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Abstract 

 

The occurrence of blooms of toxic cyanobacteria in freshwater environments is a global 

ecological and public health concern.  Species of Microcystis are of particular importance 

because blooms occur in many freshwater environments throughout the world and microcystin 

toxin concentrations can exceed World Health Organization advisory levels.  While microcystin 

has been associated with fish kills, sublethal effects of chronic exposure at environmentally 

relevant concentrations are relatively unknown.  The objective of this research was to evaluate 

toxicity of microcystin and Microcystis in fish during all life history stages.  We evaluated global 

gene expression response in larval zebrafish (Danio rerio), and a sub-set of biomarker genes 

indicative of microcystin exposure were identified.  In addition, vitellogenin genes were highly 

up-regulated in zebrafish exposed to Microcystis but not the microcystin toxin, indicating 

potential endocrine disrupting effects of Microcystis blooms.  Effects on reproduction were 

evaluated in adult zebrafish exposed to Microcystis.  There was a significant decrease in the 

percentage of adults that spawned, however fecundity and larval survival were not affected.  

Laboratory mesocosm experiments with channel catfish (Ictalurus punctatus) were also 

conducted to determine the importance of dietary and aqueous exposure in microcystin 

bioaccumulation and assess histopathological lesions.  Tissue toxin concentrations and 

histopathological lesions were also evaluated in channel catfish collected from Lake Erie and 

Waterville Reservoir, North Carolina to monitor fish living in environments affected by 

Microcystis blooms and relate responses to those observed in laboratory exposures. 
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SECTION I 
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Literature Review 

 

The occurrence of toxic algal blooms in freshwater and marine environments has recently 

become a global ecological and public health concern (Codd et al. 2005; Luckas et al. 2005).  In 

addition to affecting recreational activities, algal toxins have been detected in municipal drinking 

water supplies (Codd et al. 2005), have been associated with fish kills (Chorus et al. 2000), and 

may bioaccumulate in fish species that are consumed by humans (Xie et al. 2005).  The 

occurrence of toxic algal blooms is projected to increase with changes in climate and increased 

anthropogenic enrichment of surface waters (Carmichael 2001; Paerl and Huisman 2008).  

Because toxic algal blooms have the potential to negatively affect both human and ecosystem 

health, understanding processes influencing toxicity of algal toxins is important. 

While there are many different types of harmful algae, blooms that produce microcystin 

toxins are especially relevant because their occurrence is widespread and toxin concentrations 

can exceed levels considered safe for humans and wildlife.  Microcystins are a diverse group of 

toxins produced primarily by cyanobacteria of the genus Microcystis. Microcystins are cyclic 

heptapeptides, and more than 80 forms have been described, each differing slightly in chemical 

structure (Dittmann and Wiegand 2006; Tanabe et al. 2004). Microcystin-LR, mainly produced 

by Microcystis aeruginosa, is recognized as being the most toxic microcystin and is globally 

distributed in freshwater environments (Codd et al. 2005; Luckas et al. 2005).  Blooms 

producing microcystin-LR have been reported yearly in Lake Erie since 1995, and 

concentrations often exceed the World Health Organization drinking water advisory level of 1 

µg/L (Chorus et al. 2000).   



 
3 

Of particular relevance is microcystin exposure in fish, because fish are important 

components of aquatic ecosystems and bioaccumulation in fish may affect human health through 

consumption.  In fish, microcystin can be hepatotoxic, but effects on ion regulation have also 

been reported (Zambrano and Canelo 1996).  Microcystin acts by inhibiting protein phosphatases 

1 and 2A, resulting in increased phosphorylation of cellular proteins.  The microcystin–LR 

molecule contains an adda moiety, which binds noncovalently to the catalytic site of the protein 

phosphatase enzyme and renders it inactive (Dittmann and Wiegand 2006).  This step is 

responsible for initial toxicity and is reversible (Fischer et al. 2000).  Delayed non-reversible 

covalent binding of microcystin-LR to a cysteine residue of the protein phosphatase enzyme 

gives stability to the complex but is not required for toxicity (Dittmann and Wiegand 2006; 

Fischer et al. 2000).  In liver tissue, inhibition of protein phosphatases results in over-

phosphorylation of cytokeratins (Eriksson et al. 1990; Ohta et al. 1992), resulting in cytoskeletal 

rearrangement and compromised liver function, including necrosis, apoptosis and intrahepatic 

hemorrhage (Fischer et al. 2000).  In gill tissue, protein phosphatase inhibition results in the 

inactivation of Na
+
/K

+
 ATPase, an enzyme that regulates ion transport across the gills 

(Zambrano and Canelo 1996).  The degree to which microcystin disrupts ion homeostasis in fish 

is not well understood and may depend upon exposure route (Malbrouck and Kestemont 2006). 

Fish living in environments affected by microcystin may be exposed through two major 

exposure routes.  In the environment, fish may encounter the toxin through ingestion of whole 

cells or passively by contact with surrounding water (respiration), or a combination of both 

(Malbrouck and Kestemont 2006).  Aqueous exposure to microcystin and Microcystis cells in 

fish has been reviewed in the literature; however, the methods used, in most cases, were not 

comparable to an environmental exposure scenario.  For example, the majority of studies 
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conducted with aqueous microcystin have been acute exposures during early developmental 

stages (Best et al. 2002; Best et al. 2003; Liu et al. 2002; Oberemm et al. 1997; Oberemm et al. 

1999; Wiegand et al. 1999), and fewer studies of chronic exposure have been conducted with 

adult fish (Adamovsky et al. 2007; Carbis et al. 1996a; Carbis et al. 1996b; Li et al. 2007; Mares 

et al. 2009; Qiu et al. 2009).  Another type of acute exposure found in the microcystin literature 

is microinjection (Huynh-Delerme et al. 2005; Jacquet et al. 2004; Wang et al. 2005).  The 

purpose of this method is to mimic uptake of the toxin from the surrounding water by the embryo 

or transfer of microcystin from females to eggs; however, the occurrence of maternal transfer has 

not been established for microcystin, and this type of exposure is somewhat presumptive 

(Malbrouck and Kestemont 2006).  Finally, in studies addressing effects of microcystin via 

ingestion, microcystin has been administered through oral gavage (Carbis et al. 1996a; Fischer 

and Dietrich 2000; Fischer et al. 2000; Tencalla and Dietrich 1997) and intraperitoneal injection 

(Carbis et al. 1996a; Fournie and Courtney 2002; Malbrouck et al. 2003); however some studies 

have incorporated Microcystis into fish feed (Dong et al. 2009; El Ghazali et al. 2010; Li et al. 

2004; XY Li et al. 2005; Soares et al. 2004; Zhao et al. 2006a; Zhao et al. 2006b), which is more 

comparable to a natural feeding situation.  While chronic exposures to Microcystis and/or MC-

LR with environmentally relevant exposure scenarios are generally lacking, the existing studies 

offer some results that should be reviewed further. 

The majority of studies with Microcystis and MC-LR have focused on early life stages of 

fish.  Exposure to purified MC-LR seems to interfere with hatching, however results are 

conflicting.  In a study with rainbow trout, advanced hatching occurred at 50 µg/L MC-LR, but 

hatching was unaffected in zebrafish (Danio rerio) at similar concentrations (Oberemm et al. 

1999).  In chub (Leuciscus cephalus) and loach (Misguruns mizolepis), decreased growth and 
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survival was observed during exposure to MC-LR at concentrations ranging from 0.5-500 µg/L 

(Liu et al. 2002; Oberemm et al. 1999).  Interestingly, in zebrafish, these effects did not occur 

during exposure (0.5-50 µg/L MC-LR), but only after the exposure was terminated and larvae 

were reared in clean water (Oberemm et al. 1997; Oberemm et al. 1999).  In another study with 

zebrafish, increased activity of detoxification enzymes (glutathione S-transferase and glutathione 

peroxidase) was observed, which suggests that larval fish may be able to metabolize MC-LR and 

thus avoid toxicity (Wiegand et al. 1999) and could explain why mortality was not observed 

during exposure (as in Oberemm et al. 1997; Oberemm et al. 1999). Other sublethal effects of 

aqueous exposure to purified MC-LR during early development include edema, reduced head 

size, curved body and tail, enlarged heart, increased heart rate and damaged hepatocytes (Jacquet 

et al. 2004; Liu et al. 2002; Oberemm et al. 1999). Exposure to MC-LR via microinjection into 

eggs gave similar results.  Hatching was accelerated (Jacquet et al. 2004), survival decreased 

(Jacquet et al. 2004; Wang et al. 2005), and skeletal malformations (Wang et al. 2005) as well as 

damage to the liver (Huynh-Delerme et al. 2005; Jacquet et al. 2004) and digestive tract (Huynh-

Delerme et al. 2005) were observed. 

When early life stages of fish were exposed to aqueous Microcystis, as opposed to 

purified MC-LR, effects were similar and in some cases more pronounced.   Exposure of carp 

(Cyprinus carpio) and southern catfish (Silurus meridionalis) embryos to crude extracts of 

Microcystis resulted in high mortality rates, delayed hatching, malformations, and lesions in the 

liver detected by histopathology (Palikova et al. 2003; Palikova et al. 2004; Zhang et al. 2008).  

When zebrafish embryos were exposed to crude Microcystis extract and an equivalent dose of 

purified MC-LR, effects on antioxidant enzymes were 2-fold greater in the group exposed to 

Microcystis (Pietsch et al. 2001).  Similarly in several different species including zebrafish, 
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rainbow trout (Oncorhyncus mykiss), roach (Rutilis rutilis), bream (Abramis brama), white asp 

(Leucaspius delineatus) and stone loach (Cobitus taenia), effects on hatching, survival and 

malformations were more pronounced when embryos were exposed to Microcystis, rather than 

purified MC-LR (Oberemm et al. 1999).  It has been hypothesized that the presence of 

compounds within Microcystis cells not related to the toxin, such as lipopolysaccharides, may be 

able to increase effects of MC-LR by interfering with its detoxification pathway (Best et al. 

2002; Best et al. 2003). Further research is needed to characterize and distinguish effects of non-

toxin related Microcystis compounds from effects of MC-LR. 

 In contrast to early life stages of fish, much less is known about aqueous exposure of 

adult fish to Microcystis and MC-LR.  No exposures of adult fish to purified MC-LR were found 

in the literature, presumably due to the high cost of purified MC-LR (1mg retails for $330 USD 

(http://www.axxora.com/)) and amount of compound needed to achieve relevant concentrations 

in the volume of water required for exposure of larger fish.  Aqueous exposure data is therefore 

limited to studies that have tested Microcystis blooms or extracts.  Carp were exposed to a 

Microcystis extract for 7 days and elevation of stress-related enzymes and cellular degeneration 

and necrosis were observed in the liver (Carbis et al. 1996a; Carbis et al. 1996b). Carp were also 

exposed to a natural Microcystis bloom in Meiliang Bay, China and monitored over the course of 

one year.  MC-LR was detected in liver and kidney, with concentrations generally higher in liver 

tissue. Elevation of stress hormones was also correlated with microcystin concentrations as well 

as ultrastructural damage to the liver (Li et al. 2007).  In the only chronic laboratory exposure of 

adult fish to aqueous Microcystis, carp were exposed to a Microcystis bloom containing 182-539 

µg total MC/g dry mass for 9 weeks, followed by an 8 week elimination period where they were 

moved to clean water.  There was no mortality during the exposure; however, microcystins 
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accumulated in liver and muscle, with concentrations10-fold higher in liver.  Microcystin 

concentrations reached a maximum at 4 weeks and elimination proceeded rapidly once exposure 

was terminated.  The authors performed risk calculations and concluded that a total microcystin 

concentration in muscle of 29.3 ng/g would not pose a significant risk to humans (Adamovsky et 

al. 2007).  These studies form a good foundation for examination of exposure of adult fish to 

Microcystis via aqueous exposure; however, it is difficult to make comparisons among studies 

because bloom compositions vary and methods used to measure microcystin accumulation in 

tissues (total MCs versus MC-LR) are not consistent across experiments. 

 Studies examining dietary exposure to MC-LR and Microcystis in adult fish are more 

plentiful.  These studies employ a variety of exposure methods including incorporation of 

Microcystis or MC-LR into fish feed, which mimics natural ingestion, as well as artificial 

methods such as intraperitoneal (i.p.) injection and oral gavage.  While intraperitoneal injection 

and oral gavage methods are not representative of the way that fish would ingest Microcystis in 

the environment, they nevertheless provide additional data on toxin accumulation and sublethal 

effects. 

 Administration of MC-LR or Microcystis via i.p. injection generally supports effects 

observed during aqueous exposure.  In most studies, fish were given a single high-dose injection 

of MC-LR ranging from 50 to 600 µg/kg bw (Carbis et al. 1996a; DP Li et al. 2009; Zhang et al. 

2009) and samples were collected within a short period of time, usually within hours to a few 

days post-injection.  These doses generally resulted in high mortality exceeding that of 

comparable doses administered through oral or aqueous routes (Carbis et al. 1996a; Carbis et al. 

1996b), which calls into question the usefulness of the results.  Nevertheless, i.p. injection 

studies have confirmed basic effects of MC-LR in fish found in aqueous exposure studies, such 
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as protein phosphatase inhibition (Malbrouck et al. 2004), accumulation of MC-LR in liver tissue 

(Lei et al. 2008; L Li et al. 2005; Malbrouck et al. 2003; Williams et al. 1997), and liver tissue 

damage (mainly necrosis) (Carbis et al. 1996b; Fournie and Courtney 2002; L Li et al. 2005; 

Malbrouck et al. 2003).  Additional effects included decline in heart rate and blood pressure (DP 

Li et al. 2009), as well as anemia (Zhang et al. 2007). 

 The effects of oral gavage studies were generally not as severe as those obtained with i.p. 

injection.  Again, doses administered were high, ranging from 2.5 - 5,700 µg/kg bw (Carbis et al. 

1996a; Carbis et al. 1996b; Fischer et al. 2000; Tencalla and Dietrich 1997), but did not result in 

acute toxicity (Carbis et al. 1996a; Carbis et al. 1996b).  Accumulation of MC-LR in the liver 

occurred (Djediat et al. 2010; Fischer and Dietrich 2000; Fischer et al. 2000; Mezhoud et al. 

2008; Tencalla and Dietrich 1997) and lesions in liver were described; however, effects were less 

severe than those reported in i.p. injection studies (Carbis et al. 1996b; Djediat et al. 2010; 

Fischer and Dietrich 2000; Fischer et al. 2000; Mezhoud et al. 2008; Tencalla and Dietrich 

1997).  

 In contrast to i.p. injection and oral gavage, the most realistic type of dietary exposure 

involves incorporation of Microcystis or MC-LR into fish food. With aqueous exposure, both 

direct ingestion of Microcystis and entry via respiration and drinking are possible, whereas 

feeding studies examine ingestion only and do so by allowing fish to feed naturally. The majority 

of dietary studies used food spiked with Microcystis- either unaltered culture (Li et al. 2004), sun 

dried culture (Dong et al. 2009; Zhao et al. 2006a; Zhao et al. 2006b), filtered cells (Soares et al. 

2004), or lyophilized cells (El Ghazali et al. 2010; XY Li et al. 2005).  In only one study was 

purified MC-LR administered to fish via the diet (Deng et al. 2010).  Most studies measured 

toxin accumulation in liver and muscle and were semi-chronic to chronic in duration ranging 
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from 15 days (Soares et al. 2004) to 12 weeks of exposure time (Zhao et al. 2006a; Zhao et al. 

2006b), and in a few studies data was collected for a period of time post-exposure to determine 

elimination rates (Dong et al. 2009; Soares et al. 2004).  Both exposure and tissue concentrations 

varied, as well as reporting methods.  Doses were difficult to interpret. In two studies feeding 

rate was not controlled and fish were fed to satiation, making it impossible to determine the 

amount of toxin ingested (Zhao et al. 2006a; Zhao et al. 2006b).  In many cases, because 

Microcystis blooms were used, exposure concentrations were reported in terms of total MCs, 

rather than MC-LR (Dong et al. 2009; Soares et al. 2004; Zhao et al. 2006a; Zhao et al. 2006b).  

To further complicate matters, bloom composition varied greatly across studies. Some blooms 

contained predominately MC-LR (Soares et al. 2004; Zhao et al. 2006b) while others were 

dominated by MC-RR (Li et al. 2004; XY Li et al. 2005; Zhao et al. 2006a), such that studies 

having similar total MC exposure concentrations could not be compared.  Likewise, tissue 

concentrations were reported as total MCs (Dong et al. 2009; Soares et al. 2004; Zhao et al. 

2006a; Zhao et al. 2006b), and in some cases within the same study, MC-LR was measured in 

tissues while exposure concentrations were reported as total MCs, making results difficult to 

interpret (El Ghazali et al. 2010; Li et al. 2004).   

 Despite the variations in experimental design and methods of reporting exposure and 

tissue concentrations, results of dietary accumulation studies showed a few general trends.  

Microcystin concentrations were higher in liver than in muscle (Dong et al. 2009; Li et al. 2004; 

Soares et al. 2004; Zhao et al. 2006a; Zhao et al. 2006b), and in a few cases muscle 

concentrations exceeded the WHO tolerable daily intake (TDI) value for human consumption of 

0.04 µg/kg body weight/day (Dong et al. 2009; Li et al. 2004; Soares et al. 2004; Zhao et al. 

2006b).  Elimination of microcystin in one study was rapid (Soares et al. 2004), however in 
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Dong et al. (2009) muscle concentrations still exceeded the TDI 55 days after exposure ended.  

Because the WHO TDI is based on MC-LR concentration and not total MCs, these studies may 

overestimate risk.  More studies that monitor MC-LR specifically, in both food and tissue 

samples, are needed in order to determine if bioaccumulation of MC-LR in fish presents a 

significant risk to human populations. 

