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ABSTRACT

Instrumented nanoindentation techniques have been widely used in characterizing
mechanical behavior of materials in small length scales. For defect-free single crystals under
nanoindentation, the onset of elastic-plastic transition is often shown by a sudden
displacement burst in the measured load-displacement curve. It is believed to result from the
homogeneous dislocation nucleation because the maximum shear stress at the pop-in load
approaches the theoretical strength of the material and because statistical measurements agree
with a thermally activated process of homogeneous dislocation nucleation. For single crystals
with defects, the pop-in is believed to result from the sudden motion of pre-existing
dislocations or heterogeneous dislocation nucleation. If the sample is prestrained before
nanoindentation tests, a monotonic decrease of the measured pop-in load with respect to the
increase of prestrain on Ni and Mo single crystals is observed. A similar trend is also
observed that the pop-in load will gradually decrease if the size of indenter tip radius
increases.

This dissertation presents a systematic modeling endeavor of energetics and kinetics of
defect initiation in the stressed volume at small scales. For homogeneous dislocation
nucleation, an indentation Schmid factor is determined as the ratio of maximum resolved
shear stress to the maximum contact pressure. The orientation-depended nanoindentation
pop-in loads are predicted based on the indentation Schmid factor, theoretical strength of the
material, indenter radius, and the effective indentation modulus. A good agreement has been
reached when comparing the experimental data of nanoindentation tests on NiAl, Mo, and Ni,
with different loading orientations to theoretical predictions. Statistical measurements
generally confirm the thermal activation model of homogeneous dislocation nucleation,
because the extracted dependence of activation energy on resolved shear stress is almost
unique for all the indentation directions. For pop-in due to pre-existing defects, the pop-in
load is predicted to be dependent on the defect density and the critical strength for
heterogeneous dislocation nucleation. The cumulative probability of pop-in loads contains
convoluted information from the homogenous dislocation nucleation, which is sensitive to
temperature and loading rate, and heterogeneous dislocation nucleation due to the unstable

change of existing defect network, which is sensitive to the initial defect distribution.
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CHAPTER 1

Introduction

The instrumented indentation, also known as depth-sensing indentation or
nanoindentation, is increasingly being used to probe the mechanical response of materials. In
contrast to the traditional hardness testing methods, instrumented indentation systems allow
the force, P, and the displacement, 4, to be controlled and/or measured simultaneously and
continuously over a complete loading cycle. The extremely small force and displacement
resolutions, often as low as =1 uN and =0.2 nm, respectively, or lower for some systems, are
combined with very large ranges of applied forces and displacements (tens of uN to hundreds
of mN or larger in force and tens of nm to tens of um or larger in displacement) to allow a
single instrument to be used to characterize nearly all types of material systems. In fact, the
instrumented nanoindentation technique has become a key component of materials research
at small scales with applications in a wide variety of disciplines [1-3]. Methodologies have
been established on how to extract material properties such as modulus and hardness from the
measured load and displacement curves.

In addition to the characterization of material properties, there has been increasing
research activities by using instrumented indentation to probe microscopic deformation
processes such as defect nucleation. For example, nanoindentation of metallic materials has
shown that defect nucleation could possibly be associated with the onset of the indenter tip
suddenly jumping into the specimen with negligible load increase (or denoted as “pop-in”),
which leads to a displacement discontinuity on the otherwise continuous load-displacement
curve [4-17]. While the pop-in event may be associated with fracture of surface oxide layer
for some materials [18], it is believed that for a defect-free crystalline material, the first
displacement burst is a result of homogeneous dislocation nucleation underneath the indenter
[6, 7,9 -17,19-21]. Moreover, if there is existing defect underneath the indenter, pop-in could
also be observed as a result of heterogeneous dislocation event (such as a sudden instability
of existing defect network) in single crystals. Defect nucleation due to materials geometric
effect is also important. For example, in nano-electronic devices, stress concentrations near
sharp geometric features such as edges and corners may lead to the nucleation of dislocations,
which can act as electrical leakage paths and eventually lead to failure of the devices [22, 23,

24]. The development of immortal, strained nano-electronics requires knowledge of the



defect nucleation process and its dependence on the layout structure, materials processing,
and surface treatment, among many others.

This thesis aims to present a systematic study of energetics and kinetics of defect
initiation in the stressed volume at small scales. The primary interests will be placed on the
nanoindentation pop-in behavior in single crystals due to homogeneous or heterogeneous
dislocation nucleation activities.

In Chapter II, the stress fields of elastically anisotropic film-on-substrate systems under
spherical indentation are derived from the superposition of the Green’s function. The surface-
displacement Green’s function for elastically anisotropic film-on-substrate system is derived
in closed-form by using the Stroh formalism and the two-dimensional Fourier transform.
When the film and substrate has the same materials constants, the solution degenerates to the
case of single crystals under spherical indentation. This solution allows us to calculate the
indentation Schmid factor which is defined as the ratio of the maximum resolved shear stress
of all possible slip systems to the maximum contact pressure. This result will be used in
predicting nanoindentation pop-in loads in Chapter V. The predicted dependence of the
effective modulus on the ratio of film thickness to contact radius agrees well with detailed
finite element simulations. Implications in evaluating film modulus by nanoindentation
technique are also discussed.

In Chapter III, we describe how to calculate the activation energy for homogeneous or
heterogeneous dislocation nucleation with finite element method by adopting the Rice-Peierls
concept of dislocation. This method is realized by a dissipative cohesive interface model
which treats the dislocation core as a continuous, inhomogeneous lattice slip field. We also
apply this method to model trailing/twinning partial dislocation nucleation after a leading
partial dislocation is nucleated from a crack tip.

In Chapter IV, using the tool in Chapter III, we investigate the dislocation nucleation
behavior due to materials geometric effect. Dislocation loops may be nucleated from sharp
geometric features. As a representative example, we calculate the critical external stress for
dislocation nucleation from the edges/corners of a rectangular Si3N4 pad on a Si substrate as a
function of geometric parameters such as the length-to-height ratio and the three-dimensional
shape of the pad. The shapes of the nucleated dislocation loops are also simulated.

In Chapter V, assuming that a dislocation nucleates when the maximum resolved shear
stress reaches the theoretical strength, the pop-in load is predicted to be a function of indenter
radius, effective indentation modulus, indentation Schmid factor, crystallographic orientation

of the specimen, and the theoretical strength. Comparisons to experimental measurements on
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NiAl single crystals will test the validity of the above relationship and fit the theoretical
strength of the specimen. The homogeneous dislocation nucleation process is also a stress-
assisted, thermally activated process. When the applied load is less than but close to the
critical load for homogeneous dislocation nucleation, the thermal energy can activate
dislocation to nucleate. The statistical measurements generally confirm our thermal activation
model of homogeneous dislocation nucleation. That is, for defect-free single crystals, the
extracted dependence of activation energy on resolved shear stress is almost the same for all
the indentation directions.

In Chapter VI, the cumulative probability of pop-in loads contains convoluted
information from the homogenous dislocation nucleation and possible heterogeneous
dislocation nucleation due to the unstable change of existing defect network. A unified model
of the homogeneous and heterogeneous dislocation nucleation behavior has been developed
and successfully explained several interesting experiments, including (1) pop-in tests on NiAl
single crystals with surface normal close to <001>, (2) indenter-radius effects on Mo <001>
single crystals, and (3) pre-strain effects on Mo <001> single crystals. The transition from
thermally activated dislocation nucleation process to spatial-probability-governed behavior
has been identified.

Future work and perspectives will be discussed in Chapter VII.



CHAPTER 11

Elastic Contact Analysis of Anisotropic Solids

2.1 Introduction

Many experimental techniques for measuring thin film mechanical properties are based
on bending, stretching, or other simple mechanical means for testing free-standing or
constrained films [25]. Tedious sample preparation procedures are clearly a disadvantage that
hinders wide-spread engineering applications of these methods. The instrumented
nanoindentation technique, based on the information of load (denoted as P)-displacement
(denoted as /) curves, has become a key component of materials research at small scales with
applications in a wide variety of disciplines [1-3, 26]. In this method, an indenter with known
geometry is pushed into the surface of a material under a set of prescribed loading conditions.
The resulting displacement of the indenter into the material is recorded, and the load and
displacement data are analyzed via analytical and/or numerical models to extract mechanical
properties of the indented specimen such as modulus and hardness from the measured P~h
curves. Besides the measurement of the hardness and modulus, the P~/ curves can be used to
examine the onset of elastic-plastic transition in various crystalline and amorphous materials
[4-17]. The onset of plasticity is often associated with a displacement discontinuity on the
otherwise continuous load-displacement curve, or denoted as “pop-in”, as the indenter tip
suddenly jumps into the specimen with negligible load increase. As will be discussed in
Chapter V, for a defect-free crystalline material, the first displacement burst is a result of
homogeneous dislocation nucleation underneath the indenter. Most of previous theoretical
studies assume that the homogeneous dislocation nucleation occurs when the resolved shear
stress reaches the theoretical strength, which is similar to the Schmid law that describes the
plastic flow in single crystals.

Moreover, the nanoindentation technique has difficulties of uniquely determining
material properties [27,28] and decoupling the film deformation behavior from substrate
effects [29-34]. It is empirically recommended that the indentation depth should be smaller
than 10% of the film thickness in order to minimize the influence of substrate deformation.
However, many film materials used in micro- and nano-electronics are so thin that 10% of the

film thickness cannot be accurately probed. The indentation behavior at depths comparable to



the film thickness contains a great deal of information that should not be intentionally
excluded.

In this Chapter, we first derive the stress fields in an anisotropic film-on-substrate system
under spherical indentation. And then, by degenerating this stress fields to an anisotropic
solid under spherical indentation, we calculate the indentation Schmid factor which is defined
as the ratio of the maximum resolved shear stress of all possible slip systems to the maximum
contact pressure. Assuming that dislocation nucleates when the maximum resolved shear
stress reaches the theoretical strength, the pop-in load will be predicted in Chapter V to be a
function of indenter radius, effective indentation modulus, indentation Schmid factor,
crystallographic orientation, and the theoretical strength. A central relationship in the
nanoindentation technique is the proportionality between the elastic contact stiffness and an
effective indentation modulus. Extensive studies have been conducted for homogeneous half-
spaces [35-38] and elastically isotropic film-on-substrate systems [39,40]. This work extends
this line of research to the response of an elastically anisotropic film-on-substrate system
indented by an arbitrarily-shaped rigid indenter. From stress fields of anisotropic film-on-
substrate system, we derive a closed-form representation of the contact stiffness which
involves the evaluation of a triple integral. The validity of these assumptions is theoretically
discussed by using the cumulative superposition method [41], and the predicted dependency
of the effective modulus on the ratio of film thickness to contact radius is numerically
compared to detailed finite element simulations. Finally, we discuss the important roles
played by the indentation pileup/sink-in, contact shape, friction, and modulus mismatch in the

relationship between the contact stiffness and effective elastic modulus.

2.2 Closed-Form Green’s Tensor for Anisotropic Multilayered Half-Space

For a multilayered half-space, the indentation response from an assumed pressure
distribution can be conveniently evaluated from the surface-displacement Green’s function.

As shown in Fig. 2.1, we consider a circular contact on a layered substrate with the elastic
constants being c;,, and cy, for film and substrate, respectively.
The Stroh formalism [42-47] and two-dimensional Fourier transform are combined to

solve the stress/strain fields in a multilayed half-space subjected to arbitrary surface tractions.

The elastic field is a superposition of many Fourier components, each being a plane field in

the plane spanned by %,x, = hx, +h,x, and x,, where (/,,h,) is a unit vector in the (x,,x, )



plane (Fig. 2.1). Greek indices run from 1 to 2. Summation convention on repeated subscripts

is implied. Because of the homogeneous nature of the governing equations, for each Fourier
component, we look for a general solution of the displacement u, of the form u, = 4, f (z),
where z = hx, +h,x, + px,, p is ascalar, 4, is a vector and f is a one-variable function to

be determined from boundary conditions. Latin indices run from 1 to 3. For convenience, we

write p = h, and substitute this general solution into the governing equations c;,u, , =0.

Eliminating the factor d° f / dz* leads to a generalized algebraic eigenvalue problem,

Cyuh b, 4, =0, with p being the eigenvalue and 4, the eigenvector. The six roots of the

sixth-order polynomial, det(cwh h ) =0, form three pairs of complex conjugates. The three

J m

roots with positive imaginary parts are denoted by p, , a=1,2,3, and thus the corresponding
three complex variables are z, = hx, + h,x, + p,x, and the corresponding eigenvectors 4, .

The displacement field is a linear superposition of three arbitrary analytical functions f, (z1 ) ,
f2(22) , and f3(z3) :

TEDIWACHEDIWACAR @.1)
where a bar on the top of a quantity denotes its complex-conjugate. The traction on the plane

. T . .
normal to the x, axis, t=(0,,,0,,05,) , is given by

O3 =2Liaﬁ1,(za)+zl’ia a’(za)’ (2.2)

where L in expanded form are given by

L, Csihy +Csehy +Cs5p,  Csshy +Chy +C5yp,  Csshy + e hy e, | A,
Ly, |=| eyl tcyhy teisp,  Cuhy +cphy +cyp, cysh +cyh, +eap, | 4,
L, Cohy + C36hy +C35p,  Cahy T Chy +C34p,  Coshy +C34hy +e33p, \ 4,

Summation convention over underscored repeated indices is not implied. The Stroh matrix is
defined by B =iAL™, which is a positive-definite Hermitian. Isotropic elasticity is a
degenerate case, since the sixth-order polynomial, det (cwh h, ) =0, will have three pairs of
repeat roots, +i. In this case, one can either use the well-established complex-variable

method in isotropic elasticity [48-50], or add a small perturbation to the elastic constants so

that the eigenvalues will be distinct.



