connor, 1978]  In 1978 

it was unclear exactly what each soft tissue or bony structure contributed to the stability or 

motion of the knee and, although extensive in vitro and in vivo research has been performed in 

this area, it is still a question yet to be answered.  The knee is such a complicated structure, and 

so unique from person to person, that all soft tissue and bony structures contribute to 

numerous aspects of behavior which is one of the reasons why the perfect solution to knee 

reconstruction has not been found. 

Goodfellow and O’Connor also make the statement that “condylar replacement prosthesis may 

best confer stability upon the living joint if it is itself unstable.”  In this statement, it is assumed 

that they were referring to the bony and cartilage structures of the knees, which their sole job 

is to keep the bones apart, acting as the “tent pole”, while soft tissue structures keep the bones 

together, acting as the “guy ropes”.  Based on this concept, Goodfellow and O’Connor stated 

that the replacement of the condyle should do nothing but resist movement of the femur into 

the tibia.  This theory of design, plus attempting to solve problems such as wear and creep 

developed into the original Oxford Meniscal Unicondylar Knee [Goodfellow 1987], determined 

to be a successful design [Murray 1998].  This theory, however, assumes that all soft tissue is 

intact and works normally.  Some patients receiving TKA do not have sound ligaments and the 

behavior of ligaments and muscles can change after the trauma they experience during a total 

knee replacement.  Therefore, in the current marketplace there are several manufacturers of 

knee systems each with different products that function in different ways. 
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Most TKA are one of three types: (1) Posterior Cruciate Retaining (PCR) TKA, where the surgeon 

retains the PCL and resects the ACL, (2) Cruciate Sacrificing (CS) TKA, where the surgeon resects 

both cruciate ligaments, or (3) Posterior Stabilized (PS) TKA, where the surgeon resects both 

cruciate ligaments and the TKA design provides stabilization through mechanical constraints.  

PS TKA designs generally use a cam post system which has a post designed in the tibial insert 

that engages a cam on the posterior side of the femur, preventing the tibia from translating 

posteriorly (or femur translating anteriorly) with increasing knee flexion.  Manufacturers also 

design implants with more conforming inserts which provide stabilization and more recently 

there is a bi-cruciate TKA, in which a dual cam system on the femur engages on both the 

posterior and anterior side of the post, guiding both anterior and posterior translation of the 

tibia.  Although not used as frequently, ACL retaining (ACLR) TKA keep both cruciate ligaments, 

keeping many of the native soft tissue structures of the knee. 

The attachment of the tibial insert to the tibial tray also has several variations.  There are 

inserts which are locked or “fixed” to the tray and do not move.  There are also rotating tibial 

inserts which rotate on the tibial tray and mobile bearing inserts which rotate and translate in 

the anterior/posterior (AP) direction similar to the “meniscal” design presented as the Oxford 

Knee.   

Surgeons prefer different surgical approaches and techniques that offer advantages and 

disadvantages to both the surgeon and patient.  Minimally Invasive Surgery (MIS) or a 

quadriceps sparing approach has become more popular in recent years and does not cut 

through the quadriceps, disrupts less soft tissue and leaves a much smaller scar allowing less 
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blood loss and a quicker recovery for the patient.  However, because the incision is much 

smaller than a traditional approach the surgeon cannot see as well and has less room to 

maneuver, increasing chances for error when implanting the devices.  Different approaches 

alter the soft tissue structures in different ways.   

Manufacturers design their TKA around the same basic principles, but execute these principles 

in their (slightly) unique way in order to develop a knee which out-performs competitor’s TKA 

and to distinguish themselves in the medical device market.  The question of which type of 

device (PCR, PCS, PS, ACLR, fixed bearing, mobile bearing, etc) and which procedure garners the 

best results continues to be a source of controversy in the arthroplasty field [Post 2009, Khanna 

2009]. 



 

 

 

 

 

 

Chapter 2: Literature Review and Motivation 
Arthroplasty is considered a useful and successful treatment for severe arthritis.  However, 

failure due to polyethylene wear reduces the longevity of implants [Howling 2001, Currier 

2005].  Efforts to improve the performance of polyethylene have, for the most part, been 

concentrated on the material properties and different manufacturing and packaging 

techniques.  It has now been assumed that the wear, delamination and pitting of polyethylene 

has been reduced by developing highly cross-linked polyethylene and also using sterilization 

and packaging techniques which prevent oxidation of the material [Wroblewski 1999, Heimke 

2002, Li 1994, Williams 1998].  Design also plays a role in lowering the stress and therefore 

wear in polyethylene.  Goodfellow and O’Connor stated that high conformity leads to higher 

contact area and lower stress [Goodfellow 1978].  However, the more conformity the less the 

knee is allowed to move freely, and could lead to higher shear forces at the bone-component 

interface leading to loosening. Designers of TKA strive to find the optimal balance between 

conformity and simply providing the “tent pole” and keeping the bones apart, as discussed 

earlier. 
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Wear Studies 

To date, wear studies are performed by analyzing retrieved inserts or using knee simulators.   

Analyzing insert retrievals is retrospective and can only provide data for implants that have 

been on the market for several years.  Some researchers have been able to make conclusions 

relating patient activity and length of implantation to visible fatigue type wear [Rorhbach 2008, 

Lavernia 2001].  Other studies do not find data to support this relationship, but correlate types 

of wear present and the overall wear of the component [Crowninshield 2006].  Retrievals for 

the most part are either from revision surgeries or from autopsy retrievals.  Samples from 

revision surgeries come from implants that have failed for any number of reasons. Typically 

nothing is known about the history of an implant retrieved during autopsy.  The number of 

available retrievals is also limited and do not become available until years after the first of a 

newly designed device is implanted. 

Wear simulators use standard force-motion profiles to test TKA designs in an in vitro 

environment over millions of cycles intended to simulate years of use [Walker 2000, DesJardins 

2000].  Although essential in the testing of new TKA designs,  studies of retrieved TKA bearings 

show more and different wear occurs in vivo than in vitro [Harman 2001]. Retrieval studies 

have shown that wear patterns are variable between patients and also TKA type and design 

[Wasielewski 1994, 1997, Currier 2005].   This variability is a function of different in vivo motion 

patterns between patients and between TKA which the in vitro testing standards do not reflect. 
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Cadaver Simulations 

Cadaver simulators such as the Oxford Rig, the Purdue and Kansas knee simulators and others 

[Maletsky 2005, Kiguchi 1999, Patil 2005] attempt to recreate the in vivo kinematics and 

kinetics of the knee. However, concerns remain as to the effectiveness of using mechanical 

devices and cadaveric specimens to simulate in vivo conditions.  A recent review comparing 

results from in vivo and in vitro studies concluded, although generally matching up well, the 

accuracy of knee kinematics after 30 degrees of knee flexion in cadaveric simulators may be 

questionable [Varadarajan 2009].  Although these simulators can provide accurate kinematics 

and retain the patellofemoral joint and other soft tissue structures, the rigs are not designed to 

repeat the millions of cycles required to simulate years of every day activity and can only test 

one implant at a time.  Also, muscle forces are applied using non physiologic elements and are 

thus, input mechanically.  Therefore, if the input to the simulator is incorrect and not simulating 

in vivo muscle conditions, the output could also be altered from truly in vivo mechanics.  Even 

though most wear simulator designs can test several implants at once both options are 

expensive and time consuming. 

Implant Design 

When designing new TKA, a company generally uses an iterative process.  A new idea or theory 

of design is implemented.  An initial design and prototype is manufactured.  Then engineers 

test the implant prototype in both cadaveric and wear simulators.  After this first step the 

engineers and surgeons take what they learned from the original tests and adjust the design, 
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coming to a second design iteration.  The testing process is repeated and lessons learned 

applied to the next iteration…and so on.  This is time consuming and expensive, taking months 

to complete the rigorous testing these companies require to ensure that the design they end 

with is a viable one worth the marketing, manufacturing and regulatory costs they incur to get 

the product on the market. 

The expense and difficulties of using simulators and retrieval studies to evaluate design 

performance makes computational modeling of implant performance an attractive option, if 

the model is accurately evaluated using a viable error analysis.  Modeling implant performance 

using a validated computer model is fast and it is cheap.   Although wear is a complicated 

mechanism it is ideally a function of kinematics, contact kinetics and material properties.  

Previous inverse computational models have shown that the bearing forces increase in deeper 

weight bearing flexion [Komistek 2005, Sharma 2007].  As patients demand better performing 

TKA [Weiss 2002], and the marketplace becomes more competitive for implant companies, the 

need for computational tools that can investigate and predict the effects of design, patient 

parameters and surgical procedures on the kinematics and contact kinetics at the bearing 

surfaces becomes even greater. 

Previous Models 

There are an abundance of biomechanical mathematical models of the lower leg in the 

literature used in various fields.  The sports medicine and physical therapy fields use models to 

investigate ligament reconstruction procedures and the rehabilitation exercises used to recover 
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from injury.  Investigators in the exercise science field study training activities to maximize 

effect and minimize risk of injury.  Gait analysis is used in concert with mathematical models to 

study the surgical treatment of neurological disorders such as cerebral palsy and other gait and 

physiological abnormalities such as patella alta, varus or valgus deformities and conditions of 

the foot.  Computational models are also used to estimate or predict mechanics after joint 

reconstruction to evaluate device design and surgical procedures. 

These models can essentially be broken up into two main groups:  inverse models and forward 

models.  Inverse dynamic models use known motions as the input to the model to calculate 

force and moments acting across the joints.  Forward models input forces into the model in 

order to predict the motions caused by said forces. 

Inverse Knee Models and Contact Modeling 

There are two ways to determine in vivo loads occurring at the bearing surface in joint 

replacements.  The first is to determine the loads experimentally by instrumenting components 

with sensors and gathering the data through telemetry.  This has been accomplished 

successfully in the hip [Lu 2001, Taylor 2001] and with varying success in the knee [D’Lima 2005, 

Heinlin 2009, D’Lima 2008, Burny 2000].  Before these implants, there was no way to determine 

loads occurring at joints in vivo, only cadaveric studies gave insight.  The cost of designing, 

manufacturing and implementing these designs is high, and a limited number are implanted, 

always with the risk that the device will malfunction.  However, the insight these devices have 

given into loads and moments occurring at artificial joints are extremely valuable to the 

validation of inverse dynamic models [Sharma 2007, Kim 2009]. 
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Mathematical modeling is a much more accessible way to determine loads occurring in the 

human body.   In a three dimensional model, each body, in this case a boney segment of the 

human body system, experiences a torque about each of the three axes and a force in each of 

the translational directions.  Therefore, for each boney segment there are six independent, 

unknown forces and moments that can be derived.  These forces and moments are the 

resultants of external forces, like gravity, ligament forces, muscle forces and interactive bearing 

surface forces.  The human leg is a redundant system with the number of muscle forces being 

much greater than the number of equations of motion that can be derived for the human leg 

system. 

To solve the redundant system of the leg, researchers have primarily taken two paths: 

optimization and reduction.  Using optimization to solve for muscle forces in an inverse type 

solution has been in practice for nearly thirty years [Komistek 2005, Erdimer 2007].  Using 

ground reaction force data from a force plate and kinematic data from either video motion 

analysis or other means of data collection such as fluoroscopy, the resultant forces and torques 

about each joint can be determined using equations of motion.  During static optimization the 

muscle forces are determined by minimizing an objective function (e.g. total muscle force or 

muscle force stresses) while satisfying constraints. The constraints make the muscle forces 

equal to the joint torques and also keep the muscle forces below a maximum allowable force 

for each muscle.  Additional time/joint angle dependant constraints are also used to increase 

the accuracy of the results.  Minimizing the total muscle force squared or muscle stress cubed 

are common examples of the objective function, however what to minimize, and also the 
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involvement of co-contracting muscles are still sources of controversy and constitute some of 

the major assumptions in this type of modeling.  Muscles obtained from the traditional 

algorithms tend to result in knee interaction forces that are higher than observed in vivo 

[Komistek 2005, Lin 2009]. Another disadvantage of finding the muscle forces using this 

approach is that the optimization scheme can be computationally expensive. 

Recently, Lin et al. used a surrogate elastic foundation model in concert with an inverse model 

similar to that reported by Anderson and Pandy [Anderson 2001] and fluoroscopic data from a 

patient performing treadmill gait, motion analysis data and force plate ground reaction force 

(GRF) data from normal gait and in vivo force data from a telemetric TKA [Lin 2009].  Using CT 

scans of the femur and tibia/fibula from a patient similar in stature to that of the patient 

analyzed and a CAD model of TKA obtained from CT scans of the patient were virtually 

implanted in a similar surgical orientation as seen in the patient.  This TKA/normal model 

combination was then fit to the center of rotation of the knee determined from fluoroscopy. 

Using an inverse total body model which represented the knee as a hinge, the investigators 

calculated the joint torques while the surrogate elastic foundation model, which is used to 

improve computational time over the traditional elastic foundation model, was also able to 

calculate interaction forces occurring in the telemetric TKA. Static optimization was then used 

to find the muscle forces at each time step.  The objective function was to minimize the 

activation of each muscle while constrained by the joint torques from the inverse model and 

also the interaction forces at the knee determined by the instrumented TKA.  Previous inverse 

models using optimization to determine muscle forces do not take into account the interaction 
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forces. This model, by adding in vivo interaction forces to the objective function, narrowed the 

design space further constraining the possible results of the optimization, resulting, most likely 

in a solution closer to that which actually occurs in vivo [Lin 2009]. 

The second method of determining muscle forces in the leg during inverse dynamics 

simulations is the reduction technique which reduces the number of unknowns so that the 

system becomes determinant.  Several models in the literature have used this method 

[Komistek 1998, 2005, Sharma 2007, 2008, Lu 1997, Morrison 1970].  Two common 

assumptions in the reduction technique are that certain muscles do not greatly influence the 

system and, therefore, are not included and certain muscles groups such as the quadriceps, 

which is a set of 4 muscles, are grouped and represented by one unknown force.  The 

advantage of this technique for inverse solutions is it reduces unknown forces so that the 

mathematical model is a system of linear equations that can be solved quickly to find one 

solution. 

To determine the tibiofemoral contact mechanics of a TKA using an inverse mathematical 

model, investigators have for the most part used two methods. The first method is to assume a 

rigid femur and a deformable tibial insert modeled using an elastic foundation (EF) [Blankevoort 

1991, Li 1997, Pandy 1997, Nuno 2001].  This method is also referred to as a rigid-body-spring-

model (RBSM). The EF is a bed of springs with properties intended to represent the material 

properties of UHMWPE.  The contact pressure is determined by calculating the area of the 

springs which are deformed.  A concern for this type of modeling is that these springs are one 

dimensional and the action of a particular spring in the model does not affect the neighboring 
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springs.  This does not reflect the true behavior of most materials, which when deformed in one 

direction also deform in the orthogonal directions, represented by Poisson’s ratio.  This can 

result in higher predictions of contact pressure as the calculation is essentially the interference 

between the femur and tibial insert [Sharma 2008]. 

The second method combines rigid body dynamics and then finite element analysis to 

determine contact stresses.  Rigid body dynamics, the type of analysis used in Kane’s dynamics, 

assumes a body does penetrate another body in contact.  Therefore the contact between the 

femur and tibia or patella and femur is assumed to be point contact.  In inverse dynamics, the 

position of the femur relative to the tibia, along with other inputs such as ground reaction force 

and ligament and muscle insertion, determine the muscle and ligament forces around the knee 

and, therefore, determine the interactive forces acting between the femur and tibia.  These 

kinematics are obtained from some type of experimental or observational technique.  The error 

of these systems is well above the amount of deformation which occurs in polyethylene during 

daily activity [Mahfouz 2003, Sharma 2008].  Therefore, the affect of not including the 

penetration of the femur into the insert on the lower extremity kinematics does not affect the 

overall accuracy of the dynamic model nearly as much as the inherent error in the experimental 

observation, which cannot be avoided.  Assuming rigid contact, a model can determine the 

interaction forces occurring at the contact points.  The position of the body and interactive 

forces occurring at the contact point can then be used as the input to a static finite element 

model, which calculates the stresses occurring at the tibial insert at specific increments from 

the simulation. 
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For years Finite Element Analysis (FEA) has been the gold standard for determining stresses at 

the tibiofemoral and patellofemoral interface [Andriacchi 1983, Lewis 1998].  The preprocessing 

time and subsequent CPU time required to carry out an FEA analysis is a limitation to this type 

of investigation despite the increase in accuracy over elastic foundation models. 

Two other types of articulating modeling are simple-elastic-solution (SES) [Bartel 1985] and 

modified Hertzian (MH) theory used by Pandy et al. [Pandy 1998] and others [Eberhardt 1990].  

Li et al. compared  EF or RBSM, FEA, MH and SES and determined that for static deformation  

both FEA and EF methods better calculated stress-strain distributions and that the EF methods 

was the easiest to use, most computational efficient and determined contact pressures the best 

out of all of the methods [Li 1997].  In a more recent comparison of EF and FEA methods in a 

forward solution model of a force controlled wear simulator performing a gait cycle, Halloran et 

al. found that EF methods matched well with the FEA methods when measuring the 

stress/strain and contact pressures and the EF was 98% faster than the explicit FEA method 

used (6-7 hours vs. 10 minutes) [Halloran 2005].  Another paper compared MH, FEA, EF and 

modification to the EF technique meant to improve accuracy by only counting springs in the 

deformation area if they are deformed above a certain value, thus reducing the contact area.  

The authors tested the techniques on generic geometry meant to represent TKA and found that 

MH lacked accuracy, FEA was accurate but time consuming and that EF and the authors 

modified version of EF was much quicker and the authors modified technique was close to the 

accuracy of FEA in a fraction of the time [Perez-Gonzalez 2008]. 
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Even more recently Lin et al. and others presented papers proposing and implementing the use 

of surrogate EF models to determine contact mechanics in diarthroidal joints.   Surrogate 

models can be used to replace either FEA or EF models.  They do not improve on the accuracy 

of these models but on the computational speed.  Lin reported that this method decreases the 

calculation of contact pressures for an entire gait cycle from 10 minutes for an EF model to 

seconds for the elastic foundation, further decreasing the computational cost associated with 

this type of simulation without losing any significant amount of accuracy from traditional EF 

calculations [Lin 2009, Halloran 2009]. 

Sharma et al. developed a method which vastly decreases the computational time required for 

an FEA analysis while avoiding the inaccuracies associated with elastic foundations [Sharma 

2009, Sharma 2008].  A validated rigid body model of a TKA, using in vivo kinematics obtained 

from fluoroscopy, ground reaction force-plate data and anthropometric inputs for segment 

inertial parameters and ligament and muscle attachments was used to determine tibiofemoral 

interaction forces of both the medial and lateral contact points.  A spring network model was 

then developed which models the tibial insert geometry and material properties of UHMWPE.  

The tibial insert geometry was discretized into nodes.  These nodes were interconnected by 

springs which simulate the material properties of polyethylene.  Since the nodes were 

interconnected, the behavior of one node affected the neighboring node, representing 

Poisson’s ratio.  Tests of this method show that results comparable to FEA analysis can be 

obtained in seconds of CPU time as opposed to the hours required for FEA.  The combination of 

the highly accurate in vivo kinematics from fluoroscopy, the results of a validated rigid body 
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model and the technique of using a spring network to represent deformable contact on the 

tibial insert is a system which relatively quickly calculates accurate contact mechanics of an 

existing TKA. 

Inverse knee models generally solve for the muscle and interaction forces using the three 

torques and three forces associated with each body of the model.  Ligament forces are 

determined by defining position vectors within the system, which are known because the in 

vivo kinematics are known. Ligament forces, if included, are applied using linear or nonlinear 

spring models and are a function of the ligament element length or strain [Abdel-Rahman and 

Hefzy 1998, Blankevoort 1991, Crowninshield 1976, Shin 2007].  Anatomical studies have found 

that the major ligaments within the knee are made of bundles [Peterson 2006, Amis 2006, 

LePrade 2007] except for the LCL [Meister 2001]. This has been applied to the modeling of the 

knee, where each bundle is represented by one or more spring elements  [Blankevoort 1991].  

Mommersteeg found the optimal number of elements to represent each ligament is 4 to 7, with 

fewer than 4 being sensitive to insertion point measurement errors and more than 7 being 

redundant [Mommersteeg 1996]. 

Each of these bundles act differently throughout knee flexion, however, a consensus on exactly 

how each ligament bundle behaves has not been reached [Fuss 1989].  The lack of consensus 

on exactly when ligaments engage during flexion is probably due to two main factors: 

1) Obtaining in vivo data on ligaments during dynamic maneuvers is difficult without invasive 

procedures 
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2) ligaments are patient specific in that the relaxed length, width, stiffness and attachment 

areas vary (although slightly) from subject to subject probably causing specific bundles to act 

slightly different from patient to patient. 

There is a whole field of research focused on modeling ligaments using FEA.  More recently they 

have been integrated into musculoskeletal models [Weiss 2001, Peña 2006, 2007].  Whether 

using one-dimensional spring models or the more complicated three-dimensional FEA models, 

the accuracy depends on what the investigator chooses as the relaxed length which dictates 

exactly when and how much force the ligament model applies to the system. 

Predictive Forward Models 

The previously mentioned inverse dynamics models are used as observational tools which can 

help determine the performance of devices which already exist and have been in use for years. 

Although any data regarding the in vivo behavior of these devices is useful, even the lessons 

learned are not validated until changes in a device are implemented and years later evaluated 

again.  This probably accounts for some of the reason why most of the TKA in use today are a 

variation on one design and, although some advances have been made, the design of TKA really 

hasn’t changed much in the past 20 years.  Is this lack of development because the current 

designs are as good as they are going to get?  Or because companies lack the tools to quickly 

and accurately predict the effects of a design change and therefore do not want to take on the 

risk of implementing a change and waiting years to determine the changes effect on 

performance? 
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Smith and Nephew, Inc. (Memphis, TN) claims their Journey® Bi-Cruciate TKA to be a leap 

forward in design, branching off from the traditional design based on the original Insall TKA.  

The company claims that the development of this TKA started from scratch and the majority of 

the design iterations were tested using a forward solution dynamic model developed by 

LifeMod/KneeSIM (Sacramento, CA).  The use of a forward solution model can be powerful, in 

that it can predict the kinematics and kinetics of a newly designed device.  Like all models, they 

should be evaluated using a rigorous error analysis, or the results could be attributed to GIGO 

(garbage in, garbage out). 

All of the contact mechanic calculation methods previously discussed at length in the inverse 

model section, rigid body, EF, FEA, surrogate EF and FEA and spring networks can be applied in 

a predictive forward solution model. 

The most common forward solution knee models presented in the literature are quasi-static 

with either rigid [Wismans 1980, Abdel-Rahman and Hefzy 1998, Dhaher and Kahn 2002] or 

deformable contact surfaces [Blankevoort 1991, Pandy 1997, 1998, Kwak 2000, Cohen 2001, 

2003, Chao 2003, Elias 2004].  Quasi-static forward solution models with deformable contact 

are split into two main categories: FEA and EF.  These models are placed in an initial orientation 

(e.g. 30 degrees of flexion) and the model is perturbed.  Inertial properties and any viscoelastic 

characteristics of the soft tissue are not included in these models.  Generally quasi-static 

forward solution models are used to investigate the laxity of a joint and/or the contribution of 

ligaments in constraining the knee during various tests.  An example of a simulation performed 
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with one of these models is of the AP drawer test doctors and trainers perform to test the laxity 

of the ACL [Bertozzi 2007, Pandy 1998] or to simulate passive flexion [Pandy 1997]. 

Another way these quasi-static models are used are as post-processing tools to inverse 

dynamics problems or gross body forward dynamic simulations which use idealized 

representations of the knee (hinge).  The muscle forces for these simulations are generally 

found using optimization in concert with or validated by electromyography (EMG) data. 

Optimization schemes also try to minimize the difference between calculated and observed 

kinematics but generally minimize the activation or energy consumption of the muscles through 

use of a Hill Type muscle model [Shelbourne 2005, Anderson 2001].  The contact forces, muscle 

forces, joint torques and joint angle is then put into a joint specific model which includes 

ligaments and knee geometry and a static problem at specific instances of time throughout the 

simulation is solved determining the more specific tibiofemoral or patellofemoral orientations 

and forces or stresses [Fernandez 2008, Shelbourne 2005, Anderson 2001]. 

