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ABSTRACT 

 

Lysophosphatidic acid (LPA) is a potent bioactive lipid component of oxidized 

low density lipoproteins (oxLDL). High concentrations of LPA have been detected in 

human atherosclerotic plaques. Our data has shown that LPA highly induces smooth 

muscle cell (SMC) migration. Cyr61, a matricellular protein, which also accumulates 

in human atherosclerotic plaques, has been implicated in the injury-induced 

neointimal formation. Smooth muscle cell migration is a key event in the 

development of atherosclerosis, and it contributes to the progressive growth of 

atherosclerotic lesions. Data generated by this study demonstrate that LPA markedly 

induces Cyr61 expression in mouse aortic smooth muscle cells (MASMC). We 

hypothesized that LPA-induced matricellular Cyr61 mediates LPA-induced MASMC 

migration. To date, little is known about the relationship between LPA and Cyr61 in 

smooth muscle cells; the signaling pathway leading to LPA-induced Cyr61 is 

unknown. Furthermore, whether Cyr61 contributes to LPA-induced cell migration is 

unrevealed. Our study demonstrates that LPA, by binding to LPA1 receptor, activates 

the intracellular signaling pathway leading to the activation of PKCwhich in turn 

contributes to the increased expression of Cyr61 in MASMCs. Interestingly, we found 

that after LPA-induced Cyr61 mRNA has been translated into its protein 

intracellularly, the de novo synthesized proteins promptly accumulate in the Golgi 

apparatus and then translocalize to the extracellular matrix. Importantly, our data 

reveal a novel LPA/Cyr61 pathway in controlling MASMC migration. Understanding 
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the mechanism underlying LPA induction of Cyr61 provides new insight into 

pathogenesis of atherosclerosis. 
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                      INTRODUCTION 

 

Cardiovascular diseases are the No.1 cause of death in the United States. 

Atherosclerosis is a major component of cardiovascular disease, the primary cause of 

heart disease and stroke. It is the underlying cause of about 50% of all deaths in 

westernized societies. Over the past years, the mechanism of atherosclerosis has been 

more understood. Atherosclerosis is a chronic inflammatory condition, which causes a 

progressive disease characterized by the accumulation of lipids, cells and fibrous 

elements in the large arteries [1].  

 

NORMAL ARTERIES 

The basic components of blood vessels are cells, mostly endothelial cells (ECs) 

and smooth muscle cells (SMCs), and extracellular matrix, which includes collagen, 

elastin and glycosaminoglycans [2]. 

There are three concentric layers (intima, media, and adventitia) in the arterial 

walls. The intima consists of a single layer of ECs with little underlying 

subendothelial connective tissue and is bordered by internal elastic lamina. The 

endothelial cells form a firm barrier between the vessel lumen and the stroma of the 

arterial wall. Research has revealed that endothelial cells regulate a wide set of 

functions in the arterial wall, including vascular tone and structure, and they exhibit 

anticoagulant, antiplatelet, and fibrinolytic properties [3].    

The most prominent constituent of the media layer is smooth muscle cells. These 
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cells are held together by an extracellular matrix which consists mostly of elastic 

fibers and collagen. These cells may also be attached together by junctional 

complexes. The smooth muscle cell is the main contributor to production of the 

extracellular matrix [4]. It is well known that the vascular smooth muscle has the 

function of controlling vascular tone through contraction or relaxation. The vascular 

smooth muscle has also been shown to be involved in the regulation of cell growth, 

death, and migration, as well as matrix modulation and inflammation. These functions 

of vascular smooth muscle play important roles in beneficial physiological vascular 

functions, such as vascular remodeling, and also in pathological disorders, such as 

atherosclerosis, restenosis, transplant vasculopathy, and other vascular diseases [5]. 

The outer limit of the media is defined by the external lamina. The outermost layer 

of the artery is the adventitia, consisting of the connective tissue with nerve fibers and 

the vasa vasorum [6]. The adventitia is thought to be a major source of vasoactive 

factors and a pivotal participant in vascular remodeling. Over the past years the 

researchers noted that the changes occurring in the adventitia may be a signal of 

impending vascular disease, with typical hypercellularity, increased connective tissue 

production, and clear signs of inflammation [7]. 

 

ATHROSCLEROSIS 

Atherosclerosis is a progressive disease caused by the accumulation of lipids and 

fibrous elements in the large arteries. (1) The intimal lesions are called atheromas or 

fibrofatty plaques, which protrude into and obstruct vascular lumina, weaken the 
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underlying media, and finally cause serious complications. Atherosclerosis mostly 

affects elastic arteries and large and medium muscular arteries. As a result, acutely or 

chronically diminished or stopped arterial perfusion leads to lots of severe 

consequences, including mesenteric occlusion, chronic ischemic heart disease, sudden 

cardic death and encephalopathy.  

Due to the overwhelming clinical importance of atherosclerosis, over the past 

decades scientists have put enormous efforts into discovering the mechanism behind 

the diseases. The current concept, called the response to injury hypothesis, considers 

that atherosclerosis is a chronic inflammatory response of the arterial wall initiated by 

injury to the endothelium. Hyperlipidemia, and other risk factors, cause chronic 

endothelia injury, which yields increased permeability, leukocyte adhesion and 

thrombotic potential. As a result, lipoproteins, mostly Low-density Lipoprotein (LDL), 

accumulate in the subendothlial matrix. Meanwhile, blood monocytes adhere to the 

endothelium and migrate into the intima and then are transformed into macrophages. 

 Under the induction of free redicals generated by macrophages or EC, 

accumulated LDL is modified through oxidation, proteolysis, lipolysis and 

aggregation [2][8]. Distinct from native LDL, oxidized LDL can be ingested by 

macrophages through the scavenger receptor, leading to the formation of the foam 

cells. It can also stimulate the overlying ECs to produce a number of proinflammatory 

molecules, including adhesion molecules and growth factors. In the lumen, platelets 

adhere to the endothelial cells and become activated. After being activated, platelets 

release numerous imflammatory factors, and they, together with other factors released 
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by other cells cause the smooth muscle cells to migrate from the media into the intima 

Finally, SMC proliferation and the extracellular matrix that SMCs deposit in the 

intima convert a fatty steak into a mature firbrofatty atheroma, leading to the 

progressive growth of atherosclerosis lesions [2]. Most importantly, in the 

development of atherosclerosis SMC migration and proliferation are key events .   

 

RISK FACTORS: 

Over the past years, epidemiological studies have revealed numerous risk factors 

for atherosclerosis. The well-established familial predisposition to causes of 

atherosclerosis is polygenic. Age, along with other factors, including hyperlipidemia, 

smoking, diabetes mellitus, homocystinemia, contribute to the development of the 

atherosclerosis [2]. Among the risk factors, low density lipoprotein is one of the most 

important risk factors. And the most pathogenic form of LDL is the oxidized LDL. 

 

LYSOPHOPHATIDIC ACID (LPA): 

Oxidized low density lipoprotein (LDL) is an important contributor in the 

pathogenesis of atherosclerosis and its thrombotic complications, such as stroke and 

myocardial infarction. It has been found that lysophosphatidic acid (LPA) is formed 

during mild oxidation of LDL and is the active compound in mildly oxidized LDL and 

minimally modified LDL. LPA also initiates platelet activation and stimulates 

endothelial cell stress-fiber and gap formation. Furthermore, LPA is the primary 

platelet-activating lipid of atherosclerotic plaques, and the amount of LPA within the 
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human carotid atherosclerotic lesion is highest in the lipid-rich core, which is the 

region most thrombogenic and most prone to rupture [9].  

