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ABSTRACT 

License plate recognition (LPR) technology has been widely applied in many different 

transportation applications such as enforcement, vehicle monitoring and access control. 

In most applications involving enforcement (e.g. cashless toll collection, congestion 

charging) and access control (e.g. car parking) a plate is recognized at one location (or 

checkpoint) and compared against a list of authorized vehicles. In this research I dealt 

with applications where a vehicle is detected at two locations and there is no list of 

reference for vehicle identification.  

There seems to be very little effort in the past to exploit all information generated 

by LPR systems. In nowadays, LPR machines have the ability to recognize most 

characters on the vehicle plates even under harsh practical conditions. Therefore, 

although the equipment is not perfect in terms of plate reading, it is still possible to judge 

with certain confidence if a pair of imperfect readings, in the form of sequenced 

characters (strings), most likely belongs to the same vehicle. The challenge here is to 

design a matching procedure in order to decide whether or not they originated from the 

same vehicle. 

In view of the aforementioned problem, this research intended to design and 

assess a matching procedure that takes advantage of a similarity measure called edit 

distance (ED) between two strings. The ED measures the minimum editing cost to 

convert a string to another. The study first attempted to assess a simple case of a dual 

LPR setup using the traditional ED formulation with 0 or 1 cost assignments (i.e. 0 if a 

pair-wise character is the same, and 1 otherwise). For this dual setup, this research has 
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further proposed a symbol-based weight function using a probabilistic approach having 

as input parameters the conditional probability matrix of character association. As a 

result, this new formulation outperformed the original ED formulation. Lastly, the 

research sought to incorporate the passage time information into the procedure. With this, 

the performance of the matching procedure improved considerably resulting in a high 

positive matching rate and much lower (less than 2%) false matching rate. 
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CHAPTER 1 

INTRODUCTION 

1.1 RESEARCH PROBLEM 

Among intelligent transportation systems, automated vehicle identification (AVI) is a 

powerful tool for electronic toll and traffic management, commercial vehicle operations, 

motor vehicle law enforcement, origin-destination survey, and access control, among 

other applications. All these applications require a unique identification of a vehicle in a 

checkpoint, and some of them also need a vehicle to be tracked in several points (e.g. in 

speed enforcement). To be identifiable a vehicle should be equipped with a device that 

emits the vehicle (plate number and VIN – Vehicle Identification Number) and owner 

information to a reader in a checkpoint. Although this is the most accurate method of 

identification it raises some concerns about privacy and depending upon the application 

(e.g. electronic toll collection) is unreasonably to believe that all vehicle targets will 

possess such devices.  

There is another way of indentifying vehicles, which consists in automatically 

reading the characters of their plate numbers using License Plate Recognition (LPR) 

systems. These systems were developed with the main objective of interpreting the 

alphanumeric characters on vehicle plates without human intervention. Thus they rely on 

three main components: an imaging acquisition processor, a character recognition engine 

and a computer to store the data. Basically, the LPR operation consists in capturing, 
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recognizing and storing information such as images, plate numbers, passage times and 

location on a database for online verification or posterior analysis.  

LPR systems have been applied in different transportation applications since its 

launch into the commercial world in the early 1980s (Nelson, 2003). Such applications 

involve enforcement, vehicle monitoring and access control. As for enforcement, LPR 

can operate as a background system for electronic toll collection to indentify violators, or 

can be used to enforce the speed limit over a road segment. In access control, vehicle 

plates are recognized and verified against a database to allow or deny access into a 

facility. In traffic monitoring, vehicles are detected in multiple points and data such as 

travel time, origin destination (OD) demand, and route choice can be estimated for 

different purposes. 

Although LPR systems have the advantage of not requiring new devices to be 

installed inside the vehicles, there are still some concerns with respect to their accuracy. 

Some developers claim that the character recognition engine is able to achieve almost 

100% of accuracy. However, such claims can hide important assumptions, since the 

equipment is not usually tested under all possible conditions found in practical 

applications (Nelson, 2000). Thus the performance of the system should be evaluated by 

field testing under varying conditions of illumination, vehicle speed, camera offset angle, 

precipitation and so on. Usually limited resources prevent developers to perform such 

rigorous tests, but they should provide the conditions under which systems achieve the 

stated accuracy. 
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In reality the potentialities of the LPR equipment are not quite realizable. 

Depending on the type of internal technology, the installation, the on-site calibration, the 

weather, the lighting, the plate configuration, and a host of other conditions (Nakanishi 

and Western, 2005), LPR rarely recognizes more than 80% of the plates and often does 

worse than 60%. Fortunately, all is not lost; even when LPR fails to read a plate, meaning 

that not every single character is recognized correctly, the system usually returns very 

valuable and mostly correct individual character information. By comparing the 

imperfectly read plate against another such plate, or against a given database, one may 

still be able to render reasonable judgment in terms of whether there is actually a match. 

For instance, if two strings (sequence of characters) differ from each other by only one 

character, they may well have originated from the same plate. 

It is simple for a system to recognize a plate that it has seen before, or when a 

reference database containing all possible plates is available. A database subscriber 

reduces the universe of plates and make statistically easier to recognize the true plate. 

The confidence of the compensation method is inversely proportional to the database 

size. Sometime a simple syntax checker can easily handle failures. Of course, the absence 

of meaningful plate confirmation database points to a certain need for human 

involvement. 

The problem is not trivial for applications involving vehicle tracking at two or at 

multiple checkpoints (e.g. OD estimation and travel time studies). Considering that the 

universe of possible vehicle plates is immense or not available, the system should be 

capable of matching observations of imperfect readings without any reference. For 
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example, under the hypothetical assumption that every character on a plate has equally 

and independently likelihood of being misinterpreted by the LPR machine, a single 

reading could have been originated from several ground truth plates, making the task of 

matching plates under this universe of uncertainty and possibilities quite remarkable. 

This research focused on the aforementioned problem which deals with matching 

plate readings captured by a dual setup of LPR equipment. It is proposed a matching 

procedure that compensates for the recurrently interpretation errors made by the 

equipment under practical conditions. The matching method is based on a technique of 

text mining named edit distance (ED), which aims to measure how close two strings 

(sequence of characters) are from each other using weight functions (which can be 

subjective score values or estimated from statistical data) designed for comparison 

between pair of characters. 

1.2 RESEARCH OBJECTIVE AND PREMISES 

The main goal of this research was to assess the problem of matching outcomes 

(readings) from a dual setup of LPR equipment. In this study I explored the concept of 

text mining techniques and weighted matching algorithms to the problem of tracking 

vehicles whose plate numbers have been recorded by a two-point setup of LPR units.  

The research is based upon the following premises: 

 LPR machines can never achieve perfect reading rate. Due to the varying 

conditions in which the LPR system should operate it is very common to have 

character misinterpretation. Even under ideal conditions the equipment is not 

flawless; 
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 Most errors made by a LPR machine, even under the harsh conditions of 

operation, are in some extent recurrent and therefore predictable. Such 

recurrence can be captured into a probabilistic framework that can be used for 

matching purpose; 

 Different technologies operate distinctly and due to the variety of conditions 

under which the equipment operate a vehicle plate may generate different 

outcomes at different checkpoints; 

 The character recognition algorithms recognize the individual characters on a 

plate independently, meaning that the position or whether the character is 

numeric or alphabetic does not affect the recognition of a surrounding 

character. 

1.3 HYPOTHESIS 

The hypothesis of this research is that: using a history that shows the recurrent 

probability LPR errors (such as O and 0 or Q, B and 8, 1 and I, K and X, W and V, and 

so on), as well as using additional information (passage time stamps), it is possible to 

infer with certain degree of confidence the likelihood of any two imperfect readings being 

originated from the same vehicle. Such odds can be used to decide towards genuine and 

false matches. 

1.4 RESEARCH METHOD AND SCOPE 

Since I was dealing with sequence of character outcomes (strings) provided by the LPR 

machines, it seemed reasonable to use a technique of string alignment to compare pair of 
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strings. Thus, at first, the study identified a technique to compare sequence of characters 

in order to establish how close two of strings are from each other. This technique was 

then used in the matching procedure to identify vehicles traveling through a two-point 

LPR setup. Secondly, armed with the assumption that LPR machines can recognize most 

characters on the vehicle plates, even with low reading accuracy per plate number, a 

refinement of the matching procedure was proposed. Such improvement consisted in 

allowing new weights or cost functions (calculated using the LPR character reading 

probabilities) to compare character by character of a dual string alignment. Finally, the 

passage time information (passage time stamps) was included in the matching procedure 

as an additional constraint to restrict the number of candidates considered for matching. 

Thus, to accomplish all established goals, this research was summarized on the following 

activities. 

1. Conduct a literature review on methods to measure similarity between strings 

and identify one that is suitable for LPR application. As will be seen in 

Chapter 3, the widely used method of comparing pair of strings is called edit 

distance; 

2. Propose a weight function that incorporates the LPR odds of misreading 

characters and that can be used in different formulations of the selected 

similarity measure; 

3. Assess different strategies to match plates from a dual LPR setup and establish 

a methodology to determine the most suitable method; 
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4. Investigate how the passage time information can help to improve the 

performance of the matching procedures. Two methods were tested: 

a. Fixed Time Window Constraint (FTWC) whose limits are defined 

by the lower and upper bounds of the vehicle journey times; 

b. Varying Time Window Constraint (VTWC) whose limits change 

with the travel time variation and the edit distance magnitude. 

5. Perform statistical and simulation analyses to determine the required sample 

size to estimate the character association probabilities to be used in the weight 

functions. 

It is worth noting that the matching procedures, not incorporating passage time 

information, can be applied to any dual LPR setup, either in freeways or urban areas. 

However, all matching procedures using passage time information, as additional 

constraint, were investigated only for dual LPR setup in freeways (such as interstates), 

with no major traffic disturbance that may cause too much variation on the vehicle travel 

times. Although they can still be applied to other conditions not assessed here, no data 

analysis is presented to support such applications. Different traffic conditions (e.g. with 

high travel time variation) other than the ones presented here will be object of further 

studies. 

The matching procedure presented here can be also extended to sequential, and 

multiple LPR setups (with multiple entry and exit checkpoints); but all these issues are 

out of the scope of this research and will be subject for further studies. 
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1.5 DISSERTATION ORGANIZATION 

Besides this introductory chapter, this dissertation work is composed of more six 

chapters. Chapter 2 presents a brief discussion about LPR operation, application and 

accuracy. The next four chapters were written in paper format for further publication. 

Chapter 3 presents a first attempt to apply a similarity measure to the problem of 

matching vehicle plates recognized by LPR systems. In Chapter 4, a refinement (new 

weight functions) of the method proposed in Chapter 3 is presented. Such enhancement 

consists in using the odds of LPR units in misreading characters to better discriminate 

positive matches from negative matches. Chapter 5 presents how the passage time 

information was included into the matching procedure to increase the likelihood of 

finding a positive match. In Chapter 6, a study on the sample size necessary to estimate 

the odds used in the weight function proposed in Chapter 4 is presented. Finally, Chapter 

7 contains the conclusions and recommendations of this dissertation work.  
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CHAPTER 2 

LICENSE PLATE RECOGNITION: OPERATION, APPLICATIONS 

AND ACCURACY 

2.1 LPR OPERATION 

License-plate recognition technology was originally developed to read license-plate 

characters on moving vehicles. The process of capturing a plate image and recognizing 

the characters involves vehicle detection, image processing, and optical character 

recognition, which have all been documented in detail in past literature (Rossetti and 

Baker, 2001;  Wiggins, 2006).  As Han et al. (1997) have pointed out all LPR systems 

take advantage of the basic pattern-recognition technology to identify the alphanumerical 

characters on license plates. 

LPR units usually consist of the following main components: an illumination 

source, a camera, a vehicle sensing device, an image processor, and a computer to store 

images and the reading plates (Rossetti and Baker, 2001). An infra-red based illuminator 

source is normally required when operating in low light condition or at night time, as well 

as to overpower sunlight and eliminate shadows. A digital camera with fast shutter speed 

must be triggered by an internal or external vehicle sensing device. The image processor 

locates the plate from an image view of the vehicle and uses the embedded pattern 

recognition algorithm to indentify the plate number. The following is a summary of how 

a LPR system operates: 
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1. As a vehicle enters the system’s field of view it initiates a sequence process. At 

first, a vehicle presence is detected by the sensing device (which could be an 

external loop detector or an internal trigger, wherein the signal from the video 

subsystem alerts the processor that a moving object may be present). After that, 

the video camera, with synchronized shutter and illuminator, captures an image or 

a series of images of the passing vehicle. 

2. Once the image is digitized, the next step is to determine if and where the license 

plate is located within the captured image. The image processor must search for 

the plate number among a bunch of other similar objects such as sticker bumper, 

phone numbers, and other extraneous items. Thus, several tests are usually 

necessary to isolate and confirm that a plate is present and submit it for character 

recognition. 

3. In the next step, the LPR pattern recognition algorithm segments and recognizes 

each character on the plate. The characters font, as well as the plate syntax, can be 

subsequently used to refine the determination. Finally, the recognized characters 

and images can be retained locally for examination against a database or 

transferred to remote server for further analysis. 

The pattern recognition algorithm is the most important component of the image 

processor subsystem of a LPR system. There are three types of techniques commonly 

employed by LPR image processors: template matching or correlation method, structural 

analysis, and neural networks (Nelson, 1997; Rossetti and Baker, 2001; Wiggins, 2006). 

These methods are described as follows. 
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The template matching is the method used by the Optical Character Recognition 

(OCR) methods designed for operation with scanned documents. The OCR method takes 

each character of the plate and attempts to match it to a set of predefined standards. Since 

any deviation from the standard can cause questionable results, this method is not very 

tolerant to misaligned, obscured, dirty and damaged characters.  

Structural analysis uses a decision tree to assess the geometric features of the 

character’s contour. This method is a little more tolerable to poor quality of the shape of 

the characters.  

Neural networks are methods based on training and learning process rather than 

programming. While learning to recognize a recurring pattern, the network constructs a 

statistical model that adapt to unique features of the characters. It seems that this method 

is the most tolerable to noise caused by changes under diverse operational conditions, 

however the process of training a neural network can be very time consuming and is 

usually required any time a new plate is released. 

2.2 LPR APPLICATIONS 

The first commercial available LPR system was implemented 25 years ago. Since then 

this type of system has been used for different applications which can be classified into 

three categories: access control, traffic studies and enforcement (Nakanishi and Western, 

2005; Wiggins, 2006).  
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2.2.1 Access Control 

Access control covers all examples of application such that a LPR system is used to read 

the license plate numbers of vehicles entering or leaving a checkpoint and automatically 

compared them against a list of authorized or registered vehicles. If there is a match an 

automated gate or other physical barrier will open to permit the access into/out the 

facility. Car park is a good example of application of LPR systems, especially those 

where drivers are required to pay for the permanence time. In this case, as the vehicle 

enters the facility their license plate numbers are recorded and associated to the entry 

ticket. 

2.2.2 Traffic Studies and Planning 

The main applications of LPR in traffic studies and planning involve traffic demand 

estimation (Origin-Destination (OD) demand estimation) and travel time studies. With 

regard to OD estimation survey, the traditional plate survey method consists in assigning 

at least one person to monitor each checkpoint (entries and exits of the studied area) and 

record part of the plate number of the passing vehicles. Depending on the studied area 

scale, it has been reported that this conventional method is a costly exercise, and even the 

best staffs can only record license plate numbers with an accuracy of about 70%. 

Furthermore, depending on the environmental conditions lower accuracy are normally 

reported (Wiggins, 2006). Replacing the observers by LPR machines can save time and 

increases the accuracy of the survey. 

Another common application is travel time studies. LPR systems can be used to 

record the location and passage time of a vehicle in two different points of a roadway; 
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and from this data the average speed can be determined. The information of vehicle 

speeds can be used either for traffic flow studies or can be transmitted back to drivers, 

under an information system architecture, to inform journey times to complete certain 

desired trips. Regarding the use of LPR integrated with an information system, Buisson 

(2006) has developed a methodology to assess the impact of the number of devices on the 

precision of the displayed travel times in a congested road. 

For transportation planning, LPR can be used in the determination of vehicle 

route choice in an urban network. In this application vehicle identification devices are 

distributed on the links of the network in order to reconstruct the main paths chosen by 

the drivers that use the urban network for different purposes. An OD demand matrix is 

also obtained from such studies. To this end, Casttilo et al. (2008) proposed two 

optimization programming formulations to select the device’s locations and to reconstruct 

the trip patterns on a given network. 

2.2.3 Enforcement 

LPR system can help with the enforcement of bus lanes, the prevention of fraud in 

cashless toll collection systems, enforcement in vehicle charging systems and in speed 

enforcement over distance. In all these applications, except for speed enforcement, a 

vehicle is tracked in two points or detected in one point and its plate number is compared 

against a white list of vehicles that are allowed to use the facility. Normally in toll and in 

vehicle charging systems LPR operates as complementary system to catch those vehicles 

that are not registered to the system, i.e. not equipped with radio frequency identification 

(RFID) tag or that not possess a permission to travel on the road (Wiggins, 2006). 
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Speed enforcement over distance is an application, just as travel time studies, 

where two devices are located in two different checkpoints, upstream and downstream 

over a road portion, to measure the average speeds (Wiggins, 2006). At any time the 

average speed exceeds the road speed limit the corresponding data is stored and verified, 

and after confirmation the driver receives a warning or fine. The great advantage of LPR 

over the normally used speed cameras is that LPR system is non-invasive vehicle 

detection, since the drivers may not have any knowledge where the speed traps are 

located, what avoids disturbance on the traffic behavior. 

