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ABSTRACT  
 

The focus of this dissertation has been on improving the non-negative tensor factorization 
technique of text mining.  The improvements have been made in both pre-processing and 
post-processing stages, with the goal of making the non-negative tensor factorization 
algorithm accessible to the casual user.  The improved implementation allows the user to 
construct and modify the contents of the tensor, experiment with relative term weights 
and trust measures, and experiment with the total number of algorithm output features. 
Non-negative tensor factorization output feature production is closely integrated with a 
visual post-processing tool, FutureLens, that allows the user to perform in depth analysis 
and has a great potential for discovery of interesting and novel patterns within a large 
collection of textual data. This dissertation necessitated a number of significant 
modifications and additions to FutureLens in order to facilitate its integration into the 
analysis environment.
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Chapter 1 

Introduction to Visual Analytics and Nonnegative Tensor 
Factorization 

 
 
One of the many direct consequences of the significant and ever-increasing information 
digitalization trend of recent decades has been a newfound ability to gather, organize, 
store, and analyze vast repositories of knowledge. As computing and digitalization 
increasingly permeate virtually every aspect of society, researchers and analysts in a wide 
variety of fields sometimes find themselves virtually overwhelmed with enormous 
quantities of information. The fields of data mining and visual analytics developed 
alongside the ever-increasing information stores in order to provide analytical knowledge 
discovery capabilities in wide-ranging fields such as biology, social science, law, and 
business. 

1.1  Alternative Approaches to Visual Analytics 
 
Visual analytics is a highly interdisciplinary field that is defined as the science of 
analytical reasoning supported by highly interactive visual interfaces. Visual analytics 
tools are designed to extract insight from large datasets. The goal of visual analytics tools 
is to facilitate extraction and verification of associations, interconnections, and 
relationships contained within the data. One significant challenge in this new and 
developing field has been the seamless integration of highly advanced mathematical text 
analysis techniques with visual software tools that would enable users to better 
understand and utilize the information extracted by these techniques [1]. The sections 
below describe some of the visual analytics methodologies alternative to the combined 
non-negative tensor factorization/FutureLens approach presented in this dissertation. 
 

1.1.1  Visual Summarization with Tag Clouds 
Tag clouds and various related concepts are an extremely popular and user-friendly way 
to summarize a large amount of textual data. One of the most important and 
advantageous properties of a tag cloud is its ability to quickly and easily generate a visual 
ranking of the relative significance of the terms within the summary. As shown in Figure 
1, an additional advantage of the tag cloud technique is that the resulting product may 
serve as a useful visual element in applications such as web and graphic design. The fact 
that many tag cloud generators allow the user the ability to greatly customize the visual 
appearance of the tag cloud, altering elements such as font type, font color, and text 
orientation within the figure, greatly enhances the tag cloud’s usefulness in design-
oriented applications.  
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Figure 1. The tag cloud technique is capable of producing a quick summary that emphasizes the relative 

significance of the terms within it. 

 
The most significant disadvantage and a major limitation of tag clouds as a visual 
analytics tool is their lack of depth. They do not provide the user with the capability to 
analyze the data summary any further. There is no inherent, built-in ability to establish 
connections within the dataset. For that purpose, other approaches are necessary [14,15]. 

1.1.2  Establishing Connections with TextArc 
TextArc is a visual analysis environment that allows the user to trace the connections 
between terms, establishing a particular term’s relevance to some part of the data space. 
This is accomplished via drawing an interconnected graph, as shown in Figure 2 (using 
Shakespeare’s Hamlet). As demonstrated by this figure, this approach has an inherent 
scalability limitation that may be unconquerable without heavy modifications to the 
approach itself. Even a single, although vast, literary work contains an enormous number 
of different terms. Under the TextArc approach, all of these need to be displayed, and 
potentially visually connected to all other relevant terms. The user interacts with TextArc 
in real time, so the connections may need to be updated frequently. While the approach is 
highly functional for smaller input datasets, visual clutter and lack of clarity are potential 
drawbacks when analyzing larger datasets [14,16]. 
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Figure 2. TextArc applied to Shakespeare's Hamlet. 

 

1.1.3  Sentiment Tracking as Visual Analytics 
Sentiment tracking is defined as the process of tracking changes in the author(s) attitude 
or mood through some particular written work. As with the UIMA-SEASR project shown 
in Figure 3, this may be accomplished by categorizing the terms within the text by parts 
of speech. The software can then utilize a thesaurus to connect the adjectives found in the 
text to basic core emotion adjectives. According to research psychological research such 
as that conducted by Parrot in 2001 [18], there are six core emotions: surprise, anger, 
fear, sadness, joy, love. The thesaurus technique simply needs to count the number of 
“steps” through the thesaurus between an adjective from the text and one of the core 
adjectives that is generally accepted as belonging to one of the above six categories. By 
monitoring the shortest path through the thesaurus, each text adjective may be labeled as 
belonging to one of these areas [14]. 
 
While this approach provides a powerful high-level summarization/labeling capability, it 
does not allow the user to analyze the details or specifics of the dataset. As demonstrated 
in this brief survey of alternative visual analytics techniques, a more helpful analytic 
methodology would provide the user with both high-level summarization/labeling tools, 
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and the capability to analyze specific connections at a very detailed level. Latter chapters 
of this dissertation will demonstrate that the combined NTF/FutureLens approach 
(introduced in the next section) accomplishes just that. 
 

 
Figure 3. The UIMA-SEASR approach applied to Henry James' Turn of the Screw. 

 

1.2 Scenario and Knowledge Discovery Motivations 
 
Visual analytics is a broad field and analyst goals and motivations may vary greatly. This 
dissertation focuses specifically on analysis motivated by scenario and knowledge 
discovery. Scenario discovery focuses on answering the 5W’s:  What, Where, When, 
Who, Why about a particular topic of interest to the analyst. Knowledge discovery means 



 5 

the analyst is interested in learning new information about the subject of interest, rather 
than simply generating evidence for a pre-existing theory. For example, a research project 
might involve a dataset of news articles about South-East Asia in the 1970s. The goal of 
the research project might be learning more about how various nations of the region 
conducted diplomacy during this decade:  who were the main actors, what was their 
focus, and so on.  
 
This type of analysis is, of course, possible without the use of the environment presented 
in this dissertation. It is also possible without the use of computers. The advantages 
provided by the analysis environment consist of speed and efficiency. Working without 
the aid of visual analytics, it may take a group of analyst several days to process a large 
collection consisting of hundreds, or even thousands of documents and extract scenarios 
from it. With the help of this analysis environment, just one user could perform analysis 
upon the same dataset within just a few hours. 
 

1.3  The NTF/FutureLens Approach to Visual Analytics 
 
Nonnegative tensor factorization (NTF) is an advanced mathematical technique that has 
been shown to be effective in analyzing large amounts of textual data in a number of 
studies. One of the major goals of this dissertation is to improve upon the standard NTF 
approach. This improvement is to be achieved in two different ways. 
 
First, through incorporation of additional user input (feedback) into the factorization 
process, the user has been given an ability to adjust importance or “trustworthiness” of 
certain elements of the data. The analysis process may be greatly improved through such 
provision of greater control over the entire process to the user. The user has also been 
provided with an ability to create an additional dimension to the tensor. This is 
accomplished by allowing the user to create a list of special terms, or entities, that the 
integrated analysis environment then tags within the dataset. The tagged entities are then 
used to create an additional dimension within the tensor, providing for the potential 
establishment of connections that otherwise would not have been found with a lower-
dimensional model. 
 
Second, the nonnegative tensor factorization has been closely integrated with a visual 
post-processing tool (FutureLens). Without a post-processing step, the output of the NTF 
algorithm may be difficult to interpret or analyze in depths, since it consists of a simple 
list of terms. A sample NTF output feature descriptor file is shown in Figure 4 below.  
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Figure 4:  A sample NTF output feature descriptor (group) file.  Such output files are difficult to analyze 

further without additional post-processing tools, such as FutureLens. 

