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Abstract

Computationally hard problems are routinely encountered during the course of

solving practical problems. This is commonly dealt with by settling for less than

optimal solutions, through the use of heuristics or approximation algorithms. This

dissertation examines the alternate possibility of solving such problems exactly,

through a detailed study of one particular problem, the maximum clique problem.

It discusses algorithms, implementations, and the application of maximum clique

results to real-world problems. First, the theoretical roots of the algorithmic method

employed are discussed. Then a practical approach is described, which separates out

important algorithmic decisions so that the algorithm can be easily tuned for different

types of input data. This general and modifiable approach is also meant as a tool for

research so that different strategies can easily be tried for different situations. Next,

a specific implementation is described. The program is tuned, by use of experiments,

to work best for two different graph types, real-world biological data and a suite

of synthetic graphs. A parallel implementation is then briefly discussed and tested.

After considering implementation, an example of applying these clique-finding tools

to a specific case of real-world biological data is presented. Results are analyzed

using both statistical and biological metrics. Then the development of practical

algorithms based on clique-finding tools is explored in greater detail. New algorithms

are introduced and preliminary experiments are performed. Next, some relaxations of

clique are discussed along with the possibility of developing new practical algorithms

from these variations. Finally, conclusions and future research directions are given.
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Chapter 1

Introduction

In the past decade, the field of fixed-parameter tractability (FPT) has invigorated

theoretical computer science, offering new insights and approaches to solving difficult

problems. These new techniques are not apparent from the perspective of classical

complexity theory. New theoretical results for various problems appear in publications

on a regular basis and are usually constructive. In this dissertation, we consider

the problem of moving such results from theory to practical implementation. We

seek algorithmic solutions that work well for real software on real computers. It

is not enough to implement a single approach that works well for a limited set of

problems, though. Therefore, we isolate various algorithmic decisions so that they

can be adjusted as needed. This also facilitates research, allowing experimentation

with different techniques without reimplementing the core algorithms. From this

foundation, we then examine algorithms that use these results for computing solutions

to problems involving real data, such as clustering genetic data. The key insight is

that exact solutions to these problems, which once were considered intractable and

thus impractical to attempt, are quite useful once that barrier is eliminated. Dr.

Michael Langston of the University of Tennessee and his students have been involved

heavily in developing such algorithms. A former student, Dr. Faisal Abu Khzam of

1



American Lebanese University, did much work in regard to the vertex cover problem

[1], a central problem in the field of FPT. His work inspired this research.

The core problem in this dissertation is clique, a parametric dual of vertex cover.

Although the clique problem is not technically fixed-parameter tractable, it is solvable

in practice by the same algorithmic techniques as the FPT vertex cover problem.

More specifically, this research focuses on the problem of maximum clique. That is,

for a given graph we wish to find a largest clique. We emphasize the clique problem

because algorithms that locate cliques are especially well-suited for finding groups of

related objects, a problem that occurs frequently in practice. Thus, in summary, we

translate the vertex cover algorithms into algorithms for finding cliques, creating a

base that we can then use to solve some very practical problems.

1.1 Notation and Definitions

Graph theory terms are defined with set theory terminology. The term set follows the

normal mathematical definition, so that each entry of a set is unique and no ordering

is imposed on the members of a set. The size of a set S is denoted as |S|. If S ′ is a

subset of a set S(S ′ ⊆ S), the complement of S ′ is denoted as S̄ ′. That is, S̄ ′ = S−S ′.

1.1.1 Basic graph theory notation and definitions

Unless stated otherwise, all graphs are finite, simple, unweighted, and undirected.

Specifically, a graph G = {V,E} is defined as a set V of vertices and a set E of

edges. Each edge is a set of two vertices from V . If {u, v} ∈ E, then u and v

are said to be adjacent. Otherwise, u and v are nonadjacent. The set of vertices

adjacent to a vertex, v, is called the neighborhood of v and is denoted N(v). The set

of vertices nonadjacent to v is the non-neighborhood of v, which is denoted N̄(v). A

single vertex in one of these two sets is termed a neighbor of v or a non-neighbor of v,

respectively. The degree of a vertex is the size of its neighborhood, denoted |N(v)|.
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A subgraph of G is a graph G′ = {V ′, E ′} where V ′ ⊆ V and E ′ ⊆ E. For V ′ ⊆ V ,

let subgraph G′ = {V ′, E ′}, where E ′ ⊆ E includes exactly those edges {u, v} ∈ E in

which u, v ∈ V ′. G′ is said to be the subgraph induced by V ′. In this dissertation, all

subgraphs are induced unless otherwise noted. The terms vertex and node frequently

are used interchangeably in graph theory. For clarity, this work only uses the term

vertex for graph elements. The term node refers to elements in an algorithmic search

tree. A clique of a graph G is a set of vertices C in which {u, v} ∈ C ⇒ {u, v} ∈ E.

A maximum clique of a graph G is a clique whose size is as large as that of any other

clique in G. A maximal clique C of a graph G is a clique for which it is not possible

to add an additional vertex to C and C remain a clique. An independent set (IS) of

a graph G is a set of vertices I in which {u, v} ∈ I ⇒ {u, v} /∈ E. A maximum IS of

a graph G is an IS whose size is as large as that of any other IS in G. A maximal IS

I of a graph G is an IS for which it is not possible to add an additional vertex to I

and I remain an IS. A vertex cover (VC) of a graph G is a set of vertices C in which

{u, v} ∈ E ⇒ u ∈ C or v ∈ C. Intuitively, a VC is a set of vertices that “cover” all

edges. A minimum VC of a graph G is a VC whose size is as small as that of any

other VC in G. The notion of a minimal VC is not used. A matching for a graph

G = {V,E} is a set M ⊆ E such that no two edges in M have a common vertex. A

maximal matching M is a matching for which it is not possible to add an additional

edge to M and M still remain a matching. A coloring of G is a function f : V 7→ N

such that {u, v} ∈ E ⇒ f(u) 6= f(v). For v ∈ V , f(v) is v’s color. The chromatic

number of a graph G is the minimum number of distinct colors over all colorings of

G.

1.1.2 Additional notation and definitions

This section introduces additional notation and definitions relevant to this dissertation

that may not be found in the common literature on graph theory. For a graph

G = {V,E}, the common neighborhood of a set V ′ ⊆ V is
⋂

N(v) for all vertices

3



v ∈ V ′. It is denoted as N∩(V
′). For a vertex v, define the neighborhood subgraph of

v to be the subgraph induced by v
⋃
N(v). Neighborhood subgraph is also defined

for a set of vertices. For V ′ ⊆ V , the neighborhood subgraph of V ′ is the subgraph

induced by V ′
⋃
N∩(V

′).

1.2 Applying Clique to Biological Data

This section briefly outlines how graph-theoretic algorithms, particularly clique, can

be applied to the problem of finding relevant networks in biological data. We proceed

backwards from an unweighted graph to its biological origins. Generally, graph

vertices represent individual genes or another type of molecule, such as proteins.

Edges between vertices indicate molecules that are highly correlated. That is, they

tend to co-occur in the cell under the same conditions. Thus, a clique should indicate

groups of molecules that co-occur, and hence indicates a potential network for further

investigation. The strictness of clique (every edge must be present) is advantageous

for avoiding false positives in noisy data, at the expense of increased false negatives.

In practice, there are techniques, some of which we discuss later, to relax the results

and extend the clique to include “nearby” vertices.

The unweighted graph is created by applying a cutoff to a weighted graph, whose

edge weights correspond to actual correlation values. Pearson’s correlation is a

common method for computing these values. The input to such a method is a matrix,

gene by condition, giving a signal value for each gene under each condition. Prior to

correlation, however, the raw data from experiments must be subject to statistical

normalization and verification techniques [54]. This step is crucial. Otherwise, results

from a graph-theoretic analysis or any other analysis are worthless.

4



1.3 Overview

Chapter 2 discusses the theoretical foundation of this work, the field of fixed-

parameter tractability (FPT). (The acronym FPT stands for both fixed-parameter

tractable and fixed-parameter tractability.) In Chapter 3 the maximum clique

problem is discussed specifically. The relationship of the clique problem to the

FPT vertex cover problem is discussed. Then the overall approach used for solving

the maximum clique problem in this work is presented. While Chapter 3 discusses

the algorithms independently of any particular implementation, Chapter 4 covers

the details of a specific C++ implementation. Then, through experimentation,

this implementation is tuned to work well on real-data graphs. Next it is tuned

to work well on synthetic graphs. These experiments illustrate how the presented

approach can be used to experiment with and develop different algorithms for different

classes of graphs. The chapter ends with a description of and experiments with

a parallel implementation. Chapter 5 discusses a specific case of using maximum

cliques to analyze biological data. Chapter 6 expands on this idea by describing and

experimenting with possible approaches for building practical algorithms from clique-

finding engines. Chapter 7 concludes and suggests directions for future research.

1.4 Contributions

The specific contributions of this dissertation include the development of a general,

configurable algorithm for computing maximum cliques. Key algorithmic decisions

are isolated so that they can be easily altered. This includes a general preprocessing

algorithm that can be configured to run multiple methods. A configurable, modular,

and efficient implementation of these algorithms is created and described in detail.

This description includes the high-level design for easy configuration, the low-level

design for efficient data structures and for efficient computation of common graph

operations, and an effective parallel processing approach. Experiments are performed

5



to show how to configure the software for graphs of real data and for graphs of

synthetic data. A new preprocessing approach based on coloring is presented and

shown empirically to work well on graphs built from biological data. Analysis of

practical algorithms based on clique are done. New practical algorithms are developed

and implemented and preliminary testing performed. Finally, several directions for

future research are proposed.
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Chapter 2

FPT Overview

This brief chapter serves as an introduction to FPT for those unfamiliar with the

field. More extensive introductions can be found in the references. Chapter 1 of

[14] provides a more colorful and lengthier discussion of the intuition behind FPT,

relating it to a “deal with the devil.” It then covers the theory behind FPT in

excruciating detail, serving as an essential reference for those heavily involved in

FPT theory. Conversely, [34] focuses on specific algorithmic techniques and contains

several examples, thus serving as a good first book on FPT and as a reference book for

FPT practitioners. We first address the main ideas behind FPT and then summarize

its theoretical underpinnings. We also discuss new algorithmic techniques that stem

from FPT.

2.1 Intuition

Classical complexity theory identifies a set of particularly difficult problems known

as NP-hard. Assuming certain time-tested theoretical assumptions and practical

observations [21], any solution (algorithm) for such problems must have exponential

running time with respect to the size of the input. Intuitively, this means that certain

inputs force the algorithm to check all or nearly all possible combinations of items (no

clever shortcuts exist). Unfortunately, many NP-hard problems occur in practice, so
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we cannot simply ignore them. The field of FPT probes more deeply by asking what,

exactly, causes such a “combinatorial explosion.” The term fixed-parameter tractable

is fitting. If the source of the explosion, one or more parameters, can be contained, or

fixed, then the problem becomes tractable. For example, vertex cover is FPT because

algorithms exist where the exponential is isolated to the size of the cover. Thus, if

we are only interested in small covers, efficient algorithms exist. The field of FPT,

though, is about more than just rearranging parameters by trying different algorithms.

It also provides a wide range of techniques to reduce problem instances and to narrow

problem search spaces by employing one or more isolated parameters. Problems can

often be parameterized in multiple ways. So a generally useful strategy is to craft an

algorithm that exploits whatever constraints can be placed on the problem domain.

(Of course, this is a useful strategy in general, not just in the context of FPT.)

2.2 Theoretical Background

Classical complexity theory has been developed for decision problems. That is, given

an alphabet Σ and the set of all its finite strings, Σ∗, along with a language L ⊆ Σ∗,

we consider algorithms that input some x ∈ Σ∗ and decide if x ∈ L. For FPT, we

consider algorithms that input x and some parameter k. They must still decide if

x ∈ L but do not need to consider solutions where the parameter is larger than k.

If this conditional membership can be correctly decided by some algorithm in time

f(k)nα, where n is the size of x, that language (problem) is said to be FPT. Thus, k

is free to affect the complexity of the problem in any way, as long as the size of the

problem contributes in a limited way and is not affected by k. Note that it is trivial

to extend this definition to multiple parameters. For this definition to be practically

useful we rely on the hope, supported through experience, that neither f(k) nor α

become prohibitively large for problems encountered in practice. This is analogous to

the same hope in classical complexity that practical problems solvable in polynomial

time do not contain polynomial time complexities with prohibitively large exponents.
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The above definition of FPT is sufficient for most cases, including those in this work,

but see [14] for a more general definition.

2.3 Algorithmic Approaches

Of most importance to this work, attempts to make use of the parameter k have led to

a plethora of new methods for tackling difficult problems, which can often be divided

into two categories. The first category is kernelization, or a method that reduces

the problem to some size that is a function of k. The second category is simply an

algorithm with search space restricted by k. Theoretically, these are equivalent since

a kernel (the output of a kernelization algorithm) can be searched by brute force in

time bounded by k. Usually, these two techniques are combined and even interleaved,

something that will be discussed in much more detail later. The algorithm normally

takes the form of a branching search tree. Thus, we simply refer to kernelization and

branching. In the next chapter, we discuss specific algorithms for the vertex cover

problem and the clique problem. Finally, note that we often use the term preprocessing

rather than kernelization for the clique problem, since it is unlikely to be FPT and

thus cannot technically be kernelized. (It is W[1]-hard in FPT terminology.)

