
University of Tennessee, Knoxville University of Tennessee, Knoxville 

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative 

Exchange Exchange 

Doctoral Dissertations Graduate School 

8-2010 

Mixture of Factor Analyzers with Information Criteria and the Mixture of Factor Analyzers with Information Criteria and the 

Genetic Algorithm Genetic Algorithm 

Esra Turan 
eturan@utk.edu 

Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss 

 Part of the Applied Statistics Commons, Clinical Trials Commons, Multivariate Analysis Commons, 

Statistical Methodology Commons, Statistical Models Commons, and the Statistical Theory Commons 

Recommended Citation Recommended Citation 
Turan, Esra, "Mixture of Factor Analyzers with Information Criteria and the Genetic Algorithm. " PhD diss., 
University of Tennessee, 2010. 
https://trace.tennessee.edu/utk_graddiss/853 

This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee 
Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized 
administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact 
trace@utk.edu. 

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_graddiss
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_graddiss?utm_source=trace.tennessee.edu%2Futk_graddiss%2F853&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/209?utm_source=trace.tennessee.edu%2Futk_graddiss%2F853&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/820?utm_source=trace.tennessee.edu%2Futk_graddiss%2F853&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/824?utm_source=trace.tennessee.edu%2Futk_graddiss%2F853&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/213?utm_source=trace.tennessee.edu%2Futk_graddiss%2F853&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/827?utm_source=trace.tennessee.edu%2Futk_graddiss%2F853&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/214?utm_source=trace.tennessee.edu%2Futk_graddiss%2F853&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu


To the Graduate Council: 

I am submitting herewith a dissertation written by Esra Turan entitled "Mixture of Factor 

Analyzers with Information Criteria and the Genetic Algorithm." I have examined the final 

electronic copy of this dissertation for form and content and recommend that it be accepted in 

partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in 

Statistics. 

Hamparsum Bozdogan, Major Professor 

We have read this dissertation and recommend its acceptance: 

Michael W. Berry, Mohammed Mohsin, Russell Zaretzki, Bogdan C. Bichescu 

Accepted for the Council: 

Carolyn R. Hodges 

Vice Provost and Dean of the Graduate School 

(Original signatures are on file with official student records.) 



To the Graduate Council:

I am submitting herewith a thesis written by Esra Turan entitled “Mixture of Factor

Analyzers with Information Criteria and the Genetic Algorithm.” I have examined

the final electronic copy of this thesis for form and content and recommend that

it be accepted in partial fulfillment of the requirements for the degree of Doctor of

Philosophy, with a major in Statistics.

Hamparsum Bozdogan, Major Professor

We have read this thesis
and recommend its acceptance:

Michael W. Berry

Mohammed Mohsin

Russell Zaretzki

Bogdan C. Bichescu

Accepted for the Council:

Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)



Mixture of Factor Analyzers with

Information Criteria and the

Genetic Algorithm

A Thesis Presented for

The Doctor of Philosophy

Degree

The University of Tennessee, Knoxville

Esra Turan

August 2010



c© by Esra Turan, 2010

All Rights Reserved.

ii



This dissertation is dedicated to my parents, Saime-Recep Turan. I have learned

much about life from them. They have been my role-models for hard work,

persistence and instilled in me the inspiration to set high goals and the confidence

to achieve them. I strived to become an honorable person for them.

iii



Acknowledgements

Since I came to the University of Tennessee in Knoxville (UTK) during the year of

2007, I received tremendous amount of support from my advisor, Dr. Hamparsum

Bozdogan. I would like to take this opportunity to extend my deepest gratitude and

thanks to Dr. Bozdogan for his guidance, encouragement, and his support not just

during my doctoral thesis research but also during my academic program at UTK.

This work would have not been completed without his precious ideas and time. I

also would like to thank my doctoral committee members Dr. Michael Berry, Dr.

Mohammed Mohsin, Dr. Russell Zaretzki, and Dr. Bogdan Bichescu for their time

and support and useful comments.

I express my gratitude to Dr. Andrew Howe and Dr. Eylem Deniz who by their

support and their words of advice throughout my doctoral studies. I thanked them

for their contributions and special help, and for their friendship. My special thanks go

to Martin Taylor who always showed support and encouragement. Most importantly,

I wish to express my gratitude and thanks to my family who gave me strength,

encouragement, understanding, and love throughout my life and education. I also

would like to thank to all my friends in the United States who have encouraged and

supported me to complete my dissertation. Finally, I acknowledge the receipt of the

Summer Graduate Research Award (GRA) during the summer 2009 which partially

supported the research of this thesis at the University of Tennessee in Knoxville.

iv



Abstract

In this dissertation, we have developed and combined several statistical techniques in

Bayesian factor analysis (BAYFA) and mixture of factor analyzers (MFA) to overcome

the shortcoming of these existing methods. Information Criteria are brought into

the context of the BAYFA model as a decision rule for choosing the number of

factors m along with the Press and Shigemasu method, Gibbs Sampling and Iterated

Conditional Modes deterministic optimization. Because of sensitivity of BAYFA on

the prior information of the factor pattern structure, the prior factor pattern structure

is learned directly from the given sample observations data adaptively using Sparse

Root algorithm.

Clustering and dimensionality reduction have long been considered two of the

fundamental problems in unsupervised learning or statistical pattern recognition. In

this dissertation, we shall introduce a novel statistical learning technique by focusing

our attention on MFA from the perspective of a method for model-based density

estimation to cluster the high-dimensional data and at the same time carry out factor

analysis to reduce the curse of dimensionality simultaneously in an expert data mining

system. The typical EM algorithm can get trapped in one of the many local maxima

therefore, it is slow to converge and can never converge to global optima, and highly

dependent upon initial values. We extend the EM algorithm proposed by Ghahramani

and Hinton (1997) for the MFA using intelligent initialization techniques, K-means

and regularized Mahalabonis distance and introduce the new Genetic Expectation

v



Algorithm (GEM) into MFA in order to overcome the shortcomings of typical EM

algorithm. Another shortcoming of EM algorithm for MFA is assuming the variance

of the error vector and the number of factors is the same for each mixture. We

propose Two Stage GEM algorithm for MFA to relax this constraint and obtain

different numbers of factors for each population. In this dissertation, our approach

will integrate statistical modeling procedures based on the information criteria as a

fitness function to determine the number of mixture clusters and at the same time to

choose the number factors that can be extracted from the data.

vi



Contents

List of Tables x

List of Figures xiii

1 Introduction 1

2 Standard Factor Analysis 4

3 Bayesian Factor Analysis 9

3.1 Bayesian Factor Model . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 Sparse Root Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3.1 The method of Press and Shigemasu . . . . . . . . . . . . . . 17

3.3.2 Gibbs Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3.3 Iterated Conditional Modes (ICM) . . . . . . . . . . . . . . . 20

4 Mixture of Factor Analyzers 22

4.1 Mixture Factor Model . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2 EM Algorithm for MFA Model . . . . . . . . . . . . . . . . . . . . . . 24

4.3 Initialization Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.3.1 K-Means initialization . . . . . . . . . . . . . . . . . . . . . . 28

4.3.2 Hybridized Scheme . . . . . . . . . . . . . . . . . . . . . . . . 29

vii



5 Information Criteria 32

5.1 Introduction and Purpose . . . . . . . . . . . . . . . . . . . . . . . . 32

5.2 Kullback-Liebler Distance . . . . . . . . . . . . . . . . . . . . . . . . 33

5.3 Akaike’s Information Criterion AIC . . . . . . . . . . . . . . . . . . . 35

5.4 Schwarz’s Bayesian Criterion SBC . . . . . . . . . . . . . . . . . . . 35

5.5 Consistent Akaike’s information Criterion CAIC . . . . . . . . . . . . 35

5.6 Information Complexity ICOMP Criterion . . . . . . . . . . . . . . . 36

5.7 Information Criteria for the Standard Factor Model . . . . . . . . . . 39

5.8 Information Criteria for the Bayesian Factor Model . . . . . . . . . . 41

5.9 Information Criteria for the Mixture Factor Model . . . . . . . . . . . 42

5.9.1 Regularized Covariance Matrix . . . . . . . . . . . . . . . . . 45

6 Genetic Algorithm 50

6.1 Overview of Genetic Algorithm . . . . . . . . . . . . . . . . . . . . . 50

6.1.1 Basic Terminology . . . . . . . . . . . . . . . . . . . . . . . . 51

6.1.2 GA Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.1.3 Steps of a Simple Genetic Algorithm . . . . . . . . . . . . . . 54

6.2 Genetic Algorithm for Regularized Mahalanobis Distance . . . . . . . 55

6.3 Genetic EM Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.4 Two Stage Genetic EM Algorithm . . . . . . . . . . . . . . . . . . . . 63

7 Numerical Results 66

7.1 Standard Factor Analysis (SFA) . . . . . . . . . . . . . . . . . . . . . 66

7.1.1 Real Data- Medical School Admission Data . . . . . . . . . . 68

7.2 Bayesian Factor Analysis (BFA) . . . . . . . . . . . . . . . . . . . . . 71

7.2.1 Crime Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7.3 EM Algorithm for the Mixture of Factor Analyzers with Random,

GARM and K-means Initialization . . . . . . . . . . . . . . . . . . . 79

7.3.1 Estimation of the Parameters . . . . . . . . . . . . . . . . . . 79

7.3.2 Model Selection Using the EM Algorithm for the MFA Model 83

viii



7.3.3 Real Data Results Using the EM Algorithm for the MFA Model 83

7.4 Genetic EM (GEM) Algorithm . . . . . . . . . . . . . . . . . . . . . 88

7.4.1 Estimation of the Parameters . . . . . . . . . . . . . . . . . . 89

7.4.2 Model Selection Results Using the GEMAlgorithm for the MFA

Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.4.3 Real Data Results Using the GEM Algorithm for the MFA Model 91

7.5 Two-Stage GEM Algorithm . . . . . . . . . . . . . . . . . . . . . . . 96

7.5.1 Estimation of the Parameters . . . . . . . . . . . . . . . . . . 96

7.5.2 Model Selection Using the Two-Stage GEM Algorithm for the

MFA Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.6 Real Data Results Using the Two-Stage GEM Algorithm for the MFA

Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

8 Conclusion 102

Bibliography 106

A Data Sets 116

A.1 Simulated Data-S1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

A.2 Real Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

A.2.1 Wine Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

A.2.2 College Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

A.2.3 Parkinson Data . . . . . . . . . . . . . . . . . . . . . . . . . . 122

A.2.4 Breast Cancer Data . . . . . . . . . . . . . . . . . . . . . . . . 125

Vita 129

ix



List of Tables

4.1 Confusion Matrix of K-means Algorithm . . . . . . . . . . . . . . . . 30

5.1 ICOMPCMISS scores using stabilization and smoothed MLE/EB

Covariance matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.2 ICOMPCMISS scores using only smoothed MLE/EB Covariance matrix. 48

5.3 ICOMPCMISS scores using stabilization and Stipulate Diagonal Co-

variance matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.4 ICOMPCMISS scores using only Stipulate Diagonal Covariance matrix. 48

5.5 ICOMPCMISS scores using stabilization and Convex-Sum Covariance

matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.6 ICOMPCMISS scores using only Convex-Sum Covariance matrix. . . 49

6.1 Confusion Matrix of GARM Algorithm . . . . . . . . . . . . . . . . . 60

7.1 Model Selection Frequencies for the Standard Factor Model. . . . . . 68

7.2 Eigenvalues of Medical School Admission Data. . . . . . . . . . . . . 70

7.3 Model Selection for Medical School Admission Data. . . . . . . . . . 70

7.4 Model Selection Frequencies in BFA Model for PS89 methods. . . . . 74

7.5 Model Selection Frequencies in BFA Model for ICM. . . . . . . . . . 75

7.6 Model Selection Frequencies in BFA Model for Gibbs Sampling. . . . 75

7.7 Eigenvalues of the Crime Data. . . . . . . . . . . . . . . . . . . . . . 76

7.8 Model Selection for the Crime Data Using PS89 Method. . . . . . . . 77

7.9 Crime Data Results Using PS89 Method. . . . . . . . . . . . . . . . . 77

x



7.10 Model Selection for Crime Data Using Gibbs Sampling. . . . . . . . . 77

7.11 Crime Data Results Using Gibbs Sampling. . . . . . . . . . . . . . . . 78

7.12 Model Selection for Crime Data Using ICM Method. . . . . . . . . . 78

7.13 Crime data results using ICM method. . . . . . . . . . . . . . . . . . 78

7.14 Parameter Estimates Using the EM Algorithm for the MFA Model

with Random Initialization. . . . . . . . . . . . . . . . . . . . . . . . 80

7.15 Parameter Estimates Using the EM Algorithm for the MFA Model

with GARM Initialization. . . . . . . . . . . . . . . . . . . . . . . . . 81

7.16 Parameter Estimates Using the EM Algorithm for the MFA Model

with K-Means Initialization. . . . . . . . . . . . . . . . . . . . . . . . 82

7.17 Model Selection Frequency Using EM Algorithm of MFA with Random

Initialization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7.18 Model Selection Frequency Using the EM Algorithm for MFA with

K-Means Initialization. . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7.19 Model Selection Frequency Using the EM Algorithm for MFA with

GARM Initialization. . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.20 College Data- MFA with EM Results. . . . . . . . . . . . . . . . . . . 86

7.21 Wine Data- MFA with EM Results. . . . . . . . . . . . . . . . . . . . 86

7.22 Parkinson Data- MFA with EM Results. . . . . . . . . . . . . . . . . 87

7.23 Breast Cancer Data- MFA with EM Results. . . . . . . . . . . . . . . 89

7.24 Parameters Estimates by the GEM Algorithm. . . . . . . . . . . . . . 90

7.25 Model Selection Frequency for GEM algorithm. . . . . . . . . . . . . 91

7.26 College Data- MFA with GEM Results. . . . . . . . . . . . . . . . . . 93

7.27 Wine Data-MFA with GEM Results. . . . . . . . . . . . . . . . . . . 94

7.28 Parkinson Data-MFA with GEM Results. . . . . . . . . . . . . . . . . 95

7.29 Breast Cancer Data-MFA with GEM Results. . . . . . . . . . . . . . 95

7.30 Estimated Parameters by Two-Stage Genetic EM Algorithm. . . . . . 97

7.31 Model Selection Frequency for Two-Stage EM algorithm of MFA. . . 98

7.32 College Data- MFA with Two Stage GEM algorithm. . . . . . . . . . 99

xi



7.33 Wine Data- MFA with Two Stage GEM algorithm. . . . . . . . . . . 100

7.34 Parkinson Data- MFA with Two Stage GEM algorithm. . . . . . . . . 101

7.35 Breast Cancer Data- MFA with Two Stage GEM algorithm. . . . . . 101

A.1 Simulation 1 - Data Generation Parameters of Mixture of Factor

Analyzers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

xii



List of Figures

4.1 K-Means Flow Chart. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Scatter Plot of the Simulated Data. . . . . . . . . . . . . . . . . . . . 31

6.1 A flow chart of the genetic algorithm. . . . . . . . . . . . . . . . . . . 56

7.1 Scree plot for Medical School Admission Data. . . . . . . . . . . . . . 69

7.2 Scree plot for Crime Data. . . . . . . . . . . . . . . . . . . . . . . . . 76

8.1 Summary of a Learning Tree of the Dissertation. . . . . . . . . . . . . 105

A.1 Simulated Data- Grouped Scatter Plot for X1,..X5 . . . . . . . . . . . 117

A.2 Simulated Data-Grouped Scatter Plot for X6,..X10 . . . . . . . . . . 118

A.3 Simulated Data- Surface Plot . . . . . . . . . . . . . . . . . . . . . . 118

A.4 Simulated Data- Contour Plot . . . . . . . . . . . . . . . . . . . . . . 119

A.5 Wine data - Grouped Scatterplot Matrix for x1 . . . x6. . . . . . . . 120

A.6 Wine data - Grouped Scatterplot Matrix for x7 . . . x13. . . . . . . . 120

A.7 College data - Grouped Scatterplot Matrix for x1 . . . x9 . . . . . . . 122

A.8 Parkinson data - Grouped Scatterplot Matrix for x1 . . . x7. . . . . . 124

A.9 Parkinson data - Grouped Scatterplot Matrix for x8 . . . x15. . . . . 124

A.10 Parkinson data - Grouped Scatterplot Matrix for x16 . . . x22 . . . . 125

A.11 Breast cancer data - Grouped Scatterplot Matrix for x1 . . . x8 . . . 126

A.12 Breast cancer data - Grouped Scatterplot Matrix for x9 . . . x16 . . . 127

A.13 Breast cancer data - Grouped Scatterplot Matrix for x17 . . . x24 . . 127

A.14 Breast cancer data - Grouped Scatterplot Matrix for x25 . . . x30 . . 128

xiii



Chapter 1

Introduction

As is well known, one of the major difficulties in multivariate analysis is to choose

an appropriate model, estimating and determining the dimension of a model. In

recent years, the statistical literature has placed more and more emphasis on model

selection criteria. The goal of model selection is to find the best approximating

model among a set of candidate models for given a data set. This dissertation

will explore and develop new model selection techniques in modern latent variable

modeling. Namely, we shall study the Standard factor analysis (SFA) model, Bayesian

factor analysis (BFA) model, and Mixture of factor analyzers (MFA) model using

information-theoretic model selection criteria and the genetic algorithm (GA) as our

optimization workhorse. Our approach integrates multivariate statistical methods

with modern computational tools. Hence, this thesis is an interdisciplinary endeavor.

This dissertation is composed of seven chapters.

The Second and Third Chapters address the Standard factor analysis (SFA) and

Bayesian factor analysis (BFA) models. Generally, the main purpose of factor analysis

as an important multivariate statistical technique is to determine whether or not the

correlations among a large number of observed variables can be explained in terms of

a relatively small number of factors and what the best number of factors is to fit to a

1



given dataset. For situations resulting in negative unique variances in the Standard

factor analysis model, which is referred to as a Heywood case, Bayesian factor analysis

can be used. Another advantage of Bayesian factor analysis over the Standard factor

analysis model is to be able to incorporate prior information into the model. However,

Bayesian factor model often is sensitive to the prior information on the factor pattern

structure (Λ0). Because of this, it is important to intelligently determine the initial

prior hyperparameters (especially Λ0) by eliminating subjective specification of the

factor loading structure. Furthermore, we compare the performance of Bayesian factor

analysis (BFA) model in large samples which is originally introduced by Press and

Shigemasu (1989). For small samples, we use the Gibbs Sampling (GS) and Iterated

Conditional modes (ICM) algorithms in BFA model which are developed by Rowe and

Press (1998) by introducing the information criteria within such methods to choose

the best fitting model.

The Fourth Chapter of this dissertation is about Mixture of factor analyzers

(MFA) model. MFA model classifies the high-dimensional data into different clusters

and at the same time carries out factor analysis to reduce the dimensionality. MFA

in this sense, models the covariance (or the correlation) structure of high dimensional

data using a small number of latent variables (i.e., factors). It is because of this,

MFA can be considered as an expert data mining technique. In this dissertation, we

introduce information criteria within MFA to select the best approximating model for

a given dataset to carry out a simultaneous decision in choosing the best number of

factors and the number of mixtures to fit the data. Ghahramani and Hinton (1997)

used the Expectation and Maximization (EM) algorithm to estimate the parameters

of the MFA model. As is well known, the EM algorithm can get trapped in one of

many local maxima of the likelihood function without robust starting values. The EM

algorithm is too slow to converge and sometimes may never converge to global optima.

It is highly dependent upon initial values. Although the typical EM algorithm has

these shortcomings, especially on its dependence on the initial values, Ghahramani

2



and Hinton (1997) use random initialization to start the EM algorithm. In this

thesis, we improve the EM algorithm in MFA by using several intelligent initialization

schemes. These include: K-means initialization and GA for Regularized Mahalabonis

(GARM) distance initialization. In Chapter Five introduce and derive the several

forms of the information criteria in Standard factor (SFA), in Bayesian factor (BFA),

and the MFA models to be scored in Chapter Seven.

In Chapter six, we introduce a new Genetic Expectation (GEM) algorithm in

MFA in order to overcome the strong dependence on initialization of the traditional

EM algorithm. Another major issue in MFA model is the assumption that covariance

matrix of the random error is the same across the mixture of clusters and that one

extracts the same number of factors. In practice, this is not a viable assumption.

Therefore, one may ask the question: ”Why does the number of factors or the

covariances have to be the same for each population?” To be able to answer such

an important question, we further propose a new method for MFA model to achieve

flexibility in our assumptions in order to be able to obtain different number of factors

across mixture of clusters. In this new method, we develop a Two Stage GEM

algorithm. In the first stage, we discover the number mixture clusters, and then

for each mixture we obtain the best approximating number of factors. In the second

stage, we maximize the log likelihood function of the MFA model and using the

information criteria we obtain the final number of factors and the covariance matrix

of the random errors for each mixture cluster. In Chapter Seven, we provide simulated

and many real world data numerical examples of our proposed technique. We show

the accuracy of the parameter estimates using GEM in MFA model under a true

structure using a simulation protocol. Further, we provide a comparison and the

performance of the three initialization schemes to select the best fitting MFA model

for simulated and real datasets. The dissertation will conclude with Chapter Eight.

3



Chapter 2

Standard Factor Analysis

Let x1, .., xn denotes a random sample of size n on a p dimensional random vector

with mean vector µ and the dispersion matrix Σ. In the Standard factor analysis

(SFA) model x is modeled as

x = µ+ Λf + ε, (2.1)

where f is a k dimensional (k < p) vector of latent or unobservable variables called

factors, and Λ is unknown factor loading matrix. The factors f are assumed to be

independently and identically distributed as N(0, Iq) where Iq denotes the q × q

identity matrix. The random errors or the disturbance term ε is distributed as

N(0,Ψ), where Ψ is a diagonal matrix. According to this model, it can easily be

shown that the random vector has a Gaussian distribution with the mean vector µ and

the covariance matrix Σ. It is assumed that the factors account for all the correlation

structure so that random errors ε = x−µ−Λf and Σ = ΛΣf are uncorrelated. That

is, Ψ = D[ε] is a diagonal matrix, diag(Ψ2
1,Ψ

2
2, ...,Ψ

2
k). Therefore,

Σx = D[Λf + ε]

= D[Λf ] +D[ε]

= ΛD[f ]Λ′ +D[ε]

= ΛΣfΛ
′ +Ψ. (2.2)

4



When it is assumed that the factors are standardized and uncorrelated, that is, when

Σf = Im, then

Σ = ΛΛ′ +Ψ. (2.3)

Given a random sample of observations x1, x2, ..., xn, the goal of the factor analysis

is to decide whether Σ can be expressed in the form (2.3) for a reasonably small

value of k and to estimate Λ and Ψ for obtaining the best covariance structure of

x. Although there is no close form to estimate Λ and Ψ, they can be obtained by

using the Expectation-Maximization (EM) algorithm to maximize the factor analytic

likelihood function.