 Another area in need of further study is the potential for microcystin to affect fish 

reproduction.  Maternal transfer has been studied by injecting eggs with MC-LR (results 

previously discussed in this chapter in section describing effects on early developmental stages 

of fish); however no study has actually documented accumulation of MC-LR in eggs as a result 

of parental exposure. Maternal transfer experiments are therefore presumptive and have limited 

value as a means of assessing reproductive effects. Only one study (Deng et al. 2010) exists 

where adult fish were exposed to MC-LR, allowed to reproduce, and effects on progeny were 

assessed.  In that study MC-LR was incorporated into fish food and administered to Japanese 

medaka at a controlled feeding rate for 8 weeks.  After 4 weeks of exposure, male and female 

fish from corresponding treatments were allowed to spawn. Embryos were transferred to clean 

water where they were monitored for survival and adults were returned to exposure tanks.  

Embryo survival was significantly reduced at the highest concentration tested (3.93 µg MC-LR/g 

diet), and effects on adults included reduced growth following spawning, inhibition of protein 

phosphatases in the liver, and hepatic lesions (Deng et al. 2010).  This study indicates negative 

effects on reproduction in fish as a result of dietary exposure to MC-LR; however, reproductive 

effects following aqueous exposure to MC-LR and Microcystis blooms have not yet been 

evaluated. 
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Previous research has not adequately addressed sublethal chronic exposure or effects on 

reproduction, development, or bioaccumulation (Malbrouck and Kestemont 2006).  Because fish 

that live in environments affected by blooms of Microcystis can be exposed to microcystin toxins 

at low concentrations for long periods of time, there is potential that all life history stages of fish 

are affected.  Reproductive effects need further evaluation, and controlled laboratory studies to 

confirm bioaccumulation via aqueous and dietary exposure are inconclusive (Malbrouck and 

Kestemont 2006).  More research on reproduction, development, and bioaccumulation will 

improve our understanding of microcystin toxicity in fish.  

While uncertainties exist regarding toxicity of microcystin, the use of new technologies 

in gene expression analysis has the potential to further our understanding of the effects of this 

toxin.  Gene expression analyses such as microarray and quantitative real-time PCR can give 

insight into toxicology mechanisms and identify genes that can be used as biomarkers of 

exposure.  By coupling these analyses with traditional endpoints including mortality, 

reproduction, and histopathology, the differential expression of certain genes can be associated 

with specific negative reproductive or physiological outcomes in fish (Miracle and Ankley 

2005).  Using this approach, biomarker genes identified by gene expression analysis can be used 

to evaluate the condition of fish living in environments affected by toxic algal blooms.   

Due to the relative novelty of the application of gene expression analysis in toxicology, 

information is limited and has only addressed MC-LR exposure. Microarray investigations with 

adult zebrafish injected (i.p.) with MC-LR revealed that numerous immune-related genes, in 

addition to genes involved in tumorigenesis and cell cycling, were differentially regulated in 

liver tissue (Wei et al. 2008).  In larval zebrafish, immune related genes and heat shock proteins 

were also differentially expressed in targeted analyses using quantitative PCR (YA Li et al. 
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2009).  These studies have just begun detailing the sub-lethal effects of MC-LR in fish and 

effects of Microcystis exposure also need to be addressed. 

  

Objectives  

The primary objective of this research was to investigate the effects of chronic exposure 

to environmentally relevant concentrations of microcystin during all life history stages of fish. 

Biomarker genes were identified that may have the potential to be used in the future as a field 

monitoring tool to make predictions about the condition of fish living in environments where 

Microcystis blooms are present.  Bioaccumulation of microcystin in fish was also evaluated and 

related to the potential for adverse human health effects through fish consumption. 

 

Hypotheses 

1.  Specific genes respond to microcystin-LR and Microcystis exposure in larval zebrafish and 

these genes can be identified as potential biomarkers of exposure (Section II). 

 

2.  Chronic exposure to Microcystis decreases zebrafish fitness and reproductive success, and 

induces lesions in liver tissue detectable by histopathology (Section III). 

 

3.  Route of exposure will influence bioaccumulation of microcystin-LR and Microcystis in 

channel catfish, and differences in response due to exposure route can be evaluated by liver 

histopathology and tissue toxin burden (Section IV). 
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4.  Tissue toxin burden and histopathological effects observed in fish collected from lakes 

affected by Microcystis can be related to responses of channel catfish exposed to Microcystis and 

MC-LR under laboratory conditions in order to better understand toxic effects occurring in wild 

fish and the potential for human exposure through fish consumption (Section IV). 

 

5.  Primer sets for biomarker genes identified in zebrafish can be designed for channel catfish for 

future assessment of expression of these genes by quantitative PCR in laboratory exposures and 

samples collected from channel catfish living in areas where Microcystis is present (Section IV).
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Global gene expression profiling in larval zebrafish exposed to microcystin-LR and 

Microcystis reveals endocrine disrupting effects of cyanobacteria 

 

This section is a version of a journal article that is under review in Environmental Science 

and Technology.  My contribution to the paper was conducting the exposure of zebrafish to MC-

LR and Microcystis, extracting RNA, analyzing microarray data under the guidance of Michael 

Twiner, and compiling background information and writing the paper. 

 

Rogers, Emily D., Theodore B. Henry, Michael J. Twiner, Julia S. Gouffon,
 
Jackson T. 

McPherson, Gregory L. Boyer, Gary S. Sayler, and Steven W. Wilhelm. In review. 

Global gene expression profiling in larval zebrafish exposed to microcystin-LR and 

Microcystis reveals endocrine disrupting effects of cyanobacteria. Environmental Science 

and Technology. 
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Abstract 

 

Microcystis blooms occur worldwide and threaten aquatic ecosystems and human health.  

Sublethal effects on early developmental stages of fish are largely unknown and research has 

mainly focused on microcystin (MC) toxins, rather than Microcystis cells.  We exposed (96 h) 

zebrafish larvae to purified MC-LR (0-1,000 µg/L) or lyophilized M. aeruginosa containing 4.5 

µg/L MC-LR and evaluated changes in global gene expression (Affymetrix GeneChip® 

Zebrafish Genome Arrays). Significant changes in gene expression (≥ 1.7-fold change, 

p<0.0001) were determined with Rosetta Resolver
®
 7.0, and ontology analysis was conducted 

with the DAVID bioinformatics tool.  The number of differentially expressed genes relative to 

control increased with MC-LR concentration and included genes related to known mechanisms 

of action for MC-LR in mammals and older life stages of fish, as well as genes unique to larval 

zebrafish.  Up-regulation of vitellogenin genes (vtg) (19.2 to >100-fold on arrays; 619.3-fold 

confirmed by qPCR) was observed in Microcystis-exposed larvae but not in larvae exposed to 

MC-LR.  Up-regulation of vtg indicates exposure to estrogenic substance(s) and suggests that 

Microcystis may be a natural source of environmental estrogens.  Concerns about the effects of 

Microcystis blooms may extend beyond those associated with the microcystin toxin. 
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Introduction 

 

Toxin-producing harmful algal blooms occur throughout the world and are a major public 

health and ecological concern.  While there are many different types of harmful algal blooms, 

cyanobacterial blooms are especially important because their occurrence is widespread and toxin 

concentrations regularly exceed levels considered safe for humans and wildlife (Carmichael 

2001).  Microcystins are a diverse group of toxins mainly produced by cyanobacteria of the 

genus Microcystis, and are cyclic heptapeptides with more than 80 forms described (Dittmann 

and Wiegand 2006; Tanabe et al. 2004).  Microcystin-LR (MC-LR) is generally recognized as 

being the most toxic microcystin variant, and concentrations in surface waters often exceed the 

World Health Organization advisory level of 1 µg/L (Chorus et al. 2000). 

The mechanisms of MC toxicity and detoxification in fish are believed to be similar to 

those reported in mammals.  The liver is the major target organ (Fischer et al. 2000), and a 

primary mechanism of MC toxicity is inhibition of protein phosphatases (PPs) 1 and 2A (Fujiki 

and Suganuma 1993).  Inhibition of PPs results in over-phosphorylation of cytokeratins 

(Eriksson et al. 1990; Ohta et al. 1992), resulting in cytoskeletal rearrangement and compromised 

liver function, including necrosis, apoptosis and intrahepatic hemorrhage (Fischer et al. 2000).  

The binding affinity of the various MC variants to PPs is believed to govern variant potency 

(Matsushima et al. 1990).  Disruption of Na+/K+ ATPase pumps and subsequent dysfunction of 

ion regulation has been reported to be a consequence of inhibition of PPs by MC and a secondary 

mechanism of MC-induced toxicity in fish (Gaete et al. 1994; Zambrano and Canelo 1996).  The 

degree to which MC disrupts ion homeostasis in situ is not well understood and may be an effect 
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of fatty acids associated with Microcystis rather than the microcystin toxins themselves (Bury et 

al. 1996; Bury et al. 1998).  Detoxification of MC occurs in the liver via glutathione conjugation 

catalyzed by glutathione-S-transferase (Pflugmacher et al. 1998), subsequently resulting in 

biliary excretion (Sahin et al. 1996). 

To date the major focus of research on MC effects in fish early life stages has been 

directed towards developing an understanding of toxicity during the embryo stage (before 

hatching), and in most cases where effects on larvae have been assessed, the exposure was 

terminated before hatching and downstream effects were observed while larvae were grown in 

clean water (Malbrouck and Kestemont 2006).  In experiments where larvae were assessed 

following acute embryonic exposure to microcystin, effects included decreased survival 

(Oberemm et al. 1997; Oberemm et al. 1999; Jacquet et al. 2004; Wang et al. 2005), severe 

skeletal malformations (Wang et al. 2005), and hepatobiliary hypertrophy (Jacquet et al. 2004).  

In the few cases where fish were exposed to microcystin during the larval stage, effects were 

more severe than embryo exposure.  Wiegand et al. (1999) demonstrated that uptake of MC-LR 

in larval zebrafish was greater than that of embryos.  Loach larvae exposed to MC-LR had 

significantly lower survival rates than embryos and malformations, including alterations of 

hepatocytic organelles, heart muscle and erythrocytes, were also more severe (Liu et al. 2002).  

This information suggests that larval fish may be especially susceptible to MC-LR exposure, and 

a better understanding of mechanisms of toxicity during this stage is needed. 

Recently, other investigators have applied gene expression analyses in an effort to better 

characterize the biochemical pathways influenced by MC-LR in fish.  Microarray investigations 

with adult zebrafish injected (intraperitoneal) with MC-LR revealed that numerous immune-
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related genes, in addition to genes involved in tumorigenesis and cell cycling, were differentially 

regulated in liver tissue (Wei et al. 2008).  In larval zebrafish, immune related genes and heat 

shock proteins were also differentially expressed in targeted analyses using quantitative PCR (Li 

et al. 2009).  These studies have just begun detailing the sub-lethal effects of MC-LR in fish. 

Exposure of larval fish to Microcystis blooms in the environment is a complex issue because 

larval fish are not exposed to MC-LR alone, but rather Microcystis cells and lysates that contain 

other substances in addition to MC-LR.  Microcystis can produce numerous peptides classified as 

aeruginosins (Ishida et al. 1999), micropeptins (Yamaki et al. 2005), and microviridins (Rohrlack 

et al. 2003) that putatively have some type of biological function (Harada 2004; Smith et al. 

2008). In addition, Microcystis cell walls contain lipopolysaccharides that can be toxic 

(Raziuddin et al. 1983).  In several cases where fish were exposed to Microcystis and MC-LR 

during early development, the toxicity of Microcystis was greater than that of purified MC-LR 

(Oberemm et al. 1997; Oberemm et al. 1999; Best et al. 2001; Palikova et al. 2007).  As such, it 

is important to consider both the effects of Microcystis and MC-LR in larval fish. 

The objective of this study was to compare the response of larval zebrafish exposed to the 

purified MC-LR toxin with larval zebrafish exposed to Microcystis.  A global gene expression 

approach was used to distinguish the biochemical pathways affected by MC-LR with those 

pathways influenced by exposure to Microcystis, which contains MC-LR and numerous other 

bioactive compounds.  We predicted that MC-LR and Microcystis exposure to larval fish would 

result in distinctive sets of differentially expressed genes related to toxicity mechanisms and 

pathways, potentially impacting larval development and survival. 
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Materials and Methods 

 

Experimental Fish 

Zebrafish (Danio rerio) were obtained from the Zebrafish Research Facility in the Center 

for Environmental Biotechnology at the University of Tennessee.  Fish husbandry, spawning, 

and experimental procedures were conducted with approval from the University of Tennessee 

Institutional Animal Care and Use Committee (Protocol #1690-1007).  Water for holding fish 

and conducting experiments (hereafter referred to as fish water) consisted of MilliQ water 

(Millipore, Bedford, MA) with ions added: 19 mg/L NaHCO3, 1 mg/L sea salt (Instant Ocean 

Synthetic Sea Salt, Mentor, OH), 10 mg/L CaSO4, 10 mg/L MgSO4, 2 mg/L KCl.  Embryos were 

obtained by spawning adult fish with no history of contaminant exposure.  Fertilization of 

embryos took place at the same time (± 15 min.), such that larvae used in experiments were of 

similar age at the time of exposure.  All activities (maintenance of adult fish, spawning, and 

experiments) were conducted in an environmental chamber with a temperature of 27± 1 ºC and 

14:10h light:dark photoperiod. 

 

Preparation of Exposure Solutions 

The Microcystis treatment was prepared using lyophilized cells of Microcystis 

aeruginosa.  M. aeruginosa PCC-7806 was obtained from the Pasteur Culture Collection of 

Cyanobacteria and cultured in BG-11 media according to the same methods described for M. 

aeurginosa LE-3 isolates in Rinta-Kanto and Wilhelm (Rinta-Kanto et al. 2006).  Live cultures 

of M. aeruginosa were centrifuged in 250 mL batches at 3,500 rpm for one hour to concentrate 
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cells into a pellet, combined, and pellets obtained after centrifuging 6 L of culture were 

combined.  Cells were lyophilized for 48 hours using a freeze-dry system (Labconco, Kansas 

City, MO) and the total dry weight mass of algal cells obtained was 300 mg.  For exposure of 

larval zebrafish, lyophilized Microcystis was reconstituted back to its original nominal 

concentration of 50 mg lyophilized cells/L. 

Solutions for MC-LR treatments were prepared by dissolving 1 mg of purified 

microcystin-LR (Alexis Biochemicals, San Diego, CA) in 0.5 mL ethanol and diluting to 100 

and 1,000 µg/L using fish water.  The concentration of ethanol in all treatments was ≤ 0.05%, 

and a treatment of 0.05% ethanol was used as a vehicle control.  Fish water served as the 

negative control. 

 

Experimental Design 

At 72 h post-fertilization, larvae were exposed to lyophilized Microcystis and purified 

MC-LR at concentrations of 100 and 1,000 µg/L.  Controls consisted of zebrafish system water 

(negative control) and zebrafish system water containing 0.05% ethanol (vehicle control). Larvae 

from both control groups as well as 100 µg/L MC-LR, 1,000 µg/L MC-LR, and lyophilized 

Microcystis were exposed in groups of 50 with three replicates per treatment and were sacrificed 

after 96 hours for RNA extraction and subsequent microarray analysis.  All larvae were exposed 

in beakers containing 100 ml of solution. Water samples for water quality measurements and 

microcystin analysis were taken during the experiment, and mortality and behavioral 

observations were recorded at 24-hour intervals. 
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Water Quality and Chemical Analyses 

Water quality parameters measured following 96-hour exposure included dissolved 

oxygen (6.7 mg/L), pH (6.9), total alkalinity (36 mg/L as CaCO3), total hardness (18 mg/L as 

CaCO3), and ammonia (<0.2 mg/L). Analysis of MC-LR in samples was conducted at the State 

University of New York College of Environmental Science and Forestry (Syracuse, NY) by 

protein phosphatase inhibition assay following the methods of Carmichael and An (Carmichael 

and An 1999).  Lyophilized M. aeruginosa pellets were extracted in 50% acidified methanol 

using ultrasound, (25 watts; three 20 sec bursts with 20 sec cooling on ice between bursts), and 

water samples were analyzed directly without concentration.  Measured MC-LR concentrations 

(mean ± SD) were: 140 ± 12 µg/L (in the 100 µg/L MC-LR solution), 1,703 ± 71 µg/L (in the 

1,000 µg/L MC-LR solution), and 4.5 µg MC-LR equivalents/L (in the lyophilized Microcystis).  

LC-MS analysis (Boyer 2007) of the MC-LR standards and PCC7806 Microcystis cell material 

indicated that microcystin-LR was the only toxin variant present in these samples. 

 

Total RNA Extraction  

Larvae were centrifuged for 10 min at 13,000 rpm to separate larvae from exposure 

water, and pellets containing larvae were stored at –80ºC until RNA extraction was performed 

the following week.  Total larval RNA was extracted using the RNeasy mini extraction kit for 

animal tissues (Qiagen, Valencia, CA) and quantified using a UV-spectrophotometer (Nanodrop, 

Wilmington, DE) as previously described (Henry et al. 2009). 
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Microarray Methods  

Microarray analysis was conducted at the Affymetrix Core Facility located on the 

University of Tennessee campus, with which our lab has previously conducted microarray 

experiments with zebrafish (Henry et al. 2007).  Equal amounts of RNA from controls and 

treatments were used for cDNA synthesis and subsequent biotin labeling for microarray analysis 

(Message Amp II- Biotin Enhanced Kit, Ambion, Austin, TX).  Samples were then applied to 

GeneChip
®
 Zebrafish Genome Arrays (≈15,000 gene transcripts), and hybridization and 

scanning procedures were conducted according to Affymetrix GeneChip
®
 Expression Analysis 

Technical Manual (Affymetrix). 