Since the matrices A, L, and B are determined from c;,, and £, , the elastic stress and
strain fields in each layer are determined from the corresponding three functions, f (z1 ) ,

s (22) ,and f; (23) . By the principle of linear superposition, we only need to find the
solution of one Fourier component,

t=aexp(i&x, +i&,x, ) +aexp(—ix, —i&,x, ). (2.3)
Let § be a complex variable of the form ¢ = A x, + h,x, + gx,, where ¢ is an arbitrary

complex number with a positive imaginary part. Using the analytic continuation technique,

the solution in the film is written as

LIfI'(é’) = Pexp(—i§§)+Qexp(i§§), (2.4)
Af ()= B;’ exp(_l-g;)-¥exp(i§g), 2.5)

where P and Q are two unknown vectors to be determined from boundary conditions. After

Fu(£), /1,(&)s f5(&) and f1($), /5(&). £5 (<) are obtained, we then replace the variable

to f,,(2). /12(2,)s fis(2) and £} (z), /12(2,). /i3 (25 ) - The displacement and traction fields

can be evaluated from Egs. (2.1) and (2.2), giving

_BTP-BTQ BT P- B,T'Q
S S

t, =(T, P+ T,Q)exp(i&x, +i&,x, )+ (T, P+T;Q)exp(—iéx, —i&yx, ), (2.7)

u, exp(iélxl + i‘fzxz) exp(_i§1x1 _i%gzxz) , (2.6

3
where the dimensionless matrices T, are T;, = ZLI oLt ij exp(+iép,,x,). The unknown

a=1

vectors P and Q are obtained from the boundary condition in Eq. (2.3),
P+Q=a, (2.8)
and the continuity condition at the film-substrate interface (x, =—d ),
B,C,P-B,C/Q=B,(C,P+C,Q). (2.9)

where C; =T,

e Consequently,

X3=—

BI_BII C; 1_31 BH 6: h ]_31 BH E:_
m_ [(B,~B,)C, +(B,+B,)C; | (B, +B,)C/3 0.10)

Q) {1—[(3I -B,)C, +(B, +BH)E;T (B, +BH)C;}§

The surface-displacement Green’s function in the Fourier’s space is therefore given by



D n - D =+ 5 ~+
-B, +(B, +1,>,1)[(BI ~-B,)C; +(B, +B,)C; ] (B, +B,)C;

w(&,E:d)= 2.11
(&:8:d) ot (2.11)
We can also define
W (h,.éd)=&Ww(&.6,:d). (2.12)
If the film and substrate are the same, then Eq. (2.6) degenerates into
1 . .
u, :EEijaj exp(—i&x, —i&,x, ), (2.13)
where
ZZAmLaJ exp(—i&p,x;). (2.14)
The displacement Green tensor in the Fourier’s space is therefore given by
- 1
W(&.6,x,)==——E(h,h,,¢x;). (2.15)
It can be shown that the surface deflection Green tensor is
1
w(&,6,x,=0)=——B(h,h,). 2.16
(6.5, =0)= 3 -B(i.) @16

2.3 Indentation Schmid Factor for Anisotropic Hertzian Contact

When an elastically anisotropic half-space is under Hertzian contact (i.e., the spherical

indenter can be approximated by a paraboloid of revolution), it has been shown that the

contact area is elliptical and the contact pressure distribution p (x1 ,xz) is given by

2 2
p(xl’x2):p0\/1_(xl/al) _(xz/az) > (2.17)
where p, is the maximum contact pressure in the contact area, and @, and a, are half axes of

the ellipse [36,37,51,52]. For typical materials, it has been found that the degree of ellipticity

is negligible, so the contact shape can be assumed to be circular. The total load is calculated

. . .. 2 o
from integrating Eq. (2.17), giving P = gimz D, - The contact analysis gives

6PE2 1/3
Py = (ﬂsz , (2.18)



where the reduced indentation modulus £, = [(1 —v? )/ E + (1 —v? ) /E, ]_l for isotropic solids

1
or £ = [1/ E_ +(1 V; )/ E, ] for anisotropic solids. £ and v, are the Young’s modulus and

Poisson’s ratio of the isotropic specimen and E,, is the effective indentation modulus of the

anisotropic specimen which will be determined later. E; and v, are the Young’s modulus and

Poisson’s ratio of the diamond indenter, respectively, i.e., 1141 GPa and 0.07.
The Hertzian stress fields can be determined from the pressure distribution in Eq. (2.17)

and the Green tensor. Consider surface tractions on the surface of a half-space:

t:to\/l—(xl/al)z—(xz/az)2 , (2.19)

with t; = (Zy,. 0,4 )T , so that the displacement field in the substrate is

! ! ’ 2 ’ 2 ’ ’
u(x,x,,x)= J.J-Sw(x1 - X/, X, —xz,x3)t0\/1—(x1/a1) —(x)/a,) dxjdx,, (2.20)
where the Green tensor w(x,,x,,x,) is given in the previous section.
Substituting Eq. (2.15) into Eq. (2.20) and only considering the normal surface traction,

Le, t, = (O, 0, p, )T, we get

j [ 1=(x2 + %) Ja? dxiain; | j (B Exy)e g ag,

po ZH (52 +x7) a2 dxian, [ 1, (b, )dOf e g 2,21

lpoz_[ AU { a—ga4_11n(g“+lJ}d6?

g, 1

where g, =—p_ x, —hx —h,x,. As pointed out by Willis [51], an appropriate domain of

definition of In (z) in the above is the z -plane cut along the negative real axis. Since g,

g, +1
8.~

always has a positive imaginary part, we get —z < arg[ j < 0. In the calculation of

stress fields from o; = ¢;,u, , with elastic stiffness tensor c;,, , we need the displacement

gradients:

oy 1)y 8apy| 8at]

axﬂ 27rzj hﬂA’“L”3{ 2 ln(g —IJ
8. +1

8x3 2”2_[ P a3{ ln(g _lj}dﬁ

(2.22)




We have validated the above approach by comparing to the available Hertzian stress fields
for elastically isotropic solids. In this case, the eigen-problem in determining p, becomes

degenerated and gives rise to repeated roots. A small perturbation to the elastic constants will

add a slight anisotropy to regularize this problem.

The resolved shear stress, 7“), on the « -th slip system of the substrate is computed

rss

from the indentation stress fields, Oy by

9 = g s @) (2.23)

rss /e J ?
where s; and m; are the slip direction and slip normal, respectively. Thus we define the

indentation Schmid factor, S, under Hertzian contact as the ratio of the maximum resolved

shear stress to the maximum contact pressure, namely,

Tmax 1
S==m = max{z(x)}. (2.24)
po pO (a) { > ( )}

As long as the stress fields, o (xk ) , are known, we can determine the slip system and the

location that reach 7™

In calculating the indentation Schmid factor from the contact stress fields and Eq. (2.24),
we use the Nelder-Mead simplex algorithm [53] to search for the maximum of the resolved
shear stress. Since the stress fields vary slowly near their extrema, we found that a variation
of £0.05a near the maximum location will not lead to noticeable change of the resolved
shear stress. Figure 2.2 plots the S contours for Ni (FCC structure) and NiAl (B2 structure)

single crystals. Elastic constants used are c¢,;, =244 GPa, c¢,=158 GPa, and c,, =102 GPa for
Ni, and ¢, =199 GPa, c¢,,=137 GPa, and c,,=116 GPa for NiAl. We confirm that if the
indentation direction is located inside the standard [001] triangle in the inverse pole figure,
the maximum resolved shear stress is always reached at the primary slip system, being

(1 Tl)[Ol 1] for Ni and(110)[001] for NiAl If the indentation direction is located on the
vertices or boundaries of the standard [001] triangle, at least two slip systems will have the
same indentation Schmid factor. Similar to the uniaxial test for Ni, if the indentation direction

is on the [001]—[111]boundary, we get the (Tl 1)[101] conjugate slip system; on the [001]-

[101] boundary, we get the (1 1 1)[OT1] critical slip system; and on [101] —[l 1 1] boundary,
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we get the (ITI)[I 10] coplanar slip system. The three vertices at [101], [111], and [001]

have 4, 6 and 8 active slip systems, respectively.

As shown in Fig. 2.2, contours of the indentation Schmid factor form a set of concentric
circles, as opposed to ellipses for uniaxial tests, in the inverse pole figure. Within calculation
accuracy, the location where the indentation Schmid factor reaches maximum on the <001>
standard triangle is the same as that where the uniaxial Schmid factor reaches maximum. For
Ni, S varies by about 20% from minimum to maximum value. For NiAl, the variation of
S is about 40%.

Most pop-in analyses used the Hertzian isotropic contact results and found the maximum
shear stress (as opposed to maximum resolved shear stress) along the symmetry axis. The
consideration of elastic anisotropy and slip systems will lead to different results. Figure 2.3
plots the location where the resolved shear stress fields of all possible slip systems reach
maximum for NiAl single crystal under spherical indentation as a function of the indentation

direction. Since these locations do not vary significantly along the depth direction, i.e.,

x; =—(0.43£0.03)a, we thus plot the location trajectory on the (x,,x,) plane when the

indentation direction varies along [mml] , [m%l], and [mOl] with m varying from 0 to 1.

These locations can be very far from the contact center, especially when the surface normal is

close to <1 10> )

2.4 Effective Indentation Modulus of Elastically Anisotropic Solids

For an elastically isotropic half-space indented by an axisymmetric, frictionless indenter,

the classic Sneddon solution gives the contact stiffness, S, = 2aF, [54], where the reduced

indentation modulus is £, = [(1 -V ) / E + (1 -v! ) / E, T . Using the cumulative superposition

method [41], with an increment of the indentation penetration, the contact problem can be
regarded as being superposed with a flat-ended circular punch contact with radius equal to the
current contact size. The relationship between contact size and indentation depth is not

needed for the interest of contact stiffness. Consequently, the relationship, S, = 2aFE , is valid

for any axisymmetric contact, irrespective of the actual indenter shape. However, a correction
factor needs to be introduced when the contact is frictional, or the contact shape is non-

circular, or the two solids cannot be approximated by elastic half-spaces.
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For an elastically anisotropic half-space indented by a flat-ended circular/elliptical
indenter or a paraboloid of revolution (i.e., Hertzian contact), the deformation fields have
been solved using the surface-displacement Green’s function [36,37,51]. For arbitrary
indenters, according to the cumulative superposition method, the contact stiffness is still
given by a flat-ended punch contact problem with the end shape given by the current contact
shape. During indentation, the shape of the contact area, however, does not necessarily
remain the same even for an axisymmetric indenter. For example, the contact shape for
Hertzian contact is elliptical, but the elliptical contact area is only an approximation for a
conical indentation. For a conical indenter with a dull spherical tip, the contact shape thus
varies during the indentation. From a practical standpoint, we can determine the indentation
modulus from the circular contact on an elastically anisotropic half-space, and the result does
not differ noticeably from an arbitrary axisymmetric indentation problem [36,37].

The effective indentation modulus £, is determined from the Green tensor in Eq. (2.16),

giving rise to

1 2z -
E, = {5 jo B, (hl,hz)de} . (2.25)
Figure 2.4 plots the contours of £, for Ni and NiAl single crystals. Both crystals have the

elastic anisotropy parameter, (c,, +2c,, )/c,, > 1, so that E)' > E\0' > EJ'.

2.5 An Approximate Formulation of the Effective Indentation Modulus of
Elastically Anisotropic Film-on-Substrate Systems

For a film-on-substrate system, the contact stiffness is again given by a flat-ended punch
contact, while the contact size and shape are determined by the indenter shape, indentation
depth (or applied load), and elastic properties of film and substrate materials. For a flat-ended
punch contact, the contact pressure distribution has to be determined by solving a set of

integral equations. This difficulty can be avoided by assuming a circular contact with
-1/2
pressure of the form of [1 —(r/ a)zJ , which allows us to derive an approximate

representation of the effective modulus. Such a pressure distribution is the analytical solution
for flat-ended circular punch contact on an elastic (either isotropic or anisotropic) half-space.
As shown in [40], this assumption agrees extremely well with the finite element simulations

for both normal and tangential contacts on elastically isotropic film-on-substrate systems.
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The contact pressure is assumed to be

tO
Oy =—T——,
» \/1—1’2/612

with 7* = x7 +x7, so that the total normal force is F, =2za’t, . The surface deflection in the

(2.26)

normal direction is

xl,xz,

— x|, X, — X} ) dx;dx; , (2.27)

” wys (x,
\/1 x1 + x2
where w,, is a component of the Green tensor in Eq. (2.11), i.e., the normal surface

deflection at (x,,x,) due to a point force applied in x, direction at (x],x} ). Substituting the

two-dimensional Fourier transform of w;, (i.e., transforming x, to & ) into Eq. (2.27) gives

t A —in- my’ ' '
(31,35, 0) == [[ oy (m, fasd ) e ™ dman, [ dyidy,, (228

-y
where 17, =aé,, y,=x,/a,and y=./y} +y; . Using the relationship,
1 1 — 1 y'
N ’ —eﬂ])’dyrdy' — —J ny' dy(’ (229)
”J..[yﬁl ’l_yrz 1 2 .[OW 0( )

and the definition in Eq. (2.12) gives

!