 
The ability to visualize the results of NTF and track their occurrence through the original 
dataset is crucial for an effective analysis process. The integrated environment provides 
the user with simple tools that can greatly facilitate the process of preparing a dataset and 
NTF output groups for analysis with FutureLens.  The capabilities of the environment 
include the ability to add dates to the data files, insert tagged entities, and adjust term 
weights in accordance with some trust or interest model. These capabilities are described 
fully in Chapter 4. 
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Chapter 2 

NTF-PARAFAC: Examples of Usage and Effectiveness 
 
There exists a plethora of approaches to analyzing large amounts of textual information. 
The exact nature of the dataset and the goals of the analysis process influence which 
approach would be most effective in each individual case. For cases where the dataset 
contains tagged entities and a clearly defined time line, nonnegative tensor factorization 
(NTF) techniques have been shown to be highly effective. NTF allows the analyst to 
extract term-by-entity associations from the data. With the addition of a visual post-
processing tool, such as Futurelens, it becomes possible to trace the progression of term-
entity, term-term, and entity-entity relationships through the data space over time. One 
example of such a study involved scenario discovery using the fictional news article 
dataset from the IEEE VAST-2007 contest [7]. As shown by this example, NTF based on 
the well-known PARAFAC [6] model for multidimensional data can be highly effective 
in extracting important features from a large textual dataset. The example is described 
more fully in Section 2.2.  
 

2.1 NTF-PARAFAC Results Visualization through FutureLens 
 
As will be illustrated by the examples in the subsequent sections and chapters of this 
dissertation, a visual NTF results processing tool is integral to the analysis process. While 
it is possible to analyze NTF results without such a tool, the process would potentially be 
significantly slower and more prone to human error. FutureLens was created in 2008 as a 
proof of concept generic text visualization tool [9]. 
 
This dissertation includes significant modifications and improvements to the original 
version of FutureLens, as well as its integration into the overall analysis environment. 
Among the improvements to FutureLens are numerous bug fixes that enable the 
searching and color-coding capabilities to function as intended. This dissertation also 
added the capability to construct search phrases within the FutureLens GUI, and altered 
FutureLens’ term collection constructing code to enable proper function. Functionally, a 
phrase differs from a collection of terms because order and term adjacency are important 
in a phrase, but not a term collection. 
 
Perhaps most significantly, this dissertation adds an automated NTF results classification 
feature. The feature requires some initial user input, namely the creation of categories and 
category description files to be used as input for automated classification. However, once 
these have been created, they may be reused with very few, if any, modifications across a 
variety of research project types. The rest of the process is automated, meaning 
FutureLens takes the category descriptors as input and generates a color-coded labeling 
scheme for the loaded NTF output groups without any further user input. This feature is 
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an important part of the dissertation and it is therefore discussed in much greater detail in 
Chapter 5. 

2.2  NTF-PARAFAC and IEEE VAST-2007 
 
The IEEE VAST 2007 Contest (http://www.cs.umd.edu/hcil/VASTcontest07/) was 
designed to promote the development of the field of visual analytics, focusing 
specifically on scenario extraction from textual data. The dataset associated with the 
contest consisted of approximately 1,400 fictitious news articles and blog posts. The 
topics of the articles and posts ranged widely, however, most had some direct or indirect 
connection to animals. There was no unifying theme beyond that—the topics were 
extremely diverse, including for example: pet adoptions from specific shelters, laws 
pertaining to treatment of horses in the United States, agricultural practices in Canada, 
salmon fishing statistics, arson investigations involving suspected eco-terrorists, 
environmental legislation in China, and many others. 
 
Participants in the contest were given the task of identifying two significant law 
enforcement/counter-terrorism scenarios within the data. The “hidden” scenarios 
involved emergencies related to wildlife law enforcement, with endangered species issues 
and eco-terrorism playing an underlying role. The task could be decomposed into smaller 
goals, such as: (i) identifying entities of interest (e.g., persons, organizations, locations); 
(ii) depicting this information in a visual and interactive manner; (iii) answering specific 
questions pertaining to the scenarios [7]. The NTF-PARAFAC approach was shown to be 
effective in helping to achieve these goals [1].   
 
The Parallel Factors (PARAFAC) model, also known as Canonical Decomposition and 
(more recently) Canonical Polyadic Decomposition (CP), was proposed by Harshman in 
1970 [6,8,21]. Given a third-order tensor X of size m

! 

"n

! 

"p and a desired approximation 
rank r, the PARAFAC model approximates X as a sum of r rank-1 tensors formed by the 
outer products of three vectors [1], as shown in Equation 1 below. 
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The goal of NTF is to find best fitting nonnegative matrices, A, B, and C, that fit the data 
in X. This is demonstrated by Equation 2, where the norm refers to the 2-norm [1]: 
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In the study described in [1], NTF-PARAFAC was applied to a 12,121

! 

"7,141

! 

"15 (term-
by-entity-by-date) sparse tensor that contained 1,142,077 nonzeros. The dates were 
binned on a monthly basis. Applying the NTF algorithm resulted in twenty-five total 
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output groups, each described by fifteen interrelated entities and thirty-five interrelated 
terms. 
 
The groups corresponding to the two fictional “hidden” scenarios were correctly 
identified, although the identification process required a significant time commitment and 
several post-processing steps [1]. The study was subsequently replicated using a visual 
post-processing software tool, Futurelens, in order to improve the effectiveness and 
efficiency of processing NTF output group results [9].  The two figures below illustrate 
how FutureLens was used to identify and gather evidence for the IEEE VAST-2007 
scenario involving a bioterrorism-induced monkeypox outbreak. 
 
Figure 5 shows one of the NTF output files (“Group 15”) loaded into FutureLens. This 
group is described by a list of top 15 most relevant entities and 35 most relevant terms. In 
this figure, the user has selected two of the top terms (monkeypox and outbreak), and then 
combined them into a collection of terms (monkeypox, outbreak). In a collection of terms, 
term order and adjacency do not matter (unlike in a phrase). FutureLens located two 
articles containing the term collection (monkeypox, outbreak). The first article describes 
much of the bioterrorism scenario, however a few crucial details regarding the perpetrator 
are missing in this article.  
 

 
Figure 5: This figure demonstrates how FutureLens may be used to aid the interpretation of an NTF 

output file. Here, a collection including two top terms (monkeypox and outbreak) has been created by the 
user and relevant articles located within the data. 
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In order to locate addition information pertaining to this scenario, the user adds the entity 
corresponding to the suspect’s name (Cesar Gil), and a collection of terms (chinchilla, 
Gil), to the FutureLens display. Doing so allows the user to locate an article where Cesar 
Gil explains his philosophy regarding the trade in exotic animals (he states that breaking 
a few laws is an acceptable tactic in stopping such trade). In addition, as shown in Figure 
6 below, the user is also able to locate an article corresponding to an advertisement of 
chinchillas for sale by a business called Gil Breeders. A complete storyline 
corresponding to this NTF output feature now emerges. 
 

 
Figure 6: This figure shows how a more complete description of the scenario corresponding to this NTF 
output feature may be obtained using FutureLens. The article displayed here shows a company owned by 

Cesar Gil advertising chinchillas for sale – thus revealing Gil’s method for distributing monkeypox-
infected chinchillas. 

 
The combined NTF and visual post processing approach thus proved to be effective in 
discovering the hidden plotlines of interest in the VAST-2007 contest dataset. The 
additional work presented in this dissertation focused on improving the approach by 
allowing user alteration of the tensor, integrating various pre-processing and post-
processing steps into a single environment, and adding automated NTF output group 
classification capability. Subsequent chapters of this dissertation describe this work fully, 
as well as providing additional evidence for the potential effectiveness of this approach to 
text analysis. The following section provides some additional evidence of how NTF may 
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be useful in discovering new and interesting information, in this case using a different 
input medium.  

2.3  NTF-PARAFAC and the “Climategate” Emails 
 
The so-called “climategate” event took place in late 2009 and began with the posting on 
the Internet of email correspondence between climate research scientists, many of them 
affiliated with the University of East Anglia’s Climatic Research Unit. It is difficult to 
ascertain how exactly the emails were originally obtained, or by whom. Several versions 
of events exist, but the media most commonly cites one involving a hacking of a UEA 
email server [10,25]. Regardless of how the emails were originally obtained, they have 
been posted or linked to by a large number of different websites, thus making the 
climategate email dataset part of public record by the time this study was undertaken.  
 
The goal of the climategate email study was to demonstrate how nonnegative tensor 
factorization (NTF) techniques can extract term-by-author-by-time associations from the 
University of East Anglia climate research email dataset [11].  In particular, the goal was 
to demonstrate how NTF could potentially be used to automatically expose possibly 
unethical schemes or actions of specific individuals or groups. The term-by-author-by-
time decomposition is illustrated in Figure 7 below [13]. 
 

 
Figure 7: The 3-way NTF  PARAFAC decomposition model produces a number of data features, each one 

corresponding to a potentially significant underlying theme or scenario contained in the email dataset. 