 

Statistical Analysis of Microarray Data 

Analysis of array data was conducted with Rosetta Resolver® 7.0 Gene Expression Data 

Analysis System (Rosetta Informatics, Seattle, WA, USA) using methods similar to Twiner et al. 

(2008).  Using a rank consistency filter, features were subjected to a combination linear and 

lowness normalization algorithm.  Based on the Rosetta error model, a composite array was 

generated for each treatment and control, in which the data underwent a weighted averaging 

based on feature quality in the triplicate arrays making up the composite. A list of “signature” 

gene features was then generated for each time point from the composite array by p value sorting 

and absolute differential expression (≥1.7-fold, p<0.0001).  The software does not assign an 

absolute value to expression ratios >100-fold or to p values <10-45.  Signature gene lists for each 

treatment were further characterized by ontology using the Database for Annotation 

Visualization and Integrated Discovery (DAVID) (Dennis et al. 2003; Huang et al. 2009). 
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Quantitative Reverse Transcriptase PCR  

Aliquots of the same RNA samples used for arrays were analyzed to confirm expression 

of vitellogenin type 1 (vtg1A/B) by quantitative reverse transcriptase PCR (qRT-PCR).  The 

qRT-PCR protocol and primer/probe sets are described in Henry et al. (2009), and zebrafish β-

actin gene was used as the internal control.  Amplicons from zebrafish vtg1A/B and ß-actin were 

generated using Taq DNA Polymerase (Fisher Scientific, Pittsburg, PA, USA) and T/A cloned 

into pCR2.1 (Invitrogen, Carlsbad, CA, USA) for propagation and generation of template for 

RT-PCR. For reactions, plasmid DNA was linearized with BamH1 (Promega), enzyme removed 

with QIAquick PCR Purification Kit (Qiagen), and DNA quantified by NanoDrop measurement.  

Reverse transcription was performed with T7 RiboMAX Express Large Scale RNA Production 

System (Promega) and qRT-PCR with a QuantiTect Probe RT-PCR Kit (Qiagen).  Each reaction 

contained 1µg of total RNA, 7.5 pM primers and 5 pM TaqMan probe, and each sample was run 

in triplicate. 
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Results 

 

Differential Gene Expression 

The selected doses of MC-LR and Microcystis caused no significant mortality (< 2%), 

and no observable behavioral changes in larval zebrafish during the 96-h exposure.  However, 

changes in gene expression were observed after fish were exposed to MC-LR and Microcystis. 

Out of ~15,000 gene transcripts assessed on the zebrafish arrays, there was greater than 99.9% 

similarity in gene expression between the two controls (ethanol vs. fish water).  As such, all 

treatment comparisons were made relative to the ethanol control. The total number of genes with 

significant changes in expression (≥1.7-fold change, p<0.0001) relative to the control increased 

with concentration of MC-LR, with 167 significant genes in fish exposed to 100 µg/L MC-LR 

and 916 significant genes in the 1,000 µg/L MC-LR treatment.  Of the 916 differentially 

regulated genes in the 1,000 µg/L MC-LR treatment, 69 were also differentially expressed in the 

100 µg/L MC-LR treatment (Figure 2.1).  In larval fish exposed to Microcystis, 371 genes were 

significantly altered compared to control, and 79 of these genes were also differentially regulated 

in the MC-LR treatments.  Of the 371 genes identified in the Microcystis treatment, 126 were not 

differentially expressed in either MC-LR treatment.  All data are publicly available at Gene 

Expression Omnibus (www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE12214). 
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Figure 2.1.  Numbers of genes in each treatment that differ significantly from controls (≥1.7-fold 

change, p<0.0001), where numbers in overlapping regions represent genes common to multiple 

treatments and in non-overlapping regions, genes expressed only in that treatment. 

 

100 µg/L Microcystin-LR 

(167) 

1,000 µg/L Microcystin-LR 

(916) 

Lyophilized Microcystis 

(371) 
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Functional Classification of Genes 

Differentially expressed genes were functionally categorized using DAVID ontology 

analysis.  Genes responding to exposure to MC-LR at 100 and 1,000 µg/L (n=69) (Figure 2.1) 

were related to detoxification and metabolism, lipid binding and transport, cell signaling and  

development, blood clotting and oxygen transport, ion transport, liver function, maintenance of 

tight junctions and thermoregulation (Table 2.1).  Almost all genes in this group were down-

regulated, and fold change values of fatty acid binding protein 1b (-19.9), type iv antifreeze (-

14.6), phospholipase a2 (-11.2), fibrinogen b (-6.1), serpin peptidase inhibitor a7 (-4.8), and 

selenoprotein p1b (-4.5), showed the greatest decrease in expression in the 1,000 µg/L treatment 

compared to control. 

The majority of differentially expressed genes common to all treatments (n=79) (Figure 

2.1) were cell signaling and developmental genes including calpain genes, CD9 and CD81 

antigens, and an apoptosis inducing factor (Table 2.2).  Changes in expression of these genes 

may indicate altered cell cycle progression, carcinogenesis, cell death, or disruption of cellular 

differentiation during development. Genes showing the greatest degree of fold change were 

nephrosin (-4.4 fold change, p =2.0 x10
-5

) and mucin 2 (-4.7 fold change, p =2.0 x10
-5

).  

Immune-related genes were also affected, as well as those associated with cytoskeletal 

disruption, ion regulation, oxidative stress, and maintenance of tight junctions.  Because these 

genes were affected by exposure to purified MC-LR and by the cyanobacterium responsible for 

production of this toxin, this group of genes may represent a response that more closely mimics a 

natural exposure situation than genes differentially expressed upon exposure to purified MC-LR 

alone. 
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Table 2.1. Genes common to 100 and 1,000 µg/L MC-LR treatments
 
relative to control

a 

    Fold change 

    MC-LR vs. control
a
 

Sequence code Accession number Description  Gene symbol 100 µg/L 

1,000 

µg/L 

Detoxification/ metabolism     

Dr.11596.1.S1_at AI545537 tryptophan 2,3-dioxygenase tdo2a -3.4 -3.4 

Dr.3498.1.S1_at BC045343.1 methionine adenosyltransferase I, alpha mat1a -2.4 -3.6 

Dr.18453.1.S1_at BC044525.1 uridine phosphorylase 2 upp2 -2.4 -2.6 

Dr.9478.1.S1_at AB078927.1 cytochrome P450 1A cyp1a -2.4 -3.0 

Dr.14058.1.A1_at CD015351 glutathione s-transferase, theta 1A
c
 gstt1a -2.3 -2.4 

Dr.11729.1.S1_at NM_152954.1 cytochrome P450 2J28 cyp2j28 -2.2 -2.2 

Dr.2132.1.A1_at BQ262149 hydroxyacid oxidase 1 hao1 -2.1 -3.4 

Dr.4189.1.S1_at BI891596 nad(P)H dehydrogenase quinone 1 nqo1 -1.9 -2.6 

Dr.7977.1.S1_at AW232474 glutathione peroxidase 1A gpx1a -1.9 -2.6 

Dr.25191.1.S1_at BC046894.1 isocitrate dehyrodgenase 1 idh1 -1.8 -2.5 

Dr.7520.1.A1_at AW019023 aconitase 1 aco1 -1.8 -2.3 
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Table 2.1. Continued.     

    Fold change 

    MC-LR vs. control
a
 

Sequence code Accession number Description  Gene symbol 100 µg/L 

1,000 

µg/L 

Detoxification/ metabolism      

Dr.1041.1.S1_at BC050158.1 alpha-L-fucosidase 1 fuca1 -1.7 -2.6 

Lipid binding/transport      

Dr.24953.1.S1_at CD014348 apolipoprotein C-II apoc2 -4.2 -7.8 

Dr.24261.1.S1_at BM182911 fatty acid-binding protein 1 fabp1b -3.9 -19.9 

Dr.13681.1.S1_at BI867505 apolipoprotein M apom -3.6 -3.6 

Dr.1323.1.S1_at NM_131128.1 apolipoprotein A-I apoa1 -3.2 -6.0 

Dr.4002.1.A1_at BG884597 apolipoprotein B apob -3.1 -9.6 

Dr.5488.1.S1_at AI477980 apolipoprotein A-IV apoa4 -2.5 -4.7 

Dr.5674.2.S1_at BM186239 apolipoprotein C-I precursor
c
 apoc1l -1.8 -2.7 

Dr.59.1.S1_at AY178793.1 annexin A1A anxa1a -1.8 -2.1 

Cell signaling and development     

Dr.20054.1.S1_at NM_131335.1 gastrulation specific protein g12 -2.6 -3.3 
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Table 2.1. Continued.     

    Fold change 

    MC-LR vs. control
a
 

Sequence code Accession number Description  Gene symbol 100 µg/L 

1,000 

µg/L 

Cell signaling and development      

Dr.25140.7.A1_a_at BQ262802 epithelial cell adhesion molecule  epcam  -1.9 -2.5 

Dr.9122.1.S1_at BM102177 CC chemokine SCYA103
c
 LOC795788 -1.8 -2.4 

Dr.7503.1.A1_a_at AW421072 pituitary tumor-transforming 1 interacting protein
b
 --- -1.8 -2.3 

Dr.8149.1.A1_at NM_131458.1 insulin-like growth factor binding protein 2B igfbp2b -1.8 -1.8 

Dr.12557.1.A1_at AW077290 calmodulin-binding transcription activator 1
c
 LOC797322 1.7 1.9 

Dr.11457.1.S1_at BC046887.1 zinc finger and BTB domain containing 16 zbtb16 1.8 2.1 

Dr.5462.1.S1_at BI878927 fibrinogen B fgb -2.9 -6.1 

Dr.1450.1.S1_s_at BI896310 hemoglobin alpha embryonic-3 hbae3 -1.9 -2.9 

Dr.845.1.A1_at BG729013 fibrinogen alpha chain fga -2.1 -2.7 

Liver function      

Dr.8516.1.S1_at NM_178298.2 selenoprotein P, plasma, 1B sepp1b -2.3 -4.5 
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Table 2.1. Continued.     

    Fold change 

    MC-LR vs. control
a
 

Sequence code Accession number Description  Gene symbol 100 µg/L 

1,000 

µg/L 

Tight junction      

Dr.994.1.S1_at NM_131763.1 claudin B cldnb -1.9 -3.0 

Thermoregulation      

Dr.696.1.S1_at AI496864 type IV antifreeze protein zgc:161979 -4.8 -14.6 

Cytoskeletal function     

Dr.9252.1.A1_at BE605502 sciellin scel -1.8 -2.0 

Inflammation      

Dr.15332.1.S1_at AL917567 phospholipase A2, group IB pla2g1b -11.1 -11.2 

Muscle contraction     

Dr.20153.1.S1_a_at AF210639.1 myosin light polypeptide 9 like myl9l -1.9 -2.2 

Dr.23357.1.A1_at BE201798 transmembrane protein 90A
c
 LOC569467 -2.2 -4.1 

RNA processing      

Dr.24764.1.S1_at AL727764 cleavage and polyadenylation specific factor 3
d
 hbae1 -1.7 -2.1 



 

 

40 

Table 2.1. Continued.     

    Fold change 

    MC-LR vs. control
a
 

Sequence code Accession number Description  Gene symbol 100 µg/L 

1,000 

µg/L 

Actin binding      

Dr.20115.1.S1_at BC049463.1 cofilin 1 (non-muscle) cfl1 -1.8 -2.1 

Dr.17687.1.A1_at BQ078227 IQ motif containing GTPase activating protein 1 iqgap1 -1.8 -2.4 

Translation      

Dr.20386.3.S1_at BM141602 eukaryotic translation initiation factor 1A, X-

linked, B 

zgc:110087 -1.7 -1.8 

a
 ≥ 1.7-fold change, p<0.0001 

b
weak similarity to gene indicated 

c
similar to gene indicated 

d
strongly similar to gene indicated 
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Table 2.2.. Genes common to all treatments relative to control. 

    
Fold Change vs. Control

a 

 
Accession 

number 

  Microcystis MC-LR (µg/L) 

Sequence code Description  Gene symbol  100 1,000
 

Cell signaling and development      

Dr.17470.1.S1_at AF498291.1 nephrosin npsn -4.6 -4.4 -7.4 

Dr.914.1.A1_a_at BE556864 WH2 domain-containing protein 1
d
  -1.8 -2.6 -5.0 

Dr.18186.1.S1_at BQ093694 S100 calcium-binding protein A1
d
 s100a1 -2.1 -2.5 -3.7 

Dr.4236.1.S1_at BQ092511 calpain 9 capn9 -2.2 -2.4 -3.6 

Dr.13076.1.S1_at BC053138.1 pleckstrin homology containing, family F, member 1 plekhf1 -3.0 -2.2 -5.3 

Dr.17116.1.S1_at AF282675.1 calpain 1 capn1 -2.5 -2.2 -3.0 

Dr.11420.1.S1_at BC050238.1 BAI1-associated protein 2-like 1A baiap2l1a -1.9 -2.0 -2.6 

Dr.2251.1.A1_at AI793815 golgi integral membrane protein 4A golim4a -2.5 -2.0 -3.7 

Dr.1945.1.A1_at CD015541 calpain 2, large subunit like capn2l -2.3 -2.0 -3.7 

Dr.1116.1.S1_at BQ092087 S100 calcium binding protein V2 s100v2 -1.8 -1.9 -2.1 

Dr.4409.1.S1_at BC049036.1 CD9 antigen like cd9l -1.9 -1.8 -3.1 

Dr.11692.1.S1_at BG727434 vasodilator-stimulated phosphoprotein
b
 vasp -2.0 -1.8 -2.4 

Dr.23066.1.S1_at AW019779 apoptosis-inducing factor, mitochondrion-associated 2 aifm2 -1.8 -1.7 -2.6 

Dr.10664.1.S1_at NM_131518.1 cd81 antigen cd81 -2.2 -1.7 -2.3 
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Table 2.2. Continued. 
   

   

    
Fold Change vs. Control

a
 

    Microcystis MC-LR (µg/L) 

Sequence code 

Accession 

number Description  Gene symbol  100 1,000
 

Cell signaling and 

development 

      

Dr.18888.1.A1_at BI842184 calcium/calmodulin-dependent protein kinase II delta 2 camk2d2 2.1 1.9 2.4 

DrAffx.2.49.A1_at AW116899 bromodomain containing 4 brd4 2.3 1.9 2.2 

Dr.25935.1.A1_at CD605501 zinc finger, CCHC domain containing 12
c
 zcchc12 1.9 2.0 2.1 

Cytoskeleton       

Dr.7105.1.S1_at BC053229.1 actin related protein 2/3 complex, subunit 1B arpc1b -2.5 -2.3 -4.9 

Dr.13076.1.S1_at BC053138.1 pleckstrin homology containing, family F, member 1 plekhf1 -3.0 -2.2 -5.3 

Dr.9531.1.A1_at BQ074417 myosin, heavy chain 9, non-muscle, like-2 myh9l2 -2.0 -2.0 -3.4 

Dr.3432.1.S1_at BC049461.1 capping protein (actin filament), gelsolin-like capg -2.2 -1.8 -4.3 

Dr.14768.1.A1_at BI983132 flavoprotein oxidoreductase mical3 mical3 2.8 2.4 2.7 

Immune function, haematopoiesis      

Dr.25714.1.A1_at AW232464 cathepsin S, B.2 ctssb.2 -1.9 -1.9 -4.5 

Dr.4409.1.S1_at BC049036.1 CD9 antigen like cd9l -1.9 -1.8 -3.1 

Dr.11692.1.S1_at BG727434 vasodilator-stimulated phosphoprotein
b
 vasp -2.0 -1.8 -2.4 
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Table 2.2. Continued. 
   

   

    
Fold Change vs. Control

a
 

    Microcystis MC-LR (µg/L) 

Sequence code 

Accession 

number Description  Gene symbol  100 1,000
 

Immune function, haematopoiesis       

Dr.10664.1.S1_at NM_131518.1 cd81 antigen cd81 -2.2 -1.7 -2.3 

Ion regulation, membrane stability      

Dr.922.1.S1_at BC044188.1 aquaporin 3 aqp3 -2.0 -1.8 -2.5 

Dr.1735.1.A1_at AI721648 chloride intracellular channel 1 clic1 -2.4 -1.8 -3.2 

Dr.10467.1.S1_at NM_131628.1 sodium channel, voltage-gated, type VIII, alpha A scn8aa 1.7 1.7 2.0 

Oxidative stress       

DrAffx.1.74.S1_at AY216583.1 selenoprotein W2B sepw2b -3.0 -2.5 -5.8 

Dr.7379.1.A1_at AW232459 selenoprotein W2B sepw2b -1.8 -1.8 -2.6 

Dr.17468.1.A1_at BM956969 glutathione reductase
d
  gsr -1.7 -1.7 -3.1 

Tight junction       

Dr.7692.1.A1_at BC049304.1 occludin ocln -2.2 -1.9 -3.3 

Dr. 20610.1.S1_at NM_131637.1 claudin 7 cldn7 -2.0 -1.9 -2.9 

Liver effects       

Dr.8947.2.S1_at CD594735 Kunitz-type serine protease inhibitor 2
d
 spint2 -3.1 -2.9 -5.6 
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Table 2.2. Continued. 
   