1 2z ©
uy (x,,x,,0 I dyJ.d J‘Wm(H,U%jcos[nycos(ﬁ—@]%(ny')dn,(2.30)
0 0

with ¢ =tan"' (,/y, ). Consequently, we define the effective indentation modulus of film-

on-substrate system as

gro o _7al 2.31)
2au,  u,

with u, = iﬂAuS (x,,x,,0)dx,dx, .
Now consider some degenerate cases. For a homogeneous and elastically isotropic half-

space, WB = (1 —y? ) / 7E , and Eq. (2.30) becomes a constant, namely,
u, = wat iy, = F,(1-v*) 24E (2.32)
which recovers the Sneddon’s solution. For a homogeneous and elastically anisotropic half-

space, Wy, =W, (6), and Eq. (2.30) is again a constant, given by

13



2z
uy =70 [ 7, (0)do =" [ 1, (6)do. (2.33)

27 -l
Therefore, the effective modulus is defined by £ = [% I W, (0)d 9} , which agrees with
0

the literature results [36,37]. This is the same representation as Eq. (2.25). For an elastically
isotropic film-on-substrate system, W, =, (17d/a), and Egs. (2.30) and (2.31) have been

evaluated in the earlier work [40].
We choose fused silica as the substrate material (isotropic, £=71GPa and v=0.17), and
copper and nickel single crystals as the film material with surface normal in the (001) or (111)

direction. For copper, the elastic constants in contracted form are ¢, =168.4GPa,
¢,,=121.4GPa, and c,,=75.4GPa. For nickel, they are ¢, =244GPa, c,,=158GPa, and
¢4, =102GPa. It should be noted that the degrees of anisotropy, as defined by (¢, +2¢,,) / ¢ s

for both copper and nickel single crystals are larger than unity. For a generally anisotropic
film-on-substrate system, the Green’s function in Eq. (2.11) can be easily calculated from an
algebraic eigenvalue problem, while the time-consuming part is the evaluation of the triple
integral in Eq. (2.30). An efficient method for the evaluation of integrals with highly
oscillatory integrand, e.g., the Bessel function in our case, is discussed below.

The method in [55-57] is adopted to efficiently evaluate integrals with highly oscillatory

integrands. The integral of our interest, Eq. (2.30), is the Bessel-trigonometric transformation:
1 :J-:g(x)eir‘xJO (r,x)dx, (2.34)

where g(x) is a non-rapidly oscillatory function. Define an auxiliary function

w(x)=e"(J,(rx), J, (r2x))T . The properties of Bessel functions lead to

w'(x)=A(x)wW(x),

A(x)z(irl " j (2.35)

roin—1/x
Our goal is to find a vector, p(x)=(p,(x), p,(x)), which satisfies
p'(x)+p(x)A(x)=(g(x).0) (2.36)
so that
(p()w(x)) =P ()W (x)+p()W (x) =g (x)e" Iy (5x).  237)
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Consequently, the integral in Eq. (2.34) is given by
b .
1= J.a g(x)e™J, (rzx)dx = p(b)w(b) —p(a)w(a) . (2.38)
The problem of evaluating Eq. (2.34) is thus transformed into the problem of finding a non-

rapidly-oscillatory particular solution of p (x) from Eq. (2.36) with no boundary conditions

prescribed. The procedure to find an approximation of this particular solution is given by a
collocation method in [55-57].

The accuracy of our approximate representation in Egs. (2.30) and (2.31) is compared to
detailed three-dimensional finite element simulations using the commercial software
ABAQUS. A flat-ended circular punch with a fixed radius a is indented into the film-on-
substrate system. The film thickness varies from 0 to 5a and frictionless condition is adopted.
The fine mesh size is 0.0125 a near the contact edge and the maximum indentation depth is
0.01 a . Because of crystallographic symmetry, 1/8 of the half-space is used for (001)
indentation and 1/6 for (111) indentation. The calculation cell size is 500 a, so that the
faraway boundary conditions have negligible contributions to the contact stiffness. The entire
model includes 47,240 six- and eight-node elements (C3D6 and C3DS).

Figure 2.5 compares the theoretical prediction (solid lines) of the effective indentation

modulus E”, as normalized by the effective modulus of fused silica E, to the finite element

results (discrete markers, only for the copper film on fused-silica system). It is found that £~

is a monotonic function of the ratio d/a . As d/a — 0, the effective modulus approaches that
of the substrate material, i.e., E- — Ej,. The asymptotic limit, £, , can be calculated from

Eq.(2.33), being E, ,,=134GPa, E_ ,,, =152GPa, E,,

i(001)

=203GPa, and E

*
Ni(111)

(001) (1) =223GPa.
However, it is difficult to approach this asymptotic limit as d/a — o . For copper on fused

silica systems, this limit is practically reached when d/a > 15 ; for nickel on fused silica
systems, d/a >20. A larger d/a is needed if ‘EI* - E, ‘ / E, increases. In addition, we note

that the prediction and finite element results differ the most when d/a ~ 1, mainly due to the

-1/2
difference between the assumed pressure distribution, [1 —(r/ a)z] , and the exact solution

at this d/a regime.

The use of load-displacement curves obtained from instrumented nanoindentation
technique cannot accurately determine the film properties because of the difficulty of

decoupling the film deformation behavior from substrate effects. In practice, the indentation
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depth is often limited to less than 10% of the film thickness in order to minimize the effect of
the substrate on the measurement. Our results in Fig. 2.5 suggest that this empirical rule is
overestimated. When both film and substrate deform elastically, a large cutoff ratio, e.g.,
d/a~15, is required for the effective indentation modulus to approach that of the film
material. For Berkovich indenter, this cutoff corresponds to d/J, ~ 25 with indentation depth
o0, . The effective indentation modulus for copper on fused silica at indentation depth being
10% of the film thickness is found to be about 10% less than the indentation modulus of
copper. Consequently, an alternative and commonly used approach is to utilize the
measurements at intermediate indentation depths, based on the elastic prediction of £~ as a
function of d/a and the elastic constants of film and substrate effects. As shown in this work,
the derivation of this relationship is highly simplified because the use of cumulative
superposition method avoids determining the relationship between contact size and depth.
However, one major difficulty of this approach is that the indentation modulus derived from
the contact stiffness measurement may differ significantly from the theoretical prediction
because of the strong dependence of contact stiffness on material pileup/sink-in, contact
shape, friction, and modulus mismatch.

Even for elastic contact, a correction factor £, needs to be introduced in the relationship
between contact stiffness S, and effective indentation modulus £, S, =2aE” 3, [40]. For an

elastically isotropic half-space, £, =1 for frictionless circular contact, and will be off unity

for frictional and non-circular contact. For elastic-plastic contact, the contact stiffness should
be derived from the contact between the indenter and a deformed surface, since the analytical
elastic-contact solution is only valid for half-space contact problems. The correction factor
may vary considerably with respect to the material pileup or sink-in due to plastic
deformation. Our preliminary finite element simulations have shown that /8, varies within
0.7~1.3 when using a range of cube-corner to Berkovich indenters, frictionless to infinite
friction condition, and elastic to very soft material ( £/o, ~1/1000 with yield stress o, ). For
elastic-plastic contact on film-on-substrate system, this correction factor also depends on
additional parameters such as modulus and strength mismatch. Consequently, in order to

compare the theoretically predicted indentation modulus to the nanoindentation

measurements, we either need to conduct heady-duty finite element simulations to obtain an

accurate relationship of S, =2aE"f3,, or incorporate additional experimental information
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such as the topography measurement or the use of multiple indenters with varying indenter

angle or radius.
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Figure 2.1 Schematic illustration of the film-on-substrate system under a circular contact.

The unit vector (h1 ,h, ), lying on the (xl,xz) plane, gives the direction cosines of the



indentation Schmid factor for circular contact of Ni
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Figure 2.2 Contours of the indentation Schmid factor of elastically homogeneous
anisotropic solids under spherical indentation, defined as the ratio of maximum

resolved shear stress to the maximum contact pressure on a homogeneous substrate,

plotted for (a) Ni single crystal with FCC structure and {1 1 1} <0T1> slip systems,

and (b) NiAl single crystal with B2 structure and {110}(001) slip systems.
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Figure 2.3 The location where the resolved shear stress fields of all possible slip systems
reach maximum for NiAl single crystal under spherical indentation depends on the

indentation orientation. Since these locations do not vary significantly along the

depth direction, i.e., x; =—(0.43+0.03)a, we thus plot them on the (x,,x,) plane

along [mml] , [m%l], and [mOl] with m varying from 0 to 1.
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Figure 2.4 Contours of the effective indentation modulus of elastically homogeneous

anisotropic solids under spherical indentation, plotted for (a) Ni and (b) NiAl single crystals.
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Figure 2.5 Effective modulus of the film-on-substrate system, as normalized by the effective modulus
of the substrate, plotted against the ratio of film thickness d to contact radiusa . Solid lines are
predictions from Eq. (2.31), and discrete markers are results from finite element analysis (FEA). Film
materials are copper and nickel with surface normal in the (001) and (111) directions, and substrate

material is fused silica.
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Chapter 111

Activation Energy for Thermally Activated, Dislocation

Nucleation Process

3.1 Introduction

As described in previous chapters, the nanoindentation pop-in event in defect-free single
crystals is a result of homogeneous dislocation nucleation underneath the indenter. When the
maximum resolved shear stress underneath the indenter reaches the theoretical strength of the
material, dislocation will nucleate homogeneously, multiply and cause the indenter to
suddenly jump into the specimen. The homogeneous dislocation nucleation process is a
stress-assisted, thermally activated process. When the applied load is less than but close to the
critical load for homogeneous dislocation nucleation, the thermal energy can activate the
dislocation nucleation process. Therefore, the activation energy for dislocation nucleation is
an important issue and needs to be quantitatively studied.

A dislocation is usually modeled either by the Volterra model, which treats the
dislocation as a mathematical discontinuity, or by the Peierls-Nabarro model, which treats the
dislocation core as a continuous slip field [58]. From the Volterra dislocation model, closed
form solutions can be derived for various dislocation activities such as dislocation mutual
interactions [58,59], interactions with other material defects [60-64], and interactions with
other geometric features [22,23,65]. From the Peierls-Nabarro dislocation model, a number of
numerical modeling methods have been developed to study dislocation activities in more
complicated scenarios [65-73].

In this Chapter, we first briefly describe how to calculate the activation energy for
homogeneous dislocation nucleation from the Volterra dislocation model. Then, we introduce
a new method which implements the Rice-Peierls theory [74, 75] into finite element analysis
to model dislocation activities. The advantage of using finite element method (FEM),
compared to other numerical methods such as the variational boundary integral method, is
that it can solve more complex problems, and it costs less computation time when compared
to molecular simulations. In our method, a dissipative cohesive interface model which treats
the dislocation core as a continuous, inhomogeneous lattice slip field is implemented into the
slip plane. We find the relative slip field on the slip plane by balancing the force introduced

from our cohesive interface model and the applied force. We then use our method to solve
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problems of homogeneous dislocation nucleation, dislocation nucleation from a planar crack
tip, and trailing partial dislocation nucleation after a leading partial dislocation has emitted
from a crack tip. The activation energy for dislocation nucleation can be obtained from the

stable and saddle-point solutions when the applied load is less than the athermal limit.

3.2 Activation Energy for Homogeneous Dislocation Nucleation by the
Volterra Dislocation Model

Consider a Volterra dislocation loop with radius p under an applied shear stress 7 in an

infinite solid. The total potential energy is [58]

2
M, =222 22 [ 32|z, G.1)
4 \1-v er,

where 7, is the dislocation core cut-off size, x the shear modulus, b the magnitude of

Burger vector, and v Possion’s ratio. The first term is the self-energy of the dislocation loop

and the second term is the work done by the applied stress. The theoretical strength is

achieved when OI1,_ . /0p=0 and 0°I1_ . /0p° =0, leading to,

total

S (2_Vj. (3.2)

re’r, \ 1-v

total

When 7 <1

crt

there are two solutions of p lead to the extrema of I1,,, denoted as p, . and

total >

Povidie Puuin < Poaaaie)- The activation energy is therefore,

AH = Htotal (psaddle ) - Htutal (pmin ) (33)

The solution of the activation energy will be presented shortly.