 
The dataset consisted of 1,072 climate research electronic mail messages, involving 271 
different authors and covering the time period between March 1996 and November 2009. 
Parsing the dataset yielded a dictionary of 11,829 terms, each term having to appeared in 
at least two different messages and at least twice across the collection in order to be 
included in the dictionary. Using NTF and FutureLens, it was possible to locate several 
interesting documents, such as the one shown in Figure 8 [13]. While the article shown 
here does not prove or disprove the charges of unethical behavior, it goes show one of the 
East Anglia climate researchers using the phrase “beat the crap out of him” in reference 
to a more skeptical scientist. 
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Figure 8: NTF output Feature 5 corresponds to discussions that contained insults directed at scientists 
skeptical of human influences on global warming. A collection of terms (Tree, Ring) has been created 

here in order to direct FutureLens to retrieve information pertaining to tree ring climate data (which has 
on occasion been contradictory to the human-influenced climate change theories). Additionally, selecting 
the terms Explain and Influence leads us to an email in which a climate researcher threatens to “beat the 

crap out of” a skeptic (text highlighted in blue in the window on the right of the figure). 
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Chapter 3 

Implementation of Portable and User-Friendly NTF in a 
Visual Analysis Environment 

 
One of the main goals of this dissertation is to create a single, unified, user-friendly 
textual dataset analysis environment. Significant research has been conducted in the 
fields of text mining, visual analytics, and sentiment tracking. However, no substantial 
attempts to integrate techniques from these vastly different fields into a single, 
convenient, highly usable text analysis environment have been documented. Therefore, 
one of the goals of this dissertation is to evaluate the potential effectiveness of the 
combined approach to text analysis, which heretofore has remained a largely unexplored 
research area. The results of this evaluation are described more fully in Chapter 5. 
 

3.1  Overall Design Goals for Text Analysis Environment 

3.1.1  User-Friendliness 
First and foremost, the integrated analysis approach should be highly user-friendly. 
Ideally, a user without a great deal of technical experience or knowledge should be able 
to utilize the analysis software without much time having to be spent on training. Specific 
knowledge pertaining to data mining or visual analytics should be unnecessary. It is 
therefore imperative to conceal the underlying nonnegative tensor factorization process, 
while providing the user with a clear set of controls that would allow him or her to 
influence the NTF process in ways that may facilitate data analysis. 
 

3.1.2  Portability, Flexibility, Cost of Use 
The second major design goal for the integrated analysis environment is portability and 
flexibility. A significant amount of NTF-related work has in the past been performed 
using Matlab®. The Matlab® Tensor Toolbox that was created at Sandia National 
Laboratory is a great example of such work [26]. However, experience suggests that even 
though Matlab® is a powerful programming environment for scientific applications, code 
written in it does not transition well into general usage. Since one of the main goals is to 
create a highly usable textual data analysis tool, it is therefore critical to write it in 
languages that are more portable and flexible than Matlab®.  For instance, Python and its 
NumPy/Pylab libraries have been proven on many occasions to be effective alternatives 
to Matlab®. Python has the additional advantage of being freely available to 
programmers and users, and completely cross-platform. For the visualization portion of 
the analysis environment, a Java-based graphical post-processing tool (FutureLens) has 
been previously shown to be helpful to the text analysis process. Java, being a cross-
platform language, is a good choice for accomplishing the portability/flexibility goal. 
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3.1.3  Speed and Efficiency for Real-time User Analysis 
The third major goal is to make the analysis process efficient and as scalable as possible. 
Because of the very nature of the field of data mining, scalability is always a great 
challenge. One of the major design goals for this software therefore will be to make the 
approach as efficient and scalable as possible. A significant area of exploration will be 
Python's efficiency in performing NTF decompositions on large datasets. According to 
some sources, Python’s NumPy library yields computational performance comparable to 
Matlab® [12]. One of the goals will be to attempt to make the performance of the 
portable (Python-based) analysis environment to match (or at least approach) that of the 
older Matlab®-based methodology. 
 

3.1.4  Automation and User Input Necessity 
This approach requires the integration of several vastly different elements. Figure 9 
summarizes the overall design of the analysis environment. It is important to note that 
while many of the steps of the analysis described below include a high degree of 
automation, input from a human analyst is necessary at many of the stages. 
 
The first stage during which human input is essential is the selection of the document 
collection. This clearly depends on the goals and interests of the analyst, and thus it 
would be impossible to remove the human element from this stage. The user also must 
provide a set of timestamps corresponding to the elements of the document collection. 
Many databases include such information as part of the metadata. Alternatively, a parsing 
script may be utilized to extract temporal information directly from the documents. A 
dictionary of terms found in the data collection is also required. While the environment 
does not provide a feature for generating one, virtually every text parsing software 
includes such a feature and thus generating a dictionary file should be a straightforward 
operation. 
 
The user’s input is also required in creating a list of entities. In the current scheme, an 
entity is defined as a potentially significant, but relatively rare term or phrase. A person’s 
first and last name may be a good example of a phrase that an analyst may wish to define 
as an entity. This process is highly subjective and depends entirely upon the analyst’s 
goals – thus requiring human input. 
 
Once the user has created the elements described above, the rest of the process up to final 
results analysis is completely automated. As shown in Figure 9, The analysis 
environment is capable of tagging the user defined entities and timestamps within the 
elements of the dataset using SGML-style tags, then generating a plain-text file 
describing a tensor, and applying the NTF algorithm to the tensor. If the analyst desires to 
adjust term weights within the tensor, additional human input in the form of a user-
created weights file is required. The reason for this is similar to the reason for requiring 
user input in generating a list of entities – the environment is flexible and capable of 
working with a wide variety of analysis goals, but this means that input from the analyst 
must necessarily be required. 
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Upon completion of the NTF algorithm, the user has the option of launching FutureLens 
directly from the analysis environment. The user may then load a set of pre-defined 
category description files. Creation of these may require input from the analyst, although 
in many cases, these descriptions may have been created already (e.g., there may exist an 
agreed-upon definition of what constitutes “unrest” and what terms describe the concept). 
Once the user has loaded the category descriptions, FutureLens will automatically label 
and color-code each loaded NTF output group.  
 
All of these steps are summarized by Figure 9, and described in much greater detail in 
Chapters 4 and 5. 
 
 

 
Figure 9: Proposed design of the text analysis environment. This design will allow the user to easily 

perform a number of operations upon a textual input dataset, such as entity tagging, timestamp insertion, 
and tensor term weight adjustment. The environment will also allow the user to easily execute the NTF 

algorithm, and analyze the results. Among the most important aids in results analysis is the 
environment’s capability to automatically label the resulting NTF output features in accordance with a 

user-defined categorization scheme.  
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3.2 Nonnegative Tensor Decomposition Improvements 
 
One may argue that the single most important stage of the integrated analysis process is 
the nonnegative tensor factorization. Other stages may be viewed as pre-processing data 
for NTF, or post-processing and visualizing the results of NTF. While the other stages are 
clearly important, NTF may be said to be the most significant step. The conversion of the 
PARAFAC code from Matlab® to Python was therefore quite important to the 
development of this analysis environtment. The language conversion of this critical step 
allowed for the implementation of additions described in the sections below.  

3.2.1 Python Conversion 
In addition to being very helpful to the process of integrating more pre-processing and 
post-processing features into the analysis environment, Python has several important 
advantages. First, Python is widely accepted to be one of most programmer-friendly, 
writeable and readable programming languages in existence today. However, Python far 
more than a vacuous, “toy” language. It includes many powerful features, such as full 
support of object-oriented programming, multithreading, graphical user interface building 
tools, and a variety of data structures. Additionally, basic Python has been greatly 
extended in recent years specifically for scientific computing. Packages such as Numpy 
[19] and SciPy [20] significantly expand the language’s capabilities for scientific 
applications. This also illustrates another major advantage of Python, namely that it is 
fully extensible, freely available, and cross-platform [22]. 

3.2.2  Additional Dimension Creation through Entity Tagging 
Giving the user an ability to create an additional tensor dimension through tagging a 
subset of significant terms (“entities”) is one of the major NTF improvements included in 
the integrated analysis environment. This is distinct from the trust measures described in 
the subsequent section, because relative significance in the case of entities is the result of 
their type, rather than of the nature of the specific terms. For example, Person-type 
entities could include all the people’s names found in the dataset. Location-type entities 
could include a wide variety of geographical labels: city names, state/province names, 
countries, mountain ranges, lakes, etc. In other words, a user could emphasize an entire 
group of terms (created because of common type), without having to consider each 
individual term’s potential significance. 