The largest scale use of LPR technology is in London. Aiming to reduce 

congestion in the central part of the city, London became one the first municipalities 

worldwide to use LPR technology on large scale when implementing its congestion 

charge system (Eberline, 2008). The system was implemented in February, 2003. In 2007 

it covered an area of 40 square kilometers (about 15.5 square miles). When the 

congestion charge began, about 700 cameras were situated in and around the charging 

zone. Photographs of vehicle plates are taken when they enter the charging zone and sent 

to a central computer that indentifies the plates using a LPR system. At the end of the day 

all recognized plates are matched with the payments. Tickets are issued to those drivers 

that do not pay the charge. According to the report carried out by Eberline (2008), the 

system has been a great success in many aspects. Mainly, it has reduced congestion and 

provoked a shift of demand from road usage to public modes of transportation. 



 

 15

2.3 LPR ACCURACY 

The accuracy of the pattern recognition algorithms used in the image processor is 

important concern when evaluating LPR systems. The need for high accuracy also 

implies in higher prices of the systems since better algorithms and cameras are necessary 

(Rossetti and Baker, 2001). Fortunately, the required accuracy depends on the application 

and less expensive equipments can be acquired. For example, enforcement applications 

such as speed enforcement may require a high degree of accuracy (all characters on a 

plate should be identified) to avoid notify innocent users, while applications of traffic 

monitoring such as OD estimation may only require that an image obtained at an entry 

point be matched to an image obtained at an exit point. 

One method of quantifying the accuracy of these systems is to measure the 

percentage of license plates correctly identified by the machine that could be verified by a 

person (Nelson, 1999; Rossetti and Baker, 2001). However, one should have in mind that 

this method does not assess completely the real capabilities of the LPR systems since it 

throws away part of information available, which could be used for matching purposes 

for example. Hence, if a LPR machine misreads only one or two characters on a plate, the 

retrieved information can still be useful depending on the application. In Chapter 3 the 

capabilities of a LPR system is also measured in terms character reading rate. As will be 

seen, this measure better reflects the LPR potentialities as far as this study is concerned. 

According to the literature, the accuracy of the equipment is affected by three 

factors: the quality of the images captured in the field, the internal settings of the 

equipment used and the light conditions under which the plate images are acquired 
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(Nakanishi and Western, 2005). The quality of the images are affected by the traffic 

speed, the weather, the installation, the on-site calibration, the plate condition, the variety 

of plate syntax, the plate mounting location, vehicle type and other conditions. Due to 

theses factors LPR rarely recognizes more than 80% of the plates and often does worse 

than 60%. Hence, the internal technology may not distinguish between some characters 

(e.g. O, D and Q). However, if these mistakes or interchanges can be predicted and 

isolated, it is possible to compensate for them in order to track vehicle in a dual LPR 

setup. 
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CHAPTER 3 

MATCHING VEHICLE PLATES USING LPR AND EDIT 

DISTANCE 

 

This chapter presents the first nuances of the proposed application of similarity measures 

for strings to the problem of matching imperfect readings from a dual LPR setup. The 

application described herein is for speed monitoring; however, the methodology can be 

applied to any application related to a two-point LPR survey or multiple entry-exit setups. 

This chapter also proposes a method to calculate the character-based accuracy of LPR 

machines. There have been efforts to study the problem of matching plates read by LPR 

units at multiple locations of a highway (Han et al., 1997; Bertini et al., 2005; Buisson, 

2006); however, few of them formalized the methodology for matching imperfectly read 

plates or for efficiently exploiting the LPR data. To this end, this chapter reports the first 

attempt to employ a text-mining technique called Edit Distance (ED) to improve the 

matching efficiency of imperfectly read plates. In the following sections, this chapter 

presents the fundamentals of the Edit Distance technique and how it is applied to license 

plate matching. A case study and its results are also presented, followed by discussions 

and conclusions. 

 



 

 18

3.1 LICENSE PLATE RECOGNITION FOR SPEED MONITORING 

Using LPR for speed monitoring is similar to the traditional license-plate survey 

technique that has been widely employed for decades. In essence, field observers are 

placed at key points to record part of the license plates (e.g. the last three of the six 

characters) on vehicles passing the locations. The list of plates, in the form of sequenced 

character strings, is then compared with lists from other locations in order to match or 

pair the strings together. When two identical strings are found on different lists, a match 

is declared, and it is assumed that the same vehicle has traversed both locations over 

time. Information such as route choice, origin/destination, or average speed can 

subsequently be derived from the matches. 

The concept of an LPR-based speed enforcement system is alluring: with simple 

replacement of the field observers from the old plate-survey technique, real-time vehicle 

monitoring seems easily attainable. The reality is not so simple, and, hence, the 

potentialities of LPR are not quickly realizable. Depending on the type of internal 

technology, the installation, the on-site calibration, the weather, the lighting, the plate 

configuration, and a host of other conditions (Nakanishi and Western, 2005), LPR rarely 

recognizes more than 80% of the plates and often does worse than 60%. Fortunately, all 

is not lost; even when LPR fails to read a plate, meaning that not every single character is 

recognized correctly, the system usually returns very valuable and mostly correct 

individual character information. By comparing the imperfectly read plate against another 

such plate, one may still be able to render reasonable judgment in terms of whether the 

two plates are a match.  For instance, if two strings (sequence of characters) differ from 
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each other by only one character, they may well have originated from the same plate.  

Therefore, a measure of similarity between two strings can be established to indicate the 

likelihood of a match. 

3.2 MEASURE OF SIMILIRATY BETWEEN TWO STRINGS 

The process of matching two strings involves a sequence of comparisons of individual 

characters to determine the degree of similarity between the two. Consider, for example, 

a license plate with the string “4455HZ,” which is read by two LPR machines at two 

different locations. Suppose that at the first location, the plate was read as “4455IIZ” and 

at the second, as “4455HZ.”  Neither LPR unit “knows” whether it has read the plate 

correctly.  By looking at the two reports, one can either declare no match, or perhaps 

speculate a potential match since the two strings differ by only two pairs of characters:  

“I”-“H” and “I”-“” (where “” represents a null or empty character).  If there were another 

plate that was read as “445OHZ” earlier at the first location, one may speculate that it is 

less likely that the “O”-“5” pair is a match.  The task here is to “teach” the computer to 

make such speculations. 

Techniques for measuring the similarity or dissimilarity between two strings have 

been developed in the past and have found application in areas such as handwritten 

character recognition and computation biology (Wei, 2004).  The pioneer in this field is 

Vladimir Iosifovich Levenshtein, who developed Edit Distance (ED), also known as 

Levenshtein distance, which is a metric that computes the distance between two strings as 

measured by the minimum-cost sequence of edit operations (Levenshtein, 1966).  Given 
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two strings x and y, their Edit Distance describes how many fundamental operations are 

required to transform x into y. These fundamental operations are termed as follows: 

 Substitutions: A character in x is replaced by the corresponding character in y. 

 Insertions: A character in y is inserted into x, thereby increasing the length 

of x by one character. 

 Deletions: A character in x is deleted, thereby decreasing the length of x 

by one character. 

 

To relate the definition of Edit Distance to the problem at hand, I returned to the 

example of the plate "4455HZ" being captured by two LPR stations.  Let x = "4455IIZ" 

and y = "4455HZ"; the task is to compute the number of fundamental operations to 

transform x into y (Note that x and y could have been assigned in reverse order since the 

“true” plate string is unknown). In this case, it can be established that the minimum 

number of operations is 2, which corresponds to the substitution of the first “I” in x by 

“H” and the deletion of the second “I” in x.  Therefore, the Edit Distance d(x, y) between 

x and y is 2. 

To understand why 2 is the minimum number of operations to transform x into y 

in our example, imagine the two strings disposed in a two-dimensional grid, as shown in 

Figure 3-1. The points on the axes represent the corresponding sequence of characters, 

with the sequence x on the j axis and the y sequence on the i axis.  Let a move on this grid 

be represented by a link that ends on a point associated with the two characters (
ki

x ,
kj

y ).  

A diagonal move corresponds to a substitution; a move to the right represents an 
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insertion; and a vertical move represents a deletion. Each node of the grid is associated 

with a function ( )kk ji ,γ , which measures the cost of each move along the grid. For the 

original construct of ED, this cost is set to 1 for insertions and deletions; in the case of 

substitutions, ( )kk ji ,γ is 0 if the corresponding characters are identical, i.e., 
kk ji yx = , or 1 

if they are dissimilar.  If I “walk” from the origin point (0, 0) to the end point (in, jn) on 

the grid, each potential path is associated with an overall cost, d, defined as: 

 ( ) ( )∑
=

=
n

k
kknn jijid

0
,, γ      (3.1) 

where, 

n is the number of nodes of a path between (i0, j0) = (0,0) and (in, jn) = (lx, ly); and 

lx and ly are the lengths (number of characters) of x and y, respectively. 

 

As an example, consider two paths (drawn by the solid and dashed lines) reaching 

the point (lx, ly) as shown in Figure 3-1. Computing the number of editing operations 

performed by these two paths will result in dsolid(in , jn) = 2  and ddashed(in , jn) = 6 . 

To obtain the shortest path, one could exhaust all possible combinations of paths.  

Fortunately, there is a less computationally expensive procedure called dynamic 

programming, proposed by Wagner and Fisher (1974). A detailed description of this 

procedure can be found in the book Pattern Classification by Duda, Hart, and Stork 

(Duda et al., 2000).  As a result of applying dynamic programming to the Edit Distance 

problem, d(x, y) is determined to represent the minimum cost to reach the point (in, jn), or  

d(x, y) = min{d(in, jn)}. 
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Figure 3-1  Example of Editing Paths on a Grid 

In many applications, string y is provided by a list of words that has the maximum 

likelihood of containing the “true” value of the given string, x. This pre-specified list of 

words is called a lexicon or reference for matching. Using this list of words, it is possible 

to detect errors, generate candidate corrections, and rank these candidates. However, the 

plate-matching problem at hand presents a significantly tougher challenge as neither x nor 

y is necessarily a true value from a limited lexicon of reference words. 

3.3 MATCHING PROCEDURE 

In this study I deal with the problem of matching vehicle plates for a single origin-

destination, or two-point survey, referred to as station g and station h. Station h is located 

downstream of station g. For any given plate read at station h, there are a number of 

candidate plates already read at station g for matching purposes. Thus, every pair of 

recognized strings is matched up to find the best assignment that minimizes an overall 
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cost. To measure the cost of each pair-wise match, the ED formulation will be applied 

with 0 or 1 cost values. 

The matching procedure consists on a post-processing process without using 

passage time information. In such, edit distance is calculated for all pair-wise matches 

between any two datasets provided by the LPR machines. Then the set of assignments 

that minimizes the overall cost and such that all ED values are less than a given threshold 

τ  is determined.  

Mathematically, finding the least cost assignment requires solving the following 

assignment problem: 

∑∑
= =

=
m

i

n

j
ijij zdMinimizez

1 1
 

Subject to, 

1
1

≤∑
=

m

i
ijz      (j = 1,2, …, n), 

1
1

≤∑
=

n

j
ijz      (i = 1,2, …, m), 

0=ijz  or 1  (i = 1,2, …, m; j = 1,2, …, n) 
 

where, 

dij is the similarity measure between the ith and jth outcomes from stations g and h 

respectively; 

m and n are the numbers of reading outcomes at station g and h, respectively; 

 zij is a indicator variable that equals to 1 whenever a match is declared. 
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The computational solution of the problem above requires the construction of a 

matrix whose entries are the ED costs obtained from the association between all pair of 

strings (Munkres, 1957, and Bazaraa et al. 2005). Thus, for a large database computing this 

matrix can be computationally expensive as it involves huge combination of data entries. 

Assuming that the similarity measure performs well in classifying the matches in true or 

false, an approximate solution to the assignment problem can be found by simply 

assigning for each outcome at station h that outcome at station g with least value of ED, 

and applying a checking procedure to prevent an outcome of being matched more than 

once. The final assignment is determined in order to meet the constraint that all ED 

values must be less than a threshold value. 

The motivation of finding this set of matches without using the help of passage 

time information was to assess discriminative power of the similarity measure used. 

Since the number of pair-wise combinations is expected to be large (number of outcomes 

in station g multiplied by the number of outcomes in station h) for a given survey period, 

if any similarity measure is capable of discriminating genuine from false matches in this 

worst case scenario, I may claim that it is a good similarity measure for LPR application. 

In sum, my proposed vehicle tracking based on LPR technology, which can be 

viewed as a weighted bipartite matching problem, can be summarized as follows. First, 

for each outcome at station h, a vector with length equal to the number of pair-wise 

matches formed with all outcomes at station g is constructed (each element of this vector 

is the edit distance between the corresponding outcomes); second, the assignment with 

the least ED-value is selected as a potential match; third, a test is performed to verify if 
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any of the outcomes in this current match has been already matched before, where in such 

case the match with higher ED cost is eliminated from the matching list; finally, a 

threshold on the ED-values is used to discriminate the resulting pair-wise matches 

between potential positive and false-positive matches. Figure 3-2 shows a flowchart of 

this procedure.  

Notice that the number of observations in the two sets can differ as some vehicles 

either do not pass through the two stations or they may not have their plates recognized 

by either one of the two LPR stations. The result of this is an increasing chance of having 

false matches being classified as genuine. 

3.4 CASE STUDY AND RESULTS 

In April 2006, Knoxville, Tennessee joined an increasing number of cities in reducing 

speed limits for large trucks (with gross weights over 10,000 pounds) on the interstate 

highways in its metropolitan area. In recent years, reducing large-truck speed limits in 

urban areas has become one of the preferred countermeasures for combating urban air-

quality problems. The rationale for this is supported by a 2003 Federal Highway 

Administration (FHWA) study, which found that reducing large-truck speed by 16 km (or 

10 mph – from 65 to 55 mph) can reduce emissions of NOx by 18% per large truck (Tang 

et al., 2003). 

While reducing truck speed limits is a relatively simple act for metropolitan 

planning agencies, the subsequent enforcement effort often meets with more challenges.  

This is the case for Tennessee Highway Patrol (THP), which has jurisdiction over 

Interstates 40 and 75 (I-40 and I-75), both passing through the Knoxville metropolitan 
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Return the set of matches for
the analyzed period

Given a LPR dataset for
one day-period

Compute the similarity measure
values for all pair-wise vehicle plates

For each observed plate at station h
search for the best match at station g

with the least ED-cost value

Apply a ED-threshold to discriminate
the resulting matches between

positive and false matches

Test if the chosen match already
belongs to the matching list,

eliminating the one with the worse
ED-cost in such case

 

Figure 3-2 Matching Procedure 
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area. After the new speed law was enacted, THP found itself facing 12 million large 

trucks annually, most exceeding the 88 km/hour (55 mph) speed limit, on this stretch of 

interstate. Furthermore, THP received no budget or manpower increases for the purpose 

of enforcing the new speed limit. The aforementioned FHWA report did not state this 

specifically, but it would be difficult to expect emission reductions if the new speed limit 

were not diligently enforced. 

To this end, the University of Tennessee conducted a study using license-plate 

recognition (LPR) technology to automatically track large trucks as they traverse through 

the metropolitan area. Taking advantage of the existence of a weigh station on the west 

end of the area on I-40 where all trucks are required to stop for inspection, an LPR speed-

enforcement system, with equipment strategically located along I-40, could issue 

warnings or citations as the perpetrating trucks stop on the weigh scale, with a THP 

officer stationed in the weigh house. This system would function in real time without the 

need for mailing out speeding tickets after the fact or pulling trucks over after dangerous 

high-speed pursuit, both alternatives resource- and labor-intensive. 

3.4.1 Experiment Design 

The LPR equipment used in this first experiment was manufactured by PIPS Technology.  

Two versions of the equipment were used to capture license plates of westbound trucks 

on I-40, one at Campbell Station Road (Station g) and the other downstream at the weigh 

station (Station h).  Both units used internal detection (plate-finder) software to trigger 

the camera and an infra-red-based illuminator, which was activated when a vehicle was 

within the camera's field of view. The two cameras were set up to capture plates in the 
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rightmost lane of the road. Data were collected on weekdays, between 1:00 PM and 4:00 

PM, excluding days of abnormal traffic patterns. The distance between the two stations 

was about 1.4 miles. During five days of data collection in 2007, 2,671 plates were 

captured at the first station and 1,530 were captured at the second station. Among these, a 

total of 787 were manually verified as identical. In addition to reading plates, the 

equipment also “stamped” each plate image with time information, which was useful for 

later comparisons. 

3.4.2 LPR Performance 

The raw images stored in the LPR system database were viewed manually to compare 

with the detection reports. The results show an average accuracy of 61% for Station g and 

63% for Station h. Since the cameras were not permanently mounted (they were mounted 

on heavy tripods), the accuracies could potentially be higher. 

In terms of character reading rate, the LPR units presented a better performance. 