3.3 Activation Energy for Homogeneous Dislocation Nucleation by the

Rice-Peierls Dislocation Model

Consider an infinite solid under pure shear stress. The homogeneous dislocation
nucleation will occur when the applied load reaches the theoretical strength of the material.
Our three-dimensional finite element model is shown in Fig. 3.1 for this case. A half model is
used because of symmetry about the x-z plane. In two dimensional analysis, the shear stress
on the slip plane is taken to be a periodic function of the relative slip across the slip plane [74,

75), 9,
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T=1, Sin (%) (3.4a)

o=A—- LA sin [2&} (3.4b)
2z b

where 7 the interface theoretical strength in shear, and A the relative atomic displacement
across two adjacent atomic layer. The relationship of 6 and A in Eq. (3.4b) is introduced so
that the initial slope of 7 ~A is infinite (Rice, 1992). The slip field on the slip plane is
determined by balancing the force due to applied field and the force due to lattice disregistry.
The interplanar potential on the slip plane is,

o (A)= Tl i (%Aj (3.5)

T

A dislocation is considered to nucleate when A =5b/2, corresponding to the moment that the

. . . . . . ToD

interplanar potential @ (A)on the slip plane reaches its maximum, i.e. —=—.
V4

The total potential energy I1 as a functional of the interface slip field, Ais [78],
=TT, + cD(A)dS+1j n-&-AdS-[ n-6"" . AdS (3.6)
0 Js 2Jds s ’

where, n denotes the interface normal, 6 is the self stress due to a non-uniform A when the

elastic :

externally applied force is zero, and 6¢““* is the elastic stress fields when A =0 (i.e., when

there is no dislocation). In Eq. (3.6), I1 is the potential energy of the elastic system when

there is no dislocation, the second term is the energy gained on the slip plane when
dislocation slips, the third term is the energy change of the elastic solids outside the slip plane
duce to the introduced dislocation, and the last term is the interaction energy between the
elastic stress field and the relative slip on the slip plane. The equilibrium slip distribution
corresponds to a stationary potential energy.

To calculate the relative slip fields of the slip plane, we implement the above formulation
into a commercial finite element package, ABAQUS, via a User-defined ELement (UEL)
subroutine. It should be noted that, in two dimensional analysis, the slip plane is prohibited to
open in its normal direction, and Eq. (3.4) is used along the slip direction. In three
dimensional analysis, the slip plane is constrained in the normal direction, and shear stresses
along the slip direction and the direction normal to the slip on the slip plane, respectively,

have the form of,
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274 ] (3.72)

T, = Tax sm(

T =To sin(z’ZAz j (3.7b)

where A _and A_are atomic slip disregistry along x and z direction respectively. More

realistic y surface can be found from literature [76, 77], but we here just use a simple one to

illustrate the efficiency of our method.

Because the interplanar potential is periodic, dislocation nucleation corresponds to an
elastic snap-back instability that occurs after the total potential energy reaches its peak. When
the total potential energy is less than its peak value, there are two solutions on the slip plane.
One solution corresponds to the minimum potential energy state, denoted as the stable

solution, and the other one is the saddle point solution. Each solution has its result of

8. (x,¥)and &, (x,y) on the slip plane (5,

m

i (x,7)<6,.,(x,»)), and the activation energy
of dislocation nucleation can be evaluated from Eq. (3.6) by,
AT <16, (5] -1 (50)]- 33)

The stable solution can be obtained straightforwardly from Newton-Raphson method used in

the Abaqus solver. To obtain the saddle point solution, an initial trial function of &, (x,y) is

prescribed on the slip plane. If this guess is near the saddle point solution, the Newton-
Raphson iteration, in this case, will quickly converge to the saddle point solution.

The saddle point solution of the slip disregistry field, J_, on the slip plane at y =0 is

given in Fig. 3.2(a), which is the same as Xu and Argon’s results [67] from a variational
boundary integral method. Fig. 3.2(b)-(c) show the saddle point dislocation loop
configuration on the slip plane at different load levels. The dislocation loop at the applied

shear stress level 7, /7, =0.5in Fig. 3.2(b) has a larger size than the dislocation loop at

t /7. =09 inFig. 3.2 (c). That is, from Eq. (3.8), the smaller the applied stress is, the

appl ! “ ma
larger the activation energy of dislocation nucleation will be. Therefore, the dislocation
nucleation is a stress assisted process. Fig. 3.3 shows the normalized activation energies with
respect to various shear stress levels.

A comparison of various dislocation nucleation models, including Volterra model in
Section 3.2, Rice-Peierls model in this section, and molecular simulations is given in Fig. 3.4

and Table 3.1. It is generally found that the activation energy can be fitted to

26



All= A4 (1 ~ Tt [ T )n , where n and 4 are fitting parameters, 7,

is the applied resolved

shear stress on the dislocation, and 7,,1s the theoretical strength of the material. Fitting results

are shown in Table 3.1, where # is found to be about 1.5-4.5 and the pre-factor

A/ Gb® ~5-15. Temperature effects on elastic constants and pre-factor 4 are not considered

in this work, while literature result suggested 4=1-T7"/7, with melting temperature 7, [71].

3.4 Heterogeneous Dislocation Nucleation from a Crack Tip

Consider a half infinite crack that emits an edge dislocation from the tip under a mode I1
k-field (Fig. 3.5a). The slip plane is assumed to be coplanar with the crack. The shear stress
on the slip plane is taken to obey the same periodic function with respect to the relative slip
field as in Eq. (3.4) in two dimensional analysis and as Eq. (3.7) in three dimensional analysis.
According to Rice and Beltz [76, 77], the dislocation is considered to nucleate from the crack

tip when the applied energy release rate G,,, reaches the maximum interplanar potential on

the slip plane which is denote as G,,, (from Eq. (3.5), G, = Tamd ). In our finite element
V4

model in Fig. 3.5b, a half infinite planar crack lies on the x-z plane with a coplanar slip plane
ahead of the crack tip. The model has a thickness of H. We assume the Burgers vector is
along the x direction. Because of symmetry in x-y plane at z =—H , only half space in Fig.
3.5a is meshed. The outer surface of the model (i.e. the plane at z=0) in Fig. 3.5b is fixed
with the normal displacement to ensure the plane strain condition. Mode II displacement

boundary conditions are applied on the outer boundary in Fig. 3.5b , which in cylindrical

coordinates (r, 0) , are given by

30

{u} I (1+V)|:(2K—1)cos§_0057}

_Ky | (3.9)

. 2B N2z (1+V)[(2K+1)sin§—sin?}

y

where x =3-4v, K, is the mode II stress intensity factor, £ is Young’s modulus, and v is

Poisson’s ratio (equal to 0.3 in our analysis).
We first compare our results with Rice and Beltz’s results [75] in two-dimensional

analysis. In this case, the crack tip has the relative slip of,
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L, 272Aﬁp
O =4, — py sin 5 (3.10)

where A, has the relationship with the applied energy release rate G, ,

appl c

A
G /G, =sin4[”b"f’j G.11)

where G, =(1-v)(K, ) /2u. Solutions of &

ol = i (¥)and &, (x)are shown in Fig. 3.6. They
are exactly the same as Rice and Beltz’s. It is expected because essentially we have solved
the same equilibrium equation with same boundary conditions: one by solving the integral
equation in Rice and Beltz, and the other by finite element method in our work. The 2D
activation energy results of dislocation nucleation from crack tip are shown in Fig. 3.7. We
also compare our results that use slanted model of Eq. (3.4) in the cohesive plane to those
using the simple sinusoidal model [65]. It is seen that the simple sinusoidal model has larger
activation energy than the slanted model at the same applied load level. This is because the
slanted model gives an infinite slope at 6 =0, which means it is harder for the slanted model

to open at small relative slip of the slip plane than the simple sinusoidal model. However,

G,,, for dislocation nucleation from the crack tip for both models are the same. The simple

sinusoidal model causes much less convergence problem during computation than the slanted
model. If one only needs to find the critical condition for dislocation nucleation, the simple
sinusoidal model will be an ideal choice.

As an advantage of finite element analysis, we extend our model into three-dimensional
computation. In Fig. 3.8, the dislocation loop from the planar crack tip is visualized by the

/G, =09inFig.3.8 (a)and G, ,/G_., =0.71in Fig. 3.8 (b). The

crit appl crit

relative slip field at G

appl
dislocation loops are represented by the relative slip distribution in x direction on the slip
plane. Similar to the homogeneous dislocation nucleation, a large applied load will facilitate
dislocation nucleation from the crack tip because it corresponds to a reduced activation
energy. Also, the maximum ¢ in our results does not exceed the magnitude of a Burgers
vector. Therefore, the assumption used in the 3D asymptotic analysis (i.e.£/b > 0.2, where
¢ is the perturbation value) in Ref. [75] will overestimate the relative slip on the slip plane.
Admittedly, the maximum & is also related to the angle between the slip plane and the crack

tip [72], and the ratio between K, and K, [66, 70]. Future work is needed to see if there

exists a saddle point solution on the slip plane when a full dislocation has already been
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generated and moved away from the crack tip (i.e. the maximum ¢ on the slip plane is larger
than a Burgers vector).

We also examine another prediction by Rice and Beltz in Ref. [75]. In their work, they
use the asymptotic method to obtain an approximate saddle point solution, consisting of a
local protrusion of a dislocation loop. They argued that the activation energy, AIT*”, for
three-dimensional dislocation nucleation varies with the model thickness H in Fig. 3.5b and is
close to the product of ATT*” and H (i.e. ATT’” ~ HAIT*” ) when H is small, because the small

thickness does not allow the development of the local protrusion in the thickness direction

and thus force the saddle-point solution to be a independent of z. And AIT*” should reach a
plateau as H increases. They calculated a case when the applied energy release rate is close to

/G

crit

the critical value (i.e., G,,,

=0.9) where their asymptotic approximation is most
reliable, and found out that HAU>” agrees with the actual AIT*” up to H about 17b. We

verify their prediction in Fig. 3.9. Three-dimensional activation energies at G,,, /G, =0.9

/G

crit

(shown in circle mark solid line), and G,,,

=0.7 (shown in square mark solid line) are
given as a function of thickness H/b. HAIT*” is plotted as solid lines to compare with the 3D

results. Our results exhibit the same trend as that predicted by Rice and Beltz. In our

simulations, HAIT*” is close to AIT*” until H reaches about 135.

3.5 Trailing or Twinning Partial Dislocation Nucleation from a Crack Tip

After a leading partial dislocation has been emitted from a crack tip, if it is followed by a
trailing partial dislocation on the same slip plane, a stacking fault will be created. On the
other hand, if the leading partial dislocation is followed by a twinning partial dislocation of
the same Burgers vector on the adjacent slip plane, deformation twinning (DT) occurs and the
subsequent partial dislocation of the same character will follow in a similar behavior, thus
widening and extending the twin region outwards. DT is usually assumed to heterogeneously
nucleate at pre-existing defect sites in materials such as grain boundaries, dislocations and
dislocation pile-ups, surfaces and crack tips. Warner et al. [73] studied the competition
between trailing and twinning partial dislocation nucleation from a crack tip under mode I
loading using multiscale simulation in two-dimensional analysis. They found the transition
state that the activation energy for trailing partial dislocation emission becomes lower than

that for twinning partial dislocation with respect to the decrease of applied load, thus leading
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to longer times or slower strain rates for the twinning partial to occur in their study. Here we
present our results of a trailing partial dislocation nucleation criterion from a crack tip under
mode II loading after a leading partial dislocation has been emitted. The corresponding
relative slip distributions of the slip plane under different load levels have been calculated.
Twinning partial dislocation simulation will be left as a future work.

The slip potential @ along the leading to trailing slip path is [79],

®=aysin* 2t gy sin” 22 (3.12)
a
7143}‘ _?l—i_ V}/lif _alyusf

where ¢, =y, and a, = . 7, and are the extrema of @, given by

2
6.616 and 8.007 (meV/A?) for Al single crystals. Fig. 3.10 shows the » potential on the slip

plane, i.e. Eq. (3.12), normalized by the unstable stacking fault energy, y,,,, along the

leading-to-trailing partial dislocation slip path as a function of relative slip along the slip path.

Here, for each G, , between y, . and y,,,, there are four solutions denoted as “A”, “B”, “C”

and “D”. “A” and “C”, respectively, are stationary solutions of the leading partial dislocation
and the following trailing partial dislocation nucleation. “B” and “D”, respectively are saddle
point solutions for the leading partial dislocation nucleation and trailing partial dislocation
nucleation. The total energy and activation energy equation can be obtained by substituting
Eq. (3.12) into Eq. (3.6) and Eq. (3.8). “A” can be directly obtained from Newton-Raphson
algorithm. “B”, “C” and “D” are obtained with similar technique that has been introduced in
the previous section. We prescribe trial relative slip distributions on the slip plane near the
actual solution of “B”, “C” and “D” and our Newton-Raphson iterations will converge to the
actual solutions.

The relative slip fields of the slip plane corresponding to “A”, “B”, “C” and “D” points
along the slip plane are shown in Fig. 3.11. As expected, when the applied load increases,
these relative slip profiles will move closer to each other, corresponding to the athermal

nucleation event.
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Table 3.1 The activation energy Al calculated from different dislocation models as fitted to the function AIl = 4 (1 ~ Tt [ T )n where n

and A are fitting parameters, 7,,, 1s the applied resolved shear stress, and 7, is the theoretical strength of the material.

Dislocation Model A / Gb® n Remarks
Volterra model [17] 5 2.8 Cutoff radius, 7, = 0.5b
5 2.3 Cutoff radius, 7, =0.91
Gb (2-
Theoretical stress, 7, =—; ( Vj
rer,\1-v
Peierls model [67,77,80] 5 1.5 Frenkel-sinusoid-type y surface [67,80]
15 2.5 y surface for closed-packed surface in FCC crystals; partial

dislocation nucleation [77]

Molecular simulations [71] 4.44 4.2 Heterogeneous dislocation nucleation
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dislocation nucleation under pure shear stress. A half model is used because of
symmetry about the x-z plane.
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Figure 3.1 The three-dimensional finite element model for the study of homogeneous
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Figure 3.2 (a) The saddle point solution of the relative slip distribution, o, along the x-
direction on the slip plane at y =0 with respect to various pure shear stress values.

