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 ABSTRACT 

 

 Instrumented nanoindentation techniques have been widely used in characterizing 

mechanical behavior of materials in small length scales. For defect-free single crystals under 

nanoindentation, the onset of elastic-plastic transition is often shown by a sudden 

displacement burst in the measured load-displacement curve. It is believed to result from the 

homogeneous dislocation nucleation because the maximum shear stress at the pop-in load 

approaches the theoretical strength of the material and because statistical measurements agree 

with a thermally activated process of homogeneous dislocation nucleation. For single crystals 

with defects, the pop-in is believed to result from the sudden motion of pre-existing 

dislocations or heterogeneous dislocation nucleation. If the sample is prestrained before 

nanoindentation tests, a monotonic decrease of the measured pop-in load with respect to the 

increase of prestrain on Ni and Mo single crystals is observed. A similar trend is also 

observed that the pop-in load will gradually decrease if the size of indenter tip radius 

increases.  

 This dissertation presents a systematic modeling endeavor of energetics and kinetics of 

defect initiation in the stressed volume at small scales. For homogeneous dislocation 

nucleation, an indentation Schmid factor is determined as the ratio of maximum resolved 

shear stress to the maximum contact pressure. The orientation-depended nanoindentation 

pop-in loads are predicted based on the indentation Schmid factor, theoretical strength of the 

material, indenter radius, and the effective indentation modulus. A good agreement has been 

reached when comparing the experimental data of nanoindentation tests on NiAl, Mo, and Ni, 

with different loading orientations to theoretical predictions. Statistical measurements 

generally confirm the thermal activation model of homogeneous dislocation nucleation, 

because the extracted dependence of activation energy on resolved shear stress is almost 

unique for all the indentation directions. For pop-in due to pre-existing defects, the pop-in 

load is predicted to be dependent on the defect density and the critical strength for 

heterogeneous dislocation nucleation. The cumulative probability of pop-in loads contains 

convoluted information from the homogenous dislocation nucleation, which is sensitive to 

temperature and loading rate, and heterogeneous dislocation nucleation due to the unstable 

change of existing defect network, which is sensitive to the initial defect distribution. 
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CHAPTER I 

Introduction 

 The instrumented indentation, also known as depth-sensing indentation or 

nanoindentation, is increasingly being used to probe the mechanical response of materials. In 

contrast to the traditional hardness testing methods, instrumented indentation systems allow 

the force, P, and the displacement, h, to be controlled and/or measured simultaneously and 

continuously over a complete loading cycle. The extremely small force and displacement 

resolutions, often as low as ≈1 μN and ≈0.2 nm, respectively, or lower for some systems, are 

combined with very large ranges of applied forces and displacements (tens of μN to hundreds 

of mN or larger in force and tens of nm to tens of μm or larger in displacement) to allow a 

single instrument to be used to characterize nearly all types of material systems. In fact, the 

instrumented nanoindentation technique has become a key component of materials research 

at small scales with applications in a wide variety of disciplines [1-3]. Methodologies have 

been established on how to extract material properties such as modulus and hardness from the 

measured load and displacement curves.  

 In addition to the characterization of material properties, there has been increasing 

research activities by using instrumented indentation to probe microscopic deformation 

processes such as defect nucleation. For example, nanoindentation of metallic materials has 

shown that defect nucleation could possibly be associated with the onset of the indenter tip 

suddenly jumping into the specimen with negligible load increase (or denoted as “pop-in”), 

which leads to a displacement discontinuity on the otherwise continuous load-displacement 

curve [4-17]. While the pop-in event may be associated with fracture of surface oxide layer 

for some materials [18], it is believed that for a defect-free crystalline material, the first 

displacement burst is a result of homogeneous dislocation nucleation underneath the indenter 

[6, 7,9 -17,19-21]. Moreover, if there is existing defect underneath the indenter, pop-in could 

also be observed as a result of heterogeneous dislocation event (such as a sudden instability 

of existing defect network) in single crystals. Defect nucleation due to materials geometric 

effect is also important. For example, in nano-electronic devices, stress concentrations near 

sharp geometric features such as edges and corners may lead to the nucleation of dislocations, 

which can act as electrical leakage paths and eventually lead to failure of the devices [22, 23, 

24]. The development of immortal, strained nano-electronics requires knowledge of the 
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defect nucleation process and its dependence on the layout structure, materials processing, 

and surface treatment, among many others. 

 This thesis aims to present a systematic study of energetics and kinetics of defect 

initiation in the stressed volume at small scales. The primary interests will be placed on the 

nanoindentation pop-in behavior in single crystals due to homogeneous or heterogeneous 

dislocation nucleation activities.   

 In Chapter II, the stress fields of elastically anisotropic film-on-substrate systems under 

spherical indentation are derived from the superposition of the Green’s function. The surface-

displacement Green’s function for elastically anisotropic film-on-substrate system is derived 

in closed-form by using the Stroh formalism and the two-dimensional Fourier transform. 

When the film and substrate has the same materials constants, the solution degenerates to the 

case of single crystals under spherical indentation. This solution allows us to calculate the 

indentation Schmid factor which is defined as the ratio of the maximum resolved shear stress 

of all possible slip systems to the maximum contact pressure. This result will be used in 

predicting nanoindentation pop-in loads in Chapter V. The predicted dependence of the 

effective modulus on the ratio of film thickness to contact radius agrees well with detailed 

finite element simulations. Implications in evaluating film modulus by nanoindentation 

technique are also discussed. 

 In Chapter III, we describe how to calculate the activation energy for homogeneous or 

heterogeneous dislocation nucleation with finite element method by adopting the Rice-Peierls 

concept of dislocation. This method is realized by a dissipative cohesive interface model 

which treats the dislocation core as a continuous, inhomogeneous lattice slip field. We also 

apply this method to model trailing/twinning partial dislocation nucleation after a leading 

partial dislocation is nucleated from a crack tip. 

 In Chapter IV, using the tool in Chapter III, we investigate the dislocation nucleation 

behavior due to materials geometric effect. Dislocation loops may be nucleated from sharp 

geometric features. As a representative example, we calculate the critical external stress for 

dislocation nucleation from the edges/corners of a rectangular Si3N4 pad on a Si substrate as a 

function of geometric parameters such as the length-to-height ratio and the three-dimensional 

shape of the pad. The shapes of the nucleated dislocation loops are also simulated. 

 In Chapter V, assuming that a dislocation nucleates when the maximum resolved shear 

stress reaches the theoretical strength, the pop-in load is predicted to be a function of indenter 

radius, effective indentation modulus, indentation Schmid factor, crystallographic orientation 

of the specimen, and the theoretical strength. Comparisons to experimental measurements on 
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NiAl single crystals will test the validity of the above relationship and fit the theoretical 

strength of the specimen. The homogeneous dislocation nucleation process is also a stress-

assisted, thermally activated process. When the applied load is less than but close to the 

critical load for homogeneous dislocation nucleation, the thermal energy can activate 

dislocation to nucleate. The statistical measurements generally confirm our thermal activation 

model of homogeneous dislocation nucleation. That is, for defect-free single crystals, the 

extracted dependence of activation energy on resolved shear stress is almost the same for all 

the indentation directions. 

 In Chapter VI, the cumulative probability of pop-in loads contains convoluted 

information from the homogenous dislocation nucleation and possible heterogeneous 

dislocation nucleation due to the unstable change of existing defect network. A unified model 

of the homogeneous and heterogeneous dislocation nucleation behavior has been developed 

and successfully explained several interesting experiments, including (1) pop-in tests on NiAl 

single crystals with surface normal close to <001>, (2) indenter-radius effects on Mo <001> 

single crystals, and (3) pre-strain effects on Mo <001> single crystals. The transition from 

thermally activated dislocation nucleation process to spatial-probability-governed behavior 

has been identified.  

 Future work and perspectives will be discussed in Chapter VII.  
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CHAPTER II 

Elastic Contact Analysis of Anisotropic Solids 

2.1 Introduction 

 Many experimental techniques for measuring thin film mechanical properties are based 

on bending, stretching, or other simple mechanical means for testing free-standing or 

constrained films [25]. Tedious sample preparation procedures are clearly a disadvantage that 

hinders wide-spread engineering applications of these methods. The instrumented 

nanoindentation technique, based on the information of load (denoted as P)-displacement 

(denoted as h) curves, has become a key component of materials research at small scales with 

applications in a wide variety of disciplines [1-3, 26]. In this method, an indenter with known 

geometry is pushed into the surface of a material under a set of prescribed loading conditions. 

The resulting displacement of the indenter into the material is recorded, and the load and 

displacement data are analyzed via analytical and/or numerical models to extract mechanical 

properties of the indented specimen such as modulus and hardness from the measured P~h 

curves. Besides the measurement of the hardness and modulus, the P~h curves can be used to 

examine the onset of elastic-plastic transition in various crystalline and amorphous materials 

[4-17]. The onset of plasticity is often associated with a displacement discontinuity on the 

otherwise continuous load-displacement curve, or denoted as “pop-in”, as the indenter tip 

suddenly jumps into the specimen with negligible load increase. As will be discussed in 

Chapter V, for a defect-free crystalline material, the first displacement burst is a result of 

homogeneous dislocation nucleation underneath the indenter. Most of previous theoretical 

studies assume that the homogeneous dislocation nucleation occurs when the resolved shear 

stress reaches the theoretical strength, which is similar to the Schmid law that describes the 

plastic flow in single crystals.  

 Moreover, the nanoindentation technique has difficulties of uniquely determining 

material properties [27,28] and decoupling the film deformation behavior from substrate 

effects [29-34]. It is empirically recommended that the indentation depth should be smaller 

than 10% of the film thickness in order to minimize the influence of substrate deformation. 

However, many film materials used in micro- and nano-electronics are so thin that 10% of the 

film thickness cannot be accurately probed. The indentation behavior at depths comparable to 



 

5 
 

the film thickness contains a great deal of information that should not be intentionally 

excluded.  

 In this Chapter, we first derive the stress fields in an anisotropic film-on-substrate system 

under spherical indentation. And then, by degenerating this stress fields to an anisotropic 

solid under spherical indentation, we calculate the indentation Schmid factor which is defined 

as the ratio of the maximum resolved shear stress of all possible slip systems to the maximum 

contact pressure. Assuming that dislocation nucleates when the maximum resolved shear 

stress reaches the theoretical strength, the pop-in load will be predicted in Chapter V to be a 

function of indenter radius, effective indentation modulus, indentation Schmid factor, 

crystallographic orientation, and the theoretical strength. A central relationship in the 

nanoindentation technique is the proportionality between the elastic contact stiffness and an 

effective indentation modulus. Extensive studies have been conducted for homogeneous half-

spaces [35-38] and elastically isotropic film-on-substrate systems [39,40]. This work extends 

this line of research to the response of an elastically anisotropic film-on-substrate system 

indented by an arbitrarily-shaped rigid indenter. From stress fields of anisotropic film-on-

substrate system, we derive a closed-form representation of the contact stiffness which 

involves the evaluation of a triple integral. The validity of these assumptions is theoretically 

discussed by using the cumulative superposition method [41], and the predicted dependency 

of the effective modulus on the ratio of film thickness to contact radius is numerically 

compared to detailed finite element simulations. Finally, we discuss the important roles 

played by the indentation pileup/sink-in, contact shape, friction, and modulus mismatch in the 

relationship between the contact stiffness and effective elastic modulus.  

 

2.2 Closed-Form Green’s Tensor for Anisotropic Multilayered Half-Space 

 For a multilayered half-space, the indentation response from an assumed pressure 

distribution can be conveniently evaluated from the surface-displacement Green’s function. 

As shown in Fig. 2.1, we consider a circular contact on a layered substrate with the elastic 

constants being I
ijklc  and II

ijklc  for film and substrate, respectively.  

 The Stroh formalism [42-47] and two-dimensional Fourier transform are combined to 

solve the stress/strain fields in a multilayed half-space subjected to arbitrary surface tractions. 

The elastic field is a superposition of many Fourier components, each being a plane field in 

the plane spanned by 1 1 2 2h x h x h x     and 3x , where  1 2,h h  is a unit vector in the  1 2,x x  
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plane (Fig. 2.1). Greek indices run from 1 to 2. Summation convention on repeated subscripts 

is implied. Because of the homogeneous nature of the governing equations, for each Fourier 

component, we look for a general solution of the displacement lu  of the form  l lu A f z , 

where 1 1 2 2 3z h x h x px   , p  is a scalar, lA  is a vector and f  is a one-variable function to 

be determined from boundary conditions. Latin indices run from 1 to 3. For convenience, we 

write 3p h  and substitute this general solution into the governing equations , 0ijkl k ljc u  . 

Eliminating the factor 2 2d f dz  leads to a generalized algebraic eigenvalue problem, 

0ijkl j m lc h h A  , with p  being the eigenvalue and lA  the eigenvector. The six roots of the 

sixth-order polynomial,  det 0ijkl j mc h h  , form three pairs of complex conjugates. The three 

roots with positive imaginary parts are denoted by ap , a =1,2,3, and thus the corresponding 

three complex variables are 1 1 2 2 3a az h x h x p x    and the corresponding eigenvectors kaA . 

The displacement field is a linear superposition of three arbitrary analytical functions  1 1f z , 

 2 2f z , and  3 3f z :  

      l la a a la a a
a a

u A f z A f z   , (2.1) 

where a bar on the top of a quantity denotes its complex-conjugate. The traction on the plane 

normal to the 3x  axis,  T

13 23 33, ,  t , is given by 

      3i ia a a ia a a
a a

L f z L f z     , (2.2) 

where iaL  in expanded form are given by 

 





















































a

a

a

aaa

aaa

aaa

a

a

a

A

A

A

pchchcpchchcpchchc

pchchcpchchcpchchc

pchchcpchchcpchchc

L

L

L

3

2

1

332341353423213635236131

432441454424214645246141

532541555425215655256151

3

2

1

. 

