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Abstract 

 

Characteristic transcriptional biomarkers have been identified for microbial 

cultures exposed to 2, 4, 6-trinitrotoluene (TNT), 2, 6-dinitrotoluene (DNT), or 

triacetone-triperoxide (TATP). This study describes the generation of expression profiles 

for exposure to each compound, the functional significance of each response, and the 

identification of the characteristic alterations in gene expression associated with 

exposure to each compound.  

Expression profiles were generated from a total of three different candidate 

organisms: Escherichia coli, Saccharomyces cerevisiae, and Pseudomonas putida. 

Common to all three organisms, TNT exposure resulted in increased expression of 

genes involved in toxin resistance and drug efflux systems. The S.cerevisiae and E.coli 

expression profiles were both characterized by increased expression of genes involved 

in iron-sulfur cluster assembly, sulfur containing amino acids, sulfate transport and 

assimilation and the metabolism of nitrogen compounds.   

Only E.coli and Saccharomyces were used to generate DNT induced expression 

profiles; both profiles exhibited high degrees of similarity with each organism’s 

respective TNT profiles. This was especially true of the E.coli profile where 25 of the 30 

alterations were also observed after exposure to TNT.  

A computational discriminant functional analysis was performed to identify 

characteristic biomarkers for each exposure.  For each compound a set of 
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transcriptional biomarkers (10 or less) was developed. An additional set of biomarkers 

was developed encompassing both TNT and DNT exposure. These sets of genes serve 

as a transcriptional fingerprint for exposure to each respective compound. The 

sensitivity and specificity of each transcriptional fingerprint is sufficient to correctly 

identify exposure to energetic materials against a background of non-energetic 

compound exposures.  

This study makes several novel contributions to the greater body of scientific 

knowledge: 

• This is the first documented study of the interactions of TATP in any biological 

system.  

• This is the first comprehensive gene expression study of the TNT response by P. 

putida, E.coli or E.coli. 

• This is the first application of computational class prediction in the development 

of biomarkers for exposure to energetic materials 
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Motivation 

 

Arguably, the most influential moments in history have not been milestones of 

human accomplishment or ingenuity; neither have they been the result of human error 

or acts of nature. They have been deliberate acts of violence. The most broad-reaching 

of these events have been political or religious wars waged between bona-fide, 

legitimate entities. In many cases, the civilian casualties from these wars have been 

ongoing due to residual unexploded ordinance left in their wake. Landmines represent 

an indiscriminate threat, and as such nearly 85% of casualties and injuries are suffered 

by non-military personnel (International Campaign to Ban Landmines promotional 

materials).   

Most recently, prevailing social psychology has been shaped most by the actions of 

a minority of dedicated, radical individuals with a goal to terrorize and destroy human 

life: 

• Unabomber from 1978-1995,  

• the 1995 Oklahoma City bombing,  

• the 1998 US embassy bombings in Tanzania and Kenya,  

• the 1999 massacre at Columbine High School,  

• the and most notably the attacks of September 11, 2001   

 

The motivation for this course of research was, and still is, to address the growing threat 

of domestic terrorism in the United States and abroad.  



3 

 

 

Introduction 

Explosive agents in the environment are of significant concern due their toxicity and 

also their threat of traumatic damage upon detonation. They are present as a result of 

manufacture waste, unexploded ordinance (UXO), construction loss, illegal synthesis 

and use in improvised explosive devices (IED). The threat posed by landmines alone is 

considerable. The United Nations estimates that total cost of location and removal of 

currently installed landmines would incur a cost in excess of $30 billion and over 1100 

years. To compound this issue , the installation of new landmines outpaces the removal 

of old mines at a rate of 30:1(Sylvia, Janni et al. 2000).  

The single greatest problem facing detection of these compounds is sampling. The 

compounds of interest often have very low vapor pressures making their concentrations 

in ambient conditions very dilute. This in turn makes detection of these compounds at 

any reasonable distance extremely difficult. Successful detection of these compounds 

almost always requires direct sampling at the source. An efficient detection method will 

require real time, highly sensitive, sampling of ambient air or water.  

There are opportunities to use genetic and transcriptional profiling methods to 

ascertain whether biological populations have been exposed to explosives or energetic 

agents and to further develop approaches for sensor detection and possible sentinel 

monitoring. One of these approaches is proposed as “transcriptional fingerprint 

biomarker analysis of energetic chemical exposure”, the objective of this investigation. 
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This research seeks to determine if environmental exposure to energetic agents can be 

recorded in the profile of gene expression from pure cultures and, potentially, the 

metagenome. 

 Extensive production and use of 2,4,6-trinitrotoluene has lead to excessive land 

contamination (Esteve-Nunez, Caballero et al. 2001; Jenkins, Hewitt et al. 2006; Gong, 

Guan et al. 2007). Environmental contamination of both TNT and its decomposition 

products is a cause for concern.  TNT toxicity has been observed in many organisms, 

with symptoms including reproductive inhibition, anemia, liver damage , skin irritation, 

cataracts, and oxidative stress (Johnson, Ferguson et al. 2000; Reddy, Chandra et al. 

2000; Cenas, Nemeikaite-Ceniene et al. 2001; Nemeikaie-Ceniene, Sarlauskas et al. 

2004; Gong, Guan et al. 2007; Gong, Guan et al. 2007).  

TNT contamination can occur through numerous routes including deposition of 

detonation residue, improper disposal, storage and faulty ordinance housing. The usual 

fate is soil contamination (Esteve-Nunez, Caballero et al. 2001; Jenkins, Hewitt et al. 

2006). The extent of groundwater contamination is ultimately determined by the mobility 

and speciation of TNT in soils. Mobility and speciation are influenced by a number of 

factors including chemical transformation, covalent bonding with organic matter, and 

absorption by soil particles(Pennington and Brannon 2002).  Biological processes play a 

role in each of these factors. 
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Microbial transformation of nitrotoluenes 
 

Although generally considered to be recalcitrant, several studies have 

demonstrated reductive transformation of nitrotoluenes by microbial species (Wittich, 

Ramos et al. 2009). Reductive transformation of TNT and DNT by fungal and bacterial 

species typically occurs either through the formation of hydride Meisenheimer 

complexes followed by the subsequent rearomatization and release of nitrogen as 

nitrite, or through the reduction of the nitro groups to hydroxylamine or amino groups 

followed by the subsequent release of nitrogen as ammonia (Roldan, Perez-Reinado et 

al. 2008). While there are no previously published studies describing reductive 

transformation of nitrotoluenes by the model yeast organism Saccharomyces 

cerevisiae, nitrogen release from TNT through the reductive hydroxylamine pathways 

have been described in other Saccharomyces strains (Zarlpov, Naumov et al. 2002). 

Previous studies have established that E. coli has the ability to both reduce TNT 

to its ADNT and HADNT metabolites and ultimately release nitrogen from the aromatic 

ring to be used for growth (Yin, Wood et al. 2005; Gonzalez-Perez, van Dillewijn et al. 

2007) . This process is catalyzed by FMN dependent-NAD (P) H nitroreductases NfsA 

and NfsB as well as a xenobiotic reductase NemA.  N-ethylmalemimide reductase 

(NemA) is a member of the old yellow enzyme (OYE) family of proteins.  Bacterial OYE 

enzymes are characterized by the ability to reduce TNT nitro groups in vivo (Williams, 

Rathbone et al. 2004; Gonzalez-Perez, van Dillewijn et al. 2007; Roldan, Perez-

Reinado et al. 2008).   
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Reductive transformation of TNT has also been observed in cultures of 

Pseudomonas putida (Caballero, Esteve-Nunez et al. 2005; Caballero and Ramos 

2006). These studies have established that, like E. coli, P. putida has the ability to 

metabolize nitrotoluenes to release nitrogen for growth. While the precise mechanism of 

nitrogen release has yet to be resolved, the involvement of glutamine syntethase-

glutamate synthase (GS-GOGAT)  has been suggested (Caballero, Esteve-Nunez et al. 

2005). Mutants deficient in any component of this protein complex show impaired 

reduction of TNT.  Further work by Caballero and colleagues suggested that  nitrite 

reductase nasB and nitroaromatic reductase pnrA play essential roles in TNT reductive 

transformation. Double knockout mutants resulted in complete growth inhibition on 

media containing TNT as the sole nitrogen source.    

 

Toxicogenomics and the use of Transcriptional Profi ling 

The term toxicogenomics was first coined by Emile Nuwaysir and colleagues in 

1999 (Nuwaysir, Bittner et al. 1999). It was in that paper that the concept of combining 

the newly emerging DNA microarray technology with the growing wealth of publicly 

accessible sequence data to address some of the most pressing challenges in 

toxicology was born.  The goal of toxicogenomics was thus defined as “… to define, 

under a given set of experimental conditions, the characteristic and specific pattern of 

gene expression elicited by a given toxicant.” With the refinement of microarray 

technology and the growing capacity for transcriptional analysis, the scope and 

definition of toxicogenomics has broadened. Toxicogenomics has since been defined 
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simply as “the study of toxicological processes at the transcriptome level of a target 

organ or cell” (de Longueville, Bertholet et al. 2004). Thus toxicogenomics is the 

marriage of genomics and classical toxicology. Most previously developed in vivo and in 

vitro toxicology assays rely on the presentation of physiological effects or symptoms of 

the toxicant exposure. Implicit was the idea that all of these effects are preceded by 

altered gene expression. This was a concept recognized early on (Nuwaysir, Bittner et 

al. 1999).   

The National Center for Toxicogenomics (NCT) has adopted, as its goal, the 

challenge of providing a repository of expression data as a knowledge base for 

toxicogenomic analysis (Tennant 2002).  This goal has been realized in the form of the 

Chemical Effects in Biological Systems database (CEBS).  

 

Predictive Toxicogenomics 

In the context of this study, predictive toxicogenomics describes the use of 

transcriptional profiling to develop a characteristic list of responsive genes for 

compound exposure. Expression data resulting from known compound exposure 

conditions are designated functional classifications. Expression profiles from unknown 

exposure conditions are then identified based on their similarity to the database of 

known gene expression patterns. This serves two purposes. First it becomes possible to 

identify, or at least functionally categorize, an unknown compound based on the 

changes it induces in the transcriptome of a model organism.  In other words, 
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information regarding the biological effect of an unknown compound is applied to 

classify that compound in relation to other known compounds. The second purpose 

served by predictive toxicogenomics is to develop biomarkers for compound exposure. 

Ideally these biomarkers would be specific to a particular compound.  However, in the 

case of xenobiotic compounds, it is likely that biomarkers from such a study would be 

specific to a class of compounds or a specific type of molecular interaction.  These 

biomarkers can now be used to either indicate exposure to a specific compound or to 

predict possible toxicological effects of the compound in question (de Longueville, 

Bertholet et al. 2004; Gatzidou, Zira et al. 2007). 

 

Mechanistic Toxicogenomics  

 Mechanistic toxicogenomics deals with providing information about the specific 

pathways and cellular activities associated with a given exposure (Gatzidou, Zira et al. 

2007).  This can provide insight into the mode of action, or potential physiological 

effects of the compound. To make an analogy, if toxicogenomics is the marriage of 

genomics and toxicology, then mechanistic toxicogenomics is specifically the marriage 

of functional genomics and toxicology. The question posed by such studies is not simply 

“What genes have altered expression?” but rather “What is the function of the genes 

with altered expression?” The core assumption is that the global mRNA pool is 

indicative of the current state of the cell, and will be altered during any response to a 

toxicant (Gatzidou, Zira et al. 2007).  
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DNA Microarray Technology 

DNA microarrays allow the expression thousands of gene targets to be measured 

from a single biological sample in tandem.  Their broad use has resulted in a paradigm 

shift from single gene expression studies to whole-genome expression profiling (Kuhn, 

Baker et al. 2004). Most methodologies exploit basic nucleic acid hybridization 

chemistry for detection of individual transcripts (Schena, Shalon et al. 1995). Briefly, 

nucleic acid sequences, or probes, are affixed to a solid substrate. Probes can either be 

long cDNAs (up to 2000bp) derived from PCR amplification of the target transcript, or 

short oligonucleotide probes (usually 25-50bp)(Brown and Botstein 1999; Ragoussis 

2009)  Target nucleic acid samples are then fluorescently labeled and hybridized to the 

immobilized probes. The abundance of each target sequence is measured as a function 

of the fluorescence of each probe after hybridization(Lemieux, Aharoni et al. 1998). 

Recently numerous commercial microarray platforms have emerged, most utilizing 

some variation of this hybridization schema.  Affymetrix GeneChip (Affymetrix 2005) 

arrays were chosen for the present study due to the commercial availability of arrays for 

each of the studied organisms.  
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The Affymetrix Platform 

 

Oligonucleotide Probe Synthesis 

Affymetrix GeneChips are ultra high density short oligonucleotide microarrays. Each 

feature, or gene probe set, is composed of multiple (usually 16) 25mer complimentary 

oligonucleotide sequences. As a quality control measure, Affymetrix also includes 

mismatch (MM) probes that are identical in sequence save for a single nucleotide 

mismatch. Probes are synthesized directly onto a silicone matrix in parallel via 

photolithographic protection chemistry (Deyholos and Galbraith 2001). Briefly, the 

silicone matrix is coated with a photosensitive linker molecule (Fig. 1-1 c). This linker 

molecule “protects” the array matrix from nucleotide addition. Ultraviolet radiation is 

used to de-protect specific loci on the array (Fig 1-1 d). Nucleotides are added to each 

de-protected spot in a coupling reaction (Fig 1-1 e). This sequence is repeated for each 

nucleotide until all probes have been synthesized.  

Sample Preparation and Hybridization 

The Affymetrix platform utilizes a single color detection format with absolute transcript 

quantification. This is in contrast with many other platforms such as cDNA microarrays 

that use a two color format with subsequent competitive hybridization and relative 

quantification (Brown and Botstein 1999).  RNA targets are first reverse-transcribed into 

cDNA. First-strand cDNA serves as the template for transcription of the cRNA that 

ultimately serves as the target used during hybridization. Biotinylated nucleotides are 
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Figure 1-1: Photolithographic Oligonucleotide Probe  Synthesis 
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incorporated into each cRNA molecule during the transcription reaction. After 

hybridization, the samples are then labeled with a streptavadin-fluorochrome conjugate 

dye (Deyholos and Galbraith 2001).  Fluorescent signals are visualized using a laser 

excitement followed by detection with a charge-coupled device (CCD). 

 

.CEL file generation 

The final product of the physical experimentation is a high resolution digital 

bitmap image. As such, the “data” referred to in microarray studies are some function of 

the color saturation of the image locus corresponding to a given probe on the original 

chip. The signal intensity are calculated from this these saturation levels. A compressed 

version of the scanned image along with the calculated signal intensities are used to 

generate a .CEL file. All subsequent statistical calculations and analyses are performed 

on data obtained from the .CEL file. 

