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ABSTRACT 

 
Disturbance in a forest‟s canopy, whether caused by treefall, limbfall, landslide, 

or fire determines not only the distribution of well-lit patches at any given time, but also 

the ways in which the forest changes over time.  In this dissertation, I use  a 25 year 

record of treefall gap formation find  a novel and highly patterned process of forest 

disturbance and regeneration, providing a local mechanism by examining the factors that 

influence the likelihood of treefall.   I then develop a stochastic cellular automaton for 

disturbance and regeneration based on the analysis of this long term data set and illustrate 

the potential of this model for the prediction and detection of patterned forest dynamics in 

general.  Finally, I investigate the spatial structure of a population of one of the most 

common gap colonist species in this forest, Didymopanax pittieri, and illustrate the effect 

of local aggregation of treefalls and on the population dynamics of D. pittieri in the 

process. 
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INTRODUCTION 
 

 

“The smallest sprout shows there really is no death, 

  And if ever there was it lead forward life, and does not wait 

 at the end to arrest it, 

  And ceased the moment life appeared. 

 

  All goes onward and outward, nothing collapses, 

  And to die is different from what any one supposed, and  

 luckier.”  

 

  -Walt Whitman, Song of Myself vi 

 

 

Forest floors are dark, inhospitable places for many plants.  Disturbance in a 

forest‟s canopy, whether caused by treefall, limbfall, landslide, or fire determines not 

only the distribution of well-lit patches at any given time, but also the ways in which the 

forest changes over time.  Plants depend on such disturbance in a variety of ways and this 

dependence can cascade into higher trophic levels.  In this respect, the tropical montane 

cloudforest considered in this dissertation is like many other ecosystems:  Disturbance 

plays a key role in the spatiotemporal dynamics of many communities ranging from 

creatures clinging to rocks in intertidal zones (Sousa 1979) to those undergoing invasion 

by non-native grasses (D‟Antonio et al. 2001) and has been widely implicated in 

community assembly (Fukami 2001 et al. 2005, Trexler et al. 2005) and the creation and 

maintenance of biodiversity through the creation of environmental heterogeneity (Grubb 

1977, Connell 1978, Denslow 1987, Schnitzer & Carson 2001).  Using a 25 year record 

of canopy gap formation, I find a novel and highly patterned process of forest disturbance 

and regeneration, providing a local mechanism by examining the factors that influence 

the likelihood of treefall.  I then develop a stochastic cellular automaton for disturbance 
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and subsequent regeneration based on the analysis of this long-term data set and illustrate 

the potential of this model for the prediction of forest dynamics.  Finally, I investigate the 

spatial structure of one of the most common gap colonist species in this forest, 

Didymopanax pittieri, and illustrate the effect of local aggregation of treefalls on its 

spatial population dynamics. 

Populations and communities are not, of course,  static in space or time.   The 

local density of a species may shift with changing seasons, predator-prey dynamics may 

drive oscillations in populations, and species may invade new habitats.  Changes such as 

these and myriad others with widely ranging magnitudes are common in ecological 

systems.  Particularly interesting are ordered patterns of distributions of species across 

the landscape (Levin 1992). Patterns in the distribution or population density of species 

can lend insight into the fundamental ecological processes at work in a system (Watt 

1947, Reiners & Lang 1979, Seabloom et al. 2005).  Moreover, such patterns can 

influence underlying ecological processes in complex feedbacks.   

Spatial pattern can play a significant role in ecological processes including 

competitive coexistence (Lavorel et al. 1994), transmission of disease (Brown & Bolker 

2004), and can have impacts that scale up to ecosystem-level processes (Moorcroft et al. 

2001, Pacala & Deutschman 1995). Spatial structure within populations may result from 

dispersal (Okubo and Levin 1989, Clark et al. 1998), ecological interactions such as those 

involving symbiotes (Diez 2007) or pathogens (Janzen 1970), recruitment opportunities 

(Dovciak et al. 2001),  or resource availability (Russo et al. 2005).  Moreover, many of 

these environmental processes are themselves spatially non-random (e.g., Lagos et al. 

2008). Two ecological processes which have been shown to be strongly influenced by 
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natural disturbance are recruitment opportunities and resource availability. (Bazzaz & 

Pickett 1980, Denslow 1980, Seabloom et al. 2005). 

Forest ecosystems provide the preeminent example of the importance of 

disturbance in natural communities.  Disturbance plays a major role in determining the 

physical structure and species composition of forests.  The gaps in a forest canopy 

created by the fall of a individual tree or several trees together have been implicated in 

the creation and maintenance of plant diversity in tropical forests (Grubb 1977, Denslow 

1980, Denslow 1987, Levin 1992, Rees et al. 2001; Schnitzer & Carson 2001) and in 

shaping the spatial distributions of various plant species (Watt 1923, Watt 1947; 

Williamson 1975, Sherman et al. 2000, Svenning 2000, Dovciak et al. 2001).   

The standard conceptual framework for considering the dynamics of the 

deterioration and regeneration of forests in space and time is that of patch dynamics.  In 

this framework, forests are thought of as consisting of mosaics of patches in varying 

successional states (Pickett & White 1985).  The primary driving force behind forest 

patch dynamics is disturbance through natural forces such as windthrow, fire, or 

landslides. The constituent plant species of a forest tend to sort out along a continuum of 

shade tolerance strategies (Bazzaz & Pickett 1980, Agyeman et al. 1999), and thus a 

given species will tend to occupy (or at least thrive in) patches of forest in particular 

states.  Consequently, heterogeneity of habitat quality due to variation in the successional 

status of patches is thought to drive species coexistence (see citations above).   

In many forests, one of the most important and common sources of patch 

heterogeneity is treefall gap disturbance.  However, despite the evident importance of 

gaps in forest processes, few long-term studies have tracked their formation and role in 
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determining spatiotemporal structure in forest communities and the populations of their 

constituent species.  While treefall gaps have been implicated in shaping the spatial 

distributions of many plant species, it is how the dynamics of gap formation interplay 

with other “forcing functions” that ultimately shapes their spatial patterns.   

It is unclear how spatial structure in the gap regime shapes the distribution of trees 

within a population or of species in a forest.   Previous studies have demonstrated that 

many forests display a pattern of treefalls with significant spatial structure.  It has been 

noted that treefall gaps tend to aggregate in some forests (Hubbell & Foster 1986, Lawton 

& Putz 1988, Young & Hubbell 1991, Tanaka & Nakashizuka 1997, Schlicht & Iwasa 

2007).  Moreover, several computational models that capture this aggregation have been 

fit to disturbance regimes in tropical forests (Kubo et al. 1996, Alonso & Sole 2000, 

Satake et al. 2004).  However, few studies have been of large temporal scope (but see 

Kenderes et al. 2008) or conducted in montane forests that are exposed to strong 

consistent windstress (Rebertus et al. 1997).  The conclusions drawn from most of these 

studies may only be appropriate for lowland forests.  Young and Hubbell (1991) found 

that in some lowland forests asymmetry in the crowns of trees on gap edges increases the 

probability of additional treefalls near previously existing gaps.  However, aggregation of 

treefalls has also been found in a windswept tropical montane forest in which windstress 

may play a larger role in gap aggregation than crown asymmetry (Lawton & Putz 1988).   

Strong windstress gradients in montane forests may yield a more strongly 

patterned forest than those seen in the lowlands because consistent directional airflow 

may produce more structure in the dynamic spatial pattern of community regeneration.  

Waves of disturbance and regeneration have been noted in such windy environments as 
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Japanese Subalpine Fir forests (Schlicht & Iwasa 2007) and in the Balsam Fir zone of the 

Northern Appalachians (Reiners & Lang 1979), and in coastal Pine forests in New 

Zealand (Campbell 1998).  However, these systems are all simple, in the sense that they 

are relatively low diversity forests, occupied mostly by a small set of dominant tree 

species.   

Are there high diversity forests that exhibit waves or other strong emergent 

patterns?  This is an important question because strongly patterned forest dynamics may 

play an important role in shaping plant communities and the selective regime that drives 

the evolution of plant shade tolerance strategies.  For example, plants in tropical forests 

(as well as in almost all other forests) employ a continuum of shade tolerance strategies 

that involves both physiology and life-history strategies.  Shade intolerant species tend to 

possess traits that favor colonization of disturbed sites rather than long term competition.  

Thus, shade intolerant species that live in a forest with a strongly patterned disturbance 

regime should have similarly patterned population dynamics.   In this dissertation, I use  a 

25 year record of treefall gap formation find  a novel and highly patterned process of 

forest disturbance and regeneration, providing a local mechanism by examining the 

factors that influence the likelihood of treefall.   I then develop a stochastic cellular 

automaton for disturbance and regeneration based on the analysis of this long term data 

set and illustrate the potential of this model for the prediction and detection of patterned 

forest dynamics in general.  Finally, I investigate the spatial structure of a population of 

one of the most common gap colonist species in this forest, Didymopanax pittieri, and 

illustrate the effect of local aggregation of treefalls and on the population dynamics of D. 

pittieri in the process. 
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CHAPTER 1 

 

Waves in the jungle: Directionally biased canopy disturbance in a 

windswept montane rainforest. 

 

Introduction: 

Gaps in forest canopies are important for establishment and growth of many 

plants.  These disturbances provide a large, albeit ephemeral, pulse of otherwise very 

dilute resources, leading many to suggest that disturbance plays an important role in the 

development of local species composition and overall forest structure (Grubb 1977, 

Bazzaz and Pickett 1980, Brokaw 1985, Hubbell and Foster 1986, 1987, Hubbell et al. 

1999).  The heterogeneity in resources provided by disturbance is thought to induce a 

spatial mosaic of species composition (Levin and Paine 1974), which may ultimately 

contribute to the maintenance of plant diversity in many forests (Grubb 1977, Connell 

1978, Denslow 1987, Brokaw and Busing 2000, Schnitzer and Carson 2001), and  

influence both plant and animal community structure and patterns of local abundance 

(Shelly 1988, Alvarez and Willig 1993, Jokimaki et al. 1998, Svenning 2000, Richards 

and Coley 2007).   

Some forests canopy disturbances seem to be distributed non-randomly in space 

(Hubbell and Foster 1986, Lawton and Putz 1988, Young and Hubbell 1991, Jansen et al. 

2008).  The most commonly reported departure from randomness is that gaps simply tend 
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to aggregate (e.g., Hubbell and Foster 1987, Lawton and Putz 1988, Young and Hubbell 

1991, Tanaka and Nakashizuka 1997, Schlicht and Iwasa 2007), though some forests 

experience more elaborate spatial dynamics, such as the waves of disturbance and 

regeneration that have been noted in Japanese Subalpine Fir forests (Schlicht and Iwasa 

2007), in the Balsam Fir zone of the Northern Appalachians (Reiners and Lang 1979), 

and in coastal Pine forests in New Zealand (Campbell 1998). 

Spatial Contagion and Aggregation of Canopy Disturbance 

 One thing that remains unclear about treefall disturbances is the precise nature of 

their spatial non-randomness.  The spatial distributions of disturbances associated with 

local catastrophes that have physically understood methods of development and 

propagation, such as landslides (Zhou et al. 2002), hurricanes (Foster and Boose 1992, 

Cooper-Ellis et al. 1999), and fire (He and Mladenoff 1999), may be explained by the 

spatial scale of the disturbing agent and interactions with geographic factors such as 

topography, soil moisture, among others.   The mechanisms producing spatial pattern 

among  canopy gaps created by the fall of one or several trees are less clear (Lin et al. 

2004, Pagnutti et al. 2007, Jansen et al. 2008). One explanation of spatial structure among 

canopy disturbances may be that nonrandom exposure to stress results in clumping of 

otherwise non-interacting disturbances.  A second possibility is that an existing gap might 

increase the likelihood of subsequent gap formation in its vicinity.  This second 

possibility, termed “spatial contagion”, appears to have an important role in some 

temperate forests (Runkle 1984, Foster and Reiners 1986, Lin et al. 2004, Worrall et al. 

2005).  Recently, Jansen et al. (2008) provided a thoughtful analysis of spatial contagion 

in a lowland rainforest in French Guiana and concluded that risk of canopy disturbance 
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was not elevated near existing gaps in their study area.  Moreover, they provided 

compelling arguments against a number of potential mechanisms for spatial contagion in 

tropical forests.   

Despite the arguments of Jansen et al. (2008), it is not be appropriate to let 

lowland forest speak for all tropical forests.  Montane forests in general are subject to 

very different environmental stresses than their lowland counterparts (Coutts and Grace 

1995, Worrall et al. 2005), and tropical montane forests are no exception (Brokaw and 

Grear 1991).  Steep slopes and strong winds can be dangers for trees in any forest (Coutts 

and Grace 1995, Rebertus et al. 1997, Worrall et al. 2005, James et al. 2006).  Winds in 

some montane rainforests can hurtle over the canopy with speeds in excess of 100 kph, 

and some of these trees sit on steep slopes, leaning out over their neighbors. Elevated, 

often unidirectional, wind stress in these forests has important implications for patterns of 

disturbance.  Trees that are members of intact canopies benefit from a collective 

boundary layer that can mitigate wind stress, while trees neighboring a canopy 

disturbance lack this protection (Panferov and Sogachev 2008).  Thus, it seems likely that 

if spatial contagion in canopy disturbance exists in tropical forests, it will exist in these 

montane rainforests.     

Ecological Impact of Gap Size 

Although the spatial pattern of gaps may be very important to the patch dynamic 

composition of a forest, plants as individuals respond to conditions far more local than 

the scale of a whole forest, or even a patch of forest.  Rather, plants are largely tethered to 

their microclimates; so, the characteristics of the gaps that offer many plants 

opportunities for recruitment are very important (Bazzaz and Pickett 1980, Brokaw 1985, 
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Lawton and Putz 1988, Lawton 1990, Denslow et al. 1998, Kneeshaw and Bergeron 

1998, Chambers et al. 2009).  Thus we should consider not only the spatial structure of 

treefall gaps, and not only the characteristics of individual gaps, but also the spatial 

distribution of kinds of gaps (Brokaw 1985, Lawton and Putz 1988, Kneeshaw and 

Bergeron 1998).  For example, gaps in one area may be larger on average than gaps in 

another, or gaps on a slope may receive more low-angle light than gaps on level ground.   

