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ABSTRACT 

Plasminogen activator inhibitor-1 (PAI-1), a member of the serine protease inhibitor (serpin) 

superfamily of proteins, circulates in blood in a complex with vitronectin (VN). These two 

proteins are also found localized together in the extracellular matrix in many different 

pathophysiological conditions. Both of these proteins are involved with a number of 

physiologically important processes. Though PAI-1 is a well-known inhibitor of serine proteases, 

more emphasis is now geared towards its protease independent functions. VN, on the other hand, 

is a binding protein that exists in the circulation in a preferred monomeric conformation. 

However, in the extracellular matrix, VN exists as multimer with altered conformation. Though 

the exact reason for such conformational alterations and compartmentalization is unknown, there 

are a number of biomolecules, including PAI-1 that are proposed to cause such alterations. In last 

few years, sufficient experimental evidence has been gathered to confirm this protease- 

independent effect of PAI-1 by which it induces multimerization of VN in a concentration-

dependent fashion. It has been observed also that PAI-1 remains associated with this multimeric 

complex for several hours. A major focus of this dissertation work was to extend our 

understanding of the mechanism of the interaction between these proteins and to explore the 

physiological relevance of the multimeric complexes formed by their interaction on cellular 

adhesion and migration. In our study, emphasis has been given to the presence of an appropriate 

microenvironment so that the role of the multimeric complexes could be investigated in a 

relevant biological setting. Our findings indicate the importance of the surrounding 

microenvironment in establishing the specific role of the VN/PAI-1 complex in cell-matrix 

interactions. In a previous study from our lab, it was found that vitronectin knock-out mice were 
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more resistant to Candida infection compared to wild type C57Bl/6 mice. One of the goals of 

this dissertation work was to provide a mechanistic explanation for their increased survival of the 

vitronectin knock-out mice upon Candida infection. Another important aspect of this work was 

to establish biophysical methods for understanding the structural changes that happen in PAI-1 

naturally or due to ligand binding.   
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CHAPTER-1 

General Background 

 

1.1. Vitronectin 

1.1. a. Localization & Biosynthesis  

Vitronectin (VN) is a glycoprotein that was initially termed as „serum spreading factor‟ 

because of its presence in human serum and involvement in cellular attachment [1]. Originally it 

was purified from serum using glass bead chromatography columns [1]. This protein, when 

isolated from human serum, could support cell growth and spreading of fibroblast and epithelial 

cells under serum-free conditions [2-3]. Podack et al. first reported a method of purification of 

this protein from plasma [4]. The concentration of VN in the circulation is about 0.2-0.4 mg/ml 

(0.3-0.6µM) [5-6]. The presence of VN in the extracellular matrix and tissue was first reported 

by Ruoslahti and his group [7]. With specific monoclonal antibody staining, this group clearly 

showed the presence of vitronectin in fetal membrane tissue and in the extracellular matrix 

associated with the surface of fibroblast cells [7]. They were the first to denote „serum spreading 

factor‟ as „vitronectin‟ because of its glass-binding and cell-adhesive properties. S-protein is 

another circulatory protein that was identified as part of a soluble complement complex, known 

as the SC5b-9 complex [8]. Later, cDNA sequence analysis and immunological/functional 

studies confirmed that VN and S-protein were identical proteins [9-12]. In blood, VN circulates 

mainly as a monomer [13-14], but in the extracellular matrix it exists as a multimer. The source 

of extracellular matrix-associated VN has been thought to be mainly from the plasma. While the 
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exact mechanism for its compartmentalization is unknown, it is accepted that vitronectin has 

specific and distinct functions in the blood and extracellular matrix. 

The primary site of VN synthesis is the liver, and a severe reduction in the plasma level 

of VN has been observed in patients with cirrhosis of liver and liver failure [5, 15-16]. The 

presence of VN has been observed in the medium of cultured hepatoma cell lines, e.g. HepG2 

and Hep3B [13, 17]. VN is expressed at a high level in tumors also [13-14]. Endodermal sinus 

tumor cells (yolk sac carcinoma cells resembling parietal endoderm) derived from human 

testicular teratoma have also been found to secrete VN, and they do not require serum for 

attachment and growth [18]. Hetland et al. reported that monocytes and macrophages could also 

synthesize and secrete VN in the culture medium [19]. The other major site of VN synthesis is 

the platelet. Parker et al. first reported the intracellular storage of VN in platelets [20]. Later in 

the same year, Preissner et al. quantified the amount of VN present in platelets (8.1 +/- 

4.6µg/10platelets) [21]. 

1.1. b. Structural Organization and Post-translational Modification 

      While VN is an important protein involved in several physiological processes, it is 

unfortunate that no high-resolution structure for full-length vitronectin has yet been solved. The 

protein appears to be organized into distinct domains: the N-terminal SMB (somatomedin-B) 

domain, the central domain and the C-terminal domain as shown in Figure-1.1. A crystal 

structure of the recombinant SMB domain in complex with recombinant PAI-1 has been 

determined [22]. The structure of this SMB domain has been included in Figure-1.1. There are 

three other NMR solution structures available for the SMB domain (a recombinant SMB domain, 

SMB domain isolated from purified monomeric VN from blood and recombinant SMB domain  
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Figure-1.1: The structural model of VN includes several domains. Cyan: crystal 

structure of SMB domain (1-44 aa) [22], Amber: Intrinsically disordered domain (48-

130 aa) predicted by PONDR, Green: Central domain predicted to be four bladed β-

propellers (131-323 aa), Red: C-terminal domain, predicted to have half of four bladed 

β-propellers (354-456 aa), yellow: region in SMB that contacts with PAI-1 [26-27]. ‘S’ 

indicates sulfations, ‘P’ indicates phosphorylation and ‘Y’ indicates glycosylation. 

Figure 1. 1: Domain organization of VN 



4 

 

expressed in Pichia) [23-25]. Though certain differences exist among all of these solved 

structures in terms of disulfide bond arrangements, folding and secondary structure, the main 

similarity that they share is the presence of a surface exposed patch of hydrophobic residues 

(encompassing Phe13, Val15, Leu24, Tyr27 and Tyr28) responsible for ligand binding (PAI-1, 

urokinase Plasminogen Activator Receptors). For all the other domains in VN, only 

computationally predicted models are available [26]. These models indicate that the central 

domain adopts a full four-bladed β-propeller fold like that described in hemopexin and gelatinase 

[26]. The C-terminal domain is predicted to contain half of that four-bladed β-propeller fold. We 

also know from bioinformatic analysis with PONDR that the region between the SMB domain 

and central domain (residues 54-130) is intrinsically disordered [27] asdepicted in Figure-1.1. A 

lower resolution structure of full length monomeric VN was proposed by the Peterson laboratory 

using small angle X-ray scattering data [27]. This model indicates that the entire molecule 

possesses a peanut-shaped bi-lobed structure that remains extended in solution (maximum length 

of about 110 ). 

VN contains a total of 14 cysteine residues. Out of these, eight are present within the 

SMB domain and form four disulfide linkages. Though there were controversies related to the 

arrangement of these four disulfide bonds, a recent publication from Li et al. claimed that the 

correct arrangements of the disulfide linkages in the SMB domain of native VN are: Cys5–

Cys21, Cys9–Cys39, Cys19–Cys32, andCys25–Cys31 [28].  Such extensive disulfide bridging 

makes this SMB domain strongly resistant to proteolysis [29].  Six other cysteine residues (Cys- 

137, 161, 196, 274, 411, 453) are located within the central and C-terminal domains. Cys-274 

and Cys-453 are known to be disulfide linked [5]. This disulfide linkage has an important role in 
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the formation of the two-chain form of VN. VN in circulation exists in two different forms: a 

single chain and a two-chain form [7, 30-32]. This results from the genetic polymorphism that 

exists at residue 381 of VN. Tollefsen et al. found that the presence of Thr instead of Met at 

position 381 makes the protein more susceptible to proteolytic cleavage at R379 [33] and results 

in the formation of the two-chain form of VN connected by a disulfide linkage between Cys274 

and Cys453.  Cys137 and Cys161 within the central domain form the intra-domain disulfide 

linkage. Cys196 and Cys411 are free but remain buried within the folded structure [26, 34].   

         VN also contains several other post-translational modifications, including glycosylation, 

sulfation and phosphorylation. There are three N-linked glycosylations at residues N67, N150 

and N223 [5, 35]. Recently Sano et al. reported that reducing the extent of glycosylation on VN 

increased multimerization and also collagen binding [36]. Tyrosine residues at position 56 and 

59 have been found to be sulfated by the action of a membrane enzyme in the Golgi which is a 

tyrosylprotein sulfotransferase [37]. The presence of these sulfated-tyrosines within the relatively 

acidic region (residue 53-64) of VN has been proposed to be important for interaction with the 

thrombin-antithrombin complex. VN is phosphorylated at many different sites, which include 

Thr60, Thr67, Ser362 and Ser378. There are several different kinases implicated in the 

phosphorylation of these residues. Korc-Grodzicki et al. reported that a cyclic-AMP dependent 

kinase (PKA) released from platelets upon thrombin activation could specifically phosphorylate 

VN at Ser378 [38]. Though phosphorylation by PKA was mainly limited to the single chain 

form, the presence of heparin apparently caused phosphorylation of the two-chain form also [39]. 

Phosphorylation at this residue appears to lower the binding affinity of vitronectin for PAI-1 and 

plasminogen and thus has been implicated in fibrinolysis [40]. Seger et al. reported 
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phosphorylation of Thr50 and Thr57 by casein kinase II (CK2), which is found in blood and on 

the surface of blood cells like neutrophils, platelets etc. Phosphorylation at these residues has 

been implicated in cell adhesion/spreading and also in induction of αvβ3-mediated cell signaling 

[41-42]. Phosphorylation at Ser262 is thought to be mediated by protein kinase-C (PKC) and is 

implicated in providing resistance to plasmin cleavage [43]. 

1.1. c. Physiological Function of Vitronectin 

VN is an important protein involved in several physiological processes; the multifunctional 

nature of this protein results from its ability to recognize various ligands including the thrombin-

antithrombin complex (T-AT) [44-45], heparin [46-48], PAI-1 [49-51], complement proteins 

[52], and several cell surface receptors, including integrins and the urokinase plasminogen 

activator receptor (uPAR) [53-59]. VN exhibits functions that are specific to its localization. For 

example, in blood it has a role in the regulation of thrombus formation, coagulation and 

fibrinolysis, whereas in the tissue or extracellular matrix, it has an important role in regulating 

pericellular proteolysis, wound healing, inhibition of the membrane attack complex, and cellular 

adhesion/migration. 

The regulation of thrombus formation, coagulation, fibrinolysis, wound healing and 

pericellular proteolysis by VN is mediated by its interaction with heparin, the T-AT complex and 

PAI-1 [60-66]. Coagulation is mediated by thrombin, which transforms fibrinogen into fibrin. 

There are a number of serine protease inhibitors (serpins) that control the amount of active 

thrombin in the circulation. Among those, the most important is antithrombin-III [5]. This 

inhibitor by itself causes slow inactivation of thrombin (T), whereas in the presence of heparin, 

the inactivation rate is significantly accelerated [67-69]. Heparin binding to antithrombin-III 
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(AT) causes a conformational change in the inhibitor, which stabilizes the complex by 

decreasing the dissociation constant [70-71]. Bound heparin on antithrombin-III acts as a bridge 

to bring the inhibitor and the protease spatially close to each other which increases the rate of the 

reaction [70]. After the formation of the T-AT complex, heparin is released; the formation of the 

protease-inhibitor complex results in a further conformational change in the inhibitor that 

reduces its affinity for heparin [72-73]. Released heparin can then cause further rounds of 

thrombin inactivation. VN acts a heparin scavenger and thus regulates the rate of antithrombin 

inactivation of thrombin [74-75]. Furthermore, VN has been found to bind to the T-AT complex.  

Binding to the TAT complex occurs through thrombin and appears to be stabilized by disulfide 

linkage [45, 75-76]. Binding induces a conformational change in VN that can be probed by a 

conformationally specific antibody [44, 77]; this change results in an increase in the affinity for 

heparin. Thus, it has been proposed that the pro-coagulant nature of VN requires the presence of 

the T-AT complex in the blood [31, 74]. It has been also proposed that VN plays a role in the 

clearance of the T-AT complex when it binds and forms the ternary complex. It appears that the 

VN-T-AT complex interacts with the surface of HepG2 cells and then can be internalized and 

degraded. This clearance is inhibited by heparin, indicating the involvement of heparin binding 

domain of VN [78]. 

Plasminogen activator inhibitor-1 (PAI-1) is a biomolecule that plays an important role in 

the regulation of plasminogen activation to form its active counterpart plasmin. Regulation is 

achieved by the ability of PAI-1 to inhibit tissue-Plasminogen Activator (tPA) and urokinase-

Plasminogen Activator (uPA), the two common serine proteases that are involved in the 

activation of plasmin [79-80]. By regulating activation of plasmin, PAI-1 participates in the 
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regulation of fibrinolysis, pericellular proteolysis and wound healing. VN has been found to 

contribute to such regulation in two ways. First of all, VN increases the half-life of PAI-1 and 

thus keeps it stable for a longer time [81-82]. As a result, PAI-1 remains active in its inhibitory 

form for a longer period of time. VN is also known to localize PAI-1 to its specific site(s) of 

action. For example, VN was found to localize PAI-1 in the fibrin clot and thus influence the role 

of PAI-1 in fibrinolysis. The presence of VN in the fibrin clot increased the affinity of PAI-1 

binding to the clot site and also kept PAI-1 stable for longer period of time [61]. 

       VN acts as an inhibitor of the membrane attack complex (MAC) formed by the assembly of 

complement proteins. MAC forms a pore by inserting into the membrane of target cells and 

causes their lysis. MAC is built by the sequential assembly of various complement proteins, 

including C5b, C6, C7, C8 and C9 [83-85]. Each of these individual units is hydrophilic, but 

their assembly results in the formation of an amphiphilic complex. Once the complex between 

C5b, C6 and C7 is formed, the initial hydrophilic-to-amphiphilic transition happens [86-87] and 

this complex is targeted to the membrane. Membrane-inserted C5b-7 complex binds to C8, and 

the resulting complex catalyzes polymerization of C9; the entire C5b-9 complex adopts an 

amphiphilic, membrane pore forming, tubule-like structure that causes cytolysis [88-90]. VN can 

regulate the formation of this active membrane attack complex. It binds to the C5b-7 complex 

and inhibits the hydrophilic-amphiphilic transition and renders the complex soluble (SC5b-7). 

Though the subsequent binding of this complex to C8 and C9 can occur, polymerization of C9 

does not happen and thus the entire complex becomes inactive [8, 91]. 

Regulation of cellular adhesion/migration comes from the ability of VN to act as a matrix 

protein that can bind to different cell surface receptors like uPAR (urokinase plasminogen 
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activator receptor) and certain subclasses of integrins [92].VN has been found to regulate 

adhesion and migration properties of different cell types, e.g. fibroblasts, endothelial cells, 

megrakaryocytes, platelets, tumor cells, etc [92]. VN modulation of cellular adhesion and 

migration has been implicated in various physiological processes, including angiogenesis [66]. 

Integrins are heterodimeric cell surface receptors that are known to establish a link between the 

extracellular matrix and cytoskeleton. There are approximately 24 different types of integrins 

that can recognize a variety of extracellular matrix components [93]. Many of them can interact 

with VN, including αvβ1, αvβ3, αvβ5, αvβ6, αvβ8 and αIIbβ3 [13, 94]. Recently Mac1 (αMβ2) 

has been added to the growing list of vitronectin partners [95]. Out of all these, αvβ3 and αvβ5 

are thought to be the two most common cell surface receptors for VN and have been found to be 

overexpressed in activated endothelial cells undergoing angiogenesis [96-97]. Several 

antagonists of these two integrins are currently being studied for the inhibition of angiogenesis as 

a possible treatment strategy for cancer [98-99]. Most of these integrins recognize VN via an 

RGD sequence (residues 45-47) that is located immediately after the SMB domain. uPAR is 

another cell surface receptor that is anchored to the membrane via a GPI 

(glycosylphosphatydylinositol) link. The primary function of uPAR is to bind and localize uPA 

at the cell surface and regulate pericellular proteolysis [100]. uPAR has three distinct domains 

(DI, DII and DIII), which together form a central cavity that contains the uPA binding site [101-

102]. The VN binding site is located on the outside of this cavity along the outer surface of the 

protein [103]. Thus, uPA binding does not block VN binding; rather binding of uPA causes an 

increase in the affinity of uPAR binding to VN. The uPAR-binding site on VN is located within  
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the SMB domain. Figure-1.2 summarizes the variety of interactions of cell surface receptors 

with matrix-associated VN. A major focus of this study is to understand the role of VN in 

regulating cellular adhesion and migration in relation to its interaction with Plasminogen 

Activator Inhibitor-1 (PAI-1). 

As mentioned above, VN exists as monomer in the circulation, but the preferred 

conformation of its matrix-associated form is multimeric. Multimeric and monomeric VN exhibit 

distinct functional properties. Multimeric VN was found to bind more to collagen compared to 

monomeric VN [104]. Multimeric VN also appears be endocytosed through an αvβ5-dependent 

process in skin fibroblast cells; this was not observed with monomeric VN [105-106]. Another 

example is that only multimeric VN was found to induce tyrosine phosphorylation by binding to 

αvβ3 on the endothelial cells [107].  

In the last few years, researchers have begun to understand the importance of VN in 

pathogenic infections. For example, Candida albicans was found to possess αvβ3-like or αvβ5-

like receptors for VN binding, and it was also shown that binding of Candida to endothelial cells 

was VN mediated [108]. One of the major aims of this research is also to compare Candia 

infection and pathogenesis between vitronectin knock-out mice and wt C57BL/6 mice. 
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Figure-1.2: A simplistic representation of the extracellular matrix comprised of a few 

major components, including collagen, laminin, proteoglycan, vitronectin and 

fibronectin is shown. Cell surface receptors (uPAR & integrins) interacting with VN 

associated with the extracellular matrix are shown. The domain organization of 

vitronectin with proposed binding sites for both uPAR and integrins is also shown. 

Figure 1. 2: Vitronectin as a part of the ECM interacting with cell surface receptors 
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1.2. Plasminogen Activator Inhibitor-1 (PAI-1) 

1.2. a. Expression and Regulation 

PAI-1 is another member of the serpin family of proteins. Like VN, it is found to be present in 

the circulation and extracellular matrix. In the circulation, PAI-1 concentration varies between 5-

20ng/ml. Under normal physiological conditions PAI-1 is released into the circulation by a 

number of cells, including platelets, smooth muscle cells (SMCs), hepatocytes and adipocytes 

[109]. In addition, under many pathological conditions, high expression of PAI-1 is observed in 

other cell types, e.g. vascular endothelial cells and tumor cells. Plasma concentrations of PAI-1 

can be dramatically increased in several inflammatory disease conditions, including 

atherosclerosis, severe sepsis etc [109-110]. An elevated plasma concentration of PAI-1 has been 

also observed in various thrombotic disorders, including myocardial infarction and deep vein 

thrombosis [111-113]. High levels of PAI-1 are positively correlated with the invasiveness of 

several different types of cancers [114]. In an immunohystochemical study of more than a 

hundred breast cancer patients, Dublin et al. showed that high levels of PAI-were positively 

correlated with both the grade and invasiveness of the various breast tumors. They also found 

that PAI-1 expression was elevated in the stromal fibroblasts associated with the tumors [115]. It 

appears that visceral abdominal adipocytes express high level of plasma PAI-1 in patients with 

central obesity [116-117]. Both obesity and insulin resistance are now known to be associated 

with high levels of PAI-1 in plasma [118-119]. 

The expression of PAI-1 can be regulated by inflammatory mediators like 

lipopolysaccharide (LPS). Cultured endothelial cells showed increased expression of PAI-1 in 

the presence of LPS [120]. Various inflammatory cytokines also cause induction of PAI-1 
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expression. TGF-β1 is one of the most potent inducers. Vascular injury causes release of TGF-β1 

from the α-granules of platelets, and then the local expression of PAI-1 becomes elevated. TGF-

β1 and PAI-1 mutually control expression of each other via a feed-back mechanism [109, 121-

123]. Interleukin-1 (IL-1) and TNF-α are also implicated in transcriptional activation of PAI-1 in 

endothelial cells and fibrosarcoma [109]. Plasma levels of PAI-1 are elevated in type-II diabetes 

patients with hyperglycemia [124]. In vitro studies showed that addition of glucose and insulin to 

the culture medium increased PAI-1 expression by vascular endothelial cell and SMCs [125-

126]. Besides insulin, its precursor molecules, such as proinsulin and split-insulin, have also 

been found to cause induction of PAI-1 expression in cultured endothelial cells [127]. Cultured 

hepatocytes showed increased expression of PAI-1 by free fatty acid (FFA, elevated in diabetes 

mellitus) and very-low-density lipoprotein (VLDL, elevated in hypertriglyceridemia) [109, 128]. 

Another important factor that has been found to be involved in the up-regulation of PAI-1 is 

angiotensin-II [129]. Activation of the renin-angiotensin system is associated with increased risk 

of ischemia, which appears to be mediated by elevation of PAI-1 expression in plasma [130-

131]. 

1.2. b. PAI-1 as a Member of the Serpin Family of Proteins 

The primary function of PAI-1 is to regulate the cleavage of plasminogen to yield its active 

counterpart, plasmin. Regulation is achieved by PAI-1 inhibiting the proteases, tPA & uPA. 

Studies with bovine PAI-1 indicate that it can also inhibit plasmin directly [132]. Indeed, PAI-1 

can act on other proteases, but with low efficiency [133]. Serpin molecules contain a reactive 

center loop (RCL) that acts as bait for the serine proteases. RCLs of all serpins contain a scissile 

bond (termed the P1-P1
/
 peptide bond) recognized by specific target proteases. For PAI-1, R346-
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M347 forms this P1-P1
/
 scissile bond [134]. The residues located at the N-terminal side of the 

scissile bond are denoted as Px (where, x=1, 2, 3.etc). In other words the residues at the N-

terminal side of the scissile bond are termed as P1
/
, P2

/
, P3

/
, P4

/
 etc. The residues that are located 

at the C-terminal side are termed as Px
/ 
(where, x=1, 2, 3….etc.). In other words the residues at 

the N-terminal side of the scissile bond are termed as P1, P2, P3, P4 etc. The general reaction 

mechanism for serpin-mediated inhibition involves these steps (see Figure-1.3, [135]): a. 

formation of a non-covalent Michaelis complex between the serine protease and the P1-P1
/
 

scissile bond, b. cleavage of the P1-P1
/
 scissile bond and formation of a covalent acyl 

intermediate between the serine residue of the protease and the P1 residue of the serpin. This is 

shown as the loop-bound acyl enzyme in Figure-1.3, c. pre-insertion of the RCL bound protease 

indicated as loop-displaced acyl-enzyme complex, d. insertion of the N-terminal portion of the 

RCL (from P1 residue) into the central β-sheet A region of the serpin body. During this insertion, 

the covalently linked protease is translocated via a major conformational change so that it moves 

~70Å to the opposite face of PAI-1.  With this translocation, the structure of the protease is also 

perturbed, leading to disruption of the active site conformation of the protease [136-140]. For a 

usual serine protease reaction, formation of the acyl enzyme intermediate is followed by the 

substrate release step and regeneration of the active site.  In contrast, when the active site 

conformation of the serine protease is disrupted due to this dramatic translocation, the substrate 

release step of the serine protease reaction is hindered. As a result, the serpin involved in this 

reaction is permanently consumed and the protease is also permanently inhibited. Because of 

this, serpins are called suicide inhibitors. 
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Figure-1.3: The basic scheme of serpin reaction mechanism includes formation of 

noncovalent michaelis complex (step-a), cleavage of the RCL with covalent attachment of 

the protease with the serpin (step-b), pre-insertion of the RCL with the bound protease 

(step-c). At this point the serpin reaction may take two pathways. It can act as a 

substrate which results in the release of active protease with permanent cleavage of the 

serpin or the serpin may act as an inhibitor. In the inhibitor pathway,y the protease 

undergoes a 70Å translocation to the opposite face of the serpin followed by the 

permanent destruction of the protease active site (step-d) [134]. 

  

Figure 1. 3: Basic scheme of the serpin reaction mechanism 
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Figure-1.4 shows the structure of the Michaelis (non-covalent) complex formed between α1-

proteinase inhibitor (PI)-Pittsburg (a natural variant of antithrombin, containing a Met to Arg 

mutation at P1) and trypsin [141]. Since the formation of the Michaelis complex between the 

serpin and the target protease is typically transient and not amenable to crystallization, seven 

stabilizing mutations (to prevent polymerization) were introduced in α1-PI-Pittsburg. Also, the 

C232S mutation was introduced in order to prevent formation of an intermolecular disulfide 

linkage. The active site serine of trypsin has also been changed to alanine (S195A), to yield 

catalytically inactive trypsin). With all of these changes, Demetiev et al. could solve the only 

crystal structure of the non-covalent complex between a serpin and its target protease [141]. This 

structure shows minimum contact between the serpin and the protease. The P1 Arg side chain 

was inserted into the S1 specificity pocket of the protease and thus made extensive contacts. 

Other than that, there were hydrogen bonds formed between the backbone residues P2
/
-P2 of the 

serpin and the backbone residues of the trypsin. Figure-1.5 on the other hand, shows the 

structure of a covalent complex between α1-antitrypsin and trypsin [142]. This structure shows 

that the protease portion of the complex experiences a major translocation of ~ 71A
0
 towards the 

opposite pole of the serpin after forming the covalent bond. In this study, Huntington et al. also 

found that the formation of this covalent linkage and the subsequent translocation caused 

significant loss in the structural integrity of the protease molecule (including distortion of the 

active site), rendering it more sensitive towards destruction by protease. Although we do not 

have the structure of PAI-1 in its active conformation or in its protease bound form, it is believed 

that PAI-1 follows the same inhibitory mechanism of the serpin family of proteins represented by 

the 1-antitrypsin-trypsin pair. With an environmentally sensitive fluorescent probe (NBD) 
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Figure-1.4: A noncovalent complex (Michaelis complex) between S195A trypsin (shown 

in gold) and α1-proteinase inhibitor Pittsburgh (containing seven stabilizing mutation 

and C232S mutation, shown in brown) [141]. Figure-1.5: A covalent complex between 

active trypsin (shown in turquoise) and α1-antitrypsisn (shown in gray color). Dotted 

region within covalently linked trypsin indicates disordered structure from 

conformational transition [142]. This structure also shows a 71A
0
 translocation of P1 

Met of α1-antitrypsisn (covalently linked with trypsin) and insertion of the cleaved 

reactive center loop as 4
th

 β-strand (shown in yellow) of the central β-sheet (shown in 

red). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. 4: Non-covalent 

complex between trypsin and 

serpin 

Figure 1. 5: Covalent complex 

between trypsin and serpin 



18 

 

placed at P9 position, Lawrence et al. showed that the inhibition of protease by PAI-1 involves 

the formation of an initial covalent complex and a subsequent movement of the RCL loop 

towards the central β-sheet region along with the protease [137]. Egelund et al. later showed that 

the linkage formed between PAI-1 and uPA is an ester linkage, as found with other serpin-

protease partners [143]. 

1.2. c. PAI-1 and its Inherent Structural Flexibility 

The presence of the reactive center loop (RCL) makes the serpins special. The RCL acts as 

substrate bait for the protease attack.  The RCL is a highly mobile structure with a great deal of 

conformational flexibility. Several different conformations of the RCL have been found to exist 

in nature [144-145]. Ovalbumin is a noninhibitory serpin characterized by an RCL that contains 

a 3-turn α-helix. The RCL in this protein is completely exposed [146-147] and acts simply as 

substrate, and the reaction with protease is not followed by an insertion of the RCL to the central 

beta sheet region for ovalbumin. Many groups have proposed that the RCL needs to be at least 

partially inserted in order for serpins to be effective inhibitors. This requires flexibility in the 

region spanning the base of the RCL [144, 148-149]. Mutation in the base region residues, 

especially at the conserved P12 residue (Ala for all inhibitors), causes severe impairment to the 

inhibitory activity. For example, mutation of the P12 (Ala) residue by glutamate completely 

disrupted the inhibitory activity of C1-inhibitor [150]. The conclusion was that the flexibility in 

the base region is required for the partial insertion of the RCL loop in order to maintain 

inhibitory properties. Lawrence et al. reported that mutation of the P14 residue (Thr333) of PAI-

1 to a charged residue caused a total loss of the inhibitor activity towards uPA & tPA but 

maintained the protease binding activity [138].  It has been proposed that the presence of a 
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charged residue at this position retarded the insertion of the RCL and thus impaired the inhibitor 

function by precluding the large conformational change upon inhibition of the protease. At times, 

cleavage of the RCL at, or outside of, the P1-P1
/
 sequence by some non-target proteases may 

leave the serpin in a proteolytically cleaved inactive form. Such cleaved serpins also exhibit 

insertion of the newly generated C-terminal end of the RCL loop (corresponding to the P1 

position) into the central β-sheet region [149, 151-152]. Translocation of the RCL in these 

cleaved forms also causes a separation of the P1 and P1
/
 residue by 70A

0
. Structural flexibility of 

the RCL is thus closely connected with the inhibitory function of serpins. Furthermore, insertion 

of the RCL requires a conformational change in other parts of the serpin. A prerequisite for 

successful insertion is a sliding movement of the β1-3A of the central β-sheet and helix-F away 

from the structure so that the groove region between strand 3A and 5A is opened for the RCL 

insertion [153]. Egelund et al. performed a thorough study on different forms of PAI-1 (active, 

latent, cleaved and complex with protease) and showed that with each separate form there were 

specific conformational changes associated in different region of the protein other than in the 

RCL and central β-sheet [154]. 

          With some serpins the conformational lability can be so pronounced that the RCL can 

undergo self-insertion into the central β-sheet region without the involvement of any protease. 

Such a conformation in serpins is called a latent form, reflecting the absence of anti-protease 

activity in this structure. For example, there is a natural variant of antithrombin that can be found 

in patients exhibiting premature thrombosis, where mutation of Thr85 (situated at the main 

opening of the central β-sheet) to Lys has made the RCL extremely labile so that spontaneous 

self insertion is observed. As a result, the serpin converts to a latent form and permanently loses 
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its protease inhibition function. This variant is called antithrombin Wobble [155]. Patients 

carrying this variant of antithrombin show onset of thrombosis near the age of 10. Another 

variant of antithrombin is antithrombin Wibble, which contains the Thr85Met mutation. The 

phenotype of this variant is normal overall, but the presence of this mutation makes the RCL 

highly susceptible to spontaneous insertion under the influence of stress conditions such as a 

mild increase in temperature. There are other examples of serpins that exhibit susceptibility to 

loop insertion upon exposure to denaturants or high temperature. α1-antitrypsin was found to be 

converted in to its loop-inserted latent form upon treatment with 0.5M citrate at 60
0
C [156]. 

Wild-type antithrombin was also found to be converted in to its latent form upon similar 

treatment [157]. Among all the serpins, PAI-1 is special, as it exhibits the highest susceptibility 

towards this large conformational transition in its native form. The half-life of this latency 

transition for PAI-1 ranges between 1-2hrs at 37
0
C [158-159]. No mutation or denaturant is 

required for initiating the self-insertion of the RCL for PAI-1. 

Mottonen et al. were the first to report the crystal structure of latent PAI-1 [160]. Later 

Stout et al. reported a high resolution crystal structure [161] of this form. Figure-1.6 shows the 

high-resolution crystal structure of latent PAI-1 from Stout et al. Both of these structures clearly 

indicate that in latent PAI-1, the RCL is inserted to form the fourth strand of the central β-sheet-

A, and the conformation of the inserted RCL closely resembles what was found with other 

cleaved serpins. This latent form is thermostable and protected from the target protease attack as 

the P1
/
-P1 bond is buried inside the core body of the protein. Denaturation/renaturation or 

treatment with negatively charged phospholipids has been found to cause partial conversion of 

the latent PAI-1 into its active form [162-163].  
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Figure-1.6: High resolution structure of latent PAI-1 [161]. 