 

Expression measure 

 Affymetrix GeneChips employ multiple short oligonucleotide probes to assay 

each gene target. Each set of 11-20 probes is roughly 20 base pairs in length. Each 

probe assays a different segment of the target gene. After background normalization 

and signal intensity calculations are performed on each probe, data from the probe set 

is condensed into signal intensity for that target gene.  
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Microarray Normalization 

 An important step in the analysis of microarray data is accounting for sources of 

variation. Generally, all sources of variation can be categorized as either obscuring or 

interesting variation. Interesting variation is the variation that is caused by the intended 

biological phenomenon being observed. In the case the present study, interesting 

variation would refer to the differences resulting from the actual changes in transcript 

abundance. All other sources of variation would be considered obscuring variation. 

These sources would include variation introduced by experimenter error, optical 

distortion by the scanning equipment, and inconsistencies in the array printing. The goal 

of normalization is to eliminate the effect of the obscuring sources of variation so that 

differences between samples are attributed only to the sources of interesting variation. 

Scaling Normalization  

 In standard Affymetrix normalization, each array is scaled such that they all have 

the same average signal intensity. This occurs after probe set expression measures 

have been calculated. Calculations are performed sequentially on each array 

independently, thus it is less computationally intensive than the multi-array method 

employed by RMA and GCRMA. Additionally, this method of scaling normalization is 

useful when building databases of expression data for later comparison. Since the 

normalization is independent of all other microarrays experiments can be added 

piecewise over time without the need to re-normalize the entire database.(Affymetrix 

2002; Lu 2004) 
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Background correction 
 An intrinsic limitation with microarrays is that they are a high-throughput 

hybridization-based technology. With any hybridization method accuracy, precision and 

specificity are all highest when stringency is optimized for an individual nucleic acid 

sequence with a discrete melting temperature and G-C content. When tens of 

thousands of targets are hybridized in tandem, the ability to optimize hybridization 

conditions is limited. Therefore, the possibility of non-specific hybridization is of major 

concern.  Affymetrix addresses the cross-hybridization issue with measures physically 

implemented on the chip. For each probe targeting a specific transcript, or perfect 

match probe (PM), there is a corresponding mismatch probe (MM) which is identical in 

sequence with the exception of a single nucleotide substitution in the center. The default 

background correction for Affymetrix GeneChips uses these MM probes to adjust the 

PM intensity values. The details of this procedure will be discussed along with the 

section labeled statistical algorithms.  

 

Statistical Algorithms 

Normalization, background correction and signal intensity probe set signal calculations 

are three distinct facets of data acquisition but have been streamlined to such an extent 

that they are most appropriately discussed as a single process. Several mathematical 

algorithms have been developed to achieve these tasks (Affymetrix 2002; Irizarry, 

Bolstad et al. 2003; Harr and Schlotterer 2006) but only three will be described in any 
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detail in this text.  Each of the algorithms discussed here, MAS5, RMA, and GCRMA, 

incorporate these three tasks. The characteristic differences among these algorithms  

deals with their respective approaches to background correction, so this will be the 

primary focus of contrasts made between them here. Additionally, the scope of this 

project is limited to the application of these algorithms thus the discussion will be limited 

to the strengths and weaknesses of each method and the rational for choosing GCRMA 

over the other two.  

 The basic assumption governing each method of background correction is that 

the observed PM signal is inflated by sources of obscuring variation.  In its simplest 

form this assumption is represented by the equation: 

P=T+B (1) 

Where P is the signal intensity of the PM probe, T is the contribution made by the target 

mRNA, and B is background “noise” resulting from obscuring variation sources such as 

nonspecific hybridization and optical noise during image acquisition. 

 

MAS5 

Microarray Suite 5.0 or MAS5 is the current iteration of Affymetrix’s default background 

correction and normalization package(Affymetrix 2002). The distinctive feature of MAS5 

is the direct application of MM probe hybridization data to correct for non-specific target 

binding. Referencing equation 1, MAS5 treats MM signal as such: 
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M=f (B) (2) 

That is, that MM probe intensities (M) are a function of the background noise. Thus 

background correction is performed based solely on the information derived from each 

PM’s corresponding MM signal intensity. For most probes this involves simply 

subtracting the MM signal intensity from the PM value.  Irizarry et al 2003 reported that 

about 1/3 of the MM probes on any given chip had a higher overall binding efficiency 

than the corresponding PM probe. Also, MM signal generally includes some proportion 

of target signal as well. As such MM ≥ PM for 1/3 of probe pairs resulting in a null or 

negative corrected value. Affymetrix has responded to these findings by adjusting the 

background correction for probes in which this is the case. For cases in which MM> PM 

an idealized PM value is estimated based on the behavior of the entire probe set. To 

further ensure that no negative or null values result from background correction, 

physical “zones” are designated on the chip and minimum or “floor” values are assigned 

to each zone based on the performance of the probes in that zone.  

With the introduction of GCRMA, it would seem that MAS5 background 

correction underperforms in every regard. However, it is still supported by Affymetrix 

and in the literature due to its simplicity, minimal computational requirements and 

flexibility in database applications (Affymetrix 2002; Pepper, Saunders et al. 2007).  
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RMA  

 Robust Multi-array Analysis (RMA) was introduced by Irizarry ET all 2003 as an 

alternative to MAS5. Several interesting observations motivated the development of this 

algorithm 

1. Spike-in experiments suggest that MM probes detect target sequence as well as 

background noise. This causes PM-MM based correction methods to produce 

artificially truncated values. 

2. The average difference between PM and MM values increased with target mRNA 

concentration.  

3. PM-MM correction has a greater distortion effect on small PM values than larger 

ones, meaning that while MM values include target sequence, they are not 

sequence dependent.  

 

Simply, they make two assumptions based on these observations: 

1. On average, PM probe intensities are adequate representations of the target 

gene expression. 

2. Target signal intensity follows an exponential distribution while background signal 

intensity follows a normal distribution.  
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Consequently, the RMA background correction ignores MM probes completely. Instead, 

the expected distributions of target and background signals are derived from the 

observed data and used to adjust the PM intensity values.  

 

GCRMA 
 RMA achieves much better precision than MAS5 (Irizarry, Bolstad et al. 2003; 

Irizarry, Hobbs et al. 2003) , but with lower accuracy. Since RMA background 

subtraction is performed globally, using estimated distributions among all probes, there 

is no consideration given specifically to non-specific binding or probe-level effects. 

GCRMA addresses this issue by implementing probe-level background correction using 

the on-chip MM probes. The major feature that distinguishes GCRMA background 

correction from that of MAS5 is the additional consideration given to sequence specific 

binding affinities. GCRMA was motivated by 2 general observations: 

1. MM probe intensities vary widely from sequence to sequence. Theoretically, MM 

probes do not match any target sequence; this suggests that there is an intrinsic 

difference in the binding affinity amongst the MM probes. This logic could also be 

extended to the PM probes. 

2. There is a clear relationship between signal intensity and GC content of the 

probe sequence.(Zhang, Miles et al. 2003; Wu and Irizarry 2004) 

  

From these observations, an assumption is made: The intrinsic variance attributed to 

non-specific hybridization is sequence specific, with the governing feature being GC 
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content of the probe. Accordingly, the GCRMA considers GC content when adjusting 

PM values using MM data.  This is achieved by first using sequence data to group all 

probes according to their GC content and predicted hybridization properties. These 

groups are referred to as pseudo-MM. Next, PM values are adjusted according to the 

data collected from the MM and pseudo-MM probe sets. This method provides 

additional statistical power over MAS5 due to the larger set of probes used for 

correction, thus increasing precision. Additionally, the consideration given to non-

specific binding provides increased accuracy over RMA (Wu, Irizarry et al. 2004). 

However; the adjusted values are still biased because both MM and pseudo-MM probes 

detect target signal as well as cross-hybridization.  

 

Statistical Tests for Identifying Differentially Expressed Genes 

The statistical significance of a given expression ratio, as measured by a pair 

wise analysis of variance (ANOVA), is expressed as that ratio’s “p-value”. This number 

represents the probability that the observed expression ratio would have occurred by 

chance alone.  It is appropriately interpreted as the strength of evidence for rejecting the 

null hypothesis. That is, a p-value of 0 indicates that the null hypothesis is false and that 

the observed changes are due to a measurable source of variation.  The problem with a 

standard ANOVA is that these are performed on a per-gene basis. When thousands of 

these tests are performed, the type 1 error rate (the occurrence of falsely rejecting a null 

hypothesis), even based on small pvalues, increases. For example, if a statistical 

significance threshold of p=0.05 is used, 500 false positive results would be expected by 
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chance alone from a microarray study involving 10,000 probes.  Multiple test correction 

can limit the occurrence of false positive results in large datasets. 

 

Bonferroni Multiple Test Correction 

The Bonferroni method of multiple test correction controls the probability of 

making a single type 1 error among all observations. It is considered to be the simplest 

yet most conservative method of multiple test correction. It assumes that all tests are 

independent (which is often not the case for microarray data) and calculates adjusted 

significance scores as a product of a given p-value and the total number of observations 

being made. Values above 1 are rounded down to 1. To use the example given above, 

a pvalue of 0.05 would result in an adjusted value of 1 meaning that the null hypothesis 

would not be rejected.  The highest acceptable p-value in this example would be p=10-4 

The Bonferroni method is often the least powerful and thus inappropriate for many 

analyses. It may not be necessary to control false positives among all tests. It may be 

sufficient to simply limit the occurrence of false discoveries among a selected subset of 

the tests. 

 

Controlling the False Discovery Rate (FDR) 

FDR correction is a compromise between the ANOVA significance test and the 

Bonferroni method. Rather than to prevent any type 1 errors, FDR is only concerned 

with defining the statistical significance threshold such that it controls the occurrence of 
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false positive results among tests falling below that threshold. Two different FDR 

corrections were utilized in this study. 

 The Hochberg or “step-up” correction was used for the bacterial expression 

data. This is achieved by first ranking some number (n) of pvalues in ascending order. 

The correction is calculated as FDR ≥ P (m)*(n/m) where P is the value to be adjusted, n 

is the number of pvalues being adjusted and m is the rank of the pvalue being adjusted. 

A Holm or “step-down” correction was applied to the yeast expression data. After 

ranking all p-values in ascending order, a correction is performed according to the 

equation FDR ≥ P (m) *(n-m+1). In either case, the adjusted threshold now reflects the 

probability of falsely rejecting the null hypothesis within the sample size chosen for 

further analysis. The difference between the two methods is that the Hochberg method 

is more powerful since it increases (steps up) in stringency as each p-value is tested. 

The Holm method results in fewer genes passing the statistical threshold since it starts 

at maximum stringency and decreases (steps down) its stringency as each successive 

p-value is tested. 

 

Computational Class Prediction 

Microarray studies are often criticized for bearing the “curse of dimensionality”.  This 

describes a situation in which the expression values of thousands of genes are used to 

compare just a few biological samples (Radmacher, McShane et al. 2002). This is 

particularly a problem when expression data is applied to diagnostics, sample 

identification and risk assessment. In these cases, expression profiles resulting from a 
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particular condition (class) of interest are compared to expression profiles of a larger 

class made up of many different conditions. These groups make up a training set from 

which patterns of gene expression characteristic of the condition of interest are 

identified. The large numbers of genes involved often result in patterns that are 

characteristic to the differences in that particular training set rather than to the broader 

biological significance of the observed condition. This leads to overfitting in which the 

resulting classification schema fits the training set perfectly but may not be useful for 

classifying new samples (Breiman 2001). If not controlled, spurious conclusions may 

pass even the most stringent statistical criteria.  Limiting the number of genes assayed 

may mitigate much of the risk of overfitting the data. Ideally the number of samples 

should be much greater than the number of genes used to characterize them (Lee 

2008).   

Selection of Genes for Class Prediction  

There are several methods of gene selection with the simplest and most common 

being based on univariate significance criteria. For each gene, an expression ratio is 

calculated between the classes in the training set. Genes are selected for inclusion in 

the classifier if they have a t-statistic or α value that satisfies the desired significance 

level. This straightforward approach ensures that all genes in the classifier have 

statistically significant fold changes between classes. The number of genes selected 

cannot be directly controlled using univariate significance; rather the target significance 

threshold acts as a tuning parameter for indirectly adjusting the number of genes. It is 

important to note that there is not often a linear relationship between this tuning 
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parameter, the number of genes, and the performance of the final classifier.  This is 

because the class predictions for all methods described here are based on multivariate 

comparisons not the univariate statistics of individual genes.  

Multivariate approaches to gene selection result in lists of genes that perform well 

collectively. Typically, the number of genes to be included in the classifier is pre-defined 

and the algorithm will select the best set of genes, in terms of predictive capacity, to 

populate the classifier. The method used in the present study is recursive feature 

elimination (RFE) (Guyon, Weston et al. 2002). The classifier is initially composed of all 

genes in all profiles. For each class, RFE first ranks all genes according to their weight 

in determining the class distinctions. The lowest ranked gene is removed from the 

classifier and a new set of prediction rules along with new weight and ranks are 

assigned to the remaining genes. This is repeated until the pre-determined number of 

genes is reached 

Mathematical Models for Class Prediction Rules 

 

Compound Covariate Prediction (CCP) 
Compound covariate prediction is based on weighted log expression values. 

First, t-statistics are calculated each log expression ratio. A weight value is calculated 

for each gene as the t-statistic given a sign dependent on the correlation of that genes 

expression to the experimental conditions. In other words, if high expression of a gene 

is indicative of condition A, its weight will have a positive sign. Genes in which high 

expression is indicative of condition B will have a negative sign. Genes are selected for 
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inclusion in the predictor and a compound covariate value is calculated for each 

condition as the inner sum of the weighted expression ratios. The prediction threshold is 

defined as the mean compound covariate value of the two conditions being compared. 

To identify an unknown sample, its compound covariate value is calculated using the 

selected genes and is identified as the condition to which it is closest in value. 

(Radmacher, McShane et al. 2002) 

 

Support Vector Machines (SVM) 
Support vector machines prediction is based on a linear discriminant function.  

First, each expression profile in the training set is plotted as a vector of log expression 

values then a linear function is established to separate the two classes. This function is 

defined such that it maximizes the distance between the two closest expression profiles 

from each class in the training set. That is, the two worst classified samples in each 

class. These samples are known as the support vectors. This serves as the threshold 

by which new samples will be identified. Each gene in the classifier is then assigned a 

weight score based on its overall contribution to that linear function. The prediction rule 

is made up of the list of genes, their corresponding weight scores and the linear 

threshold.  

To identify an unknown sample, the signal intensity for each gene is multiplied by 

that genes weight score in the classifier. The sum of these products, known as the inner 

sum, is calculated for all genes in the classifier. The unknown sample is then compared 

to the linear threshold. A class is identified depending on which side of that linear 
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function it falls on the coordinate hyper plane; that is, samples which meet or exceed 

the threshold value are identified as a “positive” sample for that classifier.(Chih-Wei Hsu 

2009) 

 

Nearest Neighbors  
Nearest neighbors prediction involves plotting each expression profile as a vector 

of the log expression values for each gene in the classifier. Unknown samples are 

plotted and the Euclidean distance is calculated from all other profiles in the training set. 