2.4 Example - Vertex Cover

This section presents a kernelization algorithm and a branching algorithm for the

vertex cover problem, which exploit cases where we are only interested in a small

cover of size k or less. The goal is two-fold. Not only does this serve as a clarifying

example, but these algorithms will be modified later to solve for the maximum clique

problem. To be concise, from this point forward we omit the word “problem” when

referring to specific problems. Thus, clique, independent set, vertex cover, etc. refer

to their respective decision problems, while non-decision variants are still qualified

with minimum, maximal, maximum, etc.
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2.4.1 Kernelization

We can kernelize vertex cover by applying a high degree rule that is based on a simple

observation. If a vertex v has degree k+1 or more, then it must reside in any vertex

cover of size k or less. To see why, note that all edges containing v must be covered.

This can be done by either including v in the cover or by including all of v’s neighbors

in the cover. The latter, though, would imply a cover that is too large. To this we

can add two other kernelization rules. First, remove isolated vertices. Second, remove

any vertex v of degree one (not in the cover), while placing its single neighbor w into

the cover. The latter is possible because we must cover the edge {v, w} and, assuming

we are looking for only a single vertex cover, there is no reason to select v instead

of w. These rules are known as the 0-degree rule and the 1-degree rule, respectively.

Combining these three rules reduces the graph to at most k2+k vertices and at most

k2 edges [34].

2.4.2 Branching

We can build a binary search tree of bounded depth k by another simple observation.

Given any vertex v, either v is in the cover or all of v’s neighbors are in the cover.

Each node of the search tree selects a vertex and branches on these two possibilities.

Assuming that the tree also removes isolated vertices as they occur, each child node

inherits a new vertex cover problem with parameter k reduced by at least one. Hence,

the depth of the search tree is bounded by k and the total search space is bounded

by 2k.

2.4.3 Optimization

We have so far outlined only the “bare bones” of the algorithms for vertex cover.

A number of optimizations are usually done in practice. The most important one,

perhaps, is interleaving kernelization with the branching search tree. Each search tree

node by itself is a new vertex cover instance subject to being reduced. In general,
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computationally expensive kernelization should be avoided, but some interleaving is

essential, such as the removal of isolated and single degree vertices. Graph instances

become more and more sparse as searching proceeds and low degree vertices are quite

common. Thus, such removal serves as a “garbage collector.” Additionally, the order

in which vertices are considered greatly impacts performance. Such optimizations

will be discussed at length.
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Chapter 3

Maximum Clique Algorithms

Although not likely to be FPT, clique is subject to the algorithmic approaches

discussed in Chapter 2 due to its close relationship with vertex cover. In this chapter,

we build a practical, adjustable algorithm for maximum clique. We start by discussing

the theoretical relationship between clique and vertex cover. Then we translate

the kernelization and branching algorithms for vertex cover into preprocessing and

branching algorithms for clique. Additional useful preprocessing rules are also

discussed. We introduce a general algorithm for preprocessing that supports multiple

specific algorithms, and we make other modifications to the base algorithms to suit our

needs. Throughout, we are primarily concerned with enumerating various algorithmic

details that can be adjusted, which is crucial for our goal of applying algorithms in

practice. (We need to be able to alter the specific strategy easily for different types of

input.) We finish by tying preprocessing and branching together to create a complete

algorithm.

3.1 Relationship of Clique to Vertex Cover

Translation of an instance of clique to an instance of vertex cover can perhaps best

be understood by first converting the clique instance to an independent set instance,

which is then converted to a vertex cover instance. We discuss the latter conversion
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first. Given a graph G and an independent set I, Ī is a vertex cover of G. This can

be seen by supposing it were not a vertex cover. Then there is some edge {u, v} ∈ G

such that neither u nor v are in Ī. Thus, both are in I, and I could not be an

independent set. To convert an instance of clique to an instance of independent set,

we merely complement G. To summarize then, we can convert a clique instance to

a vertex cover instance as follows. Given an instance of clique to solve, {G, k}, and

an algorithm for vertex cover, A, inputting {Ḡ, |G| − k} to A should return a vertex

cover set C or return that no solution exists. In the latter case, no solution for clique

exists either. In the former case, C̄ is a solution to clique. It can be proven that this

relationship extends to the optimization versions of the respective problems. That

is, given an algorithm for finding a minimum vertex cover, one can apply it to find a

maximum clique. Thus, one way to solve maximum clique is to implement minimum

vertex cover and convert maximum clique instances. Since we frequently want to

compute maximum cliques in practice, though, we often instead convert the vertex

cover FPT algorithms to solve clique directly.

3.2 Preprocessing

For clique, the 0-degree rule and the 1-degree rule discussed in Chapter 2 are analogous

to an (n− 1)-degree rule and an (n− 2)-degree rule, respectively. The (n− 1)-degree

rule automatically places any vertex adjacent to all other vertices into the clique. The

(n − 2)-degree rule places any vertex v adjacent to all but one other vertex u into

the clique, while excluding u. To see this, note that any clique not containing u can

be extended to contain v. Any clique containing u, meanwhile, can have u replaced

with v. Since v is adjacent to all other vertices, there is no advantage to selecting

u. Finally, the high degree rule from vertex cover is analogous to a low degree rule

for clique. That is, any vertex of degree less than k − 1 cannot be contained in any

clique of size k.
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In this section, we describe two more preprocessing techniques for clique. The

first takes advantage of vertex degrees beyond individual degree counts. The second

applies coloring to subgraphs and exploits the fact that cliques have strict coloring

requirements (in any proper coloring, every vertex must be a different color). Finally,

we discuss algorithmic strategies for preprocessing that are important for practical

implementation. We postpone discussing interleaved preprocessing until the section

on branching.

3.2.1 Common-neighbor preprocessing

Common-neighbor preprocessing (CNP) is a more thorough version of the low degree

rule. It examines the “degree” (common neighborhood size) of pairs of vertices. If

the common neighborhood of a pair of adjacent vertices {u, v} in graph G has size

less than k − 2, it is not possible for both vertices to be in a clique of size k. Hence,

the edge between them can be deleted. A combination of CNP and the low degree

rule serves as a more effective preprocessor than the low degree rule alone, although

linear time is replaced with quadratic time. Computing of common neighbors is often

useful for kernelizing graph problems, such as cluster editing [12].

3.2.2 Color preprocessing

Color preprocessing is similar to the low degree rule but uses the notion of the color

degree of a vertex as opposed to its degree. The color degree of a vertex v in a graph

G is defined as the chromatic number of v’s neighborhood subgraph. Observe that

a graph containing a clique of size k must have a chromatic number k or higher,

since the clique itself requires k colors. Also observe that if v is in a clique of size k,

the clique itself must be contained in v’s neighborhood subgraph. Thus, if the color

degree of v’s neighborhood subgraph is less than k, v is not in a clique of size k.

Color preprocessing computes an upper bound u on the color degree of each vertex

in G, removing those vertices in which u < k. We compute upper bounds rather than
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exact chromatic numbers in practice due to the computational complexity of coloring.

Graph coloring is used in [47] to solve maximum clique but is employed for branching

rather than for preprocessing. We later discuss and experiment with this branching

strategy.

3.2.3 Preprocessing strategies

In this section, we outline some algorithmic decisions related to preprocessing. First,

it can sometimes be beneficial to repeat preprocessing, which requires the algorithm to

decide when to halt. An obvious criterion would be to halt once no additional vertices

or edges are deleted, but this usually leads to several time consuming iterations with

little gain. Instead, we define a stopping criterion consisting of two parameters.

The first parameter is either vertices or edges, specifying that vertices or edges,

respectively, should be used in computing the criterion. The second parameter is the

fraction of vertices or edges that must be removed in order to repeat preprocessing.

There are, of course, other ways of defining a stopping criterion, and a combination

of vertices removed and edges removed is possible, but we ignore these in this work.

Another important algorithmic decision is the order in which vertices are

investigated. For example, for the low degree rule, we often find that iterating through

the vertices in lowest to highest degree order reduces the graph more per repetition

than an arbitrary ordering. This is because low degree vertices are eliminated early,

reducing the degree of later vertices so that they are more likely to be eliminated in

the same pass. Sorting vertices is also an important consideration when branching,

and so we discuss it in more detail when we discuss branching.

3.3 General Preprocessing

In this section, we introduce a template for clique preprocessing algorithms,

termed general preprocessing (GP), in which the low degree rule, CNP, and color
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preprocessing are specific examples. GP facilitates both research and experimentation

into new preprocessing strategies, as it is both a conceptual tool and a practical

algorithm. When using GP, we configure a specific algorithm with two parameters:

an integer and a function. We delay describing GP in its full generality and instead

develop it slowly through examples and basic concepts.

3.3.1 Generalizing specific preprocessing algorithms

Conceptually, GP builds neighborhood subgraphs for all vertex sets of size depth

(integer parameter), passing each of these neighborhood subgraphs to a test function

(function parameter). Note that depth is just the set size. The reason for the use

of the term depth should become apparent later. (It relates to the depth of a search

tree.) The low degree rule and CNP share the same simple test function, graph

size (number of vertices). However, the low degree rule runs at depth 1 (only single

vertices are considered) while CNP runs at depth 2 (pairs of vertices are considered).

In GP terminology, the low degree rule is size preprocessing depth 1 while CNP is size

preprocessing depth 2. Color preprocessing is color preprocessing depth 1. That is,

each iteration builds the neighborhood subgraph for a single vertex and runs a test

function that uses graph coloring. We could also do this for all vertex pairs, color

preprocessing depth 2, which, like CNP, would seek to remove edges. In practice, the

neighborhood subgraph may not need to be built (the low degree rule can be done by

simply computing vertex degrees) and other shortcuts can be taken, such as skipping

nonadjacent vertex pairs at depth 2.

3.3.2 Basic concepts

All test functions attempt to prove, with as little effort as possible, that a certain

subgraph cannot contain a clique of size k. If successful, then the vertex or edge can

be deleted. Note that the test function attempts to solve a clique instance, a smaller

piece of the larger clique problem. This recursive property leads to an alternate and
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more elegant recursive form of the general algorithm that we introduce later. Note

that the (n − 1)-rule and the (n − 2)-rule do not fall under the umbrella of GP, as

they are not readily described as test functions on neighborhood subgraphs.

Before discussing GP more formally, it is helpful to examine the relationship

between depths 1 and 2. In practice depth 2 preprocessing also deletes vertices. This

can be done in multiple ways, such as running depth 1 before depth 2 or integrating

single vertex tests into depth 2 preprocessing. In general, then, given the same test

function we expect depth 2 to be more effective than depth 1. This should match

intuition, since depth 2 is more thorough (|G|2 iterations versus |G| iterations).

3.3.3 Further examples

An implementation of GP provides a tool for experimentation. Different test functions

can be coded and tried without reimplementing the preprocessing search tree. (The

final recursive version involves a tree and is more intricate than simply iterating

through vertex sets.) We present two more test functions as examples. The first is

match preprocessing, which finds a maximal matching for the complement graph Ḡ.

It can be proven that at most half of the vertices in this matching can occur in a

clique. Thus, the size of the matching plus the number of vertices remaining serves as

an upper bound on the maximum clique size. The second test function is a variation

of color preprocessing. As we will see, color preprocessing is highly effective on real

data graphs. Unfortunately, properly coloring a graph, even with a greedy algorithm,

is an expensive operation. Luckily, though, a proper coloring of G is also a proper

coloring of any subgraph of G. Thus, a reasonable strategy might be to color G once

and have a test function that simply counts the number of unique colors for each given

subgraph. We term this approach single-color preprocessing or s-color preprocessing

for brevity.
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bool preproc(graph, minimum_clique_size,

depth, test_function) {

if (test_function(graph, minimum_clique_size)) return 1

if (depth==0) return 0

For each vertex v in graph {

Copy graph to nbrhood_subgraph

Remove non-nbrs. of v from nbrhood_subgraph excluding v

if (preproc(nbrhood_subgraph, minimum_clique_size,

depth-1, test_function)) Remove v from graph

else (Remove edges from graph between v and vertices

no longer in nbrhood_subgraph)

}

return 0

}

Figure 3.1: GP Recursive Form in Pidgin C++

3.3.4 A recursive formulation of GP

Figure 3.1 shows the recursive form of GP in pidgin C++. Statements that are mostly

English rather than C++ begin with a capital letter. The depth value equates to the

depth of the recursion. Thus, depth values can be any nonnegative integer not greater

than k. At depth 0, the test is run once on the whole graph. Note that each run of

preproc, in isolation, is capable of deleting both vertices and edges for its particular

graph instance. The preproc function returns 1 if the graph cannot contain a clique

of the given size. Otherwise, it returns a preprocessed graph instance by modifying

the passed graph (first parameter). Note the way that these return values are used

after the recursive call to preproc. If a 1 is returned, vertex v can be removed.

If not, it is still possible to remove some edges if some vertices were deleted from

nbrhood subgraph. At global scope, vertex and edge deletions occurring lower in the

recursion at depths greater than 2 can “bubble up” and reduce the graph more than

might occur for depth 2 only.
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3.3.5 Notes on recursive GP implementation

Since one of the main focuses of this work is the execution of algorithms in practice, we

address implementation issues where appropriate. The pseudocode for recursive GP

is streamlined for human understanding but not quite suitable for software. Copying

the entire graph at each iteration is usually too time consuming and may require too

much memory for even modest depths. The implementation in this work has a single

global copy of the entire graph, and only a set of vertices is passed to preproc. Edges

are deleted from the global copy but are restored before preproc returns. Various

optimizations are also possible, such as sorting vertices before iteration.