Structure shows RCL (in red), β-strand-3A (in blue), β-strand-5A 

(in turquoise), helix-F (in gray), P1 residue (in yellow), P1
/
 residue 

(in magenta), Q123 residue (in green). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. 6: Crystal structure of latent PAI-1 
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1.2. d. Factors Affecting Stability of PAI-1 

Inherent conformational instability is presumably the reason why there is not yet 

available any crystal structure of active wt-PAI-1. Different groups have attempted to 

strategically introduce different sets of mutations to stabilize the structure [159, 164]. So far the 

highest stabilization obtained is a half-life of about 145hrs. This stabilization is exhibited by a 

mutant of PAI-1 that is thus constitutively active and referred to as the 14-1-B form; it contains 

four different mutations: N150H, K154T, Q319L and M354I [164]. The crystal structure of this 

mutant [165] along with all the mutated residues is depicted in Figure-1.7. As demonstrated in 

this example, stabilization of PAI-1 by altering the conformational flexibility has remained a 

subject of great interest. It seems that the slightest change in the structure can cause a difference 

in the half-life of PAI-1 stability. It is well known that stabilization of the structure is obtained 

with lowering of temperature. It has also been found that lowering of pH or an increase in 

concentration of salt in the buffer has a dramatic stabilizing effect on the structure [166-167]. 

Sensitivity to pH and salt indicates that it is not just the RCL or portion of the β-sheet-A that are 

flexible, but rather the entire body of the protein possesses inherent flexibility; a slight 

conformational change in one region may cause a subsequent change in the conformation or 

dynamics of another portion of the molecule. Such change, in turn, may affect the stability of the 

molecule.  

His364 has been implicated in the pH dependent stability of the molecule [167]. This 

residue is located at the distal C-terminal end of the molecule. A change in pH alters the 

ionization status of this residue, which in turn causes structural changes in the molecule 

responsible for lowering the insertion rate of RCL. Blouse et al. showed that mutation of the  
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Figure-1.7: Crystal structure of stable mutant of PAI-1 with all 

the stabilizing mutations [165]. Structure shows RCL (in red), β-

strand-3A (in blue), β-strand-5A (in turquoise), helix-F (in gold), 

P1 residue (in yellow), P1
/
 residue (in magenta), four stabilizing 

mutations (in green) and Q123 residue (in green with color of 

elements) [165]. 

Figure 1. 7: Crystal structure of stable mutant (14-1-B) of PAI-1 
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conserved Tryptophan residue (Trp175) with a replacement by Phe increased the inherent 

stability of the structure from a half-life of about 2hrs to 22hrs [135]. Trp175 is located in the 

hydrophobic pocket of the breach region of the molecule. The location of this breach region 

close to the base region of the RCL is critical for the initial insertion of the loop. Thus, the 

conservative change from Trp to Phe interfered significantly with the rate of RCL insertion and 

increased the half-life. All these studies point toward how much conformational lability exists in 

the whole structure of PAI-1. 

Ligand binding to PAI-1 has also been found to affect the stability of this molecule. VN 

is one of the major binding partners of PAI-1 and is known to cause a moderate stabilization of 

the structure. We have shown that the stability with VN in a buffer of 100mM Tris, 1mM EDTA, 

1% BSA (pH-7.4) increases by 33%, with a change in half-life of PAI-1 from 1.14hr to 1.5hr. 

VN binding to PAI-1 has been proposed to interfere with the RCL insertion by blocking the 

sliding movement of s1A and s2A toward the gap between helix-E & F. A crystal structure 

(Figure-1.8) of the complex containing recombinant SMB domain of VN and the 14-1-B stable 

form of PAI-1 provided convincing evidence for this mechanism for structural stabilization [22]. 

Once again, it is noted   that a conformational change at one region of the structure may perturb 

another part of the molecule. Although this study was done with SMB domain, full-length VN 

interacts with PAI-1 with an even larger surface [168], and thus the interaction between PAI-1 

and VN extends beyond SMB domain of VN. This conformational flexibility and the 

corresponding change in the stability of PAI-1 resulting from ligand binding are fascinating and 

require more careful investigation. One of the areas of focus in this dissertation study has been to 

probe the conformational change in PAI-1 that occurs due to ligand binding.  This has been 
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Figure-1.8: Crystal structure of stable mutant of PAI-1 in complex with 

recombinant SMB domain [22]. Structure shows RCL (in red), central 

β-sheet (in turquoise), helix-E & F and β-strand-1A (in green). 

Somatomedin domain is shown in gray with pink disulfide bridges. 

Dotted regions indicate disordered structure in the RCL and residues 

leading the RGD sequence of SMB domain [22] which could not be 

resolved by X-ray crystallography.  

Figure 1. 8: Crystal structure of 14-1-B & SMB domain 
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approached by strategically placing a nitroxide spin label and following changes in electron 

paramagnetic resonance that occur with structural changes in PAI-1.  

Recently our lab has found that different metals can significantly affect the stability of 

PAI-1. Type-II metal ions (Co, Cu, Ni) were found to largely destabilize the active conformation 

of PAI-1, whereas type-I (Mg, Ca) metal ions conferred instead a slight stabilization. When the 

effect of these metal ions was tested in the presence of VN, it was found that type-I metals did  

not show much difference in the absence or presence of VN, but type-II metals had completely 

opposite effects. In presence of VN, type-II metals dramatically stabilized PAI-1. Figure-1.9  

shows the effect of different metals on the stability of PAI-1 in the absence/presence of VN 

(Thompson et al., submitted). Significant progress has been made in terms of unraveling 

mechanistic aspects of these differential metal effects by studying binding and ensuing structural 

changes. My goal in this study has been to characterize the binding interaction between PAI-1 

and different metals using biophysical techniques. 

1.2. e. Physiological Role of PAI-1 

PAI-1 is an essential biomolecule. The importance of PAI-1 is evident from its involvement in 

several important biological processes, including fibrinolysis, extracellular proteolysis, cell-

matrix interaction etc. The physiological function of PAI-1 can be broadly classified into two 

main categories- protease dependent and protease independent activities. Under protease-

dependent functions, PAI-1 is mainly involved in the inactivation of tissue-plasminogen activator 

(tPA) and urokinase-plasminogen activator (uPA) and thus regulates activation of plasmin [79-

80]. The primary function of uPA and tPA is to cause formation of plasmin from inactive 

plasminogen as shown in Figure-1.10. While uPA is involved in the activation of plasmin  
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Figure-1.9: Half life of wild type active PAI-1 with (purple) or 

without VN (blue) in the presence of different type-I (Mg, Ca) 

and type-II (Mn, Co & Ni) metals. It also includes the half life 

of PAI-1, measured in the absence of metal but in the presence 

of equivalent amount of chloride. 

 

Figure 1. 9: Metal effect on the stability of PAI-1 
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Figure-1.10: Activation of the fibrinolytic pathway adapted from the 

journal published by Kohler et al., New Eng J Med, 2000 [112]. 

Activation of plasmin occurs by tPA when plasminogen is bound to 

the fibrin clot. PAI-1 bound to the fibrin clot maintains tPA 

inactivation activity. Factor-XIII causes formation of insoluble fibrin 

by crosslinking [112]. 

 

Figure 1. 10: Activation of the fibrinolytic pathway 
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mainly on the cell surface, tPA on the other hand causes activation of plasmin in the extracellular 

matrix [169]. In the terminal steps of the coagulation cascade, activated thrombin causes 

formation of soluble fibrin from fibrinogen. Soluble fibrin then polymerizes to form the fibrin 

clot, which can be further stabilized by activated factor-XIII-mediated crosslinking [112]. 

Fibrinolysis is a process in which degradation of the fibrin clot happens by the tPA/uPA 

mediated activation of plasmin. tPA and inactive plasminogen are known to bind to the fibrin 

polymer. Fibrin-bound tPA causes activation of plasmin on the clot surface, and activated 

plasmin causes lysis of the clot [170-171]. PAI-1 is also known to associate with the fibrin clot 

and causes inactivation of tPA on the clot surface and thus inhibits fibrinolysis [172]. As a result, 

PAI-1 plays an important role in the regulation of coagulation and fibrinolysis which is depicted 

in Figure-1.10 [112].  

Activated thrombin has been found to cause activation of platelets [112]. Thrombosis is 

characterized by the aggregation of the activated platelets on fibrin mesh. The presence of PAI-1 

is connected with the regulation of thrombolysis by virtue of its ability to inhibit the plasminogen 

activation system. Activation of the thrombolytic system remains a major strategy for the 

treatment of myocardial infarction. However, the major problem with such treatment is the 

thrombotic reocclusion of the initially treated blood vessel [173-174].  Platelet aggregation has 

been found to play a major role in such thrombotic reocclusion. It has been found that each 

activated platelet contains 4000-8000 PAI-1 molecules [175-176]. Activated platelets release 

PAI-1 from α-granules, and as a result, the local concentration of PAI-1 is elevated to around 50-

100µg/ml [175, 177]. Thrombin can induce the release of PAI-1 from endothelial cells [178]. 

Such locally elevated PAI-1 concentrations protect the platelet-rich thrombi from thrombolysis. 
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Platelet-rich thrombi have been found to be more readily degraded by the application of tPA in 

mice deficient in PAI-1 [178]. Levi et al. reported that inhibition of PAI-1 activity by a 

monoclonal antibody blocked extension of thrombus formation in an experimental model of 

thrombosis [177]. The ability to influence the process of fibrinolysis and thrombolysis by virtue 

of its protease dependent function has put PAI-1 at the centerpiece of various coronary artery 

diseases. A strong positive correlation has been found between high levels of plasma PAI-1 and 

the risk of development of coronary sclerosis, restenosis, myocardial infarction, and deep vein 

thrombosis [109, 113, 179]. The ability to interfere with the plasminogen activation system also 

has implicated PAI-1 in other diseases that involve fibrosis resulting from increased fibrin 

deposition. Such inflammatory lung diseases that involve pulmonary fibrosis include adult 

respiratory distress syndrome, bronchopulmonary dysplasia; elevated PAI-1 concentrations have 

been found in bronchoalveolar lavage fluid from disease tissue [109]. A high concentration of 

PAI-1 has also been associated with renal diseases such as nephritic syndrome and hemolytic 

uremic syndrome [109]. 

Protease-independent functions of PAI-1 have recently grown in prominence. These 

functions refer to the activities of PAI-1 that are not directly related to its ability to inhibit 

proteases. Instead, these functions depend on the ability of PAI-1 to interact with other binding 

partners. For example, binding of PAI-1 to receptor-bound uPA on the cell surface causes 

internalization of the ternary complex of PAI-1/uPA/uPAR [180-181]. This internalization 

requires the interaction of PAI-1 within the ternary complex with the α2-macroglobulin 

receptor/low density lipoprotein receptor-related protein (α2-MR-LRP) or epithelial 

glycoprotein-330 or very low density lipoprotein (VLDL) receptor on the cell surface [182-185]. 
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Formation of the complex with uPA opens up a cryptic high affinity LRP binding site on PAI-1 

[186]. While the internalized uPA-PAI-1 complex undergoes lysosomal degradation, uPAR is 

recycled back to the cell surface [187]. PAI-1 also appears to be involved in the internalization of 

the tPA/PAI-1 complex via the α2-MR-LRP endocytic receptor [188]. Thus, such protease-

independent activities of PAI-1 play important roles in the turnover of its target proteases.  

Another important protease-independent function of PAI-1 is the regulation of cell matrix 

interactions. Involvement of PAI-1 in such processes is largely mediated by its ability to interact 

with VN. (A detailed discussion of this protease independent effect of PAI-1 on cell-matrix 

interaction is given in the following section.) In fact, understanding the interaction between PAI-

1 and VN and how such interaction affects their ability to regulate cell-matrix interaction is a 

major focus of this dissertation work. High PAI-1 expression has been found to be positively 

correlated with the increased invasiveness and metastatic spreading of different types of cancer. 

Tumor extracts from several types of cancers showed high expression of PAI-1 [189-190]. PAI-

1-deficient mice appear to be inefficient in supporting invasion of cancer cells [191]. This creates 

a paradox, as cancer cell invasion requires proteolysis at the pericellular region and high 

expression of PAI-1 at the tumor site is expected to work against invasion by virtue of its anti-

proteolytic property. Such apparent contradictions may be explained, at least in part, by the 

protease-independent functions of PAI-1. 

1.3. Interaction between VN and PAI-1 

1.3. a. Structural Aspects of the Interaction 

PAI-1 is one of the major interacting partners of VN. In blood, PAI-1 circulates in a 

complex with VN [81, 192]. VN also serves as the primary binding protein for PAI-1 in the 



32 

 

ECM [193]. Interaction between vitronectin and PAI-1 has remained an interesting subject in the 

area of protein-protein interactions. A primary interaction site involves the SMB domain of VN 

[194], as first demonstrated by Seiffert et al. using a recombinantly expressed version of the 

SMB domain. Deng et al. used alanine scanning mutagenesis and reported that each of the 

cysteine residues within the SMB domain is important for proper folding, maintaining the three-

dimensional topology required for binding to PAI-1 [195]. Alanine scanning mutagenesis and 

antibody binding studies also reported that residues G12, D22, L24, Y27 and Y28 at the SMB 

domain are important for maintaining the PAI-1-binding property of vitronectin [195-196]. 

Several groups have used site-specific mutagenesis studies to localize the complementary VN-

binding site on PAI-1. Lawrence et al. reported five point mutants in PAI-1 that had low affinity 

for VN. Out of these, three (Q55P, L116P and Q123K) had ten times lower affinity for VN 

binding compared to wild type [197]. Magdolen and his group used site directed mutagenesis to 

demonstrate the importance of residues in the helix-E and F region of PAI-1 for VN binding 

[51]. Several other groups have performed domain-swapping experiments between PAI-1 and 

PAI-2 (another serpin molecule) to localize the VN binding site on PAI-1. These studies 

indicated that a broad region between amino acids 91 to 167, encompassing helices-E and F and 

part of the central β-sheet is responsible for VN binding [198-199]. Zhou et al. reported a crystal 

structure of the recombinant SMB domain bound with 14-1-B, the stable mutant of PAI-1 

(Figure-1.8). This structure shows a single-turn 3-
10

 α-helix of SMB interacting with helices-E 

and F and part of the central β-sheet (strand 1A) of the 14-1-B mutant form of PAI-1 [22]. Most 

of the residues on the SMB domain that were previously considered important for PAI-1 binding 
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from mutagenesis studies were found to be involved in the interaction with PAI-1 in the crystal 

structure.  

        Binding of the two proteins has been conventionally considered to follow a 1:1 

stoichiometry, mediated thorough the SMB domain of vitronectin.  However the possibility of 

the presence of a lower affinity binding site outside the SMB domain of VN has been proposed 

by a number of groups. Mimuro et al. reported such a site in the intrinsically disordered domain 

(residues G115 to E131) [200]. Other groups have suggested the presence of another PAI-1-

binding site in the C-terminal region of vitronectin (residue K348-K370) [201-202]. In the last 

few years, our lab has devoted considerable effort toward understanding the details of this 

interaction, and these efforts have shown that the vitronectin-PAI-1 interaction is more complex 

than it was previously perceived. Our research has produced evidence that indicates that, 

although the primary high affinity (Kd~1nM) binding site of PAI-1 lies within the SMB domain 

of vitronectin, there is an additional binding site (of comparatively lower affinity, Kd~100nM) 

that lies outside of the SMB domain [203]. Direct evidence for this second binding site was 

obtained after a recombinant VN lacking the SMB domain was generated. This deletion mutant 

was found to maintain its PAI-1 binding property with a relatively lower affinity of 100nM 

[204].  

1.3. b. Interactions Leading to Formation of Higher-Order Complexes and 

Multimerization of Vitronectin 

There are a number of biomolecules that may initiate the process by which VN transitions 

to the multimeric conformation, e.g. the thrombin-antithrombin-III (TAT) complex and the 
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terminal complement complex (C5b-C7) [44, 205]. PAI-1 binding to VN is the molecule which 

has been most extensively evaluated for causing conformational changes and multimerization of 

monomeric plasma VN [206]. Seiffert et al. showed that PAI-1, while mixed with monomeric 

plasma VN, caused multimerization [206]. This interaction also exposed the conformationally 

sensitive epitope (for 8E6 monoclonal antibody), usually only found in multimeric VN. The 

exact cause of the multimerization of VN in biological systems remains one of the unresolved 

issues to the present day.  

VN released from platelets is multimeric in nature [77, 207]. Though PAI-1 concentration 

in plasma is about 600-1000 fold lower than that of VN (4nM vs. 2.5-4µM), their \concentration 

within platelets is similar [176, 207-208]. This locally elevated concentration of PAI-1 has been 

contemplated as a cause for the transformation into a conformationally altered, multimeric form 

of VN within platelets. In last few years our lab has made significant progress towards 

understanding this process of PAI-1 mediated multimerization of VN. By size exclusion HPLC 

and analytical ultracentrifugation studies, we have confirmed that PAI-1 can induce 

multimerization of VN in a concentration-dependent fashion [203, 209-210]. We have observed 

that initiation of this multimeric complex starts with the formation of a heterotrimer containing 

two molecules of PAI-1 and one molecule of VN, confirmed by FRET and a multi-signal 

sedimentation velocity study [204, 211]. We are also confident that PAI-1 remains associated 

with this multimeric complex for several hours [209, 211]. With these data in support, we 

hypothesize that PAI-1 acts a biological partner for the transformation of VN into the matrix-

associated form.  Furthermore, we propose that the multimeric complexes formed by the 

interaction between these two proteins significantly influence their matrix-associated roles. In 
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this study, we have emphasized a more complete understanding of the mechanism of complex 

formation between VN and PAI-1. 

1.3. c. Functional Aspects of the Interaction Between VN and PAI-1 

The interaction between these two proteins is a subject of great interest in the field. These 

two proteins are co-localized in a number of pathological conditions, such as atherosclerosis, 

hepatic fibrosis, and membranous nephropathy [212-214]. While PAI-1 is mainly known as an 

inhibitor of uPA and tPA, the interaction with VN expands its inhibitory properties to target 

other proteases, e.g.thrombin and activated protein-C (APC) [215-216]. APC has been proposed 

to act as a profibrinolytic substance by virtue of its ability to neutralize PAI-1 in circulation. 

Rezaie et al. showed that while the direct inactivation of APC by PAI-1 proceeds very slowly, 

interaction of VN with PAI-1 increases the rate of such inactivation by 300-fold.  Furthermore, 

in the presence of VN, PAI-1 becomes the most effective inhibitor of APC [216]. Interaction 

between PAI-1 and VN has been implicated in the profibrinolytic property of thrombin also. 

Ehrlich et al. showed that endothelial cell matrix-associated PAI-1, while bound to VN, can 

inhibit thrombin [215, 217]. This alternative targeting toward proteases may also deplete active 

PAI-1 from the circulation and ECM, and thus protect plasminogen activators and promote 

activity of the plasminogen activation system. Stefansson et al. later reported that PAI-1 

mediated inactivation of matrix-associated thrombin, which occurs in the presence of VN, has an 

important role in the cellular clearance of the protease in an LRP-dependent process [218]. The 

presence of VN and PAI-1 in the atherosclerotic vessel wall has been shown by many groups 

[110, 219]. There are studies that indicate that active thrombin is also present in the 

atherosclerotic lesion [220]. Stoop et al. showed that VN, PAI-1 and active thrombin are co-
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localized in the atherosclerotic lesion and they have proposed that interaction of VN and PAI-1 

in the vessel wall is important for the regulation of thrombin activity, since the natural regulator 

of thrombin (antithrombin-III) is not present in the deeper region of atherosclerotic lesion [212].               

PAI-1 has been found to be associated with VN in the subcellular matrix of endothelial 

cells and platelets [21, 192-193]. Owensby et al. showed that binding of PAI-1 to the 

extracellular matrix of HepG2 cells is exclusively mediated by matrix-associated VN [49]. Such 

VN-mediated localization of PAI-1 to the extracellular matrix appears to be required for the 

effect of PAI-1 in fibrotic renal diseases. These diseases are characterized by increased fibrin 

deposition and accumulation of matrix [133, 221]. The plasminogen activation system has a 

major role in maintaining the proper balance of matrix turnover [222], and this balance is 

compromised in renal fibrotic diseases. PAI-1 expression is highly elevated in renal fibrotic 

conditions and thus is thought to be one of the major causes for loss of such balance [223-224]. 

In these disease conditions, VN plays an important role in localizing PAI-1 within the fibrotic 

matrix [225]. 

PAI-1 also plays a role in regulating cellular adhesion and migration. In fact, a significant 

portion of the protease-independent functions of PAI-1 is mediated through its interaction with 

VN. PAI-1 interferes with the interaction of cell surface receptors with VN. The PAI-1-binding 

site on the SMB domain of VN overlaps with the uPAR binding site, and thus PAI-1 competes 

for uPAR binding to the SMB domain of VN [226-227]. A recent crystal structure of uPAR in 

complex with the SMB domain and uPA shows that many residues of the SMB domain that were 

found to be involved in PAI-1 binding are also involved in uPAR binding [103]. Waltz et al. 

showed that uPAR mediated binding of TGFβ1/Vitamin-D3 stimulated U937 cells and uPAR 
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transfected 293 cells to VN could be blocked by PAI-1 [226]. In a similar approach, Kanse et al. 

showed that PAI-1 could block uPAR-mediated binding of VN to endothelial cells [53]. PAI-1 

mediated blocking of the uPAR-VN interaction was found to promote migration of U937 and 

melanoma cells [226, 228]. Such a promigratory effect of PAI-1 has been ascribed to the lack of 

cell adhesion.  

PAI-1 interferes with integrin binding to VN also. Stefansson et al. showed that αvβ3 

binding to immobilized VN was blocked by PAI-1 in a dose-dependent manner [229]. The 

integrin binding site on VN lies beyond the SMB domain (within the RGD motif, residues 45-

47), as seen in the crystal structure of 14-1-B and the SMB domain (Figure-1.8) [22]. So 

structural overlap is not the direct cause of PAI-1 interference of αvβ3 binding to VN. 

Nevertheless, exogenously added PAI-1 inhibited αvβ3 mediated smooth muscle cell (SMC) 

binding to VN [229]. In the same study PAI-1 was found to block migration of SMC through 

VN. In another study Kjøller et al. showed that PAI-1 could block migration of WISH and Hep2 

cell lines through VN, and this inhibition was due to PAI-1 mediated blockage of αvβ3 binding 

to VN [230]. Though in all these studies PAI-1 blocked cell binding to VN, the effect on 

migration is contradictory.   

 There are studies that show that PAI-1 is proangiogenic and protumorigenic. Mice 

deficient in PAI-1 showed reduced angiogenesis, tumor invasion and tumor formation [191, 

231]. On the other hand in a separate study Stefansson et al. reported that addition of PAI-1 

inhibited basic-fibroblast growth factor (bFGF) induced angiogenesis [232]. They also found that 

such inhibition of angiogenesis was mediated through interaction of PAI-1 with VN. In an effort 

to explain such apparent contradiction, McMahon et al. reported a study where they showed that 
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the PAI-1 mediated effect on tumor formation and angiogenesis is dose-dependent. While at low 

concentrations PAI-1 acted in a pro-angiogenic manner, at high concentrations it was anti-

angiogenic [233]. Thus PAI-1 appears to play a regulatory role in the processes like, 

angiogenesis, tumorigenesis. A major focus of this study is to understand the role of PAI-1/VN 

interactions in the regulation of cell binding and migration. 

1.4. Research Goals 

Vitronectin and Plasminogen Activator Inhibitor-1 (PAI-1) are two important circulatory 

proteins, that are also found in the extracellular matrix (ECM). As discussed above, each of these 

proteins is involved in a variety of physiological and pathophysiological processes by virtue of 

their ability to interact with a wide variety of  ligands. For PAI-1, conformational flexibility is 

closely connected with its function, and conformational flexibility can be influenced by ligand 

binding. In addition, interactions between these two proteins have been implicated in several 

biologically important processes such as cell binding and migration. We have seen that the 

interaction between vitronectin PAI-1 is much more complicated than a simple 1:1 binding. 

While we have made considerable progress towards understanding the mechanism of this 

interaction, more work is needed.  The major goals of this research are: 

I. To understand how the interaction between VN and PAI-1 influences their functional 

roles in the extracellular matrix 

II. To understand the structure and dynamics of PAI-1 in the presence of binding 

partners like VN and various metals. 
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III. To understand the role of vitronectin in mediating infection by comparing the 

pathogenesis of Candida albicans infection between C57BL/6 mice and vitronectin 

knock-out mice. 
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CHAPTER-2 

 

Developing Methods to Investigate the Structure and Dynamics of 

PAI-1 and Effects of Cofactors 

 

2.1. Introduction 

 Conformational flexibility is an important property for serpins. Mobility of the reactive 

center loop is directly connected to the inhibitory property of serpins. Insertion of the RCL 

requires a conformational change in other parts of the protein also. A prerequisite for successful 

insertion of the RCL is a sliding movement of the β1-3A strand of the central β-sheet and helix-F 

away from the structure so that the groove region between strand 3A and 5A is opened [153]. 

Egelund et al. performed a thorough study on different forms of PAI-1 (active, latent, cleaved 

and the complex with protease) and showed with each form that there were specific 

conformational changes associated in different regions of the protein other than RCL and central 

β-sheet [154]. PAI-1 is probably the most conformationally sensitive among all the serpins, with 

an inherent tendency of the RCL of PAI-1 to insert into the central β-sheet region of the 

molecule. This conformational change transforms active PAI-1 into latent PAI-1. The half-life of 

this latency transition for PAI-1 ranges between 1-2hrs at 37
0
C [158-159]. Binding of ligands has 

been found to influence the latency transition. VN is one of the major binding partners of PAI-1 

and is known to cause moderate stabilization of PAI-1 to slow down this conversion to the latent 

form. Our lab has showed that VN can cause an increase in half-life of PAI-1 from1.14 hr to 1.51 

hr (Thompson et al., submitted to Biochemistry). This VN binding to PAI-1 is proposed to 

interfere with the RCL insertion by causing blockage to the sliding movement of the s1A and 
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s2A towards the gap between helix-E and F. A crystal structure of the recombinant SMB domain 

of VN and the 14-1-B stable mutant form of PAI-1 supports this mechanism of structural 

stabilization [22].  

Though binding of VN to PAI-1 is primarily mediated through the SMB domain, there 

are a number of important questions regarding this interaction that are still unanswered. For 

example, are the functional effects of the SMB domain binding to PAI-1 equivalent to the 

binding of full-length vitronectin? In other words, is the interaction of PAI-1 and vitronectin 

solely mediated by the SMB domain? Recently, pre-steady state kinetic analyses have revealed 

some unique features of the vitronectin/PAI-1 interaction. Stopped-flow experiments done under 

conditions where only 1:1 binding is possible between strategically labeled (fluorescent) PAI-1 

and vitronectin, show a concentration dependent biphasic binding of a single PAI-1 molecule to 

VN followed by a conformational change step [168]. Binding between PAI-1 and the isolated 

SMB domain, on the other hand, was monophasic. These data indicate that interaction with full-

length VN is more complex and involves multiple interactions. Addressing this conformational 

flexibility and the corresponding change in the stability of PAI-1 is an aim of this study. One of 

the goals is to probe the conformational change that occurs in PAI-1 due to ligand binding by 

strategically by placing nitroxide spin labels within the RCL of VN. Also, there is evidence that 

suggests that the interaction between VN and PAI-1 causes formation of higher order of 

multimeric complexes [206, 209-211]. We believe that the interaction between PAI-1 and VN 

that extends beyond the SMB domain is critical for this multimeric complex formation. In this 

study we have also focused on understanding mechanistic aspects of this multimerization process 

using sedimentation velocity experiments in the analytical ultracentrifuge.  
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In addition, our lab has recently observed that different metals can significantly affect the 

stability of PAI-1. Type-II metal ions (Co, Cu, Ni) were found to largely destabilize the active 

conformation of PAI-1, whereas type-I (Mg, Mn, Ca) metal ions slightly stabilized it. Progress 

has been made in the mechanistic aspects of these differential effects by studying binding and 

ensuing structural changes. The goal in this study is to characterize the binding interaction 

between PAI-1 and different metals using biophysical techniques. 

2.2. Materials and methods 

2.2. a. Materials 

 PAI-1 cloned into the pET 24d expression vector was obtained from Dr. Grant Blouse 

(Henry Ford Health Sciences Center Detroit, MI) as a gift. Anti-PAI-1 polyclonal antibody 

(ASHPAI) and octa-peptide (PEP-1-M1660s Inc) (TVASSSTA) were bought from Molecular 

Innovations Inc, Southfield, MI. Pentapeptide (TVASS) was gift from Dr. Peter Andreasen‟s lab 

at Aarhus University, Denmark. Rosetta2(DE3)pLysS was purchased from EMD Biosciences 

Gibbstown, NJ. The QuikChange XL II kit for mutagenesis was purchased from Stratagene Inc 

Cedar Creek, TX. Primers for the PCR-mutagenesis reaction was purchased from Invitrogen. 

Protease inhibitor cocktail P8465 was purchased from Sigma Aldrich Corp. St. Louis, MO.  SP 

Sepharose FF, chelating Sepharose FF and high-resolution Sephacryl S100 were purchased from 

GE Healthcare Piscataway, NJ. The MTSL spin label was purchased from Toronto Research 

Chemical Inc. The C18 reverse-phase HPLC column (250*4.6mm, 300 A
0
 pore size), Proteo RP-

HPLC column (4µm bead diameter, 250 A
0 
pore size) and their companion guard columns were 

purchased from Phenomenex, Torrance, CA. Trypsin Gold mass spectrometry grade was 

purchased from Promega, Madison, WI. The NTA chip, CM5 chip, amine-coupling kit and HBS-
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EP buffer were purchased from GE Healthcare Piscataway, NJ. The Biomax-10 column for 

concentrating protein solutions was purchased from Millipore. All other chemical reagents 

(buffer & salt) were purchased from Fisher Scientific (unless otherwise specified).  

2.2. b. PCR mutagenesis, expression and purification of P9 mutant of PAI-1 

 In order to mutate Ser338 (P9 residue) to Cys, a PCR mutagenesis reaction was carried 

out on the cDNA encoding PAI-1 cloned into the pET 24d expression vector. The primer used 

for this mutagenesis reaction is shown below: 

Forward: 5
/
- gtggcctcctcatgcacagctgtcatagtc -3

/ 

Reverse: 3
/
- caccggaggagtacgtgtcgacagtatcag -5

/
 

Pfu Ultra HF DNA-polymerase was used for the PCR reaction. PCR reaction conditions are 

shown below: 
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Template DNA was digested using DPN-I, and the final product was transformed into XL10-

GOLD competent cells (Stratagene Inc) following manufacturer‟s instructions. Transformed 

cells were plated on Kanamycin containing TB-agar plates and incubated overnight at 37
0
C for 

colony formation. On the next day, an isolated single colony was used for subculturing. 

Subculturing was performed in 50ml Falcon tubes, each containing 10ml of Terrific Broth (TB) 

with kanamycin. Tubes were shaken overnight at 250rpm at 37
0
C. Cell pellets were then 

collected from each tube by centrifugation, and plasmid purification was carried out using the 

Promega Wizard Plus miniprep DNA purification system. The presence of the desired mutation 

was confirmed by DNA sequencing. 

For expression purposes, the plasmid containing the mutation was transformed into 

Rosetta2(DE3)pLysS cells following manufacturer‟s instructions. Transformed cells were plated 

on  TB-agar plates containing kanamycin (34µg/ml) and chloramphenicol (50µg/ml) and grown 

overnight at 37
0
C. An isolated single colony was used for subculturing into a conical flask 

containing 200ml TB with kanamycin (34µg/ml) and chloramphenicol (50µg/ml). This 

subculture was grown overnight at 28
0
C with shaking at 250rpm. The 28

0
C temperature was 

used to maintain growth within the 0.5-1 OD range at 600nm within the overnight time frame. 