Figure 3-3 illustrates the failure rate distribution, a chart of relative frequency of plates 

versus the number of characters misread per plate, for each LPR station. Calculating the 

average reading rate per plate (number of correct characters divide by the license plate 

length) for each machine, it was observed a rate of about 0.88 for Station g and 0.90 for 

Station h. Thus, in spite of the moderate plate accuracy, the equipment was able to read 

most characters of the license plates. 

Out of the 787 plates that were manually identified as identical, 53% were read 

correctly at both stations, 20% were misread at both stations and the remaining 27% were 

misread at either one of the two stations. These results show that there is a propensity for 
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a character being recognized correctly at the second station given that it has been read 

correctly at the first station. Had the LPR units worked totally independently (e.g. two 

different LPR units with distinct pattern recognition algorithms) I would expect a rate 

around 0.61 x 0.63 = 0.38 of plates recognized at both stations. 

3.4.3 Truck Speed and Journey Time 

The histogram of the sample speeds for the 787 trucks captured at both stations is shown 

in Figure 3-4a.  Figure 3-4b shows the corresponding cumulative distribution of truck-

speeds after the speed limit changed. As observed in Figure 3-4a, after the new speed 

limit went into effect, truck speed ranged from 40 mph to 75 mph, and as shown in 

Figure 3-4b most of the speed values (the 19th percentile was approximately 55 mph) 

were higher than the actual speed limit of 55 mph. 
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Figure 3-3 LPR Failure Rate Distribution in Recognizing Plate Characters 
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(a) Histogram: mean = 59.1 mph, standard 
deviation = 5.2 mph, n= 787
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(b) Truck Speed
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Figure 3-4 Histogram and Cumulative Distribution of the Sample Truck’s Speed 
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The truck’s journey time variation along two survey days is presented in Figure 3-

5, which shows two moving average profiles, one for each survey period. As can be seen, 

for the time period presented, there was not much traffic disturbance. Looking at the 

disaggregated data, the journey time variable presented low amplitudes of around 0.3 

minutes (18 seconds). 

3.4.4 ED Performance and Results 

To assess the performance of the proposed matching method, modules in the MATLAB 

programming language were written to perform the calculations automatically. The 

number and percentage of positive matches, the number of false-positive matches, and 

the average number of candidates per plate were used as performance measures.  
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Figure 3-5 Truck’s Journey Time along Two Survey Periods 
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Four different threshold values, 0 to 3, were used to constrain edit distance. Table 

3-1 shows the results obtained when the top-rank candidates with least ED-values were 

selected. As can be seen, although smaller threshold values result in fewer false-positive 

matches, they also result in fewer positive matches. Moreover, without considering the 

passage time, false-positive matches are very likely to occur for threshold values of 2 and 

3. 

3.5 RESULTS DISCUSSION 

The algorithm presented herein is not expected to achieve perfection with 100% plate 

matching rate and zero false matches. Nevertheless, improvement can still be 

accomplished through further research on better plate similarity measures (Chapter 4), 

fixed and dynamic travel time constraints (Chapter 5), and improved configuration of 

LPR hardware.  

Table 3-1 Performance of ED 

Threshold 
Number  

of Matches 

Number  
of Positive 
Matches 

Number  
of  False-
positive 
Matches 

Average 
Number of 
Candidates 

Percentage 
of Vehicles 
Detected 

Percentage 
of False 
Matches 

0 497 497 0 1.02 60% 0% 

1 692 667 25 1.08 81% 4% 

2 921 737 184 1.59 89% 20% 

3 1309 754 555 5.74 91% 42% 
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Regarding to the similarity measure employed in this study, the main drawback of 

using the formulation of edit distance with 0 or 1 cost assignments, in the case of 

comparing distinct characters, is that it does not account for the expected likelihood of 

LPR units in misreading certain characters. For example, there is a relatively high chance 

of the characters "1," "0," and "B" being misread as "I," "O," and "8," respectively. The 

odds of such incidences were not considered in this chapter. However, this information is 

available and can be obtained by constructing a matrix of error probabilities for each LPR 

unit used. Once the matrix is constructed, the challenge becomes in designing the weights 

(or the cost function) to be used in the edit distance calculation. For example, what is the 

cost for transforming "0" into "O" given that “O” is misread as "0" with probability of 

50%? Some initial work by the author suggests that using a cost function would increase 

the number of positive matches and reduce false-positive matches. For example, the two 

outcomes "1561" and "15S7" would not have been falsely matched if it were known that 

the character "6" is very unlikely to be recognized as "S," or vice versa. Such issues will 

be object of Chapter 4. 

In this chapter, the passage time information was not used to restrict the number 

of candidates for matching. Two methods are proposed in Chapter 5 with fixed and 

dynamic time window constraints; with the assumption in the second method that the 

travel time variable follows a symmetric density function, such as the Gaussian function. 

This way, the chronological method used herein for selecting candidate plates should be 

replaced by a probabilistic method, where a potential match is selected if it has both the 

least ED value and whose passage time difference is very likely to be valid travel time. 
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As for the equipment setup on the roadside, it is believed that a permanent rather 

than a mobile setup would lead to improved accuracy in plate reading. In the second 

phase of the study, LPR machines were mounted “permanently” on the structure of 

variable message panels. Higher percentage of correctly read plates should result, as is a 

higher plate-matching rate. 

3.6 CHAPTER CONCLUSIONS 

In this chapter, a technique of text mining (called Edit Distance) was introduced to handle 

the problem of matching plates recognized by a dual setup of LPR units. A field study 

using two LPR units was conducted on I-40/75 in the vicinity of Knoxville, Tennessee in 

2007. The original idea of Edit Distance (with 0 or 1 cost values) was used to match 

license plates not correctly recognized by the LPR units. This represents the first attempt 

of using a text mining technique to the classical transportation problem of plate matching. 

While the accuracy of the LPR units was less than perfect, most of the plate 

characters were recognized, even if incorrectly sometimes; the use of edit distance with 

no passage time constraint resulted in a increasing number of positive matches but with 

considerable percentage of false matches. Therefore, some improvements are necessary 

to make this technique feasible for plate matching. 

In Chapter 4, results of further experiments will be presented with the objective of 

improving the reliability of LPR system in reducing false-positive matches. One of the 

research directions the author continued on was the use of a probability matrix based on 

the odds of one character being read, or misread, as another. This matrix was used to 

develop a symbol-based cost function, instead of the 0 or 1 cots employed in this chapter, 
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for the edit distance calculation. As will be seen, this sophistication increased the 

percentage of positive matches and reduced the likelihood of false-positive matches. 

Another direction, presented in Chapter 5, is the use of the passage time stamps to 

restrict the number of possible candidates in Station g to match a given outcome from 

Station h. To this end, two methods are employed, resulting in much better matching 

performances. 
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CHAPTER 4 

PROPOSED WEIGHT FUNCTION 

 

In Chapter 3 the original formulation of Edit Distance (ED) has been applied to compare 

two sets of strings generated from two LPR machines, which were set up (about 1.4 miles 

apart) to recognize plate numbers of trucks driving westbound on the junction of 

Interstate 40 and 75 in Knoxville, Tennessee. The results show that the proposed 

procedure could identify a high percentage of vehicles travelling through the two stations 

but with high likelihood of finding false-positive matches. In this chapter, a new symbol-

based weight function is proposed to estimate the probability of having a genuine match 

for a certain sequence of editing operations when comparing pair of strings read by a dual 

LPR setup. Therefore with this refinement, an unlikely alignment of pair-wise strings will 

be more penalized than a likely one in the calculation of the weight function. This chapter 

is organized into 4 sections. Section 4.1 presents extensions of the ED calculation and 

some formulations for the weight (or cost) function. In Section 4.2, the proposed weight 

function is presented. In Section 4.3, the performance of the proposed procedure is 

compared with some popular approaches using a real-life case study. Finally, discussion 

and conclusions are presented in Section 4.4. 
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4.1 WEIGHTED EDIT DISTANCE 

As seen in Chapter 3, the edit distance d(x, y) between two strings x and y, can be 

calculated based on the following recurrent equation, as proposed by Wagner and Fischer 

(1974): 

)}()1,(                    
),(),1(                    

),()1,1(min{),(

j

i
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Where d(i, j) is the edit distance between x[1..i] and y[1..j], and d(0,0) = 0. The γs 

represent the cost functions. For example, the γ(xi → yj) is the cost for the change 

(substitution) from xi to yj.  The γ(xi → ε), where ε represents the empty character, is the 

cost incurred by a deletion of xi. The γ(ε → yj) is the cost incurred by an insertion of yj. 

Thus, the edit distance d(x, y) would be given by d(lx , ly), where the notation lx and ly 

correspond to the lengths of the x and y strings, respectively. 

Various extensions of the original edit distance measure have been proposed to 

account for different situations. The original assignment for the cost functions as 

proposed by Levenshtein (1966) was to set γ(xi → yj) = 0 if xi = yj, otherwise γ(xi → yj) = 

1 (xi and yj cannot be ε at the same time). Ocuda et al. (1976) proposed the Generalized 

Edit Distance (GED) to assign different weights to the edit operations as a function of the 

character or the characters involved. For example, a cost associated with the edit 

substitution “U” → “V” could be smaller than the edit substitution “Q” → “V”. The error 

rates can be reduced by adjusting the values of the weight for each fundamental edit 

operation in accordance with the associated character probabilities. In addition to weight 
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assignments, Oommen (1986) also proposed to constrain the ED by the number and type 

of edit operations to be included in the optimal edit transformation, and he named this 

new approached as Constraint Edit Distance (CED). The main idea of the CED is to 

search for the optimal ED subject to a certain number of substitutions, insertions, and 

deletions.  

The last major advance in the ED calculation was made by Wei (2004) who 

proposed the Markov Edit Distance (MED). The main idea is to calculate ED according 

to lengths of sub-patterns and a simple measure that compares how close the histograms 

of the two sub-patterns are. The cost function in the MED is defined as γ(p1 → p2) such 

that p1 and p2 are two sub-patterns which at least one of them is not a single symbol of 

the alphabet. Wei pointed out that in working with sub-patterns the statistical 

dependencies among the values assumed by adjacent positions in patterns can be better 

exploited in such way that a variety of string operations are incorporated, in addition to 

all operations already defined in previous literatures. Therefore, CED and GED represent 

special cases of the MED. 

The weight functions can play an important role in the calculation of GED and 

CED measures. Several authors proposed different ideas to consider the type of errors 

that may be present in a given application domain. In an application of handwritten text 

recognition, Seni et al. (1996) introduced additional operations (merge, split and pair-

substitution), refined these set of operations as unlikely, likely and very likely, and 

established the order of importance of the new classification of operations relative to each 
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other. Then, they assigned the cost for each of the classes of operation, e.g. an unlikely 

deletion is more penalized than a likely deletion.  

Marzal and Vidal (1993) computed the weight function using the estimated 

probability matrix for substitutions, insertions and deletions of any pair symbols of the 

alphabet for the application of handwritten digit recognition. They transformed the 

probability matrix into the weight function by computing the negative logarithm of each 

probability value. 

The MED, as proposed by Wei (2004), defines the probability of a certain 

sequence of operations to convert x into y as a Gibbisian probability distribution function, 

which in turn is defined as P(x → y) = exp(-U(x → y) /T)/Z, where T and Z are constant 

parameters to be calibrated, and U(x → y) is the energy involving in any of the sequence 

of edit operations to transform x into y. The most desirable configuration for transforming 

x into y would be the one that maximizes P(x → y) which is equivalent to minimize     

U(x → y).  

4.2 PROPOSED WEIGHT SCHEME FOR LPR APPLICATION 

Similarly to Chapter 3, I still deal with the problem of matching two plate datasets from a 

dual LPR setup, with the two locations named Stations g and h, located upstream and 

downstream, respectively.   

In order to improve the matching performance, the ED method and the cost (or 

weight) functions γs should consider the LPR mistakes in reading certain characters. This 

can be achieved using the extensions of ED as found in the literature, combined with 

proper cost functions for LPR application. 
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All LPR misinterpretations can be translated into a matrix of error probabilities 

where each cells is given by the likelihood of certain pair-wise character symbol 

occurrence (e.g. “1” – “I”, “D” – “O”, “B” – “8”). Such information can be obtained by 

constructing a matrix of reading probabilities for each LPR unit. Once the matrix is 

constructed, the next task is to associate the two matrices of character misinterpretations 

into a designed weight function (or cost function) to be used in the edit distance 

calculation. The basic idea is that the higher the probability of a character association 

occurrence (likelihood of a pair-wise character come from the same truth character), the 

smaller the weight to compare the two characters. Therefore, in Equation 4.1, the 0 or 1 

cost values should be replaced by appropriate weight values for each editing operation 

involved. 

In designing the weight function, however, one should have in mind that the LPR 

application is different from common ED applications in the sense that there is no 

reference or list of ground truth values to match the target value. For each recognized 

string in one location there are a set of other recognized strings for matching in another 

location, and the true plate number is unknown. Therefore, the designed weight function 

should associate both error probability matrices of each LPR machine. 

The formulation of the weight function is based on the assumption, stated in 

Section 1.2, that the edit operations to convert a string x into a string y are independent of 

each other, i.e., there is no dependence relationship between neighboring characters of the 

patterns x and y. This means that the expected value for each individual character 
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outcome observed from a LPR machine is not affected by the position of the characters or 

by the other surrounding characters.  

It is also assumed, as stated in Section 1.2, that matrices containing the 

likelihoods of character interpretation by each LPR unit are available or can be estimated 

from a dataset containing both readings and ground truth values of the license plate 

numbers. I named such matrices as truth matrices, as defined in Subsection 4.2.2. 

4.2.1 Weight Function 

Let x = x1x2…xi…xlx and y = y1y2…yj…yly be any two sequence of characters read at 

stations g and h with string lengths equal to lx and ly, respectively. Suppose that the two 

strings are disposed along the axes of a grid, as illustrated in Figure 4-1, with the edit 

operations represented as the following moves on the grid: along the diagonal for 

substitutions, to the right for insertions, and vertical for deletions. There are a multitude 

of editing operation combinations to convert x  into y , which can be adequately 

represented by all possible directed paths from the point (0, 0) to the point ( xl , yl ) on the 

grid. If the first assumption above holds, the probability of a given sequence of editing 

operations to compare x and y is given by the following formulation 
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kk jipyxp

0

),()(     (4.2) 

 

where, n is the number of nodes of a path between (i0, j0) = (0,0) and  (in, jn) = ( xl , yl ). I 

defined the p(ik, jk) as the probability of the corresponding edit operation associated with 

the point (ik, jk) on the grid, that is the likelihood to observe a character outcome 
kj

y  at 
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station h, for a given character outcome
ki

x obtained at station g. On the grid, the moves 

(ik-1, jk-1) → (ik, jk), (ik-1, jk) → (ik, jk), and (ik, jk-1) → (ik, jk) represent substitution, 

deletion and insertion, respectively. 

If I make the negative logarithm in both sides of Equation 4.2 and minimize the 

result, I will obtain the following expression 
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Indeed, to find the most likely alignment or sequence of edit operations, Equation 

4.2 should be maximized, which implies to minimize its negative natural logarithm. 

Finally, the proposed weight function can be calculated 

as ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

),(
1log),(

kk
kk jip

jiγ . This formulation can be used in existing edit distance 

measures such as GED and CED. The character association probability p(ik, jk) can be 

estimated from the collected dataset. 

 

Figure 4-1 Path on a Grid for a General Comparison between Two Strings 
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4.2.2 Computation of the Conditional Probability p(y | x)  

The problem now becomes how to estimate p(ik, jk). As mentioned before, the context 

presented in this research differs from existing situations in the sense that there is no true 

reference string (plate number). As will be seen, the method proposed to overcome this 

problem consists in applying conditional probability theory to associate the character 

interpretation probabilities given by two matrices, denoted by Cg and Ch, of station g and 

h, respectively, and obtain estimates of p(ik, jk) for any possible character association. 

To estimate the key probability p(ik, jk) for the weight function of Equation 4.3, I 

need to estimate the probability that the corresponding pair of character outcomes 
ki

x  and 

kj
y at station g and h came from the exact same character. I proposed to calculate such 

character association likelihood in the basis of the conditional probability ( | )
k kj ip y x of 

observing 
kj

y at h given 
ki

x at g. 

To simplify the subsequent description let x and y be now any character outcome 

at station g and h, respectively. Furthermore, let z be a ground truth character. Knowing 

that same brands of LPR units (with similar pattern recognition algorithm) work 

similarly, it is possible to estimate the conditional probability of observing the character 

outcome y at h, given a character outcome x at g, for a known character z, as the 

following expression: 

∑
∑

==

zy

z

zpzyxp

zpzyxp

xp
yxpxyp

,
)()|,(

)()|,(

)(
),()|(     (4.4) 

 



 

 44

Alternatively, Equation 4.4 can be also written as 
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z
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A simple way to calculate the conditional probabilities for any character 

association is to use matrix manipulation. To this end, notice that Equation 4.5 is 

composed by a summation of products with two factors p(y | z) and p(z | x) each, which 

can be viewed as entries of two probability matrices. Let us denote these two matrices as 

Rg containing the reverse probabilities p(z | x) and as Ch whose entries are the character 

interpretation probabilities denoted by p(y | z). 