3.4 Branching

As with the preprocessing algorithms, we can construct a branching algorithm for

clique from the vertex cover branching algorithm. Each node of the analogous clique

binary search tree selects a vertex v and branches on two possibilities. First, assume

v is not in the clique and remove it from the graph. Second, place v in the clique

and remove v and all non-neighbors of v from the graph. When finding a clique of

size k in a graph of size n, the number of nodes in this search tree is bounded above

by 2n−k. To see this, we show that the quantity n − k decreases by at least one at

each branch. (Note the parallels between this section and the discussion of vertex

cover branching in Section 2.4.2.) First assume that we filter vertices connected to all

other vertices, similar to the filtering of isolated vertices in vertex cover branching.

The branch that supposes v is not in the clique decrements n and thus n − k. The

branch that supposes v is in the clique decrements k by one but decrements n by at

least two due to the removal of v and v’s non-neighbors.
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3.4.1 Alternate branching for maximum clique

In this work, we search exhaustively for a maximum clique, which differs from a

decision search tree that halts once a clique of size k is found. One way to solve

optimization problems is to perform a binary search by invoking a decision algorithm

multiple times with different k values. However, for maximum clique a simple

alteration to branching avoids the need to restart for different k values. That is,

once a clique C of size k or greater is found, store this clique, set k = |C| + 1, and

continue searching with the current search tree. Upon completion, the stored clique

will be a maximum clique. We must be careful, however. Preprocessing, whether

prior to branching or interleaved, may assume that we only wish to find a single

clique and may remove vertices in other cliques. (This is why the problem of clique

enumeration is not a trivial extension of these algorithms.) Fortunately, of the rules

we have examined, only the (n − 1)-degree rule and (n − 2)-degree rule make such

assumptions. Both of these rules are independent of the parameter k and select

vertices that maximize the found clique, so they will leave at least one maximum

clique intact.

3.4.2 Vertex sorting

Sorting of vertices is a key algorithmic decision for both preprocessing and branching.

It concerns the order in which vertices are iterated through in the main “for each”

loop of recursive GP in Figure 3.1 and also in each node of the branching search

tree as implemented in Section 3.4.1. Sorting actually consists of two parts, when to

sort and how to sort. For the former, we consider two possibilities termed lazy and

active. Lazy sorting sorts vertices only once, before the loop starts. Active sorting

sorts vertices at the beginning of every iteration through the loop. Concerning how

to sort vertices, two possibilities that have already been mentioned are sorting by

vertex degrees or by vertex colors after applying a proper coloring.
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3.4.3 Interleaved preprocessing

As with vertex cover, preprocessing for clique can be interleaved with branching to

reduce the subgraph at each node. For example, applying the (n− 1)-degree rule and

the (n − 2)-degree rule is essential, just as the analogous 0-degree rule and 1-degree

rule “garbage collector” is essential for vertex cover. (Subgraphs tend to become more

dense, rather than more sparse as in vertex cover, as we descend the clique search

tree.) Any preprocessing can be applied, but it is usually less compute-intensive than

preprocessing done prior to branching. Similar to the procedure for sorting vertices,

we can alter not only the type of preprocessing but when it is applied. Thus, we have

lazily-applied interleaved preprocessing and actively-applied interleaved preprocessing,

where the former is applied before the loop starts and the latter is applied at the start

of every iteration. In general, multiple preprocessing algorithms can be interleaved

and can even be applied at different frequencies. We can also specify an upper bound

on the search tree depth at which a preprocessing algorithm is applied. Limiting

the depth of application may help because branching alone is often quicker than

preprocessing and branching on the smaller graphs that occur in the lower nodes of

the search tree.

3.4.4 In-clique versus not-in-clique branching

During the main loop of each node of the branching search tree described in Section

3.4.1, after selecting a vertex v, we can either assume v is in the clique (in-clique

branching) or assume v is not in the clique (not-in-clique branching). As we will see

during experimentation, altering this decision often dramatically affects performance,

but the best choice is not obvious.
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Figure 3.2: Sample Algorithmic Decision Chart

3.5 The Maximum Clique Algorithm

We now build a complete algorithm for finding a maximum clique in a graph using

the tools we have discussed. The algorithm inputs a graph G. The only mandatory

component is a branching algorithm. Thus, we can think of it as the main component,

which we augment with various preprocessing algorithms. Before invoking branching,

we can interject a preprocessing algorithm that produces a revised graph G′ and a k

value that serves as a lower bound on the clique size. We can also attach various

interleaved preprocessing schemes to the branching algorithm. To summarize a

specific algorithm, we introduce the notion of an algorithmic decision chart. Figure 3.2

is one such chart illustrating one particular strategy. Each box represents either

a branching algorithm or a preprocessing algorithm (either preceding branching or

interleaved with branching). The text in each box outlines its particular strategy.

Later, we produce empirical evidence that the strategy shown works well for graphs

built from real-world data (specifically graphs produced by correlating genetic data).

For brevity the chart omits stopping criteria and the frequency of applying a particular

interleaved preprocessing algorithm. Unless mentioned otherwise, the following apply.

The stopping criterion for preprocessing before branching is to halt when less than

10% of vertices are removed. For interleaved preprocessing, only a single iteration is

done upon each invocation. Lastly, interleaved preprocessing algorithms are applied

actively at all depths.

22



Chapter 4

Software Implementations

The practicality of any algorithm can only be verified through actual implementation

and experimentation. Therefore, in this chapter we first describe a C++ implementa-

tion of the maximum clique algorithms discussed earlier, called the Maximum Clique

Finder (MCF). We then tune MCF to improve its efficiency on graphs built from real

data. MCF was designed to support such tuning, especially along the lines discussed

previously, so that we can easily experiment with different approaches. We also tune

MCF for synthetic data to illustrate this flexibility.

4.1 Software Design

The MCF software architecture, as diagrammed in Figure 4.1, mirrors the algorithms

outlined previously. The box labeled “Maximum Clique Finder” represents the

highest-level functions, which handle program entry and exit and also configure and

execute a specific maximum clique algorithm. The other boxes represent C++ classes,

except for “Bit Counters,” which is a collection of routines for quick counting of

one bits. The classes above the dashed line, unlike most C++ classes, primarily

encapsulate functionality rather than data. Thus, they can be thought of as highly-

configurable functions. The three boxes below the dashed line form the low-level

representation of graphs and handle routine graph operations. The “Bit Library”
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Figure 4.1: MCF Software Architecture

stores arrays of bits in a way that conserves memory and that allows for fast bit

manipulation. These arrays are used by the graph representation to store graph edges.

The “Preprocessor” and “Brancher” boxes encapsulate the high-level algorithms

discussed in Section 3.5. The preprocessor class implements the recursive form of GP

from Figure 3.1. The brancher class implements branching as described in Section

3.4.1. The heuristic class encapsulates algorithms that quickly find large cliques

(necessary to find an initial k value for preprocessing) and can thus be considered part

of preprocessing (conceptually if not technically). The clique-test class encapsulates

test functions that can be input to GP. (Recall that a test function is one of the

two parameters to GP.) The vertex-sorting class encapsulates strategies for vertex

sorting as discussed in Section 3.4.2 and is used in both preprocessing and branching.

Interleaved preprocessing, described in Section 3.4.3, is handled by functionality in

the brancher class that allows the user to insert into the branching tree a specific
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preprocessing algorithm. Finally, “Parallel Brancher” is a subclass of “Brancher”

that adds parallel capabilities.

4.2 Code Details

In this section, we examine in detail how MCF is implemented to be both highly-

configurable and efficient. For the former, we need a flexible design that allows us

to change not only parameters but specific sub-algorithms, which can be developed

as separate modules that are independent of the main system. For efficiency, the

underlying graph library must store the graph compactly and execute common graph

operations quickly, taking advantage of low-level bit arithmetic operations known to

be fast on most processors.

4.2.1 MCF main operation

Figure 4.2 is pseudocode for the main function of MCF (the “Maximum Clique

Finder” box in Figure 4.1), which illustrates how the different classes from Figure 4.1

interact. MCF relies heavily on the strategy design pattern, as discussed in [20] and

discussed particularly for C++ in item 35 of [33]. This design pattern, as applied

to C++ classes, grants the user the ability to specify and/or alter a class’s internal

algorithms. It is well-suited for cases like MCF in which we need the ability to change

various supporting algorithms, such as clique testing and vertex selection, without

disrupting the core algorithms, such as recursive GP and the branching search tree.

In this paradigm, it is common to create functions (actually classes that behave like

functions) and pass them as arguments. Note that the created functions in Figure 4.2

correspond directly to the classes in Figure 4.1. The “create ” functions are generic

names for specific functions that create the desired item. The pseudocode outlines

only the most minimal operation of MCF. Preprocessors and branchers also have many

configuration options corresponding to the algorithmic decisions discussed earlier.
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Maximum_Clique MCF(graph G) {

// Heuristic

Function h = create_heuristic()

Clique C = h(G)

// Preprocessing

Function ct = create_clique_test()

Function vs = create_vertex_sorter()

Function p = create_preprocessor(ct, vs, depth (hardcoded))

Graph G = p(G, |C|)

// Branching

Function vs2 = create_vertex_sorter()

Function b = create_brancher(vs2)

Clique C = b(G, C)

return C

}

Figure 4.2: Maximum Clique Finder Basic Operation in Pidgin C++

For example, we can alter a preprocessor’s stopping criterion. We can implement

interleaved preprocessing by creating a preprocessor and inserting it into a brancher,

specifying when it is invoked (see Section 3.4.3). Additionally, the (n − 1)-rule and

(n− 2)-rule can be interleaved automatically and set to be lazily-applied or actively-

applied. (Recall from Section 3.3.2 that these rules are outside the GP framework

and thus not implementable through the preprocessor class.)

4.2.2 MCF graph library

To be feasible for practical applications, software must use efficient underlying data

structures in addition to appropriate algorithms. For MCF the key data structure is

the graph library, which provides an interface for common graph operations such as

reading graphs from a file, inserting and deleting vertices, computing vertex degrees,

and specifying subgraphs. MCF employs a bitwise adjacency matrix, whose entries
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Figure 4.3: Bitwise adjacency matrix for the “house” graph

indicate whether or not two vertices are adjacent, a “0” meaning “no” and a “1”

meaning “yes”. Such a setup allows the library to take advantage of low-level bitwise

operands, which run in parallel on most hardware platforms. Figure 4.3 shows an

example adjacency matrix for a small graph of five vertices. Note that while the

matrix is symmetric, and thus half of it is redundant, storing the full matrix allows

for faster operations. For example, to compute the degree of a vertex it is only

necessary to scan a single row. If only the upper diagonal portion of the matrix is

stored, several rows may have to be visited, which are non-contiguous in memory

since C++ uses row-major ordering. Furthermore, parallel bitwise operations are not

possible with non-contiguous bits.

Now we look at each of the three components below the dashed line in Figure 4.1.

The “Bit Counters” component contains a function designed to be fast for the

fundamental operation of counting one bits. Given a single array, or row of bits,

it employs a lookup table of size 216 = 65536 that contains the number of ones in

any pair of two bytes (16 bits). Dealing with bits and bytes directly can be quite

involved. The “Bit Library” encapsulates these details, providing its user with the

ability to create an array of bits of any size and use simple function calls to perform

common operations. These include counting the number of ones or performing various

boolean operations, such as “AND”, “OR”, and “XOR”, on a pair of such arrays. The

library handles the details of storing the bits as multiple bytes in an array and quickly

performing the operations. As one example, memoization is used when a count of

ones is requested. The result is stored so that recounting can be avoided if the array
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remains unchanged. Finally, the “Graph Library” creates the adjacency matrix using

multiple arrays of bits and relying on the bit library as needed. Many common graph

operations require only one or two boolean operations on these arrays. For example,

computing the common neighbors between two vertices can be done with a single

“AND”. The graph library allows the user to store induced subgraphs by storing a

set of vertices, again represented as an array of bits. Since these do not need to store

edge information, they take very little memory and are used to store subgraphs at

each node of the branching search tree. One common operation is to remove the

non-neighbors of a vertex selected to be in the clique, which again can be done with a

single “AND” between the current subgraph and the bit array for the selected vertex.

4.3 Tuning MCF for Real Data Graphs

In this section we configure MCF to process graphs built from biological data by

timing various strategies on three representative graphs. These are correlation graphs

constructed in the manner discussed in Section 1.2 and represent genes from mouse

cerebellum∗, mouse spleen [15], and yeast [22] and are named CER, NOD, and YST,

respectively. Table 4.1 gives the dimensions of these three graphs. To reduce the

number of different algorithmic combinations, we tune preprocessing first and then

tune branching. We will verify that the strategy of Figure 3.2 is better than the

others tested. All non-parallel run times in this chapter are the average wall clock

time of three runs on an Intel Xeon (3.20 GHz) processor. Runs were restricted to 24

hours. Dedicated compute nodes were used to minimize outside interference.