3.2.3 Significance or Trust Measure Integration into NTF 
Under some circumstances, it could be greatly helpful to the analysis process for the 
environment to include an integrated significance or trust measures capability. It is 
possible, indeed likely, that a knowledgeable user will have access to potentially 
important information which normally would be inaccessible to the NTF algorithm. In 
other words, different elements of the data may have different levels of significance to 
the user because of the user’s prior knowledge about the data. Alternatively, this may be 
viewed as a trustworthiness issue—meaning, for example, that the user may consider 
certain sources as inherently worthy of trust, while others may be entirely untrustworthy 
in the user’s mind. The Python NTF implementation includes the ability to alter the 
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tensor values in accordance with a user-supplied trust list. The trust list is simply a list of 
terms and corresponding weights. Terms that are more worthy of consideration may be 
assigned a higher weight by the user, while some other terms may be assigned a lower 
weight. The NTF-PARAFAC approach then integrates these significance/trust measures 
into the factorization process. Incorporation of different term weighting schemes could 
also be included as part of this user-influenced NTF approach. The integrated analysis 
environment provides the user with significance/trust controls that do not requiring the 
user to be exposed to the underlying NTF code. 
 

3.3  Visualization of NTF Results 
 
Visualization of the NTF output results is accomplished via the use of a Java-based 
software tool called FutureLens.  In addition to allowing the user to visually analyze the 
output of the NTF code, FutureLens also connects the tensor factorization output features 
to the original dataset.  FutureLens is capable of displaying components of the original 
text corpus, and of constructing a timeline (assuming the elements contain the necessary 
temporal information in the appropriate format—i.e., an SGML-format date tag). The 
integrated analyis environment provides the user with simple, easy-to-use tools that 
facilitate the process of altering the format of the original dataset to be fully-readable for 
FutureLens. After loading the dataset and the NTF output groups into FutureLens, the 
user may add elements of the NTF output group files (terms or entities) to the FutureLens 
display. FutureLens then locates these elements within the data and constructs plots of 
their occurrence over time. Additionally, the occurrences are color-coded within the 
original data itself. FutureLens also provides the user with a capability to create and 
search for collections of terms (where term order and adjacency are unimportant), and 
phrases (where order and adjacency matter) [9]. 
 

3.4  Sentiment Tracking and Automatic NTF Output Labeling 
 
The idea of automatic group labeling was inspired by research into visual sentiment 
tracking. Sentiment tracking is a highly promising technique that has great potential for 
providing insight during analysis of textual data. Various techniques exist, for example, 
one common approach utilizes synonym connections between adjectives within the 
dataset and certain key emotion descriptors (e.g., “angry”, “joyful”, etc.) [5]. A different 
approach to sentiment tracking utilizes pre-defined dictionaries describing a particular 
sentiment. This approach may be considered somewhat more flexible, because it allows 
user input while creating sentiment descriptions, rather than relying upon a pre-defined 
thesaurus. It also allows parts of speech other than adjectives to be considered, which 
may be highly useful in certain cases [4]. The NTF output group labeling by category is 
based upon the latter approach, since it allows the users to create descriptions of 
completely arbitrary categories that do not have to correspond to any one particular 
emotion or sentiment. 
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Chapter 4 

Integrated Environment Capabilities and Input Format 
Requirements 

 
The sections in this chapter describe the specific capabilities of the analysis environment. 
The required input formats are also described here, including examples. The sections also 
contain information about the format of the output produced by each of the functions that 
constitute the environment. It is important to note that the functions may be used in 
sequence, starting with Step 1, however this is not strictly required in order for the 
environment to function. For example, if the user already had an input file describing a 
tensor in the appropriate format, he or she could simply go straight to the non-negative 
factorization step without having to re-generate the tensor description file. Furthermore, 
certain steps may be skipped entirely. For instance, there is no requirement that a dataset 
must contain tagged entities.  Figure 10 below shows the graphical user interface of the 
analysis environment. The features shown in this figure are described in the sections 
below. 
 

 
Figure 10:  The graphical user interface of the analysis environment.  Some of the steps 

shown here are optional, although they do enhance the analysis process and aid knowledge 
discovery. 
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4.1 Pre-processing:  Inserting Dates into the Dataset 
 
Many of the capabilities of the analysis environment depend upon the user being able to 
provide temporal information relating to the dataset. While it is possible to utilize the 
environment for potentially effective knowledge discovery even without such 
information, one would not be able to take advantage of its full capability in that case. If 
the temporal information is not already encoded in the dataset, the user may do so using 
the analysis environment. 
 
In order to utilize this feature, a file containing all of the dates corresponding to the 
elements of the dataset is necessary. The dates should appear one per line, and in the 
following format:  yyyy-mm-dd. The ordering of the files in the dataset and the order of 
the dates in this input file should match.  Figure 11 shows a sample dates list file, while 
Figure 12 shows the results of utilizing this feature:  one of the data set files with the 
added SGML-format date tag. 
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Figure 11:  A small portion of a temporal information file.  The analysis environment 
provides the user with a feature that can be used to extend the dataset with temporal 

information by adding SGML-format date tags to the data files. 
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Figure 12:  This figure shows the results of utilizing the date-insertion feature of the analysis 
environment.  Shown here is one of the dataset files, now containing an SGML-format date 

tag that was inserted by using this feature and based upon a user-provided temporal 
information file (shown in Fig. 10). 

 

4.2 Pre-processing:  Entity Tagging 
 
As stated in Section 3.2.2, including the ability to create an additional tensor dimension 
through tagging a subset of significant terms (“entities”) is one of the major NTF 
improvements included in the integrated analysis environment. In order to take advantage 
of this feature, the user needs to provide a dictionary of entities. This file can contain 
whatever terms or phrases the user considers to be “entities” in the context of that 
particular study. For example, the file could contain all of the personal and geographical 
names contained in the dataset, or just some subset that is of interest to the user. The 
entity dictionary file should contain one entry per line, and the format should be as 
follows:  entity<tab>index. The indexes should be unique integers, but other than this 
rule, the index creation is completely up to the user. The indexes do not have to be 
consecutive, nor do they have to be begin with “1”. However, a simple way to generate 
these indexes is to create a spreadsheet with an entity column and an adjoining index 
column (a list of consecutive integers is very easy to generate in most spreadsheet 
software). The user would then be able to export this file in a separated-values format, 
using the <tab> character as the separator.  Figure 13 shows a sample indexed entity list. 
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Figure 13:  A sample indexed entity list may be used to add SGML-tagged entities to the 

dataset.  Doing so allows the subsequent analysis environment steps to construct an addition 
(entity-based) dimension for the tensor.  Adding this dimension can greatly enhance analysis 

and aid knowledge discovery. 

 
Upon utilizing this feature of the analysis environment, a copy of the original dataset 
containing entity tags will be created. The following is an example of how an SGML 
entity tag will appear in the data, for an entity John Brown:  <enamex type 
=”entity”>John Brown</enamex>. Figure 14 shows a comparison of the two styles of 
the same dataset file, one that does not include SGML-style tagged entities, and the other 
one that does. 
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Figure 14:  A side-by-side comparison of the two input dataset file styles. On the left, the 

original dataset file containg no tagged entities.  SGML-style entity tags have been added to 
the file on the right using the entity tagging feature of the analysis environment. A newly-

tagged entity, Nairobi is highlighted in the window on the right. 

 

4.3 Generating an NTF Input File Based on a Dataset 
 
The analysis environment is capable of generating an NTF input file based on a dataset 
regardless of whether it contains tagged entities. To utilize this function, the user simply 
needs to select a directory containing all of the dataset’s files. Each file should contain 
only one element of the dataset (an article, paper, email message, chat log, or anything 
else that for the purposes of that particularly study may be considered “an element of the 
dataset”). 
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The software will then request an output file name from the user, and proceed to create 
the file. Once it has been created, the user may proceed to the next step and run the NTF 
algorithm using it as input.  A typical line of NTF input file will have the following 
format:  Date, Entity Type, Entity ID, Term ID, Term Count.  The Entity Type field is not 
part of the actual NTF process, it is used mostly for human validation of correctness.  The 
term counts are not weighted or scaled at this point in the analysis process, although the 
feature described in the next section allows the user to adjust some/all of these. Figure 15 
shows a small portion of a sample NTF output file. 
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Figure 15:  A small portion of an NTF input file. Other features of the analysis environment 

construct allow the user to adjust term weight, construct a tensor, and run the NTF algorithm, 
using this file as input. 
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4.4 Adjusting Term Weights in an NTF Input File 
 
One of the key features of the analysis environment is the ability to incorporate additional 
externally sourced information into the dataset-based tensor.  There is a wide variety of 
possible motivations and reasons for doing so, and a variety of sources for the additional 
information.  For instance, a user could have prior knowledge regarding trustworthiness 
of certain terms (which might correspond to person or organization names).  The user 
could then utilize this feature to quickly and easily decrease the weight of these terms 
within the tensor, lessening their impact on the overall analysis results. 
 