   

    
Fold Change vs. Control

a
 

    Microcystis MC-LR (µg/L) 

Sequence code 

Accession 

number Description  Gene symbol  100 1,000
 

Liver effects       

Dr.2408.2.S1_at BM571242 matrix metalloproteinase 2
c
 mmp2 -2.4 -1.9 -2.6 

Endopeptidase inhibitor      

Dr.8947.2.S1_at CD594735 Kunitz-type protease inhibitor 2
d
 spint2 -3.1 -2.9 -5.6 

Dr.3073.1.A1_at AI585030 serpin peptidase inhibitor clade A, member 7  serpina7 -2.0 -2.5 -6.5 

Detoxification       

Dr.16014.1.S1_at BM024109 glutathione transferase omega 1
b
 gsto1 -2.6 -2.4 -4.9 

Thyroid hormone availability      

Dr.3073.1.A1_at AI585030 serpin peptidase inhibitor, clade A, member 7 serpina7 -2.0 -2.5 -6.5 

Steroid hormone synthesis      

Dr. 10671.1.S1_at NM_131663.1 steroidogenic acute regulatory protein star -3.8 -3.3 -6.9 

Endosome formation      

Dr.16802.1.S1_at BC049333.1 vesicle-associated membrane protein 8 vamp8 -2.2 -1.8 -3.1 

Intestinal effects       

Dr.14396.2.A1_at BI673162 mucin 2
d
 muc2 -4.9 -4.7 -6.7 
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Table 2.2. Continued. 
   

   

    
Fold Change vs. Control

a
 

    Microcystis MC-LR (µg/L) 

Sequence code 

Accession 

number Description  Gene symbol  100 1,000
 

Bacterial pathogenesis      

Dr.1991.1.A1_at BM529391 globoside alpha-1,3-N-acetylgalactosaminyltransferase 

1, like 4 

gbgt1l4 -2.2 -1.7 -2.5 

a
 ≥ 1.7-fold change, p<0.0001 

b
weak similarity to gene indicated;  

c
moderate similarity to gene indicated;  

d
similar to gene indicated 
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Also of interest were genes that responded when larval zebrafish were exposed to 

Microcystis but not the purified MC-LR treatments. The majority of genes expressed only in the 

Microcystis treatment (n=126) (Figure 2.1) were genes involved in cell signaling and 

development (28%), neurological function (7%), visual perception (6%), and endocrine activity 

(6%) (Table 2.3).  Other genes included those affecting ion regulation, apoptosis, glucose and 

amino acid transport, muscle contraction, DNA synthesis and degradation, intestinal function, 

metabolism, and protein targeting.  The majority of genes were down-regulated, some genes 

related to cell signaling development, neurological function and visual perception were up 

regulated. 

 

Vitellogenin Expression and Validation by qRT-PCR 

Affymetrix probe sets designed for zebrafish vitellogenin genes indicated high up-

regulation (19 to >100-fold change) of these genes in larval zebrafish exposed to Microcystis 

(Table 2.4).  In larval zebrafish exposed to MC-LR, there was no significant effect on expression 

of any of the vitellogenin genes relative to the control.  Up-regulation of vitellogenin was 

confirmed by qRT-PCR of vtg1A/B (mean fold-change ±SD = 619.3±130.2 (n=9)) 
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Table 2.3. Genes unique to Microcystis treatment
a
  

Sequence code Accession number Description Gene symbol 
a
Fold change p-Value 

Cell signaling and development     

Dr.15260.1.S1_at BI429195 nuclear receptor subfamily 1, group D, member 2B nr1d2b -3.4 6.03E-07 

Dr.20567.1.S1_at AW567115 calcium binding protein 39-like cab39l -2.9 1.48E-06 

Dr.26399.1.A1_at AL719041 PAR-6 gamma protein
b
 pard6gb -2.8 4.43E-06 

Dr.25140.8.A1_at AL730238 CD81 antigen cd81 -2.8 1.36E-09 

Dr.12138.2.A1_at AI957874 exostoses 1A ext1a -2.7 2.00E-05 

Dr.18414.1.S1_at AW165356 programmed cell death 4A pdcd4a -2.7 2.00E-05 

Dr.19421.1.A1_at AL725987 PHD finger protein 8 phf8 -2.4 6.54E-06 

Dr.11726.1.S1_at NM_131877.1 caspase 3 casp3 -2.4 3.00E-05 

Dr.7424.2.S1_at BI839632 COP9 constitutive photomorphogenic homolog subunit 5 cops5 -2.3 4.44E-06 

Dr.3282.1.S1_at NM_131691.1 endothelial differentiation sphingolipid G-protein-coupled receptor 1 edg1 -2.3 8.63E-06 

Dr.25322.1.S1_at AL726472 lin-7 homolog C lin7c -2.2 2.71E-08 

Dr.13009.2.S1_at BE556991 sprouty homolog 2 spry2 -2.2 4.48E-06 

Dr.1710.2.S1_at AI794095 eukaryotic translation initiation factor 4e family 3 eif4e3 -2.1 7.67E-08 

Dr.7804.1.S1_at  AB069858.1 antizyme inhibitor 1 azin1 -2.1 3.00E-05 

Dr.6932.3.S1_at AL730217 high-mobility group box 3A hmgb3a -2.0 2.07E-11 
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Table 2.3. Continued.    
 

 

Sequence code Accession number Description Gene symbol 
a
Fold change p-Value 

Cell signaling and development     

Dr.15361.1.S1_at AL926178 moderate similarity to ras-related protein rab-22A rab22a -2.0 2.60E-06 

Dr.11764.1.S1_at  NM_131774.1 annexin A13 anxa13 -2.0 1.00E-05 

Dr.7100.1.A1_at BQ091992 immediate early response 2
b
 ier2 -1.9 9.07E-10 

Dr.11698.1.S1_at AL725759 transcription factor AP-2 gamma tfap2c -1.9 1.51E-09 

Dr.16550.1.A1_at BI709565 TM2 domain-containing 2 tm2d2 -1.9 1.82E-09 

Dr.24242.2.S1_at BQ131454  mitochondrial processing peptidase alpha
c
 pmpca -1.9 3.11E-08 

Dr.578.2.S1_a_at U96848.1 thyrotroph embryonic factor tef -1.9 7.04E-08 

Dr.5572.1.S1_at NM_131101.1 homeo box B5A hoxb5a -1.8 6.73E-10 

Dr.3238.1.A1_at AI793363 Kruppel-like factor 11A klf11a -1.8 9.45E-09 

Dr.7225.1.S1_at BC045952.1 MOB1, Mps one binder kinase activator-like 1A (yeast) mobkl1a -1.7 4.88E-06 

Dr.23293.1.A1_at BE016153 tubulin polymerization-promoting protein family member 3 tppp3 -1.7 4.00E-05 

Dr.26344.2.S1_a_at AL717083 cell division cycle 42 cdc42 -1.7 6.00E-05 

Dr.3472.1.A1_at AI545021 spectrin, beta, non-erythrocytic 1 sptbn1 1.7 7.95E-13 

Dr.15630.1.S1_at CD594794 similar to tubulin folding cofactor E-like tbcel 1.7 2.77E-06 

DrAffx.1.10.S1_at AY151045.1 cysteine rich transmembrane BMP regulator 1 crim1 1.8 1.82E-07 

Dr.3421.1.A1_at AW342746 ribosome binding protein 1 homolog (dog) rrbp1 1.8 6.00E-05 
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Table 2.3. Continued.    
 

 

Sequence code Accession number Description Gene symbol 
a
Fold change p-Value 

Cell signaling and development     

Dr.12403.1.S1_at NM_131633.1 roundabout homolog 2 robo2 1.9 2.46E-07 

Dr.6210.1.S1_at BM184670 cartilage acidic protein 1
b
 crtac1 2.0 1.91E-11 

Dr.15261.1.A1_at BI710394 cytoplasmic polyadenylation element binding protein 4 cpeb4 2.0 6.00E-05 

Dr.52.1.A1_at  AA495026 phosphatidylinositol binding clathrin assembly protein, like picalml 2.2 3.51E-06 

Neurological function      

Dr.17557.1.S1_at AL730871 neurocalcin delta
d
 ncald -2.7 1.53E-14 

Dr.24196.1.S1_at NM_131452.1 embryonic lethal abnormal vision-like 1 elavl1 -2.1 4.11E-10 

Dr.4230.1.S1_a_at NM_130909.1 HuG hug -2.0 5.79E-17 

Dr.1968.1.S1_at BC049308.1 fusion involved in malignant liposarcoma fus -1.8 6.11E-09 

Dr.25322.2.S1_at BI888421 lin-7 homolog C lin7c -1.7 1.94E-13 

DrAffx.1.10.S1_at AY151045.1 cysteine rich transmembrane BMP regulator 1 crim1 1.8 1.82E-07 

Dr.12617.1.A1_at NM_131806.1 ephrin B3 efnb3 1.8 1.00E-05 

Dr.12403.1.S1_at NM_131633.1 roundabout homolog 2 robo2 1.9 2.46E-07 

Dr.23350.1.S1_at  AF425739.1 parvalbumin 8 pvalb8 4.7 2.00E-05 

Visual perception      

AFFX-Dr-NM_131175-1_s_at NM_131175-1 opsin 1, long-wavelength-sensitive 1 opn1lw1 -3.0 4.92E-13 
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Table 2.3. Continued.    
 

 

Sequence code Accession number Description Gene symbol 
a
Fold change p-Value 

Visual perception      

Dr.26436.1.S1_at  AF210644.1 retinal degradation slow 4 rds4 -2.6 1.83E-11 

Dr.12204.1.S1_at 

Dr.8102.1.S1_at  

BI706778 retinal degradation slow 4 rds4 -2.3 3.00E-05 

NM_131253.1 opsin, medium-wavelength-sensitive 1 opn1mw1 -2.0 1.38E-08 

Dr.9899.1.S1_at NM_131868.1 guanine nucleotide binding protein, alpha transducing activity 1 gnat1 -1.9 1.08E-09 

Dr.10433.1.S1_at NM_131791.1 cryptochrome 2A cry2a -1.9 5.00E-05 

Dr.8194.1.S1_at BI879950 opsin, short-wavelength-sensitive 1 opn1sw1 -1.8 1.20E-08 

Dr.8097.1.S1_at NM_131192.1 opsin, short-wavelength-sensitive 2 opn1sw2 -1.7 1.65E-07 

Endocrine activity      

Dr.10788.1.S1_at NM_131804.1 nothepsin nots 4.0 1.02E-18 

Dr.10461.1.S1_at  NM_131642.1 cytochrome P450, family 19, subfamily A, polypeptide 1B cyp19a1b 4.0 6.68E-08 

Dr.25009.6.A1_at BI878405 vitellogenin
d 

vtg >100 <1.00E-45 

Dr.25009.1.S1_a_at NM_170767.1 vitellogenin 1 vtg1 >100 <1.00E-45 

Dr.25009.6.A1_a_at BI878405 vitellogenin 1 vtg1 >100 <1.00E-45 

Dr.25009.4.A1_at BG303658 vitellogenin 2 vtg2 >100 <1.00E-45 

Dr.2978.1.S1_at AI477604 vitellogenin 3 vtg3 19.2 <1.00E-45 
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Table 2.3. Continued.    
 

 

Sequence code Accession number Description Gene symbol 
a
Fold change p-Value 

Ion regulation      

Dr.3.1.S1_at AF469651.1 ATPase, Na+/K+ transporting, beta 3A atp1b3a -2.2 4.44E-11 

Dr.26437.1.S1_at NM_131669.1 ATPase, Na+/K+ transporting, beta 2A  atp1b2a -2.0 5.40E-07 

Dr.3613.1.S1_at  BC048037.1 ceruloplasmin cp 2.4 1.73E-09 

Apoptosis      

Dr.18414.1.S1_at AW165356 programmed cell death 4A pdcd4a -2.7 2.00E-05 

Dr.11726.1.S1_at NM_131877.1  caspase 3 casp3 -2.4 3.00E-05 

Glucose transport      

Dr.17415.1.S1_at BC050518.1 insulin receptor substrate 1B
d
 irs1b -2.4 1.86E-07 

Amino acid transport      

Dr.7516.1.A1_at BM095174 solute carrier family 38, member 4 slc38a4 2.1 3.45E-12 

Muscle contraction      

Dr.23350.1.S1_at  AF425739.1 parvalbumin 8 pvalb8 4.7 2.00E-05 

DNA synthesis/degradation      

Dr.1691.1.S1_at NM_131450.1 ribonucleotide reductase protein R2 class I rrm2 -2.3 1.98E-06 

Dr.1668.1.S1_at BC046003.1 hypoxanthine phosphoribosyltransferase 1 hprt1 -1.8 2.90E-06 

      



 

 

52 

Table 2.3. Continued.    
 

 

Sequence code Accession number Description Gene symbol 
a
Fold change p-Value 

Intestinal function      

Dr.18599.1.S1_at BQ479899 fatty acid binding protein 6 fabp6 1.9 3.81E-06 

Metabolism      

Dr.14021.3.A1_at BM095392 3-hydroxyisobutyrate dehydrogenase B hibadhb -2.0 2.55E-16 

Protein targeting      

Dr.3075.1.S1_at BC049337.1 translocase of outer mitochondrial membrane 34 tomm34 -1.8 1.00E-05 

a
 ≥ 1.7-fold change, p<0.0001 

b
weak similarity to gene indicated 

c
moderate similarity to gene indicated 

d
similar to gene indicated 
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Table 2.4.  Expression of vitellogenin genes relative to control and validation by qRT-PCR 

    

100 µg/L MC-LR 1,000 µg/L MC-LR Microcystis 

    

Fold change p-Value Fold change p-Value Fold change p-Value 

          

Microarray          

Dr.2978.1.S1_at AI477604 vitellogenin 3 vtg3 1.1 0.51 1.3 0.05 19.2* <1.00E-45* 

Dr.25009.6.A1_at BI878405 similar to vitellogenin vtg 1.2 0.80 1.1 0.91 >100* <1.00E-45* 

Dr.25009.6.A1_a_at BI878405 vitellogenin 1 vtg1 -1.2 0.80 1.5 0.38 >100* <1.00E-45* 

Dr.25009.4.A1_at BG303658 vitellogenin 2 vtg2 -1.5 0.48 -1.6 0.30 >100* <1.00E-45* 

Dr.25009.1.S1_a_at NM_170767.1 vitellogenin 1 vtg1 -1.5 0.34 -1.3 0.63 >100* <1.00E-45* 

          

qRT-PCR          

 NM_170767.1 vitellogenin type 1 Vtg1A/B     619.3±130.2
a 

 

*significance determined by ≥ 1.7-fold change, p<0.0001 

 
a 
mean ±SD (n=9); primer/probe sets for vitellogenin type 1 as described in Henry et al. 2009 
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Discussion 

 

Gene expression results confirmed known mechanisms of action for MC-LR and also 

identified effects not previously associated with this toxin.  When larval fish were exposed to 

both MC-LR and Microcystis treatments, the top functional categories affected (cell signaling 

and development, cytoskeleton, immune function, ion regulation, oxidative stress, tight junction, 

liver effects) were associated with effects shown previously for purified MC-LR exposure in fish 

and mammals (Fishcer et al. 2000; Gaete et al. 1994; Zambrano and Canelo 1996; Malbrouck 

and Kestemont 2006; Wang et al. 2005; Guzman and Solter 1999; Janssens and Goris 2001; 

Rymuszka et al. 2008; Toivola and Eriksson 1999) (Table 2.2).  Because these genes were also 

affected in the Microcystis treatment in the present study, this is consistent with the presence of 

MC-LR toxin in the Microcystis treatment (i.e., MC-LR was generated by the Microcystis cells). 

MC-LR is known to affect immune response; however, there were few similarities between our 

work and previous gene expression studies that mainly focused on the response of immune-

related genes in zebrafish exposed to purified MC-LR.  Of the eleven genes tested by qPCR and 

found to be up-regulated in zebrafish by Li et al. (Li et al. 2009), none were differentially 

expressed in our 100 µg/L MC-LR or Microcystis treatments, but three heat shock protein genes 

were significantly down-regulated (fold change -2.2 to -1.9) at 1,000 µg/L MC-LR.  When 

compared to the results of a microarray study by Wei et al. (2008), in which adult zebrafish were 

exposed to MC-LR by intraperitoneal injection, five genes reported by Wei et al. to be up-

regulated were significantly down-regulated (fold change -4.2 to -1.8) in the 1,000 µg/L MC-LR 

treatment, and three of these same five genes were down-regulated (fold change -2.2 to -1.9) in 
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the Microcystis treatment.  Variation between our work and these studies may be attributed to 

differences in life stage of the fish, MC-LR concentration, and/or exposure route. 

Also when examining genes differentially expressed in both 100 and 1,000 µg/L MC-LR 

(but not the Microcystis treatment), different effects emerge other than those typically associated 

with MC-LR.  There were additional cell signaling effects not affected by Microcystis (5 genes) 

(Table 2.1), however the majority of genes affected by both concentrations of MC-LR tested 

were related to detoxification/metabolism and lipid binding/transport. Detoxification/metabolism 

genes included glutathione-s-transferase, an enzyme involved in detoxification of MC-LR 

(Pflugmacher et al. 1998), as well as cytochrome p450 enzymes which are typically not 

associated with microcystin exposure.  Lipid transport metabolism genes mainly included 

apolipoproteins, which are known to influence nutrition and immune response in fish (Concha et 

al. 2004).  In addition, strong down-regulation of type IV antifreeze protein (-14.6 fold) may 

indicate that microcystin-LR may inhibit thermoregulation in fish, which is an effect that has not 

previously been associated with this compound.  It is also interesting that significant expression 

of PP genes only occurred in exposures of 1,000 µg/L and not 100 µg/L, and these genes were 

also not differentially expressed in larval zebrafish exposed to Microcystis.  This implies that 

larval fish were either able to compensate when exposed to low concentrations of MC-LR, or 

that PP enzymes may not be as responsive at this stage in development and a higher dose may be 

required for inhibition to occur.  The absence of this major biomarker of MC-LR toxicity in 

larval fish exposed to Microcystis is also interesting, because it implies that MC-LR may not be 

the most important compound affecting fish when they are exposed to the cyanobacteria. 
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In addition to understanding how effects of the microcystin toxin differ when larval fish 

are exposed to the purified compound versus toxin contained in Microcystis cells, it was also our 

objective to clarify effects of Microcystis exposure in addition to those associated with the toxin.  