4.3.1 Preprocessing

We begin by trying different preprocessor types. For these types of graphs vertex

degrees vary widely and sorting by degree is well-known as advantageous. The more

∗Goldowitz Lab at the Centre for Molecular Medicine and Therapeutics, University of British

Columbia, Canada
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Table 4.1: Graphs Built from Real Data

Graph Vertices Edges Density

CER 21348 972960 0.4%
NOD 22690 7534598 2.9%
YST 6144 6150429 32.6%

interesting question is what type of preprocessing to use, so we will focus solely

on this question and leave the sorting method as indicated in Figure 3.2. (For

synthetic graphs, we will reconsider the sorting method.) Figure 4.4 summarizes

the experimental results. It shows only preprocessing and branching times and does

not include additional tasks, such as file input and heuristic searching, that are

not relevant to measuring the effectiveness of preprocessing. Branching is relevant,

since the aim of preprocessing is to reduce the effort needed by branching and, more

broadly, to reduce total processing time of both. (A preprocessor that greatly reduces

branching time but increases total time is worthless.) The blue portion of each bar is

preprocessing time, while the white portion is branching time. The four test functions

mentioned earlier (size, color, s-color, and match) were used and ran at depths 1 and

2. Only matching at depth 2 on the YST graph exceeded 24 hours. Bars that are

all blue and extend to the top of the chart indicate methods that took much longer

than the other methods. Match 2 preprocessing on the NOD graph took over 13000

seconds, while color 2 on the YST graph took over 38000 seconds. One conclusion

that can be drawn from these results is that computationally-expensive algorithms

are not necessary for this type of graph. Except for size preprocessing, depth 2

results are worse with preprocessing times often nearly as long or longer than the

total running time at depth 1. Color preprocessing at depth 1 clearly outshines the

other methods, being both fast relative to branching and at the same time greatly

reducing branching time. We see that s-color preprocessing, designed to reduce the

time of color preprocessing while hopefully doing just as well, comes up short. At
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Figure 4.4: Preprocessing Timings

depth 2, in fact, we have a mysterious result concerning this method. The s-color

preprocessing algorithm actually takes longer in two of the three cases, even though

it is designed to be a faster alternative to color preprocessing. Further analysis shows

that s-color preprocessing has slightly more repetitions (reiterating through vertices)

when processing in those cases (3 versus 2 repetitions and 4 versus 3 repetitions,

respectively). One possible explanation is that s-color preprocessing, because it is

less effective in eliminating vertices, reduces the graph more gradually leading to

more iterations. Additionally each iteration must process more vertices and so this

lazier strategy backfires. This underscores the importance of experimentation, since

it is difficult to predict all possible factors that affect run times.

4.3.2 Branching

Now we will try different branching algorithms while leaving preprocessing at the best

result from the last section (color preprocessing depth 1). Again we only focus on

methods that exploit vertex degrees. Since the vertex sorter computes vertex degrees

as a matter of course, we go ahead and include the basic interleaved preprocessing in

Figure 3.2 (simple high and low degree rules), as it can be done with little overhead.

To do this, we break the abstraction a little by building a vertex sorter that also does

rudimentary interleaved preprocessing. (During its routine operation, it checks if a
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vertex has a degree too high or too low and then applies the necessary reduction.)

From this vantage point, eight possible strategies become apparent, as there are

three binary decisions to be made. First, we can use either in-clique or not-in-clique

branching. Second, we can sort vertices from lowest to highest degree or vice versa.

Third, we can choose either a lazy or an active strategy. Figure 4.5 summarizes

the results. All strategies that sorted from high to low degree failed to complete

within 24 hours. So these strategies are not shown. Additionally, the in-clique, lazy

algorithm, when sorting low to high, did complete for all but the YST graph but

took an excessively longer amount of time than the other three remaining algorithms.

So this strategy is also not shown. The final results are somewhat counterintuitive.

The most successful strategy (in-clique and active sorting from lowest to highest

degree) begins by assuming something improbable, that low degree vertices are in

a maximum clique. To understand why this strategy works, consider that once the

search tree finishes exploring the possibility that a particular vertex v is in a maximum

clique, v can be removed from the graph. So this strategy quickly eliminates smaller

degree vertices, reducing the search space and streamlining later processing. The fact

that methods sorting highest to lowest degree fail so spectacularly also supports this

conclusion. The two most successful strategies are active strategies, suggesting that

persistent attempts to reduce the graph, an aggressive “garbage collection” strategy,

seems to be key. The not-in-clique methods that are shown succeed because they still

filter low-degree vertices by assuming, initially, that they are not in the clique. These

lower-degree vertices, however, have to be revisited later.

4.4 Tuning MCF for Synthetic Graphs

In the previous section we completed experiments justifying the maximum clique

algorithm of Figure 3.2 for graphs built from real data. When we apply this algorithm

to synthetic graphs, however, the results are quite disappointing, and a different

approach is required. By “synthetic” we mean graphs created from mathematical
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Figure 4.5: Branching Timings

formulas or structures or generated by simple algorithms, such as random graphs.

These graphs tend to have a very uniform structure, which makes it harder to locate

dense regions. Specifically, vertex degrees may differ only slightly, if at all, and so

rules that exploit vertex degrees are less helpful. In this section we consider a different

tuning of MCF for such graphs using a graph coloring algorithm presented in [47].

This algorithm has a vertex sorter that colors its subgraph, using the result to select

vertices. The cited paper discusses two algorithms, MCQ and MCR, where MCR is

a refinement of MCQ, which was introduced in an earlier paper. Because MCR is

an incremental improvement to MCQ with additional optimizations, we focus solely

on MCQ in order to highlight the main algorithmic changes without delving into

minor details. We modify MCF easily to follow the basic MCQ strategy and show

that with this simple adjustment we are able to process synthetic graphs. We also

implement MCQ directly and show that our tuned MCF does not outperform the

direct implementation, although the results are comparable. Thus while a highly-

configurable program such as MCF helps to test and implement various algorithms,

it can still be worthwhile to consider crafting specialized codes when one needs to

focus on a specific graph class.
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4.4.1 The MCQ algorithm

The MCQ algorithm discussed in [47] uses the same standard branching approach

as MCF. Its vertex sorter, however, works by initially coloring the vertices, using

a simple greedy coloring algorithm, and then iterating through the vertices from

highest to lowest color. Curiously, the algorithm selects the highest color vertices

first, ones that are likely to be in the clique, and uses an in-clique strategy. Given

the observations made for real-data graphs, that the best strategy is to place unlikely

candidates in the clique first, this seems suboptimal. MCQ prunes the search tree

by a different technique, however. Whereas the best strategy for real-data graphs

quickly prunes lower degree vertices, the MCQ strategy prunes by not having to

branch on low-colored vertices. Observe that, upon returning from branching, the

graph is altered only by removing the vertex that was assumed to be in the clique.

Thus the coloring for the remaining subgraph is still valid. Once the color value for

the next vertex selected by the vertex sorter drops below the current best clique size,

no more searching is necessary.

4.4.2 Tuning MCF

Tuning MCF to implement MCQ is fairly straightforward. MCQ does not preprocess

before branching. Thus this is removed except to apply the greedy algorithm to

find an initial clique (not done in MCQ where the initial clique is empty). Then the

vertex sorter is set to a lazy strategy that sorts the vertices once (after first coloring the

graph). Like MCQ, it returns no more vertices available once the color value drops too

low. Before branching, vertices are sorted by degree as is done in MCQ. Note that this

tuning does not faithfully reproduce every aspect of MCQ, just the key idea of sorting

vertices by color. We call this algorithm MCF-MCQ. Figure 4.6 is an algorithmic

decision chart for MCF-MCQ. (Note the sparse preprocessing before branching and

lack of interleaved preprocessing.) To compare this algorithm’s performance to the
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Figure 4.6: MCF-MCQ Algorithmic Decision Chart

original MCQ, MCQ was also implemented directly using the pseudocode in [47],

bypassing MCF. We refer to this algorithm simply as MCQ.

4.4.3 DIMACS test graphs

For the set of synthetic graphs, we use the DIMACS benchmark graphs employed

for the second DIMACS implementation challenge [26]. The graphs are available for

download at [13]. Out of the 67 available challenge graphs, 26 representative graphs

were chosen. Based on preliminary testing, the “c-fat” graphs and Keller graphs were

eliminated, the former because they were all easily solved in a matter of seconds,

and the latter because none of the tested algorithms could solve them within the 24

hour limit. The remaining 26 graphs represent the remaining graph types, eliminating

both the easiest and hardest instances while still keeping some graphs that are quickly

solvable, some that are unsolvable, and most that lie between these two extremes.

4.4.4 Results

Running times for MCF-RD, MCF-MCQ, and MCQ on each graph are listed in

Table A.1. The most striking result is the difference in the performance of MCF-

MCQ versus the earlier algorithm for real-data graphs in Figure 3.2, which we refer

to as MCF-RD. For the set of 26 DIMACS synthetic graphs, MCF-MCQ is able to

solve 22 while MCF-RD is only able to complete 7. For the real-data graphs NOD

and YST, though, MCF-MCQ does not finish. So MCF-RD still performs far better

on real-data graphs. Curiously, however, the CER graph is solved by MCF-MCQ in

only 155 seconds, faster than the 405 seconds for MCF-RD. Note that the CER graph
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Figure 4.7: MCF-MCQ versus MCQ. Each bar compares the run time of MCF-MCQ
and the run time of MCQ on one DIMACS graph. (Raw run times are not shown.)
MCF-MCQ run time exceeds that of MCQ in most cases, suggesting that a straight
implementation of a maximum clique algorithm may be worthwhile. MCF-MCQ is
competitive, however, with only a few cases where it is significantly slower.

is more sparse than either NOD or YST and thus less challenging, which is probably

why it is less sensitive to algorithm selection.

Less striking but still revealing is the comparison between MCF-MCQ and MCQ,

which is summarized in Figure 4.7. This figure shows the percentage of the combined

run time for both algorithms on all 22 DIMACS test graphs that were solved in 24

hours. Overall MCQ does better. Analysis reveals no clear reason. In some cases,

the difference can be traced to the initial coloring of vertices. In other cases, though,

it seems to be simply the overhead of using the MCF framework.

4.5 Parallel Implementation

This section describes the MCF approach for taking advantage of multiple processors.

We first discuss the high-level design and then its implementation.
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4.5.1 Parallel high-level design

MCF only parallelizes the branching search tree, which normally consumes most of

the processing time (both in practice and in theory). In rare cases, preprocessing time

may be a large percentage of total run time, but it can be delayed until branching

by applying interleaved preprocessing only at the upper levels of the search tree.

Assuming we are able to evenly distribute the workload, the preprocessing work should

also be evenly distributed. MCF uses a master-servant approach. Initially, only the

master processor runs, as if it were the only processor. At various points in the search

tree, the master delegates the remaining subtree to another processor, waiting if no

other processor is currently available.

The challenge in creating a good parallel strategy is distributing the workload

evenly, especially for non-uniform graphs built from real data [1]. One approach is

to traverse the search tree, breadth-first, until enough nodes are found to partition

at least one to each processor, but the assigned nodes usually require widely different

computational times. Thus, some form of dynamic (continuous) load balancing is

needed, which quickly becomes complex. When processors become idle, new jobs

must be readily available. This requires working processors to store and communicate

subtrees, which again may have a wide range of run times that are difficult to

predict. Communication overhead is a serious concern because constant monitoring

and refactoring is needed to keep processors busy [7]. Given this complexity, MCF

opts for a simple dynamic load balancing approach that tends to work well in practice

up to a point, which we will show by experimentation. The premise is to avoid

distributing jobs that require a large portion of the total computational time. The

advantage of this approach is that no single processor ends up doing the bulk of the

work while others sit idle. The other advantage is that refactoring of the workload is

unnecessary. Processors need not be interrupted while working in order to rebalance

the load. The disadvantage, however, is that dividing the workload into small pieces
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increases communication overhead. Since we use a master-servant architecture, where

a single master distributes jobs, the master eventually becomes a bottleneck.

There are at least two ways of ensuring that jobs remain “small” (do not require

excessive amounts of time). First, we can split the workload more finely by having the

master process delay distributing nodes until it reaches a certain level of the search

tree. MCF normally works best in practice if jobs are distributed at the first level of

the search tree. MCF does allow the user to specify a different level for distributing

jobs, though, if the workload is not being effectively balanced. (Note that for a binary

search tree, finding an appropriate level for job distribution is more of a challenge,

since the number of nodes at each level increases more gradually.) Secondly, we can

have a branching strategy that avoids creating large jobs. Fortunately the sequential

strategy of selecting vertices in order of ascending degree and assuming they are in the

clique, which was shown experimentally as the best sequential strategy for real-data

graphs earlier, meets this goal. Early jobs are small because low-degree vertices have

few neighbors. Later jobs are small because the earlier vertices have been removed.

As an example of a poor branching strategy for parallelization, consider the intuitive

strategy of first assuming low-degree vertices not in the clique. This approach does

not balance well because the first job, perhaps a vertex of degree one, encompasses

nearly the entire workload.