Let us define the matrix denoted by Cl, named character interpretation or truth 

matrix, as a matrix whose cells l
ijC represents the conditional probability p(ri | zj) that a 

given true character zj was recognized as ri by a LPR machine l. The matrix has as its 

diagonal elements the probabilities that a character is correctly read and as its off-

diagonal elements the misreading probabilities. In our problem of vehicle tracking, each 

matrix Cl is a K by K square matrix where K is the total number of possible alpha-

numeric (plus the empty one) characters for the variables zj and ri  (in our application, K 

is 37 which means 36 alphanumeric characters plus the empty one). The empty character, 
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denoted by the symbols ε or “ ” represents the missing character and makes possible 

deletion and insertion operations.  

Let us now define the matrix denoted by Rl, named reverse matrix, whose entries 

are the conditional probabilities, denoted by p(zj | ri), that for a given recognized 

character ri its ground truth character is zj. As will be seen in the example, this matrix can 

be calculated for a LPR machine l using the corresponding truth matrix Cl and the 

information about the likelihoods of character occurrence on the plates. 

 In the matrices Rg and Ch, the ground truth characters correspond to the columns 

of the matrices, while the read characters to the rows. Therefore, the computation of all 

possible character associations, or conditional probabilities p(y | x), is given by the 

following matrix multiplication: 

C = Rg.(Ch)T     (4.6) 

where, 

(Ch)T is the transpose of Ch. 

 

With index notation, each element Cij of C is therefore given by Cij = p(yj | xi), 

where i = 1, … , K; and j = 1, … , K. 

 Finally, the probability p(ik, jk) in Equation 4.3 should be approximated by       

p(yj | xi) and can be obtained directly by simply searching for the cell in the matrix C in 

which the associated characters correspond to those involved in the editing operation at 

node (ik, jk) on the grid of Figure 4-1. 
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As an example, I demonstrated how to determine the association matrix C using 

Equation 4.4 for a hypothetical case. Let us assume that only two characters are possible 

to be observed, saying “A” and its complement “Ã” (not “A”). Let the corresponding 

truth matrices be as follows: 

 

 Matrix Cg of LPR Station g: 
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Matrix Ch of LPR Station h: 
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Let us also assume that the information about character occurrence on the plates is 

available and given by 

ppzp
pzp
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 Therefore whenever a character is recognized by both stations, the possible 

expected combinations of character association are presented in Table 4-1.  

Table 4-1 contains the following information: the first column contains the 

possible ground truth characters; the second and third columns contain the possible 

character outcomes that must be observed at stations g and h; the fourth column shows 
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the joint probabilities of observing the character x at g, y at h, for a given ground truth z; 

and the last column has the resulting conditional probabilities of pair-wise character 

association. An alternative presentation for Table 4-1 is presented in Figure 4-2, which 

shows a probability tree diagram. 

In reality, since I deal with more than two possible characters it is more 

convenient to calculate the conditional probabilities using matrix manipulations. Thus, 

the expressions in the fourth column of Table 4-1 for each cell Cij of the association 

matrix C can be obtained by firstly converting the entries p(x | z) of the truth matrix Cg to 

their reverse conditional probabilities p(x | z), and then applying Equation 4.6. 

To obtain the reverse representation of matrix Cg I applied Bayesian theory. First, 

multiplying each column of Cg by the corresponding character likelihood p(z) results in 

the following matrix 
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Then, dividing each row entry of the above matrix by the corresponding row-sum 

gives Rg whose entries are the probabilities p(z | x), as follows: 
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Finally, the final conditional probability matrix, or association matrix C, is 

determined using Equation 4.6. 
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Table 4-1 Conditional Probabilities for a Two Character Example 

Ground 
Truth 

Character  
( z ) 

Reading at 
Station g  

( x ) 

Reading at 
Station h  

( y ) 

Joint Probability 
p( z, x, y ) 

Conditional Probability 
 p(y  | x ) 

A 

A A 1 2pp p  1 2 1 2

1 1

(1 )(1 )
(1 )

pp p p p p
pp p p
+ − −
+ −
% % %

% %

A Ã 1 2(1 )pp p−  1 2 1 2

1 1

(1 ) (1 )
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pp p p p p
pp p p
− + −

+ −
% % %

% %
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− +

% % %
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Ã Ã 1 2(1 )(1 )p p p− −  1 2 1 2
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(1 )(1 )
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p p p pp p
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− − +
− +

% % %

% %

Ã 

A A 1 2(1 )(1 )p p p− −% % %   
A Ã 1 2(1 )p p p−% % %   
Ã A 1 2(1 )pp p−% % %   
Ã Ã 1 2pp p% % %   
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Figure 4-2 Probability Tree for a Two Character Example 

 

4.2.3 Estimation of p(y | x) Based on Ground Truth (GT) Method  

This section presents a method to estimate the conditional probabilities p(y| x) based on 

the availability of ground truth values for a dataset of plates. From a data sample of plates 

captured during a period of the LPR machine operation, the corresponding ground truth 

values for each plate can be verified manually, and a matrix with character interpretation 

occurrences can be determined. Let us denote this matrix as Fl, generated from a dataset 

collected from LPR machine l, as follows: 
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where f(ri, zj) is a function which returns the number of times on the sample where a true 

character labeled as zj is recognized as ri by the machine. In a dual LPR setup there must 

be two matrices, Fg and Fh, from the upstream and downstream stations, respectively.  

From the occurrence matrix above, I can either estimate the character 

interpretation probabilities or the reverse probabilities as follows: 

a) Character interpretation probability (cell frequency divide by column-sum): 

∑
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b) Reverse probability (cell frequency divided by row-sum): 
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Thus, the estimates hĈ  and gR̂ of the truth matrix Ch and of the reverse matrix Rg 

can be computed from the character occurrence matrices Fh and Fg, respectively. Finally, 

an estimate of the association matrix is given by 

( )Thg CRC ˆˆˆ .=  

 

where each of its elements are calculated as follows 
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The expression above is therefore an estimator of the probability p(yj | xi), with the 

restriction that the two outcomes were originated from the same character, but not 

necessarily came from the same plate. 

4.2.4 Editing Constraints for CED 

LPR machines usually do not reverse the characters on the plates. For this reason it is 

very likely that any pair of read strings can have its sequence of characters lined up if 

they come from the same vehicle. Thus, considering that reversal errors are not made by 

LPR machines, the CED with editing constraints defined as a function of the string 

lengths may potentially eliminate false positive matches that otherwise would be obtained 

if a GED formulation were used.  

In this research, it is worth noting that the edit operation constraints used in CED 

are defined in the basis of the length differences of the strings being compared. Hence, 

for any pair of read strings x and y, with lengths given by lx and ly, I proposed the 

following constraint sets (i,e,s) of insertions, deletions and substitutions to transform x 

into y. 

a) (i,e,s) =(ly - lx  , 0, lx),  if  ly>lx; 

b) (i,e,s) = (0, lx - ly , ly), if  ly<lx; 

c)  (i,e,s) = (0, 0, lx),  if  ly=lx. 

 

The three restrictions above state that insertions or deletions will be allowed only 

if the lengths of two strings are different, otherwise only substitutions will be allowed. 
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4.3 CASE STUDY AND RESULTS 

The proposed matching methods were applied to the same LPR dataset used in Chapter 3, 

which involved tracking large trucks (with gross weights over 10,000 pounds) by a two-

point setup on the interstate highways in Knoxville’s metropolitan area. 

4.3.1 Analysis Method 

Since there were five days of data, all combinations of three days of data out of five were 

used as calibration data, with the remaining combinations of two days as validation data. 

Thus, each of the 10 combinations with three days of data was used to estimate 20 

conditional probability matrices, i.e. 10 matrices of type Rg and 10 matrices of type Ch 

for LPR stations g and h, respectively. These probability matrices were then included in 

the formulation of CED and GED in combination with my proposed weight function 

defined in Subsection 4.2.1. 

Considering the possible ways of defining the editing weights into the recurrent 

calculation of ED (Equation 4.1) four procedures were indentified to calculate the ED 

between pair of strings, as follows: 

 D1:   Edit distance with 1 or 0 cost assignments, which corresponds to the 

original idea of Levenshtein; 

 D2:  GED using weight function as in Equation 4.3, with the association 

probability p(ik , jk) estimated by p(y | x), as defined in Equation 4.5; 

 D3:  Original CED with 1 or 0 cost assignments and constrained by the 

editing sets defined in Subsection 4.2.4; 
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 D4:  CED using weight function as in Equation 4.3 and p(ik , jk) as in 

Equation 4.5, and constrained by the editing sets defined in Subsection 

4.2.4. 

 

The performance of my proposed procedures, D2 and D4, were then compared to 

the popular ED and CED methods, D1 and D3. All four procedures above were then 

applied to all 10 combinations of two remaining days of data, used as validation period.  

The same matching procedure described in Chapter 3 was used to assess the 

performance of the proposed refinement in this chapter. Thus the performance of the 

similarity measures was investigated under a worst case scenario that consisted in 

matching up two sets of plates for each remaining day, without using passage time 

information or the recorded time stamps. The main premise here was that under this 

worst case scenario the most suitable measure should be able to accurately match any two 

sets of plates with the least number of false matches. 

Regarding the measures of performance, the percentage of positive matches and 

the percentage of false-positive matches was calculated for a range of ED-thresholds 

covering the domain of all possible ED values, ranging from 0 to 20. In order to derive 

the performance measures, it was necessary to obtain the ground truth values of the plate 

numbers by manually recording them when visualizing their images provided by the LPR 

datasets. The efficiency of each similarity measure was then established by drawing 

curves relating the percentage of correct matches to the percentage of false-positive 

matches over the domain of ED values. 
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4.3.2 Comparison of Matching Procedures 

In sum, all ten profile curves of performance were similar to those presented in Figure 4-

3 that contains the aggregated profile curves, or average profiles. 

As can be seen in Figure 4-3, the existing ED or CED combined with my 

proposed weight functions yielded considerably improved performance for vehicle 

tracking. Second, with respect to the two measure frameworks, GED and CED, there was 

not any evidence of difference in performance between these two measures over all 10 

analyses performed. Therefore, there is no empirical evidence yet to state that CED 

equipped with the proposed editing operation constraints, as defined in Subsection 4.2.4, 

is a better procedure to match outcomes from dual LPR setups. 

In general, either D2 or D4 measures were able to achieve around 90% of positive 

matches with about 5% to 8% of false-positive matches. In addition, it is worth noting 

that these measures achieved almost 80% of positive matches with approximately 1% to 

2% of false matches. Thus, it seems that any ED formulation equipped with the proposed 

weight functions has the most discriminative power to match data from LPR systems, 

when the target or reference values for matching are unknown.  

4.4 CHAPTER CONCLUSIONS AND RECOMMENDATIONS 

This chapter assessed the performance of different vehicle tracking procedures using a 

dual setup (two-point setup) of LPR units. I have proposed a general and simple 

procedure to compute the weight function that can be used in existing distance measures 

when the truth matrix of the LPR machines are available or can be estimated. A field 

study using two LPR units was conducted on I-40 in the vicinity of Knoxville, Tennessee 
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in 2007. The experimental results and analyses show that the most suitable procedures for 

vehicle tracking on a dual LPR setup are either GED or CED formulation combined with 

the weight function and editing constraints proposed in this chapter. These procedures 

achieved about 90% of positive matches with only 5% to 8% of false-positive matches.  

It is worth noting that the performance results obtained with the application of the 

proposed weight function in the ED formulation outperformed the original cost 

assignments. This partly confirmed the hypothesis of this research that the recurrent LPR 

errors can be used to infer about the likelihood of two imperfect readings being originated 

from the same vehicle.  
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Figure 4-3 Performance of the Matching Procedures 
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In this analysis, the matching procedures were applied with no consideration of 

passage time stamps. In reality, there will always be a time limitation (one day, one hour, 

etc) corresponding to the survey period or to an arbitrary restriction (e.g. maximum 

number of candidates for matching) that constrains the possible pair-wise matches. The 

question is how to take judicious advantage of the time stamps to further improve the 

matching procedure. This will be subject of Chapter 5. 

A very important issue that has not been yet considered here in the present 

analysis is the sample size (number of outcomes) needed to estimate the character 

association matrix C. A bad estimate of this matrix can deteriorate the matching 

performance. This matrix is site-dependent as it reflects the characteristic (plate, vehicle, 

environment, etc) of the locations where the LPR machines are installed. Therefore, if 

there are many sources of variation, noise, affecting the LPR operation, it would be 

necessary a large amount of data to achieve a required error precision. In such case, the 

estimation would require also more human intervention since the ground truth values of 

the plates are determined manually. 

In situations where the LPR units are installed permanently, the human effort can 

be eliminated if there is a mechanism of estimating the conditional probabilities of the 

association matrix C by means of a process without human intervention. The sample size 

is still a concern in this case, however now the system can keep learning until an error 

precision is finally reached, or the conditional probabilities converge to values within a 

threshold. This will be subject of Chapter 6. 
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CHAPTER 5 

MATCHING PROCEDURE COMBINED WITH PASSAGE TIME 

INFORMATION 

 

The passage time stamps in registration plate surveys are an important part of the 

information collected in this type of study, since they are used to estimate the travel times 

of vehicles travelling from origin to the destination checkpoints. Whenever it is possible 

to record the vehicle plate number exactly, the travel times are derived directly from the 

exact matches. However, if there is uncertainty about the validity of matches, passage 

times are essential information to infer about the likelihood of genuine matches, since 

they follow a certain pattern or distribution. In the previous chapters 4 and 5, the database 

from LPR setup was matched up without using passage time information. In this chapter, 

I take advantage of this information, available in the LPR data, to help improving the 

performance of the matching framework. 

5.1 EXISTING PLATE MATCHING PROCEDURES CONSIDERING 

PASSAGE TIME 

Most of the earliest research on matching plate data was concerned with correcting for 

spurious matches of partial plate surveys. Beyond this, relatively little research has been 

also undertaken on methods to filter out erroneous records from matched LPR data. It 
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seems that little research has been conducted about the use of passage time information in 

a matching procedure for LPR data.   

5.1.1 Partial Plate Problem 

Most of the research in vehicle plate matching has focused on the problem of estimating 

or correcting for spurious matches generated from partial plate surveys. To this end, 

many statistically based methods have been proposed to mitigate the false matching 

problem in the case of two observation point survey (i.e. a single origin and destination), 

such as those of Hauer (1978), Shewey (1983), Maher (1985), and Watling and Maher 

(1988). It seems that to handle the case of multiple origin and destinations the main 

contributions are due to Watling and Maher (1992) and Watling (1994). 

Regarding to partial plate problem, researchers strived in the beginning to find the 

most probable set of matches with no use of passage time information, other than the 

restriction of the survey period (see for example: Makowski and Sinha, 1976; Hauer, 

1978; and Maher, 1985). In the case of single origin-destination, they assumed Poisson 

arrivals in the destination for vehicles not detected in the origin, as well as assumed that 

the number of vehicles that pass through both stations is a binomial variable. Hauer 

(1976) proposed a heuristic approach to estimate the number of spurious matches and an 

interactive procedure to correct the data from license plate surveys. Later Maher  (1985) 

proposed two statistical procedures (Maximum Likelihood Estimation and Least Square 

Estimation) to estimate the parameters (proportion of vehicles detected at first station that 

travel to the destination and arrival rate for vehicles at the second station not detected at 

the first one) of the distributions functions used into their models.  
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Shewey (1983) was the first to propose the use of the passage times to improve 

the performance of the matching problem for the single origin-destination. In his 

approach each set of possible matches must initially satisfy a fixed time window 

constraint which is determined by a priori estimate of the minimum and maximum 

possible journey times. Besides obeying the time window constraint, the chosen match 

would be the one whose passage time difference were the closest to the mid point of the 

time interval. This additional restriction was therefore an attempt to consider the shape of 

the travel time density function, assumed to be a symmetric density function such that it 

is more likely to observe a travel time close to the median or the mean value. 

Watling and Maher (1992) assumed that the journey time between stations 

follows a normal distribution, in addition to the other assumptions proposed before, to 

derive a solution method for the problem based on a well known linear optimization 

programming.  At first the objective function seeks to maximize a likelihood function of 

the most probable combination of vehicles conditional on the data. The problem is further 

transformed into a minimization problem by taking the negative logarithm of the 

likelihood function, becoming a problem similar to transportation problem (Hitchcock, 

1941.), or the assignment problem (Bazaraa et al., 2005). 

Since the parameters of model are unknown a priori, Watling and Maher (1992) 

proposed an interactive method to estimate them and find the most probable matches. 

Subsequently, Waitling (1994) proposed a maximum likelihood approach to estimate the 

model parameters. The models proposed by Watling and Maher (1992), as well as by 

Watling (1994), therefore use information of traffic flow and passage times to find the 



 

 60

most probable vehicle combination for a given dataset of partial plate numbers. It is also 

demonstrated that their models are easily extended to the case of multiple origin and 

destinations. 

5.1.2 Cleaning of Matched LPR Data 

More recent studies involving the treatment of journey times estimated from LPR data 

focused on the problem of removing outliers from a set of matched license plate data 

(Clark et al, 2002; Robison and Polak, 2006). In such studies only ground truth matches 

(matches from pair-wise outcomes with the same value) were analyzed. It is important to 

notice that this is different from what has been proposed in early studies, in the case of 

partial plate surveys, where the aim was to use journey time as an additional constraint or 

embedded model parameter to classify matches in genuine and spurious.  