Alternatively, it is possible that in the course of a particular study, the analyst may 
develop a strong interest in a particular subset of terms.  Frequently, these subsets are 
based on some well-established ontology — a domain-specific collection of knowledge, 
describing various concepts and relationships between them.  For example, if the user is 
particularly interested in events related to unrest in a particular geographical area, the 
user can quickly and easily generate a number of term weights files based on an unrest-
related ontology. Each file could contain a different interest model. The user could then 
utilize this feature of the analysis environment to create a number of different tensor 
models, which would differ only in which term weights had been adjusted. In order to 
utilize this feature, a term weights file is necessary. A sample file is shown in Figure 16. 
 

 
Figure 16:  A sample user-created term weights file that can be used to selectively 

manipulate the term weights in the tensor.  Reasons for utilizing this feature may vary, and it 
is an optional part of the analysis process that has a potential to enhance the analysis 

process by allowing the user to generate and evaluate different models. 
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4.5 Executing the NTF Algorithm as Implemented in Python  
 
All of the features described in the previous sections of this chapter are meant to facilitate 
the execution of the nonnegative tensor factorization algorithm.  While the features of 
analysis environment described there are important and enhance the potential 
effectiveness of the environment as it relates to knowledge discovery, the NTF step is by 
far the most significant.  In order to utilize this feature, the user will need to provide an 
NTF input file (Section 4.3). Whether this file contains tagged entities or not does not 
matter, however it should be noted that the inclusion of tagged entities may greatly 
enhance the analysis process.  The additional dimension that can be constructed based on 
the tagged entities may allow for the establishment of connections that would not have 
otherwise been revealed.   
 
The user may choose the number of desired NTF output features by entering that number 
into the text field shown in Figure 10, which appears at the beginning of this chapter.  
The NTF algorithm will then attempt to create that number of output groups, each 
described in a separate file and labeled GroupX.txt, where X is the arbitrarily assigned 
group number. It should be noted that the group number does not carry any significance. 
For example, Group1.txt does not necessarily describe a feature of the data that is more 
interesting or important than that described by Group20.txt.  This is in large part due to 
the highly subjective and context-dependent nature of concepts such as “interesting” and 
“important”.  These concepts depend on the nature and the context of the analysis, the 
nature of the dataset and the problem, as well as the user’s personal opinions and biases.  
It is impossible to quantify all of these highly subjective and unstable variables to 
incorporate them into a deterministic computer algorithm.   
 
When entities are included in the dataset, each NTF output group file includes a list of 
top 15 most relevant entities and top 35 most relevant terms.  The entities and terms are 
ranked in accordance with an internally generated relevance score.  The score attempts to 
quantify the term’s relative importance to this particular feature.  As shown in Figure 17, 
both the terms and the entities are listed in descending order of importance in an NTF 
output group file. However, it is again important to remember that this quantification is 
just an attempt at reflecting subjective, human judgment, and may not reflect the opinions 
of a human analyst precisely. 
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Figure 17:  A sample NTF output file. This file was generated by the Python-based analysis 

environment using the NTF-PARAFAC algorithm. The algorithm was applied to a dataset of 
news articles about Kenya, covering the years of 2001-2009.  As can be seen in this figure, 

this NTF output feature describes a drought-related theme in the dataset. Terms such as rains, 
water, drought, emergency, and aid appear near the top of the terms list. 

 
The core of the Python NTF implementation integrated into the analysis environment was 
created by Papa Diaw in the Summer of 2010.  The implementation was created as part of 
his work to obtain a Master of Science in Computer Science degree at the University of 
Tennessee, Knoxville.  The project used a Matlab® NTF implementation of the 
PARAFAC algorithm as a starting point [3]. The free and open-source Python 
implementation provides an alternative to the commercial Matlab® version, in the hope 
that this will allow for much greater distribution, use, modification, and improvement of 
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this approach to knowledge discovery. Python as a language has a number of other 
advantages, namely that it is object-oriented, extensible, open source and freely available, 
and extremely easy to read and write. Python is capable of running on essentially any of 
the major operating systems, including various flavors of Unix and Linux, as well as all 
modern versions of Windows and Apple’s OS X. As mentioned previously, it is free and 
its complete source code is available in its distributions [22].  
 
The openness and easy to use qualities of Python have lead to the development of a 
number of freely distributed and open source libraries that are highly useful in Scientific 
Computing. These include such well-known and popular packages as Numpy and Scipy 
[19, 20].  Numpy in particular was instrumental to this project, as the factorization code 
uses a number of Numpy-based structures and functions. 
 

4.6  Continuing Analysis with FutureLens 
 
As demonstrated in Figure 17 in Section 4.5, the output of the NTF algorithm is simply a 
series of lists of terms, each list describing some feature of the dataset.  Further human 
analysis and knowledge discovery may be difficult to accomplish based on nothing more 
than a list of terms.  This was the motivation for the creation of the visual NTF output 
analysis tool called FutureLens [9]. This dissertation integrates FutureLens into the 
overall analysis environment, and adds an important automated NTF output labeling 
feature that greatly enhances and speeds up the analysis process. 
 
FutureLens allows the user to import the output of the NTF algorithm and analyze it 
further, while connecting it back to the original dataset. The user has the option of 
loading any number of NTF output groups at the same time, and in any combination.  
Each group is allocated its own separate tab in the graphical user interface. The button 
labeled with a “+” symbol that appears to the left of each term may be used to add that 
term to the main FutureLens display. Once a term has been added, FutureLens will plot 
that term’s temporal distribution summary in the top-center display panel. This allows the 
user to get a quick impression of how the term is used throughout the dataset, perhaps 
taking note of peak usage times.  FutureLens also locates and color-codes the term within 
the dataset’s document space.  This is shown in the central display panel, where every 
line segment is clickable and corresponds to a single document within the dataset. If the 
user clicks on one of these line segments, the corresponding document will be displayed 
in the panel on the right. The displayed document will include the selected terms, 
highlighted and color-coded in accordance with the color legend displayed in the bottom-
enter frame. Figure 18 demonstrates all of the features described above. 
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Figure 18:  FutureLens allows the user to analyze NTF output results in depth by tracking the 
constituent NTF group terms through the dataset. 

 
It is important to note that FutureLens may be highty useful as a text analysis tool even 
without NTF output results, since it functions quite effectively as stand-alone software. 
For instance, the user has the ability to load a dataset into FutureLens independently of 
NTF output groups. Once a dataset is loaded, the user may search for particular terms and 
track their occurrence temporally through the dataset (if the dataset contains SGML-style 
date tags, which can be added using the feature of the analysis environment described in 
Section 4.1). It is also possible to display all of the terms contained within the dataset 
(excluding the ones on a user-defined stop words list), sorted either alphabetically or by 
frequency. FutureLens displays the terms thirty at a time, providing the user with “Next 
Page” and “Previous Page” buttons. These features of FutureLens are demonstrated in 
Figures 19 and 20 below. 
 



 31 

 
Figure 19:  FutureLens may be used as a robust text search tool. Here, the user's search for 

the term coffee provides two results:  coffee and coffee-growing. Selecting both terms allows 
the user to quickly visualize the terms' distribution in the dataset. The user is also able to 
quickly access the dataset elements containing these terms, which provides much-needed 

context. 
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Figure 20:  FutureLens allows the user to diplay the entire list of terms contained in the 

dataset, sorted either by frequency of alphabetically. As shown in this figure, the terms are 
displayed 30 per page. 