Summation convention over underscored repeated indices is not implied. The Stroh matrix is 

defined by 1i B AL , which is a positive-definite Hermitian. Isotropic elasticity is a 

degenerate case, since the sixth-order polynomial,  det 0ijkl j mc h h  , will have three pairs of 

repeat roots, i . In this case, one can either use the well-established complex-variable 

method in isotropic elasticity [48-50], or add a small perturbation to the elastic constants so 

that the eigenvalues will be distinct.  
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 Since the matrices A , L , and B  are determined from ijklc  and h , the elastic stress and 

strain fields in each layer are determined from the corresponding three functions,  1 1f z , 

 2 2f z , and  3 3f z . By the principle of linear superposition, we only need to find the 

solution of one Fourier component, 

     1 1 2 2 1 1 2 2exp expi x i x i x i x       t a a . (2.3) 

Let   be a complex variable of the form 1 1 2 2 3h x h x qx    , where q  is an arbitrary 

complex number with a positive imaginary part. Using the analytic continuation technique, 

the solution in the film is written as 

       I I exp expi i     L f P Q , (2.4) 

       I I
I I exp expi i  

 
  

B P B Q
A f , (2.5) 

where P  and Q  are two unknown vectors to be determined from boundary conditions. After 

     I1 I2 I3, ,f f f    and      I1 I2 I3, ,f f f      are obtained, we then replace the variable 

to      I1 1 I2 2 I3 3, ,f z f z f z  and      I1 1 I2 2 I3 3, ,f z f z f z   . The displacement and traction fields 

can be evaluated from Eqs. (2.1) and (2.2), giving  

   I I I I I I I
I 1 1 2 2 1 1 2 2exp expi x i x i x i x   

 

   
    

+
IB T P B T Q B T P B T Q

u ,   (2.6) 

       +
I I I 1 1 2 2 I I 1 1 2 2exp expi x i x i x i x          t T P T Q T P+T Q ,      (2.7) 

where the dimensionless matrices ±
IT  are  

3
1

I I I I 3
1

explj la aj a
a

T L L i p x 



  . The unknown 

vectors P  and Q  are obtained from the boundary condition in Eq. (2.3), 

 P Q a ,                                                           (2.8) 

and the continuity condition at the film-substrate interface ( 3x d  ),  

 I I I I II I I
     B C P B C Q B C P C Q .                                     (2.9) 

where 
3

I I x d

 


C T . Consequently, 

     
      

1

I II I I II I I II I

1

I II I I II I I II I

  

  

         
   

          

B B C B B C B B C aP

Q I B B C B B C B B C a
.              (2.10) 

 The surface-displacement Green’s function in the Fourier’s space is therefore given by 
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    1

I I I I II I I II I I II I

1 2

( ) ( ) ( )
ˆ , ;

2
d 



          
B B B B B C B B C B B C

w .     (2.11) 

We can also define 

   1 2
ˆ ˆ, , ;h d d    W w .                                            (2.12) 

If the film and substrate are the same, then Eq. (2.6) degenerates into  

 1 1 2 2

1
expi ij ju E a i x i x 


   ,                                        (2.13) 

where 

 
3

1
3

1

expij ia aj a
a

E iA L i p x



  .                                          (2.14) 

The displacement Green tensor in the Fourier’s space is therefore given by 

   1 2 3 1 2 3

1
ˆ , , , ,

2
x h h x  


w E .                                   (2.15) 

It can be shown that the surface deflection Green tensor is  

   1 2 3 1 2ˆ , , 0 ,
2

x h h 


 
1

w B .                                    (2.16) 

 

2.3 Indentation Schmid Factor for Anisotropic Hertzian Contact 

 When an elastically anisotropic half-space is under Hertzian contact (i.e., the spherical 

indenter can be approximated by a paraboloid of revolution), it has been shown that the 

contact area is elliptical and the contact pressure distribution  1 2,p x x  is given by 

     2 2

1 2 0 1 1 2 2, 1p x x p x a x a   ,                               (2.17) 

where 0p  is the maximum contact pressure in the contact area, and 1a  and 2a  are half axes of 

the ellipse [36,37,51,52]. For typical materials, it has been found that the degree of ellipticity 

is negligible, so the contact shape can be assumed to be circular. The total load is calculated 

from integrating Eq. (2.17), giving 2
0

2

3
P a p . The contact analysis gives 

1/32

0 3 2

6 rPE
p

R
 

  
 

,                                                   (2.18) 
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where the reduced indentation modulus     1
2 21 / 1 /r s s i iE v E v E


      for isotropic solids 

or   1
21/ 1 /r eff i iE E v E


     for anisotropic solids. sE and sv are the Young’s modulus and 

Poisson’s ratio of the isotropic specimen and effE is the effective indentation modulus of the 

anisotropic specimen which will be determined later. iE  and iv are the Young’s modulus and 

Poisson’s ratio of the diamond indenter, respectively, i.e., 1141 GPa and 0.07.  

 The Hertzian stress fields can be determined from the pressure distribution in Eq. (2.17) 

and the Green tensor. Consider surface tractions on the surface of a half-space: 

   2 2

0 1 1 2 21 x a x a  t t ,                                       (2.19) 

with  T

0 01 02 03, ,t t tt , so that the displacement field in the substrate is 

       2 2

1 2 3 1 1 2 2 3 0 1 1 2 2 1 2, , , , 1
S

x x x x x x x x x a x a dx dx         u w t ,     (2.20) 

where the Green tensor  1 2 3, ,x x xw  is given in the previous section. 

 Substituting Eq. (2.15) into Eq. (2.20) and only considering the normal surface traction, 

i.e.,  0 00,0, p
t , we get 

     

     

 

3

2 2 20
1 2 1 2 3 1 2 3 1 2

3 22 2 20
1 2 1 2 1 20 0

1

23 2

0 1 20
1

1
1 , ,

2 2

1 ,
2

1 1
, ln

2 4 1

a

i x x

l lS

i x x i p x

laS
a

a a a
la

a a

p
u x x a dx dx E h h x e d d

p
x x a dx dx f h h d e d

g g g
ip f h h d

g

  

  



  



  
 

 




 

   





     

     

          

 

   

 

  (2.21) 

where 3 1 1 2 2a ag p x h x h x    . As pointed out by Willis [51], an appropriate domain of 

definition of  ln z  in the above is the z -plane cut along the negative real axis. Since ag  

always has a positive imaginary part, we get 
1

arg 0
1

a

a

g

g


 
    

. In the calculation of 

stress fields from ,ij ijkl k lc u   with elastic stiffness tensor ijklc , we need the displacement 

gradients: 

3
1
30

1

3
1
30

13

11
1 ln

2 2 1

11
1 ln

2 2 1

i a a
ia a

a a

i a a
a ia a

a a

u g g
h A L d

x g

u g g
p A L d

x g






















           
           




                            (2.22) 
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We have validated the above approach by comparing to the available Hertzian stress fields 

for elastically isotropic solids. In this case, the eigen-problem in determining ap  becomes 

degenerated and gives rise to repeated roots. A small perturbation to the elastic constants will 

add a slight anisotropy to regularize this problem.  

  The resolved shear stress,  
rss
 , on the  -th slip system of the substrate is computed 

from the indentation stress fields, ij , by 

     * *
rss ij i js m    ,                                                    (2.23) 

where *
is  and *

im  are the slip direction and slip normal, respectively. Thus we define the 

indentation Schmid factor, S, under Hertzian contact as the ratio of the maximum resolved 

shear stress to the maximum contact pressure, namely, 

 
    

max

0 0

1
maxrss

rss iS x
p p





   .                                          (2.24) 

As long as the stress fields,  ij kx ,  are known, we can determine the slip system and the 

location that reach max
rss .  

 In calculating the indentation Schmid factor from the contact stress fields and Eq. (2.24), 

we use the Nelder-Mead simplex algorithm [53] to search for the maximum of the resolved 

shear stress. Since the stress fields vary slowly near their extrema, we found that a variation 

of 0.05a  near the maximum location will not lead to noticeable change of the resolved 

shear stress. Figure 2.2 plots the S  contours for Ni (FCC structure) and NiAl (B2 structure) 

single crystals. Elastic constants used are 11c =244 GPa, 12c =158 GPa, and 44c =102 GPa for 

Ni, and 11c =199 GPa, 12c =137 GPa, and 44c =116 GPa for NiAl. We confirm that if the 

indentation direction is located inside the standard  001  triangle in the inverse pole figure, 

the maximum resolved shear stress is always reached at the primary slip system, being 

  111 011  for Ni and   110 001  for NiAl. If the indentation direction is located on the 

vertices or boundaries of the standard  001  triangle, at least two slip systems will have the 

same indentation Schmid factor. Similar to the uniaxial test for Ni, if the indentation direction 

is on the  001 – 111 boundary, we get the   111 101  conjugate slip system; on the  001 –

 101  boundary, we get the  111 011    critical slip system; and on  101 – 111 boundary, 
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we get the   111 110  coplanar slip system. The three vertices at  101 ,  111 , and  001  

have 4, 6 and 8 active slip systems, respectively.  

 As shown in Fig. 2.2, contours of the indentation Schmid factor form a set of concentric 

circles, as opposed to ellipses for uniaxial tests, in the inverse pole figure. Within calculation 

accuracy, the location where the indentation Schmid factor reaches maximum on the <001> 

standard triangle is the same as that where the uniaxial Schmid factor reaches maximum. For 

Ni, S  varies by about 20% from minimum to maximum value. For NiAl, the variation of  

S is about 40%.  

 Most pop-in analyses used the Hertzian isotropic contact results and found the maximum 

shear stress (as opposed to maximum resolved shear stress) along the symmetry axis. The 

consideration of elastic anisotropy and slip systems will lead to different results. Figure 2.3 

plots the location where the resolved shear stress fields of all possible slip systems reach 

maximum for NiAl single crystal under spherical indentation as a function of the indentation 

direction. Since these locations do not vary significantly along the depth direction, i.e., 

 3 0.43 0.03x a   , we thus plot the location trajectory on the  1 2,x x  plane when the 

indentation direction varies along  1mm , 2 1mm  , and  01m  with m varying from 0 to 1. 

These locations can be very far from the contact center, especially when the surface normal is 

close to 110 .  

 

2.4 Effective Indentation Modulus of Elastically Anisotropic Solids 

 For an elastically isotropic half-space indented by an axisymmetric, frictionless indenter, 

the classic Sneddon solution gives the contact stiffness, 2n rS aE [54], where the reduced 

indentation modulus is     1
2 21 1r s s i iE E E 


      . Using the cumulative superposition 

method [41], with an increment of the indentation penetration, the contact problem can be 

regarded as being superposed with a flat-ended circular punch contact with radius equal to the 

current contact size. The relationship between contact size and indentation depth is not 

needed for the interest of contact stiffness. Consequently, the relationship, 2n rS aE , is valid 

for any axisymmetric contact, irrespective of the actual indenter shape. However, a correction 

factor needs to be introduced when the contact is frictional, or the contact shape is non-

circular, or the two solids cannot be approximated by elastic half-spaces.  
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 For an elastically anisotropic half-space indented by a flat-ended circular/elliptical 

indenter or a paraboloid of revolution (i.e., Hertzian contact), the deformation fields have 

been solved using the surface-displacement Green’s function [36,37,51]. For arbitrary 

indenters, according to the cumulative superposition method, the contact stiffness is still 

given by a flat-ended punch contact problem with the end shape given by the current contact 

shape. During indentation, the shape of the contact area, however, does not necessarily 

remain the same even for an axisymmetric indenter. For example, the contact shape for 

Hertzian contact is elliptical, but the elliptical contact area is only an approximation for a 

conical indentation. For a conical indenter with a dull spherical tip, the contact shape thus 

varies during the indentation. From a practical standpoint, we can determine the indentation 

modulus from the circular contact on an elastically anisotropic half-space, and the result does 

not differ noticeably from an arbitrary axisymmetric indentation problem [36,37]. 

 The effective indentation modulus effE  is determined from the Green tensor in Eq. (2.16), 

giving rise to 

 
1

2

33 1 20

1
,

2effE B h h d





   
  .                                        (2.25) 

Figure 2.4 plots the contours of effE  for Ni and NiAl single crystals. Both crystals have the 

elastic anisotropy parameter,  12 44 112 1c c c  , so that 111 101 001
eff eff effE E E  . 

 

2.5 An Approximate Formulation of the Effective Indentation Modulus of 

Elastically Anisotropic Film-on-Substrate Systems 

 For a film-on-substrate system, the contact stiffness is again given by a flat-ended punch 

contact, while the contact size and shape are determined by the indenter shape, indentation 

depth (or applied load), and elastic properties of film and substrate materials. For a flat-ended 

punch contact, the contact pressure distribution has to be determined by solving a set of 

integral equations. This difficulty can be avoided by assuming a circular contact with 

pressure of the form of  
1 22

1 r a


   , which allows us to derive an approximate 

representation of the effective modulus. Such a pressure distribution is the analytical solution 

for flat-ended circular punch contact on an elastic (either isotropic or anisotropic) half-space. 

As shown in [40], this assumption agrees extremely well with the finite element simulations 

for both normal and tangential contacts on elastically isotropic film-on-substrate systems.  
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 The contact pressure is assumed to be 

0
33 2 21

t

r a
 


,                                                    (2.26) 

with 2 2 2
1 2r x x  , so that the total normal force is 2

02nF a t . The surface deflection in the 

normal direction is 

 
 

 0
3 1 2 33 1 1 2 2 1 2

2 2 2
1 2

, ,0 ,
1A

t
u x x w x x x x dx dx

x x a
     

 
 ,             (2.27) 

where 33w  is a component of the Green tensor in Eq. (2.11), i.e., the normal surface 

deflection at  1 2,x x  due to a point force applied in 3x  direction at  1 2,x x  . Substituting the 

two-dimensional Fourier transform of 33w  (i.e., transforming x  to  ) into Eq. (2.27) gives 

   0
3 1 2 33 1 2 1 221

1
ˆ, ,0 ;

2 1

i i

y

t
u x x w a d e d d e dy dy

y
  


  


 


 η y η y ,       (2.28) 

where a   , y x a  , and 2 2
1 2y y y  . Using the relationship,  

 
1

1 2 02 21 0

1 1

2 1 1

i

y

y
e dy dy J y dy

y y








   

  
 η y ,                       (2.29) 

and the definition in Eq. (2.12) gives 

     
1 2

3 1 2 0 33 02
0 0 0

ˆ, ,0 , cos cos
1

y d
u x x at dy d W y J y d

ay



       
         

   ,(2.30) 

with  1
2 1tan y y  . Consequently, we define the effective indentation modulus of film-

on-substrate system as 

* 0
* *
3 32

nF at
E

au u


  ,                                                    (2.31) 

with  2

* 1
3 3 1 2 1 2, ,0

a A
u u x x dx dx


  .  