The EM algorithm is an iterative algorithm. Each cycle consists of an E step

followed by an M step, which increases the likelihood fucntion of the parameters. It’s

commonly applied for models in which there is missing information. Incomplete data

are the values of the latent variables f in the FA. Rubin and Thayer (1982) developed

the EM algorithm for FA. In the E step, the expectation of the complete data log-

likelihood given the observed data xi and current estimated values of the parameters

are computed. We wish to estimate the parameters Λ and Ψ. The complete data

log-likelihood to do this is given by

l(Λ,Ψ) = log

n∏

i

p(xi, fi|Λ,Ψ)

=
n∑

i

log p(xi, fi|Λ,Ψ)

=

n∑

i

log p(xi|fi,Λ,Ψ)p(fi|Λ,Ψ)

=
n∑

i

log p(xi|fi,Λ,Ψ) +
n∑

i

log p(fi|Λ,Ψ). (2.4)
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However, the distribution of x is independent of Λ and Ψ, then the log-likelihood is

l(W,Ψ) =

n∑

i

log p(xi|fi,Λ,Ψ) +

n∑

i

log p(fi). (2.5)

Since the second term in (2.5) is independent of Λ and Ψ, it suffices (for the purpose

of estimating Λ and Ψ) to only deal with the term

L =

n∑

i

log p(xi|fi,Λ,Ψ).

We can expand L as

L = log
∏

i

(2π)p/2 |Ψ|−1/2 exp{−1

2
[xi − Λf ]′ |Ψ|−1/2 [xi − Λf ]}

= c− n

2
log |Ψ| −

∑

i

[
1

2
x′iΨ

−1xi − x′iΨ
−1xiΛf +

1

2
f ′Λ′Ψ−1Λz

]
. (2.6)

Taking the expectation of L according to p(fi|xi,Λ,Ψ), we get

E(L) = c−n
2
log |Ψ|

∑

i

(
1

2
x′iΨ

−1xi − x′iΨ
−1xiΛE(z|xi) +

1

2
trace[Λ′Ψ−1ΛE(zz′|xi)

)
,

(2.7)

where c is a constant and independent of the parameters. The expected value of the

factors are computed through linear projection.

Maximizing Equation (2.7) with respect to Λ, we have

∂E(L)

∂Λ
= −

∑
Ψ−1xiE[f |xi]′ +

∑
Ψ−1ΛnewE[ff ′|xi] = 0

Λnew =
∑

xiE[f |xi]′
(∑

E[ff ′|xi]
)−1

. (2.8)
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We can compute the second moment of the factors as follows:

E(f |x) = βx

E(ff ′|x) = V ar(f |x) + E(f |x)E(f |x)′,

where β = Λ′(Ψ+ΛΛ′)−1. (Ψ+ΛΛ′)−1 is a p×p matrix and can be inverted by using

the matrix inversion lemma:

(Ψ + ΛΛ′)−1 = Ψ−1 −Ψ−1Λ(I + Λ′Ψ−1Λ)−1Λ′Ψ−1. (2.9)

Maximizing Equation (2.7) with respect to Ψ−1, we have

∂Q

∂Ψ−1
=
n

2
Ψnew −

(
1

2
x′ixi − ΛnewE(f |xi)x′i +

1

2
ΛnewE(ff ′|xi)Λnew′

)
= 0

Ψnew =
1

n
diag{

∑
x′ixi − ΛnewE(f |xi)x′i. (2.10)

One of the more difficult and delicate tasks of the Standard factor analysis is the

selection ofm, the number of common factors, based on a finite set of available data. A

common approach is to use the scree plot. This plots the eigenvalues of the correlation

matrix in descending order. We determine the number of factors equal to the number

of eigenvalues that occur prior to the last major drop in eigenvalue magnitude. As

a result, this approach involves a certain amount of subjective judgment. Another

approach is the Kaiser criterion. It states that a number of factors equal to the

number of the eigenvalues of the correlation matrix which are greater than 1. But

this approach produces large number of factors (Newsom, 2005). Another task of

the standard factor analysis model is to choose the method for estimation. There

are several ways to estimate the parameters of the Standard factor model. The

EM algorithm, which is explained above, is one of them. Based on our simulation

applications, the estimation is closest to the real parameters using the EM algorithm.

7



In this dissertation, we combine information criteria to determine the best number of

factors to fit to the dataset with the EM algorithm to estimate the parameters of the

model.
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Chapter 3

Bayesian Factor Analysis

3.1 Bayesian Factor Model

Consider that we have p variate observation vectors x with mean vector µ and

covariance matrix Σ. For a given factor model in (2.1) ǫj is a vector of disturbances

whose variance Ψj represent the uniqueness of xj . The ǫj ’s are assumed to be mutually

uncorrelated and normally distributed as N(0,Ψj) for Ψ a symmetric positive matrix

Ψ > 0. When Ψ is not positive-definite, the solution is said to be improper or a

Heywood case. Sampling errors or an inappropriate factor model might cause this

case (Bozdogan and Ramirez, 1986). If communality equals 1 which means that at

least one unique variance is zero but the rest are positive, the situation is referred to

as an exact Heywood case. If communality exceeds 1, the situation is referred to ultra-

Heywood case. An ultra-Heywood case implies that some unique factor has a negative

variance. The SFA model should not be applied in this case. The communalities for

the jth variable are computed by taking the sum of the squared loadings for that

variable. This is expressed by

hj =

m∑

q=1

λjq
2. (3.1)

Martin and McDonald (1975) discuss the use of a Bayesian approach to overcome

Heywood cases. They propose finding posterior joint modal estimators of the factor

9



loading and disturbance covariance matrix. They point out the importance of

choosing a reasonable prior distribution for the the disturbance covariance matrix

and the use of Jeffrey’s type vague prior. Akaike (1987) dealt with the occurrence of

improper solutions in the likelihood caused by over parametrization of the model. He

approached the standard spherical prior of factor loadings to handle this problem by

proper Bayesian modeling. Early works on Bayesian Factor analysis (BFA) include

Martin and McDonald (1975) and Lee (1981). A new type of BFA was introduced

by Press and Shigemasu (1989) to overcome improper solutions in the maximum

likelihood estimation (MLE) methods in FA model in large samples. Their method is

easy to apply and no iteration is needed to obtain the point estimates. They developed

the method for obtaining large sample interval estimators discussed in Press (1997).

In Bayesian factor analysis, the important issue is how to assess the prior

hyperparameters (Λ0, ν, B,H). Press and Lee (2008) propose an empirical method for

assessing the hyperparameters. Since the BFA model is most sensitive to the prior

information on the factor pattern structure (Λ0), it is important to determine the

initial prior hyperparameter Λ0 for the BFA. It is needed to estimate the factor pattern

structure by eliminating subjective specification of the factor loading structure.

Bozdogan and Shigemasu (1998) applied the Sparse Root algorithm on a training

data set to obtain the best approximating factor pattern structure data adaptively.

As in the standard factor model, a difficult and delicate task is the selection of the

uncertain number of factors in the BFA model. Bozdogan and Shigemasu (1998)

applied the information theoretic measure of complexity criterion (ICOMP), to decide

on the best fitting number of factors m in the Bayesian factor model. Lopes and West

(2004) worked on the same problem of uncertainty of the number of latent factors

and combined their research with MCMC methods to estimate the parameters in BFA

model. In addition to this, they use AIC, BIC and ICOMP to choose the model and

compare their performance with other BFA methods.
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Rowe and Press (1998) derived the conditional posterior distribution to use Gibbs

Sampling (GS), and Iterated Conditional Modes (ICM) to estimate the parameters

for both small and large samples. In the literature, there are several ways to estimate

the parameters in the model. Such as Arminger and Muthen (1998) and Ansari

and Jedidi (2000) implement Markov Chain Monte Carlo procedures such as Gibbs

sampling and the Metropolis- Hastings methods for inference. Consider p variate

observation vectors X with mean vector µ and covariance matrix Σ. The Bayesian

factor model is written as

xj(p×1) = Λ(p×m)fj(m×1) + µ+ ǫj(p×1) m < p, (3.2)

for j = 1, . . . , n, where Λ denotes a matrix of constants called the factor loading

matrix; fj denotes the scores vector for subject j; F ′ = (f1, . . . , fn). The εj’s are

assumed to be mutually uncorrelated and normally distributed as N(0,Ψ) for Ψ a

symmetric positive definite matrix, i.e Ψ > 0. Further, the likelihood function is

written as

p(X | Λ, F,Ψ) ∝ |Ψ|−n/2 e−
1
2
trΨ−1(X−FΛ′)′(X−FΛ′), (3.3)

where “∝” denotes the constant of proportionality which depends on (p, n) but not

(Λ, F,Ψ). The joint prior density is obtained using the natural conjugate distributions

of (Λ, F,Ψ) as priors. So, the joint prior density is

p(Λ, F,Ψ) = p(Λ | Ψ)p(Ψ)p(F ), (3.4)

where

p(Λ | Ψ) ∝ |Ψ|−m/2 e−
1
2
trΨ−1(Λ−Λ0)H(Λ−Λ0)′

p(Ψ) ∝ |Ψ|−v/2 e−
1
2
trΨ−1B

p(F ) ∝ e−
1
2
trF ′F , (3.5)
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with B a diagonal matrix and H > 0, a positive definite matrix. Λ conditional on Ψ is

normally distributed, with hyperparameters Λ0 a (p×m) prior factor loading matrix

and H am a (m×m) prior inter-factor correlation matrix. Both of them are assessed.

|Ψ|−1 follows Wishart distribution with hyperparameters ν (degrees of freedom) and

B is a (p × p) scale matrix of hyperparameters. Both of them are assessed. If we

consider a vague prior density for the factor scores F : if p(F ) ∝ constant, then

p(F | X) follows a matrix T distribution. Since we assume fj ∼ N(0, 1), and f ′
js

are

mutually independent, then p(F ) is a spherical prior density.

When applying Bayes theorem, we obtain the joint posterior density of the

parameters by combining the likelihood function and joint prior density.

p(Λ, F,Ψ | X) ∝ p(X | Λ, F,Ψ)p(Λ | Ψ)p(Ψ)p(F )

∝ e−
1
2
trF ′F |Ψ|−

(n+m+ν)
2 e−

1
2
trΨ−1G, (3.6)

where G = (xj − FΛ′)′(xj − FΛ′) + (Λ− Λ0)H(Λ− Λ0)
′ +B. The three conditional

posterior densities are obtained by removing the fixed parameters from the joint

posterior distribution. The conditional posterior distribution of the factor loading

vector is

p(Λ | F,Ψ, X) ∝ p(Λ, F,Ψ | X)p(X | F,Λ,Ψ)

= p(Λ | Ψ)p(Ψ)p(F )p(X | F,Λ,Ψ)

∝ |Ψ|−m/2 e−
1
2
trΨ−1(Λ−Λ0)H(Λ−Λ0)′ |Ψ|−n/2 e−

1
2
trΨ−1(X−FΛ′)′(X−FΛ′)

∝ e−
1
2
trΨ−1[(Λ−Λ0)H(Λ−Λ0)′+(xj−FΛ′)′(xj−FΛ′)]. (3.7)

After some algebra, this can be written as

p(Λ | F,Ψ, X) ∝ p(Λ, F,Ψ | X)p(X | F,Λ,Ψ) ∝ e−
1
2
trΨ−1(Λ−Λ̃)(H+F ′F )(Λ−Λ̃)′ , (3.8)
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where Λ̃ is the mode of the conditional distribution p(Λ | F,Ψ, X) and it is defined

as follows

Λ̃ = (X ′F + Λ0H)(H + F ′F )−1. (3.9)

Then, the conditional posterior distribution of the factor loading matrix given factor

scores, the disturbance covariance matrix, and data follows a normal distribution.

The conditional posterior distribution of the disturbance covariance matrix is defined

as follows

p(Ψ | F,Λ, X) ∝ p(Ψ)p(Λ | Ψ)p(F )p(X | F,Λ,Ψ)

∝ |Ψ|−v/2 e−
1
2
trΨ−1B |Ψ|−m/2 e−

1
2
trΨ−1(Λ−Λ0)H(Λ−Λ0)′ |Ψ|−n/2

e−
1
2
trΨ−1(X−FΛ′)′(X−FΛ′)

∝ |Ψ|−
(n+m+v)

2 e−
1
2
trΨ−1G, (3.10)

where

G = (X − FΛ′)′(X − FΛ′) + (Λ− Λ0)H(Λ− Λ0)
′ +B.

Then, the conditional posterior distribution of the disturbance covariance matrix

given factor scores, factor loadings and data is an inverted Wishart distribution. The

mode of the conditional distribution p(Ψ | F,Λ, X) is

Ψ̃ =
G

(n+m+ v)
. (3.11)

The conditional posterior distribution of the factor scores is

p(F | Λ,Ψ, X) ∝ p(Ψ)p(Λ | Ψ)p(F )p(X | F,Λ,Ψ)

∝ e−
1
2
trF ′F |Ψ|−n/2 e−

1
2
trΨ−1(X−FΛ′)′(X−FΛ′)

∝ e−
1
2
trF ′Fe−

1
2
tr(X−FΛ′)Ψ−1(X−FΛ′)′ , (3.12)
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which, after some algebra, becomes

p(F | Λ,Ψ, X) ∝ e−
1
2
tr(F−F̃ )(I+Λ′Ψ−1Λ)(F−F̃ )′, (3.13)

where F̃ is mode of the conditional distribution p(F | Λ,Ψ, X) and it is defined as

F̃ = XΨ−1Λ(I + Λ′Ψ−1Λ)−1. (3.14)

The conditional posterior distribution of the factor scores given factor loadings, the

disturbance covariance matrix and data is normally distributed.

The steps of our approach are summarized as follows:

1. Assess the prior hyperparameters (Λ0, ν, B,H). Λ0 is obtained by the Sparse

Root algorithm data adaptively. Assessment of the other priors is not influential

on the results. We can assess them as: H = η0I and B = b0I, for some

preassigned scalar η0 and b0 to make v is as minimal as possible.

2. Calculate the maximum number of factors that can be extracted for a given

dataset by big factor = 2p+ 1−√
8p+ 1.

3. Apply the method of Press and Shigemasu to find the initial parameters for

Gibbs sampling or ICM method.

4. Estimate the parameters by Gibbs sampling or ICM methods for the number

of factors m = 1, 2, .., big factor in the model.

5. Find the information criteria scores for each factor model.

6. Choose the model corresponding to the minimum information criteria.
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3.2 Sparse Root Algorithm

The sparse root algorithm developed by Hartigan (1975) is an iterative clustering

procedure which works on a factor model correlation (or covariance) matrix associated

with a factor loading matrix. This technique produces the loading matrix and its

simple pattern structure as the root of the model correlation matrix. It seeks roots

of the model correlation matrix with many zeros. The zeros correspond to entries (or

variables) that are not members of a given cluster, the cluster represented by a given

column of the root matrix. The root matrix is determined iteratively by sweeping

the model correlation matrix one column at a time. This approach is essentially a

principal component type procedure that takes linear interdependence of the original

variables into account. The columns of the root matrix are chosen to be eigenvectors

of the model correlation matrix for which the ratio, eigenvalue/number of nonzero

elements of the eigenvector, is a maximum. The model correlation matrix is modified

in terms of a partial correlation matrix at each stage of the fitting process until the

root, that is, the simple pattern structure of the loading matrix is reached. Thus,

the end product of this procedure is a clustering model for the factor loading matrix,

so that for each factor there is a set of associated cluster variables. These variables

correspond to nonzero loadings on the factor. Such an approach puts zeros in the

loading matrix directly from the data, rather than on any substantive grounds which

are often biased based on the human ”hindsight” of the researcher. Further, this

approach discovers a simple factor pattern structure which permits interpretation of

the final factors as clusters of variables. Moreover, it permits the researcher to test

the postulated specific factor pattern structure based on prior knowledge. In the

following, we give a very brief account of the Sparse Root algorithm and its steps

following Hartigan (1975) using our notation.
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Let R be the factor model correlation matrix, and let Rr be the restricted

correlation matrix. We approximate R by Rr = Λ̂Λ̂′ where Λ̂ contains many zeros.

The matrix Λ̂ is assessed by two properties.

i. the sum of squares SS(Λ̂) =
p∑

i=1

m∑
l=1

Λ2
i,l

ii. the number of zeros, z(Λ̂) = the number of times Λi,l = 0

To be able to apply the method in a stepwise manner during maximization, at each

stage of the iterative process, it is necessary to require that the residual matrix be

nonnegative definite given by

Rres = R− Rr ≥ 0.

The main steps of the Sparse Root algorithm are as follows:

1. Set the column to be estimated, l = 1 1 ≤ l ≤ m. Initially, set Rres =

(ri,j)res ≡ R = (ri,j) 1 ≤ i, j ≤ p. Set IP = p, where p is the number of

variables.

2. Let {Λ′
j = (Λ1,Λ2,Λ3,....Λp) 1≤ j ≤ p} be the (1 × p) eigenvector (loadings)

corresponding to the largest eigenvalue of the matrix R, where SS(Λ̂i,1) =
p∑

i=1

Λ2
i,1 is the first largest eigenvalue. Set

f(IP ) ≡ f(p) =

p∑
i=1

Λ2
i

count (Λi 6= 0)
.

3. Choose the row IMIN to be the row of the matrix R which minimizes the squared

correlations

r2i =

[
p∑

i=1

Λi,1rimin,i]
2

[
p∑

i=1

Λ2
i,1]

2

1 ≤ i ≤ p
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where the numerator is the square of the linear combination of the eigenvectors

with the correlations rimin,i, and the denominator is the square of the sum of

squares of eigenvectors. The minimum of r2i 1 ≤ i ≤ p, is chosen to be the

row IMIN to be removed from the matrix R by replacing all correlations by

the partial correlation with IMIN fixed and by setting all correlations involving

IMIN equal to zero, which destroys R stagewise.

4. Compute the partial correlation matrix of R with IMIN ”removed”; that is,

change rj,m to (rj,m − rimin,jrimin,m)/rimin,imin 1 ≤ j,m ≤ p and finally, set

rimin,j = rj,imin = 0 1 ≤ j ≤ p. Set IP = IP − 1 ≡ p − 1, and if IP ≡ p

remains greater than zero, go to Step 2.

5. If IP ≡ p = IMAX maximize {f(IP ) ≡ f(p) 1 ≤ IP ≤ p}. Set Λi,l = Λ̃′
j

1 ≤ i ≤ p, where Λ̃′
j is now the eigenvector corresponding to f(IP ). Change

ri,j to

ri,,j − Λi,lΛj,l′ 1 ≤ i, j ≤ p.

Define R = (ri,j) ≡ Rres = r(i, j)res increase l by 1 , and go to Step 2, unless

l = m.

If there are not many zeros in the root factor loading matrix, then this might

indicate that there is not sufficient clustering of the variables to create a simple

interpretable factor pattern structure.

3.3 Estimation

3.3.1 The method of Press and Shigemasu

The marginal posterior distributions are obtained from joint posterior distribution by

integrating out the nuisance parameters sequentially as shown in Press and Shigemasu

(1989). Bayes estimates of the unknown parameters are obtained as follows:
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• The Bayes estimates of the factor scores is given by

F̂ = (In −XW−1X)−1XW−1Λ0H (3.15)

or

F̂ = (In −X(XX ′ −W )−1X ′)XW−1Λ0H,

where

W = XX ′ +B + Λ0HΛ0.

• The Bayes estimates of the factor loading matrix Λ conditional on F and X is

given by

Λ̂ = (X ′F̂ + Λ0H)(H + F̂ ′F̂ )−1. (3.16)

• The Bayes estimates of the disturbance matrix Ψ conditional on F,Λ and X is

given by

Ψ̂ =
G

n+m+ v − 2p− 2
, (3.17)

where

G = (X − F̂ Λ̂′)′(X − F̂ Λ̂′) + (Λ̂− Λ0)H(Λ̂− Λ0)
′ +B,

and

v = 2(p+ 1) + 1.

Since we do not have prior knowledge about Ψ, we want to make v the degrees of

freedom of Ψ, as minimal as possible. We will take H = η0I and B = b0I, for some

preassigned scalar η0 and b0 as in PS89. Since BFA is most sensitive to Λ0,Λ0 will be

obtained data adaptively by the Sparse Root algorithm.
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3.3.2 Gibbs Sampling

Gibbs sampling is one of the Markov Chain Monte Carlo (MCMC) algorithms. It was

introduced by Geman and Geman (1984) in the context of image processing. Gelfand

and Smith (1990) helped to demonstrate the value of the Gibbs algorithm in the

Bayesian framework. Gibbs sampling strategies are claimed to be fast and sensitive,

and avoid getting trapped in local optima. The advantage of this method is of its

fast convergence to the joint posterior distribution.

To apply the Gibbs Sampling approach, the estimation is obtained by drawing a

random sample from the posterior conditional distribution for each of the parameters

which is conditional on the fixed value of all the other parameters and the data X. Let

p(θ | X) be the posterior distribution of the parameters when θ = (θ1, θ2, . . . , θj) is

the set of parameters and X is the data. We begin with the initial value θ(0) = (θ
(0)
1 ,

θ
(0)
2 , . . .,θ

(0)
j ) and θ(i+1) = (θ

(i+1)
1 , θ

(i+1)
2 , . . . θ

(i+1)
j ) which is defined in the ith iteration:

θ
(i+1)
1 = a random sample from p(θ1 | θ(i)2 , θ

(i)
3 , ...θ

(i)
j , X)

θ
(i+1)
2 = a random sample from p(θ2 | θ(i+1)

1 , θ
(i)
3 ...θ

(i)
j , X)

θ
(i+1)
3 = a random sample from p(θ3 | θ(i+1)

1 , θ
(i+1)
2 ...θ

(i)
j , X)

...

θ
(i+1)
j = a random sample from p(θj | θ(i+1)

1 , θ
(i+1)
2 , θ

(i+1)
3 ...θ

(i+1)
j−1 , X).

A random sample is drawn from the conditional posterior distribution at each step.

We will have θ(1), θ(2), ..., θ(s), θ(s+1), ...θ(s+t). The first s random samples are discarded

since it is used for convergence. They are called ”burn in” samples. The remaining

t samples are kept. Posterior means and modal estimators of the parameters are

θ = (θ1, θ2, ..., θj) where

θj =
1

t

t∑

k=1

θ
(s+k)
j . (3.18)
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Gibbs sampling requires an initial starting point for the parameters. The parameters

obtained by the method of PS89 are used as initial values for Gibbs sampling. We

start with the initial value for F (0) and Ψ(0) to estimate the parameters of the model

from the posterior distribution by Gibbs Sampling.