Gap size, which can be measured in a number of ways, may affect germination 

and the subsequent growth and mortality of plants across a broad range of successional 

strategies (Bazzaz and Pickett 1980, Brokaw 1985, Lawton and Putz 1988, Kneeshaw 

and Bergeron 1998).  Larger gaps tend to allow more light to penetrate to the usually 

shaded forest floor, whereas small gaps provide relatively little light and may close up 

quickly (Bazzaz and Pickett 1980, Lawton 1990).  While gradients in gap size across a 

landscape might affect the patch dynamic structure and local community composition of 

forests, there is no clear reason to believe that most forests should contain spatial 

gradients in gap size.  However, many tropical montane rainforests have strong 

environmental forcing, such as chronic, unidirectional windstress that can stunt trees on 

ridgecrests (Lawton 1980, 1982, Cordero, Fetcher & Voltzow 2007, Garcia-Verdugo et 

al. 2009) and result in sharp gradients in forest stature.  Such gradients in forest stature 

may induce spatial gradients in gap size, and thus may provide an important source of 

heterogeneity in recruitment opportunities for plants occupying a wide range of the 

continuum of shade-tolerance strategies.   

This Study 



 

 10 

In this study, we analyze a 25 year record of gap formation in a windswept lower 

montane rainforest in Costa Rica where gaps are known to aggregate (Lawton & Putz 

1988).  We examine the following three issues: whether treefall disturbances are spatially 

contagious; how large scale environmental factors may influence the risk of gap 

formation; and whether there exist gradients in gap size that could shape community 

structure and composition. In addressing the first question, we hope to show that while 

spatial contagion may not appear to occur commonly in lowland rainforest (Jansen et al 

2008), it may well occur in montane rainforests.  Questions such as these, which examine 

structure in small scale disturbance in natural communities, are important because they 

can reveal some of the dynamic processes that drive community structure (Moloney and 

Levin 1996, Tanaka and Nakashizuka 1997, Seabloom et al. 2005) and that may 

contribute to the mitigation of competitive exclusion (Lavorel et al. 1994).  A better 

understanding of the local causal mechanisms of treefall disturbance may reveal 

heretofore hidden pattern in larger-scale forest processes. 

 

Methods 

Study area 

 This study was conducted in the Monteverde Cloud Forest Reserve in a very wet 

lower montane rain forest (sensu Holdridge, 1967) along the crest of the central 

Cordillera de Tilarán of northern Costa Rica (Fig. 1.1)  The vegetation along the crest of 

the Cordillera is a complex mosaic, the character of which is largely dictated by the 

patterns of exposure to the flow of the north-easterly trade winds through the mountains 

(Lawton and Dryer 1980, Clark et al. 2000).  Dwarfed forest formations (elfin forests 
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sensu Beard (1955) occupying wind-swept ridge crests are interdigitated among  taller 

cloud forest stands found in protected ravines and on lee slopes.  Elfin forest stands in the 

central Cordillera de Tilarán were mapped using 1:40,000 scale aerial photographs, and 

an approximately 12 ha watershed (Fig. 1.1) on the south-eastern side of the summit of  

Cerro Centinelas (1580 m a.s.l.) was chosen as providing an accessible and representative 

example.  Forest structure changes dramatically with exposure in the watershed.   Elfin 

forest with canopy trees 5 – 10 m tall occupies the boundary ridge crests and upper 

windward slopes of the watershed, and grades into taller cloud forest with canopy trees 

15 – 27 m tall along the creek and on the lee slope (Lawton, 1982, 1984; Lawton & 

Dryer, 1980).  Dwarfed forest stature is not the only impact of windstress on this forest.  

Disturbance in the form of treefall gaps, the largest of which in this forest are generally 

100 -300 m
2
, strongly influences forest structure, creating a landscape mosaic of intact 

forest, newly formed gaps, and vegetation in various stages of regeneration (Lawton and 

Putz 1988; Lawton, 1990).  On exposed ridge crests and windward slopes in this study 

are individual treefall gaps are aggregated into patches 35 - 40m across, or of about 0.12 

ha (Lawton and Putz 1988).  This clumping results in disturbed patches of forest 

containing gaps whose ages differ by about 1-5 years.  Regrowth in gaps in these patches 

is similar, so the regenerating patch is a recognizable unit of forest structure occurring at 

a scale larger, by five- or ten-fold, than that of an individual treefall.  Thus this forest 

experiences a two tiered forest dynamics consisting of the formation and subsequent 

regeneration of individual gaps and patches of gaps. 

Field Methods 
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  Annual monitoring of gap formation began in June of 1982, when a ~12 ha 

primary watershed on the southeastern side of the summit of Cerro Centinelas in the 

central Cordillera de Tilarán of northern Costa Rica was surveyed.  Using a transit, stadia 

rods and drag tapes a 10.8 ha grid of contiguous 20 x 20 m plots marked with labeled 

permanent corner stakes was established within the watershed (Fig. 1.2).  The x-axis of 

the grid coordinate system, scaled in meters, provides distance south of an arbitrary initial 

survey point in the northwestern corner of the watershed; the y-axis is distance east of the 

initial point.  During the initial survey all canopy gaps >4 m
2
 were located, and classified 

as being created in the past year (June 1981-May 1982), the year before that (June 1980-

May 1981), or earlier, depending upon the extent of sprouting from damaged plants and 

the sizes of seedlings and saplings of shade intolerant species. In each subsequent year 

the study area has been searched in the early rainy season (mid-May – June) and newly 

formed gaps located by revisiting each grid corner stake.  From June 1987 to May 1988 

the study area was searched monthly for new gaps. By 1988 we had decided gaps <12 m
2
 

did not afford regeneration opportunity to the shade intolerant tree species of the study 

area, and subsequently only gaps >= 12 m
2
 were included in the study.   We follow 

Brokaw (1984) in defining gaps on the basis of canopy topography.  Gaps are areas 

opened by fallen trees, fallen limbs or hemiepiphytes, or understanding dead trees, in 

which the tallest living plants are <3 m tall and <50% of the height of the surrounding 

canopy trees.  Gap margins are determined by vertical projection of the crowns of the 

surrounding trees.  Drawings of some gap cross-sections are presented in Lawton (1990).    

Each gap was tagged with a numbered aluminum tag placed on a sapling or sprout 

near the gap center.  The location of the approximate gap center was determined by 
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measuring the distance and direction to the nearest plot corner using a compass and 

optical rangefinder.    Gap area was determined by mapping gaps to scale.  The distances 

from gap center to gap margin were measured along the longest gap dimension and then 

at 45
o
 intervals around the gap.  We then sketched the approximate gap margins between 

the measured points onto a scale drawing.   

Spatial Analysis 

Before addressing the causes and nature of gap aggregation, we examined the 

point pattern given by the centers of gaps observed in our censuses.  To test whether gaps 

in the whole watershed aggregate we analyzed the point pattern given by the centers of 

gaps that formed between 1995 and 2005, using the pair correlation function 

g(r)=K’(r)/2πr, where K’(r) indicates the derivative of Ripley‟s K(r) (see Law et al. 2009 

and citations therein for a lucid description of g(r)).  For a homogeneous Poisson process, 

or complete spatial randomness, g(r) = 1.  Deviation from g(r)=1  indicates regularity or, 

alternatively, aggregation in a point pattern.  However, as with other commonly used 

spatial statistics such as Ripley‟s K(r) this use of g(r) rests on the assumption that the 

pattern being analyzed is homogeneous, that is, that there are no larger scale trends in the 

density of points.  This sort of spatial homogeneity rarely holds in nature, but there are 

several ways to address this difficulty.  In this study we visually examined a surface 

estimate of gap density (number of gaps per m
2
), and broke the study area into three 

regions within which density appeared roughly homogeneous (lee slope, watershed 

bottom, and windward slope).  We then examined g(r) along with simulation envelopes 

from 99 simulations of complete spatial randomness, a standard method for detecting 

departure from a spatial distribution (Diggle 2003), in these regions of roughly 
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homogeneous density.  Simulations of complete spatial randomness were constructed by 

draws from a spatial Poisson process.  The simulation envelopes were constructed by 

taking the maximum and minimum values of g(r) of all simulations at each radius r.  To 

account for edge effects we used Ripley‟s edge correction (Ripley 1976). 

If gap formation in this forest is spatially contagious, it is reasonable to expect 

that there should be additional spatial structure beyond simple aggregation in the pattern 

of gaps.  Rather, one might suspect that small gaps might form next to large gaps as large 

gaps represent more severe disturbance and, therefore, could increase the risk to 

neighboring trees more than smaller gaps.  We categorized gaps as small (15-30m
2
), 

medium (30-60m
2
), and large (>60m

2
).  We examined the resulting pattern of small, 

medium, and large gaps with gij(r), the generalization of  g(r) to patterns with points of 

multiple types.  gij(r) yields information about the average number of points of type i 

within r m of points of type j (Law et al. 2009 and citations therein).  We calculated the 

observed gij(r) along with 99 simulations of a multitype Poisson process with no 

interaction between types.  As in the simple  g(r) analysis, we corrected for edge effects 

using Ripley‟s edge correction.  

We used a density surface estimate of the point pattern of gaps and variograms to 

check for anisotropy in the spatial pattern of gaps.  We formed the gap density surface for 

the study area with kernel smoothing density estimation (Diggle 2003) using a Gaussian 

smoothing kernel with a standard deviation of 5m, which is slightly larger than the radius 

of an average gap (gaps had, on average, a radius of 4m). We visually examined 

directional variograms of this surface in order to detect any anisotropy, or directional 

trends in the pattern of gaps (Cressie 1993).  In general, if a pattern is substantially 
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anisotropic one expects that the variance between points should increase sharply 

perpendicular to the direction of anisotropy and more gently in the direction of 

anisotropy.  As it is generally advisable to construct variograms only for data that do not 

contain large scale trends (Cressie 1993), we only conducted the variogram analysis for 

the windward slope, a region in which the density of gaps was roughly homogeneous. 

Logistic Regression Analysis 

We examined the factors that affect the likelihood of gap formation by logistic 

regression.  Since the gaps were only recorded when they formed and we did not conduct 

a tree-by-tree census, the data only contain information about gap occurrence, and  do not 

explicitly contain information about where gaps did not form.  This poses a problem as 

the response variable in a logistic regression must be binary.  We solved this problem by 

forming a grid with a 10m mesh (Fig. 1.3a) over the study area and calling a given grid 

point a “gap” in a given year if there was a gap center within 5m of the grid point that 

year.  For each year between 1980 and 2005 this yielded a grid of 1127 points each of 

which was classified as either a gap or not a gap yielding the binary dependent variable 

GAP.   

We smoothed measured vegetation heights from 686 spatially stratified random 

locations in the study area  to form a surface variable (Fig. 1.3a),  This variable serves as 

a measure of wind stress, since canopy height in this forest decreases with increasing 

exposure to wind (Lawton 1982).  We also included slope, measured as the magnitude of 

the gradient vector of the topographic surface. (Fig. 1.3b).  As an alternative measure of 

local topography and wind exposure we used a categorical variable in which each 
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location in the study area was assigned to one of “windward slope”, “lee slope”, or 

“watershed bottom”.   

In order to address our hypothesis that treefall disturbance in this forest is 

spatially contagious we summed the area of the gaps that formed in each of 8 subcardinal 

directions and within 20 meters of a given grid point in the previous ten years.  These 

sums when regarded separately (N, NE, E, SE, S, SW, W, and NW) give a directional 

measure of disturbance history.  The choice of 20 m was informed by examination of the 

results of the spatial analysis.   We corrected for the potential influence of gaps that 

formed prior to 1980 and for edge effects by only considering gaps that occurred in the 

last 15 years and 20 m away from the study area boundary. We used  a backwards 

stepwise AIC-informed model selection procedure to choose among combinations of the 

8 directional counts, SLOPE, VEGHT, and LOCATION, and second order interactions as 

predictors in order to select a logistic regression model describing the etiology of treefall 

gap formation.  We examined correlation matrices, standard residual based diagnostics, 

and sample variograms of Pearson‟s residuals to check for violations of model 

assumptions and unexplained spatial structure in the model residuals and found no 

evidence for either. 

Results: 

In the 26 years from 1980 to 2005, we observed the formation of 786 gaps in the 

forest canopy.   The total area opened in canopy gaps during this period was roughly 3.6 

ha, around 30% of the study area.  There was substantial year-to-year variation in the 

severity of disturbance in the study area (mean+/- s.d. = 1377.53±969.1 m
2
).  We 

estimate forest turnover time in this study area, calculated from the mean annual 
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proportion of the study area in gaps, to be 73.62 years. Most gaps are small, though 

variation in gap area was substantial (Fig. 1.4b).  We observed one small landslide which 

disturbed 692 m
2
, but we omit this from our analysis as it represents a qualitatively 

different sort of disturbance from those we are investigating.  Gap area is strongly 

dependent on location in the study area (ANOVA Log(Gap Area) ~ Location, df=2, 

F=4.15, p=.016, see Fig. 1.4a).  On average, gaps were larger on the lee slope than in the 

sheltered bottom or the windward slope, and gaps in the sheltered bottom were larger 

than those on the windward slope. 

 

Spatial Analysis 

Our spatial analysis of the locations of gaps that formed between 1995 and 2005 

revealed nonrandom spatial structure.  Although gaps, when treated independently of 

their size, appear randomly distributed on the lee slope and watershed bottom, those on 

the windward slope have more neighboring gaps between ~5-17 m than expected at 

random (Fig. 1.5). However, this analysis treats all gaps as equals, neglecting substantial 

differences in gap size. On the windward slope there are more small gaps (i.e., gaps with 

area 15-30 m
2
) within 5-10 m of large gaps (those with area >60 m

2
) than expected at 

random (Fig. 1.6), but there is no further spatial structure discernible from gij(r).   Gaps 

30-60 m2 and larger gaps are both just as common around larger gaps as would be 

expected from a random process. 