 Now consider some degenerate cases. For a homogeneous and elastically isotropic half-

space,  2
33

ˆ 1W E   , and Eq. (2.30) becomes a constant, namely,   

 2 2
3 0 33

ˆ 1 2nu at W F aE    ,                                     (2.32) 

which recovers the Sneddon’s solution. For a homogeneous and elastically anisotropic half-

space,  33 33
ˆ ˆW W  , and Eq. (2.30) is again a constant, given by 
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2 2

0
3 33 33

0 0

ˆ ˆ
2 4

nat F
u W d W d

a

        .                              (2.33) 

Therefore, the effective modulus is defined by  
12

*
33

0

1 ˆ
2

E W d


 


 
  
 
 , which agrees with 

the literature results [36,37]. This is the same representation as Eq. (2.25). For an elastically 

isotropic film-on-substrate system,  33 33
ˆ ˆW W d a , and Eqs. (2.30) and (2.31) have been 

evaluated in the earlier work [40].  

 We choose fused silica as the substrate material (isotropic, E =71GPa and  =0.17), and 

copper and nickel single crystals as the film material with surface normal in the (001) or (111) 

direction. For copper, the elastic constants in contracted form are 11c =168.4GPa, 

12c =121.4GPa, and 44c =75.4GPa. For nickel, they are 11c =244GPa, 12c =158GPa, and 

44c =102GPa. It should be noted that the degrees of anisotropy, as defined by  12 44 112c c c , 

for both copper and nickel single crystals are larger than unity. For a generally anisotropic 

film-on-substrate system, the Green’s function in Eq. (2.11) can be easily calculated from an 

algebraic eigenvalue problem, while the time-consuming part is the evaluation of the triple 

integral in Eq. (2.30). An efficient method for the evaluation of integrals with highly 

oscillatory integrand, e.g., the Bessel function in our case, is discussed below.  

 The method in [55-57] is adopted to efficiently evaluate integrals with highly oscillatory 

integrands. The integral of our interest, Eq. (2.30), is the Bessel-trigonometric transformation:  

   1
0 2

b ir x

a
I g x e J r x dx  ,                                           (2.34) 

where  g x  is a non-rapidly oscillatory function. Define an auxiliary function 

      1
T

0 2 1 2,ir xx e J r x J r xw  . The properties of Bessel functions lead to 

  ( ) ( )x x x w A w , 

  1 2

2 1 1/

ir r
x

r ir x

 
   

         
A

       
.                                           (2.35) 

Our goal is to find a vector,       1 2,x p x p xp , which satisfies 

        T
,0x x x g x p +p A ,                                     (2.36) 

so that  

                1
0 2

ir xx x x x x x g x e J r x    p w p w p w .           (2.37) 
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Consequently, the integral in Eq. (2.34) is given by 

           1
0 2

b ir x

a
I g x e J r x dx b b a a   p w p w .                     (2.38) 

The problem of evaluating Eq. (2.34) is thus transformed into the problem of finding a non-

rapidly-oscillatory particular solution of  xp  from Eq. (2.36) with no boundary conditions 

prescribed. The procedure to find an approximation of this particular solution is given by a 

collocation method in [55-57]. 

 The accuracy of our approximate representation in Eqs. (2.30) and (2.31) is compared to 

detailed three-dimensional finite element simulations using the commercial software 

ABAQUS. A flat-ended circular punch with a fixed radius a  is indented into the film-on-

substrate system. The film thickness varies from 0 to 5 a  and frictionless condition is adopted. 

The fine mesh size is 0.0125 a  near the contact edge and the maximum indentation depth is 

0.01 a . Because of crystallographic symmetry, 1/8 of the half-space is used for (001) 

indentation and 1/6 for (111) indentation. The calculation cell size is 500 a , so that the 

faraway boundary conditions have negligible contributions to the contact stiffness. The entire 

model includes 47,240 six- and eight-node elements (C3D6 and C3D8).  

 Figure 2.5 compares the theoretical prediction (solid lines) of the effective indentation 

modulus *E , as normalized by the effective modulus of fused silica *
IIE , to the finite element 

results (discrete markers, only for the copper film on fused-silica system). It is found that *E  

is a monotonic function of the ratio d a . As 0d a  , the effective modulus approaches that 

of the substrate material, i.e., * *
IIE E . The asymptotic limit, *

IE , can be calculated from 

Eq.(2.33), being  
*

001CuE =134GPa,  
*

111CuE =152GPa,  
*

001NiE =203GPa, and  
*

111NiE =223GPa. 

However, it is difficult to approach this asymptotic limit as d a  . For copper on fused 

silica systems, this limit is practically reached when 15d a  ; for nickel on fused silica 

systems, 20d a  . A larger d a  is needed if * * *
I II IIE E E  increases. In addition, we note 

that the prediction and finite element results differ the most when ~ 1d a , mainly due to the 

difference between the assumed pressure distribution,  
1 22

1 r a


   , and the exact solution 

at this d a  regime.  

 The use of load-displacement curves obtained from instrumented nanoindentation 

technique cannot accurately determine the film properties because of the difficulty of 

decoupling the film deformation behavior from substrate effects. In practice, the indentation 
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depth is often limited to less than 10% of the film thickness in order to minimize the effect of 

the substrate on the measurement. Our results in Fig. 2.5 suggest that this empirical rule is 

overestimated. When both film and substrate deform elastically, a large cutoff ratio, e.g., 

~ 15d a , is required for the effective indentation modulus to approach that of the film 

material. For Berkovich indenter, this cutoff corresponds to ~ 25nd   with indentation depth 

n . The effective indentation modulus for copper on fused silica at indentation depth being 

10% of the film thickness is found to be about 10% less than the indentation modulus of 

copper. Consequently, an alternative and commonly used approach is to utilize the 

measurements at intermediate indentation depths, based on the elastic prediction of *E  as a 

function of d a  and the elastic constants of film and substrate effects. As shown in this work, 

the derivation of this relationship is highly simplified because the use of cumulative 

superposition method avoids determining the relationship between contact size and depth. 

However, one major difficulty of this approach is that the indentation modulus derived from 

the contact stiffness measurement may differ significantly from the theoretical prediction 

because of the strong dependence of contact stiffness on material pileup/sink-in, contact 

shape, friction, and modulus mismatch.  

 Even for elastic contact, a correction factor n  needs to be introduced in the relationship 

between contact stiffness nS  and effective indentation modulus *E , *2n nS aE   [40]. For an 

elastically isotropic half-space, 1n   for frictionless circular contact, and will be off unity 

for frictional and non-circular contact. For elastic-plastic contact, the contact stiffness should 

be derived from the contact between the indenter and a deformed surface, since the analytical 

elastic-contact solution is only valid for half-space contact problems. The correction factor 

may vary considerably with respect to the material pileup or sink-in due to plastic 

deformation. Our preliminary finite element simulations have shown that n  varies within 

0.7~1.3 when using a range of cube-corner to Berkovich indenters, frictionless to infinite 

friction condition, and elastic to very soft material ( ~ 1 1000YE   with yield stress Y ). For 

elastic-plastic contact on film-on-substrate system, this correction factor also depends on 

additional parameters such as modulus and strength mismatch. Consequently, in order to 

compare the theoretically predicted indentation modulus to the nanoindentation 

measurements, we either need to conduct heady-duty finite element simulations to obtain an 

accurate relationship of *2n nS aE  , or incorporate additional experimental information 
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such as the topography measurement or the use of multiple indenters with varying indenter 

angle or radius.  
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Figure 2.1 Schematic illustration of the film-on-substrate system under a circular contact. 

The unit vector  1 2,h h , lying on the  1 2,x x  plane, gives the direction cosines of the 

wavevector  1 2,h h ξ . 

 

d  thin film, I
ijklc  

substrate, II
ijklc  

2a

1x  

3x   1 2,h h


2x
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(b) 

Figure 2.2 Contours of the indentation Schmid factor of elastically homogeneous 

anisotropic solids under spherical indentation, defined as the ratio of maximum 

resolved shear stress to the maximum contact pressure on a homogeneous substrate, 

plotted for (a) Ni single crystal with FCC structure and  111 0 11  slip systems, 

and (b) NiAl single crystal with B2 structure and  110 001  slip systems. 
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Figure 2.3 The location where the resolved shear stress fields of all possible slip systems 

reach maximum for NiAl single crystal under spherical indentation depends on the 

indentation orientation. Since these locations do not vary significantly along the 

depth direction, i.e.,  3 0.43 0.03x a   , we thus plot them on the  1 2,x x  plane 

along  1mm , 2 1mm  , and  01m  with m varying from 0 to 1. 
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Figure 2.4 Contours of the effective indentation modulus of elastically homogeneous 

anisotropic solids under spherical indentation, plotted for (a) Ni and (b) NiAl single crystals.  
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Figure 2.5 Effective modulus of the film-on-substrate system, as normalized by the effective modulus 

of the substrate, plotted against the ratio of film thickness d  to contact radius a . Solid lines are 

predictions from Eq. (2.31), and discrete markers are results from finite element analysis (FEA). Film 

materials are copper and nickel with surface normal in the (001) and (111) directions, and substrate 

material is fused silica. 
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Chapter III 

Activation Energy for Thermally Activated, Dislocation 

Nucleation Process 

3.1 Introduction 

 As described in previous chapters, the nanoindentation pop-in event in defect-free single 

crystals is a result of homogeneous dislocation nucleation underneath the indenter. When the 

maximum resolved shear stress underneath the indenter reaches the theoretical strength of the 

material, dislocation will nucleate homogeneously, multiply and cause the indenter to 

suddenly jump into the specimen. The homogeneous dislocation nucleation process is a 

stress-assisted, thermally activated process. When the applied load is less than but close to the 

critical load for homogeneous dislocation nucleation, the thermal energy can activate the 

dislocation nucleation process. Therefore, the activation energy for dislocation nucleation is 

an important issue and needs to be quantitatively studied.  

 A dislocation is usually modeled either by the Volterra model, which treats the 

dislocation as a mathematical discontinuity, or by the Peierls-Nabarro model, which treats the 

dislocation core as a continuous slip field [58]. From the Volterra dislocation model, closed 

form solutions can be derived for various dislocation activities such as dislocation mutual 

interactions [58,59], interactions with other material defects [60-64], and interactions with 

other geometric features [22,23,65]. From the Peierls-Nabarro dislocation model, a number of 

numerical modeling methods have been developed to study dislocation activities in more 

complicated scenarios [65-73].  

 In this Chapter, we first briefly describe how to calculate the activation energy for 

homogeneous dislocation nucleation from the Volterra dislocation model. Then, we introduce 

a new method which implements the Rice-Peierls theory [74, 75] into finite element analysis 

to model dislocation activities. The advantage of using finite element method (FEM), 

compared to other numerical methods such as the variational boundary integral method, is 

that it can solve more complex problems, and it costs less computation time when compared 

to molecular simulations. In our method, a dissipative cohesive interface model which treats 

the dislocation core as a continuous, inhomogeneous lattice slip field is implemented into the 

slip plane. We find the relative slip field on the slip plane by balancing the force introduced 

from our cohesive interface model and the applied force. We then use our method to solve 
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problems of homogeneous dislocation nucleation, dislocation nucleation from a planar crack 

tip, and trailing partial dislocation nucleation after a leading partial dislocation has emitted 

from a crack tip. The activation energy for dislocation nucleation can be obtained from the 

stable and saddle-point solutions when the applied load is less than the athermal limit.  

 

3.2 Activation Energy for Homogeneous Dislocation Nucleation by the 

Volterra Dislocation Model 

 Consider a Volterra dislocation loop with radius   under an applied shear stress   in an 

infinite solid. The total potential energy is [58] 

2
2

2
0

2 8
ln

4 1total

b
b

e r

     


         
,                                (3.1) 

where 0r  is the dislocation core cut-off size,   the shear modulus, b  the magnitude of 

Burger vector, and   Possion’s ratio. The first term is the self-energy of the dislocation loop 

and the second term is the work done by the applied stress. The theoretical strength is 

achieved when / 0total     and 2 2/ 0total     , leading to, 

2
0

2

1crt

b

e r

 
 

    
.                                                   (3.2) 

When crt  , there are two solutions of   lead to the extrema of total , denoted as min  and 

saddle ( min saddle  ). The activation energy is therefore, 

   mintotal saddle total                                            (3.3) 

The solution of the activation energy will be presented shortly. 

 

3.3 Activation Energy for Homogeneous Dislocation Nucleation by the 

Rice-Peierls Dislocation Model 

 Consider an infinite solid under pure shear stress. The homogeneous dislocation 

nucleation will occur when the applied load reaches the theoretical strength of the material. 

Our three-dimensional finite element model is shown in Fig. 3.1 for this case. A half model is 

used because of symmetry about the x-z plane. In two dimensional analysis, the shear stress 

on the slip plane is taken to be a periodic function of the relative slip across the slip plane [74, 

75],  ,  
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max

2
sin

b

     
 

                                                    (3.4a) 

2
sin

2

b

b




     
 

                                                 (3.4b) 

where max the interface theoretical strength in shear, and   the relative atomic displacement 

across two adjacent atomic layer. The relationship of   and   in Eq. (3.4b) is introduced so 

that the initial slope of  ~  is infinite (Rice, 1992). The slip field on the slip plane is 

determined by balancing the force due to applied field and the force due to lattice disregistry. 