The new sample is identified based on the profile to which it is closest.  A modification 

of this method, termed k-nearest neighbors, uses a weighted vote among some number 

(k) of the nearest profiles. The identity of profiles which lie closest to the unknown 

sample will weigh more in the identification than those further away.  

 

Nearest Centriod  
Nearest centroid prediction is similar to nearest neighbors. Each class is plotted 

as a vector of average expression values for each gene among all profiles in the training 

set belonging to that class. This average vector is known as the centroid. The unknown 

sample is classified based on the centroid to which it is closest.   

A nearest centroid prediction can be applied in such a way that it also results in 

gene selection. For each gene, the class average is adjusted toward the average for 

that gene among all classes. This results in “shrinkage” of the Euclidean distance 

between class centroids. As this distance decreases, the effect of genes that had 
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original values close to the average becomes negligible. In this application, the 

shrinkage factor becomes a tuning parameter for determining the number of genes to 

be included in the final classifier (Tibshirani, Hastie et al. 2002). New samples are then 

predicted based on these new centroid distances.  This method is known as nearest 

shrunken centroid and is the prediction method employed by the popular Prediction 

Analysis of Microarrays (PAM).  

 

Objectives of the study 

 

This investigation focuses on the problem of energetic materials produced by IED 

and terrorist, principally, Triacetone triperoxide (TATP), 2, 4, 6-trinitrotoluene (TNT) and 

a related compound 2, 6-dinitrotoluene (DNT).  It is of direct interest of this research to 

test the hypotheses that microbial exposure to energetic materials will result in distinct 

patterns of gene expression, and that these profile patterns of gene expression are 

reproducible biomarkers of such exposure in microbial populations. A second goal of 

this investigation is to produce a knowledge base and fundamental understanding of the 

gene expression response profiles in exposed populations. Such a mechanistic 

understanding is important not only in developing more effective strategies for real-time 

biosensor technology but also from a toxicogenomic perspective.  
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Hypotheses  

I. Incubation of microbial cultures with each of the energetic materials TNT, DNT, 

and TATP will result in distinct, characteristic patterns of gene expression. 

 

II. Profile patterns of gene expression are reproducible biomarkers exposure to 

energetic materials in microbial populations.  
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Introduction 

Oligonucleotide microarrays provide a platform for measuring the abundance of 

specific nucleic acid sequences in a population of cells. This is especially useful for 

assessing the composition of the mRNA pool for a given cell population and comparing 

the abundance of specific transcripts among different populations.  In practice, changes 

in gene expression can be associated with different physiological conditions or 

alterations in culture conditions.  

Oligonucleotide array technology was applied to quantify changes in gene 

expression resulting from exposure to 5 different chemicals in relation to a solvent 

control. The 5 compounds chosen were 2,4,6- trinitrotoluene (TNT) , 2,6-dinitrotoluene 

(DNT) , triacetone-triperoxide (TATP), hydrogen peroxide (H2O2), and a 50% v/v 

mixture of H2O2 and acetone (MIX). Chemical structures of each compound are 

presented in Figure 2-1.The choice of chemicals provides a range of chemical 

properties and potential physiological and metabolic interactions. There are, for 

example, compounds that are chemically, and potentially biologically similar to TNT 

(DNT) as well as chemicals that are chemically, potentially biologically distinct from TNT 

(TATP, H2O2, MIX).  TNT and DNT represent nitrogen rich aromatic hydrocarbons, 

TATP is insoluble, chemically unstable, cyclical organic peroxide, and Hydrogen 

peroxide is a source of reactive oxygen leading to oxidative stress.   
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The major hypothesis being tested is as follows: 

I. Incubation of microbial cultures with each of th e energetic materials TNT, 

DNT, and TATP will result in distinct, characterist ic patterns of gene 

expression. 

 

Related to the biochemical rationale for the selected compounds, each 

compound serves as controls for several null sub-hypotheses: 

 

TNT  

Null Hypothesis 1:  The observed responses to TNT will not be indicative 

of TNT exposure but rather a characteristic response to exposure to 

nitroaromatic compounds. 

Null Hypothesis 2: The observed response to TNT will not be specific to 

TNT but rather a characteristic response to exposure to energetic 

materials. 

Null Hypothesis 3: The observed responses to TNT will not be specific to 

TNT but rather a generic response to chemical stimulus. 



 

 

2,4,6 Trinitrotoluene  

(TNT) 

 

Dimethylsulfoxide 

(DMSO) 

Figure 2-1 : Chemicals Used to Generate Gene Expression Profil es
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2,6-Dinitrotoluene  

(DNT) 

Triacetone

(TATP)

 

Hydrogen Peroxide 

(H2O2) 

Acetone

: Chemicals Used to Generate Gene Expression Profil es 

 

Triacetone-triperoxide 

(TATP) 

 

Acetone 
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Null hypothesis 1 will be confirmed if the TNT induced changes in expression are 

identical to those observed upon DNT exposure. The TATP induced changes will serve 

as a measure of the response to energetic materials thereby testing null hypothesis 2.  

Finally, an observation that the TNT induced changes in transcription are identical to 

two or more of the other chemicals would be cause for further investigation of null 

hypothesis 3. 

 

TATP  

Currently there is no published literature describing the biological relevance of 

TATP. Without any prior knowledge or expected results, it will be difficult to interpret the 

results of the TATP exposure. Therefore, in addition to the biochemical, and null 

hypothesis rationales stated for the TNT exposures, the two exposures H2O2 and MIX 

will aid interpretation of the results from TATP exposure.  The appropriateness of these 

chemicals for that purpose has yet to be empirically confirmed but in such cases logical 

reasoning prevails.   Preliminary efforts to elucidate the chemical nature of TATP 

revealed that it is virtually insoluble in both water and DMSO. It was also observed that, 

at biologically relevant temperatures, it rapidly dissipates, typically losing nearly half of 

its mass within 24 hours. These observations are consistent with the literature (Bellamy 

1999; Matyas, Pachman et al. 2009).  It was hypothesized three likely outcomes of 

TATP exposure would be observed:  

1) The exposed populations will interact with intact TATP molecules.  



37 

 

2) The exposed populations will interact with chemicals resulting from chemical 

transformation of TATP. 

3) The exposed populations will have no interaction with TATP.  

H2O2 and MIX represent two possible components of chemical transformation of TATP.  

No controls for the interaction with the dimer and tetramer products of TATP 

transformation were considered because a) the synthesis of TATP inevitably results in 

formation of these compounds as byproducts, thus all TATP samples will contain some 

amount of them, and  b) in practice, there would be little motivation to distinguish TATP 

from its byproducts as presence of any one would have no legitimate purpose.  

The primary focus of the present study is elucidating the characteristic alterations 

in gene expression observed in Escherichia coli cultures exposed to TNT and TATP. 

E.coli is the model bacterial species, it represents a potential tractable model for gene 

regulation, metabolic perturbation, and physiological stress associated energetic 

compound exposure. In addition to the work with E. coli, gene expression profiles were 

developed for 3 other organisms, each presenting a unique opportunity for modeling 

energetic compound exposure. Pseudomonas putida, a soil bacterium, has been 

characterized by its versatile metabolic potential. Several studies have employed its use 

in biodegradation and remediation of toluene and polystyrene (Nelson, Weinel et al. 

2002; Ward, Goff et al. 2006). Further, E. coli and pseudomonades including P. putida 

have been shown to partially degrade TNT and DNT as well as utilize its nitro groups as 

a nitrogen source (Spanggord, Spain et al. 1991; Duque, Haidour et al. 1993; Esteve-

Nunez, Lucchesi et al. 2000; Esteve-Nunez, Caballero et al. 2001; Caballero, Esteve-
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Nunez et al. 2005; Stenuit, Eyers et al. 2006; Gonzalez-Perez, van Dillewijn et al. 2007). 

Saccharomyces cerevisiae was profiled as well as a representative as lower 

eukaryotes.  S. cerevisiae serves much the same role as E.coli; it is a tractable model 

that is well characterized. Numerous sources of annotation, gene regulation and 

metabolic data are available and it is a fast growing, non-pathogenic eukaryote. There is 

interest in deciphering the signature alterations in gene expression upon exposure to 

these compounds. These interests are related to clinical diagnostics, toxicology as well 

as biomarker development for security and military applications.  

All expression data for microarray experiments presented in this document are 

presently deposited in the University of Tennessee Microarray Database (UTMD: 

genome.ws.utk.edu).  Additional deposits will be made to the NCBI’s Gene Expression 

Omnibus (http://www.ncbi.nlm.nih.gov/geo/) upon publication of manuscripts prepared 

from this study.  
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Escherichia coli 
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Materials and Methods 

 

Growth and exposure media 

To limit possible effects of the growth media on gene expression, a minimal salts 

media was prepared to serve as both the growth and exposure media.   

Minimal Salts Media (MSM) 500µM KH2PO4, 10mM K2HPO4, 831µM MgSO4  ·7H2O, 

125µM NH4NO3, 55.5µM glucose, 0.01% trace metals solution 

Trace metals solution: 10g/L MgO, 2g/L CaCO3, 5.4g/L FeCl3 ·6H20, 1.44g/L ZnSO4 · 

7H20, 250mg/L CuSO4, 62mg/L H3BO4, 490mg/L NaMoO4 · 2H20 

 

Bacterial cultures and treatment 

E. coli K12 (ATCC #29425) was grown from freezer stock in Luria-Bertini broth 

overnight. Revived cultures were used to inoculate MSM and grown overnight at 37°C 

with 200rpm orbital shaking. Overnight cultures of E. coli were diluted in 37°C MSM and 

grown to an O.D.600 of 0.5 at 37°C with shaking. The cultures were then sp lit into 6mL 

aliquots and spiked with either TNT;  2,6-DNT;  Peroxide;  Triacetone-Triperoxide 

(TATP);  a solution (MIX) containing 50% acetone, 15% hydrogen peroxide and 35% 

H20;   or a vehicle control (DMSO). An exposure concentration of 220µM TNT, 275µM 

DNT, 244µM peroxide, 750µM TATP, and 0.1% MIX was achieved. All cultures 

contained 0.008% DMSO by volume. TNT and DNT concentrations were determined, 

through growth curves, as effective, sub-lethal concentrations. TATP proved to be 



41 

 

completely insoluble in both DMSO and the growth media, so 1mg of freshly 

synthesized TATP crystals was measured and added directly to the growth media 

resulting in a final concentration of 732 µM. There was no data available that would 

predict how the TATP may act in solution or once exposed to the bacterial culture. As 

such, the MIX exposure served as a control for the abiotic decomposition of the TATP 

crystals. The MIX concentration was determined based on percent volume of each of 

the TATP synthesis compounds diluted into the DMSO vehicle. Total cellular RNA was 

extracted from each culture 1 hour after spiking. 

 

Growth Curves 

 E. coli K12 (ATCC #29425) was grown from freezer stock in Luria-Bertani broth 

overnight. Revived cultures were used to inoculate MSM and grown overnight at 37°C 

with 200rpm orbital shaking.  Overnight cultures of E. coli were diluted in 37°C MSM 

and grown to an O.D.600 of 0.1 at 37°C with shaking.  The cultures were then sp lit into 

1mL aliquots and distributed, in triplicate, into a 24 well microtiter plate.  Each well was 

then spiked with TNT over a range of concentrations from 0-70mg/L. The cultures were 

incubated at 37 °C with continuous orbital shaking. Grow th was measured as an 

increase in absorbance at 600nm. Measurements were taken every 15 minutes over a 

24 hour period.  This assay was repeated for DNT and TATP. Preliminary absorbance 

measurements indicated that TNT causes a measurable difference in sterile media. To 

control to effect of TNT concentration, the absorbance of sterile controls containing TNT 

were subtracted from the growth curve measurements.   
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Determination of Appropriate Exposure time 

 It was determined from the preliminary growth curve experiments that there is a 

positive correlation between TNT concentration and absorbance at 600nm over time. 

The results from the growth curves described here were also used to determine the 

appropriate exposure duration.  The correlation between TNT concentration and 

absorbance was calculated for each time point. The selected exposure duration was 

approximately half of the earliest time point in which a positive correlation above 90% 

was observed.  

 

RNA Isolation 

  The TNT, DNT, and DMSO RNA samples were comprised of total cellular RNA 

collected from a total of 6 biological replicates on 2 separate dates. The TATP, peroxide 

and MIX RNA samples included 3 biological replicates all collected on the same date. 

Isolation was performed using the RNeasy Protect Bacteria Mini Kit (Qiagen, Valencia, 

CA) according to manufacturer’s instructions. The recommended RNAse-free DNAse 

treatment was performed on the samples prior to final elution. 

 

cDNA synthesis, labeling, hybridization, staining and array scanning 

This experiment involved hybridization of 6 single color arrays for each of the TNT, 

DNT , and DMSO samples and 3 single color arrays for each of the peroxide, TATP and 

MIX samples. All processing of isolated RNA including cDNA synthesis, labeling, 
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hybridization, staining and array scanning were performed by the UT Affymetrix Core 

facility according to Affymetrix standardized procedures for E.coli 2.0 GeneChip arrays. 

Labeled and fragmented cRNA was then hybridized to Affymetrix E. coli 2.0 arrays.   A 

detailed protocol is available (Affymetrix 2005). 

 

Gene Expression Measurements  

Raw array image data was collected in CEL format using Affymetrix gene chip operating 

software (ver. 3.4.2152.32776). The raw CEL files were imported to Partek Genomics 

Suite (Partek 2008). Guanine-cytosine robust multi-array analysis (GC-RMA) was 

applied to all arrays to achieve background subtraction and normalization across all 

arrays. The data were then adjusted to remove any variation due to batch effects then 

the averages were calculated among each treatment type.  All statistical analysis 

performed in Partek Genomics Suite are detailed in the Partek Genomic Suite online 

manual (Partek 2008).  

 

Functional Analysis of Significant gene changes 

Gene ontology data for each of the significant genes were retrieved from EcoCyc 

(Keseler, Bonavides-Martinez et al. 2009). A gene ontology enrichment analysis was 

performed using the retrieved data using the Gene Ontology Enrichment Analysis 

Toolkit (omicslab.genetics.ac.cn) using AmiGo source version OBO v.1.2 (Ashburner, 

Ball et al. 2000) 
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Quantitative Reverse Transcriptase PCR  

Quantitative Reverse Transcription Polymerase Chain Reaction (Q-RTPCR) was 

performed to validate the results of the microarray experiment. Transcript abundance 

was quantified using the non-specific DNA binding dye SYBR Green. The reactions 

were performed in a thermocycler equipped with a Chromo4 fluorescence detection unit 

(MJ Research Inc., Waltham, MA) Three genes were chosen from the list of 

differentially expressed genes resulting from TNT exposure. These genes were azoR, 

soxS, and nhoA.   

 

Primer Design 

Each primer pair was designed to target a 150-250 bp region of the indented 

transcript sequence.  Sequences for each transcript were obtained from the National 

Center for Biotechnology Information (NCBI). Primers were designed using Primer 3 

software. Primer sequences are provided in Error! Reference source not found. . 