Λ(i+1) = a random sample from P (Λ | F (i),Ψ(i), X)

Ψ(i+1) = a random sample from P (Ψ | F (i),Λ(i+1), X)

F (i+1) = a random sample from P (F | Λ(i+1),Ψ(i+1), X).

After the first s random samples are discarded for convergence and the remaining t

samples are kept and the means of the random samples are computed as

F =
1

t

t∑

k=1

F (s+k), Λ = 1
t

∑t
k=1 Λ

(s+k), Ψ =
1

t

t∑

k=1

Ψ(s+k). (3.19)

They are used as the posterior estimates of the parameters.

3.3.3 Iterated Conditional Modes (ICM)

Iterated Conditional Modes (ICM) introduced by Lindley and Smith (1972), is a

deterministic optimization method that finds the joint posterior modal estimators of

p(θ | X) when θ = (θ1, θ2, . . . , θj) is the set of the parameters and X is the data. We

find the top of the hill of the p(θ | X) by ICM. This means that we converge to a

mode or maximum by this method.
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We begin with initial value θ̃(0) = (θ̃
(0)
1 , θ̃

(0)
2 , . . . θ̃

(0)
j ) and θ̃(i+1) = (θ̃

(i+1)
1 , θ̃

(i+1)
2 , . . .

θ̃
(i+1)
j ) which is defined in ith iteration, and proceed with

θ̃
(i+1)
1 = θ̃1(θ̃

(i)
2 , θ̃

(i)
3 , ...θ̃

(i)
j )

θ̃
(i+1)
2 = θ̃2(θ̃

(i+1)
1 , θ̃

(i)
3 , ...θ̃

(i)
j )

...

θ̃
(i+1)
j = θ̃j(θ̃

(i+1)
1 , θ̃

(i+1)
2 , θ̃

(i+1)
3 , ...θ̃

(i+1)
j−1 ),

and computing the maximum or mode is done at each step. The calculations are

continued until convergence is reached. To apply ICM, we need to determine the

functions θ̃j which maximize p(θ | X) with respect to θ̃j , conditional on the fixed

values of all the other elements of θ.

ICM requires an initial starting point for the parameters. The parameters are

obtained from PS89 method are used to obtain initial values for ICM. We start with

initial value for F (0) to estimate joint posterior modal estimator (Λ̃, Ψ̃, F̃ ) by ICM.

Λ̃(i+1) = (X ′F̃ (i) + Λ0H)(H + F̃ ′(i)F̃ (i))−1

Ψ̃
(i+1)

=
(X − F̃ (i)Λ̃′(i+1)

)′(X − F̃ (i)Λ̃′(i+1)
) + (Λ̃(i+1) − Λ0)H(Λ̃(i+1) − Λ0)

′ +B

(n+m+ v)

F̃ (i+1) = X(Ψ
(i+1)

)−1Λ̃
(i+1)

(I + Λ̃′(i+1)

(Ψ
(i+1)

)−1Λ̃
(i+1)

)−1 (3.20)

They are calculated until convergence is reached.
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Chapter 4

Mixture of Factor Analyzers

4.1 Mixture Factor Model

Many cross-disciplinary researchers are faced with two endemic problems: unobserved

heterogeneity and measurement error in the data. If the heterogeneity is not treated

properly, analysis of the data can be seriously distorted and misleading results

would be obtained. Heterogeneity in data sets may be caused in two situations.

Heterogeneity arises by several populations which have different covariance structures

associated in the first situation. The data is analyzed using regular multiple group

covariance structure since each group is identified exactly with a single factor analysis

model which causes a different covariance structure model for each group. (Jöreskog,

1971; Lee and Tsui, 1982; Muthén, 1989; Sörborn, 1974). In the second situation,

heterogeneity refers to a non-normal distribution which is multi-modal and extremely

skewed when the data is treated as a single group (Yung, 1997). If factor analysis

is applied for all observations, the heterogeneity problem can be dealt with by using

estimation techniques for a non-normal distribution (Kano et al., 1990). However,

the above mentioned estimation techniques are not appropriate if the non-normal

distribution is due to a sampling of observations from several distinct factor analysis

models. The observations are partitioned into different factor analysis models and
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the number of groups is the same as the number of factor analysis models in the first

situation. There is only one group with possibly many factor analysis models in the

second situation. Therefore, the observations need to be empirically classified into

the factor analysis models at the same time as the parameters are estimated (Blâfield,

1980).

This dissertation focusses on mixture of factor analyzers (MFA) model from the

perspective of a method for model-based density estimation to cluster the high-

dimensional data and at the same time carry out factor analysis to reduce the

curse of dimensionality. MFA models the covariance (or correlation) structure of high

dimensional data using a small number of latent variables (factors), simultaneously

in an expert data mining system. This approach results in a model which takes

into account the unobserved heterogeneity which affects many statistical modeling

procedures. Specifically, we are correcting for this and measurement error in the data

concurrently by clustering the data and reducing the dimensionality. MFA model is

a globally nonlinear latent variable model obtained by combining the standard sub-

factor analysis models for the distributions with ideas from the analysis of mixture of

distributions. Let Xi be a p-dimensional observed vector which comes from a mixture

of M-factor analysis models. The marginal distribution of X given by

f(x) = f(x; π, µ,Σ) =

M∑

k=1

πkgk(x;µk,Σk) (4.1)

with

gk(x;µk,Σk) ∼ Np(µk,Σk = ΛkΛ
′
k +Ψk). (4.2)

The k-factor model hold for each observation Xi with πkis modeled as

Xi = µk + Λkzik + εik, (4.3)
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for i = 1, 2, ...., n, k = 1, 2, ...,M , where µkǫR
p and ΛkǫR

p×q are unknown parameters,

πm is the mixing proportion; such that
M∑

m=1

πm = 1, zik is a qk dimensional matrix

of latent or unobservable variables called common factors, zik ∼ N(0, Iqk), εik

is the independent distribution vector for all i and k, εik ∼ N(0,Ψk),Ψk =

diag(σ2
k1, σ

2
k2..., σ

2
kp) and zik and εik are independent. The dimension of the common

factors zik may be different for each subgroup as in model (4.3), but we assume that

q1 = q2 = ... = qm = q in the model (4.3) (Ghahramani and Hinton, 1997; Fokouè,

2005; Yung, 1997; Zhou and Liu, 2008). That is the number of factors is the same for

each subgroup. In this case, the model becomes

Xi = µk + Λkzi + εik i = 1, 2, ...., n, k = 1, 2, ...,M. (4.4)

In addition, for all practical purposes, Ψk is taken to be the same for each subgroup

m = 1, 2, ...M (Ghahramani and Hinton, 1997; MacLachan and Peel, 2000; Fokouè,

2005; Cho and Zhang, 2002; MacLachlan et al., 2002) which reduces the number of

parameter and for numerical reasons.

4.2 EM Algorithm for MFA Model

In a mixture of M factor analyzers indexed as wk, k = 1, 2, ...M we consider the

following distribution

p(x) =
M∑

k=1

∫
P (x|z, wk)P (z|wk)P (wk)dz, (4.5)

where p(x|z, wk) is a single factor model and is distributed as N(Λkz + µk,Ψ). The

parameters µk,Λk, πk,Ψ can be estimated using the EM algorithm similar to FA. The

vector π parameterizes the adaptable mixing proportions πk = P (wk). As in standard

factor analysis, the factors are assumed to be N(0, I), so P (z|wk) = P (z) = N(0, I).

In this case, there is missing information in addition to the values of factors. That is,
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we cannot know which model is responsible for generating each data point xi. The

indicator variables wk = 1 indicates when the data point was generated by wk. The

expected log-likelihood function to be maximized is written as follows

E(θ) = E

[
ln

n∏

i=1

M∏

k=1

{
(2π)−p/2 |Ψ|−1/2 exp(−1

2
(xi − µk − Λkz)

′Ψ−1
k (xi − µk − Λkz))

}wj

]
.

(4.6)

To jointly estimate of the mean vector µk and the factor loadings matrixΛk can be

written as

z̃ =


 z

1


 , Λ̃k = [ Λk µk ].

Therefore, the expected likelihood function becomes

E(θ) = E

[
ln

n∏

i=1

M∏

k=1

{
(2π)−p/2 |Ψ|−1/2 exp(−1

2
(xi − Λ̃kz̃)

′Ψ−1
k (xi − Λ̃kz̃))

}wj

]
.

(4.7)

The E-step for general mixture model involves estimating the contribution of

component wk for each data point given by

hk(xi) = E{wk|xi} =
πkgk(xi|wk)

M∑
k=1

πkgk(xi|wk)

=
|Σk|−1/2 exp(−1

2
(xi − µk)

′Σ−1
k (xi − µk))

M∑
k=1

|Σk|−1/2 exp(−1
2
(xi − µk)′Σ

−1
k (xi − µk))

(4.8)

which is the posterior probability of group membership. Each factor analyzer fits a

Gaussian model to a portion of the data, weighted by the posterior probabilities, hik.
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Therefore, the expected log-likelihood is then

E(θ) = c− n

2
log |Ψ| −

n∑

i=1

M∑

k=1

hikx
′
iΨ

−1xi − hikx
′
iΨ

−1xiΛ̃jE(z̃|xi, wk)

+
1

2
hiktr

[
Λ̃′

jΨ
−1Λ̃jE(z̃z̃

′|xi, wk)
]
, (4.9)

where

E(z̃|xi, wk) =


 E(z|xi, wk)

1


 , and E(z̃z̃′|xi, wk) =


 E(zz′|xi, wk) E(z|xi, wk)

E(z|xi, wk) 1


 .

The posterior can be found by observing that the joint of the latent and observed

variables for component k is also Gaussian distribution:


 z

x


 ∼ N




 0

µk


 ,


 I Λ′

k

Λk ΛkΛ
′
k +Ψ




 .

The posterior can be determined from this joint distribution and is also Gaussian.

pk(z|xi, wk) ∼ N(Λ′
k(Ψ + ΛkΛ

′
k)

−1(xi − µj), I − Λ′
k(Ψ + ΛkΛ

′
k)

−1Λk).

We can obtain the expected value of factors as:

E{z|xi, wk} = βk(xi − µj),

E{zz′|xi, wk} = I − βkΛk + βk(xi − µj)(xi − µj)
′β ′

k, (4.10)
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where βk = Λ′
k(Ψ + ΛkΛ

′
k)

−1. In the M-step, we are re-estimating the parameters

Λk, µk,Ψ and Πk. Maximizing (4.9) with respect to Λ̃k, we have

∂E(θ)

∂Λ̃k

= −
n∑

i=1

hikΨ
−1xiE(z̃|xi, wk) + hikx

′
iΨ

−1Λ̃new
k E(z̃z̃′|xi, wk) = 0

Λ̃new
k =

[
Λnew

k µnew
k

]

=

(∑

i=1

hikx
′
iE(z̃|xi, wk)

′

)(∑

i=1

hikE(z̃z̃
′|xi, wk)

)−1

. (4.11)

Maximizing the equation (4.9) with respect to Ψ−1, we obtain

∂E(θ)

∂Ψ−1
=

n

2
Ψnew −

n∑

i=1

M∑

k=1

1

2
hikxix

′
i − hikΛ̃

new
k E(z̃|xi, wk)x

′
i

+
1

2
hikΛ̃

new
k E(z̃z̃′|xi, wk)Λ̃

new′
k = 0. (4.12)

Solving this for Ψnew, we have:

Ψnew =
1

n
diag

{
n∑

i=1

M∑

k=1

hik(xi − Λ̃new
k E(z̃|xi, wk))x

′
i

}
. (4.13)

The updates of the mixing proportions are then,

πnew
k =

1

n

n∑

i=1

hik. (4.14)

4.3 Initialization Schemes

The EM algorithm can get trapped in one of many local maxima of the likelihood

function without robust starting values since the log-likelihood parameter space is

very rugged (Xu and Jordan, 1996; Vlassis and Likas, 2002). The initialization

of the parameters of the log-likelihood function plays a very important role in the

final solution. In this research, we introduce the intelligent initialization scheme
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to be used in the EM algorithm, along with the random initialization scheme used

by Ghahramani and Hinton (1997). We introduce K-means and genetic regularized

Mahalobonis distance (GARM) initialization in the MFA model to initialize the EM

algorithm. We assign each datapoint to a mixture cluster with these initialization

tools and then apply the EM algorithm of the Standard factor model on each mixture

to obtain the initial values of the EM algorithm in MFA model. After giving more

details about the genetic algorithm(GA) and its steps, GARM will be explained more

detail in Chapter 6 separately.

4.3.1 K-Means initialization

In the literature, there are many ways to initialize the clustering methods. K-means

is one of the simplest unsupervised learning algorithms that initializes clustering

methods.K-Means in itself is used also as a clustering method. To initialize the EM

algorithm in the mixture model, k clusters are found by the K-means algorithm. Then

one can obtain the initial parameters of the model by applying the Standard factor

model to each cluster. MacQueen (1967) introduced the K-means algorithm to assign

each data point into the cluster with the closest mean. The algorithm is comprised

of the following four steps:

1. Determine the initial k cluster centroids.

2. Determine the Euclidean distance of each datapoint to the centroids

ei(k) = (x1 − µ̂k)(x1 − µ̂k)
′. (4.15)

3. Assign each datapoint to the closest cluster which by minimizing the Euclidean

distance. ŷi = k such that ei(k) = min
k=1,...,K̂

ei(k).

4. After all datapoints have been assigned to a cluster, recalculate and update the

mean of the clusters. µ̂k =

n∑
i=1

xiIk(ŷi)

n∑
i=1

Ik(ŷi)
k = 1, ..., K̂.
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Figure 4.1: K-Means Flow Chart.

5. Repeat Steps 2 and 4 until |Ej+1 − Ej | meets some criterion, where

E(j+1) =

n∑

i=1




K̂∑

k=1

Ik(ŷ
(j+1)
i )ei(k)


 . (4.16)

The flow chart of K-means is drawn in Figure 4.1 (Teknomo, 2007).

4.3.2 Hybridized Scheme

The main idea here is to define the centroids, one for each cluster. These centroids

need to be placed intelligently because of different location causes different result.

Bozdogan (1983) introduces a new the initialization scheme to choose the centroids

of the cluster data-adaptively. In this dissertation, we used this initialization scheme

is MFA model. A brief account of Bozdogan (1983) initialization scheme is as follows.

• Calculate the highest (xn) and lowest (x1) order statistics for given dataset.

The initial centroids are defined using the midpoints for each cluster.

• µ1 = x11 =
xn+x1

2
is an initial centroid for k̂ = 1.
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• Centroids are µ1 = x21 =
x1+x11

2
and µ2 = x22 =

x11−xn

2
for k̂ = 2 clusters.

• For fitting k̂ = 3 clusters, µ1 = x31 =
x1+x21

2
µ2 = x32 =

x21+x22

2
and µ3 = x33 =

x22+xn

2
.

This scheme is applied in a similar fashion for higher k̂.

As an example, we simulate the population of a multivariate normal data with the

following parameters to show the working of the Bozdogan’s hybridized initialization

scheme with the clusters. Figure 4.2 shows the data with each population identified.

µ1 =
[
18 20

]
µ2 =

[
10 12

]
, σ1 =


 4 3

3 7


 σ2 =


 7 5

5 10


 .

The confusion matrix from the K-means algorithm is shown in Table 4.1. As can

be seen in the Table 4.1, 13 observations from cluster one assigned to cluster two,

and one observation from cluster two is assigned to cluster one. Hence, in this case

the misclassification error is 13 + 1/300 = 4.67%.

Table 4.1: Confusion Matrix of K-means Algorithm

Actual/Predicted 1 2
1 137 13 150
2 1 149 150

138 162 300
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Figure 4.2: Scatter Plot of the Simulated Data.
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Chapter 5

Information Criteria

5.1 Introduction and Purpose

It is well known, that the fundamental difficulty in statistical analysis is, estimating

and determining the dimension of a best fitting model. This is a common problem

when a statistical model contains many parameters. The main purpose of model

selection is to find the best approximating model fits that the observed data. In

recent years, in the literature, the necessity of introducing the concept of model

selection or model evaluation has been recognized and the problem is posed how to

find the best approximating model among a class of competing models with different

numbers of parameters using a suitable model selection criterion.

Also, there is a great deal of interest in criteria based on the parsimony of

parameters for choosing one model from a set of competing alternative models to

describe a given data set. Parsimony can take into account a variety of attributes in

the selected model. One such attribute is the measurement cost required to implement

the model. A second attribute is the complexity of the selected model. Therefore, the

best model is the one with the least complexity or equivalently the highest information

gain. For example, in the factor model, parameter parsimony requires that we choose
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the smallest number of factors such that the corresponding model fits the data.

In this Chapter, we detail a method to arbitrate among the results and help us

choose the best model. In our case, the best number of factors in the SFA model,BFA

model and the best number of clusters and the number of factors in MFA model. This

is where information criteria come into the picture - the best model for the data is that

which minimizes the information criterion (IC) function. The rational of introducing

information criteria is that they provide an easy to use solutions to complex problems

and avoid the difficulties in the usual hypothesis testing type procedures such as the

likelihood ratio principle in such problems studied in this thesis. In what follows, we

present the forms of the information criteria based on the work of Bozdogan (1987,

1988, 1990, 1994, 2000, 2004); Deniz and Bozdogan (2010)

5.2 Kullback-Liebler Distance

For a given dataset, the best model is one which balances a good fit to the data and

the desired parsimony for the model. As model complexity increases, the goodness-

of-fit must increase at least as much. Otherwise, the additional complexity is not

worth the cost. Cost could refer to the actual cost of gathering additional data

(or, the variables), but here we mostly refer to the cost of additional parameter and

estimation uncertainty. Virtually all information criteria penalize a poorly-fitting

model with negative twice the maximized log-likelihood, as an asymptotic estimate

of the Kullback-Liebler (KL) Information. The fundamental basis for all information

criteria is the KL information, first introduced by Kullback and Leibler (1951).

The KL information or distance measures the difference between two probability

distributions. Let us assume that θ∗ is the true parameter vector of θ with its

probability density function f(X|θ∗). Let I(θ∗|θ) denotes the KL distance between

the true model and fitted model. Then since the observations xi for i = 1, 2, ..., n are
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independent, we have

I(θ∗; θ) = Eθ∗

[
log

f(x|θ∗)
f(x|θ)

]
= E [f(x|θ∗)− f(x|θ)] =

∫
log

f(x|θ∗)
f(x|θ) f(x|θ

∗)dx

=

∫
f(x|θ∗) log f(x|θ∗)dx−

∫
f(x|θ∗) log f(x|θ)dx

= H(θ∗; θ∗)−H(θ∗; θ), (5.1)

where E denotes the expectation operator with respect to the true distribution

f(x|θ∗) of x. H(θ∗; θ∗) = H(θ∗) is the entropy which is a constant and can be

dropped. H(θ∗; θ) is the cross-entropy which determines the goodness of fit of f(x|θ)
to f(x|θ∗). Therefore, we only have to estimate the second term, which is cross

entropy or expected log-likelihood given by

−H(θ∗; θ) = −E[logf(X|θ)] = −
n∑

i

E[logfi(xi|θ)], (5.2)

which can be estimated by

−
n∑

i

logfi(xi|θ) = −logL(θ|X). (5.3)

In (5.3), logL(θ|X) is the log likelihood function of θ given the observations. In

practice, we would estimate the parameter vector, typically using the MLE θ̂ of θ,

and so we use the maximized log likelihood function to approximate in (5.2) given by

−
n∑

i

logfi(xi|θ̂) = −logL(θ̂|X). (5.4)

Thus, when there are competing models for a dataset, selecting the model with

the highest maximized likelihood (or lowest negative maximized likelihood) should

provide a model nearest to the true data generating process. All the information

criteria use this approximation for the KL distance from the true model to penalize

a poorly-fitting model. The difference then, is in the penalty for model complexity.
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5.3 Akaike’s Information Criterion AIC

Akaike (1973) developed the information-theoretic criterion AIC for the identification

of an optimal a parsimonious model to choose for in data analysis from a class of

competing alternative models. Let Mk for k = 1, 2, ..., K be a set of competing model

indexed by k = 1, 2, .., K. Then the criterion

AIC = −2logL(θ̂|X) + 2k, (5.5)

which is minimized to choose a model Mk over the set of models is a natural sample

estimator of twice negentropy 2E[I(θ∗; θk)], or minus twice the expected log likelihood,

−2E[logf(x|θk)] of the true distribution with respect to a model with parameters

determined by the method of maximum likelihood Bozdogan (1987).

5.4 Schwarz’s Bayesian Criterion SBC

Schwarz (1978) proposed another criterion using Bayesian framework to choose the

best fitting model to the observed data. SBC is defined by

SBC = −2logL(θ̂|X) + klog(n), (5.6)

where k is the number of parameters, and log(n) denotes the natural logarithm of the

sample size n. SBC introplaces a heavier penalty term, then does AIC. Therefore, it

should work well in large samples.

5.5 Consistent Akaike’s information Criterion CAIC

Bozdogan (1987) developed CAIC to obtain stronger penalty term instead of the

debatable magic number 2 in AIC, which has been questioned unfairly as being

arbitrary. Bozdogan (1987) proposed to make AIC consistent by making the
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multiplier of the free parameter in the penalty term depend on the sample size

n. Therefore, CAIC penalizes overly-complex models with the penalty term. It

is defined by

CAIC = −2logL(θ̂|X) + k[log(n) + 1] (5.7)

The penalty of CAIC is similar to that of SBC. But it has the added number of

parameters term in addition to klog(n). This gives us mush stringent penalty term,

which penalizes overparametrized models more than AIC, and SBC.

5.6 Information Complexity ICOMP Criterion

The approach we take in this research is based on cost functions which measure the

goodness of fit, or the performance, of a fitted model for a given dataset. The risk, that

is, the expected cost of choosing the best fitting model, will be measured in terms of an

entropic or information-based criterion which is based on a different characterization

of good models by combining penalties with the lack-of-fit, lack-of-parsimony, and the

profusion of complexity. Bozdogan (1988, 1990, 1994, 2004) developed information

theoretic ideas of a measure of “overall” model complexity in statistical modeling

to help provide new approaches relevant to statistical inference. The information

complexity index ICOMP measures the fit between multivariate structural models and

observed data as an example of the application of the covariance complexity measure.