The interplanar potential on the slip plane is, 

  4max sin
b

b

 


     
 

                                                (3.5) 

A dislocation is considered to nucleate when / 2b  , corresponding to the moment that the 

interplanar potential    on the slip plane reaches its maximum, i.e. maxb


.  

 The total potential energy   as a functional of the interface slip field, Δ is [78],  

 0

1

2
elastic

S S S
dS dS dS            Δ n σ Δ n σ Δ                     (3.6) 

where, n  denotes the interface normal, σ  is the self stress due to a non-uniformΔ  when the 

externally applied force is zero, and elasticσ is the elastic stress fields when 0Δ  (i.e., when 

there is no dislocation). In Eq. (3.6), 0 is the potential energy of the elastic system when 

there is no dislocation, the second term is the energy gained on the slip plane when 

dislocation slips, the third term is the energy change of the elastic solids outside the slip plane 

duce to the introduced dislocation, and the last term is the interaction energy between the 

elastic stress field and the relative slip on the slip plane. The equilibrium slip distribution 

corresponds to a stationary potential energy.  

 To calculate the relative slip fields of the slip plane, we implement the above formulation 

into a commercial finite element package, ABAQUS, via a User-defined ELement (UEL) 

subroutine. It should be noted that, in two dimensional analysis, the slip plane is prohibited to 

open in its normal direction, and Eq. (3.4) is used along the slip direction. In three 

dimensional analysis, the slip plane is constrained in the normal direction, and shear stresses 

along the slip direction and the direction normal to the slip on the slip plane, respectively, 

have the form of, 
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max

2
sin x

zx b

     
 

                                              (3.7a) 

max

2
sin z

zy b

     
 

                                              (3.7b) 

where x and z are atomic slip disregistry along x and z direction respectively. More 

realistic   surface can be found from literature [76, 77], but we here just use a simple one to 

illustrate the efficiency of our method.  

 Because the interplanar potential is periodic, dislocation nucleation corresponds to an 

elastic snap-back instability that occurs after the total potential energy reaches its peak. When 

the total potential energy is less than its peak value, there are two solutions on the slip plane. 

One solution corresponds to the minimum potential energy state, denoted as the stable 

solution, and the other one is the saddle point solution. Each solution has its result of 

 min ,x y and  ,sad x y on the slip plane (  min ,x y <  ,sad x y ), and the activation energy 

of dislocation nucleation can be evaluated from Eq. (3.6) by, 

   3
sad min, ,D x y x y           .                                  (3.8) 

The stable solution can be obtained straightforwardly from Newton-Raphson method used in 

the Abaqus solver. To obtain the saddle point solution, an initial trial function of  * ,sad x y  is 

prescribed on the slip plane. If this guess is near the saddle point solution, the Newton-

Raphson iteration, in this case, will quickly converge to the saddle point solution. 

 The saddle point solution of the slip disregistry field, x , on the slip plane at 0y   is 

given in Fig. 3.2(a), which is the same as Xu and Argon’s results [67] from a variational 

boundary integral method. Fig. 3.2(b)-(c) show the saddle point dislocation loop 

configuration on the slip plane at different load levels. The dislocation loop at the applied 

shear stress level max/ 0.5appl   in Fig. 3.2(b) has a larger size than the dislocation loop at 

max/ 0.9appl    in Fig. 3.2 (c). That is, from Eq. (3.8), the smaller the applied stress is, the 

larger the activation energy of dislocation nucleation will be. Therefore, the dislocation 

nucleation is a stress assisted process. Fig. 3.3 shows the normalized activation energies with 

respect to various shear stress levels.  

 A comparison of various dislocation nucleation models, including Volterra model in 

Section 3.2, Rice-Peierls model in this section, and molecular simulations is given in Fig. 3.4 

and Table 3.1. It is generally found that the activation energy can be fitted to 
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 1
n

appl thA     , where n and A  are fitting parameters, appl  is the applied resolved 

shear stress on the dislocation, and th is the theoretical strength of the material. Fitting results 

are shown in Table 3.1, where n is found to be about 1.5-4.5 and the pre-factor 

3 5 15A Gb   . Temperature effects on elastic constants and pre-factor A are not considered 

in this work, while literature result suggested 1 / mA T T   with melting temperature mT  [71]. 

 

3.4 Heterogeneous Dislocation Nucleation from a Crack Tip 

 Consider a half infinite crack that emits an edge dislocation from the tip under a mode II 

k-field (Fig. 3.5a). The slip plane is assumed to be coplanar with the crack. The shear stress 

on the slip plane is taken to obey the same periodic function with respect to the relative slip 

field as in Eq. (3.4) in two dimensional analysis and as Eq. (3.7) in three dimensional analysis. 

According to Rice and Beltz [76, 77], the dislocation is considered to nucleate from the crack 

tip when the applied energy release rate applG  reaches the maximum interplanar potential on 

the slip plane which is denote as crtG  (from Eq. (3.5), max
crt

b
G




 ). In our finite element 

model in Fig. 3.5b, a half infinite planar crack lies on the x-z plane with a coplanar slip plane 

ahead of the crack tip. The model has a thickness of H. We assume the Burgers vector is 

along the x direction. Because of symmetry in x-y plane at z H  , only half space in Fig. 

3.5a is meshed. The outer surface of the model (i.e. the plane at 0z  ) in Fig. 3.5b is fixed 

with the normal displacement to ensure the plane strain condition. Mode II displacement 

boundary conditions are applied on the outer boundary in Fig. 3.5b , which in cylindrical 

coordinates  ,r  , are given by 

   

   

3
1 2 1 cos cos

2 2

2 2 3
1 2 1 sin sin

2 2

x II

y

u K r
u E

  

   

              
           

                        (3.9) 

where 3 4   , IIK  is the mode II stress intensity factor, E  is Young’s modulus, and  is 

Poisson’s ratio (equal to 0.3 in our analysis).  

 We first compare our results with Rice and Beltz’s results [75] in two-dimensional 

analysis. In this case, the crack tip has the relative slip of, 
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                                      (3.10) 

where tip has the relationship with the applied energy release rate applG , 

 4/ sin tip
appl crtG G

b

 
  

 
                                          (3.11) 

where   2
1 / 2appl IIG K   . Solutions of  min x and  sad x are shown in Fig. 3.6. They 

are exactly the same as Rice and Beltz’s. It is expected because essentially we have solved 

the same equilibrium equation with same boundary conditions: one by solving the integral 

equation in Rice and Beltz, and the other by finite element method in our work. The 2D 

activation energy results of dislocation nucleation from crack tip are shown in Fig. 3.7. We 

also compare our results that use slanted model of Eq. (3.4) in the cohesive plane to those 

using the simple sinusoidal model [65]. It is seen that the simple sinusoidal model has larger 

activation energy than the slanted model at the same applied load level. This is because the 

slanted model gives an infinite slope at 0  , which means it is harder for the slanted model 

to open at small relative slip of the slip plane than the simple sinusoidal model. However, 

crtG  for dislocation nucleation from the crack tip for both models are the same. The simple 

sinusoidal model causes much less convergence problem during computation than the slanted 

model. If one only needs to find the critical condition for dislocation nucleation, the simple 

sinusoidal model will be an ideal choice.  

 As an advantage of finite element analysis, we extend our model into three-dimensional 

computation. In Fig. 3.8, the dislocation loop from the planar crack tip is visualized by the 

relative slip field at / 0.9appl critG G  in Fig. 3.8 (a) and / 0.7appl critG G  in Fig. 3.8 (b). The 

dislocation loops are represented by the relative slip distribution in x direction on the slip 

plane. Similar to the homogeneous dislocation nucleation, a large applied load will facilitate 

dislocation nucleation from the crack tip because it corresponds to a reduced activation 

energy. Also, the maximum   in our results does not exceed the magnitude of a Burgers 

vector. Therefore, the assumption used in the 3D asymptotic analysis (i.e. / 0.2b  , where 

 is the perturbation value) in Ref. [75] will overestimate the relative slip on the slip plane. 

Admittedly, the maximum   is also related to the angle between the slip plane and the crack 

tip [72], and the ratio between IIK and IIIK  [66, 70]. Future work is needed to see if there 

exists a saddle point solution on the slip plane when a full dislocation has already been 
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generated and moved away from the crack tip (i.e. the maximum  on the slip plane is larger 

than a Burgers vector).  

 We also examine another prediction by Rice and Beltz in Ref. [75]. In their work, they 

use the asymptotic method to obtain an approximate saddle point solution, consisting of a 

local protrusion of a dislocation loop. They argued that the activation energy, 3D , for 

three-dimensional dislocation nucleation varies with the model thickness H in Fig. 3.5b and is 

close to the product of 2D and H (i.e. 3 2D DH   ) when H is small, because the small 

thickness does not allow the development of the local protrusion in the thickness direction 

and thus force the saddle-point solution to be a independent of z. And 3D  should reach a 

plateau as H increases. They calculated a case when the applied energy release rate is close to 

the critical value (i.e., / 0.9appl critG G  ) where their asymptotic approximation is most 

reliable, and found out that 2DH U agrees with the actual 3D  up to H about 17b. We 

verify their prediction in Fig. 3.9. Three-dimensional activation energies at / 0.9appl critG G   

(shown in circle mark solid line), and / 0.7appl critG G   (shown in square mark solid line) are 

given as a function of thickness H/b. 2DH  is plotted as solid lines to compare with the 3D 

results. Our results exhibit the same trend as that predicted by Rice and Beltz. In our 

simulations, 2DH  is close to 3D  until H reaches about 13b.  

 

3.5 Trailing or Twinning Partial Dislocation Nucleation from a Crack Tip 

 After a leading partial dislocation has been emitted from a crack tip, if it is followed by a 

trailing partial dislocation on the same slip plane, a stacking fault will be created. On the 

other hand, if the leading partial dislocation is followed by a twinning partial dislocation of 

the same Burgers vector on the adjacent slip plane, deformation twinning (DT) occurs and the 

subsequent partial dislocation of the same character will follow in a similar behavior, thus 

widening and extending the twin region outwards. DT is usually assumed to heterogeneously 

nucleate at pre-existing defect sites in materials such as grain boundaries, dislocations and 

dislocation pile-ups, surfaces and crack tips. Warner et al. [73] studied the competition 

between trailing and twinning partial dislocation nucleation from a crack tip under mode I 

loading using multiscale simulation in two-dimensional analysis.  They found the transition 

state that the activation energy for trailing partial dislocation emission becomes lower than 

that for twinning partial dislocation with respect to the decrease of applied load, thus leading 
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to longer times or slower strain rates for the twinning partial to occur in their study. Here we 

present our results of a trailing partial dislocation nucleation criterion from a crack tip under 

mode II loading after a leading partial dislocation has been emitted. The corresponding 

relative slip distributions of the slip plane under different load levels have been calculated. 

Twinning partial dislocation simulation will be left as a future work. 

 The slip potential   along the leading to trailing slip path is [79], 

2 2
1 2sin sin

2
a a

b b

 
                                              (3.12) 

where 1 ssfa   and 

21
1

2
2

2

usf usf usf

a
a

a
    

 . ssf  and are the extrema of  , given by 

6.616 and 8.007 (meV/Å2) for Al single crystals. Fig. 3.10 shows the   potential on the slip 

plane, i.e. Eq. (3.12), normalized by the unstable stacking fault energy, usf , along the 

leading-to-trailing partial dislocation slip path as a function of relative slip along the slip path. 

Here, for each applG between ssf  and usf , there are four solutions denoted as “A”, “B”, “C” 

and “D”. “A” and “C”, respectively, are stationary solutions of the leading partial dislocation 

and the following trailing partial dislocation nucleation. “B” and “D”, respectively are saddle 

point solutions for the leading partial dislocation nucleation and trailing partial dislocation 

nucleation. The total energy and activation energy equation can be obtained by substituting 

Eq. (3.12) into Eq. (3.6) and Eq. (3.8). “A” can be directly obtained from Newton-Raphson 

algorithm. “B”, “C” and “D” are obtained with similar technique that has been introduced in 

the previous section. We prescribe trial relative slip distributions on the slip plane near the 

actual solution of “B”, “C” and “D” and our Newton-Raphson iterations will converge to the 

actual solutions.  

 The relative slip fields of the slip plane corresponding to “A”, “B”, “C” and “D” points 

along the slip plane are shown in Fig. 3.11. As expected, when the applied load increases, 

these relative slip profiles will move closer to each other, corresponding to the athermal 

nucleation event.  
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Table 3.1 The activation energy  calculated from different dislocation models as fitted to the function  1
n

appl thA     where n 

and A are fitting parameters, appl is the applied resolved shear stress, and th is the theoretical strength of the material. 

Dislocation Model 3A Gb  n Remarks 

Volterra model [17] 5 2.8 Cutoff radius, 0 0.5r b  

 5 2.3 Cutoff radius, 0 0.91r b  

Theoretical stress, 
2

0

2

1th

Gb

e r


 

    
 

    

Peierls model [67,77,80] 5 1.5 Frenkel-sinusoid-type γ surface [67,80]  

 15 2.5  γ surface for closed-packed surface in FCC crystals; partial 

dislocation nucleation [77] 

    

Molecular simulations [71] 4.44 4.2 Heterogeneous dislocation nucleation 

 

.
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Figure 3.1 The three-dimensional finite element model for the study of homogeneous 

dislocation nucleation under pure shear stress. A half model is used because of 

symmetry about the x-z plane. 
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Figure 3.2 (a) The saddle point solution of the relative slip distribution, x , along the x-

direction on the slip plane at 0y   with respect to various pure shear stress values. 

(b) The saddle point solution of x  on slip plane at stress level max/ 0.5appl   . (c) 

The saddle point solution of x  on slip plane at stress level max/ 0.9appl   . 
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Figure 3.3 The activation energy for homogeneous dislocation nucleation, 3D , normalized 

by  3 / 1b  , as a function of various applied pure-shear stress levels.  
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Figure 3.4 The activation energy of homogeneous dislocation is calculated using the Volterra 

dislocation analysis and the Rice-Peierls dislocation model. It is generally found 

that the activation energy can be fitted to the function  1
n

appl thA     where 

n and A are fitting parameters, appl is the applied resolved shear stress, and th is 

the theoretical strength of the material. 