 While g(r) and gij(r) indicate aggregation among gaps on the windward slope, 

they cannot easily distinguish between isotropic (i.e., radially symmetrical) and 

anisotropic (i.e., directionally biased) clustering.  Variogram analysis of gap density on 
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the windward slope, however, indicates anisotropy in the pattern of gaps (Fig. 1.7).  The 

ranges of the variograms of gap density in the direction of the prevailing northeasterly 

trade wind are larger than those of the variograms in the directions orthogonal to the 

prevailing wind.  Thus, not only are gaps on the windward slope aggregated, they are 

aggregated in a directionally biased fashion in the direction of prevailing wind. 

 

Logistic Regression Analysis 

After excluding gaps with centers within 20 m of the study area boundary, and 

after the discretization of gap location to our grid, we had 513 gaps available for logistic 

regression.  As we termed a location on our grid a “gap” in a given year if there was an 

observed gap center within 5 m, a number of separate gaps, each within 5 m of a given 

grid point,  were counted as single gaps in the logistic regression analysis.  While this 

represents some loss of information, it should, at worst, make our analysis less prone to 

type II error.   

.    The AIC-informed backwards model selection procedure suggests that the 

likelihood of gap formation is influenced by both forest stature and prior upwind damage 

to the forest canopy (Table 1).    In particular, each 1m increase in forest canopy height 

results in ~3.5% decrease in the likelihood of gap formation.  Surprisingly, adding one 

average sized treefall (~45 m
2
) treefall within twenty meters to the East increases the 

likelihood of gap formation by nearly 9%.  These impacts on risk of gap formation are 

substantial in light of the local variation in the predictors.  In the study watershed, 

vegetation height varies from ~5 m on exposed ridgecrests to ~25 m in sheltered hollows 

(Fig. 1.3a) and the area of a single gap can range from 15-350 m
2
.  The logistic regression 
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analysis indicates that this change in forest stature can result in a 70% decrease in risk, 

while previous disturbance to the east can result in a 70% increase in risk (see Fig 1.4c).  

These are large effects and have large roles in determining the character of this forest.   

Discussion: 

We have used an unusually long record of canopy disturbance to provide evidence for 

a pattern and process of gap dynamics, which has been the subject of speculation (Foster 

& Reiners 1986, Lawton & Putz 1988, Young & Hubbell 1991) but which has not, to the 

best of our knowledge, been observed in tropical forests.  This work shows not only that 

disturbance may be spatially contagious in montane forests, but also that tropical 

montane forests show an exciting similarity to the strongly structured gap dynamics seen 

in many temperate forests. 

 

Spatial Contagion: Observed Pattern and Process 

In our study area, we see a spatial pattern that appears to be caused by processes 

consistent with spatial contagion of canopy disturbance.  Acting at both local scales and 

at the scale of the whole study watershed, these processes provide evidence of structured 

gap dynamics in which disturbed areas tend to grow by accumulating gaps downwind of 

an initial disturbance.  Our spatial analysis shows a large scale trend in the density of 

gaps, which corresponds to exposure to windstress, and the logistic regression analysis 

corroborates this observation, showing that gaps are more likely to form on windswept 

ridgecrests.  Within this large scale trend in gap density, we see a detailed picture of gap 

aggregation that argues for the existence of spatial contagion in this forest.  Gaps on the 

high-risk, exposed windward slope of our study area are aggregated into patches that 
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appear to have diameters of roughly 30 m.  Interestingly, this scale of aggregation is 

similar to previous findings in a portion of our study watershed (Lawton and Putz 1988), 

indicating that this scale of aggregation has remained roughly constant for two decades.   

However, the directional variograms provided in Fig. 1.7 indicate that these clusters are 

actually anisotropic and spread in the direction of the prevailing winds.  The results of 

our logistic regression, which indicate that locations downwind of existing gaps are at 

greater risk of disturbance (Table 1), provide a likely mechanism for both this 

aggregation and its anisotropy.  Moreover, our gij(r)  analysis shows that small gaps tend 

to be clustered around larger gaps (Fig. 1.6), which agrees with the fact that locations 

downwind of larger gaps are more at risk that locations downwind of smaller gaps (Table 

1.1).  This leads us to the conclusion that, in this watershed, disturbed areas tend to grow 

by accumulating gaps downwind of an initial disturbance.   

 Because our study watershed is typical of the ridgecrests of windswept lower 

montane tropical rain forests, the picture of gap dynamics that emerges from our analysis 

argues strongly for the existence of spatial contagion of canopy disturbance in similar 

montane tropical rainforests. Spatial contagion of this sort has been reported in temperate 

forests, but has only been speculated about in tropical forests.  In fact, Jansen et al. (2008) 

found no evidence for spatial contagion of gap formation in lowland tropical forests.  

Thus, our study illustrates an important distinction between lowland and montane 

disturbance regimes.  A number of mechanisms for spatial contagiousness of canopy 

disturbance have been put forth.  Damage due to previous disturbance (Putz and Chan 

1986), physical instability due to canopy asymmetry caused by trees filling in a gap 

(Young and Hubbell 1991, Muth and Bazzaz 2002), and increased exposure to windstress 
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(Runkle 1984, Foster and Reiners 1986, Lawton and Putz 1988, Young and Hubbell 

1991) have all been considered as mechanisms for this phenomenon.  In this study, we 

show that previous disturbance upwind has a large effect on the risk of treefall.  While 

this does not rule out the first two proposed mechanisms, it does provide support for the 

last.  Jansen et al. (2008) point out that canopy gaps in the tropics tend to be smaller than 

those in the temperate zone and should thus present a smaller increase in windstress on 

neighboring trees, thus arguing against the influence of increased windstress on spatial 

contagion in tropical forests.  While this seems likely for lowland forest, it neglects the 

magnitude of windstress in montane forests where the canopies of neighboring trees seem 

to lock together to make a sort of aerodynamic armor.  Even a small gap in these 

windswept forests may make a chink in this armor, enormously elevating risk for 

neighboring trees.  Moreover, gaps forming on these forests‟ steep slopes may present a 

larger profile to oncoming wind than similarly sized gaps on level terrain, like that of 

many lowland forests, which may greatly magnifying the influence of relatively small 

gaps on surrounding forest. 

 

Ecological Consequences of Structured Gap Dynamics 

The standard conceptual model for forest dynamics is that forests sit somewhere 

along a continuum of disturbance regimes, ranging from frequent small disturbances, 

such as treefall gaps, to infrequent catastrophic disturbances, such as hurricanes .  On the 

former end of this continuum, we expect gap-phase dynamics to be near some 

equilibrium at which patterns of community composition and relative abundance remain 

roughly constant when integrating over a large enough area (Pickett and White 1985).  
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The picture we provide of montane gap dynamics should fit into this picture on a large 

scale, but local dynamics in these forests should be far more structured than in lowland 

forest.  Our analysis indicates that there is substantial spatial variation in risk of treefall in 

montane rainforests.  Elevated windstress on ridgecrests appears to make life in these 

forests a risky business as is the case in some temperate forests (Rebertus et al. 1997, 

Worrall et al. 2005).  However, the magnitude of the variation in this sort of exposure in 

montane forests deserves some serious consideration.  In this study, we have shown that 

trees in sheltered hollows can be up to 70% percent less likely to collapse than those 

exposed to the wind.  Thus, in montane rainforests treefall is much more likely to occur 

in some parts of the forest than in others, implying a cascade of spatial heterogeneity 

from the environment (in the form of exposure to windstress) down to local species 

composition. This implies that the patches in the mosaic of disturbance and regeneration 

in these forests are not randomly placed.  Rather, there will be pockets of rapid turnover 

and regeneration on steep, windswept slopes.  Moreover, as previous disturbance upwind 

also increases risk of treefall, these patches of regenerating forest will grow across the 

landscape in the direction of windflow, resulting in a striated or banded pattern in the 

mosaic of disturbance and regeneration.  This banded pattern should be visible in the 

local distributions of all the ecological players involved in regeneration, including gap-

colonizing tree species, insect herbivores and the vertebrates that feed upon them, and 

various above- and below-ground saprophytes.   

A Gradient in Gap Area 

A final intriguing finding of our study is that while risk of gap formation may be 

higher in dwarfed forest on ridgecrests, gaps in our study area tend to be substantially 
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larger in sheltered hollows (Fig. 1.4a).  This result is not surprising as trees in these 

hollows can grow much larger than those on the ridgecrests (Fig. 1.3a) and so can create 

much larger holes in the canopy when they come crashing down.  However, it is very 

interesting that while the gaps that provide important recruitment and establishment 

opportunities for a guild of gap colonists are more frequent on ridgecrests, these gaps are 

on average smaller than those in hollows.  This juxtaposition of increased opportunity 

versus higher quality gaps (in that larger gaps admit more light into the understory) 

should drive interesting gradients in gap colonist populations.  In fact, we have noticed 

that some gap colonists in this forest appear to sort out into bands along this spatial 

gradient from frequent small gaps to infrequent large gaps.  In future work, we plan to 

examine this gradient in community composition. 
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CHAPTER 2 
 

The Flow of the Forest: Watersheds of Destruction.  
 

Introduction: 

 

The spatiotemporal dynamics of many ecosystems and their constituent 

populations are intimately tied to the dynamics of gap formation and closure (Pickett & 

White 1985).  For example, plants from a continuum of shade tolerance are strongly 

influenced by the presence or absence of canopy gaps (Bazzaz & Pickett 1980, Pickett & 

White 1985).    Moreover, a wide variety of non-plant taxa are strongly affected by gaps: 

bird activity in gaps is increased (Schemske & Brokaw 1981), perhaps due to the 

increased abundance of insect herbivores, and saprophyte activity appears to be increased 

simply due to the amount of biomass in the wreckage of a treefall (Denslow et al. 1998).  

Thus, pattern in disturbance could impose spatial pattern on many aspects of   forest 

function across a wide range of scales and trophic levels.  In this chapter, I investigate the 

large scale spatiotemporal pattern of treefall disturbance that emerges from the local scale 

causal dynamics observed in the first chapter.   

 If the Monteverde, Costa Rica study area is regarded as a grid in which each 

location is classified as either “gap” or “intact” in each year from 1980-2005, then the 

data used for the logistic regression in Chapter 1 is essentially a time series of this binary 

grid.  Viewed this way, these data are amenable to space-time analysis techniques 

developed for stochastic lattice models.  One such technique was derived explicitly for 

the analysis of detection of waves in binary stochastic lattice models of gap formation 
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and propagation (Schlicht & Iwasa 2007).  In this chapter, I will briefly describe the 

models for which this technique was developed and then go on to describe the technique 

itself.  I will then state the results of applying this technique to the Monteverde gap data 

and discuss the implications of those results. 

 

Stochastic Lattice Models of Gap Dynamics 

In the last couple of decades a number of models for gap dynamics have been 

constructed and analyzed by both ecologists and statistical physicists .  These models are 

generally use a two dimensional lattice to describe space, though there is no particular 

reason, prima facie, that continuous methods could not or should not be used.  Generally 

speaking, these models describe the formation and propagation of gaps using either 

discrete or continuous (e.g., Kubo et al. 1996) time Markov processes on the lattice.  A 

number of interesting results have come out of these approaches.  One such result is that 

these models seem to be able to replicate the observed scaling relationships of gap cluster 

size using forest structure data collected from the Barro Colorado 50 ha plot (Hubbell  & 

Foster 1987).  Moreover, Katori et al. (1998) showed that the equilibrium distribution of 

the continuous time Markov model developed by Kubo et al. is identical to the Gibbs 

state of the Ising model of ferromagnetism which is extremely well studied in the 

statistical physics literature (see Reichl 2009 for a lucid description of the Ising model 

and other nearest neighbor based stochastic lattice models).  These stochastic lattice 

models for gap dynamics bring the study of treefalls into the province of statistical 

physics which should enable a variety of interesting investigations of ecological 

phenomena associated with the cycle of disturbance and regeneration.  However, it 
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should be noted that these models have been developed largely in the absence of real 

long-term timeseries data.  Most of these models have been tested and parametrized using 

only a handful of years worth of information about gap formation.   

Schlicht & Iwasa (2007) have developed a simple and easily implemented method 

for detecting and describing waves and other patterns in the output of lattice models of 

propagation of gaps in time and space. Using the Monteverde gap data and Schlicht & 

Iwasa‟s technique I investigate the long-term spatiotemporal dynamics of treefall gap 

formation, aggregation, and propagation in wind-stressed montane tropical rainforest.  

Furthermore, using the logistic regression model presented in the previous chapter, I will 

construct a stochastic cellular automaton to examine the patterns of disturbance that can 

develop for a range of landscapes.   I do this with an eye towards the future development 

of a simple, low-dimensional model of gap dynamics that can span the apparent divide 

(discussed in Chapter 1) between the process of disturbance and regeneration in tropical 

montane forests and tropical lowland forests. 

Methods: 

Detection of Spatiotemporal Pattern 

In this study I detect spatial propagation of disturbance following the method 

developed by Schlicht and Iwasa (2006) for detecting regeneration waves in lattice 

models of canopy disturbance.  I created a 10m x 10m grid for our study area and labeled 

a location i  a “gap” in year t (where t is a year between 1980-2005) if a gap whose center 

was within 5m of i formed in year t.  Schlicht and Iwasa‟s method creates a vector 

)(tip which is a function of the 8 neighbors j of i and indicates the direction that 
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disturbance is propagating at location i at time t :   

,            (1) 

where )(tj  is the time since location j was last disturbed before time t, both sums are 

over all neighbors j of i, and []+ indicates the positive part (which sets the weight to zero 

if )()( tt ij   ).  If all weights are zero, then the fraction in Eq. 1 is undefined and we set 

0)( tip .  )(tip  remains unchanged until a new gap occurs at location i.  The result of 

this analysis is a vector field describing the direction of gap propagation for each time t.  