The details of quasi-static models in the literature vary with different amounts of physiological 

architecture, like ligaments and muscles, included.  The initial conditions and the way in which 

investigators set these conditions in the models also vary along with the methods used to 

mathematically represent the articulating geometry.  The articulating geometry have been 

represented in different ways including spheres and planes , representing the femur and tibia, 

respectively, polynomial surfaces, surface patches, non-uniform rational B-splines (NURBS) and 

basis functions. 
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In the introduction to a 2004 article, Curuntu and Hefzy summarized the current-state-of-the-

art of dynamic knee models with the following statement: “A single 3-D anatomical dynamic 

model that includes both tibio-femoral and patellofemoral joints does not yet exist’’ [Curuntu 

and Hefzy 2004].  Bei and Fregley disagree and state that Piazza and Delp [Piazza and Delp 

2001] have the only dynamic model [Bei and Fregley 2004].  A few models have been presented 

since this disagreement in 2004. 

The early forward dynamic models were 2-D and used rigid contact and non-linear spring 

models to guide motion [Moeinzadeh 1983, Tumer 1993, Abdel-Rahman and Hefzy 1993].  In 

order to truly represent the complexities of the knee these models had to be expanded to 

three-dimensions [Curuntu and Hefzy 2004].    Most of these models use contact modeling as 

an integrated part of the overall musculoskeletal model.  They are the means by which 

geometry is represented as a constraining force and contact pressures or stresses and therefore 

interaction forces between bodies are determined.  Therefore the contact method will be 

discussed along with the multi-body simulations presented in the literature.  Existing three-

dimensional dynamic models geared toward the orthopedic industry and TKA lie within one of 

three scopes:  1) simulate a TKA in a wear simulator, 2) simulate a normal knee or TKA in 

cadaveric simulator or 3) the physiological implanted or non-implanted lower leg throughout an 

activity. 

Wear Simulator Models 

Simulations of TKA wear simulators started like most others, simply.  Godest et al. modeled 

Stanmore knee simulator with motions and forces in the sagittal plane using the I-DEAS™ 
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Package and MSC.ADAMS (MSC Software, Inc, Santa Ana, CA) integrated kinematic solver 

[Godest 2000].  The bodies were modeled in 3-D as rigid and the femur was placed in a fixed 

rotation with an applied axial load.  An AP drawer test was then performed to determine the 

force needed to displace the tibia in the AP direction.  These models of wear or testing 

apparatus have expanded from quasi-static 2-D models  [Godest 2000, Sathasivam and Walker 

1997] to quasi-static 3-D models [Rawlinson 2006, Godest 2002] and probabilistic [Laz 2006].  

Quasi-static models take the input functions of the gait simulation used in these tests, which 

include flexion of the femur, AP translation of the femur, an axial force and the IE rotation of 

the tibia and discretized them at several instances in time.  With the constraints in place that 

exist in the simulator, including springs in the AP direction off the tibial insert, these models 

apply input from the simulator into the system, allowing the other degrees of freedom to settle 

into equilibrium.  Where the tibia and femur eventually rest in equilibrium determine what 

these models refer to as the resulting kinematics.  These tests are repeated with the inputs 

from each discretized point of the investigators choosing.  Validation of these systems consist 

of comparing the results at these discrete points to the corresponding points in time during a 

dynamic physical wear test in the machine with the same TKA design. 

Recently models have begun to take into account the inertial properties of these systems and 

perform dynamic 3-D simulations [Fregly 2003, Halloran 2005, Moran 2008, Taylor 2003, 

Landon 2009, Giddings 2001, Lin 2009] which simulate a wear test continuously over time as 

opposed to discretely and quasi-statically at certain instances of time.  The models are set up 

with the same constraints and degrees of freedom as the simulators and use the same time 
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varying inputs as the simulators for the displacements and axial force.  The method to calculate 

contact mechanics in the dynamic models vary from EF [Fregly 2003, Landon 2009] to 

modifications of the EF method [Lin 2009] and implicit [Giddings 2001] and explicit [Halloran 

2005, Taylor 2003] FEA methods.  The trend in dynamic modeling of the normal or implanted 

knee is to calculate the dynamics of the system and the pressure and stresses occurring at the 

contact interface concurrently.  Note: depending on the frequency and speed of the simulation, 

and the extent to which viscoelastic properties play a part, some in the research field still 

consider simulations which are continuous and use continuous time-varying input functions 

quasi-static. 

Wear simulators are the industry standard for testing the performance of a TKA.  

Computationally modeling these systems would prove beneficial to a company as opposed to 

manufacturing an implant prototype and taking up weeks of wear testing time and the 

associated costs.  These models are also useful for “let’s see what happens when…” tests 

because the inputs and boundary conditions for the tests can be changed however the 

investigator wants without the risk of damaging the machine or wasting time.  For example, the 

alignment of the femoral component or the ML placement of the femoral component can be 

adjusted for investigation [Laz 2006, Taylor 2003].  These models could also be useful in helping 

determine new kinematic and force profile standards for wear testing. However, as mentioned 

before, the current standard kinematic and kinetic profiles used as the inputs to these tests are 

generic gait patterns and also ideal conditions [Walker 2000, DesJardins 2000] and results from 

wear testing do not necessarily match up with wear from implant retrievals  [Wasielewski 1994, 
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1997, Currier 2005].   A computational model of a wear simulator, although valuable to 

industry, is simulating a test which does not necessarily provide an accurate prediction of an 

implant’s performance in vivo. 

Cadaveric Knee Simulator Models 

Cadaveric knee simulators like the Purdue Knee Simulator, Kansas Knee Simulator (KKS) and the 

Oxford Knee Rig are used to investigate both the normal knee and the implanted knee 

[Maletsky 2005, Kiguchi 1999, Patil 2005].  Computational models were developed for these 

simulators initially to assist in their design and then also as a means of analytically performing 

the simulations.  One of the advantages of modeling a cadaveric simulator is that the boundary 

conditions of the system are consistent between tests.  The KKS has been computationally 

modeled in several studies [Guess 2005, Maletsky 2005, Baldwin 2009] as has the Oxford 

[Lanovaz and Ellis 2009, Elias 2004] and Purdue Simulators [Halloran 2005].  The KneeSIM™ 

software which is an industry standard in orthopaedics for computational simulations also 

replicates a knee simulator. 

Guess and Maletsky used MSC.ADAMS to place a TKA in an already existing model of the KKS 

[Maletsky 2005] and represented the femoral and tibial articulations with ellipsoids, the patella 

as a partial sphere and the trochlear groove as toroids [Guess 2005].  Deformable contact was 

modeled with a RBSM type contact model.  The contact forces were calculated from the 

integral of the spring forces over the contact area.  The contact area was found using Hertzian 

contact theory using material properties and the articulating geometry. The TKA was a PS type 

TKA, however the cam and post mechanism were not included in this model. Ligaments were 
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also excluded, however the simulator they were attempting to model did not have a cadaver 

lower leg only bars to hold the TKA in place and metal patella to transfer forces to across the 

knee.  Torques in both the internal and external directions were applied to both the model and 

physical simulators.  With an IE rotational test the simulation was in 104% error with the actual 

machine with a friction coefficient of 0.05.  Raising this to 0.08 reduced the error to 54%. The 

goal of this model was to determine the forces needed to input to the physical simulator to 

achieve a desired flexion. 

A more recent model of the KKS used Abaqus/Explicit™ (SIMULIA Inc., Providence, RI) to 

simulate a deep knee bend and investigate the patellofemoral kinematics. Two cadaver lower 

legs were put through a deep knee bend simulation in the KKS before implantation and then 

after implantation with a TKA and these cadavers were then input to the computational model. 

The tibiofemoral kinematics and quadriceps forces determined during the simulator tests were 

the inputs for this model.  Model elements included the patella surface and trochlear surface 

interaction, the quadriceps tendon and patella ligament, and both the medial and lateral 

patellofemoral tendons.  Simulations of the exercise took between 1.0 and 6.0 hours. 

Tibiofemoral kinematics from the KKS varied between specimens and also after the specimen 

was implanted with a TKA. As others have determined [Halloran 2005] the difference between 

the resulting kinematics when using RBSM and deformable contact was negligible and the 

speed of the RBSM contact simulations was two to four times faster than using deformable FEA 

contact. The forces or stresses at the patellofemoral contacts were not in the scope of this 
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study, however, so no comparison was made regarding the forces.  Ligament prestrains were 

manually adjusted to achieve the position of the patella before the simulation. 

Haloran et al. presented a model of the tibiofemoral joint, modeled as if in a Stanmore wear 

simulator, similar to those describe above, and the patellofemoral joint was modeled as if in the 

Purdue cadaveric simulator [Haloran 2005].  The contact forces were determined as a function 

of the penetration distance of the master into the slave surface.   The tibiofemoral analysis was 

modeled as a Stanmore wear simulator while the patellofemoral analysis was modeled as a 

Purdue knee simulator with tibiofemoral kinematics used as an input to the model.  Using rigid 

body techniques with softened contact predicted nearly identical AP and IE kinematics as the 

fully deformable model.  CPU time was far less in the rigid body model compared to the 

deformable body analysis going from several hours to several minutes.  This study compared 

the pressure results from both the rigid and deformable contact analysis and determined that 

the difference between the two was worth the large decrease in computation time.   The 

tibiofemoral joint and patellofemoral joint were analyzed during two separate simulations using 

unique boundary conditions for each.  The patellofemoral joint and tibiofemoral joint act in 

concert.  Ideally a dynamic model should include both. 

A recent model of a TKA implanted cadaver in the Oxford Knee Simulator includes both the 

tibiofemoral joint and patellofemoral joint but also includes ligaments [Lanovaz 2009].   The 

goal of this study was to develop a dynamic model of the implanted knee which includes the 

patellofemoral and tibiofemoral joint, does not prescribe any kinematics and determines joint 

contact stresses.  The simulation was that of an Oxford knee rig performing a closed-chain 
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extension. The computer simulation was done in LS-DYNA (Livermore Software Technology 

Corp., Livermore, CA). Two separate cadaver lower legs were implanted with a CR TKA. The 

bone models were obtained with CT scans and TKA components were virtually implanted using 

their CAD models. Six ligament bundles, including the two for the PCL and the posteromedial 

capsule were included in the model.  Parametric tests were also performed [Lanovaz 2009]. 

At the beginning of the simulation, the bodies were placed in their initial poses and the tension 

in the quadriceps actuator, the same force used in corresponding cadaver simulations, was 

applied [Lanovaz 2009].  The bodies were allowed to settle into equilibrium for a specific 

amount of time and then the simulation was run using the actuator forces from the cadaveric 

simulation.  Although the position and force of the medial and lateral condyles were not 

reported separately for the tibiofemoral joint, both joint translations and rotations of the FEA 

simulation matched well with the kinematics from the in vitro tests. The forces and moments 

also matched well with the forces from the cadaver simulations. 

The parametric tests, although performed with generic bony geometry, determined that the 

kinematics of the tibiofemoral joint was most affected by the MCL initial strain, tibial insertion 

of the patella ligament in the ML direction, femoral MCL insertion, patellar thickness and 

femoral PCL insertion.  The initial strain of a ligament determines how tight it is during the 

activity.  Ligament modeling will be discussed in detail later.  The patellofemoral joint 

kinematics were most affected by the patellofemoral coefficient of friction, tibial patella 

ligament insertion, femoral MCL insertion, MCL initial strain and patellar thickness.  The 

tibiofemoral forces on the medial and lateral side were most affected by the collateral ligament 
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initial strains and insertion points and the tibial patella ligament insertion points [Lanovaz 

2009]. 

Physiological Dynamic Models 

The last group of dynamic models are those that attempt to model the physiological knee 

performing an activity. These models can range from single joint models which take all degrees 

of freedom to full body models which use optimization to determine the muscle forces but use 

idealized joints (like a hinge for the knee).  Some models combine both elements. 

Curuntu and Hefzy developed a model which simulated the knee extension exercise.  Ligaments 

were represented as they typically are in the literature using a non-linear spring model which 

uses a relaxed length calculated from the length of the ligament in full extension [Abdel-

Rahman and Hefzy 1998, Blankevoort 1991, Crowninshield 1976, Shin 2007]. If the strain of the 

ligament based on this relaxed length is below 0.0, no force is applied, if it is greater than 0.0 

but under the linear strain threshold, the force is modeled with a quadratic function of the 

current length minus the relaxed length. Above the linear strain threshold the force function is 

linear with respect to the change in length.  As mentioned above, one of the issues with these 

models is determining the relaxed length especially when models become patient specific 

[Curuntu and Hefzy 2004]. 

Two planes for both tibial condyles and the articulating geometry of the femur and patella 

expressed using Coons parametric bicubic surface patches were used to describe the geometry 

of the knee in Curuntu and Hefzy’s model [Curuntu and Hefzy 2004].  A cadaver was discretized 

and the “corners” found on the cadaveric articulating surfaces were then connected by patches.  
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A local coordinate system for each surface allows any 3-D Cartesian position to be found on the 

surface using 2 coordinates from the local system.  Using rules that do not allow penetration of 

one surface into another and also rules that ensure the normals occurring on the tibia and 

femur at both tibiofemoral interactions and again for two contact points at the patellofemoral 

joint are collinear, the rigid contact mechanics of the system are represented [Curuntu and 

Hefzy 2004, Hefzy and Yang 1993]. 

Piazza and Delp created a truly dynamic forward model of the reconstructed total knee using 

rigid body dynamics which simulated the step-up task in vivo [Piazza and Delp 2001]. The initial 

position and velocity were input to the model along with muscle activation from EMG and the 

rotations of the hip and ankle.  Unlike other previously mentioned full body models [Fernandez 

2008, Shelbourne 2005, Anderson 2001], the tibiofemoral and patellofemoral joints were both 

6 degrees of freedom giving the model a total of 12 degrees of freedom and the geometry was 

described using three-dimensional polyhedral meshes.  A collision detection algorithm was 

used to determine the number of contact points in the knee.  Muscle inputs were derived from 

muscle activations from EMG which were input to a Hill-type muscle model along with passive 

and active force-length curves.  The contact forces on the medial and lateral side were 

determined using an algorithm that allowed for separation of either condyle but did not allow 

for inter-body penetration.  This allows for liftoff to  occur, however as the author states, this 

method may also account for the inaccuracies in the contact force results as there are more 

than one solution for the interaction forces if there are several contact points.  The flexion and 

internal rotation results were acceptable when compared to a TKA analyzed during a step-up 
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activity using fluoroscopy, however the anterior/posterior translations were high for the 

simulation when compared to experimental results.  The author contributes this to the 

possibility that the diminished axial compression force and the lack of friction force may limit 

the constraint of the model.  Overall this is one of the only models that attempts a forward 

dynamic simulation and compares it to in vivo data from fluoroscopy.  Collision detection and 

the method employed to derive contact forces has an advantage over some rigid body models 

in that different models do not need to be created for different contact conditions (model 

allows for condylar lift-off with one contact or normal articulation with two contacts). However, 

using meshes in general in forward solution modeling can lead to discontinuities which can 

affect the ability of the solver to continue [Piazza and Delp 2001]. 

Bei and Fregly introduced a system of representing geometry using trimmed NURBS.  The 

contact pressures were calculated with RBSM.  Since the algorithm is used in conjunction with 

multi-body dynamics software, the contact forces are needed so the pressure is multiplied by 

the area of the deformed springs.  This article is geared towards describing the contact 

algorithm they used, however it is also cited as one of the few dynamic simulations in the 

literature [Bertozzi 2006].  This model is not purely forward, however, as the dynamic model of 

gait presented prescribes the flexion extension (FE) angle, internal-external (IE) rotation and AP 

translation of the femoral component obtained from fluoroscopic analysis while the medio-

lateral (ML) and superior inferior (SI) translations and varus-valgus (VV) rotation were 

calculated with forward dynamics.   An axial load was placed on the femoral component which 

was loaded off center 70% and 30%, medially and laterally, respectively [Bei and Fregley 2004]. 
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No patellofemoral joint, ligaments or other soft tissue structures are included in the 

musculoskeletal model. 

More recently explicit finite element models, like those mentioned above which model 

cadaveric simulators, have been used to determine kinematics while modeling the 

musculoskeletal, soft tissue and articulating geometry while also calculating the contact 

stresses [Barink 2005, 2008].  Barink et al. constructed a finite element simulation of a deep 

knee bend starting at 70 degrees of flexion comparing high flexion with standard PS Rotating 

Platform (RP) TKA (Sigma RP and Sigma RP-F) with the patellofemoral joint included [Barink 

2008].  The femur was fixed and GRF applied to the tibia which is allowed to move in all 6 

directions relative to the femur along with the patella relative to the femur.   The tibia was 

constrained at the ankle with a torsional spring to simulate friction between the foot and the 

ground.  Force was applied to the patella representing the quadriceps force by resisting 

movement using actuators.  No ligaments besides the patellar ligament were included but 

damping was included in the model to prevent oscillation and numerical problems [Barink 

2008]. An earlier model by this author [Barink 2005] took 24 hours to complete an extension 

maneuver.  The publication of this latest model did not indicate the computational time. 

Kessler et al presented a study in which a cadaveric and computational simulation of an open-

kinetic-chain knee extension was performed.  The computational model was developed using 

MSC.ADAMS and rigid body models.  The bony ligament attachments from the cadaver were 

scaled to a medium sized male model and a Scorpio CR fixed bearing TKA and a Scorpio CR RP 

design were virtually implanted in the computational model.  Quadriceps angle off of the 
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patella was placed at 5.0 degrees valgus and contact was calculated between the femur and the 

tibia, the patella and the trochlear groove and the quadriceps tendon and the trochlear groove.  

Actuators attached to the proximal quadriceps tendon translated proximally along the femur 

creating a moment about the tibiofemoral joint.  Kinematics of the tibiofemoral joint, 

patellofemoral joint and contact forces at each were calculated during the dynamic simulation. 

The simulation was validated using cadavers implanted with instrumented TKA.  The kinematics 

and kinetic data from the simulation fell within the range of the cadaveric data and followed 

the trends well except for patellar lateral shift after 60 degrees.  After validation determined 

that the model was getting satisfactory results, simulations were performed where the femoral 

component was malrotated +/- 3 degrees from  the epicondylar axis for different simulation 

using a fixed bearing and rotating bearing TKA. 

KneeSIM which uses MSC.ADAMS as its computational engine is the orthopaedic industry 

standard for dynamic forward simulation of TKA.  Morra et al. have several publications which 

use this software to simulate activities [Morra 2008, Morra 2006] along with Innocenti et al. 

[Innocenti 2008].  The results these researchers achieve along with others that use ADAMS are 

validated with experimental data to varying degrees.  Criticism of ADAMS however has been 

stated about the way the software calculates “rigid contact” [Sharf 2006].  Many of the models 

reviewed in this introduction use a bed of springs on a rigid body to determine the contact 

pressures. If the contact force is desired, it is determine from these pressures and the contact 

area.  ADAMS uses a penalty method.  The most rudimentary application of the penalty method 

uses a simple linear relationship 
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𝐹 = 𝑘𝑥𝑛  

where F is the force applied at the calculated contact point, usually the center of an ellipse 

determine using Hertzian contact theory, x is the penetration of the point into the other body 

and k and n  are the stiffness coefficient and the power exponent, respectively [Sharf 2006].  

This is called a compliant model, the larger the coefficient k and the power n, the more rigid the 

contact becomes.  MSC.ADAMS uses a slightly more complicated formulation of the compliant 

contact model 

𝐹 = 𝑘𝑥𝑛 +  𝑏(𝑥)�̇� 

where b is a cubic function of the penetration and acts as a damping factor [Sharf 2006].  This 

damping factor allows for energy dissipation during collision, which could be useful if modeling 

condylar lift-off.  This software continues to evolve the way it deals with contact, however it still 

may be difficult to determine the values that should be used for the coefficients (b and k) and 

the exponent n [Sharf 2006], especially in a complicated contact scenario like that seen in the 

knee.  The second is when normal non-colliding contact is the case, as it is for the majority of 

the time in the tibiofemoral joint and the patellofemoral joint during weight-bearing activities, 

there is a dissipation of energy, which does not hold true to the true nature of rigid body 

contact [Sharf 2006].  These concerns are fairly minor when you look at the power and 

functionality of the KneeSIM software, however it may indicate why contact forces are rarely 

reported in studies that use this model.  The main issue to consider in the KneeSIM model is 

that it evaluates TKA in a model of a knee simulator.  The model is not truly physiological with 

separate quadriceps muscles, hamstring muscles and a trunk which can rotate at the hip, 
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changing the location of the trunk COM relative to the knee and foot and location of the ankle 

joint.  The goal of the computational TKA analysis described in this dissertation is to determine 

the TKA performance in vivo. 

When dealing with a simulation as complicated as the knee in three dimensions, all the 

elements going into the model need to be well understood and have some basis in the physical 

world.  It can be hard to predict exactly what effect adding even something minor into the 

model will have.   Just like Goodfellow and O’Connor’s analogy of the knee as a tent, every 

element included in the model has a role in dictating the results it puts forth. 

 



 

 

 

 

 

 

Chapter 3: Materials and Methods 
The development of the forward solution computational model of the knee described in this 

dissertation report was a progression from an initial simplistic model representing a non-weight 

bearing exercise with idealized structures and joints to a more advanced model that was more 

complicated in nature, having a greater number of physiological parameters.  A stepwise 

approach was utilized, allowing for verification of the model and assurance that each element 

of the model was implemented correctly.  The end result of this research project was two very 

different models.  The first is a rigid body model representing a non-weight bearing active leg 

extension and the second, a model of a weight bearing deep knee bend.   

Both rigid body models were developed using AUTOLEV® (Online Dynamics, Inc., Palo Alto, CA, 

USA), a symbolic manipulator specifically designed to determine the equations of motion of 

multi-body systems using Kane’s Dynamics (Kane, 1985).  Kane’s Dynamics is a vector based 

method.  These vectors are expressed in coordinate systems or reference frames which are 

attached to bodies with mass and inertial properties or to massless frames.  The position 

vectors, forces and constraints applied to the model are all based on vectors with a direction 

and magnitude expressed in these reference frames.  The equations of motion and code to 
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execute the simulation are output in C.  This code can be modified to add any elements to the 

model which cannot be expressed within the AUTOLEV® software.  Once an executable file is 

compiled, the parameters of the model can be changed without recompiling, allowing the user 

to change geometric constraints, subject’s body mass, implant orientation, ligament stiffness 

and any number of other parameters.  This approach is valuable for conducting a sensitivity 

analysis, verifying which parameters each model is sensitive to during each of the activities. 

Bodies and Contact 

Non-Weight Bearing Extension 

The non-weight bearing model simulates an active extension exercise with the lower leg 

hanging at 90° and extending through activation of the quadriceps to full extension (0° or 

parallel to the ground).  The model consists of 4 bodies with mass and inertial properties 

(Figure 2 and Table 1).  Each of these bodies has a coordinate system comprised of orthogonal 

unit vectors.  The 1> directional unit vector for each of the respective coordinate systems (for 

example FEMUR1>) points in the anterior direction, 2> points in the superior direction and 3> 

points in the lateral direction (Figure 1).  The pelvis and femur are represented by respective 

bodies PELVIS and FEMUR, each fixed to the lab global coordinate system (N).  

The patellofemoral joint (PFJ) is represented by the interaction at the patella interface 

represented by bodies PAT and FEMUR.  The tibiofemoral joint (TFJ) is represented by the 

interaction between the tibia, represented by bodies TIBIA and FEMUR. TIBIA has 3 degrees of 

freedom constrained by the motion of two contact points which are kept from penetrating the 
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femur using two auxiliary generalized speeds and an additional constraint in the mediolateral 

translation.  PAT has three degrees of freedom constrained by the movement of two contact 

points and also a constraint which prescribes patella flexion as a function of knee flexion.  The 

forces required to constrain the movement of the contact points represent the interaction 

forces for the medial and lateral condyles of the TFJ and for the two contact points representing 

the PFJ. 

