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ABSTRACT  

Proteomics comprises the identification and characterization of the complete 

suite of expressed proteins in a given cell, organism or community.  The coupling of 

high performance liquid chromatography (LC) with high throughput mass spectrometry 

(MS) has provided the foundation for current proteomic progression.  The transition from 

proteomic analysis of a single cultivated microbe to that of natural microbial 

assemblages has required significant advancement in technology and has provided 

greater biological understanding of microbial community diversity and function.   

To enhance the capabilities of a mass spectrometric based proteomic analysis, 

an integrated approach combining bioinformatics with analytical preparations and 

experimental data collection was developed and applied.  This has resulted in a deep 

characterization of the extracellular fraction of a community of microbes thriving in an 

acid mine drainage system.  Among the notable features of this relatively low complexity 

community, they exist in a solution that is highly acidic (pH < 1) and hot (temperature > 

40°C), with molar concentrations of metals.  The extracellular fraction is of particular 

interest due to the potential to identify and characterize novel proteins that are critical 

for survival and interactions with the harsh environment. 

The following analyses have resulted in the specific identification and 

characterization of novel extracellular proteins.  In order to more accurately identify 

which proteins are present in the extracellular space, a combined computational 

prediction and experimental identification of the extracellular fraction was performed.  

Among the hundreds of proteins identified, a highly abundant novel cytochrome was 

targeted and ultimately characterized through high performance MS.  In order to 

achieve deep proteomic coverage of the extracellular fraction, a metal affinity based 

protein enrichment utilizing seven different metals was developed and employed 

resulting in novel protein identifications.  A combined top down and bottom up analysis 

resulted in the characterization of the intact molecular forms of extracellular proteins, 

including the identification of post-translational modifications.  Finally, in order to 

determine the effectiveness of current MS methodologies, a software package was 

designed to characterize the > 100,000 mass spectra collected during an MS 
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experiment, revealing that specific optimizations in the LC, MS and protein sequence 

database have a significant impact on proteomic depth. 
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Chapter 1   

 
Introduction to Proteome Mass Spectrometry and Rationale for Characterization 

of an Extracellular Fraction of a Natural Microbial Community 

 
 

1.1: Introduction 
Understanding the molecular foundations that enable the fundamental 

mechanisms of life has been the backbone of dedicated biological research. “How does 

this process occur?”, “Why does this mechanism proceed?”, and “When does the 

process begin and end?” are examples of the general questions directed towards 

biological systems.  Addressing these questions inevitably leads to the identification and 

characterization of the fundamental biomolecules, such as proteins, that are responsible 

for executing these functions.  Towards this aim, the study of proteins has resulted in 

tremendous insight into the biological mechanisms that enable life.  The research into 

the group(s) of proteins responsible for critical biological processes has required 

tremendous leaps in technology and data integration.  A key experimental platform that 

has that has proven to be successful in identifying and characterizing proteins is 

biological mass spectrometry. 

Technological advances have generally preceded biological discovery and 

illustrate their tightly coupled interplay.  An excellent example of this coordination is the 

rapid explosion of genomic technologies and the resulting biological information which 

has provided immeasurable amounts of data.  Initially, purified proteins were measured 

and characterized with the high resolution and accurate mass capabilities of mass 

spectrometers.  It was later realized that as opposed to measuring single proteins, it 

was possible to measure the entire suite of proteins present.  The availability of 

genomic information has provided the basis for MS based proteomic analyses.  By 

utilizing the genome information and resulting predicted protein sequences it is possible, 

and routine, to identify thousands of proteins in a single MS experiment (Figure 1.1).1     
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Figure 1.1:  Integration of Genomic Sequence Information for Mass Spectrum 
Identification 
The sequencing of DNA and resulting genome sequence is used to predict protein 
sequences.  The protein sequences are then used to match a computational fragment 
spectrum to the experimentally derived fragment spectrum (circled in red). 
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Proteomics comprises the identification and characterization of the complete suite of 

proteins expressed by a particular sample.2, 3  The sample can consist of a particular 

organism, cell type of an organism, or more recently, a community of organisms. The 

proteomic information obtained through this methodology provides an excellent view of 

the cellular functions and also provides temporal or spatial comparisons.  In order to 

advance the field and application of MS based proteomics, the integration of various 

computational aspects were explored and applied in this dissertation.  Additionally, the 

focus towards a particular subcellular fraction has resulted in a significantly deeper and 

more comprehensive view of the proteins present.  The use of MS based proteomics is 

an excellent example of technology integration and adaptation, and has resulted in the 

identification and characterization of thousands of proteins, as well as tangible biological 

discoveries, including the characterization of growth state dependent protein export and 

a redox variable novel cytochrome, as discussed below for an acid mine drainage 

(AMD) microbial community.   

 Additionally, combinations of experimental and computational advancements 

have resulted in new approaches for deep proteomic characterization.  Ultimately, this 

work succeeds in furthering the application of biological mass spectrometry by providing 

the next iteration of technology integration.  Key discoveries discussed within provide 

anchors for further development as well as pointers towards protein targets of 

potentially critical value.  For the sample sets described within, there exists hundreds of 

thousands of proteins that could be potential targets for specific biochemical analysis.  

Through this work, it is possible to effectively identify a functionally relevant and concise 

group of target proteins for future analysis.    

 

1.2: Current State of Mass Spectrometric Proteomics 

A principal factor in the transition to, and application of, MS based proteomics is 

the advancements and availability of genome sequencing  Although biological mass 

spectrometry of isolate proteins or metabolites can proceed effectively without genomic 

information, the progression towards complex proteomic analysis generally requires the 

foundation of a genome sequence.4  The advancements in genome sequencing are 
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mirrored by the increase in proteomic coverage.  Concurrently, the continuing 

improvement in community genomics has paved the way for community proteomics 

analysis.  One area of intense focus centers on microbial proteomics5, 6.  Once 

previously reliant on lab cultured species, the direct measurement of not only one 

species but a community of species, sampled directly from their natural environment, is 

significantly more coomon.  This has resulted in novel views of microbial existence and 

their impact of various systems, including the ocean, soil, and the human 

gastrointestinal tract.7-9   

The evolution of MS based proteomics is based on the use of 2D gel 

electrophoresis for protein separation and identification, and the desire to overcome 

many of the inherent shortcomings of gel based proteomics.10, 11  Many of the previous 

inefficiencies and challenges have been addressed or minimized with the application of 

MS based proteomics.12  The foundation of mass spectrometry is the mass 

measurement of ions.  Depending on the physical hardware of the mass spectrometer, 

a range of performance metrics are available (mass range, throughput, and mass 

resolution and accuracy).  The parameters of the measurement are often inversely 

related, such that sacrifices in throughput are necessary for gains in mass resolution 

and accuracy or vice-versa.13  The introduction of complicated samples, such as a 

microbial community containing millions of peptide ions, will present an over abundance 

of ions to the mass spectrometer.  The sheer number of ions present will limit the range 

of ion detection and necessitates a separation of ions.  The coupling of high 

performance liquid chromatography to the mass spectrometers results in a distributed 

elution of ions into the MS.  An on-line separation, directly coupled to the ion source of 

the mass spectrometer, provides a robust and rapid method of separation.  For complex 

samples, the application of multidimensional separations, combining two or more 

orthogonal separations is ideal.  Development of an online platform has resulted in the 

wide use of 2D chromatographic online separations.14  The ability to pre-load a specific 

quantity of peptides, which are in turn chromatographically separated and directly 

injected into the mass spectrometer for mass measurement, results in an extremely 
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rapid characterization of complex samples.  Currently, the identification of thousands of 

proteins requires less than twenty-four hours of instrument time.   

MS based proteomics has progressed rapidly in recent years.  Technological 

advancements in sample preparation, liquid chromatography, and mass spectrometric 

instrumentation have allowed for previously unimagined high-throughput proteomic 

depth.  Bottom up (BU) MS is the most common and widely used platform for MS based 

proteomics.  A BU analysis involves the proteolytic digestion of proteins into 

representative peptides which are then chromatographically separated and detected in 

the mass spectrometer.15, 16  The advancement of MS based proteomics is evident in 

the types of samples analyzed as well as in the results of the analysis.  The first large 

scale proteomic analysis of Saccharomyces cerevisiae resulted in the identification of 

1,484 proteins.17  In 2002, Florens et al published a proteomic view of Plasmodium 

falciparum, the causative agent of malaria.18  In this study, the depth of the proteomic 

coverage was increased with the identification of over 2,400 proteins.  The general MS 

measurement and identification of isolate or single species is now fairly well 

established.  With the publication of the AMD community genome in 2004, it was 

feasible to identify the community proteome of the dominant members within the AMD 

community.19, 20  Over 2,000 proteins were initially identified and this number has now 

exceeded 10,000 protein identifications across multiple samples representing a diverse 

collection of growth states and locations.   

A complementary approach to BU is the direct analysis of intact proteins without 

prior enzymatic digestion.  The direct measurement of intact proteins, along with the 

elucidation of protein sequence through fragmentation, is termed top down (TD) MS.21  

The direct measurement of the native protein provides specific information on the state 

of the protein as it exists within the sample.  This is significantly different from what is 

measured during a BU experiment, as the protein is inferred from the peptides but never 

directly measured.  These techniques are considered to be complementary as opposed 

to competing, as each provides different metrics about the protein.22  A highly useful 

application for TD MS is the identification of post-translational modifications (PTMs).  

The various modifications that are present on proteins are often key factors in cellular 
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signaling.  The broad range of potential PTMs presents a challenge for unambiguous 

identification.  For example, many post-translational modifications are highly labile.  

Through the course of a BU experiment, it is likely that a modification, such as a 

phosphorylation, will be inadvertently lost and not measured.  For a TD experiment, the 

presence of the phosphate group can be directly measured providing evidence for the 

existence of that modification.  Additionally, TD MS provides the ability to identify 

multiple forms of proteins that are differentially modified.  Applications of TD MS can 

include the targeted analysis of isolated proteins or, more recently, proteomic analyses 

of complex samples. The direct measurement of large proteins or subunits of a protein 

complex presents a unique opportunity to characterize the molecular forms of proteins.  

Proteins exceeding 100,000 Da as well as membrane associated proteins and 

complexes can be isolated, measured and fragmented for specific sequence level 

information.23, 24 

The application of MS to a wide range of samples has required technological 

gains in chromatography and MS instrumentation.  The computational challenges 

associated with the proteomic analyses of increasingly complex samples were also 

initially addressed and have now spawned numerous available algorithms with unique 

attributes.  Peptide MS analysis results in the collection of mass spectra, which are 

interrogated by computational algorithms that utilize the protein sequence database, 

determined from the genomic sequence.  The protein sequence database is used to 

generate peptide fragments, in silico.  These computationally generated, theoretical 

fragmentation spectra are compared and scored against the experimentally derived 

spectra.  Matches between the spectra then provides reliable sequence information 

about the peptide which can then be mapped back to the parent protein, resulting in a 

protein identification.  The SEQUEST algorithm is a staple in database peptide 

assignment.25  More current approaches have increased throughput as well as provided 

means for BU PTM identification.26, 27 

The application of MS based proteomics has provided a reproducible, high-

throughput methodology for large-scale protein identification.  The advancements in 

technology and data analysis are providing increased proteomic depth.  What still 
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remains a fundamental challenge is the ability to extract relevant biological information 

from the datasets.  This is especially true with the AMD community sample set.  Within 

the protein sequence database, over 60% of the proteins have an unknown function.  

This, in turn, results in many of the proteomic identifications having an unknown 

function.  One potential method to begin to characterize these proteins is through an 

integrated approach.  Advancements in each stage of the proteomic characterization: 

sample preparation, separation, measurement, and bioinformatic processing, can 

provide a range of information which can used in order to begin to associate protein 

function.     

 

1.3:  Introduction to Microbial Proteomics 
Estimations of prokaryotic abundance on Earth’s surfaces exceed 1x1030 cells, 

with the number of estimated species ranging from 105 to 106.28  The enormous 

population and astounding variety of species highlights the often unseen role that 

microbes play in maintaining a homeostatic cycle.29  Microbial impact ranges from 

environmental remediation of heavy metals, beneficial stabilization of the human gut, to 

harmful acidification of acid mine drainage.6, 9, 20, 30  Historically, microbial isolates 

cultured in the lab were the target model system for breakthroughs in genomic research.  

It has become clearer now that the genomic recombination, community interaction, and 

strain diversification witnessed in natural environments necessitates that analysis be 

directed towards natural microbial communities.  The fact that ~80 – 99% of 

microorganisms cannot be successfully cultured within the lab dictates that sampling 

directly from the environment is necessary.  Only recently has the technology become 

available to begin to understand these microbial species as they exist in situ.   

Proteomic analysis of samples derived directly from their natural environment 

present numerous unique challenges.  The physical collection of the sample requires, in 

many cases, a laborious effort, as is the case with the thriving microbial community 

living in a mine discussed within.  Other recently studied communities, each with unique 

and consistent challenges, include the ocean, soil, and the human gastrointestinal 

tract.7-9  In each case, the ability to collect a suitable amount of biomass must 
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considered.  Additionally, the environment in which the microbial community exists in 

can present additional preparatory complications.  A significant challenge lies in the 

ability to efficiently extract protein from the microbial cells that are present in a wide 

variety of matrices.   

Microbial diversity presents both a lifelong avenue of scientific exploration and an 

often frustrating path towards biological inference.  The limited availability of existing 

microbial protein characterization often restricts the rapid characterization of microbial 

proteins identified from uncultured species.  Additionally, the relatively small number of 

sequenced microbial genomes provides a small foundation for attempting to infer 

protein function from natural samples.  As mentioned previously, MS based proteomics 

relies heavily on the community genome sequences and the availability of matched 

genomes greatly enhances the ability to accurately identify proteins.  Therefore, a 

primary challenge that must be addressed is the reliance of natural community samples 

on a suitable genomic sequence for MS based characterization.   

A single MS analysis of a community sample is now capable of generating tens 

of gigabytes (GB) of data.  This amount of data must be efficiently processed and 

organized in order for meaningful identifications and characterizations.  The basis for 

this large amount of data lies in the complexity found within the natural samples.  

Compared to isolates which may express 2,000 – 3,000 proteins at a specific time, a 

community may contain hundreds of members each expressing thousands of proteins.  

In order to measure the large amount of proteins present the mass spectrometer must 

collect spectra for a significantly longer time resulting in a significant gain in data.  Many 

of the informatics tools were not initially intended to handle datasets of the size and 

manner that are produced from microbial community proteomics.  The advancement of 

computational tools is yet another challenge inherent with the analysis of microbial 

communities. 

 
1.4: A Thriving Microbial Community in Acid Mine Drainage 

A low-diversity community that populates acid mine drainage (AMD) biofilms has 

served as a model system for the development of community proteomics as well as for 
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for investigations into community development and structure (Figure 1.2).6, 31  Most of 

the AMD biofilms are dominated by Leptospirillum Group II (LeptoII), a Fe(II)-oxidizing, 

chemoautotrophic bacterium.20, 32  The biofilms exhibit distinct developmental stages 

that vary in microbial community composition.  Early developmental stages (DS1) are 

dominated by LeptoII; however, late developmental-stage biofilms (DS2) diversify, with 

increasing abundance of Leptospirillum Group III (LeptoIII), archaea, and eukaryote 

populations.33  The microbial community exists in an extreme solution consisting of 

molar concentrations of Fe, sub-molar concentrations of Zn, Cu, As, a pH < 1, and 

temperatures exceeding 40°C.   

The AMD community is an ideal sample set for the continued technological 

advancement of biological MS based proteomics and detailed characterization of 

natural microbial development and structure.  The relatively low complexity of the AMD 

community presents a graduated challenge for characterizing natural community 

samples.  The presence of only five dominant organisms has resulted in a highly refined 

community genome and resulting proteome.  Furthermore, the limited number of 

abundant species has resulted in deep proteomic coverage of the most represented 

species.  Advancements at all levels of the proteomics pipeline are possible and 

adjustments to the sample preparation, chromatography, and informatics have resulted 

in > 10,000 proteins being identified from this community.  The biological 

characterization of the microbial community has resulted in several notable discoveries.  

For example, a dramatic shift in protein expression is observed depending on the 

developmental state.  This is related to a shift in the dominant organism, which has 

been hypothesized to reflect the initial colonization by one species and then a 

subsequent shift towards a second species for continued growth.  This also correlates 

well with the characterization of multiple metabolic pathways, several of which are 

spread among multiple microbial members, providing evidence for metabolic portioning.  

Finally, the presence of PTMs, including signal peptide cleavage, n-terminal methionine 

cleavage and additions of oxidation, methylation and acetylation provide clues for 

protein stability and signaling.   
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Figure 1.2:  A View Inside the Mine in Redding, CA 
The highly acidic stream is shown flowing through a section of the mine tunnel system. 
Image courtesy of Dr. Jillian Banfield 
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Acid mine drainage is a worldwide phenomenon and results in significant 

environmental contamination.   The exposure of iron-sulfides (pyrite) common from 

mining results in the acidification of drainage water.  The colonization of microbes 

results in a 106 increase in the acidification rate.  The acidic AMD solution can 

potentially contaminate streams, municipal water and irrigation sources.  Understanding 

the microbes that colonize this system will provide future treatments in order to slow, or 

ideally prevent the rapid acidification.   

 
1.5:  AMD Extracellular Fraction 

Of particular interest are extracellular proteins that mediate interactions between 

the microorganisms and the environment.  Due to the complexity of the samples from 

the AMD community, cellular fractionation has been employed in order to provide a 

more manageable set of proteins.  An obvious fraction for characterization is the portion 

of proteins that reside and function outside of the cell.  It is not unreasonable to expect 

that there exists in this fraction numerous novel proteins that are responsible for 

maintaining the tight coordination between the extreme environment and the microbes.  

A focused analysis provides several benefits with respect to both technology and 

biology.  From a technical standpoint, the reduced complexity of the extracellular 

fraction provides opportunities to increase proteomic depth by enabling more specific 

enrichments of the fraction or adjustments to the chromatography.  Additionally, 

applications of informatic techniques, including sequence based analysis, is more 

amenable to the smaller set of proteins identified in the extracellular fraction.  The 

biological insight gained by studying the extracellular fraction can provide numerous 

clues to microbial survival in the extreme environment.  At a basic level, a 

comprehensive identification of the proteins that reside outside the cell can illustrate 

mechanisms that enable microbial existence.  The breadth and width of the identified 

proteins provides a view of how the microorganisms cope in the AMD solution.  

Expected functions of these proteins include those involved in transport of various 

solutes, including metals; enzymatic proteins responsible for protein turnover and 

defense, and cytochromes for metabolic processes and electron transport.   
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Finally, as the analysis of the AMD microbial community has progressed, it has 

become clear that in order to more fully understand how the organisms populate, thrive, 

and interact in the environment it is necessary to focus more attention on specific 

proteins or groups of proteins.  Figure 1.3 illustrates the principle in progressing 

towards more targeted analyses.  As the genome and initial proteome have been 

described and updated, it follows that a progression towards a more specific cellular 

fraction is necessary, in an effort to identify key proteins within those fractions.  The 

result of this approach is the generation of a select subset of specific protein targets, 

who, through targeted MS identification and computational analysis can be more fully 

characterized. 

 

1.6: Application and Advancement of MS Proteomics 
BU MS analyses result in the identification of thousands of proteins.  TD analysis 

will typically result in fewer identification but is compensated by providing specific details 

of an intact protein.  In this manner, BU is widely used as a tool for the comprehensive 

view of a proteome, while TD is more efficiently applied in a targeted manner.  In either 

case, the identification of proteins is not the sole information point obtained.  During a 

BU experiment, the mass spectrometer will target, isolate, and fragment thousands of 

peptides.  Peptides that are more abundant in a sample will be targeted more often.  

This information is recorded during the experiment and is termed a spectral count.  The 

greater the spectral count, the more abundant a particular peptide is relative to the other 

peptides in the sample.  This does not necessarily provide absolute quantification of a 

peptide or protein, although inclusion of stable isotope based labels can provide this 

metric.  The result of the MS analysis is the identification of a protein, relative 

quantification, and in many cases, information about PTMs.  This dissertation attempts 

to expand the application of the generated data by integrating and creating novel 

software approaches.  In order to more fully characterize the extracellular fraction,  

the existing MS proteomics pipeline was adapted and adjusted to provide increased 

protein identifications as well as specific characterizations of as many proteins as  
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Figure 1.3:  Illustration of the “-omics” funnel  
The funnel describes the progression towards the analysis of subcellular 
fractions in an effort to more specifically identify and characterize critical 
proteins. 
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possible.  This dissertation represents a progression of MS based proteomics and the 

foundation for future analysis of community samples. 

 

1.7: Scope of the dissertation 
This dissertation will describe the technological and informatic advancements 

that have been achieved during the analysis of the AMD natural microbial community.  

As described above, the focus on the extracellular fraction has resulted in not only a 

significantly more comprehensive identification of the protein members present in the 

extracellular fraction, but has also identified and characterized functionally critical 

proteins.  Chapter 2 will provide a detailed methodological overview of MS based 

proteomics.  The discussion points will provide a description of the complete sample 

flow from collection, preparation, and digestion, MS spectrum collection, and data 

analysis.  Chapter 2 will also introduce a number of software tools developed for MS 

based proteomics.  Chapter 3 highlights a targeted identification and characterization of 

proteins present in the extracellular space by a combined computational signal peptide 

prediction and experimental protein verification.  In this chapter a confident identification 

of the proteins residing out the cell is assembled.  This then lays the groundwork, by 

providing the initial protein identification, for the remaining chapters.  Chapter 4 

introduces and highlights the use of metal affinity columns for the enrichment and 

identification of novel extracellular proteins.  In this chapter the application of seven 

different metal affinity columns will be discussed as well as an analysis of the greater 

than 100 novel proteins identified through this methodology.  Chapter 5 highlights the 

targeted MS characterization of a cytochrome that exhibits a variable redox state 

correlating well with the growth state of the biofilm.  Chapter 6 will introduce novel 

software that is designed to efficiently integrate top down and bottom up MS datasets.  

This software was then applied to an integrated MS analysis and resulted in the 

identification of greater than 300 intact proteins and numerous PTMs.  Chapter 7 

discusses the design, development, and application of software that characterizes the 

hundreds of thousands of spectra that are collected during a bottom up MS analysis.  

Through this characterization, it is possible to more accurately gauge the effectiveness 
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of the analysis as well as identify target spectra for more advanced interrogation.  This 

chapter will also introduce the marked differences between the MS analysis of microbial 

isolates and communities in the ability to assign fragment spectra to peptides.  This 

work presents a significant contribution to MS based proteomics analysis, with a focus 

towards a natural microbial community.  Chapter 8 summarizes the technological 

integration and resulting biological inference as a framework for future studies, as well 

as additional insight about the colonization and existence of the microbial members in 

the AMD community. 
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Chapter 2 
 

An Integrated Experimental / Computational MS Based Platform for the                                                
Proteomic Characterization of a Natural Microbial Community 

 

Portions of included text are adapted from: 

 

Melissa R. Thompson, Karuna Chourey, Jennifer M. Froelich, Brian K. Erickson, Nathan 

C. VerBerkmoes, Robert L. Hettich, “Experimental Approach for Deep Proteome 

Measurements from Small-Scale Microbial Biomass Samples”, Analytical Chemistry, 

 2008, 80 (24), 9517-9525. 

 

 

2.1: Introduction 
The methodology for the proteomic characterization of a complex community 

contains aspects of analytical technologies, bioinformatics, and fundamental biology 

(Figure 2.1).  It is the interconnected nature between the three key disciplines that have 

allowed MS based proteomics to become the principle platform for rapid and accurate 

proteomic characterization.   

In order to efficiently characterize the thousands of proteins present in the 

extracellular fraction of the AMD microbial community, an optimized liquid 

chromatographic (LC) – tandem mass spectra (MS/MS) platform was utilized.34  The 

online separation of the complicated microbial sample is necessary in order to allow the 

mass spectrometer sufficient time to accurately measure a mass or to target, isolate 

and fragment a specific ion.  Additionally, the LC separation provides tremendous gains 

in dynamic range.  The microbial sample that is ionized into the mass spectrometer 

contains a range of proteins or peptides that are present at highly variable 

concentrations.  The chromatographic separation aides in the ability to measure even 

low abundance proteins or peptides by limiting the total ion population present in the 

mass spectrometer.  Finally, coupling the liquid chromatography to the mass  
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Figure 2.1:  Illustration of the Interconnected Disciplines for Proteomic Analyses 

of Complex Microbial Communities



 

 18 

spectrometer directly results in a rapid separation with no additional offline preparation.         

 Although a variety of mass spectrometers exist, several are aptly suited for the 

characterization of complex samples.  Depending the on the physical hardware of the 

mass spectrometer the performance metrics will vary (mass range, throughput, and 

mass accuracy and resolution).  The performance metrics of the measurement are often 

in concert with each other, such that sacrifices in throughput are necessary for gains in 

mass resolution and accuracy or vice-versa.  One primary consideration is the 

compatibility of the mass spectrometer with the ion source.  The commonly used 

electrospray ionization (ESI) is considered a soft ionization (generally does not induce 

source fragmentation) technique and typically results in multiply charged gas-phase 

ions.35  Electrospray is commonly the ionization technique of choice for proteomic 

analyses due to the ability to interface directly with online chromatography and the 

compatibility with organic molecules, such as proteins and peptides.  The ability to 

generate multiply charged ions provides an increase in measureable mass range, as 

the mass spectrometer measures mass to charge (m/z), and an ideal ion for 

fragmentation.  Two mass spectrometers which are preferred for ESI compatibility and 

useful operating figures of merit for protein and peptide mass measurement are the 

Fourier Transform Ion Cyclotron Mass Spectrometer (FTICR) and the Linear Trapping 

Quadrupole (LTQ).36, 37  The FTICR and the LTQ differ in the performance metrics, with 

the FTICR providing extremely high mass accuracy and resolution, at the cost of 

throughput, and the LTQ providing tremendous gains in throughput, but sacrificing mass 

accuracy and resolution.  For this reason, and others described below, the FTICR is the 

preferred instrument for intact protein analysis (TD) and the LTQ is well suited for 

peptide analysis (BU). 

The final step in the proteomic methodology is the informatics.  The purpose of 

this is to facilitate, depending on the sample, the assignment of MS spectra to either 

proteins or peptides.  Fragmenting an ion in the mass spectrometer is a valuable 

technique for determining the sequence of a particular ion and most software packages 

rely on the fragment information for identification.  The computational assignment of TD 

and BU spectra benefit from fragmentation, but the fragmentation itself is significantly 
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more amenable to BU analyses.  The primary means of assignment for BU analyses 

relies on software that generates predicted fragmentation spectra, from the protein 

sequence database.  The predicted spectra are then compared to experimental 

fragment spectra in order to identify matches and determine the probable peptide 

sequence.  TD relies on the high mass accuracy and, in some cases, fragmentation of 

the intact protein.  The use of specific software and particular parameters is intended to 

minimize the presence of false assignment, or the false discovery rate.  Details of the 

informatics assignment are highlighted below. 

 

2.2:  Reagents / Solvents 
Chemical reagents (i.e., guanidine HCl, acetic acid, dithiothreitol (DTT)) were 

acquired from Sigma Chemical Co. (St. Louis, MO) and were used as supplied without 

further purification. Modified sequencing grade trypsin (Promega, Madison, WI) was 

used for all protein digestions. TFE was purchased from Fluka (Buchs, Switzerland, 

Catalog No.  96924). HPLC-grade water and acetonitrile were obtained from Burdick & 

Jackson (Muskegon, MI), and 99% formic acid was purchased from EM Science 

(Darmstadt, Germany).   