(b) The saddle point solution of &, on slip plane at stress level 7, , /7, =0.5.(c)

appl ma

The saddle point solution of &, on slip plane at stress levelz, , /7, =09.

max
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Figure 3.3 The activation energy for homogeneous dislocation nucleation, AIT*”, normalized

by ub’/ ( 1- v) , as a function of various applied pure-shear stress levels.
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Figure 3.4 The activation energy of homogeneous dislocation is calculated using the Volterra

dislocation analysis and the Rice-Peierls dislocation model. It is generally found
that the activation energy can be fitted to the function AIl = A4 (1 ~ Tt [ T )n where

nand A are fitting parameters, 7, ,is the applied resolved shear stress, and 7, 1s

the theoretical strength of the material.
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2. Saddle point solution
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Crack Surface Slip Plane
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Figure 3.5 (a) A planar crack under the mixed-mode k-field. The relative slip occurs on the x-z

plane, and there is no opening in the normal direction of the slip plane. (b)
Dislocation nucleation from the planar crack tip under mode II load. On the slip
plane, the opening in y direction is prohibited, and the relationship between the

shear stress and the relative slip on the x-z plane is defined in Eq. (3.6).
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Figure 3.6 The relative slip field on the slip plane under various levels of applied energy

release rate, G

p - S0lid lines are stationary point solutions and dashed lines are

saddle point solutions.
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Figure 3.7 Activation energy AIT*” per unit length obtained from the Rice-Peierls model

using the slanted and simple sinusoidal models
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Figure 3.8 The dislocation loop from the planar crack tip is visualized by the relative slip
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40



1.2

_______ ,:';___':n_________-
~C “D
0.8 Y .
> 0.6F s ]
%_ “I
0.4 .
Leading partial / “‘_
0.2 dislocation ‘_‘ |
Trailing partial Y
dislocation c
O | | | ‘ I3
0 0.5 1 1.5
o/b

Figure 3.10 The y potential on the slip plane for the leading-to-trailing partial dislocations as

a function of relative slip along the slip direction.
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Figure 3.11 The relative slip fields on the slip plane for various load levels corresponding to

points A, B, C and D in Fig. 3.10.
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Chapter IV

Geometric Effects on Dislocation Nucleation

4.1 Introduction

In this chapter, we will use the nonlinear finite element method developed in Chapter I11
to study geometric effects on dislocation nucleation. For example, people have observed
dramatic strength differences between homogeneous dislocation nucleation and dislocation
nucleation from material surfaces [88]. Atomistic simulations also confirm that the force
needed to break atomic bond near the surface is less than the force needed to break atomic
bond insider the solids [90]. Dislocation nucleation from step corners is also important to
microelectronic devices. Because in microelectronic devices, stresses arising from
mismatches in lattice constants or thermal expansion coefficients or from processing and thin
film growth may lead to failure by fracture, mass transfer, and/or configuration change
[25,81]. On the other hand, integrated electronic structures may be deliberately strained to
enhance the mobility of charge carriers and thus their functional performance [82, 83]. Stress
concentrations near sharp geometric features such as edges and corners may lead to the
nucleation of dislocations, which can act as electrical leakage paths and eventually lead to
failure of the devices [22, 23, 24]. Mask-edge defects have been observed to form during
processing steps such as the solid-phase epitaxy regrowth of amorphous silicon[84-90].
Consequently, the development of immortal, strained nano-electronics requires a knowledge
of the defect nucleation process and its dependence on the layout structure, materials
processing, and surface treatment, among many others. This paper elucidates the role of film
geometric parameters on the critical external stress for dislocation nucleation near the film

edge.

4.2 Dislocation Nucleation from Surface Edges

In the model problem (Fig. 4.1), we consider a stress-free silicon nitride (Si3Ny4) pad of

size LxW xh on an infinite silicon (Si) substrate. We choose a simple slip system with slip

direction s =(cosy,0,—siny ) and slip normal m = (siny/,0,cosy ) with y =tan™ (\/5) .

When the external stress o”' (applied only on the substrate) reaches a critical value
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(denoted as o

crt

), a dislocation loop is nucleated from the edge/corner of the SizN,4 pad.

Dimensional analysis gives

oy T g gsm™ L L] @.1)
T 7, b h W

max

where 7, and b are the theoretical strength and the Burgers vector of the silicon substrate,

y(l—vp)—/zp(l—v) ﬂ _ /1(1—2\/[,)—/1[,(1—21/)

respectively. Two Dundurs parameters, o = p = Tl Joay )] describe the

modulus mismatch, where g and v are the shear modulus and Poisson’s ratio of the
substrate, and , and v, are those of the pad [22,23, 40]. It should be noted that our model

problem may not be representative of some realistic situations. For example, the pad or mask
may be stressed, or the entire pad/substrate is covered by a film with different lattice constant,
or the pad/substrate is stressed during the solid-phase epitaxial recrystallization of amorphous
silicon that is previously created by ion implantation[84-90]. Nevertheless, as will be shown
shortly, the difference between our model problem and some other experimental setups is
merely on the stress intensity factors (SIFs) which characterize the near-edge stress fields.

When L/W — 0, the pad becomes infinite in the y direction. As previously analyzed by

Suo et al. [22,23]. the elastic stress field near the root of the edge is singular,

k,
(27zr)*2 z.(0), (4.2)

k
O-if (l", 9) = (272_;)/11 2}J (9)_'_

where r =+/x*+z” and 6 =tan"' (x/z). The eigenvalues 1, and eigenfunctions I are

determined by the Dundurs parameters and the dihedral angle at the edge root. The SIFs, k_,

can be calculated from the applied stress and geometric parameters. Thus the dislocation
would be nucleated if the stress intensity factor reaches a critical value, which is similar to
Griffith-Irwin fracture mechanics [91], and is essentially equivalent to the Rice-Thomson
criterion [46, 47, 92, 93,94]. The SIF analysis does not provide an explicit treatment of the
dislocation nucleation process, so that the relationship between the critical SIF and the mode
mixity cannot be determined. It is also difficult to determine the three-dimensional
asymptotic stress fields near the rectangular pad.

An explicit description of the dislocation nucleation process has been given in Chapter
II1. Here, a simple sinusoidal form is used for the interplanar potential. The interface shear

stress, 7, 1s related to the shear separation, A_, in the slip direction by
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We use the same treatment in Chapter III to implement Eq. (4.3) to the slip plane. Because
the interplanar potential is periodic, dislocation nucleation corresponds to an elastic snap-
back instability that occurs after the total potential energy reaches an unstable equilibrium.
The stiffness matrix becomes singular at the point of instability. The post-instability behavior

can be accurately captured by the introduction of the fictitious viscosity, ¢ , in Eq. (4.3) [95].

This methodology has also been used to coating delamination and indentation cracking
problems [96,97].

Because of symmetry in x and y directions, only a quarter space in Fig. 4.1 must be
meshed. The minimum mesh size near the edges and corners is chosen to be less than 1/3 of

the dislocation core size. The theoretical stress 7, 1s about 1/5~1/30 of the shear modulus

[17]. Its actual value is of no particular interest here, since our results are presented in
normalized forms. We take the shear modulus and Poisson’s ratio of SisNy to be 54.3 GPa
and 0.27 and those of silicon to be 68.1 GPa and 0.22, respectively [23,83]. A more
quantitative calculation should use anisotropic elastic constants of these materials[98] and an
interplanar potential based on ab initio results [99], but our conclusions here should remain

qualitatively unchanged. For finite element simulations with £ =0, the eigenvalues of the
stiffness matrix are monitored so that the onset of dislocation nucleation can be correctly

determined. In Fig. 4.2, the normalized critical stress, o, /7., , is plotted as a function of

rt

geometric parameters, L/h and L/W , with two representative values of Az, /ub . This

max

particular combination of parameters (47, /b ) is chosen to compare a characteristic

geometric length in the problem, %, to the dislocation core size, ~ ub /7

max

[95]. Similar
combinations can be found in many other cohesive interface models [100]. From Fig. 4.2, we

observe that, first, as At / b increases, the dislocation nucleation process zone becomes

max

small when compared to the pad height; the limit at Az

max

/b — oo is equivalent to the SIF

analysis [23, 83]. For a small Az, /ub (as compared to unity), o, will approach the

max

theoretical strength. Second, o, increases with a decrease of L/h because the stress

concentration at the edge will be reduced as the two side surfaces that are parallel to y-z plane

move together. Clearly, o, will approach a plateau as L/h — oo since the two side surfaces

C

will not feel the presence of each other. Third, o, increases with an increase of L/W for a
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similar reason. This three-dimensional effect is, however, not significant since the results in

Fig. 4.2 show that an increase of L/W from 1 to 20 merely leads to about 10-20% increase of

ort *
Recently, Kammler et al. [24] patterned two square SizsNy4 pads on a silicon substrate with
h=500nm and lateral sizes of 10um and 1um, respectively. When subjected to a residual
stress, the large pad exhibited dislocation nucleation, while the small pad did not, implying
that a “blanket-like” pad is more susceptible to dislocation nucleation than a “pole-like” pad.

This observation agrees with our analysis in Fig. 4.2, which suggests that o, for the large

pad should be about a half of that for the small pad.

In the results shown in Fig. 4.3, the dislocation loop is visualized by the concentration of

the resolved shear stress (RSS), o,s,m,, as normalized by o ;" 's m_ . These results are made

available by using the viscous model in Eq. (4.3). We choose the viscosity

¢t /6% =0.0014, and other parameters are L/h=10, L/W =1, h/b=20, and 7, /u=0.21.

As shown by the snapshot in Fig. 4.3(a), the first dislocation is nucleated at the corner of the
Si3N4 pad where the elastic RSS maximizes. Subsequently, a second dislocation is nucleated
at the center of the edge, as shown in Fig. 4.3(b). The shift of nucleation site is due to the
back stress generated by the first dislocation, which modifies the stress fields along the edge
line. Dislocation shapes are similar to the transmission electron microscope images by
Kammler et al [24]. The first dislocation nucleation can also conceivably occur at the edge
center because (i) dislocation nucleation is a thermally activated process, (ii) the RSS near the
corner and that near the edge center do not differ significantly, and (iii) corners are usually
rounded. Finally, note that the nucleated dislocations do not travel too far from the edge
because the stress concentration is localized only near the pad. This is particularly true for

materials with high lattice resistance.

4.3 Discussions on Geometric Effects

The dislocation nucleation process near sharp features in strained electronics has been
investigated by a dissipative cohesive interface approach. The critical stress decreases with an

increase of Az, /ub or L/h, or with a decrease of L/W . As multiple dislocations inject into

the substrate, the dislocation nucleation site shifts from the corner to the center of the edge.
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Geometric effects on dislocation nucleation can also explain the observation in recent
experiment [17]. The critical resolved shear stress for dislocation nucleation is found to be

/8 for both Mo-3Nb and Mo-10A1-4Ni single crystals under nanoindentation, while
compression tests on Mo-10A1-4Ni micropillars reveal a critical shear stress of z/26. The

stress required for half or quarter heterogeneous dislocation nucleation at the free surface and
edges of micropillars is expected to be lower than the stress needed to homogeneously
nucleate a full dislocation loop inside the bulk during nanoindentation. It can be seen from
Table 3.1 that the heterogeneous dislocation nucleation has lower activation energy than the
homogeneous dislocation nucleation at the same load level. Therefore, during micropillar
compression test, where the stress fields are uniform in the solid, the heterogeneous
dislocation is easier to be thermally activated than the homogeneous dislocation nucleation.
This may be responsible for the difference in the critical resolved shear stress between

nanoindentation test and micropillar compression test.
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appl

Figure 4.1 Schematic illustration of a rectangular silicon nitride pad with length L, width W,

and height h on an infinite silicon substrate. The slip plane (shaded) makes an angle

y from the x-y plane, and the slip direction is taken to be (cosy,0,—siny ).
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Figure 4.2 The critical stress for dislocation nucleation o, (as normalized by the
theoretical strength z__) plotted against two geometric parameters, L/h and L/W ,

with Az /ub=4.23 in (a) and 23.5 in (b).
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Figure 4.3 Representative results showing the first dislocation nucleation from the corner in

(a), and subsequently the second dislocation nucleation from the center of the edge in (b).

The resolved shear stress (RSS) contours are plotted on the slip plane.
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Chapter V

Indentation Schmid Factor and Orientation Dependence
of Nanoindentation Pop-In Behavior of NiAl Single
Crystals

5.1 Introduction

Instrumented nanoindentation techniques, which provide accurate measurements of the
indentation load, P, and the indenter penetration depth, 4, at nanometer resolution, have been
widely used to characterize small scale mechanical behavior [1-3]. Methodologies have been
established on how to extract material properties such as modulus and hardness from the
measured P~/ curves. Besides the measurement of the hardness and modulus, the P~A curves
can be used to examine the onset of elastic-plastic transition in various crystalline and
amorphous materials [4-17]. The onset of plasticity is often associated with a displacement
discontinuity on the otherwise continuous load-displacement curve, or denoted as “pop-in”,
as the indenter tip suddenly jumps into the specimen with negligible load increase. While the
pop-in event may be associated with fracture of surface oxide layer for some materials [18], it
is believed that for a defect-free crystalline material, the first displacement burst is a result of
homogeneous dislocation nucleation underneath the indenter [6,7,9-17,19-21]. This
conclusion is supported by the following observations. First, the load-displacement curve
before pop-in occurs is fully reversible, and can be fit to the Hertzian contact theory,

ngg, R (5.1)

where R is the indenter tip radius and E is the reduced indentation modulus. Thus the

deformation is purely elastic prior to the pop-in event. Second, after unloading before the first
strain burst, the Atomic Force Microscope image shows no measurable permanent shape
change on the specimen surface, while a residual shape change occurs if unloading is started
after pop-in occurs [6,9]. Third, when the first pop-in event occurs, the maximum shear stress
in the specimen is in the range of G/30~G/5 with shear modulus G for a variety of materials,
and is very close to the theoretical strength calculated by ab initio method [99]. Fourth, pop-
in loads vary in a wide range, and the statistical measurements confirm the dependence on

indentation strain rate and environmental temperature. Theoretical predictions based on the
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stress-assisted, thermally-activated, homogeneous-dislocation-nucleation model agree well
with these statistical measurements [7-10,14,17]. Consequently, nanoindentation pop-in tests
can be used as a powerful tool to study the homogeneous dislocation nucleation.