Although cleaning methods are not directly of interest in this research, they offer 

insights on how to identify valid journey time estimates, or journey times of vehicles 

travelling in direct fashion from the origin point to the destination point. Therefore, a 

cleaning method could be combined with the proposed similarity measure into a new 

matching procedure. 

The literature offers some reports on methods to clean up travel times estimated 

using LPR equipment. Clark et al. (2002) presented three methods to identify outliers in 

journey time observations. In this context, outliers are defined as any observation 

generated from either errors in database due to the inaccuracy of the equipment or 

unexpected travel behavior (such as stop en-route, and vehicle not restricted to traffic 

regulations).  In order to distinguish outliers from incidents or normal variation in traffic 
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behavior they pointed out that the journey time records should be analyzed on small time 

blocks within the survey period. They applied the three methods to clean up a dataset 

collected on motorway around Manchester, United Kingdom, and found that the most 

robust method, first proposed by Fowkes (1983), would be the one using the median as a 

measure of location and the interquartile range as spreading measure. 

For LPR setups on urban area, Robinson and Polak (2006) have proposed a 

method which uses the serial temporal structure of the data. They emphasized that 

previous methods ignore such serial temporal structure by assuming that the traffic 

conditions are stationary within 5- or 15-min period. Hence, they suggested an overtaking 

rule which requires that if a vehicle is overtaken on a multiple lane link of an urban 

environment, then it will not have a travel time very distinct from the overtaking vehicle. 

They investigated their method using simulation and achieved better performances 

(defined in terms of the ability to identify valid vehicles and the ability to estimate the 

expected mean and standard deviation of valid journey times) compared to existing 

methods. 

5.1.3 LPR Plate Survey 

All models proposed to estimate the number of false matches from partial plate surveys 

assumed that the observers do not make any mistake in reading the plate numbers. In 

reality, the accuracy of such surveys is usually poor in harsh conditions of weather, 

lightening, and high traffic volumes. In addition, they are very time consuming and 

require high amounts of manpower to collect, tabulate and analyze the data. Therefore, as 

an alternative to overcome these problems, LPR machines can replace the observers and, 
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by knowledge of the possible character errors made by the machines, the whole process 

to obtain the set of genuine matches between stations can be automated. 

Data from LPR surveys have distinct characteristics compared to the data 

generated from partial plate surveys. First, LPR machines try to record all characters on 

the plates and whenever there is an error or a missing character it does not happen at the 

same location on the plate. Therefore, a database of readings collected from a single LPR 

unit is composed of distinct reading outcomes; rather than consisted of blocks of reading 

replications usually encountered in partial plate surveys, where only part of the plate 

number is recorded. Recall that models to deal with the partial plate problem are not 

useful, or needed, when replications are not observed. 

Although in the LPR surveys the resulting outcomes seem to be distinct for a 

same station, there is no guarantee that the same outcome will be observed in different 

stations for a given plate number. As seen in Chapter 3 and 4, measures of similarity 

between strings proved to be a suitable method to determine the likelihood of a genuine 

match when two strings are paired up. Furthermore, as was the case for the partial plate 

problem, the likelihood of finding false matches can be decreased using an additional 

constraint which takes advantage of the passage times available in the LPR database.  

5.2 PROPOSED METHODS 

In this section two methods that incorporate the passage time information into a matching 

framework combined with the similarity measure proposed in Chapter 4 are presented. 

The two procedures were named Fixed Time Window Constraint (FTWC) and Varying 

Time Window Constraint (VTWC) methods. 
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Initially, let us define the notation used. Set the pair-wise strings (xi , yj) as a 

potential match, where xi is the ith outcome observed at Station g and yj is the jth outcome 

read at Station h.  Define ui and vj as the corresponding time stamps at station g and h, 

respectively. So, the difference in passage time is denoted by tij = vj - ui. Furthermore, dij 

= d(xi , yj) denotes the similarity measure between xi and yj. 

5.2.1 Fixed Time Window Constraint (FTWC) 

In this section the fixed time window constraint method is described. In this method, for 

each outcome yj (the jth record) from the downstream station (Station h) a set of 

candidates in the upstream station (Station g) is first limited to those outcomes such that 

the passage time stamps fall within a time window constraint. This time constraint is a 

fixed time interval defined, as illustrated in Figure 5-1, by the following expression: 

ljiuj jtvujtv −≤≤−     (5.1) 

where: 

ui and vj, are the time stamps of the ith and jth outcomes, recorded at stations g and 

h, respectively; 

jtl and jtu are an estimate of the upper and lower bounds of the journey time.  

 

Once the set of candidates is selected for a given outcome of Station h, the further 

procedure, illustrated in Figure 5-2, is similar to the matching procedure described in 

Section 3.3 of Chapter 3. First, the candidate xi (ith record at station g) whose match      

(xi, yj) has the least weighted edit distance dij is then chosen for further analysis. Second, 

a test is applied to verify if the chosen xi outcome in this current match has been already 
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matched before, where in such case the match with higher dij cost is removed from the 

matching list. Finally, if dij is less than a threshold τ, the chosen match is potentially 

genuine, otherwise may be false. 

Recall that the edit distance dij here can be calculated using any procedure already 

described in Chapters 3 and 4, i.e. either with 0 or 1 cost assignments or using weights 

estimated from the recurrent character interpretations occurred during the LPR operation, 

as described in Chapter 4. 

The time window constraint is defined according to the application objective. For 

example, if the goal is to identify speeding vehicles, the upper limit can be defined in 

terms of the minimum speed limit of the road, whereas the lower limit as function of a 

typical vehicle acceleration capacity. 

 

 

Figure 5-1 Time Space Diagram with Fixed Time Window Constraint 
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Figure 5-2 Flowchart Process for the FTWC Method 

 

 

 



 

 66

On the other hand, when the objective is to monitor the traffic conditions or to 

find the trip patterns on the urban environment, the limits can be defined arbitrarily by 

assuming that the maximum vehicle speed is infinity (corresponding to a lower journey 

time of zero) and that the minimum vehicle speed is very low such as 1 or 2 mph (so that 

the upper journey time is much larger than the expected journey time). This arbitrary 

restriction can also be used with the purpose of comparing the discriminative power of 

different similarity measures. 

5.2.2 Varying Time Window Constraint (VTWC) 

Regarding to the two-point LPR survey again, in this section a second matching 

procedure incorporating the passage time information is proposed to improve the 

performance of the template matching. Similarly to the FTWC method, this procedure is 

thought to be used in situations such that it is needed to decide whether or not a plate 

currently detected at the downstream station h can be matched to a subset of plates 

already detected at the upstream station g. 

Again, my proposed matching procedure consists in matching any current 

outcome jy  at Station h to a subset of the earliest previous observations at Station g. As 

in the FTWC method, the subset of candidates at Station g is formed by those outcomes 

whose corresponding passage times fall within a fixed time window constraint. As 

before, such time window constraint is bounded by the upper and lower limits of the 

expected travel times on the road. However, in the VTWC method here there is an 

additional time window constraint whose width varies according to the likelihood of 
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classifying a match in either genuine or false. The procedure will be detailed in the 

sequel. 

Let us first define the range of values for the similarity measure dij as [0, τmax], 

where τmax is a critical value above which is very unlikely to declare (xi, yj) as a genuine 

match. The limit τmax is also viewed as a value below which is very unlikely to have a 

false math. As can be seen, there is a tradeoff on the determination of τmax. 

Finally, let us define the range [0, τ*], such that τ*∈ (0, τmax), within which it is very 

likely that (xi, yj) constitutes a genuine match. 

The matching procedure, as illustrated in the flowchart of Figure 5-3 and in the 

time-space diagram of Figure 5-4, can be described by the following steps: 1) Match any 

current observation yj at Station h to a subset of the earliest previous observations at 

Station g whose passage times fall within a fixed time window, and search among the 

candidates for the best string xi with the least edit distance; 2) If dij < τ*, declare the 

match (xi, yj) as genuine; 2) Otherwise, if τ* < dij < τmax, declare (xi, yj) a valid match only 

if the corresponding passage time difference tij lies within a varying  time window 

constraint whose width varies with the magnitude of dij and with the expected mean and 

standard deviation of the vehicle journey time. 

By assuming that the genuine journey times come from a symmetric density 

function, such as the Gaussian density function, the closer tij is to the mean of the 

distribution, more likely is the match (xi, yj) to be genuine. Also, it is known that the 

likelihood of having a genuine match increases when the similarity measure decreases. 

Therefore, to define the travel time constraint acting on the ED domain (τ*, τmax], the 
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Figure 5-3 Flowchart Process for the VTWC Method 
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following inequality constraint was defined 

)( ijjt
t

jt
tij dz

t
≤

−

σ
μ

,   max* ττ << ijd     (5.2) 

where, 

jt
tμ and jt

tσ  are the expected mean and standard deviation of the journey times for 

the corresponding time t of a typical day;  

z(dij) is a monotonically decreasing function of the similarity measure value dij 

and used to define the limits of the varying time window constraint. 

 

Now, the upper and lower bounds of the journey time vary according to the value 

of dij and with the expected journey time parameters jt
tμ and jt

tσ . Although it seems to be 

a method to remove outliers (cleaning data method), it is just a way to classify matches in 

genuine or spurious. The upper and lower bounds, shown in Figure 5-4, for the journey 

times can be redefined in terms of the following functions: 

( ) max
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( , , )

. ,       *
l ijjt jt
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Where, 

ls  and us  are estimates of the lower and upper limits of the vehicle speeds; 

xΔ is the distance separation between the two LPR unit locations; 
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Figure 5-4 Time Space Diagram with Varying Time Window Constraint 

 

The constraint of Equation 5.2 is thus sensitive to both variation on the journey 

time through a day and to the likelihood (given by the similarity measure) of a match    

(xi, yj) being genuine. Figure 5-5 shows an example of travel time variation over time for 

a typical day, with the upper and lower journey time limits defined by the top and bottom 

dashed lines.  

In practice, true values for jt
tμ and jt

tσ  are impossible to obtain. An alternative is 

to estimate these two parameters from historical data of journey times obtained in time 

intervals near to the time point t or use previous journey time values from matches 

already classified as genuine. 
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Figure 5-5 Profile Example of Journey Time Variation 

5.3 LPR DATA 

Two LPR setups were deployed to test the proposed matching procedures. The first setup 

(LPR Setup 1 – 2007 Data) was the same used in Chapters 3 and 4 to evaluate different 

formulations of the similarity measure. Remind that the main objective of this application 

was to monitor the speed of large trucks.  

The second setup (LPR Setup 2) corresponded to a permanent dual LPR setup 

recently installed in Knoxville metropolitan area. Two newer versions of the PIPS 

cameras were set up three miles apart. The first one located in I-640 W (Station g) at 

Pleasant Ridge Rd and the second one located in I-40 W (Station h) before the exit ramp 

with Papermill Dr. Both LPR units were mounted on the existing structure of variable 

message panels, and aimed to the right middle lane to capture plates on the front of 

vehicles travelling westbound. 
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They were installed on April of 2010, and have been operating day-and-night 

since then. All plate data collected have been also stored for posterior analysis. Five 

complete days of operation, April 6th and 7th, as well as May 25th, 26th and 27th, were 

selected to evaluate the LPR operation and the performance of the matching procedures. 

Subsection 5.3.1, next, presents the results from these five days of operation. 

5.3.1 Permanent LPR Setup: Data Collection 

The new versions of the LPR equipment used at LPR Setup 2 have the ability to 

continuously take pictures at a rate of 30 pictures per minute, so that each vehicle is 

caught 5 times on average. Although multiple pictures may be taken for a single vehicle, 

only those pictures resulting in distinct outcomes are saved. Thus, one single vehicle may 

generate multiple outcomes with distinct values. For each outcome, two image files are 

created, one with a closed view of the plate and another one showing the whole vehicle 

front. All information retrieved (LPR station, image view, time stamps, outcome values, 

reading confidence) is saved into a code of strings separated by commas, which is the 

name of each image file.  

A script in Excel Visual Basic was written with the objective of compiling the 

LPR data and assisting in the process of comparing the raw images with the detected 

reports. Figure 5-6 shows a snapshot view of the spreadsheet used. This script made 

possible to automatically retrieve the reading values and time stamps for each outcome. 

More important, it also made possible to sequentially view the images of the plates and of 

the vehicle fronts, from which the true plate values were verified and recorded into the 
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Figure 5-6 Screen Snapshot View of the Excel File used to Process the LPR Data 

designed cells. In addition, the plate syntax and type of vehicles (car or trucks) were also 

recorded. 

During the selected five days of operation, a total 10450 and 21266 plates were 

captured at stations g and h, respectively. Among these, a total of 2924 were manually 

verified as identical. Thus, around 28% of the vehicles detected at the first station were 

also detected at the second station. 

5.3.2 LPR Performance 

With respect to the LPR performance, Table 5-1 shows the plate-based accuracy and 

character-based reading rate for both LPR setups. As can be seen, the performance of the 

newer setup was poorer than that observed for the first application, even with newer 

versions and permanently mounted equipments. The main reason for the worse 
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performance of the second LPR setup, compared to the first LPR setup, was that the 

machine settings in the second setup were not calibrated to recognize specifically plates 

from Tennessee which are the majority of plates found. 

Table 5-2 shows the matching rates separated per machine failure (read or 

misread) of both 787 and 2924 plates manually identified as identical, from LPR Setups 1 

and 2, respectively. As already pointed out for LPR Setup 1 in Chapter 3, there was a 

propensity for a plate being correctly recognized at the second station given that it has 

been correctly read at the first station. 

5.3.3 Analysis of the Vehicle Speeds and Journey Times 

Regarding to the first LPR database, all data was collected during the afternoon off-peak 

(1:00-4:00 PM). The histogram of the sample speeds of the 787 trucks captured at both 

stations is replicated at Figure 5-7a. The empirical distribution had a kurtosis of 4.4599 

and skewness of -0.6131, thus revealing a sample distribution highly concentrated around 

the mean and spread out more to the left. Therefore, for the analyzed period, it was more 

likely to find journey times around the mean value and eventually there were 

observations with larger journey times, compared to the expected values. 

Table 5-1 LPR Performance 

LPR Setup: 1) 2007 – Mobile 2) 2010 – Permanent 

Station: Campbell Weight I-640W I-40W 

Plate reading accuracy: 61% 63% 26% 57% 

Character reading rate: 0.88 0.90 0.78 0.85 
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Table 5-2 Cross Table of Expected Matching Rates per Machine Failure 

2007 Setup 2010 Setup 

787 plates h – misread h – read 2924 plates h – misread h – read 

g – misread 19% 12% g – misread 32% 36% 

g – read 15% 53% g – read 4% 27% 

 

With respect to the second LPR database, Figure 5-7b shows a histogram of the 

sample speeds for the sample of 2924 vehicles travelling through both stations, and 

manually verified as identical. Again, the empirical distribution of speeds was slightly 

asymmetric to the left and with high density around the mean (kurtosis of 11.4704 and 

skewness of -0.9367).   

Figure 5-8a shows the scattering plot and the moving average profile (for blocks 

of 10 observations) of the journey time for one day period of analysis of the first LPR 

database. This chart is only to illustrate a time profile view of the journey time variation. 

More data would be necessary to characterize statistically a typical profile. Observe that 

between 1:40-1:50 PM the peak traffic is ending (which explains in part the asymmetry 

of the speed distribution). Besides, notice that between 3:00-3:10 PM, as well as for other 

shorter periods, no vehicle was detected at both stations, and therefore the moving 

average was unchanged.  

Again as an illustration, the scattering plot and the 24-hour profile of the moving 

average of the journey time for one day of analysis of the second LPR database are 

presented in Figure 5-8b. As before, this chart provided a disaggregated view of the travel 

time variation not possible to observe by a simple histogram. 
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(a) Histogram: mean = 59.1 mph, standard 
deviation = 5.2 mph, n= 787

0%
1%
2%
3%
4%
5%
6%
7%
8%
9%

10%

42 44 47 49 52 54 57 59 62 64 67 69 72 74
Speed (m ph)

Pe
rc

en
ta

ge

 

(b) Histogram: mean = 59.8 mph, standard 
deviation = 3.72 mph, n= 2924
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Figure 5-7 Histogram of the Sample Vehicle’s Speeds 
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(a) 02/28/2007: Truck Journey Time
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(b) 04/06/2010: Vehicle Journey Time
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Figure 5-8 Scattering Plot and Moving Average of the Journey Times 
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5.4 MATCHING PROCEDURES EVALUATION 

Each database (from LPR Setup 1 and LPR Setup 2) was divided into two parts: one for 

calibration of the model parameters and the other for comparison of the performances of 

the similarity measures. The same procedure described in Chapter 4 was used to separate 

the data. Therefore, for each five days of data, all possible combinations of three datasets 

out of five were used as calibration data, with the remaining combinations of two datasets 

as validation data. Thus, each of the 10 combinations containing three days of data was 

used to estimate 20 conditional probability matrices, i.e. 10 matrices of type Rg and 10 

matrices of type Ch for LPR stations g and h, respectively. These probability matrices 

were then used as parameter arguments for the proposed weight function (Chapter 4, 

Subsection 4.2.1) in the GED formulation, with the additional passage time constraint 

defined by either FTWC or VTWC methods. 