In order to aid visualization of the resulting vector fields I construct streamlines, curves 

locally tangent to the vector field which give the path a point will follow in the flow 

described by the vector field, using Matlab.  I will term the collection of locations that 

share a point downstream in the pattern of streamlines a “watershed”.  In this dissertation  

Scaling Laws 

 I determine the statistical relationship between the length and areas of watersheds 

via standard methods from image analysis.  I first create a binary image of the map of 

streamlines and then examine the length and width of the connected components of the 

binary image.  In order to eliminate any fragments of watershed that may have resulted 

from poor sampling or the coarseness of the method for determining direction of gap 

propagation, I only consider connected components of the binary image that are greater 

than 200 pixels in size.  This only discards very small pieces of the image, so it should 

not affect subsequent analyses.  I then calculate the length, Dl and width, Dw, of each 

connected component (defined as the differences of x & y maxima and minima).  As I am 
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concerned with the allometric scaling properties of watershed length and area, I consider   

 and estimate a and H via linear regression.  It is important to not that while 

the observed relationship may be somewhat linear, I am explicitly considering an 

allometric relationship in order to compare the observed watershed scaling to other 

naturally occurring drainage systems.  Finally, I compare the scaling exponent H seen in 

the pattern of propagating disturbance to that of natural river networks and to the 

Scheidegger model of river formation, one of the simplest models for river network 

formation (Scheidegger 1967).    

This scaling analysis involves one important simplifying assumption.  I am 

assuming that small watersheds that are disjoint from larger watersheds are representative 

of the small tributary watersheds that comprise large watersheds.  This is a standard 

assumption in the calculation of scaling laws for river drainage networks (Dodds and 

Rothman 1999). 

 

A Stochastic Cellular Automaton 

 In order to examine the patterns in disturbance and regeneration that can result 

from changes in the factors seen to influence the formation of gaps in the last chapter, I 

construct a stochastic cellular automaton of gap formation and closure.  I include as 

parameters directional forcing by wind, topography, the background rate of gap 

formation, and the degree to which previous disturbance increases the likelihood of gap 

formation nearby.   

 The model of gap formation, aggregation, and propagation is a stochastic cellular 

automaton meaning that space is represented by a rectangular grid each cell of which can 
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either be intact or a gap.  While most cellular automata are binary (i.e., each cell can be in 

only one of two states), this model allows for integer-values in each cell.  Each cell is 

occupied by either a zero, in the case of an intact site, or if the cell is a gap, by a positive 

integer indicating the age of the gap.  I use discrete time intervals representing one year 

(largely because the gap data were censused at yearly intervals). 

 The model proceeds as follows. There is some initial distribution of gaps and 

intact sites and at each time step gaps that are older than a certain threshold “close” to 

become intact sites.  Then new gaps form in cell i with probability p that is a function of 

the states of the neighboring cells, the cells location on the landscape, and a background 

risk of gap formation.  The functional form of this dependence is essentially that of the 

logistic regression of the last chapter: 

||2101
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 ,              (2) 

where terrain can be regarded as elevation (or vegetation height in the context of the last 

chapter), δW is a neighborhood determined by a spatial weighting matrix W and  

indicates the number of gap sites j in the neighborhood δW.  The β‟s which were 

parameters to be estimated in the logistic regression of the last chapter are now treated as 

parameters of the model.  Notice that in this formulation, one can regard gap formation as 

essentially resulting from the flip of a biased-coin whose bias is dictated by a cell‟s 

context and the choice of the model parameters. 

The spatial weighting matrix W dictates the neighboring cells which are 

considered when determining the probability of gap formation at cell i.  For example, in 

the results of the logistic regression of the last chapter indicate that in the Monteverde 
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study watershed the probability of gap formation is influenced by the amount of previous 

disturbance to the East.  A reasonable first guess for a spatial weighting matrix in this 

context might be 

 

centered on cell i in the (3,3) position of WE.   This choice of W would make a 

neighborhood δW centered at cell i and corresponding to the non-zero entries of WE. 

 As the goal of the current investigation is mainly to develop this model and 

indicate its potential future utility, I do not attempt to thoroughly explore its parameter 

space.  However, in order to hint at the potential this model has for simulating patterns of 

disturbance and regeneration, I will consider three simple landscapes (Fig. 2.1): one flat, 

one consisting of a simple gradient, and one a simple gradient with orthogonal periodic 

variations to simulate ridges on a larger slope.  I run simulations with absorbing boundary 

conditions for each of these landscapes using two different spatial weighting matrices, WE 

and WI, where    

 

 and WE is as defined above.  These choices of spatial weighting matrices allow for 

symmetric dependence of cell i‟s state on its neighbors, in the case of WI, and directional 

bias in this dependence in the case of WE.  Each of the six scenarios was run for 20 time 

steps on a 50 by 50 grid.  The output of each scenario consisted of a simulated time series 
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of disturbance on a 50 x 50 grid.  These time series were then analyzed using Schlicht 

and Iwasa‟s technique for mapping propagating disturbance.  From the resulting vector 

fields, I constructed streamlines.  This final pattern of streamlines was then subjected to 

the watershed scaling analysis described above.  Through this process, I can examine 

scaling relationships of patches of disturbance in output of these six scenarios.   

 

All calculations and simulations were carried out these calculations using the R statistical 

package, the R packages „spatstat‟ (Baddeley & Turner 2005) and „simecol‟ (Petzoldt & 

Rinke 2007), and the Matlab® Image Processing Toolbox  (vR2010a, Mathworks©) .   

 

Results: 

Observed Pattern 

Many treefall gap disturbances in the Monteverde study watershed tend to act as 

seeds for patches of disturbance that extend in the direction of the tradewinds.  The 

pattern of streamlines associated with the growth of these disturbed patches over the 

course of years resembles the fractal geometries seen in the formation of river drainage 

systems (Fig. 2.2).  Interestingly, not all gaps initiate propagating patches of disturbance.  

Gaps in the sheltered bottom of the study area, while large, do not tend to propagate in a 

discernable fashion.  Thus, the process driving these patterns results from an interaction 

of aerodynamics and topography.    

While the “watersheds” that constitute the pattern in Figure 2.2 appear similar to 

natural drainage networks, their width scales somewhat more slowly with their length 

than in natural river networks (H ≈ 0.667 for the “watersheds” of gap propagation; H ≈ 
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0.75-0.8 for natural river networks (Dodds & Rothman 1999)) but more quickly than 

predicted by the Scheidegger model of river formation for which H = 0.5 .  Thus, the 

scaling for the “watersheds” of gap propagation falls nicely within the range usually 

considered in river geomorphology with the scaling exponents of the Scheidegger model 

and real river networks providing lower and upper bounds, respectively.     

 

Model Output 

This model is functionally quite simple, though its parameter space is exceedingly 

large.  If we were to restrict our attention to a single landscape and a single spatial 

weighting matrix W, then the dimension of the parameter space is relatively manageable: 

each of the βi‟s contributes a single dimension resulting in essentially a three dimensional 

parameter space.  However, to consider the role of different topographies or weighting 

matrices is to open a Pandora‟s Box of possibilities.   

Despite the sharply restricted scope of my investigation of this model, the six 

simple scenarios analyzed in this study provide some interesting and compelling results.  

In each scenario, I find strong allometric relationships between the lengths and widths of 

disturbed areas (Fig. 2.4).  Moreover, the scaling relationships in the scenarios with 

directional bias in the risk of gap formation roughly match that of the Monteverde data 

(Fig 2.3), particularly in the case of anisotropic risk and flat terrain (Fig. 2.4d).  This 

indicates that this simple model is capable of reproducing similar patterns of disturbance 

and regeneration as those seen in a real montane cloudforest.   
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Discussion: 

 The presence of such a structured spatial process in gap dynamics in the 

Monteverde study area raises several interesting ecological questions.  First, are forms of 

this process driving disturbance and regeneration and, thus, large components of 

community dynamics in other forests?  It is reasonable to suppose that wind-stressed 

forests on other tropical mountaintops experience similar gap dynamics, though with 

features dependent on topography and magnitude and degree of directionality in 

windstress. It seems likely, therefore, that the sort of process revealed in this chapter and 

in the first chapter of this dissertation is operating in many montane forests and that many 

ecological implications of this process should extend to a much larger scale than 

explicitly considered in this study.   

A second question that arises from the pattern and process revealed in this study is 

that of the impact of this process on plant community and population dynamics.  As gaps 

in this forest aggregate and propagate across the landscape, the plant populations 

dependent on gaps for recruitment should respond accordingly.  Very young plants 

should cluster at the scale of individual gaps, but the pattern of somewhat older plants 

should begin to display clustering at the scale of a cluster of gaps.  Moreover, as 

disturbance in this forest flows across the landscape, germination of gap colonists should 

be concentrated at the “heads” of these patches of disturbance, while older individuals 

occupy the trailing ends.  It is difficult to see how this process should play out over time, 

but a model of gap colonist population dynamics coupled to the model for gap formation 

and propagation constructed in this chapter should allow investigation of the long term 

spatial dynamics of gap colonists in wind-stressed montane forests   
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Another interesting feature of the gap dynamics in this forest is the interplay 

between topography and windflow in the process of gap formation and subsequent 

propagation.  Both the logistic regression in Chapter 1 and the vector field of gap 

propagation constructed in this chapter indicate that gap propagation is similar to a fluid 

flow across the landscape.  “Watersheds” of gap propagation are longer and narrower 

than dendritic rivers (  with H  = 0.677 for gap propagation, as compared to        

H  ≈  .75-.8 for rivers); still, the resemblance is close enough to present interesting 

questions.  For example, topography often forces airflow into eddies at a wide array of 

scales – do patterns of disturbance and regeneration also display eddies or vortices?  This 

is a fascinating question as vortices in gap dynamics would set up similar vortices in 

populations of a wide variety of organisms.  This problem can likely be approached both 

analytically and empirically.  One potential analytical framework could be provided by 

transitioning from a stochastic cellular automaton to a partial differential equation 

framework and examining conditions under which various patterns can occur.  

The patterns of gap formation, aggregation, and propagation seen in this study 

must surely be important for the function of wind-stressed montane forests, and so a 

theoretical descriptive framework is clearly highly desirable.  The stochastic cellular 

automaton constructed in this chapter seems to be a very promising first step for 

constructing such a framework.  It is a relatively simple model that incorporates the 

factors known to influence gap formation and aggregation and that can be relatively 

efficiently simulated.  The results of simulations of this model should be able to provide 

testable hypotheses about the nature of gap dynamics in real forests.  A combination of 

this stochastic cellular automaton and regional atmospheric models that can generate 
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airflow over real topography given by Digital Elevation Models may be able to predict 

the gap dynamics of most lowland and highland forests.  The outputs of such a model 

could be readily compared with high-resolution, remotely-sensed canopy imagery.     
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CHAPTER 3 
 

Complex spatial structure in a population of Didymopanax pittieri, a tree 

of wind-exposed lower montane rain forest. 
 

Introduction: 

Examination of the spatial structure of ecological systems at various levels of 

organization can lead to important insight into the fundamental processes experienced by 

individuals, populations, metapopulations, and communities (Levin, 1992).  Moreover, 

spatial pattern can play a significant role in ecological processes including competitive 

coexistence (Lavorel et al., 1994) and transmission of disease (Brown & Bolker, 2004), 

and can have impacts that scale up to ecosystem-level  processes (Moorcroft et al., 2001; 

Pacala & Deutschman, 1995). Spatial structure within populations may result from 

dispersal (Okubo and Levin 1989, Clark et al. 1998), ecological interactions such as those 

involving symbiotes (Diez 2007) or pathogens (Janzen 1970), recruitment opportunities 

(Dovciak et al. 2001), or resource availability (Russo et al. 2005).  The last two of these 

factors are influenced by natural disturbance (Bazzaz and Pickett 1980, Denslow 1980, 

Picket and White 1985, Seabloom et al. 2005). 

The fall of individual trees affects the spatial structure of plant populations in 

forests (Watt 1923, 1947, Williamson 1975, Sherman et al. 2000, Svenning 2000, 

Dovciak et al. 2001).  The forest floor typically receives very little light, but following 

treefall light can penetrate to the forest floor (Bazzaz and Pickett 1980, Lawton 1990).  

The resulting spatiotemporal heterogeneity in available light may contribute to forest 

diversity (Grubb 1977, Denslow 1980, 1987, Levin 1992, Rees et al. 2001, Schnitzer and 

Carson 2001), since the ephemeral pulse of resources caused by treefall gaps allows for a 
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shade intolerant gap colonist niche (Grubb 1977, Bazzaz and Pickett 1980). As a result 

the availability, quality, and spatial structure of treefall gaps should strongly influence the 

spatial patterns of these populations. 

In the last thirty years spatial statistical methods that investigate point patterns, as 

discussed in (Ripley, 1981) and (Diggle, 2003), have been widely applied to plant 

populations (Atkinson et al., 2007, Getzin et al., 2006, Kenkel, 1988, Lawton & Putz, 

1988; Seidler & Plotkin, 2006, Law et al. 2009) to detect aggregation or regularity of 

individuals‟ positions as well as interspecific pattern.  Ripley‟s K, its linearization L, and 

its derivative, the pair correlation function g, are among the most commonly used spatial 

statistics, providing insight into second-order properties of spatial point patterns.  

However, these functions are only appropriate for the analysis of spatially homogeneous 

point patterns (that is, those in which there are no large scale trends in density) (Ripley 

1981, Baddeley et al., 2000, Diggle, 2003, Law et al. 2009).  This is unfortunate as 

inhomogeneity in population density is most likely the rule, not the exception, in natural 

populations.  Fortunately, recent work (Baddeley et al 2000, Law et al. 2009) has yielded 

tools such as KI, the extension of Ripley‟s K to inhomogeneous point patterns, and the 

inhomogeneous form of the pair correlation function. 

Here we use the inhomogeneous form of the pair correlation function, g(r),  to 

examine the spatial pattern of mapped locations of a population of the lower montane 

tropical cloud forest tree Didymopanax pittieri in a Costa Rican cloud forest.  We 

investigate the spatial patterns of four size classes of D. pittieri and use g to (1) test the 

null hypotheses that the locations of individuals in the four size classes are spatially 

random within the large scale trend in the population density of D. pittieri resulting from 
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specialization to windswept elfin forest ridgecrests, and (2) determine whether observed 

patterns are consistent with scales expected from the known patterns of natural 

disturbance. 