After the overnight incubation, the subculture was transferred into flasks containing 1L TB with 

kanamycin (34µg/ml) and chloramphenicol (50µg/ml) using an inoculum volume to give an OD 

at 600 nm for the 1L culture of ~ 0.01. The 1L cultures were grown at 37
0
C with 300rpm shaking 

until the OD became 0.1. At 37
0
C the Rosetta strain has a doubling time of about 25min. The 

temperature of the incubator was reduced to 15
0
C and growth continued until the temperature 

was stabilized (about 1-2hr). Expression of PAI-1 was induced by adding 1ml IPTG (1M stock 
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concentration) to each of the 1L cultures and subsequent growth overnight at 15
0
C. The cells 

were harvested by centrifugation and stored at -80
0
C.   

           For purification of the P9 mutant, the cell pellet was resuspended in lysis buffer (50 mM 

NaH2PO4, 1 mM EDTA, 1mM DTT, pH 6.5) with stirring at room temperature for ~ 1hr. 10ml of 

lysis buffer was used for each gram of pellet. During stirring, 10 mg of Protease cocktail 

Inhibitor P8465 was added per gram of pellet. Resuspended cells were lysed by sonication (each 

cycle had 30sec pulse and 1min pause, 20 total cycles) in an ice bath with stirring. Cell debris 

was removed by centrifugation (15000g for 15min). In order to maintain PAI-1 in an active 

form, the entire purification was performed at 4 
0
C.  The cell lysate was loaded onto an SP 

Sepharose FF column (2.5 x 25 cm). Prior to loading of the cell lysate, the column was 

equilibrated with lysis buffer containing 80mM (NH4)2SO4. Following loading, the column was 

washed with the same lysis buffer containing 80mM (NH4)2SO4. Elution was carried out with a 

linear gradient of 80-500 mM (NH4)2SO4 in the same lysis buffer (total elution volume was 

800ml, 13ml fraction size).  SDS-PAGE and Western blotting were performed on the elution 

fractions to confirm the presence of PAI-1. Selected fractions were pooled and dialyzed 

overnight against imidazole buffer (50 mM NaH2PO4, 500 mM NaCl, 20 mM imidazole, 1mM 

DTT, pH 7.0). A chelating Sepharose FF column (1.0 x 12 cm) was loaded with Ni according to 

manufacturer‟s protocol and equilibrated with imidazole buffer without DTT. (DTT causes 

reduction of Ni with a color change from bluish green to blackish brown.) Just before PAI-1 was 

loaded on to the column, DTT was added to the imidazole buffer and equilibration was continued 

for about one column volume and then PAI-1 was loaded. Then the chelating Sepharose FF 

column was washed with the imidazole buffer containing DTT. PAI-1 was eluted with a 20-
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200mM imidazole gradient (total volume of 400 ml) in the same buffer containing 1mM DTT. 

The appropriate fractions were chosen to be pooled according to the SDS-PAGE and Western 

blot analysis. Pooled fractions were concentrated to 3 ml, and then loaded onto a high-

resolution Sephacryl S-100 column (2.5 x 115 cm) equilibrated with gel-filtration buffer (50 mM 

NaH2PO4, 300 mM NaCl, 1 mM EDTA, 1mM DTT, pH 6.25). Elution was carried out at 

0.5ml/min with the same buffer (fraction size- 3ml).  PAI-1 eluted as a single peak. The presence 

of PAI-1 was once again confirmed by SDS-PAGE and Western blotting. Fractions were pooled, 

concentrated, and stored at -80 
0
C.  Protein identity was confirmed by MALDI-MS.  PAI-1 

concentration was determined by absorbance at 280 nm using 280 = 0.93 mlmg
-1cm

-1
 [234] 

and a molecular weight = 43760 g/mol (calculated from the amino acid sequence).  

2.2. c. Spin labeling of the P9 mutant 

 A nitroxide spin label, MTSL [(1-oxyl-2,2,5,5-tetramethylpyrroline-3-methyl)-

methanethiosulfonate], was chosen for labeling the P9 mutant. This methanethiosulfonate type of 

spin label requires a free sulfahydryl group for labeling. The scheme of the labeling reaction is 

shown in Figure-2.1. The labeling reaction was performed at 4
0
C. Before labeling, DTT was 

removed from the mutant protein in storage buffer (50 mM NaH2PO4, 300 mM NaCl, 1 mM 

EDTA, 1mM DTT, pH 6.25) using a PD-10 column. Initially, the PD-10 column was 

equilibrated with storage buffer without DTT. The mutant PAI-1 was diluted to 2.5ml in this 

equilibration buffer and loaded on to the PD-10 column. After loading of PAI-1, 3ml 

equilibration buffer was utilized for elution by gravity flow. MTSL was added to the mutant 

PAI-1 at a 10-fold molar excess, and the reaction was conducted on ice for 4hrs. 
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The MTSL/PAI-1 mixture was loaded on to another fresh PD-10 column pre-equilibrated with 

equilibration buffer in order to remove unbound MTSL. MTSL-labeled PAI-1 was eluted using 

3ml equilibration buffer. Labeled PAI-1 was concentrated using a Biomax-10 spin column 

(10Kd cut off) centrifuged at 12000rpm for 18min. Analysis of  the labeled-PAI-1 sample on a 

RP-HPLC (C4) column showed a single peak that analyzed by MALDI in order to confirm the 

presence of the label.   

2.2. d. Isolation of the SMB domain by trypsin digestion and RP-HPLC 

purification 

The recombinant SMB-IDD domain was used for isolating the SMB domain. The SMB-

IDD was dialyzed against 100mM NH4HC03 buffer (pH-7.8). For trypsin digestion, the required 

pH is in between 7-9. Trypsin-Gold was dissolved in HPLC-grade water to a final concentration 

Figure-2.1: The reaction mechanism for MTSL labeling involves oxidation that 

happens between the thiosulfonate group of MTSL with the free sulfahydryl 

group of the cysteine side chain on the protein. This reaction results in the net 

loss of 184Da mass. 

Figure 2. 1: Reaction mechanism for MTSL labeling 
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of 1mg/ml and mixed with the SMB-IDD sample at a ratio of 1:50 (w/w). As a control, the same 

amount of trypsin was mixed with 0.1M NH4HC03. The reaction was performed at 37
0
C and 

stopped by adding 1%TFA in water, so that the final concentration of TFA is 0.1%. Trypsin 

digestion time, which was standardized to maximize production of the SMB domain, was 140 

min. The reaction mixture was separated on a Proteo RP-HPLC column with 24-28% 

Acetonitrile (ACN) gradient over a 30min time period at 0.5ml/min flow rate. The gradient was 

standardized in order to maximize the separation of peptides after digestion. HPLC peaks were 

collected for mass analysis by MALDI. Multiple injections were made (each 50µl) on the Proteo 

column, and the peak that corresponds to SMB domain was collected. The mass of this collected 

peak was again confirmed by MALDI. Collected fractions were combined, lyophilized in a 

Speed-Vac and frozen at -80
0
C. The lyophilized sample was resuspended in 1XPBS, and the 

concentration was measured by absorbance at 276nm wavelength. using 276 = 4,500 M
-1cm

-1
 

[235] and a molecular weight of 5678.26Kd (calculated from the amino acid sequence including 

4 disulfide bonds). 

2.2. e. Electron paramagnetic resonance measurements 

 EPR-spectroscopy was performed on this Labeled P9-mutant in a Bruker-EMX machine. 

For titration with VN or the SMB domain, 3µM of the labeled PAI-1 mutant was mixed with 

varying concentrations of vitronectin or the SMB domain. Each mixture was incubated at room 

temperature for 15minutes, and then 60µl of the reaction mixture was loaded in a quartz capillary 

for data collection. Spectra were collected at room temperature using incident microwave power 

at 2.158mW and a 100 kHz field modulation of 4Gauss. A total of 8 scans were accumulated for 

each sample; for each scan, a 100gauss scan-width centered at 3514.31Gauss was used.  The 
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recorded spectra were analyzed using WIN-EPR software from Bruker. The intensity of the 

middle peak was measured, and the normalized intensity was plotted against the ratio of ligand to 

PAI-1 concentration.  

For half-life measurements, the temperature of the instrument was maintained at 37
0
C by 

using the nitrogen gas driven temperature control device. 7µM of the labeled PAI-1 mutant was 

loaded into the quartz capillary tube, and the tube was capped using a Teflon plug on both sides 

to avoid leakage. Spectra were collected at 37
0
C, using incident microwave power at 2.16mW 

and a 100 kHz field modulation of 4Gauss. Two scans were added for each time point; for each 

scan, a 100gauss scan-width centered at 3365.31Gauss was used. Spectra were collected starting 

from the zero-time point and continued for a period of 22hr. A multiple-field-sweep (MFS) 

strategy was used for collecting spectra at different time intervals. Proper tuning of the 

instrument was maintained between scans. The absolute area of the middle peak at each time 

point was measured by WIN-EPR software from Bruker.  Area was plotted against time and fit 

to a single exponential decay equation using GraphPad Prism software. 

2.2. f. Surface plasmon resonance measurement 

 In order to confirm the proper function of the isolated SMB domain, SPR experiments 

were performed on a Biacore-3000 instrument. About 4000 response unit (RU) of monomeric 

Vitronectin (25µg/ml) was covalently immobilized (acetate buffer with pH-4.5) on a CM5 chip 

following 1-ethyl-3-(dimethylaminopropyl)carbodimide hydrochloride/N-

hydroxysulfosuccinimide coupling chemistry (EDC/NHS coupling). 25nM of wtPAI-1 in HBS-

EP buffer (10 mM HEPES, 150mM NaCl, 3 mM EDTA, 0.005% surfactant P20, pH 7.4) was 

flowed over the VN-chip in the presence and absence of equimolar concentration of isolated 
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SMB domain. The conditions for this experiment were a10µl/min flow rate with protein, with a 

3min association followed by 3min dissociation phase with a flow of buffer alone.  The chip was 

regenerated with 50mM HCl at 10µl/min flow rate for 1min. 

For metal binding experiments with PAI-1, the NTA chip was used. The structure of 

NTA is shown in Figure-2.2. Freshly prepared (filtered and degassed) Tris buffer (50mM Tris, 

200mM NaCl, pH-7.4) was used as running buffer. For each metal a highly concentrated stock 

solution was made in water and stored at 4
0
C under low pH. Before each experiment a solution 

of 0.5mM (unless otherwise specified) was made from the stock solution using the running 

buffer. For regeneration, a 350mM EDTA solution was made in running buffer. For washing the 

loosely bound metal from the microfluidic channel and the chip, a 50µM EDTA solution was 

made in running buffer. All the reagents were filtered and degassed before the experiment. No 

reagent was used for more than two days. PAI-1 was dissolved in running buffer (filtered, 

degassed) at the desired concentration, and the final mixture was filtered before loading on the 

chip. The basic scheme of the experiment is shown in Figure-2.3. Metal was loaded on FC2 (or 

FC4) at a 10µl/min flow rate for 0.7min. Loosely bound metal was flushed out of the system by a 

brief injection of (1.5min) 50µM EDTA on both the metal loaded and reference flow cells at a 

10µl/min flow rate. PAI-1 was loaded on to the chip (on both flow cells) at 10µl/min flow rate 

for 2 min and the dissociation was monitored for 3 min. Specific binding of PAI-1 to metal was 

obtained by subtracting the background binding on the reference flow-cell. Steady state response 

units were determined using the BIA-evaluation software, plotted against PAI-1 concentration 

and fit to a single-site specific binding model in Graphpad-Prism to obtain the affinity constant.  
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Figure-2.2: The structure of nitrilotriacetic acid shows 

three carboxy-methylene groups are attached with the 

central nitrogen atom 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure-2.3: The basic scheme for PAI-1 binding experiment to the 

immobilized metal on NTA chip. The change in response unit (RU) for 

each injection over both the test flow cell (in green) and the reference 

flow cell (in red) is represented schematically. 

Figure 2. 2: Nitrilotriacetic acid 

Figure 2. 3: Basic scheme for the Biacore experiments of PAI-1 binding to metal 
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For competition experiments, a fixed concentration of PAI-1 was mixed with varying 

concentrations of MgCl2. The mixture of PAI-1 and MgCl2 was then injected at a 20 µl/ml flow 

rate over both nickel-bound and reference flow cells for 2 min. Competition of magnesium with 

NTA-bound nickel for binding to PAI-1 was measured by the decrease in steady-state response 

units. For this competition experiment, response curves obtained at each concentration of MgCl2 

were plotted with that of PAI-1 by itself. Free metal ion concentration was calculated according 

to the following equation: Mf = Mt – [(Mt + Bt + Kd) – ((Mt + Bt + Kd)
2
 – 4•Bt•Mt)

1/2
]/2 where Mf 

= free metal concentration, Mt = total metal concentration, Bt = total buffer concentration, and Kd 

= buffer/metal dissociation constant. The specific affinity information between a metal ion and 

the buffer was obtained from the previous work done by other groups [236-238]. By using the 

known buffer/metal affinity values ( β1) as described in these articles, the dissociation constants 

of the metals in the Tris buffer were calculated following the equation: β1= Ka = 1/Kd. 

2.2. g. Sedimentation velocity experiments  

Sedimentation velocity experiments were carried out in an Optima XL-I analytical 

ultracentrifugation instrument. Both interference and absorbance optics were utilized. When 

interference optics was used, proteins were dialyzed against a common buffer overnight at 4
0
C. 

For example, when experiments were performed to characterize the multimerization between VN  

and PAI (wild type and its variants- 14-1-B & W175F), each of these proteins were loaded into 

Slide-A-lyzer dialysis cassettes (10Kd cut off). Each of these cassettes was then dialyzed 

overnight against 1XPBS in the same dialysis chamber in order to match the buffer composition 

between the various samples. VN and PAI-1 (or its variants) were mixed at the required 

concentrations and the mixture was incubated at 37
0
C for 1hr. A volume of 390µl of the mixture 
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was loaded into the sample sector of a double-sector charcoal-filled epon (12mm path length) 

centerpiece inside the centrifugation cell. For interference optics, buffer from the dialysis 

chamber was used in the reference sector of the centrifuge cell in order to match the buffer 

composition between reference sector and sample sector. For absorbance optics buffer matching 

was not as critical. For experiments with RCL peptide mimics, only absorbance optics was used. 

Peptides at required concentrations were mixed with PAI-1 and incubated at 37
0
C for 1hr. 

Following this incubation, VN was added, and incubation was continued for an additional hour at 

37
0
C. Samples were loaded on to centrifugation cell as described above.  

Centrifugation cells were properly aligned inside an 8-hole An50 Ti rotor and the rotor 

was subject to temperature equilibration inside the centrifuge under vacuum. Temperature 

equilibration was continued for at least 1hr at 25
0
C. For interference data collection, proper 

temperature equilibration is very critical. For interference scans, radial calibration was carried 

out before starting the data collection. Sedimentation velocity experiments were performed at 

50,000 rpm at 25°C. Analysis of the sedimentation velocity data was carried out using the 

continuous c(s) distribution model described by the Lamm equation with the freely available 

software, SEDFIT [239-240]. The built-in integration tool of SEDFIT was used to calculate the 

amount of loading signal present within a specific sedimentation coefficient range. 
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2.3. Results  

2.3.I. Characterizing the Interaction between Vitronectin and PAI-1 by 

Strategic Placement of a Spin Label in PAI-1 

2.3.I.a. Isolation of the Correctly Folded SMB Domain  

 Expression of the SMB domain (first 44aa of vitronectin) in a recombinant system is 

challenging because of the likelihood of producing misfolded protein due to improper disulfide 

bridge formation. The SMB domain has 8 cysteine residues that form 4 disulfide bonds. The 

correct formation of these four disulfide bonds yields a structure that is resistant to protease 

digestion. However, expression in a bacterial system results in the formation of several different 

disulfide bonded species. In a separate study, a segment from vitronectin containing both the 

SMB and IDD domains (i.e., the first 130aa of VN) of VN was expressed in our lab. Following is 

the sequence of the piece that was expressed as SMB-IDD. The first four amino acids of the 

 

sequence (GSAM) are an extra portion that resulted from the cloning strategy. The portion 

highlighted in green is the SMB domain, and the portion highlighted in yellow is the IDD 

domain with a RGD sequence in between them. A method was developed to use a trypsin 

digestion method to isolate and purify the correctly folded SMB domain from the expressed 

recombinant SMB-IDD pool (which presumably contains a mixture of species due to various 

disulfide arrangements). The working hypothesis was that the correctly folded form will be 

resistant to such digestion. Following trypsin digestion for ~ 140 min at 37
0
C, reverse phase 

HPLC purification was pursued on the digested proteins, using a C18 Proteo column.  

GSAMDQESCKGRCTEGFNVDKKCQCDELCSYYQSCCTDYTAECKPQVTRGDVFTMPED

EYTVYDDGEEKNNATVHEQVGGPSLTSDLQAQSKGNPEQTPVLKPEEEAPAPEVGASKP

EGIDSRPETLHPGRPQP 

 



55 

 

Figure-2.4 represents the elution profile of the digested SMB-IDD by HPLC. Various peaks 

were collected, and their mass was checked by MALDI. If the SMB domain remains resistant to 

trypsin digestion then a digestion after R49 residue will result in the release of the isolated SMB 

domain with a calculated mass of 5506Da including GSAM at the N-terminus. The peak that 

eluted at 10.11min showed a mass of 5505.339Da, close to the expected mass. Large scale 

trypsin digestion was carried out, and the peak corresponding to the undigested and intact SMB 

domain was collected upon multiple injections of the digested sample. Again, several collected 

fractions were selected and were tested along with the target fraction by MALDI to confirm the 

mass. Figure-2.5 represents the mass chromatogram obtained from the target fraction, and the 

observed mass was once again very close to calculated mass for the isolated SMB domain. All of 

the collected peaks were combined, freeze-dried and reconstituted in 1XPBS and stored at 4
0
C.  

Confirmation of the correct folding of the purified SMB was performed by carrying out a 

SPR-based competition assay in the BIACORE instrument. A CM5 chip was covalently coupled 

with monomeric vitronectin. Mixtures of PAI-1 and the isolated SMB domain were passed over 

the VN-chip. The SMB domain, at equimolar concentrations with PAI-1, (25nM:25nM) was 

observed to completely block PAI-1 binding to VN chip. Figure-2.6 shows the sensogram data 

with PAI-1 run over the chip alone or in combination with the SMB sample. While PAI-1 by 

itself showed a steady state response unit (RU) of about 500, the addition of the SMB domain  

reduced the binding close to baseline. These data clearly confirm the proper function of this 

SMB preparation. 
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Figure-2.4: Digestion of SMB-IDD was carried out for 140min at 37
0
C in 

NH4HCO3 buffer at pH-8. 50µl of the digested sample was loaded on a Proteo-RP 

column and separated using a 24-28% gradient run for 30min at 0.5ml/min flow 

rate. The peak that eluted at 10.118min represented undigested SMB domain. The 

numbers indicated in the elution profile are the time points (in minutes) of the 

appearance of each peak. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. 4: HPLC elution profile of trypsin digested SMB-IDD 
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Figure-2.5: The SMB-IDD domain was digested with trypsin at 37
0
C in 

NH4HCO3 buffer at pH-8. Samples were injected on to RP-HPLC. The peak 

eluted at 10.11min for each injection was collected. This peak represented 

undigested SMB. Some of the fractions were randomly selected and checked by 

MALDI. This figure shows the mass information obtained from one of those 

samples. The observed mass (5505.893) nicely matches up with the calculated 

mass. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 2. 5: Confirmation of the mass of the isolated SMB domainby MALDI 
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Figure-2.6: A competition experiment of SMB domain with full length VN for PAI-1 

binding was designed. Monomeric VN was immobilized on a CM5 chip. Injection was 

carried out for 5min at 30µl/min followed by a 5min dissociation phase. PAI-1 (25nM) 

alone showed a response unit change of around 500. However, addition of equimolar 

SMB decreased the change in response units to nearly baseline, demonstrating effective 

competition of the SMB domain with full length VN for PAI-1 binding. This figure 

shows results from duplicate injections of each sample. 

Figure 2. 6: Confirmation of the PAI-1 binding activity of the SMB by SPR 
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2.3.I.b. MTSL-labeled PAI-1 Accurately Reports the Transition to the Latent Form  

 Use of spin labels has been found to be quite useful in the understanding of structural 

changes upon protein-protein interaction. Spin labels are extremely sensitive to changes in the 

local environment and can provide valuable information on conformational changes. PAI-1 has 

an inherent advantage in that it does not have any cysteine residues in its primary structure. This 

allows us incorporating a single cysteine at any location within PAI-1 by site-specific 

mutagenesis, and thus in turn permits us to put a spin label at our position of choice. In this 

study, the Serine-338 residue in the RCL (known as the P9-residue), was chosen to be spin 

labeled. The S338C mutant of PAI-1 was successfully expressed and purified, and the purified 

mutant was successfully labeled with MTSL spin-label following the reaction mechanism shown 

in Figure-2.1. Incorporation of a single label was confirmed by MALDI (Figure-2.7). This 

result confirms that the observed mass (42784.043Da) of the purified mutant (S338C) agrees 

with the calculated mass which is 42785.45Da. If the reaction with MTSL at a single position has 

been achieved then the increase in mass should be 184Da. Our result shows an increase in 

184.7Da.  

 Once the labeling was confirmed, we aimed to verify our idea that strategically placed 

spin-labels in PAI-1 would be sensitive to changes in the local environment. Placement of the 

fluorescent probe at the P9 position has been successfully utilized to probe the insertion of the 

RCL during the transition of PAI-1 to the latent conformation [241]. Likewise, it was predicted 

that this spin-label at P9 position could successfully report the insertion of the RCL. 8µM 

MTSL-labeled PAI-1 was loaded into the EPR tube, and scans were collected at different time 

intervals. Temperature inside the EPR cavity was maintained at 37
0
C throughout the experiment. 

At each time point, two scans were collected, and the absolute area of the middle peak of the  
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Figure-2.7: MALDI analyses for comparing the mass of S338C-PAI-1 and MTSL-

labeled S338C-PAI-1. The top panel shows the mass of purified S3368-PAI-1, and 

the bottom panel shows the mass of S3368-PAI-1 with the spin label attached. The 

major peak in the spectrum represents the average molecular weight of each 

species. The observed increase in mass (184.7Da) nicely corresponds to the presence 

of a single label on PAI-1  

 

 

 

 

 

 

 

Figure 2. 7: Conformation of MTSL labeling of S338C PAI-1 by MALDI 
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EPR-spectrum was calculated. Peak area was plotted against time and fitted to a single 

exponential decay equation. With increasing time, the peak area decreased until it reached a 

plateau. Figures-2.8 and 2.9 show the spectrum collected at time zero and at 22hr respectively. 

Figure-2.10 shows the area vs. time curve. The half-life of the signal change was ~ 85 min, 

which is similar to the half-life of the latency transition found in the literature (1-2hrs) [158-159]. 

This indicates that the method can effectively sense the change occurring at a structural level. 

2.3.I.c. The Effect of VN or the SMB Domain Binding on MTSL-Labeled PAI-1 

An experiment was designed to check the effect of the binding of the isolated SMB 

domain or full length VN on MTSL-labeled PAI-1. A titration experiment was carried out in the 

Bruker-EMX EPR instrument, using varying concentrations of vitronectin or the SMB domain 

mixed with a fixed concentration of MTSL-S338C PAI-1 (3µM). Figure-2.11 shows the data 

from this experiment. Four scans from each sample were collected, and the peak height of the 

second (middle) peak of the MTSL-labeled PAI-1 was calculated using WINEPR software (from 

Bruker-EMX). The peak height of each sample was normalized with respect to the peak height 

obtained from MTSL-PAI-1 alone. The normalized data were plotted against the concentration 

of the ligand. This titration analysis shows an interesting difference in the interaction comparing 

the isolated SMB domain and full-length, intact vitronectin with PAI-1. While the addition of 

increased concentrations of SMB to PAI-1 did not cause much change in the spin label, addition 

of VN to PAI-1 caused a decrease in the signal intensity. These results provide another indication 

that the interaction of full length VN with PAI-1 is more extensive than that exhibited by the 

SMB domain by itself. 
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Figure-2.8-2.9: EPR spectra of MTSL-S338C PAI-1 at time zero (Figure-

2.8) and at 22hr (Figure-2.9). MTSL-labeled PAI-1 was tested at an 8µM 

concentration, and each spectrum at the respective time points represents 

the addition of two scans. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. 8: Spectrum of MTSL labeled PAI-1: at time zero 

Figure 2. 9: Spectrum of MTSL labeled PAI-1: at 22hr 



63 

 

Figure-2.10: The absolute area of the middle peak from the EPR spectra at each time 

point was calculated and plotted against time interval. Data have been fit to a single 

exponential decay equation. The half-life obtained from this study was 85min. 

 

t1/2 ~ 85min 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 2. 10: Exponential decay of EPR signal of labeled PAI-1with time at 370C 
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Figure-2.11: Titration of MTSL-S338C PAI-1 (3µM) with varying 

concentrations of SMB and VN. Four scans for each sample were collected. The 

peak height of the middle peak of each sample was calculated and normalized 

with respect to the peak height obtained from MTSL-labeled S338C-PAI-1 

alone. Normalized data have been plotted against ligand concentration. Solid 

circles (red) show the titration with SMB and open squares indicate the 

titration with VN. 

 

 

  

Figure 2. 11: Comparison of VN and SMB binding to S338C-PAI-1by EPR 
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2.3. II. Characterizing the Mechanism of Formation of Complexes Between 

VN and PAI-1 

2.3.II.a. Comparison of Formation of Higher-order PAI-1/VN Complexes with Wild-type 

and Stable Mutant Forms of PAI-1 

 Sedimentation velocity experiments are routinely done in our lab to understand the 

association process for VN and wtPAI-1. Figure-2.12 shows the formation of the multimeric 

complexes between VN and PAI-1 (mixed at equimolar concentration, 6µM) from a 

sedimentation velocity experiment. Absorbance data were collected and analyzed using the c(S) 

continuous size distribution model described by the Lamm equation using SEDFIT [240]. A 

distribution plot is generated relating the concentration of various species (y-axis) and their 

sedimentation coefficient ((s) plotted on the y-axis). Monomeric VN and PAI-1 have a 

characteristic sedimentation coefficient of ~ 4.5S and 3.5S respectively [210]. The appearance of 

higher-order multimeric species becomes evident when these two proteins are mixed together. 

Figure-2.12 shows the multimeric species (with S-values greater than 6); integrating the area 

between specific sedimentation coefficient values allows us to quantify the relative amount of 

protein mass present within that range. When PAI-1 and VN are mixed together (6µM:6µM) 

about 65% of the total loading signal is present within the range of 6S to 60S as higher-order 

multimeric complexes.  

We next evaluated association of vitronectin with two mutants of PAI-1 (14-1-B and 

W175F) that are known to have much higher stability than wild type active PAI-1 [135, 164]. 
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Figure-2.12: Proteins (VN and PAI-1) were mixed at an equimolar concentration (6µM) at 37
0
C for 1hr and loaded into the 

centrifuge cells. Absorbance data were collected at 50000rpm at 25
0
C and fitted to a c(S) distribution model using SEDFIT. 

The top-panel indicates the RI noise and TI noise subtracted data fitted to the c(S) distribution model. The numbers indicate 

the fitted parameters referring to the model. The middle-panel indicates the residual of the fit. The bottom-panel is the 

distribution plot of different sedimenting species (c(S) vs. S). Integration of the distribution between 6S and 60S indicates 

that 65% of the loading concentration was present as higher order complexes. 

 

 

 

 

 

 

 

 

 

 

Figure 2. 12: Sedimentation velocity study of oligomeric complex formation between VN and wtPAI-1 
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Mutations at these different positions apparently cause structural changes that oppose the 

spontaneous insertion of the RCL. In a previous study done by our lab, it was found that the 

W175F mutant had a greatly decreased affinity (Kd>10µM) for binding to VN at the site situated 

outside of the SMB domain [242]. Therefore, a significant functional difference exists between 

wild type PAI-1 and theses mutants. Our goal was to further compare the functional properties of 

these two mutants with wild type active PAI-1. Although these two mutants are showing 

stabilizing effect on PAI-1 by bringing structural alteration, important question remains 

regarding their ability to form multimeric complexes with VN. Sedimentation velocity 

experiments were performed to compare the amount of higher-order multimeric complexes 

generated with VN. Figure-2.13 shows the comparison of the distribution of higher order 

multimeric species formed by the interaction of VN with equimolar amounts of wild type active 

PAI-1 or either of the mutants. Integration of the distribution range between sedimentation 

coefficients of 7S to 45S demonstrates that about 50% of the loading signal from all the variants 

was present within this range. Thus, the total amount of higher order multimers formed between 

active PAI-1 and the mutants was not much different. If we carefully observe the size 

distribution profile it appears that with the 14-1-B mutant, formation of higher order multimers 

was largely limited to sedimentation values of <20S. The relative amount of higher order species 

present beyond that range was much lower compared to the other mutant and wild-type protein. 

2.3.II.b. Studies to Address the Way in which VN and PAI-1 Interact within Multimeric 

Complexes 

 We have generated evidence in our lab that indicates that the multimerization between 

VN and PAI-1 is initiated by the formation of a heterotrimeric complex (1:2 stoichiometry) that  
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Figure-2.13: Comparison of multimeric complex formation between wtPAI-1 

(red) and mutant forms of PAI-1, W175F (green) and 14-1-B (black). 

Interference data were collected at 50000rpm and fitted to a c(S) distribution 

model using SEDFIT. Each variant of PAI-1 was mixed at an equimolar 

concentration with VN (6µM) and incubated for 1hr at 37
0
C before loading 

into the centrifuge cells for the analysis.  

 

 

 

 

 

 

 

 

Figure 2. 13: Sedimentation velocity study: comparison of oligomerization between 

wtPAI-1 and its stable mutants with VN 
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contains one VN molecule and two PAI-1 molecules. Although our idea was that two PAI-1 

molecules bind to one VN directly within the 2:1 complex, we did not have direct evidence to 

validate this hypothesis. Several approaches have been pursued to address this idea. For one, we 

have an ongoing collaboration with scientists at the Oak Ridge National Lab (ORNL) to study 

the mechanism of complex formation between VN and PAI-1 by performing small angle neutron 

scattering (SANS). These studies have been performed with a complex of monomeric VN and  

perdeuterated W175F. A model of full-length VN previously generated from a small angle x-ray 

scattering (SAXS) study [27] and the crystal structure of 14-1-B have been used to fit the data  

obtained from these SANS studies. This has resulted in the generation of an intriguing model of 

how VN and PAI-1 interact within 1:2 complexes as shown in Figure-2.14. This model indicates 

that within the 2:1 complex, only one PAI-1 molecule is in direct contact with the VN molecule. 

The second PAI-1 molecule has no connection with VN; instead, it forms direct contacts with the 

first PAI-1 molecule that directly interacts with VN. This model points us in new directions 

regarding the interaction between VN and PAI-1. Obviously, a direct interaction between VN 

and PAI-1 is important for initiating the process; this means that use of a PAI-1 variant that 

completely lacks the ability to interact with VN will be expected to fail in forming multimeric 

complexes. Another interesting aspect of this model is the interaction between the PAI-1 

molecules within the complex. It appears that PAI-1/PAI-1 interactions make a significant 

contribution in the multimerization process. Indeed, PAI-1/PAI-1 interactions in a 

polymerization process have been observed previously. For example, serpins are known to 

exhibit intermolecular interactions via their reactive center loop; polymerization of serpins (α1-

antitrypsin, antithrombin, C1-inhibitor etc.) has been implicated in several diseases like, cirrhosis  
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Figure-2.14: SANS (Small Angle Neutron Scattering) study for understanding 

the interaction between VN and W175F-PAI-1 (Peterson lab, unpublished). 

Within this model, four PAI-1 molecules (blue) and two VN molecules (green) 

are indicated by arrows. Within the 1:2 complex, PAI-1 is connected with VN 

by another PAI-1 molecule. Connection between two 1:2 complexes is 

mediated by VN. 

  

Figure 2. 14: Model of interaction between VN and W175F-PAI-1: result from 

SANS study 
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of liver, thromboembolism, angioedema [243-245]. There are a few potential ways in which the 

RCL of one molecule can be inserted into the β-sheet of another serpin to initiate the process of 

multimerization. Figure-2.15 indicates three possible mechanisms for loop insertion that have 

been proposed [246]. Insertion can occur and form the 4
th

 β-strand or 7
th

 β-strand of the central 

β-sheet A, or it may occur in a way that forms an additional strand of β-sheet C.  