5.4.1 Fixed Time Window Constraint Performance 

The FTWC method was applied to all 10 dataset combinations used for validation from 

the two LPR databases. Taking into account that this study dealt with LPR setups in 

freeways, the fixed time window constraint was defined assuming an upper bound for a 

vehicle speed of 90 mph and a lower bound of 35 mph. Two similarity measurement 

formulations were used for comparison: GED with weights as proposed in Chapter 4 

(Section 4.2), and, as a base scenario, the original ED with 0 and 1 weights. 

Figure 5-9 shows the average curves of performance, positive versus false 

matching rates, of the GED (at a threshold value ranging from 5 to 20) and of the original 

ED (for a range of 0 to 5) formulation. Compared to the performance without using 
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passage time information (Chapter 4 results), merely using a fixed time window as 

secondary restriction in the matching procedure significantly reduced the false matching 

rate.  

Furthermore, the GED formulation outperformed the original ED for both 

databases. However, the difference in performance was more evident for LPR Setup 2. 

This result may be explained by noting that in the LPR Setup 2 there were two major 

sources (coming from two major freeways) of traffic flow feeding the second station. 

Thus, in this case the arrival rate (λ) of vehicles detected at the second station not 

detected at the first one was much higher. This variable, as well as the proportion (α) of 

vehicles detected at first station that traveled to the destination, directly affected the 

probability of a false match. Increasing the λ value increases the occurrence of false 

matches. Therefore, it was more likely to find a false match during the operation of the 

second LPR setup. 

In the second LPR setup, the ED formulation generated more failures in properly 

classifying pair-wise matches. Therefore, it seems that the GED measure is a more robust 

measure of similarity in the sense that it is more capable of determining if any given 

match (xi, yj) is true or false. 

At this point in the study estimates of the association matrix were computed using 

two matrices of character interpretation occurrences (Subsection 4.2.3), one per machine. 

However, if the LPR units work differently the use of only one occurrence matrix may 

deteriorate the performance of the matching procedure. Such an analysis is important 

because in the case of a system with many LPR units it would be very costly to collect 
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(a) 2007 data - Performance of the FTWC Method
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(b) 2010 data - Performance of the FTWC Method
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Figure 5-9 Aggregated Performance of the FTWC Method 
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samples from all LPR units. 

Although an extensive analysis requires more data, Figure 5-10 illustrates what 

happened when the association matrix for LPR Setup 2 is estimated using only one 

occurrence matrix, from either station g or h. As can be seen the performance of the 

FTWC deteriorated. However, the decrease in performance was not enough to reach the 

worst level of performance for the original ED. 

5.4.2 Parameter Calibration of the VTWC method 

As stated before, two parameters of the VTWC method should be calibrated. These 

corresponded to the two limit bounds for the GED value, which are used to delineate the 

range of the varying time window constraint. In order to obtain an estimate of these two 

parameters some preliminary analyses of the calibration data were performed. 

2010 data - Performance of the FTWC Method
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Figure 5-10 Aggregated Performance of the FTWC Method for Different Estimates 

of the Occurrence Matrices 
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At first, graphical analyses were performed to assess the variation of the GED 

values for all possible matching combinations. Figure 5-11 shows the scattering plots of 

the GED values, calculated for all possible combinations in both databases of exact 

matches and false matches, versus the passage time differences. Figure 5-11a shows the 

results of three days of data from LPR Setup 1, whereas Figure 5-11b presents one 

complete day of data from LPR Setup 2. As expected, the GED values for true matches 

are clustered around the mean and presented lower magnitude, whereas for false matches 

they were randomly distributed over time with higher magnitude.  

A view of the distribution of the GED variable for true and false matches, as 

presented in Figure 5-12, demonstrates that the distribution shape for false matches is 

highly concentrated to the left and more spread out to the right (approximately 

resembling an exponential density function) whereas for true matches it is symmetric 

(resembling a normal distribution). This result reveals how the similarity measure is 

performing in classifying true versus false matches. The larger the overlapping area 

(intersection area) under both curves, the less the ability of the similarity measure to 

classify each match.  

Analyzing the distributions of GED for the two databases, it can be seen that the 

overlapping area is greater for LPR Setup 2. This may be a consequence of the worse 

LPR accuracy for the second setup. Therefore, the model parameters τ* and τmax should 

have different values for the two LPR data. In other words, the width of the range (τ*, 

τmax] is expected to be shorter for LPR Setup 2.  
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Figure 5-11 GED Values for both Ground Truth and False Matches versus Passage 

Time Difference 
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Figure 5-12 GED Distribution for True and False Matches 
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As mentioned before, the parameter τ* should be a value below which is very 

unlikely to have a false match. The parameter τmax, on the other hand, is defined as a 

value above which is quite unlikely to find a true match, and below which there is still a 

low likelihood of a false match. After some preliminary experiments and based on the 

graphical analysis presented, I came up with the following empirical values: τ* = 5 and 

τmax = 20 for LPR Setup 1, and τ* = 5 and τmax = 16.5 for LPR Setup 2.  

Observing the sample data, the proportion of false matches with GED lower than 

5 was 0.0013% for LPR Setup 1, and 0.0002% for LPR Setup 2. Whereas, with regard to 

the parameter τmax, the observed proportion of true matches with GED above it was 1.4% 

and 3.3%, and the proportion of false matches with GED lower than it was 3.84% and 

0.69%, for LPR Setups 1 and 2, respectively. 

Notice that the proportion of false matches with GED lower than τmax was much 

lower for LPR Setup 2. This result does not mean that the absolute number of false 

matches for the second setup is also much lower. Remind that, as mentioned before, the 

number of false matches is affected by the proportion α and by the arrival rate λ, and the 

likelihood of a false match increases when α decreases and λ increases. Since λ was 

much higher for LPR Setup 2 one may still expect more false matches in this case. 

5.4.3 Varying Time Window Constraint Application and Performance 

In this section the performance of the proposed VTWC matching procedure was assessed. 

This procedure was combined with the most suitable similarity measure chosen before, 

calibrated and evaluated using the 10 sets of data combinations from each database. 
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Regarding to the parameters of the procedure, the τ* and the τmax have been 

already determined in previous Subsection 5.4.2. The initial time window constraint was 

defined assuming an upper and lower bounds of the vehicle speed of 90 mph and 35 mph, 

respectively. Taking into account that no historical data was available, the sampling 

moving averages and standard deviations of the journey time were calculated from the 

nearest 10 previous matches classified as genuine. 

The number of standard deviations given by the function z(dij), which establishes 

the time varying window constraint acting over the domain (τ*,τmax], was defined by a 

quadratic function as in Equation 5.3 below: 

*
9)( max

max

ττ
τ

−
−

×= ij
ij

d
dz     (5.3) 

 

The function defined by Equation 5.3 varies from z = 3 (largest time window), 

where dij = τ*, to z = 0 (the time window vanishes), where dij = τmax. 

The VTWC method was applied to all 10 dataset combinations used for validation 

from the two LPR databases. The performance of the GED similarity measure with the 

weights proposed in Section 4.2 of Chapter 4 was then assessed. The original ED with 0 

and 1 weights was used as base scenario for comparison. To this end, it was assumed that 

ED could vary from 0 to 5. Table 5-3 shows the performance results for the 2007 

database (LPR Setup 1), whereas Table 5-4 presents the results for the 2010 database 

(LPR Setup 2). 
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Table 5-3 2007 Data: Performance of ED and GED combined with VTWC 

Validation 
Data -

Combination 

Expected 
Number 

of 
Matches 

Number 
of  

Positive 
Matches 

Number 
of False 
Positive 
Matches 

Number 
of Exact 
Matches 

Percentage 
of Exact 
Matches 

(%) 

Percentage 
of False 
Positive 
Matches 

(%) 

Percentage 
Positive 
Matches 

(%) 

(a) ED with 0 or 1 Weights 

1 315 296 8 187 59.4% 2.6% 94.0% 

2 366 343 9 231 63.1% 2.6% 93.7% 

3 417 389 11 244 58.5% 2.8% 93.3% 

4 272 257 5 171 62.9% 1.9% 94.5% 

5 323 303 7 184 57.0% 2.3% 93.8% 

6 374 350 8 228 61.0% 2.2% 93.6% 

7 228 216 6 143 62.7% 2.7% 94.7% 

8 279 262 8 156 55.9% 3.0% 93.9% 

9 330 309 9 200 60.6% 2.8% 93.6% 

10 236 223 5 140 59.3% 2.2% 94.5% 

(b) GED with Association Matrix Estimated by GT Method 

1 315 309 3 187 59.4% 0.95% 98.1% 

2 366 346 3 231 63.1% 0.82% 94.5% 

3 417 395 4 244 58.5% 0.96% 94.7% 

4 272 258 0 171 62.9% 0.00% 94.9% 

5 323 307 2 184 57.0% 0.62% 95.0% 

6 374 346 3 228 61.0% 0.80% 92.5% 

7 228 223 1 143 62.7% 0.44% 97.8% 

8 279 272 2 156 55.9% 0.72% 97.5% 

9 330 313 3 200 60.6% 0.91% 94.8% 

10 236 225 0 140 59.3% 0.00% 95.3% 
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Table 5-4 2010 Data: Performance of ED and GED combined with VTWC 

Validation 
Data -

Combination 

Expected 
Number 

of 
Matches 

Number 
of  

Positive 
Matches 

Number 
of False 
Positive 
Matches 

Number 
of Exact 
Matches 

Percentage 
of Exact 
Matches 

(%) 

Percentage 
of False 
Positive 
Matches 

(%) 

Percentage 
Positive 
Matches 

(%) 

(a) ED with 0 or 1 Weights 

1 1131 1021 78 407 36.0% 7.1% 90.3% 

2 1125 1018 84 384 34.1% 7.6% 90.5% 

3 1038 925 64 379 36.5% 6.5% 89.1% 

4 1232 1123 88 444 36.0% 7.3% 91.2% 

5 1145 1030 68 439 38.3% 6.2% 90.0% 

6 1139 1027 74 416 36.5% 6.7% 90.2% 

7 1185 1095 76 415 35.0% 6.5% 92.4% 

8 1098 1002 56 410 37.3% 5.3% 91.3% 

9 1092 999 62 387 35.4% 5.8% 91.5% 

10 1199 1104 66 447 37.3% 5.6% 92.1% 

(b) GED with Association Matrix Estimated by GT Method 

1 1131 1089 22 405 35.8% 2.0% 96.3% 

2 1125 1083 27 381 33.9% 2.4% 96.3% 

3 1038 990 23 376 36.2% 2.3% 95.4% 

4 1232 1192 25 443 36.0% 2.1% 96.8% 

5 1145 1101 19 438 38.3% 1.7% 96.2% 

6 1139 1090 27 414 36.3% 2.4% 95.7% 

7 1185 1142 25 414 34.9% 2.1% 96.4% 

8 1098 1048 17 409 37.2% 1.6% 95.4% 

9 1092 1043 24 385 35.3% 2.2% 95.5% 

10 1199 1150 20 447 37.3% 1.7% 95.9% 
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Analyzing the results, it seems that the performance of the VTWC method was 

slightly better than the performance of the FTWC method. Perhaps, this result is due to a 

better adjustment of the VTWC to the variation in travel time. However, there is no 

enough empirical evidence to support this assertion, and a more detailed study should be 

performed to confirm this hypothesis. 

Notice that, as happened with FTWC method, the GED method outperformed the 

original ED. However, as before, the performance was more evident for 2010 database, 

for the same reasons already explained for the FTWC method. 

5.5 CHAPTER CONCLUSIONS AND RECOMMENDATIONS 

In this chapter the passage time information has been incorporated into the matching 

framework proposed in Chapter 4. As seen in the literature, passage time information has 

been used before to predict the number of spurious matches from partial plate surveys, 

and to clean up matched LPR data. In this research it has been combined to the proposed 

similarity measure to decide towards a genuine or false match. 

Two simple procedures were proposed to take advantage of the passage time 

information. The first was a simple time restriction over the passage time difference that 

constraints the number of outcomes selected from an upstream station dataset to match 

any given outcome of a downstream station dataset. In the second one, the time window 

constraint was a function of the similarity measure magnitude and of how close the 

difference in passage time is to the expected vehicle journey time between stations. 

As expected, the results show that merely including the passage time information 

in the matching procedure considerably increased its performance. Although the 
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matching rate was significantly increased when using the travel time information, further 

work is needed to validate this procedure for other situations of traffic conditions. The 

procedure was applied during a period and/or roadway with slight traffic variation 

resulting in small dispersion of travel times, what might have contributed to this good 

performance. In addition, the stations were set up relatively closed to each other, so thus 

there was no major source of traffic disturbance to disperse the travel times. 

The second procedure (VTWC) had a slight better performance than the first one 

(FTWC). The VTWC framework is expected to adjust better to the variation in travel 

time, thus providing better performance results. However, the difference in performance 

was moderate due to two reasons. First, the lack of historical data prevented to estimate 

adequately the journey time parameters. Instead, sample blocks containing the earliest 10 

observations were adopted. As such, the use of portions or time blocks of the data period 

might ignore the temporal variation at the journey time. Second, the moderate variation 

of the journey times for the period or road analyzed may have contributed to the similar 

performance observed when comparing the two methods. 

Regarding to the measure of similarity used, the GED with weights calculated 

from the LPR machine errors outperformed the original ED with 0 or 1 weights. 

Furthermore, the difference in performance was more apparent for the second LPR setup. 

It was point out that the probably reason for this latter result was that the two databases 

had different likelihoods of finding a false match, mainly due to the much higher arrival 

rate, in the second LPR setup, of vehicles detected at the second station not detected at 

the first one. This results in a higher possibility of having a false match. Therefore, it 
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seems that ED with the proposed weight function is more robust to variation in traffic 

conditions.  

Further studies are still needed to assess different traffic conditions and LPR 

setups, as well as machine accuracies, not yet observed in this research and likely to exist 

in real world. Such sensitive analyses can be performed resorting to computational 

simulation. Several scenarios can be created, with different journey time profiles, 

machine installations and accuracies, thus allowing assessing the robustness of the 

proposed matching procedure under several situations. Moreover, the impact of using a 

single occurrence matrix to estimate the association matrix can be assessed in more 

details. All these analyses are out of this research scope and were left out for future 

studies.  
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CHAPTER 6 

LEARNING PROCESS AND SAMPLE SIZE TO ESTIMATE THE 

CONDITIONAL PROBABILITIES 

 

In chapter 4 the association matrix C containing the conditional probabilities of character 

association occurrences was estimated resorting to the availability of ground truth values 

for the reading outcomes. Two probability matrices, hC  and gR , for Station g and h, 

were defined to obtain an estimate of C. The proposed method to estimate these two 

matrices was very time-consuming as it required to manually indentifying the ground 

truth values from a sample of LPR data. As discussed before, C is depended of the LPR 

accuracy, which is affected by many factors related to the LPR technology and the 

installation configuration. It is expected that a bad estimate of C will deteriorate the 

matching procedure performance. Therefore, if there are many sources of variation, 

noise, affecting the LPR operation, it would be necessary a large amount of data to 

achieve a required error precision. In such case, the estimation would require also more 

human intervention. So far the sample size of plates or number of characters in which 

each LPR machine were exposed in order to obtain the association matrix was defined 

arbitrary. Fortunately, it seems that the sample size used in chapter 4 was sufficient to 

give a good matching performance. However, it is still unknown what amount of data 

should be collected to obtain a precise estimate of the association matrix. In this chapter, 

it is firstly discussed how to estimate the sample size (number of training characters) to 
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obtain a statistically significant estimate of the association matrix C. Then, a second 

approach to estimate the association matrix, which consists in a learning process without 

human intervention, is proposed. Finally, the convergence of the proposed methods to 

estimate C and the impact of sequentially estimates of C on the matching procedures are 

analyzed. 

6.1 SAMPLE SIZE FOR THE ASSOCIATION MATRIX 

In this section, a theoretical approach on the problem of determining the sample size to 

estimate a significant association matrix is discussed. The sample size is defined in terms 

of the number of characters that the LPR machines should be exposed in order to have a 

good estimate. For simplicity, in the following derivations, it is assumed that all vehicle 

plates are detected at both stations, and hence the sample size of characters is 

approximately equal for both observation points. In other words, the arrival rate of 

license plates detected at second station not detected at the first one is zero. 

The process of estimating C involves estimation of multinomial random variables. 

Notice that the entries of each row i of the matrix C can be seen as parameters               

pi1, pi2,…, pik of a multinomial random variable. Therefore, if ni identical and independent 

multinomial trials are obtained with parameters given by the probabilities at row i of C, 

the corresponding final outcomes are multinomial random variables with parameters      

ni, pi1, pi2,…, pik. 

The variable ni is the expected number of times the truth character outcome ri is 

observed at Station g, with the total number ∑i in of characters denoted by N. Notice also 

that the variable ni is another outcome from a multinomial random variable, which is 
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related to the possible reading outcomes at Station g for a sample of N trials of ground 

truth characters being recognized at both stations. Hence, for a character outcome xi at 

first station, the corresponding expected value of ni is given by: 

 

∑==
j

jjiii zpzxpNxNpn )()|()(     (6.1) 

Where, 

zj is the jth true character from a list of possible alphanumeric (plus the empty 

character) characters. 