4.5.2 Software implementation and results

The “PBrancher” class in Figure 4.1 is an extension (subclass in OOP language)

of the Brancher class that adds capabilities for running in parallel. The Brancher

class contains hooks in the normal branching code that allow an extension, such

as PBrancher, to insert extra functionality, such as having a master process halt

normal execution and send the current job to a servant process. (Thus, MCF can

be easily modified to use more advanced load balancing strategies.) To illustrate

the performance of this parallel approach, we test the NOD graph at increasingly
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Table 4.2: Run Times in Seconds for Parallel Runs of the NOD Graph

Number of Processors
Cutoff 2 4 8 16 32 64 128
0.40 >24 hours 44101 19289 9454 5072 3074 2259
0.39 >24 hours >24 hours 51978 26232 14629 9287 6961
0.38 >24 hours >24 hours >24 hours 44505 23816 14110 9750
0.37 >24 hours >24 hours >24 hours >24 hours 44792 25335 16249
0.36 >24 hours >24 hours >24 hours >24 hours 84589 45543 27153

smaller cutoff values, creating increasingly denser graphs, on various numbers of

processors. All runs were done on quad-core Intel Nehalem 2.67 GHz processors

with two processors (8 cores) per node.† Due to limitations on computing resources,

only one run was performed for each case. As was done for the non-parallel runs, wall

clock time was recorded, dedicated compute nodes were used, and runs were restricted

to 24 hours. Table 4.2 summarizes the run times. Table 4.3 indicates the speedup

each time the number of processors is doubled. Note that ideal linear speedup is 2.

Also note that one processor serves as a master, which leads to the appearance of

superlinear speedup in two cases. From these tables we observe, as forecasted, that

significant speedup is being achieved but fades for greater numbers of processors.

Running at increasingly smaller cutoffs, though, reveals another interesting trend.

As graphs become denser and more difficult, speedup erodes more slowly. Thus, even

with this simple approach we see that there is hope to solve very difficult instances

given a sufficient number of processors.

†This research used resources of the National Energy Research Scientific Computing Center,

which is supported by the Office of Science of the U.S. Department of Energy under Contract No.

DE-AC02-05CH11231.
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Table 4.3: Speedup for Parallel Runs of NOD Graph

Transition (X Processors to Y Processors)
Cutoff 2-4 4-8 8-16 16-32 32-64 64-128
0.40 - 2.29 2.04 1.86 1.65 1.36
0.39 - - 1.98 1.79 1.58 1.33
0.38 - - - 1.87 1.69 1.45
0.37 - - - - 1.77 1.56
0.36 - - - - 1.86 1.68
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Chapter 5

Graph Algorithms for Integrated

Biological Analysis

This chapter was published in the book Clustering Challenges in Biological Networks

by World Scientific:

J. D. Eblen, I. C. Gerling, A. M. Saxton, J. Wu, J. R. Snoddy and M. A. Langston,

Graph Algorithms for Integrated Biological Analysis, with Applications to Type 1

Diabetes Data, in Clustering Challenges in Biological Networks (S. Butenko, W. A.

Chaovalitwongse and P. Pardalos, editors), World Scientific, 2009, 207-222.

Only minor modifications have been made to the published work. Previous

chapters have discussed the technical aspects of solving maximum clique. This work

demonstrates its practical application. MCF computes the maximum cliques that

are augmented by the paraclique algorithm. My contribution to this paper was

implementing paraclique, the running of all paraclique and k-means experiments,

most of the initial writing, and participation in several rounds of editing and revision.
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5.1 Overview

Many inbred strains of Mus musculus, the common house mouse, are employed in

biomedical research. The non-obese diabetic (NOD) mouse is particularly useful as

a model of type 1 diabetes mellitus (also called juvenile onset, or insulin dependent,

diabetes). In both mice and humans, this disease is characterized by persistent

hyperglycemia (elevated blood sugar level) that is induced in genetically susceptible

individuals and modified by a variety of environmental triggers including food and

infections. It is caused by an abnormal and self-destructive immune response

(autoimmunity), which allows mononuclear leukocytes to target the insulin producing

beta cells in the pancreas [45, 53, 46]. Eventually this process destroys so many of

the beta cells that the body is unable to produce sufficient insulin to retain normal

blood glucose levels and diabetes is observed. Our studies in the NOD mouse focus

on the very early leukocyte abnormalities that may be associated with initiation of

the autoimmune process [24]. If we can gain a better understanding of the initiation

of autoimmunity, then we may be able to develop rational intervention strategies that

can stop the disease process in its preclinical phase effectively and with minimal side

effects.

The importance of melding experimental research with continuing advances in

computational analysis is well understood [28, 29, 37]. In the work reported here, we

begin with high-throughput NOD mouse data and apply novel clique-centric methods

to analyze it. Fixed parameter tractability [14, 2] and various realizations of the

paraclique algorithm [9] form the basis of techniques we use to extract dense putative

networks from the vast sea of correlations that arise in the analysis of comprehensive

transcriptomic data [6, 30]. Proteomics data is added to the mix, thereby introducing

challenging new problems in inhomogeneous data interpretation [27]. The results we

obtain are evaluated in terms of both statistical quality and biological relevance.
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Figure 5.1: At birth, NOD mice have normal blood glucose levels, with no indication
of destruction of insulin-producing beta cells (located in the islets of Langerhans). At
five weeks of age, the first signs of pathology occur with leukocytes invading the space
around the islets. This infiltration progresses to involve additional leukocytes with
more invasive and destructive character. By twelve weeks of age or later, so many
beta-cells have been destroyed that insulin production capacity has been severely
diminished. Because blood glucose can no longer be regulated normally, the mice
become diabetic. We sampled leukocytes in the early and late prepathology stage to
evaluate defects at the molecular level associated with initiation of the pathology.

5.2 Description of Data

To define abnormalities in the early phases of autoimmunity, we have conducted

comprehensive studies of gene expression in young NOD mice and mice from control

strains (NON and C57BL/6) that do not develop diabetes or autoimmunity to beta

cells [24, 23]. Genes encoded in DNA are transcribed into mRNA, which is then

translated into proteins that are the major determinants of a cell’s activation and

function. To gain a comprehensive picture of how the genetic differences between our

strains can affect the development of autoimmunity, we evaluated gene expression

at the mRNA level using Affymetrix MOE430A/B arrays, and at the protein level

using 2D-gel electrophoresis. We collected mononuclear spleen leukocytes from each

of the three strains at both two and four weeks of age. This is a critical window for

our analysis, because it represents the prepathology stage before leukocytes begin to

infiltrate the islets of Langerhans, which typically occurs in NOD pups when they

are about five weeks old. See Figure 5.1. From each of the six strain/age groups, we

collected five independent samples for a total of 30 samples in the complete dataset.

Experimental details regarding the analysis of mRNA and protein expression levels

have been published previously [24].
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Because the data is biological, it has a fairly high level of noise. At the time of

sample collection, individual mice may or may not have just eaten, been fighting,

been scared, been sleeping, etc. These biological parameters can be difficult to

control, and can have an influence on expression levels of some genes. In addition

to this biologically derived noise, there are also technical sources of noise to be

considered. The mRNA gene expression arrays have a very effective normalization

and scaling process and very good technical reproducibility on identical samples with

percent coefficients of variance usually in the low single digits [43, 50]. In contrast,

protein expression data involves technologies that are more complicated and difficult

to standardize. Technical reproducibility of protein expression data collected from

identical samples often has percent coefficients of variance in the low double digit

range [52, 39].

5.3 Correlation Computations

We employ the aforementioned 30 samples to compute a correlation matrix. The

matrix entry at location (i, j) denotes the correlation coefficient between the ith and

jth items (genes or proteins), normalized to the range [-1.0,1.0]. Because mRNA

arrays alone can measure over 45,000 different values, we may be faced with making

sense of over a trillion correlate pairs. Close examination of the data reveals a

paucity of outliers, so that we are able to use the well-known Pearson’s method

for the computation of correlation coefficients. Because we are searching for putative

pathways and networks, both positive and negative correlations are of equal interest.

We therefore take absolute correlation values. Recall that this is biological and hence

noisy data. Not every probe set is reliably measured in every sample. Thus we move

away from simple correlation and compute a p-value for each pair of correlates, which

is the probability that they have a correlation different from zero [54]. See Figure 5.2.

Protein correlations are too weak to find relevant relationships at this level, and so

for them we turn to other methods as will be described in Section 6. The correlation
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Figure 5.2: The transcriptomic data used in this study provides a broad spectrum
of p-values. A threshold p-value of 0.01, for example, creates an unweighted graph
with 22750 vertices and roughly 11 million edges.

matrix is transformed into a complete, weighted correlation graph by using a vertex

for each transcript and protein, and by weighting the edge between each pair of

items with the corresponding correlation matrix entry. From this we can build a

simple, unweighted graph as needed with the use of a cut-off value (we favor the use

of p=0.01) and a high-pass filter. An edge whose weight is less then the cut-off is

discarded. Other edges are retained, but their weights are now ignored.

5.4 Clique and its Variants

We assume the reader is familiar with standard concepts in graph and complexity

theory [51, 44]. We begin with the well-known clique problem. A clique is a densest

possible subgraph. Each pair of its vertices is connected by an edge. A clique is

maximum if it is a largest clique in a graph. A clique is maximal if it is not contained

wholly within a larger clique. A clique on five vertices is illustrated in Figure 5.3.

Protein correlations are too weak to find relevant relationships at this level, and so
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Figure 5.3: A clique of size five.

for them we turn to other methods as will be described in Section 6. The correlation

matrix is transformed into a complete, weighted correlation graph by using a vertex

for each transcript and protein, and by weighting the edge between each pair of items

with the corresponding correlation matrix entry. Clique is widely acknowledged for

its many applications in computational molecular biology [41]. In the present setting,

its advantages include cluster purity (all edges are present), cluster overlap (genes

and gene products are pleiotropic), and resistance to false positives (the bane of

many clustering methods). Contrasts with other techniques can be found in [49].

The classic decision version of clique is NP-complete. Finding approximate solutions

appears no easier, because ensuring solutions within nǫ in polynomial time implies

P = NP for any ǫ > 0 [16].

We are of course more interested in search and optimization. By transforming

clique to vertex cover, we can apply notions from fixed-parameter tractability [14,

2] and many years of basic research [18, 19] to solve the maximum clique problem

effectively in practice. With novel implementations and high performance platforms,

we are currently able to find maximum cliques with hundreds of vertices in graphs

with tens of thousands of nodes. We must often also solve the maximal clique problem

[8]. Even when the maximum clique size is modest, we frequently find that the number

of maximal cliques is staggering. Thus it is that space as well as time is a critical

resource for solving maximal clique, even when supercomputing technologies are used.
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Figure 5.4: Paraclique augments a clique with non-clique vertices in a controlled
manner to increase size, decrease overlap and maintain density.

Our work on this general subject, as well as its application to transcriptomic data

analysis, is chronicled in [2, 9, 6, 30, 49, 10, 31, 55].

The paraclique algorithm was recently introduced in [9], where it was shown to

have advantages in the amelioration of noise inherent in high throughput biological

data. Clique by itself is highly resistant to false positives. Under certain experimental

conditions, however, it can be subject to false negatives. This is because, if even a

single edge is missing, the clique is lost. Moreover, we frequently encounter enormous

numbers of overlapping cliques [30]. To coalesce these into fewer but larger clusters,

and to reduce the significance of noise, paraclique solves something similar to the

dense-k-subgraph problem [17], which is NP-complete even on graphs of maximum

degree three. Roughly speaking, a paraclique is a clique augmented with non-clique

vertices in a highly controlled manner. A user-defined glom factor, g, is provided to

increase cluster size while limiting the number of missing edges permitted. We glom

onto a non-clique vertex only if it is adjacent to at least g clique/paraclique members.

This notion is depicted in Figure 5.4. Correlations between non-adjacent vertices may

be taken into consideration as well. We refer the reader to [9] for details. Thus, when

the application permits, we employ the paraclique algorithm and sacrifice overlap in

order to build robust clusters.
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Paraclique is also useful from a computational standpoint because it can,

depending on the application, obviate the need for maximal clique enumeration. To

illustrate, the processing of an NOD file whose maximum clique size was only 20

produced a list containing over four million maximal cliques and requiring over two

gigabytes of memory before the enumeration was terminated by the operating system.

In contrast, only 25 paracliques were generated. We therefore identify a maximum

clique, use paraclique to decompose the graph, and then iterate the process on the

remaining subgraph. We halt the process when maximum clique size falls below some

reasonable cutoff value (we set this value at 50). In this way, paraclique eliminates

the need to compute and store enormous lists of maximal cliques.

5.5 Statistical Evaluation and Biological Relevance

Edge density is arguably the most telling statistical clustering metric. Clique, of

course, maximizes density at 100% by definition. With the paraclique algorithm,

density will tend to decrease as new nodes are glommed onto a starting clique. How

precipitously density falls depends heavily on g. Table 5.1 summarizes the results for

paraclique when it was run over the NOD data of this study. Clique size, paraclique

size, and edge density are averaged over the paracliques generated. Note the manner

in which paraclique increases cluster size with only a gradual reduction in density. (In

contrast, we find that enlarging cliques using simple 1- and 2-neighborhoods quickly

drops density into the single digits.) As a practical matter, we must balance the

desire to handle noise and expand paracliques with the real need to maintain suitably

high edge densities. As a rule of thumb, therefore, we seek to maintain a minimum

density of at least 90% and henceforth set g at |C|−5. We emphasize that this choice

is highly data-dependent, and tunable to each application by design.