Replacing glutamate-123 in PAI-1 with arginine has been found to weaken the affinity 

for the primary site interaction within the SMB domain of VN [197]. Figure-2.16 shows the 

result of sedimentation velocity study done between monomeric VN and Q123K-PAI-1 mixed at 

equimolar concentration (4µM). Only 10.3% of the total loading signal was present between 

sedimentation coefficient ranges of 6S to 37S, whereas a control experiment done between VN 

and native PAI-1 under similar condition had 37% of the total loading signal present within the 

same distribution range. This result shows that disrupting the primary site interaction between 

VN and PAI-1 significantly blocks the formation of higher order complexes. The lower quantity 

of higher order complexes observed with Q123K are presumably due to the high concentration of 

the protein (4µM) used during the experiment.  

           If the loop insertion is the cause of PAI-1/PAI-1 interaction in the complex, use of latent 

PAI-1, which already has the RCL inserted as the 4
th

 strand of β-sheetA, should presumably 

block the formation of the complex. This will be valid only if the PAI-1/PAI-1 interaction is 

„loop to strand 4A of central β-sheet‟-mediated. Figure-2.17 shows that sedimentation velocity 

study done using equimolar concentrations of VN and latent-PAI-1 (4µM). While the amount of 

higher order complexes formed with latent-PAI-1 was much lower than native PAI-1 (around 

37%), it was significantly higher compared to the Q123K mutant. 18.3% of the total loading  
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Figure-2.15: Multiple ways in which loop insertion may happen between serpin 

molecules (obtained from Ref: 246). The left panel indicates loop insertion as the 4
th

 

strand of β-sheet-A (observed with naturally occurring mutants of α1 antitrypsin). The 

middle panel indicates loop insertion as a strand of β-sheet-C (observed with the 

crystal structure of anti-thrombin). The right panel indicates insertion as the 7
th

 stand 

of β-sheet-A (observed with the crystal structure of PAI-1) [246]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. 15: Loop insertion mechanisms for different serpins 
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Figure-2.16: Proteins (VN and Q123K-PAI-1) were mixed at equimolar concentration (4µM) at 37
0
C for 1hr and loaded into the 

centrifuge cells. Absorbance data were collected at 50000rpm at 25
0
C and fitted to c(S) distribution model using SEDFIT. The 

top-panel indicates the RI noise and TI noise subtracted data fitted to the c(S) distribution model. The numbers indicate the 

fitted parameters referring to the model. The middle-panel indicates the residual of the fit. The bottom-panel is the distribution 

plot of different sedimenting species (c(S) vs. S).Integration of the distribution between 6S and 36S indicates that 10.3% of the 

loading concentration was present as higher order complexes. 

  

Figure 2. 16: Sedimentation velocity study of oligomeric complex formation between VN and Q123K-PAI-1 
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Figure-2.17: Proteins (VN and lat-PAI-1) were mixed at equimolar concentration (4µM) at 37
0
C for 1hr and loaded into the 

centrifuge cells. Absorbance data were collected at 50000rpm at 25
0
C and fitted to c(S) distribution model using SEDFIT. 

The top-panel indicates the RI noise and TI noise subtracted data fitted to the c(S) distribution model. The numbers 

indicate the fitted parameters referring to the model. The middle-panel indicates the residual of the fit. The bottom-panel is 

the distribution plot of different sedimenting species (c(S) vs. S). Integration of the distribution between 6S and 44S 

indicates that 18.3% of the loading concentration was present as higher order complexes. 

 

 

 

 

Figure 2. 17: Sedimentation velocity study of oligomeric complex formation between VN and latent-PAI-1 
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signal was present between sedimentation coefficient ranges of 6S to 44S. This indicates that it is 

possible that the interaction between PAI-1 can occur through more than one mechanism. 

2.3.II.c. Effect of RCL Peptide Mimics on the Interaction Between VN and PAI-1 

 In order to further evaluate the concept of RCL insertion as a mechanism for PAI-1/PAI-

1 interaction, an alternative approach was utilized. RCL-mimicking peptides have been utilized 

in a number of cases to interfere with the loop insertion process and study ligand binding 

interaction with PAI-1 [247-248]. There are two different RCL peptide mimics that are most 

commonly used. They are: i. octapeptide: N- TVASSSTA –C (mimics P14-P7 residues) and ii. 

pentapeptide: N- TVASS –C (mimics P14-P10 residues). A crystal structure exists for a cleaved 

PAI-1 mutant (Ala335Pro) complexed with the pentapeptide [249]. Figure-2.18 and 3.19 

represent the relative positions of the residues that correspond to octapeptide and pentapeptide in 

the inserted RCL of latent PAI-1, respectively. Each of these RCL peptide mimics was -

incubated with native PAI-1 (at ~ 330 fold higher molar concentration) for 1hr at 37
0
C and then 

mixed with an equimolar concentration of monomeric VN (6µM) to test for complex formation. 

Figure-2.20 and Figure-2.21 show the results of sedimentation velocity experiments on 

mixtures of VN and native PAI-1 in the presence of octapeptide and pentapeptide respectively. 

With each of these peptides, only about 7% of the loading signal was present as higher order 

complexes between the sedimentation coefficient values of 6S to 60S. The control experiment 

performed in the absence of peptides showed that 65% of the loading signal is present as higher 

order complexes within the same sedimentation coefficient range. Another striking observation 

was that, with the presence of each peptide, the interaction between VN and PAI-1 was almost 

completely inhibited. Almost no 1:1 complex between VN and PAI-1 was observed.  
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Figure-2.18 & 2.19: Crystal structure of latent-PAI-1 with RCL inserted as 

4
th

 strand of β-sheet-A [161]. Figure-2.18 shows relative positions of the 

residues (in red) that correspond to the octapeptide. Figure-2.19 shows the 

positions of the pentapeptide (in red). In both structures R346 (P1) is shown 

in yellow and Q123 residue is shown in green. 

 

Figure 2. 19: Relative orientation of the 

octapeptide sequence in latent PAI-1 

Figure 2. 18: Relative orientation of the 

pentapeptide sequence in latent PAI-1 
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Figure-2.20: Analysis of the effect of the binary complex between wtPAI-1 (6µM) and octapeptide (2mM) on the oligomerization 

by AUC. The mixture was incubated at 37
0
C for 1hr. This was mixed with 6µM VN and incubated for 1hr at 37

0
C prior to 

loading the centrifuge cells. Absorbance data were collected at 50000rpm at 25
0
C and fitted to a c(S) distribution model using 

SEDFIT. The top-panel indicates the RI noise and TI noise subtracted data fitted to the c(S) distribution model. The numbers 

indicate the fitted parameters referring to the model. The middle-panel indicates the residual of the fit. The bottom-panel is the 

distribution plot of different sedimenting species (c(S) vs. S).Integration of the distribution between 6S and 44S indicates that 

6.7% of the loading concentration was present as higher order complexes. 

Figure 2. 20: Effect of the octapeptide on the interaction between VN and wtPAI-1: sedimentation velocity study 
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Figure-2.21: Analysis of the binary complex between wtPAI-1 (6µM) and octapeptide (2mM) on the oligomerization by AUC. The 

mixture was incubated at 37
0
C for 1hr. This was mixed with 6µM VN and incubated for 1hr at 37

0
C prior to loading the 

centrifuge cells. Absorbance data were collected at 50000rpm at 25
0
C and fitted to a c(S) distribution model using SEDFIT. The 

top-panel indicates the RI noise and TI noise subtracted data fitted to the c(S) distribution model. The numbers indicate the fitted 

parameters referring to the model. The middle-panel indicates the residual of the fit. The bottom-panel is the distribution plot of 

different sedimenting species (c(S) vs. S).Integration of the distribution between 6S and 44S indicates that 7.4% of the loading 

concentration was present as higher order complexes. 

 

Figure 2. 21: Effect of the pentapeptide on the interaction between VN and wtPAI-1: sedimentation velocity study 
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2.3. III. Characterizing the Binding between PAI-1 and Different Metals  

There are multiple factors that influence the stability of PAI-1, including temperature, 

buffer, salt, pH and different ligands. Recently our lab has found that metal ions are also 

important regulators of PAI-1 function and stability. This work has been performed in 

conjunction with Dr. Larry Thompson, a postdoctoral associate of our lab. It was observed that 

Type-I (Mg
+2

, Ca
+2

) and Type-II (Ni
+2

, Cu
+2

) metal ions exhibit different effects on the stability 

of PAI-1. While the effect of type-II metals was strongly destabilizing, type-I metals caused 

slight stabilization of PAI-1. The effect of these metals was even more interesting in the presence 

of VN. While the type-I metals did not show much difference in the absence or presence of VN, 

type-II metals had completely opposite effects. In presence of VN, type-II metals dramatically 

stabilized PAI-1. Figure-1.9 (chapter-1) shows the effect of different metals on the stability of 

PAI-1 in the absence/presence of VN (Thompson et al., submitted). The physiological relevance 

of this interaction between metals and PAI-1 will be largely dictated by the affinity of their 

interaction. The goal for these experiments was to establish a reproducible method for 

characterizing the binding affinity between PAI-1 and different metals. 

2.3. III.a. Comparing Ni Binding with wtPAI-1 and PAI-1 Variants Using SPR. 

The availability of a NTA (nitrilotriacetic acid)-chip from Biacore offered a way to make use of 

surface plasmon resonance for this study. NTA is a reagent that is commonly used for 

immobilized metal affinity chromatography (IMAC). In this chip, NTA is covalently linked with 

a carboxy-methyl chain and is available for metal binding. Since IMAC was used for purifying 

recombinant PAI-1, the same principle was utilized here to characterize the metal binding 

affinity. An assay was standardized as described in the method section. Briefly, metal was loaded 
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on to the test flow cell, and PAI-1 passed through both test and reference flow cells in order to 

establish specific metal binding in contrast to background (nonspecific) binding. This assay was 

then utilized to obtain information on the affinity of the interaction between PAI-1 and Ni.         

Figure-2.22 shows the representative sensograms obtained from the injections of varying 

concentrations of active PAI-1 on immobilized Ni on the NTA chip. Each of these response 

curves indicates that binding has reached steady state. Figure-2.23 shows the binding isotherm 

of active PAI-1 binding to Ni using the steady-state binding response versus PAI-1 

concentration. This isotherm was fitted to Langmuir‟s 1:1 binding equation. The affinity 

obtained for PAI-1 binding to Ni from these experiments is 6.22  0.05 µM.  

Since type-II metal severely destabilized active PAI-1, it was important for us to 

determine the affinity of latent-PAI-1 for type-II metals. A titration experiment was carried out 

for checking latent-PAI-1 binding to Ni. Figure-2.24 shows the binding isotherm of latent-PAI-1 

binding to Ni. The affinity of latent-PAI-1 was found to be 21.8  3.5 µM. Thus, the latent-PAI-

1 has at least three times weaker affinity for Ni binding compared to active-PAI-1. This indicates 

that the destabilization of active PAI-1 by Ni is not a direct consequence of preferable binding of 

Ni to the latent form. Binding of Ni most likely causes a conformational change in active PAI-1 

that favors the conversion to latent form.  

The effect of type-I and type-II metals on PAI-1 stability was essentially the opposite. A 

plausible explanation of this finding is the presence of different binding sites for type-I and type-

II metals. In order to check the presence of multiple binding sites, a competition experiment was 

designed. Varying concentrations of MgCl2 (type-I metal) was mixed with a fixed concentration 
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Figure-2.22: This figure shows representative sensograms of varying 

concentrations (serial dilution from1600nM to 100nM) of PAI-1 injected on a 

Ni-NTA chip (1.5min association and 5min dissociation). Figure-2.23: binding 

isotherm of wtPAI-1 binding to Ni-NTA. Equilibrium binding responses were 

plotted against PAI-1 concentration. Data were fitted to Langmuir 1:1binding 

equation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. 22: Representative sensogram of titration experiment of 

PAI-1 binding to Ni-NTA 

Figure 2. 23: Binding isotherm of wtPAI-1 binding to Ni 
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Figure-2.24: Varying concentrations of PAI-1 (serial dilution from 56µM to 0.875µM) 

were run on a Ni-loaded NTA chip. Equilibrium binding responses were plotted against 

PAI-1 concentrations. Data were fitted to Langmuir 1:1binding equation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. 24: Binding isotherm of latent-PAI-1 binding to Ni: SPR study 
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(2µM) of active-PAI-1, and the mixtures were allowed to flow over Ni immobilized on the NTA 

chip. Figure-2.25 shows the representative sensograms of PAI-1 binding to Ni in the presence of 

different concentrations of MgCl2. At high concentrations (millimolar), binding of PAI-1 to Ni 

(type-II) could be partially blocked by Mg (type-I). This indicates that type-I metal can bind to 

the type-II metal site, but with much lower affinity.  

14-1-B, the constitutively active form of PAI-1, exhibits a half-life of about 145 hrs 

[164]. Because of this marked stability, this mutant PAI-1 has been used in different studies as an 

alternative to wild type active PAI-1. Blouse et al. reported that the mutation of the conserved 

Tryptophan residue (Trp175) by Phenylalanine increased the inherent stability of the structure 

from a half-life of about 2 hrs to 22 hrs [135]. We aimed to compare the metal binding of these 

two stable mutants with that of wild type active PAI-1. Figure-2.26 and 2.27 show the binding 

isotherm of W175F and 14-1-B binding to Ni, respectively. The affinity of these two mutants for 

Ni binding were 33.6  2.7 µM and 38.44  3.2 µM respectively. This study indicates that wt-

PAI-1 possesses an optimal conformation for type-II metal binding. 

2.3. III.b. The SPR Based Assay was not Suitable for Measurements with Other Type-II 

Metals. 

            We hoped to extend the application of this SPR method for studying other type-II metal 

binding to PAI-1. Unfortunately, this method could not be applied to other type-II metals like 

Cu, Co, or Zn. When Cu was used for immobilization, the initial binding to the chip was found to 

occur normally, but with time it showed gradual leaching off the chip. Cu bound to NTA could 

not even withstand the mild EDTA wash that was part of the original Ni-binding assay. Omitting  
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Figure-2.25: Sensograms showing a competition experiment of Mg binding to PAI-1 

with Ni. PAI-1 was mixed with varying concentrations of MgCl2, and the mixtures 

were run on a Ni-loaded NTA chip. The free concentration of MgCl2, after binding to 

Tris buffer, is calculated and included in the graph. 

  

Figure 2. 25: Competition experiment of Mg binding with Ni: SPR study 
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Figure-2.26 & 2.27: Binding isotherms of W175F-PAI-1 (Figure-2.26) and 14-1-B 

(Figure-2.27) binding to Ni-NTA respectively. Varying concentrations of PAI-1 (serial 

dilution from 128µM to 0.5µM) were run on a Ni-loaded NTA chip. Equilibrium 

binding responses were plotted against PAI-1 concentrations. Data were fitted to 

Langmuir 1:1 binding equation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. 26: Binding isotherm of W175F-PAI-1 binding to 

Ni: SPR study 

Figure 2. 27: Binding isotherm of 14-1-B binding to Ni: SPR 

study 
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the EDTA wash stabilized better Cu binding to the chip. However, when PAI-1 was loaded on to 

the Cu-NTA surface, the initial protein binding followed normal association behavior but it  

never reached steady state, as shown in Figure-2.28. It can be observed that when the PAI-1 

injection was made, another interaction phase occurred in parallel that reduced the overall Cu 

binding. Co and Zn could not be immobilized on the chip even when used at 2mM concentration. 

On the other hand, when these two metals were separately premixed with PAI-1 and the mixture 

was loaded directly on to NTA chip, binding could be observed. Figure-2.29 shows the loading 

of a mixture of 1µM PAI-1 and 1mM CoCl2 on to NTA chip. It can be observed that binding 

followed a single phase association pattern and reached steady state. A titration experiment was 

conducted where different concentrations of CoCl2 were mixed with fixed concentration of PAI-

1 and the mixtures were allowed to flow over NTA chip one at a time. Steady state response 

units were measured and plotted against free Co concentration (Figure-2.30). The binding 

isotherm was fit to a Langmuir‟s 1:1 binding equation. The dissociation constant obtained from 

this fitting was 170µM. However, the specificity of the interaction (PAI-1 binding to Co or PAI-

1/Co complex binding to NTA) was not clear from this experiment. When the mixture of PAI-1 

and Zn was loaded on to NTA chip, the binding interaction was found to exhibit more than one 

phase of interaction (Figure-2.31). It seems that the specific coordination geometry provided by 

nitrilotriacetic acid is most suitable for studying Ni binding, but less appropriate for the other 

metals in this situation. 
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Figure-2.28: 1mM CuCl2 was loaded on to flow cell-4 (test cell) of the 

NTA chip. No EDTA wash was performed. 1µM PAI-1 was run on 

both flow cell-3 (reference, shown in red) & flow cell-4 (test, shown in 

blue). Injection was carried out for 1min, at a 20µl/min flow rate, 

followed by a dissociation phase. Though PAI-1 binding to flow cell-4 

showed rapid association, it never reached steady state. 

Figure 2. 28: SPR study on wtPAI-1 binding to Cu-NTA 
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Figure-2.29 & 2.30: 1mM of CoCl2 was mixed with 2µM PAI-1 and the mixture 

was run on flow cell-2 (test) for 2min at 20µl/min flow rate (Figure-2.29). Binding 

reached steady state. The bottom panel (Figure-2.30) indicates the result from a 

titration study where 2µM PAI-1 was mixed with increasing concentrations of 

CoCl2. The mixtures were run on a NTA chip (test flow cell only) and allowed to 

reach steady state. Free Co concentration was calculated and used for plotting the 

binding isotherm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 2. 29: Representative sensogram for Mixture of PAI-1 & CoCl2 to NTA 

Figure 2. 30: Binding isotherm of mixture of CoCl2 & PAI-1 to NTA 
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Figure-2.31: 1mM ZnCl2 was mixed with 2µM PAI-1 and the mixture 

was run on both flow cells (FC1- red, FC2- blue) for about 2min at 

20µl/min flow rate. Binding to flow cell-1 and flow cell-2 are shown in 

red and purple, respectively. Binding was found to follow more than 

one phase of interaction. 

Figure 2. 31: Representative sensogram of mixture of wtPAI-1 & ZnCl2 binding to 

NTA 
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2.4. Discussion 

2.4. a. Interaction Between VN and PAI-1, Binding Interface and 

Stoichiometry 

 Understanding the interaction between VN & PAI-1 has been one of the main objectives 

of this work. In fact, it has remained as one of the major research areas for our lab for the last 

few years. We have always recognized the relevance of this interaction based on the vast 

information in the literature that supports its physiological significance. Thus, we have carefully 

addressed a number of issues regarding the interaction between these two proteins that have 

remained controversial. PAI-1 binding to VN has typically been considered to be mediated by 

the SMB domain of VN. Though there are other groups that suggested the presence of another 

PAI-1 binding site outside SMB domain [200-202], no confirmatory evidence has been pursued 

prior to our recent work [204]. The issue of one versus. two binding sites on VN appears of great 

importance, as the simple 1:1 binding between VN and PAI-1 is not enough to explain the 

reaction mechanism by which these two proteins form higher-order multimers. Our lab has 

recently provided the most direct evidence in support of the presence of another PAI-1-binding 

site outside the SMB domain [204]. A deletion mutant of VN lacking the N-terminal SMB 

domain was found to retain PAI-1 binding activity with a relatively lower affinity (Kd~100nM) 

than that of with SMB domain (Kd~1nM) of VN [204]. Furthermore, using stopped-flow 

analysis our lab has provided evidence that indicates that the binding interaction between PAI-1 

and full length VN involves residues that exist beyond the SMB domain [168]. These studies 

suggested that the interaction between full length VN and PAI-1 is more complex and involves 

an extended binding interface.  
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 This stopped-flow analyses in the published work [168] utilized fluorescently labeled 

PAI-1 in order to probe the structural changes resulting from binding. In this present study we 

have standardized a method that will allow us to perform strategic incorporation of a nitroxide 

spin label in the PAI-1 structure. Nitroxide spin labels used in electron paramagnetic resonance 

(EPR) study are extremely sensitive towards the change in local environment and no other group 

before us has reported the use of a spin label on PAI-1. We have successfully incorporated the 

MTSL spin label at the P9 residue of the RCL of PAI-1. Labeling of the P9 residue with the 

environmentally sensitive fluorescent probe has been utilized before to probe the structural 

change during latency transition. We have used our MTSL labeled PAI-1 for probing the RCL 

insertion that happens during the latency transition. The half-life obtained from this study 

allowed us to validate the idea of probing structural changes of PAI-1 with EPR. We have further 

utilized the spin-labeled PAI-1 to probe the binding interaction with the isolated SMB domain 

and full-length VN. We have found that, while the signal of labeled PAI-1 did not change with 

increasing concentration of the SMB domain, there is a decrease in EPR signal upon the addition 

of the full-length vitronectin. This preliminary EPR study with SMB and VN falls in line with 

stopped-flow analyses and suggests once again that the binding interactions that involve these 

two partners are different from each other. This EPR based method will also allow us to probe 

the structural change that occurs in PAI-1 with response to metal binding.  

In the last few years our lab has also made significant progress in the understanding of 

the formation of the higher-order PAI-1/vitronectin complexes. By using a variety of techniques 

(size exclusion chromatography, sedimentation velocity, FRET) we have obtained evidence that 

leads us to the following conclusions: 1. PAI-1 can induce the multimerization process in dose 
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dependent fashion. 2. Initiation of the multimeric complexes begins with the formation of a 

heterotrimer containing two molecules of PAI-1 and one molecule of VN. 3. PAI-1 remains 

associated with these multimeric complexes for several hours [203-204, 209-211]. Although 

significant advances have been made, we are keen to know more about the mechanism by which 

the multimerization occurs. There are many questions that are still in need of answers. What is 

the relative contribution of the partner proteins (VN and PAI-1) in initiating the complex 

formation? Are the two PAI-1 molecules in the heterotrimer directly connected to VN? How 

does the heterotrimer further associate to form even larger multimeric complexes? Our initial 

thought was that the heterotrimer formed between VN and PAI-1 (1:2 stoichiometry) contains 

two PAI-1 directly occupying two different binding sites on VN. Though the model generated 

from the SANS study (Figure-2.14) confirms the formation of a heterotrimer between two PAI-1 

molecules and one VN molecule, the heterotrimer appears to involve only a single interaction 

between VN and PAI-1. The second PAI-1 molecule, on the other hand connects to the first PAI-

1 that is in direct contact with VN. We must be cautious since this SANS study was done with 

the W175F-PAI-1 mutant, which is a stable variant of wt-PAI-1[135]. Though sedimentation 

velocity studies performed with this mutant and VN in PBS buffer showed a similar pattern of 

multimerization as with wtPAI-1 (Figure-2.13), for the buffer conditions in which the SANS 

experiment (50mM sodium-phosphate, 300mM NaCl, pH-7.4) was done, this mutant was found 

to form less amount of multimeric complexes compared to wtPAI-1 (data not shown). Since the 

SANS study is highly sensitive to the presence of high molecular weight species and our goal 

was to capture the initial part of the multimerization reaction (1:2 and 2:4 complex), formation of 

fewer multimeric complexes with W175F-PAI-1 was chosen as a favorable condition for the 
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SANS experiment. Although our assumption was that the wtPAI-1 and the mutant W175F form 

higher-order complexes with VN in similar fashion, we need to be careful about the fact that 

some distinct structural differences exist between these two proteins. 

We have addressed the importance of the initial VN/PAI-1 contact for the 

multimerization reaction (as indicated by the model) by performing sedimentation velocity 

analysis with the Q123K mutant of PAI-1. Q123K-PAI-1 exhibits low affinity for VN binding 

and showed a dramatic decrease in the formation of multimeric complexes by comparison with 

wtPAI-1. We have also devoted significant effort to address the PAI-1/PAI-1 interaction that 

may occur within the heterotrimer. Serpin-serpin interaction is not uncommon and has been 

found to happen with serpins like α1-antitrypsin, antithrombin etc [243-245]. Most of these 

interactions have been found to be mediated by the insertion of RCL of one serpin molecule to 

the β-sheet region of the other serpin molecule. Examples of loop-sheet interaction have been 

included in Figure-2.15 [246]. Under normal condition PAI-1 does not form polymers by loop-

sheet interaction like other serpins, but Zhou et al. showed that at low pH both native and latent 

PAI-1formed dimer via loop-sheet insertion mechanism [246]. Polymerization in native PAI-1 

occurs by the insertion of the loop as the 4
th

 β-strand A of the other molecule, whereas for latent 

PAI-1 the insertion happens to form β-stand1C [246]. It is possible that the binding to VN 

promotes conformational changes within PAI-1 that are conducive to PAI-1/PAI-1 interaction. 

Important questions are yet to be answered. Is this interaction at all loop-sheet insertion 

mediated? Are there other processes involved or it is the combination of more than one process? 

If the interaction is loop-sheet insertion mediated, is there more than one possible way by which 

loop-sheet insertion occurs within the higher-order complex of VN and PAI-1 (as indicated in 
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Figure-2.15)? In order to check if the PAI-1/PAI-1 interaction within the heterotrimer is 

exclusively mediated by the loop-sheet4A linkage, sedimentation velocity experiment was 

performed with VN and latent-PAI-1. Latent-PAI-1 does not have an exposed RCL, as it is 

involved in the formation of 4
th

 β-strand of the central β-sheetA. The sedimentation velocity 

experiment showed formation of a significant amount of multimeric complexes (Figure-2.17) 

with latent-PAI-1. Zhou et al. proposed that dimerization of latent PAI-1 at low pH happened 

through the loop-sheet insertion mechanism. They also proposed that the inserted RCL of one 

latent PAI-1 molecule formed strand-1C of the other latent-PAI-1 molecule [246]. If this is true, 

then it seems that there is more than one way in which loop-sheet insertion occurs within 

multimeric complexes of VN and PAI-1. The presence of the inserted RCL in latent-PAI-1 

disrupts loop-sheet4A linkage that may normally happen with active PAI-1. However, the loop-

sheet1C linkage remains unaffected, although the RCL is fully inserted. It is also possible that 

latent-PAI-1 forms multimeric complexes through a mechanism totally independent of loop-

sheet insertion. In this case the decrease in the amount of multimeric complexes that we observe 

with latent-PAI-1 compared to active PAI-1 could be due to its relatively lower affinity for VN. 

The experiment with latent-PAI-1 indicated that the PAI-1/PAI-1 interaction within the 

multimeric complexes was not exclusively loop-sheet4A mediated, but the experiments with the 

RCL peptide mimics virtually completely disrupted the formation of the multimeric complexes 

between VN and PAI-1. These results can be explained relatively simply. Since the RCL is 

known to take part in loop-sheet insertion through more than one possible mechanism, these 

RCL mimicking peptides may be binding to all the possible locations where insertion may 

happen. As a result, no PAI-1/PAI-1 interaction is possible. Also interesting is the observation 
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that the interaction between VN and PAI-1 was almost completely disrupted in the presence of 

the peptides. Almost no 1:1 complex was found when VN and wtPAI-1 were mixed at equimolar 

concentrations (6µM) in the presence of 2mM peptide. A simple binding of the peptides within 

the groove between strand-3A and 5A may not be enough to explain this finding. While the exact 

mechanism by which these peptides disrupt the VN/PAI-1 interaction requires further attention, 

the finding itself has promise. Considering how important the interaction between VN and PAI-1 

is and how many different pathophysiological conditions for which this interaction is involved, 

use of these peptides may represent a new therapeutic prospect.  

2.4. b. Immobilization of Metal and Coordination Chemistry 

 The function of a protein can be regulated in many ways, including post-translational 

modification, the action of an activator or inhibitor etc. For PAI-1, functional regulation has 

attained an extra level of sophistication due to its inherently low half-life (1-2hrs at 37
0
C) [158-

159]. Such a low half-life of PAI-1 activity results because PAI-1 naturally favors the latent 

conformation [133, 164]. This also provides a means for this delicate balance to be harnessed as 

a means for regulating the functional activity of PAI-1.   

 Ligand binding to PAI-1 and the subsequent effect on the conformational flexibility is a 

subject of keen interest among the serpin biologists. The stabilization of the half-life of PAI-1, 

although modest under most conditions, has been considered as the major role for its interaction 

with VN [82, 158, 250]. Though PAI-1 was known to bind to metals, as immobilized metal ion 

chromatography (IMAC) was used for the purification of recombinant PAI-1 [251], no one has 

investigated the implications of metal binding on regulating conformational flexibility of PAI-1. 

Our group now has shown that metals may significantly impact this structural stability of PAI-1 
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(Thompson et al., submitted). We have investigated the effects of different metals (both type-I 

and type-II) and found that, while type-I metals (Ca, Mg) do not have much impact on the 

stability of PAI-1, type-II metals (Ni, Cu, Co) cause substantial reduction in its half-life. In the 

presence of VN, the effect of type-II metals is the exact opposite (a significant increase in half-

life). Thus, metals appear to have a significant impact on the regulation of PAI-1 activity in our 

body, as transition metals like Cu are naturally present in different tissues, like blood, liver, brain 

etc [252-255].  

The physiological relevance of this metal effect will be dictated by the affinity of such 

interaction. In this present study, a surface plasmon resonance based assay has been developed 

for the determination of the affinity of the interaction between PAI-1 and metals. We have 

utilized an NTA (nitrilotriacetic acid) chip for the immobilization of Ni and successfully 

obtained affinity information for the binding of wtPAI-1 and its variants with Ni. Currently we 

are trying to locate the metal binding site on PAI-1 using multiple mutants of PAI-1. This SPR 

based method will help us to perform rapid screening of PAI-1 mutants for metal binding.  

 We also hoped to extend this Ni binding study to other type-II metals such as, Cu, Co, 

Zn. Unfortunately none of these metals could be successfully immobilized on the NTA chip. For 

example, the initial loading of Cu to the NTA chip could be carried out nicely but the binding 

was not as stable as for Ni. Running of Tris buffer through immobilized Cu caused slow but 

continuous leaching of Cu from the chip. During the assay of PAI-1 binding to Ni-NTA, a short 

pulse of low concentration of EDTA was used following metal immobilization in order to 

remove unbound/loosely bound Ni in the microfluidic channel. Use of this low concentration of 

EDTA during the assay with Cu caused even stronger leaching of the metal. When PAI-1 was 
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run on to Cu loaded chip, the initial phase of that binding showed clear association event that 

reached a maxima but a steady state was never established, as the protein showed continuous 

release from the chip surface (as shown in Figure-2.28). With Co and Zn successful 

immobilization could not be achieved even at higher metal concentration (about 2mM). On the 

other hand, when Co or Zn was premixed with PAI-1 and ran on NTA chip binding of protein 

could be observed. For Co, binding showed a clear association phase that reached steady state 

(Figure-2.29). We attempted to plot the steady state binding response from Co/PAI-1 mixture 

binding to NTA with a series of free Co concentration (Figure-2.30). This resulted in a saturable 

binding isotherm that could be fit reasonably well to single-site specific binding equation. We 

could not draw any conclusion on the affinity information of Co binding to PAI-1 because it was 

not clear whether the calculated Kd was reporting the binding of Co to PAI-1 or the binding of 

PAI/Co mixture to NTA. Moreover the goodness of the fit was only moderate. When Zn was 

mixed with PAI-1 and ran on to NTA chip, protein binding could be observed but the binding 

was even more complicated to explain as it was not found to follow a single phase interaction 

(Figure-2.31).  