LPA, a potent bioactive lipid, elicits a variety of cellular responses in various cell 

types including proliferation, migration, prevention of apoptosis, cytokine and 

chemokine secretion, platelet aggregation, smooth muscle contraction, and neurite 

retraction. LPA has multiple effects on vessel wall cells and blood platelets. Our group 

has reported that LPA induces the expression of transcription factor, Early Response 

Gene-1 (EGR-1) and coagulation initiator, tissue factor (TF) in aortic smooth muscle 

cells, and promotes interleukin 6 secretion from aortic smooth muscle cells. These 

results imply that LPA might play a role in vascular inflammation and thrombosis 

[10][11][44]. Our recent data and previous studies demonstrate that LPA induces 

smooth muscle cell migration and proliferation. Given the fact that smooth muscle 

cell migration is an important future of atherogenesis, it is of great clinic importance 

to understand the molecular mechanism of LPA induction of smooth muscle cell 

migration.  

 

LPA RECEPTORS: 

LPA is an extracellular ligand for a family of G protein-coupled receptors. 

Through binding to the LPA receptors, LPA activates intracellular signaling pathways, 

which have been shown to be involved in many essential cellular processes [12]. At 

least 5 LPA receptors have been identified. They are LPA1–5, which are widely 

expressed in various cells and mammalian organ systems, such as cardiovascular, 
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nervous and reproductive systems [13]. 

LPA1, also called EDG2, was the first identified LPA receptor [14]. It is highly 

expressed in many organ tissues including brain, heart, lung, thymus, testis, stomach, 

small intestine, spleen, and skeletal muscle in adult mice [15] and has also been 

detected in numerous human tissues such as brain, heart, placenta, spleen, kidney, 

colon, small intestine, prostate, testis, ovary, pancreas, thymus, and skeletal muscle 

[16]. It is reported that LPA1 is involved in cell proliferation, serum-response element 

(SRE) activation, MAPK activation, PLC/PKC activation, Akt activation, and Rho 

activation through three types of G proteins: Gi/o, Gq, and G12/13 [17] [18]. 

LPA2, also called EDG4, was the second LPA receptor identified by sequence 

homology searches using LPA1 [16] [19]. It shows gene express in embryonic brain, 

testis, kidney, lung, thymus, spleen, and stomach in mice [15]. LPA2 has also been 

detected in human tissues including testis, pancreas, prostate, thymus, spleen, and 

peripheral blood leukocytes [16]. Like LPA1, LPA2 signaling is also via three G 

proteins: Gi/o, Gq, and G12/13 [19] [20]. Within MEFs, LPA2 has been shown to have 

redundant functions in mediating PLC activation, proliferation, JNK activation, Akt 

activation, and stress fiber formation [21].  

LPA3, also called EDG7, was identified by degenerate polymerase chain reaction 

(PCR)-based cloning and homology searches [22][23]. LPA3 is found in kidney, lung, 

testis, small intestine, heart, thymus, brain, oviduct, placenta, and uterus in adult mice 

[15]. It is also detected in heart, pancreas, prostate, testis, lung, ovary, and brain in 

humans [22][23]. LPA3 couples to Gi/o and Aug protein, but unlike LPA1 and LPA2, it 
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does not couple to G12/13 [18]. LPA3 signaling induces PLC activation, 

Ca2+mobilization, AC inhibition/activation, and MAPK activation [18][22][23]. 

LPA4, also called p2y9/GPR23, was identified during a “de-orphaning” project of 

G protein-coupled receptors. It is found in human ovary, kidney, skeletal muscle [24] 

and has also been detected in brain, heart, lung, thymus, kidney, skeletal muscle, 

ovary, uterus, and placenta in adult mice. LPA4 signaling couples with Gq/11 and Gs 

proteins [25]. 

LPA5 also called GPR92 was a GPCR closely related to LPA4 [26], sharing at 

most 35% sequence identity with LPA4 and lower identities compared with LPA1–3. It 

is highly expressed in small intestine, and is also detected in spleen and stomach of 

adult mice. It has been demonstrated that LPA5-mediated signaling is relevant to 

normal function, most likely in concert with previously identified receptors [27]. 

 

CYSTEINE-RICH PROTEIN 61: 

Although the extracellular matrix was considered a benign scaffold for arranging 

cells within connective tissues for many years, it is now being redefined as a dynamic, 

mobile, and flexible regulator of cellular behaviour [28]. The ECM can regulate the 

bioavailability and activity of growth factors, chemokines, cytokines and extracellular 

enzymes. Moreover, ECM proteins can also directly interact with cell surface 

receptors, triggering the activation of signal transduction cascades, and regulating 

diverse cellular functions [29].   

The CCN proteins are an important family of matricellular regulatory factors 
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involved in internal and external cell signaling, in angiogenesis, chondro-genesis, and 

osteogenesis, and they probably participate in the control of cell proliferation and 

differentiation [30].  

Cysteine-rich 61 (Cyr61, CCN1) is a Error! Reference source not found. that is 

encoded by the Cyr61 gene [31]. As a member of the CCN protein family, 

CCN1/Cyr61 plays important roles in cell proliferation, adhesion, differentiation, 

angiogenesis and extracellular matrix production. Moreover, CCN1/Cyr61 also has 

many potential functions in tumorigenesis, development, embryo implantation, as 

well as formation of endometriotic lesions. Various agents, including cytokines, 

growth factors, steroid hormones, and some drugs, regulate expression of 

CCN1/Cyr61 through several signaling transduction pathways. As a result, 

CCN1/Cyr61 is not only able to regulate the growth of epithelial cells and fibroblasts, 

but also to induce or suppress apoptosis in a specific cell type [32].   

Cyr61 regulates SMC proliferation, adhesion, migration, differentiation, 

apoptosis, extracellular matrix production, which are important steps in the initiation 

and progression of atherosclerosis, therefore Cyr61 could be one important regulator 

in the process of atherosclerosis.  

 

 

 

 

http://en.wikipedia.org/wiki/Gene
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MATERIAL AND METHODS 

 

MATERIALS: 

LPA (1-Acyl-2-hydroxy-sn-glycerol-3-phosphate) in this study was purchased 

from Avanti Polar Lipids, Inc; transient chambers (6.5 mm diameter, with 8.0 μm pore 

size polycarbonate membranes) were from Corning Costar Corp; and phosphate buffer, 

Harris hematoxylin solution, and eosin Y solution were from Sigma; PD98059 (PD), 

SB203580 (SB), U0126 (U0), GF109203X (GF), GO6976, GO6983, SP600125 (SP), 

Wortmannin, LY294002 (LY) and Rottlerin were from Enzo Life Science. Resveratrol 

was from EMD. Antibody against actin was from Sigma; Antibodies against Mouse 

Cyr61 was from R&D System; Antibodies against adaptin was from BD Transduction 

Laboratories; Antibodies against Egr-1, p-JNK, p-AKT, p-ERK, p-PKD, p-PKC, 

p-PKC, p-P38, p-PKC, p-PKC p-PKC, PKD1, PKD2, and MEK were from Cell 

signaling; Rhodamine Red-X-conjugated AffiniPure goat anti-mouse IgG was from 

Jackson ImmunoResearch Laboratories. Goat anti-sheep IgG Alexa Fluor 488 was 

from Invitrogen; SelectFX Nuclear Labeling Kit and SlowFade Gold antifade reagent 

were from Invitrogen; mouse PKC siRNA, mouse PKC siRNA, mouse PKD1 

siRNA and mouse PKD2 siRNA were from Qiagen; VECTASTAIN ABC kit and 

peroxidase substrate kit DAB were from Vector Laboratories, INC. Hybond-N 

membranes were from GE Healthecare. Trizol reagent was from Invitrogen. GoTaq 

Flexl DNA Polymerase and Reverse Transcription system were from Promega. 

RNeasy Mini Kit was from Qiagen. Recombinant Cyr61 protein was from Abcam. 
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Fast Optical 96-Well Reaction Plaste with Barcode, Taqman Gene Expression Master 

MixReal time, Mouse LPA1-5 receptors primers for Real time PCR reagents were from 

Applied Biosystem. 

 

CELL CULTURE: 

Mouse aorta smooth muscle cells (MASMCs) were prepared from explants of 

excised aortas of mice and rats as described previously [33]. Cells between 10 and 20 

were used in these studies. Cells were cultured in Dulbecco's modified Eagle's 

medium containing 10% fetal bovine serum and 1% glutamine. For Western blot 

assays, cells were starved for 48 hours prior to addition of LPA or other reagents. For 

cell migration assay, prior to the cell migration assay, cells were starved for 24 hours.  