Physiological origins for the hamstrings and quadriceps muscles are used to apply a force to the 

model which drives the extension of the tibia.  The quadriceps force vectors represent the 

physiological muscles which make up the quadriceps, the vastus medialus, vastus intermedius, 

vastus lateralus and rectus femoris.  Each of these muscles is represented by four equally 

distributed force vectors which are modeled at the insertion and origin attachment sites.  The 

hamstrings are also modeled according to their insertion site on the tibia and origin site on the 

femur with four force vectors representing each the medial (semimembranosus and 

semitendinosus) and lateral (biceps femoris) muscles of the hamstring.  A modified 

proportional-integral-derivative (PID) controller was also developed to control the rate of 

flexion by adjusting the quadriceps force. 
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Figure 2: Free Body Diagram of active extension model of a right leg.  The PELVIS is constrained to N (Lab) in all 6 
DOF and the FEMUR is constrained to the PELVIS in all 6 DOF. The TIBIA and PAT bodies have three degrees of 
freedom each.  A constraint at a point on the tibia near the joint center constrains M/L movement of the TIBIA 
in the FEMUR3> direction. Green numbers and arrows represent ligament forces modeled as non-linear springs.  
Blue numbers represent constraints. Yellow arrows represent geometric constraints and blue arrows represent 
constraints that are an assumption of the model.  See Table 1 for more details. 
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Table 1: Description of Active Non-Weight Bearing Extension model.  Refer to Figure 2. 

SUMMARY OF ACTIVE NON-WEIGHT BEARING EXTENSION MODEL OF A RIGHT LEG 
GRAVITY Gravity acts in the –1*N2> direction 
BODIES -PELVIS (fixed), FEMUR (fixed), PATELLA (3 DOF), TIBIA (3 DOF) 

-Mass and inertial properties calculated from literature 
-Orthogonal system of unit vectors established for each body 
1> points anterior 2> points superior 3> points lateral 

CONSTRAINT FORCES (BLUE 
NUMBERS AND BLUE AND YELLOW 
ARROWS ON Figure 2) 

1. Medial TF Geometric Constraint force acting between FEMUR 
and TIBIA in the MTFN> direction 
2. Lateral TF Geometric Constraint force acting between FEMUR 
and TIBIA in the LTFN> direction 
3. Constrain M/L Movement of the TIBIA in FEMUR3> 
4. Medial PF Geometric Constraint force acting between FEMUR 
and TIBIA in the MPFN> direction 
5. Lateral PF Geometric Constraint force acting between FEMUR 
and TIBIA in the LPFN> direction 
6. Constrain Rotation of PAT in PAT3> with Knee Flexion 
7.FEMUR is constrained in 6 DOF to PELVIS 
8. PELVIS is constrained in 6 DOF to N (Table) 

LIGAMENT FORCES (GREEN 
NUMBERS AND ARROWS ON 
Figure 2)  

1. Patella Ligament 
Medial and lateral, Two Bundles Each 
2. Medial Collateral Ligament 
Three Bundles includes wrapping 
3. Lateral Collateral Ligament 
One Bundle 
4. Posterior Cruciate Ligament and Anterior Cruciate Ligament 
Two Bundles Each 
5-6. Lateral and Medial Patellofemoral Ligaments 
Three Bundles for Each 

ACTIVE MUSCLE FORCES (IN RED 
ON Figure 2) 

-QUAD FORCES are applied to PAT at the insertion points and 
FEMUR at the muscle origin points.  Controlled using a PID 
controller with an additional acceleration feed-back loop element 
and a proportional controller which stabilizes PAT tilt 
-HAM FORCES may be applied to the insertion point on the tibia 
and origin point on the femur and are a function of knee flexion 

IMPORTANT ASSUMPTIONS -Rigid body model does not allow for condylar lift-off.  As long as the TF 
constraint forces (1,2 above) are in compression this is a reasonable 
assumption 
-PAT flexion is prescribed as a function  of knee flexion 
-TIBIA translation in FEMUR3> is constrained 
-Contact point on FEMUR and on PAT are prescribed as a function of 
flexion 
-Geometry represented by constraining the velocity of contact points in 
the direction of the tibial or trochlear groove surface normals (LTFN>, 
MTFN>, LPFN>, MPFN>) to 0. 
-Ligaments are modeled as non-linear springs with damping 
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Articulating Geometry 

An important assumption of the model is that the TFJ contact points on the femur are specified 

as the lowest point on the femur as a function of knee flexion.  These contact points were 

found using a graphical user interface developed for this project in Matlab 7.8.0 R2009b (The 

MathWorks, Inc. Natick, MA, USA) (Figure 3).  The PFJ contact points on the patella were also 

specified as a function of flexion.  This assumption was verified with data collected for this 

investigation.  If the location of the tibia was known, the position of the TFJ contact point could 

be found in the tibial reference frame.  An assumption of the tibiofemoral contact point on the 

femur throughout the flexion cycle, allowed the geometry to be defined for both the femur and 

the tibia.  The motion of the tibia on the femur was constrained to a specified geometry of the 

tibial articulating surface (Figure 4) or in the case of the patellofemoral joint, the trochlear 

groove (Figure 5). 

The tibial or trochlear groove articulating geometries were defined by finding the two 

sequential angles necessary to “aim” a vector in space (Figure 6).  These two angles were 

mapped in a specified reference frame on either a normal tibial CAD model obtained from a CT 

scan (Figure 7) or from the CAD model of a TKA polyethylene insert (Figure 8-Figure 9).  A 

multivariate polynomial function was fit to the angular data over the tibial surface so that the 

orientation of the geometry normal direction was described over the articulating surface.   
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Figure 3:  Screenshot of a graphical user interface (GUI) developed to determine the assumed contact points on 
the femur for this model.  This is the posteromedial view of the normal knee femoral condyles with the path of 
the contact points found using the GUI. 

 

Figure 4:  Diagram showing how tibiofemoral contact is modeled with tibial geometry.  The geometry of the 
medial and lateral femur is expressed as a point on the medial (FTM) and lateral (FTL) condyle.  FTM and FTL 
change position in the femoral reference frame as a function of flexion.  TFL and TFM are the tibial contact 
points.  The distance between TFL and FTL and TFM and FTM is set to 0>.  TFL and TFM can translate along 
planes set parallel to the boney geometry of the tibia (velocity in normal LTFN> and MTFN> are constrained to 0) 
at the position of TFM and TFL in the tibial reference frame.  Medial (FM>) and lateral (FL>) contact forces are in 
the LTFN> and MTFN> directions, respectively.  FRL> and FRM> are friction forces.   
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Figure 5:  Diagram showing how patellofemoral contact is modeled with trochlear geometry.  The geometry of 
the medial and lateral backside patella is expressed as a point on the medial (PFM) and lateral (PFL) surface.  
PFM and PFL change position in the patella reference frame as a function of flexion determine from flouroscopic 
analysis of the patellofemoral contact point.  FPL and FPM are the femoral contact points.  The distance 
between PFL and FPL and PFM and FPM is set to 0.  FPL and FPM can translate along planes set parallel to the 
boney geometry of the trochlear groove (velocity of the contact points is 0 in the direction of thenormal MPFN> 
and LPFN>) at the position of FPM and FPL in the femoral reference frame.  Medial (FPATM>) and lateral 
(FPATL>) contact forces are in the MPFN> and LPFN> directions, respectively.  FRL> and FRM> are friction forces.   
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Figure 6: Demonstrating how a vector can be described using two sequential rotations, one about X> and one 
about Y’>.  Multiple vectors can be expressed over a grid to represent the normal vectors from geometry.  
Rotations can be expressed as polynomials or spline functions. 
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Figure 7: Proximal surface of a right normal tibia with the normals from each face of the CAD model displayed. 

 

Figure 8: Articulating surface of the Medial Pivot® polyethylene insert by Wright Medical Technology, Inc. 
(Memphis, TN) with normals from each face of the CAD model displayed.  
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Figure 9: Normal vectors from the faces of a Medial Pivot® TKA polyethylene insert from Wright Medical 
Technology, Inc.  These vectors can be mapped in the AP (up/down in this diagram) and ML (left/right) and a 
function can be fit to represent the two angles needed to find the orientation of the normal vectors. 

 

This function could then be altered to change the articulating geometry while keeping all other 

parameters of the model similar in nature.  Software was developed to calculate the 

multivariate polynomial and insert this geometry to the model (Figure 10).  Multivariate 

polynomials from first to fifth degree were fit to the angular data and the polynomial that best 

represented the geometry and/or had the highest coefficient of determination (R2) was used in 

the simulation.  By discretely integrating the angular data over the geometric surfaces, an 

estimation of the geometry could be viewed and compared to the actual geometry (Figure 11).  
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The coefficients of the polynomial model could also be edited if needed. For the models 

included in this dissertation the mediolateral conformity (the second rotation angle about the 

1> direction or in the coronal plane) was set to a constant value so that only the sagittal 

curvature was represented.  This same process is also used to represent the trochlear groove 

contact geometry of the patellofemoral joint.  However, as the knee goes farther past 90 

degrees flexion, this representation becomes inaccurate and assumed orientation of the normal 

is used.  

 

Figure 10: Software developed to calculate and choose the best polynomial representation of the angles 
representing the normal directions of the tibial or trochlear groove geometry.  In the case of the Teletibia TKA 
lateral insert geometry, shown in this image, the polynomial which fit best was first degree with an R2 value of 
0.9977. 



 

49 

 

 

Figure 11: View of software developed to edit the multivariate polynomial and view the estimated geometry 
compared to actual geometry of the implant. The implant in this figure is the Teletibia TKA.   The estimated 
geometry for the lateral insert is shown with the colored dots.  Notice that the estimated sagittal curvature 
matches well with the actual curvature of the implant. 

The position and orientation of the TIBIA reference frame relative to FEMUR was known. 

Therefore, the location of the medial and lateral contact points could be found in the TIBIA 

reference frame.  The orientation angles were mapped on the tibia or polyethylene insert in the 

TIBIA1> and TIBIA3> directions relative to reference point TIBREF. Therefore, the orientation 

angle values, using the position vectors from TIBREF to the medial and lateral contact points, 

TFM and TFL, can be found. The components of these position vectors needed to find the 

orientation angles were found by taking the dot product of the position vector from TIBREF to 

TFM or TFL (TIBREFTFM> or TIBREFTFL>, respectively) with the TIBIA1> and TIBIA3> directional 

unit vectors. 
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 TIBREFTFM1 = TIBREFTFM> ∙  TIBIA1> (1.1)  

 TIBREFTFM2 = TIBREFTFM> ∙ TIBIA2> (1.2)  

 TIBREFTFL1 = TIBREFTFL> ∙ TIBIA1> (1.3)  

 TIBREFTFL2 = TIBREFTFL> ∙ TIBIA2> (1.4)  

Using the values from equations 1.1 to 1.4 the orientation of the medial and lateral normal 

vectors, LTFN> and MTFN>, were calculated.   

 𝑂𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑀𝑇𝐹𝑁 > = 𝑓(𝑇𝐼𝐵𝑅𝐸𝐹𝑇𝐹𝑀1,𝑇𝐼𝐵𝑅𝐸𝐹𝑇𝐹𝑀2) (1.5)  

 𝑂𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝐿𝑇𝐹𝑁 > = 𝑓(𝑇𝐼𝐵𝑅𝐸𝐹𝑇𝐹𝐿1,𝑇𝐼𝐵𝑅𝐸𝐹𝑇𝐹𝐿2) (1.6)  

The equation for the position of the contact points in each of these frames was then found. 

 𝑃𝑂𝑆𝑇𝐹𝑀𝑀𝑇𝐹𝑁 = 𝑇𝐼𝐵𝑅𝐸𝐹𝑇𝐹𝑀 >∙ 𝑀𝑇𝐹𝑁 > (1.7)  

 𝑃𝑂𝑆𝑇𝐹𝐿𝐿𝑇𝐹𝑁 = 𝑇𝐼𝐵𝑅𝐸𝐹𝑇𝐹𝐿 > ∙ 𝐿𝑇𝐹𝑁 > (1.8)  

The derivative of equations 1.7 and 1.8 over time is the velocity of the contact points in the 

direction of the normal vectors.  This equation is a function of the six generalized speeds 

(𝑈1 − 𝑈6) governing the velocity of the tibia. 

 𝑉𝐸𝐿𝑇𝐹𝑀𝑀𝑇𝐹𝑁 =
𝑑𝑃𝑂𝑆𝑇𝐹𝑀𝑀𝑇𝐹𝑁

𝑑𝑡
= 𝑓(𝑈1, … ,𝑈6) (1.9)  

 𝑉𝐸𝐿𝑇𝐹𝐿𝐿𝑇𝐹𝑁 =
𝑑𝑃𝑂𝑆𝑇𝐹𝑀𝑀𝑇𝐹𝑁

𝑑𝑡
= 𝑓(𝑈1, … ,𝑈6) (1.10)  

The results from equations 1.9  and 1.10 represent two simultaneous equations which were 

rearranged to solve for two of the generalized speeds in terms of the remaining four.  An 

additional ML constraint was also placed on the tibia.  In the case of the TFJ constraints, the 

translational generalized speeds in the TIBIA1>, TIBIA2> and TIBIA3> directions were 

constrained, leading to a tibial system with three degrees of freedom, but this system can 
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rotate and translate in all six directions.  The constraining forces at the medial and lateral 

contact points are applied in the LTFN>, MTFN> and FEMUR3> directions.  

The articulating geometry of the PFJ is represented in a very similar manner as described 

previously for the TFJ.  However, instead of defining the contact points defined on FEMUR in 

the TIBIA reference frame, the medial and lateral contact points defined on PAT, PFM and PFL, 

respectively, were found in the FEMUR reference frame.  Assuming the orientation angles 

representing the normals in the medial and lateral trochlear groove, MPFN> and LPFN>, 

respectively, are mapped in the FEMUR2> and FEMUR3> directions from a reference point 

FEMREF the components of the position vectors from FEMREF to PFM and PFL in FEMUR2> and 

FEMUR3> were found and the remaining calculations are performed to find the two 

simultaneous equations. 

 FEMREFPFM2 = FEMREFPFM> ∙ FEMUR2> (1.11)  

 FEMREFPFM3 = FEMREFPFM> ∙ FEMUR3> (1.12)  

 FEMREFPFL2 = FEMREFPFL> ∙ FEMUR2>  (1.13)  

 FEMREFPFL3 = FEMREFPFL> ∙ FEMUR3>  (1.14)  

 𝑂𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑀𝑃𝐹𝑁 > = 𝑓(𝐹𝐸𝑀𝑅𝐸𝐹𝑃𝐹𝑀2,𝐹𝐸𝑀𝑅𝐸𝐹𝑃𝐹𝑀3) (1.15)  

 𝑂𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝐿𝑃𝐹𝑁 > = 𝑓(𝐹𝐸𝑀𝑅𝐸𝐹𝑃𝐹𝐿2,𝐹𝐸𝑀𝑅𝐸𝐹𝑃𝐹𝐿3) (1.16)  

 𝑃𝑂𝑆𝑃𝐹𝑀𝑀𝑃𝐹𝑁 = 𝐹𝐸𝑀𝑅𝐸𝐹𝑃𝐹𝑀 > ∙ 𝑀𝑃𝐹𝑁 > (1.17)  

 𝑃𝑂𝑆𝑃𝐹𝐿𝐿𝑃𝐹𝑁 = 𝐹𝐸𝑀𝑅𝐸𝐹𝑃𝐹𝐿 > ∙ 𝐿𝑃𝐹𝑁 > (1.18)  

 𝑉𝐸𝐿𝑃𝐹𝑀𝑀𝑃𝐹𝑁 =
𝑑𝑃𝑂𝑆𝑃𝐹𝑀𝑀𝑃𝐹𝑁

𝑑𝑡
= 𝑓(𝑈7, … ,𝑈12) (1.19)  

 𝑉𝐸𝐿𝑃𝐹𝐿𝐿𝑃𝐹𝑁 =
𝑑𝑃𝑂𝑆𝑃𝐹𝐿𝐿𝑃𝐹𝑁

𝑑𝑡
= 𝑓(𝑈7, … ,𝑈12) (1.20)  
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In the case of the patella, the simultaneous equations 1.19 and 1.20 can be solved for the 

translational generalized speeds in PAT1> and PAT3> directions.   

The geometry is defined and constrained through the velocities in the model, if the initial 

position is correct and the time step is small, the speed constraints should constrain the model 

to the spatial constraints.   If the time step is too large and there is a large amount of 

movement between time steps, there is a risk of the contact point leaving the defined surface.  

Therefore, the time step for the model is kept small, around 0.0001 seconds. 

Weight Bearing Deep Knee Bend 

The DKB model consists of the same number of bodies as the extension model (Figure 13).  

However, TIBIA translation is constrained to the floor (N) at the ankle center and the rotation of 

TIBIA is prescribed as a function of knee flexion. PAT has the same 3 degrees of freedom (DOF) 

as described in the extension model, but now the FEMUR has 3 DOF, rather than the TIBIA.  Like 

the TIBIA in the extension model, the FEMUR is constrained by the motion of the two contact 

points. An important change to the deep knee bend model is the constraining of the motion of 

the femoral head in the medial/lateral direction.  This constraint acts as the stabilizing effect of 

the contralateral leg which prevents large M/L translation.  With or without this stabilization, 

the model does run to completion (140 degrees flexion).  However, with the constraint the 

position of the femoral head moved unrealistically far medially, especially in later flexion, 

resulting in unrealistic amounts of tibiofemoral axial rotation leading to unstable tibiofemoral 

kinematics, also affecting the PFJ kinematics.  The 3 degrees of freedom are all rotational in 

nature, but the femur does have freedom to translate in all three directions. However these 
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translations are dependent on the tibiofemoral geometry and the hip constraint applied at the 

femoral head. The TFJ contact positions on the femur are still found the same way as in the 

extension model using the GUI mentioned previously (Figure 12). 

 

Figure 12:  Screenshot of a graphical user interface developed to determine the assumed contact points on the 
femur for this model.  This is for a TKA femoral component in this case for the Teletibia TKA used in one of the 
deep knee bend models. 

 

The PELVIS represents the upper body or trunk of the subject.  The mass center is placed at the 

center of mass of the trunk.  The translation of PELVIS is constrained to the femoral head on 

FEMUR.  The rotation of the trunk is prescribed as a function of knee flexion.  Pelvic flexion is 

prescribed because a subject tends to lean forward while performing a deep knee bend. 
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Figure 13: Free Body Diagram of the weight bearing deep knee bend model including joint constraining forces 
applied using geometry, ligament forces, active muscle forces, ground reaction forces, hip forces, opposite leg 
force in medial/lateral direction. This model includes four bodies, TIBIA, PAT, FEMUR and PELVIS (TRUNK). The 
TIBIA body is constrained in all three rotations and translations at the ANKLE CENTER in N. The FEMUR has three 
degrees of freedom although it can move in all 6 degrees of freedom.  The translational speeds are constrained 
at the medial and lateral contact point and at the FEMORAL HEAD in the PELVIS3> direction. The PAT body 
representing the patella has two contact points with the FEMUR and three DOF.  The ligaments forces are 
modeled as spring-damper systems with two spring elements per bundle.  The QUAD and HAM forces are inputs 
to the model and are applied at attachement points on the patella and tibia, with origins on the FEMUR and 
PELVIS.  Each force vector in this diagram represents four distributed force vectors applied to the respective 
bodies.   The QUAD FORCES are controlled with a controller, which stabilizes the patella, embedded with a 
modified PID controller, which controls flexion, with an additional flexion acceleration feedback.   
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Table 2: Description of Weight Bearing Deep Knee Bend model.  Refer to Figure 13 for picture. 

SUMMARY OF WEIGHT BEARING DEEP KNEE BEND MODEL OF A RIGHT LEG 
GRAVITY Gravity acts in the –1*N2> direction 

BODIES -PELVIS (3 rotations specified, fixed to femoral head), FEMUR (3 DOF), PATELLA (3 
DOF), TIBIA (3 rotations specified, fixed to N (ground) at the ANKLE CENTER) 
-Mass and inertial properties calculated from literature 
-Orthogonal system of unit vectors established for each body 
1> points anterior 2> points superior 3> points lateral 

CONSTRAINT FORCES (BLUE 
NUMBERS AND BLUE AND YELLOW 
ARROWS ON Figure 2) 

1. Medial TF Geometric Constraint force acting between FEMUR and TIBIA in the 
MTFN> direction 
2. Lateral TF Geometric Constraint force acting between FEMUR and TIBIA in the 
LTFN> direction 
3. Medial PF Geometric Constraint force acting between FEMUR and TIBIA in the 
MPFN> direction 
4. Lateral PF Geometric Constraint force acting between FEMUR and TIBIA in the 
LPFN> direction 
5. Constrain Rotation of PAT in PAT3> with Knee Flexion 
6.TIBIA translation constrained to N (ground) at ANLE CENTER 
7. 3 TIBIA rotations specified as function of knee flexion 
8. PELVIS translation is constrained to the femoral head on FEMUR (FEMHEAD) 
9.  3 PELVIS rotations in N are specified as a function of knee flexion 
10. Mediolateral translation of the point on FEMUR, FEMHEAD, in the PELVIS3> 
direction is specified as a function of flexion 

LIGAMENT FORCES (GREEN 
NUMBERS AND ARROWS ON 
Figure 2)  

1. Patella Ligament 
Medial and lateral, Two Bundles Each 
2. Medial Collateral Ligament 
Three Bundles includes wrapping 
3. Lateral Collateral Ligament 
One Bundle 
4. Posterior Cruciate Ligament and Anterior Cruciate Ligament 
Two Bundles Each 
5-6. Lateral and Medial Patellofemoral Ligaments 
Three Bundles for Each 

ACTIVE MUSCLE FORCES (IN RED 
ON Figure 2) 

-QUAD FORCES are applied to PAT at the insertion points and FEMUR at the muscle 
origin points.  Controlled using a PID controller with an additional flexion 
acceleration  feedback element and a controller which stabilizes PAT tilt 
-HAM FORCES may be applied to the insertion point on the tibia and origin point 
on the femur and are a function of knee flexion 

IMPORTANT ASSUMPTIONS -Rigid body model does not allow for condylar lift-off.  As long as the TF constraint 
forces (1,2 above) are in compression this is a reasonable assumption 
-PAT flexion is prescribed as a function  of knee flexion 
-The mediolateral constraint at FEMHEAD acts as the stabilization provided by the 
contralateral leg 
-Contact point on FEMUR and on PAT are prescribed as a function of flexion 
-Geometry represented by constraining the velocity of contact points in the 
direction of the tibial or trochlear groove surface normals (LTFN>, MTFN>, LPFN>, 
MPFN>) to 0. 
-Ligaments are modeled as non-linear springs with damping 
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Ligaments and Muscle Modeling 

Quadriceps and Hamstring Forces 

The active muscle forces used as input to this model play an important role in determining the 

kinematics and kinetics occurring in this weight-bearing knee model.  The location of the origin 

and insertion sites were determined using CAD models built from computed tomography (CT) 

scans of a subject with a normal knee (IRB# UT 7756B & Sterling 3088) (Figure 14). 

 

Figure 14:  Anterior view of the patella with points for insertion of the patella ligament (PAT 
LIG), LPFL, MPFL and the quadriceps tendon. 

The quadriceps force is applied to the femur, patella and through the extensor mechanism and 

the patella ligament, the tibia and controls the motion of the leg and contributes to the 

interaction forces at the TFJ and PFJ. From 0 to approximately 70-90 degrees knee flexion, the 
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four quadriceps muscles are each modeled as equal and opposite forces acting on the femur 

and the patella.   Quadriceps muscle wrapping on the femur is modeled in greater degrees of 

flexion as frictionless.  The summation of the force vectors at the wrapping point are applied to 

the wrapping via points (Figure 15).  There is one wrapping point for each quadriceps muscle 

element (four for each of the four quadriceps muscles).  The hamstrings, modeled as four 

medial and four lateral elements on the tibia and the femur apply a small co-contraction force 

during both the extension and weight bearing flexion models.   