 
Automated NTF output labeling is a significant addition to FutureLens that was made as 
part of its integration into the analysis environment. Automated NTF group labeling has 
the ability to speed up the analysis process by allowing the user to quickly focus attention 
of most relevant groups. Naturally, relevance and relative importance are highly 
subjective and depend on the exact nature of the user’s particular research study.  It is 
therefore highly beneficial to allow easily customizable, plain-text files to serve as 
category descriptors.  The format of these files is extremely straightforward, as shown in 
Figure 21. 
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Figure 21:  Sample category description files that are required to use FutureLens's 

automated NTF output labeling feature.  The first term in a file is used as the category label. 
The number of terms in each file may be different--there is no required minimum number of 

a maximum limit. 

 
The category descriptor files can be very easily created and/or modified by the user, in 
accordance with the exact nature of the goals and desired focus of each particular study 
or model. Any number of categories is possible, but experience has shown that it is 
generally more helpful to keep the number relatively small. After the categories have 
been loaded, FutureLens compares the terms constituting each NTF output group with the 
terms found in the category descriptor files. The category with the highest number of 
matches becomes the label for that NTF group. Figures 22 and 23 demonstrate how this 
feature may be highly useful to furthering text analysis. In this example, the user can 
immediately see that of the ten NTF output groups loaded into FutureLens, five have 
been labeled as belonging to the weather category (light yellow), four have been labeled 
under the water category (dark green), and one has been labeled as belonging to the food 
category (dark red). It should be noted that the category labels also appear as a tool-tip if 
the user places the mouse cursor over GUI tab containing the NTF group file name. This 
may be helpful for color-blind users, and users who have closed the legend window that 
appears on the left in Figures 22 and 23. 
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Figure 22: The automated NTF results labeling feature can be extremely helpful by directing 

the user's attention to particular NTF output files. One of the weather-themed groups is 
selected here.  The user was able to quickly and easily construct phrases climate change and 

global warming using the terms contained in this group. 
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Figure 23:  A further demonstration of the automated labeling feature in action. In this 

example, the user is more interested in the only food-themed group contained among the 
NTF results. The list of terms describing this group is clearly very different from those found 

in Figure 22. The user was able to construct a terms collection (food, aid), in addition to 
selecting the term prices. 

 
 
As discussed in this chapter, the integrated analysis environment provides the analyst 
with a number of significant features, ranging from data pre-processing, to NTF 
execution, to deeper, post-processing NTF results analysis. A number of experimental 
datasets have been used to demonstrate the potential of this approach. The studies varied 
greatly in the source material type (e.g., news articles, email messages), and the study 
goals. Chapter 5 continues the discussion of experimental uses of the analysis 
environment in greater detail.
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Chapter 5 

Practical Knowledge Discovery with NTF 
 
This dissertation developed a potentially effective integrated analysis environment that 
includes robust pre-processing, processing, and post-processing capabilities. The 
approach has been shown to be effective using a pre-defined scenario discovery goal of 
the IEEE VAST-2007 contest (as described in Chapter 2). It is difficult to state the 
effectiveness of any approach to knowledge discovery on real-world data with a set of 
relatively open-ended analysis goals. In this context, the phrase “potentially effective” is 
more reasonable. The effectiveness depends in large part on the specific goals of the user. 
This chapter describes how the integrated analysis environment is potentially effective in 
facilitating knowledge discovery, given a large collection of textual data as input. 

5.1  Datasets and Methodologies 
 
A number of datasets have been gathered and utilized for the purposes of demonstrating 
the potential of the integrated NTF/Visualization text analysis approach. These include 
the IEEE VAST-2007 fictitious news articles dataset, the climategate email dataset, the 
Voices Heard Media (VHM) chat-log dataset, and a number of datasets consisting of real 
news articles gathered in collaboration with Information International Associates, Inc. 
(IIA). The datasets were used throughout the development process, over the course of the 
last three years. The following subsections describe the datasets more fully.  
 

5.1.1 IEEE VAST-2007 Dataset 
The largest in terms of the resulting tensor dimensions is the IEEE VAST-2007 dataset. It 
consists of 1,455 text files corresponding to fictitious news articles. The articles include 
SGML-tagged entities in four categories: person, location, organization and money. 
Parsing this dataset produces a dictionary of 12,121 terms and 7141 entities [1]. 
Experiments involving this dataset focus on scenario extraction and knowledge 
discovery. 
 
The IEEE VAST-2007 dataset was the original motivator for the creation of FutureLens, 
which in turn spurred the creation of the integrated analysis environment and this 
dissertation. The original FutureLens that was created specifically for the analysis of the 
NTF output results from this data performed admirably and proved significantly more 
effective than the purely text and statistics-based approach [9]. 
 
The original FutureLens created specifically for the analysis of NTF results from this data 
lacked many of the features included in the version that has been integrated into the 
analysis environment. Perhaps most importantly, an automated NTF group classification 
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feature has been added due to experience that would be acquired in the course of future 
projects. Also quite importantly, the user has been provided with the ability to 
manipulated component terms, creating collections (where term adjacency is 
unimportant) and phrases (where term adjacency and term order both matter). 
 

5.1.2 Climategate Email Dataset 
The climategate email dataset is somewhat smaller, and contained far fewer “entities” (in 
this case, email authors and recipients are the only entities).  The climategate dataset 
consists of 1,072 messages, and the parsing results in a dictionary of 11,829 terms and 
271 entities (authors/recipients) [13]. While human input to scenario extraction and 
knowledge discovery is certainly valuable in all these experiments, automated NTF 
output group labeling gained in importance here due to the highly charged/emotional 
nature of some of the discussions involved in these email exchanges. For instance, certain 
authors were fond of using insulting language towards other individuals and even 
threatening (perhaps jokingly) physical violence. Automated labeling of “angry” NTF 
groups greatly facilitated the analysis process and aided knowledge discovery by drawing 
the analysts attention to these NTF output groups. 
 
The work with this dataset resulted in a number of interesting conclusions. It was 
revealed that the widely reported incidents, such as use of threatening languages and 
discussions about data manipulation did indeed exist in the dataset. It was however also 
revealed that such incidents were relatively few, and the bulk of the themes found in the 
dataset had nothing to do with anything particularly sinister (or indeed, with anything of 
much interest to anyone who is not a climate researcher) [13]. 
 

5.1.3 Voices Heard Media (VHM) Dataset 
The VHM data consists of many relatively short questions or statements that were 
submitted to VHM by viewers of one of the affiliated television shows. This dataset is the 
largest in terms of the total number of elements (3,257). However, these elements 
correspond to very short “chat”-style postings from viewers responding and reacting to a 
television show in real time. The vocabulary is, therefore, considerably less diverse. This 
means that the data in this set of experiments is markedly different from all other data 
used in these experiments. The brief nature of the textual elements of the data set makes 
automated NTF output classification all the more valuable. 
 

5.1.4 Information International Associates, Inc. (IIA) Datasets 
In the course of collaboration with Information International Associates, Inc. (IIA) under 
an SBIR contract1, several extensive textual datasets were obtained. Most of these 
                                                
1 Small Business Innovation Research (SBIR) Phase I award entitled "Weather/Climate Variability Impact 
on Energy, Water and Food Resources and Implications for Regional Stability”. Topic Number OSD09-
HS1. Contract Number W913E5-10-C-0012. 
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datasets were country-specific. Some covered a span of multiple years, even decades, 
while others focused on a specific year. The total number of documents ranged from 818 
to 5097. The average document length ranged from 137 to 848 terms per document. 
These sets were used to explore how FutureLens might be used in a predictive capacity. 
The goal was to determine whether a spike in discussions of certain subjects in the news 
media may be used to predict a higher likelihood of negative developments occurring in 
the near future. The IIA datasets are summarized in the table below. 
 
 
 
 

Table 1. IIA Dataset Summary. Sets obtained using Factiva are marked with (F) in the second 
column, while those obtained using LexisNexis are marked with (L). 

 Country Timeframe Number of 
Documents 

Average 
Document Length 
(# of terms) 

1. Bangladesh (F) 2009 1000 848 
2. Bangladesh (F) 1972-1976 818 137 
3. Kenya (L) 2001 971 738 
4. Kenya (L) 2001-2009 900 696 
5. Somalia (L&F) 1980-1989 5097 791 
6. Somalia (L&F) 1970-1979 2653 450 
7. Somalia (L&F) 1970-2009 8983 685 

 
The IIA datasets and collaboration work had been instrumental in the development and 
testing of several of the features of the integrated analysis environment. Namely, the date 
insertion and entity tagging features were motivated and necessitated by the IIA 
collaboration. These features were used extensively in the course of that project, and each 
of the datasets listed in Table 1 had been used as input to utilize them. The results were 
deemed to be effective, helping to facilitate the creation of the final report under the 
SBIR contract. As of this writing, IIA is involved in planning for Phase II work that will 
advance this line of research further. 