 



 

36 
 

 

Figure 3.5 (a) A planar crack under the mixed-mode k-field. The relative slip occurs on the x-z 

plane, and there is no opening in the normal direction of the slip plane. (b) 

Dislocation nucleation from the planar crack tip under mode II load. On the slip 

plane, the opening in y direction is prohibited, and the relationship between the 

shear stress and the relative slip on the x-z plane is defined in Eq. (3.6). 
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Figure 3.6 The relative slip field on the slip plane under various levels of applied energy 

release rate, applG . Solid lines are stationary point solutions and dashed lines are 

saddle point solutions. 



 

38 
 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

G
appl

/G
crt

(1
- 

) 


2D
/ 

b2

Sinusoidal model

Slanted model

 

Figure 3.7 Activation energy 2D  per unit length obtained from the Rice-Peierls model 

using the slanted and simple sinusoidal models 
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(a) 

  

 

(b) 

Figure 3.8 The dislocation loop from the planar crack tip is visualized by the relative slip 

field with two representative applied energy release rate: (a) / 0.9appl crtG G   (b) 

/ 0.7appl crtG G  . 
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Figure 3.9 The activation energy 3D normalized by 
3

1

b


 under applied stress levels 

/ 0.9applied crtG G  (i.e. circle marked solid line) and / 0.7applied crtG G  (i.e. square 

marked solid line) as a function of the normalized H/b. The product of 2D and 

thickness H  normalized by 
3

1

b


 is also shown as a comparison. 
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Figure 3.10 The   potential on the slip plane for the leading-to-trailing partial dislocations as 

a function of relative slip along the slip direction. 
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Figure 3.11 The relative slip fields on the slip plane for various load levels corresponding to 

points A, B, C and D in Fig. 3.10. 
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Chapter IV 

Geometric Effects on Dislocation Nucleation 

4.1 Introduction 

 In this chapter, we will use the nonlinear finite element method developed in Chapter III 

to study geometric effects on dislocation nucleation. For example, people have observed 

dramatic strength differences between homogeneous dislocation nucleation and dislocation 

nucleation from material surfaces [88]. Atomistic simulations also confirm that the force 

needed to break atomic bond near the surface is less than the force needed to break atomic 

bond insider the solids [90]. Dislocation nucleation from step corners is also important to 

microelectronic devices. Because in microelectronic devices, stresses arising from 

mismatches in lattice constants or thermal expansion coefficients or from processing and thin 

film growth may lead to failure by fracture, mass transfer, and/or configuration change 

[25,81]. On the other hand, integrated electronic structures may be deliberately strained to 

enhance the mobility of charge carriers and thus their functional performance [82, 83]. Stress 

concentrations near sharp geometric features such as edges and corners may lead to the 

nucleation of dislocations, which can act as electrical leakage paths and eventually lead to 

failure of the devices [22, 23, 24]. Mask-edge defects have been observed to form during 

processing steps such as the solid-phase epitaxy regrowth of amorphous silicon[84-90]. 

Consequently, the development of immortal, strained nano-electronics requires a knowledge 

of the defect nucleation process and its dependence on the layout structure, materials 

processing, and surface treatment, among many others. This paper elucidates the role of film 

geometric parameters on the critical external stress for dislocation nucleation near the film 

edge.  

 

4.2 Dislocation Nucleation from Surface Edges 

 In the model problem (Fig. 4.1), we consider a stress-free silicon nitride (Si3N4) pad of 

size L W h   on an infinite silicon (Si) substrate. We choose a simple slip system with slip 

direction  cos ,0, sin  s  and slip normal  sin ,0,cos m  with  1tan 2  . 

When the external stress appl
xx  (applied only on the substrate) reaches a critical value 



 

44 
 

(denoted as crt ), a dislocation loop is nucleated from the edge/corner of the Si3N4 pad. 

Dimensional analysis gives 

max

max

, , , , , , ,crt h L L

b h W

   
 

 
  

 
s m ,                                       (4.1) 

where max  and b  are the theoretical strength and the Burgers vector of the silicon substrate, 

respectively. Two Dundurs parameters, 
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 , describe the 

modulus mismatch, where   and   are the shear modulus and Poisson’s ratio of the 

substrate, and p  and p  are those of the pad [22,23, 40]. It should be noted that our model 

problem may not be representative of some realistic situations. For example, the pad or mask 

may be stressed, or the entire pad/substrate is covered by a film with different lattice constant, 

or the pad/substrate is stressed during the solid-phase epitaxial recrystallization of amorphous 

silicon that is previously created by ion implantation[84-90]. Nevertheless, as will be shown 

shortly, the difference between our model problem and some other experimental setups is 

merely on the stress intensity factors (SIFs) which characterize the near-edge stress fields. 

 When 0L W  , the pad becomes infinite in the y direction. As previously analyzed by 

Suo et al. [22,23]. the elastic stress field near the root of the edge is singular,  

 
 

 
 

 
1 2

1 21 2,
2 2

ij ij ij

k k
r

r r
    

 
    ,                                  (4.2) 

where 2 2r x z   and  1tan x z  . The eigenvalues   and eigenfunctions ij
  are 

determined by the Dundurs parameters and the dihedral angle at the edge root. The SIFs, k , 

can be calculated from the applied stress and geometric parameters. Thus the dislocation 

would be nucleated if the stress intensity factor reaches a critical value, which is similar to 

Griffith-Irwin fracture mechanics [91], and is essentially equivalent to the Rice-Thomson 

criterion [46, 47, 92, 93,94]. The SIF analysis does not provide an explicit treatment of the 

dislocation nucleation process, so that the relationship between the critical SIF and the mode 

mixity cannot be determined. It is also difficult to determine the three-dimensional 

asymptotic stress fields near the rectangular pad. 

 An explicit description of the dislocation nucleation process has been given in Chapter 

III. Here, a simple sinusoidal form is used for the interplanar potential. The interface shear 

stress, s , is related to the shear separation, s , in the slip direction by  
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max

sin 2s s sd

b dt b

  


        
   

.                                         (4.3) 

We use the same treatment in Chapter III to implement Eq. (4.3) to the slip plane. Because 

the interplanar potential is periodic, dislocation nucleation corresponds to an elastic snap-

back instability that occurs after the total potential energy reaches an unstable equilibrium. 

The stiffness matrix becomes singular at the point of instability. The post-instability behavior 

can be accurately captured by the introduction of the fictitious viscosity, , in Eq. (4.3) [95]. 

This methodology has also been used to coating delamination and indentation cracking 

problems [96,97].  

 Because of symmetry in x and y directions, only a quarter space in Fig. 4.1 must be 

meshed. The minimum mesh size near the edges and corners is chosen to be less than 1/3 of 

the dislocation core size. The theoretical stress max  is about 1/5~1/30 of the shear modulus 

[17]. Its actual value is of no particular interest here, since our results are presented in 

normalized forms. We take the shear modulus and Poisson’s ratio of Si3N4 to be 54.3 GPa 

and 0.27 and those of silicon to be 68.1 GPa and 0.22, respectively [23,83]. A more 

quantitative calculation should use anisotropic elastic constants of these materials[98] and an 

interplanar potential based on ab initio results [99], but our conclusions here should remain 

qualitatively unchanged. For finite element simulations with  =0, the eigenvalues of the 

stiffness matrix are monitored so that the onset of dislocation nucleation can be correctly 

determined. In Fig. 4.2, the normalized critical stress, maxcrt  , is plotted as a function of 

geometric parameters, L h  and L W , with two representative values of maxh b  . This 

particular combination of parameters ( maxh b  ) is chosen to compare a characteristic 

geometric length in the problem, h , to the dislocation core size, ~ maxb  [95]. Similar 

combinations can be found in many other cohesive interface models [100]. From Fig. 4.2, we 

observe that, first, as maxh b   increases, the dislocation nucleation process zone becomes 

small when compared to the pad height; the limit at maxh b    is equivalent to the SIF 

analysis [23, 83]. For a small maxh b   (as compared to unity), crt  will approach the 

theoretical strength. Second, crt  increases with a decrease of L h  because the stress 

concentration at the edge will be reduced as the two side surfaces that are parallel to y-z plane 

move together. Clearly, crt  will approach a plateau as L h   since the two side surfaces 

will not feel the presence of each other. Third, crt  increases with an increase of L W  for a 
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similar reason. This three-dimensional effect is, however, not significant since the results in 

Fig. 4.2 show that an increase of L W  from 1 to 20 merely leads to about 10-20% increase of 

crt .  

 Recently, Kammler et al. [24] patterned two square Si3N4 pads on a silicon substrate with 

500h nm  and lateral sizes of 10μm and 1μm, respectively. When subjected to a residual 

stress, the large pad exhibited dislocation nucleation, while the small pad did not, implying 

that a “blanket-like” pad is more susceptible to dislocation nucleation than a “pole-like” pad. 

This observation agrees with our analysis in Fig. 4.2, which suggests that crt  for the large 

pad should be about a half of that for the small pad.  

 In the results shown in Fig. 4.3, the dislocation loop is visualized by the concentration of 

the resolved shear stress (RSS), ij i js m , as normalized by appl
xx x xs m . These results are made 

available by using the viscous model in Eq. (4.3). We choose the viscosity 

max
appl
xx  =0.0014, and other parameters are L h =10, L W =1, h b =20, and max  =0.21. 

As shown by the snapshot in Fig. 4.3(a), the first dislocation is nucleated at the corner of the 

Si3N4 pad where the elastic RSS maximizes. Subsequently, a second dislocation is nucleated 

at the center of the edge, as shown in Fig. 4.3(b). The shift of nucleation site is due to the 

back stress generated by the first dislocation, which modifies the stress fields along the edge 

line. Dislocation shapes are similar to the transmission electron microscope images by 

Kammler et al [24]. The first dislocation nucleation can also conceivably occur at the edge 

center because (i) dislocation nucleation is a thermally activated process, (ii) the RSS near the 

corner and that near the edge center do not differ significantly, and (iii) corners are usually 

rounded. Finally, note that the nucleated dislocations do not travel too far from the edge 

because the stress concentration is localized only near the pad. This is particularly true for 

materials with high lattice resistance.   

 

4.3 Discussions on Geometric Effects 

 The dislocation nucleation process near sharp features in strained electronics has been 

investigated by a dissipative cohesive interface approach. The critical stress decreases with an 

increase of maxh b   or L h , or with a decrease of L W . As multiple dislocations inject into 

the substrate, the dislocation nucleation site shifts from the corner to the center of the edge.  
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 Geometric effects on dislocation nucleation can also explain the observation in recent 

experiment [17]. The critical resolved shear stress for dislocation nucleation is found to be 

/ 8  for both Mo-3Nb and Mo-10Al-4Ni single crystals under nanoindentation, while 

compression tests on Mo-10Al-4Ni micropillars reveal a critical shear stress of / 26 . The 

stress required for half or quarter heterogeneous dislocation nucleation at the free surface and 

edges of micropillars is expected to be lower than the stress needed to homogeneously 

nucleate a full dislocation loop inside the bulk during nanoindentation. It can be seen from 

Table 3.1 that the heterogeneous dislocation nucleation has lower activation energy than the 

homogeneous dislocation nucleation at the same load level. Therefore, during micropillar 

compression test, where the stress fields are uniform in the solid, the heterogeneous 

dislocation is easier to be thermally activated than the homogeneous dislocation nucleation. 

This may be responsible for the difference in the critical resolved shear stress between 

nanoindentation test and micropillar compression test. 
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Figure 4.1 Schematic illustration of a rectangular silicon nitride pad with length L, width W, 

and height h on an infinite silicon substrate. The slip plane (shaded) makes an angle 

  from the x-y plane, and the slip direction is taken to be  cos ,0, sin  . 
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Figure 4.2 The critical stress for dislocation nucleation crt  (as normalized by the 

theoretical strength max ) plotted against two geometric parameters, L h  and L W , 

with maxh b  =4.23 in (a) and 23.5 in (b). 
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Figure 4.3 Representative results showing the first dislocation nucleation from the corner in 

(a), and subsequently the second dislocation nucleation from the center of the edge in (b). 

The resolved shear stress (RSS) contours are plotted on the slip plane. 
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Chapter V 

Indentation Schmid Factor and Orientation Dependence 

of Nanoindentation Pop-In Behavior of NiAl Single 

Crystals 

5.1 Introduction 

 Instrumented nanoindentation techniques, which provide accurate measurements of the 

indentation load, P, and the indenter penetration depth, h, at nanometer resolution, have been 

widely used to characterize small scale mechanical behavior [1-3]. Methodologies have been 

established on how to extract material properties such as modulus and hardness from the 

measured P~h curves. Besides the measurement of the hardness and modulus, the P~h curves 

can be used to examine the onset of elastic-plastic transition in various crystalline and 

amorphous materials [4-17]. The onset of plasticity is often associated with a displacement 

discontinuity on the otherwise continuous load-displacement curve, or denoted as “pop-in”, 

as the indenter tip suddenly jumps into the specimen with negligible load increase. While the 

pop-in event may be associated with fracture of surface oxide layer for some materials [18], it 

is believed that for a defect-free crystalline material, the first displacement burst is a result of 

homogeneous dislocation nucleation underneath the indenter [6,7,9-17,19-21]. This 

conclusion is supported by the following observations. First, the load-displacement curve 

before pop-in occurs is fully reversible, and can be fit to the Hertzian contact theory, 

34

3 rP E Rh ,                                                            (5.1) 

where R is the indenter tip radius and rE is the reduced indentation modulus. Thus the 

deformation is purely elastic prior to the pop-in event. Second, after unloading before the first 

strain burst, the Atomic Force Microscope image shows no measurable permanent shape 

change on the specimen surface, while a residual shape change occurs if unloading is started 

after pop-in occurs [6,9]. Third, when the first pop-in event occurs, the maximum shear stress 

in the specimen is in the range of G/30~G/5 with shear modulus G for a variety of materials, 

and is very close to the theoretical strength calculated by ab initio method [99]. Fourth, pop-

in loads vary in a wide range, and the statistical measurements confirm the dependence on 

indentation strain rate and environmental temperature. Theoretical predictions based on the 
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stress-assisted, thermally-activated, homogeneous-dislocation-nucleation model agree well 

with these statistical measurements [7-10,14,17]. Consequently, nanoindentation pop-in tests 

can be used as a powerful tool to study the homogeneous dislocation nucleation. 