 

SMOOTH MUSCLE CELLS WESTERN BLOT ANALYSIS 

Mouse aortic SMCs (MASMCs) were rinsed with cold PBS and then lysed in cell 

lysis buffer (50 mM Tris–HCl, pH 6.8, 8 M urea, 5%-mercaptoethanol, 2% SDS, and 

protease inhibitors) with sonication for 30 s on ice. After addition of 4X SDS sample 

buffer and incubation at 65 °C for 20 minutes, samples were subjected to 10% SDS 

polyacrylamide gel electrophoresis and were transferred to a polyvinylidene fluoride 

membrane (Immobilon-P, Millipore). The membranes were then probed with the 

specific first antibodies, after being washed in TBST 4 times (5 minutes for each), the 

membranes were incubated in specific second antibodies, which depended on the 

source of the first antibody used, and finally the bands were visualized by ECL Plus 
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(GE Healthcare) as described previously [11]. 

 

CELL MIGRATION ASSAY 

Cell migration was performed using transwell migration plates purchased from 

Corning. Mouse smooth muscle cells were trypsinized and plated onto transwell 

plates for migration assays. A volume of 200 μl media containing 2×10
5
 cells was 

added to the upper chamber. Cells were allowed to migrate through filters (8 μm pore 

size), which had been precoated on both sides with gelatin, in the presence of either 

medium (600 μl) alone or medium with LPA at designated concentrations in the lower 

chamber. Cell migration was carried out at 37 °C in 5% CO2 for 6 h. Cells remaining 

on the upper surface of the filter were carefully removed by mechanical scraping. The 

upper chambers were rinsed with PBS, and the cells were fixed with methanol and 

then stained with Harris hematoxylin and eosinY. The number of cells that had 

migrated to the lower surface of the filter was counted in 4 random objective fields 

(200×magnification) using a Nikon Eclipse E600 microscope. 

 

IMMUNOFLUORESCENCE 

MASMCs grown in 6-well chamber coverglass slides were fixed in 4% ice cold 

paraformaldehyde solution for 30 minutes, permeablized with or without 0.3% triton 

X-100 in PBS for 5 minutes at room temperature, blocked with 5% goat serum 

(Sigma) plus 0.1% Tween-20 in PBS for 1 hour, and then incubated with Cyr61 

antibody and adaptin in 1/100 dilution overnight at 4 °C. After being washed with 
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mild shaking with PBS 3 times (5 minutes for each), the cells were incubated with the 

secondary antibody, goat anti-sheep IgG Alexa Fluor 488 or Rhodamine 

Red-X-conjugated AffiniPure goat anti-mouse IgG for 2 hours at room temperature. 

Then the cells were washed with PBS 4 times (5 minutes for each) at room 

temperature, and then incubated with DAPI for 2 minutes and washed with PBS 3 

times (5 minutes for each) at room temperature. Subsequently, the coverslips were 

mounted on slides with permanent aqueous mounting medium (Biogenex), and the 

labeled cells were analyzed by fluorescence microscopy with a Nikon Eclipse E600 

microscope. 

 

IMMUNOPRECIPITATION 

After being stimulated with 5 M LPA for 3, 5, 12, or 24 hours, MASMCs were 

harvested and conditioned media was collected. Secreted Cyr61 was 

immunoprecipitated from conditioned media using the sheep anti-mouse Cyr61 

antibody from R&D System. To detect intracellular Cyr61 protein with the 

immunoprecipitation, cells were homogenized with buffer A (20 mM HEPES, PH7.4, 

50 mM KCl, 2 mM EDTA, protease inhibitor cocktail from ROCHE) by passing 

through 20-gauge needles for 15 times after freezing and thawing 5 times in liquid 

nitrogen and at 37 °C water bath. The homogenized samples were then centrifuged at 

800 x g for 10 minutes to separate the post nuclear supernatant (PNS) from the 

unbroken cells and nuclei. PNS was further subjected to centrifugation at 20,000 x g 

for 1 hour and the pellet was solubilized in buffer B (50 mM PIPES, pH7.0, 150 mM 
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KCl, 5 mM MgCl2,  5 mM CaCl2, and protease inhibitor cocktail with 1% CHAPSO) 

for 1 hour at 4 °C, and then centrifuged again at 20,000 x g for 30 minutes. After the 

supernatant was incubated with the Cyr61 antibody and protease inhibitor cocktail for 

3 hours with rotation at 4 °C, Protein A sepharose beads were added and incubated 

overnight with rotation. The immunocomplex was washed with Buffer B four times 

and then lysed with PARP buffer, the samples were subjected to 10% SDS-PAGE gel. 

 

ADENOVIRAL INFECTION OF MASMCs 

Adenoviruses encoding mouse PKC subtype was constructed as previously 

described [34]. MASMCs were infected for 24 h with either wild type or dominant 

negative PKC adenovirus, then starved for 48 hours followed by treatment either 

with or without LPA. 

 

SMALL INTERFERING RNA (siRNA) TRANSFECTION: 

MASMCs were cultured in RPMI 1640 medium with 10% fetal bovine serum. 

Signal Silence Control siRNA (non-silencing siRNA, 40 nM), Mouse PKC siRNA 

(40 nM), Mouse PKC siRNA (40 nM), Mouse PKD1 siRNA (40 nM), mouse PKD2 

siRNA (40 nM) were transfected according to the manufacturer's instructions (Cell 

Signaling Technology). The Signal Silence Control siRNA was used as a negative 

control. Forty-eight hours after transfection, the cells were trypsinized and transfected 

with siRNA again. After forty-eight hours the cells were starved for 48 h followed by 

treatment either with or without LPA. 
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PREPARATION OF CELL LYSATES AND ECM 

MASMCs were grown in 60 mm dishes and treated as described before. After 

removal of the culture medium and rinsed with PBS, cells were detached from the 

dish by incubation with 1 mM EDTA. The dishes were then rinsed twice with EDTA 

to remove remaining cells. Cellular fractions were lysed with PARP buffer, sonicated 

on ice, added with 4x loading buffer, and incubated in 65 °C for 15 min prior to 

analysis. Extracellular material remaining on the dishes after removal of the cellular 

components was extracted by scraping at 90°C in 1 x Laemmli sample buffer (I x = 60 

mM Tris -HCI, pH 6.8, 2% SDS, 5 % fl-mercaptoethanol, 5% glycerol) . These 

fractions were designated ECM.  

 

NORTHERN BLOTTING ANALYSIS FOR DETECTION OF 

MASMCS CYR61 mRNA: 

Total cellular mRNA was isolated according to the manufacturer’s instruction. 

Total RNA (6-8 g) was subjected to denaturing electrophoresis
 

in 

formaldehyde/agarose gels and was blotted onto Hybond-N membranes. 

Hybridization was carried out using 
32

p-labeled Cyr61
 
cDNA probes. A 0.7 kb 

fragment of mouse Cyr61 cDNA was used to detect Cyr61 mRNA. 18S and 28S 

ribosomal RNA was used as an internal control. 

 

RT-PCR ASSAY: 
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Expression of mRNA was evaluated by RT-PCR. Total RNA was isolated from 

MASMCs and mouse tissues using a Trizol Reagent. The first strand of cDNA was 

reverse transcribed using the reverse transcription system. The cDNA products were 

amplified using GoTaq Flexl DNA Polymerase. The amplification conditions were as 

follows: 5min at 95 °C; 27 to 33 cycles of 30 s at 95 °C, 30 s at 55 °C, and 1 min at 

72 °C; this was followed by a final extension for 10 min at 72 °C. The primers were 

used as follows: LPA1, 5′-AGC TGC CTC TAC TTC CAG C-3′(forward) and 5′-TTG 

CTG TGA ACT CCA GCC AG-3′ (reverse); LPA2, 5′-ATG GGC CAG TGC TAC 

TAC AAC G-3′ (forward) and 5′ AGG GTG GAG TCC ATC AGT G-3′ (reverse); 

LPA3, 5′-GAC AAG CGC ATG GAC TTT-3′ (forward); 5′-CAT GTC CTC GTC CTT 

GTA CG-3′ (reverse)); LPA4, 5′-GTT GTA TTC ATC CTG GGT CT-3′ (forward); 

5′-AGC GAC TCC ATC CTT ATA TG-3′ (reverse); LPA4, 5′-TGC TCT GAC CTT 

GTT GTT CC-3′ (forward); 5′-AGC AAC CCA TAT ACA GCC AGC G-3′ (reverse)). 