 

Figure 15: Close-up of the calculation of forces occurring at a wrapping point.  Points O, W and I are the origin of 
the quad muscle, wrapping point and insertion, respectively.  F is the quad muscle force and P_I_W> and other 
vectors are unit vectors pointing from the first point in the name to the second.  This same concept is also 
applied to wrapping ligaments such as the MCL. 
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Quadriceps Force Controller 

The force in each of the four muscles making up the quadriceps femoris is determined by a 

factor ranging between 0.1 and 6.  An example of initial values for these factors for the vastus 

lateralis (𝑄𝑉𝐿), vastus intermedius (𝑄𝑉𝐼), rectus femoris (𝑄𝑅𝐹) and vastus medialis (𝑄𝑉𝑀) are 0.5, 

4.0, 0.9 and 0.5 respectively.  The magnitude of the force vectors representing each muscle is 

determined by multiplying this factor with a variable, 𝑄𝑇, resulting in a total quadriceps force of 

𝑄𝑇𝑂𝑇.   

 𝑄𝑇𝑂𝑇 = 𝑄𝑇 ∗ (𝑄𝑉𝐿 + 𝑄𝑉𝐼 + 𝑄𝑅𝐹 + 𝑄𝑉𝑀) (1.21)  

Before the implementation of the controller, 𝑄𝑇 was a function which changed with knee 

flexion.  This method worked well for the extension model because quadriceps forces from 

cadaver tests were used as an initial guess and simple adjustments to the function generally 

gave good and expected results.  A function based on values from literature even worked well 

enough to test many of the early iterations of the DKB model.  However, in order to truly 

represent a deep knee bend and get the knee model to flex at a desired rate, the value of 𝑄𝑇 

needed to be adjusted using a technique, equation or process that was more sophisticated than 

simply a temporal function or function of flexion. 

The controller used to adjust the quadriceps force went through several iterations.  It was 

assumed that a PID controller would theoretically work well for an activity like a DKB because it 

is generally accepted that the quadriceps force increases as the knee goes into deeper flexion.   

Also, it is known that increasing quadriceps force results in an increased extension moment, 

which decreases the rate of flexion.  One of several challenges in implementing a PID controller 
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in a computational knee model which flexes to deep flexion, however, is tuning the controller.  

The conditions of the system change constantly as the knee goes into deeper flexion.  Gains 

which work well from 0 to 45 degrees of flexion will not necessarily work well after 45 degrees 

of flexion. After quadriceps wrapping comes into effect the conditions of the system changed 

more than anticipated. Also, the goal is not only to reduce the error between the actual and 

desired flexion but also to get reasonable quadriceps force results.  A set of gains may result in 

low error, but result in erratic jumps in the quadriceps force which are not realistic.  If the gains 

are too low, the error may be too high or there may be oscillations in the results. 

The resulting controller which worked best adjusted 𝑄𝑇 according to the error between desired 

knee flexion, 𝜃𝐹𝐸𝑀3𝑑𝑒𝑠  and actual knee flexion, 𝜃𝐹𝐸𝑀3 .  Two of the several other options 

explored used two process variables, either velocity or acceleration.  Both of these methods 

performed reasonably well when purely looking at the error between desired and actual 

velocity or acceleration. However, the goal in this case was to complete the exercise simulation 

from full extension to maximum flexion in a certain amount of time, with constant flexion rate 

and acceleration. The overall time to complete the simulation using velocity or acceleration as 

the process variable was greater or less than the goal time by unacceptable margins.  As would 

be expected smaller errors between desired and actual flexion velocity or acceleration result in 

larger errors in desired flexion. 

Using only knee flexion as the process variable worked reasonable well.  However, the 

performance was below expectations and unrealistic oscillations in the flexion rate were still 

present no matter how well the controller was tuned.  The advantage of using a computer 
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model is that the control scheme can be changed easily. Feedback loops can be added or 

removed with no cost in materials and little cost in time.  An additional feedback loop using the 

error between the desired and actual flexion acceleration was added to the controller (Note: 

this is not the second derivative with respect to time of the flexion error, but the angular 

acceleration of the femur about TIBIA3>, which adds an additional process variable to the 

controller).  Practically, using information about the angular acceleration of the femur allows 

the controller to proportionally adjust the quadriceps force according to what will happen, 

which should improve performance.   

Theoretically it makes sense that adding an angular acceleration error loop would improve 

performance.  The net torque of a body about an axis of rotation is governed by the equation, 

𝜏𝑛𝑒𝑡 = 𝐼𝛼.  For all cases presented in this dissertation the desired angular acceleration, α, was 

0.0°/s2.  Therefore the desired net torque, τnet, about the instantaneous axis of rotation (which 

lies somewhere between the femur and tibia within the knee joint) was 0.0 Nm. Once the 

femur reached the desired angular rate and acceleration, the controller adjusted the 

quadriceps force to counteract the external forces which apply a torque about the knee.  

Ideally, this adjustment in the quadriceps force should result in a net torque of 0.0 Nm.  The PID 

controller was close to finding the ideal quadriceps force while not considering angular 

acceleration.  However, by adding an adjustment proportional to angular acceleration error the 

quadriceps force could be “fine tuned” to more closely counteract the external torques, 

resulting in a net torque closer to 0.0 Nm.  By themselves, the PID controller or the angular 
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acceleration loop adjustment did not perform well.  Combining them, however, raised 

performance and stability to a level which was acceptable for this system. 

The controller was implemented around the differential equation solver (Figure 16).  Before the 

solver ran and after the previous time step, which occured in this model every 𝑖𝑛𝑡𝑔𝑠𝑡𝑝 seconds 

in model time (usually 10−4 seconds), the difference in the actual flexion and the desired 

flexion was determined, 

 𝑒(𝑡) = 𝜃𝐹𝐸𝑀3(𝑡 − 𝑖𝑛𝑡𝑔𝑠𝑡𝑝) − 𝜃𝐹𝐸𝑀3𝑑𝑒𝑠(𝑡 − 𝑖𝑛𝑡𝑔𝑠𝑡𝑝) (1.22)  

the instantaneous derivative of this error 𝑑𝑒(𝑡)/𝑑𝑡 and the integral of this error, ∫ 𝑒(𝑡)𝑑𝑡𝑡
0   

were also calculated.  These values were multiplied by their respective PID gains (𝐾𝑝,𝐾𝑖,𝐾𝑑, 

respectively). A flexion acceleration feedback element is also added to the controller.  The 

flexion acceleration error is determined by subtracting the actual flexion acceleration from the 

desired flexion acceleration 

 
𝑎𝑒(𝑡) =

𝑑2𝜃𝐹𝐸𝑀3(𝑡 − 𝑖𝑛𝑡𝑔𝑠𝑡𝑝)
𝑑𝑡2

−
𝑑2𝜃𝐹𝐸𝑀3𝑑𝑒𝑠(𝑡 − 𝑖𝑛𝑡𝑔𝑠𝑡𝑝)

𝑑𝑡2
 (1.23)  

and a gain, 𝐾𝑓𝑎, is multiplied to this error value. These values are added together. 

 
𝑄𝑇𝑎𝑑𝑗𝑢𝑠𝑡  = 𝐾𝑝 ∗  𝑒(𝑡) + 𝐾𝑖 ∗ � 𝑒(𝑡)𝑑𝑡

𝑡−𝑖𝑛𝑡𝑔𝑠𝑡𝑝

0
+ 𝐾𝑑

𝑑𝑒(𝑡)
𝑑𝑡

+ 𝐾𝑓𝑎

∗ 𝑎𝑒(𝑡) 
(1.24)  

This value is then added to the previous value of 𝑄𝑇 and the new value is input to the solver.  

 𝑄𝑇(𝑡) = 𝑄𝑇(𝑡 − 𝑖𝑛𝑡𝑔𝑠𝑡𝑝) + 𝑄𝑇𝑎𝑑𝑗𝑢𝑠𝑡 (1.25)  
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The gains are all positive values so that if the actual flexion is higher than the desired flexion 

(positive 𝑒(𝑡)) or if the derivative of the error is positive or the integral is positive then these 

terms will all increase the overall quad force, 𝑄𝑇 and if they are negative, they will decrease 𝑄𝑇.   

 

Figure 16: Diagram of position-integral-derivative (PID) controller with an additional flexion acceleration 
feedback loop used to adjust the quadriceps force to control flexion.  The controller is implemented around the 
solver (box labeled Forward Model in this diagram) and adds or subtracts to the value of 𝑸𝑻 before every time 
step (time step is 1 for this diagram).  Within this controller there is another controller which stabilizes the 
patella by adjusting 𝑸𝑽𝑳 and 𝑸𝑽𝑴, the factors for the vastus medialis and vastus lateralis (details in Figure 17). 

A recurring problem with the DKB simulations was instability of the patellofemoral joint, 

especially in patella tilt (rotation about PAT2> direction (Figure 13)), 𝜃𝑃𝐴𝑇2.  In order to stabilize 

the patella, a controller which adjusts the factors for the vastus lateralis, 𝑄𝑉𝐿 and the vastus 

medialis, 𝑄𝑉𝑀, was implemented (Figure 17).  The patella stabilization controller always adds or 

subtracts a force to the appropriate muscle that is proportional to the amount of tilt that occurs 

from the previous time step to the current time step.  There is also a constant force added or 

subtracted from the appropriate muscle if the amount of tilt occurring between time steps is 

increasing in the direction of tilt (see the upper most box in Figure 17).  Unlike the flexion 
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controller, instead of a desired tilt, the error, 𝑒𝑃𝐴𝑇2, is determined by using the previous time 

step tilt angle as the desired tilt and therefore calculates 𝑒𝑃𝐴𝑇2 using equation 1.26.  

 𝑒𝑃𝐴𝑇2(𝑡) =  𝜃𝑃𝐴𝑇2(𝑡 − 𝑖𝑛𝑡𝑔𝑠𝑡𝑝) −  𝜃𝑃𝐴𝑇2(𝑡 − 2 ∗ 𝑖𝑛𝑡𝑔𝑠𝑡𝑝) 
(1.26)  

 

The difference in error, 𝑑𝑒𝑃𝐴𝑇2(𝑡) is determined by subtracting 𝑒𝑃𝐴𝑇2(𝑡 − 𝑖𝑛𝑡𝑒𝑔𝑠𝑡𝑝) from 

𝑒𝑃𝐴𝑇2(𝑡). 

 

Figure 17: Diagram of the controller for patella stabilization.  𝒆(𝒕) in this diagram is 𝒆𝑷𝑨𝑻𝟐(𝒕) and Patella Tilt is 
𝜽𝑷𝑨𝑻𝟐 , discussed in the text.  This is implemented in line with the flexion controller (Figure 16). 

 

Ligament Attachment 

Like the quadriceps, the ligaments were represented by linear vectors in the model.  Several 

bundles for each ligament are included in the model, represented by two spring-damper 

elements each.  The attachment sites for all of the ligaments could be determined by examining 

the boney surface of the models obtained from CT scans and with assistance from the literature 
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(Figure 14, Figure 18 and Figure 19).   Although error in this process is inevitable, using multiple 

spring elements for each bundle makes the model a more forgiving to these errors. 

 

Figure 18: Distal view of a femur segmented from computed tomography scans with points 
chosen to determine the coordinates of the bony landmarks for the ACL, PCL, MCL and LCL. 

 

Figure 19: From left to right: Anterior, proximal and posterior view of the tibia showing with 
points for the ACL, PCL, MCL, LCL and patella ligament insertion points. 

 The medial collateral ligament (MCL) was modeled with the ligament directional force 

wrapping around the tibial bone.  The forces at the wrapping point were determined using the 
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same method as the quadriceps wrapping (Figure 15).  The wrapping point affects the length of 

the ligament, which affects the force, and also the direction of the force applied.   

Ligament Spring Model 

Non-linear spring models previously published [Shin 2007] which use ligament strain are used 

to calculate a part of the ligament forces.    

 
𝐹𝐿𝑖𝑔 𝑆𝑝𝑟𝑖𝑛𝑔 = �

0,
𝑘 2⁄ (𝐿 − 𝐿0),

𝑘[(𝐿 − (1 + 𝜀1)𝐿0],
�
𝜀 ≤ 0
0 ≤ 𝜀 ≤ 2𝜀1
2𝜀1 ≤ 𝜀

 (1.27)  

 𝜀 =
𝐿 − 𝐿0
𝐿0

  (1.28)  

 𝜀1 = 0.03 (1.29)  

 𝐿 = 𝐿𝑖𝑔𝑎𝑚𝑒𝑛𝑡 𝐿𝑒𝑛𝑔𝑡ℎ (1.30)  

 𝐿0 = 𝐿𝑖𝑔𝑎𝑚𝑒𝑛𝑡 𝑆𝑙𝑎𝑐𝑘 𝐿𝑒𝑛𝑔𝑡ℎ  (1.31)  

The slack length of the ligaments are not known and are considered patient specific.  In most 

cases, these slack lengths were adjusted from values typically used in literature to get realistic 

results.  Usually a slack length, determined using a reference strain, is calculated using the 

initial length of the ligament during a particular exercise.  
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Figure 20: From Left to Right: Medial view of the knee in full extension, medial view of the 
knee model in flexion and anterior view of the knee model in flexion showing wrapping MCL 
bundle and wrapping quadriceps tendon over the femur. 

 

Ligament Damping 

A damping element is added to the ligament force calculation to reduce oscillations in the 

model. The damping coefficients, 𝑐, which reduced oscillation the best were chosen.  The 

damping force is calculated using the following equations. 

 𝐹𝐿𝑖𝑔 𝐷𝑎𝑚𝑝𝑖𝑛𝑔 = � 0,
𝑐 ∗ 𝑑𝐿/𝑑𝑡,   

�0 ≥ 𝜀
0 < 𝜀 (1.32)  

 

Ligament Preloads 

It is hypothesized that there is a preload which exist in each of the ligaments.  These preloads 

are thought to be constant and separate from the spring forces calculated with the previous 

equations.  With ligament preload added in, the total force in the ligament is represented with 

the following equation. 
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 𝐹𝐿𝑖𝑔𝑎𝑚𝑒𝑛𝑡 = 𝐹𝐿𝑖𝑔𝑎𝑚𝑒𝑛𝑡 𝑃𝑟𝑒𝑙𝑜𝑎𝑑 + 𝐹𝐿𝑖𝑔 𝑆𝑝𝑟𝑖𝑛𝑔 + 𝐹𝐿𝑖𝑔 𝐷𝑎𝑚𝑝𝑖𝑛𝑔 
(1.33)  

To test the hypothesis that ligaments have preloads, a calculation of the preloads was 

performed which included the spring forces of the ligaments. To calculate the ligament 

preloads, the tibia is placed in an initial position and the force in addition to the ligament spring 

force required to keep the tibia from falling off the femur were calculated.  This is a static 

problem with known gravitational forces acting on the tibia and foot.  The goal is to solve for  

six unknown out of plane forces (posterior cruciate ligament (PCL), anterior cruciate ligament 

(ACL), MCL, lateral collateral ligament (LCL) and medial and lateral patella ligament forces) 

which make the three rotational and three translational speeds of the tibia equal to zero 

(Figure 21).  

This is a static problem which could be solved by hand.  However, the easiest way to do this is 

to convert the dynamic code created in AUTOLEV® to a static code, fixing the PATELLA body and 

setting all six generalized speeds for the TIBIA body to zero, adding the spring ligament forces 

and solving for the ligament preload forces. Therefore, anytime a new extension model is 

created, the static code can be run first and the preload values can be calculated.  The ligament 

spring forces calculated at the initial position were applied to the model and then the preloads 

of the ligaments are calculated.  If any preloads turn out to be negative (or in compression), 

then it was assumed that no preload exists for this ligament, the value is set to 0, just the spring 

force (if applicable) is applied to the model and the values for the remaining ligament preloads 

are recalculated until a solution with all positive numbers is reached. 
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There were options for how to calculate the preloads in each ligament.  One option was to have 

a force in each ligament bundle.  Depending on whether the patella ligament was included this 

results in 12 forces to be solved for using six equations motion. This is an underconstrained 

problem requiring the use of optimization which can be inefficient.  Another option was to start 

with four forces for each of the knee ligaments and two for the patella ligament, making six 

simultaneous equations with six total forces and six equations.  If one is removed because the 

spring force in the ligament and/or the calculated preload is in compression, then the system 

becomes overconstrained.  

To solve an overconstrained system  

 𝐴𝑥 = 𝑏 (1.34)  

where 𝐴 and 𝑏 are known and where the columns of 𝐴 are longer than 𝑥, a least squares 

method was used which was efficient and gave a reasonable solution.  The backslash command 

in Matlab® (The MathWorks Inc, Natick, MA, USA)  

 𝑥 = 𝑏\𝐴 (1.35)  

 finds a solution for x using QR factorization.  This method requires that columns and rows of 𝐴 

be independent from each other, or that 𝐴 be “full rank.”  The preloads were only found in the 

normal knee model and carried throughout the extension and weight-bearing deep knee 

models of the normal knee. 
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Figure 21: Close up view of the force vectors acting on the tibia from the various bundles of 
the ligaments of the knee and extensor mechanism.  Each arrow represents two force vectors 
used in the calculation of ligament preloads.  The goal is to find the force value for each 
ligament group which counter acts the mass of TIBIA and the FOOT (not shown).  The spheres 
in this picture represent the actual attachment points used. 
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Initial Conditions, Parameters and Validation with Fluoroscopy 

IRB approval (IRB# UT 7756B & Sterling 3088) was obtained to analyze five normal subjects and 

20 implanted subjects for a study to compare normal knee kinematics to the ADVANCE® 

Medial-Pivot Knee (MP) (Wright Medical Technology, Inc, Memphis, TN).  Five normal subjects 

underwent CT scans of the right leg.  Three-dimensional CAD models were assembled from 

these CT scans (Figure 24).  Patients implanted with the TKA and the five subjects with normal 

knees were asked to perform an active extension exercise (Figure 22). Starting with their knee 

hanging off a table at approximately 90° flexion the subjects were asked to extend their knee to 

full extension (0° flexion or parallel to the ground) .  All subjects were also asked to perform a 

weight bearing deep knee bend (similar to going down to tie ones shoe) (Figure 23). Both of 

these exercises were performed under fluoroscopic surveillance.   

 

Figure 22: A subject not in this study demonstrating the non-weight bearing extension activity at initial 
extension and full extension (top, left to right) and sample fluoroscopy images of a normal  knee from both 
increments (bottom, left to right). 
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Figure 23: Subject demonstrating a deep knee bend to maximum weight bearing flexion while under 
fluoroscopic surveillance. 

 

Images were digitally captured from the fluoroscopic videos of both exercises every 20 degrees 

flexion and analyzed using a previously described method [Mahfouz et al. 2003] to extract 3-D 

tibiofemoral in-vivo kinematic data using the CAD models of either the TKA components or the 

normal knee CAD models (Figure 25-Figure 29). This kinematic data included medial and lateral 

tibiofemoral contact position and orientation angles of the femur relative to the tibia.  Two-

dimensional patella kinematics were also measured from the fluoroscopy images using 

software developed for this study to determine patella flexion angles over knee flexion and to 

estimate the patellofemoral contact points on the patella (Figure 30).  The initial deep knee 

bend and extension forward simulations were meant to represent a normal knee.  Once the 

model of the normal knee was giving reasonable results compared to the normal data collected 

from this study, TKA geometry was virtually implanted to this normal knee model.   The results 

of the TKA simulation were then compared to the results of the in vivo kinematics collected 

using fluoroscopy from this study.   
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Figure 24: Sample CT image from the distal femur (top left) and proximal tibia and fibula (bottom left)  and same 
images with the femur, tibia and fibula bones selected (right) used to create normal tibia models. 

 

 

Figure 25: Fluoroscopy images from every 20 degrees of flexion during a weight bearing deep knee bend (top) 
and images with corresponding CAD models created from CT scans of the normal bone registered to the 2D 
image extracting 3D in vivo tibiofemoral kinematics (bottom). 
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Figure 26: From top to bottom: Lateral, Medial and Top view of a sample normal knee subject performing DKB. 

 

 

Figure 27:  Fluoroscopy images from every 20 degrees of flexion during a non-weight bearing active extension 
activity (top) and images with corresponding CAD models created from CT scans of the normal bone registered 
to the 2D image extracting 3D in vivo tibiofemoral kinematics (bottom). 
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Figure 28: From top to bottom: Lateral, Medial and Top view of femoral kinematics relative to the tibia from a 
sample normal knee subject performing active non-weight bearing extension activity. 

 

Figure 29: Digital fluoroscopic image of a Medial Pivot TKA  at maximum flexion during a weight bearing deep 
knee bend activity and the corresponding image with a the metal component CAD models registered to the 
flurosocopic image extracting in vivo tibiofemoral contact kinematics. 
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Figure 30: Screen capture of 2D patella kinematics software developed for this project.  Sample image shows 
results from a subject implanted with a Medial Pivot TKA performing a deep knee bend at 40° flexion. 

 

Previous IRB approved fluoroscopic TKA kinematic studies were also used to compare to 

simulation results of different TKA designs.  Fluoroscopic kinematics and force data from a 

patient with a telemetric tibial component (Depuy, Inc., Warsaw, IN, USA) [D’Lima 2005, 

Sharma 2007] was used for comparison of tibiofemoral kinematics and tibiofemoral contact 

forces for the deep knee bend simulation.   

A study which evaluated patients implanted with 40 Natural Knee II® (NKII) TKA with Congruent 

polyethylene (CPE) or Ultra-Congruent polyethylene (UCPE) inserts performing weight bearing 

deep knee bends (Zimmer Inc., Warsaw, IN, USA) [Mueller 2009] was also used (Figure 31).  The 

purpose of this in vivo study was to compare tibiofemoral contact kinematics of the NKII 

cruciate retaining TKA with a CPE insert design to the kinematics of the patients implanted with 

the same femoral and tibial component design but with the UCPE insert (Figure 32).   The UCPE 
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is used when the patient’s PCL is found to be weak or torn and is meant to stabilize femoral 

component kinematics in the anterior direction and act as a cruciate substituting TKA. 

 

 
Figure 31: Close up fluoroscopy image of one of 20 knees implanted with a Natural Knee II TKA (left).  Patient 
shown has an UltraCongruent polyethylene insert and the image was captured from fluoroscopic video at full 
extension during a deep knee bend.  Image on the right includes the metal TKA components registered to the 
image on the left. 

 

Figure 32: Congruent polyethylene (CPE) (top) and UltraCongruent polyethylene (UCPE) (bottom) inserts used in 
the Natural Knee II TKA designs.  Notice the different sagittal curvatures, especially the slope of the anterior 
(right) surface and the more posterior "well point" position in the UCPE insert. 
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Another study used for comparison examined 22 Axiom® ACLR fixed bearing TKA (Wright 

Medical Inc, Memphis, TN, USA) [Mueller 2007] performing a weight bearing deep knee bend 

(Figure 33).  One additional study used the kinematics from one Hermes® (Ceraver-Osteal Inc, 

France) ACLR fixed bearing TKA performing the same exercise (Figure 34). Deep knee bend 

kinematics and kinetics were also simulated using a preproduction ACL-R fixed bearing TKA 

(Figure 35).  No in vivo kinematic data is available for this TKA. 

 

Figure 33: Close up fluoroscopy image of one of 22 knees implanted with an Axiom® ACL-Retaining Fixed Bearing 
TKA and analyzed using fluoroscopy at full extension during a deep knee bend. 

 

Figure 34: Close up fluoroscopy image of a knee implanted with a Hermes® ACL-R fixed bearing TKA during a 
weight bearing deep knee bend with registered metal TKA component CAD models (left) and lateral, frontal and 
proximal views (second from left to right) of the CAD models in the in vivo orientations. 
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Figure 35: Simulated position of the Preproduction ACL-R TKA during a deep knee bend.  These orientations are 
not from fluoroscopy or from in vivo data as this implant has not yet been analyzed. 