 Most of previous theoretical studies assume that the homogeneous dislocation nucleation 

occurs when the resolved shear stress reaches the theoretical strength, which is similar to the 

Schmid law that describes the plastic flow in single crystals. At atomic length scales, stress 

components other than the resolved shear stress will also affect the dislocation nucleation 

process [101,102]. For uniaxial loading conditions, Tschopp et al [101,102] conducted 

extensive molecular simulations on copper single crystals and concluded that for loading 

directions close to <101> (or equivalently, at lower right regime on the standard <001> 

triangle on the inverse pole figure), the compressive stress on the slip plane dominates the 

dislocation nucleation process, while the Schmid law generally works well for loading 

directions at upper left regime in the standard <001> triangle. On the other hand, the 

indentation stress fields are far more complex than uniaxial tests, and the ratio of 

compression to shear stress on a given slip system depends on crystallography and elastic 

anisotropy. As another comparison, the single-slip-system dislocation nucleation can be 

realized in single crystals under uniaxial tension with loading directions lying in the standard 

<001> triangle. However, it remains unclear if the same orientation under indentation will be 

still leading to dislocation nucleation on a single slip system.  

 In this study, the load required for homogeneous dislocations nucleation in 

nanoindentation test on single crystals is investigated as a function of crystallographic 

orientation and elastic anisotropy. By adopting indentation Schmid factor derived in Chapter 

II and assuming that dislocation nucleates when maximum resolved shear stress reaches the 

theoretical strength, the pop-in load is predicted to be a function of indenter radius, effective 

indentation modulus, indentation Schmid factor, and the theoretical strength. Comparisons to 

experimental measurements will test the validity of the above relationship and fit the 

theoretical strength of the specimen. By systematically varying the indentation direction, we 

can investigate the pressure effects as well as the possibility of simultaneously activating 

dislocation nucleation on multiple slip systems. NiAl single crystals are chosen, because the 

slip systems  110 001  in this B2 structure are simpler than other crystal structures so that 

we will not encounter complex dislocation behavior such as partial dislocation nucleation.  

 The homogeneous dislocation nucleation process is a stress-assisted, thermally activated 

process, so that statistical measurements with respect to different indentation directions can 
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be used to further validate which stress components are playing key roles in nucleation 

process, if the pop-in corresponds to homogeneous dislocation nucleation, and whether 

single- versus multiple-slip-system dislocation nucleation really occurs.  

 

5.2 Experiment 

 Single crystal NiAl sample was grown in an optical floating zone furnace, which is used 

previously to grow other intermetallic single crystals or eutectic composites [103]. Briefly, 

99.99 % pure Ni and Al metal pieces were arc melted to produce buttons, which were flipped 

and remelted five times to ensure homogenization before drop casting into a copper mold and 

ultimately producing an alloy with a composition of 50at % Ni - 50 at% Al. These drop-cast 

ingots (10 mm in diameter and 120 mm in length) were then used as feed rods for single 

crystal growth in the optical floating zone furnace. During growth of the first crystal, the 

diameter of the molten zone was carefully reduced to produce a neck that prevented the 

slower growing grains from propagating. This technique produced a single crystal with a 

growth direction near [100] as determined by Laue back scattered X-ray diffraction. 

Specimens with different crystallographic orientation were cut from this single crystal. 

Before performing nanoindentation, the specimen was mounted in epoxy, ground and 

polished using standard metallographic procedures. The final polishing was performed in a 

water solution with colloidal silica suspension. 

 Nanoindentation was conducted with a MTS XP nanoindenter using a 90° conical 

diamond indenter with a spherical tip at the end whose radius was ~580 nm. All tests were 

performed in the continuous stiffness mode with a constant rate of 10.05P P s . About 100 

indents were made in each specimen, and the indents were placed far enough apart to avoid 

interference. As shown in Fig. 5.1(a), clear pop-ins were observed for all the tests, and the 

loads corresponding to the first pop-in were recorded as the pop-in loads, pop inP  . The tested 

indentation directions are shown by the open markers in the standard [001] triangle in Fig. 

5.1(b). Four lines are denoted in Fig. 5.1(b) with parameter m varying from 0 to 1.  

 

5.3 Nanoindentation pop-in load for homogeneous dislocation nucleation 

 We assume that the homogeneous dislocation nucleation occurs when the maximum 

resolved shear stress reached the theoretical strength th  of the material, i.e., max
rss th  . The 
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stress fields of elastically anisotropic solids under indentation and the indentation Schmid 

factor are already given in Chapter II. Using Eqs. (2.18) and (2.24) gives the predicted pop-in 

load under Hertzian contact, 

3 3 2

26
th

crt
r

R
P

S E

    
 

.                                                   (5.2) 

The reduced modulus rE  is given by Chapter II, and because our analysis is on single 

crystals, it has the form, 

  1
211 i
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v
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E E


 
  
  

                                                 (5.3) 

where the effective indentation modulus effE is given by Eq. (2.25), and depends on elastic 

anisotropy and indentation direction.  

 Contours of the predicted crtP  for NiAl single crystals under Hertzian contact are plotted 

in Fig. 5.3. As we move from  001  to  111 , the effective modulus effE  increases by about 

16%, and the indentation Schmid factor increases by about 35%. Consequently, the predicted 

pop-in load will be 001 101 111 1 1
2 3: : 1: :crt crt crtP P P  . Such a significant variation is ideal for 

experimental validation.  

 To examine more closely the crystallographic dependence of the pop-in load, we now 

define an effective Schmid factor by 

 
        * * * *

0

1
maxeff ij i j ij i jS s m k m m

p
   


   ,                              (5.4) 

where the second term in the braces is the stress normal to the slip plane, and k is the normal-

shear coupling coefficient. The pop-in criterion in Eq. (5.2) will be modified by substituting 

effS  for S . With several representative k values, Fig. 5.4 plots effS  for spherical indentation 

on NiAl with indentation directions along  1mm , 2 1mm  , and  01m  with m varying from 0 

to 1. The location that reaches effS  differs slightly from that of S . The small difference 

between effS  and S  arises from the fact that normal stress and resolved shear stress are 

generally comparable under the Hertzian stress fields.  

 Prior to the first pop-in, the load-displacement relationship can be fitted to the Hertzian 

contact solution in Eq. (5.1). The fitted indentation modulus agrees well with our prediction 

in Fig. 2.4 within 10% deviation for all the indentation directions. For NiAl, the major 
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contribution to the dependence of crtP  on indentation direction arises from S , because the 

variation of S  is larger and the power exponent associated with S  in Eq. (5.2) is larger than 

those of rE .  

 The nanoindentation tests were repeated over one hundred times to produce the 

cumulative probability, f , versus pop-in load, pop inP  , curves in Fig. 5.5(a). Indeed the pop-

in load is at maximum for 001  indentation direction and at minimum for 111  indentation 

direction, which agree well with the prediction in Fig. 5.3. The analysis of the entire 

f ~ pop inP   curves will be conducted from the thermal activation model in the next subsection. 

Here the measured pop-in loads at 90% and 80% cumulative probability are shown by the 

open markers in Fig. 5.6 with indentation direction varying along  1mm , 2 1mm  , and  01m . 

As shown in Eq. (5.2), the only unknown parameter is the theoretical strength th , which is 

obtained by fitting the pop-in loads at 90% cumulative probability for all the tested 

indentation directions (open markers in Fig. 5.1(b)). Using the indentation Schmid factor 

gives th =8.57 GPa, which is about 13.5G  with shear modulus on the slip system G=116 

GPa. Using the effective indentation Schmid factor with k =0.1 gives th =9.56 GPa or 

12.1G . These values are in the typical range of theoretical strength, i.e., 30 ~ 5G G . 

Comparisons in Fig. 5.6 indicate that the normal-shear coupling does not give significant 

variation of the fitted theoretical strength, because for any indentation direction, the shear and 

normal stresses on any slip systems are comparable, so that S  and effS  have similar 

dependence on indentation direction. Consequently, the pressure effects cannot be determined 

from pop-in tests under the Hertzian contact.  

 Discrepancies are larger for indentation directions of <001>, <214>, and <207>. 

Particularly, the slope of f ~ pop inP   for <001> is dubiously smaller than others in Fig. 5.5(a). 

One may suspect this is due to the possibility of heterogeneous dislocation nucleation, which 

will be discussed shortly in our thermal activation model. Another possible source of this 

discrepancy may arise from the tip shape. We use a radius of R=580 nm for all the 

indentation directions instead of calibrating it for every indentation direction [16]. 

Nonetheless, in general the Schmid-type dislocation criterion seems to work well for all the 

indentation direction except for some small deviations for indentation directions near <001> 

orientation. As a comparison, using molecular simulations to study copper single crystals 

under uniaxial tension, Tschopp et al. [101,102] found the Schmid-type dislocation criterion 



 

56 
 

works well for indentation directions close to the [001]-[111] boundary in the standard [001] 

triangle, but not for those directions close to the [101] vertex.  

 

5.4 Pop-in kinetics and thermally activated dislocation nucleation process 

 The dislocation nucleation process is a stress-assisted, thermally activated process. When 

the applied resolved shear stress is lower than but close to the theoretical shear stress, an 

energy barrier for dislocation nucleation exists. At finite temperatures, this activation energy 

barrier can be overcome by thermal energy, thus leading to a wide range of pop-in loads as 

shown in Fig. 5.5. Assuming that the activation energy    for homogeneous dislocation 

nucleation is only a function of the resolved shear stress  
rss
  on a given slip system, we aim 

to see whether the dependence of the statistical data in Fig. 5.5 on indentation direction can 

also be predicted from the analysis based on the indentation Schmid factor.  

 With a given indentation direction, when the applied load is lower than the athermal limit, 

the rate of dislocation nucleation on the  -th slip system is assumed to obey the Arrhenium 

law, 

 
 

0 exp
B

n n
k T


  
  

 
  ,                                           (5.5) 

where 0n  is an attempt frequency per material volume, Bk  is the Boltzmann constant, and T 

is the absolute temperature. The activation energy for the homogeneous dislocation 

nucleation can be calculated using the Volterra dislocation analysis, or using the Peierls 

dislocation model, or by molecular simulations. As summarized in Chapter III, we use the 

following approximation,  

 1
n

appl thA     ,                                            (5.6) 

where appl  is the applied shear stress. As in Table 3.1, the power exponent n is found to be 

about 1.5-4.2 and the normalized pre-factor is 3 5 15A Gb   .  

 When the indentation direction lies on the vertices and boundaries of the standard 

triangle, at least two slip systems have the same maximum resolved shear stress. Clearly for 

those directions close to the triangle boundary, several slip systems may have very close 

values of the maximum resolved shear stress. Consequently, we need to consider possibilities 

of dislocation nucleation on all the slip systems. We relate the maximum resolved shear stress 
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on the  -th slip system to the maximum contact pressure by the indentation Schmid factor of 

the  -th slip system, 

        
0

1
max ij k i jS x p q

p
   .                                      (5.7) 

Thus we can write down the maximum applied shear stress on the  -th slip system as 

    1 3
appl P    with    
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.  

 Denote  q   as the survivability, i.e., probability of no pop-in, on the  -th slip system. 

For a first order system, it relates to the nucleation rate by      n V q q      where V is the 

material volume in which dislocation nucleation may occur. Using Eq. (5.5) gives 
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The cumulative probability for pop-in, f , is now a function of pop inP  , given by 
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where the dimensionless parameter 0 0N n VP P   will be obtained by fitting to experimental 

data. In deriving the above equation, we note that the experiments were conducted at constant 

P P . The cumulative probability relates to the pop-in probability, p , by  
0

pop inP
f p P dP

   

or  pop in pop inp P df dP  , so that   

  

  

1 3

0
0 0

1 3

1
exp exp

1
exp

pop in

n

P th

pop in B

n

pop in th

B

A PN dP
p N

P k T P

A P

k T









 

 







             
   
  





 

            (5.10) 

 Eq. (5.10) can be integrated to produce the solid lines in Fig. 5.5(a). For all the 

indentation directions, we use the same activation energy form in Eq. (5.6), and fit th  and 

0N  for each indentation direction. Results for this Method (I) are given in Table 5.1. We 
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found that 5.2n   and 373 5A eV Gb  . The fitted theoretical stress for each indentation 

direction deviates slightly from the fitted value based on pop-in loads at 90% cumulative 

probability in a reasonable range. However, the fitted n value is higher than the typical values 

in Table 3.1.  

 One hindsight arises for those with surface normal close to [001] direction. The long tail 

at low pop-in loads suggests that the pop-in be resulted from sudden motion of pre-existing 

dislocation or other heterogeneous dislocation nucleation mechanisms. In the cumulative 

probability fitting process, the cumulative probability at applied load near the theoretical 

strength has to carry all the information from lower pop-in loads including the tail area. 

Therefore, the fitting parameters will tend to lower the activation energy at applied loads in 

the tail region to fit the slope of the cumulative probability vs pop-in load curve, which will 

consequently increase n  value if we fixed 3/ 5A Gb   in our fitting. This results into a higher 

n value than the typical values in Table 3.1. Consequently, we perform out fitting to the 

~ pop inp P   curves as shown by a representative fitting result in Fig. 5.7(a) for [2 1 2] 

direction.  