Density alone, however, tells only part of the story. To test for biological relevance,

we used the Ingenuity Pathways Analysis (IPA) package from IngenuityR© Systems,

www.ingenuity.com. IPA allows subscribers to upload and test lists of genes (in our
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Table 5.1: Paraclique Parameter Variation

Glom Number of Clique Paraclique Edge Lowest Edge
Factor Paracliques Size Size Density Density

|C| − 1 32 99.4 104.8 99.8% 99.5%
|C| − 2 30 99.9 118.8 99.0% 97.9%
|C| − 3 28 101.6 137.4 97.8% 96.0%
|C| − 4 27 101.4 151.4 96.4% 92.3%
|C| − 5 24 106.1 173.8 94.9% 90.3%
|C| − 6 24 104.7 186.8 92.9% 86.7%
|C| − 7 22 108.5 205.7 91.4% 83.1%
|C| − 8 21 110.2 221.1 90.0% 80.0%
|C| − 9 21 109.3 231.1 88.6% 77.9%
|C| − 10 19 114.7 250.5 87.7% 76.6%

case Affymetrix probesets) against a manually curated biological interaction database.

Probe sets known by the database are mapped to genes, which are then termed focus

genes. Other probe sets are ignored. Focus genes are analyzed to determine how

they are connected to one another based on evidence from the biomedical literature.

Based on this analysis, one or more molecular networks are produced. Each typically

consists of a mixture of focus genes, sprinkled with additional database genes and gene

products that are needed to connect the focus genes and complete the network. We

term a focus gene that is placed in such a network a focus gene utilized. In general, one

cannot expect that all focus genes will become members of a network. The database

may have very little information about a focus gene’s connectivity. Alternately, a

focus gene may be only distantly related to other focus genes. Due to technical

constraints, IPA imposes a limit on network size, which is currently set to 35 nodes.

As a result, lists with large numbers of focus genes often create multiple networks.

Fortunately, these can often be fused together into a single common network using

commands that are available on the Ingenuity website and that are designed for

this purpose. The more closely connected a group of focus genes are biologically,

the more likely it is that the database can connect them all into a network. Thus,
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an important metric is the percent focus genes utilized. This number alone can be

misleading, however, because we must bear in mind that IPA may spread the genes

across more than one network. A group of 40 focus genes, for example, would be

considered more closely related if they could be connected in two networks than if

four networks are needed to connect them all. We will therefore also calculate and

examine focus genes utilized per network, a metric that normalizes for this effect.

As a control, we also tested K-means clustering, a traditional and highly popular

algorithm. We invoked it via the R programming language, with the “kmeans”

function from the “amap” package [25]. Input values were log transformed. Pearson

correlations were employed. We sought to generate 500 clusters, because that should

yield clusters of roughly the same size as those produced by the paraclique algorithm.

Iteration was performed until convergence. IPA requires that each network be

analyzed separately (no batch mode is available), a process that can be quite time

consuming. Thus, only a small number, say ten, of clusters could be selected for

further analysis. For paraclique, we simply selected the first ten outputs. Deciding

on a representative set of K-means outputs was not as straightforward. We therefore

chose to select K-means clusters under three different criteria. One criterion was

to choose the ten largest clusters. Another was to favor those ten with the highest

edge density in the p=0.01 graph. In case this produced unfairly small genesets, we

also required that for a cluster to be selected it had to have size at least 50, the

same lower bound we use for paraclique. The third criterion was based on paraclique

overlap. For this we chose the ten K-means clusters with the highest percentage

overlap with some paraclique, again insisting that a cluster had to have at least 50

vertices. Overlap ranged from roughly 45% to 64%, with an average of about 55%.

Table 5.2 summarizes these results. All values are averaged over the relevant ten

clusters.

By inspection, paraclique is superior to K-means clustering in terms of density.

The case for superior biological relevance is perhaps less obvious. We therefore

performed ANOVA tests for statistical significance. The number of focus genes per
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Table 5.2: Paraclique versus K-Means

Probe Edge Focus Genes Percent Focus Genes
Method

Sets Density Genes Utilized Utilized per Network

Paraclique 254.3 97.1% 146.9 140.7 95.5% 14.4
Large K-means 244.0 31.5% 143.1 133.5 93.0% 12.8
Dense K-means 80.9 84.6% 52.3 46.7 89.4% 12.8
Overlap K-means 89.0 79.6% 55.7 49.9 89.8% 12.3

network was higher (p< .001) for paraclique than for any of the K-means methods.

And while paraclique did not differ markedly from Large K-means in terms of cluster

size, it was more successful than other K-means methods in both size and percent

focus genes utilized (p< .05).

5.6 Proteomic Data Integration

We now consider the problem of combining quantitative transcript and protein

data for analysis. Only a few studies have been reported (see, for example, [3]).

The related problem of combining gene expression with measures of function was

recently considered in [4]. There gene ontology, phenotypes and protein-protein

interaction were used to devise distance measures and permutation tests for strength

of commonality in graphs from these different data sources. Although no quantitative

protein values were employed, data derived from Saccharomyces cerevisiae, commonly

known as baker’s or budding yeast, suggested that similarity in expression is related

to similarity in function.

Our main goal is to identify biological pathways, each of which is anchored by

a protein of interest. We are fortunate that both gene expression array data and

protein gel data were collected from the exact same samples. If it were not for the

expense involved, we would wonder why this is not done more often. Nevertheless,

data integration remains a formidable task. The biggest difficulty we must overcome
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is probably that transcriptomic and proteomic data are generated by two completely

different and unrelated processes. Thus we will not be able to use parametric

statistical procedures, including the highly favored Pearson’s correlation technique.

Another problem is that current technologies for protein sensing are generally inferior

to those for transcript detection. Modern expression array platforms can often

detect transcripts for more than 50% of the known genes in the relevant organism,

and generate highly reproducible quantitative measurements. In contrast, protein

identification platforms can seldom cover more than 10% of an organism’s estimated

number of proteins, and with only moderate quantization and reproducibility. Of

course function is a direct consequence of proteins, not mRNA, and so the importance

of protein expression cannot be underestimated. Finally, it is well known that gene

expression at the mRNA level will not always correlate well with gene expression at

the protein level. After all, gene products are subject to post-transcriptional and

post-translational modifications, degradation and other factors. Put together, these

difficulties make any serious attempt at transcript-protein co-expression analysis a

huge challenge. In the sequel, we shall address this challenge with non-parametric

methods, graph algorithms and a clique-centric combinatorial approach.

We begin with the establishment of two correlation structures. For transcript-

transcript relationships, we retain the Pearson’s coefficients already computed.

Transcript-protein relationships are typically much weaker and, for reasons already

stated, require a non-parametric approach. For these we employ the rank metric

provided by Spearman’s correlation technique. This naturally leads to the loss of

some information; a simple ranked list “flattens” raw data values. Our aim is now

two-fold. We still wish to find dense, well-connected subgraphs. Yet these subgraphs

must also be anchored as much as possible about some given protein, p, under scrutiny.

Of course we could simply choose a putative pathway to be p and those transcripts

ranked most highly with it. As we shall show, however, we can do better with the use

of graph structure. To accomplish this, we take the transcript graph and add to it

a new vertex for protein p. We then use the rank order provided by the Spearman’s
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coefficient list to add edges connecting p with transcript vertices. We add these edges

until the subgraph induced by p and its neighbors contains at least 100 maximal

cliques each of size at least 40. We then output p along with the 60 or fewer vertices

that most highly populate the resultant set of cliques. The values 40, 60 and 100

were chosen based on trial and error combined with our previous experience working

with the idiosyncrasies of IPA. Other values may be superior in other applications.

To test this approach, we chose six proteins on which IPA contained information,

which were well-expressed in the experimental samples, and which appear to be

orthogonal to each other in terms of their biological function. Two of the six, HNRPK

and EIF4A1, are of special interest because they are generally known to have increased

expression in NOD mice relative to the NON and C57BL/6 strains [24]. The other

four are ACTB, GDI2, GNB2L1 and ZBTB1. We also chose three different transcript

graphs constructed from respective Pearson correlation thresholds 0.60, 0.70, and 0.80.

For each of these 18 tests, maximal cliques were highly overlapping, as expected. As a

measure of a cluster’s biological relevance, we examine a metric we call protein links.

Protein links is a count of the number of connections between an anchored protein

and the network created by IPA. For each protein, we chose the threshold setting

that maximizes protein links, with ties broken in favor of the higher threshold. The

lowest threshold, 0.60, had none of the best results. It is probably the case that, in a

graph this dense, the transcript-transcript relationships drown out protein-transcript

correlations.

As a control, we compared the quality of the transcript sets we produced against

the 60 transcripts that simply correlate most highly with the protein. GDI2 and

ZBTB1 had fewer than three protein links for all four results (the three threshold

values plus the straight correlation list), and so were dropped from further analysis.

Results for each of the four remaining proteins are shown in Table 5.3.

From this table, we see that our clique-centric approach builds subgraphs that

are no worse and in fact generally better than those simply defined by ranking and

selecting correlates. Although protein links are our primary focus, other metrics are
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Table 5.3: Clique vs Correlates

Protein Algorithm Probe Sets Focus Genes Protein Links

Clique at 0.70 60 42 6
ACTB

Correlates List 60 27 6
Clique at 0.70 59 50 7

EIF4A1
Correlates List 60 41 2
Clique at 0.70 60 39 6

GNB2L1
Correlates List 60 37 3
Clique at 0.80 55 38 5

HNRPK
Correlates List 60 42 3

equally revealing. In the case of ACTB, for example, we find that both methods

produce six protein links, but the algorithm based on clique is superior in terms of

percent focus genes utilized (100% versus 85.2%) and focus genes per network (14

versus 11.5).

It may also be instructive to compare IPA’s outputs visually. Figures 5.5 and 5.6

contain screenshots of merged network diagrams created by IPA for HNRPK.

Figure 5.5 was generated from the list of transcripts produced by our clique-centric

method; Figure 5.6 was generated from the list produced by mere correlate ranking.

Focus genes are depicted in grey. Connections to the anchor protein are rendered in

blue. Glyph shapes vary depending on IPA classifiers.

The IPA screenshots shown in Figures 5.5 and 5.6 demonstrate how the two

methods we consider create quite different networks, and how the protein is connected

to more genes in the network created by the clique-centric algorithm.

5.7 Remarks

We have studied clique-centric algorithms in the context of effective biological

data clustering. Statistical quality based primarily on edge density and biological

significance based on curated pathway matching have demonstrated the utility
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Figure 5.5: The IPA merged network for HNRPK using a clique-centric algorithm.

Figure 5.6: The IPA merged network for HNRPK using simple correlation.

of paraclique and related methods. We have also considered the problem of

inhomogeneous data integration. Transcriptomic data from gene expression arrays

and proteomics data from 2d gels have been reconciled to identify biological networks

for further scrutiny.

We emphasize that this work has been limited in scope to the analysis of

inhomogeneous data of relevance to type 1 diabetes. It is not meant to provide a

comprehensive guide to the literature. Nor is it intended to serve as an exhaustive

comparison of clustering methods. Such a task would be an enormous challenge,
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requiring the implementation of a huge number of algorithms, and necessitating tests

across a great many diverse datasets.

There are a variety of ways to modify and enhance paraclique and the other

algorithms we describe. In [9], for example, an optional user-defined threshold

parameter is provided to help guide the search for edges affected by noise. For

simplicity, we have ignored this parameter here and considered only the effect of the

glom factor. Another enhancement is to glom vertices in stages, invoking paraclique

iteratively until a certain threshold is reached. Initial results suggest that this

procedure can further increase paraclique size while maintaining both edge density

and biological fitness as measured by IPA.

Finally, we observe that pleiotropism is common in gene and gene products. It is

thus a major reason for the popularity of soft clustering methods such as clique: a

vertex can lie in more than one clique, just as an oligonucleotide or a protein can lie

in more than one pathway. Noise and the need for simpler structures motivate the

paraclique algorithm. The clusters produced are robust with respect to a few missing

edges. Unfortunately, they no longer overlap with the basic paraclique method. It

is possible to modify the algorithm so that overlap is permitted. This is a topic

of current research within our group. Optimal ways to accomplish this, however,

probably depend on the application. The same may be said for the highly challenging

task of inhomogeneous data integration. We are currently working on techniques to

integrate multiple proteins in a single step, rather than handling them one at a time.

This is not as easy as it might sound, and may require the use of three rather than

just two forms of correlate pairs.
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Chapter 6

Practical Algorithms

In previous chapters, we have described methods for computing maximum cliques,

both high-level algorithms and software implementations. In Chapter 5 we saw the

application of paraclique, a practical algorithm that employs the MCF clique-finding

engine to analyze data. In this chapter, we explore more fully this idea of building

practical data-analysis algorithms on top of clique-finding software. Refer to Section

1.2 for more details about how a graph can be used to represent biological data. More

generally, a graph can be used when we have a set of items (vertices) and a relationship

between those vertices, which can be used to define edge weights. A clique is a set

of items that are all pairwise related. Thus, machinery for finding cliques becomes

machinery for finding highly dense cores. This chapter describes algorithms that build

upon these cores and are applicable to data mining tasks that seek highly cohesive

groups inside a given data set. We start by describing paraclique and how it is used

in practice, including how it was used in Chapter 5. We then present a new variation

of paraclique that attempts to be more robust. We run some preliminary experiments

to compare the two algorithms. Next, we propose a new algorithm based on maximal

clique, which is an attempt to improve upon a known algorithm. We then again show

some preliminary results. Lastly, we consider relaxations of clique and a more general

clique problem. We see that these problems address some of the weaknesses of clique
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and thus are targets for future research in developing practical algorithms based on

computationally hard problems.