 

2.3:  AMD Sample Collection and Extracellular Preparation 
Biofilm samples were collected by our collaborators (Jill Banfield group, 

University of California at Berkeley) from various locations of the mine in Redding, CA.20  

Designations of the collection site are represented by the streams from which they 

originate (Figure 2.2).  The identification of signal peptide cleaved proteins utilized five 

different samples: AB-End, AB-Front, AB-Muck (Friable), AB-Muck (DSII) and UBA.  

The metal enrichment and characterization of cytochrome 579 utilized the AB-Muck 

sample.  Each of the samples represented a different location or biofilm growth state 

and each contained approximately 1x1010 cells.  AB-End was an earlier growth state 

biofilm than AB-Front and AB-Muck, which were designated as Developmental Stage II 

(DSII).  AB-Muck (Friable) exhibited a unique shift in the dominant microbial species,  



 

 20 

 

Figure 2.2:  Illustration of the Mine Tunnel System in Redding, CA 
The various tunnel streams are named (A drift, B drift, etc.).  Dark circles represent 
areas of sampling for proteomic analyses. 
Figure taken from Denef et al.38 

 

 

 

 



 

 21 

while UBA exists only in the A-drift region of the mine.  Each of the samples were 

immediately frozen in dry ice, and stored in a -80°C freezer until further processing.   

Collected samples were processed to produce an extracellular fraction while limiting 

inadvertent cellular lysis.  The frozen samples were thawed and processed, as follows, 

at 4 ºC.  Cells were suspended in 3 volumes of H2SO4 (pH 1.1), washed by rotation for 

30 min, and recovered by centrifugation at 12,000g for 20 min.  This wash was repeated 

once by resuspending the cell pellet in the same volume of sulfuric acid solution, and 

the two reddish-yellow supernatants were combined to form the extracellular fraction.  

Since the extracellular fraction was collected after treatment of the biofilm by cold 

osmotic shock, it is likely enriched in both periplasmic and secreted proteins.  Proteins 

within the extracellular fraction were precipitated with ice-cold 10% trichloroacetic acid, 

and the pellet was rinsed with cold methanol and air-dried.   

 

2.4:  Protein Preparation for MS Measurement 
For TD MS analysis, proteins were enriched and purified before direct 

measurement.  BU MS experiments required additional preparation in order to 

enzymatically generate peptides for MS analysis.   

For low complexity intact protein analysis (such as cytochrome 579 

characterization), proteins were prepared for direct infusion into the mass spectrometer.  

Enriched protein samples were desalted with Zip-tip (C4, Millipore, Billerica, MA, USA) 

pipette tips and eluted with 100% acetonitrile (0.1% acetic acid, v/v).39  The Zip-tip C4 

pipette tip provides a reliable method for concentrating and desalting proteins prior to 

mass measurement.  Following elution, the purified proteins can be diluted to a 

compatible concentration (500 nM – 100 uM) and measured by directly infusing the 

protein sample at a flow rate of 2.5 uL/min.  For complex protein samples intended for 

intact mass measurement, the samples are loaded directly onto a chromatography 

column for desalting and on-line separation which is described below.   

For BU measurement, the proteins are prepared for enzymatic digestion into 

peptides.  The generation of peptides relies on the use of commercially available 

proteases, the most common being trypsin.  Trypsin enzymatically cleaves the peptide 
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backbone c-terminal to lysine (K) and arginine (R).  In order to prevent self-cleavage, 

the trypsin (Promega, Madison, WI) has been chemically modified by the 

manufacturer.40  Proteins are denatured and reduced in order to eliminate any potential 

secondary or tertiary structure which may inhibit trypsin activity.  This is accomplished 

by suspending the sample in 2 mL of 6 M guanidine-HCl, 10 mM dithiothreitol (DTT), at 

60ºC for 1 hour prior to the introduction of trypsin.  After denaturation and reduction of 

disulfide bonds, the sample is diluted 6-fold in 50 mM Tris-HCl/10 mM CaCl2 (pH 7.8) 

providing a suitable solution for tryptic activity.  Sequencing-grade trypsin was added at 

~1:100 (w/w), and digestions were performed with gentle rocking at 37ºC for 18 hours.  

This was followed by a second addition of trypsin at 1:100 and an additional 5-hour 

incubation.  The samples were then treated with 20 mM DTT for 1 hour at 37ºC as a 

final reduction step, and immediately de-salted with Sep-Pak Plus C18 (Waters, Milford, 

MA).41-43  All samples were concentrated and solvent exchanged into 0.1% formic acid 

in water by centrifugal evaporation to ~1 mg/mL starting material, filtered, aliquoted, and 

frozen at –80ºC until LC-MS/MS analysis 
 
2.5: Liquid Chromatography  

To efficiently measure the thousands of proteins or peptides present in a sample, 

the use of an on-line liquid chromatographic (LC) separation is employed.44, 45  

Depending on the complexity of the sample, this may include a single or double, ideally 

orthogonal, phase(s) of separation.  The most common form of stationary phase for 

general separation of proteins and peptides is reverse-phase (RP).  The reverse phase 

consists of silica bonded to variable length alkyl chains.  The common versions of RP 

are C4, C8, C18 and their application is dependent on the sample set.  For both intact 

protein and peptide mass measurement, the application of liquid chromatography 

results in significant gains in the ability to measure less abundant ions.  The gains in 

dynamic range enable deep proteomic coverage among the thousands of expressed 

proteins.  The LC occurs online, directly coupled with the mass spectrometer.  This 

provides performance gains and reduces the potential for sample loss by eliminating 

additional offline sample handling.  The composition of the solvent is adjusted over time 
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such that the concentration of the mobile phase is increased (gradient elution).  Ideally, 

the gradient elution should provide increased resolution over an isocratic separation.   
 

2.5.1: Intact Protein Separation 
Intact protein chromatography typically utilizes shorter alkyl chain stationary 

phases (C4, C8), due to the increased size of intact proteins and correspondingly the 

greater available surface area, resulting in increased hydrophobic affinities for the 

stationary phase.  On the other hand, BU MS analysis, where peptides are required to 

be separated, the increased hydrophobic interactions achieved with C18 provide more 

efficient separation.   The non-polar surface of the stationary phase results in elution of 

polar molecules before non-polar molecules, thereby supporting the term reverse-

phase.  The elution buffer must contain a suitable organic solvent, such as methanol or 

acetonitrile (ACN).    ACN is often utilized due to its volatile nature and subsequent 

compatibility with MS. The elution phase is often run in a flow, whereby the 

concentration of the organic (ACN) is increased over a period of time.  The 

determination of the gradient is a function of the sample, instrument capabilities, and 

desired peak resolution.  The high sensitivity of current MS instrumentation allows for 

small concentrations of proteins or peptides to be pre-loaded onto the chromatography 

column.  Variations in ionization efficiency and the complexity of the sample will impact 

the loading concentration, but generally ~200 µg of sample is loaded.  The stationary 

phase is loaded via a high pressure cell into a fused silica capillary connected to union 

containing a filter (0.5 µM, Upchurch Scientific, WA) acting as a frit.  After the stationary 

phase is loaded, the desired sample can then be deposited onto the stationary phase.  

Utilizing PEEK ferrules and unions (Upchurch Scientific, WA), the fused silica is then 

coupled to a fused silica nanospray emitter (New Objective, MA). 

 
2.5.2:  Peptide Separation 

For samples containing thousands of peptides, a two-dimensional separation is 

employed.  Two parameters must be considered when utilizing a 2D separation: 1.) the 

sample throughput and 2.) the proteomic coverage.  In practice, these metrics vary 
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inversely with each other and a balance must be sought that adequately assesses both 

metrics.  A widely accepted platform for 2D separation that balances both the 

throughput and coverage is termed: Multidimensional Protein Identification Tool 

(MudPIT).17  This methodology utilizes both RP and strong-cation exchange (SCX) to 

more completely separate complex peptide samples.  For MudPIT separation, peptides 

are initially loaded and bound to the strong cation exchange material.  During the on-line 

separation, increasingly concentrated steps of ammonium acetate (a volatile, MS 

compatible salt) are introduced across the SCX, resulting in the step elution of a subset 

of loaded peptides onto the next phase of separation, the RP.  The peptides are then 

gradually eluted by the ACN gradient directly into the MS prior to the next salt pulse.  

For the BU analysis of the extracellular fractions, the mass spectrometer was coupled 

on-line with an Ultimate HPLC (LC Packings, a division of Dionex, San Francisco, CA).  

The system utilized a 2D nano-LC tandem mass spectrometry (2D-LC-MS/MS) setup.  

The flow rate from the pump was maintained at ~100 µL/min, which was then split pre-

column to provide an approximate flow of ~200–300 nL/min at the nanospray tip.  The 

split-phase columns were prepared in-house and consisted of SCX material (Luna SCX 

5µ 100Å Phenomenex, Torrance, CA) and C18 RP material (Aqua C18 5µ 125Å 

Phenomenex).  For all samples, ~200–500 µg of protein material was loaded off-line 

onto the back of the multi-phase column.  The loaded RP-SCX column was then 

positioned on the instrument behind a ~15 cm C18 RP column (Aqua C18 5µ 125Å 

Phenomenex) also packed via a pressure cell into a Pico Frit tip (100 µm with 15 µm tip 

New Objective, Woburn, MA).  All samples were analyzed via a 24-hour 12-step 2D 

analysis.   

 

2.6: Mass Spectrometric Measurement 

The selection of the appropriate MS instrument is dependent on the sample and 

desired measurement.  Two platforms that are amenable to on-line liquid 

chromatographic separation are the Fourier transform ion cyclotron resonance (FTICR) 

and the linear trapping quadrupole (LTQ ion trap) mass spectrometers.36, 37  Both 

instruments provide specific advantages and disadvantages for the measurement of 
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proteins and peptides respectively.  In general, the primary differences between ion trap 

and FTICR mass spectrometers are the duty cycle (the time when the instrument is 

usefully operated), mass resolution, and mass accuracy.  The ion trap mass 

spectrometers are ideally suited for complex peptides samples, due to their extremely 

fast scan time (~700 ms), moderate resolution (~3,000) and accuracy (unit mass) and 

ability to utilize collision-induced dissociation (CID) for ion fragmentation.  FTICR-MS, 

on the other hand, requires more time to generate a spectrum (~1.5 secs) but is capable 

of significantly higher mass resolution (100,000) and mass accuracy (1 x 10-3 Da.).     

  

2.6.1: Intact Protein MS Measurement 
FTICR-MS measurement has more recently been applied to complex proteomic 

measurement of intact proteins.46-49  FTICR provides unrivaled mass resolution and 

mass accuracy, both of which are critical for precise intact protein mass determination.  

The resolution and mass accuracy are a function of the high magnetic field (9.4T) and 

high vacuum (1-3 x 10-10 Torr) present within the instrument (Figure 2.3).  The high 

resolution of the instrument provides the ability to discern the complicated isotopic 

distribution of intact proteins, providing several benefits.  Specific identification of 

individual peaks within the isotopic packet allows for the unambiguous determination of 

the charge state.  This then results in the ability to correctly calculate the neutral mass.  

Additionally, intact protein mass spectra are generally highly complicated due to the 

high charge states of the ions.  This results in mass spectra containing numerous 

charge states across the mass range, with numerous isotopic peaks for each charge 

state.  The high resolution of the FTICR allows for the visualization of individual peaks 

as opposed to large waves of peaks.  The high mass accuracy of the FTICR mass 

spectrometer is useful for identifying the chemical makeup of ions or assigning protein 

identifications based on mass alone.  Utilizing the high mass accuracy provides yet 

another layer for confident protein identification.   

Samples prepared for FTICR-MS analysis were diluted into 50/50/0.1 (V/V/V) 

H2O/ACN/Acetic Acid and infused into the Micromass Z-Spray source attached to a 

Varian (Lake Forest, CA) 9.4-Tesla (Cryomagnetics Inc., Oak Ridge, TN) HiRes  
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Figure 2.3:  Illustration of a FTICR Mass Spectrometer 
Following ionization and injection, the ions are transmitted through a series of ion 

guides and are eventually measured within the FTMS cell, which is located within the 

superconducting magnet. 

Image: Varian Inc. 
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electrospray FTICR mass spectrometer.  MS fragmentation was achieved through 

infrared multiphoton dissociation (IRMPD) with the 10 micron wavelength of a carbon 

dioxide laser.  Parent charge states of protein were manually selected and isolated in 

the selection quadrapole prior to mass analysis in the FTMS analyzer cell.  For internal 

mass calibration (better than 3 ppm achievable), a 350 nM spike of ubiquitin was 

introduced into the appropriate proteome sample.  M/z values were manually extracted 

from spectra, deconvoluted, and plotted with Origin 8. 

 

2.6.2:  Peptide MS Measurement 

Ion trapping mass spectrometers are aptly suited for the high throughput analysis 

of complex proteomic samples.  The millisecond scan speed enables these types of 

mass spectrometers to rapidly select, isolate, and fragment ions, resulting in the 

sequence specific information necessary for a BU MS methodology.  Their compatibility 

with CID based fragmentation results in predictable and consistent fragmentation of 

peptides.   

The mass spectrometer itself is composed of three main components: an ion 

source, a mass analyzer and detector.34  In general, the MS experiment proceeds as 

follows:  a gas phase ion is introduced into the mass spectrometer which then passes 

through a series of ion guides to a mass analyzer for mass selection and then to a 

detector for ion detection and signal amplification.  In general the ion trapping mass 

spectrometers are ideal for BU proteomic analyses.  They provide moderate resolution, 

high sensitivity, rapid scan speed, the capability to perform multiple, consecutive 

fragmentations (MSN), and compatibility with various fragmentation techniques (CID, 

ETD).  The principle behind trapping an ion lies in producing a region within the ion trap 

where radial and axial stability is achieved.  This occurs through the oscillation of the  

RF voltage.  The ions can be trapped axially by application of a constant voltage to the 

end electrodes.  Target ions can be isolated by sequentially scanning out (adjusting the 

RF) the ions that fall outside the desired m/z window.  The ions remaining within the 

trap are ideally the target ions for fragmentation.  Application of a excitation current 
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across the end caps excites the remaining ions thereby inducing thousands of physical 

collisions with the helium present in the trap.50 

During the entire chromatographic process, the LTQ (Thermo Fisher Scientific, 

San Jose, CA) mass spectrometer was operated in a data-dependent MS/MS mode, as 

detailed below (Figure 2.4).  The use of a data-dependent MS analysis provides real-

time parent ion selection for fragmentation.  In this mode, the software controlling the 

instrument fully automates the selection, isolation, and fragmentation of parent ions 

found in the MS1 spectra.50, 51  Data-dependent parent ion selection is intensity based; 

therefore the peptides that are most abundant are typically selected.  This allows for a 

sufficient ion population to be measured following fragmentation.  The chromatographic 

methods and HPLC columns were virtually identical for all analyses.  The LC-MS 

system was fully automated and under direct control of the XCalibur software system 

(Thermo Fisher Scientific).  The LTQ mass spectrometer was operated with the 

following parameters: nanospray voltage (2.4 kV), heated capillary temp 200ºC, full 

scan m/z range (400–1700).  The LTQ data–dependent MS/MS mode was set up with 

the following parameters: 5 MS/MS spectra for every full scan, 2 microscans averaged 

for both full scans and MS/MS scans, 3 m/z isolation widths for MS/MS isolations, and 

35% collision energy for collision-induced dissociation.  To prevent repetitive analysis of 

the same abundant peptides, dynamic exclusion was enabled with a repeat count of 1 

and an exclusion duration of 3 minutes on the LTQ.  The parameters for dynamic 

exclusion vary depending on the instrument platform and are adjusted based on 

empirical analysis of the parent ion selection.  The use of dynamic exclusion prevents 

the repeated targeting, isolation and fragmentation of high abundant ions.  Due to the 

high complexity of community microbial samples, it is likely that less abundant ions will 

never be targeted for fragmentation within the specified parameters (1 MS1 -> 5 MS2).  

By utilizing dynamic exclusion, abundant ions are excluded from additional 

fragmentation (after a repeat of one fragmentation), allowing the mass spectrometer to 

target lower abundance ions thereby increasing the depth of the proteomic 

identification.52, 53  
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Figure 2.4:  Illustration of an Ion Trapping Mass Spectrometer 
Following ionization and injection, the ions are transmitted through a series of ion 

guides and are eventually contained within the ion trap.  Within the ion trap, selection, 

isolation and fragmentation occur prior to ejection and detection by the electron 

multipliers. 

Image: Thermo Scientific 
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2.7:  Proteome Informatics 

The assignment of experimentally collected spectra to either proteins or peptides 

is largely automated.  This is necessary, as current methodologies are capable of 

collecting greater than 100,000 spectra in a single experiment.  The method for 

identifying spectra varies depending if the sample consists of proteins or peptides.  The 

assignment of spectra generated from the fragmentation of peptides relies on the use of 

protein sequence databases.  In this manner, the protein sequence database serves as 

a template whereby the predicted sequences are used to simulate the experimental 

fragmentation.  The predicted fragmentation is then matched to the experimentally 

collected fragmentation and scored, as detailed below.  The assignment of spectra 

representing intact proteins is based on the high mass accuracy.  Frequently this is not 

sufficient, as the proteins may be moderately or highly modified, thereby resulting in 

high mass error matches.  The combination of a BU based protein identification and 

intact protein mass measurement provides sufficient confidence for a specific 

identification. 

 

2.7.1 Database Searching 

In order to assign spectra to peptides, the raw data must be extracted from each 

of the thousands of spectra.  During the MS analysis, MS1 (survey) and MS2 

(fragmentation) spectra are collected.  The MS2 scans contain the results of 

fragmenting a parent ion with the inert gas, which is helium for the LTQ instruments.  

The resulting fragmentation pattern is the basis for the peptide identification.  Extraction 

of the m/z values is followed by conversion to a deconvoluted neutral mass.  The 

moderately low resolution by the ion trapping MS instruments requires that in many 

cases, +2 and +3 charge states must be considered when calculating the neutral mass 

of the fragments.  Following charge state determination and deconvolution, each 

individual spectrum is represented by a peak list providing the neutral mass and 

intensity.  Database matching software, such as SEQUEST, utilizes the supplied 

sequence database to perform an in silico digestion of the protein sequences.  Due to 

the predictable nature of the enzymatic digestion and the CID based fragmentation, it is 
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possible to accurately predict the experimental fragmentation.  A preliminary selection of 

possible candidate peptides is obtained by selecting peptides within +/- 3 Da. of the 

parent ion.  This subset of peptides is then further culled by a preliminary score which 

compares the predicted versus experimental fragments.  Two significant metrics of the 

computational and experimental matching are the XCorr value and DeltCN.  The XCorr 

represents the final cross-correlation value of the spectra with the best match having the 

highest value.  This represents how well the predicted spectrum matches the 

experimental spectrum.  The DeltCN dictates how different the best hit is to the next.  

Larger values will, in general, provide greater confidence in the peptide assignment.  

Specific parameters for SEQUEST searches are described within the respective 

chapters.  

Assignment of spectra representing intact proteins relies heavily on the accuracy 

of the mass measurement.  Due to the inconsistent fragmentation observed with intact 

proteins, identification through fragmentation is often not possible.  Thus, the integration 

of a BU identification with a high mass accuracy measurements is often required.  A 

software platform developed for this approach is discussed in detail in chapter 6.  

The methodology described above provides a robust and rapid platform for the 

complete proteomic characterization of complex microbial communities.  Each stage of 

the sample preparation is intended to provide an optimal solution for MS measurement.  

This results in high quality spectra that are amenable to the computational algorithms 

highlighted above.   The described platform has provided a solid experimental 

foundation for the targeted analyses highlighted below.   
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Chapter 3 
 

Computational Prediction and Experimental Validation of Signal Peptide 
Cleavages in the Extracellular Proteome of a Natural Microbial Community 

 

Portions of included text are adapted from: 

 

Brian K. Erickson, Ryan S. Mueller, Nathan C. VerBerkmoes, Manesh Shah, Steven W. 

Singer, Michael P. Thelen, Jillian F. Banfield, Robert L. Hettich, “Computational 

Prediction and Experimental Validation of Signal Peptide Cleavages in the Extracellular 

Proteome of a Natural Microbial Community”, Journal of Proteome 

Research, 2010, 9 (5), 2148-2159 

 

Brian K. Erickson’s contributions include computational prediction of datasets, 

experimental preparation of samples, experimental LC-MS/MS analysis, data parsing, 

and primary authorship. 

 

  

3.1: Introduction 
Determination of the cellular location(s) of proteins provides important contextual 

information, which can support proposed functions.  Of particular interest are proteins 

that mediate interactions between a microorganism and its environment and operate 

under external conditions that may differ substantially from conditions in the cytoplasm.  

These secreted proteins are critical for nutrient transport, as well as organismal 

communication and survival (i.e., defense).   

A primary, but not exclusive, method of protein transport to the extracellular 

region, periplasmic space, or outer membrane of gram-negative bacteria is through 

signal peptide mediated transport.54  In this highly conserved process, trafficking of the 

protein is dependent on the presence of a specific sequence of amino acids, typically 

located within the first 50 amino acids of the N-terminus.55, 56   Targeting generally 
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occurs through two pathways, one involves the signal recognition particle (SRP) and 

occurs co-translationally, and the other involves SecB, and occurs post-translationally.  

Following targeting, protein transport to the cytosolic membrane occurs through a 

complex of proteins known as the translocase, which includes membrane proteins as 

well as an ATPase.57  The result of these activities is the directed transport of a protein 

and cleavage of the signal peptide.  Additional models of protein secretion are utilized 

within gram-negative bacteria, but were not specifically probed within this study. 

The ability to computationally predict signal peptides has advanced significantly 

in recent years.58, 59  Current prediction algorithms utilize machine learning techniques, 

such as neural networks and hidden Markov models (HMM) to increase accuracy and 

precision.60-62  These computational techniques identify patterns of amino acid 

composition in the N-terminal region of a protein in order to ascertain if a signal peptide 

is present.  The pattern recognition has been optimized through the use of training sets 

and is specific for eukaryotes, gram-negative, and gram-positive bacteria.  The training 

sets are composed of hundreds to thousands of experimentally verified signal peptide 

sequences.  SignalP-3.0 is one widely used and accepted algorithm that effectively 

identifies the presence of a signal peptide along with the probable cleavage site.  The 

current version of SignalP (3.0) has been improved over previous iterations by utilizing 

expanded training sets containing additional experimentally verified signal peptides, as 

well as including HMM resulting in increased prediction accuracy.  For gram-negative 

bacteria, prediction of a signal peptide as well as identification of the cleavage site is 

proposed to be > 90% accurate.63   

Experimental data provides important confirmations of signal peptide predictions.  

N-terminal sequencing techniques, such as Edman sequencing, can be used to verify 

the sequences of mature protein forms, but this is not an effective method for profiling 

the thousands of proteins present in microbial community proteomes.  An alternative 

approach is to verify signal-cleaved peptides using shotgun multidimensional liquid 

chromatography tandem mass spectrometry (2D-LC-MS/MS).  Since peptide 

assignments using shotgun proteomics depend on the presence of the exact predicted 
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peptide sequences in databases, signal-cleaved peptides and non-cleaved peptides can 

be readily distinguished (Figure 3.1)64, 65.  Mass spectrometry is appropriate for signal  

peptide analysis in microbial community samples due to its unrivaled throughput, as well 

as its high dynamic range and mass accuracy.2  Mass spectrometry also provides 

relative quantification of peptides and proteins, allowing for detection of trends in 

abundance patterns of exported proteins across samples.66   

In this study, we evaluated the approach of integrating computational prediction 

of signal peptide-containing proteins with high-throughput mass spectrometry to validate 

signal peptide predictions for a diverse mixture of proteins from a natural microbial 

community.  We focused on microbial biofilms with limited species richness from an acid 

mine drainage (AMD) system.5, 6, 67   The biofilms grow in hot (40 ºC), pH ~ 1.0 solutions 

that contain near molar concentrations of metals (in particular Fe).  Proteogenomic 

analyses, which combine proteomic measurements and metagenomic data, have been 

previously applied to these biofilms to catalogue and evaluate abundance patterns for 

thousands of proteins from the most abundant bacterial and archaeal populations.19, 20, 

38, 68, 69  As of yet, a specific identification and characterization of the secreted proteins 

present in the extremophilic AMD system has not been completed.  The analysis 

presented in this study has broad implications for characterizing extremophilic microbial 

communities.  High confidence identification of the secretomes will provide vital clues 

into microbial community interaction, function, and survival at the environmental and 

cellular interface.  The combination of protein enrichment in the secretome and the 

presence of signal-cleaved peptides provide strong evidence for protein localization and 

clues to protein function.  Characterization of the changes in the abundances of signal-

cleaved proteins across microbial communities from biofilms growing in different 

geochemical environments and of different growth states permits a greater  

understanding of the roles of these proteins in situ.  A subset of these secreted proteins 

may be critical for organismal survival in the highly acidic environment, and should 

provide unprecedented insight into the global acid mine drainage phenomenon.  Finally, 

the methodologies presented within can be readily applied to a variety of microbial 

systems for specific prediction/characterization of their secreted proteins. 
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Figure 3.1:  Representation of Signal Peptide and Cleavage  
The original peptide of a protein was termed the “gene called N-terminus.”  Following 
removal of a signal peptide, a new N-terminus will be present on a protein.  This is 
termed the “new N-terminus.”  The protein database contains both the pre-processed 
form of the protein, “Protein A” and the signal peptide cleaved sequence, “Protein 
A_SigP.” 
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3.2: Materials and Methods 

 

3.2.1: Signal Peptide Prediction 
The experimental approach for this study consisted of parallel computational 

prediction and mass spectrometric identification of signal peptide cleaved proteins 

(Figure 3.2).  SignalP-3.070 was downloaded from (http://www.cbs.dtu.dk/cgi-bin/nph-

sw_request?signalp) and locally installed.  Each of the 16,171 proteins present in the 

AMD database (Biofilm_5wayCG_UBA_08052007.fasta) was individually submitted to 

SignalP-3.0 for analysis using a Perl script which iteratively selects and copies each 

FASTA formatted protein sequence from the sequence database, along with 

accompanying header information, to a separate temporary text file.  This text file was 

submitted to SignalP-3.0, which was executed with the following parameters: organism 

set to gram-negative bacteria, output short format, quiet analysis and protein sequence 

truncation after the first 50 amino acids.  Results of SignalP-3.0 were exported to a 

temporary file, and identification of signal peptides was accomplished by parsing the 

results of the hidden Markov model analysis conducted by SignalP-3.0.  Following the 

prediction of a signal peptide, the position of the cleavage site was noted in order to 

generate the processed protein sequences.  Sequences of proteins predicted to have a 

signal peptide were truncated at the predicted cleavage site and their protein names 

were appended with “SigP” in the new protein sequence database.  This database was 

labeled “Biofilm_5wayCG_UBA_08052007_SigP_Removed.fasta” and contains both the 

original gene-called protein sequence and if predicted to be present, a signal peptide 

cleaved protein sequence.  The complete, SignalP-3.0 derived database can be found 

at: “http://compbio.ornl.gov/biofilm_amd_extracellular_proteome” 

The lack of archaeal training data sets limits the effectiveness of SignalP-3.0 in 

predicting archaeal signal peptides.  For this reason, the predictions and identifications 

of signal peptide cleaved proteins in this study were generally found for the abundant 

gram-negative bacterial populations in AMD biofilms. 
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Figure 3.2:  Computation and Experimental Determination of Signal Peptide 
Cleavage 
The crude biofilm was fractionated and digested into peptides for LC-MS/MS.  The acid 
mine drainage protein database was subjected to signal peptide cleavage prediction 
with SignalP-3.0.  The proteins with predicted signal peptide cleavage were appended 
to the database with the signal peptide sequence removed and noted with a “SigP”.  
The pre-processed protein sequence was retained in the database.  Following MS/MS 
analysis the spectra were searched with SEQUEST utilizing the signal peptide 
appended database and parsed for signal peptide cleavage identifications. 
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3.2.2: Proteome Bioinformatics 

The “Biofilm_5wayCG_UBA_08052007_SigP_Removed” database contains 

annotated proteins from the abundant microbial members of AMD biofilms.69  The 

protein database also includes common contaminants (trypsin, keratin, etc.).  Protein 

assignment of the MS/MS spectra was accomplished with the SEQUEST algorithm25 

and was run using the following parameters: enzyme type, trypsin; Parent Mass  

Tolerance, 3.0; Fragment Ion Tolerance, 0.5; up to 4 missed cleavages allowed, 

and fully tryptic peptides only. Resulting output files were sorted and filtered using 

DTASelect with the following parameters: tryptic peptides only, deltCN value of at least 

0.08, and XCorr values of at least 1.8 (+1), 2.5 (+2), 3.5 (+3) with a two peptide 

minimum.  Cross-comparison among DTASelect outputs was accomplished with 

Contrast71 and an in-house script that provides similar functions.  Rapid filtering of the 

signal peptide cleaved proteins identified in the DTASelect output was accomplished 

using a Perl script which extracted protein identifications containing the “SigP” 

designation to an additional table.  Accompanying information regarding protein 

sequence coverage, number of peptide identifications, and spectral counts were also 

recorded.  In order to support the identification of a signal peptide cleavage, the 

DTASelect output was parsed for the predicted, pre-processed signal peptide.  