Although an investigation has been conducted with adult zebrafish exposed to MC-LR (Wei et 

al. 2008), the present study is the first to examine global gene expression changes in fish exposed 

to Microcystis cells.  Similar to MC-LR treatment, cell signaling genes were affected by 

exposure to Microcystis; however the set of cell signaling genes differentially expressed were 

unique to the Microcystis exposure.  This suggests that there are additional cell signaling effects 

that occur when fish are exposed to Microcystis other than those associated with the toxin. 

Most of the other gene function categories affected exclusively by Microcystis exposure were 

different from those associated with MC-LR.  Several genes related to neurological development 

and/or function were differentially expressed, including ephrin b3 (fold change 1.8), a gene in 

which overexpression has been associated with notochord defects in zebrafish (Chan et al. 2001) 

and neurocalcin delta (-2.7 fold change), a neuronal calcium binding protein involved in visual 

transduction in the retina (Krishnan et al. 2004).  Alteration in the regulation of these genes 

suggests that Microcystis may interfere with proper nervous system development in larval fish.  

Similarly, several genes involved in visual perception, including opsin genes were down-

regulated, suggesting that development of eye structures may not proceed correctly- an effect 

that may affect fish at later life stages and interfere with the ability to regulate circadian rhythm, 

locate food, and avoid predation. 

The most highly up-regulated genes were those coding for vitellogenin and this change in 

gene expression was observed only after zebrafish were exposed to the Microcystis treatment.  
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Vitellogenins are a group of lipoproteins produced in the liver in response to estrogen and are 

transported through the blood and deposited in the developing oocytes of female fish (Routledge 

et al. 1998).  These vitellogenin genes are present in adult and larval fish, but are expressed only 

at low levels unless exposure to exogenous estrogen has occurred, and thus up-regulation of vtg 

in male and immature fish has become a biomarker of exposure to environmental estrogens 

(Sumpter and Jobling 1995).  The induction of vitellogenin in fish or other effects associated 

with exposure to environmental estrogens in any organism have not been reported previously in 

the context of exposure to Microcystis.  Recently, a low-level estrogenic response was observed 

in a human breast carcinoma cell line when cells were exposed to purified MC-LR (Oziol and 

Bouaïcha 2010).  Our results, conversely, did not show vitellogenin induction in fish exposed to 

purified MC-LR, which indicates that the estrogen receptor-mediated induction of vtg in 

zebrafish was not activated by this toxin and that the estrogenic response observed in the human 

cell line may act by a different mechanism.  Further evaluation of the human cell line with other 

substances (i.e., other than MC-LR) generated by Microcystis is warranted to determine the 

relative estrogenic potential of these substances and validate their estrogenicity in a model 

separate from zebrafish.  Phytoestrogens are compounds identified in plants that can induce 

vitellogenin (Latonnelle et al. 2002; Inudo et al. 2004); and it is possible that the substances(s) 

produced by Microcystis that caused induction of vtg in this study are similar to phytoestrogens. 

The possibility that Microcystis blooms may release estrogenic substances (aka 

“phycoestrogens”) that can interfere with reproduction is of considerable environmental interest.  

Because compounds that induce vitellogenin in fish are generally able to do so in other species 

(Sumpter and Jobling 1995), endocrine disruption from Microcystis could extend throughout 
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aquatic ecosystems and also impact the terrestrial environment, including birds and mammals.  

Human exposure to Microcystis has long been a concern due to the microcystin toxin, and most 

monitoring programs are designed to evaluate presence of this toxin; however, the potential for 

endocrine disruption to occur that is unrelated to the presence of the toxin suggests that 

monitoring programs may need to be re-evaluated.  Projected global increase in frequency of 

Microcystis blooms (Paerl and Huisman 2008) and the potential for estrogenic effects adds to the 

environmental and public health concerns related to bloom events. 
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Reproductive effects of Microcystis exposure in zebrafish (Danio rerio) 

 

This section is a version of a journal article for planned submission to Environmental 

Toxicology and Chemistry.  My contribution to the paper was designing the experiment and 

supervising the exposure of zebrafish to Microcystis.  I was also responsible for reviewing 

histology slides, analyzing data, and writing the paper. 

 

Rogers, Emily D., Ann N. Wells, June-Woo Park, Theodore B. Henry, Gary S. Sayler, and 

Steven W. Wilhelm.  In preparation. Reproductive effects of Microcystis exposure in 

zebrafish (Danio rerio). 
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Introduction 

 

 Microcystis blooms occur throughout the world and are a major ecological and public 

health concern (Codd et al. 2005; Luckas et al. 2005). Microcystis is a genus of cyanobacteria 

that produces a diverse group of toxins called microcystins, each differing slightly in chemical 

structure.  Of the >80 forms of microcystins that have been identified, microcystin-LR (MC-LR) 

is generally considered to be most toxic (Dittmann and Wiegand 2006; Tanabe et al. 2004) and 

concentrations in surface waters frequently exceed the World Health Organization advisory level 

of 1 µg/L (Chorus et al. 2000).  Concerns have been raised about the potential for MC-LR to 

bioaccumulate in fish tissues (Xie et al. 2005), and fish kills have been observed in areas where 

Microcystis was present (Chorus et al. 2000).  Because fish are vital components of aquatic 

ecosystems and have considerable economic value in terms of commercial and recreational 

fishing, it is important to better understand the effects of Microcystis blooms on fish populations. 

 The mechanisms of MC-LR toxicity and detoxification in fish are believed to be similar 

to those reported in mammals.  The liver is the primary organ affected (Fischer et al. 2000), and 

a primary mechanism of MC-LR toxicity is inhibition of protein phosphatases (PPs) 1 and 2A 

(Fujiki and Suganuma 1993).  Inhibition of PPs results in over-phosphorylation of cytokeratins 

(Eriksson et al. 1990; Ohta et al. 1992), resulting in cytoskeletal rearrangement and compromised 

liver function, including necrosis, apoptosis and intrahepatic hemorrhage (Fischer and Dietrich 

2000; Fischer et al. 2000).  Detoxification of MC occurs in the liver via glutathione conjugation 

catalyzed by glutathione-S-transferase (Pflugmacher et al. 1998), subsequently resulting in 

biliary excretion (Sahin et al. 1996). 
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 Because fish living in environments affected by Microcystis blooms are exposed 

throughout the life cycle, there is potential for Microcystis to affect fish reproduction and larval 

survival.  Information about potential reproductive effects of microcystin exposure in fish is 

mainly limited to microinjection studies. When embryos were exposed to MC-LR by 

microinjection, hatching was accelerated (Jacquet et al. 2004), survival decreased (Jacquet et al. 

2004; Wang et al. 2005), and skeletal malformations (Wang et al. 2005) as well as damage to the 

liver (Huynh-Delerme et al. 2005; Jacquet et al. 2004) were observed.  Injection of microcystin 

into fish embryos was conducted to simulate maternal transfer; however adult exposure to 

microcystin and subsequent accumulation of the toxin in eggs has not been documented, which 

makes it difficult to draw conclusions about the relevance of results of microcystin exposure in 

situ based on microinjection studies.  

 The only assessment of reproductive effects in fish as a result of adult exposure to 

microcystin was conducted by Deng et al. (2010).  In that study MC-LR was incorporated into 

fish food at concentrations ranging from 0.46-3.93 µg/g and administered to Japanese medaka at 

5% body weight twice per day for 8 weeks.  After 4 weeks of exposure, male and female fish 

from corresponding treatments were allowed to spawn. Embryos were transferred to clean water 

where they were monitored for survival and adults were returned to exposure tanks.  Embryo 

survival was significantly reduced at the highest concentration tested, and effects on adults 

included reduced growth following spawning, inhibition of protein phosphatases in the liver, and 

hepatic lesions (Deng et al. 2010).  The effects of MC-LR or Microcystis on reproduction after 

aqueous exposure in fish have not been evaluated. 
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 The objective of this study was to evaluate reproductive effects as a result of aqueous 

exposure of adult fish to Microcystis at environmentally relevant concentrations.  We predicted 

that adult fitness and reproductive ability, as well as survival of offspring would be negatively 

affected by Microcystis exposure. 
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Materials and Methods 

 

Experimental Fish 

Adult zebrafish (Danio rerio) were obtained from the Zebrafish Research Facility in the 

Center for Environmental Biotechnology at the University of Tennessee.  Fish husbandry, 

spawning, and experimental procedures were conducted with approval from the University of 

Tennessee Institutional Animal Care and Use Committee (Protocol #1690-1007).  Water for 

holding fish and conducting experiments (hereafter referred to as “fish water”) consisted of 

MilliQ water (Millipore, Bedford, MA) with ions added: 19 mg/L NaHCO3, 1 mg/L sea salt 

(Instant Ocean Synthetic Sea Salt, Mentor, OH), 10 mg/L CaSO4, 10 mg/L MgSO4, 2 mg/L KCl.  

Water quality measurements were recorded daily (dissolved oxygen, pH, ammonia) and weekly 

(conductivity, hardness, alkalinity) prior and during exposure periods and water had the 

following characteristics: dissolved oxygen (5.6-6.5 mg/L), pH (6.5-6.9), total alkalinity (34-42 

mg/L as CaCO3), total hardness (17-21 mg/L as CaCO3), and ammonia (<0.2 mg/L). All 

activities (maintenance of adult fish, spawning, and experiments) were conducted in an 

environmental chamber with a temperature of 27± 1 ºC and 14:10 h light:dark photoperiod. 

 

Spawning Procedure During Baseline and Exposure Periods 

 Adult zebrafish were separated by sex and housed in 7-L tanks containing 6 L of fish 

water.  There were six tanks per treatment (three tanks per sex), each containing 5 fish (Fig. 3.1).  

For six weeks prior to Microcystis exposure (baseline period) both treatment and control fish 

were housed in fish water and weekly pair spawning was conducted in order to establish
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Figure 3.1. Set-up for weekly pair spawning during baseline and exposure periods. Numbers in 

blue and pink represent male and female fish, respectively. Numbers in large boxes represent 

numbers of fish in each treatment tank, while numbers in small boxes represent numbers of fish 

in each spawning tank.
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consistent egg production and determine baseline fecundity.  Spawning pairs were created by 

selecting at random one female and one male from replicate tanks having the same tank number 

(i.e.. female from control tank 1 + male from control tank 1), and fish were not paired across 

treatments at any time. Fish were paired in this fashion until there were no fish remaining (n = 15 

spawning pairs/treatment). Fish were paired the evening before by placing a male and a female 

fish in purpose built spawning chambers (polycarbonate tanks with a false bottom for egg 

collection and a partition to separate male and female fish).  The partition separating male from 

female fish was removed just before onset of the photoperiod the following morning and paired 

fish were given the opportunity to spawn for one hour before adults were placed back in their 

respective tanks. 

 

Egg Collection and Quantification Procedure During Baseline and Exposure Periods 

 Clutches from individual spawning pairs were collected after each weekly spawning 

event during baseline and exposure periods and placed in separate petri dishes containing egg 

water (60 µg/mL sea salt solution). Unfertilized embryos were removed and each clutch was 

photographed with a digital camera for embryo quantification.  Solutions were changed daily and 

dead embryos removed and noted. At 120 h (after hatching) photographs were taken to quantify 

the number of surviving larvae.  Numbers of embryos and surviving larvae for each spawning 

pair were determined by counting the number of individuals in each digital image.  
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Preparation of Lyophilized Microcystis 

The Microcystis treatment was prepared using lyophilized cells of Microcystis 

aeruginosa.  M. aeruginosa PCC-7806 was obtained from the Pasteur Culture Collection of 

Cyanobacteria and cultured in BG-11 media according to the same methods described for M. 

aeurginosa LE-3 isolates in Rinta-Kanto and Wilhelm (2006).  Live cultures of M. aeruginosa 

grown over the course of one year were centrifuged in 250 mL batches at 3,500 rpm for one hour 

to concentrate cells into a pellet, and pellets were immediately lyophilized for 48 hours using a 

freeze-dry system (Labconco, Kansas City, MO).  After 55 L of Microcystis cultures had been 

lyophilized, individual pellets were combined, and the total mass of lyophilized algal cells was 

1096 mg (20 mg lyophilized cells/L).  

 

Exposure 

 Following the 6-wk baseline spawning period, all fish were anaesthetized in MS-222, 

weighed and measured, returned to tanks, and lyophilized Microcystis (20 mg/L) was added to 

treatment tanks.  Fish were exposed for three weeks (exposure period), and control and 

Microcystis solutions were renewed weekly.  Pair spawning and egg collection and 

quantification occurred weekly as described above (Fig 3.1).  Adult fish were observed daily for 

mortalities and abnormal behavior.  At the end of the 3-wk exposure period, adult fish were 

euthanized by overdose of MS-222 and weight and length were recorded.  Liver tissue was 

collected from two fish per tank (n = 12/treatment) and preserved in Bouin’s fixative for 

histopathological analysis (Figure 3.2). 
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Histopathology 

After tissue fixation in Bouin’s fixative (24-36 h) liver samples were transferred into 70% 

EtOH and subsequently processed and embedded in paraffin for routine histology.  Sections (0.6 

µm thick) were stained with hematoxylin and eosin and all sections were examined by light 

microscopy. 

 

Statistical Analyses 

 Significant differences between control and treatment groups were determined by 1-way 

ANOVA.  Percentage data (spawning success, % survival) was arcsine square root transformed 

prior to analysis. All statistical analyses were conducted with ToxStat 3.4
©

 (Cheyenne, 

Wyoming) and a probability level of P<0.05 was used as the level for statistical significance.   
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Figure 3.2. Sampling scheme for liver histopathology samples collected at the end of the 

exposure period. Numbers in blue and pink represent male and female fish, respectively. 

Numbers in large boxes represent numbers of fish in each treatment tank, while numbers in small 

boxes represent numbers of fish sacrificed for liver histopathology. 
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Results 

 

 Spawning was monitored for 6 weeks prior to exposure to give fish the opportunity to 

acclimate and to establish spawning consistency.  During this baseline period, spawning success 

(percentage of pairs that spawned each week) and fecundity (number of embryos produced by 

each spawning pair) increased over time and appeared to stabilize during weeks 4 through 6 

(Tables 3.1 and 3.2).  Survival of larvae after spawning was greater than 80% by week 3 and was 

maintained throughout the baseline period (Table 3.3).  There were also no significant 

differences in spawning success, fecundity or larval survival among control tanks and those that 

would ultimately receive Microcystis.  

 The same data were collected during the three week exposure to Microcystis.  Spawning 

success of zebrafish exposed to Microcystis was significantly lower than controls and this effect 

was consistent throughout the exposure period (Table 3.4).  There was no significant difference 

between treatments in the number of eggs produced per spawning pair (Table 3.2).  The survival 

of larvae at 120-h post-fertilization was high (80-90%) in offspring of both control and 

Microcystis-exposed fish and there was no significant difference between treatments. 

 There were no significant effects observed in adult zebrafish exposed to Microcystis.  

Weight and length measurements recorded at the beginning and end of the exposure period 

showed no significant difference between control and treatment groups (Figs. 3.3 and 3.4).  One 

female fish in the Microcystis treatment died during the first week of exposure; no other 

mortalities occurred.  Liver histopathology was similar between control and Microcystis-exposed 
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Table 3.1. Spawning success during the baseline period. 

Week Control Microcystis 

1 46.7 46.7 

2 53.3 40.0 

3 53.3 20.0 

4 60 53.3 

5 73.3 53.3 

6 66.7 53.3 

   Mean 58.9 44.4 

SD 9.8 13.1 

   F 4.57 

 p 0.06 

 Data are weekly percentages calculated as the number of successful spawning pairs in relation to the total number of spawning pairs (n 

= 15). SD = standard deviation; F = 1-way ANOVA F statistic; p = p value. Statistics presented were performed on arcsine square 

root-transformed data. 
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Table 3.2. Fecundity during baseline and exposure periods. 

 Baseline Period  Exposure Period 

 
Week 1 Week 2 Week 3 Week 4 Week 5 Week 6  Week 1 Week 2 Week 3 

Control
a 

57 ± 72 95 ± 134 117 ± 169 119 ± 134 164 ± 150 142 ± 128  228 ± 128 230 ± 131 186 ± 142 

Microcystis
b 

65 ± 94 76 ± 138 61 ± 128 152 ± 166 142 ± 175 147 ± 171  196 ± 176 175 ± 142 287 ± 270 

       

 

   F 0.08 0.15 1.07 0.36 0.14 0.01  0.30 1.18 1.63 

p 0.78 0.70 0.31 0.55 0.71 0.92  0.59 0.29 0.21 

Fecundity is defined as the mean number of embryos produced per spawning pair and only includes data for pairs that spawned 

successfully. Data are means ± standard deviation. F = 1-way ANOVA F statistic; p = p value; 
a
n = 15 during baseline and exposure 

periods; 
b
n = 15 during baseline period, n = 14 during exposure period. 
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Table 3.3. Larval survival at 120-h during baseline and exposure periods. 

 Baseline Period  Exposure Period 

 
Week 1 n Week 2 n Week 3 n Week 4 n Week 5 n Week 6 n  Week 1 n Week 2 n Week 3 n 

Control 49.2 ± 33 7 93.1 ± 9 8 79.7 ± 30 8 79.6 ± 37 9 85.7 ± 17 11 88.2 ± 11 10  85.0 ± 16 13 88.5 ± 19 13 90.4 ± 18 11 

Microcystis 77.1 ± 31 7 73.5 ± 26 6 86.9 ± 7 3 86.7 ± 19 8 83.6 ± 12 8 78.3 ± 12 8  94.6 ± 5 9 88.6 ± 8 9 80.3 ± 17 9 

  

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

F 3.30   2.37   0.01   0.02   0.15   4.26    2.95   0.20   2.87   

p 0.09   0.15   0.91   0.88   0.70   0.06    0.10   0.66   0.11   

Data are means ± standard deviation of individual percentages calculated as % of larvae alive at 120-h in relation to the number of 

eggs collected at spawning. F = 1-way ANOVA F statistic; p = p value. Statistics presented were performed on arcsine square root-

transformed data. 
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Table 3.4. The number (percent) of paired fish that spawned at each opportunity during the exposure period. 