The PCR products were analyzed by electrophoresis on a 1.0% agarose gel. 

 

STATISTICS: 

Results are means ± SE. Comparisons between multiple groups were performed 

using one-way ANOVA with post-hoc t-tests. Single comparisons were made using 

two-tailed, unpaired Student's t-tests. A p value of 0.05 was considered to be 

statistically significant. 
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RESULTS 

 

1. Cyr61 is markedly induced by LPA in MASMCs. 

 

1.1 LPA markedly induces Cyr61 protein expression: 

When MASMCs were stimulated with various concentrations of LPA after the 

cells were starved for 48 hours, Cyr61 protein expression increased in response to 

LPA stimulation in a concentration dependent manner with the maximal induction in 

25-200 M (Figure 1). We also observed that LPA induction of Cyr61 protein was 

transient, it increased from 30 minutes and peaked at 3 hours, then declined 

dramatically after 3 to 6 hours (Figure 2). Our data reveal for the first time that LPA 

induces Cyr61 expression in SMCs.  

 

1.2 Induction of Cyr61 mRNA expression by LPA: 

To determine whether LPA induction of Cyr61 protein expression is due to the 

accumulation of Cyr61 mRNA, we examined the effect of LPA on Cyr61 mRNA 

levels. We observed that LPA significantly increased Cyr61 mRNA accumulation in 

quiescent MASMCs. The induction is also transient. The induction peak time is at 

around 1 hour, and declined rapidly after 3 hours (Figure 3).  
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Figure 1. Induction of Cyr61 protein in response to LPA in MASMC. LPA was added to 

quiescent MASMCs at the concentrations indicated above each lane for 3 hours. Cyr61 protein 

level was determined by western blotting with 10% SDS PAGE gel. Actin was used as the loading 

control. 

 

 

 

 

Figure 2. Time course of LPA induction of Cyr61 protein in MASMCs. 5 M LPA was added 

to quiescent MASMCs for various times indicated. Cyr61 protein level was determined by western 

blotting with 10% SDS PAGE gel. Actin was used as the loading control. 
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Figure 3. Time course of LPA induction of Cyr61 mRNA in MASMCs. 5 M LPA was added 

to quiescent MASMCs for various times indicated. Total mRNA was isolated, and Cyr61 mRNA 

levels were determined by Northern blot analysis. A mouse Cyr61 cDNA fragment was used as a 

probe. 18S rRNA was visualized by ethidium bromide staining. 
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1.3 LPA receptor expression in MASMCs, mouse aorta and carotid 

arteries. 

To determine the expression levels of LPA1-5 receptors in MASMCs, mouse aorta 

and carotid arteries, total mRNA was extracted and RT-PCR was performed. We 

observed that the expression levels of each type of LPA receptors in these cells and 

tissues were similar, mainly because the major component of mouse aorta and carotid 

arteries is the smooth muscle cells. As shown in figure 4, receptors LPA1, LPA2 and 

LPA4 were highly expressed, LPA3 was expressed at a very low level and there is no 

LPA5 receptor expressed in these cells and tissues. 

 

1.4 The expression of LPA1-5 receptors in WT, LPA1
-/-

, LPA2
-/-

 and 

LPA3
-/- 

MASMCs. 

  The above data showed LPA receptor expression in WT MASMCs, but it is 

still unclear whether up-regulation or down-regulation of the other LPA receptor 

genes occurred when certain LPA receptors were knockout. We have received LPA1 

+/- mice from Dr. Jerold Chun, The Scripps Research Institute and successfully 

established LPA1-/- and LPA2-/- mice and isolated smooth muscles cells from these 

knockout mice. It was reported that LPA3 receptor was dramatically upregulated in 

LPA1 knockout (KO) MASMCs [35], however, it was also reported that in LPA1
-/- 

adult brain, the change in transcript levels of LPA2 and LPA3 gene can not be 

observed [36]. To determine whether LPA3 receptor was upregulated in LPA1
-/- 

or 

LPA2
-/-

 MASMCs, we extracted total mRNA from each cell type and performed real 
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time PCR. As shown in figure 5, there was no significant difference in the expression 

levels of LPA3 in the LPA1 or LPA2 knockout cells compared to wild type, indicating 

that there is no compensation of LPA3 in LPA1 or LPA2 knockout cells. Our Northern 

blot data and Western blot data confirm this conclusion, as shown in figure 6, there is 

no obvious changes in expression levels of LPA3 in LPA1-2 knockout MASMCs. We 

next determined whether LPA stimulates LPA3 gene expression in WT and LPA1
-/- 

MASMCs. As shown in figure 7, the expression of LPA3 was not changed after LPA 

stimulation, all of the above data strongly supported that LPA3 was not upregulated in 

LPA1-/-, LPA2-/- MASMCs, and LPA stimulation has no effect on LPA3 receptor 

expression, either. 

We also examined whether expression levels of LPA1.2.4.5 receptors were 

upregulated in LPA1-/-, LPA2-/-, LPA3-/- MASMCs. As shown in Figure 5, 6, 8 and 9, 

there was no compensation phenomenon was observed in any of the LPA receptors in 

LPA receptor knockout SMCs. 

 

1.5 LPA receptor LPA1, but not PPAR, mediates LPA-induced Cyr61 

protein expression. 

  To explore the intracellular pathways through which LPA exerts its functions, we 

first evaluated the involvement of LPA receptors. Since LPA1, LPA2 and LPA4 are 

predominantly expressed in MASMCs, we examined which LPA receptor mediated 

LPA-induced Cyr61 protein expression. We stimulated quiescent wild-type LPA1-/- 

and LPA2-/- MASMCs with LPA for 3 hours, and Cyr61 expression was detected by 
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Western blot analysis. We observed that genetic depletion of LPA1 nearly completely 

shut down LPA-induced Cyr61 protein expression; however, genetic depletion of 

LPA2 has no effect on LPA induction of Cyr61 expression, indicating that LPA1 

mediates Cyr 61 expression (Figure 11). To examine whether genetic depletion of 

LPA receptors affect other stimulus-initiated signaling pathway, we determined the 

influence of LPA1-/- and LPA2-/- on the EGF signaling pathway. Quiescent wild-type, 

LPA1-/- or LPA2-/- MASMCs were stimulated with 100 ng/ml EGF for 5 minutes and 

the phosphorylation of MAPKs was detected by Western blot analysis, the results 

showed genetic depletion of LPA1 and LPA2 receptors had no effect on EGF-induced 

phosphorylation of MAPKs (Figure 12). Besides LPA-specific plasma membrane 

receptors, nuclear receptor PPAR-  has also been reported to work as an intracellular 

receptor and to transmit the LPA signal to downstream molecules [37]. To examine 

whether PPAR-  has a role in LPA-induced Cyr61 protein expression in MASMCs, 

we determined the effect of the PPAR-  antagonist GW-9662 on LPA-induced Cyr61 

protein expression. We observed that pretreatment of MASMCs with various 

concentrations of GW-9662 (0.1–10 µM) for 45 min had no effect on the expression 

levels of Cyr61 induced by LPA (Figure 10). The range of the concentrations used is 

based on the information reported previously that 1 µM of GW-9662 efficiently 

blocks PPAR-  activation in vascular SMCs [38]. Our results indicate that the 

PPAR-  pathway is not involved in the LPA induction of Cyr61 protein expression. 
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Figure 4. R-T PCR results, LPA1-5 receptor expression in MASMCs, mouse aortas and 

carotid arteries. Total mRNA from MASMC, mouse aorta and carotid arteries was extracted with 

trizol reagent. After reverse transcritption, cDNA was used to perform RCR analysis with Mouse 

LPA1-5 primers. 
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Figure. 5. Real time PCR data, LPA1-5 receptor expression in MASMCs. Total mRNA from 

MASMCs was extracted with RNeasy mini kit. After reverse transcription, cDNA was used to 

perform Real time RCR analysis with Mouse LPA1-5 primers. 