Identifications of a pre-processed signal peptide were noted along with accompanying 

spectral counts.  A false positive rate of <1% was calculated based on forward-reverse 

database searching according to Elias et al.72  All databases, peptide and protein 

results, MS/MS spectra and supplementary tables for all database searches are 

archived and made available as open access via the following link: 

“http://compbio.ornl.gov/biofilm_amd_extracellular_proteome”.  All MS “.raw” files or 

other extracted formats are available upon request.   

Highly expressed signal-cleaved proteins with confirming new N-terminus spectra 

were submitted in batch form to Pfam for protein family and domain analysis.73, 74  The 

parameters for the search included a merged global and local strategy and an E-value 

cutoff of 1.0  The resulting Pfam hits were further filtered with an                                   

E-value cutoff < 1 x 10-3, exceeding the stringency outlined in Altschul et al. 75 
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3.2.3: N-terminal Sequencing 

Complementary experimental verification of signal peptide cleavage was 

accomplished on selected secretome proteins by Edman degradation.  The extracellular 

fraction extracted from 50 mL of  biofilm from the C-drift location collected in November, 

2005 was fractionated by column chromatography on a SP-Sepharose FF column, as 

previously described.76  After elution of Cyt579, a 0-2 M NaCl gradient was applied at pH 

5.0, (30 mL, 3 mL fractions).  Greater than 95% of the proteins recovered from the NaCl 

gradient were present in the 1.4 M - 2.0 M NaCl fractions.  These fractions were 

precipitated with 10% tricholoroacetic acid in an ice bath and redissolved in 10 µl of 

SDS-PAGE sample buffer.  The final protein weight dissolved in the sample buffer was 

20-40 µg.  The samples were visualized by SDS-PAGE (15% polyacrylamide pre-cast 

gel, Bio-Rad), transferred to a polyvinylidene fluoride (PVDF) membrane, and the bands 

excised for sequencing.  N-terminal sequencing of the visualized proteins was 

performed as previously described.19 

 

3.2.4:  Hierarchical Cluster Analysis of Signal Peptide Cleavage in 28 AMD 
Proteomes 

The abundance patterns of computationally predicted and experimentally verified 

signal peptide cleaved proteins were examined across a distinct set of 28 biofilm 

samples collected over a period of 4 years from 6 different locations within the 

Richmond Mine, from a different study.38  The abundances of individual proteins were 

calculated using normalized spectral abundance factors (NSAF), which are based on 

the spectral counts of peptides for a given protein.18, 77  Resulting NSAF values were 

ASIN-transformed and used to cluster proteins and samples using Cluster version 3.0.78  

Clustering of mean-centered and scaled NSAF values was performed using an 

uncentered Pearson correlation metric and groups were defined using average linkage 

clustering.  Heat maps were visualized with TreeView.79  To determine whether 

correlations exist between protein abundances and developmental state of the biofilm, 

samples were labeled as either a high- or low-developmental stage based on the 

numbers of archaea detected within each community, as previously determined (Mueller 
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et al., submitted).  Low developmental stage samples are highlighted in green and high 

developmental stage biofilms are highlighted in blue for each heatmap presented.  

Detection of differentially expressed signal peptide-containing proteins between 

developmental stages was achieved using the significance analysis of microarrays 

technique.80  Two class unpaired Wilcoxan tests were performed using 500 

permutations.  Significant genes were assessed at a <10% false discovery rate (FDR). 

 
3.3 Results 

Shotgun proteomics via 2D-LC-MS/MS provides the critical cataloging of 

proteolytic peptides, thereby enabling the discovery and validation of signal peptide 

cleavage events.  The complete AMD protein database was interrogated for signal 

peptide prediction along with concurrent LC-MS/MS measurements of community 

biofilm samples in order to ascertain: 1) whether the protein was expressed and 

detected, and 2) if so, did it reveal a new N-terminal sequence that would be 

representative of the processed, mature form of the protein? 

 
3.3.1:  SignalP-3.0 Prediction Results 

The computational prediction of signal peptides resulted in 1,480 signal-cleaved 

proteins out of 16,171 proteins (9%) from the AMD database (Table 3.1).  

Approximately 18% of the proteins from gram-negative organisms were predicted to 

contain a signal peptide and more than half of the signal peptide predictions were from 

the dominant organisms, two strains of Leptospirillum group II (395 from the CG strain 

and 397 from the UBA strain). Leptospirillum group III contained 304 predicted signal 

peptide containing proteins (11.1% of its total annotated proteome), representing > 20% 

of the signal peptide database (Table 3.2).   

 

3.3.2: Experimental MS Results 
Extracellular fractions from five distinct biofilms from different locations in the 

Richmond Mine were analyzed in triplicate by 2D LC-MS/MS.  Overall, the MS analysis 

resulted in the identification of 3,388 total proteins.  531 proteins with predicted signal  
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Table 3.1:  Summary of Computational Prediction and MS Identification of Signal 
Peptide Cleaved Proteins from 5 Distinct Extracellular AMD Samples   
 

  # of IDs % of Total DB 

SignalP-3.0 Prediction 1,480 9% 

Measured Protein IDs   (All) 3,388 21% 

Measured Protein IDs (SigP) 531 3% 
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Table 3.2:  Distribution of Predicted Signal Peptide Cleaved Proteins for the 
Dominant Microbes in the AMD Microbial Community 
 

 

 

 

 

 

 

 

 

  # of Proteins in SigP Database % of SigP Database 
Leptospirillum II 792 53.5 
Leptospirillum III 304 20.5 

G-plasma 66 4.5 
Ferroplasma 1 105 7.1 
Ferroplasma 2 136 9.2 

Unassigned 77 5.2 
Total 1,480 100.0 
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peptides were identified in at least one of the five sample sets (Figure 3.3).  After 

removal of orthologous proteins, 377 non-redundant signal peptide cleaved proteins 

were identified.  From these results, 115 non-redundant proteins were measured and 

identified as signal peptide cleaved proteins in all samples and technical replicates.  46 

of the 531 proteins were determined to have signal peptide cleavages with high 

confidence on the basis of the presence of a least one spectra corresponding to the 

new, processed N-terminus and MS identification in all samples and replicates.  125 

total proteins were identified in at least one sample with spectra matching to the new N-

terminus generated by signal peptide cleavage.  Although the identification of the new, 

signal peptide cleaved N-terminus provides strong support for the classification of that 

protein as signal peptide cleaved, the absence of a new N-terminal peptide identification 

does not necessarily indicate that the protein does not contain a signal peptide.  For 

example, there are numerous proteins predicted to contain signal peptides for which no 

N-terminal peptides were experimentally identified with the current methods employed.  

The identification of a new N-terminus is dependent on the predicted signal peptide 

sequence and resulting MS peptide identification and would not be confused with simple  

tryptic cleavage to result in a new N-terminal identification.  Computationally, the new N-

terminus is designated in such a way that it is distinguishable from N-terminal tryptic 

peptides.  Therefore, any new N-terminal identification is the result of a specific signal 

peptide computational prediction and corresponding experimental verification.  Among 

the secretome results, several proteins not predicted to contain a signal peptide by 

SignalP-3.0 were still identified in the MS analysis.  Examples include highly abundant 

proteins such as GroEL, numerous ribosomal subunits, and various transcription 

factors.  Cell lysis or incomplete fractionation could account for these abundant proteins, 

which are frequently identified in proteomic analyses of the AMD microbial community.   

Clearly our experimental approach will be most successful for identifying soluble 

secreted proteins.  We recognize that predicted signal-peptide proteins designed for 

membrane insertion would likely be under-represented in our datasets.  We used the 

transmembrane predictor tool TMHMM81  to interrogate the entire set of SignalP 

predicted proteins (1480), and find that about 30% of them contain one or more  
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Figure 3.3:  Venn Diagram of Predicted and Measured Signal Peptides 
Computational analysis of the acid mine drainage protein database with SignalP-3.0 
resulted in the prediction of 1,480 proteins with a signal peptide.  Following MS/MS 
analysis a total of 3,382 proteins were confidently identified.  Among these 531 proteins 
were predicted to contain a signal peptide cleavage and were ultimately identified 
through mass spectrometry. 

1,480 
3,388 

531 
MS-based Shotgun 

Proteomics 
SignalP-3.0 
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transmembrane helices.  As expected, our identified proteins showed no evidence of 

transmembrane regions.  For the signal-peptide proteins not identified in this current 

study, we propose the following possible scenarios:  1) they were not expressed, 2) they 

are expressed at levels too low to detect, or 3) they are membrane proteins and thus 

escape detection by this method.  While algorithms such as TMHMM can predict the 

last category, these cannot definitively define why other proteins went undetected. 

 
3.3.3:  Signal Peptide Prediction Disparities 

In five cases, peptides predicted by SignalP-3.0 to be cleaved from the mature 

protein were identified in the uncleaved form by 2D-LC-MS/MS.  These five proteins, 

represented by only 15 spectra are derived from Leptospirillum Group II (4) and Group 

III (1).  The four from Leptospirillum Group II are conserved proteins of unknown 

function, whereas the Leptospirillum Group III protein has no known function.  Of special 

note, we identified alternative forms of four of the Leptospirillum Group II proteins that 

had the predicted cleaved N-terminus.  This could indicate that proteins are 

incompletely processed, that there were lysed cells with unprocessed protein in the 

extracellular fraction, or the identifications could be wrong (due to false positive spectral 

assignments).  However, it is important to note that these five cases represent a 

minority of the signal cleaved proteins detected and verified. 

 

3.3.4:  Validation of N-terminal Protein Sequences 

Edman degradation sequencing was used to confirm some of the N-termini of 

proteins in the extracellular fraction predicted by SignalP and identified by MS.  The N-

termini of seven Leptospirillum group II gene products were determined, and all of these 

correlated to the predicted N-termini determined through this study, except for the 

protein encoded by Leptospirillum group II UBA scaffold 8692 gene 12.  This protein 

has an amino acid variation (measured-AGTPSEKLIQ, predicted-AGDPSEKLIQ),  

accounting for the discrepancy (Table 3.3).  Two of the most abundant secreted 

proteins are encoded by Leptospirillum group II UBA scaffold 8524 gene 128 and 

Leptospirillum group II UBA scaffold 8524 gene 180.  The predicted N-terminus was  
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Table 3.3:  Results of Edman N-terminal Sequencing of Select Secretome Proteins 

From the AMD Microbial Community 
 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Highlighted sequences correspond with SignalP-3.0 prediction.   
The “*” indicates mass spectrometric confirmation. 
1 UBA_8692_12 and its CG homolog have predicted sequence AGDPSEKLIQ. 
 

 

 

Band Number Gene Product Observed N-terminal Sequence 

1 UBA_LeptoII_8241_114 ASTTKGWVFR* 

2 UBA_LeptoII_8524_128 SDVVGVVDVL* 

3 UBA_LeptoII_8692_12  AGTPSEKLIQ1 

4 UBA_LeptoII_8241_693 ASNITI* 

5 UBA_LeptoII_8049_366 (A)DAYKTGH* 

6 UBA_LeptoII_8524_180 DQAAPAAPA* 

7 UBA_LeptoII_8524_180 AAKKKPAKKA 

8 UBA_LeptoII_8524_180 GKAKPSMFV 

MGKAKKPSMF 

9 UBA_LeptoII_8524_180 KKAAKKPMKK 

10 UBA_LeptoII_8241_349 (EA)HMDHHRMMMR* 
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observed for Leptospirillum  II UBA scaffold 8524 gene 128, which is annotated to be a 

putative outer membrane protein (OmpH); however, a second form of the protein with 

the same N-terminus was present at higher molecular weight .  This second form may 

represent a post-translational modification of the protein.  For the protein product of 

Leptospirillum II UBA scaffold 8524 gene 180, five additional N-termini were identified in 

addition to the predicted N-terminus, which suggests that this protein is highly 

susceptible to protease cleavage. 
 
3.4: DISCUSSION 

This integrated computational/experimental study revealed a large complement 

of proteins that are actively transported beyond the cytosol in the dominant bacterial 

AMD community members.  Given that the periplasms and outer membranes of cells 

are exposed to the very acidic, metal-rich environment, proteins localized there, 

including those involved in Fe2+ oxidation and electron transport,82 must be adapted to 

these environmental challenges. 

Figure 3.4 summarizes the functional grouping of signal peptide cleaved 

proteins.  Several proteins identified as transported across the cytoplasmic membrane 

were annotated as efflux/protein transporters (8%), cytochromes (~6%), 

dehydrogenases, proteases, and reductases, as described in Goltsman et al.68  This 

finding correlates well with an experimental investigation of the secretome of Bacillus 

subtilis, a gram-negative bacteria, where many proteases, dehydrogenases, and metal 

binding proteins were also highly abundant.83  Over 58% of the identified signal peptide 

cleaved proteins are currently annotated as having an unknown function.   Two novel 

cytochromes, Cytochrome 579 (Cyt579) and Cytochrome 572 (Cyt572) are highly 

abundant within the AMD biofilms.  In particular, Cyt579, thought to function as an 

electron transfer protein76, was identified in all 15 MS experiments (270 spectra 

corresponding to the predicted new N-terminus of Cyt579 were identified).   

The proteins with the highest confidence signal peptide cleavage are those that 

contain spectra matching to peptides representing the new N-terminus.  Table 3.4 lists 

46 proteins for which signal peptide cleaved peptides were identified in all 15  
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Figure 3.4:  Results of Edman N-terminal Sequencing of Select Secretome 
Proteins From the AMD Microbial Community 
Functional analysis of the 377 non-redundant proteins predicted to contain a signal 
peptide and identified through mass spectrometry.  Proteins annotated as hypothetical 
or with an unknown function are widely present and comprise over 58% of the identified 
proteins.  Expected extracellular proteins such as cytochromes, reductases and 
peptidases were also identified.   
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Table 3.4:  Highly Conserved and Replicated Signal Peptide Cleaved Proteins with  

Confirming N-terminus Spectra  

Name N-terminal Spectra Function 
UBA LeptoII Scaffold 8049 GENE 83 SigP 531  Protein of unknown function  

5wayCG LeptoII Contig 11390 GENE 17 SigP 531  Protein of unknown function  
UBA LeptoII Scaffold 8241 GENE 693 SigP 529  Periplasmic phosphate binding protein  
UBA LeptoII Scaffold 8524 GENE 180 SigP 490  Protein of unknown function  
UBA LeptoII Scaffold 8062 GENE 372 SigP 290  Cytochrome 579 Variant 1 
UBA LeptoII Scaffold 8062 GENE 147 SigP 290 Cytochrome 579 Variant 2 

UBA LeptoII Scaffold 8135 GENE 9 SigP 277  Conserved protein of unknown function  
5wayCG LeptoII Contig 11233 GENE 46 SigP 277  Conserved protein of unknown function  
UBA LeptoII Scaffold 8241 GENE 153 SigP 236  Protein of unknown function  
UBA LeptoII Scaffold 8524 GENE 128 SigP 198  Putative outer membrane protein (OmpH)  
UBA LeptoII Scaffold 8241 GENE 297 SigP 100  Protein of unknown function  

5wayCG LeptoII Contig 11184 GENE 47 SigP 93  Protein of unknown function  
UBA LeptoII Scaffold 7931 GENE 111 SigP 65  Putative cytochrome 

5wayCG LeptoII Contig 11238 GENE 99 SigP 65  Putative cytochrome 
UBA LeptoII Scaffold 7931 GENE 73 SigP 54  Peptidyl-prolyl cis-trans isomerase (EC 5.2.1.8)  

5wayCG LeptoII Contig 11238 GENE 58 SigP 54  Peptidyl-prolyl cis-trans isomerase (EC 5.2.1.8)  
UBA LeptoII Scaffold 8241 GENE 348 SigP 35  Putative outer membrane protein  
UBA LeptoII Scaffold 7931 GENE 365 SigP 35  Protein of unknown function  
UBA LeptoII Scaffold 7931 GENE 101 SigP 33  Protein of unknown function  

5wayCG LeptoII Contig 11238 GENE 88 SigP 33  Protein of unknown function  
UBA LeptoII Scaffold 8062 GENE 53 SigP 32  Protein of unknown function  

5wayCG LeptoII Contig 11216 GENE 10 SigP 32  Hypothetical protein  
UBA LeptoII Scaffold 8135 GENE 71 SigP 26  Secretion protein HlyD  

UBA LeptoII Scaffold 8062 GENE 151 SigP 25  Protein of unknown function  
UBA LeptoIII Contig 7952 GENE 72 SigP 22  YceI family protein  
UBA LeptoII Scaffold 8049 GENE 48 SigP 21  Protein of unknown function  

UBA LeptoII Scaffold 8049 GENE 366 SigP 20  Conserved protein of unknown function  
UBA LeptoII Scaffold 8062 GENE 173 SigP 20  Cytochrome C peroxidase (EC 1.11.1.5)  
UBA LeptoII Scaffold 8062 GENE 32 SigP 17  Protein of unknown function  

UBA LeptoII Scaffold 7931 GENE 352 SigP 12  Protein of unknown function  
5wayCG LeptoII Contig 10608 GENE 3 SigP 11  Hypothetical protein  

5wayCG LeptoII Contig 10961 GENE 20 SigP 10  Protein of unknown function  
UBA LeptoIII Contig 9432 GENE 53 SigP 9  Hypothetical protein  

UBA LeptoII Scaffold 8524 GENE 248 SigP 9  Conserved protein of unknown function  
5wayCG LeptoII Contig 11111 GENE 93 SigP 5  Protein of unknown function  

UBA LeptoII Scaffold 8241 GENE 81 SigP 5  Protein of unknown function  
5wayCG LeptoII Contig 11277 GENE 93 SigP 5  Protein of unknown function  
5wayCG LeptoII Contig 11391 GENE 14 SigP 4  Conserved protein of unknown function  
UBA LeptoII Scaffold 8241 GENE 238 SigP 3  Protein of unknown function  
UBA LeptoII Scaffold 8241 GENE 573 SigP 3  Protein of unknown function  
UBA LeptoII Scaffold 8524 GENE 269 SigP 3  Protein of unknown function  
UBA LeptoII Scaffold 8241 GENE 522 SigP 2  Putative peptidyl-prolyl cis-trans isomerase  
UBA LeptoII Scaffold 8524 GENE 127 SigP 2  Putative bacterial surface antigen (D15)  
UBA LeptoII Scaffold 8241 GENE 298 SigP 1  Putative outer membrane protein 
UBA LeptoII Scaffold 8524 GENE 249 SigP 1  Putative OmpA family protein  
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extracellular samples (triplicate analysis of 5 AMD biofilms).  These highest confidence 

cases include functionally distinct proteins from Leptospirillum group II (CG and UBA 

strains) and Leptospirillum group III.  In addition to proteins of unknown function, 

cytochromes, isomerases, and outer membrane proteins were also identified.  Several 

proteins of unknown function exhibited high spectral counts, suggesting that they are 

metabolically critical.  For example, we identified 531 spectra for the cleaved N-terminus  

of the protein encoded by Leptospirillum group II UBA scaffold 8049 gene 83 and its 

ortholog, CG scaffold 11390 gene 17.  Another example is the Leptospirillum group II  

protein encoded by UBA scaffold 8524 gene 180.  This ~9.6 kDa signal peptide cleaved 

protein contains a C-terminal region with a high scoring peptidoglycan-binding domain.  

This domain has been previously implicated in metalloprotease functionality.84  Edman 

sequencing has also identified additional N-terminal cleavages of this protein, 

suggesting alternate functions that may include signal transduction or peptidic defense.  

By identifying signal-cleaved proteins that are constitutively and highly expressed 

across all samples, this study has identified a conserved pool of target proteins that are 

strong candidates for further in-depth functional analyses.   

Table 3.5 lists some secretome signal peptide cleaved proteins whose relative 

abundance differs according to sampling location or biofilm growth state, based on 

calculated NSAF values.77  These may reflect responses to differences in the 

surrounding physiochemical environment as the result of changing growth state and 

sampling location.  Subtle changes in the pH, temperature, or concentrations of heavy 

metals could induce changes in expression of specific proteins, such as cytochromes, 

solute transporters and co-factors, as well as dehydrogenases, thioredoxins, 

cytochromes, and quinones.  As expected, many of the proteins that exhibit the largest 

changes in abundances are currently annotated with an unknown function. In some 

cases, the differences in expression are quite dramatic, as in a Leptospirillum group III 

protein from scaffold 9532 gene 30, which exhibits nearly a 100 fold increase in 

expression in the UBA location relative to the AB-Front or AB-End samples.  However, it 

must be noted that the reduced expression of this protein could be partly accounted for 

by the lower abundance of this organism in the AB-drift biofilms.  The protein exhibits  
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Table 3.5:  NSAF Comparison of Select, Highly Differential Signal Peptide Cleaved 

Proteins 



 

 52 

high BLAST sequence similarity (E-value > 9-59) to numerous proteins containing a NHL 

repeat.  This feature has been shown to confer catalytic activity in monooxygenases 

and serine/threonine kinases.85  Additionally, several high scoring BLAST hits 

correspond to SMP-30/gluconolaconase/LRE domain-containing proteins.  This 

annotation describes a region of sequence similarity observed in a variety of bacterial 

and archaeal enzymes.  A putative ABC Transporter, 5wayCG Leptospirillum group III  

contig 9320 gene 13, was also inferred to show variation in abundance levels among 

samples.  Finally, an annotated cytochrome encoded by UBA Leptospirillum III scaffold 

7442 gene 12 is identified in relatively high abundance in the AB-End, UBA and AB-

Front samples, but is not identified in the AB-Muck samples.  This is in stark contrast to 

the previously mentioned Cyt579 which is ubiquitously identified in all samples.  These 

results suggest that protein expression patterns reflect varying responses to local 

environmental conditions or biofilm age. 

We conducted Pfam domain analysis on the 46 proteins identified with a signal 

peptide cleaved N-terminus.  Nine proteins contain domains currently annotated in the 

Pfam database (Table 3.6), including cytochromes, outer membrane folds, catalytic 

sites from metabolic enzymes, and multiple Pfam domains.  These domains correspond 

well with the predicted cellular extracytosolic location of the proteins.  Additional 

domains include those involved in lipid binding, proteolytic digestion, and protein folding.   

Pyrrolo-quinoline quinone (PQQ) illustrates a common repeat that results in a 

characteristic beta-propeller structure found within proteins utilizing prosthetic quinones 

(integral members of electron transport chains).86  Within our analysis, the PQQ repeat 

was identified in a Leptospirillum group II protein, encoded by scaffold 8241 gene 348, 

which is currently annotated as an outer membrane protein.  The Leptospirillum group II 

protein, from scaffold 8062 gene 173 displays a high scoring (9.7 x 10-79) Pfam 

identification to a cytochrome c peroxidase domain (CCP_MauG).  CCP_MauG proteins 

have been found within the periplasmic space of gram-negative bacteria and are known 

to use two heme groups to reduce hydrogen peroxide without the formation of free 

radicals.87  Another prevalent domain was the NHL tandem repeat (described above), 

which was identified multiple times within two proteins currently annotated as having  
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Table 3.6:  Pfam Domain Analysis of Conserved and High Confidence Signal Peptide 

Cleaved Proteins 

Name Start # End # Pfam Acc # E-value Pfam ID 
5wayCG LeptoII Contig 11233 GENE 46 SigP 86 115 PF08450.3 2.60E-06 SGL 
5wayCG LeptoII Contig 11233 GENE 46 SigP 137 165 PF01436.12 5.90E-06 NHL 
5wayCG LeptoII Contig 11233 GENE 46 SigP 25 52 PF01436.12 7.50E-05 NHL 
5wayCG LeptoII Contig 11233 GENE 46 SigP 195 223 PF01436.12 8.40E-03 NHL 
5wayCG LeptoII Contig 11238 GENE 58 SigP 13 177 PF00160.12 9.00E-60 Pro_isomerase 
5wayCG LeptoII Contig 11238 GENE 99 SigP 150 233 PF00034.12 1.20E-03 Cytochrom_C 
5wayCG LeptoII Contig 11391 GENE 14 SigP 13 178 PF04264.4 5.90E-54 YceI 
UBA LeptoII Scaffold 7931 GENE 111 SigP 150 233 PF00034.12 1.20E-03 Cytochrom_C 
UBA LeptoII Scaffold 7931 GENE 338 SigP 69 104 PF08238.3 9.60E-10 Sel1 
UBA LeptoII Scaffold 7931 GENE 338 SigP 177 212 PF08238.3 2.90E-08 Sel1 
UBA LeptoII Scaffold 7931 GENE 338 SigP 141 176 PF08238.3 9.30E-08 Sel1 
UBA LeptoII Scaffold 7931 GENE 338 SigP 105 140 PF08238.3 6.80E-06 Sel1 
UBA LeptoII Scaffold 7931 GENE 338 SigP 33 68 PF08238.3 1.80E-04 Sel1 
UBA LeptoII Scaffold 7931 GENE 338 SigP 213 248 PF08238.3 2.00E-03 Sel1 
UBA LeptoII Scaffold 7931 GENE 73 SigP 13 177 PF00160.12 9.00E-60 Pro_isomerase 

UBA LeptoII Scaffold 8049 GENE 366 SigP 14 179 PF04264.4 3.90E-53 YceI 
UBA LeptoII Scaffold 8062 GENE 173 SigP 1 171 PF03150.5 9.70E-79 CCP_MauG 

UBA LeptoII Scaffold 8135 GENE 9 SigP 101 130 PF08450.3 8.20E-07 SGL 
UBA LeptoII Scaffold 8135 GENE 9 SigP 152 180 PF01436.12 5.90E-06 NHL 
UBA LeptoII Scaffold 8135 GENE 9 SigP 25 52 PF01436.12 6.40E-05 NHL 
UBA LeptoII Scaffold 8135 GENE 9 SigP 210 238 PF01436.12 8.40E-03 NHL 

UBA LeptoII Scaffold 8241 GENE 298 SigP 40 139 PF00691.11 1.30E-24 OmpA 
UBA LeptoII Scaffold 8241 GENE 348 SigP 254 292 PF01011.12 7.40E-05 PQQ 
UBA LeptoII Scaffold 8241 GENE 348 SigP 107 144 PF01011.12 1.20E-04 PQQ 
UBA LeptoII Scaffold 8241 GENE 348 SigP 213 250 PF01011.12 1.40E-04 PQQ 
UBA LeptoII Scaffold 8241 GENE 348 SigP 399 435 PF01011.12 1.30E-02 PQQ 
UBA LeptoII Scaffold 8241 GENE 522 SigP 66 145 PF09312.2 3.90E-16 SurA_N 
UBA LeptoII Scaffold 8241 GENE 522 SigP 163 256 PF00639.12 2.00E-08 Rotamase 
UBA LeptoII Scaffold 8241 GENE 522 SigP 5 26 PF09312.2 1.40E-03 SurA_N 
UBA LeptoII Scaffold 8241 GENE 693 SigP 1 156 PF01547.16 7.00E-04 SBP_bac_1 
UBA LeptoII Scaffold 8524 GENE 127 SigP 432 748 PF01103.14 8.70E-36 Bac_surface_Ag 
UBA LeptoII Scaffold 8524 GENE 127 SigP 252 330 PF07244.6 4.20E-22 Surf_Ag_VNR 
UBA LeptoII Scaffold 8524 GENE 127 SigP 333 405 PF07244.6 5.20E-18 Surf_Ag_VNR 
UBA LeptoII Scaffold 8524 GENE 127 SigP 8 79 PF07244.6 1.10E-14 Surf_Ag_VNR 
UBA LeptoII Scaffold 8524 GENE 127 SigP 160 249 PF07244.6 7.10E-14 Surf_Ag_VNR 
UBA LeptoII Scaffold 8524 GENE 127 SigP 80 157 PF07244.6 2.00E-12 Surf_Ag_VNR 
UBA LeptoII Scaffold 8524 GENE 128 SigP 1 159 PF03938.5 6.80E-18 OmpH 
UBA LeptoII Scaffold 8524 GENE 180 SigP 39 90 PF01471.9 5.30E-12 PG_binding_1 
UBA LeptoII Scaffold 8524 GENE 249 SigP 129 224 PF00691.11 1.10E-42 OmpA 
UBA LeptoIII Contig 7952 GENE 72 SigP 13 178 PF04264.4 1.00E-58 YceI 
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unknown functions (encoded by Leptospirillum group II CG contig 11233 gene 46 and 

Leptospirillum group II UBA scaffold 8135 gene 9).85  A YceI-like domain was also found 

with high confidence (3.90x10-53) in a protein of unknown function from Leptospirillum 

group II (encoded by scaffold 8049 gene 366).  This domain is characterized by a  

beta-barrel motif and functions in lipid binding.  A previous study of E. coli resulted in 

the identification YceI as one of three proteins currently annotated with an unknown 

function  but showed a marked response to pH.88  Domain prediction is not conclusive 

evidence for protein function, but it does provide valuable insight when coupled with the 

determination of extracellular location and signal peptide cleavage.  The previous high-

scoring domain identifications highlight the diversity of the extracellular fraction as well 

as the need for continued study. 