Week Control Microcystis 

1 86.7 64.3 

2 86.7 64.3 

3 73.3 64.3 

   Mean 82.2 64.3* 

SD 7.7 0.0 

   F 20.47 

 p 0.01 

 Data are weekly percentages calculated as the number of successful spawning pairs in relation to the total number of spawning pairs (n 

= 15 for Control, n = 14 for Microcystis). SD = standard deviation; F = 1-way ANOVA F statistic; p = p value; * = significant at 

p<0.05. Statistics presented were performed on arcsine square root-transformed data. 
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Figure 3.3. Length and weight of adult zebrafish at the start of the exposure period. Data are 

means ± standard error (n = 30). There were no significant differences between treatments (p < 

0.01). 
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Figure 3.4. Length and weight of adult zebrafish at the end of the exposure period. Data are 

means ± standard error (n = 30 in control, n = 29 in Microcystis treatment).There were no 

significant differences between treatments (p < 0.01). 
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fish.  There was very little vacuolization and no lesions were observed in control or treatment 

samples.  
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Discussion 

 

 Exposure to Microcystis had no effect on survival, growth or liver histopathology of adult 

zebrafish. Reduced growth of adult fish was observed in a previous study with Japanese medaka 

exposed to MC-LR via the diet, but effects were not observed until the fourth week of exposure 

(Deng et al. 2010).  The absence of an effect on growth in zebrafish in the present study may 

have been due to the shorter exposure period used in this study or because the exposure route 

was different (aqueous vs. dietary).  Mortality did not occur however, when carp were exposed to 

Microcystis for nine weeks (Adamovsky et al. 2007), which is consistent with the observation of 

no mortality of zebrafish in the present study.  While effects on liver histopathology were not 

observed in this study, Carbis et al. (Carbis et al. 1996) reported cellular degeneration and 

necrosis of the liver in carp after 7 days of exposure to Microcystis and Deng et al. also observed 

single cell necrosis and lipidosis in livers of medaka exposed to MC-LR.  Histopathological 

responses to Microcystis may vary between species, and it is possible that differences in MC-LR 

concentration or bloom composition may explain why effects did not occur in this study. 

 Microcystis exposure did, however, affect the reproductive capability of adult zebrafish.  

The percentage of pairs that spawned was significantly reduced in fish exposed to Microcystis.  

Only one other study has examined reproductive effects resulting from exposure in adult fish.  In 

Deng et al. (2010), dietary exposure of medaka to MC-LR did not affect spawning.  The medaka 

study used a batch spawning approach, where 20 males and 30 females per treatment were 

combined into a single tank to spawn.  Because there was no replication of spawning events 

within treatments, spawning success could not be determined statistically and reproductive 
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success was assessed by fecundity.  Deng et al. (2010) found no difference in fecundity between 

treatments and control, which is consistent with the present study.  Because a pair spawning 

approach was used in the present study, we were able to detect a significant reduction in 

spawning success in zebrafish exposed to Microcystis.  

While spawning success was reduced in zebrafish exposed to Microcystis, fecundity and 

survival of offspring were not affected.  Each week the number of eggs produced by each 

spawning pair was quite variable, with standard deviation approaching and sometimes even 

exceeding the mean.  If there had been a difference in fecundity between treatments, it would 

have been difficult to detect, given the variation in the data.  Fecundity was also assessed by 

Deng et al. (2010), and they also found no significant difference in the number of eggs at 

spawning between treatments and control.  In contrast to the present study where Microcystis 

exposure did not have a significant effect on larval survival, Deng et al. (2010) observed a 

significant decrease in survival of larvae, but only at the highest concentration of MC-LR tested 

(3.93 µg/g diet).  This concentration was administered to medaka through the diet, whereas 

zebrafish were exposed to aqueous Microcystis, and it is difficult to make direct comparisons 

between the two studies, since exposure routes and substances under investigation (MC-LR vs. 

Microcystis) were different.  

 Additional information regarding Microcystis effects on larval survivorship in zebrafish, 

specifically, is available; however the comparative value of these studies to the present one is 

somewhat limited due to differences in experimental design.  Larval survivorship in zebrafish 

has been previously examined in the context of embryo exposure. Oberemm et al. (1997) 

exposed zebrafish embryos to Microcystis extracts from fertilization through late embryonic 
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development, at which time they were transferred to clean water.  All of the larvae died, but 

mortality did not occur until after exposure was terminated.  In the present study, zebrafish 

larvae were also reared in clean water, however embryos were never exposed to Microcystis and 

any effects on larval survival would have been due to parental exposure only.  Our findings 

suggest that adult exposure does not affect embryo survival per se, but effects may have occurred 

if embryos were also exposed to Microcystis. Since both adult fish and their offspring would be 

exposed to Microcystis in situ, future research that exposes adult fish to Microcystis before and 

during spawning with continuation of Microcystis administration to developing embryos, would 

more accurately simulate reproductive effects on fish living in environments affected by 

Microcystis blooms.  
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SECTION IV 



 

 

94 

Bioaccumulation and toxicity of the cyanobacterium Microcystis aeruginosa and toxin 

microcystin-LR in field and laboratory exposed channel catfish (Ictalurus punctatus) 

 

This section is a version of a journal article for planned submission to Environmental 

Toxicology and Chemistry.  My contribution to the paper was conducting laboratory exposures 

with catfish, collecting catfish from Waterville Reservoir and Lake Erie, conducting molecular 

work to validate primer sets, interpreting histology slides, analyzing data, and writing the paper 

 

 

Rogers, Emily D., Theodore B. Henry, June-Woo Park, Richard J. Strange, Gary S. Sayler, and 

Steven W. Wilhelm.  Bioaccumulation and toxicity of the cyanobacterium Microcystis 

aeruginosa and toxin microcystin-LR in field and laboratory exposed channel catfish 

(Ictalurus punctatus). In preparation.   
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Introduction 

 

Blooms of toxin-producing Microcystis occur throughout the world and are a growing 

public health concern.  Microcystis is a genus of cyanobacteria that produces microcystin toxins, 

of which over 80 forms have been described, each differing slightly in chemical structure 

(Dittmann and Wiegand 2006; Tanabe et al. 2004).  Microcystin-LR (MC-LR) is recognized as 

being the most toxic of the microcystins (Codd et al. 2005).  Toxic Microcystis blooms can occur 

in many freshwater environments and have generally received the most attention in the United 

States because of the large-scale seasonal blooms that have formed annually since 1995 in the 

Western Basin of Lake Erie (Dyble et al. 2008).  Microcystis blooms can also occur in smaller 

lakes.  Our research group has documented the presence of Microcystis for the last three 

summers in Waterville Reservoir, a 1,178 km
2 

mountain lake on the border of Tennessee and 

North Carolina (EPA 1975).  In both of these lakes, MC-LR concentrations have exceeded the 

World Health Organization (WHO) advisory of 1 µg/L (Chorus et al. 2000).  Because toxic 

Microcystis blooms are found in diverse habitats where recreational and commercial fishing 

takes place, there is concern about the potential for toxic effects in fish and in human populations 

as a result of fish consumption. 

Fish live in waters where Microcystis blooms occur and are important components of the 

ecosystem that can be negatively affected by algal toxins.  Microcystins (e.g., MC-LR) are 

hepatotoxins that act by inhibiting protein phosphatases 1 and 2A. In the liver, protein 

phosphatase inhibition is manifested by increased phosphorylation of cellular proteins, which 

results in cytoskeletal rearrangement and compromised liver function, including necrosis, 
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apoptosis and intrahepatic hemorrhage (Fischer and Dietrich 2000; Fischer et al. 2000).  MC-LR 

mainly accumulates in the liver, but has also been detected in other organs including muscle in 

fish (Soares et al. 2004; Zhao et al. 2006a; Zhao et al. 2006b). 

One of the biggest concerns about Microcystis blooms with respect to human health is the 

potential for MC-LR to bioaccumulate in fish tissues and be transferred to humans by 

consumption of fish. In fish, there are two potential exposure routes for Microcystis- 1. aqueous 

exposure through respiration and or/drinking  2. dietary exposure via ingestion of Microcystis 

cells and/or prey items that may have accumulated MC-LR.  Aqueous exposure to Microcystis 

has been studied in both field enclosure and controlled laboratory situations (Adamovsky et al. 

2007; Carbis et al. 1996a; Carbis et al. 1996b; L Li et al. 2007; Mares et al. 2009; Zhang et al. 

2008a); however, tissue accumulation data from aqueous exposure is quite limited (but see 

(Adamovsky et al. 2007; L Li et al. 2007), and it is difficult to compare results across studies due 

to variations in bloom composition and microcystin concentrations.  Dietary exposure has been 

simulated by oral gavage (Carbis et al. 1996a; Carbis et al. 1996b; Djediat et al. 2010; Fischer 

and Dietrich 2000; Fischer et al. 2000; Mezhoud et al. 2008; Tencalla and Dietrich 1997) or 

intraperitoneal injection (Andrinolo et al. 2008; Carbis et al. 1996a; Carbis et al. 1996b; Fournie 

and Courtney 2002; Lei et al. 2008; Li et al. 2009; L Li et al. 2005; S Li et al. 2007; Malbrouck 

et al. 2003, 2004; Williams et al. 1997; Zhang et al. 2009; Zhang et al. 2007; Zhang et al. 2008b) 

of MC-LR, but these types of exposures do not represent natural feeding and therefore have 

limited environmental relevancy.  Several studies have been conducted, however, in which 

Microcystis cells or extracts were incorporated into artificial diets and fed to fish in the 

laboratory (Dong et al. 2009; El Ghazali et al. 2010; Li et al. 2004; XY Li et al. 2005; Soares et 
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al. 2004; Zhao et al. 2006a; Zhao et al. 2006b).  Like aqueous exposures, MC composition of 

blooms incorporated into fish diets varies across studies and many measure accumulation of total 

microcystins in tissues, such that the specific accumulation of MC-LR (the MC toxin on which 

WHO guidelines are based) cannot be distinguished.  Nevertheless, several of these studies 

indicate accumulation of total MCs in fish muscle at concentrations that exceed the WHO 

recommended tolerable daily intake (TDI) for humans of 0.04 µg/kg MC-LR/body weight/day 

(Chorus et al. 2000).  In only one study, purified MC-LR was administered to Japanese medaka 

through the diet (Deng et al. 2010); however tissue concentrations of MC-LR were not measured, 

presumably due to size limitations of the species tested.  Evidence for bioaccumulation of MC-

LR from aqueous or dietary exposure routes is largely inconclusive, and further studies are 

needed that use environmentally-relevant exposure scenarios where fish are exposed to purified 

MC-LR or well-characterized Microcystis blooms with known MC-LR concentrations.    

In the case of MC-LR, development of biomarker genes whose expression in fish can be 

measured using qPCR would be useful as a field biomonitoring tool, however no such genes 

have been identified in an environmentally relevant fish species.  Channel catfish (Ictalurus 

punctatus) would be an ideal candidate species, because it is present in freshwater environments 

where Microcystis occurs and is targeted for consumption by commercial fishing operations and 

recreational anglers.  Identifying which genes are likely to be important indicators of toxicity in 

catfish is challenging because effects of Microcystis and MC-LR on gene expression in catfish 

are unknown. 

A model organism, such as zebrafish (Danio rerio), can be used to identify genes affected 

by MC-LR and Microcystis.  In a recent study conducted by our laboratory (Rogers et al. in 
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review (Section II of this dissertation)), larval zebrafish were exposed to purified MC-LR (100 

and 1,000 µg/L) and lyophilized Microcystis (4.5 µg/L MC-LR) and effects on global gene 

expression were determined using Affymetrix arrays.  Biomarker genes were selected from a list 

of 79 genes differentially expressed in all treatments (i.e. toxin-related genes induced by 

Microcystis).  From this list, 6 genes having the highest absolute fold change were identified as 

biomarker genes (Table. 4.1).  In addition, vitellogenin was highly up-regulated only in zebrafish 

exposed to Microcystis (i.e. gene induced by Microcystis but not toxin-related) and was also 

included as a potential biomarker of Microcystis exposure. These biomarker genes differentially 

expressed in zebrafish exposed to MC-LR and Microcystis have the potential to be adapted for 

use in qPCR assays with channel catfish. 

The objectives of this research were to: 1. Assess bioaccumulation of MC-LR and effects 

on liver histopathology in catfish exposed to MC-LR and Microcystis in the laboratory through 

dietary and aqueous administration. 2. Compare histological lesions in the liver with those 

observed in fish collected from lakes where Microcystis blooms were present. 3. Develop 

functional primer sets for channel catfish based on biomarker genes previously identified in 

zebrafish that can be used for future monitoring of gene expression in channel catfish by qPCR.  
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Table 4.1. Biomarker genes of interest.  

        

Relative expression in larval zebrafish 

        

100 µg/L MC-

LR 

1,000 µg/L MC-

LR Microcystis 

Name Symbol 

GenBank 

accession 

number Primer sequence (5' - 3') 

Product 

size 

Primer 

works 

(y/n) 

Annealing 

temperature 

(°C) 

Fold 

change 

p-

value 

Fold 

change 

p-

value 

Fold 

change 

p-

value 

   
 

          

18S rRNA
a 

18S AF021880 

for TGGTTAATTCCGATA

ACGAACGA 

94 y 57 1.0 0.63 1.0 0.06 1.0 0.49 

   
 

 
         

   

rev CGCCACTTGTCCCTC

TAAGAA 

   

 

     
     

         v-fos FBJ 

murine 

osteosarcoma 

viral oncogene 

fos FD105437.1 
for 

GCCCGGACCTGCAG

TGGATG 

145 n n/a -1.4 1.08E

-01 

-3.0 4.00E

-05 

-2.8 2.00E

-05 

  
 

 
         

  

rev GTGCTGCCGGGAGC

CTTGTT 

   

 

     
     

         hepatocyte 

growth factor 

activator 

inhibitor 2 

spint2 CK416322.1 
for 

GGTTTGCTGTGCTAG

AGA 

165 y 57 -2.9 2.71E

-08 

-5.6 4.50E

-14 

-3.1 2.81E

-09 

  
 

 
         

  

rev CGGTCAGAGACCTG

AATC 

   

 

     
   

 
 

         

mucin 2 muc2 FD129369.1 

for AGAGACGACTGATG

CTGA 

180 n n/a -4.7 2.00E

-05 

-6.7 1.67E

-06 

-4.9 1.00E

-05 

   
 

 
         

   

rev ACCGTGGTGTTCGTA

TGG 
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Table 4.1. Continued. 

        

Relative expression in larval zebrafish 

        

100 µg/L MC-

LR 

1,000 µg/L MC-

LR Microcystis 

Name Symbol 

GenBank 

accession 

number Primer sequence (5' - 3') 

Product 

size 

Primer 

works 

(y/n) 

Annealing 

temperature 

(°C) 

Fold 

change 

p-

value 

Fold 

change 

p-

value 

Fold 

change 

p-

value 

   
 

 
         

steroidogenic 

acute 

regulatory 

protein 

star FD186366.1 

for GCATGTGGAGCCCC

TGCGTT 

167 n n/a -3.3 1.00E

-05 

-6.9 1.92E

-09 

-3.8 2.31E

-06 

  
 

 
         

  

rev AGCGCATGGGCGAG

TGGAAC 

         

   
 

 
         

nephrosin npsn BM438630.1 

for TGCGGACGGCGAGA

GAAACG 

181 y 57 -4.4 2.00E

-05 

-7.4 2.40E

-07 

-4.6 1.00E

-05 

   
 

 
         

   

rev TGGCGTGAAGCGGA

TGCAGG 

         

   
 

 
         

vitellogenin vtg FD373053.1 

for TGCACTTCCTGTTGT

GGGTA 

226 y 64 -1.5 0.34 -1.3 0.63 >100 <1.00

E-45 

   
 

 
         

   

rev CATAGAACCACAGC

CAAGCA 

         

     
         

flavoprotein 

oxidoreductase 

mical3 

mical3 FD351034.1 
for 

CAAACTCCTGCCATG

AGGCATA 

172 n n/a 2.4 6.00E

-05 

2.7 8.59E

-07 

2.8 8.00E

-05 

  
 

 
         

  

rev GGAGCTTTGCCCTGA

GTCCA 

   

      

a
Housekeeping gene.
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Materials and Methods 

 

Experimental Fish 

Juvenile (1 yr. old) channel catfish (Ictalurus punctatus) were obtained from Southland 

Fisheries (Hopkins, SC), transported to the Johnson Animal Research and Teaching Unit at the 

University of Tennessee, and kept in two 1,000 L holding tanks on a flow through system 

receiving de-chlorinated municipal water (hereafter referred to as system water) at 57 L/min until 

fish were allocated to experimental tanks.  Prior to experiments fish were fed commercial trout 

pellets (control food) (Melick Aquafeed, Catawissa, PA- 45% protein, 15% fat, 3% fiber) daily at 

2% body weight.  Water quality measurements were recorded for system water daily (dissolved 

oxygen, pH, ammonia) and weekly (conductivity, hardness, alkalinity) throughout acclimation 

and exposure periods, and the system water had the following characteristics: dissolved oxygen 

(4.7-6.4 mg/L), pH (6.5-7.8), total alkalinity (186-204 mg/L as CaCO3), total hardness (84-90 

mg/L as CaCO3), and ammonia (<0.2 mg/L). A photoperiod of 14:10h light:dark was also 

maintained throughout acclimation and exposure periods.  Fish husbandry and experimental 

procedures were conducted with approval from the University of Tennessee Institutional Animal 

Care and Use Committee (Protocol # 1690-1007).  For experiments, fish were randomly 

allocated to 890-L round tanks with continuous flow-through plumbing containing 500-L heated 

(28°C) system water with a flow rate of 1.5 L/min.  Before each experiment fish were allowed to 

acclimate to experiment tanks for 7 d, during which time they were fed the control food.   
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Laboratory Experiments 

Four laboratory experiments were conducted to assess bioaccumulation of MC-LR and 

Microcystis in channel catfish via dietary and aqueous exposure (Table 4.2).  The objective of 

Experiment 1 was to assess chronic, low-dose accumulation of MC-LR and Microcystis via 

dietary exposure.  Experiment 2 tested higher dose, semi-chronic dietary exposure to MC-LR 

and Microcystis.  In order to compare dietary and aqueous exposure routes, catfish were exposed 

to aqueous Microcystis in Experiment 3.  An additional acute waterborne exposure to the 

synthetic estrogen 17-alpha-ethinylestradiol (EE2) (Experiment 4) was also conducted to induce 

vitellogenin genes (vtg) in catfish and serve as a positive control for vtg primer development.  