5.2 Evidence of Integrated Analysis Environment Effectiveness 
 
The two usage examples described in this section demonstrate the potential effectiveness 
of the integrated analysis environment and its potential for knowledge discovery. The 
first example focuses on demonstrating the potential effectiveness of adjusting term 
weights as it applies to knowledge discovery. This example utilizes the Kenya 2001-2009 
IIA dataset (#4 in Table 1 above). The second example shows the potential of the 
automated category labeling feature, and uses the Bangladesh 1972-1976 dataset (#2 in 
Table 1 above). 
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5.2.1 Effect of Tensor Weights Adjustment on Analysis 
The Kenya 2001-2009 IIA dataset is fascinating in many regards, as it includes a number 
of greatly varied themes that appear and change in prominence over the dataset’s decade-
long time span. It is easy to imagine an analyst with a significant amount of prior 
knowledge about the dataset, and a desire to focus on a particular theme. In fact, this was 
typically the case in the course of the actual IIA collaboration and such situations are 
realistic scenarios. For the purpose of this example, the hypothetical analyst is interested 
in agriculture- and animal husbandry-related features of the dataset, as revealed through 
nonnegative tensor factorization. The first step in focusing the NTF algorithm on the 
themes of interest is the creation of a term weights adjustment file, shown in Figure 24. 
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Figure 24:  A term weights adjustment file that was used to direct the NTF algorithm towards 

agriculture-related themes. 

 
As shown in Figure 24, the model simply doubled the original term frequencies of certain 
agriculture-related terms. The integrated analysis environment was then utilized to 
created a modified tensor input file that reflected the adjusted weights. Referring back to 
Equation 1 in Section 2.1, it should be noted that only one of the three axes is affected by 
this adjustment (the terms axis). The NTF algorithm was subsequently applied to the 
newly generated modified input file, and the resulting NTF output groups were loaded 
into FutureLens for further visual analysis. The impact of the weight adjustment was 
readily apparent, as now every single output group featured at least some agriculture-
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related language. Interestingly, the NTF algorithm reveals many agricultural terms that 
were not included in the original weights file, such as livestock. Browsing through the 
groups, the analyst might note that Group 9 includes the name of a reputable charitable 
organization, Oxfam, as well as terms such as humanitarian, which also relate to 
charitable work. As shown in Figures 25 and 26, pursuing this line of analysis further 
yields interesting results and leads to discovery of (potentially) new knowledge. 
 
Figure 25 shows a significant spike in the user-created term collection (Oxfam, 
Humanitarian, Agencies, Livestock), that occurs starting in mid-2005 and levels off by 
mid-2006. Selecting one of the color-coded (blue) bars in the June 2005 box in the central 
panel causes the corresponding article to be displayed in the panel on the right. Here, the 
user quickly learns about a recent spike in conflict over limited resources and grazing 
rights in Kenya’s Rift Valley, partly caused by a recent drought’s wiping out of 70 
percent of the livestock in the Turkana province. 
 

 
Figure 25:  After adjusting the NTF algorithm to have an agriculture focus, the user may 

utilize FutureLens for further visual analysis of the NTF results. Shown here, the discovery of 
the impact of a 2004-2005 drought on Kenyan agriculture and the corresponding social 

unrest it caused. 
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The dataset, however, includes news articles from 2001 through 2009, and the peak in the 
selected term group levels off in mid-2006. It may be interesting to track this collection 
further temporally, in order to attempt to determine why its importance decreased 
towards the end of this time period. Taking a look at a strong February 2006 spike in this 
collection’s frequency, one may note that matters have in fact gotten worse at this time. 
The article shown in Figure 26 discusses escalating and increasingly violent conflict, 
made even worse by the fact that the region is “flooded” with weapons due to continuing 
military conflict in neighboring Sudan. This dire description of the situation makes the 
subsequent leveling off all the more mysterious. 
 

 
Figure 26:  The situation in Kenya's Rift Valley seems to have become even more dangerous 
by February of 2006. The articles corresponding to the spike in the selected term collection 
described a region "flooded" with weapons and on the brink of an outbreak of major violent 

conflict. This makes the subsequent leveling off in the frequency of this collection all the more 
mysterious. 

 
To explore this mystery further, the user simply has to continue tracking the term 
collection temporally through the dataset, reading only a very small portion of the articles 
contained in the entire dataset. This is has the potential to greatly increase analyst 
efficiency, saving significant time and resources. The subsequent months’ articles that 
were revealed by continued tracking of this term collection show the causes of the 
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eventual sudden leveling off that indicates that the conflicts described in the previous 
articles may have been resolved. As shown in Figure27, the growing conflict was 
alleviated by a significant amount of rainfall that occurred in April and May of 2006 in 
this area of Kenya. The rainfall amount was in fact so great, that it even caused some 
additional danger through a risk of flooding. However, it did eventually stabilize the 
situation in the area by eliminating the drought. While the crisis had not been completely 
resolved, positive trends had began to emerge and cattle herders had began to return to 
previously-abandoned land. 
 

 
Figure 27:  Continuing to track the term collection further through the dataset reveals that 
the dangerous situation described in Figures 25 and 26 had been resolved largely due to a 

high amount of rainfall that occured in April and May of 2006. 

 
Thus, the use of a number of different features of the integrated analysis development 
environment has lead to significant knowledge discovery. Even an analyst who is 
completely new to this environment, having gone through the process described above, 
could learn a number of important pieces of information in just an hour or two. First, an 
agriculture-themed initial exploration had revealed serious and potentially critically 
important agriculture-based conflicts in the region of interest. Second, tracking the 
evolution of these conflicts through the dataset had revealed that these conflicts are by no 
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means fully resolved. Even though they were alleviated before turning strongly violent, 
the alleviation was essentially just a lucky, weather-related break. The underlying risk 
factors and dangers, such as the “flood” of weapons and competition for scarce resources 
remain. And thus one might conclude that the situation in this region remains dangerous, 
though perhaps not immediately so. 

5.2.2 Effect of Automated NTF Output Labeling on Analysis  
The integrated analysis environment’s automated NTF output labeling capability is one 
of its most important features. As will be shown in this section, it can enormously 
improve an analyst’s efficiency by providing a quick automatic ability to sort NTF results 
in accordance with analyst-defined categories of interest. 
 
For this example, the Bangladesh 1972-1976 dataset was processed using the analysis 
environment. As the first step, several category descriptor files were created. These 
categories represent realistic potential areas of interest to someone involved in research 
on 1970s South East Asia. However, for the purposes of this example, let us assume that 
the analyst is most interested in developments pertaining to Islam. The category 
described by the files shown in Figure 28, include Communism, Diplomacy, Islam, and 
Military. 
 

 
Figure 28: A realistic set of categories that someone involved in research on 1970s South 

East Asia could potentially find interesting. 

 
Following the creation of these category descriptors and the previously described process 
of execution of the NTF algorithm to generate NTF output group files, the user may 
utilize FutureLens’s automated group labeling feature. Without the automated labeling 
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feature, the analyst must focus in great detail on every single one of the NTF output 
groups (25 total, for this example). This could take a considerable amount of time, and 
the process would be prone to human error. Using the automated NTF group labeling 
feature of the analysis environment, however, takes just a few second. The results are 
shown in Figure 29, where those groups that did not fit into any one of the four categories 
of interest have already been closed. Of the labeled groups, one fit into the Islam 
category, four were labeled as Military-related, ten had a Diplomacy theme, while the rest 
did not fit into any of the categories created by the user. There were no Communism-
labeled groups in this set. 
 

 
Figure 29:  NTF output groups have been automatically labeled in accordance with the 
categories loaded by the user (shown in the legend window on the right of the figured). 

 
As one may recall, the hypothetical analyst in this scenario is most interested in 
developments pertaining to Islam. It just happens that only one of the NTF output 
features has been automatically labeled as belonging to the Islam category. This already 
provides the analyst with some important and potentially new knowledge, namely that 
Islam did not figure prominently into the news coming out of Bangladesh in the 1970s.  
Even more importantly, the analyst can save a great deal of time by focusing exclusively 
on just one of the twenty-five total NTF output groups. Shown in Figure 30, the analyst 
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performs a detailed analysis of Group 15, labeled as belonging to the Islam category. 
Quickly revealed in the articles belonging to this category are Pakistan’s efforts to 
improve its diplomatic position by strengthening ties with Islamic countries inside and 
outside of the South East Asia region. 
 