The data from these studies were used as validation or comparison and were also used to 

determine the initial conditions of the simulation.  For the normal knee simulation, which used 

parameters obtained using CT models and data from one of the five normal subjects, the initial 

in vivo orientation of the femur relative to the tibia for that specific subject was used.  The 

results of the simulation were then compared to the kinematic results of all of the subjects 

analyzed.  Then the different TKA mentioned above were theoretically implanted using the 

normal subject’s knee.  Since patient specific data was not available for the TKA subjects 

analyzed in these studies, the average initial in vivo orientations of the femoral component 

relative to the tibia was used as a guide for starting the simulations.  For the TKA, the 

simulation results were compared to all of the in vivo tibiofemoral kinematic data for the 

respective TKAs analyzed in this study, except for the preproduction TKA which has not been 

put on the market. 
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Broad Scope 

The ultimate goal in producing this model was to integrate it with the contact model developed 

by Sharma in 2008 [Sharma 2008, 2009].  Sharma used a validated inverse model to determine 

contact forces using motions obtained from fluoroscopy.  These motions and forces were then 

applied to a contact model which was able to determine contact pressure and stress with the 

accuracy of finite element in seconds instead of hours (Figure 36).  This successfully validated 

forward dynamic model could replace the fluoroscopy and inverse model portions of this 

process (Figure 37) resulting in a virtual knee simulator that can accurately predict kinematics 

and contact stresses from an implant not yet manufactured or implanted.   

 

Figure 36: Diagram showing the process of modeling TF contact forces with a validated 
inverse dynamic model and using the results of that as input to a spring lattice contact model 
to quickly and accurately determine contact stress and pressures [Sharma 2008]. 
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Figure 37: Diagram showing the potential for a virtual knee simulator by replacing the 
kinematics from fluoroscopy and forces from the inverse model using the predictive dynamic 
forward model. 



 

 

 

 

 

 

Chapter 4: Validation 
A comparative analysis was conducted, comparing the normal knee model that was derived for 

this dissertation to in vivo kinematics determined using fluoroscopy from five normal knees for 

both non-weight bearing and weight bearing activities. The deep knee bend model of the 

normal knee was then virtually implanted with the geometry of a telemetric TKA device that 

utilized strain gauges to measure force at the tibial base plate [D’Lima 2005].  The kinematic 

results of the model were compared to the fluoroscopic data from a patient that has been 

implanted with the telemetric device, while performing a deep knee bend [Sharma 2007].   The 

kinetic results from the forward model simulation were then compared with the telemetric 

force data collected and experimentally derived during the fluoroscopic trials.  Included for 

comparison were the results, previously discussed from an inverse dynamics model which used 

the same kinematic data ([Sharma 2007]   

Normal Knee Non-Weight Bearing Extension Model 

The geometry, soft tissue attachment points, COM locations and segment masses were 

determined using CAD models built from CT scans of one of the subjects (Subject 3) (Figure 38-

Figure 40 and the subject’s mass.  The CT scans only included the distal and proximal portions 
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of the femur and tibia/fibula, leaving out a good portion of the shaft in these bones. The 

position of points needed in this portion of the CAD model were estimated. The initial position 

of the models for the simulation was determined using the in vivo position of Subject 3 

determined from fluoroscopy (Figure 41) and the model was run from 90° flexion to full 

extension (0° flexion) (Figure 42). 

Although this data is subject specific, the results of the normal model (Figure 42) are compared 

to all five subjects to determine whether the kinematic output from the model matches the 

trends documented using fluoroscopy (Figure 43 and Figure 44).  Ligament spring values were 

taken from literature, however, the slack length of the ligaments were adjusted to get 

reasonable results from the model. 

The greatest difference between the simulation and in vivo data for the lateral 

anterior/posterior contact position occurred at 60 degrees of knee flexion, where the 

simulation was 3.2 mm more posterior than the in vivo data (Figure 43).  The movement 

matched well with the overall trend of all five normal knees which depicted, except for Subject 

5, a general movement in the anterior direction as the knee extended.  The lateral contact 

movement of the model was most similar to Subject 3 from which the majority of the 

parameters including ligament and muscle origin and insertion points, segment COM and 

femoral geometry used in this model were measured.  

There was more anterior movement of the medial contact point through extension (Figure 44) 

than for the lateral condyle contact (Figure 43).  This is consistent with the relationship 

between the medial and lateral condyle contact movement determined using the model.  The 
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medial condyle contact position in the model did not match as well with Subject 3 as on the 

lateral condyle contact.  The greatest difference occurred at 20 degrees of knee flexion, where 

the simulation was 6.9 mm more anterior than the in vivo data. 

 

 

 

Figure 38: Frontal (left) and lateral (right) views of the CAD model of the patella developed from CT scans of a 
single subject (Subject 3) as viewed in RapidForm2006 (Inus Technologies, Inc., Seoul, Korea) with model 
bounding boxes.  The position of points such as the patella ligament, quadriceps and medial and lateral 
patellofemoral ligaments attachments are found by using anatomical landmarks, if visible, or using guides from 
literature.  The center of mass is also calculated using the size of the segment and formulas from literature. 
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Figure 39: Lateral (top) and frontal (bottom) views of the CAD model of the femur developed from CT scans of a 
single subject (Subject 3) as viewed in RapidForm2006 (Inus Technologies, Inc., Seoul, Korea) with model 
bounding boxes.  The position of points such as the knee ligament, quadriceps and hamstring and medial and 
lateral patellofemoral ligaments attachments and the center of the femoral head are found by using anatomical 
landmarks, if visible, or using guides from literature.  The center of mass is also calculated using the size of the 
segment and formulas from literature.  The shaft of the femur is not continuous as CT scans were only 
performed on the areas visible in the image.  Any points needed in the area of the model which is not available 
are estimated. 

 

Figure 40: Lateral (top) and frontal (bottom) views of the CAD model of the tibia/fibula developed from CT scans 
of a single subject (Subject 3) as viewed in RapidForm2006 (Inus Technologies, Inc., Seoul, Korea) with model 
bounding boxes.  The position of points such as the knee ligament, hamstring were found by using anatomical 
landmarks, if visible, or using guides from literature.  The center of mass is also calculated using the size of the 
segment and formulas from literature.  The shaft of the tibia/fibula is not continuous as CT scans were only 
performed on the areas visible in the image.  Any points needed in the area of the model which is not available 
are estimated. 
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Figure 41: Lateral view of the whole extension model with closeup of the knee from the lateral and frontal view 
(inlays).  There is a break in the femoral shaft and the tibia and fibula bones because CT scans were only taken of 
the parts visible to reduce radiation exposure to the subject as specified by this project’s IRB.  The pelvis is a 
sample pelvis taken from another patient. 

 

Figure 42: Lateral view of the progression of the normal knee through the non-weight bearing extension 
simulation.  Muscles and ligaments athough they exist in the model are not shown. 

Lateral View Frontal View 

Lateral view of the whole 
normal knee extension  model
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Figure 43: Lateral anterior/posterior femorotibial contact position data from fluoroscopy and forward model 
simulation for a non-weight bearing extension activity.  Geometry and soft tissue attachments were determined 
using models constructed from CT scans of Subject 3. 
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Figure 44: Medial anterior/posterior femorotibial contact position data from fluoroscopy and forward model 
simulation for a non-weight bearing extension activity.  Geometry and soft tissue attachments were determined 
using models constructed from CT scans from Subject 3. 
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Normal Knee Weight Bearing Deep Knee Bend Model 

The simulated lateral contact point movement matched up well with what was derived in the in 

vivo study (Figure 46).  The trend in the in vivo data was to move in the posterior direction 

quickly from full extension (0 degrees) to 30 degrees of knee flexion and then to gradually move 

posteriorly throughout flexion.  This trend was also determined to occur in the results derived 

using the model.  Also, the results from the model were similar to Subject 3 with the greatest 

difference, besides the initial position, being 2.1 mm posterior, occurring at 140 degrees 

flexion. 

 

Figure 45:  View of the normal deep knee bend simulation at full extension with close up of knee from the 
lateral and frontal views (inlays). 
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Figure 46: Lateral anterior/posterior femorotibial contact position data from fluoroscopy and forward model 
simulation for a weight bearing deep knee bend activity.  Geometry and soft tissue attachments were 
determined using models constructed from CT scans of Subject 3. 
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30 degrees to maximum flexion. However, from 0 degrees to 30 degrees, the movement was 

less in magnitude than the in vivo data results.  The overall pattern of movement for the 

contact point was fairly similar to the in vivo data on the medial side. 

 

Figure 47: Medial anterior/posterior femorotibial contact position data from fluoroscopy and forward model 
simulation for a weight bearing deep knee bend activity.  Geometry and soft tissue attachments were 
determined using models constructed from CT scans of Subject 3. 
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cruciate sacrificing design.  To further validate the kinematic output and to validate the kinetic 

output from the model, the articulating geometry of the previously described telemetric TKA 

was virtually implanted in the normal deep knee bend model.  Scans of the implanted subject 

were not available, therefore, the same parameters (soft tissue attachment, segment mass, 

length, COM, etc) from the normal model discussed above were used.  Only one size of this 

implant was available.  The size of the component CAD models were increased by 10% to fit 

Subject 3’s femur and tibia.  The parameters which determine the position of the assumed 

contact points on the femur and the articulating geometry of the tibial insert were determined 

using these scaled CAD models.  The cruciate ligaments were removed since this particular 

implant design was a cruciate sacrificing TKA.  The only other adjustments made from the 

normal knee model was the adjustment of the gains (K values) for the quadriceps PID 

controller.  These were adjusted to reduce the oscillation of the quadriceps force and also to 

minimize the error between the actual and desired flexion for this new model.  The kinematic 

and kinetic results from the model were compared to one subject as data for only one subject 

with this implant type was available.   

The simulation predicted contact positions similar to what was seen in vivo (Figure 49).  The 

general trend was similar, whereas minimal overall motion was detected to occur from full 

extension (0 degrees) to 120 degrees of knee flexion for both the medial and lateral condyles, 

compared to the normal knee.  The in vivo data that was previously derived, showed that the 

contact points followed each other closely with the lateral condyle being slightly more posterior 

than the medial condyle.  This pattern was also determined to occur in the simulation, although 
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the offset is slightly less.  The simulation predicted more of a posterior position from 10 to 80 

degrees of knee flexion, then predicted a more anterior position of the medial condyle from 

100 to 120 degrees of knee flexion.  

 

Figure 48: Deep knee bend normal model implanted with the Teletibia TKA.  The PCL and ACL were removed for 
this simulation. 
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Figure 49: Lateral and Medial anterior/posterior femorotibial contact position data of a weight bearing deep 
knee bend from fluoroscopy of one subject with an instrumented TKA and forward model simulation with same 
TKA. 

 

The overall pattern of axial force (the sum of the force at both contact points) simulated using 

the model was similar to the measured in vivo forces (Figure 50) derived using the telemetric 
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the comparative error was 3.1%.  At 103 degrees of knee flexion, the forward model simulation  

predicted a force of  3.80*BW, an error of 1.0% when compared to the in vivo force data.  

 

Figure 50: Comparison of the total axial force on the tibia from in vivo data from a subject implanted with an 
instrumented TKA performing a deep knee bend, a validated inverse model using the in vivo motions of from 
that subject and a forward simulation of a weight bearing deep knee bend with the same TKA geometry. 

The forward solution model slightly underpredicted the lateral force from 0 to 40 degrees and 

overpredicted the force from 40 to 120 degrees flexion (Figure 51).  The overall pattern of the 

force is consistent with what was determined to occur under in  vivo conditions, with the force 

increasing from 20 to 105 degrees flexion and then decreasing after 105 degrees.  The 

maximum in vivo force of 2.17 BW occurred at 107 degrees flexion.  The simulation predicted a 

maximum force of 2.30 BW at 104 degrees flexion  with an error of 6.0%.  For comparison, the 
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inverse model also overpredicts the force at times but matches up well with the maximum 

force at around 105 degrees. 

 

Figure 51: Comparison of the lateral contact force on the tibia from in vivo data from a subject implanted with 
an instrumented TKA performing a deep knee bend, a validated inverse model using the in vivo motions of from 
that subject and a forward simulation of the same activity with the same TKA geometry. 
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5.7%.  At 98 degrees flexion the simulation predicted a force of 1.57 BW with 18.7% error 

compared to the in vivo data. 

 

Figure 52:  Comparison of the medial contact force on the tibia from in vivo data from a subject implanted with 
an instrumented TKA performing a deep knee bend, a validated inverse model using the in vivo motions from 
that subject and a forward simulation of the same activity with the same TKA geometry. 
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Chapter 5: Extension Model 

Anterior/Posterior Tibiofemoral Positions 

Medial Pivot TKA 

In Vivo Kinematics Medial Pivot TKA 

For 20 Medial Pivot TKA the average in vivo AP femorotibial, relative to the tibial component, 

(positive values indicate a position anterior of the component midline and negative numbers 

indicate a posterior position) contact position obtained using fluoroscopic analysis at initial 

extension (with an average knee angle of 80.2° (62° to 97°, SD=9.3°))  was -4.2 mm (-6.8 mm to 

2.7 mm, SD=2.3 mm) and -3.5 mm (-7.8 mm to 3.0 mm, SD=2.4) for the medial and lateral 

condyle, respectively.  At 40° of knee flexion, the medial and lateral contact point positions 

were -5.6 mm (-10.7 mm to 0.8 mm, SD=2.4 mm) and -2.3 mm (-6.7 mm to 1.4 mm, SD=2.0 

mm), respectively.  This resulted in 1.2 mm (-3.1 mm to 5.9 mm, SD=2.6 mm) and -1.4 mm (-8.2 

mm to 1.4 mm, SD=2.1 mm) of medial and lateral of change in the contact position, 

respectively, where negative values indicate posterior motion and positive values indicate 

anterior motion. 
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At 20° of knee flexion, the medial and lateral AP contact positions were -6.2 mm (-11.8 mm to -

2.9 mm, SD=2.0 mm) and -3.4 mm (-6.6 mm to 0.5 mm, SD=1.7 mm), respectively.  This resulted 

in -2.0 mm (-9.4 mm to 1.6 mm, SD=2.8 mm) and 0.1 mm (-5.5 mm to 4.7 mm, SD=2.9 mm) of 

the medial and lateral condyle motion, respectively.  Six (30%) subjects experienced anterior 

movement on the medial condyle and nine (55%) TKA experienced anterior movement on the 

lateral side from initial extension to 20° of knee flexion. 

At full extension, the contact position was -6.8 mm (-10.2 mm to -4.0 mm, SD=1.5 mm) and -3.9 

mm (-6.7 mm to 1.0 mm, SD=2.0 mm) for the medial and lateral condyles, respectively.  The 

average overall movement from initial extension to full extension was -2.5 mm (-9.4 mm to 1.0 

mm, SD=2.6 mm) and -0.4 (-7.7 mm to 5.5 mm, SD=3.3 mm).  Three (15%) and nine (45%) of 

TKA analyzed in this study experienced anterior movement of the medial and lateral condyles, 

respectively, from initial extension to full extension.   
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Figure 53: Anterior/Posterior in vivo tibiofemoral contact position for a non-weight bearing extension activity 
from initial extension to full extension obtained using fluoroscopic surveillance on 20 patients implanted with 
the Medial Pivot TKA. 

Model Results 

The simulation of the non-weight bearing extension activity with the Medial Pivot TKA design 

produced medial and lateral AP contact positions of -0.2 mm and -1.2 mm, respectively, at the 
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medial and lateral contact points moved in different direction, to the positions of 1.9 mm and -

3.1 mm, respectively, resulting in 2.1 mm and -1.9 mm medial and lateral contact motion.  The 

model predicted more anterior movement of the condylar contact points but within one 

standard deviation of the in vivo average, while the theoretical simulation predicted more 

posterior movement on the medial side, although this was also within the one standard 

deviation of the average for the in vivo data. 
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At full extension the model predicted a contact point of -8.2 mm and -10.0 mm for the medial 

and lateral sides resulting in -8.0 mm and -8.8 mm posterior medial and lateral movement.  

Although the medial condyle contact movement and position was still within the range seen in 

vivo it was outside one standard deviation of the average for these subjects.  The model 

simulated more posterior contact position and movement on the lateral side than was seen in 

the in vivo data. 

 

Figure 54: Anterior/posterior position of the medial tibiofemoral contact position of a Medial Pivot TKA from in 
vivo data obtained using fluoroscopy and simulated data obtained from the forward solution model. 
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Figure 55: Anterior/posterior position of the lateral tibiofemoral contact position of a Medial Pivot TKA from in 
vivo data obtained using fluoroscopy and simulated data obtained from the forward solution model. 
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Quadriceps, Patella Ligament, Tibiofemoral and 

Patellofemoral Forces 

The quadriceps forces for the normal and Medial Pivot TKA models increased from initial 

extension to a maximum of 1.00 BW and 0.85 BW, respectively at full extension.  The patella 

ligament forces increased with the quadriceps force with the quadriceps to patella ligament 

force ratio reaching 1.00 for the normal simulation and 0.87 for the Medial Pivot TKA.  The 

tibiofemoral forces were higher for the Medial Pivot design with 2.24 BW than the normal 

which saw a maximum of 1.26 BW.  The model also predicted that the Medial Pivot design 

experienced a maximum patellofemoral force of 0.80 BW as opposed to the normal  knee which 

saw a maximum of 0.56 BW.  Both simulations predicted that the patellofemoral forces  0 BW 

at full extension. This result makes sense as the quadriceps force is acting roughly parallel to 

the patellofemoral contact surface at full extension.  The patellofemoral force to quadriceps 

force ratio was the greatest at initial flexion with the Medial Pivot TKA design value a little over 

1.00 and the normal value slightly less than 1.00.  This ratio goes to 0.00 as the patellofemoral 

force goes to 0.00 in later extension. 
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Figure 56: Quadriceps force, patella ligament force, patella ligament force to quadriceps force ratio, tibiofemoral 
axial force, patellofemoral force and patellofemoral to quadriceps force ratio for the extension simulations of a 
normal knee and Medial Pivot TKA design. 

 

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

0306090

M
us

cl
e

Fo
rc

e
(x

BW
)

Flexion Angle (Degrees)

Quadriceps Forces
Extension Simulations

NORMAL

MP

0

0.2

0.4

0.6

0.8

1

0306090

Li
ga

m
en

tF
or

ce
(x

BW
)

FlexionAngle (Degrees)

Patella Ligament Forces
Extension Simulations

NORMAL

MP

0

0.25

0.5

0.75

1

0306090

Pa
te

lla
Li

ga
m

en
t/Q

ua
d

Fo
rc

e

Flexion Angle (Degrees)

Patella Ligament Force/Quadriceps Force
Extension Simulations

NORMAL

MP

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

0306090

Fo
rc

e
(x

BW
)

Flexion Angle (Degrees)

Patellofemoral Forces
Extension Simulations

NORMAL

MP

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

0306090

Pa
te

llo
fe

m
or

al
Fo

rc
e/

Q
ua

d
Fo

rc
e

Flexion Angle (Degrees)

Patellofemoral Force/Quadriceps Force
Extension Simulations

NORMAL

MP

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

0306090

Fo
rc

e
(x

BW
)

Flexion Angle (Degrees)

Total Tibiofemoral Axial Interaction Forces
Extension Simulations

NORMAL

MP



 

104 

 

Knee Ligament Forces 

In general the collateral ligaments were much more active in the Medial Pivot TKA design than 

in the normal knee simulation.  The lateral collateral ligament increased throughout knee 

extension for both the normal and Medial Pivot design, but the Medial Pivot design had a 

maximum of 0.66 BW where the normal maximum was only 0.09 BW.  The maximum medial 

collateral ligament force in the Medial Pivot TKA design was 0.49 BW at full extension with a 

maximum of 0.43 BW at 27° flexion.  The normal knee model predicted the force in the ACL to 

be 0.1 BW at full extension.  The maximum force in the PCL was higher in the normal 

simulation, with a maximum of 0.27 BW, compared to only 0.19 BW in the Medial Pivot design.  

Again, these findings are reasonable because it has been previously hypothesized that the PCL 

does not function properly in all subjects, post TKA. 
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Figure 57: Lateral collateral, medial collateral, anterior cruciate and posterior cruciate ligament forces for the 
extension simulations of a normal knee and Medial Pivot TKA design. 
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Chapter 6: Deep Knee Bend Model 

Anterior/Posterior Tibiofemoral Positions 

Medial Pivot TKA 

In Vivo Kinematics Medial Pivot TKA 

For all 20 Medial Pivot TKA in which in vivo tibiofemoral contact kinematics were determined 

using fluoroscopy, the average medial and lateral condyle contact position at full extension was 

-6.9 mm (-10.5 mm to -5.3 mm, SD=1.3 mm) and -4.8 mm (-10.0 mm to -0.5 mm, SD=2.5 mm), 

respectively.  At 100° weight bearing flexion, achieved by 15 (75%) of the TKA analyzed 

(including two in which 100° was the maximum flexion reached), the average medial and lateral 

condyle contact positions were -6.0 mm (-11.2 mm to -2.3 mm, SD=2.2 mm) and -7.4 mm (-11.4 

mm to -1.6 mm, SD=3.2 mm).  For the 15 TKA which reached 100°, this resulted in 0.8 mm (-1.2 

mm to 3.6 mm, SD=1.4 mm) and -2.7 mm (-8.1 mm to 2.0 mm, SD=3.2 mm) medial and lateral 

contact point translation, respectively.   

The in vivo tibiofemoral contact position for the six (30%) Medial Pivot TKA which achieved 120° 

weight bearing flexion (including one TKA in which 120° was the maximum) was -7.5 mm (-13.5 

mm to -3.0 mm, SD=3.5 mm) and -8.9 mm (-13.9 mm to -5.7 mm, SD=3.0mm) for the medial 
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and lateral condyles, respectively.  This resulted in -0.7 mm (-6.7 mm to 2.9 mm, SD=3.3 mm) 

and -3.6 mm (-5.2 mm to -1.3 mm, SD=1.4 mm) of medial and lateral condylar contact 

movement in the six TKA which achieved from full extension to 120° weight bearing flexion, 

respectively. 

At maximum weight bearing knee flexion for all 20 of the TKA, which averaged 105° (70° to 

130°, SD=17°), the average medial condyle contact position was -7.0 mm (-13.7 mm to -2.2 mm, 

SD=-2.8 mm) and the lateral contact position moved in the posterior direction to -7.8 mm (-16.7 

mm to 0.3 mm, SD=3.7 mm). Therefore, from full extension to each subject’s maximum knee 

flexion, the average amount of posterior femoral rollback for the medial condyle was -0.1 mm (-

6.9 mm to 3.4 mm, SD=2.3 mm) and the average amount of posterior femoral rollback for the 

lateral condyle was -3.0 mm (-8.1 mm to -2.3 mm, SD=3.0 mm) (Figure 58).  Eight (40%) and 18 

(90%) of the 20 TKA analyzed in this study experienced posterior motion of the medial and 

lateral contact points, respectively. 

On average, in mid-flexion there was some anterior movement of the medial and lateral 

contact points and for the most part those TKA which exceeded the average 105° weight 

bearing flexion (Figure 58), the position of the lateral condyle was more posterior than those 

TKA which reached less than the average weight bearing flexion for this group.  In summary, 

under in vivo conditions, this TKA experienced minimal movement of the medial condyle from 

full extension to maximum weight bearing flexion and a gradual posterior motion of the lateral 

condyle from full extension to maximum weight bearing flexion. 
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Figure 58: Average anterior/posterior contact positions obtained in vivo using fluoroscopy for 20 ADVANCE® 
Medial-Pivot TKA during a deep knee bend. 

 

Medial Pivot TKA Model Results 

At full extension, the initial contact positions of the medial and lateral condyles for the Medial 

Pivot TKA simulation were -8.3 mm and -8.5 mm (Figure 59-Figure 60).  At 100° of knee flexion, 

the contact position of the medial and lateral condylar contact positions were -8.2 mm and -

11.8 mm resulting in 0.1 mm of translation of the medial contact point in the anterior direction 

and -3.3 mm motion of the lateral condyle in the posterior direction.  Comparing the results of 

the model to the average contact point movement of the 15 (75%) TKA which reached 100° 

weight bearing flexion in the in vivo study, there is a difference of -0.7 mm and -0.6 mm for the 

medial and lateral condyles, respectively.  The amounts of translation seen in the simulation 
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pertaining to both the medial and lateral condyles are within the minimum and maximum 

values observed under in vivo conditions and within one standard deviation of the average 

determined for the in vivo subjects. 