 

Experiment 1 

Experimental diets were prepared using the same commercial pellets that fish were fed 

from the time that they arrived in our laboratory (described above).  First, a stock solution was 

made by dissolving 1.25 mg purified MC-LR (Alexis Biochemical) in 1 mL ethanol. For the 1 

µg MC-LR/g food treatment, 0.8 mL of stock solution was diluted to 200mL with Milli-Q water 

and for the 0.1 µg MC-LR/g food treatment, 0.08 mL of stock solution was diluted to 200mL 

with Milli-Q water.  For each treatment, the entire 200mL of working solution was sprayed 

evenly over 1 kg of trout pellets.  Microcystis diet was prepared by dissolving 50 mg lyophilized 

M. aeruginosa PCC-7806 culture in 200 mL Milli-Q water and spraying evenly over 1kg of trout 

pellets (0.05 mg lyophilized Microcystis/g food), and for control food 200 mL of Milli-Q water 

was sprayed over 1kg food.  After air drying overnight, a gelatin coating was added to each diet 
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Table 4.2. Overview of experiments. 

Experiment 

Exposure 

route Treatments 

Concentrations in food and/or 

water Feeding rate MC-LR dose in fish Duration 

Sampling 

times 

1 Dietary MC-LR 0, 0.1, 1 µg MC-LR/g food 
1% bw/d 1, 10 µg/kg bw/d 

30 d uptake 0, 8, 15, 30d 

Microcystis 

 

0.05 mg lyophilized Microcystis/g 

food 

10 d depuration 6, 12, 24h  

2,5, 10d 

2 Dietary MC-LR 0, 100 µg MC-LR/g food 
2% bw/d 200 µg/kg bw/d 14 d uptake 0, 1, 3, 7, 14d 

Microcystis 

 

0.28 mL Microcystis culture/g food 

3 Aqueous Microcystis 

100% water control 

n/a n/a 
7 d uptake 

 

 

0 , 1, 3, 5, 7d 20% BG-11 media control 

20% Microcystis culture 

4 Aqueous 

17-alpha 

ethinylestradiol 

(EE2) 

0, 0.02, 0.2, 2 µg/L EE2 n/a n/a 4 d uptake 

 

 

 

4d 
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by spraying 200 mL of gelatin solution (33g/L) over food.  All diets were air-dried overnight 

once more and stored in airtight containers for the duration of the experiment. 

On day zero, one fish from each tank (n=12) was sampled before feeding to obtain a 

starting mass from which the initial amount of food required for the feeding rate of 1% body 

weight was determined.  Treatment tanks were assigned (n=3/treatment) and 39 fish were 

allocated to each tank.  Fish were fed experimental diets at 1% body weight daily for 30 days 

(uptake period) and for 10 days thereafter (depuration period); all tanks received control food at 

1% body weight. 

Three fish per tank (n=9) were euthanized by overdose of MS-222 on days 8, 15, and 30 

(uptake) and at 12h, 24h, 2d, 5d, and 10d during the depuration period.  Small pieces of liver 

tissue from individual fish were preserved in liquid nitrogen and Bouin’s fixative for RNA 

extraction (n=9) and histopathology (n=9), respectively. Remaining liver and muscle tissue was 

also collected and frozen at -20°C for MC-LR analysis (n=9). Length and weight of each fish 

sampled was recorded, and feeding rates were adjusted at each sampling time based on average 

mass.  

 

Experiment 2 

A similar procedure was used to prepare solutions for Experiment 2. For the MC-LR 

treatment, 18 mg purified microcystin-LR (Alexis Biochemical) was first dissolved in 0.5 mL 

ethanol, diluted to 50 mL with Milli-Q water and sprayed evenly over 180 g of commercial trout 

pellets (100 µg MC-LR/g food).   Microcystis diet was prepared by spraying 50 mL of M. 

aeruginosa PCC-7806 culture evenly over 180 g of commercial trout pellets (0.28 mL 
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Microcystis culture/g food), and for control food 50 mL of Milli-Q water was sprayed over 180 g 

food.  After air drying overnight, a gelatin coating was added to each diet by spraying 50 mL of 

gelatin solution (33g/L) over food.  All diets were air-dried overnight once more and stored in 

airtight containers during the experiment.   

On day zero, one fish from each tank (n=12) was sampled before feeding to obtain a 

starting mass from which the initial amount of food required for the feeding rate of 2% body 

weight was determined.  Treatment tanks were assigned (n=4/treatment) and fish were fed 

experimental diets at 2% body weight daily for 14 days.   

Four fish per tank (n=16) were euthanized by overdose of MS-222 on days 1, 3, 7, and 

14.  Small pieces of liver tissue from individual fish were preserved in RNAlater (Qiagen, 

Valencia, CA) and Bouin’s fixative for RNA extraction (n=16) and histopathology (n=16), 

respectively, and remaining liver tissue from 2 fish per tank was pooled in order to obtain >1g 

required for MC-LR analysis (n=8).  Muscle tissue was also collected from individual fish for 

MC-LR analysis (n=16). Length and weight of each fish sampled was recorded, and feeding rates 

were adjusted at each sampling time based on average mass.  

 

Experiment 3 

M. aeruginosa was cultured in large quantities in our laboratory using BG-11 media as 

described in Rinta-Kanto et al. (2005), and 20 L of Microcystis culture was added to each tank 

(n=3) and then diluted to 100 L with system water (20% Microcystis).  Media control tanks (n=3) 

were prepared by adding 20 mL BG-11media to each tank and diluting to 100 L with system 
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water (20% BG-11 media). Control tanks (n=3) contained 100 L system water.  All tanks were 

stocked at a density of 18 fish/tank.  

On days 1, 3, 5, and 7 four fish per tank (n=12/treatment) were euthanized by overdose of 

MS-222. Fork length and weight were recorded prior to dissection.  Small pieces of liver tissue 

from individual fish were preserved in RNAlater (Qiagen, Valencia, CA) and Bouin’s fixative 

for total RNA extraction (n=12) and histopathology (n=12), respectively, and remaining liver 

tissue from 2 fish per tank was pooled in order to obtain >1g required for MC-LR analysis (n=6).  

Muscle tissue was also collected from individual fish for MC-LR analysis (n=12).  Because a 

limited quantity of Microcystis culture was available and solution renewals were not possible, 

fish were not fed during the exposure to prevent ammonia toxicity. 

 

Experiment 4 

 Catfish were exposed to the synthetic estrogen 17-alpha ethinylestradiol (EE2). The 

purpose of the exposure was to induce vitellogenin gene expression in catfish and collect liver 

samples for RNA extraction to be used as positive controls for development of qPCR primers for 

vtg.  

 Catfish were allocated to glass aquaria containing 15 L of solution at a density of three 

fish per tank. Treatments consisted of control (0 µg/L EE2), 0.02, 0.2, and 2 µg/L and there were 

3 replicate tanks per treatment.  Fish were exposed for 4 days and were not fed in order to 

prevent ammonia toxicity.  At the end of the exposure, fish were euthanized by overdose of MS-

222 and liver samples were collected and preserved in RNAlater (Qiagen, Valencia, CA).  
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Field Sampling 

 Channel catfish were collected from two lakes where Microcystis blooms were present.  

In August 2008, channel catfish were collected by E. Rogers from Sandusky Bay, Lake Erie in 

collaboration with the Ohio Department of Natural Resources and again in October 2009 by the 

Ontario Ministry of Natural Resources.  In August 2009, channel catfish were also collected by 

E. Rogers from Waterville Lake, NC.  Collection procedures were identical for Lake Erie and 

Waterville Reservoir locations, except that liver samples for RNA extraction were not collected 

from Lake Erie in 2008.  Channel catfish (n=10/ lake) were euthanized, weight and length 

recorded, and dissected on site. Two small pieces of liver from each fish were preserved in 

RNAlater (Qiagen, Valencia, CA) and Bouin’s fixative for RNA extraction and histology, 

respectively.  A portion of remaining liver tissue and muscle tissue from each fish (>1g) was 

collected for MC-LR analysis. Water samples were also collected from sites where fish were 

sampled for MC-LR analysis. 

 

Toxin Analysis 

Analysis of MC-LR in water and tissue samples was conducted at the State University of 

New York College of Environmental Science and Forestry (Syracuse, NY). Water samples were 

analyzed by protein phosphatase inhibition assay and tissue samples by ELISA following the 

methods of Carmichael and An (Carmichael and An 1999).  
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Histopathology 

After tissue fixation in Bouin’s fixative (24-36 h) liver samples were transferred into 70% 

EtOH and subsequently processed and embedded in paraffin for routine histology.  Sections (0.6 

µm thick) were stained with hematoxylin and eosin (Humason 1979) and all sections were 

examined by light microscopy.  

 

RNA Extraction 

Liver samples preserved in liquid nitrogen were transferred to a -80°C freezer and 

samples preserved in RNAlater were stored according to the manufacturer’s instructions at -20°C 

until extraction.  RNA was extracted using the RNeasy mini extraction kit for animal tissues 

(Qiagen, Valencia, CA) and quantified using a UV-spectrophotometer (Nanodrop, Wilmington, 

DE).   

 

Biomarker Gene Selection and Primer Development 

Genes of interest were selected based on a previous microarray study with zebrafish 

(Rogers et al. in press, Section II of this dissertation) and summarized in Table 4.1.  These 

biomarker genes were selected from a list of genes differentially expressed in both Microcystis 

and purified MC-LR treatments and therefore most closely represent effects of the microcystin 

toxin as produced by Microcystis.  Vitellogenin was also selected for monitoring because it was 

highly up-regulated only in fish exposed to Microcystis (not toxin-related) and represents a gene 

that may be used as a biomarker of effect of Microcystis exposure unrelated to MC-LR.  Because 
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there was no significant up regulation of 18S rRNA among treatments, this gene was selected for 

use as an internal control.  

Primer sets specific to channel catfish were developed for each of the genes listed in 

Table 4.1. Sequence information for primer design was obtained from expressed sequence tags 

available in GenBank. Primers were designed using the Primer-Blast tool (NCBI), and melting 

temperatures and potential for self-complementarity were determined using the oligonucleotide 

properties calculator (http://www.basic.northwestern.edu/biotools/oligocalc.html) and Oligo 

Analyzer 3.1 (Integrated DNA Technologies, Coralville, IA), respectively. Primer sets were 

purchased from Biosearch Technologies (Novato, CA).  The 18S primer set for channel catfish 

was previously developed and provided by June-Woo Park. 

 

Selection of Samples for Primer Validation 

Appropriate RNA samples from catfish were selected to experimentally validate that the 

above primer sets amplified their intended gene targets and to determine optimal annealing 

temperatures.  For all primer sets except vitellogenin, control RNA samples were used.  For the 

vitellogenin primer set, control RNA samples were used as well as 2 samples from fish exposed 

to 2 µg/L EE2 (Experiment 4), which served as positive controls. 

 

Reverse Transcription 

Following RNA extraction, cDNA was generated from the above RNA samples using a 

Superscript
®
 III Reverse Transcriptase Kit (Invitrogen, Carlsbad, CA).  Samples containing 

1,000 ng of total RNA were used to synthesize single-strand cDNA in accordance with the 
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manufacturer's directions.  Briefly, prior to reverse transcription, 1,000 ng total RNA in 8 µL 

RNAse free water was treated with 1 µL DNAse I (1U/µL) and 1 µL DNase I reaction buffer for 

15 min. at room temperature in order to remove potential chromosomal DNA. Then, 1 µL of 

25mM EDTA was added to each sample and incubated at 65°C for 10 min. to inactivate the 

reaction. Reaction mixture (13.2 µL) containing 11 µL 2X RT Reaction Mix (RTase, RNAse 

Out) and 2.2 µL RT enzyme mix (Oligo dT, dNTP, 25mM MgCl2, random hexamers), was 

added to each RNA sample and incubated at 25°C for 10 min., 50°C for 30 min., and terminated 

at 85°C for 5 min.  To improve sensitivity, the RNA template from the cDNA:RNA hybrid 

molecule was removed from each sample by digestion with 1 µL Escherichia coli RNase H 

(2U/μL) at 37°C  for 20 min. Also, a negative control (sample without reverse transcriptase) was 

run in parallel, which resulted in no amplification of the PCR product.  

 

Primer Validation 

Primer sets were then validated using traditional PCR (GoTaq PCR Core System I, 

Promega, Madison, WI).  Validation was conducted using control cDNA as a template for all 

primer sets, with the exception of vitellogenin (vtg), where both control cDNA and 2 cDNA 

samples from fish exposed to 2 µg/L EE2 (Experiment 4) were used as positive controls.  Each 

50 µL PCR reaction contained the following: 5X GoTaq
®
 Flexi buffer (10 µL), 25mM MgCl2 

(6µL), 10 mM PCR nucleotide mix (1.5 µL), forward primer (3µL), reverse primer (3µL), 

GoTaq
®
 DNA polymerase (0.5µL), 1/200 diluted cDNA (5µL), nuclease-free water (21µL).  The 

PCR reaction mix was denatured at 94°C for 3 min. before the first cycle. Thermocycler 

conditions were as follows: 94°C for 45 sec., annealing at 55 °C for 40 sec., and extension at 
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72°C for 1.5 min.  The process was repeated for a total of 40 cycles and then incubated at 72°C 

or 10 min. before cooling to 4°C.  PCR products were run on 2.5% agarose gels at 100V for 1 hr.  

Only primer sets with PCR products resulting in bands matching the expected product size of the 

primer set being tested were determined to be working correctly. 

 

Determination of Optimal Annealing Temperatures for qPCR Assays 

Primer sets whose gene products matched expected product size via traditional PCR 

assays were subjected to further testing to determine optimal annealing temperatures for qPCR. 

All qPCR assays were performed using a SYBR
®
 Green PCR Core Reagents kit (Applied 

Biosystems, Carlsbad, CA) and amplification was determined using a DNA Engine Opticon 

continuous fluorescence detection system (MJ Research, Waltham, MA).  Primer sets determined 

to be working with non-quantitative PCR were tested by qPCR reactions using a 55-65 °C 

annealing temperature gradient with melting curve in order to determine the optimal annealing 

temperature for each primer set.  Each 25 μL qPCR reaction contained the following: 10× 

SYBR
®
 Green buffer (2.5 μL), 25 mM MgCl2 (3 μL), 12.5 mM dNTP mix, 10 pM/μL forward 

primer (0.5 μL), 10 pM/μL reverse primer (0.5 μL), 5U/μL AmpliTaq Gold™ DNA polymerase 

(0.13 μL) 1U/μL AmpErase (0.25 μL), 1/200 diluted cDNA (5 μL), and nuclease-free water 

(12.62 μL).  The PCR reaction mix was denatured at 94°C for 3 min. before the first PCR cycle. 

PCR cycles were as follows: denaturation for 20s at 94°C, 55-65°C annealing temperature 

gradient for 1 min., and extension for 1 min. at 72°C. The process was repeated for a total of 45 

cycles followed by a melting curve from 50-95°C with plate reads every 0.2 sec and a hold time 

of 1 sec. 
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Statistical Analyses 

For weight, length, and toxin concentration data, differences among treatment groups 

were determined by 1-way ANOVA followed by Duncan’s multiple range test.  All statistical 

analyses were conducted with ToxStat 3.4
©

 (Cheyenne, Wyoming) and a probability level of 

P<0.05 was used as the level for statistical significance.   
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Results 

 

Experiment 1 

 During both the uptake and depuration periods, fish showed no visible signs of stress, and 

mortality did not occur.  There were no significant differences in growth among treatment groups 

during the exposure, except at the 12h time point during depuration, where average mass and 

length were significantly greater in fish fed the Microcystis diet (Tables 4.3 and 4.4). The MC-

LR toxin was not found in liver or muscle tissue at concentrations above the limit of detection.  

Histological analysis showed no significant difference between controls and fish exposed to MC-

LR or Microcystis. 

 

Experiment 2 

 In Experiment 2, catfish were exposed to a higher dose of MC-LR for a shorter period of 

time.  Again, there were no signs of mortality or stress during the exposure, and growth was not 

affected by treatments (Tables 4.5 and 4.6).  Toxin analysis is underway.  Examination of liver 

tissue for histological lesions showed no significant differences between control and treatment 

groups. 

 

Experiment 3 

 In Experiment 3, catfish were exposed to aqueous Microcystis.  No mortality occurred 

during the 7-d exposure, and there were no significant differences in growth among treatments 
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(Tables 4.7 and 4.8).  Toxin analysis is underway.  Examination of liver tissue for histological 

lesions showed no significant differences between control and treatment groups.
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Table 4.3. Experiment 1 fish weights. 