Most of previous theoretical studies assume that the homogeneous dislocation nucleation
occurs when the resolved shear stress reaches the theoretical strength, which is similar to the
Schmid law that describes the plastic flow in single crystals. At atomic length scales, stress
components other than the resolved shear stress will also affect the dislocation nucleation
process [101,102]. For uniaxial loading conditions, Tschopp et al [101,102] conducted
extensive molecular simulations on copper single crystals and concluded that for loading
directions close to <101> (or equivalently, at lower right regime on the standard <001>
triangle on the inverse pole figure), the compressive stress on the slip plane dominates the
dislocation nucleation process, while the Schmid law generally works well for loading
directions at upper left regime in the standard <001> triangle. On the other hand, the
indentation stress fields are far more complex than uniaxial tests, and the ratio of
compression to shear stress on a given slip system depends on crystallography and elastic
anisotropy. As another comparison, the single-slip-system dislocation nucleation can be
realized in single crystals under uniaxial tension with loading directions lying in the standard
<001> triangle. However, it remains unclear if the same orientation under indentation will be
still leading to dislocation nucleation on a single slip system.

In this study, the load required for homogeneous dislocations nucleation in
nanoindentation test on single crystals is investigated as a function of crystallographic
orientation and elastic anisotropy. By adopting indentation Schmid factor derived in Chapter
IT and assuming that dislocation nucleates when maximum resolved shear stress reaches the
theoretical strength, the pop-in load is predicted to be a function of indenter radius, effective
indentation modulus, indentation Schmid factor, and the theoretical strength. Comparisons to
experimental measurements will test the validity of the above relationship and fit the
theoretical strength of the specimen. By systematically varying the indentation direction, we
can investigate the pressure effects as well as the possibility of simultaneously activating

dislocation nucleation on multiple slip systems. NiAl single crystals are chosen, because the

slip systems {1 10} <001> in this B2 structure are simpler than other crystal structures so that

we will not encounter complex dislocation behavior such as partial dislocation nucleation.
The homogeneous dislocation nucleation process is a stress-assisted, thermally activated

process, so that statistical measurements with respect to different indentation directions can
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be used to further validate which stress components are playing key roles in nucleation
process, if the pop-in corresponds to homogeneous dislocation nucleation, and whether

single- versus multiple-slip-system dislocation nucleation really occurs.

5.2 Experiment

Single crystal NiAl sample was grown in an optical floating zone furnace, which is used
previously to grow other intermetallic single crystals or eutectic composites [103]. Briefly,
99.99 % pure Ni and Al metal pieces were arc melted to produce buttons, which were flipped
and remelted five times to ensure homogenization before drop casting into a copper mold and
ultimately producing an alloy with a composition of 50at % Ni - 50 at% Al. These drop-cast
ingots (10 mm in diameter and 120 mm in length) were then used as feed rods for single
crystal growth in the optical floating zone furnace. During growth of the first crystal, the
diameter of the molten zone was carefully reduced to produce a neck that prevented the
slower growing grains from propagating. This technique produced a single crystal with a
growth direction near [100] as determined by Laue back scattered X-ray diffraction.
Specimens with different crystallographic orientation were cut from this single crystal.
Before performing nanoindentation, the specimen was mounted in epoxy, ground and
polished using standard metallographic procedures. The final polishing was performed in a
water solution with colloidal silica suspension.

Nanoindentation was conducted with a MTS XP nanoindenter using a 90° conical

diamond indenter with a spherical tip at the end whose radius was ~580 nm. All tests were
performed in the continuous stiffness mode with a constant rate of /P =0.05s"". About 100
indents were made in each specimen, and the indents were placed far enough apart to avoid
interference. As shown in Fig. 5.1(a), clear pop-ins were observed for all the tests, and the

loads corresponding to the first pop-in were recorded as the pop-in loads, P, . The tested

op—in
indentation directions are shown by the open markers in the standard [001] triangle in Fig.

5.1(b). Four lines are denoted in Fig. 5.1(b) with parameter m varying from 0 to 1.

5.3 Nanoindentation pop-in load for homogeneous dislocation nucleation

We assume that the homogeneous dislocation nucleation occurs when the maximum

resolved shear stress reached the theoretical strength 7, of the material, i.e., 7). =7, . The

rss
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stress fields of elastically anisotropic solids under indentation and the indentation Schmid
factor are already given in Chapter II. Using Egs. (2.18) and (2.24) gives the predicted pop-in

load under Hertzian contact,

3 _3p2
T 7T°R
P =] — 52
et (Sj 6Ef ©-2)

The reduced modulus E, is given by Chapter II, and because our analysis is on single

E = {L+M] (5.3)

crystals, it has the form,

E,; E,

where the effective indentation modulus £, is given by Eq. (2.25), and depends on elastic

anisotropy and indentation direction.

Contours of the predicted P

crt

for NiAl single crystals under Hertzian contact are plotted
in Fig. 5.3. As we move from [001] to [111], the effective modulus E,, increases by about

16%, and the indentation Schmid factor increases by about 35%. Consequently, the predicted

pop-in load will be P : P! : P''" ~1:1:L Such a significant variation is ideal for

crt crt crt 23"
experimental validation.
To examine more closely the crystallographic dependence of the pop-in load, we now

define an effective Schmid factor by

Sez?’

1
:—rnax{ S m;

Py @

O'..s.*(“)m*.(“)‘ + kal.jm:(“)m;(a)} , (5.4)

where the second term in the braces is the stress normal to the slip plane, and £ is the normal-
shear coupling coefficient. The pop-in criterion in Eq. (5.2) will be modified by substituting

S

. for §. With several representative k values, Fig. 5.4 plots S, for spherical indentation

on NiAl with indentation directions along [mml] , [m%l], and [mOl] with m varying from 0

to 1. The location that reaches S

.y differs slightly from that of S. The small difference

between S o and S arises from the fact that normal stress and resolved shear stress are

generally comparable under the Hertzian stress fields.
Prior to the first pop-in, the load-displacement relationship can be fitted to the Hertzian
contact solution in Eq. (5.1). The fitted indentation modulus agrees well with our prediction

in Fig. 2.4 within 10% deviation for all the indentation directions. For NiAl, the major
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contribution to the dependence of P, on indentation direction arises from S, because the

variation of S is larger and the power exponent associated with .S in Eq. (5.2) is larger than

those of £ .

The nanoindentation tests were repeated over one hundred times to produce the

cumulative probability, f*, versus pop-in load, P, curves in Fig. 5.5(a). Indeed the pop-

op—in ?
in load is at maximum for <00 1> indentation direction and at minimum for <1 1 1> indentation

direction, which agree well with the prediction in Fig. 5.3. The analysis of the entire

f~P,,, curves will be conducted from the thermal activation model in the next subsection.

Here the measured pop-in loads at 90% and 80% cumulative probability are shown by the

open markers in Fig. 5.6 with indentation direction varying along [mml] , [m%l], and [mOl] .

As shown in Eq. (5.2), the only unknown parameter is the theoretical strength 7, , which is

obtained by fitting the pop-in loads at 90% cumulative probability for all the tested
indentation directions (open markers in Fig. 5.1(b)). Using the indentation Schmid factor

gives 7,=8.57 GPa, which is about G/13.5 with shear modulus on the slip system G=116
GPa. Using the effective indentation Schmid factor with £=0.1 gives 7,=9.56 GPa or

G/12.1. These values are in the typical range of theoretical strength, i.e., G/30~ G/5.

Comparisons in Fig. 5.6 indicate that the normal-shear coupling does not give significant
variation of the fitted theoretical strength, because for any indentation direction, the shear and

normal stresses on any slip systems are comparable, so that § and S, have similar

dependence on indentation direction. Consequently, the pressure effects cannot be determined
from pop-in tests under the Hertzian contact.
Discrepancies are larger for indentation directions of <001>, <214>, and <207>.

Particularly, the slope of f~P

> op—in 10T <001> is dubiously smaller than others in Fig. 5.5(a).
One may suspect this is due to the possibility of heterogeneous dislocation nucleation, which
will be discussed shortly in our thermal activation model. Another possible source of this
discrepancy may arise from the tip shape. We use a radius of R=580 nm for all the
indentation directions instead of calibrating it for every indentation direction [16].
Nonetheless, in general the Schmid-type dislocation criterion seems to work well for all the
indentation direction except for some small deviations for indentation directions near <001>

orientation. As a comparison, using molecular simulations to study copper single crystals

under uniaxial tension, Tschopp et al. [101,102] found the Schmid-type dislocation criterion
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works well for indentation directions close to the [001]-[111] boundary in the standard [001]

triangle, but not for those directions close to the [101] vertex.

5.4 Pop-in kinetics and thermally activated dislocation nucleation process

The dislocation nucleation process is a stress-assisted, thermally activated process. When
the applied resolved shear stress is lower than but close to the theoretical shear stress, an
energy barrier for dislocation nucleation exists. At finite temperatures, this activation energy

barrier can be overcome by thermal energy, thus leading to a wide range of pop-in loads as
shown in Fig. 5.5. Assuming that the activation energy AT for homogeneous dislocation

nucleation is only a function of the resolved shear stress 7 ona given slip system, we aim

to see whether the dependence of the statistical data in Fig. 5.5 on indentation direction can
also be predicted from the analysis based on the indentation Schmid factor.

With a given indentation direction, when the applied load is lower than the athermal limit,
the rate of dislocation nucleation on the « -th slip system is assumed to obey the Arrhenium

law,

ﬁ(a)

()
Al } , (5.5)

=n,exp| —
0 p|: kT

where 7, is an attempt frequency per material volume, k, is the Boltzmann constant, and T

is the absolute temperature. The activation energy for the homogeneous dislocation
nucleation can be calculated using the Volterra dislocation analysis, or using the Peierls
dislocation model, or by molecular simulations. As summarized in Chapter III, we use the

following approximation,
Al=A(1-7,,/7,) . (5.6)
where 7, is the applied shear stress. As in Table 3.1, the power exponent 7 is found to be

about 1.5-4.2 and the normalized pre-factor is 4/Gb* ~5—15.

When the indentation direction lies on the vertices and boundaries of the standard
triangle, at least two slip systems have the same maximum resolved shear stress. Clearly for
those directions close to the triangle boundary, several slip systems may have very close
values of the maximum resolved shear stress. Consequently, we need to consider possibilities

of dislocation nucleation on all the slip systems. We relate the maximum resolved shear stress
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on the « -th slip system to the maximum contact pressure by the indentation Schmid factor of
the « -th slip system,
(@ _ 1 () (@)
S —p—omax{ o, (x.) g } (5.7)
Thus we can write down the maximum applied shear stress on the « -th slip system as

5 \I3
(@) _ pla) i3 gl [ OF;
Toppl = £ P with ,B (7[3R2J )

(a)

Denote ¢~ as the survivability, i.e., probability of no pop-in, on the « -th slip system.

For a first order system, it relates to the nucleation rate by Ay = —q'(a) / q(“) where V' is the

material volume in which dislocation nucleation may occur. Using Eq. (5.5) gives

AH(U‘) (,B(a)Pl/3) JP

1 () . VJ.PPUVM (5 8)
n =-n exp| — — . .
q o J, p kT P
The cumulative probability for pop-in, f°, is now a function of P, given by
f=1-TT¢"
A(1-pPV s, ) dP ©-2)

=l-expi-N, Y. joppupf'" exp| — e -
a B

where the dimensionless parameter N, = ﬁOVP/ P will be obtained by fitting to experimental

data. In deriving the above equation, we note that the experiments were conducted at constant

P/P . The cumulative probability relates to the pop-in probability, p , by f = JO%U’H" p(P)dP

or p( o m) df/d ? opin » SO that

N, » A(1=9P% e, ) | ap
exp{—N, Zj "exp| — T - X

pop—in

(5.10)
P;{; —in /Tth)

Za: exp| — ( T

Eq. (5.10) can be integrated to produce the solid lines in Fig. 5.5(a). For all the

indentation directions, we use the same activation energy form in Eq. (5.6), and fit 7, and

NO for each indentation direction. Results for this Method (I) are given in Table 5.1. We
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found that n=5.2 and 4 =73eV ~5Gb’. The fitted theoretical stress for each indentation
direction deviates slightly from the fitted value based on pop-in loads at 90% cumulative
probability in a reasonable range. However, the fitted » value is higher than the typical values
in Table 3.1.