 

 

 

 

 

 

 

 

 

 

 

Ratio LPA1
-/-

/WT LPA2
-/-

/WT 

LPA1  - 0.87 

LPA2 0.89  - 

LPA3  
0.73 0.67 

LPA4  
0.93 1.10 

LPA5  -  - 
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Figure 6. A. Western blot analysis showing LPA3 receptor expression in WT, LPA1-/-, LPA2-/- 

and LPA3-/- MASMCs. The tissue samples from mouse lung were used as a positive control, Erk 

has been used as a loading control. B. Northern blot analysis showing LPA3 receptor expression in 

WT, LPA1-/-,LPA2-/- and LPA3-/- MASMCs. Tissue samples from mouse lung were used as a 

positive control, 28S and 18S rRNA were visualized by ethidium bromide staining. C. Total 

mRNA of MASMCs, mouse aorta and carotid arteries was extracted with trizol reagent. After 

reverse transcritption, cDNA was used as template DNA, which was amplified 30 cycles with 

mouse LPA1-5 primer pairs. Tissue samples from mouse lung were used as positive controls. 
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Figure 7. Northern blot analysis data: LPA3 expression levels in WT, LPA1
-/-

MASMCs after 

stimulation with LPA. WT and LPA1
-/-

MASMCs were stimulated with LPA for the time periods 

indicated above, the samples from mouse lung has been used as a positive control, 28S and 18S 

rRNA were visualized by ethidium bromide staining. 

 

 

 

Figure 8. Northern blot analysis, the expression of LPA1, LPA2, LPA4 and LPA5 in WT, 

LPA1-/-, LPA2-/- and LPA3-/- MASMCs. The tissue from mouse lung was used as a positive 

control for LPA1.2, 28S and 18S rRNA were visualized by ethidium bromide staining. 
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Figure 9. A diagram showing the relative expression levels of LPA1.2.3.4.5 in WT, LPA1
-/--

, 

LPA2
-/-

 and LPA3
-/-

 MASMCs.  
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Figure 10. GW9662 has no effect on LPA-induced Cyr61 protein expression. Quiescent 

MASMCs were pretreated with GW9662 at the concentrations indicated above for 45 minutes, 

then 5 M LPA was added for 3 hours. Cyr61 protein level was determined by Western blotting 

with 10% SDS-PAGE gel. Actin was used as the loading control. 

 

 

 

 

Figure 11. LPA1, but not LPA2 mediates LPA-induced Cyr61 protein expression. 5 M LPA 

was added to quiescent wild-type, LPA1
-/-

 and LPA2
-/-

 MASMCs for 3 hours, Cyr61 protein level 

was determined by Western blotting with 10% SDS-PAGE gel. Actin was used as the loading 

control. 

 

 

 

 



 - 28 - 

 

W T LPA
1

-/-
LPA

2
-/-

p-ERK

ERK

- + - + - +100ng/ml EGF 5 min

P38

p-P38

MEK

p-MEK

 

 

Figure 12. LPA receptors do not mediate EGF-induced signaling pathway. 100 ng/ml EGF 

was added to quiescent wild-type, LPA1
-/-

 and LPA2
-/-

 MASMCs for 5 minutes, p-ERK, p-MEK, 

and p-P38 were determined by Western blotting with 10% SDS-PAGE gel. The expression of ERK, 

MEK and p38 were used as loading controls. 
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1.4 MAPKs are not involved in LPA-induced Cyr61 expression. 

  Mitogen-activated protein kinases (MAPKS) are serine/threonine-specific protein 

kinases, which respond to extracellular stimuli and regulate numerous cellular 

activities, such as gene expression, cell differentiation and proliferation. MAPKS 

have several subfamilies, such as extracellular signal-regulated kinases (ERKs), p38, 

c-Jun N-terminal kinases (JNKs). Our data showed that LPA significantly induced the 

phosphorylation of ERK, P38 and JNK in a time dependent manner (Figure 13), these 

results prompted us to determine whether LPA-induced MAPKs play roles in LPA 

induced Cyr61 protein production. MASMCs were pretreated with different 

concentration of ERK inhibitors U0126 and PD98059 for 45 minutes, then 5 M LPA 

was applied to every dish and stayed for 3 hours. The cell lysates were analyzed by 

10% Tris/Glycine SDS-PAGE gel followed by Western blotting with anti-mouse 

Cyr61 and p-ERK antibody. As shown in Figures 14 and 15, treatment with these 

inhibitors didn't block LPA-induced Cyr61 protein expression, indicating that ERK is 

not involved in LPA induction of Cyr61 protein. Using the same strategy, we 

examined the effects of SB203580, a specific p38 inhibitor and SP600125, a specific 

JNK inhibitor on LPA induction of Cyr61 protein expression, as shown in figure 16 

and figure 17, none of those inhibitors had any effect on LPA-induced Cyr61 

expression. This result excludes the possibility that p38 or JNKs plays a role in 

LPA-induced Cyr61 expression. 

 

 

http://en.wikipedia.org/wiki/Serine/threonine-specific_protein_kinase
http://en.wikipedia.org/wiki/Serine/threonine-specific_protein_kinase
http://en.wikipedia.org/wiki/Gene_expression
http://en.wikipedia.org/wiki/Cellular_differentiation
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Figure 13. LPA induces the activation of MAPKs, Akt, and PKD in MASMC. 5 M LPA was 

added to quiescent MASMC. At the time points indicated above, cells were lysed. The 

phosphorylation of MAPKs, AKT and PKD was determined by Western blotting with 10% SDS 

PAGE gel. The expression of MEK and actin was used as the loading control. 
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Figure 14. U0126 doesn't block LPA-induced Cyr61 protein expression. Quiescent MASMCs 

were pretreated with U0126 at the concentrations indicated above for 45 minutes, then 5 M LPA 

was added and stayed in the medium for 3 hours. Cyr61 protein level was determined by Western 

blotting with 10% SDS-PAGE gel. Actin was used as the loading control. 

 

 

 

Figure 15. PD98059 doesn't block LPA-induced Cyr61 protein expression. Quiescent 

MASMCs were pretreated with PD98059 at the concentrations indicated above for 45 minutes, 

then 5M LPA was added in the medium for 3 hours. Cyr61 protein level was determined by 

Western blotting with 10% SDS-PAGE gel. The expression of Actin was used as the loading 

control. 
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Figure 16. SB203580 doesn't block LPA-induced Cyr61 protein expression. Quiescent 

MASMCs was pretreated with SB203580 at the concentrations indicated above for 45 minutes, 

then 5 M LPA was added in the medium for 3 hours. Cyr61 protein level was determined by 

Western blotting with 10% SDS-PAGE gel. The expression of Actin was used as the loading 

control. 

 

 

 

 

Figure 17. SP600125 doesn't block LPA-induced Cyr61 protein expression. Quiescent 

MASMCs were pretreated with SP600125 for 45 minutes, then 5 M LPA was added in the 

medium for 3 hours. Cyr61 protein level was determined by Western blotting with 10% 

SDS-PAGE gel.  Actin was detected as the loading control. 
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1.5 PKD is not involved in LPA-induced cyr61 expression. 