6.1 Paraclique and Phased Paraclique

The term paraclique was first defined in [9]. A paraclique is a clique plus additional

vertices that are “close” to membership in that clique. Paraclique relies on a

maximum clique algorithm to find highly dense cores and then extends or “fleshes

out” these cores to include vertices omitted due to noise. We first define paraclique

and discuss how paracliques can be computed in practice. Next, we introduce a

variation of paraclique designed to enhance paraclique construction.

6.1.1 Paraclique

The version of paraclique used in Chapter 5 and in this chapter is given as pseudocode

in Figure 6.1. Note that it differs from that given in [9], mainly due to practical

experience. It is simpler because there is no outer loop. It was discovered that

repeated addition of vertices to P can lead to unrestrained growth for real-data

graphs. This is because the glom factor g is unchanged but P grows larger with

each iteration, making it easier to add new vertices each time. Another difference is

the lack of threshold value t, which is effectively set to zero. This threshold value

gives another means to control paraclique growth, but in practice is difficult to apply

due to the need to store the weights of all graph edges. For example, a graph of

20,000 vertices, a conservative number for the types of real-data graphs frequently

encountered with biological data, would require storing 200 million edge weights or

about 800 megabytes of data if each edge is four bytes. Also, note that the number of

edges grows quadratically with respect to number of vertices. Finally, note that this

definition is more general in that the set C does not have to be a clique, much less a

maximum clique. This flexibility is useful later when phased paraclique is introduced.

58



compute_paraclique(graph G = (V,E), glom factor g,

vertex set C)

P = C

for each v in V-P {

if v is adjacent to at least g members of C { P = P U {v} }

}

return P

Figure 6.1: Paraclique Algorithm

For now, though, we can consider C to be a maximum clique returned by MCF or

some other program for computing maximum cliques.

6.1.2 Paraclique computation

The compute paraclique function alone is inadequate as an algorithm for finding

multiple cohesive groups. Some type of iterative process is needed. The approach we

use is to compute a maximum clique C in G, extend it to P with compute paraclique in

Figure 6.1, remove P from G, and repeat until the graph is exhausted (no maximum

cliques greater than size 3 exist) or the cliques become “small” (an adjustable

parameter). The glom factor specifies an absolute number of vertices in C to which

a candidate vertex must be adjacent, and hence is a poor parameter by itself. (It

neglects the size of the set C.) Thus we set the glom factor g = |C| − a for some

nonnegative integer a. The glom factor varies with respect to |C|, and the relevant,

unchanging parameter is a, the number of vertices in C allowed to be nonadjacent to

the candidate vertex.

6.1.3 Phased paraclique

Paraclique requires the user to choose a glom factor, which poses a couple of problems.

First, setting the glom factor to |C| − a does not adjust for size differences in cliques

since it is simply a raw number of missing edges allowed. Second, paraclique does

not take into account the relative “distances” of each vertex to the set C. Intuitively,
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compute_phased_paraclique(graph G = (V,E), ratio R,

vertex set C)

P = C

a = 1

while (a <= R*|P|) {

P = compute_paraclique(G, |P|-a, P)

a = a + 1

}

return P

Figure 6.2: Phased Paraclique Algorithm

vertices lacking fewer edges from being in a clique should be favored and a more

iterative approach seems more appropriate. An iterative approach would allow the

user to set some reasonable stopping criteria for paraclique growth and thus have

better control over augmentation. These stopping criteria also can take clique size into

account. Phased paraclique is an algorithm designed along these lines and is given as

pseudocode in Figure 6.2. Phased paraclique relies on the same compute paraclique

function in Figure 6.1 but may call it multiple times to augment a single clique.

Note that for each maximum clique C, phased paraclique does the following. It

first calls compute paraclique with graph G, glom factor g = |C| − 1, and clique

P = C so that all nodes missing only a single edge are added. In the next iteration,

compute paraclique is called with graph G, glom factor |P |−2, and P (note that now

we are invoking compute paraclique for a non-clique set). This continues, with the

glom factor decreasing by one each time, until the stopping criteria for expansion are

met. Added vertices must be adjacent not only to adequate numbers of members of

the original maximum clique but to vertices added to the paraclique at prior iterations.

Thus, the algorithm gives priority to “closer” vertices, and these newly added vertices

help to filter vertices in later iterations. Phased paraclique halts expansion based on

the current size of the paraclique. Many variations to this approach are possible, of

course, such as paraclique densities and application specific measurements. Phased

paraclique halts when proceeding would add vertices with too many missing edges,
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specified by a ratio R. Specifically, phased paraclique halts when R < a/|P |, where

glom g = |P |−a. Note that R is an upper bound on the percentage of vertices in |P |

that are allowed to be nonadjacent to a new vertex. For example, if R = 1/4, then

phased paraclique halts once the glom factor would allow vertices to be added that

are nonadjacent to more than a quarter of vertices in |P | on the next iteration.

6.1.4 Comparison of paraclique and phased paraclique

To compare the two algorithms, we use a sparser version of the YST graph from

Chapter 4 at correlation value 0.80, which we refer to as YST80. This graph contains

2608 vertices and 26061 edges. Table 6.1 summarizes the results of ten runs of

paraclique on the YST80 graph. Paraclique was run until the graph was exhausted,

but paracliques of size less than 10 are excluded. Note that as the parameter increases,

paraclique maintains density while creating ever larger paracliques. The number of

paracliques, however, steadily drops. Table 6.2 summarizes the results for phased

paraclique on the same graph. As the ratio increases, more paracliques are found

while the size of the paracliques remains steady. There is a steady decrease in density,

but that is to be expected as the criteria for paraclique growth is relaxed. Thus

paraclique works well for small glom factors, but as the glom increases, paracliques

begin to merge and distinct regions are lost. For phased paraclique, it seems that old

regions remain and grow larger, and at the same time new regions develop.

6.2 Clique Difference

In this section we introduce a technique based on maximal clique and termed clique

difference. While computing all maximal cliques is not feasible for large, dense graphs,

it is often tractable for graphs built from biological data sets of only a few thousand

genes and built with a high threshold. In such cases, having all maximal cliques

provides a significant advantage over computing a single maximum clique because
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Table 6.1: Results of 10 Runs of Paraclique on YST80

Glom Number of Paracliques Avg. Size Avg. Density
|G| − 1 14 21.07 0.99
|G| − 2 41 15.51 0.57
|G| − 3 42 19.9 0.55
|G| − 4 29 26.24 0.52
|G| − 5 17 32.35 0.6
|G| − 6 14 39 0.58
|G| − 7 10 46.1 0.59
|G| − 8 9 55.67 0.52
|G| − 9 8 61.88 0.5
|G| − 10 5 79.6 0.56

vastly more information is available from which to work. Observations of these

maximal cliques on real-data graphs reveal that many are nearly identical, differing in

only a few vertices. So a logical question to ask is if we could somehow combine them

into a smaller set of dense cores. One such approach is that of k-clique community

[36], which is implemented by the CFinder software [11]. Clique difference is similar

but fuses sets together in stages, allowing for a gradual reduction of the number of

sets, a process that can be halted when desired to balance number of sets versus

quality. By fusing the most similar sets together first and continuing this process in

recursive fashion, set quality could possibly be improved over that of a single step

method such as k-clique community.

6.2.1 The k-clique community algorithm

Both k-clique community and clique difference employ an auxiliary graph, which we

term a cluster graph. A cluster graph is defined for a graph G and a set of clusters

of G’s vertices and is used to decide which clusters to merge. The clusters define

the vertices of the cluster graph. (Adjacency of vertices is defined later, as it varies

between the two methods.) Connected components are computed, and clusters all in

the same component are merged. The k-clique community algorithm inputs a graph
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Table 6.2: Results of 17 Runs of Phased Paraclique on YST80

Ratio Number of Paracliques Avg. Size Avg. Density
1/10 12 23.75 0.98
1/9 11 25.64 0.98
1/8 11 25.82 0.98
1/7 12 24.67 0.93
1/6 11 26.82 0.96
1/5 10 29.5 0.94
1/4 12 27.58 0.92
1/3 14 27.29 0.84
1/2 17 28.06 0.7
2/3 25 25.92 0.57
3/4 32 24.44 0.45
4/5 36 25.78 0.36
5/6 38 26.45 0.32
6/7 36 27.83 0.32
7/8 42 26.64 0.27
8/9 50 25.12 0.26
9/10 47 27.06 0.25

G and a parameter k. It then builds a cluster graph in which the clusters are maximal

cliques of size k or greater. Edges are placed between maximal cliques having at least

k − 1 vertices in common. Output is the merged clusters. In practice multiple k

values are computed simultaneously, so the user can decide which k best represents

the data.

6.2.2 Clique difference algorithm

Clique difference defines edges in terms of the difference between clusters. Clique

difference does not have a size cutoff for clusters, so the metric must be defined to

handle properly clusters whose size greatly differs. A simple approach with a constant

overlap value will not work. An approach based on percent overlap is also problematic.

Smaller maximal cliques can chain together larger maximal cliques that should not
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be joined. Instead, clique difference uses the non-overlap between clusters. The non-

overlap consists of those vertices not in the intersection. Clusters are merged only if

the non-overlap does not exceed a certain value. Note that this avoids merging small

and large maximal cliques since in order to merge them the non-overlap value must

be greater than their size difference. This is a conservative approach, since it can

be argued, for example, that a cluster and a much smaller counterpart that share all

but one vertex should be joined. (A conservative approach, though, is in the spirit of

applying clique-based methods to noisy data.)

Figure 6.3 displays the clique difference algorithm in pseudocode. The outer loop

increments a difference value from one to a user-provided maximum. The inner loop

builds a cluster graph of the current set of clusters, defines edges using the current

difference value, and merges clusters. The loop halts once no more merging occurs.

(The cluster graph is edgeless.) Thus, the idea is to merge clusters in multiple stages

as incrementally as possible. Results are reported after each iteration of the outer

loop, so that there is one set of results for each difference value, each set at least as

condensed as the previous. Figure 6.4 are the results of running clique difference on

the YST80 graph. Again, sets less than size 10 are excluded. Clique difference can

be halted at any time. In this case, we halt just before the number of sets drops

below 100 (101). At that point (right bar), the average cluster density is 0.45 and the

average size is 61, which compares quite favorably to the results from paraclique.

6.3 Clique Relaxations

The strict nature of clique is its greatest asset. It provides highly-filtered cores upon

which we have built useful and practical algorithms. Ironically, though, this is also a

weakness in at least two ways. First, noise may prevent clique from finding a valid

core. If a portion of this core is found, algorithms like paraclique can compensate

by adding the additional needed nodes. However, if noise causes only a few edge

deletions that happen to be widespread in a particular core, even an algorithm like
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clique_difference(graph, max_difference) {

clusters = all_maximal_cliques(graph);

for (diff = 1; diff <= max_difference; diff++) {

do {

cgraph = build_cluster_graph(clusters, diff);

components = connected_components(cgraph);

clusters = merge_clusters(clusters, components);

} while (number of clusters was reduced);

print_current_clusters();

}

}

Figure 6.3: Clique Difference Algorithm in Pidgin C++

paraclique will not locate it. The second weakness of clique is the need of such

heuristic algorithms, like paraclique and clique difference, to perform additional

processing on the results. Ideally we would have problems similar to clique with

efficient exact algorithms that are themselves sufficient. In this section we abstract

both vertex cover and clique by introducing two problems that are more general and

could possibly address these weaknesses. Viewing clique from this vantage point

opens up new possibilities for research.

6.3.1 Generalizations of vertex cover and clique

We begin by viewing vertex cover in a more abstract fashion. A vertex cover should

more appropriately be called an “edge cover” as the key property of such a set is that

it contains at least one vertex from every edge. (Edge cover is actually a different,

unrelated problem.) In general, then, we could talk about covering any particular

set of subgraphs of a given graph, not just edges. For example, we could attempt to

cover all triangles of the graph by finding a set of vertices such that at least one vertex

from every triangle is in the set. More generally, we can specify a set S of subgraph

structures that must be covered. To prevent ambiguity, we mandate that only induced

65



Figure 6.4: Clique difference begins with all maximal cliques (left bar) and
iteratively merges them. In this case, there are initially 60882 maximal cliques, which
are merged eventually to 101 sets (right bar). The average density in each case is the
percentage of the bar that is blue. Even on the rightmost bar, the density is almost
50%.

subgraphs that exactly match those in S must be covered. For example, if we wish to

cover all triangles and all paths of length 2 (three vertices), we must include both in

S. This rule is critical in order to distinguish different, subtle variations. We define

General Subgraph Cover (GSC) formally as follows:

General Subgraph Cover Problem

Input: A graph G = (V,E), a positive integer k ≤ |V |, and a set S of graphs to be

covered.

Question: Does there exist a set of vertices V ′ ⊆V such that |V ′| ≤ k and V ′ contains

at least one vertex from every induced subgraph of G isomorphic to some graph in

S?
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Note that vertex cover is equivalent to GSC if S contains only one subgraph, a

clique of size 2. We can also define Minimum Genral Subgraph Cover (MGSC), the

corresponding optimization problem. Clique can be viewed as a special case of an

“avoidance” problem. That is, we are attempting to find a graph structure that avoids

a certain induced subgraph, the independent set of size 2. Thus, we can generalize

clique by specifying a set of forbidden subgraph structures. (We mandate again that

we only forbid induced subgraphs that exactly match.) Then our goal is to find

a graph structure that avoids any of the forbidden sets. Thus, we formally define

General Subgraph Avoidance (GSA) as follows:

General Subgraph Avoidance Problem

Input: A graph G = (V,E), a positive integer k ≤ |V |, and a set S of graphs to be

avoided.