One hindsight arises for those with surface normal close to [001] direction. The long tail
at low pop-in loads suggests that the pop-in be resulted from sudden motion of pre-existing
dislocation or other heterogeneous dislocation nucleation mechanisms. In the cumulative
probability fitting process, the cumulative probability at applied load near the theoretical
strength has to carry all the information from lower pop-in loads including the tail area.
Therefore, the fitting parameters will tend to lower the activation energy at applied loads in

the tail region to fit the slope of the cumulative probability vs pop-in load curve, which will

consequently increase n value if we fixed 4/Gb’ =5 in our fitting. This results into a higher
n value than the typical values in Table 3.1. Consequently, we perform out fitting to the
p~ P, curves as shown by a representative fitting result in Fig. 5.7(a) for [2 1 2]

direction.

Rewriting Eq. (5.10) as,

t(P,, ) =In(N,)-Nys(P,, ). (5.11)
where the two functions t(Ppnpfm) and S(Ppopfm) are given by
P A(l—ﬁ(“)P I/S/Tth)n dP
$(Bup) =2, x| - v = (5.12)
A(1=p9pe e Y
t(P,,.,)=In(pP,,,)~In| > exp| - ( a kp;””’”/ T”’) : (5.13)
a B

Therefore we can fit N, from the slope of #~s curve.

The fitting procedure is specified as follows. With a given indentation direction, we first

generate the p ~P,

pop—in

histogram from the f~P

opin CUIVE. Then, we estimate 7, for each
direction and fix 4/Gb’ =5. Input all above parameters into Eq. (5.11), we can find » for all
directions. A given example is shown in Fig. 5.7(a). Normally, from Eq. (5.11), the s and

¢t should have a linear relationship. However, data at the left tail in Fig. 5.5(a) will not obey
this linear relationship. Fig. 5.7(b) shows typical results of probability vs pop-in load curve.

After removing the left tail, it is found that » is about 4.2 which is a reasonable value as
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shown in Table 3.1. From the fitted N,and 7, we can generate dashed line in Fig. 5.7(b)

which differs significantly from the solid line as fitted from f ~P,

op—in *
Results for the Method (II) are also given in Table 5.1. The fitted z,, is closer to the value

from pop-in loads at 90% cumulative probability than fitted from cumulative probability
curve. Most importantly, the fitted #z is found to be 4.2, which is in the appropriate range in
Table 3.1. From these two fitting Methods, it can be concluded that the kinetic analysis of
pop-in data also prove the anisotropy analysis based on the indentation Schmid factor,
suggesting that the Schmid-type criterion for homogeneous dislocation nucleation is

generally appropriate.

5.5 Discussions

The dependence of nanoindentation pop-in tests on the indentation crystallographic
direction is studied theoretically and experimentally. An indentation Schmid factor, S, is
defined as the ratio of the maximum resolved shear stress from all possible slip systems to the
maximum contact pressure. Based on the anisotropic elasticity analysis, we have derived in
closed form the stress fields under Hertzian contact, and have computed the indentation
Schmid factor for Ni and NiAl single crystals. The pop-in event, as a consequence of
homogeneous dislocation nucleation, will occur when the maximum resolved shear stress

3 3p2
th”R

reaches the theoretical strength 7, , so that the pop-in load P,, is given by P, :( < | &

with indenter radius R and reduced indentation modulus E, .
Nanoindentation tests were tested on NiAl single crystals, which have B2 structure and

{1 10} <001> simple slip systems. A number of representative crystallographic orientations on

the standard <001> triangle of the inverse pole figure were selected as indentation directions.
Comparisons between the pop-in statistical data and our theoretical predictions lead to the
following conclusions.

e The crystallographic dependence of the pop-in loads agrees reasonable well with the
predictions based on the indentation Schmid factor, which further supports that
nanoindentation pop-in corresponds to the homogeneous dislocation nucleation in defect-free

crystals.
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e The location where the maximum resolved shear stress is reached can be substantially
away from the contact center. It is primarily governed by indenter shape, elastic anisotropy,
and slip systems.

e The normal-shear coupling effects cannot be distinguished from the relationship between
measured pop-in loads and indentation direction, because the normal stress to the slip plane
and resolve shear stress under Hertzian contacts (even for anisotropic crystals) are generally

comparable and thus § in Eq. (2.24) and S, in Eq. (5.4) vary similarly with respect to the

indentation direction.

e A thermal activation model is developed to study the crystallographic dependence of the
pop-in statistics. Except for small deviations in indentation directions close to <001>,
predictions based on the Schmid-type dislocation-nucleation criterion again agree well with

the experimental measurements.
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Table 5.1 The indentation Schmid factor of the « -th slip system, S as defined in Eq. (5.7), and the fitting parameter NO = ﬁOVP/ P
and 7, in Eq. (5.9) are given with respect to a number of indentation directions. The unit of 7, is GPa. Method (I) is based on

fitting f~P, ,, asinFig. 5.5(a). Method (II) is based on fitting p~P, , and removing the left tail as in Figs. 5.5(b) and 5.8.

Indentation S(l) S(2) S(3) S(4) S(S) S(é) Method (1) Method (II)
direction o11)[100] (0T1)[100] (101)[010] (Tor)[or0] (110)[001] (Tio)[oo01] 7, N, z, N,
(fitted) (fitted) (fitted) (fitted)
<111> 0.347 0.132 0.346 0.132 0.364 0.155 8.5 6.56 8.5 3.96
<221> 0.325 0.293 0.323 0.199 0.361 0.213 8.0 6.92 8.0 6.21
<421> 0.316 0.246 0.291 0.241 0.351 0.196 8.6 9.22 8.6 22.64
<110> 0.318 0317 0.248 0.012 0318 0.097 8.6 12.90 8.6 1175
<441> 0.345 0.274 0.281 0.080 0.346 0.106 10.2 12.00 10.2 19.99
<521> 0.301 0.245 0.282 0.323 0.337 0.212 11.2 65.90 11.2. 241.67
<411> 0.258 0.278 0.258 0.257 0.331 0.250 12.5 150.00 13.0 2.7%10°
<720> 0.262 0.262 0.244 0.228 0.301 0.219 9.75 28.86 9.75 252.97
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Figure 5.1 (a) Representative load-displacement curves for NiAl single crystals under
spherical indentation with a tip radius of R=580nm. (b) Indentation directions used in the

tests are marked on the standard [001] triangle in the inverse pole figure.
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Elastic spherical indenter

Elastically anisotropic half-space

Figure 5.2 Schematic illustration of an elastically anisotropic specimen under a spherical
indenter with a radius of R. The contact area is assumed to be circular with a radius

of a.
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Figure 5.3 Contours of the critical pop-in load, P, plotted for NiAl
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normalized by F,

single crystals under spherical indentation.
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Figure 5.5 (a) The cumulative pop-in probability, £, as a function of pop-in load for spherical
indentation on NiAl single crystals with a number of indentation directions. Solid lines are
predictions from the stress-assisted, thermally activated model of homogeneous dislocation

nucleation. (b) The comparison of two fitting methods for [101] and [207] directions. The
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Figure 5.6 Comparisons between predicted and measured pop-in loads for spherical

indentation on NiAl with indentation directions along [mml] , [m%l], and [mOl] . The

experimental data of measured pop-in loads of 90% and 80% cumulative probabilities for
each direction are shown by the solid lines with open markers. The theoretical strength is fit

from all the indentation directions.
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Figure 5.6 (cont’d) Comparisons between predicted and measured pop-in loads for spherical

indentation on NiAl with indentation directions along [mml] , [m%l], and [mOl] . The

experimental data of measured pop-in loads of 90% and 80% cumulative probabilities for
each direction are shown by the solid lines with open markers. The theoretical strength is fit

from all the indentation directions.
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probability vs pop-in load curve.
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Chapter VI

Scale Effects in Pop-In Strength due to Pre-Existing
Defects

6.1 Introduction

In Chapter V, we have systematically studied nanoindentation pop-in behavior when the
governing mechanism is homogeneous dislocation nucleation in defect-free single crystals. In
this case, a dislocation will nucleate when the maximum resolved shear stress in the solid
reaches the theoretical strength of the material. When the maximum resolved shear stress is
less than but close to this athermal limit, the thermal energy can kinetically activate the
dislocation nucleation process. The predicted crystallographic dependence of the pop-in
statistics agrees well with the experimental results of B2-type NiAl single crystals. However,
a large deviation from our theoretical prediction is observed when the indentation directions
are close to <001>. As shown in Fig. 5.5(a), the cumulative probability curve exhibits a long
tail at low pop-in loads for those with surface normal close to <001> direction (which also
corresponds to large stressed-volume sizes), which suggests that the pop-in result from the
sudden motion of pre-existing dislocations or heterogeneous dislocation nucleation (e.g.,
Frank-Read dislocation nucleation).

A similar effect can be observed by using different indenter radii, as denoted as a
different type of indentation size effect (ISE) [104-106]. Experimentally, the maximum shear
stresses as determined at the measured pop-in loads exhibit a monotonic decrease with
respect to the increase of the indenter radius. A representative result is shown in Fig. 6.1 for
Mo <001> single crystals with respect to the indenter radius. In Fig. 6.1, the mean maximum
shear stresses values are measured from Fig. 2 of Ref. [105], and the error bars are generated
from 90% and 10% cumulative probability of the maximum shear stresses for each indenter
radius. When the indenter size is small (e.g., 1 15nm in our case), the stress needed for pop-in
is found to be on the order of the theoretical strength (~G/7 in this case). As the indenter
radius increases, the maximum shear stress first decreases, and data scatter increases. If the
indenter size is large enough (larger than 64 pm, in our case), the strength approaches a

plateau value and its scatter becomes negligible. When the indenter size is in the intermediate
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range (between 178nm and 64 um in Fig. 6.1), the measured pop-in loads exhibit a variety
range of scatter. This may be explained qualitatively as follows. When the indenter radius is
sufficiently small, the highly stressed zone in the material is so small that it is likely to be defect
free. Thus the pop-in results from the homogeneous dislocation nucleation at the theoretical stress.
At the limit of a large indenter, where a sufficiently large volume of material is stressed, pop-in
would tend to be caused by the sudden configurational change of the pre-existing defect networks
rather than by the homogeneous dislocation nucleation. And the critical stress required for such
defect-assisted events is supposed to be about one or two orders of magnitudes lower than the
theoretical strength of the material. For indenters with intermediate radii, pop-in would result
from the competition between these two mechanisms.

Yet another similar behavior is observed from nanoindentation tests. If the sample is
prestrained before nanoindentation test, a monotonic decrease of the measured pop-in loads
with respect to the increase of prestrain on Ni and Mo single crystals is observed [104,106].
Because a large prestrain gives a large defect density, it is more likely for the pop-in to occur
by a defect-assisted mechanism rather than by the homogeneous dislocation nucleation
mechanism.

Clearly, the critical stress for the defect-assisted pop-in mechanism is related to the
dislocation density and the indenter radius. This mechanism has been successfully
demonstrated from a stochastic model developed by Morris et al. [105], where the data scatter
in Fig. 6.1 are accurately predicted but only for the indenter size larger than 1.5um. Inspired
by this work, in this Chapter we will unify the homogeneous dislocation nucleation model in
Chapter V and the defect-assisted stochastic model to investigate the effects of indenter
radius and prestrain. The cumulative pop-in probability contains convoluted information from
the homogenous dislocation nucleation and the possible heterogeneous dislocation nucleation
due to the unstable change of existing defect network. As will be shown shortly, this unified
model accurately describes the tail effect for indentation directions close to [001] in NiAl
single crystals in Chapter V. And the predicted statistical pop-in loads from the unified model

agrees quantitatively well with the indenter radius effects and the indentation prestrain effects.

6.2 Pre-Existing Defect-Assisted, Stochastic Model (Morris et al. [105])

For a crystalline solid with pre-existing and randomly distributed defects, a pop-in event

corresponds to a sudden and unstable change of dislocation network, such as bowing out
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dislocation segment as in the Frank-Read model, breaking dislocation pinning points or
junctions, to name a few. Following Morris et al. [105], we avoid differentiating the actual
physical processes that lead to the nanoindentation pop-in behavior, but simply assume that
the pop-in will occur when the stressed volume under the indenter contains a pre-existing
defect and the shear stress is larger than 7, - a material constant assumed in this work.
This assumption is supported from the indenter radius effect. If the indenter radius is small,
the highly stressed volume in the solid is small, and thus is more likely to be defect free.
Therefore, a large pop-in load is needed. In contrast, a large indenter radius probes a large
volume in the solid, and the possibility to encounter a pre-existing defect is high, which

results in a low pop-in load.

Suppose that the crystalline solid has a pre-existingdefect density p,,,., and the highly

stressed region, where the maximum shear stress is larger than 7, , has a volume V, . The

probability, /; ( PacectsVa ) , for finding no defect in the volume ¥, obeys a Poisson

distribution, as given by [105],
IR (pdefec,, Vd) = eXP(_Pdefecsz ) ) (6.1)
The highly stressed volume under nanoindentation scales with the indenter radius (as a
loading parameter), material anisotropy, and crystallography. Assuming isotropic elastic
contact and using the maximum shear stress (rather than the resolved shear stress), 7.

max ?

under a given load P, Morris et al. has given a dimensional relationship of

V,/a = f(rdefect /T;lax) : (6.3)
where a =(3PR/A4E, )l/3 is the contact radius [107], and 7, can be derived from (2.18) and
(2.24).