  One of the earliest responses of many cell types to extracellular stimuli is an 

increase in the synthesis of DAG, and protein kinase D (PKD) which is a DAG 

regulated protein kinase that plays a role in mediating some of the cellular responses 

initiated by DAG-producing receptors [39]. Our group has reported thrombin rapidly 

induces PKD phosphorylation [40], angiotensin II induces protein kinase D activation 

[41] and PKD2 regulates LPC-induced PC3 cell migration [42]. LPA also induces 

phosphorylation of PKD in MASMCs (Figure 13), therefore, we determined whether 

PKD is involved in LPA-induced Cyr61 expression. MASMCs were pretreated with 

different doses of Resveratrol, a PKD inhibitor, then 5 M LPA was added, as shown 

in the figure 18, Resveratrol doesn't block LPA-induced Cyr61 expression, suggesting 

PKD is not involved in Cyr61 protein accumulation induced by LPA. Furthermore, 

siRNA transfection experiment has been performed to confirm this result. MASMCs 

were tranfected with PKD1 and PKD2 siRNA for 48 hours, the cells were starved for 

48 h followed by LPA treatment. As shown in figure 19, treatment with neither PKD1 

nor PKD2 siRNA blocked the induction of Cyr61 expression by LPA. Taken together, 

these results demonstrate that LPA-induced Cyr 61 expression is not mediated by 

PKD. 
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Figure 18. Resveratrol doesn't block LPA-induced Cyr61 protein expression. Quiescent 

MASMCs were pretreated with Resveratrol at the concentrations indicated above for 45 minutes, 

then 5 M LPA was added in the medium for 3 hours. Cyr61 protein level was determined by 

Western blotting with 10% SDS-PAGE gel. Actin level was used as the loading control. 

 

 

Figure 19. Transfection of PKD1 and PKD2 siRNA doesn’t block LPA-induced Cyr61 

protein expression in MASMCs. MASMCs were transfected with PKD1 and PKD2 siRNA for 

48 hours, after being starved for 48 hours, the cells were stimulated with or without LPA, the 

expression levesl of PKD1 & PKD2 were determined with specific antibodies to monitor the 

knockdown level of Cyr61. Cyr61 protein level was determined by western blotting with 10% 

SDS-PAGE gel. 
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1.6 LPA-induced Cyr61 expression is not mediated by PI3Ks. 

  Phosphoinositide 3-kinases (PI 3-kinases or PI3Ks) include a family of enzymes 

involved in cellular functions such as cell growth, differentiation, motility, 

proliferation, survival and intracellular trafficking. The PI3K pathway is implicated in 

human diseases including diabetes and cancer [43] . Our previous results showed LPA 

significantly induced the phosphorylation of Akt (Figure 13), which is downstream of 

PI3Ks. To determine whether PI3Ks pathway is involved LPA induction of Cyr61, we 

pretreated MSMCs with various concentrations of PI3Ks inhibitor LY294002 and 

Wortmanin for 45 minutes, then incubated the cells with 5 M LPA for 3 hours, as 

shown in Figures 20 and 21, Both inhibitors didn't have any effect on LPA-induced 

Cyr61 protein expression, implying that PI3Ks does not play a role in Cyr61 

production induced by LPA. 
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Figure 20. LY294002 doesn't block LPA-induced Cyr61 protein expression. Quiescent 

MASMCs were pretreated with LY294002 at the concentrations indicated above for 45 minutes, 

then 5 M LPA was added in the medium for 3 hours. Cyr61 protein level was determined by 

western blotting with 10% SDS-PAGE gel. Actin was detected as the loading control. 

 

 

 

 

 

Figure 21. Wortmannin doesn't block LPA-induced Cyr61 protein expression. Quiescent 

MASMCs was pretreated with Wortmannin at the concentrations indicated above for 45 minutes, 

then 5 M LPA was added in the medium for 3 hours. Cyr61 protein level was determined by 

Western blotting with 10% SDS-PAGE gel. Actin was detected as the loading control. 
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1.7 LPA-Induced Cyr61 Expression is mediated by PKC 

  We have excluded the possibility that MAPKs, PKD and PI3Ks were involved in 

LPA induction of Cyr61, so next we want to determine which kinase(s) mediates 

LPA-induced Cyr61 expression. Protein kinase C (PKC) is a family of enzymes, 

which play important roles in many signal transduction pathways by mediating the 

functions of many proteins through the phosphorylation of hydroxyl groups of serine 

and threonine amino acid resides. Our group has reported histamine induces Egr-1 

expression in human aortic endothelial cells via the H1 receptor-mediated protein 

kinase Cdelta-dependent ERK activation pathway [44]. To investigate whether PKC 

mediates LPA-induced Cyr61 protein expression, we pretreated MSMCs with 

indicated concentrations of pan PKC inhibitor GF109203X and GO6983 for 45 

minutes, then incubated the cells with 5 M LPA for 3 hours, as shown in Figures 22 

and 23, Both of those inhibitors dose-dependently block LPA-induced Cyr61 protein 

expression, strongly supporting that PKC mediates LPA induced Cyr61 expression. 

The PKC family consists at least ten isozymes [45], and they are divided into three 

subfamilies, conventional, novel, and atypical based on their second messenger 

requirements. It is unknown which PKC subtype is involved in LPA-induced Cyr61 

expression; our result shows LPA highly induces the phosphorylation of 

PKCFigure 24

To examine whether PKCmediates LPA-induced Cyr61 expression, we 

pretreated MSMCs with various concentrations of PKC inhibitor, Rottlerin and 

PKCinhibitor,GO6976 for 45 minutes, then incubated cells were treated with 5 

http://en.wikipedia.org/wiki/Isozymes
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M LPA for 3 hours, as shown in figure 25, Rottlerin markedly blocked LPA-induced 

Cyr61 protein expression in a dose-dependent manner. In contrast, 

PKCinhibitor,GO6976 had no effect on LPA-induced Cyr61 protein expression 

Figure 26. These data strongly support a key role of PKC in mediating 

LPA-induced Cyr61 protein expression.  

To further confirm the above results, we performed small siRNA knockdown 

exprements, MASMCs were tranfected with PKC siRNA for 48 hours; then the cells 

were starved for 48 h followed by treatment of LPA. As shown in figure 27, 

PKCsiRNA completely blocks PKC expression and LPA-induced Cyr61 

expression. In addition, we infected MASMCs with PKCdominant-negative 

adenovirus and wildtype adenovirus, we observed that infection of PKCdominant 

negative adenovirus blocked LPA-induced Cyr61 expression in MASMCs. As a 

positive control, LPA highly induces Cyr61 expression after wildtype 

PKCadenovirus infection in MASMCs (Figure 28). All of those data support the 

conclusion that PKC mediates LPA-induced Cyr61 protein expression. 
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Figure 22. PKC inhibitor GF109203X blocks LPA-induced Cyr61 protein expression. 

Quiescent MASMCs were pretreated with GF109203X at the concentrations indicated above for 

45 minutes, then 5M LPA was added in the medium for 3 hours. Cyr61 protein level was 

determined by western blotting with 10% SDS-PAGE gel. Actin was detected as the loading 

control. 

 

 

 

 

 

Figure 23. Go6983 blocks LPA-induced Cyr61 protein expression. Quiescent MASMCs was 

pretreated with GO6983 at the concentrations indicated above for 45 minutes, then 5 M LPA was 

added in the medium for 3 hours. Cyr61 protein level was determined by Western blotting with 

10% SDS-PAGE gel. Actin was detected as the loading control. 
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Figure 24. LPA induces phosphorylation of PKCbut not other PKC subtypes in MASMCs. 

5 M LPA was added to quiescent MASMC at the time points indicated above. Phosphorylation of 

PKC subtypes were determined by Western blotting with 10% SDS PAGE gel.  
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Figure 25. Rottlerin blocks LPA-induced Cyr61 protein expression. Quiescent MASMCs were 

pretreated with Rottlerin at the concentrations indicated above for 45 minutes, then 5 M LPA was 

added in the medium for 3 hours. Cyr61 protein level was determined by Western blotting with 

10% SDS-PAGE gel. Actin was detected as the loading control. 