Methods: 

Study Area 

This study was conducted in the Monteverde Cloud Forest Reserve in very wet 

lower montane rain forest (sensu Holdridge, 1967) along the crest of the central 

Cordillera de Tilarán of northern Costa Rica.  The vegetation along the crest of the 

Cordillera is a complex mosaic, the character of which is largely dictated by the patterns 

of exposure to flow of the north-easterly trade winds through the mountains (Lawton and 

Dryer 1980, Clark et al. 2000).  Dwarfed forest formations (elfin forests sensu Beard 

(1955) occupying wind-swept ridge crests are interdigitated among  taller cloud forest 

stands found in protected ravines and on lee slopes.  Elfin forest stands in the central 

Cordillera de Tilarán were mapped using 1:40,000 scale aerial photographs, and an 

approximately 12 ha watershed (Fig. 3.1) on the south-eastern side of the summit of  

Cerro Centinelas (1580 m a.s.l.) was chosen as providing an accessible and representative 

example.  Forest structure changes dramatically with exposure in the watershed.   Elfin 

forest with canopy trees 5 – 10 m tall occupies the boundary ridge crests and upper 

windward slopes of the watershed, and grades into taller cloud forest with canopy trees 

15 – 27 m tall along the creek and on the lee slope (Lawton, 1982, 1984; Lawton & 

Dryer, 1980).  Dwarfed forest stature is not the only impact of windstress on this forest.  

Disturbance in the form of treefall gaps, the largest of which in this forest are 100 -200 

m
2
, strongly influences forest structure, creating a varied landscape of intact forest, newly 
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formed gaps, and vegetation in various stages of regeneration (Lawton and Putz 1988; 

Lawton, 1990).  Individual treefall gaps in this study area are aggregated into patches 35 - 

40m across, or of about 0.12 ha (Lawton and Putz 1988).  This clumping results in 

disturbed patches of forest containing gaps whose ages differ by about 1-5 years.  The 

gaps in these patches regenerate together, and the regenerating patch is a recognizable 

unit of forest structure occurring at a scale larger, by five- or ten-fold, than that of an 

individual treefall.  Thus this forest experiences a two tiered forest dynamics consisting 

of the formation and subsequent regeneration of individual gaps and patches of gaps. 

Field Methods 

 The distribution of all individuals of the Didymopanax pitteri taller than 0.5 m 

were mapped in 1977 on the crest and windward slope of the ridge forming the 

southwestern boundary of the watershed.  D. pittieri is a shade intolerant tree of montane 

rain forests in Costa Rica and western Panama (Holdridge and Poveda 1975).  In the 

Cordillera de Tilarán, D. pittieri is a common canopy tree in the elfin forests on wind-

swept ridge crests (Lawton & Dryer 1980, Lawton 1982, 1984), but also occurs more 

widely at elevations above ~1500 m as an occasional hemiepiphyte (~2 mature 

individuals ha
-1

) in the taller cloud forests of more protected areas (Williams-Linera & 

Lawton, 1995).   Regeneration of D. pittieri depends on gaps in the forest canopy 

(Lawton, 1980; Lawton and Putz, 1988).  Seedlings and small saplings of D. pittieri are 

most commonly found in epiphytic mats of bryophytes growing on upper trunks and 

limbs of canopy trees, but D. pittieri grow to maturity after saplings become established 

on nurse logs in treefall gaps by surviving the collapse of their hosts (Lawton and Putz 

1988, Williams-Linera and Lawton 1995).   
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The primary ridge crest of the study site was first surveyed with compass, 

clinometer, optical rangefinder, and tape measure, and the ridge line was marked at 10 m 

intervals and at each vertex with labeled flagging.   Then the secondary ridge crests on 

the windward side of the primary ridge were similarly surveyed and marked, as were the 

incised drainage lines in the intervening secondary valleys.  The ridge crest and 

windward slope were then thoroughly searched and each D. pittieri >0.5 m tall was 

located by distance and direction from a point on the network of surveyed lines, and 

measured for stem diameter and tree height.   Subsequently, in 1983-1984, the watershed 

was surveyed and gridded into contiguous 20x20m plots using a transit, stadium rod and 

optical rangefinders.   The D. pittieri locations were then transferred to the new 

coordinate system (Fig. 3.1), with field checks for accuracy.  Repeated measurements 

suggest that tree locations are accurate to within 1 or 2 m.     

      On windward slopes in rugged terrain windspeed generally increases with proximity 

to ridgecrests and summits (Finnegan & Brunet, 1995; Hannah et al., 1995); this study 

site is no exception (Lawton 1982).  We examine this topographic influence on exposure 

to wind by using the topographic map of the study area to determine the vertical distances 

from 1070 points in the study area to lines running 60
o
 east of north across the study 

watershed (facing into the trade wind airflow) from the crest of the southwestern (lee) 

boundary ridge to the crest of the northeastern (windward) boundary ridge.  These are, in 

essence, the vertical distances below a “roof” on the study watershed.   Since these 

distances are small on the ridgecrest where D. pittieri are abundant and large downslope 

where D. pittieri is scarce, we use the inverse of this vertical distance, here termed 

RELEV, as the measure of topographic exposure to wind.   For computational reasons 
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RELEV is multiplied by 0.002 to make the number of points generated in the simulations 

described below reasonably match the number of D. pittieri within our study area. 

Analytical Methods 

The examination of spatial point patterns is often carried out using the second 

moment function K to test the null hypothesis that a point pattern is spatially random 

(Ripley 1977, Diggle 1983).  In particular this tests if the empirical pattern is a realization 

of a Poisson point pattern with constant intensity given by the overall population density.  

The cross K function, Kij, a generalization of K to patterns in which there are several 

classes of points, is also used to investigate spatial pattern by examining interactions 

between points of different types.  However, use of K and Kij both rely on the assumption 

that the point patterns in question are spatially homogeneous.  When a pattern has non-

constant intensity, i.e., when there are large scale trends in density within the population, 

use of these functions is inappropriate and will yield misleading results.  D. pittieri are 

clearly most abundant on the wind-exposed ridgecrest and upper windward slopes and 

less abundant on lower slopes more protected from wind (Figs. 3.1 and 3.2).  In order to 

account for this inhomogeneity and to avoid the potential pitfalls of cumulative spatial 

statistics such as K (Loosmore and Ford 2004, Law et al. 2009) we used the 

inhomogeneous pair correlation function g (Law et al. 2009) and its generalization gij to 

multitype point patterns used to examine placement of D. pittieri saplings (<5 cm stem 

diameter), poles (5 – 10 cm dbh), adults (10 -20 cm dbh), and large adults (>20 cm dbh). 

The point patterns under examination were assumed to be second-order intensity-

reweighted stationary and isotropic.  This is a much less restrictive assumption than 
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spatial homogeneity, and allows the first moment, or density, of the point patterns to vary 

in space (Baddeley et al. 2000).   

.  For a spatially inhomogeneous point pattern, values of r such that  g(r) > 1 

indicate that points have, on average, more neighbors within distance r than would be 

expected for an inhomogeneous Poisson process with the same intensity.  That is, they 

are aggregated, or clumped, in a manner beyond that dictated by the large scale 

inhomogeneity.  Similarly, values of r for which g(r) < 1 are indicative of repulsion 

between points, or evenness of distribution.  gij(r) > 1
  
indicates that type i individuals 

have more neighbors within r of type j than expected at random, having taken into 

account large scale trends in population density.  The converse interpretation holds when 

gij (r) < 1. 

As with other non-parametric spatial methods, use of g and gij are prone to edge 

effects dependent on the geometry of the observation window (Diggle, 2003).  We 

implemented the “border” edge correction provided in the R package Spatstat (Baddeley 

& Turner 2005).   

To avoid the problem of using the same point pattern data for both estimating the 

first order intensities and estimating g,  we first describe large scale inhomogeneity by  

using a Gaussian smoothing kernel with bandwidth  = 30m to create a surface from the 

RELEV data.  We then evaluate that surface at the locations of the D. pittieri for each 

size class.  Then we use the same smoothing process to create an inhomogeneous 

(RELEV-weighted) D. pittieri density surface for each size class.  These surfaces thus 

account for the large scale trend in the D. pittieri population driven by topography and 
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wind stress. Figure 3.2 and 3.3 suggest that this use of RELEV provides a reasonable 

description of the large scale spatial trends in the D. pittieri population.  

We calculated gij for each of the sixteen combinations of the four D. pittieri size 

classes.  Confidence envelopes were derived from 99 simulations of the inhomogeneous 

Poisson process with four types of points with first-order intensities given by RELEV.  

All analyses were carried out using the R package Spatstat (Baddeley & Turner 2005).   

Results: 

 Within the 5.2 ha study area there were 515 D. pittieri – 145 saplings, 66 poles, 

121 adults, and 183 large trees.  Topography and wind exposure drive a large scale trend 

in D. pittieri density.   Simple visual examination of the mapped positions of D. pittieri 

individuals (Fig. 3.1) shows, for each size class, an increase in density going up the 

windward slope of the study area.  Dividing the landscape into 2.5 m wide relative 

elevation (RELEV) classes and calculating the D. pittieri density in each, yields the 

regression of density against RELEV shown in Figure 3.2 ((number/100m
2
) = -0.1603 

log(midpoint of RELEV class (m) + 1.0217; F=22.8, df=6, p=0.003, R
2
=0.79). 

This large scale pattern in the D. pittieri population is clearly related to the specialization 

of D. pittieri to elfin forest conditions (Lawton 1982, 1984).   

In order to examine the local pattern of this D. pittieri population within the large 

scale trend shown in Figure 3.2 we examine the null hypothesis that the observed pattern 

is a realization of an inhomogeneous Poisson process with four classes of points, given 

by the D. pittieri size classes, and inhomogeneity as described by the wind-exposure 

variable RELEV.  That is, that D. pittieri are randomly distributed within the large scale 

trend dictated by wind exposure. 
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gij   reveals a variety of interesting spatial patterns within the population level 

trend driven by exposure to wind.  Each of the four size classes depart from the random 

expectation in these analyses, but the nature of the departure varies markedly among size 

classes. 

  Use of the inhomogeneous gij reveals nonrandom spatial structure in D. pittieri 

saplings within the large-scale population level trend.  gij exceeds the envelope of 99 

simulations, indicating that D. pittieri saplings are clumped, in the sense that they have 

more neighboring saplings within 10 m than expected from the inhomogeneous Poisson 

process in which D. pittieri density increases with wind exposure (Fig. 3.4).    Note that 

gis a  function of radial distance, but environmental patchiness is often most easily 

thought of in terms of patch area.    In this case the gij imply clusters of saplings ~ 20 m 

across, that is, patches of ~300 m
2
.  This in turn implies a patchiness in the conditions 

required for sapling establishment.  

 In addition, saplings have fewer D. pittieri poles within ~2m, but more poles 

within 3-10 (Figure 3.4b), and fewer large trees within 25-35 m (Figure 3.4d) than 

expected from the inhomogeneous Poisson process.    

   D. pittieri 5– 10 cm dbh (poles) have, on average, the number of neighboring 

poles expected from the inhomogeneous Poisson process (Figure 3.5b).  That is, within 

the large scale trend dictated by topography and wind exposure, poles appear randomly 

dispersed.   The numbers of neighboring D. pittieri 10-20 cm dbh, and >20 cm dbh are 

also roughly as expected though there are more large trees within 25-35m of poles than 

expected.  (Figures 3.5c, 3.5d). However, poles do have on average fewer neighboring 

saplings within 2m and more saplings within 3-7 m than expected (Figure 3.5a). 
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 D. pittieri 10-20cm dbh have in general the number of neighbors of all size 

classes expected by chance within the large scale population trend (Figure 3.6a-d), 

though, as with the other size classes, D. pittieri 10-20cm dbh have fewer large trees 

within 25-35m than expected .  Large adults with dbh >20cm have the number of 

neighboring saplings expected given the large scale population trend (Figure 3.7a), but 

fewer neighbors of all other size classes within ~30m (Figures 3.7b-d).  Large trees then 

are more regularly distributed than expected given the large scale population trend in 

density.   

Discussion: 

Large scale trend in density 

Wind stress and treefall produce the large scale trend in D. pittieri density, as well 

as the more local population structure superimposed on that trend.  There are two 

possible reasons for the large scale, ridge-ravine trend in D. pittieri density shown in 

Figure 3.2.   

First, the likelihood of D. pittieri successfully colonizing gaps may decline in the 

transition from ridgecrest elfin forest to the taller cloud forest on the more sheltered 

slopes below.  When the short and sturdy trees of the elfin forest fall, their crowns are 

only partially crushed, so gaps contain more-or-less intact, but on edge crowns (Lawton 

1990).  As a result many hemiepiphytes, including D. pittieri seedlings and saplings, 

commonly survive the fall of their elfin forest hosts (Lawton & Putz 1988).  In contrast, 

when taller trees lower on the slope fall, their crowns hit the ground hard, shattering into 

a pile of debris 1-2 m thick in which hemiepiphytes seldom survive (Lawton 1990).  So 
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the peculiar manner in which D. pittieri colonizes treefall gaps may limit establishment of 

juvenile D. pittieri on the lower slope of the study area.    

Second, D. pittieri saplings in gaps that are not exposed to high winds may be 

overtopped in early gap-phase forest regeneration by saplings of faster growing shade 

intolerant species.   D. pittieri saplings with a wood density of 0.5-0.7 gm/cm
3
 appear to 

be better suited for windy ridge crests than shade-intolerant species with less dense, and 

thus probably weaker, wood, such as Cecropia polyphlebia and Guettarda poasana 

(Lawton 1984).  Although present as saplings in many elfin forest treefall gaps, these 

latter two species seldom survive to become members of mature-phase elfin forest.  On 

the other hand,  due to trade-offs in investments in wood strength and growth rate, D. 

pittieri may be competitively excluded by shade-intolerant species such as C. polyphlebia 

and G. poasana in gap-phase regeneration of the taller, more sheltered forest lower on the 

slopes of the study watershed.    

Small scale pattern 

The local spatial pattern observed within the large scale trend in D. pittieri 

population density appears to be related to the spatial distribution of treefall gaps, to 

colonization of the gaps, and to competitive thinning in the course of gap-phase 

regeneration.   Clumping of D. pittieri saplings reflects both the nature of gap formation 

and gap colonization, while the distribution of larger individuals reflects subsequent 

winnowing as some trees die and others grow to maturity.   