Investigating these anomalies with metals in the SPR method was beyond the scope of 

current study. It is clear that the coordination chemistry involved with each of these metals for 

binding to NTA and specific amino acid residues that coordinate the metals in PAI-1 had a 

significant role to play. NTA is commonly used in Ni-based IMAC for the purification of His-

tagged proteins. NTA can maintain a strong and stable binding with Ni. NTA is tetradentate and 

provides four coordination sites for Ni binding. Thus, Ni bound to NTA can coordinate with two 

additional His molecules of a His-tagged protein (see Figure-2.32) [256] to fulfill its six 
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coordination sites. Co also has six coordination sites, but the stability constant for the binding of 

Co to NTA has been found be much lower [257]. For Co-based IMAC, the TALON resin (from 

BD biosciences) has been found to be more suitable. The TALON resin provides an optimal 

geometry that allows for four coordination sites with Co and that result in much tighter binding 

and much less leaching of the metal. This explains in part why Co immobilization was not 

successful on the NTA chip. A similar explanation is reasonable for Zn immobilization on NTA 

as well, but how the metal bound to PAI-1 complements the coordination with NTA chip is 

unknown. It is possible that the local geometry within PAI-1 favors formation of four coordinate 

bonds with Co or Zn. Once this stable coordinating conformation was achieved, the bound metal 

could then bind to two carboxylate groups of NTA. Though the use of Cu in IMAC is not 

common, there are examples where people used a Cu(II)-IMAC-based ZipTip for the extraction 

of phosphorylated peptides [258]. However, in this IMAC, instead of NTA, IDA (iminodiacetic 

acid) was used as the chelating agent, which provides three coordination sites. Burns et al. 

reported a crystal structure of the ternary complex between Cu
+2

, NTA and Bisimmidazole 

ketone (a poly-His analog) [256]. Thus, there are examples of coordination complexes formed 

between Cu and NTA, but no example is known in which Cu has been used for immobilization 

on an NTA chip. Understanding the exact chemistry for Cu interaction with the NTA surface that 

leads to an unstable surface with significant leaching requires further study. It is clear that the 

SPR method developed will be limited to nickel binding and can be used as a preliminary screen 

for metal binding to guide further studies on specific stability effects on PAI-1 with other metals. 
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Figure-2.32: Coordination of Ni with NTA and two His molecules. NTA 

being tetradentate provides four coordination sites  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. 32: Hexa-coordination geometry of Ni binding NTA and 

Histidine 
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CHAPTER-3 

How does the interaction between Vitronectin and Plasminogen 

Activator Inibitor-1 modulate their matrix associated functions? 

 

3. 1. Introduction 

Vitronectin is a glycoprotein (459 aa) found in both the circulation and the extracellular matrix 

(ECM). In blood it circulates mainly as a monomer (0.2-0.4mg/ml, ~0.3-0.6uM), but in the 

extracellular matrix it exists as a multimer [13-14, 259]. While the exact mechanism for its 

conformational alteration and compartmentalization is unknown, it is well known that vitronectin 

has specific and distinct functions in blood and extracellular matrix. The multifunctional nature 

of this protein results from its ability to recognize various ligands including the thrombin-

antithrombin complex (T-AT) [44-45], heparin [46-48], PAI-1 [49-51], complement proteins 

[52] as well as several cell surface receptors, including integrins and the urokinase plasminogen 

activator receptor (uPAR) [53-59]. Vitronectin plays important regulatory roles in several 

different physiological and pathological processes, e.g. - fibrinolysis, thrombosis, coagulation, 

wound healing, cellular adhesion/migration [61-62, 66]. Regulation of cellular 

adhesion/migration comes from its ability to act as a matrix protein that can bind to different cell 

surface receptors like uPAR and certain subclasses of integrins (αvβ3 and αvβ5) [92]. 

PAI-1 is a member of the serpin (Serine protease inhibitor) family of proteins. Like VN, 

PAI-1 is also found in both circulation and the extracellular matrix. The two main target serine 

proteases that are inactivated by PAI-1 are urokinase plasminogen activator (uPA) and tissue 

plasminogen activator (tPA) [80]. PAI-1 regulates the formation of plasmin and thus plays 
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animportant role in the control of coagulation, fibrinolysis and thrombolysis [180, 260]. Such 

protease-dependent effects of PAI-1 have remained in the limelight for a long time. Currently a 

significant emphasis is also being given to its protease-independent effects. One of the 

important protease-independent functions of PAI-1 is the regulation of cell surface receptor 

interaction with ECM-associated VN. PAI-I is known to physically interfere with the interaction 

of uPAR and integrin receptors with VN. It has been found that exogenously added PAI-1 

blocked uPAR mediated binding of U937, endothelial and uPAR-transfected 293 cells to 

multimeric „denatured‟ VN [53, 226]. On the other hand uPAR-mediated migration of U937 and 

melanoma cells through multimeric „denatured‟ VN was blocked by PAI-1 [226, 228]. PAI-1 has 

been also found to cause blocking of binding and migration of smooth muscle cells (SMC) 

through multimeric „denatured‟ VN in a αvβ3 dependent manner [229]. There is evidence in 

favor of PAI-1 being pro-angiogenic and pro-tumorigenic [191, 231]. On the other hand there is 

also some evidence that indicates that PAI-1 may inhibit angiogenesis [232] and such inhibition 

was found to be dependent on its ability to interact with VN. McMahon et al. reported a study 

where they showed that PAI-1-mediated effect on tumor formation and angiogenesis is dose-

dependent [233]. While at low concentrations PAI-1 acted as pro-angiogenic, at high 

concentrations it was anti-angiogenic [233]. A similar dose-dependent effect of PAI-1 on 

angiogenesis was also observed in a study by Devy et al [261]. In this study they showed that the 

increase in angiogenesis observed at physiological concentrations of PAI-1 was not dependent on 

its ability to interact with VN [261].  Therefore a significant amount of controversy exists about 

how PAI-1 regulates VN-mediated cell-matrix interactions. 
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Though it appears that multimerization of VN happens in a biological setting, most of the 

in vitro studies have been performed with „denatured‟ VN (formed by heat or chaotropic agents) 

as an alternative to the matrix-associated multimeric form of vitronectin. „Denatured‟ multimeric 

VN was found to possess the conformational sensitivity usually observed with matrix-associated, 

multimeric VN [44, 77]. However, multimeric VN formed in a biologically relevant process may 

have significant structural/functional differences compared to „denatured‟ VN. There are a 

number of biomolecules that may initiate the process of transition to the multimeric 

conformation of VN, e.g. – the thrombin-antithrombin-III (TAT) complex, the terminal 

complement complex (C5b-C7) and PAI-1 [44, 205-206]. In our study we have relied on 

purifying monomeric VN from blood and then investigating its conversion to a matrix-associated 

form in the presence of PAI-1 as a co-factor. We have confirmed that PAI-1 induces 

multimerization of VN in a concentration-dependent fashion, and we are also confident that PAI-

1 remains associated with this multimeric complex for several hours [203, 209-211]. With these 

findings as a basis, we hypothesize: 1. that PAI-1 acts a biological partner for the transformation 

of VN into the matrix-associated form, and 2. the multimeric complexes formed by the 

interaction between these two proteins significantly influence their matrix associated functions. 

Furthermore, we hypothesize that: 3. the multimeric complexes formed by this more biologically 

feasible process modulate cellular binding/migration, and 4. such modulation is sensitive to the 

pericellular microenviroment constituted of other matrix components, cell types and the set of 

receptors expressed on the cell surface.  
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3. 2. Materials and methods 

3.2. a. Proteins and antibodies 

Recombinant wtPAI-1 and its mutant Q123K were expressed in the E. coli Rosetta2(DE3 

media)pLysS strain, grown in TB and induced at 15
0
C. Purification was carried out through a 

three-step column chromatography that included cation-exchange (SP-Sepharose column), 

immobilized metal ion affinity (Ni-IDA) and size-exclusion chromatography (Sephacryl S-100) 

(Thompson et al., unpublished). The entire purification was carried out at 4
0
C.  Correctly folded 

recombinant somatomedin-B (SMB) domain was expressed and purified as described in the work 

by Thompson et al. (unpublished). Heparan sulfate proteoglycan (HSPG) was purchased from 

SIGMA. Collagen-I & IV were purchased from BD Biosciences. Purified recombinant integrins 

were purchased from Millipore Corp. Purified recombinant urokinase-plasminogen activator 

inhibitor (uPAR) was purchased from R & D systems. Monoclonal antibodies against VN (1E9, 

made in mouse) were obtained from Molecular Innovation. All the antibodies (monoclonal and 

polyclonal) against integrins were purchased from Millipore corp. Monoclonal antibodies against 

uPAR were purchased from R & D systems. Peroxidase conjugated anti mouse/rabbit IgG was 

purchased from Vector Labs and Alexa-488 conjugated goat anti-mouse IgG was purchased from 

Invitrogen.  

3.2. b. Purification of monomeric vitronectin 

Monomeric vitronectin was purified from human plasma using a procedure that is a 

modified version of the protocol designed by Dahlback & Podack [32]. This method was 

standardized in collaboration with Dr. Lawrence Thompson, a former postdoctoral associate of 

our lab. 3litre plasma was subject to BaCl2 precipitation step and then (NH4)2SO4 was added to 
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plasma at 50% saturation.  After an overnight incubation, the precipitate was harvested by 

centrifugation, resuspended in 1L of phosphate buffer containing DTNB (20 mM NaH2PO4, 0.1 

mM EDTA, and 1 mM dinitrothiobenzoate (DTNB) pH 7.0) and centrifuged again.  The 

supernatant was dialyzed twice against 22 L of the same buffer without DTNB at 4
0
C.  Protein 

was then loaded onto a DEAE Sephacel column (5 x 21.5 cm), washed with the same phosphate 

buffer, and the eluted with a linear 0-0.5M NaCl gradient with a total volume of 4.4 L.  

Throughout the protein purification procedure, fractions to be pooled that contained vitronectin 

were determined using a quantitative immunoaffinity column coupled with the 1E934 

monoclonal antibody (see below).  In two batches, pooled fractions from the DEAE column were 

chromatographed on a blue Sepharose column (5 x 17.5 cm) using a linear 0.15-3.0 M NaCl 

gradient with a total volume of 4.4 L.  Fractions containing vitronectin from each blue-Sepharose 

step were pooled separately and dialyzed against Tris buffer (20 mM Tris, pH 7.4, containing 20 

mM NaCl and 0.1 mM EDTA) for chromatography on heparin-Sepharose. Dialyzed protein from 

each batch of blue-Sepharose chromatography was loaded on to heparin-Sepharose column (2.5 

x 15 cm).  After loading, protein was eluted from the heparin-Sepharose column using a linear 

gradient from 0.02 to 1.0 M NaCl with a total volume of 0.8 L.  The protein pool from the 

heparin column was concentrated by ultrafiltration to 8 mL, and then chromatographed in two 

aliquots on a high-resolution Sephacryl S-200 gel filtration column (2.5 x 115 cm) equilibrated 

in PBS, pH 7.4. 3ml fraction was collected from the Sephacryl S-200 gel filtration column at 

flow rate of 0.5ml/min. Vitronectin containing fractions were pooled and stored at 4 
0
C under 

saturating concentrations of (NH4)2SO4 (70%) prior to use.  Vitronectin concentration was 
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determined at 280 nm using 280 = 1.0  mLmg
-1

 
cm

-1
 [262] and a molecular weight = 62,000 

g/mol [27]. 

In order to optimize the yield of vitronectin and to follow the purification steps using a 

quantitative method, the total amount of protein recovered in each step was monitored using the 

BCA assay, while the total amount of vitronectin was determined by immunoaffinity 

chromatography using a mouse antihuman vitronectin monoclonal antibody (1E934) column.  

Briefly, 2 mg of antibody 1E934 was covalently linked to 1 mL of NHS-activated Sepharose 

following the standard protocol and used in HPLC.  Several standard amounts of purified 

monomeric human vitronectin were loaded onto the column, washed for 5 min with PBS pH 7.4, 

and then eluted with 100 mM NaH2PO4 pH 3.0. Elution of vitronectin was monitored at 220 nm. 

A standard curve was generated by injecting known amount of vitronectin to the antibody 

column. Area of the eluted peak was utilized for plotting the standard curve.  This method gave a  

linear range from 0 to 19 g of vitronectin.  Quantification using the 1E934 antibody indicated 

that 3 L of human plasma typically contained 0.2-0.3 mg/mL vitronectin, which was in good 

agreement with previous measurements [3, 6, 31].  A typical final yield of vitronectin from 3 L 

of human plasma using this modified purification method was ~9%-10% (approximately 60-70 

mg). 

3.2. c. Cell culture 

The human fibrosarcoma cell line (HT1080) was purchased from American Tissue 

Culture Collection (ATCC) and maintained in Eagle‟s Minimum Essential Medium (EMEM) 

(purchased from ATCC) supplemented with 10% Fetal bovine serum (FBS, purchased from 

ATCC) and 1% penicillin-streptomycin solution (ATCC). The EA.hy 926 cell line was a kind 
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gift from Dr. John Biggerstaff‟s lab at University of Tennessee, Knoxville. This is an 

immortalized hybridoma cell line created by the fusion between A459 cell (human lung 

carcinoma) and human umbilical vascular endothelial cell (HUVEC) [263]. This cell line was 

found to express factor-VIII related antigen (VIII-R:Ag), which is considered to be one of the 

highly differentiated properties of the vascular endothelium. The fibrinolytic properties of this 

cell line have also been found to be comparable with HUVE cell [264]. This cell line has been 

successfully used in a number of studies as an effective alternative to HUVE cell [265-266]. 

Thus this cell line was used as an endothelial cell for this study. The EA.hy926 cell line was 

maintained in Dulbecco‟s Modified Eagle Medium (DMEM) containing high amount of D-

glucose (4500mg/L), 25mM HEPES, L-glutamine and no sodium-pyruvate (purchased from 

GIBCO). This media was supplemented with 10% FBS (heat inactivated) (Atlanta Biologicals) 

and 1% penicillin-streptomycin solution (ATCC). Heat inactivation of the FBS was carried out 

by heating the thawed serum at 56
0
C water-bath for 30 min. Both of these cell lines were 

maintained at 37
0
C in the cell-culture incubator containing 5% CO2.  

3.2. d. In vitro matrix binding assay 

All the in vitro protein binding assays were carried out in high-binding, half area, flat 

bottom, transparent, 96-well plates from Costar. For studying the binding of monomeric VN and 

its complex with PAI-1 to matrix components, plates were initially coated with either HSPG or 

Col-IV. For HSPG coating, the matrix was dissolved in a binding buffer containing 50mM Tris, 

100mM NaCl, 1mM CaCl2 and 1mM MgCl2 (pH- 7.4) at 5µg/ml concentration. Dissolved 

matrix was allowed to coat the surface of the 96-well plate for 1.5hr at 37
0
C.  For collagen-IV, 

the matrix was dissolved in 10mM acetic acid at 3.6 µg/ml concentration and allowed to coat the 
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surface of the plate at room temperature for 1hr. Following coating, unbound matrix was washed 

by the binding buffer at least three times. Coating with GAG molecules was carried out at 4
0
C 

overnight. Coating concentration was 25µg/ml for each GAG molecule, made in 1X PBS. 

Blocking of matrix or GAG-coated plate was carried out by 0.2% gelatin solution (made in 

binding buffer) for 1hr at 37
0
C. Monomeric VN (or SMB domain) was mixed with wtPAI-1 and 

its variants at indicated concentrations in binding buffer containing 0.1% Tween-20 and the 

mixture was incubated at 37
0
C for 1hr to allow complex formation. A preformed mixture of 

these proteins was allowed to bind to the matrix coated (blocked) plate for 1hr at 37
0
C. Unbound 

protein was removed by washing (3X) with 0.1% Tween-20 containing buffer. Probing of VN or 

SMB binding to the matrix-coated plate was carried out immunochemically. For all the steps that 

involved antibody binding, 1X PBS containing 0.3%BSA was used as buffer. For probing VN, 

either Bunny-11 (a polyclonal antibody, used at 1:5000 dilution) or 1E9 (a monoclonal antibody, 

used at 1:2000) was used as primary antibody. For SMB, 1E9 (1:1000 dilution) was used. 

Primary antibody was allowed to incubate for 1hr at 37
0
C followed by 3X washing with antibody 

binding buffer. Peroxidase conjugated anti-mouse/anti-rabbit IgG was used as secondary 

antibody. Secondary antibody (1:2000 dilution) was added to plate and incubated for 1hr at 37
0
C 

followed by 3X washing with antibody binding buffer. Color was developed by adding 100µl of 

50mM sodium-citrate (pH-5.5) solution containing 0.6mg/ml ABTS (SIGMA) and 1:1000 

dilution of 30% H2O2  (Fisher) to each well of the plate and the absorbance data from each well 

was collected in Synergy Labtek plate reader at 405nm wavelength. Figure-3.1 includes a 

schematic presentation of all the basic steps of this matrix binding assay.  
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Figure-3.1: This figure includes the schematic presentation of 

the important steps for the matrix binding assay. When collagen 

was included in the assay, it replaced proteoglycan for coating 

the plate. 

 

     

 

 

 

 

 

 

Figure 3. 1: Basic scheme for matrix binding assay 
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3.2. e. In vitro receptor binding assay 

For characterizing the binding of the VN/PAI-1 complex with cell surface receptors, two 

different approaches were taken. In one approach, the receptor was directly coated on to the 96-

well plate, and in the second approach the receptor was maintained in solution phase during the 

assay. For the direct coating of uPAR or integrin, the receptor was dissolved in binding buffer 

containing 50mM Tris, 100mM NaCl, 1mM CaCl2 and 1mM MgCl2 (pH- 7.4) at 5µg/ml 

concentration. Coating was allowed for 1hr at 37
0
C followed by 3X washing with binding buffer. 

Blocking and incubation of VN/PAI-1 complex were carried out in the same manner as described 

in the previous section (matrix binding assay). VN binding was probed immunochemically (1E9 

as primary antibody) as described in the previous section.  

For binding assays with receptors in the solution phase, VN and PAI-1 were mixed  

in 0.1% Tween-20 containing binding buffer, incubated for 1hr at 37
0
C and then added to plate 

with/out matrix coating followed by incubation for 1hr at 37
0
C. When monomeric VN and its 

complex with PAI-1 were directly added to the plate, blocking with gelatin was carried out after 

VN/PAI-1 coating. When monomeric VN and its complex with PAI-1were added to the matrix-

coated plate, blocking was carried out following matrix coating. Unbound proteins were removed 

by 3X washing with binding buffer. Binding solutions of uPAR and integrin (20µg/ml and 

10µg/ml respectively) were made in binding buffer containing 0.1%Tween-20 and the receptors 

were allowed to bind to VN/PAI-1on the plate at 37
0
C for 1-1.5hr as when indicated. For all the 

steps that involved antibody binding, 1X PBS containing 0.3%BSA, 0.5mM CaCl2 and 0.5mM 

MgCl2 was used as buffer. Unbound receptors were removed by 3X washing with this antibody 

binding buffer. For integrin binding, a polyclonal antibody (made in rabbit) directed against the 
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c-terminal domain of αv-subunit was used at 1:100 dilution. For uPAR binding a monoclonal 

antibody (made in mouse) against uPAR was used at 1:100 dilution. Primary antibody binding 

was carried out at 37
0
C for 1hr followed by 3X washing with antibody binding buffer. 

Peroxidase conjugated anti-mouse/anti-rabbit IgG was used as secondary antibody. This 

antibody was used at 1:1000 dilution and incubation was carried out at 37
0
C for 1hr followed by 

3X washing with antibody binding buffer. Color was developed as described in the previous 

section (matrix binding assay).  

For all binding assays the average reading obtained from each treatment condition 

(normalized with respect to background) was plotted along with the standard error. Statistical 

significance was determined by two-tailed Student's t-tests. P-values <0.05 were considered 

significant. 

3.2. f. Cell binding assay 

For cell binding assay, coating of matrix (HSPG or Col-IV), blocking of the coated 

surface and incubation of preformed complex between VN and PAI-1 on to coated matrix were 

carried out as described in the matrix binding assay. High-binding, solid side, transparent flat 

bottom, 96-well plates from Costar were used for this assay. Cells were incubated overnight in 

the absence/presence of growth factors, under serum free condition. VEGF (Vascular endothelial 

growth factor) and bFGF (basic fibroblast growth factor) were used at 10ng/ml concentration and 

PMA (phorbol 12-myristate13-acetate) was used at 100ng/ml concentration. Cells were detached 

from the surface by 1% trypsin/EDTA solution and complete media (with serum) was used for 

neutralizing the trypsin. Cells were resuspended in serum-free media at required concentration. 

When Col-IV was used for coating the plate, 100µl of cell suspension containing 10
5
cells/ml was 
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added to each well followed by incubation at 37
0
C for 30min. When HSPG was used for coating 

the plate, 100µl of cell suspension containing 5*10
5
cells/ml was added to each well followed by 

incubation at 37
0
C for 1.5hr. Unbound cells were removed and labeling of bound cells was 

carried out by adding 100µl serum-free media containing 1µg/ml calcein to each well followed 

by incubation at 37
0
C for 30min. Incubation of the cells during binding assay was always carried 

out in the cell-culture incubator. Free label and the unbound cells were removed by washing 2X 

with serum free media. Fluorescent cells bound to the surface were observed under the Zeis 

microscope using excitation and emission optics suitable for fluorescin. Photographs of the 

randomly selected multiple fields (15 to 18) were taken from each well. Each treatment condition 

was repeated in triplicates. The average number of cells bound/0.13mm
2
 (area of each field) was 

plotted (along with the standard error) with respect to each treatment condition. Statistical 

significance was determined by two-tailed Student's t-tests. P-values <0.05 were considered 

significant. 

3.2. g. Cell migration assay 

Migration experiments were carried out using FluoroBlok cell culture inserts of 8µm pore 

size, purchased from BD Bioscience. These inserts are made of polyethylene terephthalate (PET) 

membrane containing a dye that blocks transmission of the light between the range of 490-

700nm. If a suitable fluorescent dye is chosen, selective observation of the top or the bottom of 

the insert can be achieved. Thus, use of this insert allows efficient counting of the migrated cells 

that are bound at the bottom of the insert. Migration experiments on these inserts also require the 

use of companion 24-well cell-culture plate obtained from BD Bioscience. Coating of the insert 

with matrix components was carried out as described in the previous sections. Premixing of VN 
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and PAI-1 was carried out the in the binding buffer (same as mentioned in the matrix binding 

section) that contained 0.3%BSA instead of 0.1% Tween-20. Mixing was carried out for 1hr at 

37
0
C followed by incubation onto the inserts for 1hr at 37

0
C as described before. Cells were 

treated and prepared as described in the cell binding assay section. When Col-IV was used for 

coating the plate, 150µl of cell suspension containing 10
6
cells/ml was added to each insert and 

when HSPG was used for coating the plate, 150µl of cell suspension containing 2*10
5
cells/ml 

was added to each insert. 500µl serum-free media was added to the bottom of the each insert. 

Migration was carried out overnight in the cell culture incubator. Labeling of the cells was 

carried out by adding 500µl serum-free media containing 1µg/ml calcein to the bottom of each 

insert followed by incubation at 37
0
C for 30min. Media containing free calcein was replaced by 

500µl serum-free media and the calcein-labeled migrated cells were observed under the 

microscope (Zeiss). Photographs of the randomly selected multiple fields (15 to 18) from the 

bottom of each insert were taken. Each treatment condition was repeated in triplicates. Average 

number of cells migrated/0.13mm
2
 (area of each field) was plotted (along with standard error) 

with respect to each treatment condition. Statistical significance was determined by two-tailed 

Student's t-tests. P-values <0.05 were considered significant. Figure-3.2 represents the basic 

scheme for the migration experiments.  

3.2. h. Flow cytometry 

Cells were incubated overnight in the absence/presence of growth factors, under serum 

free condition. VEGF (Vascular endothelial growth factor) and bFGF (basic fibroblast growth 

factor) were used at 10ng/ml concentration, and PMA (phorbol 12-myristate13-acetate) was used 

at 100ng/ml concentration. Cells were detached from the surface by 1% trypsin/EDTA solution,  
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Chemoattractant

Membrane 
insert (8µM) 
pore size + ECM 
coated + 
protein added

Cell suspension
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Observation of the bottom of 
the insert for migrated cells 
after overnight incubation

24 well plate
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Figure-3.2: During the migration experiment, cells are added on to the top 

chamber of the fluoroblok membrane insert. To the bottom chamber, fresh 

media is added. The presence of migrated cells is observed on the bottom of 

the insert under the microscope. Photographs of multiple fields were taken 

and the number of cells migrated per 0.13mm
2
 area is plotted. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. 2: Basic scheme of migration experiments 
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and complete media (with serum) was used for neutralizing the trypsin. Cells were resuspended 

in serum-free media, and 100µl of cell suspension containing at least 10
6
 cells for each treatment 

condition were added to the wells of a 96-well round bottom plate. Staining of the cell surface 

receptors was carried out in this plate. For each treatment condition, samples were taken in 

duplicates. Cells were incubated with primary antibody against uPAR at 1:40 dilution and αvβ3, 

αvβ5, α5β1 & α2β1 at 1:100 dilutions. Dilutions were carried out in FACS buffer, and incubation 

with primary antibody was carried out for 1hr on ice. Unbound antibodies were removed by 

washing 2X with FACS buffer followed by incubation with Alexa-488 conjugated goat anti-

mouse IgG (1:200 dilution) for 1hr on ice. Unbound antibodies were removed by washing 2X 

with FACS buffer. Stained cells were fixed by 1% paraformaldehyde for 20min at room  

temperature. Cells were washed 2X with FACS buffer and content of each well was transferred 

into FACS tube containing 1ml of FACS buffer. Receptor expression was observed in FACS-

Calibur instrument and the data was analyzed by Flow-Jo. 

3. 3. Results  

3.3. a. Multimeric Complexes Formed by the Interaction of PAI-1 and VN 

Exhibit Increased Association with Matrix Components. 

In most of the published work in which PAI-1 was checked for its effect on cellular 

adhesion and migration, „denatured‟ multimeric VN was used to mimic its matrix associated 

multimeric form and PAI-1 was added exogenously in order to affect interaction of VN with cell 

surface receptors. There are many pathophysiological conditions where PAI-1 is found to be co-

localized with VN in the matrix [49, 212, 225, 267] and so we believe a more realistic approach 
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is to include PAI-1 as a part of the multimeric complex. Since we know that PAI-1 initiates 

multimerization of VN and remains associated with the complex for a long period of time, we 

have opted to test a preformed complex of VN and PAI-1 in all of our studies and compare its 

effect with monomeric VN. Furthermore, instead of using VN directly as a binding substrate, we 

have included other matrix components in our in vitro experiments; these include Col-IV, Col-I 

and HSPG (heparan sulfate proteoglycan) to probe the specific role of PAI-1/VN complex in a 

more relevant context. Col-IV is an important basement membrane component that provides 

tensile strength [268-269]. Col-IV interacts with VN, and it was found that the conformationally 

altered, multimeric VN interacted better with collagen [104]. HSPG is also an integral basement 

membrane component and is found in almost any mammalian tissue [270-271]. One of the many 

proposed functions of basement membrane associated HSPG is to interact with other matrix 

components, like laminin, fibronectin, and Col-IV [272-273]. In this study we test whether 

HSPG can interact with both monomeric and multimeric forms of VN.  

 Figure-3.3 & 3.4 show the dose-dependent increase in VN binding to Col-IV or HSPG 

respectively as PAI-1 concentrations are varied. We observed that the multimeric complex of VN 

and PAI-1 had a higher propensity to associate with the mixture of Col-IV and HSPG (Figure-

3.5). This finding is consistent with our hypothesis, i.e. as more multimeric complexes are being 

formed by the interaction of increasing concentration of PAI-1, an increase in VN binding is 

observed with the individual components or mixture of matrix substituents.  
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Fingure-3.3-3.5: 100nM VN was mixed with increasing concentrations of PAI-1. The 

mixtures were allowed to bind to Col-IV (Figure-3.3) and HSPG (Figure-3.4) 

respectively and then probed for VN binding immunochemically. For Figure-3.5, the 

plate was coated with Col-IV, followed by coating with HSPG. 20nM VN was mixed 

with increasing concentrations of PAI-1 and the complexes were allowed to bind to the 

matrix. VN binding was probed immunochemically. 

Figure 3. 3: Association of VN/PAI-1 complex with Col-IV- dose 

dependency 
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Figure 3. 4: Association of VN/PAI-1 complex with HSPG- dose 

dependency 

Figure 3. 5: Association of VN/PAI-1 complex with Col-IV- dose dependency 
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3.3. b. Formation of a Complex with Full Length VN is Critical for Increased 

Association with Matrix 

It has generally been thought the interaction between VN and PAI-1 is mediated through 

the SMB domain of VN. The crystal structure of recombinant SMB domain bound to 14-1-B 

shows a single-turn 3-
10

 α-helix of SMB interacting with helix-F and part of the central β-sheet 

of 14-1-B [22]. Recently we have found that the interaction between these two proteins actually 

extends beyond this observed surface. By rapid reaction kinetics experiments done to test the 

binding of VN and strategically labeled (fluorescent) PAI-1, under conditions where only 1:1 

binding was allowed, it was observed that the interaction between these two proteins is biphasic. 

Binding between PAI-1 and the isolated SMB, in contrast, was monophasic [168]. This data 

showed that interaction with full length VN is more complex and involves multiple interactions. 

We hypothesize that such multiple interactions between PAI-1 and full length VN are critical for 

the assembly of multimeric complexes and thus for increased association of VN with matrix 

components. In order test this idea, matrix-binding experiments have been carried out with  

complexes formed with PAI-1 and fully functional isolated SMB domain. Figures-3.6 & 3.7 

show binding data where SMB was mixed with two different concentrations of PAI-1, and the 

binding of the complex was compared to SMB alone on HSPG and Col-IV respectively. As 

expected, no significant increase in binding of SMB was observed upon mixing with PAI-1. The 

complex formed between PAI-1 and full length VN was used as positive control.  

Since it is the multimeric complex of VN that is commonly found to be localized in the 

extracellular matrix and PAI-1 is the biological partner that causes such conformational 

transitions that lead to relocalization of VN, disruption of the interaction between these proteins  
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Figure-3.6 & 3.7: 50nM VN and 100nM SMB were mixed with two different 

concentrations of PAI-1 corresponding to 1:1 and 1:2 stoichiometry. The 

VN/PAI-1 complex and SMB/PAI-1 complexes were added to HSPG 

(Figure-3.6) and Col-IV (Figure-3.7). Binding of VN and SMB to the matrix 

was probed immunochemically. 

 

Figure 3. 6: Association of SMB/PAI-1 complex with HSPG 

Figure 3. 7: Association of SMB/PAI-1 complex with Col-IV 
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can be a useful therapeutic strategy. Recently we have found two peptides (an octapeptide and a 

pentapeptide, mimicking the RCL of PAI-1) that can completely disrupt the interaction between 

VN and PAI-1 and inhibit the formation of oligomeric complexes. (A detailed description of 

these two peptides and the experiments will be included under the Chapter-3.) In order to check 

the potential of these peptides to disrupt matrix association, we have performed these matrix 

binding experiments on the complex formed between VN and PAI-1 in the presence/absence of 

the octapeptide. Figures-3.8 & 3.9 show the results of these binding experiments to HSPG or 

Col-IV respectively. As expected, the presence of the octapeptide completely disrupted the 

increased association of VN with matrix components.  

Mutating glutamate-123 residue of PAI-1 by replacement with arginine (Q123K) has 

been found to severely weaken the affinity for the primary site interaction with VN [197]. A 

sedimentation velocity study done with monomeric VN and Q123K-PAI-1, mixed at equimolar 

concentrations, showed that this mutant essentially lacked the ability to form multimeric 

complexes (discussed in chapter-3). In order to check the effect of this mutant on influencing the 

association of VN with matrix components, similar matrix binding experiments were done. 

Figure-3.8 & 3.9 contain data that show that Q123K mutant of PAI-1 cannot promote increased 

association of VN with Col-IV and HSPG. 

3.3. c. Increased Association of VN Is Not Glycosaminoglycan (GAG) 

Mediated. 

Glycosaminoglycans (GAGs) are long unbranched polysaccharides comprised of 

repeating disaccharide units. The disaccharide units are usually made of one hexose or 
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Figure-3.8.a & 3.9: 50nM VN was mixed with a 100nM concentration of the Q123K 

mutant of PAI-1 or 100nM wtPAI-1 in the absence or presence of 2mM 

octapeptide. Mixtures were added to HSPG (Figure-3.8) and Col-IV (Figure-3.9) 

respectively. Binding of VN and SMB was quantified immunochemically using 1E9. 

monoclonal antibody (1:2000 dilution). 