At 120° of knee flexion, the simulated contact points for the medial and lateral side were -8.2 

mm and -13.8 mm, respectively, resulting in 0.1 mm and -5.3 mm of condylar contact 

movement, respectively, from full extension to 120° of simulated weight bearing flexion.   

Compared to in vivo results, there was a difference of -0.8 mm and -1.7 mm in contact 

translation.  The results pertaining to the medial condyle were well within one standard 

deviation of the average in vivo results.  The simulation predicted greater posterior motion of 

the lateral side than was determined under in vivo conditions, with the overall motion being -

0.2 mm outside the one standard deviation envelope.   The small number of TKA included in the 

data set at 120° must be considered. 
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Figure 59: Anterior/posterior position of the medial tibiofemoral contact position of a Medial Pivot TKA from in 
vivo data obtained using fluoroscopy and simulated data obtained from the forward solution model. 

 

Figure 60: Anterior/posterior position of the lateral tibiofemoral contact position of a Medial Pivot TKA from in 
vivo data obtained using fluoroscopy and simulated data obtained from the forward solution model. 

 

Natural Knee II Cruciate Retaining TKA with Congruent Polyethylene Insert 

In Vivo Kinematics NKII CPE 

On average, the 36 subjects implanted with a cruciate retaining NKII TKA with CPE inserts 

experienced anterior movement of the medial condyle and posterior femoral rollback of the 

lateral condyle contact position from full extension to maximum flexion (Figure 61) [Mueller 

2009].  Contact positions at full extension for subjects with a NKII CR TKA with a CPE insert for 

the medial condyle averaged 1.1 mm (-2.5 to 7.1 mm, SD=1.9) and the lateral condyle averaged 

-1.0 mm (-6.9 to 5.0 mm, SD=2.5).  At 90° of weight bearing knee flexion, the contact point 

positions for all 36 TKA for the medial condyle averaged 2.5 mm (-2.6mm to 10.1 mm, SD=2.9 
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mm) and -6.4 mm (-11.4 mm to -0.8 mm, SD=2.1 mm) for the lateral condyle.   As a result, the 

condylar contact movement was 1.4 mm (-5.6 mm to 6.6 mm, SD=2.6 mm) and -5.5 mm (-10.8 

mm to 0.3 mm, SD=2.6 mm) for the medial and lateral condyles, respectively.  At 120° of knee 

flexion, of which 12 TKA (33%) experienced, the medial condyle contact position was 3.8 mm (-

0.7 mm to 9.2 mm, SD=3.0 mm) and the lateral condyle contact position was -8.6 mm (-11.5 

mm to -4.1 mm, SD=2.5 mm) resulting in 2.3 mm (-3.3 mm to -7.8 mm, SD=2.8 mm) and -7.8 

mm (-12.3 mm to -1.8 mm, SD=3.0 mm) of condylar movement for the medial and lateral 

condyles, respectively. 

At maximum knee flexion, for all TKA in this group, which averaged 112° (90° to 132°, 

SD=12.8°), the medial condyle contact position averaged a position of 2.7 mm (-5.6 to 8.8 mm, 

SD=3.2) anterior of the midline and -7.7 mm (-18.0 to -0.6 mm, SD=3.8) posterior for the lateral 

condyle.   From full extension to maximum knee flexion, the condylar contact position moved 

1.5 mm (-4.3 to 8.0 mm, SD=2.6) in the anterior direction for the medial condyle and -6.7 mm (-

14.1 to 0.3 mm SD=3.7) in the posterior direction for the lateral condyle.  Six of the 36 subjects 

(16.7%) experienced PFR of the medial condyle and all but one of the subjects experienced PFR 

of the lateral condyle (97.2%). 
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Figure 61: Average anterior/posterior contact positions obtained in vivo using fluoroscopy for 36 NKII Congruent 
Polyethylene TKA during a deep knee bend. 

 

NKII CPE Model Results 

For the deep knee bend simulation pertaining to the NK II CR TKA having a CPE insert the AP 

position for both the medial and lateral condyles was 0.3 mm (Figure 62  and Figure 63) .  At 90° 

of knee flexion the medial contact point moved in the posterior direction -4.4 mm, while the 

lateral condyle moved in the posterior direction -7.1 mm, resulting in AP contact point 

movement of -3.9 mm and -6.8 mm for the medial and lateral condyles, respectively.  The 

medial condyle moved more posterior in the simulation than was determined to occur, on 

average, under in vivo conditions from full extension to 90° of knee flexion and this result was 

outside of one standard deviation of the average.  The medial contact movement results were 
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within the minimum and maximum translations seen in the in vivo study with two of the 36 TKA 

(5.6%) having more posterior motion than the simulation.   The lateral condyle contact 

movement derived in the simulation was also greater in the posterior direction than the 

average in vivo results, but still within one standard deviation of the in vivo average and 9 of 

the 36 TKA (25%) achieving greater posterior motion from full extension to 90° flexion. 

At 120° of knee flexion, the simulated medial and lateral condyle contact positions for this 

design were -3.7 mm and -7.8 mm, resulting in -3.4 mm and -7.5 mm of posterior movement 

for the medial and lateral condyles, respectively.  This simulation predicted the medial condyle 

posterior movement to be slightly greater than the TKA subject (under in vivo conditions) 

having the most posterior movement in the in vivo study.  The lateral condyle experienced 

slightly less posterior motion than the in vivo results, but was well within one standard 

deviation of the average. 

The maximum simulated weight bearing flexion was 140°.  The medial and lateral condyle 

contact positions, at maximum weight bearing flexion, were -0.4 mm and -6.3 mm for the 

medial and lateral condyles, respectively.  Therefore, the overall motion was -0.1 mm and -6.0 

mm of posterior motion for the medial and lateral condyle contact points, respectively.  

Although the maximum flexion for the in vivo group average 112° and revealed a maximum of 

130°, comparing the simulation to the in vivo results, the total motion of the medial and lateral 

condyle from full extension to maximum flexion were well within one standard deviation of the 

average in vivo values. 
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Figure 62: Anterior/posterior position of the medial tibiofemoral contact position of a Natural Knee II CR TKA 
with congruent polyethylene insert from in vivo data obtained using fluoroscopy and simulated data obtained 
from the forward solution model.  The average in vivo value at 140° flexion is the average position at maximum 
flexion for all TKA. 

 

Figure 63: Anterior/posterior position of the lateral tibiofemoral contact position of a Natural Knee II CR TKA 
with congruent polyethylene insert from in vivo data obtained using fluoroscopy and simulated data obtained 
from the forward solution model.  The average in vivo value at 140° flexion is the average position at maximum 
flexion for all TKA. 
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Natural Knee II TKA with UltraCongruent Polyethylene Insert 

In Vivo Kinematics NKII UCPE 

On average, from full extension to maximum knee flexion, the four subjects analyzed with NKII 

UCPE TKA experienced posterior femoral rollback of the lateral condyle and anterior 

paradoxical slide of the medial condyle.    At full extension, the average medial and lateral 

condyle contact positions were -3.6 mm (-2.2 to -4.5 mm, SD=1.0) and -4.9 mm (-3.2 to -6.2 

mm, SD=1.5), respectively (Figure 64).  At 90° of knee flexion, of which all (100%) of the TKA in 

this study achieved, the medial and lateral condylar contact positions were -2.4 mm (-4.6 mm 

to -1.6 mm, SD=1.5 mm) and -7.6 mm (-9.0 mm to -5.8 mm, SD=1.5 mm) resulting in 1.3 mm (-

0.7 mm to 2.7 mm, SD=1.6 mm) and -2.7 mm (-5.8 mm to 0.4 mm, SD=2.5 mm) of contact 

movement from full extension to 90° flexion. 

At maximum knee flexion, which averaged 106° (96° to 122°, SD=11.5°) for these subjects, the 

average medial contact position moved in the anterior direction to -2.2 mm (-3.4 mm to -1.5 

mm, SD=0.8) and the average lateral condyle contact position moved posteriorly to -7.9 mm (-

11.2 mm to -6.6 mm, SD=2.2).   From full extension to maximum knee flexion, the average 

movement for the medial condyle was 1.4 mm (2.5 to -1.2 mm, SD=1.8) in the anterior 

direction and the average amount of motion for the lateral condyle was -3.0 mm (-8.0 mm to -

0.4 mm, SD=3.5) in the posterior direction.  One (25%) of the NK II UCPE TKA experienced 

posterior motion of the medial condyle and 100% of the subjects experienced posterior motion 

of the lateral condyle.  
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Figure 64: Average anterior/posterior contact positions obtained in vivo using fluoroscopy for 4 NKII 
UltraCongruent Polyethylene TKA during a deep knee bend. 

 

NKII UCPE Model Results 

At full extension, the simulation of medial and lateral AP contact point position for this implant 

was -4.7 mm for both condyles (Figure 66), respectively.  At 90° of knee flexion the simulation 

predicted a contact position of -7.2 mm and -10.0 mm for the medial and lateral sides, 

respectively.  This resulted in -2.5 mm and -5.3 mm posterior movement of the contact 

positions for the medial and lateral sides, respectively.   The simulation predicted a more 

posterior contact position and movement for both the medial and lateral condylar contact 

points.   The medial condyle experienced more than three times more posterior motion than 

the greatest posterior motion seen under in vivo conditions for this implant and the lateral 
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movement was slightly greater than one deviation less than the average posterior movement of 

the four TKA analyzed in this group. 

At a maximum knee flexion of 140°, the model simulated an AP contact position of -4.1 mm and 

-10.2 mm for the medial and lateral condyles, respectively.  This resulted in 0.6 mm of anterior 

motion for the medial condyle and -5.5 mm of posterior motion for the lateral condyle, 

respectively.  These values are both within the range determined to occur under in vivo 

conditions for this implant, from full extension to maximum weight bearing flexion.  The medial 

and lateral condyle predictions are within one standard deviation of the average translation 

value.  

 

Figure 65: Anterior/posterior position of the medial tibiofemoral contact position of a Natural Knee II TKA with 
UltraCongruent polyethylene insert from in vivo data obtained using fluoroscopy and simulated data obtained 
from the forward solution model.  The average in vivo value at 140° flexion is the average position at maximum 
flexion for all TKA. 
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Figure 66: Anterior/posterior position of the lateral tibiofemoral contact position of a Natural Knee II TKA with 
UltraCongruent polyethylene insert from in vivo data obtained using fluoroscopy and simulated data obtained 
from the forward solution model.  The average in vivo value at 140° flexion is the average position at maximum 
flexion for all TKA. 

 

Comparison of Congruent PE Insert to UltraCongruent PE Insert 

The in vivo results revealed that the average contact position for both condyles were more 

posterior for the TKA subjects having an UCPE insert than the subjects having a CPE insert 

throughout knee flexion, except for the lateral condyle in later flexion (Figure 67).  The lateral 

condylar contact position for the UCPE group demonstrated less translation throughout knee 

flexion than the CPE group.  The results from the model were consistent with the in vivo data 

trends, although the amount of translation for the lateral condyle, from full extension to 

maximum flexion, between the different insert designs was more similar than the in vivo 
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results.  The results from the simulation using the CPE and UCPE inserts, appears as if the UCPE 

results are simply shifted in the posterior direction.  To insure that this is not the result of the 

starting position, a simulation was then conducted using a more anterior starting position for 

the UCPE insert design.  This simulation with the more anterior starting position resulted in 

overall contact position results more similar to results from the original starting position after 

10°, remaining posterior of the CPE results (Figure 68). 

 

Figure 67: Comparison plot of the average anterior/posterior in vivo medial and lateral tibiofemoral contact 
positions obtained using fluoroscopy for 36 Natural Knee II TKA with Congruent polyethylene inserts and 4 
Natural Knee II TKA with UltraCongruent polyethylene inserts.  The average in vivo value at 140° flexion is the 
average position at maximum flexion for all TKA in the respective groups. 
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Figure 68: Comparison plot of the simulated anterior/posterior medial and lateral tibiofemoral contact positions 
obtained using the forward model for the original Natural Knee II TKA with Congruent and UltraCongruent 
polyethylene insert simulations and the results using the same NKII UltraCongruent design with a more anterior 
starting position showing that the UltraCongruent contact position remains posterior of the Congruent design 
contact positions regardless of the starting position.   

 

WMT Axiom® ACL-Retaining TKA 

In Vivo Kinematics Axiom® ACL-R 

On average, the in vivo results obtained from fluoroscopy for 22 subjects implanted with a 

WMT Axiom® ACL Retaining (ACL-R) TKA revealed that from full extension to maximum knee 

flexion, the subjects experienced posterior femoral rollback (PFR) of the medial and lateral 

condyles (Figure 69).    At full extension, the average medial and lateral condyle contact 

positions were 3.6 mm (-5.8 to 11.8 mm, SD=5.1mm) and -0.7 mm (-11.4 to 9.5 mm, SD=5.6 

mm), respectively.  At 90° of weight bearing knee flexion, the 20 TKA (90.9%) which achieved 
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90° of knee flexion had medial and lateral contact positions of -1.8 mm (-8.9 mm to 7.6 mm, 

SD=3.7 mm) and -9.8 mm (-8.0 mm to -4.6 mm, SD=3.0 mm), respectively, resulting in -5.3 mm 

(-13.2 mm to 5.5 mm, SD=4.8 mm) and -8.8 mm (-18.3 mm to -3.0 mm, SD=4.8 mm) of medial 

and lateral condyle posterior motion, respectively.   

At maximum knee flexion, which averaged 104° (73° to 128°, SD=13.3°) for this group, the 

average medial condyle contact position moved in the posterior direction to -3.1 mm (-10.2 to 

8.3 mm, SD=4.7 mm) and the average lateral condyle contact position moved posterior to -10.4 

mm (-16.4 to -3.9 mm, SD=3.1 mm). From full extension to maximum knee flexion, the average 

amount of posterior movement for the medial condyle was -6.6 mm (-19.3 to 6.2 mm, SD=5.4 

mm) and the average amount of posterior femoral rollback for the lateral condyle was -9.7 mm 

(-23.5 to -3.0 mm, SD=5.1 mm).  Twenty of the 22 (90.9%) subjects experienced PFR of their 

medial condyle and 100% of the subjects experienced PFR of their lateral condyle from full 

extension to maximum knee flexion.  
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Figure 69: Average anterior/posterior contact positions obtained in vivo using fluoroscopy for 22 Axiom® ACL-
Retaining TKA during a deep knee bend. 

Axiom® ACL-R Model Results 

The anterior-posterior medial and lateral condylar contact point positions from the simulation 

of the Axiom ACL-R TKA, at full extension, were -2.8 mm and -2.7 mm (Figure 70 and Figure 71), 

respectively.  At 90° of simulated weight bearing knee flexion the medial and lateral contact 

points moved posteriorly to -14.2 mm and -19.9 mm, respectively, resulting in -11.5 mm and -

17.2 mm posterior tibiofemoral contact motion, respectively.  This is within the minimum and 

maximum translations seen in vivo for both the medial and lateral contact points for this TKA, 

however it is not within one standard deviation of the average result. 

The maximum simulated weight bearing flexion for the Axiom ACL-R TKA was 140°.  The 

simulated medial and lateral tibiofemoral contact positions at this flexion degree were -7.0 mm 
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and -21.4 mm, respectively, resulting in -4.2 mm and -18.7 mm posterior tibiofemoral contact 

motion, respectively.  Although the maximum in vivo weight bearing knee flexion was 128°, the 

posterior motion of both the medial and lateral contact points remained within the minimum 

and maximum values observed from full extension to maximum flexion in vivo and the 

simulated medial contact movement was within one standard deviation of the observed 

average. 

 

Figure 70: Anterior/posterior position of the medial tibiofemoral contact position of a Axiom® ACL-Retaining 
TKA from in vivo data obtained using fluoroscopy and simulated data obtained from the forward solution 
model.  The average in vivo value at 140° flexion is the average position at maximum flexion for all TKA. 
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Figure 71: Anterior/posterior position of the medial tibiofemoral contact position of a Axiom® ACL-Retaining 
TKA from in vivo data obtained using fluoroscopy and simulated data obtained from the forward solution 
model. The average in vivo value at 140° flexion is the average position at maximum flexion for all TKA. 

 

Ceraver Hermes® ACL-Retaining TKA 

In Vivo Kinematics Hermes® ACL-R 

The in vivo contact position for one Ceraver Hermes® ACL-Retaining (ACL-R) TKA at full 
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Figure 72: Anterior/posterior contact positions obtained in vivo using fluoroscopy for a single Hermes ACL-R TKA 
during a deep knee bend. 
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contact positions were -12.5 mm and -15.6 mm for the medial and lateral condyles, 

respectively, resulting in -10.6 mm and -13.0 mm of condylar position change for the medial 

and lateral condyles, respectively.  The simulation resulted in 3.6 mm of less posterior condyle 

movement for the medial condyle from full extension to 112° of knee flexion and 8.4 mm less 

movement for the lateral condyle. However the pattern of the lateral condyle moving more 

than the medial condyle remained consistent between the simulation and in vivo data results.  

The simulated model results experienced a maximum weight bearing flexion of 140°.  The 

condylar contact positions at maximum knee flexion were -10.9 mm and -17.9 mm for the 

medial and lateral condyles, respectively resulting in -9.0 mm and -15.3 mm of movement for 

the medial and lateral condyle contact positions, respectively.  The amount of simulated 

movement for the medial contact point was -2.0 mm more than the in vivo data and the lateral 

condyle was 6.1 mm less.  However, a consistent pattern of more movement for the lateral 

condyle than the medial condyle at greater flexion angles was determined to occur between 

the simulation and in vivo data. 
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Figure 73: Anterior/posterior position of the medial tibiofemoral contact position of a single Hermes ACL-
Retaining TKA from in vivo data obtained using fluoroscopy and simulated data obtained from the forward 
solution model.  

 

Figure 74: Anterior/posterior position of the lateral tibiofemoral contact position of a single Hermes ACL-
Retaining TKA from in vivo data obtained using fluoroscopy and simulated data obtained from the forward 
solution model. 
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Pre-production ACL-Retaining TKA 

Pre-production ACL-R Model Results 

Further analysis was conducted for an ACL-Retaining TKA design that has been developed and 

tested, but not implanted or analyzed under in vivo conditions.  Therefore, for this analysis a 

comparison to in vivo data could not be made at this time.  The simulated contact positions at 

full extension for the medial and lateral condyle were -0.8 mm and -0.7 mm (Figure 75).  At 40° 

flexion the medial and lateral contact points moved posteriorly to -15.5 mm and -15.9 mm, 

respectively, resulting in -14.7 mm and -15.2 mm posterior motion of the medial and lateral 

condylar contact points, respectively.  At 140°, the maximum simulated weight bearing knee 

flexion for this theoretical design, the medial and lateral condylar contact point positions were -

8.3 mm and -14.6 mm, resulting in -7.5 mm posterior motion of the medial condylar contact 

point and -13.9 mm motion of the lateral condylar contact point.  These contact position results 

were similar in pattern to the other in vivo and simulated results from ACL-R TKA designs 

(Figure 76). 
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Figure 75: Simulated medial and lateral anterior/posterior tibiofemoral contact positions for a preproduction 
ACL-Retaining TKA. 

 

Figure 76: Simulated medial and lateral anterior/posterior tibiofemoral contact positions for all ACL-Retaining 
TKA analyzed. 
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PID Controller 

The PID controller effectively controlled the rate of flexion after being tuned for each of the 

different designs that were evaluated using the model.  The amount of tuning was typically 

minimal from one model to the next, generally involving an adjustment of the derivative gain. 

However the NKII CPE and NKII UCPE TKA proved to be a little more challenging, especially in 

later flexion.  The PID controller provided relatively low error results (<1° flexion error) when 

comparing the actual simulated flexion to the desired flexion.  Adjustments were made to the 

controller gains to minimize the oscillation of the process variable, in this case a coefficient 

which raised and lowered the force in the four quadriceps muscle.  Oscillations of the 

quadriceps force could not be completely avoided with the current controller (Figure 77).  

Interestingly, oscillations were also detected with the telemetric knee, leading to a hypothesis 

that oscillations, under in vivo conditions, may be a normal occurrence (). 
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Figure 77: The quadriceps force process variable values adjusted by the PID controller for the normal knee 
simulation and all of the TKA design simulations. 

The overall flexion of the simulations matches well with the desired flexion (Figure 78).  

Oscillations of varying frequency and amplitude were generally present in the error (Figure 79).  

The average absolute error for all of the simulations was 0.11° (0.08° to 0.77°, SD=0.11°).  The 

average maximum absolute error was 0.34° (0.08° to 0.77°, SD=0.22°).  The model, in which the 

controller allowed the largest absolute error value of 0.77°, was the normal model.  The model 

which had the smallest maximum absolute error was the Hermes ACL-R TKA design with 0.08°.  
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Figure 78: Actual Simulated Flexion from the model and desired flexion for the normal knee simulation and all of 
the TKA design simulations. 

 

Figure 79: Flexion error (actual flexion – desired flexion) for the normal knee simulation and all of the TKA 
design simulations. 
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Quadriceps and Patella Ligament Forces 

Total Quadriceps Force 

Typically the quadriceps force peaked between 80° and 100° of knee flexion (Figure 80).  The 

average maximum quadriceps force was 5.82 BW (4.73 BW to 7.06 BW, SD=0.82 BW).  The 

greatest maximum quadriceps force was in the NK II CPE TKA with 7.06 BW at 94° flexion.  The 

simulation experiencing the least maximum quadriceps force was the normal knee with 4.73 

BW at 81° flexion.   As was mentioned previously, the PID controller did adjust the quadriceps 

force in a way which resulted in the incidence of oscillations.  The maximum quadriceps force 

and patterns in these results are within range of values from the literature [Lanovan 2009, 

Sharma 2008, Sharma 2007, Komistek 2005]. 

 

Figure 80: Total quadriceps force through flexion for the normal knee simulation and all TKA simulations. 
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Individual Quadriceps Forces 

The maximum forces in the various quadriceps muscles varied from model to model (Figure 81).  

The maximum forces for the Vastus Lateralis, Rectus Femoris, Vastus Intermedius and Vastus 

Medialis were 1.73 BW (0.76 BW to 2.61 BW, SD=0.66 BW), 0.58 BW (0.44 BW to 0.75 BW, 

SD=0.13 BW), 2.57 BW (1.94 to 3.34 BW, SD=0.57 BW) and 1.08 BW (0.48 BW to 1.66 BW, 

SD=0.37 BW), respectively.   

 

Figure 81: Individual quadriceps muscle forces for the normal knee simulation and all TKA simulations. 
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For the most part, the ratio of Vastus Lateralis to Vastus Intermedius stayed below 1.0 except 

for the case of the Axiom® ACL-R which was well over 1.0 for most of the simulation.  The forces 

in the Vastus Medialis stayed lower than the Vastus Intermedius for all of the simulations. 

 

Figure 82: Ratio of Vastus Lateralis force to Vastus Intermedius force and Vastus Medialis force to Vastus 
Intermedius force. 
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Figure 83: Patella ligament forces for the normal knee simulation and all TKA simulations. 
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typical of results from literature [Lanovaz 2009, Sharma 2008, Ward 2005, Yamaguchi 1989, 

Shelbourne 1995]. 

 

Figure 84: Patella ligament force/Quadriceps force ratio for the normal knee simulation and all TKA simulations. 
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with the greatest maximum axial force was the Hermes ACL-R design with 6.77 BW at 108° 

flexion.  The normal knee experienced a maximum axial load of 3.70 BW at 87° flexion.  The 

maximum axial forces occurred from 81° flexion in the Teletibia TKA design to 120° flexion in 

the Preproduction ACL-R TKA design.  

 

Figure 85: Total axial tibiofemoral interaction forces for the normal knee simulation and all TKA simulations. 
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the Hermes ACL-R TKA design with 3.08 BW at 102° flexion.  The normal knee simulation 

predicted a maximum medial contact force of 1.99 BW at 87°.  The occurrence of the maximum 

medial contact force during the simulation was at an average of 88° (72° to 108°, SD=12°).   The 

earliest occurrence of the maximum force at 72° flexion was in the NKII UCPE TKA design and 

the latest at 108° flexion was in the Axiom® ACL-R TKA design. 