 

The main interest here is in estimating a minimum number of trials in order to 

obtain a precise estimate of the matrix C. I separated this problem into two steps. First, 

what should the sample size (ni trials) be to obtain a good estimate of the k probabilities 

in any row category i of C? Furthermore, what should the total number of trials N be in 

order to guarantee that at least ni trials will be observed for category i during the 

experiment? In the next three subsections, statistical solutions are discussed to deal with 

these two questions and a simple simulation procedure is described to estimate the 

sample size N. 

6.1.1 Statistical Approach to Obtain the Sample Size of a Multinomial Variable 

In past studies, solutions based on the calculation of large sample size for multinomial 

frequencies were proposed to this problem. Angers (1984) offers a solution (based on the 

Bonferroni inequality) to determine the smallest sample size required to estimate 
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simultaneously k multinomial parameters with a set of k symmetrical confidence intervals 

with given simultaneous significance levelα . As stated by Angers, the Bonferroni 

inequality ensures that the set of intervals has a probability of at least 1- α of 

simultaneously containing the true k parameters, where α is the sum of the significance 

levels of the k individual intervals. 

By applying the Bonferroni inequality and the central limit theorem, it has been 

shown that for large random sample size n from a multinomial distribution with unknown 

parameters θ1, θ2, …,θk, where 1
1

=∑ =

k

i iθ  a set of symmetrical confidence intervals can 

be calculated by 

ki
n

Z ii
ii i

,...,2,1;)1(ˆ
2/ =

−
≤−

θθθθ α     (6.2) 

 

where iθ̂  is the observed proportion of observations falling in the ith category; 2/i
Zα is the 

(1-αi)×100th percentile of the standard normal distribution; αi is the significance level of 

the ith interval; and ∑=

k

i i1
α is the simultaneous significance level. 

An estimate of the required sample size can be obtained by solving Equation 6.2 

for n. Then, if the half width and significance level of each interval is specified by di 

andαi, with the required simultaneous level calculated by ∑=

k

i i1
α , the sample size is 

given by the smallest integer greater than or equal to: 

⎭
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In practice, the iθ values are unknown. As stated by Angers (1984), one way of 

overcoming this difficult is applying a two-stage procedure as proposed by Mamrak and 

Amer (1980) for estimating proportion: 

(1) Collect an initial sample of size no and obtain the initial estimates 

kii ,...,2,1,ˆ =θ ; 

(2) From the initial estimates calculate the sample size using Equation 6.3. If 

n > n0, collect an additional sample of size n-n0 and pool the two samples. 

 

Assuming that the only restriction specified about the alphas is that αα =∑ =

k

i i1
, 

the required sample size can be actually reduced (Angers, 1984). With this assumption, 

the minimum sample size is given by solving 

⎭
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Such that, 

;0>iα            ki ,...,2,1=  

αα =∑ =

k

i i1
,  10 << α  

 

According to Angers (1984) a simple computer programming can be then written 

to solve the above optimization problem. Such programming can be based on the 

following steps: 

(1) Select an initial sample of size n, and obtain the estimates:  
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α ; i = 1, … , k. Where ( ).Φ  is the cumulative 

density function of the standard normal distribution; 

(2) If ∑=
<

k

i i1
α̂α , n must be increased. Repeat steps 1 and 2 until ∑=

≥
k

i i1
α̂α ; 

 

As mentioned before, the multinomial parameters are not known in advance. A 

worst case scenario would be to test all possible parameter vectors, as discussed in 

Thompson (1987), and estimate the largest sample size. However, this alternative is 

computationally tedious and might lead to an unnecessary large sample size. Thus, a less 

costly method, would be to apply the sequential sampling procedure, as described by 

Mavridis and Aiyken (2009), where the algorithm is initiated with small sample size, the 

sample is incremented gradually with new certain amount of sampling units, and new 

parameter vectors are estimated until ∑=
≥

k

i i1
α̂α . 

Regarding to the present study, the main interest is to estimate the proportions on 

row i, row-vector Ci, of the conditional probability matrix C with a given marginal error 

vector of di = [di1, di2, …, dij, …, dik] at a pooled significance level ∑ =
=

k

j iji 1
αα . In other 

words, determine a sample size that ensures that the set of confidence intervals of the 

conditional probabilities given by pij ± dij, where j = 1,2, …, k, for the ith row of C will 

meet, for large ni, the required simultaneous significance level αi, as expressed by 

iijijij

k

j
dpp α−≥
⎭
⎬
⎫

⎩
⎨
⎧ ≤−

=
1ˆPr

1
I  
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It was assumed that the only restriction specified about the alphas was that they 

should be equal to a required pooled significance level for each row. Therefore, the 

sequential sampling procedure described by Mavridis and Aiyken (2009) can be applied 

to find a minimum sample size ni for each category i of matrix C.  

6.1.2 Sample Size to Observe at Least ni for Each Category i 

Having the required sample size for each category in hand, the next step is to find a 

minimum total sample size N that ensures the set of required sample sizes                       

ni, where i = 1, 2, …, k, will be observed with a given confidence level. This means to 

find a minimum N that ensures a required simultaneous confidence level β of having at 

least ni observations for each category i. Let Ni denote the number of trials at category i. 

Then, using Bonferroni inequality, I must have that 

β≥
⎭
⎬
⎫

⎩
⎨
⎧ ≥

=
ii

k

j
nN

1
Pr I  

 

Remind that each outcome ni should be an observation of a binomial random 

variable with parameters N and p(xi), where xi is a character outcome at Station g. Thus N 

can be found by solving the following problem: 

N = argmin{n} 

Such that, 

β≥−⎟⎟
⎠

⎞
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−∑
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−
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A computer programming can be written to solve the problem above. The 

algorithm can be initiated with { })(/max ii xpnn = and terminated when the required 

confidence level is attained. 

6.1.3 Sample Size by a Simulation Approach 

An alternative procedure to the method of sequential sampling above, it is the use 

simulation. In this case, a sequential sampling procedure is still used, but now with the 

estimation of the significance levels at any time the sample is increased. The procedure 

can be summarized as follows: 

(1) Use the LPR machines to collect an initial sample of plates, and estimate 

the character misreading matrices Cg, Ch and the likelihood of truth 

character occurrences, vector p = [p1, p2,…, pk ]T; 

(2) Generate alphanumeric characters, and emulate the process of recognizing 

characters by the dual LPR setup. To this end, randomly generate multiple 

samples of n characters using multinomial distribution with parameters 

given by vector p. Then, based on the expected machine operation, given 

by the estimates of Cg and Ch, estimate for each sample what would be the 

resulting outcomes at each station for each of the n characters; 

(3) Calculate the association matrices for all samples of size n, and compute 

the corresponding significance levels ˆiα  of each row i of the association 

matrix, for a given marginal error vector di; 
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(4) If ii αα ˆ≥ , for all i = 1,2,…k, stop the process. Otherwise, gradually 

increase the sample size by a certain amount of sampling units and repeat 

steps 1 to 3 until ∑ =
≥

k

j iji 1
α̂α , for all i, where iα  is the required 

simultaneous significance level of row i; 

 

A disadvantage of the proposed procedure above is that it depends on the 

estimation of the matrices Cg and Ch which requires the manual determination of the 

ground truth characters. Whereas the statistical procedures described earlier are not 

restricted to this condition. 

6.2 PROPOSED LEARNING PROCESS (LP) 

This section presents a method to estimate the conditional probabilities p(y | x) from a 

sample of genuine pair-wise matches. Suppose that it is possible to obtain a set of 

genuine matched plates from a period of operation of a dual LPR setup, such as a cross 

table, matrix, associating the character readings is derived. Let us denote this matrix as F, 

as follows: 
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where each element f(xi, yj) represents the absolute frequency of the corresponding pair-

wise character association (xi , yj). 
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The conditional probability matrix, for all pair-wise character associations, can be 

estimated directly from the frequency matrix F, as follows:  
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),(

),(ˆ  is approximate for the probability p(yj | xi). Observe that 

the probabilities in Ĉ above are estimated from a set of plates captured at both stations. 

Therefore, they are estimates of conditional probabilities of the pair-wise character 

association with the restriction that the outcomes at both stations were not only originated 

from the same character, but also came from the same plate. Therefore, to obtain the 

estimated matrix Ĉ I need to make sure the every dual outcome (x, y) came from the 

same plate, or at least it is very likely that they were originated from the same plate. To 

this end, I proposed an automated process to find such set of “genuine” matches which 

uses the FTWC method proposed in Chapter 5. 

The proposed procedure to estimate all character association probabilities p(yj | xi) 

consists in an iterative learning algorithm as described below: 
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(1) Apply the FTWC matching method (Chapter 5) to find a set of matches 

from a sample of LPR data with the initial settings: 

a. Assume initially that C = I, where I is 37 x 37 identity matrix; 

b. Use 0 or 1 assignments to calculate ED; 

c. Set a threshold τ such that if d(x, y) ≤ τ the string outcomes x and y 

may have come from the same truth string. 

(2) From the set of matched plates obtained at step 1, tabulate the pair-wise 

character occurrences under a matrix format to obtain F, e.g. one cell of 

the matrix is for example the number of times a character “A”, read at 

Station g, happens to match the character “4”, read at Station h; 

(3) Compute an updated approximation for the matrix C, where each cell will 

be the probability )|(ˆˆ
ijij xypC = ; 

(4) Test if the updated matrix at the current iteration is similar to that one 

from previous iteration. If so, stop; otherwise go back to step 1 using as 

new input the updated matrix estimated in step 3 and the appropriate 

threshold value. Thus, at step 1 the ED with 0 or 1 weights is replaced by 

GED with weights calculated using the updated matrix. 

 

As seen before, the FTWC matching method described in Chapter 5 uses a fixed 

time window constraint on the passage time information to reduce the number of possible 

candidates at Station g to match a certain outcome at Station h. In other words, the 

potential matches are constrained to a shorter time window within the survey period. This 
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actually increases the likelihood of finding a genuine match when applying the edit 

distance formulation, even with a poorer estimation of C. This way, the iterative 

procedure proposed is expected to reach a quite good approximation of C. 

6.3 CONVERGENCE OF THE ASSOCIATION MATRIX 

For the case of permanent LPR setup, where the units operate continuously, such as in 

speed enforcement, it is possible to estimate the association matrices sequentially by 

incrementing the data with additional data units, or small portions of data, until the 

process converges. Either the GT (Chapter 4) or the LP method proposed in Section 6.2 

can be used for this purpose. The convergence criterion can be defined by a performance 

measure (sum of absolute differences or overall square root of the differences between 

the cell values) to compare the similarity between each two consecutive matrix estimates. 

The point of convergence is then reached when either additional data should not improve 

the estimates or when the convergence criterion is met. The chart of Figure 6-1 shows an 

example of an expected curve of convergence in the process of estimating C. 

Regarding to the LP method the number characters, or sample size, used for each 

sequential estimate is equal to the sum of all cell values of each sequential matrix F. 

Thus, the estimation of C requires that both LPR machines operate simultaneously. 

Whereas for the GT procedure this requirement is not necessary, since the interpretation 

matrices can be obtained by observing the operation of each machine independently. 

Thus, for GT method the total number of characters, or sample size, was defined as the 

minimum number of character outcomes observed at each station. 
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As more portions of data is used to estimate the association matrix both methods 

should converge to the matrix C plus an error matrix E due to the noise involved in the 

estimation procedure, as represented by the following limit expression: 

GT
t

GT ECC +→
∞→

ˆ  

LP
t

LP ECC +→
∞→

ˆ  

where t is time unit for the incremental amount of data used, which can represent number 

of hours, days, or weeks. GT stands for Ground Truth and LP for Learning Process. The 

matrix noise EGT is due to error involved in the manual identification of ground truth 

plates. Whereas the matrix ELP is due to the false matching rate in the FTWC method. 

Observe that the required amount of data can differ between the two methods 

since, as mentioned before, the LP method requires a set of genuine matches from the 

dual LPR setup while for the GT this requirement is relaxed. 
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Figure 6-1 Example of Convergence to a Limit Matrix 
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6.4 APPLICATION TO REAL DATA 

In this section, the LPR Setup 2 (2010 data) was used to assess the sample size and 

convergence of the association matrix. First, the procedures described in Section 6.1 were 

applied to find the sample size with different significance levels and precisions. Then, the 

convergence of the matrix C was assessed. As described in Chapter 5, the LPR Setup 2 

has been operating continuously and provides sufficient data, more than one moth of 

data, to estimate a significant matrix and also to assess the impact of sequentially 

estimates on the matching framework. 

6.4.1 Association Matrix Estimation 

The association matrix for LPR Setup 2 was estimated using the two different procedures 

described earlier. Five complete days of operation in 2010, April 6th and 7th, and May 

25th, 26th and 27th, were selected to collect the ground truth plates and apply the GT 

procedure. The learning process (LP) method was applied to estimate another matrix 

from 39 days of operation in 2010, from April 8th to May 19th. Both matrices are shown 

in the Appendix A. 

During the selected five days for estimation of C by the GT method, a total of 

10450 and 21266 plates were captured at stations g and h, respectively. This amount of 

plates resulted in a total of 69475 and 141668 characters for estimation of the probability 

matrices Rg and Ch, respectively. All ground truth values of the plate numbers were 

verified and recorded using the Excel spreadsheet described in Chapter 5. The process of 

recording the plate values from image views took on average 15 seconds per plate, 
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resulting in a total of 43 hours and 88 hours of manpower, for stations g and h, 

respectively. This was a very exhaustive procedure and not free of mistakes. 

Regarding to the LP method, after three interactions a total of 18152 pair-wise 

plates were classified as genuine by the FTWC method, which resulted in 120740 

associated characters. The effort involved in the estimation of the association matrix by 

the LP method required only computational processing and the availability of enough 

data. The estimation error involved in this process corresponded to the number of 

misclassifications by the FTWC matching procedure, which depended on the ED 

threshold used. 

Assuming that both matrices obtained were reliable estimates, the sample sizes 

(number of characters detected at both stations) needed to estimate them at a certain 

precision e and for different significance levels are shown in Figure 6-2.  
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Figure 6-2 Sample Size for Estimation of the Association Matrix 
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As can be seen, a very accurate matrix would require a huge amount of data. 

However, after a carefully analysis of the estimated matrices I noticed that the cause of 

such huge sample was that the character outcome “Q” rarely happened (with chance of 

about 1:10000). Thus eliminating this outcome from consideration, I obtained an update 

of the sample size as shown in Figure 6-3. 

According to Figure 6-3 a large amount of data is still required to obtain a 

significant estimate. For the matrix estimated using the GT method, the collected sample 

of 69475 characters would give a cell precision of 0.05 with significance level of less 

than 5%. Whereas for the matrix estimated by LP method the sample of 120740 

characters would give a cell precision of 0.025 with significance level between 5% and 

10%. Remind that the significance level is a simultaneous parameter implying that most 

cells had individual significance levels much less than the simultaneous level. 
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Figure 6-3 Sample Size for Estimation of the Association Matrix after Eliminating 

the Unlikely Outcome “Q” 
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As an illustration of the simulation procedure, I generated multiple samples of N 

= 69475 characters (corresponding to the minimum sample used to estimate the ground 

truth matrices) by a multinomial experiment with parameter vector equal to the estimated 

vector p̂  of character likelihood. With this, I simulated the possible outcomes from the 

LPR units using the estimated ground truth matrices gĈ and hĈ . Assuming a cell 

precision of 0.05, the simulation process resulted in a simultaneous significance level of 

about 3%. 

6.4.2 Association Matrix Convergence 

In this section, the convergence of the association matrix is assessed. The hypothesis to 

test is that: as more data is added in the estimation procedure a point of convergence 

should be reached where the estimate can not further be improved.  

Regarding to the GT method, five days of operation resulted in a convergence 

curve as shown in Figure 6-4 (adopting as convergence measure the overall squared root 

of the cell differences between every two consecutive estimates). Notice that the matrix 

estimate tended to converge with final convergence measure of 0.012. 
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Figure 6-4 Association Matrix Convergence for GT Method 
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The curve of convergence for the LP method is presented in Figure 6-5. It seems 

that the method converged with sample size of around 60000 characters and with a final 

convergence measure less than 0.003. 

In the chart of Figure 6-6, I compared the sequentially matrices estimated by the 

LP method with the final matrix estimated by GT method. This was to test the hypothesis 

that both estimation methods should converge to approximately the same association 

matrix C, but differing by error amount inherent to the estimation procedure. As can be 

seen in Figure 6-6, the matrix by LP method approached the final one by GT method as 

more data was added in the LP procedure. Therefore, when enough data is used it seems 

that the two procedures should provide final estimates close to each other, but still 

separated by an error matrix. 
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Figure 6-5 Association Matrix Convergence for LP Method 
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Convergence of the LP Method Compared to the GT Method
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Figure 6-6 Comparison Between the Sequentially Estimates of C Using LP Method 

and the Final Estimate Using GT Method 

6.4.3 Matching Results using Association Matrix Estimated by the Learning 

Process 

The sequentially 39 estimates of C using the LP method were consecutively used in the 

GED formulation combined with the two matching procedures proposed in Chapter 5: the 

FTWC and the VTWC methods. Curves of performance related the positive matching 

rate, as well as the false positive matching rate, versus the corresponding number of 

characters used to estimate C are presented in Figure 6-7. As can be seen, as the sample 

size for estimation of C was incremented, the performance of the matching procedures 

considerably improved.  For both methods, the positive matching rate highly increased 

while the false matching rate kept the same level. It is worth noting that the VTWC 

presented a better performance with much lower false matching rates. 
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(a) Progressive Performance of the FTWC and VTWC Methods
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(b) False Matching Rate of the FTWC and VTWC Methods
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Figure 6-7 Performance of the Matching Procedures for Sequentially Estimates of C 

using LP Method 
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6.5 CHAPTER CONCLUSIONS AND RECOMMENDATIONS 

In this chapter two procedures were presented to estimate statistically significant sample 

sizes (number of training characters at which the LPR machines should be exposed) for 

the estimation of the association matrix C. Besides, a new method named learning 

process (LP) was proposed to estimate the association matrix C. The chapter ended with 

a convergence analysis of the estimation procedures and the effect of sequentially 

sampling on the matching procedures. 