 

Figure 3. 8: Effect of octapetide and Q123K-PAI-1 on VN/PAI-1 

complex binding to HSPG 

Figure 3. 9: Effect of octapetide and Q123K-PAI-1 on VN/PAI-1 complex 

binding to Vol-IV 
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hexuronic acid residue and one hexosamine (6-C sugar made containing nitrogen). Heparin, the 

natural anticoagulant found in our body is a common example of GAG. There are many other 

types of GAGs, including heparin sulfate, chondroitin sulfate, dermatan sulfate etc. HSPG, the 

matrix component that we have used in our study is a proteoglycan that contains heparan sulfate 

as the GAG molecule. Col-IV is also heavily glycosylated [274]. The anticoagulant property of 

heparin comes from its ability to increase the rate of antithrombin-III mediated inactivation of 

thrombin [70]. VN is known to act as a scavenger of heparin and thus reduces the rate of 

antithrombin-III-mediated inactivation of thrombin [5, 74]. Studies have shown that multimeric 

VN exhibits increased binding affinity for heparin [48, 275]. Our lab showed that this apparent 

increased binding of multimeric VN to heparin is attributed to avidity (e.g. multi-valent effects) 

rather than differences in affinity. Thus, it was observed that the affinity of monomeric VN was 

similar to that of a single unit of the multimer [276]. Nevertheless, the overall effective binding 

to heparin was higher with „denatured‟ multimeric VN. In order to test whether the increased 

association of the PAI-1/VN complex with the matrix is GAG mediated, we have performed 

binding studies with different types of GAG molecules. Figure-3.10 compares monomeric VN 

and VN/PAI-1 for their ability to interact with different types of GAG molecules. Though 

monomeric VN was found to bind to all the different GAG molecules used, the multimeric 

complex formed between VN and PAI-1 did not show any increased association. This finding 

indicates that increased association of the complex to matrices and/or tissues is not GAG 

mediated.  
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Figure-3.10: A plate designed for GAG binding was coated with 

different GAGs as indicated. For each GAG molecule coating 

concentration was 25µg/ml. Coating was carried out overnight at 4
0
C. 

VN was incubated with 100nM wt-PAI-1 and the mixtures were added 

to plate coated with GAGs. Binding of VN was quantified 

immunochemically using 1E9 monoclonal antibody. 

 

Figure 3. 10: Association of VN/PAI-1 complex with different GAG 
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3.3. d. The Multimeric Complex Formed Between VN/PAI-1 Associate More 

with Cell Surface Receptors.  

VN interacts with several surface receptors, e.g. - uPAR αvβ3 and αvβ5. In vitro studies 

indicate that binding of uPAR to „denatured‟ multimeric VN is inhibited by the addition of PAI-

1[226-227]. Other studies indicate that binding of αvβ3 to „denatured‟ multimeric VN is 

inhibited by PAI-1 added exogenously [229, 277]. Unfortunately, no one except for our lab has 

chosen to compare the interaction of receptors and VN with that of the multimeric complex 

formed by the interaction of VN and PAI-1. Previously our lab has shown that the multimeric 

complexes formed by the interaction between VN and PAI-1 associate more with αvβ3 and 

GPIIaIIIb (a platelet integrin) compared to monomeric VN [209]. We further pursued this 

strategy to add to our existing knowledge on:  1. the biological relevance of multimeric 

complexes formed between VN and PAI-1; 2. the effect of PAI-1 on the interaction between VN 

and cell surface receptors while associated with VN within the multimeric complexes. 

Figure-3.11 shows the dose-dependent increase in VN binding to suPAR (soluble uPAR 

with no GPI link) with increasing concentrations of PAI-1. This is an experiment that explicitly 

checked binding of VN to a uPAR-coated plate. The side panel shows the basic schematic of the 

binding assay. In this study we did not see any interference with VN binding to suPAR by PAI-1. 

In fact, the multimeric complexes formed between VN and PAI-1 exhibit increased binding 

compared to native monomeric VN. Figure-3.12 & 3.13 show binding experiments to test 

association of uPAR with the VN/PAI-1 complex associated with matrix components. In these 

experiments monomeric VN and the complex between PAI-1 and VN were incubated with Col-

IV and HSPG, and uPAR was added to the plate following VN binding.   The binding of uPAR  
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Figure-3.11: 20nM VN was mixed with varying concentrations of 

PAI-1 and incubated at 37
0
C for 1hr. Mixtures were added to a 

uPAR coated plate. Binding of VN to uPAR was quantified 

immunochemically using the 1E9 monoclonal antibody against VN. 

The right panel shows the basic scheme of this experiment. The 

symbol for uPAR is defined. For all the other symbols, refer to 

Figure-3.1.  

Figure 3. 11: Association of VN/PAI-1 complex with uPAR- dose dependency 
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Figure-3.12 & 3.13: 100nM VN was mixed with 200nM wtPAI-1 and the 

mixtures were then added to HSPG (Figure-3.12) and Col-IV (Figure-3.13) 

coated plate. Soluble uPAR was added and binding of uPAR to the 

VN/PAI-1 complex was probed immunochemically using an antibody 

directed against uPAR. The right panel shows the basic scheme of this 

experiment. For all the symbols refer to Figure-3.1 and 3.11. 

Figure 3. 12: uPAR binding to VN/PAI-1 complex associated with 

HSPG 

Figure 3. 13: uPAR binding to VN/PAI-1 complex 

associated with Col-IV 
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was probed by an antibody that recognizes a non-VN binding epitope on uPAR. While uPAR 

binding could not be detected to native VN under the given conditions, a significant increase in 

binding was observed to the VN/PAI-1 complex associated with Col-IV or HSPG. A previous 

study showed that the affinity of uPAR binding to native VN was lower than with „denatured‟ 

multimeric VN [278]. It may be that a significantly higher concentration of native VN is needed 

to demonstrate binding of uPAR. Nevertheless, a significant increase in binding of uPAR to the 

VN/PAI-1 complex compared to monomeric VN indicates that the presence of PAI-1 is not 

inhibitory to uPAR binding. uPAR binding to native VN and the VN/PAI-1 complex directly 

coated on to a 96-well plate was also checked (data not shown). Once again no binding could be 

observed to native VN under these conditions, but binding was much higher with the VN/PAI-1 

complex. Though a significant difference in binding was observed with the VN/PAI-1 complex, 

the difference was more prominent when the VN/PAI-1 complex was associated with matrix 

components. 

Figure-3.14 shows tests of binding of the VN/PAI-1 complex to αvβ3, αvβ5 and α5β1. 

We observe that multimeric complexes formed between VN and PAI-1 show increased 

association with both αvβ3 and αvβ5 compared to monomeric VN. Once again, no inhibition of 

VN binding to these integrins was observed in the presence of PAI-1. In this figure, we also see 

that monomeric VN binds to α5β1, and this binding increase in the presence of the VN/PAI-1 

complex. α5β1 is primarily known as a fibronectin receptor [279-280] that recognizes an RGD 

sequence on fibronectin [280]. α5β1 shares some functions with αvβ3. Like αvβ3, expression of 

α5β1 is minimal in quiescent endothelial cells, but activated endothelial cells show significant  
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Figure-3.14: 50nM VN was mixed with 100nM PAI-1 and added to αvβ3, αvβ5 or 

α5β1 coated plates. 50nM VN alone or in complex with 100nM PAI-1 were added 

to integrin coated plates. Binding of VN was quantified immunochemically using 

the 1E9 monoclonal antibody against VN. The right panel shows the basic scheme 

of this experiment. The symbol for integrin is defined. For all the other symbols, 

refer to Figure-3.1.  

Figure 3. 14: Association of VN/PAI-1 complex with αvβ3, αvβ5 and α5β1 
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increase in the expression of α5β1. Similarly, expression of α5β1 on endothelial cells can be 

upregulated by bFGF or TNF-α [281]. Figure-3.15 & 3.16 show results that further confirm the 

specific interaction of VN and α5β1. Figure-3.15 compares the binding of monomeric VN alone 

or in complex with PAI-1 (equimolar mixture). Monomeric VN shows a concentration-

dependent increase in binding to α5β1, whereas at each concentration, the presence of an 

equimolar amount of PAI-1 resulted in a further increase in binding. Figure-3.16 shows the dose 

dependent increase in VN binding with increasing concentrations of PAI-1. Figure-3.17 probes 

for αvβ5 binding to native VN and the VN/PAI-1 complex coated on a 96-well plate. Probing of 

αvβ5 binding was carried out using an antibody that recognizes the C-terminal domain of αv 

integrin. A schematic presentation of the binding strategy is shown in the side panel. Though no 

detectable binding of αvβ5 could be observed with monomeric VN, a significant increase was 

observed with the VN/PAI-1 complex. The absence of binding to monomeric VN could be due to 

a weak affinity. Seiffert et al. showed that „denatured‟ multimeric VN has much higher affinity 

for αvβ3 [277]. A similar issue may play a role here with αvβ5. This study shows that the 

presence of PAI-1 in the multimeric complex does not inhibit αvβ5 binding to VN. Strikingly, 

when the binding of αvβ5 to VN/PAI-1 associated with matrix components was checked, no 

binding was detected to either native VN or VN/PAI-1 under similar experimental conditions. It 

appears that in the environment where αvβ5 is associated with multimeric VN in the context of 

other matrix components, the C-terminal domain of αvβ5 is not accessible to the antibody. 

 

 

 



130 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure-3.15: A series of VN concentrations was mixed with wtPAI-1 in an 

equimolar concentration, and the binding of the VN/PAI-1 complex to an α5β1 

coated plate is compared to that of a VN alone. Figure-3.16: 10nM VN was mixed 

with varying concentrations of PAI-1 and added to α5β1 coated plate. The binding 

of VN was probed immunochemically.  

Figure 3. 15: Comparison of VN/PAI-1 complex and 

monomeric VN binding to α5β1 

Figure 3. 16: association of VN/PAI-1 with α5β1- dose 

dependency 
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Figure-3.17: 100nM VN alone or mixed with 200nM PAI-1 were added to a 

plate. αvβ5 was added to VN or VN/PAI-1 coated plate and the binding of the 

integrin was probed by an antibody against the C-terminus of the αv subunit 

(1:100 dilution). The right panel shows the basic scheme of this experiment. 

For all the symbols refer to Figure-3.1 & 3.14.  

 

Figure 3. 17: αvβ5 binding to VN and VN/PAI-1 complex 
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3.3. e. Effect of the VN/PAI-1 Complex on Cellular Adhesion and Migration: 

Testing the Role of the Surrounding Environment. 

Previous studies showed that PAI-1 promoted migration of U937 cells and melanoma 

cells through VN in a uPAR-dependent manner [226, 228]. On the other hand, PAI-1 was found 

to inhibit migration of SMC, WISH and Hep2 cells lines on VN in a αvβ3 mediated fashion 

[229-230]. The particular effect of the interaction between PAI-1 and VN on cellular 

migration/adhesion may thus be influenced by cell type and variability in cell surface receptors. 

In order to explore the effect of specific cell types, we have included two different cell lines in 

our study. They are HT1080 (fibrosarcoma) and EA.hy 926 (endothelial cell), cells relevant in 

different aspects of angiogenesis, as discussed above [191, 231-233]. Angiogenesis is the process 

of new blood vessel formation. In this process, activated endothelial cells migrate from the 

existing blood vessel to the tumor site and initiate new blood vessel formation. Formation of new 

blood vessels is key for the development and progression of the tumor [282-283]. VN is thought 

to play an important role in the regulation of angiogenesis. The absence of VN was found to 

decrease angiogenesis in mice [66]. There are a number of inhibitors of angiogenesis, designed 

to disrupt the interaction of αvβ3 and αvβ5 with VN, currently being studied in clinical trial [99, 

284-285]. Thus, the use of these two cell lines is relevant in the context of angiogenesis.  

It is known that cytokines and growth factors can regulate the expression of receptors on 

the cell surface. Waltz et al. found that stimulation of the monocytic cell line U937 with TGFβ1 

and Vitamin-D3 (Cholecalciferol) caused expression of uPAR on the cell surface. In other 

studies, the use of bFGF increases expression of αvβ3 in HDMEC (human dermal microvascular 

endothelial cell) [286]. Phorbol 12-myristate 13-acetate (PMA), which is known to be a 
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tumorigenic substance, was also found to cause an increase in αvβ3 expression in HDMEC 

[287]. Angiogenesis is initiated by the activation of endothelial cells. Often times this activation 

results from the change in receptor expression on the cell surface mediated by the effect of 

different growth factors. Brooks et al. reported that bFGF and TNF-α (tumor necrosis factor-α) 

can induce angiogenesis by increasing the expression of αvβ3 on the vascular endothelial [288].  

Such angiogenesis could be blocked by a specific antibody against αvβ3. On the other hand, 

Friedlander et al. showed that angiogenesis induced by VEGF and TGF-β (transforming growth 

factor-β) was blocked by an antibody against αvβ5 [96]. Thus, angiogenesis induced by these 

two growth factors was proposed to be αvβ5-mediated. In our study we have used bFGF and 

VEGF as possible modulators of the receptor expression on the cell surface of the two cell lines. 

We have also used PMA for influencing receptor expression. Our rationale was to determine the 

specific regulation of receptors on our chosen cell types due to stimulation with bFGF, VEGF 

and PMA. Among the many growth factors available, it was logical to choose those that are 

known to cause changes in other systems.  However, it should be noted that there were no 

previous studies to establish the effects of these particular cytokines and chemicals on these cell 

lines. Figure-3.18 contains the basic scheme of all the cell based experiments. Briefly, each cell 

line (1080 and 926) was separately treated with different stimulants (bFGF, VEGF and PMA) 

under serum free conditions. As control, each cell line was also left under serum free condition 

with no treatment. Each cell line subject to separate treatment condition was utilized for cell 

binding and migration assay. For all binding and migration experiments matrix conditions were 

generated by using either Col-IV or HSPG as the base matrix component. VN alone and its 

complex with PAI-1 were then allowed to bind to Col-IV or HSPG to complete two different sets  
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Figure-3.18: 926 cells and HT1080 cells were treated with growth factors and PMA 

separately. As a control, untreated cells were also used. Specific matrix conditions were 

generated by adding VN or the VN/PAI-1 complex to either plates coated with HSPG 

or Col-IV. Cells treated with different conditions were subject to both binding and 

migration study in the presence of specific matrix condition. 

 

Figure 3. 18: Basic scheme for the cell binding and migration experiments 
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of matrix preparation. Both 1080 and 926 cell lines that have already been treated with different 

conditions were then subject to cell binding assay and cell migration assay separately under two 

different sets of matrix conditions. While EA.hy926 cells were checked for adhesion to the 

VN/PAI-1 complex associated with HSPG, no differential effect in cell binding was observed 

between the VN/PAI-1 complex and monomeric VN. This was true under all conditions. Figure-

3.19 -3.22 show binding of unstimulated, bFGF-, VEGF- and PMA-stimulated EA.hy926 cells to 

VN/PAI-1 complex associated with HSPG, respectively. For almost all the conditions tested the 

presence of the VN/PAI-1 complex neither inhibited nor promoted cellular binding compared to 

VN alone (P>0.05). However, VN alone increased cell binding relative to HSPG (P<0.05). 

Another striking observation was that when PAI-1 was associated with HSPG, a significant 

increase in binding compared to HSPG (P<0.05)) could be observed, as found with VN alone or 

with the VN/PAI-1 complex. When HT1080 cell line was used for studying the effect of 

different stimulation conditions on cell binding to VN/PAI-1 complex associated with HSPG 

very similar results were obtained as with EA.hy926 cell line. Presence of VN/PAI-1 complex 

showed no significant difference in terms of number of cell bound compared to VN alone 

(P>0.05). When VN alone was mixed with HSPG significant increase in binding was observed 

compared to that of HSPG alone.  

926 Cell binding to VN or the VN/PAI-1 complex associated with Col-IV was dominated 

by the presence of Col-IV. Considerable amount of cell binding was observed to Col-IV within 

30 minutes of incubation and there was no additional influence of the presence of VN or the 

VN/PAI-1 complex under all the conditions tested (P>0.05). Figure-3.23 - 3.26 show the result  
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Figure-3.19- 3.22: A 50nM concentration of VN was incubated with 

100nM wt-PAI-1, and the mixtures were added to plates coated with 

HSPG. Unstimulated (Figure-3.19), bFGF stimulated (Figure-3.20), 

VEGF stimulated (Figure-3.21) and PMA stimulated (Figure-3.22) 926 

cells were added to wells and bound cells were labeled with calcein. The 

number of cells bound per 0.13mm
2
 area is plotted. *P<0.05 

 

Figure 3. 19: Unstimulated 926 cell binding to VN/PAI-1 complex 

associated with HSPG 
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Figure 3. 20: bFGF stimulated 926 cell binding to VN/PAI-1 complex 

associated with HSPG 

Figure 3. 21:VEGF stimulated 926 cell binding to VN/PAI-1 complex 

associated with HSPG 
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Figure 3. 22: PMA stimulated 926 cell binding to VN/PAI-1 complex 

associated with HSPG 
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Figure-3.23 -3.26: A 50nM concentration of VN was incubated with 

100nM wt-PAI-1, and the mixtures were added to plates coated with 

Col-IV. Unstimulated (Figure-3.23), bFGF stimulated (Figure-3.24), 

VEGF stimulated (Figure-3.25) and PMA stimulated (Figure-3.26) 926 

cells were added to wells and bound cells were labeled with calcein. The 

number of cells bound per 0.13mm
2
 area is plotted. 

 

Figure 3. 23: Unstimulated 926 cell binding to VN/PAI-1 complex 

associated with Col-IV 
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Figure 3. 24: bFGF stimulated 926 cell binding to VN/PAI-1 complex 

associated with Col-IV 

Figure 3. 25: VEGF stimulated 926 cell binding to VN/PAI-1 complex 

associated with Col-IV 
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Figure 3. 26: PMA stimulated 926 cell binding to VN/PAI-1 complex 

associated with Col-IV 



142 

 

 of unstimulated, bFGF-, VEGF- and PMA-stimulated EA.hy926 binding to VN/PAI-1 

associated with Col-IV. Similar results were obtained with HT1080 cells (data not shown). 

 Figure-3.27 & 3.28 show the migration of VEGF-stimulated 1080 cells and PMA-

stimulated 926 cells on VN or the VN/PAI-1 complex associated with Col-IV, respectively. Both 

of these results show that, with VN bound to Col-IV, migration was increased several fold. With 

wtPAI-1, there was essentially no effect on migration. The effect of the multimeric complex is 

the opposite. With VEGF stimulated 1080 cells, a statistically significant (P<0.05) increase in 

migration compared to VN alone could be observed, whereas with PMA stimulated 926 cells 

presence of the VN/PAI-1 complex on Col-IV caused statistically significant decrease (P<0.05) 

in migration. Tables-3.1 & 3.2 summarize the effects of the VN/PAI-1 complexes relative to VN 

alone on the migration of 1080 and 926 cells under all the tested conditions, respectively. In 

general, the effect of VN associated with the matrix components was pro-migratory. PAI-1 by 

itself had no effect on migration, which indicates that other binding partners like VN were 

required to produce protease-independent effects on migration. The effect of the multimeric 

complex formed by the interaction between VN and PAI-1 was subject to the specific 

microenvironment in which it was found. While only a few stimulating conditions showed 

difference in migration between monomeric VN and the VN/PAI-1 complex, most of the 

stimulating conditions tested showed that PAI-1 associated with VN in the multimeric complex 

can have no effect on migration. Conditions under which migration with VN/PAI-1 complex was 

found to be different from VN alone with statistical significance (P<0.05) have been highlighted 

in Tables-3.1 & 3.2.  
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Figure-3.27- 3.28: A 100nM concentration of VN was incubated 

with 200nM wt-PAI-1, and the mixtures were added to inserts 

coated with Col-IV. VEGF stimulated (Figure-3.27) 1080cells and 

PMA (Figure-3.28) stimulated 926 cells were added to inserts and 

migration was continued overnight. Cells were labeled with calcein 

and the number of cells migrated per 0.13mm
2
 area is plotted. 

*P<0.05 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. 27: VEGF stimulated 1080 cell migration through 

VN/PAI-1 complex on Col-IV 

Figure 3. 28: PMA stimulated 926 cell migration through VN/PAI-1 

complex on Col-IV 
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Table- 3. 1: Summary of 1080 cell migration experiments 

Table- 3. 2: Summary of 926 cell migration experiments 
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3.3. f. Flow Cytometry Study: Receptor Expression on Cell Surface 

Cell-matrix interactions are mediated between different matrix components and cell 

surface receptors, such as uPAR and integrins. We have tested the effect of the VN/PAI-1 

complex under a number of possible conditions, and the results obtained from such analyses 

were exciting and to some extent unexpected. At this point it was important to examine the 

receptor expression profile of 1080 and 926 cells under all the conditions tested. There are a total 

of ~24 different kinds of integrin heterodimers [93] expressed on human cells. So it was 

necessary to carefully select receptors for studying at flow cytometry. Many studies indicate the 

importance of uPAR on the cell surface for the regulation of PAI-1-mediated effects on cellular 

adhesion and migration via VN [226-227]. For these reasons, checking uPAR expression was an 

obvious requirement. Among all the different integrins, the ones that are primarily involved in 

VN recognition are αvβ3 and αvβ5. We have observed the role of αvβ3 in regulating the PAI-1 

mediated effect on adhesion and migration through VN [229-230]. We are also aware that bFGF 

and VEGF are the known modulators of the expression of αvβ3 and αvβ5 on endothelial cells, 

respectively. Therefore, we decided to evaluate the expression of these two integrins. We 

observed in our cell binding assays that there was no considerable effect of VN or the VN/PAI-1 

complex while Col-IV was the substratum. It is possible that the expression of specific collagen 

receptors dominates over the expression of VN receptors. There are four known Collagen 

receptors (α1β1, α2β1, α10β1 and α11β1) [93]. Out of these, α2β1 has been found to be present 

in endothelial cells and is known to recognize different kinds of collagens, including Col-IV 

[289-290], so we decided to check the expression of α2β1. We also checked the expression of 

α5β1 because we found that VN interacts with this receptor, and we observed that this interaction 
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was even more prominent with the VN/PAI-1 complex. Moreover bFGF was found to cause 

increase in expression of α5β1 on endothelial cell surface [281]. 

Figure-3.29 & 3.30 show the basal level (unstimulated condition) expression of all the 

five receptors on 926 and 1080 cells respectively. As observed except for uPAR, all of the other 

four receptors were expressed in both the cell lines. Expression of α2β1 was the highest among 

all the five receptors on 1080 lines, followed by α5β1, αvβ5, αvβ3 and uPAR in the order of their 

expression level. For 926 cells α5β1 expression was the highest under basal conditions, followed 

by α2β1, αvβ3, αvβ5 and uPAR in the order of their expression level. Figure-3.31-3.35 and 

Figure-3.36-3.40 show the expression profiles of each chosen receptor (uPAR, αvβ3, αvβ5, 

α5β1 and α2β1) in the absence or presence of growth factor stimulation on 926 and 1080 cells 

respectively. Each panel shows the signal from unstained cells (histogram in gray color). The 

signal from unstained cell is due to auto-fluorescence. Expression of each receptor under 

different treatment conditions can be compared relative to this background signal. No uPAR 

expression was observed on these two cell lines, even under the influence of growth factor 

stimulation. Expression of αvβ3 did not change under the influence of growth factors on both of 

the cell lines. Expression of αvβ5 slightly increased in both cell lines with the application of 

bFGF and VEGF. While PMA caused a greater increase in expression of αvβ5 on 1080, this 

increase was not observed with 926 cells. Under any given stimulation condition, expression of 

α2β1 was much higher compared to that of αvβ3 and αvβ5 on both cell lines. Growth factor 

stimulation had no effect on the expression of α2β1. Expression of α5β1 was also much higher 

compared to that of αvβ3 and αvβ5 on both cell lines under any stimulation condition. While 

bFGF and VEGF had no effect on its expression, application of PMA caused a moderate  
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Figure-3.29- 3.30: Results of the flow cytometry study to compare the basal 

expression level of uPAR (red), αvβ3 (blue), αvβ5 (green), α5β1 (brown ) and 

α2β1 (turquoise) on unstimulated 926 cells (Figure-3.29) and 1080 (Figure-3.30) 

cells. The histogram shown in the gray color indicates the unstained cells. The 

line indicates the average percentage of the population showing signal over 

background. 

Figure 3. 29: Basal receptor expression- 926 cells 

Figure 3. 30: Basal receptor expression- 1080 cells 
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Figure-3.31-3.35: A flow cytometry study to the check expression of uPAR 

(Figure-3.31), αvβ3 (Figure-3.32), αvβ5 (Figure-3.33), α5β1 (Figure-3.34) 

and α2β1 (Figure-3.35) on unstimulated (red), bFGF (blue), VEGF (green) 

and PMA (turquoise) stimulated 926 cells. The histogram shown in gray 

color indicates the unstained cells. The line indicates the average percentage 

of the population showing signal over background. 

Figure 3. 31: uPAR expression on 926 cells- growth factor 

stimulation 
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Figure 3. 32: αvβ3 expression on 926 cells- growth 

factor stimulation 

Figure 3. 33: αvβ5 expression on 926 cells- growth 

factor stimulation 
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Figure 3. 34: α5β1 expression on 926 cells- growth 

factor stimulation 

Figure 3. 35: α2β1 expression on 926 cells- growth 

factor stimulation 
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Figure-3.36-3.40: A flow cytometry study to check expression of uPAR 

(Figure-3.36), αvβ3 (Figure-3.37), αvβ5 (Figure-3.38), α5β1 (Figure-3.39) 

and α2β1 (Figure-3.40) on unstimulated (red), bFGF (blue), VEGF (green) 

and PMA (turquoise) stimulated 1080 cells. The histogram shown in gray 

color indicates the unstained cells. The line indicates the average percentage 

of the population showing signal over background. 

Figure 3. 36: uPAR expression on 1080 cells- growth factor 

stimulation 
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Figure 3. 37: αvβ3 expression on 1080 cells- growth 

factor stimulation 

Figure 3. 38: αvβ5 expression on 1080 cells- growth 

factor stimulation 
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Figure 3. 39: α5β1 expression on 1080 cells- growth 

factor stimulation 

Figure 3. 40: α2β1 expression on 1080 cells- growth factor 

stimulation 
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decrease in the expression of α5β1 on 926 cells and a slight increase in expression on 1080 cells. 

Overall it appears that none of the stimulants actually caused a dramatic change in the expression 

pattern of any of the receptors tested. 

3. 4. Discussion 

3.4. a. ‘Denatured’ Multimeric VN vs. ‘Biological’ Multimeric VN 

VN is an important biomolecule involved in various physiological processes. It is found 

in both the circulation and the extracellular matrix. This molecule shows a preferred 

conformation and functions specific to its localization. While it exists as a monomer in the 

circulation, the preferred conformation in the extracellular matrix is multimeric [13-14, 259]. 

Volker et al. showed that while multimeric VN could readily bind with the monolayer of porcine 

endothelial cells and the associated subcellular matrix, native monomeric plasma VN showed 

little binding [259]. Extracellular matrix-associated VN plays an important role in the regulation 

of cellular adhesion and migration. Though the mechanism of such compartmentalization is not 

known, the general idea is that a conformational change is required for the transition of the 

monomeric plasma form into its multimeric matrix associated form. There are studies that 

indicate that a number of biological molecules may initiate the process of this conformational 

transition, including thrombin-antithrombin-III (TAT) complex, terminal complement complex 

(C5b-C7) and PAI-1 [44, 205-206]. Conformational changes initiated by the binding of these 

molecules expose an epitope that is not found in monomeric plasma form of VN and is 

recognizable by monoclonal antibodies like, 8E6. Conformational changes also expose the 

binding sites for heparin. Among these biomolecules, PAI-1 has been considered to be primarily 

responsible for the conformational transition of VN. Seiffert et al. showed that PAI-1 mixed with 
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monomeric plasma VN causes a conformational transition and multimerization of the latter 

[206]. This conformational alteration induced by PAI-1 was recognized by the conformational 

sensitive antibody like 8E6.  

Despite the fact that there are a number of biomolecules that can potentially cause the 

conformational transition of VN, most of the studies related to the matrix-associated form of VN 

have been limited to the use of a „denatured‟ form of VN, formed by various physical methods. 

Treatment of the plasma form of monomeric VN with urea, guanidine chloride or heat result in 

the conversion into the homomultimeric form also known as the „denatured‟ form of multimeric 

VN. This „denatured‟ form of vitronectin was found to possess the conformational sensitivity 

usually observed with matrix associated multimeric VN [44, 77]. The main assumption involved 

in the use of these approaches is that the „denatured‟ form of multimeric VN is similar to the 

naturally occurring matrix associated form of VN. While this approach has been found to be 

valuable in the understanding the role of VN in regulating cell-matrix interactions, its 

physiological relevance is questionable. In fact, Seiffert et al found out that platelet-associated 

multimeric VN is structurally and conformationally distinct from „denatured‟ multimeric VN 

[207]. Their study indicated that platelet-released multimeric VN was significantly smaller in 

size compared to „denatured‟ multimeric VN, and the conformationally sensitive epitopes (for 

mAb 153, 1244 and 8E6) were more pronouncedly expressed in „denatured‟ VN than platelet 

released VN. Thorough examination and comparison between the multimeric form of 

„denatured‟ VN and the multimeric form produced by biologically relevant processes is still 

lacking. Thus, the primary motive of our study has been to understand the role of the matrix-

associated form of VN in cellular adhesion and migration. These studies have used multimers 
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produced under conditions that more likely replicate the physiological scenario. We consider that 

PAI-1 is a potential biological factor that can cause the transition of monomeric VN into its 

matrix-associated multimeric form, and we have used multimeric complexes formed by the 

interaction of VN and PAI-1 for all our experiments.  

In the last few years, our lab has produced data that show that PAI-1 mixed with 

monomeric VN induces multimerization [209-211]. Also, we have established that PAI-1 

remains associated with these multimeric complexes for several hours under in vitro 

conditions.[209-210]. For these reasons, we refer to these multimeric complexes formed between 

VN and PAI-1 as „biological‟ multimeric complexes. In this present study we have mixed PAI-1 

and VN so that the „biological‟ multimeric complex is formed, and then have used these 

complexes to check their ability to associate with matrix components like HSPG and Col-IV. A 

previous sedimentation velocity study showed that VN mixed with various concentrations of 

PAI-1 yielded multimeric complexes in a dose-dependent fashion [210]. Following the same 

principle, VN was mixed with differing concentrations of PAI-1 to test the hypothesis that the 

„biological‟ multimeric complexes formed between VN and PAI-1 will associate more readily 

with matrix components. The extent of association with the matrix components should be 

proportional to the amount of multimeric complexes present. Consistently, it was observed that 

increasing concentrations of PAI-1 increased the amount of VN associated with both HSPG and 

Col-IV in a dose-dependent fashion. This observation supports our hypothesis and suggests that 

these „biological‟ multimeric complexes formed by the interaction between VN and PAI-1 have 

practical relevance for determining the localization and function of VN in tissues. Another 

observation is that these „biological‟ multimeric complexes did not show an enhanced propensity 
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to associate with different GAGs, especially heparin. „Denatured‟ multimeric VN has previously 

been presumed to bind heparin better than monomeric VN [48]. However, the „biological‟ 

multimeric complexes formed by the interaction between VN and PAI-1 did not show this 

tendency, indicating that the assumption regarding „denatured‟ VN being an adequate mimic of 

multimeric vitronectin in the ECM has flaws and should be re-examined.  