 

 

 

 

Figure 26. GO6976 doesn't block LPA-induced Cyr61 protein expression. Quiescent 

MASMCs were pretreated with G06976 at the concentrations indicated above for 45 minutes, then 

5 M LPA was added in the medium for 3 hours. Cyr61 protein level was determined by Western 

blotting with 10% SDS-PAGE gel. Actin was detected as the loading control. 
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Figure 27. Transfection of PKC siRNA blocks LPA-induced Cyr61 protein expression in 

MASMCs. MASMCs were transfected with PKC siRNA for 48 hours, after being starved for 48 

hours, the cells were stimulated with or without LPA. Cyr61 protein level was determined by 

Western blotting with 10% SDS-PAGE gel. Actin was detected as the loading control, PKCwas 

detected with the specific antibody to show the knockdown level. 
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Figure 28. Infection of PKC dominant negative adenovirus blocks LPA-induced Cyr61 

protein expression in MASMCs. MASMCs were infected with type and dominant negative 

PKC viruses for 12 hours, after being starved for 48 hours, the cells were stimulated with or 

without LPA. Cyr61 protein level was determined by Western blotting with 10% SDS-PAGE gel. 

PKCwas detected with the specific antibody to show the efficiency of infection. 
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2. The dynamic localization of LPA-induced Cyr61 

protein in MASMCs. 

 

2.1 LPA markedly induced Cyr61 protein intracellularly and the 

induced Cry61 is deposited in the extracellular matrix. 

Cyr61 is an extracellular matrix protein, it exerts its function mostly in the 

extracellular matrix, and the above data showed that LPA markedly induces Cyr61 

protein expression. To investigate the localization of LPA-induced Cyr61 protein, we 

stimulated quiescent MASMCs with 5 M LPA for various time periods, both cell 

lysates and extracellular matrix were collected and detected with a specific Cyr61 

antibody, as shown in figure 29, after 20 min stimulation, LPA rapidly induces Cyr61 

protein expression intracellularly, however, the increased Cyr61 protein level can only 

be detected in the extracellular matrix after LPA stimulation for 1 hour. All of those 

data demonstrate that LPA rapidly induces Cyr61 protein expression intracellularly 

and the induced Cyr61 translocates outside the plasma membrane and is deposited in 

the extracellular matrix.  
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Figure 29. LPA highly induces Cyr61 protein expression intracellularly and LPA-induced 

Cyr61 protein is deposited in the extracellular matrix. MASMCs were detached from the 

dishes with 1mM EDTA and lysed in the lysis buffer, and ECM remaining on the culture dishes 

was extracted in Laemmli sample buffer. Cyr61 protein level was determined by Western blotting 

with 10% SDS PAGE gel. Actin was used as an internal control. 

 

 

 

 

 

 

 

 

 

 

 



 - 46 - 

2.2 The dynamic localization of LPA-induced Cyr61 protein in 

MSMCs. 

Although the above data gave us a brief view the localization of LPA-induced 

Cyr61 protein, it is still unclear that through which subcellular compartments, 

LPA-induced Cyr61 protein is translocated to the extracellular matrix. 

Immunofluorescence analysis has been performed to further explore this question. 

Quiescent MASMCs were stimulated with LPA for various time periods as shown in 

figure 30, after paraformaldehyde fixation, the cells were treated with 0.3% triton 

X-100 for permeabilization of the plasma membrane and then the cells were 

immunostained with the specific antibodies against Cyr61, DAPI ( a specific nuclear 

marker ) and Adaptin ( a specific Golgi apparatus marker ). The results showed that 

intracellular Cyr61 protein was highly induced after 1 hour LPA treatment, moreover, 

the image of LPA-induced Cyr61 protein and Golgi apparatus marker adaptin merged 

together perfectly, indicating that after Cyr61 mRNA being translated into Cyr61 

protein, these proteins immediately accumulate in the Golgi apparatus for further 

processing prior to the secretion into the extracellular matrix. We also observed that 

the intracellular Cyr61 protein induced by LPA decreased after 1 hour, whereas the 

extracellular Cyr61 increased, strongly supporting that LPA-induced Cyr61 proteins 

first accumulated in the Golgi apparatus and then were secreted to the extracellular 

matrix. We also used another approach to directly observe the LPA-induced Cyr61 

deposition on the extracellular matrix. We treated the cells without Triton X100 and 

then immunostained the cells with Cyr61 antibody. As shown in figure 31, Cyr61 
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protein in the extracellular matrix was highly induced by LPA after 3 hr stimulation.  
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Figure 30. Dynamic localization of Cyr61 protein induced by LPA. MASMCs were cultured 

on microscope cover glasses, after 48 hours starvation, cells were stimulated with LPA for various 

time periods indicated above; then cells were immunostained with the Cyr61 antibody, DAPI 

(nuclear marker) antibody and Adaptin (Golgi Apparatus marker) antibody after triton X-100 

treatment. 
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Figure 31. Localization of LPA-induced Cyr61 protein in the extracellular matrix. MASMCs 

were cultured on microscope cover glasses, after 48 hours starvation, cells were stimulated with 

LPA for 3 hours, and then fixed with paraformaldehyde solution followed by immunostaining 

with the specific Cyr61 antibody, DAPI (nuclear marker) antibody, Adaptin (Golgi Apparatus 

marker) antibody without triton X-100 treatment. 
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3. Cyr61 mediates LPA-induced MASMC migration. 

 

3.1 Cyr61 is involved in LPA-induced MASMC migration. 

As shown above, our data demonstrate that LPA markedly induces Cyr61 

expression and secretion into extracellular matrix. High concentrations of LPA and 

Cyr61 have been found in atherosclerotic lesions [9][46]. We hypothesize that 

LPA-induced Cyr61 mediates LPA signaling leading to cell migration. To date, 

whether Cyr61 contributes to LPA-induced cell migration is unknown.  

To determine whether LPA-induced MASMC migration is mediated by Cyr61, 

we applied an antibody neutralization approach. We pretreated MASMC with the 

specific Cyr61 antibody for 45 minutes and stimulated the cells with LPA, the cells 

were then subjected to the migration assay, and we observed that LPA-induced cell 

migration was reduced about 80% after the Cry61 antibody treatment, suggesting 

Cyr61 mediates LPA-induced MASMC migration induced by LPA (Figure 29). 
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Figure 32. Cyr61 is involved in LPA-induced MASMC migration. MASMCs were pretreated 

with or without Cyr61 antibody for 45 minutes and then subjected to a migration assay in response 

to 5 M LPA. 

 

 

 

 

 

 

 

 

 

 

 



 - 52 - 

3.2 LPA1 receptor and PKC mediate LPA-induced MASMC 

migration. 

As demonstrated above, LPA-induced Cyr61 expression was through LPA1 

receptor and mediated by PKC, and Cyr61 was involved in LPA-induced MASMC 

migration. These data implied that LPA1 receptor and PKC may also play roles in the 

MASMC migration. To determine which LPA receptor mediates cell migration, we 

performed cell migration assay using wildtype, LPA1
-/-

, LPA2
-/- 

MAMSCs stimulated 

with LPA. We found that genetic deletion of LPA1, but not LPA2 blocked 

LPA-induced cell migration, indicating that LPA1 but not LPA2 mediates LPA-induced 

MASMC migration (Figure.30). We next determined whether PKC mediated 

LPA-induced MASMC migration, quiescent MASMCs were stimulated with 5 M 

LPA after being pretreated with pan-PKC inhibitor GF109203X for 45 minutes, and 

then subjected to the cell migration assay. As shown in figure 31, PKC specific 

inhibitor GF109203X completely blocked LPA-induced MASMC migration, these 

data indicate that LPA1- and PKC-mediated LPA-induced Cyr61 protein expression is 

a key event in LPA-induced MASMC migration. 
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Figure 33. LPA induces the MASMC migration, and the migration is mediated by LPA1 

receptor, but not LPA2 receptor. Quiescent wildtype, LPA1
-/-

, LPA2
-/-

 MASMCs were stimulated 

with 5 M LPA, and then subjected to a migration assay. 
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Figure 34. The effect of GF109203X on LPA-induced MASMC migration. MASMCs were 

pretreated either with or without PKC inhibitor GF109203X for 45 minutes and then subjected to 

a migration assay in response to 5 M LPA. 
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DISCUSSION 

 

One of the important risk factors in the pathogenesis of atherosclerosis is 

oxidized low density lipoprotein (LDL). LPA is one of the most bioactive lipid 

components in oxidized LDL. LPA plays a very important role in initiating platelet 

activation and stimulating endothelial cell stress-fiber and gap formation. It has been 

found that LPA is the most important platelet-activating lipid of atherosclerotic 

plaques and also highly accumulated in lipid-rich core in the atherosclerotic lesion. 