Treatment Weight (g) SD Weight (g) SD Weight (g) SD Weight (g) SD Weight (g) SD Weight (g) SD 

Uptake Time Day 0 Day 8 Day 15 Day 30    

Control 19.6 5.0 21.8 5.4 19.7 6.2 20.6 5.8     

100 ng/g MC-LR 21.4 2.6 19.6 2.4 23.2 5.6 22.3 5.5     

1,000 ng/g MC-LR 22.0 6.1 26.1 5.8 20.6 5.5 25.7 6.9     

Microcystis 15.0 2.3 20.0 7.3 22.8 6.8 21.7 5.5     

         

F 1.63 
 

2.73 
 

0.80 
 

1.23  

p 0.26 
 

0.06 
 

0.50 
 

0.31  

        
 

Deputation Time 6 h 12 h 24 h Day 2 Day 5 Day 10 

Control 22.3 6.4 23.0 4.6 22.3 5.5 22.3 5.5 22.3 5.5 22.3 5.5 

100 ng/g MC-LR 22.4 4.2 21.0 6.9 25.7 6.9 25.7 6.9 25.7 6.9 25.7 6.9 

1,000 ng/g MC-LR 22.4 4.4 22.2 4.9 21.7 5.5 21.7 5.5 21.7 5.5 21.7 5.5 

Microcystis 26.6 6.0 28.3* 5.2 22.6 5.0 23.1 4.1 29.6 4.7 25.2 6.2 

 
        

    

F 1.5 
 

3.1 
 

1.6 
 

0.7 
 

1.3  0.9  

p 0.25 
 

0.04 
 

0.21 
 

0.54 
 

0.29  0.45  

Data are means. Day 0 n = 3; all other time points n = 9; SD = standard deviation; F = 1-way ANOVA F statistic; p = p value; * 

significant at p < 0.05 
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Table 4.4. Experiment 1 fish lengths. 

Treatment Length 

(mm) 

SD Length 

(mm) 

SD Length 

(mm) 

SD Length 

(mm) 

SD Length 

(mm) 

SD Length 

(mm) 

SD 

Uptake Time Day 0 Day 8 Day 15 Day 30    

Control 148.3 13.2 151.3 11.5 144.8 14.6 146.0 13.5     

100 ng/g MC-LR 151.7 2.5 146.7 9.9 153.8 9.1 145.4 14.2     

1,000 ng/g MC-LR 152.3 11.5 157.8 12.0 145.4 15.5 149.8 9.8     

Microcystis 133.3 3.1 146.7 17.6 152.1 12.4 155.2 16.8     

         

F 2.95 

 

1.62 

 

1.13 

 

0.96  

p 0.10 

 

0.20 

 

0.35 

 

0.42  

        
 

Deputation Time 6 h 12 h 24 h Day 2 Day 5 Day 10 

Control 145.9 15.5 149.7 12.4 160.0 12.2 151.4 12.9 158.1 7.8 161.4 13.0 

100 ng/g MC-LR 147.3 11.8 146.2 13.2 159.4 10.3 158.1 13.2 161.9 16.6 162.3 8.6 

1,000 ng/g MC-LR 150.6 7.5 149.4 12.0 155.8 11.5 158.9 20.4 157.0 8.9 163.8 12.8 

Microcystis 155.4 13.9 163.2* 10.1 157.0 11.8 152.8 8.8 162.8 5.0 156.3 11.5 

 
        

    

F 1.03   3.57 

 

0.27 

 

0.60 

 

0.65  0.70  

p 0.39   0.02 

 

0.84 

 

0.62 

 

0.59  0.56  

Data are means. Day 0 n = 3; all other time points n = 9; SD = standard deviation; F = 1-way ANOVA F statistic; p = p value; * 

significant at p < 0.05 
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Table 4.5. Experiment 2 fish weights. 

Treatment Weight (g) SD Weight (g) SD Weight (g) SD Weight (g) SD Weight (g) SD 

Uptake Time Day 0 Day 1 Day 3 Day 7 Day 14 

Control 27.6 7.4 28.9 15.8 26.7 5.9 25.3 6.8 24.7 7.3 

100 µg/g MC-LR 24.3 4.4 26.7 12.7 28.0 5.7 26.5 11.5 24.4 10.9 

Microcystis 18.3 3.5 29.6 11.1 28.2 8.6 26.6 7.7 26.7 9.9 

           

F 3.02 

 

0.21 

 

0.21 

 

0.11 

 

0.28  

p 0.10 

 

0.81 

 

0.81 

 

0.89  0.76  

 
       

   

Data are means. Day 0 n = 4; all other time points n = 16; SD = standard deviation; F = 1-way ANOVA F statistic; p = p value  
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Table 4.6. Experiment 2 fish lengths. 

Treatment Length 

(mm) 

SD Length 

(mm) 

SD Length 

(mm) 

SD Length 

(mm) 

SD Length 

(mm) 

SD 

Uptake Time Day 0 Day 1 Day 3 Day 7 Day 14 

Control 123.0 10.1 127.1 20.6 124.1 10.5 120.8 11.7 121.8 11.7 

100 µg/g MC-LR 121.0 7.3 124.2 15.5 124.5 9.6 122.6 16.4 119.3 15.2 

Microcystis 108.5 7.2 128.8 17.2 125.8 11.8 124.3 12.2 121.1 15.8 

           

F 3.55 

 

0.27 

 

0.11 

 

0.27 

 

0.14  

p 0.07 

 

0.76 

 

0.90 

 

0.76  0.87  

 
       

   

Data are means. Day 0 n = 4; all other time points n = 16; SD = standard deviation; F = 1-way ANOVA F statistic; p = p value  
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Table 4.7. Experiment 3 fish weights. 

Treatment Weight (g) SD Weight (g) SD Weight (g) SD Weight (g) SD 

Uptake Time Day 1 Day 3 Day 5 Day 7 

Control 38.2 10.1 37.9 11.6 34.8 16.4 31.7 13.3 

BG-11 Control 37.7 12.8 38.5 19.1 32.2 10.5 33.3 11.9 

Microcystis 33.1 11.2 36.8 13.1 34.8 12.3 35.1 13.8 

         

F 0.73 

 

0.04 

 

0.16 

 

0.21 

 p 0.49 

 

0.96 

 

0.85 

 

0.81  

 
       

 

Data are means. n = 12 for all time points; SD = standard deviation; F = 1-way ANOVA F statistic; p = p value  
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Table 4.8. Experiment 3 fish lengths. 

Treatment Length 

(mm) 

SD Length 

(mm) 

SD Length 

(mm) 

SD Length 

(mm) 

SD 

Uptake Time Day 1 Day 3 Day 5 Day 7 

Control 140.6 12.8 137.8 12.9 131.2 19.3 129.4 16.5 

BG-11 Control 138.9 15.5 137.0 21.1 130.5 15.3 132.2 13.6 

Microcystis 135.0 15.7 134.3 15.1 132.6 16.7 133.8 17.2 

         

F 0.46 

 

0.15 

 

0.05 

 

0.23 

 p 0.64 

 

0.87 

 

0.96 

 

0.80  

 
       

 

Data are means. n= 12 for all time points; SD = standard deviation; F = 1-way ANOVA F statistic; p = p value
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Validation of Primers for Biomarker Genes 

 A summary of primers and their respective gene product sizes is given in Table 4.1.  

Primers whose PCR products gave single bands within expected size range using control cDNA 

template at an annealing temperature of 55°C included 18S rRNA (18S), hepatocyte growth 

factor activator inhibitor 2 (spint2), and nephrosin (npsn).  All other primer sets amplified 

unintended gene products.  Steroidogenic acute regulatory protein (star) and flavoprotein 

oxidoreductase mical3 (mical3) each gave a single band at <100 bp, and mucin 2 (muc2) and v-

fos FBJ murine osteosarcoma viral oncogene (v-fos) each gave multiple bands that were >200 

bp.  A single band within expected size range was detected in both PCR products that used vtg 

primers and cDNA template from fish exposed to 2 µg/L EE2, whereas no band was detected for 

the PCR product containing vtg primers and control cDNA template (Fig. 4.1). Optimal 

annealing temperature was determined for all working primer sets (18S, spint2, npsn, vtg) using 

gradient qPCR.  The optimal annealing temperature for 18S, spint2, and npsn primer sets was 

57°C and 64°C for vtg. 

 

Field Samples 

Toxin analysis of field samples is underway. MC-LR concentration (mean ± SD) in water 

samples collected from Waterville Reservoir was 862 ± 162 µg/L.  A summary of numbers of 

species and sizes of fish collected from each site is given in Tables 4.9-4.11. 
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Figure 4.1 Gel image of vitellogenin amplification in channel catfish exposed to EE2. Lane 1= 

100 bp DNA ladder, 2 = control cDNA + 18S primer, 3 = control cDNA + vtg primer, 4 = cDNA 

from EE2-exposed fish #1 + vtg primer, 5 = cDNA from EE2- exposed fish #2 + vtg primer. 
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Table 4.9. Weights and lengths of fish sampled from Lake Erie in 2008. 

 

 

 

 

 

 

 

 

 

 

 

 

SD = standard deviation  

Species Weight (g) Length (mm) 

channel catfish 850 450 

channel catfish 110 234 

channel catfish 113 248 

channel catfish 108 222 

channel catfish 121 174 

mean 260.4 265.6 

SD 329.6 106.8 

   yellow perch 126 185 

yellow perch 101 153 

yellow perch 89 154 

mean 105.3 164.0 

SD 18.9 18.2 

   walleye 279 323 

walleye 234 282 

walleye 244 287 

mean 252.3 297.3 

SD 23.6 22.4 
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Table 4.10. Weights and lengths of fish sampled from Lake Erie in 2009. 

Species Weight (g) Length (mm) 

channel catfish 1410 518 

channel catfish 1894 542 

channel catfish 801 455 

channel catfish 702 425 

channel catfish 2508 584 

channel catfish 1750 585 

channel catfish 1509 521 

channel catfish 1039 444 

channel catfish 795 428 

channel catfish 1635 533 

mean 1404.3 503.5 

SD 577.7 61.2 

SD = standard deviation 
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Table 4.11. Weights and lengths of fish sampled from Waterville Reservoir in 2009. 

Species Weight (g) Length (mm) 

channel catfish 320 332 

channel catfish 290 318 

channel catfish 4615 725 

channel catfish 350 358 

channel catfish 2530 614 

channel catfish 3175 630 

channel catfish 945 457 

channel catfish 620 384 

channel catfish 840 645 

channel catfish 680 421 

channel catfish 340 340 

channel catfish 740 420 

channel catfish 1020 468 

mean 1266.5 470.2 

SD 1334.9 137.2 

   yellow perch 760 359 

yellow perch 360 292 

mean 560.0 325.5 

SD 282.8 47.4 

SD = standard deviation
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Discussion 

 

Laboratory exposure to MC-LR and Microcystis had no effect on mortality of channel 

catfish.  All fish survived in both the dietary and aqueous experiments.  In Li et al. (2004), 

common carp that were fed Microcystis containing MC-LR for 4 weeks at a dose (50 µg/kg 

bw/day) similar to those administered in our experiments also exhibited no signs of mortality.   

In contrast, mortality was observed in dietary exposures of Nile tilapia (Oreochromis niloticus) 

and gibel carp (Carassius gibelio) to Microcystis where fish were fed diets containing 

concentrations as high as 5.5 µg MC/g diet to satiation twice daily (Zhao et al. 2006a; Zhao et al. 

2006b).  This concentration in the diet is higher than those used in Experiment 1 but lower than 

that of Experiment 2; however, tilapia and carp were fed to satiation twice daily and the amount 

of toxin ingested in terms of body weight or per fish was not specified. Despite this limitation, it 

is likely that these fish received a higher dose of MC than in our study, which could explain why 

mortality may have occurred, since these fish were fed an unlimited amount twice per day, 

whereas in our experiments channel catfish were fed a 1-2% bw (depending on experiment) once 

per day.  The absence of effects on mortality of channel catfish when exposed to an aqueous 

Microcystis (Experiment 3) also seems to be supported in the literature.  Adamovsky et al. 

(2007) exposed common carp to a Microcystis bloom for 9 weeks and no significant effects on 

mortality were observed.  While our results suggest that chronic mortality of channel catfish as a 

result of Microcystis and MC-LR exposure, whether by dietary or aqueous means is unlikely, 

other species of fish may be more sensitive. 
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Similarly, exposure to Microcystis and MC-LR did not have significant effects on growth 

of channel catfish.  Mean weights and lengths were not significantly different from controls in 

Experiments 2 and 3, however in Experiment 1 fish exposed to Microcystis via the diet were 

significantly larger than controls at 12 hours post-exposure.  This observation was likely the 

result of sampling larger fish at the end of the experiment that were previously able to escape 

capture and was probably not an effect of treatment.  

Development of primer sequences for biomarker genes previously identified in zebrafish 

was successful for only some of the candidate genes.  PCR amplification within the size range of 

the target gene was observed for 18S, spint2, npsn and vtg primer sets, while the remaining 4 

primer sets did not work.  Only expressed sequence tags were available for catfish in GenBank, 

and designing primer sets with low a probability of forming primer-dimers and hairpins was 

difficult when working with such short sequences (569-884 bp).  Species differences may also 

explain why some primer sets did not work.  While primer sets for all of the genes of interest 

were not validated, working primer sets for spint2, npsn and vtg were achieved, and these genes 

have the potential to serve as biomarkers of exposure whose expression can be monitored in 

future experiments and field monitoring of channel catfish exposed to Microcystis. 

For vtg, bands were observed in PCR products containing positive control cDNA from 

fish exposed to EE2, but no band was observed when control cDNA was used.  The absence of 

amplification in the sample containing control cDNA is consistent with expectations, because 

vitellogenin is not normally produced in juvenile fish, such as those used in this study.  

Amplification of vtg1 in EE2 exposed samples was expected and confirms the functionality of 

this primer set for use in channel catfish, since EE2 is an estrogen mimic with documented 
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ability induce vitellogenin expression in juvenile fish (Henry et al. 2009).  The absence of 

vitellogenin gene expression in control samples may also help explain why primer sets for fos, 

muc2, star and mical3 did not work.  It is possible that these genes too were weakly induced or 

not induced at all in control samples, but may have been differentially expressed in fish exposed 

to MC-LR and Microcystis.  Additional testing of these primer sets with cDNA from fish 

exposed to MC-LR and Microcystis should help resolve this question. 
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SECTION V 
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Conclusion 

 

Toxin-producing Microcystis blooms are prevalent in many aquatic ecosystems 

throughout the world.  Fish play an important role in maintaining the stability of these 

ecosystems while serving as a food source for human populations through commercial and 

recreational fishing. The objective of this research was to gain a better understanding of the 

sublethal toxicity of these blooms in fish during all life stages in order to make inferences about 

how Microcystis exposure may impact fish populations in the wild and to evaluate MC-LR 

bioaccumulation in fish tissues. A further objective was to identify genes that could be used as 

biomarkers of microcystin exposure in fish and design primer sequences for assessing expression 

of these genes in channel catfish.   

 First, toxicity was evaluated in early life stages of fish by exposing larval zebrafish to 

purified MC-LR and Microcystis.  Significant mortality and developmental effects did not occur; 

however, changes in global gene expression were observed and indicated differences in toxicity 

between the MC-LR toxin and Microcystis. Of particular interest among genes responding only 

to Microcystis were vitellogenin genes (vtg), which are indicators of exposure to estrogens in 

fish.  Induction of vtg in larval zebrafish was unexpected and indicated that Microcystis blooms 

may produce substances that mimic estrogen.  These findings indicate the need for a shift in 

bloom management strategy away from measuring toxin concentrations to in vivo effects-based 

monitoring in fish that takes into account both toxin-associated effects as well as responses 

attributed to other compounds produced by Microcystis, such as vitellogenin induction.  To this 

end, vitellogenin genes, as well as toxin-related genes induced by Microcystis, were identified in 
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zebrafish as potential biomarkers of exposure and were later adapted and validated for use in an 

environmentally relevant species (channel catfish). 

 Effects of chronic Microcystis exposure were evaluated in adult fish and reproductive 

effects were also assessed.  Microcystis did not affect mortality of adult zebrafish, and 

histological lesions in the liver typically associated with Microcystis exposure were not 

observed.  Differences in toxin concentration and composition between lyophilized M. 

aeruginosa and Microcystis blooms used in previous studies may account for the absence of 

histological effects.  A significant decrease in the percent of pairs that spawned was noted, 

indicating potential for Microcystis to interfere with reproductive ability in adult fish.  

Impairment of spawning did not translate into effects on fecundity or embryo survival, however.  

Further reproductive testing with environmentally relevant species is necessary.  If decreased 

spawning activity is confirmed, this finding could have serious implications for the stability of 

fish populations in aquatic ecosystems affected by Microcystis blooms. 

 Channel catfish were exposed to MC-LR and Microcystis through the diet and to 

Microcystis by aqueous administration.  These exposures did not result in mortality or hepatic 

lesions.  Mortality was not expected, however other investigators have found necrosis and 

lipidosis in other species of fish exposed to Microcystis via the diet.  Microcystin concentrations 

in these studies were higher than those administered to catfish and may explain why hepatic 

lesions were not observed.  Catfish were also collected from Waterville Reservoir and Lake Erie, 

and histopathology indicated lesions in the liver, but none that could be attributed to microcystin. 

Results of preliminary toxin analysis of muscle and liver tissues from laboratory and field-

collected catfish are inconclusive at this time.  Primer sets for biomarker genes identified in 
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zebrafish were designed for channel catfish.  Out of seven genes attempted, primer sets for three 

of these genes (vitellogenin, nephrosin, hepatocyte growth factor activator inhibitor 2) were 

validated for use in quantitative PCR assays.  Future development of these biomarker gene 

expression assays for channel catfish has the potential to serve as a biomonitoring tool to assess 

the health of channel catfish living in areas affected by Microcystis blooms. 
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