The abundances of the signal peptide cleaved proteins identified in this study 

were examined using a more extensive and previously published dataset for 28 biofilm 

samples38 to more comprehensively define changes in protein abundances across the 

AMD environment. Samples have been classified as low or high developmental stage 

biofilms based on their observed maturity (see experimental procedures).   

Of the 377 non-redundant signal peptide cleaved proteins identified in this study, 

174 were also found in the 28 biofilm proteomes.  The previous study focused on the 

whole cellular proteome and thus the extracellular fractions of these samples were not 

implicitly retained and analyzed separately.  Thus, this captures the composite total of 

all proteins identified, whether or not they are specifically exported to the extracellular 

region.  The lower rate of identification of signal peptide cleaved proteins in this case is 

consistent with their inferred periplasmic or extracellular location.  Clustering of the 

NSAF values for these proteins revealed distinct trends in the protein abundances with 

respect to developmental stage (Figure 3.5A).  Each row in Figure 5 represents one of 

the 174 identified signal peptide cleaved proteins, with yellow indicating high expression 

(MS detection) and blue indicating low expression (MS detection).  Based on the 

clustering of samples (across the x-axis), it is evident that the abundances of signal 

peptide cleaved proteins correlates significantly with biofilm growth state.  Specifically, 

samples representing low developmental stage biofilms (green highlights) generally  
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Figure 3.5:  NSAF Cluster Analysis of Signal Peptide Cleaved Proteins Identified 
in 28 Biofilm Samples 
Cluster analysis of NSAF values from proteins identified within the 28 biofilm samples.  
5A displays the low developmental stage (green) and high developmental stage (blue) 
of the 28 biofilm samples and the clustering based on proteomic expression.  Rows 
represent individual signal peptide cleaved proteins with yellow indicating increased 
expression and blue indicating low expression.  Figure 5B highlights the growth state 
expression dynamics of AMD cytochromes.  Figure 5C represents a subset of the 
proteins identified in figure 5A that exhibit dramatic expression changes as a function of 
growth state.  Among these, numerous cytochromes are present in the early growth 
states, while several chemotaxis proteins are present in late growth stages. 
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cluster tightly, but separately from a cluster of samples representing high developmental 

stage biofilms (blue highlights).  When the clustering of proteins based on their 

abundances across samples is examined (down the y-axis), it is noted that there is a 

subset of predicted signal peptide cleaved proteins that exhibit high abundances in low  

developmental stage biofilms, but low or no detectable expression in high 

developmental stage biofilms.  Similarly, another subset displays no or low expression 

in low developmental stages and increased expression in high biofilm developmental 

stages.   

An interesting result of these analyses was the NSAF-based abundance trends 

of numerous signal peptide cleaved cytochromes (Figure 3.5B).  In general, we detect 

early expression of class I cytochromes, whereas cytochrome oxidases appear to be 

abundant later in development.  These results most likely denote shifts in metabolism, 

which occur as biofilms age.  These results are consistent with the increased 

abundance of Cyt579 and  c-type cytochromes in early development stage biofilms.89  

Other significant differences in the abundances of proteins between the two 

developmental stages were also defined (Figure 3.5C), with many currently annotated 

with no known function.  As identified in the analysis of the five biofilms, we noted that 

the low developmental stage displays numerous cytochromes that are not identified in 

high developmental stages.  Conversely, it was found that two chemotaxis sensory 

proteins were in greater abundance in high developmental stages.  An increase in 

chemotaxis protein expression may result from the depletion of nutrients that may occur 

as biofilms age and more organisms colonize the environment.  Proteomic adaptation, 

through dynamic expression of signal peptide cleaved proteins, may assist these 

microbes in identifying regions of the biofilm where nutrients are not limiting. 

Finally, the potential proteomic adaptation of secreted proteins to the highly 

acidic AMD environment was probed by utilizing the pool of predicted and identified 

signal peptide cleaved proteins as a representation of the extracellular fraction.  Protein 

adaptation to acidic environments has been examined in two previous studies that have 

compared the calculated isoelectric points (pI) of proteins from organisms that tolerate 

and/or grow within highly acidic conditions and those from more mesophilic 
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organisms.90, 91  The results of these two studies are in conflict, with one finding 

significant differences and the other not.  One reason for this conflict may be that both 

studies include the complete genomes of each organism to calculate median pIs.  

Including all predicted proteins in these analyses, even those that are not exposed to 

highly acidic extracellular environments, can introduce unintended biases.  In an earlier 

study, we examined the predicted pIs for proteins of the extracellular fraction of the AB-

End biofilm and determined that the distribution exhibited a bi-modal appearance with 

the largest proportion of proteins falling between 9 - 11.19  However, this study did not 

explicitly resolve proteins with signal peptides.  In this current work, the median pI of 

proteins predicted to have signal peptides from Leptospirillum Group II was compared to 

the remaining pool of proteins from this organism and a significant difference was 

observed (median pI of SigP proteins = 9.10, median pI of remaining proteins = 6.95; t-

test; p-value < 1 x10-6).  This distribution of pIs closely followed the previous study, with 

a significant proportion falling between 9 – 9.9.  In this study, the protein sampling size 

was over ten times larger than the previous study, providing increased confidence in the 

pI determination.  A potential caveat of this methodology is the inability to include 

secondary or tertiary protein structure.  For example, it has previously been found that a 

maltose-binding protein from a thermoacidophilic bacteria has a calculated pI of 6.5 and 

a measured pI of 10, and this discrepancy is due to the large number of basic residues 

constituting the solvent exposed face of the protein.92  Therefore, future studies 

examining protein adaptation to various environments will need to account for perceived 

differences in amino acid sequence and pI within the context of protein localization and 

the three-dimensional structure of a given protein.  Given that the identified signal 

peptide cleaved proteins are known to be functional outside of the cytosol, they would 

serve as excellent candidates for detailed biochemical analysis of protein adaptation to 

extreme environmental conditions of the AMD environment.   

 

3.5: CONCLUSIONS 

We have integrated computational prediction with experimental verification as a 

methodology for validating, characterizing, and comparing signal peptide cleavage from 
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an acidophilic microbial consortium.  The ability to validate computational prediction of 

signal peptide cleavage by mass spectrometry at the peptide level has enabled 

refinement of the secretome.  Analysis of the AMD protein database resulted in the 

prediction of over one thousand potential signal peptide cleaved proteins.  Without 

experimental verification, the validity and confidence of the assignments is uncertain.  

By combining the prediction with high throughput LC-MS/MS techniques, we were able 

to confidently identify hundreds of signal peptide cleaved proteins.  No marked 

differences in signal peptide cleaved protein identification were observed relative to the 

distribution of species in the biofilm, as expected.  What is evident though is the degree 

of conservation and divergence of exported signal peptide cleaved proteins from varying 

sampling locations.  This supports the inference that the proteome is dynamic, 

depending on local environmental conditions or biofilm age.  These results are also 

supported by examining the expression patterns of the proteins identified in this study 

within a larger sample set (28 samples) representing four years of sample collection.  

Here, distinct sets of signal peptide cleaved proteins were associated with both low and 

high developmental stage biofilms.  This study also highlights the predominance of 

proteins that are annotated as either hypothetical or with an unknown function in the 

expressed proteomes, since the majority of identified signal peptide cleavage proteins 

fall within these two categories.  By combining the results of Pfam analysis with the 

newly obtained information of potential cellular location and signal peptide cleavage, it is 

possible to at least partially decipher the role of some of the putative unknown proteins.  

The integrated prediction and identification of proteins that are specifically targeted to 

extra-cytosolic locations and the characterization of their expression patterns in this 

study has identified numerous proteins that are essential for many key functions within 

the AMD system.   
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Chapter 4 

 
An Integrated, Comparative Metal Affinity Enrichment and Proteomic 

Characterization of Novel Proteins from a Natural Microbial Community  
 

Portions of included text are adapted from: 

 
Brian K. Erickson, Korin E. Wheeler, Ryan Mueller, Steven W. Singer, Nathan C. 

VerBerkmoes , Mona Hwang, Jillian F. Banfield ,  Michael P. Thelen, and Robert L. 

Hettich, “Evaluation of a Varied Metal Affinity Enrichment Strategy for Expanding the 

Dynamic Range of Extracellular Proteome Characterization for a Natural Microbial 

Community” Manuscript in preparation. 

 

Brian K. Erickson’s contributions include experimental preparation of samples, 

experimental LC-MS/MS analysis, data parsing, and primary authorship. 

 
 

4.1: Introduction 

Essential to a complete understanding of the organization and functions of 

microorganisms within natural environments is the ability to characterize the spectrum 

of expressed proteins that reveal detailed metabolic activity information.  Identification of 

low-abundance proteins and other proteins that are difficult to detect remains a 

formidable challenge due to dominant, high-abundance proteins in the complex 

proteome.  In particular, highly abundant proteins interfere with the measurement of 

more minor proteins by causing problems in both chromatographic separations and 

mass spectrometric measurement.   For example, minor protein biomarkers and sensor 

proteins in particular are generally difficult to identify within the complexity of the 

proteome.   
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Affinity chromatography has been established as an effective method to increase 

depth of proteomic identification.93  Recent approaches include the use of combinatorial 

libraries 94, 95 to enrich for low abundance proteins in model systems.  Such approaches 

are useful to indiscriminately enrich for low-abundance species, or other challenging 

proteins.  More targeted studies have included heparin chromatography for enrichment 

of brain signaling proteins 96 and the use of lectin affinity chromatography to capture the 

glycoproteome 97.   However, all of these approaches suffer related problems in 

robustness and selectivity/sensitivity of enrichment. 

Metals provide a unique ability to bind a variety of ligands, including proteins, 

with relative specificity.  Recent work has demonstrated metal-affinity chromatography98 

and mass spectrometry to selectively enrich proteins99-101 , including post-translational 

modifications such as phosphorylation25.  Thus far, immobilized metal affinity 

chromatography (IMAC) studies have utilized primarily a single metal affinity column in 

proteomic enrichment approaches102, 103.  Enrichments utilizing one metal present 

several limitations, including ambiguous specificity and the pervasive masking of low 

abundance proteins by ubiquitous proteins.  IMAC specificity of biomolecules for metals 

is roughly dictated by hard and soft lewis acidity of the metal.  Hard acids, such as Fe3+ 

or Mg2+, preferentially bind to ligands with an oxygen (hard bases), i.e. phosphates or 

aspartic/glutamic acid; soft acids, such as Cu+ and Hg2+, preferentially bind to thiols, i.e. 

cysteine.  However, the strength of metal binding is generally dictated by the Irving-

Williams series, which states that biomolecules will nonspecifically bind to metals higher 

in the series (i.e., greater negative hydration energy).  IMAC enables the enrichment of 

proteins with metal-affinity, but has several limitations.  IMAC is not specific for 

physiologically active metal binding, nor does it work well for strongly bound metal–

protein complexes101.  The use of IMAC columns provides efficient and reproducible 

enrichment of selective proteins, thus highlighting the potential application of this 

approach for deepening proteomic coverage. 

The coupling of affinity-based protein purification with high-performance liquid 

chromatography and high-throughput mass spectrometry (MS) brings together powerful 

tools to increase the dynamic range of proteomic identifications.  This combination is 
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aptly suited for extensive protein purification, identification, and characterization.  MS 

has become the gold-standard tool for comprehensive and high throughput proteomic 

characterizations, providing an unparalleled depth of proteomic coverage.  The ability of 

MS to provide high confidence protein identification, relative quantification, and details 

of protein modification make this technique well suited for the identification and 

characterization of a broad spectrum of proteins within the proteome.2, 3  The high 

dynamic range and broad characterization achievable through MS based proteomics is 

unmatched by previous methods, including 2D SDS-PAGE.   

Here, we report a method of selective IMAC enrichment and MS identification of 

proteins across a library of biologically active metals: copper, cobalt, manganese, 

magnesium, nickel, zinc, and iron.  This broad spectrum of metals provides enrichment 

across an array of ligands and enables identification of a wide range of proteins.  In 

addition, enrichment within specific metal columns provides insights that can be 

harnessed for selective purification of a particular protein or groups of proteins for 

further studies.  Metals were chosen as affinity tags in this study to enhance the depth 

of proteome coverage within a natural, well-studied acid mine drainage (AMD) microbial 

community from the Richmond Mine at Iron Mountain (Redding, CA).  The AMD 

community is low diversity and well characterized, serving as an ideal system for 

investigations into biogeochemical interactions19, 20, 68.  Of particular interest are 

extracellular proteins that mediate interactions between the microorganisms and the 

environment, which includes low pH and metal rich conditions.  These iron oxidizing 

bacteria maintain metal homeostasis within molar concentrations of iron and millimolar 

concentrations of copper, zinc and arsenic.104  Extracellular proteins are critical for 

nutrient transport, organismal communication, and defense mechanisms.  This study 

provides as yet another puzzle-piece in the emerging picture of the AMD microbial 

community system, complementing details already known about extracellular 

proteins105-107, community membership19, growth state dependence108, and strain 

variation69, 109 in this model environmental microbial consortium.  The coupling of IMAC 

enrichment and MS analysis serves to deepen the dynamic measurement to identify 
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lower abundance proteins, including proteins of unknown function, and may open a new 

route for targeted studies of metabolic functions. 

 
4.2: Methodology 

Immobilized metal affinity chromatography (IMAC) was used to enrich for 

proteins with metal binding ligands.  A 5ml HiTrap Chelating HP column (GE 

Healthcare) was equilibrated with 0.1M metal in buffer A (20mM, pH5 MES), followed by 

loading of the metal salt in the same buffer.  Metals tested included ZnSO4, CuSO4, 

Fe2(SO4)3, CoSO4, MgSO4, NiSO4,  and MnSO4. Following metal loading, the column 

was rinsed with 50ml binding buffer to assure that only bound metal was left on the 

column.  A total of 0.5mg extracellular protein was then added to the metal loaded 

column and rinsed with 50ml binding buffer. Eluent with protein from the buffer rinse 

were labeled as the ‘unbound’ column fraction.  The column was then rinsed with buffer 

B, 20mM MES with 0.05M EDTA and 0.5M NaCl at pH 5. The eluent after washing with 

buffer B was labeled the ‘bound’ column fraction.  Each column run was repeated, for a 

total of three technical replicates.   

Binding of proteins to the IMAC column was monitored by absorbance at 280nm, 

1D SDS PAGE, and Bradford protein assays.  After initial analysis, the protein column 

fractions were precipitated with 100µl 100% trichloroacetic acid solution for every 900µl 

of protein solution. The sample was then incubated at 4°C for 1 hr.  Samples were 

centrifuged (10min at 25000g) and supernatant was removed.  The protein pellet was 

washed with 4°C methanol and air-dried. Samples were stored at -80°C until trypsin 

digestion. 

The “Biofilm_AMD_CoreDB_04232008.fasta” database contains annotated 

proteins from the abundant microbial members of AMD biofilms.  The protein database 

also includes common contaminants (trypsin, keratin, etc.).  Protein assignment of the 

MS/MS spectra was accomplished with the SEQUEST algorithm25 and was executed 

with the following parameters: enzyme type, trypsin; Parent Mass Tolerance, 3.0; 

Fragment Ion Tolerance, 0.5; up to 4 missed cleavages allowed, and fully tryptic 

peptides only.  Resulting output files were sorted and filtered using DTASelect71 with the 
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following parameters: tryptic peptides only, deltaCN value of at least 0.08, and Xcorr 

values of at least 1.8 (+1), 2.5 (+2), 3.5 (+3) with a two peptide minimum.  Cross-

comparison among DTASelect output was accomplished with Contrast and an in-house 

script that provides similar functions.   

The proteins were assigned designations according to their enrichment in the 

IMAC columns and their resulting normalized spectral abundance factor (NSAF)77 

values from the mass-spectrometry runs. For each metal, a protein was assigned a 

characterization of: “IMAC bound”, “unbound”, or “false” in accordance to criteria based 

upon their detection in each technical replicate and abundance within the bound and 

unbound fractions.  The protein was classified as “IMAC bound” if both of the following 

conditions were satisfied in both replicates: 1). The abundance in the bound fraction 

was non-zero (indicating detection); 2). The abundance in the unbound fraction was 

less than the abundance in the bound fraction, or the protein was undetected in the 

unbound fraction.  The protein was classified as “unbound” if both of the following 

conditions were satisfied with both replicates: 1). the abundance in the unbound fraction 

was non-zero (indicating detection); 2). The abundance in the bound fraction was less 

than the abundance in the unbound fraction, or the protein was undetected in the bound 

fraction.  All other proteins were labeled “false”, indicating the thresholds were not met 

for IMAC bound or unbound designation.  

The results were clustered using Cluster version 3.0 (http://bonsai.ims.u-

tokyo.ac.jp/~mdehoon/software/cluster/software.htm#ctv) and visualized as heat maps 

with TreeView software.  Proteins of unknown function exhibiting enrichment on a 

specific IMAC column were batch submitted to Pfam for domain and motif analysis110.  

Pfam was executed with the following parameters: merged global and local strategy and 

an E-value cutoff of 1.0.  The resulting identifications were then further filtered at an E-

value < 1 x 10-3. 
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4.3: Results 

Bottom up LC-MS/MS measurements of metal affinity enriched extracellular 

protein samples from the AMD community resulted in an expansive dataset of proteins 

(Figure 4.1).  The dataset was interrogated for reproducibility, identification of groups of  
proteins with specific versus universal IMAC enrichment, and IMAC enrichment of 

abundant amino acids. 
 

4.3.1:  IMAC Column Binding 
Each of the seven metals loaded onto the IMAC columns were divalent, with the 

exception of Fe(III).  The ferric column was utilized because ferrous iron is insoluble at 

pH 5.0. All divalent metals yielded a significantly higher concentration of proteins in the 

unbound column fraction when compared with the bound fraction, as analyzed by 

absorbance at 280 nm and 1D-SDS-PAGE.  Notably, within the divalent metals, cobalt 

had the highest abundance of bound proteins and magnesium had the lowest. 

In contrast, the bound fraction from the ferric column had a much higher 

concentration of protein.  SDS PAGE analysis shows selective binding of an abundant 

~16 kDa protein, the dominant soluble Lepto II protein cytochrome 579.  This protein 

appears primarily in the unbound fraction of each of the other IMAC columns.  

A control column was run without metal loaded to verify that chromatographic 

results were indicative of metal affinity and not affinity for the column resin.  Not 

surprisingly, the results from the control column deviated significantly from the metal 

loaded IMAC columns, indicating few proteins bound to the IMAC column beads alone.  

The bound protein fraction contained only a small amount of residual protein, as 

indicated by silver stained SDS PAGE with only a faint band at 20kDa.  MS results 

indicate this band is due to the dominant soluble Lepto II protein cytochrome 579.  

 

4.3.2:  2D-LC-MS/MS Measurements 
In total, 485 non-redundant proteins were identified across the thirty-two IMAC 

preparations with subsequent mass spectrometric measurements. This value includes 

replicate determinations of the bound and unbound fractions from each of the seven  
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Figure 4.1: Schematic Representation of Experimental Design  

Each step was repeated twice to provide technical replicates. As indicated by the 

asterisk, a protein was labeled with specific binding only if the appropriate ratio was 

found in both replicates.   
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metals, as well as the control column.  The total number of identified proteins correlates 

well with the expected number of proteins in the extracellular fraction identified in a 

previous, non-enriched analysis (531 extracellular proteins).105  A pooled average of 

370 non-redundant proteins was identified in each column.  The identified proteins were 

often found across multiple IMAC columns, with an overlap ranging from 13% to 93%  

among the columns.  Reproducibility among replicates was very good, at an average of 

9% variability, with several replicates exhibiting a deviation as low as 0.5 or 1%.  One 

exception must be noted for the cobalt-IMAC, which had a higher standard deviation of 

27% for the unbound and 48% for the bound column fractions.  It appears that a 

remarkably high number of proteins were identified in one of the two mini-MUDPIT 

measurements (472 identified proteins compared to an average of 354 in other 

samples), potentially inflating the relative error for the Co-IMAC.  In every column 

except Fe3+, there were a total of two to five times as many proteins identified within the 

IMAC bound fraction as compared to the unbound fraction (Figure 4.2).    

The least number of proteins (35) identified was within the bound fraction of the 

control column.  Correspondingly, the highest number of proteins identified was within 

the unbound fraction (438) of the same column.  This disparity indicates that few 

proteins have affinity for the column resin (without loaded metal).  
 

4.3.3:  Classification of Specificity of IMAC Enrichment 
Selection criteria based upon each protein’s binding profile and normalized 

spectral abundance factors (NSAF) from MS experiments were used to assign metal 

specificity, if any, to each protein.77  Each protein was designated as “bound”, 

“unbound”, or “false” for each metal.  A definitive bound or unbound designation 

indicates that the protein was detected in both replicates and had a consistently higher 

NSAF value in the respective column fraction.  Criteria were designed to reduce false 

positives.  Proteins that were either poorly detected or were not detected in abundance 

in either the bound or unbound fraction of a column were labeled ‘false’.   

Table 4.1 summarizes the results of this classification of enriched proteins as 

uniquely bound or uniquely unbound to each IMAC column.  The number of proteins  



 

 67 

 

Figure 4.2:  Number of Proteins Identified per Column 
 Number of proteins identified by MS-proteomics within the unbound (grey) and bound 
(blue) chromatographic fractions. Error bars indicate standard deviation from average. 
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Table 4.1:  Number of Proteins Labeled as Uniquely IMAC Bound or Unbound 
After Analysis of MS Data from Chromatographic Fractions 
 

 Fe3+ Co2+ Mn2+ Ni2+ Cu2+ Mg2+ Zn2+ control 

Unbound 65 67 49 59 57 45 88 0 

Bound 72 210 274 177 229 158 165 55 

Total 137 277 323 236 286 203 253 55 
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designated as bound for each metal follows the following trend: Mn(II)> Cu(II) > Co(II) > 

Ni(II) > Zn(II) > Fe(III).  Somewhat surprisingly, this trend is inconsistent with Hard Soft 

Acid Base theory, used to predict metal binding preferences and the Irving-Williams 

series for divalent metals (Mn(II) < Co(II) < Ni(II) < Cu(II) > Zn(II)) generally used to 

predict the strength of metal binding for divalent metals.  Additionally, the trend does not 

overlay with the metal’s abundance in the AMD environment.  

Of the 485 non-redundant protein identifications, each was classified within three 

general categories: bound to a specific IMAC column (specific IMAC enrichment), 

bound to multiple IMAC columns (universal IMAC enrichment), or non-bound to any 

metals.  The majority of identified proteins (295, 61%) can be classified as universally 

IMAC enriched proteins; 137 (28%) classified as specifically IMAC enriched; and the 

remaining 53 proteins (11%) classified as preferentially non-bound for any of the IMAC 

columns (Figure 4.3).   

 
4.3.4:  Amino Acid Specificity of IMAC Enrichment 

Clearly, IMAC enrichment of native proteins is limited to selection of proteins with 

exposed ligands for metal binding.  Identification of proteins enriched by IMAC is not 

necessarily indicative of functional metal binding, nor strength of metal binding beyond a 

minimum threshold.  It has been previously shown that IMAC purification can be 

influenced by biases in the residue content of proteins (particularly histidine).  In an 

effort to determine if any such biases exist in the proteins identified through the IMAC-

MS/MS analysis, the residue content of the 485 non-redundant proteins were evaluated 

(Table 4.2).  Among histidine, cysteine, and methionine, no bias was observed.  

However, among the proteins that were identified as binding to Zn, Cu, and Mg, a slight 

increase in histidine presence was observed, while the proteins binding to Co, Mn, and 

Ni resulted in a slight decrease in histidine content.  Further analysis of the residue 

content of identified proteins by highlighting physiochemical properties both before and 

after sequence alignment resulted in similar results, displaying no discernable bias 

among amino acid content.  
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Figure 4.3:  General Classification of Metal Binding 
The majority of identified proteins exhibited binding affinity for multiple metals 
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Table 4.2:  Average Amino Acid Abundance within Protein Groups that are Bound 
to Specific Metals, or Groups of Metals  

 
 

 
 

 
 
 

(averages) total aa His Cys Met acidic basic hydrophobic hydrophilic 

all metals 228.51 1.90 0.91 2.46 17.28 29.48 44.57 55.43 

all 220.50 1.63 1.09 2.39 17.98 28.63 42.65 57.35 

divalents 232.92 2.15 0.70 2.82 16.92 32.23 44.25 55.75 

ZnCuMg 206.42 2.45 1.24 2.10 12.96 31.12 43.37 56.63 

CoMnNi 186.80 1.22 0.75 3.35 18.40 26.62 41.73 58.27 

Cu 244.50 1.91 0.38 2.55 18.16 31.47 42.53 57.47 

Ni 339.60 1.74 0.43 3.04 25.60 30.04 44.14 55.86 

Co 232.50 1.25 0.51 2.97 19.91 28.87 42.60 57.40 

Zn 234.64 2.22 1.14 2.86 19.49 33.58 42.40 57.60 

Mn 263.69 2.32 1.08 3.37 22.87 33.84 42.86 57.14 
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4.3.5: PFam Analysis of Specifically Enriched Proteins of Unknown Function 

Among the identified IMAC enriched proteins, it is apparent that a significant 

subset of the proteins has an unknown function.  A portion of the proteins with an 

unknown function were identified as binding to a specific metal (specific IMAC 

enrichment).  These proteins contain no reasonable sequence homology to any 

currently characterized proteins.  Forty five proteins of unknown function were chosen 

for more detailed analysis because they exhibited selective binding for one specific 

metal. Functional domains and motifs were computationally predicted by batch 

submission of these forty five unique protein sequences to Pfam110.  Fifty-six unique 

Pfam identifications were predicted, representing multiple domains and motifs, with 

some proteins containing multiple, high scoring hits.  