Question: Does there exist a set of vertices V ′ ⊆V such that |V ′| ≥ k and V ′ contains

no induced subgraphs isomorphic to a graph in S?

Note that clique is equivalent to GSA if S contains only one subgraph, the

independent set of size 2. We can also define Maximum General Subgraph Avoidance

(MGSA), the corresponding optimization problem. MGSC and MGSA are related

in the same way that vertex cover and independent set are related. Converting an

instance only requires complementing the input graph, not the set of graphs to be

covered or avoided.

6.3.2 Examples of clique-like subgraph avoidance instances

By varying the set S that is input to GSA, specific clique-like problems can be

created. Forbidding graphs of size one or two is either trivial or leads to clique

and independent set, respectively. Here we consider forbidding graphs of size three,

which leads to a couple of interesting problems. (Many more interesting cases may
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Figure 6.5: Graph classes defined by forbidding induced subgraphs of size 3. Each
row is a pictorial list of forbidden subgraphs and the resulting graph class (the set of
graphs not containing any of the forbidden subgraphs).

be found by forbidding larger subgraph sizes.) There are four graphs of size three

within isomorphism, and hence, there are 14 possible sets of such graphs (ignoring the

empty set and complete set). Figure 6.5 lists all 14 variants along with the resulting

problem instance (class of graphs without the forbidden subgraphs). Many of the

cases are not interesting, producing very restricted classes of graphs, some with only

a finite number of members. Of those remaining, some are not helpful for finding

dense graph regions, such as triangle-free. Two cases, though, are worthy of further

discussion. The 2-plex problem is a special case of k-plex [5, 32], which relaxes clique

by allowing missing edges but placing a limit on the number of missing edges per

vertex. Research on the k-plex problem, originally introduced in the late 70s [40],

has been scarce until recently. It is a seemingly more challenging problem than clique

that could be applied to real data.
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The 3-IS problem is another interesting variant. Note that it is the complement

of a triangle-free graph. While triangle-free graphs are well-studied in the literature,

algorithms for efficiently finding maximum subgraphs without a 3-IS, or more

generally a k-IS, appear not to be. How would such an algorithm fair in uncovering

dense subgraphs? While k-IS relaxes the clique problem even more than k-plex, a

little analysis shows that it still maintains a high density, at least for small values of

k, by the following result:

Claim: For graph G = (V,E), MG = |V |∗(|V |+1)
2

is the maximum possible number of

edges |E| (vertex pairs) in graph G. If G is r-IS-free, |E| ≥ MG

r−1
.

Proof: The proof is by contradiction. Turán’s Theorem [48] states that a Kr+1-

free graph (where Ki indicates a clique of size i) contains at most (1− 1
r
) ∗ n2

2
edges,

where n is the number of vertices. Suppose there exists a graph G = (V,E) that is

r-IS-free where |E| < MG

r−1
. Consider graph Ḡ = (V̄ , Ē), which is Kr-free. However,

|Ē| = MG−|E| > MG− MG

r−1
= MG ∗ (1− 1

r−1
) > (1− 1

r−1
)∗ |V |2

2
, contradicting Turán’s

Theorem.

Thus, a 3-IS-free subgraph must have at least 50% of edges adjacent, a 4-IS-

free subgraph 33%, and so forth, giving a reasonable expectation that locating such

subgraphs would provide highly dense cores.
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6.3.3 Relation of subgraph cover to hitting set

The 3-hitting set problem is defined below, as copied from [35]:

3-Hitting Set Problem

Input: A collection C of subsets of size three of a finite set S and a positive integer k.

Question: Is there a subset S ′ ⊆ S with |S ′| ≤ k that allows S ′ to contain at least

one element from each subset in C?

Any GSC instance where the set of graphs to be covered are of size 3 can be

converted easily to a hitting set problem. This can be done by creating a subset for

each triple of vertices to be covered. (Specifically, these subsets become parameter

C, the graph vertices become S, and k remains the same.) Note that any GSA

instance can also be converted to hitting set by first converting to GSC. (This is

done by complementing the input graph, as described earlier.) More generally, any

GSC or GSA instance can be converted to a general hitting set problem. Thus, the

development of efficient, practical algorithms for hitting set would lead to a general

approach for solving multiple GSC or GSA instances. This is one possible direction

for future research.
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Chapter 7

Conclusions

In this dissertation, we explored the idea of computing exact solutions to NP-complete

problems in practice. We did this by focusing on one particular case, maximum

clique, and attempting to engineer both a practical algorithm and a practical software

implementation. Any such solution should be highly configurable, since the nature

of NP-complete problems seems to be that different types of inputs require different

strategies. We addressed this need by designing a system around basic algorithms

(preprocessing and branching) and abstracting out various sub-algorithms. To

implement this in software, we employed the strategy design pattern, which allows us

to alter internal algorithms easily. This is done by passing the various functionality

to the basic algorithms. The way we do this is somewhat counterintuitive, since the

functions are C++ classes, which are normally thought of as “nouns” by OOP (object-

oriented programming) programmers. A functional programming solution might be

more natural. It is an interesting question whether or not current functional languages

could be efficient enough, though, since practical solutions must also employ efficient

underlying data structures. We were able to exploit the bitwise operations that C++

allows. A good implementation must also follow good software engineering practices.

We separated the various algorithms into separate modules and provided layers of

abstraction. Programmers of high-level MCF algorithms need not worry about the
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bitwise operations that make graph operations fast, since the graph library hides such

details. Programmers of new preprocessing or sorting strategies need not bother with

the details of how the basic preprocessing or branching code functions.

We also explored how to use the output of maximum clique and maximal clique

to create practical algorithms for data mining and finding dense regions of graphs.

Paraclique provides a mechanism to extend a maximum clique into a feasible dense

region for further study. We introduced two new methods for taking advantage of

cliques. Phased paraclique attempts to grow paracliques more gradually than the

original algorithm. Clique difference compresses the multitude of maximal cliques into

something more manageable. Algorithms based on clique, with its stingy requirement

that all edges must be present, should have very few false positives, a plus when

dealing with noisy data. Finally, we examined in detail a possible avenue for future

research. Relaxations of clique may find dense regions of graphs that clique algorithms

miss. At the same time, they can be shown to maintain high density. They could

potentially do better than clique, possibly without the need for post-processing.

7.1 Future Research Directions

In this section, we outline some directions for future research. We look at possible

directions for advancement from three perspectives: algorithms, applications, and

implementations.

7.1.1 Algorithm advancement

MCF is a tool for research into different preprocessing and branching schemes. One

interesting line of research then would be experimenting with new or known “clique

tests,” “vertex sorters,” parameter settings, etc. for classes of graphs not discussed

in this dissertation. The general preprocessing algorithm discussed in Section 3.3,

once implemented, allows for quick testing of various preprocessing approaches with
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the amount of computation (depth) adjustable for each approach. This preprocessing

can be done before branching or interleaved. Dense graphs are one example of a

graph class that could be investigated. Possible approaches are discussed in [42]. It

would also be interesting to develop algorithms and software along the same lines

as MCF for other problems. The dominating set problem is one possibility. The

practical benefits of having an efficient solver for dominating set are not clear, but

there is reason for optimism. The vertices of a dominating set represent a minimum

set of “hubs” that connect to all vertices in the graph. This has potential benefits for

biological data, as well as other data that represents networks, since the hubs play a

vital role. Of course, this research touches on all three areas (algorithms, applications,

and implementations). Another research direction has already been mentioned, the

development of algorithms for clique variants like k-plex and k-IS-free graphs, and

also development of algorithms for hitting set, which could solve several clique-like

problems at once.

7.1.2 Application advancement

We have seen various algorithms that employ a clique-finding engine for examining

real-world data. There is much more research to be done, however. New variations

on these algorithms are one possible research direction. Another is a more thorough

analysis of their results, using additional data sets and biological metrics. We have

primarily considered only transcriptomic data. Other types of biological data, such as

protein-protein interaction (PPI) data, should also be tested. For graphs of PPI data,

is the presented configuration of MCF for real data still the best? Does the behavior

of the algorithms in Chapter 6 change? The application of clique variants is another

interesting line of research, but good solvers must be available first. Finally, is it

possible to prove some guarantees on the output of algorithms? For example, does

phased paraclique or clique difference guarantee some lower bound on the density of

the sets generated? Is it possible to specify more formally the informal graph types
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considered (real-data graphs and synthetic graphs) and define certain properties? If

so, more guarantees on the output are possible, as well as a formal investigation of

why certain algorithms perform better on certain graphs.

7.1.3 Implementation advancement

There are several avenues for advancing implementations of MCF and MCF-like tools.

One avenue is to improve upon the parallel approach employed by MCF. We saw

in Chapter 4 that MCF scales well on large jobs for over a hundred processors,

at which point the gains from adding more processors begin to dwindle. Scaling

MCF to thousands of processors would be an interesting challenge. Parallelizing the

branching search tree is only one possibility. Would it be possible to parallelize the

underlying graph operations? Perhaps vector processing or GPUs could be employed.

Would it be worthwhile to consider parallelizing preprocessing? In Section 4.5.1

we mention delaying preprocessing until parallel branching as one way of coping

with computationally-expensive preprocessors. Experimentation, though, would be

required to see which approach is more effective. Further, if parallelizing preprocessing

proves to be effective, would it be worth reconsidering more computationally-

expensive preprocessors, such as color preprocessing at depth 2? Other approaches to

solving maximum clique may be worth investigating. MCF uses an adjacency matrix,

which is efficient but has some drawbacks. Since the space needed is quadratic with

respect to vertices, very large graphs, say with millions of vertices, are not solvable

with MCF. Adjacency matrices scale better for sparse graphs but can be slower. A

combination of these two approaches may be worth exploring. One approach for

solving large graphs has been explored in [38]. In this paper, MCF (called Maximum

Clique Solver (MCS)) is used as a sub-program to solve smaller instances created

by the main program. Another line of research is in implementing the practical

algorithms on top of MCF and other clique-finding engines. This, however, is not that
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pressing in terms of implementation, because the clique-finding engine dominates the

run time. So clever programming is not as critical.

7.2 Contributions

The specific contributions of this dissertation include the development of a general,

configurable algorithm for computing maximum cliques. Key algorithmic decisions

are isolated so that they can be easily altered. This includes a general preprocessing

algorithm that can be configured to run multiple methods. A configurable, modular,

and efficient implementation of these algorithms is created and described in detail.

This description includes the high-level design for easy configuration, the low-level

design for efficient data structures and for efficient computation of common graph

operations, and an effective parallel processing approach. Experiments are performed

to show how to configure the software for graphs of real data and for graphs of

synthetic data. A new preprocessing approach based on coloring is presented and

shown empirically to work well on graphs built from biological data. Analysis of

practical algorithms based on clique are done. New practical algorithms are developed

and implemented and preliminary testing performed. Finally, several directions for

future research are proposed.

7.3 Parting Reflections

In this dissertation, we focused on solving a provably hard problem, clique, efficiently

in practice. We then considered practical algorithms for analyzing real-world data,

algorithms that are based on an efficient clique solver. On the surface, though, this

approach to solving real-world problems seems anything but practical. Why would

we attempt to build practical applications around a core that is NP-complete? It

would seem more logical to apply heuristics or to work from a problem that is known

to have a low time complexity. Clique, though, offers a guarantee that problems of
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seemingly lesser complexity do not. That is, 100% density is ensured. NP-complete

problems in general tend to offer such rigorous guarantees. Thus, algorithms based on

exact results from NP-complete problems may offer many benefits. This dissertation

demonstrates that with good design and testing on cases of interest, such as real data,

such problems can be solved efficiently for practical applications. Therefore, when

NP-complete problems arise in practice, we have another possibility besides heuristics

and approximation algorithms. Computing exact results and working around the

complexity issues is a longer, riskier road, of course, but one that could hold enormous

benefits.
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Table A.1: Run Times in Seconds on DIMACS Graphs

Graph MCF-RD MCF-MCQ MCQ
MANN a27 >24 hours 9.89 8.13
MANN a45 >24 hours 7579.66 7806.54
MANN a81 >24 hours >24 hours >24 hours
brock400 1 >24 hours 3778.39 2514.06
brock400 2 >24 hours 4271.19 1087.12
brock400 3 >24 hours 2734.67 2181.75
brock400 4 >24 hours 556.65 965.56

hamming10-2 >24 hours 0.00 2.07
hamming10-4 >24 hours >24 hours >24 hours
hamming8-2 >24 hours 0.00 0.02
johnson16-2-4 17.74 1.34 0.69
johnson32-2-4 >24 hours >24 hours >24 hours
p hat1000-1 56.47 3.23 2.38
p hat1000-2 >24 hours 1646.52 1462.11
p hat1000-3 >24 hours >24 hours >24 hours
p hat700-1 7.71 0.43 0.32
p hat700-2 10215.78 23.06 28.54
p hat700-3 >24 hours 18229.50 18487.50
san1000 >24 hours 7.10 7.33

san400 0.5 1 34022.23 0.04 0.05
san400 0.7 1 >24 hours 3.63 3.07
san400 0.7 2 >24 hours 39.57 2.02
san400 0.7 3 >24 hours 9.54 9.27
san400 0.9 1 >24 hours 476.81 65.46
sanr400 0.5 47.25 3.44 1.95
sanr400 0.7 30773.06 953.24 628.98
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