  The small end of this clumping of saplings is at the scale of elfin forest treefall 

gaps.  Since D. pittieri is shade intolerant, the establishment of saplings occurs in canopy 

gaps, which in this forest are largely due to the snapping or uprooting of trees (Lawton 
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and Putz 1988).  Although most gaps are small (75% < 30 m
2
 ) more than 45% of gap 

area is contributed by those gaps > 100 m2 (Lawton and Putz 1988).    In these larger 

gaps several D. pittieri saplings are commonly seen on nurse logs, having survived the 

fall of the tree in which they were hemiepiphytes.  However, that can only explain a 

surfeit of neighbors within at most 6-10m. But no elfin forest gaps are >250 m
2
, so the 

fact that  D. pittieri saplings also have more neighbors than expected within 12m, that is, 

in a ~450 m2 area, (Fig. 3.4) may not be explained entirely by clustering within 

individual gaps.  However, gaps in this elfin forest are themselves aggregated in that they 

have more neighboring gaps of similar age (within 3-5 years) with centers within 17-20 

m than expected (Lawton & Putz, 1988).  So the clumping of saplings at a spatial scale 

beyond that of individual gaps probably reflects this patchiness of forest dynamics due to 

clumping of individual treefalls.   

Saplings also have more neighboring poles within 3-10m than expected, though 

less than expected within ~2m. Since gaps of similar, but varying age occur in patches, as 

described above, it is not surprising that some D. pittieri in the older gaps in a cluster 

should have grown to pole size, while saplings occupy the younger gaps in the same 

patch of gaps.  Moreover, saplings within 2m of poles may be in danger of mortality due 

to competition from the larger poles, thus potentially accounting for the smaller number 

of saplings within 2m of poles.  These patterns are consistent with the rapid regeneration 

within elfin forest gaps.  Within 5 years of formation, gaps are filled by a regenerating 

thicket 2-4m tall and leaf area index has recovered to roughly that of mature forest 

(Lawton and Putz 1988).  In 5 years, 63% of saplings die, 23% remain saplings, and 14% 

grow to become poles (Lawton, 1980), so the excess number of poles near saplings, 
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relative to that expected from the large-scale trend in density, probably results from the 

processes of gap-phase regeneration and small scale competition in clumps of gaps.   

Similarly the aggregation of saplings within 3 -7 m of poles (Fig. 3.5) and the 

unexpectedly small number of poles within 2m of saplings reflects the early stages of 

competition in which the most fortunate saplings in a cluster outgrow their neighbors.  

Subsequent mortality during gap-phase regeneration of the least fortunate saplings within 

individual gaps results in loss of aggregation at the gap scale among surviving poles.  

Saplings have fewer neighboring adult and large D. pittieri within ~25-35m than 

expected from the relationship of their density to the gradient of topography and wind 

exposure.  There are two plausible reasons for this paucity of large neighbors.  First, D. 

pittieri >20 cm dbh tend to regular distribution at these scales (Figs. 3.6, 3.7; discussed 

below).  Second, and more importantly, clusters of gaps imply that a patch of forest is 

being winnowed by the fall of canopy trees.  Other things being equal, this should reduce 

the number of large D. pittieri in the areas in which D. pittieri saplings are becoming 

established. 

So why are poles not aggregated, like saplings, at the scale gaps are?  There are 

three factors to consider.  First, the clustering of gaps that formed in a 3-5 year time 

window appears to be due to an initial gap increasing the likelihood of subsequent fall of 

neighboring trees (Young & Hubbell, 1991).  Second, once a patch of forest has 

deteriorated due to such sets of neighboring treefalls, subsequent treefalls in the now 

regenerating patch are unlikely.  The result is spatial displacement of these patches of 

regenerating gaps.  The pole size class includes trees 4-15 years old (Lawton 1980), so 

several episodes of non-overlapping regenerating patches are included in the time-frame 
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of the point pattern of poles.  Due to gap aggregation, the pattern of poles at the 10-40m 

scale may be well described by a Neyman-Scott or Matérn-like cluster process in which 

gap cluster centers are inhibited from occurring 30-40m from other gap cluster centers.  If 

so, the poles occupying these gap clusters would necessarily exhibit regularity at this 

scale. 

 This reasoning extends to the patterns of trees in the two larger size classes.  

Aggregation of saplings along with regular dispersion of larger or older trees 

seems to be common to many forests (see e.g., Dovciak et al., 2001; Sterner et al., 1986).  

The discordance of fine scale spatial pattern for different size classes observed in this 

study is consistent with previous work in that the aggregation of saplings diminishes in 

larger size classes.  While the thinning of sapling clusters may in general be due to 

competition, disease, or herbivory, a random thinning alone would not result in regularity 

(Pielou 1968), although density dependent mortality might.  In the case of D. pittieri in 

Costa Rica elfin forests, it appears that patch dynamics also contributes to the regularity 

seen in the distribution of poles and larger trees.  This is an important point as it 

highlights the role of pattern of disturbance, in addition to colonization of disturbance and 

subsequent regeneration, in the formation of spatial pattern within tree populations.  

Moreover, this sort of patch dynamics differs from those typically discussed in that the 

patches consist not of a single regenerating gap, but rather a cluster of gaps forming a 

larger regenerating patch. 
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CHAPTER 4 
 

Forests shape much of our environment.  They are home to many of the planet‟s 

creatures and play an important role in regulating the planet‟s hydrological processes 

(McCulloch & Robinson 1993), nutrient cycling (Whittaker et al. 1979), and surface 

energy budget (Quattrochi & Luvall 1999, Pielke et al. 2002).  Moreover, forests are 

involved in complex feedbacks with the atmosphere and are thus critical elements of 

global climate change (Bonan 2008), influencing the  cycling of atmospheric carbon ( 

Clark 2004)  and local patterns of evapotranspiration and cloud formation (Lawton 2001, 

Ray et al. 2006, Bonan 2008 and citations therein).  Tropical forests are particularly 

important for global processes as they contain roughly a quarter of terrestrially bound 

carbon and account for roughly a third of the planet‟s net primary productivity (Bonan 

2008).  Forest ecosystems are home to a huge proportion of global biodiversity and many 

of the planet‟s biodiversity hotspots are located in tropical forests (Myers et al. 2000, 

Bonan 2008). 

Because forests play such vital roles in global processes, it is important to 

understand their structure and function.  Treefalls are one of the most important players 

in the cycles of disturbance and regeneration that shape forests and their constituent 

species, and as such it is critical to understand the dynamics of treefall gap formation and 

regeneration.  In this dissertation I have investigated the organization of treefall gaps in 

space and time.  In the first chapter, I developed a local causal story for spatial structure 

in gaps in montane tropical forests. In Chapter 2 I found an emergent fractal pattern in the 

long term spatial dynamics of gap formation and regeneration;  I also developed a 
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stochastic cellular automaton for prediction and simulation of gap dynamics across a 

wide array of landscapes and windstress regimes, which can be coupled with regional and 

global scale climate models and local scale vegetation models to predict local forest 

dynamics as a function of global and regional climates and local species composition.  

Finally, in Chapter 3 I investigated the spatial structure of a population of the treefall gap 

colonist tree species Didymopanax pittieri and I showed that the spatial population 

dynamics of this representative gap colonist species are strongly influenced by the spatial 

structure among the gaps that they occupy.   

The picture of montane tropical forest dynamics that emerges from the three 

chapters of this dissertation is one of large scale pattern emerging from relatively simple 

local scale processes.  On windswept ridgecrests the formation of a single gap strongly 

increases the likelihood of future gap formation downwind.  That one tree falling may 

make its neighbors more vulnerable is a simple observation though it is hard to detect in 

data with small temporal scope.  However, this fact stands out clearly in the 25 year 

timeseries of gap formation in my study area.  This simple increase in risk of treefall 

downwind of extant gaps leads to very interesting forest dynamics: gaps aggregate into 

disturbed patches that grow and flow across the landscape leading to an emergent fractal 

pattern (Fig. 2.2 c) of disturbance and regeneration. 

Broader Impacts and Future Directions 

The work presented in this dissertation indicates that a general theory of gap 

driven forest dynamics is possible.  The Ising model of ferromagnetism (Reichl 2009) has 

been used with some success in previous work toward developing a theoretical 

framework for the understanding this sort of forest dynamics.  However, most of this 
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work  has used relatively short time series and has concentrated on lowland tropical forest 

(Hubbell & Foster 1987, Kubo et al. 1996, Katori 1998) in which extant treefall gaps 

appear not to increase the risk of subsequent disturbance (Jansen et al. 2008).  The model 

described in Chapter 2 of this dissertation shares several important characteristics with 

the Ising model, perhaps most importantly the role of neighbors in determining a site‟s 

state.  Still, the model presented in Chapter 2 may be more appropriate for forests in 

general as forest dynamics do not have an analogue of temperature, a critical parameter in 

the Ising model.   

The model presented in Chapter 2 was developed using data from a quarter of a 

century and provides a flexible and computationally tractable framework for the 

development of a general theory of gap driven forest dynamics by informing both 

computational and analytical insights.  It can provide the gap dynamics layer for 

computational models of shade tolerant and intolerant plant species but can also provide 

the starting point for generalization into analytically tractable models such as partial 

differential equations or Spatial Moment Equations (Bolker and Pacala 1999).  In either a 

computational or analytical framework, this model is likely to provide important insights 

into many aspects of forest ecology.  For example, some locations in the Eastern portion 

of the Monteverde study area are likely to see more repeated disturbance than locations in 

the Western component (Fig. 2.2 c) and thus locations not very distant in space may have 

substantially different species composition and rates of plant growth.  Moreover, 

abundance and activity levels of insects, decomposers, and birds will be increased in the 

propagating patches of disturbance revealed in Chapters 1 and 2.  Thus, much of a 
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forest‟s ecological dynamics will display fractal patterns such as that shown in Figure 

2.2. 

The Monteverde study watershed is typical of mountaintops in the Cordillera de 

Tilarán and is similar to locations in many windswept tropical mountaintops across the 

world.  It is likely, therefore, that gap dynamics similar to those seen in this dissertation 

are present in many of the world‟s tropical mountains.  It may be possible to detect such 

patterns by using high-resolution canopy images and image processing techniques and 

therefore it may be possible to produce maps of locations that display similar forest 

dynamics.  Moreover, once such areas are located, the model constructed in Chapter 2 if 

supplied with a Digital Elevation Model for the area could simulate that area‟s 

disturbance regime, making predictions about species composition, turnover rates, and 

potential response to global climate change.   
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Summary of Logistic Regression Analysis for Variables Predicting Treefall Gap 

Formation 

Model χ
2
 = 8.29 df =2  p=.007 

 

Risk Factor  e
β 

95% CI Z Pr(>|z|)  

Intercept  0.0254 0.0206- 0.0312 -17.71 <.0001
***

 

VEGHT  0.9631 0.9461- 0.9804 -2.11 0.03
*
 

Earea  1.0029 1.0015- 1.0043 2.07 0.03
*
 

Note: 
*
p<.05, 

**
p<.01, 

***
p<.001      

Table 1.1. Logistic regression analysis of factors influencing risk of treefall in the 

Monteverde, Costa Rica study watershed indicate that vegetation height, local 

disturbance history, as measured by number of gaps within 20 m in the previous 3 years, 

and slope predict the likelihood of gap formation.  In particular, risk of gap formation 

decreases with increasing vegetation height and increases with increasing slope and local 

intensity of disturbance in the previous 3 years.  Interestingly, it is not aggregate local 

disturbance history (NEARGAPS) that predicts the risk of treefall, but rather previous 

disturbance to the East.  This directional bias in risk appears to reflect the direction of the 

prevailing winds in the study area. 

 



 

 70 

 

Figure 1.1. The Monteverde study area is a 12ha watershed in Costa Rica‟s Cordillera de 

Tilarán (a) that abuts the steep headwall of the Peñas Blancas valley (b).  Tradewinds 

sweep up out of the Peñas Blancas valley, resulting in a gnarled and stunted vegetation 

along ridgecrests.  These winds cause frequent treefalls (c) which provide important 

environmental heterogeneity for this forest‟s diverse flora. 
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Figure 1.2. (a) vegetation height (m) with  the 10m grid used in the logistic regression 

analysis of gap formation and (b) Slope (degrees) in the Monteverde, Costa Rica study 

watershed and Axes indicate position in the study area coordinate system.  Smoothing of 

vegetation height and slope was carried out with a Gaussian smoothing kernel with radius 

r=10 m for display. 
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Figure 1.3. (a) Smoothed gap area in the Monteverde, Costa Rica study watershed.  Gap 

area differs significantly between the study area‟s leeward slope, ravine bottom, and 

windward slope (ANOVA, df=2, F=20.047, p<.001).  A strong gradient in gap area in 

this watershed may contribute to this forest‟s community structure.  Gap area was 

smoothed using Gaussian kernel smoothing with a kernel radius of 20 m for display.  

Most observed gaps were small (mean 47.15±55.14 m
2
) though variation in gap size was 

substantial and some gaps were as small as 5 m
2
 or as large as ~350m

2
 (b).  Risk of gap 

formation is strongly influenced by both vegetation height and the amount of previous 

disturbance to the East.  (c) Illustrates this relationship for quintiles of vegetation height. 
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Figure 1.4. Plots of g(r)  (solid lines) for gaps on the lee slope, the windward slope, and 

in the protected bottom of the Monteverde study watershed along with simulation 

envelopes of 99 simulations of complete spatial randomness (dashed lines).   Values of r 

for which g(r) exceeds the upper boundary of the simulation envelopes  are distances at 

which the observed pattern is more aggregated than expected at random.  Gaps on the lee 

slope and in the watershed bottom are randomly dispersed but those on the windward 

slope have significantly more neighbors within ~17m than expected for a random 

process. 



 

 74 

 

Figure 1.5. Plots of gi3(r)  (solid lines) for the windward slope of the Monteverde study 

watershed along with simulation envelopes of 99 simulations of multitype complete 

spatial randomness with no interactions among types (dashed lines).   gi3(r) yields 

information about the number of gaps of size class i (i=1 for small gaps and i=2 for 

intermediate sized gaps) within r meters of gaps of the largest size class (i=3).  Departure 

from the simulation envelope indicates that large gaps have more neighboring small gaps 

within ~5m than expected at random.  Thus, small gaps in this watershed tend to 

aggregate around larger gaps. 