 
4.4: Discussion 

Among the 485 extracellular proteins identified here, 116 had not been identified 

in previous MS measurements of the AMD community proteome 19, 105, 108.  Among 

multiple replicated MS analyses of the extracellular fraction,105 it is estimated that 

approximately 500 – 600 proteins can be reproducibly measured.  Thus, the 116 newly 

identified proteins represent a 23% increase in proteomic measurement depth of the 

extracellular fraction.  The ability to bind and enrich proteins allows for deeper coverage 

of the proteome and, additionally, verification of numerous proteins that were previously 

only predicted to exist.  These newly identified proteins, formerly annotated as 

hypothetical, are likely of relatively low abundance due to their novel identification 

following IMAC enrichment.  The 116 proteins originate from each of the major microbes 

within the community and comprise a variety of functional annotations.  The ability to 

identify and characterize a significant number of additional proteins in the extracellular 

space highlights the benefits of an expansive enrichment and MS detection strategy.   

The newly identified proteins have a wide variety of predicted functions within the 

extracellular space.  As reported previously, over 57% of the extracellular proteome 

consists of proteins of unknown function105.  It is not surprising then, that a significant 

portion (35%) of the newly identified proteins reported here have an unknown function.  
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Additionally, a subset of the novel proteins were previously annotated as hypothetical, 

but can now be re-annotated as ‘proteins of unknown function’ due to their definitive 

measurement.  The remaining proteins have expected extracellular functional 

annotations, including secretion/efflux/transport, cytochromes, 

dehydrogenases/reductases, and kinases.  Among the newly identified proteins, neither 

physicochemical (molecular weight or pI) biases nor functional bias appear within the 

subgroup.  The IMAC enrichment pattern is similar to that for the entire extracellular 

proteome identified. Indeed, the binding pattern for the newly identified proteins clearly 

shows that the vast majority bound to the cobalt and manganese loaded IMAC columns.  

In fact, in combination with the copper column, which has a very different protein 

enrichment pattern, this cobalt and manganese IMAC columns enriched for all but 13 of 

the 116 (89%) newly identified proteins.   

 

4.4.1:  Analysis of Universal and Specific IMAC Enrichment 
It is expected that soluble extracellular proteins identified here have adapted to 

exposure to the acid mine drainage, including adaption to the heavy metal rich 

environment.  Insights into metal ligation chemistries or patterns may provide clues into 

ligation of the AMD metals.  With the IMAC enrichment procedure, universally IMAC 

enriched proteins dominated the dataset at 61%, but unfortunately provide few clues for 

characterizing the metal chemistries of the AMD community.  With many mechanisms of 

metal binding, it is difficult to derive the potential mechanisms of metal binding to these 

promiscuous proteins.  For example, the trend in the number of proteins identified within 

the IMAC bound fraction of each of the metal columns (Table 4.1) does not follow the 

Irving-Williams series of the relative stabilities of complexes formed by metal ions, a 

trend of ionic radius, binding preferences as dictated by hard-soft acid base theory, nor 

does it follow with the abundance of metals within the AMD environment.  Rather, as 

expected, it is simply indicative of significant metal binding based on the molecular 

exterior of that protein.  Thus, the number of proteins that bind to each metal is likely 

dictated by a combination of the ratio of available hard and soft ligand sites within 

proteins and the radius of available metal binding sites.  Similarly, the promiscuous 



 

 74 

binding of proteins to multiple metals could be explained through several mechanisms, 

including numerous metal binding sites or high metal affinity residues within one protein; 

one metal site that binds only hard or soft metals; or potential denaturation of the protein 

to expose non-native surface residues.   

Nearly all proteins with ribosomal structural roles were identified as universally 

IMAC enriched proteins. The identification of ribosomal subunits in the extracellular 

fraction is not uncommon and can be attributed to their pervasive abundance from 

unavoidable cellular lysis.  The identification of ribosomal proteins as universally IMAC 

enriched is not surprising. Although there is no evidence of the involvement of metal 

ions in peptide bond formation, metals are believed to play an important structural role 

in rRNA folding and stabilization of the compact tertiary rRNA structures providing a 

basis for the observed metal affinity111.  Magnesium is the only divalent metal known to 

be abundant in the ribosome, along with a lesser abundance of zinc; however, the 

bounty of phosphates in the ribosome may lead to nonspecific interactions with cationic 

metals.  

Conversely, the remaining 190 (39%) IMAC specific enriched proteins were 

preferentially found in the bound and unbound fractions of a column. The specific 

enrichment of these proteins provides enhanced opportunities for further 

characterization.  For example, eleven flagella proteins, the majority of flagellar proteins 

in the database (11/18, 61%), demonstrate a clear specificity towards non-metal 

binding, or show universal enrichment within the unbound fraction of the IMAC column 

(Table 4.3).  It is interesting that flagellar proteins, designed to be exposed to the metal 

rich environment, have no metal affinity. 

The IMAC enrichment data for each protein were clustered to reveal trends within 

the pattern of proteomic IMAC enrichment amongst the library of seven metals and 

enrichment for each individual protein (Figure 4.4).  After clustering, the eight IMAC 

columns were divided into four distinct groups: 1.) the control with no metal; 2.) iron, the 

only trivalent metal; 3.)  Co2+, Mn2+, Ni2+ ; and 4.) Cu2+, Mg2+, Zn2+.   

As an outlier from the binding trends of the other six metals, the cluster of 

enrichment results from the ferrous IMAC column showed that only 7 of the identified  



 

 75 

Table 4.3:  Identified Flagellar Proteins and Their Pattern of IMAC Enrichment 
Proteins identified preferentially within the bound fraction of an IMAC column are 
indicated with a blue box and 1; proteins preferentially identified within the unbound 
fraction are shown with a yellow box and -1; proteins either unidentified within a column 
or those with no bound/unbound preference are shown in a grey box with a 0.  

Cell Motility proteins  Co Cu Fe Mg Mn Ni Zn control 
Epl_15865_87_COG1681 Archaeal flagellins  0 0 0 1 1 0 -1 0 

LII_11111_14_Putative flagellin -1 -1 -1 -1 -1 -1 -1 0 

LII_11111_17_Flagellar hook-associated protein (FlgL) 0 0 1 1 0 -1 0 0 

LII_11111_21_Putative flagellin -1 -1 -1 -1 -1 -1 -1 0 

LII_11111_26_Flagellar basal body rod protein -1 0 0 -1 -1 -1 -1 0 

LII_11277_262_Probable flagellar hook protein FlgE -1 -1 -1 -1 -1 -1 -1 0 

LII_11277_263_Probable flagellar hook capping protein 
FlgD -1 -1 -1 0 -1 -1 -1 0 
LII_8241_208_Probable flagellar hook protein (FlgE)  -1 -1 -1 -1 -1 -1 -1 0 

LII_8241_209_Probable flagellar hook capping protein 

(FlgD)  -1 0 -1 0 -1 -1 -1 0 

LII_8241_641_Putative flagellar basal body rod protein  -1 0 0 -1 -1 -1 -1 0 

LII_8241_645_Putative flagellin  -1 -1 -1 -1 -1 -1 -1 0 

LII_8241_649_Flagellar hook-associated protein (FlgL)  0 0 0 1 0 -1 0 0 

LII_8241_652_Putative flagellin  -1 -1 -1 -1 -1 -1 -1 0 
LIII_8063_25_flagellin domain protein -1 -1 -1 -1 -1 0 -1 0 

LIII_8063_31_flagellin domain protein 0 -1 0 -1 -1 -1 -1 0 

LIII_8063_36_flagellar basal-body rod protein FlgG -1 1 0 0 0 0 -1 0 

LIII_9612_10_flagellin domain protein -1 -1 -1 -1 -1 -1 -1 0 

Unasn_10454_1_COG1749 Flagellar hook protein FlgE  1 0 0 1 0 0 0 0 

Unasn_4203_2_COG1344 Flagellin and related hook 

associated proteins  -1 -1 -1 -1 -1 0 -1 1 
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Figure 4.4:  Heat Map of Proteins Found in Chromatographic Fractions 
Metals are clustered from the left: Fe3+, Co2+, Mn2+, Ni2+, Cu2+, Mg2+, Zn2+, Control. 
Proteins identified as metal-bound are shown in yellow, metal-unbound in blue, and 
unenriched in black. Metal binding specificity falls into six major clusters, identified to 
the right. 
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proteins had preferential binding for Fe3+.  Although iron is of great physiological 

importance to the AMD microbial community, the abundance of environmental iron is 

divalent.  Immobilized Fe(III) is known to weakly interact with the carboxylic and 

phenolic groups and strongly bind phosphate groups, with chelation within a four-

membered ring complex112.  The majority of proteins selectively enriched by Fe(III) were 

proteins of unknown function; however, one is a putative type I cytochrome.  Although 

interesting, many cytochromes have been previously shown to nonspecifically bind to 

iron through exposed protein surface interactions98.   

 

4.4.2:  Functional Insights into Enriched Proteins 
Of the proteins clustered that bind a specific metal or group of metals, each 

cluster has a wide range of cellular functions (Figure 4.5).  The largest groups of 

specifically IMAC enriched proteins were involved in translation, ribosomal structure, 

and biogenesis, or post-translational modification, protein turnover, and chaperones.  

Again, a majority (54%) of enriched proteins identified in this study have no known 

function.  
More minor trends were observed within other functional categories.  Cell wall/ 

membrane/ envelope biogenesis proteins (COG function M), carbohydrate transport and 

metabolism (COG function G) and nucleotide transport and metabolism proteins (COG 

function F) were nearly universally enriched by IMAC columns loaded with divalent 

metals, but were not enrichment by ferric iron.  The post-translational modification, 

protein turnover, chaperones (COG function O) was primarily enriched by manganese.  

Secondary metabolites biosynthesis, transport and catabolism proteins (COG function 

Q) were only enriched by cobalt and manganese.  Finally, proteins involved in signal 

transduction mechanisms (COG function T) were largely enriched by manganese, along 

with nickel and cobalt. 

A protein currently annotated as a TonB protein (Leptospirillum group II scaffold 

11277_gene 177) stood out as a universally divalent-IMAC enriched protein, with 

specificity for each metal except Fe(III).  TonB was not identified in either control  
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Figure 4.5:  Distribution of Functions Among Reductive, Non-reductive and Ni/Co 

Metals 
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column’s bound replicates, illustrating its marked specificity for enrichment in IMAC 

columns loaded with divalent metals.  TonB is a moderately characterized protein that is 

a component of the TonB-dependent transport (TBDT) mechanism.  This complex has 

previously been shown to be critical for the uptake of low abundance iron from the 

environment in gram-negative bacteria.113  BLAST analysis114 of this protein against the 

non-redundant database revealed a C-terminal region of the protein to show suitable 

sequence similarity (E-score < 1x10-8) to other known TonB proteins, while the 

remaining 60% of the sequence did not show significant similarity to known TonB 

proteins.  Variation in TonB sequences is not uncommon, but in this instance the 

moderate amount of sequence conservation may imply that the identified LeptoII TonB 

protein is a highly diverged form, a probable adaption to the iron rich environment of the 

AMD.  Additionally, recent characterizations have shown that TBDT also requires a 

nickel co-factor and that potential substrates of TBDT may include a number of metals 

including Cu, Co, and Ni .115  Based upon the pattern of divalent IMAC column 

enrichment shown here, one may speculate that this critical metal transport protein has 

been ecologically tuned in LeptoII to increase affinity for essential, but less abundant 

metals in the AMD environment.   

An alternative grouping of proteins in accordance with their affinity for reductive 

and non-reductive IMAC enrichment resulted in insights into the enriched proteins in the 

AMD microbial community (Figure 4.5).  Although proteins of unknown function account 

for the majority of functional classifications in both categories, several categories were 

particularly highly represented among proteins exhibiting affinity for the reductive 

metals, such as: PTM, protein turnover, chaperones; translation, ribosomal structure, 

biogenesis; energy production; and defense mechanisms.  Coenzyme transport and 

metabolism were also among the most striking functional categories to exhibit protein 

specificity.   

Grouping IMAC enriched proteins by oxidation-reduction activity enables possible 

insights into the role of redox activity in the proteome of the AMD community.   As 

outlined by Mounicou et. al.101, copper, iron, and manganese have biological functions 

that are predominantly redox active, while magnesium and zinc serve non-redox roles.  
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Cobalt and nickel are not considered in this analysis because of their ability to serve in 

either category.  We find that, overall, IMAC columns loaded with reductive metals 

(Cu2+, Fe3+, Mn2+) enriched for more proteins than IMAC columns loaded with non-

reductive metals (Mg2+, Zn2+).  As mentioned earlier, the Fe3+ IMAC column remained 

unique in its relatively low number of specifically IMAC enriched proteins. In general, 

among the three reductive metals, the number of proteins exhibiting specificity remained 

relatively similar.  Additionally, proteins exhibiting specific enrichment on non-reductive 

metal loaded IMAC columns also remained relatively constant, but of a smaller quantity 

than the proteins specifically enriched by reductive metal loaded IMAC columns.  A 

slight bias in population is observed between the groupings (ie., redox vs non-redox) but 

within the groupings the abundances of the representative functions appears consistent.  

This property could allow for a targeted enrichment of a specific functional grouping by 

utilizing either a redox or non-redox active metal.  

 

4.4.3:  Insights into Enriched Proteins of Unknown Function 
One theme across studies of the AMD community proteome is the large number 

of proteins of unknown function19, 68, 105, 116, 117.  Based on their abundance and 

pervasive expression, these functionally unknown proteins are predicted to be critical for 

microbial survival68, 116, 117.  The potential for conserved IMAC enrichment among these 

proteins highlights the effectiveness of the IMAC and MS analysis in identifying key 

target proteins from the thousands present in the community.  The combination of highly 

specific, experimental IMAC enrichment events and Pfam analysis of these proteins of 

unknown function provides additional evidence for the role of these proteins within the 

microbial community. 

Forty-five proteins that exhibited specific metal binding and had an unknown 

function were submitted to Pfam for domain and motif prediction.  Among the domains 

represented within these proteins, several show interesting IMAC enrichment and metal 

binding properties.  A 139 residue portion of a protein enriched by the Co column 

(located on contig 12989, gene 6 from an undetermined species within the AMD 

community) resulted in a high scoring (7x10-32) match to the COXG Pfam ID (Table 



 

 81 

4.4).  The COXG domain has been identified in hundreds of chemolithoautotrophic 

microbes and is integral member of the hydrolysis of CO.118  The structure of the COXG  

domain is related to the protein family ArsR.119  This family contains over six hundred 

Pfam sequences and is frequently found in microbial proteins functioning as 

metallosensitve transcriptional repressors.120  Another enriched protein from the Ni 

column resulted in a predicted high scoring (3.2x10-57) domain with the Pfam ID 

thermopsin (unassigned protein from contig 436, gene 3).  The thermopsin domain 

represents a family of acid and temperature stable proteases.  Previous assays 

determined thermopsin was optimally active between 25 - 78ºC and pH 2, similar to 

conditions found with the AMD system.121  The proteins identified to contain the 

thermopsin domain are generally large, oligomeric proteins that are known to contain 

metal co-factors.122  The high scoring domains identified in these two highlighted 

proteins support the notion that these unknown proteins may function as critical 

degradative enzymes.  The representative COG category (protein turnover, O) was 

among the highest represented categories of all the identified IMAC enriched proteins.  

Finally, among the high scoring Pfam identifications, eight of the proteins are novel 

identifications.  The COXG containing protein described above had not been identified 

in previous analyses of the extracellular fraction.  This protein is an excellent example of 

the methodology and provides a specific target for future experiments considering the 

novel protein identification, specificity to the Co-IMAC column and high scoring COXG 

domain (implying potential as a metallosensitive transcriptional repressor).  The ability 

to identify specific targets that may play critical metal related roles from a suite of tens of 

thousands of proteins further illustrates the applicability of the described method and 

necessity for continued advancement towards a complete proteomic characterization. 

 

4.5:  Conclusions 
The combination of a library of IMAC columns and bottom up LC-MS/MS 

analyses has resulted in identification of hundreds of metals and their pattern of 

enrichment across seven biologically active metals.  Direct detection provided 

characterization of IMAC enrichment for 485 proteins, including 116 newly identified  
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Table 4.4:  Protein Identifications from Enriched and Novel Extracellular Proteins 

A subset list of high scoring Pfam domain / motif analysis of IMAC enriched proteins 

that exhibited specific binding to one IMAC column, but currently do not have a known 

function.  

 

*Indicates newly identified protein as a result of IMAC enrichment 
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proteins that expand the depth of extracellular proteomic coverage by greater than 20%.  

The enriched proteins represented the abundant microbial members from the mine and 

are predicted to perform a variety of cellular functions.  IMAC enrichment did not show 

any discernable bias, including the amino acid composition of the proteins.  Among the 

identified proteins, three classifications of IMAC enrichment were identified: universal 

IMAC enrichment, specific IMAC enrichment, and no metal binding.  The majority of 

proteins were enriched by the Co, Cu and Mn columns and many of the newly identified 

proteins were enriched here based upon binding to these columns.  The prevalence of 

unknown proteins was expected and apparent.  In order to identify potential targets for 

future studies, predicted domains and motifs were identified and resulted in numerous 

high scoring regions indicating potential functions.  This methodology highlights the use 

of integrated technologies and has provided a specific target list of proteins, extracted 

from a metaproteome of tens of thousands, that my play critical roles in metal related 

activities that is necessary for the survival of the extremophilic microbes that thrive in 

the acid mine.   
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Chapter 5 
 

High Resolution Mass Spectrometry for the Characterization of a Novel,                                 
Growth Stage Dependent Cytochrome  

 

Portions of included text are adapted from: 

 

Steven W Singer,  Brian K Erickson, Nathan C VerBerkmoes, Mona Hwang, Manesh B 

Shah, Robert L Hettich, Jillian F Banfield, Michael P Thelen. “Posttranslational 

Modification and Sequence Variation of Redox-active Proteins Correlate with Biofilm 

Life Cycle in Natural Microbial Communities.”, ISME Journal, 2010, May, Epub ahead of 

print. 

 

Brian K. Erickson’s contributions include sample preparation, experimental FT-ICR data 

collection, data analysis, and authorship. 

 

 

5.1: Introduction 

 Proteomic measurements of an early developmental stage biofilm identified two 

atypical cytochromes expressed at high levels.  These were initially identified as LeptoII 

proteins of unknown function, and later were determined to be the membrane 

Cytochrome 572 (Cyt572) and periplasmic Cytochrome 579 (Cyt579).19  Both cytochromes 

were purified from a mixed developmental-stage biofilm and characterized 

biochemically.76, 116  Cyt572, localized to the outer membrane, is a 57-kDa multimeric 

protein that oxidizes Fe(II) at low pH, and thus is likely the Fe(II) oxidase for LeptoII in 

the biofilm.116  Inspection of metagenomic data sets showed six sequences 

corresponding to LeptoII variants of Cyt572 in the Ultra Back A (UBA) and 5way 

Community Genomics (CG) databases (5way CG and UBA databases refer to 

environmental genomic databases obtained from DNA isolated from biofilms collected 

at distinct sites in the Richmond Mine.  5way CG was sampled at the 5-way 
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convergence of streams in June 2004, and UBA was sampled in the upper A drift in 

June 2005).  Genomic sequences were assembled and these were deposited in the 

databases of these names, indicating that multiple variants of the cytochrome may be 

expressed in the same biofilm sample.20, 69  Cyt579 was characterized as a 16-kDa 

monomeric protein localized to the periplasm of LeptoII.76  Cyt579 was isolated as a 

mixture of polypeptides with different N-terminal cleavage sites.  Redox reactions with 

Fe(II) demonstrated pH-dependent Fe(II) oxidation that was inconsistent with its 

assignment as the Fe(II) oxidase for LeptoII and suggested an electron transfer 

function.  Our working model positions Cyt572 as the Fe(II) oxidase on the outer 

membrane of LeptoII cells, which oxidizes Fe(II) to Fe(III) and transfers electrons to 

Cyt579.  This scheme is analogous to the proposed role of an outer membrane bound c-

type cytochrome, Cyc2, and rusticyanin, a periplasmic Cu protein, in Acidithiobacillus 

ferrooxidans, an acidophilic Fe(II)-oxidizing bacterium found in AMD environments.123  

Recent analysis of multiple AMD biofilm proteomes from different developmental stages 

has shown that the community switches from rapid Fe(II)-dependent autotrophic growth 

in early developmental stages to partitioning of fixed carbon to heterotrophs in late 

developmental stages.
124

  The effects of aging on biofilm morphology, microbial 

community composition, and protein expression led us to speculate that electron-

transfer proteins, critical for Fe(II) oxidation, could change physically over the biofilm life 

cycle, either from specific posttranslational modifications or from genetic variation as a 

result of mutation or recombination.  Characterization of cytochromes by high resolution 

intact protein mass spectrometry from biofilms representing early and late 

developmental stages (DS1 and DS2, respectively) showed that both posttranslational 

modifications and expressed sequence variants are correlated with biofilm 

development. 

 
5.2: Methodology 

Both Cyt579 and Cyt572 were purified from the biofilms as described previously116, 

117 and stored at 4°C.  No change in the redox properties of samples of either protein 

was observed after 6 months at 4°C, and minimal degradation was observed by SDS-



 

 86 

PAGE.  In all cases, visible spectra for both oxidized and reduced samples were 

identical to our previously published spectra for Cyt579 and Cyt572.  Enrichment of c-type 

cytochromes was achieved by fractionation of the extracellular fraction of the C75m 

sample from November 2006.  The 95% (NH4)2SO4 precipitate of the acid wash fraction 

was dialyzed for 16h against 20mM H2SO4/100mM (NH4)2SO4 pH 2.2.  The dialysate 

was loaded onto a SP-Sepharose (GE Healthcare, Piscataway, NJ, USA) fast flow 

column and washed with this pH 2.2 buffer.  Cyt579 was eluted by a step increase to pH 

5.0 in 100mM NaOAc, and the remaining proteins were eluted with a 0–2M NaCl 

gradient in the same buffer.  Characteristic visible absorption spectra for c-type 

cytochromes were observed throughout the 1.2–2.0M fractions, with 1.4 and 1.5M 

fractions containing the highest concentrations of the c-type cytochrome as measured 

by visible absorbance of the a-band at 552nm for samples reduced with sodium 

ascorbate.  The individual heme bands were visualized by separation of proteins on 15% 

SDS-PAGE by the method of Francis and Becker (1984).  The stained bands were 

excised from the gel and digested with trypsin.125 

 
5.2.1:  Cyt579 Intact Mass Measurement 

Purified samples of Cyt579 were further prepared for characterization of the intact 

proteins by high resolution top-down MS.  Cyt579-enriched samples were desalted with 

Zip-Tip (C4, Millipore, Billerica, MA, USA) pipette tips and eluted with 100% ACN (0.1% 

acetic acid, v/v).  The protein fraction was then diluted into 50/50/0.1 (v/v/v) 

H2O/ACN/acetic acid and infused into the Micromass Z-Spray source attached to a 

Varian (Lake Forest, CA, USA) 9.4-T (Cryomagnetics Inc., Oak Ridge, TN, USA) HiRes 

electrospray FT-ICR (Fourier transform ion cyclotron resonance mass spectrometer or 

an electrospray source coupled to the LTQ-Orbitrap-XL (Thermo Fisher Scientific, San 

Jose, CA, USA).  MS fragmentation was achieved through collisionally activated 

dissociation, electron-transfer dissociation or infrared multiphoton dissociation.  Parent 

charge states of Cyt579 were manually selected, isolated and fragmented (collisionally 

activated dissociation or electron-transfer dissociation) in the ion trap before high-

resolution mass measurement in the Orbitrap.  For infrared multiphoton dissociation on 
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FT-ICR, parent charge states of Cyt579 were manually selected and isolated in the 

selection quadrapole before mass analysis in the FTMS analyzer cell.  A 350-nM spike 

of ubiquitin was introduced into the C-drift DS1 and AB-Muck DS1 samples for internal 

mass calibration.  M/z values were manually extracted from spectra, deconvoluted and 

plotted with Origin 8 (OriginLab, Northhampton, MA, USA). 

 
5.3: Results 
 
5.3.1:  Intact Protein Characterization of Cyt579  

High-resolution MS measurement of the purified protein from the C-drift DS1 

sample revealed two molecular species by distinct isotopic distribution packets.  

Identification of the most abundant isotopic masses (MAIM) from each distribution 

corresponded to molecular species of 16,131.541 and 16,119.562 Da. (Figure 5.1a; 

external calibration).  The measured mass of 16,131.541 Da corresponds to gene 

UBA_8062_372_S98A (Cyt579) with a predicted signal peptide cleaved at the N-

terminus resulting in the final sequence: (N-AELDILKP…).  This observation was 

confirmed by PCR amplification and sequence analysis of the gene encoding for Cyt579 

from DNA recovered from the C-drift DS1 sample.  Twenty-nine clones were obtained 

after transformation of the PCR amplicon, all of which had an identical sequence to 

UBA_8062_372_S98A.  The mature isoform of Cyt579 corresponds to the same 

sequence but lacking the seven C-terminal amino acids (…GNLKPE) and ending in 

(…FLNTAAK); this was the dominant variant expressed in the previously characterized 

Cyt579 preparations from C-drift biofilm samples 126.  The second most abundant 

distribution, 16,119.562 Da, was inferred to be a modified form of Cyt579.  In order to 

obtain the most accurate mass measurement possible, an internal calibration utilizing 

ubiquitin as a standard was used and resulted in a measured mass of 16,119.549 Da 

(Figure 5.1b).   Collisional dissociation of this molecular ion resulted in 16 fragment 

ions, all corresponding to the sequence of Cyt579, including abundant fragment ions 

corresponding to a sequence tag of MFWVVA, which is unique to Cyt579.  This exact 

sequence tag was also confirmed by  
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Figure 5.1: MS Spectra of C-drift Cyt579   
N-terminal residues are highlighted in red.  a)  The full length sequence of Cyt579 
corresponding to mass 16,131 Da.  Intact mass measurement of C-drift DS1 resulted in 
the identification of two abundant mass distributions, including the truncated product at 
mass 16,119 Da as described in the text.  Residues highlighted in blue indicate the 
unique sequence tag.  b) Partial sequence displaying truncated n-terminus and accurate 
mass measurement of C-drift DS1 following mass calibration utilizing an internally 
spiked ubiquitin standard (inset).   
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ETD measurements.  Additionally, IRMPD fragmentation resulted in an expanded 

sequence tag of FWVVANGS (Figure 5.2), confirming the CAD and ETD results.  The 

mass errors of the predicted versus measured fragment ions corresponding to the 

sequence tag were each less than 10 ppm, providing significant confidence in the 

identification of the 16,119 Da species as a modified form of Cyt579.  Previous bottom-up 

peptide measurements of this modified protein verified the sequence of the expected 

Cyt579 protein, plus the presence of an oxidation of residue Met-21.  While the sum total 

of the fragment ions and peptide mass spectra uniquely support the assignment of the 

16,119 Da species as a Cyt579, neither set provided complete sequence coverage and 

thus it was impossible to unambiguously determine the modified form of this truncated 

version.  However, based on all the information, the most likely assignment of the 

16,119 Da species is modification of Cyt579 by oxidation (likely at Met-21), accompanied 

by loss of CO from the intact protein (CO loss from intact proteins is not unusual).  We 

searched extensively for the location of the CO loss, but were unable to pin it down in 

the fragmentation or peptide data.   However, the calculated mass for a Cyt579 protein 

with these specific modifications is 16,119.530 Da, in excellent agreement with the 

measured value (less than a 2 ppm mass error).  For C-drift DS2 sample, measured 

masses correspond to additional N-terminal truncations, resulting in masses of 14,574 

and 14,319 Da (N-AELDILKPRV… and N-AKAMKPPFPV…, respectively; Figure 5.3).  