Van Emden (1971) provides a reasonable definition of informational complexity of a

covariance matrix Σ, denoted by C0(Σ), under the multivariate normal distribution

assumption. Bozdogan (1988) proposed to use the maximal amount of complexity

of the covariance matrix Σ that is an upper bound C0(Σ) measure. A maximal

information-theoretic measure of complexity of a covariance matrix of a multivariate

normal distribution is then defined as

C1(Σ) =
s

2
log

[
tr(Σ)

s

]
− 1

2
log |Σ| , (5.8)
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where s = dim(Σ) = rank(Σ). Bozdogan (1988) further introduced C1F (Σ) by

relating C0(Σ) to the Frobenious norm characterization of complexity CF (Σ) of Σ is

defined by

C1F (Σ) =
1

4λa
2

s∑

j=1

(λj − λa)
2

=
s

4

[
tr(Σ)′Σ)

s
− tr(Σ)

s2

tr(Σ)
s2

]
, (5.9)

where λj denotes the eigenvalues of Σ,and λa denotes the arithmetic mean of the

eigenvalues. Note that C1F (·) is scale invariant and C1F (·) ≥ 0 with C1F (·) = 0

only when λj = λ for j = 1, ...p. Also C1F (·) measures the relative variation in the

eigenvalues, rather than the absolute values of the eigenvalues. For a general model,

in terms of a loss function,

LOSS = Lack of fit + Lack of Parsimony +Profusion of Complexity,

ICOMP is defined by

ICOMP = −2 logL(θ̂) + 2C1(Cov(θ̂)), (5.10)

where C1(·) measures the complexity of Cov(θ̂) = Σ(θ̂). That is, θ̂ ∼ N(θ∗,Σ(θ̂) =

F̂−1) where F̂−1 is the inverse of the estimated Fisher information matrix. We did

not use this version of ICOMP in the mixtures of factor analyzers model since the

MFA model is more complex-overparametrized model which needs a much heavier

penalization.

A very useful form of ICOMP can also be derived under the Bayesian framework by

maximizing a posterior expected utility (PEU), as shown in Bozdogan and Haughton
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(1998). ICOMPPEU enforces a stricter penalty and is defined as

ICOMPPEU = −2 log(θ̂|X) + k + 2C1(F̂−1) (5.11)

If we have a more complex-multivariate model, we would like to use stronger penalty to

choose a parsimonious the true model. Consistent information complexity, ICOMPC ,

was developed by Bozdogan (2010), and use in Deniz and Bozdogan (2010) is defined

as

ICOMPC = −2 log(θ̂|X) + 2C1(F̂−1) + k + 2k log(n). (5.12)

We provide a few highlights of the proof and justification from Bozdogan

(2010).We consider a composite utility U = U1 × U2. Let

U1 = KL (fPost (θ | X) , fPrior (θ | Mk))

to be a utility function (Lindley, 1956; Poskitt, 1987), which relates to the the

goodness-of-fit of the model, and define a second utility function given by

U2 = exp
[
−log(n)tr(F̂−1R̂)− C1(F̂−1)

]
,

where F̂ and R̂ are the two forms of the Fisher information matrices. F̂ is the inner-

product (or Hessian) form, and R̂ is the outer-product form. This second utility

U2 relates to the lack of parsimony and the profusion of complexity of the model.

Therefore, logU = logU1 + logU2. For a given model Mk of dimension k, we can

consider the KL distance between the posterior and prior densities given by

KL (fPost (θ | X) , fPrior (θ |Mk)) = −k
2
log (2π)−k

2
−1

2
log |F̂−1|−log fPrior (θ |Mk) .

(5.13)

Now setting in (5.13), logU1 = KL and

logU2 = −log(n)tr(F̂−1R̂)− C1(F̂−1), (5.14)
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so logU becomes

−k
2
log (2π)−k

2
−1

2
log |F̂−1|−log fPrior (θ | Mk)−log(n)tr(F̂−1R̂)−C1(F̂−1). (5.15)

The posterior expected utility can be approximated by

log (PEU) ∼= log f(X | θ̂) + k

2
log (2π) +

1

2
log |F̂−1|+ log (U) + log fPrior

(
θ̂ |Mk

)
,

(5.16)

simplifying (5.16), we thus obtain a criterion to be maximized to choose a model

log f(X | θ̂)− k

2
− log(n)tr(F̂−1R̂)− C1(F̂−1) + log f (Mk) . (5.17)

Further, we note that if the model is correctly specified, F̂ and R̂ would be equal to

one another. That is, if F̂ = R̂, then tr(F̂−1R̂) = tr(Ik) = k. In this case, we have

the consistent ICOMP given by

ICOMP (F̂−1)C = −2 logL(θ̂|X) + k + 2klog(n) + 2C1(F̂−1). (5.18)

5.7 Information Criteria for the Standard Factor

Model

For a given standard k-factor model, information criteria are used to choose the

number of factor in the Standard factor (SFA) model. Criteria are minimized for the

best fitting model for a given dataset among k different factor models. The covariance

structure of the SFA model is defined by

Σk = ΛkΛ
′
k +Ψk, (5.19)
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where k = 1, 2, ..., big factor for a sample of n observations, the likelihood function is

L(µ,Λk,Ψk) = (2π)−np/2 |ΛkΛ
′
k +Ψk|−n/2

exp

{
−1

2
tr(ΛkΛ

′
k +Ψk)[

n∑

i=1

(xi − µ)(xi − µ)′]

}
. (5.20)

We maximize the likelihood function by

maxL(µ,Λk,Ψk) = L(µ̂, Λ̂k, Ψ̂k) = (2π)−np/2
∣∣∣Λ̂kΛ̂

′
k + Ψ̂k

∣∣∣
−n/2

exp

{
−1

2
tr(Λ̂kΛ̂

′
k + Ψ̂k)nS

}
, (5.21)

where S is the sample covariance matrix defined as S = X′X
n

and that A = nS = X ′X ,

sum of squares and cross product matrix.(Akaike, 1987). The log-likelihood function

is

logL(µ̂, Λ̂k, Σ̂k) = −np
2

log(2π)− n

2
log
∣∣∣Σ̂k

∣∣∣− 1

2
trΣ̂knS. (5.22)

The lack of fit term for the SFA model given by

− 2 logL(µ̂, Λ̂k, Ψ̂k) = n
[
log(2π) + log

∣∣∣Σ̂
∣∣∣+ tr(Σ̂kS)

]
. (5.23)

The number of free parameters in the SFA model is computed by s∗ = kp + k −
1
2
k(k − 1). Accordingly, the derived forms of AIC, CAIC, SBC, ICOMPC and

ICOMPPEU to choose the number of factors in the SFA model in this dissertation

are given as follows.

AIC = n
[
plog(2π) + log|Σ̂k|+ tr(Σ̂−1

k S)
]
+ 2s∗, (5.24)

CAIC = n
[
plog(2π) + log|Σ̂k|+ tr(Σ̂−1

k S)
]
+ s∗[log(n) + 1],

SBC = n
[
plog(2π) + log|Σ̂k|+ tr(Σ̂−1

k S)
]
+ s∗log(n).
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Similary the information complexity (ICOMP ) criterion is given as follows.

ICOMPC = n
[
plog(2π) + log|Σ̂k|+ tr(Σ̂−1

k S)
]
+2C1(F̂−1

k )+ s∗+2s∗log(n), (5.25)

where

F̂−1
k (π̂) =


 Σ̂k 0

0 2
n
D+

p (Σ̂k ⊗ Σ̂k)D
+′
p


 , (5.26)

and where

C1(Σ) =
r

2
log

[
tr(F̂−1

k )

r

]
− 1

2
log
∣∣∣F̂−1

k

∣∣∣ . (5.27)

In (5.27), r = rank(F̂−1
k ) For more detail on the above, we refer the reader to

Bozdogan (2010).

5.8 Information Criteria for the Bayesian Factor

Model

As with the SFA model information criteria are used also to choose the number of

factors in the Bayesian factor (BFA) model. Criteria are minimized to choose the best

fitting BFA model for a given dataset. The covariance structure of the BFA model

for the kth factor is given by

Σk = ΛkHΛ′
k +Ψk, (5.28)

where k = 1, 2...big factor. When H , inter factor correlation matrix equals Ik, we

obtain the orthogonal factor model. The number of free parameters s∗ = (kp + p)−
1/2k(k − 1) in the model is less than the number of parameters in the covariance

matrix.
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Corresponding to the covariance structure in (5.28), the lack of fit term in the

BFA model is given by

− 2 logL(µ̂, Λ̂k, Ψ̂k) = n
[
p log(2π) + log |Σ̂k|+ tr(Σ̂−1

k S)
]
, (5.29)

where S is the observed covariance matrix, S = X′X
n

and Σ̂k is the Bayes estimator

of the covariance matrix obtained from fully Bayesian estimation results discussed in

Section 3.3.1, 3.3.2, 3.3.3. Therefore, the derived forms of the information criteria at

the posterior estimation level are given as follows.

• Akaike’s information criterion

AIC = n
[
plog(2π) + log(|Σ̂k|) + tr(Σ̂−1

k S)
]

+2(number of nonzero loadings + 1/2k(k + 1) + p).

• Consistent AIC of Bozdogan (1987)

CAIC = n
[
plog(2π) + log(|Σ̂k|) + tr(Σ̂−1

k S)
]

+(log(n) + 1)(number of nonzero loadings + 1/2k(k + 1) + p).

• Finite sample version of Bozdogan (1988)

ICOMP = n
[
plog(2π) + log(|Σ̂k|) + tr(Σ̂−1

k S)
]
+2[(m+1)C1(Ψ̂k)+pC1(Ĥ

−1
k )].

5.9 Information Criteria for the Mixture Factor

Model

In the mixture of factor analyzers (MFA) model, the major problem confronted by

the researchers and the partitioners is the selection of the optimal number of clusters
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present in a given dataset and at the same time to reduce the curse of dimensionality

on the factors. This results in choosing also the number of factors to be extracted in

the MFA model. Hence one must deal with both of these problems in a simulation

fashion. This is not a trivial problem to deal with without using and developing

information-theoretic model selection criteria. To use the usual likelihood ratio type

criterion in the MFA model is an impossible problem to deal with since the problem

here is not hypothesis testing problem. Furthermore, one does not know how to

implement the likelihood ratio criterion in choosing the number of mixtures and at

the same time to choose the number of factors in the MFA model. Therefore, in

this dissertation, for the first time we develop and introduce information criteria to

choose the number of mixtures and also the number of factors for a given dataset

simultaneously. In other words, we learn the number of clusters resent and at the

same time reduce the dimensionality of the dataset. This approach gives us a practical

modeling approach in a complex MFA structure.

In the MFA model, the AIC criterion penalizes model complexity with four times

the number of estimated parameters since we need a heavier penalty. From Bozdogan

(1994), AIC thus becomes

AIC = −2logL(θ̂|X) + 4s∗. (5.30)

where −2logL(θ̂|X) is twice the log of the maximized likelihood if the MFA model and

s∗ is the number of free parameters in the MFA model. Note that for a mixture of m

factor models indexed by m = 1, 2, ...,M , there is a different covariance structure in

each mixture cluster. That is, Σ1 = Λ1Λ1
′+ψ, ...,Σm = ΛmΛm

′+ψ form = 1, 2, ...,M .

The number of free parameters is then given by

s∗ = mp + (m− 1) +m(pk + p− 0.5k(k − 1)), (5.31)
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where k is the number of factors, and m is the number of mixtures and p=number of

variables, or the dimension of the data.

Similarly, SBC for the MFA model is

SBC = −2logL(θ̂|X) + s∗log(n). (5.32)

Consistent AIC (CAIC) is

CAIC = −2logL(θ̂|X) + s∗[log(n) + 1]. (5.33)

We provide other forms of ICOMP criterion of Bozdogan (2010) from his

furthering book as follows. These are modifications of the original criterion ICOMP

which guard the research to the presence of skewness and kurtosis in the data and

against non-Gaussianity.

ICOMPC = −2lnL(θ̂) + 2C1F (Σ̂) + s∗ + 2s∗ log(n)

ICOMPCMISS = −2logL(θ̂|X) + 2C1F (F−1
MFA) + s∗ + 2 log(n)

ns∗

n− s∗ − 2

ICOMPPEULN = −2logL(θ̂|X) + log(n)C1F (F−1
MFA) + s∗

ICOMPPEUMISS = −2logL(θ̂|X) + 2C1F (F−1
MFA) + s∗ + 2

ns∗

n− s∗ − 2

ICOMPPEULNMISS = −2logL(θ̂|X) + log(n)C1F (F−1
MFA) + s∗ + 2

ns∗

n− s∗ − 2
,(5.34)

where C1F is given in (5.9). For a mixture of m factor analyzers, we can define

the estimated covariance matrix, Cov(θ̂) = F̂−1
MFA as a block diagonal matrix which

combines the diagonal matrix of the mixing proportion and the estimated inverse
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Fisher information matrix of each mixture is given by

F̂−1
MFA =




F̂−1(π̂) 0 0 . . . 0

0 F̂−1
1 0 . . . 0

0 0 F̂−1
2 . . . 0

... 0 0
. . .

...

0 0 0 . . . F̂−1
m




, (5.35)

where

F̂−1(π̂) =




1
π̂1

0 . . . 0

0 1
π̂2

. . . 0
... 0

. . .
...

0 0 . . . 1
π̂m



, and

F̂−1
m (π̂) =


 Σ̂m 0(p×(p+1)/2)

0((p+1)/2)×p)
2
nm
D+

p (Σ̂m ⊗ Σ̂m)D
+′
p


 .

The rational of showing these different forms is based on the fact that one needs

different penalty functions depending upon the complexity of the datasets. We score

all these criteria, but report only ones which give us parsimonious and reasonable

solutions to the real data sets we utilized in this dissertation to achieve the Occan’s

Razor in the model fitting process.

5.9.1 Regularized Covariance Matrix

In cluster analysis, and MFA models often number of observations can be less than

number of variables. That is n < p . In such a case, we have the ill-conditioned and

non-positive definite covariance matrices. Therefore, it becomes difficult to estimate

the covariance matrix Σ. The inverse of Σ may not exist and any estimator of the

covariance matrix becomes unreliable. This lends itself to serious computational

problems in the analysis, and model fitting process. To resolve such this problems, in

this section we introduce robust estimators of Σ for the MFA model. We regularize
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(shrink) Σ̂ in the hopes of achieving a robust estimator. Most regularize estimators

take the from the form of the naive ridge regularization given by

Σreg = [Σ̂ + αIp], (5.36)

where α is called naive ridge parameter, 0 < α < 1, to be determined. This

works to counteract the instability in Σ̂ by adjusting the eigenvalues of Σ̂. There

are many different robust covariance estimators have been developed as a way to

data adaptively improve ill-conditioned and/or singular covariance matrix estimates.

Several of them use ridge regularization with a different alpha given in (5.36). In

this dissertation, we use three different forms of smooth covariances. These are:

the Maximum Likelihood/Empirical Bayes (MLE/EB), Stipulate Diagonal (SD) and

Convex-Sum (CS), to regularize the covariance matrices in MFA model.

When α is taken (p− 1)/ [ntr(Σ−1)] in the (5.36), then the MLE/EB regularized

covariance matrix is defined by

Σ̂MLE/EB = Σ̂MLE +
(p− 1)

ntr(Σ̂−1
MLE)

Ip. (5.37)

When α is taken p(p − 1)[2ntr(Σ̂)]
−1

(5.36), then we have the Stipulate Diagonal

Smooth Covariance defined by

Σ̂SD = Σ̂ + p(p− 1)[2ntr(Σ̂)]
−1
Ip. (5.38)

Finally, the Convex-Sum Estimator (CSE) Covariance is defined by

Σ̂CS =
n

n +m
Σ̂ +

(
1− n

n+m

)[
tr(Σ̂)

p

]
Ip, (5.39)
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where m =
[
p(1 + tr(Σ̂)

2

tr(Σ̂2)
− 2)

]
/
[
p− tr(Σ̂)

2

tr(Σ̂2)

]
.

In our computations, we do not always replace MLE covariance estimator with the

regularized covariance estimator unless we faced with ill-conditioned (κ(Σ̂−1) < 1e−10)

or non-positive definite covariance matrix estimators. For instability of the covariance

matrix, we use Thomaz stabilization (Thomaz, 2004) defined by

Σ̂Thomaz = V




max(λ1, λ) 0 · · · 0

0 max(λ2, λ) · · · 0
...

...
. . .

...

0 0 · · · max(λp, λ)



V ′, (5.40)

where V is the eigenvectors matrix of Σ̂.

Example: We illustrate the regularization of the covariance matrix using the

smoothed covariance estimators and the stabilization on the wine dataset given in

Appendix A for the MFA model. Table 5.1 through 5.6 show the model selection

results using regularized covariance matrix with/without stabilization in the MFA

model. As can be seen from the results, the number of mixtures and the number

of factors chosen for this dataset are the same with/without stabilization method.

Note that in Table 5.2 ICOMPCMISS score only with smoothed MLE/EB covariance

matrix is the minimum at m̂ = 2 mixtures and k̂ = 6 factor model. Therefore, in our

later analysis of the wine dataset we use MLE/EB covariance estimator.
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Table 5.1: ICOMPCMISS scores using stabilization and smoothed MLE/EB
Covariance matrix.

M �K 1 2 3 4 5 6 7 8

1 27966 28202 28455 28740 29043 29365 29699 30035
2 31427 31808 34543 37832 52363 -80302 8353 16335
3 36580 46694 5292 24289 26224 2755 28067 28432
4 49022 26915 31176 34335 33045 32291 36241 36903

Table 5.2: ICOMPCMISS scores using only smoothed MLE/EB Covariance matrix.

M �K 1 2 3 4 5 6 7 8

1 13146 13092 13228 13326 13609 13892 14212 14543
2 25110 27845 29477 33217 47553 -85767 3321 11310
3 28939 41221 5851 23685 26801 26946 27852 27808
4 47131 18781 29420 33197 38835 42868 47168 49673

Table 5.3: ICOMPCMISS scores using stabilization and Stipulate Diagonal
Covariance matrix.

M �K 1 2 3 4 5 6 7 8

1 27967 28204 28462 28739 9043 29366 29699 30037
2 31427 31807 33753 37832 52363 -80296 8350.1 163497
3 35228 43648 5695.1 25208 27758 29281 30608 30074
4 514287 30972 28628 32591 31395 312127 33359 32442

Table 5.4: ICOMPCMISS scores using only Stipulate Diagonal Covariance matrix.

M �K 1 2 3 4 5 6 7 8

1 13147 13093 3229 13326 13610 13893 14212 14543
2 25102 27844 29092 33218 47731 -85736 3059.4 11335
3 38798 47176 283.83 23402 27443 23283 21935 28233
4 49801 31265 31964 34539 33729 38416 36075 36164
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Table 5.5: ICOMPCMISS scores using stabilization and Convex-Sum Covariance
matrix.

M �K 1 2 3 4 5 6 7 8

1 27911 28147 28403 28682 28987 29309 29643 29978
2 31091 31459 33396 37941 52520 -80773 8479 16359
3 33414 47402 1279 22221 26369 25552 27761 26690
4 50249 22412 30156 32571 39051 31201 34821 39106

Table 5.6: ICOMPCMISS scores using only Convex-Sum Covariance matrix.

M �K 1 2 3 4 5 6 7 8

1 22319 22540 22797 23070 23375 23697 24029 24364
2 32623 33939 37473 42566 57007 -76171 13027 20758
3 39339 48872 10433 35570 31071 32298 36337 37424
4 57913 39800 35753 50600 55595 50547 54476 60711
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Chapter 6

Genetic Algorithm

6.1 Overview of Genetic Algorithm

In the 1950s and 1960s, computer scientists began research on an evolutionary system

as a optimization tool. The idea was to evaluate a large population of potential

solutions using the operators inspired by natural selection to obtain an optimal

solution. The idea of evolutionary computing was introduced in the 1960s by I.

Rechenberg in his work “Evolution strategies” (Evolutions strategies in original). His

idea was then developed by other researchers. Genetic Algorithms (GAs) were further

developed by John Holland and his students and colleagues in the 1960s. Holland

presented the GA as an abstraction of biologic evaluation and gave a theoretical

framework for adaptation under the GA in his 1975 book “Adaption in Natural

and Artificial Systems.”, see e.g., Holland (1975). His article in Scientific American

(Holland, 1992) contributed further to GA’s popularity.

The GA is a stochastic or probabilistic search algorithm that employs natural

selection and genetic operators. A GA treats information as a series of codes on a

string, where each string represents a different solution to a given problem. The GA

works by moving from one population of chromosomes to a new population by using
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concepts of natural selection embodied in with genetic operators, such as crossover,

mutation and inversion. Genetic algorithms are less susceptible to getting stuck at

local optima than gradient search methods. One advantage of the GA approach is

that it is easy to incorporate arbitrary kinds of constraints and objectives as weighted

components of the fitness function, making it easy to adapt the GA to the particular

requirements of a very wide range of possible problems.

6.1.1 Basic Terminology

In the typical GA, the chromosome is a binary string, having two possible values:

0 and 1. Each position in the string is a gene. Each chromosome is a point in the

search space of candidate solutions. A set of solutions (represented by chromosomes)

of a generation is a population. The first generation of the GA process is usually

generated as a set of wildly guessed or randomly generated solutions. Each iteration,

which is called a generation, has P solutions in GA. More generations mean more

computation time. However, not allowing the process to go through enough iterations

can mean termination with a suboptimal result. The GA operating on a population of

chromosomes from current population to generate a pair of new solutions, are called

offsprings. The genetic algorithm requires a Fitness function that assigns a score

to each chromosome based on its ability to solve the problem under consideration.

At each iteration of the GA process, each chromosome in the current population is

ranked according to their fitness score.

6.1.2 GA Operators

Genetic algorithms proceed with three types of operators: selection, crossover and

mutation.

Selection: This operator selects chromosomes in the population to reproduce.

In the original GA of Holland, the chance of a chromosome being selected was
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that chromosome’s fitness divided by the average fitness of the population. In

the tournament selection method two chromosomes are randomly selected from the

current population but the one with higher fitness value is added into the mating

pool. This procedure is stopped, when the desired number of chromosomes is

selected. A benefit of this method is that much computation time is saved due to not

computing fitness values on the entire population. However, it is possible that the

best solutions would never be evaluated for, since chromosomes are selected randomly

with this method. Another selection operator is Linear ranking selection, in which all

chromosomes in the current population are ranked according to their fitness value.

The probability of selecting chromosome i for the replacement step is pi = 2(n−j)
n(n−1)

where n is the population size and j is the position of the chromosome i in he ranking

(Alba and Dorronsoro, 2008).

There are still other selection methods, one example is roulette wheel sampling,

which probabilistically selects chromosomes based on their fitness (Goldberg, 1989).