 

 75 

 

Figure 1.6. Directional variograms of gap density (i.e., number of gaps per m
2
) in the 

directions SW and S-SW (which include NE and N-NE respectively by symmetry) do not 

saturate within 30m whereas those for all other directions have reached their sill within 

this distance.  This indicates that clusters of gaps in the Monteverde study watershed tend 

to be spread out in the direction of the prevailing winds which come from the NE/N-NE. 
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Figure 2.1. The simple gradient (a) and periodic gradient (b) used as terrain for the 

stochastic cellular automaton simulations.  In the model forumlation, locations with 

smaller terrain values are at greater risk of being disturbed, corresponding to the 

increased exposure to wind with decreased distance below a mountain‟s peak.  The 

periodicity of (b) was introduced to emulate secondary ridges laying orthogonal to a 

primary ridge. 
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Figure 2.2. (a)  The Monteverde, Costa Rica study area with locations of some 

representative gaps (marker size is a scale from ~12m
2
 – 300m

2
) and a 1ha grid. 

 

Topography is shown by 5 m contour intervals. (b) A simulation of the Scheidegger 

model of river formation with one river basin highlighted in blue for display.  (c) 

Streamlines of the vector field of gap propagation along with an up-close inset (d) 

showing some of the vectors in the vector field. 
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Figure 2.3. The length and width of the “watersheds” of propagating disturbance appear 

roughly allometric, though a linear fit might be more appropriate.  However, I am 

explicitly comparing allometric relationships.  The scaling exponent of this power law 

relationship is H = 0.677 which lies between the exponent for the Scheidegger model of 

river formation (H = 0.5) and those seen in real river networks (H ≈ 0.75-0.8). 
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Figure 2.4. In each of the six simulations, width and length of simulated “watersheds” of 

propagating disturbance display power law relationships.  Interestingly, the scaling 

relationship closest to that observed in the Monteverde study area was occurred in the 

simulation that incorporated uniform terrain and anisotropic risk of propagation.  

Simulations such as these should be able to predict the long term pattern of gap 

propagation for a wide variety of landscapes and degrees of directionally biased stress.
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Figure 3.1. Maps of the study area in Monteverde, Costa Rica showing the distributions 

of D. pittieri saplings (≤5 cm diameter), poles (5 – 10 cm diameter), adults (10 – 20 cm 

diameter), and large adults (> 20 cm diameter) clockwise from top left.  The observation 

window for spatial analyses is outlined on the map of sapling distribution.  Topography is 

shown by 5 m contour intervals.  The grid is 100 m. 
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Figure 3.2. D. pittieri in the Monteverde, Costa Rica study watershed display a large 

scale trend in population density in which density increases with increasing wind 

exposure.  This pattern is born out by a regression of overall D. pittieri density in relative 

elevation bands on relative elevation (distance below a “roof” over the watershed) 

describing 79% of the variance in D. pittieri density (F=22.8, df=6, p=.003, R
2
=.79). 
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Figure 3.3. The topographic measure of wind exposure RELEV smoothed with a 30m 

Gaussian smoothing kernel and normalized to have maximum intensity 1 for display 

purposes.  The general trend corresponds to those of the empirical patterns of the D. 

pittieri size classes in the Monteverde, Costa Rica study watershed. 

 



 

 83 

 

Figure 3.4 g1i(r) showing the departure from expectation in average number of D. pittieri 

saplings (top left), poles (top right), adults (bottom left), and large trees (bottom right) 

within r m of any given sapling once the large scale population trend has been taken into 

account.  Dashed lines indicate boundaries of the simulation envelope constructed from 

99 simulations of an inhomogeneous Poisson process with inhomogeneity given by 

RELEV. 
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Figure 3.5. g2i(r) showing the departure from expectation in average number of D. 

pittieri saplings (top left), poles (top right), adults (bottom left), and large trees (bottom 

right) within r m of any given sapling once the large scale population trend has been 

taken into account.  Dashed lines indicate boundaries of the simulation envelope 

constructed from 99 simulations of an inhomogeneous Poisson process with 

inhomogeneity given by RELEV. 
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Figure 3.6. g3i(r) showing the departure from expectation in average number of D. 

pittieri saplings (top left), poles (top right), adults (bottom left), and large trees (bottom 

right) within r m of any given sapling once the large scale population trend has been 

taken into account.  Dashed lines indicate boundaries of the simulation envelope 

constructed from 99 simulations of an inhomogeneous Poisson process with 

inhomogeneity given by RELEV. 
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Figure 3.7. g4i(r) showing the departure from expectation in average number of D. 

pittieri saplings (top left), poles (top right), adults (bottom left), and large trees (bottom 

right) within r m of any given sapling once the large scale population trend has been 

taken into account.  Dashed lines indicate boundaries of the simulation envelope 

constructed from 99 simulations of an inhomogeneous Poisson process with 

inhomogeneity given by RELEV.
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APPENDIX B 
 

R CODE FOR GAP MODEL 
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#Gap CA Script for implementation in R package simecol# 

############################################### 

 

#Make the new class from simecol base object 

 

setClass("gridriskModel", 

        representation( 

            parms = "list", 

            init = "list"   #init is a list of 4 matrices "gaps", "tau", "dir.matx", and "dir.maty" 

as well as a point pattern of cell centers 

            ), 

        contains = "simObj" 

        ) 

 

#Define the model object 

 

gapCA<-new("gridriskModel", 

    main = function(time, init, parms) { 

        init<-closure(init,parms) 

        init<-newgaps(init,parms) 

        init                                #sim gives matrix with integers 0<i<closure.age, where 0 = 

intact site 

        }, 

    equations = list( 

        euclid<-function(x){ 

            sqrt(x[1]^2+x[2]^2) 

        }, 

        mat.euclid<-function(X,Y){ #make matrix of norms of vectors with x & y coords 

given in matrices X & Y 

            A<-X 

            for (i in 1:dim(A)[1]){ 

                for (j in 1:dim(A)[2]){ 

                    A[i,j]<-euclid(c(X[i,j],Y[i,j])) 

                    } 

                } 

                A 

                }, 

        is.wholenumber <-function(x, tol = .Machine$double.eps^0.5){ 

            abs(x - round(x)) < tol 

            }, 

         pos.part<-function(x){ 

                    if (x>=0) {tmp<-x} 

                    else tmp<-0 

                    tmp 
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                    }, 

        closure<-function(X,parms){ 

            with(parms,{ 

                m<-nrow(X$gaps) 

                n<-ncol(X$gaps) 

                X$gaps<-ifelse(X$gaps>=closure.age,0,X$gaps) 

                dim(X$gaps)<-c(m,n) 

                X$gaps<-as.matrix(X$gaps) 

                X 

                }) 

            }, 

        newgaps<-function(X,parms){ 

            with(parms,{ 

                m<-nrow(X$gaps) 

                n<-ncol(X$gaps) 

                tmp1<-ifelse(X$gaps>0,X$gaps+1,X$gaps) 

                tmp2<-ifelse(X$gaps>0,1,0) 

                dim(tmp2)<-c(m,n) 

                tmp2<-as.matrix(tmp2) 

                nb<-neighbors(tmp2,wdist=parms$W) 

                nb<-ifelse(X$gaps>0,0,nb) 

                dim(nb)<-c(m,n) 

                nb<-50*nb 

                tmp<-b0*matrix(1,nrow=m,ncol=n)+b1*terrain+b2*nb    #linear combo 

                f<-function(x){1/(1+exp(-x))}                       #The function 

                P<-apply(tmp,c(1,2),f)                              #Changing the P into matrix of p_ij 

 

                for (i in 1:m){ 

                    for (j in 1:n){ 

                        P[i,j]<-rbinom(size=1,n=1,prob=P[i,j]) 

                        } 

                    }                                      #P is binary after coin flips 1=newgap 0=nochange 

                dim(P)<-c(m,n) 

 

                X$gaps<-tmp1+P 

                X$tau<-ifelse(X$gaps==1,0,X$tau+1)                  #Tau updated to tell time 

since last disturbed 

                dim(X$tau)=c(m,n) 

 

#############Calculating the direction vector weightings 

 

                for (i in 2:(m-1)){ 

                    for (j in 2:(n-1)){ 

                       tmp[i,j]<- pos.part((X$tau[i,j]-X$tau[i-1,j-1])) +  pos.part((X$tau[i,j]-

X$tau[i-1,j]))+ pos.part((X$tau[i,j]-X$tau[i-1,j+1])) 
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                            +  pos.part((X$tau[i,j]-X$tau[i,j-1])) +  pos.part((X$tau[i,j]-

X$tau[i,j+1])) +  pos.part((X$tau[i,j]-X$tau[i+1,j-1])) 

                            +  pos.part((X$tau[i,j]-X$tau[i+1,j])) +  pos.part((X$tau[i,j]-

X$tau[i+1,j+1])) 

                        } 

                    } 

                 for (i in 2:(m-1)){ 

                   tmp[i,1]<- pos.part((X$tau[i,1]-X$tau[i-1,1]))+  pos.part((X$tau[i,j]-X$tau[i-

1,2]))+ pos.part((X$tau[i,j]-X$tau[i,2])) 

                            +  pos.part((X$tau[i,j]-X$tau[i+1,1]))+  pos.part((X$tau[i,j]-

X$tau[i+1,2])) 

                     } 

 

                for (i in 2:(m-1)){ 

                    tmp[i,n]<- pos.part((X$tau[i,n]-X$tau[i-1,n-1])) +  pos.part((X$tau[i,n]-

X$tau[i-1,n]))+ pos.part((X$tau[i,n]-X$tau[i,n-1])) 

                            +  pos.part((X$tau[i,n]-X$tau[i+1,n-1])) +  pos.part((X$tau[i,n]-

X$tau[i+1,n])) 

                     } 

                for (j in 2:(n-1)){ 

                   tmp[1,j]<-pos.part((X$tau[1,j]-X$tau[1,j-1])) + pos.part((X$tau[1,j]-

X$tau[1,j+1])) + pos.part((X$tau[1,j]-X$tau[2,j-1])) 

                            + pos.part((X$tau[1,j]-X$tau[2,j])) + pos.part((X$tau[1,j]-

X$tau[2,j+1])) 

                     } 

                 for (j in 2:(n-1)){ 

                    tmp[m,j]<-pos.part((X$tau[m,j]-X$tau[m-1,j-1])) + pos.part((X$tau[m,j]-

X$tau[m-1,j])) + pos.part((X$tau[m,j]-X$tau[m-1,j+1])) 

                            + pos.part((X$tau[m,j]-X$tau[m,j-1])) + pos.part((X$tau[m,j]-

X$tau[m,j+1])) 

                     } 

                tmp[1,1]<-pos.part((X$tau[1,1]-X$tau[1,2]))+pos.part((X$tau[1,1]-

X$tau[2,1]))+pos.part((X$tau[1,1]-X$tau[2,2])) 

                tmp[m,1]<-pos.part((X$tau[m,1]-X$tau[m-1,1]))+pos.part((X$tau[m,1]-

X$tau[m-1,2]))+pos.part((X$tau[m,1]-X$tau[m,2])) 

                tmp[1,n]<-pos.part((X$tau[1,n]-X$tau[1,n-1]))+pos.part((X$tau[1,n]-

X$tau[2,n-1]))+pos.part((X$tau[1,n]-X$tau[2,n])) 

                tmp[m,n]<-pos.part((X$tau[m,n]-X$tau[m-1,n-1]))+pos.part((X$tau[m,n]-

X$tau[m-1,n]))+pos.part((X$tau[m,n]-X$tau[m,n-1])) 

 

 

                tmp<-ifelse(tmp>0,1/tmp,0) 

                dim(tmp)<-c(m,n) 
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#############Calculating the direction vectors 

                for (i in 2:(m-1)){ 

                    for (j in 2:(n-1)){ 

                        X$dir.matx[i,j]<- pos.part((X$tau[i,j]-X$tau[i-1,j-1]))*(i-i-1) +  

pos.part((X$tau[i,j]-X$tau[i-1,j]))*(i-i-1)+ pos.part((X$tau[i,j]-X$tau[i-1,j+1]))*(i-i-1) 

                            +  pos.part((X$tau[i,j]-X$tau[i,j-1]))*(i-i) +  pos.part((X$tau[i,j]-

X$tau[i,j+1]))*(i-i) +  pos.part((X$tau[i,j]-X$tau[i+1,j-1]))*(i-i+1) 

                            +  pos.part((X$tau[i,j]-X$tau[i+1,j]))*(i-i+1) +  pos.part((X$tau[i,j]-

X$tau[i+1,j+1]))*(i-i+1) 

 

                        X$dir.maty[i,j]<- pos.part((X$tau[i,j]-X$tau[i-1,j-1]))*(j-j-1) +  

pos.part((X$tau[i,j]-X$tau[i-1,j]))*(j-j)+ pos.part((X$tau[i,j]-X$tau[i-1,j+1]))*(j-j+1) 

                            + (X$tau[i,j]-X$tau[i,j-1])*(j-j-1) + (X$tau[i,j]-X$tau[i,j+1])*(j-j+1) + 

(X$tau[i,j]-X$tau[i+1,j-1])*(j-j-1) 

                            +  pos.part((X$tau[i,j]-X$tau[i+1,j]))*(j-j) +  pos.part((X$tau[i,j]-

X$tau[i+1,j+1])*(j-j+1)) 

                        } 

                    } 

 

                for (i in 2:(m-1)){ 

                    X$dir.matx[i,1]<- pos.part((X$tau[i,1]-X$tau[i-1,1]))*(i-i-1) +  

pos.part((X$tau[i,j]-X$tau[i-1,2]))*(i-i-1)+ pos.part((X$tau[i,j]-X$tau[i,2]))*(i-i) 

                            +  pos.part((X$tau[i,j]-X$tau[i+1,1]))*(i-i+1) +  pos.part((X$tau[i,j]-

X$tau[i+1,2]))*(i-i+1) 

                     X$dir.maty[i,1]<- pos.part(X$tau[i,1]-X$tau[i-1,1])*(1-1) +  

pos.part((X$tau[i,j]-X$tau[i-1,2]))*(1-2)+ pos.part((X$tau[i,j]-X$tau[i,2]))*(1-2) 