Verification of Primer Specificity 

The Primer-BLAST feature of the NCBI primer design tool was used to verify the 

specificity of each primer against the Escherichia coli K12 non-redundant nucleotide 

database (taxid: 83333). To further verify the specificity of the q-rtpcr primers, standard 

polymerase chain reaction was performed using genomic DNA as a template.  
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Table 2-1 Q-RTPCR detection primers and sequences 

Target Gene  Primer Sequences  Amplicon Size  
azoR F: 5' CTTTCCGATGAGTTGATTGCC 3' 173bp 

R: 5' TTACCCGTTACCAGACCTTCC 3' 
soxS  F: 5' TCAGACGCTTGGCGATTACA 3' 150bp 

R: 5' TCAAACTGCCGACGGAAAA 3' 
nhoA  F: 5' TGCGAGCAGCAACAAAGC 3' 236bp 

R: 5' TCCACGCCCAGACCAAA 3' 
 

 

Table 2-2 Full length gene Amplification primers an d sequences 

Target Gene  Primer Sequences  Amplicon Size  
azoR F:5' AACAAGCAACGGGGCATC 3' 731bp 

R:5' GCTGAGATTATGGGAAAACAGG 3' 
soxS  F:5' TGCGTTTCGCCACTTCG 3' 576bp 

R:5' GCCAGGGATGGTTCTTTGC 3' 
nhoA  F:5' GAGAAAACCACTAAGGGAAACG 3' 940bp 

R:5' CAGGTCTACAACCGGGCTAA 3' 
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Preparation of cDNA plasmid standards 

 cDNA plasmid standards were prepared to facilitate optimization of the q-rtpcr 

protocol as well as to provide the standard curve for quantification. Full length coding  

regions of each gene were amplified using primers complimentary to genomic 

sequences flanking the 5’ and 3’ ends of the gene sequence. (Error! Reference source not 

found.) The amplification products were visualized using gel electrophoresis through 1% 

agarose gel. Resulting band size was compared to expected fragment length as 

verification of product amplification. The amplification products were cloned into the 

PCR2.0 vector using a TOPO TA cloning kit (Invitrogen, Carlsbad, CA) according to the 

manufacturer’s instructions. Plasmid DNA was extracted from the resulting clones using 

Wizard Plus MiniPreps kit (Promega, Madison, WI) according to the manufacturer’s 

instructions.  Purified plasmid DNA was subjected to restriction digest using EcoRI 

restriction endonucleases. The products of the restriction digest were visualized using 

gel electrophoresis through 1% agarose gel. Plasmids containing inserts of the 

appropriate size were delivered to the Molecular Biology Resource Facility at the 

University of Tennessee for sequencing via the Sanger method. Standard M13 primers 

were used for the sequencing reactions.  Sequencing results were uploaded to the 

NCBI Basic Local Alignment Search Tool (BLAST) for identification.  

Clones bearing plasmids with sequences matching the intended sequences were 

grown overnight and plasmids were purified using Wizard Plus MiniPreps kit (Promega, 

Madison, WI) according to the manufacturer’s instructions. An additional RNAse 
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treatment insured that no contaminating RNA was present in the final elution. Plasmids 

were eluted in 30 µL of nuclease free water.  

Total DNA was quantified for each plasmid preparation using a DyNa Quant 200 

flourometer and Hoechst dye. Plasmid concentration was calculated as total DNA 

concentration divided by the combined mass of the vector and insert. Plasmid standards 

were prepared via serial dilutions of an initial preparation with a plasmid concentration 

of 109 plasmids per µL. 

 

Optimization of Q-RTPCR Assay 

 To ensure accurate quantification during the Q-RTPCR analysis, the reaction 

conditions were optimized for each gene. The optimization included adjustments to the 

primer concentrations, annealing temperature, extension time, and the point at which 

measurements were taken. To determine optimum conditions, cDNA plasmids 

standards of known concentrations were quantified. Assays were performed over a 

range of primer concentrations as well as a range of annealing temperatures and 

extension times. It was determined that for all three assays, the optimum primer 

concentration is 0.8µM. The optimum annealing temperature is 56°C, 58°C, and 60°C 

for azoR, soxS, and nhoA respectively. The optimum extension time for all assays is 0.5 

minutes. Typically, fluorescence is measured after the extension step; however it was 

observed that the R2 value of the standard curve could be improved if an additional 

80°C incubation step was added before the fluorescence m easurements were taken. 

The dissociation curve revealed that the amplification products of each assay had a 



48 

 

dissociation peak near 80°C. It was reasoned that, at tha t temperature, most products of 

non-specific binding will denature and not skew the fluorescence measurement.  

 

Q-RTPCR quantification 

 Q-RTPCR experiments were performed in triplicate. The abundance of each 

mRNA transcript was quantified by plotting the threshold cycle (CT) along the standard 

curve. Transcript abundance was then approximated as copies per µL of RNA solution. 

Calculated transcript abundance was normalized to total RNA for each reaction to 

correct for differences in RNA extraction efficiency between samples, thus all values are 

reported as copies per ng of total RNA.   
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Results  

Growth Curves 

 None of the compounds assayed, TNT, DNT, or TATP, had adverse effects on 

growth of E.coli K12 as measured by optical density at 600nm. However; it appeared 

initially that there that TNT had a positive effect on growth. Upon re-evaluation, the 

observed differences in optical density were attributed to discoloration of the media 

associated with increasing TNT concentrations Figure 2-2. These changes in 

absorbance were not observed in the sterile controls that had been spiked with TNT. 

Therefore, although the data should not be considered a measure of growth effects, 

they do serve as a measurement a biological response. From the growth curve 

experiments, it was determined that 1 hour is the appropriate exposure duration and 

that a concentration of 50mg/L (50ppm or 220 µM) is sufficient to cause a measurable 

biological effect. 

 

Quantitative Reverse Transcriptase PCR 

 For TNT exposed cultures, the results of the QRTPCR results for all three genes 

were in agreement with those observed in the microarray experiments. The assays 

indicated increased transcription of the gene nhoA DNT exposure although this was not 

observed in the microarray experiments. It is likely that the RTQPCR assay is more 

sensitive than the microarray measurements because each assay was optimized 

specifically for each target.  Another possible explanation, which would account for the 

increase in observed fold changes, involves the GCRMA algorithm used to normalize 
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and background-adjust the microarray experiments. It has been documented that the 

incorporation of mismatch probe values for non-specific signal correction can lead to 

truncated values (Irizarry, Bolstad et al. 2003). 

 

Gene Expression Profiles 

In order to determine the gene expression changes resulting from exposure to 

each compound, total RNA was harvested from E. coli cultures following 60 minutes of 

exposure. The harvested RNA was fluorescently labeled and hybridized to an Affymetrix 

E.coli 2.0 GeneChip. The E.coli 2.0 GeneChip contains 10208 sets of sequence specific 

features (probe sets) consisting of 15-20 different sequences (probes) matching a target 

mRNA sequence.  

The microarray experiments produced lists of GeneChip features and their 

corresponding signal intensities (Appendix).  All values presented in this section are 

calculated fold changes based on averages of those signal intensities.  For any given 

compound exposure, the average value of each GeneChip feature was divided by the 

corresponding average value in the control experiment. In the case of genes with 

decreased expression, negative inverse values are reported.   

Statistical significance was determined for each feature. A one-way analysis of 

variance test (ANOVA) was first applied to each experiment against the DMSO control. 

The results of the ANOVA are a measure of the probability that the observed expression 

ratio is not due to chance, but rather actual changes in expression. The resulting p-

values were then adjusted to reflect the false discovery rate (FDR) for each comparison. 
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Figure 2-2: Growth in TNT results in a dose-depende nt discoloration of the media 

E.coli K12 was grown in MSM growth media at 37°C and aera ted with a magnetic 

stir bar. In each picture is the bacterial culture on the right and the sterile control 

containing the same concentration of TNT on the lef t.  

  

(-) control 10 mg/L TNT 30 mg/L TNT 50 mg/L TNT 
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Results of QRTPCR Assay of Selected Genes 
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Figure 2-3 Quantitative PCR Analysis Confirms Micro array Results 
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Table 2-3 : Results of the E.coli expression profile statistical filtering  

Experiment  P-value  Threshold  # of Genes  
DNT 1.47E-04 30 
H2O2 8.23E-04 168 
MIX 6.86E-05 14 

TATP 4.02E-04 82 
TNT 2.45E-03 501 

 

 

The FDR adjustment allows the incidence of false positives to be controlled. The 

expression ratio of a gene was determined to be statistically significant if its FDR 

adjusted p-value (q-score) was 0.05 or less. The results of the FDR significance 

thresholds are presented in  

Table 2-3. 

 

Changes induced by TNT exposure 

Filtering the data to leave a list of genes with an overall false discovery rate of 

5% indicates that 501 genes (179 up, 322 down) are differentially expressed after 1 

hour of TNT exposure. 117 of these genes have an absolute fold change of 2 fold or 

greater. Approximately 30% of the genes discovered to have significant differences in 

expression are genes of unknown function or completely unannotated transcripts.   Of 

the 117 genes with absolute fold changes of 2 or more, 71 have increased expression 

and 46 have decreased expression. The most highly up regulated gene is azoR, a 

FMN-dependent NADH-azoreductase with approximately 63 fold increase in 
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transcription. It has previously been described as a component in tryptophan 

metabolism (Khodursky, Peter et al. 2000), and thiol-specific stress resistance (Liu, 

Zhou et al. 2009). The most down regulated gene, with greater than 7 fold decrease in 

transcription was csgB, a gene encoding the minor subunit of the curli complex which is 

involved in biofilm formation (Nenninger, Robinson et al. 2009).  The functional 

composition of the TNT expression profile is discussed in greater detail in chapter 4. 

 

Changes induced by DNT 

Filtering the data to leave a list of genes with an overall false discovery rate of 

5% indicates that 30 genes (17 up, 13 down) are differentially expressed after 1 hour of 

TNT exposure. 7 of these genes have an absolute fold change of 2 fold or greater. 

Again, 30% of the genes discovered to have significant differences in expression are 

genes of unknown function or completely unannotated transcripts.   Of the 7 genes with 

absolute fold changes of 2 or more, 5 have increased expression and 2 have decreased 

expression.  25 genes are also found to have similar changes in expression upon TNT 

exposure. The remaining 5 genes (ycdL, yjbJ, chaC, dam, and a hypothetical protein of 

unknown function) have no similar change in expression in any other profile.  No 

functional congruence among these 5 genes is evident.  

Fumarase C (fumC) has the greatest increase in transcription with an 

approximate fold change of 6.70. It is involved in the conversion of fumarate to malate 

during the citric acid cycle. It is also a member of the superoxide stress regulon SoxRS, 

indicating a functional role in the response to oxidative stress. micF, which has an 
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approximate fold change of 2.88, is involved in global stress response as well as 

oxidative stress. It is an antisense RNA that serves as a negative regulator of ompF; 

ompF has a 2.45 fold decrease in expression. micF is also a member of the SoxRS 

regulon which indirectly links the decrease in ompF to oxidative stress as well. inaA 

which has a 2.85 fold increase in expression is also associated with oxidative stress 

through the SoxRS regulon.  

 

Changes induced by TATP 

Filtering the data to leave a list of genes with an overall false discovery rate of 

5% indicates that 82 genes (34 up, 48 down) are differentially expressed after 1 hour of 

TATP exposure. 25 of these genes have an absolute fold change of 2 fold or greater. 

Approximately 26% of the genes discovered to have significant differences in 

expression are genes of unknown function or completely unannotated transcripts.   Of 

the 25 genes with absolute fold changes of 2 or more, 17 have increased expression 

and 8 have decreased expression.  The “gene” with the highest increase in transcription 

is an unannotated RNA sequence (probe 1760446_s_at). Unannotated probes target 

transcriptionally active regions of DNA that have not had mature gene products or 

transcripts identified in the literature.  

The gene ontology enrichment analysis indicates that TATP exposure is 

characterized by increased expression of genes involved in copper ion binding and 

transport, DNA repair and modification, amino acid biosynthesis, galactitol and glucose 

metabolism, responses to stress, and energy metabolism (Appendix 2).  The most 
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significantly overrepresented functional class was made up of genes involved in 

galactitol metabolic processes (GO: 0019402). These four genes (gatACYZ) all have 

increased expression. The most significantly overrepresented functional classes with 

decreased expression are those involved in copper ion transport (GO: 0006825).  These 

genes, cusABCFX, encode the proteins involved in the copper/silver efflux system.   

 There were 26 genes that had significantly altered expression (>1.1 fold and 

FDR< 0.05) upon TATP exposure but not hydrogen peroxide or the synthesis mixture 

(Appendix 3). The presence of these genes in the TATP induced expression profile 

suggests that the observed changes are due to an interaction with intact TATP 

molecules and not simply a response to residual synthesis reagents or the products of 

its decomposition.  Among this subset of genes there were few functional classes with 

significant overrepresentation.  The copper/silver efflux system (genes cusABCF) was 

the most significantly enriched functional class.  
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Pseudomonas putida 
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Materials and Methods 

 

Growth and exposure media 

To limit possible effects of the growth media on gene expression, a minimal salts 

media was prepared to serve as both the growth and exposure media.   

Minimal Salts Media (MSM) 500µM KH2PO4, 10mM K2HPO4, 831µM MgSO4  ·7H2O, 

125µM NH4NO3, 55.5µM glucose, 0.01% trace metals solution 

Trace metals solution: 10g/L MgO, 2g/L CaCO3, 5.4g/L FeCl3 ·6H20, 1.44g/L ZnSO4 · 

7H20, 250mg/L CuSO4, 62mg/L H3BO4, 490mg/L NaMoO4 · 2H20 

 

Bacterial cultures and treatment 

P. putida KT2440 (ATCC #47054) was grown from freezer stock in Luria-Bertini 

broth overnight. Revived cultures were used to inoculate MSM and grown overnight at 

37°C with 200rpm orbital shaking. Overnight cultures o f P. putida were diluted in 37°C 

MSM and grown to an O.D.600 of 0.7 at 37°C with shaking. The cultures were then sp lit 

into 6mL aliquots and spiked with either TNT,  Triacetone-Triperoxide (TATP), or a 

vehicle control (DMSO). An exposure concentration of 220µM TNT, and 800µM TATP 

was achieved. All cultures contained 0.001% DMSO and 0.0002% tetrahydrofuran 

(THF) by volume. Growth assays indicated no statistically significant effect of TNT over 

all concentrations, Therefore 220µM TNT was chosen to match the concentrations used 

in the E.coli assay. TATP proved to be completely insoluble in both DMSO and the 

growth media, so freshly synthesized TATP crystals were dissolved in THF to achieve a 
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4M solution. This solution was used as the TATP spike. Total cellular RNA was 

extracted from each culture 1 hour after spiking. 