These masses were previously observed in mixed developmental stage C-drift samples 

and also are derived from UBA_8062_372_S98A, with an identical cleavage at the C-

terminus as the Cyt579 isoform characterized in C-drift DS1.   

 

5.3.2:  Cyt579 Isolated from AB-Muck Developmental Stages 

To establish the generality of the developmental stage-dependent alterations of 

Cyt579, the protein was purified from the AB-Muck DS1 samples and DS2 samples.   As 

with the C-drift samples, substantially more Cyt579 was extracted from the early 

development stage sample.  MS analysis of intact protein from the AB-Muck DS1 

sample revealed a molecular ion identical to that identified from the C-drift DS1 samples  
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Figure 5.2: Deconvoluted IRMPD Fragmentation Spectrum of Cyt579 -16,119 Da 
Species 
The Cyt579 unique sequence tag FWVVANGS is displayed in red. 
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Figure 5.3: Intact Mass Measurement of C-drift DS2 Exhibiting Two States of 
Additional N-terminal Truncation 
The doublets may indicate (-H2O) loss and were confirmed to be Cyt579 through MS 
fragmentation.  Strikethrough highlights the cleaved sequence.  
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(16,119.540 Da), indicating the N-terminus and Cyt579 variant were the same for both 

(Figure 5.4a).  Internal mass calibration of the ABM DS1 sample resulted in a 0.022 Da 

difference between the ABM DS1 and C-drift DS1 Cyt579.  The AB-Muck DS2 sample 

had molecular ions corresponding to the LAAA N-terminus previously observed for      

C-drift DS2 sample, but lacked the ion distribution corresponding to the AKA N-terminus 

(Figure 2b).  Redox experiments in the presence of 30 mM Fe(II) were very similar to the 

results obtained for the C-drift samples, and redox titrations at pH 4.3 indicated that the 

DS1 Cyt579 had a midpoint potential of 600 mV whereas the DS 2 preparation had a 

midpoint potential of 450 mV.  

 

5.3.3:  Cyt579 from C75m Site 
Although the biofilms collected from the C75m site remained fairly constant in 

thickness across sampling times, the pH was lower (0.70) for the June than November 

2006 sample, at which time the pH was 1.0.  In addition, archaea were significantly more 

abundant than in the biofilm growing at this site in June than in November.  Cyt579 was 

extracted from both C75m biofilms, which was more typical in morphology and microbial 

community composition to the early development stage biofilms from C-drift and AB-

Muck sites described above.  The yield of Cyt579 from the November C75m sample was 

similar to the yields obtained from the other early growth stage biofilms; however, the 

yield from the June sample was dramatically lower (75 times less Cyt579 was extracted 

from the June biofilm).  This result is consistent with an ultra-structural study of the same 

biofilm 127 in which immunohistochemical detection of Cyt579 demonstrated that Cyt579 

expression was localized only at the biofilm-water interface, and that a majority of the 

LeptoII cells did not express Cyt579.  Intact protein MS characterization of Cyt579 

indicated that the proteins purified from the June and November samples had identical 

masses of 15,690 Da, which is the mass of the 8062_372 S98A Cyt579 with an ILKP N-

terminus, identical to the isoform observed in the previous study on Cyt579 from the 

biofilms (Figure 5.5).  Although insufficient Cyt579 was recovered from the June C75m 

sample for redox analysis, a midpoint potential of 590 mV was determined for Cyt579 

from the November C75m sample.   
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Figure 5.4:  MS Spectra of AB-Muck.   
N-terminal residues are highlighted in red.  a) MS measurement of ABM DS1 exhibiting 
the same N-terminal truncation as C-drift DS1.  b) Intact MS measurement of ABM DS2 
resulting in conformation of the LAA N-terminal truncation. 
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Figure 5.5:  MS Measurement of C75m  
Cyt579 resulted in an accurate mass of 15,960 Da corresponding to a ILKP N-terminus.  
The N-terminal residue is highlighted in red. 
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5.4: Conclusions 

Previous studies with single species biofilms have described changes in protein 

type and abundance as these biofilms mature.128, 129  Our work is unique in that it shows 

posttranslational modification, sequence variation, and truncation all play an important 

role in individual proteins in the life cycle of a natural, multispecies biofilm.  This study 

shows that combining both high-throughput proteomics measurements and targeted 

biochemical studies can identify highly expressed proteins in natural microbial 

communities that may be sensitive to changes in the environment or species 

composition.  These observations are critical to link biochemical pathways to the 

functioning of natural microbial communities. 
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Chapter 6 
 

The Design and Implementation of Software for Integrating Bottom up and Top 
Down MS Datasets for the Characterization of an Extracellular Fraction                                                                             

from a Natural Microbial Community 
 

Portions of included text are adapted from: 

 

Vilmos Kertesz, Heather M. Connelly, Brian K. Erickson, Robert L. Hettich, 

“PTMSearchPlus: Software Tool for Automated Protein Identification and Post-

Translational Modification Characterization by Integrating Accurate Intact Protein Mass 

and Bottom-Up Mass Spectrometric Data Searches”, Analytical Chemistry, 2009, 81 

(20), 8387-8395 

 

Brian K. Erickson’s contributions include computational design and implementation, 

experimental preparation of samples, experimental LC-MS/MS analysis, data analysis, 

and authorship. 

 

6.1: Introduction 
Various mass spectrometric approaches are available for characterizing complex 

protein mixtures by either interrogating the intact proteins (using accurate intact protein 

mass (AIPM) or top-down approaches) or their constitutive proteolytic peptides (termed 

“bottom up” (BU)).49  While the BU approach is more well-developed and widely 

represented, each of these methods features a unique set of strengths and 

weaknesses.  Clearly, the comprehensive characterization of complex proteomes will 

require further development in each method. 

Top-down mass spectrometry for intact protein characterization was first 

introduced with electrospray-Fourier transform ion cyclotron resonance mass 

spectrometry (ESI-FTICR-MS).130-132  The dynamic range, sensitivity, and mass 

accuracy achievable by high performance FTICR-MS affords not only high resolution 
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protein identification in most cases, but also detailed information about the molecular 

state of intact proteins.  This high resolution measurement can reveal protein details 

that include post-translational modifications (PTMs), truncations, mutations, signal 

peptides, and isoforms due to the ability to accurately measure covalent modifications 

that alter the molecular mass.16, 133  While intact protein measurement methodologies 

provide a powerful analytical approach, there are some remaining challenges for this 

approach.  For example, on-line chromatography of intact proteins is often difficult due 

to the wide range of protein sizes and hydrophobicities, intact proteins often do not yield 

extensive fragmentation information, and the resulting data is often difficult to analyze 

and to interpret due to limited bioinformatics tools.130  

The more common peptide or BU mass spectrometric approach to identify 

proteins and their modifications involves enzymatic digestion of proteins with a protease 

such as trypsin, Glu-C, or cyanogen bromide to generate a peptide mixture. This 

peptide mixture is then analyzed by MS/MS methods to generate peptide fragmentation 

spectra that are compared to theoretical spectra of possible peptide candidates from a 

database using different searching algorithms.134  This “shotgun” proteomics approach 

is able to efficiently provide a comprehensive list of proteins present even in a large 

multi-protein complex.  However, vital information about the molecular nature of the 

protein may be missed if the peptides containing particular modifications or variations 

escape detection.   Furthermore, identifying peptides that come from a complex protein 

mixture may not provide information to distinguish between isoforms of the same 

protein. 

One obvious solution to a more comprehensive characterization of complex 

protein mixtures would involve an integrated intact protein and proteolytic peptide 

characterization approach, which would exploit the unique strengths of each method.   

In such an integrated approach, the information from the comprehensive list of proteins 

identified by their intact molecular mass can be compared against information from the 

comprehensive list of proteolytic peptides corresponding to the same protein, thus 

revealing detailed information about modified protein isoforms.  The correlation between 

the two methods can provide detailed PTM location and identity, and may be more 
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generically applicable than fragmentation information from the intact proteins.  It is 

important to realize that while accurate molecular masses can be measured for most 

intact proteins (provided they are within the accessible molecular range of the mass 

spectrometer employed), the quality of the tandem mass spectra from intact proteins 

varies greatly and in some cases is not sufficient to provide much detailed information.  

We were one of the first groups to demonstrate integrated intact protein and proteolytic 

peptide measurement approach for the characterization of the Shewanella oneidensis 

proteome135, and have extended this for the 70S ribosomal complex from 

Rhodopseudomonas palustris.136   For these studies, most of the integrated datasets 

were interrogated manually.   Integrated intact protein and proteolytic peptide 

approaches have seen increased development in the last several years, focusing on 

both experimental137-141 and computational aspects, but range greatly in their ability to 

handle high resolution datasets and how the scoring is conducted. 

While there are a variety of software searching tools for BU data analysis (i.e., 

SEQUEST25, Mascot142, X!Tandem143), there are relatively few tools for top-down and 

AIPM analyses.  The current software standard for top-down work is ProSightPTM 

(commercially available from ThermoFisher Scientific Corporation as ProSightPC), 

which combines a number of search engines and a browser environment into a web 

application that allows the user to analyze AIPM and corresponding protein 

fragmentation data.144  This program uses the masses of intact proteins and the tandem 

mass spectrometry information (i.e. product ion masses) of the same proteins to provide 

protein and PTM identifications.  This software relies on the use of top-down 

dissociation methods that are often not as comprehensive for complex mixtures as BU 

methods employing an enzymatic digestion.  Frequently employed methods to generate 

intact protein fragments include collision-induced dissociation (CID), infrared 

multiphoton dissociation (IRMPD), electron capture dissociation (ECD)145, or electron 

transfer dissociation (ETD).  PROCLAME is another top-down software analysis tool 

that uses intact protein mass measurements to determine sets of putative protein 

cleavage and modification events to account for the measured protein masses 

observed.146  PROCLAME provides a reasonable prediction algorithm, but is unable to 
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incorporate tandem mass spectrometry (MS/MS) data within the process.  More 

recently, BIG Mascot was introduced and operates in a similar approach as 

ProsightPTM, utilizing intact protein mass and corresponding product ion masses 

generated from intact protein dissociation.147  While there is some progress in the 

demonstration of computational software to integrate AIPM and BU datasets, as listed 

above, this active field is still very much under development. 

In this report, we describe a new software algorithm, PTMSearchPlus, which 

provides a comprehensive search method to enable the integration of AIPM 

identification with the BU generated peptide data to faster and more confidently identify 

proteins and their associated PTMs.  The software can perform independent AIPM or 

BU searches, as well as integrate both approaches. By combining these two search 

capabilities, the results from the AIPM search can be used to limit the number of the 

proteins that are used to generate the peptide database for the BU search (“AIPM 

predicted” search) and in return, the results of the BU search can be used as 

confirmation for the proteins with associated PTMs found in the AIPM search.  The 

limitation of the database used in the BU search based on the results of the AIPM 

search may reduce the search time dramatically, allowing the user to search for more 

PTMs on proteins and peptides within a reasonable time frame.  The power of this 

integrated search method is demonstrated using data from analysis of a protein 

standard mixture and a complex Escherichia coli ribosomal protein mixture, and finally 

extended to an extracellular AMD sample.  In addition to the integration approach, we 

also present a novel way to reduce the number of peptide candidates in a BU search 

when multiple PTMs are probed.  The method allows the user to limit the number of 

possible PTMs on a peptide based on chemical considerations that may result in a 

significant decrease in the number of peptide candidates.  Dramatic increases in search 

throughput with this method are demonstrated using data from a complex Escherichia 

coli protein mixture database. 
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6.2:  Materials and Methods 

 
6.2.1:  LC-FTICR-MS for AIPM Mass Spectrometry 

All capillary HPLC-FTICR-MS experiments were conducted with an Eksigent 

NanoLC-2D HPLC interfaced directly to a Micromass Z-Spray source on a Varian (Lake 

Forest, CA) 9.4-Tesla (Cryomagnetics Inc., Oak Ridge, TN) HiRes electrospray Fourier 

transform ion cyclotron resonance mass spectrometer.148  A C4 reverse-phase column 

(Phenomenex Jupiter, 300Å with 5µm particles) was packed via a pressure cell in-

house and was employed for all intact protein separations. 

The ribosomal purification eluent or extracellular fraction consisting of 5-20 µg of 

total protein was injected onto the column and eluted at 2.5 µl/min into the electrospray 

ion source of the FTICR-MS.  The gradient was run from 90% solvent A (95/5/0.1 (v/v/v) 

H2O/ACN/formic acid) to 100% solvent B (95/5/0.1 (v/v/v) ACN/H2O/formic acid) over a 

60-min linear gradient.  Calibration of the mass spectrometer was accomplished 

externally using a ubiquitin solution resulting in a mass accuracy of ±3-10 ppm and 

resolution of 50,000-160,000 (FWHM). 

 

6.2.2:  1D LC-MS-MS for BU mass spectrometry. 
 For all peptide samples, one-dimensional (1D) LC-MS-MS experiments were 

performed with a Famos/Switchos/Ultimate HPLC System (Dionex, Sunnyvale, CA) 

coupled to an LTQ quadrupole ion trap mass spectrometer (Thermo Finnigan, San 

Jose, CA) equipped with a nanospray source, as previously described.42  A 160-minute 

linear gradient from 100% solvent A (95% H2O/5% ACN/0.1% formic acid) to 100% 

solvent B (30% H2O/ 70% ACN/0.1% formic acid) was employed. For all 1D LC-MS-MS 

data acquisition, the LTQ was operated in the data dependent mode with dynamic 

exclusion enabled (repeat count 2), where the five most abundant peaks in every MS 

scan were subjected to MS-MS analysis.  Data dependent LC-MS-MS was performed 

over a parent m/z range of 400-2000.  
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6.2.3:  Software 

PTMSearchPlus was developed using Delphi 3 computer language (Borland 

Software Corp., Scotts Valley, CA) under Microsoft© Windows XP Home Edition 

(Microsoft Corp., Redmond, WA) operating system and can be run in any 32-bit 

Windows environment with at least 256 MB RAM.  Currently, the program is freely 

available upon request to any government or educational institute. 

 

6.3 Results 
PTMSearchPlus currently supports the following search options: 

• a standalone AIPM search. 

• a standalone BU search using the MyriMatch26 scoring algorithm. 

• an integrated AIPM and MyriMatch-based BU search. 

These search options are discussed briefly below.   

 
6.3.1:  Standalone AIPM Search 

Deconvoluted isotopic peak envelopes from FTICR-MS measurements were 

matched against calculated isotopic peak envelopes of modified and non-modified 

proteins from a database, which contains FASTA formatted protein sequences.  A 

match was judged on the mass difference of the most abundant peaks of the 

experimental and calculated isotopic envelopes.  In general, a maximum difference of 

50 mDa was declared as a match in the searches. 

 
6.3.2:  Standalone BU Search 

 In this mode, the software used the MyriMatch26 scoring algorithm to compare 

modified and non-modified peptides of a given protein database against BU mass 

spectra information stored in MS2 files.149  Peptides with scores above a certain limit 

were assigned as a match and used in calculation of protein coverage’s. 
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6.3.3:  Integrated AIPM and BU Search 

 The hollow arrows in Figure 6.1 illustrate the most straightforward approach to 

integrate AIPM and BU searching algorithms in general.  In this case, AIPM and BU 

data were searched independently using the specified full PTM database, and the 

results were then compared and combined.  This approach was considered to be a 

"complete" search, as all proteins (and their possible PTMs) were checked against the 

two different -AIPM and BU- datasets. 

The filled arrow in Figure 6.1 represents a different approach that was also 

implemented in PTMSearchPlus to limit search space for the BU search.  The search 

space limitation was based on the proteins and PTMs found in the AIPM search.  Using 

this approach, an AIPM search was conducted first, followed by assigning the union of 

possible PTMs found for a particular protein.  For example, if protein 1 was found in 

three different forms in the AIPM search, e.g. once with two methylations, once with a 

phosphorylation, and once with a β-methylthiolation, then the union of these PTMs was 

assigned to protein 1.  This individually assigned PTM (two methylations + a 

phosphorylation + a β-methylthiolation in this example) represent the maximum PTM 

search space that was used to create PTM peptides of the given protein (protein 1 in  

the example) in the BU search.  For proteins not found in the AIPM search, peptides 

were generated without any PTM from the intact (non-modified) sequence of a given 

protein and tested in the BU search. 

The advantage of this method over the "complete" search was the significant 

decrease in the number of theoretical peptide candidate sequences generated during 

the BU search by taking advantage of the "AIPM predicted" BU search. In this 

approach, peptide sequences for the BU search were generated based on the results of 

the AIPM search.  Obviously, such a method requires good quality separation and 

identification of intact proteins.  Otherwise, a valid, modified protein that was not 

identified in the AIPM, but truly existed in the sample, would not be represented in the 

BU search.   
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Figure 6.1.  Flowchart of Integration of Accurate Intact Protein Mass (AIPM) and 
Bottom up Searching Algorithms   
The filled arrow indicates the “AIPM predicted” BU search approach. 
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6.3.4:  Decreasing the Number of Peptide Candidates by Restricting the Maximum 

Number of PTMs on a Single Peptide 

To the best of our knowledge, the current commercially available BU search 

engines do not have the ability to limit the total number of different PTMs on a single 

peptide to a reasonable level that could be considered acceptable from a chemical 

viewpoint.  However, a dramatic decrease in the number of peptide candidates and a 

noticeable search speed increase can be achieved when applying a limitation on the 

total number of PTMs on a single peptide, as described in the two scenarios below. 

 

6.3.5:  Evaluation of PTMSearchPlus for Escherichia coli Ribosomal Proteins 

A full protein database of Escherichia coli (K12) provided a base for 

PTMSearchPlus to evaluate its effectiveness with a more complex sample.  A purified 

ribosomal protein mixture was divided into two parts followed by their independent AIPM 

and BU analyses.  A combined AIPM and BU search was performed on the data 

obtained.  The search was accomplished using "complete" and "AIPM predicted" BU 

searches as well.  The PTMs included in the AIPM search were mono-, di- and 

trimethylation on arginine and lysine, methionine truncation at the N-terminus, and 

disulfide formation between cysteine residues.  Within the BU search the specified 

PTMs were mono-, di- and trimethylation on arginine and lysine, and methionine 

truncation at the N-terminus.  (Note, that acetylation was not specified explicitly as a 

PTM, but must be considered when trimethylation with the same approximately 42 Da 

mass shift, was found.)  

From this integrated AIPM-BU search, we identified 52 out of the total 54 

possible ribosomal proteins, many of which were not modified or only exhibited 

methionine truncation.  Table 6.1 summarizes the PTM-containing ribosomal proteins 

and peptides confidently identified by an AIPM and/or a BU search.  The four PTM 

proteins identified (L7/L12, L11, S5 and S11) all had PTMs that exactly matched with 

the PTM of the corresponding peptide found using an "AIPM predicted" BU search.  

This data demonstrates the unique advantage of coupling AIPM and the BU datasets, in 

which higher confidence is achieved by the related but independent measurements.   
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Table 6.1:  Subset of Ribosomal Proteins Identified by TD and BU MS 
Escherichia coli ribosomal proteins and peptides confidently identified with PTMs by 
accurate intact protein mass (AIPM) and bottom-up (BU) searches using 
PTMSearchPlus.   

Protein AIPM PTM Δp
pm BU PTM peptides BU score 

L7/L12 (M loss) + TriMet/Ace 0.2 

(M loss)SIT(K+TriMet/Ace)DQIIEAVAAMSVMDVVELISAMEEK 85.61 
L11 TriMet/Ace 1.8 LQVAAGMANPSPPVGPALGQQGVNIMEFC(K+TriMet/Ace)AFNAK 43.43 
S4 N/A N/A C(K+Met)IEQAPGQHGAR 33.71 
S5 (M loss) + TriMet/Ace 18.5 (M loss)AHIE(K+TriMet/Ace)QAGELQEK 32.33 
S11 (M loss) + Met 27.2 (M loss)A(K+Met)APIRAR 28.19 
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Namely, the AIPM data of these four proteins confirms that all of the PTM peptides were 

found in the BU search, i.e. no peptides with a PTM was missed.  This confirmation is 

not available without coupling the approaches together.  On the other hand, the BU 

search determines the location of the PTM that is difficult to ascertain by the AIPM 

search. 

As an example, Figure 6.2 presents corresponding identifications from AIPM and 

BU searches of the same protein.  Figures 4a and 4b show calculated and measured 

isotopic distributions, respectively, of 50S ribosomal protein L7/L12 with methionine loss 

and trimethylation/acetylation found by the AIPM search.  The mass difference between  

the most abundant peaks of the calculated and measured isotopic distributions was 0.2 

ppm.  The location of the trimethylation/acetylation identified by the AIPM search was 

determined by BU data. The spectrum in Figure 4c is assigned to a peptide of 50S 

ribosomal protein L7/L12 with a sequence of 

SIT(K+trimethylation/acetylation)DQIIEAVAAMSVMDVVELISAMEEK.  This peptide 

contains a trimethylation on K5 and is also result of a methionine truncation of the 

original protein. 
A "complete" BU search was also performed to check the validity of the "AIPM 

predicted" analysis with a complex sample.  In the “complete” search, a peptide of 

protein S4 with a methylation was found, which had not been identified previously in the 

"AIPM predicted" BU search (see Table 6.1).  The reason for missing the methylated 

peptide by the BU search was likely due to the lack of finding the modified S4 protein by 

the AIPM search (the unmodified S4 also was not detected).  This resulted in a peptide 

database containing only the non-PTM peptides of S4 during the BU search.  As S4 is a 

23.5 kDa protein, the reason for not identifying it in the AIPM search is most likely that it 

was not eluted off the C4 reverse phase column used in the AIPM analysis.  Manual 

inspection revealed very few peaks above 20 kDa identified by the AIPM analysis.  At 

present, the integrated AIPM-BU search discussed above does not provide capability to 

track the PTM peptides of a protein that are not found by the AIPM method (i.e. if it 

didn’t elute  
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Figure 6.2:  High Resolution Mass Spectrum of Ribosomal Subunits 
(a) Calculated and (b) measured isotopic distributions for 50S ribosomal protein L7/L12 
with methionine loss and monomethylation exhibiting 0.2 ppm mass difference between 
their most abundant peaks. (c) MS/MS spectrum of peptide 
SIT(K+3xMethyl/Acetyl)DQIIEAVAAMSVMDVVELISAMEEK of the same protein. 
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from the column or was not detected in the intact form for any reason).  However, the 

"AIPM predicted" BU search does look for non-PTM peptides of proteins not found in  

the AIPM search.  While the current version of PTMSearchPlus does not include this 

feature, confident identification of peptides of these proteins in the BU search could be 

used as a trigger to search for PTMs on peptides of a protein not identified in the AIPM 

search.  Furthermore, based on the experimental data, a cutoff mass for the "AIPM 

predicted" BU search could be specified in the software to target this problem from 

another angle.  The cutoff mass would define the mass that a protein has to exceed in 

order to generate its peptides using a "complete" BU search.  This modification would 

decrease the chance to miss a PTM peptide even if the protein is not eluted from the 

separation column during the AIPM analysis, while keeping the speed advantage of the 

"AIPM predicted" BU search for proteins below the cutoff mass. 

 

6.4:  Bottom Up and Top Down Characterization of the Extracellular Fraction of 
the AMD Microbial Community 

In order to assess the functionality of PTMSearchPlus with a significantly more 

complex sample set, an AMD extracellular fraction was submitted for discrete BU and 

TD analyses, as well as an integrated BU/TD analysis.  In order to reduce the protein 

complexity, the extracellular fraction was subjected to cation exchange fractionation 

prior to MS measurement.  The resulting twenty-nine fractions where then divided in half 

for BU and TD analysis.  The intact protein MS measurement of the AMD extracellular 

fraction serves several purposes.  First, the reduced complexity produced by off-line 

fractionation results in samples that are amenable to both BU and TD methodologies.  

This results in an excellent sample for methodological improvement and testing.  

Secondly, the direct measurement of the intact proteins form the extracellular fraction 

has not been previously obtained.  The range of identifications, presence of PTMs or 

cleavages can be deduced from the TD measurement.  Integrating the BU peptide 

dataset with the TD molecular form assignment provides increased support for a 

particular identification. 
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6.4.1:  Bottom Up Analysis of 29 AMD Extracellular Fractions 

Following the BU analysis of the 29 fractions, a total of 744 non-redundant 

protein identifications were made (Figure 6.3).  Although more proteins were identified 

in this analysis than the previous characterization of the extracellular fraction (531), this 

number is consistent within the range of identifications from multiple extracellular 

analyses.  Among the proteins identified numerous known cytoplasmic proteins (ie. 

ribosomal proteins) were also identified indicating unintended cell lysis occurred during 

sample processing.  This may account for the increase in proteins identified.  The range 

of proteins identified is remarkably similar to other analyses with numerous proteins with 

an unknown function present as well as protease, transporters and cytochromes.  Each 

of the major microbial species are represented through the protein identifications 

including several archaeal species. 

 

6.4.2: Top Down Analysis of 29 AMD Extracellular Fractions 
The remaining portion of the 29 extracellular fractions was processed for LC-

FTICR-MS.  387 non-redundant proteins were identified at < 5 parts per million (ppm) 

mass error (Figure 6.3).  Allowed modifications included cleavage of the n-terminal 

methionine (-131.04), disulfide bond (-2.016), methylation (+14.016) and oxidation 

(+15.995).  Additionally, over 250 replicated, abundant masses were identified that were 

not identified from the sequence database.  These are likely legitimate proteins due to 

their abundance, isotopic distribution, and intensity but for many possible reasons were 

unable to be assigned to a predicted protein.  The most likely reasons include the 

presence of additional PTMs that were not included in the search or amino acid 

variations resulting in significant mass shifts.  Table 6.2 provides a subset of the list of 

the TD identifications.  The proteins listed have a mass < 20 ppm with 29 of 38 having a 

mass error < 2 ppm.  Among the proteins identified, a significant number currently have 

an unknown function but proteins performing expected functions (ie, protein degradation 

and transport) are also present.  The remarkable mass accuracy achievable through 

FTICR-MS provides significant confidence in the identification of these proteins.   
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Figure 6.3: Protein Identifications from the BU and TD MS Analysis of the 
Extracellular Fractions 
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Table 6.2: Example TD Protein Identifications with Extremely Low PPM 
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174 proteins were identified with cleavage of the n-terminal methionine (MET).  