We have also determined that the successful multimerization requires an interaction 

between PAI-1 and full length VN. Limiting the interactions to PAI-1 binding to the primary 

binding site within the SMB domain is not sufficient to cause increased association with the 

matrix components. The isolated SMB domain mixed with PAI-1 did not exhibit increased 

association with HSPG or Col-IV, compared to SMB alone. Thus interaction between PAI-1 and 

full length VN with the more extensive binding interfaces that we have characterized before 

[168] is required to ensure the successful transition into the multimeric form. If the interaction 

between these two proteins is inhibited, the conformational transition from the monomeric form 

to the multimeric form is impaired. We have recently found that an octapeptide that mimics the 

reactive center loop of PAI-1, while mixed with this protein, almost completely disrupts the 

interaction between VN and PAI-1, using a sedimentation velocity analysis that showed that 

almost no higher order multimeric complexes were produced in the presence of this octapeptide 

(discussed in detail in chapter-2). When VN and PAI-1 were mixed in the presence of this 

octapeptide and association of VN to matrix components was probed, no increase in VN binding 

could be observed compared to VN alone. Once again, this result supports our hypothesis that 

the interaction between VN and PAI-1 that leads to the transformation into the higher order 

multimeric complexes is required for showing increased association with the matrix components. 
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This octapeptide is supposed to insert within the groove formed between the strand β3A and β5A 

of PAI-1 and thus block the SMB domain mediated interaction of VN with PAI-1. Once this 

interaction is blocked formation of higher order multimeric complexes is also inhibited and no 

increased association of VN with the matrix components is observed. Similar results were 

obtained when VN was mixed with a mutant of PAI-1 (Q123K) that has very low affinity for VN 

binding. The sedimentation velocity study shows that this mutant (discussed in detail in chapter-

2) while mixed with VN forms very low amount of multimeric complexes compared to wtPAI-1. 

Once again we can see that blocking the interaction between VN and PAI-1 interfere with the 

amount of multimeric complexes formed, and that, in turn, is affecting how much increased 

association of VN could be expected towards matrix components.   

3.4. b. Does PAI-1 Always Negatively Interfere with the Interaction Between 

VN and Cell Surface Receptors? 

The most widely accepted role for PAI-1 regarding the interaction between VN and its 

common cell surface receptors is as a general inhibitor that disrupts the interactions of 

vitronectin with molecules such as uPAR or integrins. According to previous studies, the 

interaction between uPAR and „denatured‟ multimeric VN was inhibited by exogenously added 

PAI-1 [226-227]. The uPAR-binding site on the SMB domain appears to overlap with the PAI-1-

binding site, so that PAI-1 and uPAR compete for binding to VN [103]. Similar results were 

observed with VN binding to αvβ3; binding of „denatured‟ multimeric VN to αvβ3 was blocked 

by the addition of PAI-1 [229, 277]. Though the RGD domain responsible for integrin 

recognition does not appear to be directly blocked by PAI-1 binding [22] in the crystal structure 
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between the SMB domain and the 14-1-B form of PAI-1, steric interference resulting from the 

proximity of the PAI-1-binding and integrin-binding sites has been thought to be the cause of the 

inhibitory effect of PAI-1 on the VN-integrin interaction. The interaction of PAI-1 with VN has 

been proposed to be a molecular switch [186, 227, 229]. According to Smith and his group, PAI-

1 binding to monomeric VN causes a conformational change and an opening up of the cryptic 

cell adhesion site (for integrin binding) on VN, but that site remains inaccessible as long as PAI-

1 is bound. This model assumed that, once PAI-1 is released, the cell adhesion site becomes 

available on VN and integrin binding can occur [277]. Release of PAI-1 from VN can be 

initiated by the interaction of the cell surface bound urokinase also. Binding of protease by the 

serpin causes significant decrease in affinity of PAI-1 for VN and may lead to release of PAI-1 

from matrix associated VN [186, 232]. Seiffert et al. performed some studies where they used 

PAI-1 to cause multimerization of VN, but waited for 16hrs until PAI-1 was released from these 

multimeric complexes. These multimeric complexes of VN showed increased binding to αvβ3, 

but such binding could be blocked by exogenously added PAI-1[277].  In this current study we 

have taken a more realistic approach by using „biological‟ multimeric VN that remains 

associated with PAI-1. Use of this „biological‟ multimeric complex of VN formed by the 

interaction with PAI-1 allowed us to check what physiological roles they play and also revisit the 

role of PAI-1 in regulating the interaction between VN and its receptors, while present as a part 

of the „biological‟ multimeric complexes.  

Testing for receptor-ligand binding with the receptor immobilized on the plate is a 

common method that we have employed to test for the ability of the multimeric complexes to 

recognize immobilized uPAR. Monomeric VN was mixed with varying concentrations of PAI-1, 
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and the resulting multimeric complexes tested for binding to uPAR. With increasing 

concentrations of PAI-1, binding of VN to uPAR increased in a dose-dependent fashion. Thus, in 

these measurements, the presence of PAI-1 within the complexes did not inhibit the interaction 

between VN and uPAR, although the time scale of the experiment (only a few hours) ensures 

that PAI-1 remains in the multimeric complexes during the experiment. In an alternative 

approach, we directly probed the binding of uPAR to the „biological‟ multimeric complex bound 

to the plate directly or associated with other matrix components, such as HSPG or Col-IV. For 

directly probing uPAR binding, an antibody was chosen that recognized an epitope that does not 

interfere with the interaction between uPAR and VN. This approach again showed that uPAR 

binding to the „biological‟ multimeric complex of VN was not blocked by the presence of PAI-1. 

Presence of PAI-1 in the matrix (both Col-IV and HSPG), following addition of VN/PAI-1 

complex was confirmed in separate study by using an antibody against PAI-1 (data not shown). 

Little uPAR binding could be detected with monomeric VN associated with matrix components 

or directly with the plate; however, this finding is not altogether surprising and can presumably 

be explained by the proposed difference in binding affinity between monomeric VN and 

multimeric VN for uPAR [278]. Clearly, uPAR binding was observed for the „biological‟ 

multimeric complexes formed between VN and PAI-1, but it is not clear how the interaction 

between uPAR and VN occurs in the presence of PAI-1, as the two binding sites are known to 

overlap. It is possible that another uPAR binding site, which lies at the C-terminal heparin 

binding domain, as proposed by Waltz et al. [226], becomes more exposed following the 

conformational transition. 
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We have also tested the ability of these „biological‟ multimeric complexes to recognize 

different integrin receptors. Previously we have shown that these complexes associate more 

readily than VN alone with αvβ3 and αIIbβ3 integrins [209]. In this current study, we observed 

that PAI-1 present in the multimeric complexes also did not block VN binding to integrins αvβ5. 

Furthermore, we found that monomeric VN could interact with α5β1, a known fibronectin 

receptor. Though the interaction was weaker compared to that of with αvβ3 and αvβ5, these 

„biological‟ multimeric complexes showed an increased association with α5β1 compared to 

monomeric VN. In an alternative approach, we also probed αvβ5 binding to monomeric VN and 

„biological‟ multimeric VN directly bound to the plate. Though not much binding was observed 

with monomeric VN, binding increased several fold with multimeric VN. Lack of binding to 

monomeric VN once again is thought to be due to an affinity issue, with monomeric VN 

exhibiting a lower affinity than the „biological‟ complexes. Surprisingly, no binding of αvβ5 to 

either monomeric or multimeric VN could be detected while the proteins were present with other 

matrix components like HSPG and Col-IV. There is a possibility that the epitope for the C-

terminally directed antibody against the αv subunit is not easily accessible by the antibody under 

this situation. Another possibility is that the specific activation state of αvβ5 that we are dealing 

with under the current experimental conditions is not suitable for tight binding to the matrix 

associated monomeric or multimeric VN. In other words the binding site for αvβ5 binding on 

monomeric VN or „biological‟ multimeric VN has very low affinity while they are associated 

with the matrix components like Col-IV and HSPG.  
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3.4. c. PAI-1 Effects on Cellular Adhesion and Migration: Significance of the 

Pericellular Environment. 

The effect of PAI-1 and its interaction with VN on the regulation of cellular adhesion and 

migration is an interesting subject. There is still no a consensus on the role of these two proteins 

and their interaction in the regulation of cell-matrix interactions. The literature is full of opposing 

claims made by different groups. Some studies say that PAI-1 inhibits cell binding to VN but 

promotes migration, while others say that PAI-1 inhibits migration through VN [226-227, 229-

230]. Though the effect of PAI-1 on migration has been found to be variable, as far as its effect 

on cell binding is concerned, most of the studies indicate that PAI-1 acts as an antiadhesive 

molecule when cell binding occurs through VN. The majority of these studies were aimed at 

understanding the role of exogenously added PAI-1 in regulating cellular adhesion and migration 

mediated by „denatured‟ multimeric VN. Our approach has been different from these studies in 

two ways; first, it is more reflective of natural environment because PAI-1 is present and bound 

to vitronectin, and second, it is thorough in looking at a wide variety of biological settings with 

different cell types and tissue components. We have compared the role of monomeric VN and 

„biological‟ multimeric VN on cellular adhesion and migration in the context of other matrix 

components such as HSPG and Col-IV. Also, we have placed emphasis on modulating the 

pericellular microenvironments in which adhesion and migration are happening, as we believe 

the specific role the multimeric complex formed between VN and PAI-1 may have on cellular 

adhesion and migration is sensitive to the surrounding environment. The specific 

microenvironment in which the adhesion or migration takes place is comprised of different 

matrix components, different cell types and different receptors expressed on their surface. The 
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choice of cancer fibroblast (HT1080) and endothelial (EA.hy926) cells for our work has 

provided the context of a cellular environment for angiogenesis. We have also used PMA and 

different growth factors, including bFGF and VEGF, in order to modulate receptor expression on 

the cell surface. The choice of growth factors was based on previous studies that showed changes 

in receptor expression on the surface of HDMEC (endothelial cells) [96, 288].  

The results of our adhesion studies do not support the majority of studies in the literature. 

The presence of „biological‟ multimeric complexes on either HSPG or Col-IV neither inhibited 

nor promoted cellular attachment relative to VN alone. With HSPG, VN caused some increase in 

binding of the „biological‟ complexes, while the presence of Col-IV did not lead to differential 

effects for VN or its multimeric form on cellular adhesion or migration. This result was similar 

with both cell lines, and the presence of growth factors also did not cause a difference in 

adhesion. When isolated PAI-1 was associated with Col-IV, it had no effect on adhesion or 

migration, but PAI-1 associated with HSPG appeared to increase cell binding to some extent and 

this increase in binding was the same for the multimeric complexes. VN was found to promote 

migration under all conditions, whereas isolated PAI-1 bound to the matrix components had no 

effect on migration. The effect of the „biological‟ multimeric complex on migration was variable. 

While under most conditions it neither promoted nor inhibited migration relative to VN alone, 

under a few conditions it exhibited both promigratory and antimigratory effect. For example with 

Col-IV as the matrix component, VEGF stimulated 1080 cells showed a statistically significant 

increase (P<0.05) in migration, whereas PMA stimulated 926 cells showed a statistically 

significant decrease (P<0.05) in migration compared to VN alone.  
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There are examples from other studies where VN was found to promote migration of 

different cell lines, such as SMCs (smooth muscle cell line) and keratinocytes [291-292]. There 

are also other studies in which PAI-1 had no effect on cellular attachment but caused a decrease 

in cellular migration. Stefansson et al. showed that PAI-1 did not have any effect on cellular 

attachment of SMCs while „denatured‟ multimeric VN was associated with matrigel, an artificial 

ECM mimic. However, under similar conditions, PAI-1 blocked migration of SMCs via  

„denatured‟ multimeric VN associated with matrigel [229]. Stefansson et al. suggested that the 

lack of an effect of PAI-1 on cellular attachment was due to the presence of receptors that 

recognized matrix components other than VN. Following a similar line of rationale, we 

performed a flow cytometry study to test for the expression of a number of receptors (uPAR, 

αvβ3, αvβ5, α5β1, α2β1) on the surface in the two cell lines upon growth factor treatment. Under 

any condition, irrespective of growth factor stimulation and among all the receptors tested, α2β1, 

the collagen receptor, showed very high expression in both the cell lines. Because of this 

abundance of the collagen receptors, it is possible that no differential effect of monomeric or 

multimeric VN could be observed using Col-IV as the matrix substratum. Another striking 

observation from flow cytometry was that uPAR was not found to be expressed in either of the 

cell lines under any of the conditions tested. Since uPAR is a cell surface receptor that 

recognizes only VN among all the matrix components, the absence of this receptor may account 

for the relative insensitivity of the cells to the presence of monomeric or multimeric VN in the 

matrix. The effect of uPAR could be exclusively tested using cells like U937, which show high 

levels of uPAR expression on the surface [293].  
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Though some increase in cell binding could be observed with monomeric VN while 

associated with HSPG, the presence of the „biological‟ multimeric complex with HSPG did not 

promote additional cell binding. We know from our matrix binding assay that such „biological‟ 

multimeric complexes of VN associate more with matrix components like HSPG. While the 

presence of more VN was expected to provide more binding sites for cell surface receptor 

interaction, no increase in cell binding was observed. It may appear that the multimeric form of 

VN is providing multiple contact points for a single cell. Integrin clustering at focal adhesions at 

the leading edge of cells is a common phenomenon that provides added strength of binding 

[294]. So the presence of the multimeric VN might be associated with the strength of binding by 

providing multiple connection points for integrins expressed at the focal adhesion surface of the 

cell. This would result in the increase in the strength of the cell binding rather than the total 

number of binding. Alternatively, it may be that the binding of one cell masks multimeric 

complexes so that they are inaccessible for further cellular attachment. Regardless, the presence 

of PAI-1 in the multimeric complexes did not inhibit cellular attachment, and this appears 

opposite to with the prevailing opinion in the literature from studies with a different experimental 

design. 

While the results for cellular adhesion followed a general pattern with respect to the 

effect of „biological‟ multimeric complexes of VN, the results regarding migration were more 

variable. Once again, that signifies a more complicated process. As expected, the increase in the 

cell migration due to the presence of monomeric VN in the substratum was several-fold higher 

relative to the ECM components alone. However, the change in migration due to the presence of 

the „biological‟ multimeric complex of VN was significant only in some cases, but not dramatic 
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compared to the levels observed with monomeric VN. A flow cytometry study told us that none 

of the growth factors had any notable effect on the expression pattern of any of the receptors 

tested. Any changes observed were moderate. Perhaps other integrin receptors are more 

significantly affected under the given conditions. What we have observed demonstrates that PAI-

1, while associated with the matrix as a part of the „biological‟ multimeric complex of VN, will 

not necessarily promote or inhibit migration. The specific effect of PAI-1 on the regulation of 

cellular adhesion and/or migration, while acting as a biological partner for the conformational 

and oligomeric transition of VN, is strongly influenced by the pericellular environment. 
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CHAPTER-4 

 

Evaluating the Role of Vitronectin in the Pathogenesis of Candida 

albicans Infection 

 

4. 1. Introduction 

 Vitronectin (VN) is a glycoprotein found in both the circulation and extracellular matrix 

[13-14, 259] that has important functional roles in controlling hemostasis and different 

pathological conditions. The multifunctional nature of this protein results from its ability to 

recognize different ligands, e.g. the thrombin-antithrombin complex (T-AT) [44-45], heparin 

[46-48], PAI-1 [49-51], complement proteins [52] and cell surface receptors like integrins and 

the urokinase plasminogen activator receptor (uPAR) [53-59]. The circulating pool of VN has a 

role in regulating coagulation, fibrinolysis, wound healing, and thrombosis [61-62, 66]. On the 

other hand, extracellular matrix associated VN has an important role in controlling cell-matrix 

interactions and cell signaling [13]. Regulation of the cell-matrix interactions results from its 

ability to act as a matrix protein that can bind to different cell surface receptors like uPAR and 

certain subclasses of integrins (αvβ3 and αvβ5) [92] that govern cellular adhesion and migration.  

 In last few years, researchers have begun to understand the importance of VN in 

pathogenic infections. A number of studies have been published indicating the significance of 

VN in the regulation of host-pathogen interactions. For example, Duensing et al. for the first time 

showed that VN was required for the internalization of Neisseria gonorrhoeae by CHO cells 

[295]. Later, Dehio et al showed that the internalization of Neisseria gonorrhoeae into epithelial 
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cells (HeLa cells) was mediated by VN, and the process also required binding of VN to integrin 

αvβ5 (primarily) and αvβ3 [296].  Li et al. proposed that the infection of Staphylococcus 

epidermidis, the most common infection to be found in patients undergoing shunt implantations,  

is mediated by the vitronectin [297]. They showed that VN adsorbed on the surface of the shunt 

provides sites for bacterial adhesion and colonization [297]. Bergmann et al. established the 

importance of VN as a host cell component in the uptake of Streptococcus pneumoniae [298], 

demonstrating that VN bound on the cell surface mediated adherence and invasion of the bacteria 

in to the epithelial and endothelial cells [298]. They also showed in that study that the 

internalization of the pathogen inside the host cells occurs in an αvβ3-dependent manner.  

Involvement of VN in fungal pathogenesis has also become evident in the last few years. 

Fungal infection (such as Candida albicans, Cryptococcus neoformans, Pneumocystis carinii) in 

the lung is known to cause increase in the secretion of inflammatory mediators such as tumor 

necrosis-α (TNF-α) [299-301]. For many of these fungal infections, release of TNF-α happens 

following the binding of the macrophage through the β-glucan present on the fungal cell wall 

[301-302]. It has also been demonstrated that VN increases macrophage recognition by P. 

Carinii and C. albicans [303-304]. Olson et al. showed that VN could bind to the β-glucan 

present on the cell wall of Pneumocystis carinii and this interaction in turn helped fungal binding 

to the macrophages and the subsequent release of TNF-α [305]. Spreghini et al. reported the 

presence of VN receptors on the surface of C. albicans that were antigenically and functionally 

related to the mammalian αvβ3 and αvβ5 receptors [108]. The application of the antibodies that 

block the function of αvβ3 and αvβ5 interfered with the interaction of C. albicans with VN; 

when VN was added exogenously, the interaction of the pathogen with the endothelial cells was 
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blocked [108]. Santoni et al. used immunochemical analysis to show that αvβ3- and αvβ5-like 

receptors were present on the surface of the germ tube of C. albicans [306]. Binding of these 

germ tubes to VN and to endothelial cells (EAhy.926 cells) could be significantly blocked by the 

addition of RGD based peptides and function blocking antibody against αvβ3 and αvβ5 [306].  

 Based on the potential involvement of VN in fungal pathogenesis and the presence of 

integrin αvβ3, αvβ5 like receptors on the cell surface of C. albicans, our lab began a 

collaboration with Dr. Jeffrey Becker to use a genetic approach to further explore the role of VN 

in the progression of C. albicans pathogenesis. A systemic infection with C. albicans (strain: 

SC5314) was carried out in control mice (C57BL/6) and VN knock-out mice generated in the 

background of C57BL/6. This knock-out line was generated by David Ginsburg and his group 

and was found to be normal in terms of development, fertility and survival [307]. Infection with 

C. albicans resulted in a marked difference in terms of survival between the wild type and the 

knock-out mice. Figure-4.1 shows the results on the survival of these two strains upon injection 

with an inoculum of 1x10
5
 and 5x10

4
 cells of the SC5314 strain of C. albicans. This figure 

clearly shows a significant difference in survival between the strains upon C .albicans infection 

and also indicates that the VN knock-out mice are more tolerant to the C. albicans infection.  

Increased survival of the VN knock-out mice could be due to a variety of reasons. 

Perhaps the absence of VN did not allow the pathogen to interact with the host cells, and as a 

result it took a longer time for the infection to progress. It is also possible that the increased 

death rate of the wild type mice was due to the adverse immune response resulting from the 

infection. The absence of VN in the knock-out mice might interfere with the adverse 

manifestation of the immune reaction, leading to increased survival. The requirement of VN  
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Figure-4.1: Composite survival curve of C. albicans infection on wild type and VN 

knock-out mice from two different experiments. In one experiment, the inoculum 

containing 10
5
 cells was injected to each mouse, and the other experiment had 5x10

4
 

cells injected to each mouse. These data show a significant difference in survival 

between VN knock-out and wild type mice. VN knock-out mice were found to be more 

tolerant to C. albicans infection. These data are attributed to Sara Kauffman, 

Christine Schar, Cynthia Peterson and Jeff Becker. 

Figure 4. 1: Composite survival curve- Candida infection 
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for recognition of macrophages and subsequent release of TNF-α has been shown with C. 

albicans and other types of fungi [303-304, 308]. The purpose of this current study is to 

understand the increased survival in the the absence of VN. We are currently focusing on 

comparing neutrophil invasion, cytokine expression and colonization of C. albicans in different 

tissues, including lung, kidney, blood and spleen. 

4. 2. Materials and method 

4.2. a. Infection of mice with C. albicans  

 For all the C .albicans infection experiments, only male mice were used. Vitronectin 

knock-out mice (generated at the background of C57BL/6) were initially provided by David 

Ginsburg (Univ. of Michigan, Ann Arbor). They were maintained and bred in our animal facility 

at University of Tennessee, Knoxville. Wild type C57BL/6 mice were purchased from Harlan 

Sprague Dawley, Indianapolis, IN. For infection studies, C57BL/6 mice were purchased so that 

their age matched the knock-out mice. The age of the mice ranged between 7-8 weeks during 

infection. Infection was carried out with the virulent strain of C. albicans. , SC5314. The night 

before the infection, SC5314 was cultured in 50ml YEPD media with constant shaking at 30
0
C. 

After overnight culture, cells were harvested and washed twice with 1XPBS, and a final 

suspension of 10
6
cells/ml was made in 1XPBS (phosphate buffer saline) in a sterile environment. 

100µl of this cell suspension was injected using a 0.5 cc insulin syringe (purchased from BD 

Bioscience) through the dorsal tail vein of each mouse (10
5
cells/mouse). The Falcon tube in 

which the original cell suspension was stored was shaken from time to time in order to maintain 

the uniformity of the cell suspension. In each group (wild type and knock-out) there were at least 

24 mice were included for the infection study.  
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4.2. b. Collection of tissue for the analysis of fungal burden, cytokine 

expression and myeloperoxidase assay. 

 Following infection, mice from each group (wild type and knock-out) were sacrificed on 

day 6, 8, 11 and 14. An equal number of mice were sacrificed (five) at each time point, except 

for day-14. On day-14 there were always more knock-out mice present than wild type due to 

their increased survival. In another set of infections, tissues were collected at day 5, 9 and 14. 

Various tissues were collected, including lung, kidney, spleen and blood. Collection of blood 

was carried out following a terminal procedure. Briefly, mice were anaesthetized, and blood was 

collected through retro-orbital bleeding into BD Microtainer tubes that are designed to enhance 

coagulation. Tubes containing blood were stored in ice. From the collected blood, 50µl was 

mixed with 450µl DI (deionized) water and stored for the fungal burden assay. Following 

collection of blood, mice were killed by vertebral dislocation, and kidney, lung and spleen were 

harvested. Kidney and spleen from each mouse were stored in sterile tubes for fungal burden and 

cytokine analysis. For each mouse and for each type of tissue, a separate tube was used. Each 

tube contained 1ml of sterile 1XPBS mixed with protease cocktail inhibitor (purchased from 

Roche). Lung from each mouse was divided approximately into two portions. One portion was 

collected in a tube containing 0.5ml of 1XPBS mixed with protease cocktail inhibitor and the 

other portion was wiped on clean tissue to remove excess blood and then collected into a tube for 

myeloperoxidase assay. Tubes containing tissues were left at -80
0
C for further analysis.  
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4.2. c. Fungal burden and cytokine expression analysis 

 For the fungal burden analysis of blood, the mixture of 50µl blood and 450µl DI water 

that was made during tissue collection was directly mixed with 3ml of noble-agar (liquefied at 

55
0
C), and the mixture was plated on to YEPD plates and incubated for 48hours at 30

0
C. The 

number of colony forming units present on each plate was counted. The rest of the blood that 

was stored in the BD Microtainer tube was centrifuged at 4
0
C for 10min at 15000rpm, and the 

separated serum was collected from the top and stored at -80
0
C fro cytokine analysis. 

      For fungal burden analysis on kidney and spleen tubes were thawed and weight of the tissue 

in each tube was measured. The specific weight of the tissue from each tube was obtained as 

follows: 

(Weight of tissue in each tube) =  

               (Weight of the whole tube with tissue & buffer) – (Weight of the tube with buffer only) 

In order to obtain the „weight of the tube with buffer only‟, five empty tubes were filled with 1ml 

1XPBS mixed with protease cocktail inhibitor and weighed to calculated the average weight. 

Tissues were then sliced into small pieces using a razor blade, and the sliced tissues were 

homogenized by a polytron homogenizer for 30-45 seconds. 10µl of homogenized kidney from 

each sample was transferred to tubes containing 0.5ml DI water for the fungal burden assay. For 

the spleen, 50ul of the homogenized tissues was used for fungal burden assay. The content of 

each tube collected for the fungal burden assay was mixed with 3ml noble agar (liquefied at 

55
0
C), and the mixture was directly plated on to a YEPD plate followed by incubation for 48 

hours at 30
0
C. After 48hours, the number of colony forming units (CFU) from each plate was 

counted, and the fungal burden in terms of number of CFU/gm of tissue was plotted for each 
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group of mice at each time point. The rest of the homogenized tissues were centrifuged at 

12000rpm for 15min, and the supernatants were stored at -80
0
C for cytokine analysis.  

For cytokine analysis the homogenized tissue (frozen) samples were sent to Dr. Chad 

Steele‟s lab at University of Alabama, Birmingham and the analysis, was done following a 

multiplex procedure using a 23-plex kit purchased from Biorad. This kit allows analysis of 23 

different cytokines at the same. The basic scheme of the method is depicted in Figure-4.2. 

Briefly the tissue extract is incubated with antibody-coupled beads. For each different cytokine, a 

specific antibody is used. The mixture is then centrifuged to pull down the bead-coupled 

antibody attached to the specific cytokine. Biotinylated detection antibody is then added to the 

mixture to test for binding to the cytokine that is attached to the bead-coupled antibody. 

Following incubation, PE (phycoerythrin) conjugated streptavidin is added and read in a Bio-

plex suspension array system.  

4.2. c. Myeloperoxidase assay 

The following reagents were made for myeloperoxidase assay. 

MPO buffer 

50mM potassium-phosphate, pH-6.5. Stored at room temperature. 

HTAB buffer:  

0.5% hexadecyltrimethylammonium bromide (HTAB) (w/v) made in MPO buffer. Stored at 

room temperature. 

O-dianisidine HCl solution 
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Figure-4.2: Basic scheme of multiplex analysis for checking cytokine 

expression. Antibody coupled to the bead is used to isolate a specific 

cytokine. Another specific antibody conjugated with biotin is then 

allowed to bind to the cytokine. Streptavidin conjugated PE is then 

added to bind to the biotinylated Ab and read at Bioplex system.  

Figure 4. 2: Basic scheme for multiplex analysis 
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16.7 mg O-dianisidine-HCL was dissolved in 90ml DI water and 10ml MPO buffer. The 

container was wrapped with an aluminium foil and stored in dark at 4
0
C. 

Lung tissue for myeloperoxidase assay was stored in sterile tubes at -80
0
C. Tissue was thawed 

and the weight of the tissue was measured similarly to what has been described before.  

(Weight of tissue in each tube) =  

               (Weight of the whole tube with tissue) – (Weight of the empty tube) 

Five empty tubes were taken and each of these tubes was weighed and the calculated average 

weight was used as „weight of the empty tube‟. 1ml of HTAB buffer was added to each tube, and 

the tissue from each tube was sliced using a razor blade. The sliced tissue was homogenized 

using a polytron homogenizer for ~ 30-45 seconds. 30µl of the homogenized tissue was 

transferred to a tube containing 500µl of DI water, and this mixture was used to check the fungal 

burden in lung following the same method as described for kidney and spleen above. The rest of 

the homogenized tissue was centrifuged at 12000rpm for 30min at 4
0
C. The supernatant was 

collected, distributed in smaller aliquots and stored at -80
0
C for the future analysis of 

myeloperoxidase activity. 

For performing the assay for myeloperoxidase activity, the aliquots of lung tissue 

samples were thawed. A portion of the thawed aliquot was diluted 8-fold and used for measuring 

the total protein concentration in that sample using the Bio-Rad DC protein assay. This assay 

was done in 96-well plates, and the absorbance of the reacted samples was measured in a plate 

reader following the protocol from the manufacturer. A standard curve was generated using the 

protein-standards provided with the kit. This standard curve was used for calculating the total 

protein concentration in the lung tissue extract. For each ELISA plate, a separate standard curve 
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was generated. Each sample was measured in triplicate. In order to calculate the crude 

myeloperoxidase activity in the lung, 5µl of the lung homogenate from each sample added to the 

wells of a 96-well plate. The same aliquot that was used for total protein concentration 

measurement was used for measuring myeloperoxidase activity. O-dianisidine HCl solution was 

warmed at 37
0
C and mixed with 0.3% hydrogen-peroxide (1:600 dilution, final concentration 

0.0005% hydrogen peroxide.). 200µl of the mixture was added to each well containing 5µl of the 

lung homogenate, and the plate was read at 450nm using the Synergy Labtek plate reader 

following a kinetic assay condition (total run time: 10min, each cycle: 30sec with 3sec shaking 

before each cycle). Each sample was measured in triplicate. The absorbance at 10min (when the 

myeloperoxidase reaction has ended) for each sample was normalized with respect to the total 

protein concentration for that sample and the average normalized myeloperoxidase activity for 

each time point was plotted for each group of mice (wild type and knock-out).  

4. 3. Results and discussion 

4.3. a. Fungal Burden Analysis Shows no Difference between Wild-type and 

Knock-out Mice 

 Systemic infection of mice with C . albicans results in the distribution of the pathogen in 

a wide variety of tissues, including kidney, heart, spleen, thymus, brain and liver [309]. Out of 

these tissues, the kidney has been found to be the site for most extensive fungal colonization 

[309-310]. Thus, the kidney was our first choice for comparing the fungal burden between C 

.albicans infected male wild type and VN knock-out mice. Figure-4.3 shows the number of 

colony forming units (CFU) present per gram of kidney tissue at different post infection time  



178 

 

 

 

 

 

 

 

 

 

 

  

Figure 4. 3: Fungal burden analysis on kidney upon Candida infection 

Figure-4.3: Colony forming units (CFU) of C. albicans present per gram of 

kidney. Male wild type and VN-knock-out mice were infected with inoculum 

containing 10
5
 viable C. albicans cells. Mice were sacrificed at day 5, 8, 11 & 14, 

and both kidneys were collected. At each time point, a minimum of 5 mice were 

sacrificed from each group. Fungal burden analysis was performed on each of 

those mice, and the average CFU/gm kidney tissue is plotted for each time point 

and for each group of mice. 
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points for both groups of mice. Statistically there is no difference (P<0.05) in terms of fungal 

burden between the wild type and the knock-out mice in the kidney. We have also performed 

fungal burden analysis on spleen, lung and blood. Little to no colony forming units could be 

observed for blood, spleen and lung on the YEPD plate, even after 48hours of incubation. The 

absence of colony forming unit within the lung is in line with what Rozell et al. found in their 

study of C. albicans infection in mice [309]. Lung collected from the mice at day two post-

infection did not show any presence of C. albicans; even at day fourteen post-infection we did 

not observe presence of C. albicans in lung. Though we did not observe any colony forming unit 

from spleen extract at any of our selected time points, Rozell et al. observed the presence of C. 

albicans in spleen at two day post-infection [309]. It appears that by day five, which is our first 

time point, significant clearance of the pathogen has been achieved in spleen. Rozell et al. found 

that though C. albicans was present in the heart tissue at day one post-infection and caused 

severe damage to the cardiac myocytes, from day two post-infection and afterwards very little  

C. albicans was found in the heart due to clearance of the pathogen by neutrophilic granulocytes 

[309]. A similar mechanism is likely in the spleen also.  

The fungal burden assay performed on the above mentioned tissues did not show any 

difference in terms of colonization, irrespective of the presence and absence of VN. Kidney, 

being the primary site for C. albicans colonization upon systemic infection, was found to be 

equally loaded with the pathogen in both wild type and VN knock-out mice at each time point. 

Overall, the number of colony forming units increased with time as expected. Fungal burden is 

not always correlated with death though. Warenda et al. showed that Candida strains that were 

mutant for septin (a family of cytoskeletal proteins that is important for the proper 
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 morphogenesis of C. albicans) could colonize nicely within kidney but could not propagate the 

invasion [311]. Silver staining of the kidney of the mice infected with septin-mutant strains of 

Candida showed localized growth of the pathogen mainly in the uretar space but did not show 

any sign of invasion [311]. This resulted in no difference in fungal burden but the mutant strains 

were less virulent. It will be interesting to see if such localized colonization is happening with 

VN knock-out mice.  