 
Figure 30:  The automated NTF group labeling feature allows the analyst to very quickly 

focus on the one most relevant group. Quickly revealed through deeper analysis of this group 
are Pakistan's efforts at diplomacy involving Islamic countries inside and outside of the 

South East Asia region. 

 
The two usage examples described in Sections 5.2.1 and 5.2.2 only begin to describe the 
full capability of this approach to the analysis of textual data. The approach is extremely 
flexible and its capabilities are robust. However, it may be expanded in a number of 
interesting directions in the future. These are described in Chapter 6. 
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Chapter 6 

Conclusions and Future Research Directions 
 
The purpose of this dissertation has been on creating a text analysis environment that 
effectively integrates mathematical techniques (NTF) with visual post-processing tools. 
The integrated environment also provides effective pre-processing tools that allow the 
user to make various improvements to the analysis process, as well as to construct and 
evaluate a variety of models. The additions and improvements to the basic NTF-based 
analysis process have been made in both pre-processing and post-processing stages, with 
the goal of making the non-negative tensor factorization algorithm accessible to the 
casual user.  The integrated analysis environment implementation presented in this 
dissertation allows the user to construct and modify the contents of the tensor, experiment 
with relative term weights and trust measures, and experiment with the total number of 
algorithm output features produced by NTF. Non-negative tensor factorization output 
feature production is closely integrated with a visual post-processing tool, FutureLens, 
which allows the user to perform in-depth analysis and has a great potential for discovery 
of interesting and novel patterns within a large collection of textual data. Section 6.1 
summarizes the goals of this dissertation and discusses how the dissertation addressed 
each one. Sections 6.2 and 6.3 discuss potential future work. 
 

6.1  Summary of Dissertation Goals 
 
The purpose of this dissertation was to create a novel approach to text analysis, 
integrating nonnegative tensor factorization, tensor term weight adjustment, and visual 
factorization results post-processing into a single integrated text analysis environment. 
The following subsections summarize the specific goals that had to be met in order to 
create such an environment, and describe how this dissertation addresses each of them. 

6.1.1  User-Friendliness 
One of the primary goals was to create an integrated analysis approach that would be 
highly user-friendly. Ideally, a user without a great deal of technical experience or 
knowledge would be able to utilize the analysis software without much time having to be 
spent on training. Specific knowledge pertaining to data mining or visual analytics would 
be unnecessary. To this end, the environment conceals the underlying nonnegative tensor 
factorization process, while providing the user with a clear set of controls that would 
allow him or her to influence the NTF process in ways that may facilitate data analysis. 
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6.1.2  Portability, Flexibility, Cost of Use 
The second major design goal was portability and flexibility. In order to create a highly 
usable textual data analysis tool, it was critical to utilize languages that are more portable 
and accessible than Matlab®.  For this reason, Python and its NumPy/Pylab libraries 
have been utilized in this project. Python has the additional advantage of being freely 
available to programmers and users, and completely cross-platform. FutureLens has been 
added to the analysis environment for the visualization portion of the process. FutureLens 
is a Java-based graphical post-processing tool that has been shown to be helpful to the 
text analysis process, as discussed in detail throughout this dissertation. Java, being a 
cross-platform language, is a good choice for accomplishing the portability/flexibility 
goal. 
 

6.1.3  Speed and Efficiency for Real-time User Analysis 
The third major goal was to make the analysis process efficient and as scalable as 
possible. Because of the very nature of the field of data mining, scalability is always a 
great challenge. Making the approach as efficient and scalable as possible was one of the 
design goals for this dissertation. This meant attempting to make the performance of the 
portable (Python-based) analysis environment to match (or at least approach) that of the 
older Matlab®-based methodology. 
 
As shown in Table 2, the speed of the Python NTF implementation does not quite 
approach that of the Matlab® version. The Python implementation still allows the user to 
perform analysis in real time, but further speed improvements would be greatly beneficial 
and constitute a good direction for future work.  
 

Table 2. Performance comparison (averaged over 10 trials) between Matlab® and Python NTF 
implementations. 

Dataset Number of 
Documents 

Avg. Document 
Length (terms) 

Matlab® 
Execution Time 
(mins) 

Python 
Execution 
Time (mins) 

Kenya 2001-
2009 

900 696 4.54 17.15 

VAST 2007 1455 391 3.95 16.13 

 

6.1.4  Automation and User Input Necessity 
Making partially automated processing a part of the analysis process has been another 
major goal of this dissertation. Automation manifests itself most significantly in the 
FutureLen’s new capability to label NTF output groups in accordance with user-defined 
categories. Input from the user is required during various stages of the analysis process, 
which is described in detail in Section 3.1.4. Greater automation of the analysis process, 
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perhaps through the use of artificial intelligence systems such as neural networks, may be 
an interesting future work direction. 
 
There are many other potential future additions and improvements that can be made to 
the analysis environment. Perhaps the most significant of these, spatial tracking, is 
discussed in Section 6.2. It would also be interesting to apply these techniques to the field 
of bioinformatics. This is an interesting research challenge, since bioinformatics differs 
from news article related research in both the structure of its input data and the goals of 
its research studies. Section 6.3 discusses potential bioinformatics applications further. 

6.2  Integrating Geographical Information into the Analysis 
Environment 
 
While the integrated analysis environment already allows the user to track elements of 
the dataset temporally, currently there is no direct spatial tracking capability. Such a 
capability could prove to be extremely important for certain types of research projects. It 
could help an analyst to quickly and easily answer the Where question, in addition to the 
When question. The fact that a particular subject is being discussed at the same time 
could be very important. It is, however, potentially even more important to knowledge 
discovery to be able to demonstrate that the particular subject in question was being 
discussed in the same general geographic location at the same time. Alternatively, it 
could be just as important to be able to demonstrate that he subject in question was being 
discussed in vastly different location at the same time (or same location and different 
times, or different locations and different times). The exact nature of this analysis would, 
of course, depend on the particular circumstances and demands of each specific study. 
 
Adding a geocoding capability to the analysis environment could facilitate the integration 
of spatial tracking ability into the overall process. Geocoding refers to the process of 
adding geographic descriptors, such as latitude and longitude coordinates to textual data. 
A large number of research studies have been conducted in this area, many with the goal 
of creating databases of geo-tagged data in a particular subject area. For example, a 
research team at the University of Berkley recently created a geocoded database of fatal 
and severe injury traffic accidents that occurred in the California between the years 1997 
and 2006. The researchers concluded that the availability of this database to other 
researcher in the fields ranging from medical science to public health and safety could be 
beneficial. It’s clear how such geocoded data allows the study of potential connections 
between a wide variety of factors, environmental and social, and serious traffic accidents 
[23]. 
 
Virtually every area of study could benefit from incorporating geocoding information 
into the analysis process. The integrated analysis environment already offers a basic 
framework that would allow the addition of geocoding-related functionality into several 
stages of the analysis process. Perhaps the most significant amount of effort would be 
required for determining how to extract geographical information from textual data. For 
instance, when a study involves news articles, what matters more:  the locations 
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mentioned in the news article, the location of the reporter at the time of the article’s 
creation, or the location of the publishing entity? Such questions would need to be 
answered before a geocoding implementation is even attempted. Adding to the challenge 
is the fact that the answer may depend and vary with the nature of each research study. 
 
Once these matters have been resolved, however, further integration into the visual NTF 
results analysis stage may be relatively straightforward. Similarly to how temporal 
information is currently displayed in a top-level summary graph, spatial information 
could be summarized using color-coding of a simple geographical map that would be 
displayed in a separate panel. The color-coding capability already build into FutureLens 
would integrate well with such an approach. 

6.3  Adjusting the Environment to Work with Bioinformatics Data 
 
It may be interesting and perhaps extremely useful to apply the integrated analysis 
environment to the field of bioinformatics. Recent work in this field involving a related 
technique, nonnegative matrix factorization (NMF) has proven highly effective. The 
project, called FAUN attempts to facilitate research in medicine and genetics by 
providing tools that greatly increase efficiency of searching through medical literature. 
The FAUN environment is Web-based, and uses NMF to facilitate the discovery and 
classification of functional relationships among genes as discussed in medical research 
literature [24]. 
 
Expanding the approach to include NTF, using a Gene-by-Term-by-Expression tensor 
may reveal additional gene functional relationships using both biomedical literature and 
microarray data. Adding the spatial tracking capabilities to the analysis environment 
could have a great potential for this project. 
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