Table 6.3 highlights a subset of these proteins that exhibited an extremely low ppm 

mass error. The cleavage of the n-terminal MET is not uncommon and observed in both 

the TD and BU datasets.  It has been estimated that ~80% of all proteins in any given 

proteome will display cleavage of the n-terminal MET.150  In this analysis only 44% (at < 

5 ppm) of the proteins were identified in with n-terminal MET cleavage.  The most 

common residues following the n-terminal cleavage are: Ala (A), Cys(C), Gly (G), Pro 

(P), or Ser (S).  16 of the 39 (~41%) proteins exhibiting n-terminal cleavage had a 

second residue matching the commonly observed set.  The range of n-terminal 

cleavage and the second residue after cleavage do not explicitly follow the findings from 

the E. coli analysis.  This is not surprising as many of the proteins identified are unique 

to the AMD community as evident in the extreme number of proteins with an unknown 

function.  Identification of the methionine peptidase may provide additional details 

regarding the range and specificity of n-terminal MET cleavage. 

 

6.4.2:  Integration of TD and BU Datasets 
Figure 6.3 illustrates that among both the TD and BU dataset, 256 proteins were 

identified in both.  Among the proteins identified through each method, the sequence 

coverage ranges from a low of 6% to full peptide coverage of the protein.  The TD 

identifications remain at < 5 ppm mass error.  The identification of representative 

peptides provides substantial confidence in the assignment of the protein by high mass 

accuracy.  The 131 proteins that were not identified in the BU analysis can be attributed 

to several factors.  First, the BU analysis requires two representative peptides per 

protein for identification.  If one peptide of a particular protein was identified but no 

additional peptides were also identified, that particular protein would not be included.  

Therefore, it is possible that a subset of the proteins not identified by the BU analysis 

fall in to this category.  Secondly, if the BU proteins were predicted to contain PTMs, 

based on the TD identification, and the peptides, for many reasons, did not contain the 

specified modifications, the protein would not be identified though the BU analysis.  

Table 6.4 displays example proteins that were identified in both the TD and BU  
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Table 6.3: PTM – Methionine Cleavage 
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a) 

 
 
 
 
 
 
 
 

 
 
 
 
b) 

 

 
 
 

Table 6.4: Results of TD and BU Analysis of the 29 Extracellular Fraction from the 
AMD Microbial Community 
a) Example protein identifications following bottom up analysis.  Two proteins that 
exhibited 100% sequence coverage are highlighted. b) Results of TD analysis 
displaying complementary intact protein identification including any identified PTMs.  
Highlighted proteins were also identified in the BU analysis. 
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analysis.  The highlighted rows are examples of proteins that were identified in the BU 

analysis with high sequence coverage and through the TD analysis with high mass 

accuracy and a low mass error.  Both the high sequence coverage and the low mass 

error support the unambiguous identification of the proteins.   Additionally, the highly 

abundant and previously characterized Cyt579 was identified in both the BU and TD 

analyses and is highlighted in Table 6.4.   
 

6.5: Conclusions 
PTMSearchPlus provides a novel computational approach for the integration of 

accurate intact protein mass (AIPM) and bottom-up (BU) searches to both confidently 

identify intact proteins and to characterize their PTMs.  The required input data are a 

FASTA protein database, a selection of possible PTMs, the types and ranges of which 

can be specified, and both intact protein and proteolytic peptide mass spectra data 

collected from the same protein mixture.  After a search is conducted, the software 

outputs a list of intact and PTM proteins matching the AIPM data with their respective 

peptides found by the BU search.  This list also includes protein and peptide sequence 

coverage information, scores, etc.  Furthermore, manual evaluation including visual 

inspection of annotated AIPM and BU mass spectra to evaluate, modify (e.g. remove 

obvious false positives, low quality spectra etc.) and (automatic) refiltering of the results 

is also possible in the software.  Improvement in BU search speed when limiting the 

total number of possible PTMs on a peptide or performing an “AIPM predicted” search 

was also evaluated.  All of these features of PTMSearchPlus were demonstrated using 

a protein standard mixture or a complex protein mixture from Escherichia coli.  Also 

demonstrated was a unique advantage of coupling AIPM and the BU datasets mutually 

beneficial for both approaches: AIPM data can confirm that no PTM peptides were 

missed in a BU search, while the BU search determines the location of the PTM, which 

is not readily determined through an AIPM search alone.  The “AIPM predicted” search 

resulted in the first analysis of intact proteins from the AMD microbial community.  The 

initial results provided high confidence identifications of PTM proteins.  A future analysis 

of the AMD TD, BU dataset, with additional combinations of PTMs will be performed.  



 

 116 

Currently, development of a new scoring algorithm for the AIPM search is under way in 

which the score is based on mass and intensity differences of the peaks in the 

theoretical and measured isotopic envelopes.  Future work also includes evaluation of 

using a cutoff mass for the "AIPM predicted" BU search.  Furthermore, assessment of 

triggering a "complete" BU search of a protein when it is not identified by the AIPM 

search but confident identification of corresponding peptides by the BU search is 

available, will be accomplished.   
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Chapter 7 

 

Development of a Spectral Assignment Approach to Evaluate Assigned versus 
Unassigned Tandem Mass Spectra in the Proteomic Analyses of Microbial 

Isolates and Communities 

 

Portions of included text are adapted from: 

 

Brian K. Erickson, Alison R. Erickson, Brian D. Dill, Nathan C. VerBerkmoes, Jillian F. 

Banfield, Robert L. Hettich, “Evaluation of Quality Matched Versus Quality Unmatched 

Tandem Mass Spectra in the Proteome Characterizations of Microbial Isolates and 

Communities”, Manuscript in preparation. 

 

Brian K. Erickson’s contributions include software design and implementation, data 

analysis, and primary authorship. 

 

 

7.1: Introduction 
Mass spectrometric (MS) based proteomics analyses are capable of identifying 

thousands of proteins from a wide range of samples.  The transition from analyzing 

microbial isolates towards complex, natural microbial samples has uncovered evidence 

of metabolic portioning, dynamic protein expression, and growth state dependent 

protein export.68, 105  Although mass spectrometric based proteomics is remarkable in its 

ability to rapidly characterize thousands of proteins from a complex microbial 

community, the overall level of proteomic depth remains low when compared to the total 

suite of expressed proteins.2, 12  Historically, the success of a given MS proteomic 

experiment was based on the number of proteins identified.  When comparing the 

~1400 proteins identified in a microbial isolate to the thousands identified in a 

community, it would appear that the overall methodology is performing well, as 
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evidenced by the increased protein identifications.19, 42  A quantitative spectral analysis 

evaluation of identified vs. unidentified peptides, as described within this text, was 

developed in order to more fully describe the effectiveness of the current MS 

methodologies on complex microbial communities.  This spectral analysis has revealed 

that although the number of identified proteins is increasing, the number of peptide 

identifications, used to piece together the presence of protein, has decreased 

dramatically.  When comparing an isolate to a community sample, upwards of ~70% 

fewer tandem mass spectra are being assigned to peptides.  It is obvious that 

determining the cause for this reduced number of spectral assignments is critical for 

achieving the desired proteomic depth of these complex communities.   

Current MS methodologies of complex, microbial samples utilize a variety of 

sample preparation methods, but all depend highly on the enzymatic digestion of 

proteins, liquid chromatographic separation and MS measurement of peptides.  The 

mass spectrometer operates in a data-dependent mode whereby a survey (MS1) scan 

results in peptide targets that are collisionally fragmented resulting in a tandem mass 

spectrum (MS2).34  The MS2 spectra are computationally assigned to peptides that are 

present in a sequence database consisting of all predicted proteins.  The computational 

assignment is performed by several notable programs including SEQUEST, Mascot or 

X!Tandem25, 142, 143 and is based on pattern matching between predicted fragmentation 

of the computational sequence and the experimentally derived sequence.  The assigned 

MS2 spectra are then filtered and assembled to represent predicted proteins in the 

database.71  This represents the total suite of identified peptides and proteins from a 

given MS experiment.   

During a standard MS analysis of a microbial community, the mass spectrometer 

will collect ~100,000 spectra.  These spectra will represent a combination of survey 

(MS1) and tandem (MS2) spectra.  A subset of the MS2 spectra will be assigned a 

predicted peptide and a separate subset will remain unassigned.  Of the MS2 that are 

unassigned to a peptide, a portion will be of low quality (i.e., insufficient fragments 

and/or low intensity), whereas the remaining will be of high quality, but for a variety of 

potential reasons were not assigned to a peptide.  By quantifying and categorizing the 
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total spectra collected during a MS experiment, it is possible to gain a more defined 

image of the experimental performance.  Specifically, the number of assigned MS2 and 

the number of quality unassigned MS2 provide valuable metrics relating to the sample 

preparation, chromatography, mass spectrometer operating parameters and 

computational peptide assignment.  A decrease in the number of assigned MS2 

spectra, as observed when comparing the isolate and the microbial community, 

illustrates the ineffectiveness of the current methodology.  Although the number of 

proteins identified increases between an isolate and community, the significant 

decrease in assigned MS2 spectra dictates that inefficiencies are present along the 

experimental MS path.  Furthermore, the presence of quality unassigned spectra 

represents a significant subset of untapped proteomic information.  Each of these 

unassigned spectra may correspond to a previously unidentified peptide from a 

previously unidentified protein.  Determining the potential causes for the presence of 

these quality unassigned spectra and addressing means to assign a peptide 

identification is necessary to achieve deeper proteomic depth.  Finally, these spectra 

are excellent datasets for submission to the ever improving suite of de novo spectral 

assignment algorithms, post-translational identification tools or algorithms for sequence 

tag discovery.151 

To highlight the marked differences in spectral assignment between microbial 

isolates and communities, protein samples from E. coli, R. palustris, a low complexity 

microbial community living in acid mine drainage (AMD), and collected groundwater 

from a soil remediation site were compared.  E. coli, and similarly R. palustris, 

represents a baseline for MS proteomic analysis, as the sample preparation is rather 

routine and uncomplicated and the protein databases are well characterized and 

curated.152, 153  On the other hand, samples collected from the natural communities are 

present in extreme environmental conditions and contain complicated matrices.  

Furthermore, the protein databases differ significantly in their makeup and curation 

when compared to E. coli.  The AMD microbial community has utilized significant 

resources in order to generate a suitable metagenome representing the abundant 

species within the community.20  Although the species within the community show very 
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limited homology to previously studied organisms, the direct metagenome provides a 

very solid foundation for proteomic analysis.19  The level of sequence accuracy 

compared to that of E. coli is, of course, substantially lower as the AMD community 

represents multiple species with several closely related strains.  At the other end of the 

spectrum, the groundwater microbial community does not have a direct, matched 

metagenome and instead is dependent upon protein sequences from microbes that are 

assumed to closely resemble, at best estimate, those that are present in groundwater.  

MS based proteomics is being challenged with a variety of samples that the datasets 

utilized throughout this study represent.  Through the use of spectral analysis, it is 

possible to gain a significantly deeper understanding of the success and failure of MS 

based proteomic measurements.  It is then feasible to specifically optimize relevant 

procedures and parameters in order to increase proteomic depth.  Ultimately, these 

gains in proteomic coverage will hopefully serve to further unlock the biological 

processes that allow these communities to thrive.  The comparative spectral analysis 

between microbial isolates and communities described within presents the first targeted 

look at the experimental implications of community MS analysis and serves to provide a 

process to improve the experimental results. 

  

7.2:  Materials and Methods 

 
7.2.1:  Protein Sample Preparation and Tryptic Digestion 

Escherichia coli K-12 and Rhodopseudomonas palustris lysates were used as 

representative low complexity, bacterial isolates for all experiments.  Samples collected 

from the Acid Mine Drainage (AMD) in Redding, CA and groundwater in Rifle, CO were 

used to represent higher complexity, natural microbial community samples.   

Approximately 3 mg of cells were processed via a single tube cell lysis method43 

and suspended in 6M guanidine/10mM DTT in order to lyse cells and denature proteins.  

The guanidine concentration was diluted to 1M with 50 mM Tris buffer/10mM CaCl2 and 

sequencing grade trypsin (Promega, Madison, WI) was added to digest proteins to 

peptides. The complex peptide solution was desalted via C18 solid phase extraction, 
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concentrated and filtered (0.45um filter).  For each 2D-LC-MS/MS analyses below, ~1/5 

of the total sample was used. 

A sample was collected from the AB End location of the Richmond mine (Iron 

Mountain, Redding, CA) and flash frozen on site.  Whole cell fractions were obtained by 

acid lysis and extraction as previously described.19  

Three filtered groundwater samples (named: Cristobal, Hanna and Borris) were 

collected from a water well (#4) located in Rifle, Colorado.  All community samples were 

thawed and microbial cells were extracted from the bulk material.  Approximately 3 mg 

of total protein was processed via single tube cell lysis, as above, and denatured in 6M 

guanidine/10mM DTT to lyse cells and denature proteins.  The guanidine concentration 

was diluted to 1M with 50 mM Tris buffer/10mM CaCl2 and sequencing grade trypsin 

(Promega, Madison, WI) was added to digest proteins to peptides. The complex peptide 

solution was desalted via C18 solid phase extraction, concentrated and filtered (0.45um 

filter).  For each 2D-LC-MS/MS analyses below, ~1/4- 1/5 of the total sample was used.  

Each of the isolates and community trypsin-digested samples used in this study were 

analyzed by 22hr, 12-step MudPIT. 

 

7.2.2:  MS Analysis 
Each of the trypsin-digested isolates,  E. coli and R. palustris, were individually 

loaded onto a split-phase column (RP-SCX-RP) and analyzed via 2D-LC-MS/MS 

connected to a linear ion trap, LTQ (ThermoFisher Scientific) coupled to a nanoflow 

high performance liquid chromatography system (HPLC, Dionex  U3000) using a 

nanospray ionization source (Proxeon).  The LTQ settings were set to acquire a full MS 

scan (from 400 to 1700 m/z) followed by five data-dependent MS/MS, 2 microscans for 

both full and MS/MS scans, centroid data for all scans and 2 microscans averaged for 

each spectra, dynamic exclusion set at 1.   

The trypsin-digested AMD biofilm community sample (sample_B_run2) was 

loaded (~150 µg) onto a split-phase column (RP-SCX-RP) and analyzed via 2D-LC-

MS/MS with on a high performance LTQ-Orbitrap (ThermoFisher Scientific) coupled to a 

nanoflow high performance liquid chromatography system (HPLC, Dionex U300) using 
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a nanospray ionization source (Proxeon) as described previous.19, 69  The Orbitrap 

settings were as follows: 30K resolution on full scans in Orbitrap, all data-dependent 

MS/MS in LTQ (top five), 2 microscans for both full and MS/MS scans, centroid data for 

all scans and 2 microscans averaged for each spectra, dynamic exclusion set at 1.  The 

four filtered groundwater samples were analyzed individually via 1D-LC-(SCX-RP)-

MS/MS on a LTQ-Orbitrap (ThermoFischer Scientific) with the same settings as 

described above.   

 
7.2.4:  Data Processing 

All MS/MS datasets were searched with the SEQUEST algorithm and filtered 

with DTASelect/Contrast at the peptide level with a minimum Xcorr of 1.8 (+1), 2.5 (+2), 

3.5 (+3) and a minimum deltCN of 0.08.25, 71  Only proteins identified with two fully 

tryptic peptides from the 22 hr runs were considered for further biological study. 

Tandem MS/MS spectra were searched against the following databases:  All tandem 

MS/MS collected from Escherichia coli K-12 (single experiment) were searched against 

a database containing proteins predicted to be encoded by its’ genome, MS2 phage, 

and common contaminants (36 proteins).  All MS/MS collected from 

Rhodopseudomonas palustris (single experiment) were searched against a database 

containing proteins predicted to be encoded by its’ genome and contaminants.   All 

tandem MS/MS collected from the AMD biofilm sample was searched against two 

different databases, (i) DB1: biofilm_db1 (Tyson et al. 2004; 12,148 proteins) and (ii) 

DB2: Biofilm_5wayCG_UBA_06162006 (Lo et al. 2007; 16,170 proteins) which contains 

additions from supplementary genomic sampling at the UBA location.  All MS/MS 

collected for each groundwater sample were searched separately against the same 

database, rifle_geobacter7_01092008 (26,272 proteins) with the same parameters 

described above.  Detailed information regarding each database can be found in Table 
7.1. 
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Table 7.1:  Number of predicted proteins in the protein sequence databases 
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7.2.5:  Spectral Analysis 

Automation of the spectral analysis was accomplished through a collection of in-

house developed Perl scripts which automated the following procedures.  “mzXML” files 

representing all spectra collected during the MS analysis were parsed and divided into 

MS1 and MS2 spectra.  Concurrently, the SEQUEST results were parsed in order to 

identify the subset of spectra assigned to a peptide.  The remaining unassigned MS2 

files were then sub-divided into poor quality and high quality unassigned MS2 spectra.  

The criteria for high quality spectra classification was based on intensity and fragment 

distribution as follows.  The charge state of the precursor peptide was required to be 

greater than 1.  This conservative metric increases the likelihood that the targeted ion is 

in fact a peptide and a not a small molecule or lipid.  The absolute intensity, based on 

empirical analysis of quality spectra, was required to be above 2500 counts.  Finally, the 

MS2 spectrum was required to contain at least three fragment peaks that were within 

20% of the base peak intensity.  Any unassigned MS2 spectra not adhering to these 

criteria were classified as poor unassigned MS2 spectra.  The classification for each 

spectra was formatted for display in Excel. 

 
7.3:  RESULTS 

Detailed classification and characterization of spectra from proteomic analyses 

provides enhanced feedback of MS performance and ultimately provides greater 

proteomic depth.  The number of assigned and unassigned MS2 spectra serves as an 

excellent metric of MS run to run comparison, especially for determining the 

performance impacts between isolate and natural community samples.  Spectral 

assignment was performed on 3 proteomic samples sets (E. coli / R. palustris, soil 

groundwater, and AMD biofilm). 
 

7.3.1:  Spectral Assignment 

Following MS analysis, the raw spectra was converted to the mzXMLformat for 

further processing.154  Spectral assignment is operating system independent, but will 

perform optimally depending on the physical computer hardware.  On a 2.13 GHz dual-
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core processor with 2 GB of system memory, the spectral assignment of 137,556 

spectra required ~40 minutes of computation time.  The processing time can be reduced 

with higher performance hardware.   

 

7.3.2:  Control Sample 

Initially, a control MS experiment containing no loaded peptides was submitted 

for spectral analysis.  This control analysis was intended to result in no quality MS2 

spectra and served to illustrate the ability of the algorithm to discern between quality 

and poor MS2 spectra.  Utilizing the same experimental,  SEQUEST (E. coli and R. 

palustris protein database) and DTASelect parameters, spectral analysis of 1,158 total 

spectra resulted in the identification of 1,265 MS2 spectra (Table 7.2A).  As expected, 

all of the 1,265 MS2 spectra were not assigned to any peptides and were classified as 

poor unassigned.  These results demonstrated the ability of the spectral analysis 

algorithm used in this study to identify poor unassigned MS2 spectra.  

 

7.3.3:  Bacteria Isolates 
The proteomic analysis of E. coli resulted in the identification of 1,193 proteins 

from a total of 137,556 spectra (25,206 MS1 spectra, 112,350 MS2 spectra) (Table 
7.2B).  The 1,193 protein identifications were generated from 41,448 spectra to peptide 

assignments by SEQUEST.  This results in ~36% of collected MS2 spectra being 

assigned to a peptide.  Among the remaining 79,902 unassigned MS2 spectra: 12,830 

were classified as quality unassigned and 58,072 were classified as poor unassigned.  

An additional standard, R. palustris was analyzed and submitted for spectral analysis.  

The MS experiment resulted in the identification of 1,410 proteins from a total of 

112,600 spectra (20,093 MS1 spectra and 92,507 MS2 spectra) (Table 2B).  22,460 

spectrum to peptide assignments were made by SEQUEST, representing ~24% of the 

MS2 spectra collected during the experiment.  The unassigned MS2 spectra were 

composed of 15,664 quality and 54,383 poor quality MS2 spectra.  What is notable is 

the decrease in the percent of MS2 assigned to a peptide, 36% (E. coli) and 24% (R. 

palustris).  This decrease in the number of assigned MS2 could be the result of  
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Table 7.2:  Results of Spectral Analysis on 4 samples Including Microbial Isolates 
and Communities 
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numerous factors, including incorrect sequence information and variations in the 

sequence of post-translational modifications (PTM).  The 15,664 quality unassigned 

MS2 spectra measured in the R. palustris sample lend support that the experimental 

preparation and measurement proceeded properly and that the decrease in MS2 

assignments is the result of sequence polymorphisms or PTMs.   

 
7.3.3:  Groundwater Microbial Community 

Three different community groundwater samples resulted in the identification of 

1,671 (Cristobal), 760 (Hanna) and 61 (Borris) proteins.  The total number of spectra 

collected for Cristobal, Hanna, and Borris was 126,654 / 111,810 / 104,772 respectively 

(Table 7.2C). The variance in total spectra collected is a result of the automated parent 

ion selection of the instrument and reflects differences in sample quality and peptide 

availability for fragmentation.  The Cristobal sample resulted in the highest number of 

MS2 spectra to peptide assignments, 11,904 (~11% of MS2 spectra).  Hanna resulted in 

6,742 (~7% of MS2 spectra) and Borris with 2,648 (~3% of MS2 spectra) spectra to 

peptide assignments.  Numbers of unassigned MS2 spectra correlate well with the 

previously reported MS2 assignment results and follow expected trends based on the 

number of proteins identified and reflect the reduction of viable MS2 spectra in each 

respective sample.  That is, as the number of assigned MS2 decrease, the number of 

peptide identifications decreases.  Additionally, the number of quality unassigned MS2 

decreases while the number of poor unassigned increases.  It is evident that the 

Cristobal sample performed relatively well and resulted in significant amounts of 

peptides that were amenable for identification.  The Hanna and Borris samples, on the 

other hand, resulted in very few assignments or quality unassigned.  This suggests 

errors in the sample collection or preparation and will be further discussed later in this 

study.  The determination and categorization of the unassigned spectra provides 

significant insight into the quality of the sample, efficiency of the sample preparation, 

and instrument performance. 
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7.3.4: AMD Biofilm Microbial Community 

The soluble fraction collected from the AMD biofilm community was searched by 

SEQUEST with two protein sequence databases.  Database 1 consisted of predicted 

protein sequences directly generated from the genome sequence of the microbes 

present in the mine.  Database 2 was a refinement of database 1 and was expected to 

more accurately reflect the proteomes expressed by the microbes (see materials and 

methods).  Database 1 resulted in the identification of 1,057 proteins while database 2 

identified 1,819 proteins (Table 7.2D).  This marked increase in protein identification 

highlights the benefits of consistent protein sequence database refinement.  As the 

protein sequence database more accurately resembles the expressed proteome, the 

deeper the achievable proteomic coverage.  As before, each of the results were 

submitted for spectral analysis in order to determine what effect the database 

refinement had on the numbers of assigned MS2 spectra.  The MS analysis consisted 

of 143,874 spectra (28,747 MS1 spectra and 115,127 MS2 spectra).  Database 1 

resulted in 20,895 assigned MS2 spectra and database 2 resulted in 27,107 assigned 

MS2 spectra, an increase of 6,212 assigned MS2 spectra.  As expected the number of 

poor unassigned spectra decreased from 81,530 to 77,053 and the number of quality 

unassigned also decreased from 12,702 to 10,967.  This indicates that an additional 

1,735 quality unassigned MS2 spectra were assigned to a peptide solely from the 

refinement of the protein sequence database.  This also indicates that SEQUEST was 

able to identify an additional 4,477 spectra that were previously classified as poor 

unassigned MS2.  The refined database enabled SEQUEST to match spectra to 

peptides with sufficient scoring thresholds that were previously unobtainable. 

The proteomic results of microbial isolates and communities share numerous 

similarities and differences.  Based on the use of a consistent set of MS parameters, it 

could be expected that the distribution of spectra (number of MS1 and MS2) should be 

relatively similar among all samples.  Following spectral analysis it is obvious that 

distribution of spectra is highly dependent on the sample.  A common MS methodology 

utilizes a parent scan (MS1) to provide the specified ion targets for fragmentation (data 

dependent MS/MS).  In the experiments performed for this study, the parameters were 
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set such that each MS1 was followed by five MS2 scans (assuming a suitable parent 

ion is available).  In general, it was observed that among each sample grouping 

(standards, groundwater and AMD), the number of collected MS1 spectra was relatively 

similar.  Between groupings, the number of scans varies slightly, with the AMD sample 

resulting in the highest number of collected MS1 spectra (Figure 7.1).  Given that the 

experimental parameters and collection time are the same for all samples, the 

differences in collected MS1 scans relates to the number of suitable parent ion selected 

for fragmentation.  A decrease in the number of MS1 scans indicates that more parent 

ions were selected for fragmentation, generating a higher number of MS2 scans.  This 

is critical as this directly relates to the number of potential peptides being assigned and 

ultimately the number of proteins identified.  For the AMD samples, the increase in the 

number of MS1 scans could indicate that there is an insufficient peptide load or that the 

chromatography is not performing efficiently, resulting in redundant peptide elution.  

Additionally, it would be expected, if sufficient parent peptides are available, that the 

ratio of MS1:MS2 should be 1:5 for each sample.  Based on spectral analysis it was 

observed that for the groundwater community sample the ratio of MS1:MS2 was in fact 

1:5.  It could be hypothesized that due to the saturation of MS2 spectra, the ratio of 

MS1:MS2 could be increased to 1:6, for example, in order to target and fragment 

additional peptides.  On the other hand, the isolates (1:4.5 MS1:MS2) and AMD (1:4 

MS1:MS2) samples fall under the expected 1:5 ratio and would suggest adjustments in 

the methodology or sample load and/or chromatography.  Quantifying the number of 

MS1 and MS2 spectra provides tangible feedback regarding critical MS operational 

parameters.  Adjustments based on this analysis would result in increased numbers of 

MS2 spectra which could then lead to increased proteomic depth. 

 

7.4:  Discussion 
The spectral analysis described above attempts to classify and characterize the 

spectra collected during a MS experiment.  Utilizing this characterization provides 

additional significant feedback regarding the effectiveness of the experiment as it 

relates to sample preparation, experimental parameters and database to peptide  
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Figure 7.1: Distribution of Spectra Among All Samples 
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assignment.  To illustrate the marked differences in microbial isolate and community 
proteomic samples, several MS datasets were analyzed via spectral analysis.   

 

7.4.1:  Protein database dependence 

When a genome or metagenome of interest does not exist or is inaccessible for 

database searching, a significant, negative impact on the ability to assign MS/MS and 

generate statistically relevant peptide-protein identifications is observed.  If one or more 

species has not been sequenced within a community sample or a protein has acquired 

a mutation (e.g., deletion, single amino acid polymorphism or translocation), the 

sequence database searching methodology will simply not identify these proteins.  

Although the amount of genomic sequencing data is increasing, the rate at which 

specific species of interest are sequenced to completion is not keeping pace.  

Additionally, if a genome has been sequenced, but was sequenced poorly or has 

insufficient sequence coverage prohibiting high-quality assembly, there is an increased 

chance to have multiple truncated open reading frames (ORFs) and proteins (not full 

length) which present which can hamper maximum MS/MS assignment.  Thus, the 

quality and existence of single microbial genomes and environmental metagenomic 

sequences will impact the spectrum-peptide assignment and resulting proteome 

identifications.  On the other hand, if a genome or metagenome is not available for the 

corresponding proteome, a comprehensive collection of published reference genomes 

(based on similarity to proteins of other species) will be concatenated into a single 

database.  Although the addition of hundreds-to-thousands of reference genomes would 

be necessary to provide a wide array of sequence diversity and proteome coverage, the 

increased database size requires additional computational resources, increases 

spurious matches and false positives while decreasing the reliability and specificity of 

spectrum-peptide predictions.      