 

Growth Curves 

 P. putida KT2440 (ATCC #47054) was grown from freezer stock in Luria-Bertini 

broth overnight. Revived cultures were used to inoculate MSM and grown overnight at 

37°C with 200rpm orbital shaking.  Overnight cultures o f P. putida were diluted in 37°C 

MSM and grown to an O.D.600 of 0.1 at 37°C with shaking.  The cultures were then split 

into 1mL aliquots and distributed, in triplicate, into a 24 well microtiter plate.  Each well 

was then spiked with TNT over a range of concentrations from 0-100mg/L. The cultures 

were incubated at 37 °C with continuous orbital shaking.  Growth was measured as 

absorbance at 600nm. Measurements were taken every 15 minutes over a 24 hour 

period.   Preliminary absorbance measurements indicated that TNT causes a 

measurable difference in sterile media. To control to effect of TNT concentration, the 

absorbance of sterile controls containing TNT were subtracted from the growth curve 

measurements.   

 

Determination of Appropriate Exposure time 

1 hour exposure time was chosen to match the E.coli assay.  
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RNA Isolation 

RNA was isolated as described for the E.coli assay.  

 

cDNA synthesis, labeling, hybridization, staining and array scanning 

This experiment involved hybridization of 3 single color arrays for each of the 

TNT, TATP and DMSO samples.  All processing of isolated RNA including cDNA 

synthesis, labeling, hybridization, staining and array scanning were performed by the 

UT Affymetrix Core facility according to Affymetrix standardized procedures for 

prokaryotic GeneChip arrays. Labeled and fragmented cRNA was then hybridized to 

custom made P. putida arrays. The arrays were designed and manufactured by 

Affymetrix upon request. Probes were designed using sequence data from the J. Craig 

Venter Institute Comprehensive Microbial Resource (CMR). Probes were designed for 

each locus in the database.  Affymetrix accession number for the Affymetrix P. putida 

array is P_putida530130.   A detailed protocol is available (Affymetrix 2005). 

 

Gene Expression Measurements  

Raw array image data was collected in CEL format using Affymetrix gene chip 

operating software (ver. 3.4.2152.32776). The raw CEL files were imported to Partek 

Genomics Suite (Partek 2008). Robust Multi-Array Analysis (RMA) was applied to all 

arrays to achieve background subtraction and normalization. GC-RMA normalization 

was not an option for these custom arrays.  All P. putida microarray experiments were 
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performed on the same day, using the same lot of reagents and GeneChips, therefore 

no batch effect removal was necessary. All statistical analysis performed in Partek 

Genomics Suite are detailed in the Partek Genomic Suite online manual (Partek 2008).  

  



62 

 

Results 

Gene Expression Profiles 

A two-step FDR multiple test correction was used to control the number of type 1 

errors. Relatively few genes pass the initial FDR adjusted significance threshold. In fact, 

the FDR control may be overly conservative for the TNT sample. With an FDR of 5%, 

the probable number of type 1 errors is far less than 1. The threshold was re-adjusted to 

reflect the probability of making a maximum of 0.99 type 1 errors Table 2-4.  The 

significance threshold readjustment did little to provide heightened analytical power. The 

number of significant TATP induced changes actually decreased by 1.  

There are only 37 genes differentially expressed among all treatment groups 

meaning that, comparatively, there is little effect of any of the compounds.  More 

significant results were expected, especially in the wake of the E.coli expression profile 

results. The decrease in magnitude of the response may be due the difference in the 

exposure protocol. The E.coli profiles were generated using DMSO as the solvent 

control; the P. putida exposures contained both DMSO and THF. A recent study 

conducted by Dr. Theodore Henry and colleagues investigated the effects of THF on 

gene expression of the model organism Danio rerio (zebra fish) (Henry, Menn et al. 

2007).  

 

Table 2-4: Results of the P. putida expression profile statistical Filtering 

                           Experiment  P-value 
Threshold 

# of 
Genes 

TATP 1.80x10-4 28 
TNT 1.46x10-4 12 
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Through gene expression profiling, they found that the gene expression profiles that had 

previously been attributed to exposure to C-60 aggregates were actually the result of 

oxidative damage cause by THF which was used as the vehicle control.  This may also 

explain the decreased number of genes found in the present study. THF may have a 

masking effect on the gene expression profiles. That is, THF may present a stronger 

stimulus than TATP or TNT. Thus the greatest contributor to the expression profiles of 

each culture was the THF resulting in few significant changes between them.  

 

TNT induced changes 

Twelve genes pass the statistical filtering (Appendix 4). The “gene” with the 

greatest increase in expression was a 207 bp intergenic region spanning from base 

2295676-2295883.  Annotation as an intergenic region would indicate that this locus is a 

non-coding region of the chromosome. Because of the high fold change and statistical 

significance (p=4.3x10-6), it is unlikely that this is a spurious finding. This result would 

suggest a novel transcript or small regulatory RNA molecule.  Otherwise, the expression 

profile is dominated by membrane transport proteins and efflux pumps. The limited 

power resulting from the statistical analysis makes further characterization of this 

response challenging. A gene ontology enrichment analysis revealed little more than 

what is apparent from a casual review of the list of genes. The most significantly 

overrepresented functional classes are drug resistance and response to chemical 

stimulus.  



64 

 

TATP induced changes 

Twenty-eight genes pass the statistical filtering (Appendix 5). Only 1 gene is 

common to the TNT and TATP exposures. The most highly up-regulated gene encodes 

a cytochrome c-type protein. Altered expression of several supposed intergenic regions 

is observed.  
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Saccharomyces cerevisiae 
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Materials and Methods 

 

Growth and exposure media 

To limit possible effects of the growth media on gene expression, a yeast minimal 

media (YMM) was prepared to serve as both the growth and exposure media. 

(Routledge and Sumpter 1996).   

The toxicity assay using the bioluminescent yeast strain CEB585 utilized a 

modified YMM lacking uracil and leucine. 

 

Bacterial cultures and treatment 

Saccharomyces cerevisiae W303 (ATCC # 200060) was grown from freezer 

stock in YPD media (1% yeast extract, 2% peptone, 1% dextrose) overnight. Revived 

cultures were used to inoculate fresh YPD media and grown overnight at 30°C with 

200rpm orbital shaking. Overnight cultures were washed 3 times in phosphate buffered 

saline (PBS) then diluted in 30°C YMM and grown to a n O.D.600 of 0.65 at 30°C with 

shaking. The cultures were then split into 10mL aliquots and spiked with either TNT;  

2,6-DNT;  Peroxide;  Triacetone-Triperoxide (TATP);  a solution (MIX) containing 50% 

acetone, 15% hydrogen peroxide and 35% H20;   or a vehicle control (DMSO).  

Exposure concentrations of 22 µM TNT, 220µM TNT, 82.5 µM DNT, 275µM DNT, 

244µM peroxide, 750µM TATP, and 0.1% MIX were achieved. The lower TNT and DNT 

concentrations were derived from toxicity assays described below. All other 



67 

 

concentrations and exposure times were chosen to match those used for the E.coli 

study.  Total cellular RNA was extracted from each culture 1 hour after spiking. 

 

TNT and DNT effect on the bioluminescence of strain CEB585 

 S. cerevisiae bioluminescent strain CEB585 (Gupta, Patterson et al. 2003) was 

grown in modified YMM lacking uracil and leucine. Upon reaching an optical density of 

OD600=0.15, cultures were spiked with concentrations of TNT or DNT ranging from 0-

100 mg/L. Controls consisted of 1%  DMSO. Optical density (OD590) and 

bioluminescence (centilations per second; CPS) were measured every 30 minutes. 

Bioluminescence was normalized to optical density. 

 

RNA Isolation 

Total cellular RNA from the 82.5 µM DNT, 22 µM TNT, and 3 of the DMSO exposed 

cultures was isolated using the yeast protocol for RNeasy mini kits (Qiagen, Valencia, 

CA). These extractions started with the generation of spheroplasts using a 30 minute 

zymolase treatment of the yeast cell pellet as per the manufacturer’s instructions.  

A second set of microarray experiments were performed using a higher 

concentration of TNT and DNT (220µM and 275 µM respectively) and a modified RNA 

extraction protocol. This set also includes the TATP, peroxide and MIX exposures. RNA 

samples included 3 biological replicates all collected on the same date. Isolation was 

performed using a hot phenol RNA purification (Kohrer and Domdey 1991). Briefly, 

yeast cultures were grown to an OD600 of 1. Cells were pelleted and flash frozen using 
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dry ice and 100% ethanol. The cells were lysed at 65°C  by incubating in a pre-heated 

mixture (50% v/v) of TES buffer and water equilibrated acid phenol. During the 

incubation, the cells were forcefully agitated every 15 minutes. The lysate was 

incubated on ice for 5 minutes followed by centrifugation with a phase separation gel 

(Qiagen MaXtract cat#:129056, Qiagen, Valencia, CA). The aqueous layer was 

removed and a phenol wash was repeated followed by a second wash using 

phenol/chloroform/isoamyl alcohol. RNA was precipitated using 3M sodium citrate and 

100% cold ethanol. The RNA pellet was washed in 70% ethanol, allowed to dry and 

eluted in HPLC grade nuclease free water. Total RNA concentration and purity were 

assessed based on OD 260/280 measured using a Nanodrop-1000 (Nanodrop 

Technologies Inc, Wilmington, DE). 

 

cDNA synthesis, labeling, hybridization, staining and array scanning 

This experiment involved hybridization of 3 biological replicates for each of the exposure 

conditions. All processing of isolated RNA including cDNA synthesis, labeling, 

hybridization, staining and array scanning were performed by the UT Affymetrix Core 

facility according to Affymetrix standardized procedures for Yeast Genome 2.0 

GeneChip arrays. Labeled and fragmented cRNA was then hybridized to Affymetrix 

Yeast Genome 2.0 GeneChips.   A detailed protocol is available (Affymetrix 2005). 

Gene Expression Measurements  

Raw array image data was collected in CEL format using Affymetrix gene chip operating 

software (ver. 3.4.2152.32776). The raw CEL files were imported to Partek Genomics 



69 

 

Suite (Partek 2008). Guanine-cytosine robust multi-array analysis (GC-RMA) was 

applied to all arrays to achieve background subtraction and normalization across all 

arrays. No batch effect removal was necessary because all samples were collected and 

processed on the same day, using the same batch of reagents.  All statistical analysis 

performed in Partek Genomics Suite are detailed in the Partek Genomic Suite online 

manual (Partek 2008).  

 

Functional Analysis of Significant gene changes 

Gene ontology data for each of the significant genes were retrieved from the 

Saccharomyces Genome Database (SGD accessible at www.yeastgenome.org). A 

gene ontology enrichment analysis was performed using the retrieved data using the 

Gene Ontology Enrichment Analysis Toolkit (omicslab.genetics.ac.cn) using AmiGo 

source version OBO v.1.2 (Ashburner, Ball et al. 2000) 
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Results 

 

Bioluminescence and growth assays 

 S. cerevisiae strain CEB585 is a constitutive bioluminescent strain derived from 

strain W303. The bioluminescence is driven by luxC, D, A, B, and E gene expression 

under the control and GPD and ADH1 promoters.  Exposure to TNT and DNT caused a 

dose-dependent decrease in bioluminescence at 1 hour (Figure 2-4). It was from these 

dose-response experiments that the concentration and exposure duration was 

determined for the expression profiling study. 

 

Gene Expression Profiling 

The gene expression analysis from the low concentration TNT and DNT 

exposures yielded few significant alterations in gene expression (Table 2-5); and those 

that were statistically significant had low to moderate fold changes. While it is possible 

that neither TNT nor DNT alter the expression of a large number of genes. It was 

hypothesized that the stimulus presented by the 30 minute zymolase incubation was 

sufficient to alter the gene expression patterns induced by the TNT and DNT 

treatments. The result being that the dominant determinant for all of the resulting 

expression profiles was the zymolase treatment, which would be similar for all samples. 

Therefore, a second set of microarray experiments was performed using a higher 

concentration of TNT and DNT as well as a modified extraction protocol omitting the 

zymolase treatment. 
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Table 2-5: Results of the Statistical Significance Filter 

Treatment  Pvalue Threshold  # of Genes  Cell Lysis Method 
5mg/L TNT  4.30 x 10-6 28 

Zymolase 
15mg/L DNT  3.72 x 10-6 17 
50mg/L TNT  5.01 x 10-6 537 

Hot Phenol 
50mg/L DNT  5.12 x 10-6 665 
TATP 5.07 x 10-6 557 
H2O2 5.16 x 10-6 644 
MIX 1.11 x 10-6 2 
 

 

There was a marked increase in the observed number of genes with significantly 

altered expression between the two lysis methods.  The increased response could be 

attributed to either the higher concentration of each respective compound or the change 

in lysis protocol. The bioluminescence assay demonstrated a dose-dependent effect on 

light production. This response is independent of any differences in cell density; at 1 

hour, there was little difference in optical density and any observed difference would be 

accounted for by the normalization procedure. This would suggest that the differences 

in bioluminescence are due to some change in the physiological state of the cell. These 

differences are either related to the energy charge of the cell, as the production of light 

via the lux operon is ATP and NADPH dependent (Deweger, Dunbar et al. 1991; Hill, 

Rees et al. 1993; Neilson, Pierce et al. 1999) , or due to decreased activation of the 

promoters governing lux expression (GAD or ADH1). 

From the expression profiles of the two control groups, it is clear that the RNA 

extraction protocols had a significant effect on global gene expression. Both groups of 

control cultures received the exact same DMSO treatment, and cells were harvested at 
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Figure 2-4:  Bioluminescence of S. cerevisiae strain CEB585 is diminished by 

exposure to TNT or DNT  
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the same time point and cell density. There was no difference in the exposure 

parameters of the DMSO cultures yet there are 2950 genes that are differentially 

expressed between the two groups.  

The differences between the zymolase (set 1) and hot phenol (Set 2) control 

groups limits the appropriateness of a direct comparison of the two sets of microarray 

experiments. That is not so say that such a comparison is futile, the few differences 

observed between the TNT, DNT and DMSO exposures in the zymolase treated cells 

do represent real  changes that must be attributed to the compound exposure as this 

was the only difference between samples.  

The statistical criteria used to determine significance is more conservative than 

the step-down multiple test correction described for the E.coli experiments. This was 

necessary due to the large number of genes found to be significant in the hot phenol 

treated cultures. To better control the occurrence of false positive results a Holm 

multiple test correction was employed instead. This is very similar to the step-up 

procedure used with the bacterial data sets with the exception being that p-values are 

listed in descending order and a much simpler adjustment is made. If (n) is the number 

of p-values (p) in the dataset, the highest ranking (largest) p is adjusted according to 

pa=p*n. The next highest is adjusted according to pa=p*(n-1), the next pa=p*(n-2) and 

so on.  This method is more conservative than the step-up method but much less 

conservative than the Bonferroni method. 