Chromosomes are mapped one-to-one into the interval [0, S], where S is the sum of

the fitness values over all chromosomes in the current population. Each chromosome

is assigned a slice of a circular roulette wheel, the size of the slice being proportional to

the chromosome’s fitness. To select the chromosome, a random number is generated

in the interval [0, S], and the chromosome whose slice spans the random number is

selected (Chipperfield, 1997). Our selection operator is akin to using roulette wheel

selection. We firstly compute the bin width as follows

b =
2

(P (P + 1)
, b ∈ [0, 1], (6.1)

then bin limits (Blow,Bupp) are computed for each chromosome. To select the

chromosome, a random number is generated in the interval [Blow,Bupp] and the

chromosome whose slice spans the random number is selected.

Crossover: This operator randomly chooses a crossover point, and exchanges

the estimated group label before and after that locus between two chromosomes to
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create offsprings. The crossover probability is defined to be the probability that two

chromosomes are chosen to crossover. The crossover probability is denoted by pc,

and typically it is in the (0.6, 0.9). If no crossover takes place, then the original

chromosomes are duplicated. If the crossover probability is 1, then all the offsprings

crossover. There are three types of crossover corresponding to different locations of

the cross point: single point, multiple point, and uniformcrossover.

Random single point crossover is used in this research.An integer is selected

randomly between 2 and L (chromosome length), since we would like to switch labels

for more than a single observation between chromosomes. For example, ”|” shows a

crossover point in the following.

For multipoint crossover, we select m crossover positions in the interval [2,

L] randomly with no duplication. Then the values between crossover points are

exchanged between two chromosomes to produce two new offsprings.

Every value is a potential crossover point for uniform crossover. A chromosome

is generated randomly and its parity of the bits indicates which chromosome will

supply the offspring with which bits. This generated chromosome is called mask.

As an example, P1 and P2 are current chromosomes and O1 and O2 offsprings are

generated from P1 and P2 according to the mask. The first offspring O1 is produced

by taking the bit from P1 if corresponding mask bit is 1, or the bit from P2 if the

corresponding mask bit is 0. The second offspring O2 is generated by swapping P1

and P2.
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Mutation: Mutation produces changes in gene sequences by randomly changing

a value. Chromosomes are selected with a certain probability, then for each selected

chromosome, the positions are chosen with the same probability of mutation (≤ 10%)

to mutate. The higher the mutation probability, the smaller is the danger of

premature convergence. This operator has a big role in the GA because a population

of chromosomes could quickly become homogenous and get stuck in a local optimum

without mutation.

6.1.3 Steps of a Simple Genetic Algorithm

The outline of the GA procedures for model parameter estimation and model selection

is summarized as follows Mitchell (1998):

1. Create an initial generation with a population of p chromosomes.

2. Rank each chromosome in the population according to the given fitness function.

3. Repeat the following steps until a new population has been created.

(a) Perform crossover on selected chromosomes with the given method and

crossover probability and create the new population.

(b) Perform mutation on the new population with the given mutation proba-

bility.
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4. Use the elitism rule if required. Elitism means that the best chromosome in the

current population is guaranteed to be included in the new population.

5. Replace the current population with the new population.

6. Repeat step 2-5 until certain converge conditions are satisfied.

6.2 Genetic Algorithm for RegularizedMahalanobis

Distance

We use an estimation technique to show how the mixture of factor analyzers (MFA)

model can be fitted efficiently using an extension of the EM with an intelligent

initialization algorithm proposed in this dissertation. We purpose to use the Genetic

Algorithm for Regularized Mahalabonis Distance (GARM) to initialize the EM

algorithm of mixture of factor analyzers. In clustering, as is well known, the Euclidean

distance is used to compute the distance between the assigned cluster centers.

When between-cluster variation is much larger than the within-cluster variation, any

reasonable clustering method will be able to detect the clusters regardless of the

cluster shape. Clustering algorithms with the Euclidian distance have an undesirable

tendency to split large and elongated clusters Mao and Jain (1996). In fact, they

found that many clusters have neither larger variation between clusters than within

clusters nor the spherical shape. Because of this, they used the Mahalanobis distance

given in (6.2) to fit hyperellipsoidal clusters. This measurement takes into account the

covariance (or correlation) distance is defined by among the variables when computing

statistical distances.

mi (k) = (xi − µ̂k)
′ Σ̂−1

k (xi − µ̂k) (6.2)

where µ̂k is the estimated mean vector of cluster k, and Σ̂−1
k is the inverse of the

covariance matrix of cluster k, and xi is the observation vector. Mao and Jain (1996)

proposed a regularized Mahalanobis distance in (6.3) to recover from the numerical

55



Figure 6.1: A flow chart of the genetic algorithm.
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problem such as singularity of the sample covariance matrices of clusters, and

producing unusually large or unusually small clusters.The regularized Mahalanobis

distance is defined by

mi (k) = (xi − µ̂k)
′ Σ̂∗

k (xi − µ̂k) , (6.3)

where

Σ̂∗
k =

[
(1− λ) (Σ̂k + εI)−1 + λI

]
,

and where 0 < λ < 1 is a regularization parameter along with ε. Their values give

different shaped and oriented clusters. Therefore, the big issue is how to select λ

and ε, especially λ has a big role in the stabilization the process. Song and Shaowei

(1997) proposed a scaled Mahalanobis distance given in (6.4). The scale parameter c

is constrained to be positive, and they suggest that c = 1 is typically sufficient.

mi (k) = |Σ̂k|c (xi − µ̂k) (Σ̂k)
−1 (xi − µ̂k)

′ . (6.4)

Recently, Howe (2009) used the complexity of the covariance matrix in calculating

the regularized Mahalanobis distance idea that was introduced by Bozdogan. The

advantages of this is that it prevents us to choose λ and ε subjectively.It permits also

the use of the estimators to regularize the estimated covariance matrix. Therefore, we

no longer have to choose a value of scale parameter c arbitrarily. In this manner, the

complexity of the covariance structure is taken into account, i.e., both the determinant

and the trace in the complexity measure. In this dissertation, we use this approach

to regularize the Mahalanobis distance in MFA model. The complexity regularized

Mahalanobis distance is given by

mi (k) = C1(Σ̂
∗
k) (xi − µ̂k)

′ (Σ̂∗
k)

−1 (xi − µ̂k) , (6.5)

where

C1(Σ̂
∗
k) =

rank(Σ̂∗
k)

2
log

(
tr(Σ̂∗

k)

rank(Σ̂∗
k)

)
− 1

2
log(|Σ̂∗

k|).
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Krishna and Murty (1999) applied their distance measure with the GA which

is called GARM. When Pp is the pth member of the current population, the fitness

function used in GARM is defined as

f(Pp) =
a(Pp)

P∑
p=1

a(Pp)

, (6.6)

where

a(Pp) =
1

1 +M(Pp)− min
1≤p≤P

M(Pp)

M(Pp) =

n∑

i=1




K̂∑

k=1

mi(k)


 .

Wicker (2006) extended GARM by implementing a biased mutation operator and

a special operator called the Mahalanobis operator given in (6.7) below. He used

the regularized Mahalanobis distance of Song and Shaowei (1997) in his results. For

each selected chromosome in the new population, we uniformly select each elements to

mutate with given the mutation probability. Looping through the selected datapoints,

the regularized Mahalanobis distance is computed and stored. Mutation operator is

defined as

Mi (k) =
max (mi (k))−mi (k)∑K

k=1 [max (mi (k))−mi (k)]
, (6.7)

Mi (k) represents the mutation chance for datapoint i to be included in cluster k.

All datapoints on selected chromosomes are assigned to the closest group by the

largest Mahalanobis operator. To prevent creating illegal chromosome where all

groups are not represented, a singleton cluster for each missing cluster is created

then p datapoints are pseudo randomly assigned into it (Krishna and Murty, 1999).

By this method, we do not encounter the problem that a datapoint is assigned into a

missing cluster then reassigned into a different missing cluster. We have to assign at
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least p datapoints into singleton to able to invert the covariance matrix.

We use equation (6.6) as a fitness function to rank the solutions to obtain the best

partitioning of the data set in GARM, then apply the crossover operator to obtain

the new population. After selecting the chromosomes to mutate, each datapoint is

assigned to the closest cluster using the Mahalabonis operator given in (6.7). The

algorithm is stopped when it meets the specified GA inputs. Briefly, the steps of our

algorithm are as follows:

1. Create an initial generation with a population.

2. Rank each chromosome in the population according to the fitness function given

by

f(Pp) =
a(Pp)

P∑
p=1

a(Pp)

.

3. Select the datapoints to mutate on the selected chromosomes with the given

mutation probability. Then, mutate the selected datapoints into the cluster to

which they have the highest probability of group membership according to the

mutation operator

Mi (k) =
max (mi (k))−mi (k)∑K

k=1 [max (mi (k))−mi (k)]
, (6.8)

where mi(k) is defined in (6.5).

4. Perform single point crossover on selected chromosomes from the new popula-

tion using the crossover probability.

5. Check for illegal chromosomes. We ensure each chromosome has at least p

members in each cluster. If a cluster disappears, we assign p observations to

that class.
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6. Perform the Mahalanobis operation. In this operation, we choose chromosomes

without replacement, then all datapoints on the selected chromosomes are

mutated into the cluster to which they are most likely to belong according

to the mutation operator given in (6.8).

7. Use elitism rule if desired.

8. Replace the current population with the new population.

9. Repeat steps 2-8 until the specified GA inputs are satisfied.

We use the simulated data shown in Figure 4.2 to illustrate the performance

of GARM in determining the number of mixtures for the simulated dataset. The

confusion matrix of GARM is shown in Table 6.1. Looking at Table 6.1, we see

that a single observation from the first cluster is assigned to the second cluster

and five observations from cluster two re assigned into the first cluster. The

misclassification error in this case is 2%. In comparison to the hybridized K-means

initialization example shown in Section 4.3.2 for the same simulated data set we had

misclassification error which was 4.6% error rate indicating better performance of the

GARM approach.

6.3 Genetic EM Algorithm

The Genetic algorithm (GA) has been used widely in machine learning applications,

including classification and prediction. As we discussed before, the EM algorithm can

Table 6.1: Confusion Matrix of GARM Algorithm

Actual/Predicted 1 2
1 149 1 150
2 5 145 150

154 146 300
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get trapped in one of the many local maxima. The EM algorithm can dramatically

change the results obtained by poor choices of the initial values due to the ruggedness

of the log-likelihood surface of the MFA model. If we have a poor initialization,

the EM algorithm converges slowly.There are various approaches in the literature to

estimate the parameters of the mixture of factor analyzers (MFA) model. Zhou

and Liu (2008) used the EM and Newton Raphson algorithms to estimate the

parameters of the extended MFA of Fokouè (2005). Depending on the starting values,

the iterative EM algorithm can return different parameters estimates. MacLachan

et al. (2003) fit the MFA model by using the Alternative Expectation-Conditional

Maximization (AECM) algorithm of Meng and van Dyk (1997). The difference

from the EM algorithm is that it has more of computational maximization steps

in the M-step of the EM algorithm. The advantage of AECM algorithm is that, it

has a good converge properties and the likelihood function is not decreased after

each iteration regardless of the initial values. In addition to, Cho and Zhang

(2002) implement an evolutionary optimization by distribution estimation with MFA,

which it is abbreviated as EDA algorithm. EDA algorithm replaces crossover and

mutation operators by candidate solutions from the probability distribution. The

distribution needs to be estimated accurately to able to capture the structure of the

given problem in this algorithm. Another algorithm called incremental MFA has

introduced been by Salah and Alpaydin (2004). Their algorithm starts with a one-

factor, one-component mixture model and proceeds by adding new factors or a new

component at each iteration until some stopping criterion is satisfied. Vlassis and

Likas (2002) proposed a greedy EM algorithm to learn the Gaussian mixtures due to

the problems of the regular EM algorithm explained above. This method is similar to

the incremental mixtures of factor analyzers (MFA) model. The algorithm starts with

a single component and adds components sequentially until a maximum number k of

components in terms of the likelihood of a test set is obtained. The final specialized

GA using the expectation maximization algorithm is called GEM, introduced initially

by Wicker (2006) to prevent the usual EM algorithm getting trapped into the local
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maxima. Howe (2009) extended and used GEM algorithm with information criteria

to find the number of mixtures of cluster in the Gaussian and Kernel mixture models.

In this dissertation we use the genetic EM algorithm (GEM) to search the

parameter space of the mixture of factor analyzers (MFA) model more intelligently,

regardless of the initial values. We combine the genetic algorithm (GA) with the EM

algorithm for the MFA model discussed in Section 4.2 to obtain the parameters and

optimize the information criteria to find the best fitting model for a given dataset.

This way, we choose the best the number of factors and number of mixtures in the

MFA model simultaneously. GARM is used to obtain the first population for GEM

algorithm of MFA. The GEM uses a biased mutation operator like GARM but the

mutation operator is now defined as

Pi (k) =
max (hi (k))− hi (k)∑K

k=1 [max (hi (k))− hi (k)]
, (6.9)

where hi (k) (see (4.8)) is the posterior probability of group membership. Pi (k)

denotes the chance of the ith observation belonging to the kth mixture. All datapoints

in a selected chromosome are assigned to the mixture in which they are most likely

belong by this operator. We can summarize our algorithm as follows:

1. Obtain an initial partitions using GARM. Then we use the GARM results as

our initial solutions in GEM to search the parameters space of the MFA model.

That is the values of (Λ,Ψ)

2. Estimate the parameters of the MFA for each chromosome, then calculate the

information criterion scores of each chromosome.

3. Rank each chromosome of the population according to their information criteria

score.

4. For the selected chromosome, choose the datapoints to mutate using the

mutation operator defined in (6.9). In this step, we repeat Step 2 for estimating
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the parameters of the MFA model to compute the posterior probabilities for

the selected datapoints. Then, we assign the selected datapoints to the mixture

cluster where they are most likely to belong. This is to ensure the number of

observations in each mixture to be more than p, the number of variables.

5. Perform crossover on selected chromosomes using single point crossover.

6. Perform the posterior operation in (6.9). In this operation, we select the

chromosomes without replacement. Then, all datapoints in the selected

chromosomes are mutated into the cluster to which they are most likely to

belong according to again (6.9). This is to ensure the number of observation in

each mixture cluster is more than p.Otherwise, we will have singular solutions.

Update the mixing proportion.

7. Use elitism rule if desired.

8. Replace the current population with the new population.

9. Repeat steps 2-8 until the specified GA inputs are satisfied.

6.4 Two Stage Genetic EM Algorithm

As we discussed earlier, the EM algorithm can get trapped in a local maxima. Because

of this, and we introduced the genetic algorithm (GEM) for the MFA model in the

previous section 6.3. Another major issue in MFA model is the current assumption

that covariance matrix of the random error term is assumed to be the same across the

mixture of clusters, and that one extracts the same number of factors. In practice,

this is not a viable assumption. Therefore, one may ask the question: “Why does

the number of factors or the covariances have to be the same for each population?”

To preserve the heterogeneity in the mixture clusters, in this dissertation, we propose

a new method for MFA model to achieve flexibility in our assumptions in order to

be able to obtain different number of factors across the mixture of clusters. In this
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new method, we develop a Two Stage Genetic EM algorithm. In the first stage of

Two Stage GEM, we discover the number mixture clusters by the GARM method,

and then for each partition we obtain the best approximating number of factors by

Kaiser criterion, and then we use the EM algorithm to obtain the parameter estimates

of Λ and Ψ of MFA model. In the second stage of Two Stage GEM, we maximize

the log likelihood function of the MFA model and using the information criteria we

obtain the final number of factors and the covariance matrix of the random errors

for each mixture cluster. To further stabilize the covariance matrix, we use both the

stabilization and smoothing covariance matrix when we have ill-conditioning. The

steps of implementing the Two stage GEM algorithm are follows:

1. Create a partitioning of initial clusters by GARM.

2. Choose the best number of factors that can be extracted for each mixture by

Kaiser criterion, and estimate the parameters using the EM algorithm of the

standard factor model for the best fitting factor model.

3. Calculate the information criterion scores for each chromosome by using the

parameters of the best factor models then rank each chromosome of the

population according to their information criterion.

4. Select the datapoints on selected chromosomes to mutate using the mutation

operator, which is the same operator given in (6.9). To compute the posterior

probability of group membership of the selected datapoints, repeat the step 2

to estimate the parameters of the best fitting factor models of mixtures. Then,

assign the selected datapoints to the mixture where they are most likely to

belong. This is to ensure the number of observations in each mixture to be

more than p, the number of variables.

5. Perform crossover on selected chromosomes.

6. Perform the posterior operation. Select the chromosomes, then find the

posterior probabilities using (6.9) for all datapoints in that chromosome. Of
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course, we repeat step 2 for estimating the parameters of the best fitting

factor models of the mixtures to compute the posterior probabilities of all the

datapoints. Then, all datapoints in selected chromosomes are mutated into the

cluster to which they are most likely to belong. This is to ensure the number of

observations in each mixture to be more than p. Update the mixing proportion.

7. Use elitism rule, if desired.

8. Replace the current population with the new population.

9. Repeat steps 2-8 until the specified GA inputs are satisfied.

Hence, in this manner, we obtain different numbers of factors in each mixture cluster

and different covariance matrix of of random error term. This approach further gives

different covariance matrix structure across the mixture clusters, which preserves the

heterogeneity in the data set.This we like since it gives us a more realistic assumption

in the MFA model. This method is also much faster in its computational time in

more complex problems.
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Chapter 7

Numerical Results

In this chapter, we show all our simulated and real datasets for the standard factor

(BFA) model; Bayesian factor (BFA) model; and the mixture of factor analyzers

(MFA) model. All our computations are carried out using a newly developed

MATLAB module for the SFA, BFA and MFA models. Our results are obtained

running these modules on Newton High Performance Computing (HPC) system at the

University of Tennessee in Knoxville (UTK). Newton is a cluster computing system

designed for the use by researchers at UTK. The computational time and complexity

of the results vary according to the datasets we used and their dimensionality. Most

simulations took less than 30 minutes execusion time to run. Datasets such as

Parkinson, and Breast cancer took about 23 hours using the genetic algorithm in

fitting the MFA model.

7.1 Standard Factor Analysis (SFA)

Consider a simple data set which we generated from a Gaussian distribution with

the true number of factors k∗ = 3, sample size n = 100 and p = 9 variables with

parameters given by
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Λ =




0.9 0.9 0.9 0.1 0.1 0.1 0.1 0.1 0.1 0.1

0.1 0.1 0.1 0.9 0.9 0.9 0.9 0.1 0.1 0.1

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.9 0.9 0.9




′

,

and

Ψ = diag (0.1024, 0.1024, .0400, 0.0400, 0.1600, 0.1600, 0.1600, 0.1600, 0.1600, 0.1600) .

The first three variables (x1, x2, x3) are assigned to factor one, second four variables

(x4, x5, x6) are assigned to factor two, and the last three variables (x7, x8, x9) are

assigned to the factor three. The parameter estimates obtained by the EM algorithm

recovers the true structure of the k∗ = 3 factor model. The parameters are estimated

parameters are given as follows.

Λ̂ =




0.84 0.83 0.83 0.07 0.05 0.07 0.06 0.19 0.21 0.23

0.20 0.17 0.19 0.84 0.85 0.83 0.84 0.18 0.20 0.26

−0.10 −0.12 −0.14 0.05 0.08 0.01 0.03 0.90 0.96 0.98




′

Ψ̂ = diag (0.1311, 0.1059, .0396, 0.0352, 0.0404, 0.1663, 0.1684, 0.1164, 0.0935, 0.1177) .

This shows that the EM algorithm is a good estimation method in the standard

factor model framework. As we mentioned earlier, the best number of factors to fit to

a given dataset obtained by using the information criteria. In this dissertation, the

performances of information criteria are compared according to how they choose the

best fitting true model for a given dataset using the EM algorithm in the SFA model.

For the same simulation protocol given above, we fit the SFA model for k = 1, 2, ..., 6

factors since the maximum number of factor is 6 for p = 10 based on the big factor

formula which gives a upper bound in extracting the number of factors. The number

of factors in the model is chosen by minimizing the information criteria. The model

selection frequencies are shown in Table 7.1.
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Table 7.1: Model Selection Frequencies for the Standard Factor Model.

K AIC ICOMPC CAIC SBC
1 0 0 0 0
2 0 0 0 0
3∗ 85 100 100 100
4 13 0 0 0
5 2 0 0 0
6 0 0 0 0

Out of 100 simulations, all five criteria picked the true structure with a high

frequency. CAIC, SBC and ICOMPC performed very well in picking the true

number of factors, whereas AIC picked the true model 85%. It overestimates the

true model 15%. This tendency of AIC is not surprising since AIC is not a consistent

model selection criterion.

7.1.1 Real Data- Medical School Admission Data

The medical School Admission dataset analyzed here was collected by Bozdogan

(1973) from the Emory University Medical School. In this dataset, there are n = 263

observations medical school applicants on p = 24 different psychological test scores.

Before the formal of this dataset analysis, we obtain the scree plot given in Figure 7.1

and eigenvalues given in Table 7.2. Based on Kaiser (1960) criterion discussed on page

7 of the correlation matrix that are greater than one. In essence this is like saying

that, a factor extracts at least as much as the equivalent of one original variable, we

drop it. For the medical admission dataset, 79% of the total variance is explained by

k̂ = 5 factors based on Kaiser criterion. Now, we fit the SFA model for this dataset

up to 17 factors using the EM algorithm information criteria. As can be seen in

Table 7.3, ICOMP , CAIC, SBC and AIC pick the 4-factor, 6-factor, 7-factor and

12-factor models respectively. We select four factor model for this dataset based on

ICOMP score.The scree plot also supports the selected model since the elbow of
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approximately is at the four model. Further, this is also supported by the Kaiser

criterion. Note that AIC picks k̂ = 12 factors which is high as compared to the other

information criteria. 93% of the variation is explained by 12 factor as opposed to 75%

of the variation is explained by only 4 factors. Although, a high percentage of total

variation be explained with 12 factors; we do not need additional 8 factors to reduce

the complexity of the model to explain further only 18% of the variation. In other

words, from the point of the principal of parsimony, or the Occan’s Razor selecting a

large number of factors does not reduce the complexity of the model. Therefore, the

smaller the number is better fit. We show the estimated Λ̂ and Ψ̂ for the best fitting

k̂ = 4 model.

Figure 7.1: Scree plot for Medical School Admission Data.
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Table 7.2: Eigenvalues of Medical School Admission Data.