In this study, we have chosen two representative microbial isolates, R. palustris 

and E. coli.  Both isolates have finished genomes that are published and well-

characterized.  The AMD environmental community has also been sequenced as 

described by Tyson et al for DB1 and Lo et al. for DB2.20, 69  DB1 contains genomic 
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sequences (Leptospirillum group II, Leptospirillum III, archaeal species, and other 

Bacteria and Eukarya) collected from the 5-way site (often referred to as the 5-way CG 

genomic dataset).  Although DB1 is a complete composite metagenome, additional 

metagenomic sequences have since been acquired from another location in the mine, 

the UBA site, referred to as DB2 in this study.   DB2 provides additional sequence 

diversity and sequence variants unlike DB1.  To note, the average protein length and 

molecular weight are very similar and do not create any bias (Table 7.1).  In this study, 

DB1 (older) and DB2 (updated) serve to represent the impact of the “quality” of a 

sequence database on MS/MS assignment.  The groundwater environmental samples 

(Cristobal, Hanna, and Borris), on the other hand, do not have sequenced 

metagenomes.  Therefore, based on previous literature, 7 isolate Geobacter genomes 

(G. bemidjiensis, G. M21, G. sp. FRC-32, G. lovleyi SZ, G. metallireducens GS-15, G. 

uraniumreducens RF4, G. sulfurreducens) were selected and concatenated into one 

database to represent the expected community metagenome for all three proteomes.  

These samples will serve to represent the impact of not having a matched genome or 

metagenome and sequence database and its affect on MS/MS assignment.    

As demonstrated in Table 7.2 and Figure 7.2, the quality of the sequence 

database has a significant impact on the number of peptide-protein identifications and 

% of MS/MS assigned.  With the AMD proteome, the total number of assigned MS2 has 

increased from ~20,000 (DB1) to 27,000 spectrum to peptide assignments with DB2 

providing deeper proteome coverage.  The number of identified proteins has also 

increased with database quality from ~1,057 proteins with DB1 to ~1,819 proteins with 

the more representative DB2.  Furthermore, if the well characterized isolates’ database 

results are compared to either the groundwater community (reference genomes) or the 

AMD community (matched metagenome); the isolates’ database is capable of assigning 

a higher proportion of MS2s compared to either community samples, especially the 

groundwater samples.  Additionally, access to a sample derived database (DB1 or DB2) 

versus an estimated best-fit reference database (rifle_geobacter7) for community 

samples is significantly more truthful and effective  



 

 133 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.2:  Number of Spectra Assigned to a Peptide Among Microbial Isolates 
and Communities 
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based on its ability to assign more MS2 spectra.  This is especially significant 

considering that the groundwater database contains approximately twice the number of 

proteins as the AMD - DB1, highlighting that the total size of the database will not 

necessarily result in deep proteomic coverage.  These results emphasize the need and 

value for creation and usage of the most representative and complete protein sequence 

database for the MS database searching methodology.  The classification and 

assessment of collected and assigned MS-based spectra can be used as an additional 

tool to evaluate the successfulness of a database and its capability to maximize 

spectrum-peptide assignment. 

 

7.4.2:  Assigned MS2 Spectra 
A critical, but relatively hidden metric of MS based proteomics is the determination of 

the number of MS2 spectra assigned to a peptide.  As the protein identifications are 

directly tied to the assignment of peptides, it is useful to quantify the number of collected 

spectra that are contributing to the protein identifications.  Currently, the number of 

peptides identified is routinely provided by most protein database searching algorithms.  

This peptide count should not be compared to the assigned spectrum count, as these 

algorithms remove redundant spectra assigned to the same peptide, unless explicitly 

specified not to.  Figure 7.2 illustrates the marked differences in assigned MS2 spectra 

observed among the samples.  The E. coli sample resulted in the highest number 

(41,448) and the groundwater sample – Borris (2,648), the lowest number of assigned 

MS2 spectra.  Among the isolates, the R. palustris sample resulted in approximately half 

(22,460) as many assigned MS2 spectra when compared to the E. coli sample.  The E. 

coli sample serves as an excellent baseline, with ~37% of all MS2 spectra being 

assigned to a peptide due to its routine sample preparation and well curated protein 

sequence database.  The significant decrease in assigned MS2 spectra between the E. 

coli and R. palustris sample was unexpected and could be the result of several factors.  

A likely scenario is that the protein sequence database for R. palustris is not as refined 

as the E. coli database, resulting in fewer spectrum-to-peptide matches.  It is believed 

that the R. palustris sample was of sufficient quality, due to the large number of quality 
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unassigned MS2 spectra (discussed later).  The groundwater samples provided an 

interesting and correlative look at the effects of both poor sample quality and the lack of 

a matching metagenome and highlights the differences in results between isolates and 

communities.  The most successful groundwater analysis resulted in the assignment of 

11,904 spectra, nearly 75% fewer spectra assigned to a peptide when compared to E. 

coli.  The second and third groundwater samples were only able to assign 6,748 and 

2,648 MS2 spectra to peptides.  This is also fully reflected in the number of proteins 

identified: 1671, 760, and 61 respectively.  Even though a relatively low number of MS2 

assignments were made, the identification of 1,671 and 760 proteins indicates that even 

modest gains in the number of assigned MS2 spectra could result in significant gains in 

proteomic depth.  The dramatic spread in assigned MS2 spectra, even with consistent 

experimental parameters, highlights differences that can be attributed to numerous 

causes.  The most likely factor relates to the quality of the sample.  For E. coli, the 

sample is a relatively pure isolate, suspended in MS compatible buffers and solvents.  

This is in stark contrast to the community samples that contain numerous species as 

well as extraneous organic compounds and harsh solution conditions.  Additionally, the 

lack of a dedicated and matching protein sequence database significantly hinders the 

ability of SEQUEST to efficiently assign MS2 spectra to peptides.  This is more 

accurately reflected in the number of quality unassigned MS2 spectra.  Finally, the AMD 

sample illustrates the gains that are possible upon further refinement of the protein 

sequence database.  DB1 resulted in 20,895 assigned MS2 whereas DB2 resulted in an 

additional 6,212 assigned spectra.  The AMD sample is an excellent example of an 

experimentally optimized natural community sample with the number of assigned MS2 

spectra comparable to the R. palustris isolate.  The number of assigned AMD MS2 

spectra is significantly increased over the groundwater samples and again highlights the 

necessity for a suitable protein sequence database.   

 
7.4.3:  Unassigned MS2 Spectra 
Quantifying the number of MS2 spectra assigned to a peptide is direct representation of 

the sample preparation, experimental performance and ability to accurately assign 
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spectra to peptides in the protein sequence database.  In a related but distinct manner, 

the number of unassigned MS2 spectra is an additional, useful diagnostic, and further 

highlights the differences between the analysis of isolates and communities.  The 

unassigned MS2 spectra can be further sub-classified as poor quality or high quality 

(Figure 7.3).  In general the number of unassigned MS2 correlates with the sample 

quality and protein sequence database, much like the assigned MS2.  The unassigned 

MS2 spectra differ when they are further classified as either quality or poor.  By 

including this metric, additional clues about the sample, operating conditions, and 

sequence database become apparent.   

A significant amount of unassigned MS2 spectra were classified as poor.  As 

detailed in the materials and methods, these spectra either did not contain sufficient 

fragment ions, sufficient intensity or carried a single charge (+1).  The isolate samples 

(E. coli and R. palustris) were determined to serve as the baseline for comparison 

against the natural community samples.  In E. coli, among the 112,350 total MS2 

spectra collected, over 58,000 were classified as poor (51%).  A similar proportion was 

observed for the R. palustris sample, 54,383 (~59%).  Although not fully unexpected, it 

is obvious that much of the MS instrument time results in spectra that is largely 

unusable.  This statistic increases in the natural community samples with a range of 

67,741 – 85,476 poor unassigned MS2 spectra (Figure 7.4).  There are several reasons 

for the increased numbers of poor unassigned MS2 spectra in the natural community 

samples, including an abundance of low intensity parent ions, sample contamination, or 

chromatography complexities.   Among the criteria utilized to determine if a spectrum is 

quality or poor, the requirement for a charge state greater than one was chosen in order 

to produce a set of quality spectra that are more likely to be peptides.  The proteolytic 

digestion by trypsin will, in most cases, produce peptides that contain a c-terminal ‘K/R’.  

In addition to the c-terminus, the n-terminus is also a likely charge retaining location.  

Additionally, singly charged peptides will likely produce a smaller range of fragment ions 

due to the presence of uncharged fragments.  The limiting number of fragments then 

results in MS2 spectra that contain insufficient data for a peptide assignment.  Thus, it is 

more likely that desirable peptides will contain charges greater than one.  It is possible  
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Figure 7.3:  Classification of spectra in a MS experiment 

 

 

 

 



 

 138 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7.4:  Distribution of +1 Charged, Unassigned MS2 Among Microbial 
Isolates and Communities 
Percentages within each column represent the proportion of unassigned +1 MS2 for 
each sample.   
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that legitimate peptides contain a +1 charge, but the more conservative criteria was 

chosen in order to identify those spectra that are more likely peptides.  Figure 7.4 

illustrates the number and proportion of unassigned MS2 spectra that carried a single 

charge.  The isolate samples resulted in the fewest number of singly charged ions while 

two of the groundwater samples contained the largest number.  Additionally, the isolate 

samples displayed among the lowest proportion of singly charged ions relative to all 

unassigned MS2 spectra (71% & 64% +1 MS2 of all unassigned MS2).  Interestingly, 

the groundwater – Cristobal sample had a relatively low (when compared to the other 

natural community samples) number of singly charged ions: 55,924.  This more closely 

resembled the distribution found in the isolate samples.  Furthermore, with greater than 

40% of the total unassigned MS2 spectra containing multiply charged ions, it is further 

apparent that a significant amount of valuable data is present and unused.  The 

increase in not only the amount of unassigned MS2 spectra but the presence of greater 

numbers of singly charged ions in the natural samples may indicate preparatory or 

experimental optimization is necessary.  Any reduction in the number of unassigned 

spectra, or more specifically, the number of singly charge ions will likely result in great 

gains in peptide assignment and ultimately protein identification. 

The number of quality MS2 spectra varied from a high of 25,900 (Groundwater – 

Cristobal) to a low of 800 (Groundwater – Borris).  The isolates and AMD sample 

resulted in ~11,000 – 16,000 quality unassigned MS2 spectra.  These spectra represent 

quality data which, for a number of potential reasons, were not successfully assigned to 

a peptide.  An obvious cause for the lack of a peptide assignment is a disconnect 

between the protein sequence database and the experimentally measured peptide.  

This disconnect could occur for several reasons including: incorrect (sequence 

polymorphism) or missing sequence in the protein sequence database, post-translation 

modification or chimeric MS2 spectra containing multiple fragmenting parents resulting 

convoluted spectra.  The groundwater – Cristobal sample had over 25,000 quality 

unassigned spectra.  This significant number again indicates that within the sample, 

numerous, multiply charged parents were isolated and fragmented and resulted in 

daughter spectra containing a range of fragment ions of sufficient intensity.  It could be 
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concluded that the sample collection and preparation, as well as the measurement, 

proceeded successfully.  It would then follow that the lack of peptide assignment could 

be likely based on the non-specific protein sequence database.  On the other hand, the 

two remaining groundwater samples resulted in only 957 and 800 quality unassigned 

MS2 spectra.  This significant loss in quality unassigned spectra (along with the low 

number of peptide assigned MS2 spectra) indicates that either the sample collection 

was poor, or the preparation failed.  Based on repeated preparations, it could be 

concluded that the sample collection was not correct, resulting in insufficient peptide 

concentration.  Finally, the AMD sample displayed a decrease in quality unassigned 

from DB1 to DB2, 12,702 to 10,067.  This illustrates that as the protein sequence 

database was refined, previously unassigned quality spectra were successfully 

identified.  Between the isolate and community samples, it appears the availability for a 

comprehensive protein sequence database is paramount if the sample collection 

proceeds as intended.  The most significant factor affecting the number of quality 

unassigned was the availability of a suitable protein sequence database as evident in 

the groundwater – Cristobal sample, with 25,900 quality unassigned MS2 spectra, 

greater the twice that of E. coli, the designated baseline.   

The high percentage of quality unassigned MS2s in community samples should 

not be left uncharacterized, as they could contribute significantly to or unravel parts of a 

complex proteome.  Therefore, in conjunction with database search engines, de novo 

algorithms could be applied for the high quality unassigned spectra.  This is especially 

useful for instances where a matched or sample derived genome or metagenome (ie, 

groundwater samples) is not available.  One possible route is the submission of the 

entire dataset for de novo analysis, which requires significant amounts of computer 

time.  This could include MS2 spectra of poor quality as well as the redundant 

assignment of spectra that had been previously identified by SEQUEST.  An alternative 

approach utilizes only the unassigned quality MS2 spectra identified in this study.  For 

comparison, the 25,900 unassigned quality MS2 spectra from the groundwater – 

Cristobal site were submitted to PepNovo for de novo interpretation.151  Submission of 

all MS2 spectra (105,545) to PepNovo requires ~35 hours of computer time.  By 
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reducing the set of submitted spectra to only the quality unassigned MS2 spectra, the 

de novo analysis only requires 8.5 hours, a 75% reduction in computer time.  This 

significant reduction in compute time is a clear advantage of submitting only a subset of 

the collected MS2 spectra.  Furthermore, this results in a culled results output 

containing only proposed sequences of high quality MS2 that had not been previously 

assigned to peptide.  Analysis of the PepNovo output indicates that 99.8% (25,849 / 

25,900) of the high quality spectra were de novo sequenced resulting in the prediction 

of over 15,000 novel peptides.  For comparison, PepNovo analysis of all MS2 spectra 

from the second salt pulse, resulted in a decrease of assignable MS2, ~94% (9265 / 

9772).  This notable decrease in de novo sequenced MS2 can be attributed to the 

presence of poor quality MS2 spectra.   

 

7.5: Conclusion 

We have applied quantitative spectral analysis to microbial isolates and 

community MS proteomic results.  By categorizing and quantifying the distribution of full 

scan and tandem mass spectra, a refined image of the experimental performance is 

obtained.  This has resulted in a novel perspective of the effectiveness of the sample 

collection, preparation, experimental parameters, and database assignment, and will 

ultimately allow for specific optimizations in order to achieve greater proteomic depth.  

Key contrasts between isolate and community proteome samples are apparent when 

the quantity of assigned and unassigned spectra is compared.  The E. coli isolate 

samples resulted in the highest number of assigned MS2 spectra while a natural 

groundwater microbial sample had the lowest.  Multiple factors impact the ability to 

routinely identify spectra from the natural communities including sample collection and 

to a larger extent the accessibility of a match metagenome.  This also largely influences 

the number of unassigned spectra.  Remarkably, the natural samples resulted in a 

comparable number of quality unassigned MS2 spectra, with one particular groundwater 

sample exhibiting nearly double the number of spectra as the isolates, indicating that 

the sample collection and preparation were performing well.  Identifying and targeting 

these unassigned quality spectra enabled the rapid application of de novo peptide 
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assignment and resulted in an additional 15,000 high scoring peptide identifications.  

The spectral analysis has highlighted several areas that must be optimized in order to 

gain a desired completeness of proteomic depth in natural community samples.         
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Chapter 8 

 
Conclusions and Significance of the Characterization of the Extracellular Fraction 

in a Natural Microbial Community  
 

8.1: Conclusions 

The research presented within this dissertation represents a comprehensive 

characterization of the extracellular proteome from an extremophilic microbial 

community.  The integration of experimental mass spectrometric and computational 

bioinformatic approaches has resulted in the design and application of novel 

methodologies resulting in the identification and characterization of novel proteins.  

Additionally, the creation of two software platforms has enabled a rapid integration of 

top down and bottom up data sets, and a new metric for determining the effectiveness 

of bottom up analysis of complex proteomes.  The use of the developed methodologies 

and new software tools, as well as the novel protein identifications; provide the 

groundwork for the ever increasing characterization of the AMD microbial community in 

particular, and other natural microbial communities in general.   

In order to more comprehensively identify and ultimately characterize community 

proteomes, it is evident that further integration and focused analyses are necessary.  

The application of computational signal peptide prediction with experimental MS 

identification illustrates the potential to utilize historically genomic tools for proteomic 

analysis.  The reliance and availability of genomic information appears to be a rather 

untapped resource for proteomic characterization.  The application of genomic tools and 

optimization of the genome will result in vastly more proteomic information.  A number 

of genomic tools, including operon prediction, gene structure analysis and additional 

gene function prediction will result in a significantly improved genome.  This directly 

translates into increased proteomic identifications with more descriptive functional 

annotations.  Recent work has resulted in genome curation through MS peptide 

identification.38   Although effective for generating a more representative genome, this 
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does not necessarily result in proteomic gains, as this builds upon existing protein 

identifications.  Current efforts to improve the metagenome of microbial communities 

have shown that alterations in the sequencing, assembly, and annotation provide 

significant gains in proteomic analyses.     

Deep proteomic coverage is necessary in order to fully understand and 

characterize the unique pathways, interactions, and partitioning that occurs in microbial 

communities.  Direct analysis of subcellular fractions has increased the depth of 

proteomic coverage.  However, the issues of dynamic range will continue to hamper the 

identification of low abundance proteins.  Further separation techniques or combinations 

of techniques will be necessary in order to achieve the deep proteomic coverage 

necessary.  The use of metal affinity column chromatography presents one possible 

route of increasing the dynamic range of MS based proteomics.  This methodology has 

established that a combination of cellular fractionation and an affinity based enrichment 

can result in novel identifications.  Alternative methods or platforms, including gel based 

fractionation also show great promise for the depth of proteomic coverage.   

Although MS based proteomics is highly applicable to the rapid identification of 

large protein samples, the use of more specialized mass spectrometric instrumentation 

for targeted analyses is often overlooked.  The characterization of a novel cytochrome 

from the AMD microbial community illustrates the potential for more targeted 

applications of high resolution instrumentation (FTICR).  Initial experimental analyses 

utilizing Edman degradation provided a preliminary view of the now characterized n-

terminal truncation; however, this approach was not able to fully characterize the 

truncation, nor was it able to provide the specific sequence tag buried within the middle 

of the protein.  Both of these key data points were provided through the FTICR-MS 

analysis.  The specific targets generated through MS analyses should be considered for 

further characterization with the use of advanced MS instrumentation.  Details of the 

intact protein, including truncations and PTMs are readily measured.  This can provide 

yet another layer of evidence for determining the functions of the numerous unknown 

proteins in the AMD the community.  Furthermore, top down identification and 

characterization remains an under-utilized tool in community proteomics.  Determination 
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of the depth and breadth of protein modification has been largely a targeted focus.  The 

availability of instrumentation that allows for the rapid measurement of complex intact 

protein samples should be better integrated into the proteomics pipeline.  A sizeable 

amount of optimization is still required for the direct analysis of complex intact protein 

samples but considering the advancement of robust fractionation techniques it is not 

unreasonable to include top down analyses in proteomic characterizations. 

 
8.2:  Optimization of MS based proteomics through spectral analysis 

The use of spectral analysis has shed light on several metrics of proteomic 

measurements that were previously unnoticed.  The ability to chart and categorize the 

spectra collected during a MS experiment provides real-time feedback on the 

effectiveness of the experiment.  Quantifying the different types of collected spectra 

(MS1, assigned / unassigned MS2) reveals specific data points about the effectiveness 

of the sample preparation, chromatographic separation, instrumental setup and 

database assignment.  In an effort to increase the proteomic depth, a significant amount 

of focus has been directed towards the optimization of sample preparation and 

advancements in MS instrumentation.  What the spectral analysis has revealed is that 

current methodologies, although not without faults, are generating a significant portion 

of high quality spectra.  Subtle optimizations in the chromatography, based on the 

results of the spectral analysis, could provide reduced instrument time, allowing for 

increased experimental replication and gains in statistical confidence.  This also 

indicates that additional development should be directed towards increasing the portion 

of quality spectra that are assigned to a peptide.   

Spectral analysis can be used to specifically track where in the chromatographic 

elution the majority of quality spectra are present.  The use of a constant graduated 

elution generates several regions in the chromatogram where a significant portion of the 

spectra are poor quality and generate no useable data.  Further optimizing the 

chromatography in order to prolong the region where high quality spectra are typically 

eluted and minimizing the region where low quality spectra are eluted could result in 

significant gains in the amount of spectra assigned to a peptide.  This, of course, 
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directly relates to achieving a complete proteomic identification.   Additionally, the 

chromatographic optimization could significantly reduce portions of the collection time, 

providing the potential for replicated MS analyses.   

A final, and significant metric, is that a large portion of collected, quality spectra 

remain unassigned to peptides.  The unassigned spectra essentially represent useful 

data that is unused.  It is obvious, from this point alone, that specific focus should be 

given to the assignment of these unassigned spectra.  Optimization of the sample 

preparation, chromatography or instrument parameters will likely result in gains in 

proteins identified, but a subset of the collected spectra, even with the mentioned 

optimizations will remain unassigned.  This presents a significant and formidable 

challenge for MS based proteomics as there are a number of potential reasons for a 

high quality spectrum to remain unassigned.  The use of de novo assignment is one 

potential route for assigning peptide sequences to these unassigned spectra.  Currently, 

the significant amount of processor time required for de novo assignment of the 

hundreds of thousands of spectra limits its usefulness.  By only identifying and then 

submitting the high quality unassigned spectra to de novo search algorithms, significant 

time is saved and the resulting peptide identifications are complementary to those 

peptides identified from the traditional database search.  Targeting the thousands of 

unassigned spectra will result in tremendous gains in proteomic coverage, without the 

need for additional experimental optimization. 

 

8.3:  Generation of specific proteins for targeted analysis 
Ultimately the fundamental goal of MS based proteomics is the generation of 

biological inferences.  That is, can MS based proteomics provide tangible biological 

results?  One of the most overlooked aspects is that within the thousands of identified 

proteins from a given sample, a number of specific targets are identified that are ideal 

for future analysis.  This subtle, but critical point is often missed among the impressive 

amount of data generated through the analyses.  The ability to hone in on several 

proteins out of hundreds of thousands truly illustrates the benefits of these 

methodologies.  An excellent example of this is the identification, description, and 
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ultimately characterization of a novel cytochrome believed to be a key member in 

electron transport in the AMD system.  The initial identification of a highly abundant 

protein led to the realization that multiple n-terminal sequences existed.  Targeted 

analysis through high performance mass spectrometry led to an unambiguous 

identification and resulted in the correlation between n-terminal truncation and biofilm 

growth state.  An additional example lies in the enrichment of proteins through metal 

affinity columns which resulted in the identification of over one hundred previously 

unidentified proteins.  The low abundance of these proteins, along with the presence of 

high scoring domains and motifs presents these proteins as excellent targets for specific 

biochemical analysis.  The identification of these proteins through the MS 

methodologies provides evidence that these, once predicted gene products, are in fact 

expressed and are viable targets to pursue.  By targeting a subset of the proteins 

identified by MS, who are noted for a particular sequence or functional characteristic, it 

is possible to rapidly and efficiently describe these proteins with the goal of describing 

the biological pathways from which they represent. 

  

8.4: Future directions 

A progression towards additional integration of advanced bioinformatic principles 

with the analytical measurements will result in significant gains in proteomic 

characterization.  Currently, the computational aspect of MS based proteomics is 

witnessing a surge of interest, with more and more focus directed towards developing 

more rapid algorithms that are capable of handling the immense datasets.  A serious 

challenge exists though in the ability to efficiently integrate the new informatics 

approaches with the multitude of experimental data generated.  As the data becomes 

more and more proprietary, due to data file size constraints, the informatics tools must 

be adept at handling and interpreting these formats.  Currently, this step is often a 

challenge for data analysis, whereby raw data is required to be converted to plain text 

for analysis.  Additionally, as the sample sets become increasingly complicated, the 

datasets are too becoming too large to efficiently interpret.  Specific focus must be 

applied to create tools that are able to present data efficiently to the informatics 



 

 148 

algorithms for analysis and then to efficiently present the results to the researcher for 

interpretation.  One potential area of integration could be through the use of 

computational databases that utilize a user friendly front-end for interaction.  This would 

result in an efficient manner in which to store both the experimentally derived data and 

the results of the data following analysis.  This would also create a means to rapidly 

interrogate the results of not only one MS analysis but a catalog of archived data.   

From an experimental point of view, the lack of top down integration is a 

fundamental are of mass spectrometry that must be included in future proteomic 

analyses.  As the ability to reduce the complexity of community microbial samples 

increases, the applicability of TD analyses follows.  The direct analysis of the intact 

proteins provides specific hooks towards biological function that is unseen with the more 

adapted bottom up methodologies.  The current and next generation of MS instruments 

are capable of measuring the range of masses present in an sample containing intact 

proteins with both high accuracy and resolution.  Although the chromatographic 

separation of intact proteins will remain an inherent obstacle, the optimization of new 

separation techniques, such as Gel-Eluted Liquid Fraction Entrapment Electrophoresis 

(GELFrEE), will result in complex reduced samples that are amenable to top down 

analyses.155   Through the integration of top down and bottom data sets, the suite, 

range and frequency of post-translational modifications can be efficiently determined.   

 

8.5 Perspective 

The research presented here provides a comprehensive proteomic 

characterization of an extracellular fraction from a microbial community.  The challenges 

inherent with complex proteomic analyses have resulted in the coupling of high 

performance mass spectrometry along with the design, integration, and application of 

bioinformatic algorithms.  The advancements in technological integration provide a 

suitable pathway to begin to target more complex microbial communities.  The 

proteomic results presented within provide a solid foundation for targeted biochemical 

analyses.  For example, identified proteins exhibiting dramatic expression changes that 

correlate with the biofilm developmental state or the TonB like protein exhibiting no 
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marked affinity for Fe but displaying limited sequence homology to known TonB proteins 

are excellent examples of target proteins from the hundreds of thousands that exist 

within the community.  This work represents significant progress towards the ultimate 

goal of a complete identification and eventual characterization of the AMD microbial 

system.  

Over the last five years microbial proteomics has shown remarkable progress.  

The transition from reporting summaries of protein identifications of cultivable, single 

isolate microorganisms, to global analyses of increasingly complex natural microbial 

communities has not halted the advancement and application of biological mass 

spectrometry.  Over the next five years it is not unrealistic to imagine that complex 

community analyses will be considered as routine as isolate proteomics is currently 

considered.  Intense research devoted to several of the avenues described above will 

raise the standards for MS based proteomics yet again.  It is obvious that current 

proteomic discoveries do not present biological dead ends, but instead create even 

more paths for targeted research.  One potential front that may pave the way for the 

next leap forward for proteomics is the advancements in metagenome sequencing.  

Next-generation sequencing technologies are promising greater accuracy with 

increased sequence coverage, reduced costs, and, higher throughput.  A more accurate 

metagenome, from deeper sequence coverage and improved assembly, translates into 

increased spectrum to peptide assignments.  With additional metagenomic sequence 

coverage of highly diverse microbial communities, from decreased costs and increased 

throughput, a greater pool of information will be available for sequence-based contrasts 

and comparisons.  Assuming these metrics can be met; metaproteomics will stand to 

gain tremendously.  As the ultimate goal is a gain in biological insight, continued focus 

on mining biological inferences from integrated metagenomic-metaproteomic datasets 

will solidify mass spectrometry as the foundation for cutting edge environmental 

proteomics.   
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