74 

 

TNT induced changes 

From the set 2 exposures, 537 genes pass the FDR adjusted statistical 

significance threshold; 242 of these are up-regulated, and 297 are down regulated. 333 

have an absolute fold change of 2 or greater.  The gene ontology enrichment analysis 

revealed that the most significantly up-regulated biological processes are those involved 

in sulfur metabolism, amino acid synthesis, general response to drugs and toxins, and 

cell wall synthesis and repair. In terms of molecular function, the most significantly up-

regulated functional groups were related to nitrogen metabolism, sulfur amino acid 

synthesis, oxidoreductase activity acting on sulfur donors and carbon-nitrogen bonds, 

and transport of sulfur compounds and amino acids.  None of these functional groups 

were significantly enriched among the down-regulated genes. The genes with 

decreased expression were predominantly involved in heat shock, metabolism of 

carbohydrates, alcohols and cellular energy reserves, glutamate and glutamine 

catabolic processes, copper / iron transport and binding, and cell division. The 

molecular functions with decreased expression were generally related to respiration, 

and oxidoreductase activity acting on metals and carbohydrates.  

 

DNT induced changes 

From the set 2 exposures, 665 genes pass the FDR adjusted statistical 

significance threshold; 333 of these are up-regulated, and 332 are down regulated. 

There are a total of 281 genes which were found to have similar alterations in gene 

expression upon TNT exposure.  These included increased expression of genes 

involved in methionine, cysteine and serine family amino acid biosynthesis, sulfate 
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assimilation, de novo IMP biosynthesis, and positive regulation of the cell cycle. Genes 

common to the TNT exposure with decrease expression include genes involved in the 

response to reactive oxygen, cellular respiration, and response to heat.  

There were also 384 genes which represent distinct differences from the TNT 

response.  It was surprising to find that although this list of genes was larger than that of 

those common to the TNT exposure, functional enrichment of ontology groupings 

associated with these genes was less pronounced. Enriched functional groupings 

composed of up-regulated genes include responses to pheromone leading to 

conjugation, arginine biosynthesis, and the response to osmotic stress.  Functional 

ontology groups with decreased expression include telomere maintenance via 

telomerase, proteosome assembly, and DNA replication.  

 

TATP induced changes 

From the set 2 exposures, 557 genes pass the FDR adjusted statistical 

significance threshold; 242 of these are up-regulated, and 297 are down regulated. 333 

have an absolute fold change of 2 or greater.  The gene ontology enrichment analysis 

revealed that the most significantly up-regulated biological processes are those involved 

in cell division, cell wall biosynthesis, sulfur metabolism, and amino acid metabolism. 

None of these functional groups were significantly enriched among the down-regulated 

genes. The genes with decreased expression were predominantly involved in heat 

shock, structural/ ribosomal RNAs, DNA damage/ repair, pyrimidine nucleoside 

metabolism, and transmembrane sugar transport.  
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There is a great deal of similarity between the TATP and hydrogen peroxide 

induced expression profiles.  452 of the 557 genes have similar expression upon 

peroxide exposure. Of the remaining 105, only 48 are unique to the TATP exposures. 

Among these were increased copper ion homeostasis, regulation of cell cycle, and a 

generic response to organic cyclic compounds. There was also significantly decreased 

expression of rRNA maturation networks, ribosomal subunit assembly, and, response to 

xenobiotic substances.  
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Chapter 3 : Exploratory Interpretation of the E. coli TNT 
response 

 

  



81 

 

Introduction 

From the expression profiling and prediction analysis a list of characteristic gene 

expression modulations have emerged. E.coli’s response to TNT was the most robust in 

terms of the number genes unique to that response. It was for this reason that a 

significant portion of this study was dedicated to understanding that response.  The goal 

of this section is to provide a descriptive analysis of the changes in gene expression 

resulting from TNT exposure in E.coli cultures.   

 

Methods 

 

Meta-Analysis of Significant gene changes 

Functional analysis : Gene ontology data for each of the significant genes were 

retrieved from EcoCyc (Keseler, Bonavides-Martinez et al. 2009). A gene ontology 

enrichment analysis was performed using the retrieved data using the Gene Ontology 

Enrichment Analysis Toolkit (omicslab.genetics.ac.cn) 

Expression Data Mining : Several sources of published expression data were mined for 

results relevant to the present study. These databases include MetaCyc, RegulonDb, 

GenExpDb, and the Gene Expression Omnibus (GEO). Data collected from these 

sources was used as a catalyst for further literature review.  
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Discussion 

 

Meta-analysis of Gene expression data Reveals Signs of Oxidative Stress 

The first indication of oxidative stress came from the initial review of the gene list; 

the expression of at least 31 genes characteristic of oxidative stress have significantly 

increased expression. The bulk of these genes are members of the SoxRS regulatory 

network of which SoxS is the activator. Expression of soxS is dependent on activation 

by its transcriptional factor SoxR; however there was no significant change in 

expression of soxR in this study.  SoxS regulation occurs through activation of soxR 

through post-translational modification of the SoxR protein (Nunoshiba 1996; Touati 

2000; Pomposiello, Koutsolioutsou et al. 2003). Activation occurs through either 

oxidation of the Fe-S center by superoxide or direct nitrosylation by a reactive nitrogen 

species. As such, there may not be any change in expression of SoxR.  

 SoxR was not differentially expressed in any of the other exposures; neither was 

soxS. A literature review provided little insight. The cited references were all enzymatic 

activity or protein modification analyses; none involved gene expression measurements.  

A meta-analysis of publicly available expression data was performed to see if other 

researchers have observed similar results (Figure 3-1).  This analysis was limited to 

those experiments publicly accessible from the Gene Expression Omnibus (GEO 

http://www.ncbi.nlm.nih.gov/geo/). There are currently 142 published gene expression 

experiments deposited in which soxS has an expression ratio of +/- 2 or greater. Of 

those, less than 20 also show soxR to have an expression ratio of +/-2 or greater in the 

same direction.  Furthermore, in all of the 792 experiments in which soxR expression 
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data is available, only 57 show any significant change in expression.  The details of 

these experiments reveal that several of the studies in which soxR has significantly 

altered expression have been conducted under conditions which would cause global 

transcription to be increased in general.  

 

Increased expression of azoR suggests cytosolic interactions 

The idea of TNT induced oxidative stress is supported in the literature (Kumagai, 

Kikushima et al. 2004; Gong, Guan et al. 2007; Miliukiene and Cenas 2008). What it is 

unclear from the literature is the source of this oxidative stress. The intuitive answer 

would involve an interaction with the nitro groups positioned around the aromatic ring of 

TNT. TNT, like many nitro-aromatics tends to be recalcitrant to biological metabolism 

(Kulkarni and Chaudhari 2007). It is a large bulky compound that does not readily 

permeate the cell wall.  Because of this, it seemed unlikely that the biological interaction 

with TNT would extend beyond the cell surface. However, the increased expression of 

azoR suggests that this interaction is not just limited to surface proteins and the cell 

wall.  

AzoR is the most highly up-regulated gene with a 62 fold increase in expression. 

Further, these changes were observed in the TNT exposed cultures, but not the DNT, 

peroxide, MIX or TATP cultures. AzoR encodes an FMN-dependent azoreductase 

which has yet to be associated with TNT biodegradation, mineralization, or 

detoxification in any capacity.   
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Figure 3-1: Meta-analysis reveals little correlatio n between expression of SoxS 
and SoxR 

This figure represents the collective body of publi shed expression data for SoxR 
(A) and SoxS (B). Each heat map (blue outline) is e ssentially an array of arrays for 
these two genes.  Each of the small rectangles repr esents and individual 
microarray experiment that has been deposited in NC BI’s Gene Expression 
Omnibus.  The coordinates of the microarray experim ents have been preserved 
between heat maps for comparison.  

 

A B 



85 

 

The literature provides no direct indication as to why such a marked increase in 

azoR expression would be induced by TNT exposure. It has been associated with the 

reductive transformation of Azo dyes (Hawari, Halasz et al. 1999; Nakanishi, Yatome et 

al. 2001). An early study (Kaplan and Kaplan 1982), observed the formation of 

azoxytoluene (AZTs) ( 

Figure 3-2) products from TNT metabolism in mixed culture composting 

experiments. Their formation was attributed to abiotic condensation of hydroxyamino-

dinitrotoluene (HADNT) intermediates (Figure 3-3). These findings have since been 

supported by other researchers (Bumpus and Tatarko 1994; Hawari, Halasz et al. 1998; 

Hawari, Halasz et al. 1999). This could explain the biologically mediated discoloration of 

the growth media observed during the growth and toxicity assays (Figure 2-2) although 

the formation of hydride-Meisenheimer complexes (discussed later) is a more likely 

explanation. However, there is no evidence in the literature that AZTs undergo any 

further biological degradation so it is unlikely that azoR is acting on the N=N bond 

joining the two aromatic rings. It has been reported that Rhodobacter sphaeroides is 

able to reduce TNT through the activity of a related FMN dependent azoreductase, 

AZR, however similar assays involving azoR have not reported any reductase activity 

toward TNT (Liu, Zhou et al. 2009).  

Although AzoR has been characterized as an azoreductase based on its ability to 

reduce azo dyes in vitro, the physiological role of AzoR has been recently called into 

question (Rau and Stolz 2003; Liu, Zhou et al. 2009). The findings of all previous 

studies suggest that the protein, AzoR, is exclusively cytosolic under physiological 
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conditions and it is unlikely that large polar molecules such as an azo dye would diffuse 

across the cell membrane. Also, the products of azoreductase activity on these  

 

 

 

 

 

 

Figure 3-2 : 2, 4-Azoxytoluene  
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Figure 3-3 Reductive Transformation of TNT to 2-HAD NT  
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compounds are often toxic.  Specific to this scenario, HADNT and ADNT intermediates 

are more toxic than the AZT end products so there would be little benefit to regenerating 

them through azoR activity. In vivo experiments comparing azoreductase activity of 

azoR mutants to wild type have demonstrated no difference in their reduction of azo 

dyes.  

Liu et al proposed an alternate role for AzoR as a cytosolic defense mechanism 

against thiol specific stress caused by electrophilic quinones.  Toxicity of these 

quinones has been attributed to their ability to covalently modify thiol groups of proteins 

and  their tendency disrupt redox cycling thereby generating reactive oxygen species 

within the cell (Rodriguez, Fukuto et al. 2005). These two modes of action are virtually 

indistinguishable under physiological conditions. It was only when Rodriguez and 

colleagues observed that these quinones caused thiol-related growth inhibition under 

anaerobic conditions that direct covalent modification mechanism was apparent.  Liu et 

al found azoR expression to be induced by 2-methylhydroquinone, catechol, menadione 

and to a much lesser extent 10mM hydrogen peroxide. They concluded that AzoR did 

offer protection against oxidative stress, but specifically thiol-related stress resulting 

from this covalent modification.   

The meta-analysis of azoR expression revealed that, like SoxR, few studies have 

found significant increases in expression of azoR. This includes at least one set of 

experiments in which the effect of the superoxide generating agent paraquat was 

studied (Blanchard JL 2007). This suggests that the observed increased expression of 

azoR, while not unique to TNT exposure is distinct from that induced by reactive 

oxygen. The lack of any significant alteration of azoR expression in the peroxide and 
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MIX exposed cultures is supportive of these findings.   

A possible explanation for the marked increase of azoR is that the nitro groups are 

presenting a source of oxidative stress; specifically nitrosative stress. Nitrosative stress 

describes the toxic effect of reactive nitrogen species (RNS). The effect RNS on 

microbes has been well documented due to the role they play in host immune function 

(Svensson, Marklund et al. 2006) where they serve as antimicrobial agents by 

macrophages. The most well studied RNSs are nitric oxide (NO) and NO generating 

compounds such as S-nitrosylglutathione (GSNO). These compounds have been 

shown to damage thiol containing proteins which would explain the high induction of 

azoR (Spiro 2006; Brandes, Rinck et al. 2007). 

E.coli, like many microbes, has mechanisms to combat nitrosative stress, but 

identifying this type of stress through expression profiling is challenging. This is because 

gene networks involved in nitrosative stress resistance are often identical to those 

involved in oxidative stress caused by reactive oxygen species (Inoue, Nishikawa et al. 

1999). One such example is the aforementioned SoxRS response. Reactive nitrogen 

damages Fe-S cluster containing proteins by displacing the sulfur group; the RNS 

mediated activation of SoxR exploits this (Figure 3-4) (Brunelli, Crow et al. 1995; Ding 

and Demple 2000; Vasil'eva, Stupakova et al. 2001; Lo, Chen et al. 2008) . The 

relationship between sulfur and RNS is not limited to Fe-S containing proteins. They will 

readily complex with any available sulfur containing compounds (Andrews, 

Hassanzadeh et al. 1996). This includes the sulfur containing amino acids cystine, 

cysteine and homocysteine (Spiro 2006).   
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Figure 3-4: Activation of the SoxR transcriptional factor occurs via two distinct 
mechanisms (Ding and Demple 2000). 

  



91 

 

To ascertain whether the results of the microarray study support the hypothesis that 

TNT is causing RNS-like perturbations, a gene ontology enrichment analysis was 

performed.  The genes with decreased expression produced the largest number of 

statistically significant enrichments. These include decreases in biosynthesis of most 

essential and non-essential amino acids (the exceptions being cysteine, serine, 

glutamine and argentine). Also among the biological processes with decreased 

expression are biosynthesis of DNA, lipids, and cell wall components. There is also a 

significant decrease in energy metabolism. Taken together, the genes involved in most 

biological processes have decreased expression. Fewer functional groups were 

significantly overrepresented by the genes with increased expression. Among these are 

cystine, cysteine, serine, glutamine and argentine biosynthesis, fatty acid catabolic 

processes, sulfate transport, reduction and assimilation, Fe-S cluster assembly, electron 

transport chain assembly, metabolism of xenobiotic compounds and responses to 

stress (oxidative, xenobiotic, drug, antibiotic).  In addition to the effects mentioned 

previously, RNS are also characterized by their ability to inhibit energy metabolism and 

ATP synthesis through disruption of the electron transport machinery (Minamiyama, 

Takemura et al. 1997; Inoue, Nishikawa et al. 1999). The significant enrichment of 

genes involved in electron transport chain assembly is suggestive of this effect.  

 

Reductive Transformation of TNT  

 As mentioned, it is unlikely that a large extracellular compound would cause the 

alterations in gene expression observed here. The most pressing evidence is the 

increased expression of azoR which has been shown to not respond to extracellular  
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stimuli (Rau and Stolz 2003; Liu, Zhou et al. 2009). A plausible explanation is that TNT 

is undergoing reductive transformation and it is a metabolite of TNT that is the source of 

these alterations. 