Initial Eigenvalues
m Total % of Variance Cumulative %
1 7.737 32.238 32.238
2 6.471 26.963 59.201
3 2.771 11.547 70.748
4 1.072 4.468 75.216
5 1.055 4.394 79.610
6 .750 3.125 82.736
7 .651 2.714 85.449
8 .499 2.079 87.528
9 .459 1.911 89.439
10 .383 1.595 91.034
11 .320 1.334 92.368
12 .247 1.031 93.399

Table 7.3: Model Selection for Medical School Admission Data.

m- factor model AIC ICOMP CAIC SBC
1 4375.5 4557.7 4397.5 4392.7
2 4134.5 4466.3 4167.0 4159.9
3 4023.9 4399.3 4066.4 4057.1
4 3988.7 4387.1* 4040.8 4029.4
5 3974.2 4392.5 4035.5 4022.1
6 3963.2 4401.1 4033.1* 4017.8
7 3955.5 4415.3 4033.7 4016.6*
8 3950.4 4428.0 4036.4 4017.6
9 3946.7 4440.9 4040.0 4019.6
10 3944.0 4453.7 4044.1 4022.2
11 3942.0 4465.7 4048.5 4025.2
12 3941.9* 4479.0 4054.3 4029.7
13 3942.2 4491.4 4060.2 4034.4
14 3942.7 4503.1 4065.7 4038.8
15 3943.1 4513.7 4070.6 4042.7
16 3944.2 4524.0 4075.9 4047.1
17 3945.6 4533.3 4080.9 4051.3
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Λ̂ =




−0.99 −0.95 −0.61 0.60

1.43 −5.89 1.69 0.16

0.70 −7.43 2.92 −0.33

−1.47 3.17 −3.29 1.17

2.22 −5.76 −2.30 5.99

3.21 −2.83 4.87 −4.50

−4.31 −1.59 −1.11 1.87

1.17 −5.99 4.01 −2.14

5.30 −5.49 −1.18 2.99

3.90 −5.97 −1.62 6.01

7.54 −4.08 0.81 −0.75

7.44 −3.45 1.24 −1.11

1.80 −5.10 4.10 −2.45

−1.26 −6.42 3.21 −4.72

−1.62 −7.77 2.18 −0.71

−4.54 −6.28 −2.57 0.68

−1.91 −3.06 −4.59 5.74

−0.63 1.36 −2.20 7.59

1.02 2.67 −5.79 5.94

−3.70 −2.18 −1.16 4.45

−2.36 4.04 −4.94 −4.14

−1.38 3.01 −0.50 −7.37

−0.43 −0.23 2.43 −8.29

1.11 5.11 1.90 −3.22




diag
(
Ψ̂
)
=




66.83

16.23

11.51

21.15

21.42

19.15

62.53

18.06

12.41

7.83

5.48

14.90

36.73

15.76

19.83

42.01

18.37

19.04

9.16

49.19

16.74

13.00

11.22

35.48




7.2 Bayesian Factor Analysis (BFA)

We generate multivariate normal data using the model structure provided correspon-

dence Bozdogan with the population parameters for the ture number of factors k∗ = 3,

sample size n = 100, and p = 9 variables given by
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Λ′ =




0.6 0.7 0.8 0.2 0 0 0.2 0 0

0.2 0 0 0.6 0.7 0.8 0 0.2 0

0 0.2 0 0 0.2 0 0.6 0.7 0.8


 H =




1.0 0.08 0.12

0.08 1.0 0.24

0.12 0.24 1.0




Ψ = diag(0.581, 0.436, 0.360, 0.581, 0.403, 0.360, 0.571, 0.403, 0.360),

where Λ′ is the transpose of factor loading matrix, H is the inter-factor correlation

matrix, and Ψ is the unique variances matrix. As we mentioned earlier, the covariance

matrix is Σ = ΛHΛ′+Ψ. To estimate the parameters of the BFA model, we use Gibbs

Sampling and ICM methods. We use the Sparse Root algorithm to learn the prior

factor pattern structure of Λ0. The hyperparameters of the model are assessed as:

H0 = 10Im, B0 = 0.2Ip and v = 2(p+ 1) + 1.

Using PS89, Gibbs sampling, and ICM methods, we estimated the parameters

for the true BFA model k∗ = 3. In out simulation study and compare the three

estimation methods. Note that the parameter estimates of Gibbs sampling approach

are closer to the true parameter values as compared to PS89 and ICM methods. Since

Gibbs sampling is using the conditional posterior estimates of the parameters rather

than using modal values of the parameters which is used in ICM, Gibbs Sampling

being better can be expected.

Λ̂′

PS89
=




0.44 0.47 0.50 0.12 −0.09 −0.03 0.07 −0.02 0.06
0.09 −0.01 0.01 0.42 0.45 0.54 0.04 0.12 0.04

−0.03 0.08 −0.06 −0.07 0.12 −0.04 0.48 0.45 0.46




Λ̂′

ICM
=




0.47 0.48 0.52 0.07 −0.03 −0.03 0.13 0.01 −0.04
0.12 0.04 −0.05 0.47 0.50 0.50 −0.02 0.13 0.11
0.00 0.06 −0.05 −0.02 0.04 −0.01 0.46 0.51 0.49




Λ̂′

Gibbs
=




0.61 0.59 0.62 0.09 0.00 0.02 0.18 0.07 0.06
0.17 0.02 0.05 0.64 0.63 0.64 0.07 0.23 0.21
0.04 0.11 0.03 0.02 0.14 0.06 0.61 0.59 0.60
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Ψ̂PS89 =




0.35 −0.19 −0.13 −0.02 0.00 −0.07 −0.05 −0.01 0.06
0.32 −0.11 0.01 0.01 0.02 −0.03 0.06 −0.03

0.25 −0.01 0.01 0.03 −0.01 0.00 0.02
0.34 −0.19 −0.12 0.08 −0.04 −0.04

0.30 −0.11 −0.06 0.03 0.04
0.27 0.09 −0.03 −0.06

0.43 −0.22 −0.21
0.25 −0.03

0.24




Ψ̂ICM =




0.25 −0.15 −0.11 0.0143 −0.04 −0.02 0.02 0.00 −0.04
0.26 −0.09 0.02 0.04 0.01 −0.01 0.05 0.02

0.22 0.04 −0.03 −0.04 −0.05 −0.01 0.02
0.27 −0.13 −0.15 0.03 −0.02 −0.02

0.2118 −0.05 0.02 0.03 −0.01
0.23 0.01 0.00 −0.01

0.31 −0.11 −0.21
0.2395 −0.10

0.31




Ψ̂Gibbs =




0.28 −0.09 −0.04 0.09 −0.01 −0.01 −0.04 0.00 −0.02
0.36 0.05 0.08 −0.02 −0.01 0.04 0.15 0.09

0.31 0.12 −0.03 0.00 0.01 0.03 0.01
0.29 −0.09 −0.06 0.02 0.02 −0.06

0.29 0.05 0.11 0.12 0.12
0.28 0.03 0.07 0.03

0.32 −0.04 −0.05
0.32 0.09

0.32




Next, we fit k = 1, 2, ..., 5 factors since the maximum number of factors is 5 when

p = 9. Again, the pattern structures are obtained using the Sparse Root algorithm

corresponding to k = 1, 2, ..., 5 factors to initialize our prior factor loading matrix Λ0

and the other prior hyperparameters are assessed by: H0 = 10Im, B0 = 0.2Ip, and

v = 2(p + 1) + 1. With this set up, we ran 100 simulations using the simulation

structure given previously. The information criteria are scored for k = 1, 2, ..., 5.

the true number of factors is selected using the minimum values of the information

criteria. Finally, we obtained the model selection frequency for different sample sizes

using the Gibbs Sampling, ICM and the PS89 methods. The results from there

simulations are summarized in Tables 7.4 through 7.6. Looking at these tables, we

see that as the number of factors increases, the percentage of hitting the true BFA
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model also increases in all the methods. As can be seen in Table 7.4, PS89, which

is a large sample approximation method, needs more samples to recover the true

structure. All the criteria are minimized at the true factor model k∗ = 3 with highest

percentages. The performance of ICOMP to choose the true model is better than

AIC and CAIC.

We consistently hit the true model over 90% of the times using ICM and Gibbs

sampling even if the sample size is small. The highest frequency is 60% to select

the true model by the PS89 method and this is obtained when n = 200. But

we obtain much higher performance when n = 50 using Gibbs sampling and ICM

methods. Gibbs sampling is the best one to select the true model but there is a

computational cost in using the Gibbs sampling method. It takes at least twice as

much time to compute the estimators as compared to the ICM method. We have

the same performance with 10, 000 ICM iteration, and 20, 000 Gibbs sampling when

the sample size is over 100. Thus, we suggest to use Gibbs sampling for the small

sample sizes, and the ICM method for the large sample sizes, since their performance

is almost the same for large sample sizes. Moreover, we suggest to use ICOMP to

choose the best fitting number of factors in the BFA model.

7.2.1 Crime Data Set

We have analyzed this data using PS89, ICM and Gibbs sampling procedures to

estimate the parameters in the BFA model with a prior loading structure that are

Table 7.4: Model Selection Frequencies in BFA Model for PS89 methods.

n=50 n=100 n=200

1 2 3* 4 5 1 2 3* 4 5 1 2 3* 4 5
AIC 0 30 45 18 7 AIC 1 31 55 12 1 AIC 0 31 59 10 0
CAIC 2 34 45 16 3 CAIC 1 38 50 11 0 CAIC 0 37 58 5 0
ICOMP 0 31 50 13 6 ICOMP 1 35 56 8 0 ICOMP 0 35 61 4 0
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Table 7.5: Model Selection Frequencies in BFA Model for ICM.

n=50 n=100 n=200

1 2 3* 4 5 1 2 3* 4 5 1 2 3* 4 5
AIC 0 2 67 24 7 AIC 0 0 91 7 2 AIC 0 0 91 7 2
CAIC 0 4 71 20 5 CAIC 0 0 96 4 0 CAIC 0 0 96 4 0
ICOMP 0 2 73 20 5 ICOMP 0 0 97 3 0 ICOMP 0 0 97 3 0

Table 7.6: Model Selection Frequencies in BFA Model for Gibbs Sampling.

n=50 n=100 n=200

1 2 3* 4 5 1 2 3* 4 5 1 2 3* 4 5
AIC 0 0 91 8 1 AIC 0 0 100 7 2 AIC 0 0 100 0 0
CAIC 0 0 93 6 1 CAIC 0 0 100 4 0 CAIC 0 0 100 0 0
ICOMP 0 0 90 9 1 ICOMP 0 0 100 3 0 ICOMP 0 0 100 0 0

obtained data-adaptively to determine the number of factors using the information

complexity (ICOMP ). This dataset is collected from 16 US states on different types

of crimes on p = 7 variables: x1 =Murder, x2 =Rape, x3 =Robbery, x4 =Assault, x5

=Burglary, x6=Larceny, x7=Auto theft.

The scree plot and eigenvalues for this dataset are shown in Figure 7.2 and Table

7.7 to have an initial idea about the number of the factors present. Based on the

scree plot, the number of factors in the BFA model is around 2, or 3. Based on the

Kaiser criterion, the 2-factor model is selected. The two factor model explains the

68% of the variation, the 3-factor model explains 81% of the variation, according to

the eigenvalues.

To apply the BFA model on this data, we obtained the prior factor loading matrix

for models up to 4 factors by the Sparse Root algorithm given follows.

Λ0 =




0 0.7 0 −0.6

0 0.6 0.1 0.6

0 0.8 0.1 −0.05

0 0.5 −0.5 −0.04

0 0.4 −0.6 0.09

0.7 0.5 0.1 0.06




.
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Figure 7.2: Scree plot for Crime Data.

Table 7.7: Eigenvalues of the Crime Data.

Initial Eigenvalues
m Total % of Variance Cumulative %
1 3.452 49.308 49.308
2 1.333 19.038 68.346
3 .940 13.432 81.778
4 .627 8.957 90.735
5 .366 5.227 95.962
6 .170 2.429 98.391
7 .113 1.609 100.000
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The inter-factor correlation matrix, H was assessed by H = 10I7. The prior

distribution of Ψ was assessed by B = 0.2I7 and v = 17. As can be seen in Table

7.8, 7.10, 7.12, all of the information criteria are minimized at the true k∗ = 3

factors model regardless of estimation methods we used. According to the parameter

estimates of Λ for the 3-factor model which is the best fit model, we can combine

rape, robbery, assault and auto theft under the first factor; burglary and larceny under

the second factor, and murder is under the third factor by itself.

Table 7.8: Model Selection for the Crime Data Using PS89 Method.

m AIC CAIC ICOMP
1 60034669.46 60034683.64 60034664.78
2 56111797.60 56111824.19 56111788.09
3 29854611.96* 29854650.95* 29854596.32*
4 36971065.83 36971124.33 36971034.20

Table 7.9: Crime Data Results Using PS89 Method.

Factor 1 Factor 2 Factor 3
Murder -0.03 0.51 -0.69
Rape 0.09 0.70 -0.01
Robbery -0.02 0.69 0.02
Assault -0.01 0.80 -0.06
Burglary 0.70 0.42 0.02
Larceny 0.63 0.38 0.38
Auto thief -0.07 0.54 0.47

Table 7.10: Model Selection for Crime Data Using Gibbs Sampling.

m AIC CAIC ICOMP
1 99882961.70 99882975.88 99882954.14
2 90481534.09 90481560.68 90481514.29
3 40863402.77* 40863441.77* 40863370.24*
4 51528807.14 51528865.64 51528754.20
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Table 7.11: Crime Data Results Using Gibbs Sampling.

Factor 1 Factor 2 Factor 3
Murder -0.02 0.50 -0.68
Rape 0.07 0.69 -0.01
Robbery -0.01 0.68 0.03
Assault -0.02 0.79 -0.05
Burglary 0.69 0.41 0.02
Larceny 0.61 0.38 0.38
Auto thief -0.03 0.52 0.43

Table 7.12: Model Selection for Crime Data Using ICM Method.

m AIC CAIC ICOMP
1 113450832.83 113450847.01 113450828.26
2 102329359.91 102329386.50 102329350.41
3 50830819.60* 50830858.60* 50830803.95*
4 61126531.98 61126590.47 61126500.30

Table 7.13: Crime data results using ICM method.

Factor 1 Factor 2 Factor 3
Murder -0.03 0.51 -0.68
Rape 0.09 0.70 -0.01
Robbery -0.02 0.69 0.02
Assault -0.00 0.80 -0.07
Burglary 0.69 0.42 0.02
Larceny 0.62 0.38 0.38
Auto thief -0.08 0.54 0.48
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7.3 EM Algorithm for the Mixture of Factor An-

alyzers with Random, GARM and K-means

Initialization

In this section, we compare the EM algorithm used by Ghahramani and Hinton

(1997).We use GARM and K-means initialization methods on simulated and real

datasets. We compare the performances of information criteria to select the true MFA

model in simulation study and the best approximating model using these initialization

methods.

7.3.1 Estimation of the Parameters

We used simulation one (S1) structure given in Appendix A to generate the

multivariate normal dataset with the number of variables p = 10 and n = 200

observations to estimate the parameters of the MFA model by using the EM

algorithm. The simulated data is generated by combining two Standard factor (SFA)

models. Each factor model is composed of three factors. The estimated parameters

are given in Table 7.14 through Table 7.16. All of the parameter are estimated

obtained by using the EM algorithm and all the three different initialization methods

to choose the true MFA model with m∗ = 2 mixtures and k = 3∗ factors. The

estimates are closer to the true parameter values using the EM algorithm with the

GARM and the hybertized K-means initialization schemes, rather than the random

initialization scheme.

As we discussed earlier, it is really important how to initialize the EM algorithm

so that it converges to a global optimum. Then, the estimates are closer to the real

parameter values with better initialization techniques.
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Table 7.14: Parameter Estimates Using the EM Algorithm for the MFA Model with
Random Initialization.

m π̂m Λ̂m µ̂m diag(Ψ̂m)

1 0.45




−0.42 0.34 −0.29
−0.57 −0.29 0.10
−0.42 0.39 −0.28
−0.51 −0.27 0.12
−0.47 0.42 −0.31
−0.54 −0.32 0.12
−0.39 0.42 −0.30
−0.24 −0.32 −0.49
−0.15 −0.31 −0.56
−0.22 −0.27 −0.52







17.16
17.09
17.13
17.08
17.19
17.08
17.15
17.10
17.08
17.10







0.10
0.10
0.03
0.05
0.03
0.15
0.15
0.13
0.16
0.14




2 0.50




0.60 −0.49 0.00
0.60 −0.48 0.05
0.59 −0.49 −0.03
−0.33 −0.56 −0.37
−0.29 −0.61 −0.38
−0.33 −0.56 −0.35
−0.32 −0.54 −0.38
−0.11 −0.51 0.61
−0.17 −0.54 0.63
−0.12 −0.54 0.58







19.97
19.98
19.95
19.94
19.99
19.96
19.95
20.00
19.99
20.00







0.10
0.10
0.03
0.05
0.03
0.15
0.15
0.13
0.16
0.14
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Table 7.15: Parameter Estimates Using the EM Algorithm for the MFA Model with
GARM Initialization.

m π̂m Λ̂m µ̂m diag(Ψ̂m)

1 0.49




0.58 −0.09 −0.24
0.34 0.58 0.17
0.58 −0.10 −0.30
0.29 0.54 0.15
0.64 −0.11 −0.32
0.29 0.58 0.19
0.57 −0.16 −0.31
0.45 −0.06 0.50
0.42 −0.17 0.54
0.46 −0.11 0.47







17.02
17.02
16.98
17.02
17.03
17.03
17.00
17.03
17.02
17.04







0.10
0.10
0.03
0.05
0.03
0.15
0.15
0.13
0.16
0.14




2 0.51




0.69 −0.40 −0.26
0.68 −0.38 −0.31
0.70 −0.42 −0.23
−0.22 −0.70 0.32
−0.18 −0.74 0.31
−0.22 −0.70 0.30
−0.21 −0.68 0.3
−0.19 −0.39 −0.71
−0.26 −0.42 −0.73
−0.21 −0.42 −0.69







20.03
20.03
20.01
20.02
20.04
20.04
20.03
20.04
20.03
20.04







0.10
0.10
0.03
0.05
0.03
0.15
0.15
0.13
0.16
0.14
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Table 7.16: Parameter Estimates Using the EM Algorithm for the MFA Model with
K-Means Initialization.

m π̂m Λ̂m µ̂m diag(Ψ̂m)

1 0.4949




0.61 0.16 0.00
−0.01 0.66 0.20
0.64 0.15 −0.05
−0.03 0.61 0.15
0.71 0.17 −0.04
−0.06 0.65 0.19
0.66 0.10 −0.06
0.20 0.13 0.63
0.20 0.01 0.67
0.24 0.08 0.61







17.02
17.02
16.98
17.02
17.03
17.03
17.00
17.03
17.02
17.04







0.10
0.10
0.03
0.04
0.03
0.15
0.15
0.13
0.16
0.14




2 0.5051




0.57 0.00 −0.62
0.54 0.04 −0.65
0.59 −0.03 −0.60
−0.01 −0.80 −0.09
0.03 −0.82 −0.13
−0.02 −0.79 −0.10
−0.01 −0.78 −0.08
−0.42 −0.02 −0.72
−0.49 −0.06 −0.74
−0.41 −0.07 −0.73







20.03
20.03
20.01
20.02
20.04
20.04
20.03
20.04
20.03
20.04







0.10
0.10
0.03
0.04
0.03
0.15
0.15
0.13
0.16
0.14
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7.3.2 Model Selection Using the EM Algorithm for the MFA

Model

We generated MFA model which is obtained by combining two multivariate normal

distributions in Appendix A with p = 10 variables and n = 200 observations to verify

the model selection performance using the information criteria in the MFA model. We

performed 100 replications of the simulation protocol in attempting to fit up to the

maximum number of factor K = 6 for each mixture, and m = 1, 2, ..., 4 mixtures. We

use the EM algorithm using all three initialization schemes. Our results are given in

Tables 7.17 through 7.19. We use “ * ” to indicate the true model selection frequencies.

Looking at Table 7.17, the frequency of selecting the true model is over 70 out of

100 simulations with the random initialization scheme. SBC and CAIC have better

performance then ICOMPC and AIC. They both hit the true number of mixtures

(m∗ = 2) and the number of factors (k∗ = 3) with the highest frequency. Although

all of the criteria selected the true number of clusters with over 95%, the selection

of number of factors changes. Looking at Table 7.18 and 7.19, we see that all the

information criteria choose the true model with 100% using GARM and hybridized

K-Means initialization of the EM algorithm for the MFA model. As a result, we

suggest to use AIC, CAIC, ICOMPC or SBC to choose the number of factors and

number of mixtures simultaneously in the MFA model.

7.3.3 Real Data Results Using the EM Algorithm for the

MFA Model

In this section, we apply the EM algorithm in the MFA model is applied on real

datasets. The performances of information criteria to select the best approximating

model using the GARM, the hybridized K-means, and random initialization schemes.

We compare our results from these analyzers in what follows.
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Table 7.17: Model Selection Frequency Using EM Algorithm of MFA with Random
Initialization.

AIC CAIC

m�k 1 2 3* 4 5 6 m�k 1 2 3* 4 5 6

1 0 0 0 0 0 0 1 0 0 0 0 0 0
2* 0 0 77 16 6 0 2* 0 0 81 15 4 0
3 0 0 1 0 0 0 3 0 0 0 0 0 0
4 0 0 0 0 0 0 4 0 0 0 0 0 0

ICOMPC SBC

m�k 1 2 3* 4 5 6 m�k 1 2 3* 4 5 6

1 0 0 0 5 0 0 1 0 0 0 0 0 0
2* 0 18 70 7 0 0 2* 0 0 80 16 4 0
3 0 0 0 0 0 0 3 0 0 0 0 0 0
4 0 0 0 0 0 0 4 0 0 0 0 0 0

Table 7.18: Model Selection Frequency Using the EM Algorithm for MFA with
K-Means Initialization.

AIC CAIC

m�k 1 2 3* 4 5 6 m�k 1 2 3* 4 5 6

1 0 0 0 0 0 0 1 0 0 0 0 0 0
2* 0 0 100 0 0 0 2* 0 0 100 0 0 0
3 0 0 0 0 0 0 3 0 0 0 0 0 0
4 0 0 0 0 0 0 4 0 0 0 0 0 0

ICOMPC SBC

m�k 1 2 3* 4 5 6 m�k 1 2 3* 4 5 6

1 0 0 0 0 0 0 1 0 0 0 0 0 0
2* 0 0 100 0 0 0 2* 0 0 100 0 0 0
3 0 0 0 0 0 0 3 0 0 0 0 0 0
4 0 0 0 0 0 0 4 0 0 0 0 0 0
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Table 7.19: Model Selection Frequency Using the EM Algorithm for MFA with
GARM Initialization.