 Adhesion of the fungus to the host is considered important for the colonization and 

virulence of fungal pathogens like C. albicans [312]. Since VN has been found to be involved in 

recognizing receptors on the fungal cell surface and integrin αvβ3 and αvβ5 like receptors were 

found to be present on the surface of C. albicans [305-306], our initial idea was that absence of 

VN is interfering with the colonization of C. albicans in mouse tissue and causing increased 

tolerance to the infection in knock-out mice, but these findings with fungal burden analysis 

performed at different tissues suggest that absence of VN may not directly interfere with the 

colonization of the pathogen..  

4.3. b. Myeloperoxidase Activity in the Infected Lung  

 When neutrophils invade the site of inflammation, a number of lysozomal enzymes are 

secreted [313-314]. One of these enzymes is myeloperoxidase (MPO), which has been found to 

have antimicrobial and cytotoxic properties [315-316]. Bradley et al. reported that neutrophils 

involved in phagocytosis release active MPO in the surrounding extracellular matrix at the site of 

bacterial infection [313]. MPO also acts intracellularly during lysozomal degradation of the 

phagocytosed pathogen [317]. The primary function of MPO is to generate reactive oxygen from 

hydrogen-peroxide. Reactive oxygen then acts on chloride and generates highly oxidative 
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hypochlorous acid (HOCl), which further acts on the bacterial system and causes killing of the 

bacteria [318-319]. Zhang et al. reported that MPO at the site of inflammation generates reactive 

intermediates that can cause lipid peroxidation. Lipid peroxidation results in cellular dysfunction 

due to disruption of the membrane integrity [320]. In this study, Zhang et al. showed that MPO 

can generate reactive intermediates like tyrosyl radicals and nitrogen dioxide ,which in turn may 

cause lipid peroxidation [320]. Since MPO is primarily secreted by the activated neutrophils, 

measurement of MPO activity has been utilized as an indicator of neutrophil invasion at the site 

of infection or inflammation. For example, Mullane et al. reported the use of MPO activity as a 

measurement for neutrophil invasion at the site of ischemic myocardium [321].  

Neutrophils are the effector cells in innate immunity that play a major role in the early 

stages of the C. albicans infection [309, 322]. MPO produced by activated neutrophils 

contributes to the host defense mechanism against fungal infection [323]. Aratani et al. reported 

that pulmonary or systemic infection with Candida. albicans or Aspergillus. fumigatus results in 

a severe effect in the mice that are null mutants for MPO [324-325]. It has been also found that 

patients with congenital MPO deficiency show an increased rate of infection with C. albicans 

[326]. Due to the importance of neutrophil function in the defense against C. albicans infection 

and the inherent relationship between neutrophil infiltration and MPO activity, we decided to 

compare neutrophil invasion in the lung between wild type and knock-out mice following C. 

albicans infection. Lung tissue was collected at day 5, 9 and 14, and half of the lung tissue from 

each mouse was used for measuring the MPO activity. Figure-4.4 shows the result of the 

comparison of MPO activity between the two groups of mice at different time points. No 

difference in MPO activity in the lung was observed between wild type and VN knock-out mice 



182 

 

 

  

Figure-4.4: Myeloperoxidase activity per mg of total protein in lung. Male wild type 

and VN-knock-out mice were infected with inoculum containing 10
5
 viable C. albicans 

cells. Mice were sacrificed at day 5, 9 & 14, and half of the lung from each mouse was 

collected. At each time point a minimum of 5 mice were sacrificed from each group. 

Total amount of protein present in the lung sample collected from each mouse was 

measured using the kit from Biorad.  MPO activity was measured using H2O2 and O-

dianisidine-HCl and normalized with respect to the total amount protein in that 

sample. 

Figure 4. 4: Myeloperoxidase assay in lung upon Candida infection 
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at all the time points checked. Also, MPO activity did not increase with time. This is reminiscent 

of what we observed with the fungal burden assay in which there was no measurable number of 

colony-forming units in the lung for both groups of mice following C. albicans infection. 

Since the neutrophil is the primary line of defense against C. albicans infection, the absence of 

fungal burden correlates with no change in MPO activity over time. It appears that lung is not the 

best tissue for evaluating the change in neutrophil invasion following systemic C. albicans 

infection. Since kidney is normally found to have the highest fungal burden content, our next 

study will include the MPO assay on kidney tissue. 

4.3. c. Analysis of Cytokine Expression 

 Cytokines are important modulators of the immune system and play important roles in 

response to pathogenic attack. Specific cytokines expressed by tissues dictate the fate of the host 

response to the C. albicans infection [327]. For example, infection with C. albicans has been 

found to induce expression of interleukin-6 (IL-6), interleukin-8 (IL-8) and monocyte 

chemoattractant protein-1 (MCP-1) from endothelial cells, and thus affects the inflammatory 

response and augments the host defense against the infection [328]. Expression of cytokines in 

response to C. albicans causes activation of the candidacidal activity of effector immune cells, 

including lymphocytes, neutrophil, macrophages, etc [329-330]. A number of different cytokines 

can be expressed in response to different kinds of C. albicans infections, which include oral, 

vaginal and systemic infections [330].  

 Ashman et al. have provided a comprehensive review on different types of cytokines that 

are expressed in response to different kinds of C. albicans infections, including how these 

cytokines influence the activation of different effector immune cells [330]. For example, 
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expression of interferon-γ (IFN-γ) in response to C. albicans infection in mice causes activation 

of polymorphonuclear leukocytes (PMNL) and macrophages and that promote killing of C. 

albicans cells [330-333]. Application of recombinant IFN-γ has been found to play a protective 

role in the acute disseminated C. albicans infection in mice by activating PMNL [334]. Injury by 

C. albicans on endothelial cells plays a major role in assisting the microbe in its invasion into the 

surrounding tissue from the circulation. It has been found that application of IFN-γ protects the 

endothelial cells from the C. albicans induced damage by reducing the extent of phagocytosis of 

the microbe by the endothelial cells [335-336].  

 T-helper-1 (Th1) and T-helper-2 (Th2) lymphocytes have an important role in 

determining the fate of C. albicans following infection. While the type-1 immunity obtained 

from Th1 provides protection to both mucocutaneous and disseminated C. albicans infection, 

type-2 immunity (from Th2 cells) is unprotective and results in the greater susceptibility of the 

host towards disseminated infection by suppressing the type-1 immunity [337]. There are 

specific types of cytokines that are involved in mediating type-1 and type-2 immunity. Th1 cells 

release cytokines like IFN-γ, IL-2, IL-12, lymphotoxin-1 (LT-1), which induces type-1 immunity 

by activating the phagocytic activity of immune cells. Th2 cells, on the other hand, release 

cytokines including IL-4, IL-5, IL-9, IL-10, IL-13, which act by deactivating the phagocytic 

activity of the immune cells [337-339]. The ability of the fungus to undergo the yeast to hyphae 

transformation provides a specific advantage to C. albicans over other fungi in terms of 

activating the type-2 immune response, which is ineffective and in turn suppresses the type-1 

response [339]. C. albicans in its hyphal phase inhibits IL-12 production (important for type-1 

immunity) and increases the production of IL-4 (important for type-2 response) [340-341].  
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 TNF-α is another cytokine that plays an important role in responding to the C. albicans 

infection. This cytokine exhibits harmful effects as a mediator of the inflammatory response in 

sepsis that happens during endotoxemia or gram negative bacterial infection [342-343]. 

However, with C. albicans infection, TNF-α has been found to play a protective role, as 

inhibition of this cytokine by antibody or pharmacological inhibitors has deleterious effects on 

the outcome of the C. albicans infection [344-345]. By performing a systemic C. albicans 

infection in TNF-α knock-out mice, Netea et al. reported that TNF-α mediated an increased host 

resistance against this infection that results from the activation of neutrophil and phagocytosis of 

the microbes [346].  Another cytokine that may have important role in C. albicans infection is 

granulocyte-colony stimulating factor (G-CSF). G-CSF has been found to cause an increase in 

amount and an enhancement of the microbicidal property of PMNL under in vitro conditions 

[347-348]. Kullberg et al. reported that application of recombinant G-CSF during systemic 

infection increases the host resistance by enhancing the activation and recruitment of PMNL in 

the infected organs [349]. 

Considering the potential involvement of this large set of cytokines in mediating the host 

response to C. albicans infection, we aimed to check the expression of different cytokines in 

response to the C. albicans infection in wild type and VN knock-out mice. The availability of the 

multi-plex system allows us to check the expression of an array of cytokines within specific 

tissues. Table-4.1 shows the summary of the results of 23 different cytokine expression assays in 

the kidney and spleen tissues of C. albicans infected wild type and VN knock-out mice. Most of 

the tested cytokines do not show any marked difference between the two groups of mice. For 

example IFN-γ, which plays such an important role in providing type-1 immunity, was found to 
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show no difference in expression between the two different groups of mice in both tissues tested 

(see Figure-4.5 & 4.6). Also, many of the cytokines tested that are involved in type-1 and type-2 

immunity (e.g. – IL-2, IL-10) showed no change in expression between both groups of mice.  

 There are some cytokines that showed changes in the expression between two groups of 

mice, but explanation of those changes may require input from other experiments. For example, 

G-CSF which is known to have protective role in C. albicans infection, showed no change in 

expression between the two groups of mice and stayed at same level until day-11 of infection. 

On day-14, both groups of mice showed significant decreases in expression of G-CSF compared 

to day-11 in both of the tissues tested. These decreases in expression at day-14 may not be 

attributed to the clearance of the microbes from the organ, since on day-14 the kidney maintained 

considerable fungal burden. Some other cytokines showed differences between two groups of 

mice, but only at certain time points after infection. For example, MIP-1α showed increase in 

expression with wild type mice but only at day-11 and with kidney tissue. No other time point 

showed any difference in kidney. Expression of TNF-α showed perhaps the most consistent 

results among all the cytokines. In the kidney, the expression of TNF-α was significantly higher 

at day-8 for both groups of mice. After day-8, the expression stayed same for the knock-out 

mice, but for wild type mice the expression was significantly lower (see Figure-4.7). 

Considering the important protective role TNF-α has against C. albicans infection, the decrease 

in expression of this cytokine may partially explain the increased mortality of wild type mice. In 

spleen, the expression of this cytokine was highest on day-6 for both groups of mice, but then 

decreased at the subsequent time points (see Figure-4.8). The significant decrease in the 

expression of TNF-α at the later time points correlates nicely with the clearance of the microbes 
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from the tissue, as fungal burden in the spleen did not exist at these time points. Though fungal 

burden in the spleen was absent even at day-6 post infection, the relatively higher expression of 

TNF-α at this time point is presumably due to an initial spike that occurred in response to the 

primary phase of infection. Cytokine expression analysis at earlier time point may be more 

informative in this regard. 

The overall results obtained from the cytokine expression analyses on kidney and spleen 

were not sufficient to explain the apparent difference in mortality between wild type and VN-

knock-out mice. While certain results from this analysis are interesting, a much better 

understanding of the situation is anticipated from cytokine expression analysis performed on 

other tissues, such as blood serum, lung etc. Another important area that requires attention is 

sepsis. Spellberg et al. reported that the major cause of death in mice suffering from 

disseminated candidiasis is progressive sepsis [350]. They reported the presence of certain 

symptoms, including hypotension, tachycardia, hypothermia, metabolic acidosis, acidemia, 

hypoglycemia that clearly established the role of sepsis in the infection mediated death. In our 

next study, we will monitor some of these hemodynamic parameters to characterize progression 

of sepsis in both groups of mice upon C. albicans infection. 
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Table 4. 1: Summary of cytokine expression analysis in kidney and spleen 

CYTOKINE 

Comparison of cytokine expression between wild 

type and VN knock-out mice 

KIDNEY SPLEEN 

IL-1a No noticeable difference No noticeable difference 

IL-1b No noticeable difference No noticeable difference 

IL-2 No noticeable difference 
No detectable signal was 

obtained 

IL-4 No noticeable difference 
No detectable signal was 

obtained 

IL-5 No noticeable difference 
No detectable signal was 

obtained 

IL-6 No noticeable difference 
No detectable signal was 

obtained 

IL-9 No noticeable difference No noticeable difference 

IL-10 No noticeable difference No noticeable difference 

IL-12(p40) 

Expression was significantly 

higher in wild type mice only 

at day-14  

Expression was significantly 

higher in wild type mice only 

at day-14 

IL-12(p70) No noticeable difference 
No detectable signal was 

obtained 

IL-13 No noticeable difference No noticeable difference 
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CYTOKINE 

Comparison of cytokine expression between wild 

type and VN knock-out mice 

KIDNEY SPLEEN 

IL-17 

No noticeable difference 

between the groups. A general 

trend of increase in expression 

observed with both group of 

mice 

No detectable signal was 

obtained 

Eotaxin No noticeable difference 
No detectable signal was 

obtained 

G-CSF 

No noticeable difference 

between the groups. At day-14 

expression went down for 

both group of mice 

No noticeable difference 

between the groups. At day-14 

expression went down for 

both group of mice 

GM-CSF 

No noticeable difference 

between the groups. At day-14 

expression went down for 

both group of mice 

No noticeable difference 

IFN-γ No noticeable difference No noticeable difference 

KC 

No noticeable difference 

except for day-8 when VN-

knock-out show higher 

expression. Expression for 

wild type mice stay 

unchanged, where as for 

knock-out mice it seems to 

reach peak at day-8 followed 

by a decrease 

No noticeable difference 

except for day-8 when VN- 

knock-out mice show higher 

expression. Expression for 

wild type mice stay 

unchanged, where as for 

knock-out mice it seems to 

reach peak at day-8 followed 

by a decrease 

MCP-1 (M-CAF) No noticeable difference No noticeable difference 

MIP-1a 

No noticeable difference 

except for day-11 when wild 

type mice show higher 

expression. 

No noticeable difference 

except for day-11 when wild 

type mice show higher 

expression. 
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CYTOKINE 

Comparison of cytokine expression between wild 

type and VN knock-out mice 

KIDNEY SPLEEN 

MIP-1b No noticeable difference No noticeable difference 

RANTES 

No noticeable difference 

between the groups. 

Expression is highest at day-6 

and then decrease 

No noticeable difference 

TNF-α 

Expression reaches a peak for 

both groups of mice at day-8. 

While expression for knock-

out mice stay same after that, 

for wild type mice it came 

down and remained lower 

than knock-out mice 

No noticeable difference 

between the groups. 

Expression is highest at day-6 

but then goes down for both 

group of mice 
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Figure-4.5 & 4.6: IFN-γ expression analysis in the kidney (Figure-4.5) and 

spleen (Figure-4.6) following C. albicans infection. Male wild type and VN-

knock-out mice were infected with inoculum containing 10
5
 viable C. albicans 

cells. Mice were sacrificed at day 5, 8, 11 & 14, and both kidneys and spleen 

were collected. At each time point a minimum of 5 mice were sacrificed from 

each group. Expression of IFN-γ was analyzed using the 23-plex kit from 

Biorad.  

Figure 4. 5: Expression of IFN-γ in kidney upon Candida infection 

Figure 4. 6: Expression of IFN-γ in spleen upon Candida infection 
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Figure-4.7 & 4.8: TNF-α expression analysis in the kidney (Figure-4.7) and 

spleen (Figure-4.8) following C. albicans infection. Male wild type and VN-

knock-out mice were infected with inoculum containing 10
5
 viable C. 

albicans cells. Mice were sacrificed at day 5, 8, 11 & 14, and both kidneys 

and spleen were collected. At each time point a minimum of 5 mice were 

sacrificed from each group of mice. Expression of TNF-α was analyzed 

using the 23-plex kit from Biorad.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 7: Expression of TNF-α in kidney upon Candida infection 

Figure 4. 8: Expression of TNF-α in spleen upon Candida infection 
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CHAPTER-5 

Summary and Future Studies 

 

Vitronectin (VN) and Plasminogen Activator Inhibitro-1 (PAI-1) are two blood proteins 

that are well known for their involvement in a wide variety of biological processes. Both of these 

proteins are found in the extracellular matrix (ECM) also. Though in the circulation VN exist as 

monomer, it exists as a multimer in the ECM. VN can recognize a number of different ligands 

like the thrombin-antithrombin complex (T-AT) [44-45], heparin [46-48], PAI-1 [49-51], 

complement proteins [52] and several cell surface receptors, including integrins and the 

urokinase plasminogen activator receptor (uPAR) [53-59]. The ability to recognize such a wide 

variety of ligands makes this protein required in several physiological processes, including 

thrombus formation, coagulation, fibrinolysis, pericellular proteolysis, wound healing, inhibition 

of the membrane attack complex, and cellular adhesion/migration [8, 60-66, 81-82, 91-92]. On 

the other hand, PAI-1 is a member of the serine protease inhibitor family of proteins whose 

physiological functions can be broadly classified into two main categories- protease dependent 

and protease independent activities. Under protease dependent functions, PAI-1 is primarily 

involved in the regulation of plasmin formation from inactive plasminogen by inhibiting tissue-

plasminogen activator-1 (tPA) and urokinase-plasminogen activator-1(uPA) [79-80]. PAI-1-

mediated regulation of plasmin formation plays regulatory roles in several patho-physiological 

processes like coagulation, fibrinolysis, thrombolysis and renal diseases such as nephritic 

syndrome and hemolytic uremic syndrome [109, 112, 170-172, 175, 177].  
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In the last two decades, protease-independent functions of PAI-1 have drawn attention 

and been heavily investigated. In this context, PAI-1 function is not directly related to its ability 

to inhibit proteases like uPA or tPA. For example, binding of PAI-1 to receptor-bound uPA on 

the cell surface causes internalization of the ternary complex of PAI-1/uPA/uPAR via receptor-

mediated endocytosis process [180-182]. PAI-1 has been also found to be involved in the 

internalization of the tPA/PAI-1 complex [188]. Thus, such protease-independent activities of 

PAI-1 play important roles in the turnover of its target proteases. 

Many of the protease-independent functions of PAI-1 are mediated by its interaction with 

VN. One of the areas where this interaction has generated a much interest is in cellular adhesion 

and migration. A major part of this dissertation work has been devoted to the understanding of 

the interaction between these two proteins and how such interaction regulates their extracellular-

matrix associated functions. PAI-1 has been found to interfere with the interaction of matrix 

associated VN with cell surface receptors (like uPAR and integrin) and thus regulate cell-matrix 

interactions. Though considerable effort has been made in this area, a significant amount of 

controversy still exists regarding how the interaction between PAI-1 and VN regulates cellular 

adhesion and migration. Some studies suggest that PAI-1 inhibits cell binding to VN but 

promotes migration, while others indicate that PAI-1 inhibits migration that would be mediated 

by VN [226-227, 229-230]. Our main goal in this current research has been to attempt to mimic 

the natural biological environment under which these proteins interact. Most of the studies in the 

literature have been aimed at understanding the role of exogenously added PAI-1 in regulating 

cellular adhesion and migration mediated by „denatured‟ multimeric VN. In our studies, we have 

used multimeric VN formed by a process that is relevant to actual biological settings. We have 
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used PAI-1 as a biological factor for the transition of monomeric VN into its multimeric 

counterpart, and then have evaluated the association of this „biological‟ multimeric VN with the 

extracellular matrix. The ECM is made of a number of components. As a protein that binds a 

broad array of ligands, VN interacts with other matrix components like Col-IV [104] and thus 

associates with the ECM. While associated with the matrix, it interacts with cell surface 

receptors. We evaluated the relevance of this „biological‟ multimeric form of VN by checking its 

ability to interact with matrix components such as Col-IV and HSPG. Our results show that 

multimeric complexes of VN formed in the presence of PAI-1 associate more with the matrix. 

We also report for the first time that VN can interact with HSPG.  

PAI-1has been considered to promote the matrix partitioning of VN because these two 

proteins are co-localized in extracellular matrix [21, 192-193]. The observed increased 

association of this „biological‟ multimeric form of VN with matrix components is significant, 

providing strong evidence for the role of PAI-1 in regulating compartmentalization of VN from 

the circulation to the matrix. We have also evaluated the interaction of this complex with a 

variety of cell surface receptors including uPAR and different integrins. Our study indicates that 

the „biological‟ multimeric complex of VN interacts more with the receptors tested compared to 

monomeric VN. The fact that this multimeric form of VN, while still bound with PAI-1, interacts 

with uPAR and integrins is in contrast to current thinking. Here we are able to show that PAI-1, 

while associated with VN within the multimeric complex, does not block receptor interaction 

with VN. This is an important finding since PAI-1 and VN are found to be co-localized under 

many physiological conditions. This result indicates that their effects on cell-matrix interaction 
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while part of the same multimeric complexes may be significantly different from what is 

observed when one of the proteins is added in isolation exogenously.  

We have taken a thorough approach in evaluating components in the pericellular 

environment for understanding the role of the interaction between these two proteins on the 

regulation of cell-matrix interaction. The effect of the „biological‟ multimeric complex of VN 

formed in the presence of PAI-1 on cellular adhesion and migration was checked in the context 

of different matrix components, different cell types and different growth factor conditions that 

may modulate the receptor expression pattern on the cell surface. Our results indicate that the 

effect that the VN/PAI-1 complex has on cell-matrix interactions is largely dictated by the 

specific cell type and the pericellular conditions. Though most of the studies have indicated that 

PAI-1 blocks cellular interactions with VN, our findings indicate that PAI-1 within the 

„biological‟ multimeric complex of VN has no effect on cellular adhesion. However, the effect 

on cellular migration has been found to be variable.  

VN as a constituent of the ECM is involved in the modulation of cell-matrix interactions 

in various important patho-physiological processes like angiogenesis [66]. Targeting the 

interaction between VN and cell surface receptors for VN is a subject of therapeutic interest. 

Thiolutin is an example of a drug that was used for preventing tumor cell induced angiogenesis 

by blocking the interaction of VN and αvβ3on the surface of HUVEC [351]. There are a number 

of inhibitors of angiogenesis (targeted to prevent cancer), designed to act as antagonists of αvβ3 

and αvβ5, the two most common receptors for VN, that have been subject to clinical trials [99, 

284-285]. One example is cilengitide, a RGD based inhibitor of αvβ3. Though it showed 

tremendous promise in the initial phases, most of the trials with this drug failed at the clinical 
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level. Out of different types of cancers tried at the phase-II level, it showed promise only with 

patients of glioblastoma multiforme (GMB); currently it is being tested in phase-III clinical trials 

[284, 352]. This example tells us the importance of understanding the underlying biology for 

designing effective therapeutic strategies. In our study the main goal has been to understand the 

biological role that VN and PAI-1 have in a nearly natural cell-matrix environment.  

Another important aspect of this study involving the interaction between VN and PAI-1 

is the finding of the unique function of reactive center mimicking peptides. These peptides were 

found to almost completely disrupt the interaction between VN and PAI-1 and they blocked the 

formation of higher order multimeric complexes. It was found that increased association of VN 

to Col-IV and HSPG that is normally induced by binding to PAI-1 was completely inhibited in 

the presence of these peptides. This finding of a new function for these peptides represents 

tremendous potential, considering how important the role the interaction between VN and PAI-1 

is in several biological processes. For example, the interaction between VN and PAI-1 has been 

implicated in the development of renal fibrotic disease. Expression of PAI-1 becomes very high 

in renal fibrotic condition and is thought to be one of the major causes for the loss of matrix turn 

over. VN significantly contributes to the progression of this disease by localizing PAI-1 in the 

fibrotic matrix [223-225]. Disrupting the interaction between PAI-1 and VN thus is desirable, 

and compounds such as the peptide mimetics that accomplish this may have clinical benefit. 

Another important goal of this dissertation work was to understand the role of VN in 

Candida pathogenesis. This was pursued in continuation of a very interesting finding from our 

lab where VN knock-out mice were found to be more tolerant against Candida infection 

compared to wild type C57BL/6 mice. In this dissertation work, our goal was to investigate how 
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the absence of the vitronectin gene acts to increased survival. We have studied at different 

aspects of infection pathogenesis, and we have performed assays to compare cytokine expression 

levels in different tissues. We have also evaluated neutrophil invasion in the lung, and we have 

performed fungal burden analysis on different tissues. Though we have not obtained conclusive 

evidence that would clearly explain the role of VN in Candida infection, our approach has 

demonstrated that there are not obvious differences in expected inflammatory markers. 

Addressing the specific role that VN may have in Candida pathogenesis will thus require a 

thorough investigation of all possible aspects involved with fungal infection. In this dissertation 

work we have been able to pursue some of them. 

A significant portion of this dissertation work was involved in developing methods for 

understanding the structure and dynamics PAI-1. We have for the first time reported the use of 

an electron paramagnetic resonance (EPR) based method for understanding the structural change 

in PAI-1 that happens naturally or due to ligand binding. We have been able to strategically 

place the nitroxide spin level on PAI-1 (at the P9 position) and have shown that this spin label 

can be successfully used for monitoring the conformational transition that happens during the 

latency transition. This spin labeled PAI-1 can be further utilized for understanding the 

conformational transitions that may happen in the reactive center loop upon metal binding. A 

spin label may also be placed in other positions for specifically probing ligand binding to PAI-1.  

We have also developed a surface plasmon resonance (SPR) based method for analyzing 

metal binding to PAI-1. Using this method useful affinity information has been generated for 

PAI-1 (and its mutants) binding to nickel. Though this method could not be extended for metals 

other than nickel, it will serve the important purpose for screening different mutants of PAI-1 for 
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metal binding in order to identify the metal-binding site in the protein. Our lab is currently in the 

process of generating many different mutants of PAI-1 for locating the metal binding sites. This 

SPR based method will provide a quick of way screening these mutants for metal binding. 

 

Future Experiments 

 

 On functional aspects of VN/PAI-1 complex 

o Specific role of uPAR will be tested on the effect of VN/PAI-1 complex in 

cellular adhesion and migration. U937 cells will be cultured, and uPAR 

expression will be induced by TGF-β and Vitamin-D3. Expression of uPAR will 

be confirmed by flow cytometry. uPAR expressing U937 cells will be used for 

studying cell adhesion and migration under the conditions where VN/PAI-1 

complex is associated with Col-IV and HSPG. 

o Effect of the VN/PAI-1 complex on cellular adhesion and migration will be 

tested under 3-dimensional matrix conditions. 

o Role of the VN/PAI-1 complex in angiogenesis will be tested by using the 

standard endothelial tube formation assay system from BD bioscience. 

 On structural aspects of the VN/PAI-1 complex 

o Effect of the octapeptide and pentapeptide on formation of complexes will be 

tested using latent-PAI-1 with VN in sedimentation velocity experiments. 

o Dose dependent effects of the octapeptide will be tested on the inhibition of the 

multimerization reaction between VN and wtPAI-1.  

o Effect of the triple mutant of PAI-1 (R115E, R118E, Q123K), which is defective 

in binding to VN, will be tested for its effect on forming multimeric complex 
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with VN. This mutant should be capable of taking part in the PAI-1/PAI-1 

interaction as observed in the SANS model.  

 On EPR studies 

o P9 labeled mutant will be utilized for monitoring the insertion dynamics of the 

reactive center loop upon metal binding 

o Spin label will be incorporated at different positions of the reactive center loop 

and will be monitored for changes that occur during the insertion of the loop 

during the latency transition and also during ligand binding. 

o Spin lapel will be also put at V328. This residue sits at the base of the reactive 

center loop. It does not get inserted during the latency transition, but may show 

significant movement during the process. Spin label at this residue can tell us 

about structural events at the base of the loop during insertion. It will be also 

used for studying the effect of ligand binding on loop insertion. 

 On the role of VN in Candida pathogenesis 

o Neutrophil invasion in kidney will be checked by performing myeloperoxidase 

assay on both wild type and knock-out mice. 

o Cytokine expression analysis will be carried out on blood and lung. 

o Symptoms for sepsis (e.g. - hypotension, tachycardia, hypothermia, metabolic 

acidosis, acidemia, and hypoglycemia) will be checked in both wild type and 

knock-out mice upon Candida infection. 
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o Role of VN will be further checked by performing survival study under condition 

where Candida and VN were co-injected in knock-out mice. This will test if the 

presence of VN is needed during the onset infection. 

o The potential involvement of integrin like receptors on the surface of Candida. 

albicans in the colonization of the microbes inside the body will be tested by 

injecting Candida along with cyclic-RGD peptide to wild type C57BL/6 mice. 
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Cell types and their culture conditions 

 

Cell Type Culture Condition Comments 

HT1080 

(fibrosarcoma) 

MEM + 10%FBS + 1X 

penicillin-streptomycin 

solution (from 100X stock) 

Adherent type of culture grows in 

monolayer. This cell line grows pretty 

fast but doesn‟t like too much of 

overgrowth. Sensitive to cell-cell 

contact. Once they come off the surface 

they do not re-adhere. 

Purchased from ATCC. 

EA.hy926 

(immortalized endothelial 

cell) 

DMEM + 10%FBS + 1X 

penicillin-streptomycin 

solution (from 100X stock) + 

1X HAT (from 500X stock)  

Hybrid of A549 (lung carcinoma celli 

line) and HUVEC. Contains more than 

46 chromosomes. Expresses factor-VIII 

related antigen that is characteristic 

feature of endothelial cell. Media is 

purchased from GIBCO which already 

contains HEPES but no Na-pyruvate. 

Use FBS-premium from Atlanta 

Biologicals and heat denature the FBS 

before use (56
0
C for 30 min) 

Obtained from Dr. John Biggerstaff‟s 

lab. 

HEK293 

(human embryonic 

kidney fibroblast) 

DMEM + 10%FBS + 1X 

penicillin-streptomycin 

solution (from 100X stock) + 

20mM HEPES 

Adherent type of culture grows in 

monolayer. This cell line grows fairly 

well and okay with overgrowth. As 

long as the media is regularly changed 

they can tolerate cell-cell contact better 

than 1080 cells. 

Purchased from ATCC. 

NIH3T3 

(mouse embryonic kidney 

fibroblast) 

DMEM + 10%FBS + 1X 

penicillin-streptomycin 

solution (from 100X stock) + 

20mM HEPES 

Adherent type of culture grows in 

monolayer. Cell growth is nice. Growth 

needs to be maintained within 70%. 

Greater confluency will change the 

property of the cell. 

Obtained from Dr. Wang‟s lab.  

U937 

(monocyte) 

RPMI-1640 + 10%FBS + 1X 

penicillin-streptomycin 

solution (from 100X stock) + 

20mM HEPES 

Suspension type of culture. Maximum 

growth allowed 2*10
6
/ml. Subculture 

can be started with a concentration of 

10
5
/ml 

Purchased from ATCC. 
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Cell Type Culture Condition Comments 

HUVEC 

(primary endothelial cell) 
 

Primary cell line. Grows for only few 

passages (5-6 passages). Growth rate is 

not very fast. 

Purchased from CAMBREX Biosc. 

MEF 

(mouse embryonic 

fibroblast) 

DMEM + 10%FBS + 1X 

penicillin-streptomycin 

solution (from 100X stock) + 

20mM HEPES 

Adherent type of culture grows in 

monolayer. This cell line grows fairly 

well. Shows high level of LRP 

expression.  

Obtained from Dr. Dudley Strickland‟s 

lab. 

PEA13 

DMEM + 10%FBS + 1X 

penicillin-streptomycin 

solution (from 100X stock) + 

20mM HEPES 

Adherent type of culture grows in 

monolayer. This cell line grows fairly 

well. LRP is not expressed.  

Obtained from Dr. Dudley Strickland‟s 

lab. 

HEK293-β3 

DMEM + 10%FBS + 1X 

penicillin-streptomycin 

solution (from 100X stock) + 

20mM HEPES 

This is integrin β3 transfected HEK293 

cells. Grows like HEK293 cells.  

Obtained from Dr. Jeff Smith‟s lab. 

HEK293-β5 

DMEM + 10%FBS + 1X 

penicillin-streptomycin 

solution (from 100X stock) + 

20mM HEPES 

This is integrin β5 transfected HEK293 

cells. Grows like HEK293 cells.  

Obtained from Dr. Jeff Smith‟s lab. 
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