Reductive transformation of polynitroaromatic compounds by bacteria can occur 

through the reduction of the nitro groups to hydroxylamine or amino groups (Roldan, 

Perez-Reinado et al. 2008). Previous studies have established that E. coli has the ability 

to both reduce TNT to its ADNT and HADNT metabolites and ultimately release nitrogen 

from the aromatic ring to be used for growth (Yin, Wood et al. 2005; Gonzalez-Perez, 

van Dillewijn et al. 2007) . This process is catalyzed by FMN dependent-NAD (P) H 

nitroreductases nfsA and nfsB.  There is a moderate (1.8 fold) increase in nfsA 

expression upon TNT exposure; however no significant increase in nfsB expression was 

observed. While increased expression of nfsB was expected, two important points must 

be considered.   It is important to first recognize that this study was conducted under 

different conditions than the referenced studies. In previously published studies, E.coli 

was exposed to TNT either in PBS or minimal media with no other nitrogen source. The 

experiments of the present study were conducted in minimal growth media containing 

nitrogen.  Additionally, the referenced studies have focused on the enzymatic activity of 

these gene products; none measured gene expression in response to the TNT 

amendments. This study represents the first published microarray experiments involving 

E. coli exposure to TNT, TATP, DNT or any other munitions compound.  

E. coli N-ethylmalemimide reductase (NemA) is a xenobiotic reductase that is a 

member of the old yellow enzyme (OYE) family of proteins.  Bacterial OYE enzymes are 

characterized by the ability to reduce TNT nitro groups in vivo (Williams, Rathbone et al. 
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2004; Gonzalez-Perez, van Dillewijn et al. 2007; Roldan, Perez-Reinado et al. 2008).  A 

study by Gonzolez-Perez and colleagues established that nemA, nfsA and nfsB each 

play a role in the sequential reduction of TNT nitro groups (Gonzalez-Perez, van 

Dillewijn et al. 2007).  Single knockout mutants for each gene showed no decrease in 

TNT reduction, double mutants of nfsA and nfsB showed marked decrease in TNT 

reduction but were still able to perform at 30% of wild type capacity. In the present 

study, a nearly 3 fold increase in nemA expression was observed upon TNT exposure. 

To this extent, two of the three genes previously associated with TNT metabolism by 

wild type E.coli are significantly expressed here.   

 

Increased expression of N-hydroxyarylamine O-acetyltransferase suggests a 

possible role in TNT transformation. 

NhoA encodes an n-hydroxyarylamine-o-acetyltransferase.  A 5.08 fold increase 

in expression of nhoA was observed in the TNT induced expression profile. No 

statistically significant change in expression was observed in any other expression 

profile.  While no previous study has described activity of this enzyme on TNT 

specifically, these enzymes are involved in the acetylation of hydroxylamine derivatives 

of N-aryl compounds such as nitroaromatics (Figure 3-6). Their role in toxicity and 

mutagenesis by nitro compounds has been documented (McCoy, Rosenkranz et al. 

1981; Hein 2000). 

The proposed mechanisms by which E.coli liberates a nitro group from TNT 

involves a Bamberger rearrangement via activity of yet unidentified enzymes  
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Figure 3-5: Microbial Reductive Transformation of T NT  

 

  

Bamberger Rearrangement 



95 

 

(Figure 3-5).  Acetyltransferase activity on aryl amines results in the spontaneous 

production of nitrenium ions which are the transition state leading to the final 

aminophenol product of the Bamberger rearrangement. N-acetylation of HADNT 

intermediates as well as the accumulation of acetyl-amino dinitrotoluenes has been 

observed during TNT transformation by Pseudomonas fluorescense (Gilcrease and 

Murphy 1995).  As applied to the proposed TNT transformation mechanism, nhoA may 

be acting on the HADNTs produced by nitrogenase activity (nfsA, nfsB, and nemA) to 

facilitate the Bamberger rearrangement.  

 

 

 

Figure 3-6: NhoA catalyzes the acetlyation of aromat ic hydroxylamines (Josephy, 
Summerscales et al. 2002) 

NR: nitroreductase, NAT: N-acetyltransferase, OAT: O-acetyltransferase. In mammalian 
cytochrome P450 shuttles aryl amines into this pathway. 

  



96 

 

 

 

 

 

References 
  



97 

 

Andrews, L., P. Hassanzadeh, et al. (1996). "Reactions of Nitric Oxide with Sulfur Species. Infrared 

Spectra and Density Functional Theory Calculations for SNO, SNO+, SSNO, and SNNO in Solid 

Argon." The Journal of Physical Chemistry 100(20): 8273-8279. 

Blanchard JL, C. W., Conlon EM, Pomposiello PJ (2007). Expression data from a paraquat time course 

experiment in wild type and SoxR deficient strains. 

Brandes, N., A. Rinck, et al. (2007). "Nitrosative stress treatment of E-coli targets distinct set of thiol-

containing proteins." Molecular Microbiology 66(4): 901-914. 

Brunelli, L., J. P. Crow, et al. (1995). "THE COMPARATIVE TOXICITY OF NITRIC-OXIDE AND PEROXYNITRITE 

TO ESCHERICHIA-COLI." Archives of Biochemistry and Biophysics 316(1): 327-334. 

Bumpus, J. A. and M. Tatarko (1994). "BIODEGRADATION OF 2,4,6-TRINITROTOLUENE BY 

PHANEROCHAETE-CHRYSOSPORIUM - IDENTIFICATION OF INITIAL DEGRADATION PRODUCTS 

AND THE DISCOVERY OF A TNT METABOLITE THAT INHIBITS LIGNIN PEROXIDASES." Current 

Microbiology 28(3): 185-190. 

Ding, H. and B. Demple (2000). "Direct nitric oxide signal transduction via nitrosylation of iron-sulfur 

centers in the SoxR transcription activator." Proceedings of the National Academy of Sciences of 

the United States of America 97(10): 5146-5150. 

Gilcrease, P. C. and V. G. Murphy (1995). "BIOCONVERSION OF 2,4-DIAMINO-6-NITROTOLUENE TO A 

NOVEL METABOLITE UNDER ANOXIC AND AEROBIC CONDITIONS." Applied and Environmental 

Microbiology 61(12): 4209-4214. 

Gong, P., X. Guan, et al. (2007). "Toxicogenomic analysis provides new insights into molecular 

mechanisms of the sublethal toxicity of 2,4,6-trinitrotoluene in Eisenia fetida." Environmental 

Science & Technology 41(23): 8195-8202. 

Gonzalez-Perez, M. M., P. van Dillewijn, et al. (2007). "Escherichia coli has multiple enzymes that attack 

TNT and release nitrogen for growth." Environmental Microbiology 9(6): 1535-1540. 

Hawari, J., A. Halasz, et al. (1999). "Biotransformation of 2,4,6-trinitrotoluene with Phanerochaete 

chrysosporium in agitated cultures at pH 4.5." Applied and Environmental Microbiology 65(7): 

2977-2986. 

Hawari, J., A. Halasz, et al. (1998). "Characterization of metabolites in the biotransformation of 2,4,6-

trinitrotoluene with anaerobic sludge: Role of triaminotoluene." Applied and Environmental 

Microbiology 64(6): 2200-2206. 

Hein, D. W. (2000). "N-acetyltransferase genetics and their role in predisposition to aromatic and 

heterocyclic amine-induced carcinogenesis." Toxicology Letters 112: 349-356. 

Inoue, M., M. Nishikawa, et al. (1999). "Cross-talk of NO, superoxide and molecular oxygen, a majesty of 

aerobic life." Free Radical Research 31(4): 251-260. 

Josephy, P. D., J. Summerscales, et al. (2002). "N-hydroxyarylamine O-acetyltransferase-deficient 

Escherichia coli strains are resistant to the mutagenicity of nitro compounds." Biological 

Chemistry 383(6): 977-982. 

Kaplan, D. L. and A. M. Kaplan (1982). "Thermophilic biotransformations of 2,4,6-trinitrotoluene under 

simulated composting conditions." Appl. Environ. Microbiol. 44(3): 757-760. 

Keseler, I. M., C. Bonavides-Martinez, et al. (2009). "EcoCyc: A comprehensive view of Escherichia coli 

biology." Nucleic Acids Research 37: D464-D470. 

Kulkarni, M. and A. Chaudhari (2007). "Microbial remediation of nitro-aromatic compounds: An 

overview." Journal of Environmental Management 85(2): 496-512. 

Kumagai, Y., M. Kikushima, et al. (2004). "Neuronal nitric oxide synthase (nNOS) catalyzes one-electron 

reduction of 2,4,6-trinitrotoluene, resulting in decreased nitric oxide production and increased 

nNOS gene expression: Implication for oxidative stress." Free Radical Biology and Medicine 

37(3): 350-357. 



98 

 

Liu, G., J. Zhou, et al. (2009). "The Escherichia coli Azoreductase AzoR Is Involved in Resistance to Thiol-

Specific Stress Caused by Electrophilic Quinones." J. Bacteriol. 191(20): 6394-6400. 

Lo, F. C., C. L. Chen, et al. (2008). "A study of NO trafficking from dinitrosyl-iron complexes to the 

recombinant E-coli transcriptional factor SoxR." Journal of Biological Inorganic Chemistry 13(6): 

961-972. 

McCoy, E. C., H. S. Rosenkranz, et al. (1981). "EVIDENCE FOR THE EXISTENCE OF A FAMILY OF BACTERIAL 

NITROREDUCTASES CAPABLE OF ACTIVATING NITRATED POLYCYCLICS TO MUTAGENS." 

Environmental Mutagenesis 3(4): 421-427. 

Miliukiene, V. and N. Cenas (2008). "Cytotoxicity of nitroaromatic explosives and their biodegradation 

products in mice splenocytes: Implications for their immunotoxicity." Zeitschrift Fur 

Naturforschung Section C-a Journal of Biosciences 63(7-8): 519-525. 

Minamiyama, Y., S. Takemura, et al. (1997). "Irreversible inhibition of cytochrome P450 by nitric oxide." 

Journal of Pharmacology and Experimental Therapeutics 283(3): 1479-1485. 

Nakanishi, M., C. Yatome, et al. (2001). "Putative ACP Phosphodiesterase Gene (acpD) Encodes an 

Azoreductase." Journal of Biological Chemistry 276(49): 46394-46399. 

Nunoshiba, T. (1996). "Two-stage gene regulation of the superoxide stress response soxRS system in 

Escherichia coli." Critical Reviews in Eukaryotic Gene Expression 6(4): 377-389. 

Pomposiello, P. J., A. Koutsolioutsou, et al. (2003). "SoxRS-Regulated Expression and Genetic Analysis of 

the yggX Gene of Escherichia coli." J. Bacteriol. 185(22): 6624-6632. 

Rau, J. and A. Stolz (2003). "Oxygen-Insensitive Nitroreductases NfsA and NfsB of Escherichia coli 

Function under Anaerobic Conditions as Lawsone-Dependent Azo Reductases." Appl. Environ. 

Microbiol. 69(6): 3448-3455. 

Rodriguez, C. E., J. M. Fukuto, et al. (2005). "The interactions of 9,10-phenanthrenequinone with 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a potential site for toxic actions." 

Chemico-Biological Interactions 155(1-2): 97-110. 

Roldan, M., E. Perez-Reinado, et al. (2008). "Reduction of polynitroaromatic compounds: the bacterial 

nitroreductases." Fems Microbiology Reviews 32(3): 474-500. 

Spiro, S. (2006). "Nitric oxide-sensing mechanisms in Escherichia coli." Biochemical Society Transactions 

34: 200-202. 

Svensson, L., B. I. Marklund, et al. (2006). "Uropathogenic Escherichia coli and tolerance to nitric oxide: 

The role of flavohemoglobin." Journal of Urology 175(2): 749-753. 

Touati, D. (2000). "Sensing and protecting against superoxide stress in Escherichia coli - how many ways 

are there to trigger soxRS response?" Redox Report 5(5): 287-293. 

Vasil'eva, S. V., M. V. Stupakova, et al. (2001). "Activation of the Escherichia coli SoxRS-regulon by nitric 

oxide and its physiological donors." Biochemistry-Moscow 66(9): 984-988. 

Williams, R. E., D. A. Rathbone, et al. (2004). "Biotransformation of explosives by the old yellow enzyme 

family of flavoproteins." Applied and Environmental Microbiology 70(6): 3566-3574. 

Yin, H., T. K. Wood, et al. (2005). "Reductive transformation of TNT by Escherichia coli resting cells: 

kinetic analysis." Applied Microbiology and Biotechnology 69(3): 326-334. 

 

 



99 

 

 

 

 

 

Chapter 4 : Identification of Transcriptional Bioma rkers 
  



100 

 

Introduction 

Microarray studies have earned the reputation of overwhelming researchers with 

data.  This has become known as the “analytical bottleneck”.  The high throughput 

nature results in hundreds, thousands or even tens of thousands of statistically 

significant results.  Directly testing a specific hypothesis becomes the proverbial “needle 

in a haystack”. Additionally, when conclusions are drawn, they are often based on the 

altered expression of hundreds of genes making it difficult to decipher biologically 

meaningful information or use that information for downstream application.  

The present study aims to identify a small number of mRNA transcripts that 

function as indicative biomarkers for exposure to energetic materials. These biomarkers 

can be thought of as a molecular fingerprint for each compound. Ideally, such a suite of 

biomarkers is concise, specific to the condition that they are intended to be indicative of, 

and are amenable to analysis through traditional molecular techniques.  

Finding the justification for declaring any subset of the data as the most 

significant is a challenge. This problem can be addressed by using more conservative 

criteria for identifying statistically significant expression ratios. However; relying on the 

statistical significance threshold to achieve a dimensional reduction of data has two 

important limitations. First consider that the statistical significance measurements are 

intended to be an indication of the probability that a given observation is real. They are 

derived from a comparison of the within class variability and the between class 

variability; it is a measure of how well a particular observation disproves the null 

hypothesis that the observed results are due to chance alone.  
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Ideally, every experiment will be well controlled, the methods will be accurate and 

precise, and the analytical equipment will have been calibrated to such an extent that 

every observation is statistically significant at any significance threshold. Therefore, the 

genes eliminated by more conservative thresholds have less analytically significance; 

this is not necessarily a reflection of their actual biological significance.  The second 

limitation is a reduction of analytical power. Genes passing the more conservative 

thresholds represent the best candidates with regard to statistical significance, but 

further analysis may prove difficult with smaller datasets.  

The predictive approach taken here is purely computational in nature, thus it 

alleviates the need for a guided selection of the most significant genes. It does this 

without relying solely on univariate statistical thresholds. All data from each of the 

experiments was used during the initial discriminant analysis, providing an adequate 

level of analytical power. After the initial training and classification genes were selected 

based on their ability to identify TNT, DNT or TATP exposure within a designated 

confidence threshold. The method employed here results in small lists of genes with 

expression patterns that are characteristic of exposure.  The goal here is not to describe 

the physiological impact of each exposure rather it is to define a set of characteristic 

transcriptional biomarkers.   
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Methods 

 

Normalization of Microarray Data 
CEL files were imported to Partek Genomics Analysis software for normalization 

and background correction using the GCRMA algorithm. The resulting signal intensity 

values were then normalized specifically to remove batch effects. The batch effect 

removal was necessary due to intrinsic differences in signal intensities obtained from 

each batch of experiments. This batch effect is attributed to variations in sample 

preparation efficiency and differences in production lots of materials.  

 

Optimization of the binary Class Prediction Assays 
A binary class prediction assay was optimized for each compound. This section 

details the optimization procedure for the TNT class prediction. An identical procedure 

was performed for each of the other assays.  