AIC CAIC

m�k 1 2 3* 4 5 6 m�k 1 2 3* 4 5 6

1 0 0 0 0 0 0 1 0 0 0 0 0 0
2* 0 0 100 0 0 0 2* 0 0 100 0 0 0
3 0 0 0 0 0 0 3 0 0 0 0 0 0
4 0 0 0 0 0 0 4 0 0 0 0 0 0

ICOMPC SBC

m�k 1 2 3* 4 5 6 m�k 1 2 3* 4 5 6

1 0 0 0 0 0 0 1 0 0 0 0 0 0
2* 0 0 100 0 0 0 2* 0 0 100 0 0 0
3 0 0 0 0 0 0 3 0 0 0 0 0 0
4 0 0 0 0 0 0 4 0 0 0 0 0 0

College Data

Our first real dataset is the college data which is composed of k = 2 groups. There

are n = 123 observations. The group one n1 = 34 observation the most selective

schools, group two has and n2 = 89 the more selective schools. This dataset is given

in Appendix A along with other datasets. We executed the EM algorithm initialized

by hybridized K-Means, GARM, and random initialization for k = 1, 2, ..., 5 factors

and m = 1, ..., 4 mixtures. Our results are shown in Table 7.20. Looking at Table

7.20, we see the random initialization seems to be not working well for this dataset.

On the other hand, both GARM and hybridized K-Means are given us reasonable

results using AIC, CAIC, SBC, and the ICOMP criteria. We note that m̂ = 2

mixtures and k̂ = 3 factors seems to be the best approximating model with correct

classification rate 93.31%.

Wine Data

This dataset is obtained from three different wines grown in the same region in Italy.

p = 13 characteristic measurements were taken on n1 = 59, n2 = 71, n3 = 48

cultivators. We executed the EM algorithm initialized by K-Means, GARM and
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Table 7.20: College Data- MFA with EM Results.

MFA Results

IC Random Init. GARM Init. K-Means Init.

MFA Model CCR MFA Model CCR MFA Model CCR

AIC m̂ = 2, k̂ = 1 94.31 m̂ = 2, k̂ = 4 94.31 m̂ = 2, k̂ = 4 94.31

CAIC m̂ = 2, k̂ = 1 94.31 m̂ = 2, k̂ = 4 94.31 m̂ = 2, k̂ = 3 94.31

SBC m̂ = 2, k̂ = 1 94.31 m̂ = 2, k̂ = 4 94.31 m̂ = 2, k̂ = 3 94.31

ICOMPCMISS m̂ = 3, k̂ = 3 80.49 m̂ = 3, k̂ = 3 78.86 m̂ = 3, k̂ = 3 75.61

ICOMPPEUMISS m̂ = 2, k̂ = 6 80.49 m̂ = 3, k̂ = 3 78.86 m̂ = 3, k̂ = 3 75.61

Table 7.21: Wine Data- MFA with EM Results.

MFA Results

IC Random Init. GARM Init. K-Means Init.

MFA Model CCR MFA Model CCR MFA Model CCR

AIC m̂ = 3, k̂ = 3 97.75 m̂ = 2, k̂ = 5 58.43 m̂ = 2, k̂ = 6 60.11

CAIC m̂ = 3, k̂ = 1 97.19 m̂ = 2, k̂ = 5 58.43 m̂ = 2, k̂ = 3 60.11

SBC m̂ = 3, k̂ = 3 97.75 m̂ = 2, k̂ = 5 58.43 m̂ = 2, k̂ = 3 60.11

ICOMPCMISS m̂ = 2, k̂ = 6 60.11 m̂ = 2, k̂ = 6 58.43 m̂ = 2, k̂ = 6 60.11

ICOMPPEUMISS m̂ = 2, k̂ = 6 60.11 m̂ = 2, k̂ = 6 58.43 m̂ = 2, k̂ = 6 60.11

random initialization schemes for m = 1, ..., 4 mixtures and k = 1, ..., 8 factors in the

MFA model. Our The results are summarized in Table 7.21. AIC, CAIC and SBC

pick m̂ = 3 mixtures with random initialization, m̂ = 2 mixtures with GARM and

hybridized K-Means initialization. ICOMP type criteria pick m̂ = 2 mixtures. As

can be seen in the scatter plots given in Appendix A, this dataset is highly overlapped.

Because of this, either m̂ = 3 mixtures and k̂ = 3 factors with correct classification

rate 97.75%, or m̂ = 2 mixtures and k̂ = 6 factors with correct classification rate

60.11% seems to be the best approximating model.

Parkinson Data

Next, we apply the EM algorithm to the Parkinson dataset. This dataset was obtained

from Little et al. (2007) in collaboration with the National Centre for Voice and Speech

in Denver, Colorado. Each variable is a particular voice measure, and each observation
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corresponds to one of n = 195 (n1 = 48 parkinson and n2 = 147 no parkinson disease)

voice recordings from these individuals. There are p = 22 variables in this dataset.

This is a very challenging dataset to analyze since the data is not normal in many

dimensions and the groups are overlapped. This dataset and scatter plot matrix given

in Appendix A. Little et al. (2007) categorized the variables for this dataset under 9

categories. These are:

• Average vocal fundamental frequency

• Maximum vocal fundamental frequency

• Minimum vocal fundamental frequency

• Measures of variation in fundamental frequency

• Measures of variation in amplitude

• Ratio of noise to tonal components in the voice

• Nonlinear dynamical complexity measures

• Signal fractal scaling exponent

• Nonlinear measures of fundamental frequency variation.

We fit the model m = 1, ..., 4 mixtures and k = 1, ..., 15 factors using the EM

algorithm with random, GARM and hybridized K-means initializations. As can be

Table 7.22: Parkinson Data- MFA with EM Results.

MFA Results

IC Random Init. GARM Init. K-Means Init.

MFA Model CCR MFA Model CCR MFA Model CCR

AIC m̂ = 3, k̂ = 8 35.90 m̂ = 2, k̂ = 13 61.03 m̂ = 2, k̂ = 8 56.41

CAIC m̂ = 2, k̂ = 5 65.64 m̂ = 2, k̂ = 7 58.97 m̂ = 2, k̂ = 8 56.41

SBC m̂ = 2, k̂ = 6 58.46 m̂ = 2, k̂ = 7 58.97 m̂ = 2, k̂ = 8 56.41

ICOMPC m̂ = 1, k̂ = 5 - m̂ = 2, k̂ = 4 67.18 m̂ = 2, k̂ = 4 68.21

87



seen in Table 7.22, all information criteria pick m̂ = 2 mixtures with GARM and

hybridized K-means initialization. The results obtained with random initialization

are not consistent across the information criteria. m̂ = 2 mixtures and k̂ = 4 factors

chosen by ICOMP seems to be best approximanting model with highest correct

classification rate of 68.21%. Therefore, we reduce the dimension to 4 factors from

22 original variables for this dataset using the MFA model. Note that our results

further reduces the dimension of this data set on 4-factor model as compared to the

categorization of the variables by Little et al. (2007) under 9 categorization.

Breast Cancer Data

The last dataset to which we apply the EM algorithm for the MFA model is the breast

cancer dataset. This dataset is obtained from the University of Wisconsin Hospitals

and used initially in Mangasarian and Wolberg (1990) paper. It is composed of

n = 569 observations on 30 variables. The first group is called malignant group which

has n1 = 212 observations. The second group is called benign group has n2 = 357

observations. For more details on this dataset, see the Appendix A. Table 7.23 shows

the model selection results for this dataset by different information criteria using the

EM algorithm with random, GARM and hybridized K-means initialization schemes.

As shown in Table 7.23, AIC over estimates the number of mixtures and the number

of factors. CAIC and SBC pick the two mixtures model, but the number of factors

appears to be still high. On the other hand, ICOMP using GARM initialization

picks m = 2 mixtures and k = 9 factors with correct classification error 90.51%.

Therefore, we choose m̂ = 2 and k̂ = 9 MFA model as our best approximating model

for this dataset.

7.4 Genetic EM (GEM) Algorithm

In this section, we apply our Genetic EM (GEM) algorithm for the MFA model on

various simulated and real datasets to prevent us getting stuck in local maxima and
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Table 7.23: Breast Cancer Data- MFA with EM Results.

MFA Results

IC Random Init. GARM Init. K-Means Init.

MFA Model CCR MFA Model CCR MFA Model CCR

AIC m̂ = 4, k̂ = 17 31.63 m̂ = 4, k̂ = 22 37.43 m̂ = 3, k̂ = 22 93.32

CAIC m̂ = 2, k̂ = 16 92.27 m̂ = 2, k̂ = 21 53.08 m̂ = 2, k̂ = 18 86.47

SBC m̂ = 2, k̂ = 16 92.27 m̂ = 3, k̂ = 22 68.72 m̂ = 2, k̂ = 20 89.63

ICOMPCMISS m̂ = 2, k̂ = 9 92.44 m̂ = 2, k̂ = 9 90.51 m̂ = 2, k̂ = 9 88.40

ICOMPPEUMISS m̂ = 2, k̂ = 9 92.44 m̂ = 2, k̂ = 9 90.51 m̂ = 2, k̂ = 9 88.40

ICOMPPEULNMISS m̂ = 1, k̂ = 15 - m̂ = 2, k̂ = 9 90.51 m̂ = 2, k̂ = 9 88.40

obtain better solutions. Moreover, we demonstrate the performances of information

criteria to select the true model using the GEM algorithm in the MFA model.

7.4.1 Estimation of the Parameters

Here, we consider the S1 simulation structure, composed of m∗ = 2 mixtures and

k∗ = 3 factors for each group to show how the parameters are estimated using GEM.

Table 7.24 shows an example of the estimates obtained from using GEM in the MFA

model for the true m∗ = 2 mixtures and k∗ = 3 factors. As can be seen, the estimates

recover the true structure and are quite close to the true parameters values.

7.4.2 Model Selection Results Using the GEM Algorithm for

the MFA Model

We used the simulation protocol given in the Appendix A with n = 200 observations.

The information criteria are used as our fitness function in GEM algorithm to choose

the best fitting model. We fit the MFA model for m = 1, 2, ..., 4 mixtures and

k = 1, 2, ..., 6 factors and for this simulation data. After obtaining the initial partitions

by the GARM method, information criteria are scored using GEM algorithm. Then,

we select the best fitting model by minimizing the information criteria. With this

structure, we executed 100 Monte-Carlo simulations to obtain the model selection
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Table 7.24: Parameters Estimates by the GEM Algorithm.

m π̂m Λ̂m µ̂m diag(Ψ̂m)

1 0.50




0.43 0.53 0.09
0.75 −0.23 0.04
0.46 0.57 0.06
0.68 −0.22 0.00
0.46 0.52 0.08
0.67 −0.20 0.01
0.41 0.53 0.08
0.17 0.00 0.69
0.27 0.02 0.76
0.24 0.02 0.73







16.95
17.13
16.97
17.11
16.98
17.22
17.00
16.98
16.93
16.99







0.0714
0.0980
0.0410
0.0344
0.0536
0.1620
0.1596
0.1602
0.1326
0.1297




2 0.50




−0.09 0.76 −0.19
−0.08 0.74 −0.12
−0.08 0.75 −0.12
−0.77 0.06 −0.07
−0.70 0.06 −0.05
−0.71 0.06 −0.05
−0.72 −0.01 −0.03
−0.20 0.20 0.80
−0.25 0.21 0.81
−0.21 0.30 0.88







20.08
20.11
20.09
20.03
20.08
20.09
20.05
19.88
19.86
19.91







0.0714
0.0980
0.0410
0.0344
0.0536
0.1620
0.1596
0.1602
0.1326
0.1297
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Table 7.25: Model Selection Frequency for GEM algorithm.

Information Criteria # of hitting true model
AIC 100
CAIC 100
ICOMPC 100
SBC 100

frequency. Summary results are shown in Table 7.25. All four information criteria

selected the true model with 100% frequency of choice. As can be seen from

these results, the performances of information criteria are better using the GEM

algorithm than the usual EM algorithm with random, hybridized K-Means or GARM

initialization scheme to choose the true number of mixtures and the true number of

factors in the MFA model.

7.4.3 Real Data Results Using the GEM Algorithm for the

MFA Model

In this section, we executed the GEM algorithm to choose the model to the real

datasets we considered before. GEM parameters used are as follows:

• Number of generations=30,

• Premature termination thresholds=40,

• Population size=20,

• Generation seeding=roulette,

• Crossover probability=0.75,

• Mutation probability=0.10

• Elitism=On.
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We expect to have more stable results with this method since the genetic algorithm

is able to search the entire solution landscape by preventing the EM algorithm from

getting stuck in the local maxima.

College Data

In this data, colleges and universities are organized by how selective they can be for

freshmen. Selectivity is determined by the test scores and high school class standing

of applicants who enroll, plus the proportion of applicants who are accepted which

are totally 9 different measurements. The data is obtained from n1 = 34 the most

selective schools and n2 = 89 the more selective schools. Model selection results using

the GEM algorithm are given in Table 7.26. AIC and ICOMP type criteria pick

the over estimated number of mixtures, but the number of factors selected by these

criteria agree with CAIC and SBC criteria. We note that the best approximating

model for this data set is m̂ = 2 mixtures and k̂ = 3 factors with highest correct

classification rate 94.31%. For the best approximating model (m̂ = 2, k̂ = 3), the

variables are assigned to the factors as follows.

For most selective schools:

• Factor 1 : Percentage of students who were in top 10% and 25% at high school

class standing.

• Factor 2 : ACT composite, 25th percentile and 75th percentile.

• Factor 3 : Acceptance rate of applicants, SAT critical reading, 25th percentile

and 75th percentile, SAT math, 25th percentile and 75th percentile.

For more selective schools:

• Factor 1 : Percentage of students who were in top 10% and 25% at high school

class standing.
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Table 7.26: College Data- MFA with GEM Results.

IC true # of mixtures true # of factors CCR

AIC m̂ = 3 k̂ = 3 77.24

CAIC m̂ = 2 k̂ = 4 94.31

SBC m̂ = 2 k̂ = 3 94.31

ICOMPCMISS m̂ = 3 k̂ = 3 54.47

ICOMPPEUMISS m̂ = 3 k̂ = 3 43.90

• Factor 2: SAT critical reading, 25th percentile and 75th percentile, SAT math,

25th percentile and 75th percentile, ACT composite, 25th percentile and 75th

percentile.

• Factor 3: Acceptance rate of applicants.

Wine Data

Note that this is the same wine dataset we studied before with p = 13 variables

and m = 3 groups. Using the GEM algorithm, our results are shown in Table 7.29.

Looking at the results, AIC picks the m̂ = 3 mixtures with the highest correct

classification rate 96.07%. CAIC and SBC pick m̂ = 2 mixtures with the highest

correct classification rate 60.11%. Finally ICOMP type criteria pick the m̂ = 2

mixtures with the highest correct classification rate around 70%. Because of presence

of overlap, either m̂ = 3 mixtures and k̂ = 3 factors, or m̂ = 2 mixtures and k̂ = 6

factors seem to be reasonable for this dataset. Considering the (m̂ = 3, k̂ = 3) model,

the variables are combined under the factors as follows.

• Factor 1 : Alcohol, Total phenols, Flavonoids, Color intensity

• Factor 2 : Nonflavanoid phenols, Hue , OD280/OD315 of diluted wines and

Proline

• Factor 3 : Malic acid, Ash, Alkalinity of ash, Magnesium and Proanthocyanins.
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Table 7.27: Wine Data-MFA with GEM Results.

IC true # of mixtures true # of factors CCR

AIC m̂ = 3 k̂ = 3 96.07

CAIC m̂ = 2 k̂ = 2 60.11

SBC m̂ = 2 k̂ = 2 60.11

ICOMPCMISS m̂ = 2 k̂ = 6 70.22

ICOMPPEUMISS m̂ = 2 k̂ = 6 69.10

For the second mixture cluster, we can combine the variables as follows.

• Factor 1 : Alcohol, Color intensity, Hue

• Factor 2 : Ash, Alkalinity of ash, Magnesium, Flavonoids, Proanthocyanins

and Proline

• Factor 3 : Malic acid, Total phenols, Nonflavonoid phenols, OD280/OD315 of

diluted wines.

For the third mixture cluster;

• Factor 1 : Alcohol, Ash, Alkalinity of ash, Nonflavonoid phenols

• Factor 2 : Magnesium, Color intensity

• Factor 3 : Malic acid, Total phenols, Flavonoids, Proanthocyanins, Hue, Proline

Parkinson Data

Next, we come back to the Parkinson dataset of Little et al. (2007). This dataset

is about parkinson disease (PD) has n = 195 observations (n1 = 48 PD, n2 = 147

non PD) individuals. We executed the GEM algorithm for m = 1, ..., 4 mixtures and

k = 1, ..., 15 factors. Our results are summarized in Table 7.28. Looking at Table

7.28, AIC and ICOMP criterion choose the over estimated number of mixtures for

this dataset. CAIC and SBC choose m̂ = 2 mixtures, but CAIC picks k̂ = 11
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Table 7.28: Parkinson Data-MFA with GEM Results.

IC true # of mixtures true # of factors CCR

AIC m̂ = 4 k̂ = 6 42.56

CAIC m̂ = 2 k̂ = 11 64.62

SBC m̂ = 2 k̂ = 6 85.13

ICOMPCMISS m̂ = 3 k̂ = 3 42.56

Table 7.29: Breast Cancer Data-MFA with GEM Results.

IC true # of mixtures true # of factors CCR

AIC m̂ = 3 k̂ = 22 71.35

CAIC m̂ = 3 k̂ = 21 80.32

SBC m̂ = 3 k̂ = 19 86.99

ICOMPCMISS m̂ = 2 k̂ = 9 86.99

ICOMPPEUMISS m̂ = 2 k̂ = 9 86.99

factors which is pretty high for this dataset. The best approximating model is chosen

by SBC at m̂ = 2 mixtures and k̂ = 6 factors with the highest correct classification

rate 85.13%.

Breast Cancer Data

Finally, we revisit again the breast cancer dataset already analyzed using the EM

algorithm. Recall that there are n = 569 observations, p = 30 variables, and two

groups. The groups are composed of n1 = 212 patients with malignant tumors and

n2 = 357 patients with benign tumors. Using the GEM algorithm, our results are

summarized in Table 7.29. Looking at Table 7.29, we see that AIC, CAIC and SBC

pick the m̂ = 3 mixtures with high number of factors. Hovewer, ICOMP type criteria

pick the m̂ = 2 mixture model and k̂ = 9 factors for this dataset. This solution seems

to be the best approximating model with correct classification rate 86.99%.
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7.5 Two-Stage GEM Algorithm

This section demonstrates the Two-Stage Genetic EM algorithm for the MFA model

on simulated and real datasets. As we discuss earlier, we propose this algorithm to

achieve flexibility in our assumptions in order to be able to obtain different number of

factors across mixture of clusters. In the first stage, we discover the number mixture

clusters, and then for each mixture we obtain the best approximating number of

factors. In the second stage, we maximize the log likelihood function of the MFA

model and using the information criteria we obtain the final number of factors and the

covariance matrix of the random errors for each mixture cluster. In this dissertation,

we used GARM algorithm to discover the mixtures and Kaiser criterion to obtain

the best approximating number of factors for each mixture in the first stage of the

algorithm. After giving an example in recovering the parameter estimates using this

method, the performances of information criteria to select the true number of factors

and true number of mixtures are compared using the Two-Stage GEM algorithm in

MFA model. Finally, we do model selection on the real datasets used before using

our Two-Stage GEM algorithm and information criteria as the fitness function.

7.5.1 Estimation of the Parameters

We generated the data from m = 2 mixtures and k = 2 factors MFA model given in

Appendix A with n = 200 observations. With this structure, a simulation is executed

to obtain an example of the estimates using the Two-Stage Genetic EM algorithm

for true number of mixture (m∗ = 2). Here, we cannot control the number of factors

since in this case the number of factors are not considered to be the same, but varying

in each mixture. Our analysis identifies three factors in both mixtures as can be seen

in Table 7.30. The estimates recover the true structure and are close to the true

parameter values. Note that, we achieve flexibility in our assumptions in MFA model

in order to be able to obtain different Ψ across the mixture of clusters using the

Two-Stage GEM algorithm.
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Table 7.30: Estimated Parameters by Two-Stage Genetic EM Algorithm.

m π̂m Λ̂m µ̂m diag(Ψ̂m)

1 0.50




−0.60 0.21 0.05
−0.32 −0.57 0.09
−0.54 0.21 −0.07
−0.34 −0.57 0.09
−0.59 0.22 −0.09
−0.32 −0.53 0.07
−0.56 0.18 −0.05
−0.09 −0.21 −0.57
−0.15 −0.17 −0.55
−0.14 −0.23 −0.52







16.98
16.91
17.08
16.88
17.04
16.86
17.08
16.99
17.01
16.99







0.09
0.09
0.04
0.04
0.04
0.17
0.18
0.15
0.11
0.10




2 0.50




0.76 0.25 0.18
0.71 0.26 0.16
0.70 0.23 0.17
0.05 0.68 −0.38
0.06 0.74 −0.39
0.04 0.71 −0.37
0.02 0.72 −0.44
−0.22 0.49 0.56
−0.15 0.49 0.56
−0.16 0.48 0.53







19.98
19.93
20.04
19.88
19.88
19.85
19.92
19.98
20.00
19.98







0.09
0.11
0.03
0.05
0.03
0.17
0.18
0.15
0.11
0.10
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7.5.2 Model Selection Using the Two-Stage GEM Algorithm

for the MFA Model

We ran 100 Monte-Carlo simulations to obtain the hit ratios by information criteria

using the Two-Stage GEM algorithm. We fit m = 1, 2, ..., 4 mixtures using simulation

(S1) protocol with n = 200 observations. The model selection frequencies by four

different information criteria out of 100 simulations are given in Table 7.31. Because

we could obtain different number of factors in each mixture with this method, we

showed the frequency of selecting the true number of mixture (m∗ = 2) and true

number of factors (k∗ = 3 for each mixture) separately. As can be seen Table 7.31, all

of the information criteria choose the true model with over 95%, the true number of

mixture with over 98%. CAIC, SBC, and ICOMPC choose the true model with the

highest frequencies in the MFA model. AIC has the lowest percentage in choosing

both the true number of mixtures and the factors. It is not surprising to have such

accurate results to select the true model, especially true number of mixtures by CAIC,

ICOMPC , and SBC using Two-Stage GEM algorithm. This is due to the fact that,

we are not deciding the number of mixtures and number of factors within the same

stage with this algorithm.

Table 7.31: Model Selection Frequency for Two-Stage EM algorithm of MFA.

Criteria true # of mixture true # of model

AIC 98 95
CAIC 100 99
ICOMPC 100 99
SBC 99 99
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7.6 Real Data Results Using the Two-Stage GEM

Algorithm for the MFA Model

Here we apply the Two stage GEM algorithm on our real datasets. We choose the

best MFA model by information criteria using this algorithm. In this section, we allow

the number of factors to be different for each mixture cluster for the real dataset.