The cumulative probability of pop-in is therefore,
S =121 Picgeat V.
o(Par ) . (6.2)

= 1 - eXp (_pdefectl/d )

Eq. (6.2) has been used to successfully explain the cumulative pop-in probability curves in
Fig. 6.1 but only for indenter radius larger than 1.5um. For small indenter radii, predictions

based on Eq. (6.2) will significantly overestimate the pop-in loads because the chance of
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finding a pre-existing dislocation in this case is negligibly small so that the pop-in probability

will be extremely small.

6.3 A Unified Pop-In Model Accounting for Homogenous and
Heterogeneous Dislocation Nucleation

While Eq. (6.2) has successfully predicted nanoindentation pop-ins for indenter radii
larger than 1.5 pm, for indenter radii less than 1.5 um, Eq. (6.2) will underestimate the pop-in
probability. In this case, it is the homogeneous dislocation nucleation that is responsible for
the observed pop-in behavior because of the high stress in this case. In retrospect, in Chapter
V, Eq. (5.9) only successfully predicts the cumulative pop-in probability for the homogenous
dislocation nucleation, but deviates at low loads where long tails were observed in the
cumulative pop-in probability curves for NiAl single crystals. Consequently, the cumulative
probability contains convoluted information from the homogeneous dislocation nucleation
model in Eq. (5.9) and the stochastic model in Eq. (6.2).

For a crystalline solid with a pre-existing defect density p,,,., under nanoindentation, the

total survivability, w (i.e. neither homogenous dislocation nor heterogeneous dislocation

nucleates), is given by the product of Eq. (5.8) and Eq. (6.2):

w=l-Hq(a)

A1-pOPz,) | ap

. Propin
:exp(—pdefean).exp —NOZIO exp| — o T 7 (6.4)
a B
" szpwim A(l—ﬂ(a)Pl/3/rth) P
= eXp _IO efect - exp - _
doeerd 0 dy k,T P
Thus the cumulative pop-in probability is
fl‘l}’liﬁed = 1 -w
1 B3 [ A(1=pP" ) | ap |- 6.5)
=1—exp| — PtV — exp| — —
' 0edo k,T P

Eq. (6.5) is used to generate solid lines in Fig. 6.2 based on NiAl experimental results in Fig.

5.5(a). For all indentation directions, we fix 4/Gb’ =5 and use the same activation energy
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form in Eq. (5.6). 7, and n are fitted for each indentation direction from the right part of the
cumulative pop-in probability curve. Then, we fit p,,., and 7, from the left tail of each

direction. Fitted parameters are given in Table 6.1. The fitted » value is 4 for all directions,
which is a reasonable value as compared to Table 3.1.

It is evident that Eq. (6.5) successfully predicts both the stochastic (due to pre-existing
defects) and statistical (due to thermal effects) behavior of the nanoindentation pop-in events.
The long tails that appear for indentations directions close to <100> direction are
quantitatively reproduced. From Eq. (2.18) and Eq. (2.24), the contact radius has a

relationship with the effective indentation modulus and the indentation Schmid factor as

a=rxRr. /2E.S.And from Fig. 2.2(b) and 2.4(b), directions near <100> have smaller
values of E S than other directions at the right part of the standard [001] triangle in the

inverse pole figure. Thus, if the same level of resolved shear stress is attained in every
indentation direction, those directions near <100> will probe larger volumes than the rest, and
thus are more susceptible to pre-existing defects. Consequently, the large material anisotropy
in NiAl leads to longer tails due to the stochastic effects for indentation directions close to

<100>. Our fitting results give 7,,,., approximately 1/50 of 7,

th >

which is close to the strength
of typical Frank-Read dislocation source [108]. And p,,., is on the same order of magnitude

as the experiment observation [105].

The unified model can also predict the indenter radius effect. As has been mentioned
earlier in this Chapter, Eq. (6.2) only works well for indenters with sizes larger than 1.5um in
Fig. 6.1, where the maximum shear stress at pop-in loads is much less than the theoretical
strength. We use Eq. (6.5) to fit experimental data of Mo <100> single crystals of indenter
size 115nm, 178nm, and 580nm in Fig. 6.1. Results are plotted in Fig. 6.3. We first fit the
data with indenter size 115nm using Eq. (5.8) as shown by the solid line. Because the
indenter radius is very small, the highly stressed region underneath the indenter is so small
that there is hardly any chance for a defect to pre-exist. Therefore, all measured pop-in loads
result from homogeneous dislocation nucleation. The fact that no tail is observed in Fig. 6.3
can aid this statement. The fitted value of 4/ Gb’ is 5, and n is found to be 2.5, which are
very reasonable values as suggested in Table 3.1. After we fit 115nm indenter, we use the
fitted 4 and n to generate solid lines for measurements using indenters with radius of

178nm and 580nm. Details on fitting procedure and sensitivity of the fitting parameters
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(Paosecs @d 7., ) Will be given in the next section. As can be seen from Fig. 6.3, when the

indenter size is small, e.g. 115nm, the pop-in probability is governed by the homogenous
dislocation nucleation behavior. For intermediate sized indenters (e.g., 178nm and 580nm
here), the cumulative probability contains information from both thermally activated
homogeneous dislocation nucleation and defect-assisted, stochastic pop-in behavior. The
resulting scatter depends on the competition and convolution of these two mechanisms.

Our unified model can also predict the prestrain effects observed in the nanoindentation
pop-in tests. Experimentally, a set of Mo single crystals samples are prestrained by
engineering compressive strains of 0%, 1.5%, 5%, and 13%. Then, nanoindentation tests are
conducted on <100> surfaces of these pre-strained samples using an indenter with tip radius
of 115nm. Cumulative probability curves with respect to measured pop-in loads are shown in
Fig. 6.4. As the prestrain increases, pop-in loads will drop, and a long tail at low pop-in loads
emerges which can be clearly seen for 5% and 13% prestrained samples. The unified model
in Eq. (6.5) is used to generate solid lines in Fig. 6.4. We first use Eq. (5.8) to fit the data of
0% sample, and find that fitting parameters in Eq. (5.6) are 4/Gb’ =5 and n=2.5. Then we

assume that all samples have the same z,,,,,, and fit o, for each sample. Because the
indenter size is very small, 7, is very high, i.e. 7, /7, =0.8. As expected, we observe

an increase of the defect density with respect to the increase prestrain. However, the fitted

Tue 18 larger than that in Fig. 6.3 and Morris et al. [105], which will be further discussed in

the next section.

6.4 Discussions on Fitting Process and Sensitivity

One major problem of our analysis is the uniqueness of the fitting parameters. For

example, when we fit Eq. (6.5) to the R=178nm pop-in data in Fig. 6.3, 7,,,,, /7, =0.3 and
P =3x10" /m’ give a reasonably good fitting, and, however, so do 7, /7, =0.7 and

P =3x10” /m’ . Moreover, these fitted values of 7, and p, veer @€ Much larger than

the values in Ref [105], as well as than the values for NiAl data in Fig. 6.2. A question that

naturally arises will be whether 7, ., should be a material property or depend on stressed
volume size.
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We further investigate the effects of 7, and p,,., in Eq. (6.5) on the resulting
cumulative pop-in probability curves. In Fig. 6.5(a), 7, s taken as 35% of 7,,, and
different values p,,., are used to generate the solid lines from Eq. (6.5). A large p,,,, will
increase the probability of pop-in, but it does not affect the extent of the tail on the abscissa.
That is, the minimum pop-in load in Eq. (6.5) is independent of p,,,,, - In Fig. 6.5(b), 0, 18
fixed as 6x10" /m’, and the solid lines are generated from Eq. (6.5) with different values of
T - 10 this case, decreasing 7., will both increase the probability of pop-in and widen
the scatter of the pop-in load. Two sets of 7,,,., and p,,, . are used in Eq. (6.5) to generate the
fitting curves in Fig. 6.6. If we choose parameters that are similar to those used in Ref. [105]
(i.e. Py =1x10"7 /m*and 7, =0.1), the fitting result does not capture the tail shape as
well as the fitting result using p,,., =5x10'"/m*and 7, , =0.7. Because the indenter
radius effect shows that the minimum pop-in load is also correlated to the indenter size, 7,

may display an indentation size effect. Further studies are needed to investigate such an effect,

and to improve the model developed in Eq. (6.5).
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Table 6.1 Fitted 7, n, 7,,,,,and p,,.,in Eq. (6.5) with respect to a number of indentation
directions for NiAl single crystals. The unit of 7, and 7, are GPa. We use the

same indentation Schmid factors as those listed in Table 5.1.

Indentation 7, n T et Pacpect
direction
(GPa) (GPa) (1/pm?)

111> 8.2 4 0.19 0.8
<221> 7.3 4 0.19 0.3
<421> 8.3 4 0.19 0.5
<110> 8.0 4 0.19 0.2
<441> 9.5 4 0.19 0.3
<521> 9.8 4 0.19 0.1
<411> 11.7 4 0.19 0.15
<100> 10 4 0.19 0.5
<720> 9.5 4 0.19 0.5
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Indenter Radius (um)

Figure 6.1 The maximum shear stresses under the indenter when pop-in occurs plotted
against the indenter radius. For these tests on Mo <001> single crystals, a
monotonic decrease of the maximum shear stress is observed with respect to the

increase of indenter radii.
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Figure 6.2 The cumulative pop-in probability, f, as a function of pop-in load for spherical
indentation on NiAl single crystals with a number of indentation directions.
Indenter radius is 580 nm. Solid lines are predictions from the unified
homogeneous and heterogeneous dislocation model with fitting parameters given

in Table 6.1. Refer to Fig. 5.5 for a comparison.
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Figure 6.3 Cumulative probability of pop-in, as a function of maximum stress under the
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predictions produced by Eq. (6.5). There are same data used to plot Fig. 6.1.
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Figure 6.4 Cumulative probability of pop-in, as a function of pop-in loads, for a number of
prestrain levels on Mo <001> single crystals. Solid lines show the predictions

produced by Eq. (6.5).
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Chapter VII

Summary and Future Work

It is shown in this thesis that dislocation nucleation behavior in the stressed volume of
single crystals at small scales, as illustrated by the nanoindentation pop-in tests, is critically
dependent on material type (i.e., their slip systems and crystal structure), resolved shear stress,
crystallographic orientation, indenter shape, indenter radius, pre-existing defect type and
density, loading rate, and temperature. Our results indicate that a schematic summary of most
important parameters can be shown in Fig. 7.1 as discussed below.

Theoretical strength is reached for indentation on defect-free single crystal with tiny
indenter tip radius, which has been confirmed by a large number of tests (e.g., Mo, NiAl, Ni
in this thesis). The fluctuation of pop-in loads results from the stress assisted, thermally
activated process for homogeneous dislocation nucleation. With the increase of indenter
radius, the stressed volume size increases, and it is more likely to activate a defect-assisted
pop-in process. Eventually the pop-in strength approaches the flow stress of the material
which depends on the pre-existing dislocation density. Clearly the effects of dislocation
density and indenter radius will be similar. A less explicit dependence is the Schmid factor.
As can be seen from Chapter V, for indentations on NiAl single crystal surfaces with surface
normal close to <001>, the pop-in loads are larger essentially because of a smaller
indentation Schmid factor for these indentation directions. As the increase of indenter radius,
or the increase of pre-existing dislocation density, or the decrease of Schmid factor, one can
see the transition from behavior (A) — as shown in Fig. 6.3 (R=115nm), to behavior (B) — as
shown in Fig. 6.6 (where a tail begins to emerge), to behavior (C) — as shown in Fig. 6.2
(<001> indentation case where the tail dominates the entire regime), and eventually to
behavior (D) which corresponds to a steep curve in the cumulative probability versus pop-in
load plot. Future work is needed to see if the above plot is also applicable for other small
scale tests.

Our theory is, however, not consistent with the observation of the orientation effects for
pop-in tests on Ni single crystals. From Eq. (5.2), the pop-in load is proportional to 1/ S°E?,
and Fig. 2.2(a) and Fig.2.4(a) give that the <100> indentation needs the largest pop-in load

while the <101> one needs the least among these three directions. However, experiments on
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Ni single crystals show that <111> indentation requires the largest pop-in load, while <110>
requires the lowest [109]. Further studies are needed to see if these tests are already
influenced by the defect-assisted mechanism, or if such defect-assisted pop-in events depend
on indentation directions.

The homogeneous dislocation nucleation is a rate and temperature dependent process
[10,11]. If one decreases the loading rate or increase the environmental temperature of the
experiment, it should facilitate the thermally activated dislocation nucleation process because
a decreasing loading rate will allow the solid more time to response to each incremental load
and an increasing environmental temperature will give the solid more thermal energy. While
this rate and temperature effects have been successfully observed from Pt [11], other
materials such as Ta [109], Mo, and Ni do not exhibit a clear sensitivity on the loading rate
and the temperature. It seems that the rate and temperature effects may depend on material
structures, material slip systems, and indenter tip radius, which need further efforts to
distinguish those factors. Moreover, the above discussion is under the assumption that the
heterogeneous dislocation nucleation is independent of the rate and temperature effects,

which is also amenable to further investigation.
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Figure 7.1 Schematic illustration of the dependence of nanoindentation pop-in strength (as
bounded within the two curves) as a function of the stressed volume size, pre-
existing dislocation density, and Schmid factor. The combination of these three

parameters indicates their respective effects rather than a rigorous relationship.
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