 Rewriting Eq. (5.10) as, 

     0 0lnpop in pop int P N N s P    ,                                 (5.11) 

where the two functions  pop int P   and  pop ins P   are given by 
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Therefore we can fit 0N  from the slope of t ~ s  curve. 

 The fitting procedure is specified as follows. With a given indentation direction, we first 

generate the p ~ pop inP   histogram from the f ~ pop inP   curve. Then, we estimate th for each 

direction and fix 3/ 5A Gb  . Input all above parameters into Eq. (5.11), we can find n  for all 

directions. A given example is shown in Fig. 5.7(a). Normally, from Eq. (5.11), the s and 

t should have a linear relationship. However, data at the left tail in Fig. 5.5(a) will not obey 

this linear relationship. Fig. 5.7(b) shows typical results of probability vs pop-in load curve. 

After removing the left tail, it is found that n  is about 4.2 which is a reasonable value as 
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shown in Table 3.1. From the fitted 0N and n , we can generate dashed line in Fig. 5.7(b) 

which differs significantly from the solid line as fitted from f ~ pop inP  .  

 Results for the Method (II) are also given in Table 5.1. The fitted th is closer to the value 

from pop-in loads at 90% cumulative probability than fitted from cumulative probability 

curve. Most importantly, the fitted n is found to be 4.2, which is in the appropriate range in 

Table 3.1. From these two fitting Methods, it can be concluded that the kinetic analysis of 

pop-in data also prove the anisotropy analysis based on the indentation Schmid factor, 

suggesting that the Schmid-type criterion for homogeneous dislocation nucleation is 

generally appropriate.  

 

5.5 Discussions 

 The dependence of nanoindentation pop-in tests on the indentation crystallographic 

direction is studied theoretically and experimentally. An indentation Schmid factor, S , is 

defined as the ratio of the maximum resolved shear stress from all possible slip systems to the 

maximum contact pressure. Based on the anisotropic elasticity analysis, we have derived in 

closed form the stress fields under Hertzian contact, and have computed the indentation 

Schmid factor for Ni and NiAl single crystals. The pop-in event, as a consequence of 

homogeneous dislocation nucleation, will occur when the maximum resolved shear stress 

reaches the theoretical strength th , so that the pop-in load crtP  is given by 
3 3 2

26
th

crt
r

R
P

S E

    
 

 

with indenter radius R and reduced indentation modulus rE .  

 Nanoindentation tests were tested on NiAl single crystals, which have B2 structure and 

 110 001  simple slip systems. A number of representative crystallographic orientations on 

the standard <001> triangle of the inverse pole figure were selected as indentation directions. 

Comparisons between the pop-in statistical data and our theoretical predictions lead to the 

following conclusions. 

 The crystallographic dependence of the pop-in loads agrees reasonable well with the 

predictions based on the indentation Schmid factor, which further supports that 

nanoindentation pop-in corresponds to the homogeneous dislocation nucleation in defect-free 

crystals.  
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 The location where the maximum resolved shear stress is reached can be substantially 

away from the contact center. It is primarily governed by indenter shape, elastic anisotropy, 

and slip systems.  

 The normal-shear coupling effects cannot be distinguished from the relationship between 

measured pop-in loads and indentation direction, because the normal stress to the slip plane 

and resolve shear stress under Hertzian contacts (even for anisotropic crystals) are generally 

comparable and thus S  in Eq. (2.24) and effS  in Eq. (5.4) vary similarly with respect to the 

indentation direction.  

 A thermal activation model is developed to study the crystallographic dependence of the 

pop-in statistics. Except for small deviations in indentation directions close to <001>, 

predictions based on the Schmid-type dislocation-nucleation criterion again agree well with 

the experimental measurements.  
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Table 5.1 The indentation Schmid factor of the  -th slip system,  S  , as defined in Eq. (5.7), and the fitting parameter 0 0N n VP P   

and th in Eq. (5.9) are given with respect to a number of indentation directions. The unit of th  is GPa. Method (I) is based on 

fitting f ~ pop inP   as in Fig. 5.5(a). Method (II) is based on fitting p ~ pop inP   and removing the left tail as in Figs. 5.5(b) and 5.8. 

Indentation 

direction 

 1s  

  011 100  

 2s  

  0 11 100

 3s  

  101 010

 4s  

  101 010

 5s  

  110 001

 6s  

  110 001  

Method (I) Method (II) 

th  

(fitted) 

0N  

(fitted) 

th  

(fitted) 

0N  

(fitted) 

<111> 0.347 0.132 0.346 0.132 0.364 0.155 8.5 6.56 8.5 3.96 

<221> 0.325 0.293 0.323 0.199 0.361 0.213 8.0 6.92 8..0 6.21 

<421> 0.316 0.246 0.291 0.241 0.351 0.196 8.6 9.22 8.6 22.64 

<110> 0.318 0.317 0.248 0.012 0.318 0.097 8.6 12.90 8.6 11.75 

<441> 0.345 0.274 0.281 0.080 0.346 0.106 10.2 12.00 10.2 19.99 

<521> 0.301 0.245 0.282 0.323 0.337 0.212 11.2 65.90 11.2. 241.67 

<411> 0.258 0.278 0.258 0.257 0.331 0.250 12.5 150.00 13.0 2.7×103 

<720> 0.262 0.262 0.244 0.228 0.301 0.219 9.75 28.86 9.75 252.97 
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Figure 5.1 (a) Representative load-displacement curves for NiAl single crystals under 

spherical indentation with a tip radius of R=580nm. (b) Indentation directions used in the 

tests are marked on the standard [001] triangle in the inverse pole figure. 
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Figure 5.2 Schematic illustration of an elastically anisotropic specimen under a spherical 

indenter with a radius of R. The contact area is assumed to be circular with a radius 

of a. 

 

Elastically anisotropic half-space 

2a
1x  

3x  1 2,   

  

2x

Elastic spherical indenter 



 

64 
 

[001] [101]

[111]

P
crt

/P
crt,[001]

 for circular contact of NiAl

P
crt,[001]

/P
crt,[001]

=1

P
crt,[101]

/P
crt,[001]

=0.5052

P
crt,[111]

/P
crt,[001]

=0.3179

 

 

 

 

 

 

 

 

Figure 5.3 Contours of the critical pop-in load, crtP , normalized by  , 001crtP  plotted for NiAl 

single crystals under spherical indentation. 
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Figure 5.4 The pressure effect on the slip system is modeled by the effective Schmid factor, 

effS . With several representative values of normal-shear coupling coefficient k, we plot effS  

for spherical indentation on NiAl with indentation directions along  1mm , 2 1mm  , and 

 01m  with m varying from 0 to 1. 
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(b) 

Figure 5.5 (a) The cumulative pop-in probability, f, as a function of pop-in load for spherical 

indentation on NiAl single crystals with a number of indentation directions. Solid lines are 

predictions from the stress-assisted, thermally activated model of homogeneous dislocation 

nucleation. (b) The comparison of two fitting methods for  101  and  207  directions. The 

solid lines are based on fitting f ~ pop inP  , while the dashed lines on fitting p ~ pop inP   and 

removing the left tail (see Fig. 5.7 for details), where pop inp df dP  . 
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Figure 5.6 Comparisons between predicted and measured pop-in loads for spherical 

indentation on NiAl with indentation directions along  1mm , 2 1mm  , and  01m . The 

experimental data of measured pop-in loads of 90% and 80% cumulative probabilities for 

each direction are shown by the solid lines with open markers. The theoretical strength is fit 

from all the indentation directions. 
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Figure 5.6 (cont’d) Comparisons between predicted and measured pop-in loads for spherical 

indentation on NiAl with indentation directions along  1mm , 2 1mm  , and  01m . The 

experimental data of measured pop-in loads of 90% and 80% cumulative probabilities for 

each direction are shown by the solid lines with open markers. The theoretical strength is fit 

from all the indentation directions. 
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Figure 5.7 (a) Fitted s  and t  in Eq. (5.11) for [2 1 2] direction. (b) Typical results of 

probability vs pop-in load curve.  
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Chapter VI 

Scale Effects in Pop-In Strength due to Pre-Existing 

Defects 

6.1 Introduction 

 In Chapter V, we have systematically studied nanoindentation pop-in behavior when the 

governing mechanism is homogeneous dislocation nucleation in defect-free single crystals. In 

this case, a dislocation will nucleate when the maximum resolved shear stress in the solid 

reaches the theoretical strength of the material. When the maximum resolved shear stress is 

less than but close to this athermal limit, the thermal energy can kinetically activate the 

dislocation nucleation process. The predicted crystallographic dependence of the pop-in 

statistics agrees well with the experimental results of B2-type NiAl single crystals. However, 

a large deviation from our theoretical prediction is observed when the indentation directions 

are close to <001>. As shown in Fig. 5.5(a), the cumulative probability curve exhibits a long 

tail at low pop-in loads for those with surface normal close to <001> direction (which also 

corresponds to large stressed-volume sizes), which suggests that the pop-in result from the 

sudden motion of pre-existing dislocations or heterogeneous dislocation nucleation (e.g., 

Frank-Read dislocation nucleation).  

 A similar effect can be observed by using different indenter radii, as denoted as a 

different type of indentation size effect (ISE) [104-106]. Experimentally, the maximum shear 

stresses as determined at the measured pop-in loads exhibit a monotonic decrease with 

respect to the increase of the indenter radius. A representative result is shown in Fig. 6.1 for 

Mo <001> single crystals with respect to the indenter radius. In Fig. 6.1, the mean maximum 

shear stresses values are measured from Fig. 2 of Ref. [105], and the error bars are generated 

from 90% and 10% cumulative probability of the maximum shear stresses for each indenter 

radius.  When the indenter size is small (e.g., 115nm in our case), the stress needed for pop-in 

is found to be on the order of the theoretical strength (~G/7 in this case). As the indenter 

radius increases, the maximum shear stress first decreases, and data scatter increases. If the 

indenter size is large enough (larger than 64 μm, in our case), the strength approaches a 

plateau value and its scatter becomes negligible. When the indenter size is in the intermediate 



 

71 
 

range (between 178nm and 64 μm in Fig. 6.1), the measured pop-in loads exhibit a variety 

range of scatter. This may be explained qualitatively as follows. When the indenter radius is 

sufficiently small, the highly stressed zone in the material is so small that it is likely to be defect 

free. Thus the pop-in results from the homogeneous dislocation nucleation at the theoretical stress. 

At the limit of a large indenter, where a sufficiently large volume of material is stressed, pop-in 

would tend to be caused by the sudden configurational change of the pre-existing defect networks 

rather than by the homogeneous dislocation nucleation. And the critical stress required for such 

defect-assisted events is supposed to be about one or two orders of magnitudes lower than the 

theoretical strength of the material. For indenters with intermediate radii, pop-in would result 

from the competition between these two mechanisms.  

 Yet another similar behavior is observed from nanoindentation tests. If the sample is 

prestrained before nanoindentation test, a monotonic decrease of the measured pop-in loads 

with respect to the increase of prestrain on Ni and Mo single crystals is observed [104,106]. 

Because a large prestrain gives a large defect density, it is more likely for the pop-in to occur 

by a defect-assisted mechanism rather than by the homogeneous dislocation nucleation 

mechanism.  

 Clearly, the critical stress for the defect-assisted pop-in mechanism is related to the 

dislocation density and the indenter radius. This mechanism has been successfully 

demonstrated from a stochastic model developed by Morris et al. [105], where the data scatter 

in Fig. 6.1 are accurately predicted but only for the indenter size larger than 1.5μm. Inspired 

by this work, in this Chapter we will unify the homogeneous dislocation nucleation model in 

Chapter V and the defect-assisted stochastic model to investigate the effects of indenter 

radius and prestrain. The cumulative pop-in probability contains convoluted information from 

the homogenous dislocation nucleation and the possible heterogeneous dislocation nucleation 

due to the unstable change of existing defect network. As will be shown shortly, this unified 

model accurately describes the tail effect for indentation directions close to [001] in NiAl 

single crystals in Chapter V. And the predicted statistical pop-in loads from the unified model 

agrees quantitatively well with the indenter radius effects and the indentation prestrain effects.  

 

6.2 Pre-Existing Defect-Assisted, Stochastic Model (Morris et al. [105]) 

 For a crystalline solid with pre-existing and randomly distributed defects, a pop-in event 

corresponds to a sudden and unstable change of dislocation network, such as bowing out 
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dislocation segment as in the Frank-Read model, breaking dislocation pinning points or 

junctions, to name a few. Following Morris et al. [105], we avoid differentiating the actual 

physical processes that lead to the nanoindentation pop-in behavior, but simply assume that 

the pop-in will occur when the stressed volume under the indenter contains a pre-existing 

defect and the shear stress is larger than defect  - a material constant assumed in this work. 

This assumption is supported from the indenter radius effect. If the indenter radius is small, 

the highly stressed volume in the solid is small, and thus is more likely to be defect free. 

Therefore, a large pop-in load is needed. In contrast, a large indenter radius probes a large 

volume in the solid, and the possibility to encounter a pre-existing defect is high, which 

results in a low pop-in load. 

 Suppose that the crystalline solid has a pre-existingdefect density defect  and the highly 

stressed region, where the maximum shear stress is larger than defect , has a volume dV . The 

probability,  0 ,defect dl V , for finding no defect in the volume dV , obeys a Poisson 

distribution, as given by [105], 

   0 , expdefect d defect dl V V   .                                         (6.1) 

The highly stressed volume under nanoindentation scales with the indenter radius (as a 

loading parameter), material anisotropy, and crystallography. Assuming isotropic elastic 

contact and using the maximum shear stress (rather than the resolved shear stress), *
max , 

under a given load P, Morris et al. has given a dimensional relationship of 

 3 *
max/ /d defectV a f   .                                              (6.3) 

where  1/3
3 / 4 ra PR E is the contact radius [107], and *

max can be derived from (2.18) and 

(2.24).  