 

Figure 86: Medial tibiofemoral contact forces for the normal knee simulation and all TKA simulations. 
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Hermes ACL-R TKA design simulation at 118° flexion. This value is 1.46 BW greater than the next 

largest lateral contact force in the Teletibia TKA.  The Hermes TKA simulation also predicted a 

spike between full extension and 10° flexion which was much greater than the other 

simulations in this flexion range.  The normal knee simulation predicted a maximum of 2.04 BW 

at maximum flexion of 140°.  The maximum lateral contact force occurred at an average flexion 

of 111° (80° to 140°, SD=21°), later in flexion than the maximum medial contact force. The 

earliest occurrence of the maximum at 80° was in the Medial Pivot TKA design and the latest 

occurrence at maximum flexion of 140° occurred in the normal knee. 

 

Figure 87: Lateral tibiofemoral contact forces for the normal knee simulation and all TKA simulations. 
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The ratio of medial contact force to lateral contact force is erratic and inconsistent between 

simulations from full extension to 55° flexion (Figure 88).  After 55° flexion the values of the 

medial to lateral contact force ratio remains more similar.  The average of the mean ratio 

values after 55° for each model was 0.98 (0.71 to 1.45, SD=0.29).   The model which averaged 

the highest medial to lateral contact force ratio of 1.45 after 55° was the Axiom® ACL-R TKA and 

the lowest with 0.71 was the Preproduction ACL-R TKA.  The normal knee saw an average ratio 

of 0.97. 

 

Figure 88: Medial to lateral contact force ratio for the normal knee simulation and all TKA simulations. 
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Patellofemoral Kinematics 

Patella Tilt 

Patella tilt, which was stabilized by a controller within the PID controller which controls knee 

flexion, varied from model to model (Figure 89).  Generally the patella rotated about the PAT2> 

axis (physiologically known as patella tilt) in early flexion until the controller was able to 

stabilize the rotation by adjusting the forces in the Vastus Medialis and Vastus Lateralis 

elements in the model.  The stabilized patella tilt angle differed from model to model.  This tilt 

angle was typically between -2.0° and 5.0°, except in the case of the Hermes ACL-R TKA which 

stabilized around 13° patella tilt.  After the patella reached this angle, the amount of rotation it 

experienced also varied from model to model but was typically under 2.0° rotation either in the 

internal (+) or external (-) directions, except in the case of the Axiom® ACL-R TKA which 

experienced about 4° of external tilt from  90° to 140° of flexion.  
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Figure 89: Patella tilt (rotation about PAT2> axis) controlled by a controller which adjusts the Vastus Medialis 
and Vastus Lateralis to stabilize the patella for the normal knee simulation and all TKA simulations. 
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Figure 90: Patella rotation or spin (rotation about PAT1> axis) for the normal knee simulation and all TKA 
simulations. 
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with -0.7 mm in the medial direction. The Hermes ACL-R TKA saw the most lateral translation of 

the patella with a maximum of 4.9 mm during the simulation. 

 

Figure 91: Mediolateral patella position relative to the femur for the normal knee simulation and all TKA 
simulations. 

 

Patellofemoral Forces 

The patellofemoral force pattern follows the quadriceps force pattern in that it increased until 

quadriceps wrapping occurred and decreased until full flexion (Figure 92).  The average 

maximum force was 6.59 BW (5.31 BW to 8.15 BW, SD=1.07 BW).  The maximum force 

occurred at an average flexion angle of 93° (80° to 113°, SD=11°).  The greatest maximum force 

-6

-4

-2

0

2

4

6

0 20 40 60 80 100 120 140

M
L

Pa
te

lla
Po

si
tio

n
[-M

ed
ia

l,+
La

te
ra

l]
(m

m
)

Flexion Angle (Degrees)

Mediolateral Patella Position relative to Femur
All Deep Knee Bend Simulations

Normal
Teletibia
MP
NKIICPE
NKIIUCPE
WMTACLR
HERMES
PreprodACLR



 

146 

 

of 8.15 BW occurred in the NKII UCPE TKA design at 93° flexion.  The smallest maximum 

patellofemoral force of 5.31 BW occurred in the Preproduction ACL-R at 87° flexion.   

The ratio of the patellofemoral force to the quadriceps force started at full extension with an 

average of 0.24 (0.09 to 0.32, SD=0.08) and increases for all of the models until slightly before 

or during quadriceps wrapping when the values level off and usually slightly decrease until 

maximum flexion.  The average maximum value for the patellofemoral force compared to the 

quadriceps force was 1.17 (1.03 to 1.26, SD=0.08) at an average flexion value of 85° (75° to 95°, 

8.3°).  The greatest maximum ratio of 1.26 occurred in the normal knee at 75°.  The smallest 

maximum ratio value of 1.03 occurred in the Preproduction ACL-R at 78°.  These results are 

consistent with findings from literature [Lanovaz 2009, Sharma 2008, Miller 1997, Ward 2005, 

Yamaguchi 1989, Shelbourne 1995]. 
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Figure 92: Patellofemoral forces for the normal knee simulation and all TKA simulations. 
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Figure 93: Patellofemoral force to quadriceps force ratio for the normal knee simulation and all TKA simulations. 

 

Knee Ligament Forces 

The magnitudes of the ligament forces were different for each simulation. However, the 

general pattern of their activation was similar (Figure 94).  The lateral collateral ligament never 

became active during the simulations as the strain in this ligament never experienced a positive 

strain value (Figure 95) this is supported by findings in the literature [Blankevoort 1991].   

The medial collateral ligament force rose from initial flexion to mid-flexion and then decreased 

into deeper flexion as has been reported  in literature  [Abdel-Rahman 1998].  The average 

maximum MCL force was 0.39 BW (0.09 to 1.08, SD=0.33).  The greatest maximum MCL force of 

1.08 BW occurred in the Hermes ACL-R TKA design at 56° flexion while the lowest maximum 

MCL force occurred in the NKII CPE TKA design at 54° flexion.  The anterior cruciate ligament 

was generally active in early flexion with an average maximum force of 0.16 BW (0.09 BW to 

0.28 BW, SD=0.09) which has been reported in literature [Beynnon 1995, Li 2004, Shelbourne 

2008].  The Hermes ACL-R had the highest ACL force of 0.28 BW at 6° flexion while the normal 

knee experienced the lowest maximum ACL force of 0.09 BW at 5° flexion.   

The posterior cruciate ligament had the highest average maximum force of any of the knee 

ligaments with 0.95 BW (0.15 BW to 1.9 BW, SD=0.68 BW) and had a pattern of increasing into 

deeper flexion.  The pattern of the PCL increasing into deeper flexion  has been reported in 

literature [Abdel-Rahmen 1998, Li 2004, Shelburne 1998]. The Axiom® ACL-R TKA design saw 
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the highest PCL force of 1.9 BW at 125° flexion while the NKII CPE TKA design had the lowest 

maximum PCL force of 0.15 BW at 134° flexion.  The patellofemoral ligaments, although present 

in the model were not active during any of the simulations. 

 

 

Figure 94:  Ligament forces from all bundles for the LCL, MCL, ACL and PCL for the normal knee simulation and all 
TKA simulations. 
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Figure 95:  Average lateral collateral ligament strain values from the two spring elements making up the LCL for 
the normal knee simulation and all TKA simulations. 
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Ligament Slack Lengths 

The following results are from simulations of the normal knee and Medial Pivot TKA design in 

which the ligaments were tightened.  The ligament slack lengths for the deep knee bend and 

non-weight bearing extension simulations were tuned independently.  The ligaments in the 

extension simulations were made tighter than in the deep knee bend because of the lack of 

physiological constraints in the model.  The slack lengths in the following deep knee bend 

simulations were based on the extension slack lengths for the normal and Medial Pivot TKA. 

Some of the ligament forces were so tight they prevented the knee from progressing into 

flexion, therefore some were loosened on a trial bases until the simulation ran to 140° flexion.  

This finding has lead to hypothesis that under “true” conditions, implants could be surgically 

implanted, such that the MCL becomes too tight, which in-turn limits active, weight-bearing 

knee flexion. 

Tightening the LCL resulted in a force in the beginning of flexion for the new Medial Pivot 

simulation while it resulted in a force in later flexion for the normal knee model (Figure 96).  

Tightening the MCL resulted in a greater force in the new simulation during a similar portion of 

flexion as the original model.  In the Medial Pivot TKA design, however, the MCL ligament force 

appeared to be activated earlier, but did not reach the same magnitude as the original and 

went “slack” earlier than the original simulation.  The force in the ACL did not experience a 

notable change.  Most of the ligaments were adjusted but the ACL had to be “loosened” 

significantly in order for the simulation to begin flexion.  The PCL experienced the most 

significant change from the original simulation to this altered new simulation.  The force more 
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than doubled in the Medial Pivot TKA design and tripled in the normal knee.  The forces in the 

normal knee are probably higher than the tensile strength of the PCL in vivo. 

 

Figure 96: Ligament forces for the original normal and Medial Pivot TKA deep knee bend simulation and for a 
new simulation with tighter ligaments. 
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is also attributed to the increased PCL force.  The Medial Pivot TKA simulation also saw an 

increase in tibiofemoral force attributed to the increased force in the PCL.  The quadriceps force 

changed slightly in later flexion but did not prove too sensitive to the change of ligament slack 

lengths. 



 

154 

 

 

Figure 97: Tibiofemoral kinematics, kinetics and quadriceps force comparison for the original normal knee and 
Medial Pivot TKA implanted knee deep knee bend simulation and simulations with tightened ligaments. 
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Chapter 7: Sensitivity Analysis 
The following results are from various sensitivity analysis of particular variables.  Some of the 

variables were chosen for analysis with the purpose of examining the affect of assumptions in 

the model.   These analyses were performed on the deep knee bend simulation using the 

Teletibia TKA design.  In some cases not all of the results from simulations run are included in 

the results because of either numerical problems with the ordinary differential equations solver 

or because the quadriceps PID controller did not perform correctly giving results well outside 

realistic possibility.  Also, because the solver struggles in early flexion especially, the simulations 

were started at 5 degrees to give the models a better chance to solve to 140 degrees flexion. 

Rectus Femoris to Vastus Intermedius Force Ratio 

One assumption made in this model is that the Rectus Femoris muscle force has a constant 

relationship to the Vastus Intermedius muscle.  The ratio of Rectus Femoris force to Vastus 

Intermedius force was 0.225 in all simulations discussed previously.  When modeling the lower 

leg the force in the Rectus Femoris is commonly calculated to be lower than in the Vastus 

Intermedius [Kim 2009, Shelburne 2002, Piazza 2001].  Changing this ratio does have a large 

effect on the tibiofemoral force results in the model and changes the shape and maximum 
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value of the quadriceps force plot, although there is little affect on the AP contact position 

prediction (Figure 98).  The quadriceps force reached the maximum allowable force for two of 

the simulations but interestingly reached almost the same value at maximum flexion for all 

simulations but one.  The PID controller increased the overall quadriceps force more to slow the 

flexion rate as the Rectus Femoris/Vastus Intermedius force ratio increased.  This was most 

likely due to the Rectus Femoris origin being on the anterior pelvis.  The greater Rectus Femoris 

force created a flexion torque on the trunk, making it want to lean forward.  This model resisted 

the rotation of the trunk by applying a constraining torque in the opposite direction. This 

constraining torque increases to counteract the affect of the higher Rectus Femoris forces, the 

torque on the trunk propagated to the femur and created a torque in the direction of greater 

flexion, which made the PID controller increase the overall quadriceps force more than when 

the Rectus Femoris force was lower (Figure 99).  The flexion error seen in those simulations 

which reached the maximum quadriceps force was much higher than typically seen in other 

simulatons (Figure 100).  Although increasing the Rectus Femoris/Vastus Intermedius force 

ratio did not have desirable affects, it showed that the model is sensitive to such changes and 

reacted in a way which, if not expected, makes sense. 
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Figure 98: Sensitivity analysis results from increasing the Rectus Femoris / Vastus Intermedius force ratio.  The 
model used for validation had a ratio of 0.225. 
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Figure 99: The torque applied to the trunk to constrain the trunk flexion for sensitivity analyses of the Rectus 
Femoris force ratio with the Vastus Intermedius muscle force.  The increased torque seen in the simulations with 
increased Rectus Femoris/Vastus Intermedius force ratios probably increases the flexion torque on the femur 
and causes the increased overall quadriceps force controlled by the PID controller. 

 

Figure 100: The flexion error (flexion-desired flexion) for sensitivity analyses of the Rectus Femoris force ratio 
with the Vastus Intermedius muscle force. 
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“Patella Button” Thickness 

The thickness of the patella contact surface implant or “patella button” is examined in the 

following results (Figure 102).  By changing the distance between the patella COM and the 

contact points, the patella position adjusts from the center of the femoral component and 

increases or decreases the distance between the contact points and the application of the force 

through the extensor mechanism.   This increases or decreases the applied moment arm length.  

The results show that the model is sensitive to this variable and that changing the patellar 

button thickness by 1 cm can change the maximum tibiofemoral forces by 1*BW.  This result is 

expected as increasing the length of the extensor mechanism moment arm should decrease the 

required force from the quadriceps or increase it as the moment arm is shortened sensitivity 

results from literature also show that models are sensitive to the patellar thickness [Halloran 

2009]. 
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Figure 101:  Although the “patellar button” is not visible in the above images the thickness is changed by 
keeping the patellofemoral contact points on the trochlear groove and moving the patella anterior from the 
femur.  Pn the left is the thinnest patellar button analyzed, 9mm, and on the right the thickest, 19 mm. 
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Figure 102: Sensitivity analysis results from increasing the “patella button” thickness.  A thinner patella button 
moves the patella closer to the surface of the femoral component reducing the moment arm and a thicker one 
moves the patella away from the femoral component surface increasing the moment arm.  Increasing the 
moment arm results in less quadriceps force and subsequently less tibiofemoral force.  The value used in the 
validation results is a thickness of 13 mm. 
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Lateral and Medial Tibial Sagittal Geometry 

The ultimate goal of this model is to predict the effects of implant design on the knee 

kinematics and kinetics. A sensitivity analysis was performed on the average sagittal geometry 

of the lateral (Figure 103) and medial (Figure 104) trays of the Teletibia TKA polyethylene insert. 

The curvature of the trays were adjusted from the actual average Teletibia TKA curvature (data 

set 4 in Figure 103 and data set 3 in Figure 104).  For the lateral adjustment there were some 

effects on the quadriceps and axial knee forces but the greatest effect was on the tibiofemoral 

contact kinematics. The geometry with the largest radius allowed more overall translation and 

more posterior translation of the lateral AP contact point position.  As would be expected the 

design which was more conforming allowed less translation and had a more anterior contact 

position.  Interestingly, the profile of the medial tray affected the quadriceps and axial force 

values more than the lateral profiles and seemed to affect the kinematics of the contact point a 

little less.   Interestingly, although not unexpected, changing the design parameters on one side 

of the insert also affects the kinematics of the contralateral side contact point.  This is a case 

where more simulations were run than are presented here.  The simulations not presented ran 

into numerical problems and did not run to completion, usually only making it to about 30 

degrees.  Many times these problems are not inherent to the model but the inputs.  Either the 

PID controller controlling the quadriceps force or the controller stabilizing the patella usually 

are the sources of such problems. 
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Figure 103:  Sensitivity analysis of the lateral tibial tray curvature.  The average curvatures simulated are shown 
in the upper left with data set 4 being the actual curvature of the Teletibia TKA.  The “well point” changed 
moving more anterior in the more conforming design (5) and more posterior in the less constrained curvature 
(1-3).   
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Figure 104:  Sensitivity analysis of the medial tibial tray curvature.  The average curvatures simulated are shown 
in the upper left with data set 3 being the actual curvature of the Teletibia TKA.  The “well point” changed 
moving more anterior in the more conforming designs (4-6) and more posterior in the less constrained curvature 
(1-2).   

Sensitivity Analysis of Medial Tibial Tray Sagittal Profile

Teletibia TKA-Deep Knee Bend Simulation

1

2

3

4

5

6

6

5

4

3

2

1



 

165 

 

Lateral and Medial Femoral Sagittal Geometry 

The shapes of the lateral and medial sagittal geometry curvature was changed for this 

sensitivity analysis.  There were no major or obvious affects from the changes of the geometry. 

However, there were differences which showed that changing the location of the contact points 

of the femur does have some affect on how the model behaves. 
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Figure 105: Sensitivity analysis of the lateral sagittal femoral curvature.  The curvatures simulated are shown in 
the upper left with data set 4 being the actual curvature of the Teletibia TKA.   
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Figure 106: Sensitivity analysis of the medial sagittal femoral curvature.  The curvatures simulated are shown in 
the upper left with data set 1 being the actual curvature of the Teletibia TKA.   
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Body Weight 

The segment masses including the mass/weight of the trunk are calculated based on the total 

body weight assigned to the model.  For all of the models discussed so far the body weight has 

been 900 N.  The total body weight was adjusted to see if the resulting affects are expected and 

what the affect a person’s weight can have on TKA mechanics.  The quadriceps force, when in 

units of body weight as commonly described, unexpectedly looked higher for the lower body 

weight (Figure 107).  However, when the units were changed to newtons, the expected 

increase in quadriceps force with body weight was evident.  The maximum quadriceps force 

increases almost linearly with the changing body weight, doubling from a little over 3000 N in 

the lowest body weight of 600 N to 6000 N in the highest of 1200 N, which made sense since 

the quadriceps force in units of BW were so close to each other.  This linear relationship was 

unexpected but not surprising since the trunk and femur weights doubled with the doubling of 

the body weight.  The total femorotibial axial force also increased with increasing body weight.  

The medial and lateral contact positions were also affected but not by more than one mm. 
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Figure 107: Sensitivity analysis of the total body weight parameter.  The original body weight is 900 N.  The 
quadriceps and total axial forces are in the top two rows in units of BW on the left and N on the right. 
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Tibial Component Rotational Orientation 

For the component orientation analysis, the position of the tibial TKA component was adjusted 

relative to the tibia body.  The femoral component was also adjusted so that it remained in the 

same initial position as previous simulations relative to the tibial component’s new orientation.  

This analysis adjusted the orientation of the tibia in the coronal plane (Figure 108).  Coronal 

alignment is such a concern in TKA that tools such as surgical navigation have been developed 

to assist surgeons in providing the correct alignment during implantation [Kim 2005].  There 

was little effects were minor on the quadriceps force and total axial force, except in later 

flexion.  There was, however, a fairly large effect on the tibiofemoral contact kinematics.  There 

was a difference of almost five mm between the two most extreme rotations in opposite 

directions for the medial and lateral contact points.  This resulted in large differences in 

internal/external rotation (in this case calculated as the angle between the line connecting the 

medial and lateral contact points and the mediolateral line of the tibial component (Figure 

109)).  The greater external rotation, however, seen in the simulations with negative rotations 

of the tibial component, was a result of greater anterior slide of the medial contact point, while 

the simulations with lower external rotation saw greater anterior slide of the lateral condyle.  

The original orientation of the tibial component saw the least amount of internal/external 

rotation but avoided extreme amounts of anterior slide of either condyle.   Improper coronal 

alignment has been thought to increase the risk of failure and wear in TKA [Bargren 1983].  The 

increased anterior slide of the contact points with increased coronal rotation could contribute 

to increased wear of the polyethylene insert. 
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Figure 108: Sensitivity analysis of the rotation of the tibial component in the coronal plane (image in upper left 
describes rotational direction).  The data sets are described by the rotation from the original orientation used 
for the validation.  Internal/External rotation (middle plot on the left) in this case is calculated as the angle 
between the line connecting the contact points and the mediolateral line of the tibial component. 
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Figure 109: Description of internal/external rotation calculation in Figure 108 

 

Femoral Component Rotational Orientation 

The femoral component coronal orientation, along with the tibial alignment is thought to be 

important to the longevity of the femoral implant.  The model was sensitive to the variable in 

that any rotations over 5 degrees in either rotation resulted in numerical failure before 30° 

degrees flexion.  Again, this could be due to the PID controller, which if more refined may have 

controlled flexion better and allowed those simulations to run past 30°.  However, radiological 

analysis of coronal component alignment from both traditional TKA and TKA using computer 

navigation show that malrotation is usually well under 5° [Kim 2005] and sensitivity of another 

model stayed within 5° of the original orientation [Lenovaz 2009].   The model did not prove to 

be very sensitive to the adjustments.  However, the slack length of the ligaments for these 

simulations were recalculated whenever the implant position was changed (See Appendix for 

more sensitivity analysis including some which did not adjust the ligament slack lengths). 

Medial Contact

Lateral Contact
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Figure 110: Sensitivity analysis of the coronal alignment of the femoral component.
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Chapter 8: Conclusions 
This dissertation project resulted in the successful creation of a predictive physiological rigid-

body dynamic model of the lower leg.  It is physiologically based, models the tibiofemoral and 

patellofemoral joint of a subject performing two activities as if in the real world and includes 

the ankle and hip joint and moving trunk mass.  All parameters in the model can be adjusted, 

therefore making it a true design tool that can be used to evaluate new TKA and UKA 

components and investigate “what if” scenarios.  Kinematic profiles from the simulation of 

several virtually implanted existing TKA designs matched well with what was previously 

determined under in vivo conditions and also altered the contact force and quadriceps profiles 

depending on the design that was analyzed.  

The two most important plots were presented early in this document (Figure 49 and Figure 50).  

No other truly forward dynamic predictive physiological model of the knee has been validated 

with in vivo kinematic and kinetic data to the extent that this model has been validated.  The 

accuracy of the results for the telemetric implant, and the accuracy of the results from the 

other implant designs, are testament to the performance of this model.  The versatility and 

potential for this simulation platform is endless with the data, tools and researchers available at 

the Center for Musculoskeletal Research at The University of Tennessee.  Future work on this 

model could result in a tool which orthopaedic manufacturers could use to help create the best 

performing, longest lasting joint replacement systems manufactured to date. 



 

175 

 

 

Chapter 9: Contributions 
At present, there is a tremendous need in orthopaedics to evaluate newly developed implant 

devices.  In orthopaedics, new implants are evaluated after five and ten years, using “long-term 

follow-up studies” where the surgeons evaluate the success of a product, determining how 

many implants are still in use.  Unfortunately, having to wait five or ten years to determine if a 

product is successful is not acceptable as it does not provide the developer proper feedback in 

a timely manner.  Therefore, it is imperative that a new evaluation process be developed that 

will allow the company, engineers and surgeons an accurate process that gives them immediate 

feedback.  In this research study, a new process is presented that allows for newly developed 

implant designs to be evaluated, immediately after they are designed, giving the developer 

instant feedback that can be used to predict implant viability.  This new process is the 

development of a theoretical simulator, using a forward solution mathematical model, that 

predicts implant mechanics. 

The following are the major contributions to the field of biomechanics: 

1.  According to Dr. Richard Brand, the editor for Clinical Orthopaedics and Related Research, in 

a letter written in 1993, he stated, “it is impossible to develop an accurate mathematical model 

of the human leg, especially one using forward solution modeling techniques.”  It was assumed 

for many years that Dr. Brand was correct because as of today, no one has developed an 

accurate, validated forward solution mathematical model of the human leg.  All previous 
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attempts were for passive conditions and none attempted to accurately develop a model that 

can be used to analyze implants during in vivo weight-bearing conditions.  Therefore, the 

primary contribution pertains to the development of a dynamic physiological rigid-body 

predictive forward solution model of the knee that could be used to evaluate the non 

implanted or implanted knee.  The model is intended to simulate in-vivo non-weight bearing 

(active open-kinetic-chain extension) and weight bearing (deep knee bend) activities and will be 

developed from the ground up, including simultaneous simulation of the patellofemoral and 

tibiofemoral joint, muscle forces, soft tissue structures and articulating geometry for both joints 

with the end goal of predicting kinematics and contact kinetics of the normal knee and also 

virtually implanted total knee arthroplasty (TKA). 