                            +  pos.part((X$tau[i,j]-X$tau[i+1,1]))*(1-1) +  pos.part((X$tau[i,j]-

X$tau[i+1,2]))*(1-2) 

                     } 

 

                for (i in 2:(m-1)){ 

                    X$dir.matx[i,n]<- pos.part((X$tau[i,n]-X$tau[i-1,n-1]))*(i-i-1) +  

pos.part((X$tau[i,n]-X$tau[i-1,n]))*(i-i-1)+ pos.part((X$tau[i,n]-X$tau[i,n-1]))*(i-i) 

                            +  pos.part((X$tau[i,n]-X$tau[i+1,n-1]))*(i-i+1) +  pos.part((X$tau[i,n]-

X$tau[i+1,n]))*(i-i+1) 

                     X$dir.maty[i,n]<- pos.part((X$tau[i,n]-X$tau[i-1,n-1]))*(n-n-1) +  

pos.part((X$tau[i,n]-X$tau[i-1,n]))*(n-n)+ pos.part((X$tau[i,n]-X$tau[i,n-1]))*(n-n-1) 

                            +  pos.part(X$tau[i,n]-X$tau[i+1,n-1])*(n-n-1) +  pos.part((X$tau[i,n]-

X$tau[i+1,n]))*(n-n) 

                     } 

                for (i in 2:(m-1)){ 

                    X$dir.matx[i,n]<- pos.part((X$tau[i,n]-X$tau[i-1,n-1]))*(i-i-1) +  

pos.part((X$tau[i,n]-X$tau[i-1,n]))*(i-i-1)+ pos.part((X$tau[i,n]-X$tau[i,n-1]))*(i-i) 
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                            +  pos.part((X$tau[i,n]-X$tau[i+1,n-1]))*(i-i+1) +  pos.part((X$tau[i,n]-

X$tau[i+1,n]))*(i-i+1) 

                     X$dir.maty[i,n]<- pos.part((X$tau[i,n]-X$tau[i-1,n-1]))*(n-n-1) + 

pos.part((X$tau[i,n]-X$tau[i-1,n]))*(n-n)+pos.part((X$tau[i,n]-X$tau[i,n-1]))*(n-n-1) 

                            + pos.part((X$tau[i,n]-X$tau[i+1,n-1]))*(n-n-1) + pos.part((X$tau[i,n]-

X$tau[i+1,n]))*(n-n) 

                     } 

                for (j in 2:(n-1)){ 

                    X$dir.matx[1,j]<-pos.part((X$tau[1,j]-X$tau[1,j-1]))*(1-1) + 

pos.part((X$tau[1,j]-X$tau[1,j+1]))*(1-1)+pos.part((X$tau[1,j]-X$tau[2,j-1]))*(1-2) 

                            + pos.part((X$tau[1,j]-X$tau[2,j]))*(1-2) + pos.part((X$tau[1,j]-

X$tau[2,j+1]))*(1-2) 

                     X$dir.maty[1,j]<-pos.part((X$tau[1,j]-X$tau[1,j-1]))*(j-j-1) + 

pos.part((X$tau[1,j]-X$tau[1,j+1]))*(j-j+1)+pos.part((X$tau[1,j]-X$tau[2,j-1]))*(j-j-1) 

                            + pos.part((X$tau[1,j]-X$tau[2,j]))*(j-j) + pos.part((X$tau[1,j]-

X$tau[2,j+1]))*(j-j+1) 

                     } 

                for (j in 2:(n-1)){ 

                    X$dir.matx[m,j]<-pos.part((X$tau[m,j]-X$tau[m-1,j-1]))*(m-m-1) + 

pos.part((X$tau[m,j]-X$tau[m-1,j]))*(m-m-1)+pos.part((X$tau[m,j]-X$tau[m-

1,j+1]))*(m-m-1) 

                            + pos.part((X$tau[m,j]-X$tau[m,j-1]))*(m-m) + pos.part((X$tau[m,j]-

X$tau[m,j+1]))*(m-m) 

                    X$dir.maty[m,j]<-pos.part((X$tau[m,j]-X$tau[m-1,j-1]))*(j-j-1) + 

pos.part((X$tau[m,j]-X$tau[m-1,j]))*(j-j)+pos.part((X$tau[m,j]-X$tau[m-1,j+1]))*(j-j+1) 

                            + pos.part((X$tau[m,j]-X$tau[m,j-1]))*(j-j-1) + pos.part((X$tau[m,j]-

X$tau[m,j+1]))*(j-j+1) 

                     } 

                X$dir.matx[1,1]<-pos.part((X$tau[1,1]-X$tau[1,2]))*(1-

1)+pos.part((X$tau[1,1]-X$tau[2,1]))*(1-2)+pos.part((X$tau[1,1]-X$tau[2,2]))*(1-2) 

                X$dir.maty[1,1]<-pos.part((X$tau[1,1]-X$tau[1,2]))*(1-

2)+pos.part((X$tau[1,1]-X$tau[2,1]))*(1-1)+pos.part((X$tau[1,1]-X$tau[2,2]))*(1-2) 

                X$dir.matx[m,1]<-pos.part((X$tau[m,1]-X$tau[m-1,1]))*(m-m-

1)+pos.part((X$tau[m,1]-X$tau[m-1,2]))*(m-m-1)+pos.part((X$tau[m,1]-

X$tau[m,2]))*(m-m) 

                X$dir.maty[m,1]<-pos.part((X$tau[m,1]-X$tau[m-1,1]))*(1-

1)+pos.part((X$tau[m,1]-X$tau[m-1,2]))*(1-2)+pos.part((X$tau[m,1]-X$tau[m,2]))*(1-

2) 

                X$dir.matx[1,n]<-pos.part((X$tau[1,n]-X$tau[1,n-1]))*(1-

1)+pos.part((X$tau[1,n]-X$tau[2,n-1]))*(1-2)+pos.part((X$tau[1,n]-X$tau[2,n]))*(1-2) 

                X$dir.maty[1,n]<-pos.part((X$tau[1,n]-X$tau[1,n-1]))*(n-n-

1)+pos.part((X$tau[1,n]-X$tau[2,n-1]))*(n-n-1)+pos.part((X$tau[1,n]-X$tau[2,n]))*(n-n) 

                X$dir.matx[m,n]<-pos.part((X$tau[m,n]-X$tau[m-1,n-1]))*(m-m-

1)+pos.part((X$tau[m,n]-X$tau[m-1,n]))*(m-m-1)+pos.part((X$tau[m,n]-X$tau[m,n-

1]))*(m-m) 
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                X$dir.maty[m,n]<-pos.part((X$tau[m,n]-X$tau[m-1,n-1]))*(n-n-

1)+pos.part((X$tau[m,n]-X$tau[m-1,n]))*(n-n)+pos.part((X$tau[m,n]-X$tau[m,n-

1]))*(n-n-1) 

 

                X$dir.matx<-tmp*X$dir.matx 

                X$dir.maty<-tmp*X$dir.maty 

 

                X        #output gaps should have ages of gaps updated 

 

                }) 

            } 

        ), 

    parms = list( 

                closure.age = 10, 

                b0          = -3.6718,   #model intercept 

                b1          = -0.0375,   #strength of terrain influence on risk 

                b2          =  0.0029 ,   #strength of influence of previous disturbance on risk 

                W            = matrix(c(1,0,0,0,0, 

                                        1,1,0,0,0, 

                                        1,1,1,0,0, 

                                        1,1,0,0,0, 

                                        1,0,0,0,0),nrow=5,byrow=T), 

 

                terrain=matrix(15,nrow=50,ncol=50) 

                ), 

    init = vector("list",4), 

    times = c(from=0,to=100,by=1), 

    solver = "iteration", 

    observer = function(X){ 

        require(spatstat) 

        Sys.sleep(.5) 

        #layout(matrix(c(1,2,3,0),nrow=2,ncol=2,byrow=T)) 

           m<-dim(X$gaps)[1] 

           n<-dim(X$gaps)[2] 

 

        image(X$gaps, col = heat.colors(100), axes = FALSE,new=T,main=""    ) 

 

        gridpts<-

gridcentres(nx=dim(X$gaps)[1],ny=dim(X$gaps)[2],window=owin(c(0,1),c(0,1))) 

        #points(gridpts,cex=.5,pch=19) 

        write.csv(t(X$dir.matx),file="dirmatx.csv") 

        write.csv(t(X$dir.maty),file="dirmaty.csv") 

        #Plotting the arrows 

 

            x0<-gridpts$x 
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            y0<-gridpts$y 

 

            x1<-as.vector(X$dir.matx) 

            y1<-as.vector(X$dir.maty) 

 

            #maxlen <- min(diff(x1), diff(y1)) * .9 

            #x1<-x1/max(x1)*maxlen 

            #y1<-y1/max(y1)*maxlen 

 

            x1<-x0+x1 

            y1<-y0+y1 

            lens<-X$dir.matx 

            for (i in 1:m){ 

                for (j in 1:n){ 

                    lens[i,j]<-euclid(c(X$dir.matx[i,j],X$dir.maty[i,j])) 

                    } 

                } 

            par.uin <- function(){ 

            # determine scale of inches/userunits in x and y 

              u <- par("usr") 

              p <- par("pin") 

             c(p[1]/(u[2] - u[1]), p[2]/(u[4] - u[3])) 

                } 

            s<-seq(from=1,to=length(x0)-1,by=5) 

 

            if (m==n){ 

                divs<-c(1:m) 

                    for (i in 1:m){ 

                        divs[i]<-m/(2*i+1) 

                    } 

                divs<-2*(which(is.wholenumber(divs)))+1 

                ndiv<-length(divs) 

                 An<-vector("list",ndiv+1) 

 

                 An[[ndiv+1]]<-divs 

                 for (i in 1:length(divs)){ 

                         nn<-divs[i] 

                         WW<-matrix(1,nrow=nn,ncol=nn) 

                         tmpx<-neighbors(X$dir.matx,wdist=WW) 

                         tmpy<-neighbors(X$dir.maty,wdist=WW)                          #The Sum_(i 

in An) [P_i(t)]'s 

                        dim(tmpx)<-c(m,m) 

                        dim(tmpy)<-c(m,m) 

                         tmpx<-(1/nn^2)*(mat.euclid(tmpx,tmpy))^2                      #The weighted 

and squared norms 
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                         An[[i]]<-mean(tmpx) 

 

                    } 

                } 

            print(An) 

        } 

 

) 

 

#Observer Funcitons 

#only the movie 

obs.mov = function(X){ 

        Sys.sleep(.5) 

        image(X$gaps, col = heat.colors(100), axes = FALSE,new=T,main=""    ) 

} 

 

#the movie and the An's 

obs.An = function(X){ 

   m<-dim(X$gaps)[1] 

   n<-dim(X$gaps)[2] 

        Sys.sleep(.5) 

        image(X$gaps, col = heat.colors(100), axes = FALSE,new=T,main=""     

if (m==n){ 

                divs<-c(1:m) 

                    for (i in 1:m){ 

                        divs[i]<-m/(2*i+1) 

                    } 

                divs<-2*(which(is.wholenumber(divs)))+1 

                ndiv<-length(divs) 

                 An<-vector("list",ndiv+1) 

 

                 An[[ndiv+1]]<-divs 

                 for (i in 1:length(divs)){ 

                         nn<-divs[i] 

                         WW<-matrix(1,nrow=nn,ncol=nn) 

                         tmpx<-neighbors(X$dir.matx,wdist=WW) 

                         tmpy<-neighbors(X$dir.maty,wdist=WW)                          #The Sum_(i 

in An) [P_i(t)]'s 

                        dim(tmpx)<-c(m,m) 

                        dim(tmpy)<-c(m,m) 

                         tmpx<-(1/nn^2)*(mat.euclid(tmpx,tmpy))^2                      #The weighted 

and squared norms 

                         An[[i]]<-mean(tmpx) 

 

                    } 
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                } 

            print(An) 

 } 

 

 

#only the arrows 

obs.dirs = function(X){ 

        Sys.sleep(.5) 

        #layout(matrix(c(1,2,3,0),nrow=2,ncol=2,byrow=T)) 

           m<-dim(X$gaps)[1] 

           n<-dim(X$gaps)[2] 

 

        #image(X$gaps, col = heat.colors(100), axes = FALSE,new=T,main=""    ) 

 

        tmp<-matrix(1,nrow=m,ncol=n) 

  tmp<-as.owin(im(tmp)) 

  tmpx<-as.vector(raster.x(tmp)) 

  tmpy<-as.vector(raster.y(tmp)) 

   

  x0<-tmpx 

  y0<-tmpy 

 

 

            x1<-as.vector(X$dir.matx) 

            y1<-as.vector(X$dir.maty) 

   

  lens<-X$dir.matx 

            for (i in 1:m){ 

                for (j in 1:n){ 

                    lens[i,j]<-euclid(c(X$dir.matx[i,j],X$dir.maty[i,j])) 

                    } 

                } 

 

  x1<-x1/max(lens) 

            y1<-y1/max(lens) 

 

            x1<-x0+x1 

            y1<-y0+y1 

             

            par.uin <- function(){ 

            # determine scale of inches/userunits in x and y 

              u <- par("usr") 

              p <- par("pin") 

             c(p[1]/(u[2] - u[1]), p[2]/(u[4] - u[3])) 

                } 
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            s<-seq(from=1,to=length(x0)-1,by=2) 

 

          # hist(lens,20,main="Distribution of ||p(t)||") 

 

  write.csv(t(X$dir.matx),file="dirmatx.csv") 

         write.csv(t(X$dir.maty),file="dirmaty.csv") 

 

            plot(1, type="n", axes=T,xlim=c(0,50),ylim=c(0,50), xlab="", 

ylab="",main=expression(The~p[i](t))) 

                arrows( 

                x0  = x1[s], 

                x1  = x0[s], 

                y0  = y1[s], 

                y1  = y0[s], 

                length = .05) 

} 

 

obs.matlab<-function(X,time){ 

 if (time==50){ 

  write.csv(t(X$dir.matx),file="dirmatx.csv") 

        write.csv(t(X$dir.maty),file="dirmaty.csv")      

  } 

 }
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