 The cumulative probability of pop-in is therefore, 

 
 

01 ,

   1 exp

defect d

defect d

f l V

V





 

  
.                                              (6.2) 

Eq. (6.2) has been used to successfully explain the cumulative pop-in probability curves in 

Fig. 6.1 but only for indenter radius larger than 1.5μm. For small indenter radii, predictions 

based on Eq. (6.2) will significantly overestimate the pop-in loads because the chance of 
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finding a pre-existing dislocation in this case is negligibly small so that the pop-in probability 

will be extremely small.  

 

6.3 A Unified Pop-In Model Accounting for Homogenous and 

Heterogeneous Dislocation Nucleation 

 While Eq. (6.2) has successfully predicted nanoindentation pop-ins for indenter radii 

larger than 1.5 μm, for indenter radii less than 1.5 μm, Eq. (6.2) will underestimate the pop-in 

probability. In this case, it is the homogeneous dislocation nucleation that is responsible for 

the observed pop-in behavior because of the high stress in this case. In retrospect, in Chapter 

V, Eq. (5.9) only successfully predicts the cumulative pop-in probability for the homogenous 

dislocation nucleation, but deviates at low loads where long tails were observed in the 

cumulative pop-in probability curves for NiAl single crystals. Consequently, the cumulative 

probability contains convoluted information from the homogeneous dislocation nucleation 

model in Eq. (5.9) and the stochastic model in Eq. (6.2).  

 For a crystalline solid with a pre-existing defect density defect  under nanoindentation, the 

total survivability, w  (i.e. neither homogenous dislocation nor heterogeneous dislocation 

nucleates), is given by the product of Eq. (5.8) and Eq. (6.2): 
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.          (6.4) 

Thus the cumulative pop-in probability is  

  1 3

0 0

1

1
         1 exp exp

pop in

unified

n

P th

defect d
B

f w

A P dP
V N

k T P





 
 

 

          
    

 .             (6.5) 

Eq. (6.5) is used to generate solid lines in Fig. 6.2 based on NiAl experimental results in Fig. 

5.5(a). For all indentation directions, we fix 3/ 5A Gb   and use the same activation energy 



 

74 
 

form in Eq. (5.6). th  and n  are fitted for each indentation direction from the right part of the 

cumulative pop-in probability curve. Then, we fit defect  and defect  from the left tail of each 

direction. Fitted parameters are given in Table 6.1. The fitted n  value is 4 for all directions, 

which is a reasonable value as compared to Table 3.1. 

 It is evident that Eq. (6.5) successfully predicts both the stochastic (due to pre-existing 

defects) and statistical (due to thermal effects) behavior of the nanoindentation pop-in events. 

The long tails that appear for indentations directions close to <100> direction are 

quantitatively reproduced. From Eq. (2.18) and Eq. (2.24), the contact radius has a 

relationship with the effective indentation modulus and the indentation Schmid factor as 

*
max / 2 ra R E S  . And from Fig. 2.2(b) and 2.4(b), directions near <100> have smaller 

values of rE S  than other directions at the right part of the standard [001] triangle in the 

inverse pole figure. Thus, if the same level of resolved shear stress is attained in every 

indentation direction, those directions near <100> will probe larger volumes than the rest, and 

thus are more susceptible to pre-existing defects. Consequently, the large material anisotropy 

in NiAl leads to longer tails due to the stochastic effects for indentation directions close to 

<100>. Our fitting results give defect  approximately 1/50 of th , which is close to the strength 

of typical Frank-Read dislocation source [108]. And defect  is on the same order of magnitude 

as the experiment observation [105].  

 The unified model can also predict the indenter radius effect. As has been mentioned 

earlier in this Chapter, Eq. (6.2) only works well for indenters with sizes larger than 1.5μm in 

Fig. 6.1, where the maximum shear stress at pop-in loads is much less than the theoretical 

strength. We use Eq. (6.5) to fit experimental data of Mo <100> single crystals of indenter 

size 115nm, 178nm, and 580nm in Fig. 6.1. Results are plotted in Fig. 6.3. We first fit the 

data with indenter size 115nm using Eq. (5.8) as shown by the solid line. Because the 

indenter radius is very small, the highly stressed region underneath the indenter is so small 

that there is hardly any chance for a defect to pre-exist. Therefore, all measured pop-in loads 

result from homogeneous dislocation nucleation. The fact that no tail is observed in Fig. 6.3 

can aid this statement. The fitted value of 3/A Gb  is 5, and n  is found to be 2.5, which are 

very reasonable values as suggested in Table 3.1. After we fit 115nm indenter, we use the 

fitted A  and n  to generate solid lines for measurements using indenters with radius of 

178nm and 580nm. Details on fitting procedure and sensitivity of the fitting parameters 
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( defect  and defect ) will be given in the next section. As can be seen from Fig. 6.3, when the 

indenter size is small, e.g. 115nm, the pop-in probability is governed by the homogenous 

dislocation nucleation behavior. For intermediate sized indenters (e.g., 178nm and 580nm 

here), the cumulative probability contains information from both thermally activated 

homogeneous dislocation nucleation and defect-assisted, stochastic pop-in behavior. The 

resulting scatter depends on the competition and convolution of these two mechanisms.  

 Our unified model can also predict the prestrain effects observed in the nanoindentation 

pop-in tests. Experimentally, a set of Mo single crystals samples are prestrained by 

engineering compressive strains of 0%, 1.5%, 5%, and 13%. Then, nanoindentation tests are 

conducted on <100> surfaces of these pre-strained samples using an indenter with tip radius 

of 115nm. Cumulative probability curves with respect to measured pop-in loads are shown in 

Fig. 6.4. As the prestrain increases, pop-in loads will drop, and a long tail at low pop-in loads 

emerges which can be clearly seen for 5% and 13% prestrained samples. The unified model 

in Eq. (6.5) is used to generate solid lines in Fig. 6.4. We first use Eq. (5.8) to fit the data of 

0% sample, and find that fitting parameters in Eq. (5.6) are 3/ 5A Gb   and 2.5n  . Then we 

assume that all samples have the same defect , and fit defect  for each sample. Because the 

indenter size is very small, defect  is very high, i.e. / 0.8defect th   . As expected, we observe 

an increase of the defect density with respect to the increase prestrain. However, the fitted 

defect   is larger than that in Fig. 6.3 and Morris et al. [105], which will be further discussed in 

the next section.  

 

6.4 Discussions on Fitting Process and Sensitivity 

 One major problem of our analysis is the uniqueness of the fitting parameters. For 

example, when we fit Eq. (6.5) to the R=178nm pop-in data in Fig. 6.3, / 0.3defect th    and 

18 35 10 /defect m    give a reasonably good fitting, and, however, so do / 0.7defect th    and 

19 35 10 /defect m   . Moreover, these fitted values of defect  and defect  are much larger than 

the values in Ref [105], as well as than the values for NiAl data in Fig. 6.2. A question that 

naturally arises will be whether defect  should be a material property or depend on stressed 

volume size.  
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 We further investigate the effects of defect  and defect  in Eq. (6.5) on the resulting 

cumulative pop-in probability curves. In Fig. 6.5(a), defect  is taken as 35% of th , and 

different values defect  are used to generate the solid lines from Eq. (6.5). A large defect  will 

increase the probability of pop-in, but it does not affect the extent of the tail on the abscissa. 

That is, the minimum pop-in load in Eq. (6.5) is independent of defect . In Fig. 6.5(b), defect  is 

fixed as 18 36 10 / m , and the solid lines are generated from Eq. (6.5) with different values of 

defect . In this case, decreasing defect  will both increase the probability of pop-in and widen 

the scatter of the pop-in load. Two sets of defect  and defect are used in Eq. (6.5) to generate the 

fitting curves in Fig. 6.6. If we choose parameters that are similar to those used in Ref. [105] 

(i.e. 17 31 10 /defect m   and 0.1defect  ), the fitting  result does not capture the tail shape as 

well as the fitting result using 18 35 10 /defect m   and 0.7defect  . Because the indenter 

radius effect shows that the minimum pop-in load is also correlated to the indenter size, defect  

may display an indentation size effect. Further studies are needed to investigate such an effect, 

and to improve the model developed in Eq. (6.5).  
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Table 6.1 Fitted th , n , defect , and defect in Eq. (6.5) with respect to a number of indentation 

directions for NiAl single crystals. The unit of th  and defect are GPa. We use the 

same indentation Schmid factors as those listed in Table 5.1.  

 

Indentation 

direction  

th  n
defect  defect  

(GPa)   (GPa)  (1/μm3) 

111>  8.2  4  0.19  0.8  

<221>  7.3  4  0.19  0.3  

<421>  8.3  4  0.19  0.5  

<110>  8.0  4  0.19  0.2  

<441>  9.5  4  0.19  0.3  

<521>  9.8  4  0.19  0.1  

<411>  11.7  4  0.19  0.15  

<100>  10  4  0.19  0.5  

<720>  9.5  4  0.19  0.5  
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Figure 6.1 The maximum shear stresses under the indenter when pop-in occurs plotted 

against the indenter radius. For these tests on Mo <001> single crystals, a 

monotonic decrease of the maximum shear stress is observed with respect to the 

increase of indenter radii. 
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Figure 6.2 The cumulative pop-in probability, f, as a function of pop-in load for spherical 

indentation on NiAl single crystals with a number of indentation directions. 

Indenter radius is 580 nm. Solid lines are predictions from the unified 

homogeneous and heterogeneous dislocation model with fitting parameters given 

in Table 6.1. Refer to Fig. 5.5 for a comparison.  
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Figure 6.3 Cumulative probability of pop-in, as a function of maximum stress under the 

indenter, for a series of indenter radii (discete markers). Sold lines show the 

predictions produced by Eq. (6.5). There are same data used to plot Fig. 6.1.  
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Figure 6.4 Cumulative probability of pop-in, as a function of pop-in loads, for a number of 

prestrain levels on Mo <001> single crystals. Solid lines show the predictions 

produced by Eq. (6.5).  
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(b) 

Figure 6.5 Effects of defect  and defect  in Eq. (6.5) on the cumulative probability of Mo <001> 

single crystals. The indenter radius is 580nm. In (a), defect is fixed to be 35% of the 

th , and the increase of defect  will increase the probability of pop-in. However, 

defect  does not affect the range of the pop-in load. In (b), defect is fixed to be 

18 36 10 / m , and the decrease of defect  will both increase the probability of pop-in 

and widen the variety of range of the pop-in load.  
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Figure 6.6 Cumulative probability versus pop-in loads  for Mo  <001> single crystals. The 

indenter radius is 580nm. Solid lines show the predictions produced by Eq. (6.5) 

with two different combinations of defect  and defect . 
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Chapter VII 

Summary and Future Work 

 It is shown in this thesis that dislocation nucleation behavior in the stressed volume of 

single crystals at small scales, as illustrated by the nanoindentation pop-in tests, is critically 

dependent on material type (i.e., their slip systems and crystal structure), resolved shear stress, 

crystallographic orientation, indenter shape, indenter radius, pre-existing defect type and 

density, loading rate, and temperature. Our results indicate that a schematic summary of most 

important parameters can be shown in Fig. 7.1 as discussed below.  

 Theoretical strength is reached for indentation on defect-free single crystal with tiny 

indenter tip radius, which has been confirmed by a large number of tests (e.g., Mo, NiAl, Ni 

in this thesis). The fluctuation of pop-in loads results from the stress assisted, thermally 

activated process for homogeneous dislocation nucleation. With the increase of indenter 

radius, the stressed volume size increases, and it is more likely to activate a defect-assisted 

pop-in process. Eventually the pop-in strength approaches the flow stress of the material 

which depends on the pre-existing dislocation density. Clearly the effects of dislocation 

density and indenter radius will be similar. A less explicit dependence is the Schmid factor. 

As can be seen from Chapter V, for indentations on NiAl single crystal surfaces with surface 

normal close to <001>, the pop-in loads are larger essentially because of a smaller 

indentation Schmid factor for these indentation directions. As the increase of indenter radius, 

or the increase of pre-existing dislocation density, or the decrease of Schmid factor, one can 

see the transition from behavior (A) – as shown in Fig. 6.3 (R=115nm), to behavior (B) – as 

shown in Fig. 6.6 (where a tail begins to emerge), to behavior (C) – as shown in Fig. 6.2 

(<001> indentation case where the tail dominates the entire regime), and eventually to 

behavior (D) which corresponds to a steep curve in the cumulative probability versus pop-in 

load plot. Future work is needed to see if the above plot is also applicable for other small 

scale tests. 

 Our theory is, however, not consistent with the observation of the orientation effects for 

pop-in tests on Ni single crystals. From Eq. (5.2), the pop-in load is proportional to 3 21/ rS E , 

and Fig. 2.2(a) and Fig.2.4(a) give that the <100> indentation needs the largest pop-in load 

while the  <101> one needs the least among these three directions. However, experiments on 
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Ni single crystals show that <111> indentation requires the largest pop-in load, while <110> 

requires the lowest [109]. Further studies are needed to see if these tests are already 

influenced by the defect-assisted mechanism, or if such defect-assisted pop-in events depend 

on indentation directions.  

 The homogeneous dislocation nucleation is a rate and temperature dependent process 

[10,11]. If one decreases the loading rate or increase the environmental temperature of the 

experiment, it should facilitate the thermally activated dislocation nucleation process because 

a decreasing loading rate will allow the solid more time to response to each incremental load 

and an increasing environmental temperature will give the solid more thermal energy. While 

this rate and temperature effects have been successfully observed from Pt [11], other 

materials such as Ta [109], Mo, and Ni do not exhibit a clear sensitivity on the loading rate 

and the temperature. It seems that the rate and temperature effects may depend on material 

structures, material slip systems, and indenter tip radius, which need further efforts to 

distinguish those factors. Moreover, the above discussion is under the assumption that the 

heterogeneous dislocation nucleation is independent of the rate and temperature effects, 

which is also amenable to further investigation. 
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Figure 7.1 Schematic illustration of the dependence of nanoindentation pop-in strength (as 

bounded within the two curves) as a function of the stressed volume size, pre-

existing dislocation density, and Schmid factor. The combination of these three 

parameters indicates their respective effects rather than a rigorous relationship. 
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