2.  As mentioned previously, Dr. Brand, a pioneer with respect to orthopaedic mathematical 

modeling and telemetry research, stated that he believed an “accurate”, validated 

mathematical model could not be developed.  Therefore, one of the most important aspects of 

any new mathematical model is the validation of the results.  The kinematic output of the 

normal knee model will be validated using fluoroscopic data from the database at the Center 

for Musculoskeletal Research. 

3.  Although this is a forward solution mathematical model, the use of Kane’s Method of 

Dynamics, allows for the determination of interactive forces, simultaneously with the 

determination of the kinematics of the lower leg.  This is a major contribution because other 

models only attempt to determine kinematics, but are unable to assess many of the kinetics in 

the system. 



 

177 

 

4.  Once the model has been kinematically validated using in vivo normal knee kinematic data 

for both activities, the newly developed forward solution model will be used to evaluate 

existing TKA, as they will be virtually implanted and simulated.   The output from the model 

pertaining to various TKA, again validated using fluoroscopic data, will lead to the development 

of a data base comparing various implanted conditions and designs. 

5.  The kinetic output from the model, namely tibiofemoral interaction forces which act at the 

contact points between the femoral component and polyethylene insert of a TKA, will be 

validated using in vivo results of a telemetric implant which measures forces at the tibial base 

plate on both the medial and lateral side. 

6.  Although researchers routinely model soft-tissue structures, such as ligaments and muscles, 

the preloads in ligament structures has not been previously determined.  Ligaments are always 

in tension, but without the knowledge of the loads in these ligaments under passive and/or 

static conditions, an accurate determination of muscle and interactive forces cannot be made.  

Therefore, another contribution to the literature is the development of a theoretical approach 

to determining ligament preloads and the determination of those preloads in the anterior 

cruciate ligament (ACL), posterior cruciate ligament (PCL), medial collateral ligament (MCL) and 

lateral collateral ligament (LCL) if they exist in the theoretical model. 

7.  Since the model was originally used to determine the mechanics of the normal and present-

day implanted knees, this model could be used to design future TKA and UKA using the 

developed data base. 
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8.  This forward solution mathematical model also allows for input of either temporal or flexion 

dependent shape functions, or shape structures, determining how femur, patella, or tibial 

shapes affect knee mechanics. 

9.  It has been proven that previous mathematical models have inaccurately modeled contact 

mechanics, including slip vs. roll and the interaction occurring at both the medial and lateral 

condylar interfaces with the tibial plateau.  This newly developed model uses an accurate 

methodology to model the interactions occurring at the femorotibial and patellofemoral 

interfaces. 

10.  A unique controller was developed to adjust the quadriceps forces in order to control knee 

flexion and stabilize the patellofemoral joint.  This controller uses both flexion error, flexion 

acceleration error and patella tilt as the process variable.  The controller provides smooth, 

accurate tibiofemoral and patellofemoral motions during simulation and quadriceps forces 

which match force profiles and magnitudes seen in validated inverse dynamic models of similar 

activities.   This control scheme emulates motor control strategies found in the human nervous 

system while stabilizing the numerical solution of the model. 

11.  Finally, several existing TKA were evaluated using this model and compared to results seen 

in vivo.  The output from this model will be used as a first-step to develop a virtual knee 

simulator that can be used to evaluate and predict the in vivo behavior of different existing or 

under development TKA under various conditions.  
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Chapter 10: Future Work 
It is proposed that the following future work could be conducted the further enhance this 

mathematical model: 

1.  More muscles and physiological structures should be added including more hamstring 

muscle elements and muscle of the lower leg, increasing the potential for more activities. 

2.  Continue to refine the controller.  This should include an automated tuning of the controller 

gains and gain scheduling during the simulation. 

3.  Increase speed and robustness of the numerical solver.  Although numerical problems are 

rare with the types of simulations shown in this dissertation, numerical issues can arise, as they 

do in all forward solution algorithms, when new designs are implanted or extreme adjustments 

to parameters are made. The numerical solution of this model is also tied in with the muscle 

force controller.  Resolving number 2 in this list could eliminate most numerical issues. Speed 

should always be improved as long as accuracy is not sacrificed. 



 

180 

 

4.  Expand and refine the articulating 3-D geometry representation of the tibial tray and 

trochlear groove.  This could include using splines and the ability to use NURBS. 

6.  Add a foot and eventually the contralateral leg to the model. 

7.  Expand and refine the wrapping of muscles and ligaments. 

8.  Expand the GUI to make more user friendly and allow instant simulation with a new TKA 

design. 

9.  Further validation with other telemetric implants. 

10.  Allow for condylar lift off in the model. 

11.  Add additional constraints so that posterior stabilized knees can be modeled and also add 

mobility to the insert so that rotating platform and mobile bearing TKA can be analyzed.   

12.  Integrate with the discrete spring model to estimate contact area, stress and wear and 

make this truly a computational wear simulator. 

13. Obtain data needed from more CT scans so a library of subjects in various shapes, sizes and 

genders are available for implantation.  Also implement an easy scaling scheme so the height 

and weight of subjects can easily be adjusted. 

14.  Simulate more activities, including gait. 
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Anatomical Definitions 

 

 

Figure 111:Human anatomy planes. Source: Wikipedia http://en.wikipedia.org/wiki/Abduction_(kinesiology) 

 

Figure 112: Definitions of some femoral and patellar rotations and anatomical directions. 
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Extension Model Progression 

Initial Model 

The gradual development of the extension model was a method of verification.  By adding 

elements or changes to the model one by one, the effect of these changes can be seen and the 

determined to be correct or reasonable assumptions.  The first extension model consisted of 

the femur which is attached to the Newtonian and one body, the tibia connected to the femur 

with a pin joint representing the TFJ with no translation, three degrees of rotational freedom 

and massless frames representing the patella and patella ligament which both had prescribed 

rotations relative to the tibial reference frame (Figure 113). Constraining the translation of the 

tibia at the pin joint requires three constraining interaction forces.  Keeping the tibia from 

penetrating the femur using some form of an interaction force or forces is common for all of 

the iterations of this extension model.  The constraining forces acting in the ML and AP 

directions in this first pin joint model were eventually replaced by elements which replicate a 

physiological structure in the knee. 
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Figure 113: Description of a simple extension model with an idealized pin joint representing the TFJ and frames 
with specified motions representing the extensor mechanism. The inlay shows the calculations for the patellar 
mechanism forces including the patellar ligament force and patellofemoral force which are represented using 
massless frames. This model includes one body (TIBIA) free to rotate in all three directions with one tibiofemoral 
contact point with the femur fixed to the Newtonian reference frame.  Active quadriceps and hamstring forces 
are applied along unitvectors in their respective reference frames. 

Moving Tibiofemoral Contact and Constrained Patella Body 

The next big change in the modeling of the lower leg bodies and contact was adding a degree of 

freedom to the tibia  body, allowing  translation in the anterior/posterior direction,  and adding 

the patella as a body.  Professor Thomas Kane the father of Kane’s Dynamic said “go slow, we 
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do not have time to go fast.” This seems like a large jump to make this early.  This step in the 

modeling progression was a bottleneck for this project.  The goal of this model was originally to 

focus on the tibiofemoral contact points and forces.  Therefore, adding translation to the TFJ 

was the next logical step. Another goal for the project was to control the kinematics of the 

model with force input, rather than simply changing the displacement.   After hundreds of 

attempts, the only way that garnered reasonable results with quadriceps force as the input was 

by adding the patella as a body.  Therefore, we have this jump which includes both tibiofemoral 

translation and adding the patella as a body.  The benefit from this struggle, however, was a 

dynamic model of the patellofemoral joint which was developed along with the tibiofemoral 

joint. 

In this stage of the model the femorotibial and patellofemoral contact points were described on 

the femur as a function of knee flexion using polynomials.  These functions were generic and 

simplified.  The contact point was allowed to move on the tibia, relative to the tibia in the AP 

direction (TIBIA1>) and was constrained in the ML (TIBIA3>) and Axial (TIBIA2>) directions using 

constraining and interaction forces (Figure 114).    

The patella only had one degree of freedom, it was allowed to translate along its own SI axis 

(PAT2>).  It was constrained in all other translational and rotational directions.  The patella 

body, similar to the femur, had an interaction force acting in the AP direction of the patella 

(PAT1>).  It also had a constraining force which acted at the contact point keeping the patella 

from “subluxing” or basically falling off the medial or lateral side of the femur.  The patella also 

had three constraining torques applied to its mass center which described its rotational motion 
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relative to the femur (Figure 114).  The patella flexion (about PAT3>) relative to the femur is 

prescribed with a linear relationship determined from in vivo data. 

 

Figure 114: Schematic of the contact points and constraining forces for an initial model of extension. The patella 
is a body as is the tibia.  The femorotibial and patellofemoral contact points are prescribed on the femur as a 
function of tibial flexion.  Interaction forces keep the patella and tibia from penetrating the femur, constraining 
forces constrain the motion of the bodies.  Ligaments and muscles are not shown. 

 

Two moving TFJ Contact Points and Allowing Ligaments to Constrain 

To better represent the knee and also to add more stability to the tibia, the single contact point 

was changed to two contacts, representing the medial and lateral condyles of the knee.  The 

constraining force in the ML direction was removed and the tibia unconstrained in the ML 

direction.  In order to calculate the force at the second femorotibial contact point, the tibia was 

constrained in the abduction/adduction plane (about TIBIA1>).  This is a reasonable 

assumption, since the abduction/adduction rotation was minimal for previous simulations.   
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The only translational constraint on the tibia was in the axial direction. In rigid body dynamics, 

contact constraints act in both directions.  Therefore, if all the ligaments were removed, the 

femur would apply a tension force at the tibial contact points, constraining the movement in 

the axial direction of the tibia, holding the tibia in place.  This, of course, is not realistic.  

However, it is realistic if the forces during the simulation are always in compression.  In most 

cases the TFJ and patellofemoral joint are always in compression. 

Another important addition was patellofemoral ligaments.  Ligaments become essential as 

constraining forces represented with auxiliary generalized speeds are removed from the model.  

The collateral and cruciate ligaments were added to the extension model in between the pin 

joint model and model previous to this one.  Not until now, when constraints are removed, 

have they played an important role in determining the predicted kinematics from this model.  

This iteration removes the two torque constraints besides that which controls patella flexion.  

The patellofemoral ligaments added to this model acted as passive constraints, replacing the 

constraining torques, and keeping the patella tilt and rotation within reasonable bounds.  

Unlike the tibiofemoral joint in this model, the patella only had one contact, therefore the 

kinematics were affected by out of plane forces.   Thus, the patellofemoral ligaments were 

more active in this iteration of the extension model than they are in vivo or in later iterations 

which include patellofemoral geometry.  Generic models of the femur, tibia and patella were 

used in this model to determine segment lengths, ligament attachments and the position of the 

TF and PF contact points on the femur. 



 

205 

 

Data from Computed Tomography Models 

After the last iteration of the model using a generic femur, tibia and patella models achieved 

reasonable results, attachment points, segment length and measured contact point positions 

were obtained from bone models constructed using computer CT images. 

Points were chosen for all position vectors in this model from a set of femur, tibia/fibula and 

patella models built from CT scans (Figure 115).  The positions of the landmarks were found 

relative to the segment centers of mass. The coordinates for the bony landmarks were found 

using Rapidform 2006 (Inus Technology, Inc., Seoul, Korea).  The path of the femorotibial and 

patellofemoral contact points on the femur were also determined and modeled with 

polynomials.  The position vectors for these contact points changed as a function of knee 

flexion in this extension model.   
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Figure 115: From top to bottom: Lateral, medial, anterior, distal and proximal view of a femur bone model 
constructed from CT scans with boney landmarks.  The position of the contact points on the femur were also 
measured from this model. 

For the initial model using data from CT scans, the femorotibial contact points were in contact 

with a flat plane that represented the tibial condyles (Figure 116). The contact points were free 

to translate in any direction within this plane whose normal was the long axis of the tibia.  The 

patellofemoral contact point was described on the femur but the corresponding point on the 

patella was free to move along the proximal/distal (PD) line of the patella (Figure 117).  

Therefore after application of a simulated quadriceps force which acted at an angle to long axis 

of the patella that changed with flexion, the patella was free to translate along the trochlear 

groove, which resulted in the extension of the tibia.  The patella was constrained in the patellar 

AP (PAT1>) direction and in the ML (PAT3>) direction by applying an interaction force and a 
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constraining force at the patellofemoral contact point.  The patella body was still free to rotate 

and tilt and the forces constraining this motion were the patellofemoral ligaments.   

 

Figure 116: Diagram showing how tibiofemoral contact is modeled in early models.  The geometry of the medial 
and lateral femur is expressed as a point on the medial (FTM) and lateral (FTL) condyle.  FTM and FTL change 
position in the femoral reference frame as a function of flexion.  TFL and TFM are the tibial contact points.  The 
distance between TFL and FTL and TFM and FTM is set to 0>.  TFL and TFM can translate relative to the tibia in 
the TIBIA3> and TIBIA1> directions.  Medial (FM>) and lateral (FL>) contact forces are in the TIBIA2> direction.  
FRL> and FRM> are friction forces. 
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Figure 117: Diagram showing how patellofemoral contact is modeled in early models.  The geometry of the 
trochlear groove is expressed as a point, FP, on the femur.  FP changes position in the femoral reference frame 
as a function of tibial flexion.  PF is the contact point on the patella.  The distance between FP and PF is set to 0>.  
PF can translate relative to the patella only in the PAT2> direction.  The patellofemoral contact force, FPAT> is in 
the PAT1> direction.  FC> is a constraining force in the FEMUR3> direction for this iteration of the model.  FR> is 
a friction force. 

 

More Model Iterations 

Many iterations later, including those in Figure 118 and Figure 119, the model reported in the 

Methods section of this dissertation came to be. 
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Figure 118: Description of the extension model before insertion of geometry including constraining forces, 
ligament forces, active muscle forces. This model includes two bodies, TIBIA and PAT with the FEMUR attached 
to the NEWTONIAN reference frame (LAB).  The PAT body representing the patella has two contact points with 
the FEMUR and three DOF. The TIBIA body representing the tibia also has two contact points with the FEMUR 
and has four DOF. The ligaments forces are modeled as spring-damper systems with two spring elements per 
bundle.  The QUADRICEPS and HAMSTRING forces are inputs to the model and are applied at attachment points 
on the patella and tibia, respectively, at angles relative to the femur.  
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Figure 119: Free body diagram of extension model with articulating geometry.  The TFJ and PFJ contact 
constraints were constrained using normals from the tibial or polyethylene insert and trochlear groove 
geometry. 
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2D Patella Kinematics 

z  

Figure 120: Average in vivo patellofemoral angle versus flexion angle determined using fluoroscopy for both 
weight-bearing deep knee bend and non-weight bearing activities for a group of 5 normal subjects and 20 
Medial Pivot TKA.  

 

Figure 121: In vivo patellofemoral contact position on the patella determined with fluoroscopy measured from 
the most distal point on the patella and normalized by the length of the patella for 5 subjects with a normal 
knee and 20 implanted with a Medial Pivot TKA during weight bearing deep knee bend and non-weight bearing 
flexion. 
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Model Point Definitions 

Table 3: Description of points in the final deep knee bend model and code.  The extension model has similar 
definitions but instead of the ankle being fixed to the Newtonian reference frame the pelvis and femur are both 
fixed to the Newtonian and the tibia is free to move. 

Point Descriptions 
 On Tibia On Femur On Patella On Pelvis/Trunk  
Segment Center 
of Mass and 
Reference 
Points 

Tibia is represented by 
body A  

Femur is represented by 
body F 

Patella is 
represented by body 
PAT 

Pelvis and Trunk 
are one body 
represented by 
PELVIS 

ANKLE 
REFERENCE 

NO/ANKLECENTER 
(NOTE: fixed to lab or 
Newtonian represented 
by N not A) 

   

REFERENCE 
POINTS 

AN (same local as 
ANKLECENTER but 
attached to A) 
AREF (Located at 
intercondyloid 
emminence) 

FREF (Located at the 
geometrical center of 
femoral head) 
CONDYLECENTER 
(midpoint of the centers 
of femoral condyles) 

PATO (located at the 
PAT center of mass) 

PELVISREF 
(Located at 
PELVISF 
Interaction  point 
between the 
PELVIS and F) 

SEGMENT 
CENTER OF 
MASS 

AO FO PATO (also used as 
PAT reference point) 

PELVISO 
(Pelvis/Trunk 
center of Mass) 

TKA Component 
Reference 
Frame Points 

Tibial Component 
massless reference 
frame fixed to A is 
TIBIACOMP 

Femoral component 
massless reference 
frame fixed to F is 
FEMURCOMP 

Patella component 
massless reference 
frame fixed to PAT is 
PATELLACOMP 

 

 TIBIACOMPO, 
ATIBIACOMPO, 
COMPREF, AFCOMPREF 

FEMURCOMPO, 
FFEMURCOMPO, 
FACOMPREF 

PATPATCOMPO, 
PATELLACOMPO 

 

Generalized 
speeds location 
(translational) 

    

U4-U6 ANKLECENTERAN in 
N reference frame 

   

U10-U12 AFCOMPREF  FACOMPREF in 
TIBIACOMP reference 
frame 

  

U16-U18  FACOMPREF  PATELLACOMPO in 
TIBIACOMP 
reference frame 

 

U22-U24  FPELVIS   PELVISF in N 
reference frame 
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Table 3: Continued 

Point Descriptions (continued 1) 
 On Tibia On Femur On Patella On 

Pelvis/Trunk  
Interaction and 
Constraint Force 
Points 

    

ANKLE CONTACT AN (NA fixed to 
lab, ground 
reaction forces 
calculated here) 

   

TIBIOFEMORAL 
CONTACT (Medial and 
Lateral) 

AFL,AFM (In Tibial 
Component 
Reference Frame) 

FAL,FAM (In Femoral 
Component Reference 
Frame, position 
described as function of 
flexion) 

  

PATELLOFEMORAL 
CONTACT (Medial and 
Lateral 

 FPATL,FPATM (in 
Femoral Component 
Reference Frame 

PATFL,PATFM (in Patella 
Component Reference 
Frame, position 
described as function of 
flexion) 

 

FEMUR/PELVIS 
INTERACTION 

 FPELVIS  PELVISF 

CONSTRAINING M/L 
HIP FORCE (DKB) 

 HIPFORCE (same as 
FELVIS) 

  

CONSTRAINING M/L 
TIBIAL FORCE 
(Extension) 

AREF    
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Table 3: Continued 

Point Descriptions (continued 2) 
 On Tibia On Femur On Patella On 

Pelvis/Trunk  
Ligament Origin and 
Insertion 

    

MCL  AMCL{3,2}  
6 points(MCL 
wrapping points 
included in these) 

FMCL{3,2} 
6 points 

  

LCL ALCL{1,2} 
2 points 

FLCL{1,2} 
2 points 

  

ACL AACL{2,2} 
4 points 

FACL{2,2} 
4 points 

  

PCL APCL{2,2} 
4 points 

FPCL{2,2} 
4 points 

  

Patella Ligament 
(Lateral and Medial 
Bundle) 

APATLIGL{2,4}, 
APATLIGM{2,4} 
16 points 

 PATLIGPATL{2,4}, 
PATLIGPATM{2,4} 
16 points 

 

Patellofemoral 
Ligaments Medial 
and Lateral 

AMPML{1,3} 
3 points 

FLPFL{3,2}, FMPFL{3,2} 
12 points 

PATLPFL{3,2}, 
PATMPFL{3,2}, 
PATMPML{1,3} 
15 points 

 

Quadriceps Insertion 
and Origin 

 GREATTROCH{4} 
MIDFEMPOSTL{4} 
Vastus Lateralis 
DISTFEMANT{4} 
MIDFEMANT{4} 
Vastus Intermedius 
VASTMED{4} 
MIDFEMPOSTM{4} 
Vastus Medialis 
24 points 
 

PATQUADL1{4}  
Vastus Lateralis 
PATQUADL2{4} 
Rectus Femoris 
PATQUAM1{4} 
Vastus Medialis 
PATQUAM2{4} 
Vastus Intermedius 
16 points 

RECTFEM{4} 
Rectus 
Femoris 
4 points 

Quadriceps 
Wrapping 

 QUADWRAPLAT{2,4}, 
QUADWRAPMED{2,4} 
16 points 
 

  

Hamstring Force 
Insertion and Origin 

ALCL1{2} 
AMCL1{2} 
4 points 

MIDFEMPOSTL{2} 
MIDFEMPOSTM{2} 
4 points 
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Additional Deep Knee Bend Sensitivity Analyses 

 

Figure 122: Sensistivity analysis of the femur moment of inertial value in the sagittal plane.  The original value is 
0.0645 kg*m2. 

Sensitivity Analysis of Femoral Moment of Inertia in Flexion

Teletibia TKA-Deep Knee Bend Simulation
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Figure 123: Sensitivity analysis of the lateral collateral ligament reference strain which adjusts the LCL slack 
length, calculated by multiplying the length of the ligament at full extension with the reference strain.  

Sensitivity Analysis of LCL Reference Strain (Slack Length)

Teletibia TKA-Deep Knee Bend Simulation
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Figure 124: Sensitivity analysis of the attachment point of the MCL on the tibia.  All three bundle attachments 
were moved in the anterior/posterior direction relative to the original position. 

Sensitivity Analysis of AP MCL Attachment on Tibia

Teletibia TKA-Deep Knee Bend Simulation
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Figure 125: Sensitivity analysis of the tibial component orientation in the transverse plane.  Adjustments were 
made from the original orientation (0 deg).  Once the rotation became positive the model failed to  solve (+3 
deg).  This is probably due to the quadriceps force applied by the PID controller or adjusted by the controller 
which stabilizes the patella. The femur and femoral component and patella locations were adjusted so that the 
relative starting position to the tibial component was the same at each new location. 
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Figure 126: Sensitivity analysis of the tibial component orientation in the sagittal plane.  Adjustments were 
made from the original orientation (0 deg).  The femur and femoral component and patella locations were 
adjusted so that the relative starting position to the tibial component was the same at each new location. 
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Figure 127: Sensitivity analysis of the femoral component orientation in the transverse plane (see figure in upper 
left for rotation direction).  Adjustments were made from the original orientation (0 deg). The relative starting 
positions of the tibial, femoral and patellar components remained the same for all simulations. 
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Figure 128: Sensitivity analysis of the femoral component orientation in the sagittal plane (see figure in upper 
left for rotation direction).  Adjustments were made from the original orientation (0 deg). A rotation from the 
original of -6 degrees was run but the model failed to solve.  The relative starting positions of the tibial, femoral 
and patellar components remained the same for all simulations. 
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Figure 129: Sensitivity analysis of the femoral component orientation in the coronal plane (see figure in upper 
left for rotation direction).  Adjustments were made from the original orientation (0 deg).   Unlike the results 
Figure 110 the ligament slack lengths were kept the same for each orientation of the components. 
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Figure 130: Sensitivity analysis of the tibial component location relative to the tibia in the Anterior/Posterior 
direction (+anterior,-posterior).  The femur and femoral component and patella locations were adjusted so that 
the relative starting position to the tibial component was the same at each new location. 
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Figure 131: A second sensitivity analysis of the medial femoral sagittal profile.  The sagittal profile is seen in 
upper left figure. The original profile of the Tibiofemoral TKA is data set 4. 
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Figure 132: A second sensitivity analysis of the lateral femoral sagittal profile.  The sagittal profile is seen in 
upper left figure. The original profile of the Tibiofemoral TKA is data set 4. 
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Figure 133: Sensitivity analysis of increasing or decreasing the amount of flexion in the hip, causing the torso to 
lean more forward (+) or less (-).  The numbers in the legends for this figure is the total amount of flexion at the 
hip added or subtracted from the simulation. 
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Figure 134: Sensitivity analysis of increasing moving the attachment of the patella ligament on the tibia in the 
medial or lateral direction from the choosen position on the CAD models built by CT scans.  For these 
simulations the slack length of the patella ligament was recalculated using the new initial length for each 
simulation. 
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Figure 135: Sensitivity analysis of moving the attachment of the patella ligament on the tibia in the medial or 
lateral direction from the choosen position on the CAD models built by CT scans.  For these simulations no 
adjustment of the slack length from simulation to simulation was made. 
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