College Data

For the College dataset, we now use the Two stage GEM algorithm. Our results are

summarized in Table 7.32. As can be seen in Table 7.32, AIC, CAIC and SBC

pick m̂ = 2 mixtures with over 90% correct classification rate. ICOMP type criteria

pick the over estimated number of mixtures model. According to SBC, the best

approximating model is chosen at m̂ = 2 mixtures and k̂1 = 2, k̂2 = 2 factors with

the correct classification rate 97.56%. Further, the correct classification rate appears

to be higher with the Two Stage GEM algorithm as composed to the EM and the

GEM algorithms for this dataset.

Wine Data

The Two-stage GEM algorithm results for the wine data set are given in Table 7.33.

Recall that this dataset has m = 3 groups p = 13 variables. Looking at Table 7.33,

Table 7.32: College Data- MFA with Two Stage GEM algorithm.

IC true # of mixtures true # of factors CCR

AIC m̂ = 2 k̂1 = 2, k̂2 = 2 97.56

CAIC m̂ = 2 k̂1 = 2, k̂2 = 5 92.68

SBC m̂ = 2 k̂1 = 2, k̂2 = 2 97.56

ICOMPC m̂ = 3 k̂1 = 1, k̂2 = 2, k̂3 = 2 73.17

ICOMPCMISS m̂ = 4 k̂1 = 2, k̂2 = 1, k̂3 = 2, k̂4 = 1 49.59

ICOMPPEU m̂ = 4 k̂1 = 1, k̂2 = 2, k̂3 = 2, k̂4 = 2 59.35

ICOMPPEUMISS m̂ = 4 k̂1 = 2, k̂2 = 2, k̂3 = 1, k̂4 = 1 56.91
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Table 7.33: Wine Data- MFA with Two Stage GEM algorithm.

IC true # of mixtures true # of factors CCR

AIC m̂ = 2 k̂1 = 4, k̂2 = 4 71.91

CAIC m̂ = 3 k̂1 = 3, k̂2 = 4, k̂3 = 4 74.16

SBC m̂ = 2 k̂1 = 4, k̂2 = 4 72.47

ICOMPC m̂ = 3 k̂1 = 4, k̂2 = 4, k̂3 = 4 92.13

ICOMPCMISS m̂ = 3 k̂1 = 2, k̂2 = 4, k̂3 = 4 73.60

ICOMPPEULN m̂ = 3 k̂1 = 5, k̂2 = 4, k̂3 = 5 96.63

ICOMPPEUMISS m̂ = 3 k̂1 = 3, k̂2 = 4, k̂3 = 3 80.34

ICOMPPEULNMISS m̂ = 3 k̂1 = 4, k̂2 = 4, k̂3 = 3 83.15

we see that CAIC and all the ICOMP type criteria pick the m̂ = 3 mixtures model.

AIC and SBC are not distinguished the m̂ = 2 mixtures since this dataset is highly

overlapped. With ICOMPPEULN , we choose m̂ = 3 mixtures and k̂1 = 5, k̂1 = 4,

k̂1 = 5 factors with the correct classification rate 96.63%.

Parkinson Data

Our penultimate example is the Parkinson dataset already evaluated by the EM and

GEM algorithms. There are p = 22 particular voice measurements and two groups

(Parkinson disease and non-Parkinson disease) in this dataset. Looking at Table 7.34,

AIC, CAIC and SBC all agree on the same model. But, the number of mixtures

is under estimated for this dataset based on AIC, CAIC and SBC. The model

selected by ICOMP criteria is more reasonable. The best approximating model for

this dataset seems to be m̂ = 2 mixtures and k̂ = 3 factors with correct classification

rate 75.38%.

Breast Cancer Data

Finally, we have results from the Two-stage EM algorithm on the breast cancer

dataset. This dataset is derived from benign and malignant tumors with p = 30

variables. Our results are given in Table 7.35. Since this data set is clearly overlapped

and non-normal in many dimensions, it is hard to distinguish the groups. None of
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Table 7.34: Parkinson Data- MFA with Two Stage GEM algorithm.

IC true # of mixtures true # of factors CCR

AIC m̂ = 1 k̂ = 4 -

CAIC m̂ = 1 k̂ = 4 -

SBC m̂ = 1 k̂ = 4 -

ICOMPCMISS m̂ = 2 k̂1 = 4, k̂2 = 2 69.23

ICOMPPEUMISS m̂ = 2 k̂1 = 4, k̂2 = 3 75.38

ICOMPPEULNMISS m̂ = 2 k̂1 = 4, k̂2 = 3 75.38

Table 7.35: Breast Cancer Data- MFA with Two Stage GEM algorithm.

IC true # of mixtures true # of factors CCR

AIC m̂ = 1 k̂ = 6 -

CAIC m̂ = 1 k̂ = 6 -

SBC m̂ = 1 k̂ = 6 -

ICOMPC m̂ = 1 k̂ = 6 -

ICOMPCMISS m̂ = 3 k̂1 = 6, k̂2 = 5, k̂3 = 5 62.74

ICOMPPEULNMISS m̂ = 3 k̂1 = 6, k̂2 = 5, k̂3 = 5 62.74

the information criteria pick m = 2 mixtures for this dataset using Two Stage GEM

algorithm. But the dimension is reduced to 6 from 30 variables. According to AIC,

CAIC, SBC, and ICOMPC , the groups are homogenous in this dataset. Recall

that ICOMPCMISS and ICOMPPEULNMISS have heavier penalty terms and penalize

the MFA model more. The best approximating result based on ICOMPCMISS and

ICOMPPEULNMISS is m̂ = 3 mixtures and k̂1 = 6, k̂2 = 5, k̂3 = 5 factors with correct

classification rate 62.74%.
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Chapter 8

Conclusion

In this dissertation, we studied model selection problems in the Standard factor

(SFA), Bayesian factor (BFA), and in Mixture of Factor Analyzers (MFA) models.

We developed and introduced several information-theoretic model selection criteria

commonly used in the literature in these areas of modern latent variable modeling to

choose the number of factors in SFA and BFA models, and the number of mixture

clusters and the number of factors in the MFA model simultaneously to resolve

the problem of the reduction of the curse of dimensionality in a given dataset. In

the thesis, we address the Heywood cases, or the improper solutions in the SFA

model by introducing the BFA model. In the BFA model we learn the prior factor

loading matrix using the Sparse Root algorithm data-adaptively along with Iterated

Conditional Modes ICM), Gibbs sampling and the method of Press and Shigemasu

(1989) to estimate the parameters of the BFA model using a fully Bayesian approach.

In addition, we introduced and developed the information criteria in the BFA model to

select the best approximating model among a set of candidate models at the posterior

level. Although the natural choice is also the Bayes Factor (BF) in the BFA model,

derivation of the BF is not a trivial exercise. Since BF has been already studied and

compared along with the information criteria in the BFA model in a separate paper

Turan and Bozdogan (2010), here we did not include the results using the BF.
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In the MFA model, we addressed the high dependence of the solutions in choosing

the number of mixtures and the number of factors upon the initial values, by

introducing more intelligent Genetic Regularized Mahalanobis Distance (GARM)

and hybridized K-means initialization to obtain better initial values for the EM

algorithm as opposed to the random initialization scheme used by by Ghahramani

and Hinton (1997) in the MFA model. Within the framework of the MFA model,

we also addressed the numerical instability issues and manifestation of singular or ill-

conditioned covariance estimators by introducing smoothed covariance estimators and

stabilization of the eigenvalues of the mixture model covariance matrices. Further,

we developed the genetic EM algorithm (GEM) and also Two-Stage Genetic EM

algorithms to relax the spurious assumption in the number of factors across the

mixture clusters be the same. In this manner, we are now able to choose different

number of mixtures and at the same time different number of factors across each of

the mixture clusters. To our knowledge, this was not possible before. To illustrate our

results, in this thesis, we demonstrated our results across SFA, BFA, and the MFA

models on both simulated and several real datasets with varying degrees of overlap

and dimensionality.

What did we learn from this thesis? What kind of guidance can we give to the

readers? These are legitimate questions to ask.

What we have learned from this thesis and our results is that, it is difficult to

derive the usual likelihood ratio type of criteria especially in the MFA model since

the likelihood function is changing in choosing the number of mixtures and at the same

time the number of factors. Therefore, the development and the use of information

criteria resolve intrinsically such problems in the conventional statistical procedures.

Indeed, as illustrated in our numerical results, information criteria work quite well

in both simulated and the real data examples. We learned that the computational

time and the complexity of the results vary according to the datasets we used and

their compactness, orientation, and overlap, as well as their dimensionality. Larger

the dimensionality and existence of overlaps across the clusters, make the analysis
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more complex. Therefore, we suggest high performance computing in the analysis of

the MFA model.

As a guidance to the readers, in Figure 8.1 we outline the structure of the flow of

this thesis in a learning tree diagram.

In conclusion, we believe that this research can be implemented and to solve

complex data mining problems easily. For future work, we are planning to provide an

easy to use user interface for the MFA model code (those are regular EM , EM with

hybridized K-means initialization, EM with GARM initialization, GEM (with robust

covariance estimators), and Two-Stage GEM (with robust covariance estimators).

Therefore, these methods will be implemented in a future research. We plan to

compare the performance in selecting the true model with the Bayesian mixture factor

analyzers proposed by Ghahramani and Beal (2003). They argue that the number of

components and the local dimensionality of each component can be obtained without

overfitting with a Bayesian mixtures of factor analytic model. However, we have

not seen any new and convincing work done in this direction. This is still an open

problem.

Further, to relax the linearity in the latent variables, we shall introduce and

study yet another novel learning approach using what is known as the kernel-based

learning algorithms by embedding (or transforming) the data into a Reproducing

Kernel Hilbert Space (RKHS), and searching for linear relations in such a space. The

embedding is performed implicitly, by specifying the inner product between each pair

of points of the data rather than by giving their coordinates explicitly. This approach

has several advantages. The most important of them is that the inner product in the

embedding space (or feature space) can often be computed much more easily than

the coordinates of the points themselves. Thus, a non-linear model is built in two

steps: use a fixed non-linear mapping to transform the data into a feature space, and

then use a linear model to carry out the mixtures of factor analyzers (MFA) model

in the feature space, without using explicit non-linear functions.
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Figure 8.1: Summary of a Learning Tree of the Dissertation.
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Appendix A

Data Sets

A.1 Simulated Data-S1

The dataset is generated using the multivariate normal distribution with p = 10

variables n = 100 observations. There are m = 2 populations, and each population

has k = 3 factors. The number of factor and Ψ are selected the same for each

population to satisfy the assumption of the EM algorithm purposed by Ghahramani

and Hinton (1997). The parameters of each population are given in the table A.1.
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Table A.1: Simulation 1 - Data Generation Parameters of Mixture of Factor
Analyzers.

M πM ΛM µM diag(ΨM )

1 0.5




0.7 0.1 0.1
0.1 0.7 0.1
0.7 0.1 0.1
0.1 0.7 0.1
0.7 0.1 0.1
0.1 0.7 0.1
0.7 0.1 0.1
0.1 0.1 0.7
0.1 0.1 0.7
0.1 0.1 0.7







17
17
17
17
17
17
17
17
17
17







0.1024
0.1024
0.0400
0.0400
0.0400
0.1600
0.1600
0.1600
0.1600
0.1600




2 0.5




0.9 0.1 0.1
0.9 0.1 0.1
0.9 0.1 0.1
0.1 0.9 0.1
0.1 0.9 0.1
0.1 0.9 0.1
0.1 0.9 0.1
0.1 0.1 0.9
0.1 0.1 0.9
0.1 0.1 0.9







20
20
20
20
20
20
20
20
20
20







0.1024
0.1024
0.0400
0.0400
0.0400
0.1600
0.1600
0.1600
0.1600
0.1600




15 2015 2015 2015 2015 20
15

20

15

20

15

20

15

20

15

20

Figure A.1: Simulated Data- Grouped Scatter Plot for X1,..X5
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Figure A.2: Simulated Data-Grouped Scatter Plot for X6,..X10
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Figure A.3: Simulated Data- Surface Plot
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Figure A.4: Simulated Data- Contour Plot

A.2 Real Data

A.2.1 Wine Data

This data set of Forina, M. et al used in Aeberhard and De vel (1992).The data

was used with many others for comparing various classifiers. This dataset includes a

chemical analysis of n = 178 wines grown in the same region in Italy. It is derived

from m = 3 different wines (n1 = 59, n2 = 71, n3 = 48 ). The analysis determined

the quantities of 13 constituents found in each of the three types of wines. Those

variables are listed as follows:

x1=Alcohol x8=Nonflavanoid phenols

x2=Malic acid x9=Proanthocyanins

x3=Ash x10=Color intensity

x4=Alcalinity of ash x11=Hue

x5=Magnesium x12=OD280/OD315 of diluted wines

x6=Total phenols x13=Proline

x7=Flavanoids

Source http://archive.ics.uci.edu/ml/datasets/Wine
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As can be seen in Figure A.5 and A.6, this dataset substantial overlap of the three

groups and has non-normal distribution in many dimensions.

 

 

Figure A.5: Wine data - Grouped Scatterplot Matrix for x1 . . . x6.

 

 

Figure A.6: Wine data - Grouped Scatterplot Matrix for x7 . . . x13.
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A.2.2 College Data

This dataset is provided by U.S News and World Report (2008) about college

selectivity. Originally there were 139 observations but we delete 16 observations with

missing variables. Among 123 observations, n1 = 34 colleges and universities are

categorized as the most selective schools. The other n2 = 89 colleges and universities

are categorized as the more selective schools. Therefore, prior probability for first

group is 27.64%, and second group is 72.36%. Park (2009) separates the groups in this

dataset using Kernel Discriminant Analysis Using Information Complexity Criterion

and Genetic Algorithm. In this data set, colleges and universities are organized by

how picky they can be in choosing freshmen. Selectivity is determined by the test

scores and high school class standing of applicants who enroll, plus the proportion of

applicants who are accepted. Most of the p = 9 variables have very high correlations

with each other. There are 9 variables listed as follows

x1=Acceptance rate of applicants

x2=SAT critical reading, 25th percentile

x3=SAT critical reading, 75th percentil

x4=SAT math, 25th percentile

x5=SAT math, 75th percentile

x6=ACT composite, 25th percentile

x7=ACT composite, 75th percentile

x8=Percentage of students who were in top 10% at high school class standing

x9=Percentage of students who were in top 25% at high school class standing
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Figure A.7: College data - Grouped Scatterplot Matrix for x1 . . . x9

A.2.3 Parkinson Data

The dataset was created by Little et al. (2007) in collaboration with the National

Center for Voice and Speech, Denver, Colorado. This dataset is composed of a range

of biomedical voice measurements from 31 people, 23 with Parkinson’s disease (PD).

Each variable is a particular voice measure, and each observation corresponds one

of n = 195 (n1 = 48 PD n2 = 147 non PD) voice recording from these individuals.

Totally 22 variables in this dataset are listed as follows:
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x1=MDVP:Fo(Hz) x12=Shimmer:APQ5

x2=MDVP:Fhi(Hz) x13=MDVP:APQ

x3=MDVP:Flo(Hz) x14=Shimmer:DDA

x4=MDVP:Jitter x15=NHR

x5=MDVP:Jitter(Abs) x16=HNR

x6=MDVP:RAP x17=RPDE

x7=MDVP:PPQ x18=D2

x8=Jitter:DDP x19=DFA

x9=MDVP:Shimmer x20=spread1

x10=MDVP:Shimmer(dB) x21=spread2

x11=Shimmer:APQ3 x22=PPE

Source:http://archive.ics.uci.edu/ml/datasets/Parkinsons

Those variables are defined and categorized by creators;

• Average vocal fundamental frequency: MDVP:Fo(Hz),

• Maximum vocal fundamental frequency: MDVP:Fhi(Hz),

• Minimum vocal fundamental frequency: MDVP:Flo(Hz),

• Measures of variation in fundamental frequency: MDVP: Jitter(%), MDVP:Jitter(Abs),

MDVP:RAP, MDVP:PPQ, Jitter:DDP,

• Measures of variation in amplitude: MDVP:Shimmer,MDVP:Shimmer(dB), Shim-

mer:APQ3, Shimmer: APQ5, MDVP:APQ, Shimmer:DDA,

• Ratio of noise to tonal components in the voice: NHR,HNR,

• Nonlinear dynamical complexity measures: RPDE, D2,

• Signal fractal scaling exponent: DFA,

• Nonlinear measures of fundamental frequency variation: Spread1, Spread2, PPE,

Figure A.8 through A.10 shows the group scatter plot of the dataset. It is very

challenging data set since this dataset is not normal in many dimensions according

to the shape of histogram and the groups are overlapped.
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Figure A.8: Parkinson data - Grouped Scatterplot Matrix for x1 . . . x7.

 

 

Figure A.9: Parkinson data - Grouped Scatterplot Matrix for x8 . . . x15.
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Figure A.10: Parkinson data - Grouped Scatterplot Matrix for x16 . . . x22

A.2.4 Breast Cancer Data

This breast cancer databases was obtained from the University of Wisconsin Hospitals

and used first time in Mangasarian andWolberg (1990) paper. Variables are computed

from a digitized image of a fine needle aspirate (FNA) of a breast mass. This dataset

is composed of n = 569 observations from 30 variables. First group is called malignant

group has 212 observations. Second group is called benign group has 357 observations.

Therefore, we have two groups and their prior probabilities are respectively 37.26%

and 67.74%. The group scatter plot is given in figure A.11 through A.14. This

dataset is not normal in many dimensions according to histogram. 10 variables and

their calculation are listed as follows:
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x1=radius-mean of distances from center to points on the perimeter

x2=texture- standard deviation of gray-scale values

x3=perimeter

x4=area

x5=smoothness-local variation in radius lengths

x6=compactness-perimeter2 / area - 1.0

x7=concavity -severity of concave portions of the contour

x8=concave points- number of concave portions of the contour

x9=symmetry

x10=fractal dimension - “coastline approximation” −1

Source: http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29

 

 

Figure A.11: Breast cancer data - Grouped Scatterplot Matrix for x1 . . . x8
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Figure A.12: Breast cancer data - Grouped Scatterplot Matrix for x9 . . . x16

 

 

Figure A.13: Breast cancer data - Grouped Scatterplot Matrix for x17 . . . x24
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Figure A.14: Breast cancer data - Grouped Scatterplot Matrix for x25 . . . x30

128



Vita

Esra Turan was born in Turkey in 1982. In 1999 Esra matriculated to Osmangazi

University, then transferred to Dokuz Eylul University, Turkey where she graduated

as Valedictorian in 2004, having obtained her Bachelors degree in Statistics. While

working full time as a Graduate Teaching Assistant at Yasar University in Izmir,

Turkey, she completed her Masters degree in Statistics while attending Dokuz Eylul

University in 2006. During that year, she achieved another Bachelors degree in

Business Administration from Anatolian University, in Eskisehir, Turkey. In 2006, she

was accepted to the PhD program in Econometrics at Dokuz Eylul University. After

one semester, due to exemplary academic work she was awarded a scholarship from the

Ministry of Education to obtain a PhD degree in the USA. After accepting, she joined

the department of Statistics, Operations and Management Science at the University

of Tennessee, Knoxville in 2007. During her college and graduate school, she has won

several scholarships and numerous awards for her many academic achievements. In

2000, she won a scholarship from the Turkish Educational Charitable Foundation.

This scholarship was continued during her college and graduate school in Turkey

because of her continuing successes. Moreover, she won another scholarship from The

Scientific and Technological Research Council of Turkey while attending graduate

school in Turkey. Her successes continued in the USA and she was awarded a Graduate

Teaching Assistant position at the University of Tennessee, Knoxville. In addition, she

has won the Summer Graduate Research Assistantship Award from the University of

129



Tennessee, Knoxville in 2009. Also during 2009, she joined the competition for Young

Researchers Data Mining Prize and her team was awarded the best solution prize.

130


	Mixture of Factor Analyzers with Information Criteria and the Genetic Algorithm
	Recommended Citation

	Front Matter
	Title
	Dedication
	Acknowledgements
	Abstract

	Table of Contents
	List of Tables
	List of Figures
	Nomenclature
	1 Introduction
	2 Standard Factor Analysis
	3 Bayesian Factor Analysis
	3.1 Bayesian Factor Model
	3.2 Sparse Root Algorithm
	3.3 Estimation
	3.3.1 The method of Press and Shigemasu
	3.3.2 Gibbs Sampling
	3.3.3 Iterated Conditional Modes (ICM)


	4 Mixture of Factor Analyzers
	4.1 Mixture Factor Model
	4.2 EM Algorithm for MFA Model
	4.3 Initialization Schemes
	4.3.1 K-Means initialization
	4.3.2 Hybridized Scheme


	5 Information Criteria
	5.1 Introduction and Purpose
	5.2 Kullback-Liebler Distance
	5.3 Akaike's Information Criterion AIC
	5.4 Schwarz's Bayesian Criterion SBC
	5.5 Consistent Akaike's information Criterion CAIC
	5.6 Information Complexity ICOMP Criterion
	5.7 Information Criteria for the Standard Factor Model
	5.8 Information Criteria for the Bayesian Factor Model
	5.9 Information Criteria for the Mixture Factor Model
	5.9.1 Regularized Covariance Matrix


	6 Genetic Algorithm
	6.1 Overview of Genetic Algorithm
	6.1.1 Basic Terminology
	6.1.2 GA Operators
	6.1.3 Steps of a Simple Genetic Algorithm 

	6.2 Genetic Algorithm for Regularized Mahalanobis Distance
	6.3 Genetic EM Algorithm
	6.4 Two Stage Genetic EM Algorithm

	7 Numerical Results
	7.1 Standard Factor Analysis (SFA)
	7.1.1 Real Data- Medical School Admission Data

	7.2 Bayesian Factor Analysis (BFA)
	7.2.1 Crime Data Set

	7.3 EM Algorithm for the Mixture of Factor Analyzers with Random, GARM and K-means Initialization
	7.3.1 Estimation of the Parameters
	7.3.2 Model Selection Using the EM Algorithm for the MFA Model
	7.3.3 Real Data Results Using the EM Algorithm for the MFA Model

	7.4 Genetic EM (GEM) Algorithm
	7.4.1 Estimation of the Parameters
	7.4.2 Model Selection Results Using the GEM Algorithm for the MFA Model
	7.4.3 Real Data Results Using the GEM Algorithm for the MFA Model

	7.5 Two-Stage GEM Algorithm
	7.5.1 Estimation of the Parameters
	7.5.2 Model Selection Using the Two-Stage GEM Algorithm for the MFA Model

	7.6 Real Data Results Using the Two-Stage GEM Algorithm for the MFA Model

	8 Conclusion
	Bibliography
	A Data Sets
	A.1 Simulated Data-S1
	A.2 Real Data
	A.2.1 Wine Data
	A.2.2 College Data
	A.2.3 Parkinson Data
	A.2.4 Breast Cancer Data


	Vita