Our group has reported that LPA increased TF mRNA, TF protein, and TF pathway 

activity via transcription factor, Egr-1 [35]. In addition, LPA also prominently induces 

the secretion of IL-6 and monocyte chemoattractant protein (MCP)-1 from human 

aortic SMCs (HASMCs) [47]. These data indicated the important roles of LPA in the 

initiation and progression of atherosclerosis.   

Cyr61 has been shown to be highly expressed in human atherosclerotic plaques, 

correlating with the degree of stenosis and plaque histopathology [46]. The 

upregulation of Cyr61 in VSMCs was first identified in the screening for genes that 

are differentially
 
expressed in response to Ang II stimulation in vascular smooth 

muscle cells [48]. Cyr61 is an extracellular matrix-associated angiogenic inducer that 

promotes cell adhesion, migration, and proliferation. Aberrant expression of Cyr61 is 
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associated with wound healing, and vascular diseases such as atherosclerosis [49]. 

Whether Cyr61 plays a role in LPA-induced cell migration is currently unknown. In 

this study, we determined the relationship between LPA and Cyr61 in VSMCs, and 

their roles in vascular function. Our Western blot analysis and Northern blot analysis 

demonstrate that LPA markedly induces Cyr61 protein and mRNA expression. The 

induction is LPA dose- and time-dependent in MASMCs.  

LPA is well known as an important signaling molecule to produce many cellular 

responses. These responses were explained by both non-receptor and 

receptor-mediated mechanisms. LPA is a direct agonist of the nuclear transcription 

factor PPARgamma [50]. Here our results showed PPARgamma was not involved in 

LPA-induced Cyr61 expression. Currently, there are at least 5 LPA receptors that 

couple with several types of G proteins, Gs, Gi/o, Gq, and G12/13. By activation of 

these G proteins, LPA induces cell proliferation, cell migration, MAPK activation, 

PLC activation, PKC activation, Ca2+ mobilization, Akt activation, and Rho 

activation [17][51][52][53]. It was reported that LPA stimulates prostaglandin E2 

production in cultured stromal endometrial cells through LPA1 [54]. In vascular 

systems, our RT-RCR data clearly showed that LPA1, LPA2 and LPA4 receptors were 

highly expressed. Our group has published the data showing that LPA induces IL-6 

secretion from aortic smooth muscle cells via an LPA1-regulated pathway [49], and 

LPA1 receptor also mediates prostate cancer PC3 cell migration [55]. In this study, 

our Western blot analysis demonstrated that LPA-induced Cyr61 expression was 

mediated by LPA1 receptor, but not LPA2 receptor. Up to date, the signaling pathway 
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involved in LPA induced-Cyr61 expression was unknown. LPA was shown to activate 

MAPKs, Akt and PKD, which are frequently involved in LPA-induced G-protein 

coupled signaling pathways. It has been found that LPA stimulates gastric cancer cell 

proliferation via Erk dependent upregulation of sphingosine kinase 1 transcription 

[56]. Chiu, TT et al., reported in 2007 that protein kinase D2 mediates 

lysophosphatidic acid-induced interleukin 8 production in nontransformed human 

colonic epithelial cells through NF-kappaB [57]. Singla, A et al. reported in 2009 that 

LPA-mediated stimulation of Cl(-)/OH(-) exchange activity was depending on 

activation of phosphatidylinositol 3-kinase/Akt signaling pathway. In this study, our 

Western blot analysis data showed that none of those kinases were involved in 

LPA-induced Cyr61 expression, indicating that an unveiled specific signaling 

pathway leads to LPA-induced Cyr61 expression. 

It was reported that LPA-induced NF-kappaB activation and cytokine production 

were mediated by PKCs but not by JNK, p38 or Erk MAP kinase. Our previous data 

also showed that histamine activates the phosphorylation of PKC and that PKC 

mediates histamine-induced Egr-1 expression in RASMCs and human endothelial 

cells [44]. To investigate whether PKC pathway mediated LPA-induced Cyr61 

expression, we used PKC specific inhibitors, the dominant negative virus constructs 

and siRNA to block the functions of PKCand to knockdown of 

PKCexpressionOur Western blotting results clearly demonstrated that 

LPA-induced Cry61 expression was blocked by each of these approaches, strongly 

supporting our conclusion that PKCmediated LPA-induced Cry61 expression. 

http://www.ncbi.nlm.nih.gov/pubmed?term=
http://www.ncbi.nlm.nih.gov/pubmed?term=
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 Another interesting finding in this study is the dynamic localization of LPA 

induced-Cyr61 protein. Cyr61 is a matricellular protein. It is important to know the 

transportation of Cyr61 protein after Cyr61 mRNA is translated. Our Western blotting 

data demonstrated that the intracellular Cyr61 protein was highly induced by LPA 

stimulation within 20 minutes, and then via Golgi, Cyr61 was secreted into 

extracellular matrix. The peak time difference in Cyr61 protein accumulation in 

intracellular compartment and extracellular matrix suggests a dynamic transportation 

of LPA-induced Cry61 protein from the intracellular compartments to the ECM. Our 

immunocytochemistry results confirmed the Western blot results.  

Atherosclerosis is a chronic arterial disease where vascular smooth muscle cells 

(VSMCs), inflammatory cells, lipids, cholesterol and cellular products like cytockines 

work together to produce a fibro-fatty plaque and initiate neointima formation [58]. It 

has been shown that the neointimal SMCs are derived from the media after balloon 

endothelial denudation or cholesterol-induced injury [59]. The importance of smooth 

muscle cell migration in neointima formation of atherosclerosis is well appreciated. 

Studies have been done to support the role of LPA in the smooth muscle cell 

migration (citation). Zhou et al in 2009 reported LPA induced vascular smooth muscle 

migration via p38 mitogen-activated protein kinase pathway activation [60]. Lin BR 

et al. in 2007 reported that Cyr61 enhanced transendothelial cell migration by 

concomitantly up-regulating chemokine receptor 1 and 2 [61]. It was also reported 

that recombinant Cyr61 protein induces SMC migration in a dose-dependent manner 

[62]. But it was unknown whether Cyr61 played a role in LPA induced MASMC 

http://www.ncbi.nlm.nih.gov/pubmed?term=
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migration. In this study, we found that Cyr61 neutralizing antibody significantly 

blocked LPA-induced MASMCs migration, indicating Cyr61 mediates LPA-induced 

MASMC migration. In addition, our cell migration analysis data clearly demonstrated 

that LPA-induced MASMC migration is mediated by LPA1 and PKC kinase. LPA1 

and PKC are responsible for LPA-induced Cyr61 expression.  

Taken together, the above results demonstrate that LPA, via LPA1 receptor, 

activates a specific signaling pathway leading to PKC activation, which in turn, 

mediates LPA-induced Cyr61 protein in MASMCs. LPA-induced Cyr61 proteins first 

accumulated in the Golgi apparatus then were secreted into extracellular matrix. Our 

data further show that LPA-induced Cyr61 is responsible for LPA-induced SMC 

migration, which may contribute to the development of atherosclerosis. The 

identification of the specific LPA receptor and PKCdelta, especially the novel 

LPA/Cyr61 pathway in controlling smooth muscle cell migration, provides new 

insight into mechanisms underlying the pathogenesis of atherosclerosis. 
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Figure 36. A diagram showing the signaling pathway by which LPA induces Cyr61 and 

MASMC migration.
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