The main drawback of the GT method is that it requires determining an 

occurrence matrix for each individual LPR unit in the system. This may call for a large 

amount of data. Moreover, to extract the ground truth values from a LPR dataset requires 

many hours of painstaking work.  

It is worth noting that the estimation procedure should be performed periodically 

to accompany any change of plate syntax due to changing in trip patterns or creation of 

new plate patterns, as well as due to the natural deterioration of LPR accuracy. Therefore, 

the task of estimating the association matrix can be more costly than expected. 

One way of overcoming part of the problems with the GT method would be to 

determine a single occurrence matrix, from a single unit, and transfer the results to the 

remaining units in the system. This option may be feasible only if all LPR units in the 

system work similarly, with the same pattern recognition algorithm. The results of a 

preliminary analysis presented in Chapter 5 indicated that this alternative might be 

feasible. 
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Another way to overcome the burden of the GT method, as proposed in this 

chapter, is to use the LP method. The LP method requires only a set of pair-wise matches 

classified as genuine, which can be automatically determined by one of the proposed 

matching procedures described in Chapter 5. This can save precious time and money 

whenever the association matrix needs to be updated. Therefore, the LP method is a less 

costly and less time-consuming procedure and should be preferable. 

The only drawback of the LP method is that when only a small proportion of 

vehicles travel through both stations several days of operation may be needed to observe 

an enough sample of genuine matches. This is not a limitation of the GT method since the 

association matrix is estimated by a matrix multiplication of two probability matrices 

which are independently estimated from each machine operation. 

With respect to the required sample size to estimate C, the analysis results 

demonstrated that a large amount of data would be required to obtain a highly precise and 

accurate estimate of C, using either the GT or the LP method. Obviously, such sample 

size or amount of data depends on the cell precision and the simultaneous significance 

level used. On the other hand, from the convergence analysis, it seems that a good 

approximate would be reached with less data. 

Regarding the convergence of the estimation procedures, GT and LP methods, the 

results showed first that the two methods tended to converge to a limit matrix. 

Mathematically both estimation methods should result in almost the same matrix 

estimation when the estimation error is small and all vehicles are detected at both 

stations. The results demonstrated that in both methods the estimates tended to approach 
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to the same matrix, plus a small noise caused by the error in the estimation process (i.e. 

collecting error in the GT method and false matching rate in the LP method). 

Regarding to the affect of sample size on the matching procedures, it has been 

demonstrated that a poor estimate of C can really deteriorate the discriminative power of 

the similarity measure used. In other words, as more data were added, the corresponding 

estimated matrix significantly increased the performance of the matching procedures. 

In this study only one type of LPR technology was deployed. More work would 

be needed to evaluate different LPR accuracies. It is believed that the rate at which the 

estimation procedures converge to a limit matrix depends on the accuracy of the LPR 

technology. If more accurate equipment is used less data is needed and the estimation 

process should converge faster. 
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CHAPTER 7 

CONCLUDING REMARKS 

 

In this research I faced with the problem of matching readings from a dual License Plate 

Recognition (LPR) setup without any reference. A two-point setup has the objective of 

tracking vehicles passing trough two locations. To this end, the vehicle plate numbers, as 

well the time of passages, are captured at an upstream and a downstream station. 

However, since the equipment is not flawless, the reading outcomes stored at each station 

database are not accurate implying that only a portion of the data can be matched exactly. 

Therefore, the challenge was to indentify vehicles passing through both stations from 

inaccurate pair of readings. Taking into account that the outcomes generated by LPR 

systems are formed by sequence of characters (strings) I sought to solve this problem by 

applying a procedure to measure the proximity between two strings, emulating how a 

human would speculate that any two strings are close to each other. 

7.1 MEASURE OF SIMILARITY BETWEEN STRINGS 

Searching in the specialized literature, there is a technique to measure the similarity 

between strings named Edit Distance (ED), that in its original formulation measure how 

many characters a target string is dissimilar from a reference string. Basically, the 

procedure consists in aligning a pair of strings and finds the alignment that gives the least 

number of editing operations to convert a target string into a reference string. Since the 
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edit distance is a symmetrical measure, there is not actually any distinction between 

target and reference string. Thus, this measure can be used to compare two strings and 

decide whether or not they were originated from the same source.  

This measure is largely used in the field of text mining in applications such as 

handwritten recognition and computation biology. This research represented a first 

attempt to apply such technique to solve a problem in transportation science. 

The original idea with weights of 0 (for identical pair-wise characters) and 1 (for 

distinct pair-wise characters) was put into practice to match plates from a dual LPR setup 

(LPR Setup 1 – 2007 Data) on a short segment of a freeway, in the vicinity of Knoxville 

metropolitan area. To this end, the ED was calculated for all possible pair of matches 

between the two stations, and the best assignment with minimum overall cost was found. 

The method proved to be suitable to indentify most vehicles passing trough both stations. 

However, the false matching rate was too high. 

The ED with original weights does not actually measure the likelihood of two 

strings coming from the same ground truth value. In this case, whenever it is somehow 

likely to have pair-wise outcomes that differ from each other by more than one character 

the traditional ED does not work very well.  

In a dual LPR setup for example, if there is a considerable proportion of vehicles 

detected at first station that do not travel or are not detected at the second station, as well 

as if there is high arrival rate of vehicles at the second station not detected at the first one, 

it is very likely to have a false match. Although this has not been fully analyzed in this 
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research, I believe that it is the main reason for the poor performance of original ED 

formulation. 

7.2 WEIGHTED EDIT DISTANCE 

The LPR units can actually read most characters on the vehicle plates, even with low to 

moderate plate reading rate. One of the hypotheses in this research was that the LPR 

errors in misreading certain characters can be estimated and used to infer with certain 

degree of confidence the likelihood of every two imperfect readings being originated 

from the same vehicle. To account for the LPR mistakes in reading certain characters, I 

devised a weight function reflecting these recurrent errors. As could be seen, the 

literature offers extension of the original ED allowing the use of symbol-based weight 

functions. The main two extensions referred to the Generalized Edit Distance (GED) and 

the Constrained Edit Distance (CED), as described in Chapter 4.  

I proposed a new weight function reflecting the probability of two character 

outcomes being originated from the same ground truth character. The calculation of the 

weight function was based on conditional probability theory. I defined the odds of 

character misreading into matrices whose cell values were the conditional probabilities 

associating ground truth characters to reading characters. Thus, using Bayesian theory I 

found out that all possible odds of association character outcomes can be calculated by a 

simple matrix multiplication of the estimates of the character interpretation matrices (one 

per LPR machine). 

In an empirical study, on matching plates from a dual LPR setup (LPR Setup 1), 

either GED or CED formulation with the new weight function outperformed the original 
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ED. The new proposed procedures achieved about 90% of positive matches with only 5% 

to 8% of false matches. This result is encouraging considering that in all these initial 

experiments the passage time stamps were left out. 

7.3 FIXED TIME WINDOW VERSUS VARYING TIME WINDOW 

CONSTRAINT 

In all initial experiments I assessed the performance of different similarity measures with 

purposely no consideration of passage time stamps. This decision was to see how these 

procedures performed under high uncertainty. In reality, there will always be a time 

limitation (one day, one hour, etc) corresponding to the survey period or to an arbitrary 

restriction (e.g. maximum number of candidates for matching) that constraints the 

possible pair-wise matches. 

As seen in the literature, the vehicle passage times have been used in earlier 

studies to help indentifying spurious matches in partial plate surveys and more recently to 

clean up LPR matched data from outliers. In this research, I incorporated the passage 

times in the matching procedure as additional constraint on the number of candidates at 

the upstream station to match up the current outcome from the downstream station. 

Two methods were proposed. The first method, denoted Fixed Time Window 

Constraint (FTWC), consisted in simply restricting the number of candidates for 

matching by a fixed time window over the passage time differences. This method has 

been used before for the partial plate problem. The second one, denoted Varying Time 

Window Constraint (VTWC), consisted in changing the width of the time window 
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according to the variation in the estimated travel time and in the magnitude of the 

similarity measure used. 

Two LPR setups (LPR Setup 1 - 2007 Data and LPR Setup 2 - 2010 Data) were 

used to assess the two matching procedures, as described in Chapter 5. As expected, the 

experimental results showed that merely including the passage time information in the 

procedure considerably increased its performance. The two methods presented similar 

performance results with slight superiority of the VTWC method. However, it is expected 

that the VTWC method adjusts better to highly disperse traffic situations, not fully 

analyzed in this study. 

Regarding to the two analyzed measures, the GED with the new weight functions 

outperformed the original ED. The difference in performance was more apparent for the 

setup (LPR Setup 2 – 2010 Data) with higher likelihood of having a false match. It seems 

that the new weight functions make the similarity measure more robust in deciding 

whether or not a given pair of imperfect readings constitutes a false or true match. 

7.4 SAMPLE SIZE ESTIMATION 

In this research two procedures were proposed to estimate the association matrix C 

containing the conditional probabilities. The first procedure, denoted Ground Truth (GT) 

method, required the availability of ground truth values for a sample of recognized plates. 

The manual verification of the plate numbers from the image view of vehicles turned out 

to be a very time consuming process. To overcome this problem, a new approach, 

denoted Learning Process (LP) method, was proposed that consisted in collecting a set of 

“genuine matches” and derive the association matrix from the corresponding character 
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association occurrences. The set of matches potentially genuine were found using one of 

the matching frameworks, either FTWC or VTWC, by an interactive process. 

In systems where the LPR units operate permanently, it is more attractive to use 

the LP method to update the association matrix than spending a large amount of human 

effort and time using GT method. The only drawback of the LP method is that it may 

require a large amount of data, or many days of observation, considering that in most 

cases only a small proportion of vehicles detected at the first station are also detected at 

the second station.  

An issue of interest was the sample size to obtain a statistically significant 

estimate of the association matrix. The results pointed to a large amount of data to obtain 

a highly precise and accurate estimate of C, using either the GT or the LP method. 

Obviously, the sample size or amount data depends on the cell precision and the 

simultaneous significance level used. 

Alternatively, the sample size can be determined by sequentially adding data until 

the estimate converges, with small convergence criterion. The LPR Setup 2 which was set 

up to operate continuously provided the data needed for such analysis. It seems that the 

estimation procedures converge to an approximate estimate using less data than what 

would be required for a highly precise and accurate estimate, i.e. with 0.01 cell precision 

and 5% confidence level. The two estimation procedures also tended to converge to the 

same matrix. 
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7.5 APPLICATIONS OF THE PROPOSED PROCEDURES 

Speed enforcement over distance and travel time studies are the two main applications of 

the methods developed in this research. Speed enforcement requires better confidence of 

the matching procedures, thus calling for more accurate equipment and highly precise 

and accurate estimates for the association matrix. The latter is not a problem, since for 

speed enforcement the LPR setups should be installed permanently providing enough 

data for estimation. However, higher accuracy of the LPR units implies in higher prices 

of the equipment. 

Speed enforcement over distance consists in recording the time of passage of 

vehicles at two checkpoints and subsequently calculates the vehicle speeds using the 

distance between the stations. Warnings or fines are issued to transgressors later. To this 

end, LPR units can be deployed to automatically record passage times and derive and 

store the vehicle speeds. Using LPR can significantly reduce the manpower needed to 

perform such enforcement. Moreover, in weight station locations where all trucks are 

required to stop for inspection, an LPR speed-enforcement system, with equipment 

strategically located, could issue warnings or citations as the perpetrating trucks stop on 

the weigh scale, with an officer stationed in the weigh house. This system could function 

in real time without the need for mailing out speeding tickets after the fact or pulling 

trucks over after dangerous high-speed pursuit, both alternatives resource- and labor-

intensive. 

In travel time studies the process of deriving vehicle speeds is similar to a LPR 

speed-enforcement system. The information generated in such studies can be used for 
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example in level of service analyses of roadways. Furthermore, when the LPR system is 

part of an information system the expected travel times can be transmitted back to the 

drivers through message panels.  

In real time systems such as information systems, the number of matches, or 

vehicles captured to estimate the travel times is crucial to increase the reliability of the 

information. This is true because vehicle travel times change over time due to traffic 

variation and if only part of vehicles are sampled the resulting estimations may not be 

representative of the time slots sent out to the drivers. The proposed matching procedures 

using passage time information, FTWC and VTWC, can be used to increase the sample 

size for the estimation of the travel times. 

7.6 FURTHER STUDIES  

In this section I present some recommendations for future work as follows. 

7.6.1 Sensitive Analysis 

Regarding to the dual LPR setup, it is believed from the empirical analyses that the 

performance of the matching procedures are affected by several factors. First, it is 

directly influenced by the accuracy of the LPR units, which is also affected by external 

factors. Second, the likelihood of finding a false match by chance in the database can also 

interfere in the matching performance. Such likelihood is a function of two traffic 

variables: the proportion of vehicles detected at the first station that travels to the second 

station and the arrival rate of vehicles detected at the second station not detected at the 

first one. 
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A further study could deal with the impact assessment of all variables cited above 

on the matching performance. Such sensitivity analysis could be carried out by means of 

a controlled experiment using simulation. For instance, the accuracy of the LPR units can 

be altered by randomly increasing the percentage of character mistakes; that is inserting 

or eliminating character mistakes from an existing LPR dataset containing the ground 

truth values. The traffic variables can be also altered by generating random plate numbers 

and includes them into the dataset. 

Besides allowing assessing the performance of the matching procedures under 

several hypothetical scenarios, a sensitivity analysis would also allow to evaluate the 

impact of using only one occurrence matrix to estimate the association matrix by GT 

method. In multiple LPR setup, if all LPR units operate in different fashion would be 

necessary to estimate one matrix for each machine. This would require a large amount of 

manpower since the process of estimating C by GT is very time consuming. Using only 

one single matrix from a given LPR unit reduces the amount of work spent to estimate C 

in the expensive of a worse matching performance. 

7.6.2 Sample Size Estimation 

An additional analysis that has not been performed yet is the impact of the LPR accuracy 

on the association matrix estimation. The amount of data needed to estimate the 

association matrix is highly correlated with the accuracy of the LPR units. Therefore, the 

rate of convergence of the estimation procedures should vary with the changing in the 

LPR performance. 



 

 124

7.6.3 Online matching 

The matching procedures proposed in this research can be used for online matching. In 

this case, the system tries to identify a vehicle at the moment it is detected at the 

downstream station and the information generated is immediately retrieved and analyzed. 

Further work still should be done to validate the proposed matching frameworks for an 

online application. 

7.6.4 Extension of the Matching Procedures to Multiple LPR Setups 

The matching procedures can be extended to multiple LPR setups such as multiple entry-

exit points for OD estimation surveys or sequential setups in the case of route 

determination in urban areas. These issues were left out for further studies. 

The arrangement of LPR units on multiple entries and exits is needed for origin-

destination surveys where it is desired to estimate the trip patterns over a certain urban 

subarea. A set of no LPR units is assigned to cover the entry points while another set of nd 

is assigned to cover the exit points, as illustrated in Figure 7-1. It is assumed here that all 

destinations are accessible from all origins, making possible no× nd origin-destination 

combinations during the survey period. 
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Figure 7-1 Multiple Exit-Entry LPR Setup 
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The problem here consists in finding an assignment, a set of matched plates, 

among all entry- and exit- points that minimize a overall cost function (the similarity 

measure) restricted to a set of time window constraints. Therefore, all methods already 

developed for dual LPR setup can be easily extended. 

The case of sequential setup, where LPR units are disposed consecutively (Figure 

7-2), is more challenged. The interest is to track a vehicle at multiple points in order 

reconstruct its route. In this case, a single vehicle usually generates multiple outcomes 

and can be also missed by a few or all stations. Thus the number of combinations can be 

immense, depending on the number of stations (s) involved. There is an extension of edit 

distance to deal with multiple string alignments (Carrillo and Lipman,1988; Gupta et al., 

1995) and that may help to determine the set of stations where a given vehicle was 

detected. 

 

1s 2s 3s 1s 3s 4s

2s
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Figure 7-2 Sequential LPR Arrangements
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LIST OF ACRONYMS 

CED Constrained Edit Distance 

ED Edit Distance 

FTWC Fixed Time Window Constraint 

GED General Edit Distance 

GT Ground Truth 

LPR License Plate Recognition 

LP Learning Process 

VTWC Varying Time Window Constraint 
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