 

Selection of the prediction algorithm  
The normalized signal intensities were exported to a text document as tab 

separated values. The exported file was opened in Microsoft Excel 2007 equipped with 

the BRB Array Tools add-in. Normalized expression profiles from 27 MSM grown 

cultures exposed to either TNT, DNT, TATP, DMSO, H2O2, or MIX were categorically 

labeled with TNT induced expression data being labeled “TNT” and all others labeled 

“x”. Class prediction rules were defined to discriminate between the two groups using 6 

different mathematical models: compound covariate predictor (CCP), diagonal linear 
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discriminant analysis, k-nearest neighbors, support vector machine (SVM), nearest 

centroid and Bayesian compound covariate (BCC) methods. For each method, features 

were selected for inclusion into the classifier that were significantly different between 

classes at the α=0.001 significance threshold. Each grouping scheme was ranked 

according to the misclassification rate achieved for that method. The BCC method 

consistently had the highest rate of misclassification for any given set of genes. All other 

methods performed similarly; support vector machines was chosen because of its 

intrinsic compatibility with the recursive feature elimination method of selecting genes 

for inclusion in the classifier.  

 

Provision for the external validation set 
An additional 9 arrays were available from preliminary experiments. These 

expression profiles were obtained from E.coli K12 cultures that were grown and 

exposed in Luria-Bertani media (LB). These cultures were exposed to TNT, DNT, or 

TATP. Other than the growth/exposure media, these experiments were carried out 

exactly as described for the 27 MSM cultures. These arrays were included in all 

subsequent analyses providing a dataset consisting of 36 microarray experiments in 

total.   

The minimum number of samples needed to perform an accurate prediction rule 

was calculated using the method developed by Simon and colleagues (Dobbin and 

Simon 2007; Dobbin, Zhao et al. 2008). They have developed and made available a 

web application for calculating the optimum sample size for class prediction 

(http://linus.nci.nih.gov/brb/samplesize/samplesize4GE.html).  First, the highest 



104 

 

standardized fold change was calculated between each group. Standardized fold 

change is defined by the following formula: 

 

Standardized fold change = [(i1/i2)/Sa] x 0.8 

 

where i1 and i2 are the average signal intensities (on a log base 2 scale) for the gene 

with the highest fold change between groups group 1 and group 2 respectively, and Sa 

is the average within-class standard deviation for that gene. In addition to the 

standardized fold change of the most differentially expressed gene, the number of 

genes on the array and the proportion of total arrays that are in the largest group are 

considered when calculating the minimum sample size. The result of these calculations 

indicates the minimum number of arrays to be included in each group to achieve 

accuracy within 5% of the optimum. For this group of arrays a training set of 19 arrays 

(14 in group “not TNT” and 5 in group “TNT”) is sufficient to produce a prediction rule 

that is accurate within 5% of the mathematical maximum.  

In order to provide profiles for an external validation of the classifier, 1 array from 

each set of biological replicate experiments was withheld from the dataset used to 

develop the prediction rules (the training set). This resulted in a final training set 

consisting of 24 arrays (18 from the group “not TNT” and 6 in the group “TNT”) 

  

Optimization of the classifier size  
A key benefit of the RFE method of selection genes for inclusion in the classifiers 

is that the size of the classifier can be preselected independently of the statistical 

analysis. This is as much a virtue as it is a liability. There is an inherent risk of either 
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selecting so few genes that there is little power to make an accurate prediction or 

selecting so many genes that overfitting becomes an issue.  For each compound, 

classifiers were developed over a range of sizes. Performance was assessed based on 

the misclassification rate of the training set cross validation and the withheld samples.  

 

Class Prediction and Gene Selection 
All class prediction calculations were performed prior to any further statistical 

analysis or filtering; all 10208 GeneChip features were considered during the initial 

training and classification steps. Therefore, the resulting classifiers have been 

generated from a pool initially consisting of all E.coli genes with no preference based on 

their statistical significance.  

Fluorescence intensity measurements were median-centered on a gene-by-gene 

basis to minimize the dominating effect of genes with relatively high baseline 

expression. Gene expression data were analyzed from 24 different compound 

exposures: 4 TNT in minimal media (MSM) , 2 TNT in Luria-Bertani media (LB) , 4 DNT 

in MSM, 2 DNT in LB, 2 TATP in MSM, 2 TATP in LB, 4 DMSO in MSM,  2 MIX in MSM, 

2 H2O2 in MSM. There were a total of four training sets formed from different groupings 

of these 24 arrays, one each for TNT, DNT, TATP and a fourth class including both TNT 

and DNT arrays. Class prediction rules were established based on a linear support 

vector machine to discriminate between each class and all others.  

Genes were selected for inclusion in the final classifier using Recursive Feature 

Elimination (Guyon, Weston et al. 2002; Chih-Wei Hsu 2009). Briefly, from the initial 

classification, all 10208 array features are scored based on their overall contribution to 
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the classification determinant. Support vector machines; for example, utilizes as its 

determinant a distance measurement between the worst classified arrays in each class. 

The feature that least contributes to that determinant is eliminated from each array. A 

new classifier is then built using the remaining data. This process is repeated, 

recursively, until a pre-determined number of genes are remaining.  

 

Class Prediction and Gene Selection for an optimized TATP classifier  
An additional SVM classifier for TATP expression profiles was developed as described 

previously with one exception. The 12 arrays withheld from the initial training set were 

re-introduced forming a larger training set composed of all 36 expression profiles. There 

was no external validation test performed on the larger classifier because all available 

arrays were included in the training set.  

 

Random Forest Class Prediction for All Exposure Classes 
  A random forest can be thought of as a group of hierarchical decision trees 

(Figure 4-1). The split at each node of each tree represents a decision that is 

determined by some characteristic feature or variable distinguishing the two groups 

created by the split. Arrays are classified based on which terminal nodes (Figure 4-1 red 

nodes) they fall in on the decision tree. Random forests generate multiple permutations 

of this decision tree and each resulting tree votes on the classification of a given array.  

A random forest was generated using the algorithm developed by Leo Breiman 

(Breiman 2001). Briefly, 20 arrays are drawn randomly with replacement from the 

training set to serve as the training set for each decision tree; 500 decision trees are 

generated. At each node, 100 genes are selected at random and used as the basis of 
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that split. This continued until all classes have been segregated. In generating each 

tree, arrays are randomly drawn with replacement for inclusion in the training set. This 

typically results in a third of the arrays being left out of the training set for any given tree. 

These arrays are termed “out-of-the-bag” (OOB) (Breiman 2001). After as each tree is 

generated and terminal nodes are assigned classifications, the oob arrays are 

segregated down the tree using the prediction rules established by the training set. The 

error rate is recorded and the expression value of each gene is randomly reassigned. 

The arrays with the permuted gene values are segregated down the tree again. The 

average difference between the error rate of the original array and its permuted version 

among all trees is the raw importance score for that gene.  This score is divided by the 

standard error to produce a z-score. A significance p-value is assigned based on this z 

score. Genes with differences in expression at the p=0.001 significance level were 

chosen for inclusion in the classifier. 

Due to the limitations imposed by the cross validation steps, only the TNT, DNT, 

TATP and DMSO expression profiles were used for the fandom forest class prediction 

assay. Inherent to the method, each class must be composed of at least 3 arrays to 

achieve proper cross validation.  The data formatting and preparation for the random 

forest prediction assay was similar to that described for the binary class prediction; the 

one difference being the class labels them. Each of the 20 arrays was labeled according 

to their compound exposure (6 TNT, 6 DNT, 4 TATP, 4 DMSO).  

 

Assessing the Performance of the Classifiers 
There are four characteristics of mathematical class prediction performance: sensitivity, 

specificity, positive predictive value (PPV), and negative predictive value. The value of 
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each variable is calculated for each class. Sensitivity represents the probability that an 

expression profile of class N will be identified as such. 

Specificity represents the probability that an expression profile of not of class N 

will identified as a non class N profile. PPV represents the probability that a profile that 

has been identified as class N is truly a class N profile. NPV represents the probability 

that a profile that has been identified as non class N is indeed not a class N profile.  

These variables are calculated as follows: 

Let, for some class N,  

      n11 = number of class N samples predicted as N  

      n12 = number of class N samples predicted as non-N  

      n21 = number of non-N samples predicted as N 

      n22 = number of non-N samples predicted as non-N  

Then the following parameters can characterize performance of 

classifiers:  

      Sensitivity = n11/(n11+n12)  

      Specificity = n22/(n21+n22)  

      Positive Predictive Value (PPV) = n11/(n11+n21)  

      Negative Predictive Value (NPV) = n22/(n12+n22)  

Binary Class Prediction 
 The gene expression profiles are inherently high-dimensional due to the number 

of genes included in the initial classification.  The use of RFE to select genes that make 

up the classifier may mitigate some of the risk of over-fitting the data because the 

classifier is rebuilt at every step using each subset of the data. However, because the 
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“not TNT” class is made up of otherwise unrelated samples, the within-class variability 

of any given gene’s expression can be high. Usually, the goal of classification methods 

such as those presented here is to be able to identify a single unknown sample that was 

not a part of the initial training set. Therefore the risk of misclassification of individual 

samples must be addressed (Radmacher, McShane et al. 2002).  

To address the risk of spurious classification of individual samples, the 

misclassification rate of the classifier was assessed through leave-one out cross 

validation (Molinaro, Simon et al. 2005). Briefly, an array was removed from the training 

set and the prediction rule, using the existing classifier, is built based on the remaining 

arrays in the training set. The removed array is then identified based on the new 

prediction rule. This is repeated for each array in the training set. The misclassification 

rate of the cross-validation serves as a measure of the appropriateness of the chosen 

genes.  

Cross validation alone may not be sufficient to accurately demonstrate the 

reliability of the developed classifier. Several researchers have reported low cross 

validated misclassification rates when assessing classifiers built from experiment 

groupings that were made from technical replicate experiments (Ambroise and 

McLachlan 2002; Radmacher, McShane et al. 2002; Molinaro, Simon et al. 2005). 



 

 

 
 

Figure 4-1 Example of a Class Prediction 
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One would expect no reliable discrimination to be had from a training set composed 

entirely of replicate experiments as there no real difference between classes. Therefore 

any discrimination is actually due to chance alone and the cross validated 

misclassification rates should be near 50%.  Radmacher and collogues found 

misclassification rates as low as 0.1% although the expression profiles making up each 

of the opposing classes were generated from replicate data sets. Therefore, in some 

situations, the results of the cross validation tests do not conclusively indicate the 

accuracy of the predictor.  

A better assessment of the classifier performance is achieved through parametric 

permutations of the cross validation assay. The purpose of the permutation testing is to 

determine the statistical significance of the misclassification rate determined by the 

cross validation. This is achieved by randomly reassigning the class labels of each array 

in the training set. A new cross validation is performed on the re-labeled training set. 

This process is repeated n times with n being designated number of permutations to 

test. The probability that the differences identified between the two classes are due to 

chance alone is a function of the misclassification rate for all cross validated 

permutations of the array classes. This serves as a statistical significance measurement 

of the developed classifier.  

Due to the reiterative nature of the recursive feature elimination, a minimum of 

10,199 classifiers are built during the process because removal of each feature requires 

the rebuilding of the classifier. As a consequence an error made at any step could 

negatively affect all consecutive steps. To control this, the cross validation and 
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permutation assays were performed at each iteration of the recursive feature 

elimination.  

 

Random Forest Class Prediction 
 Performance assessment for the random tree analysis is performed on the OOB 

arrays. For each tree, the OOB arrays are segregated according to the prediction rules 

established during the previous classification steps. The percentage of 

misclassifications averaged among all generated trees for any given class is interpreted 

as a measure of performance. There is no need for permutation testing because the 

performance for each tree is validated by a data set that is external to that trees training 

set.  
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Results 

The TNT classifier 

Recursive feature elimination based on prediction rules established using support 

vector machines was used to select 10 genes that are sufficient to distinguish the gene 

expression profiles obtained from TNT exposed cultures from those obtained from 

cultures exposed to DNT, TATP, H2O2 or MIX Table 4-1 A. The cross-validation 

permutation testing resulted in no misclassifications in any of the 2000 permutations. 

Therefore statistical significance of the classifiers predictive ability is p=0.0005 (5x10-4), 

the mathematical maximum significance for an assay consisting of 2000 permutations 

(Table 4-1). Likewise, the external validation using the 12 withheld samples produced 

no misclassifications.  

 A preliminary assay using another method, Prediction Analysis of Microarrays, 

suggested that a 2-gene classifier yielded the optimum misclassification rate for that 

method. While, in terms of misclassification rate, no improvements can be made on the 

10-gene classifier, a classifier consisting of only 2 genes may be desirable for future 

applications.  The SVM was performed again, this time selecting only 2 genes. As 

expected, these genes were the two highest ranked genes in the larger classifier. This 

classifier performed as well as the larger classifier. The compositions and performance 

of the resulting classifiers are presented in Table 4-1.   
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Table 4-1: Transcriptional Fingerprint for TNT expo sure 

 

A Probe  Gene Fold Change  10 Weight  2 Weight  
 1766518_s_at azoR 131.40 0.0958 0.3227 
 1762628_s_at Unannotated  22.39 0.0972 0.2740 

 1762061_s_at ybiJ 17.78 0.0703 N/A 
 1761862_s_at c1838 12.46 0.0688 N/A 
 1759339_at oxyS 7.31 0.0643 N/A 
 1763543_s_at marR 9.56 0.0637 N/A 
 1761528_s_at soxS 7.04 0.0506 N/A 
 1768514_s_at nhoA 2.47 0.0543 N/A 
 1760938_s_at marA 3.51 0.0610 N/A 
 1760593_s_at fldA 1.64 0.0558 N/A 
 The threshold for the 10 Gene predictor is 7.009  

The threshold for the 2 Gene predictor is 6.238 
 

 

 Performance of the TNT Support Vector 
Machine Classifiers  

 

 P=5 x 10-4  

B Class Sensitivity Specificity PPV NPV  

 TNT 1 1 1 1  

 x 1 1 1 1  

 

Recursive feature elimination (RFE) was applied to select 10 genes that 
distinguish the TNT generated expression profiles f rom all other exposures. 
These 10 genes serve as a transcriptional fingerpri nt that is indicative of TNT 
exposure. All 10 genes are statistically significan t at the FDR adjusted p ≤ 0.05 
level in Chapter 2. The fold change reported is the  TNT vs. DMSO fold change as 
described in Chapter 2.  A Prediction Analysis of M icroarrays (PAM) identified two 
genes as the minimum number of genes required to ac hieve the lowest 
misclassification rate using that method.  These sa me two genes were identified 
using the SVM classifier with RFE gene selection. T he gene weights of the 10-
gene classifier and 2-gene classifier are listed in  the columns labeled “10 Weight” 
and “2 Weight” respectively. 
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The DNT Classifier 

Recursive feature elimination based on prediction rules established using support vector 

machines was used to select 10 genes that best distinguish the gene expression 

profiles obtained from DNT exposed cultures from those obtained from cultures 

exposed to TNT, TATP, H2O2 or MIX.  The statistical significance of the classifiers 

predictive ability is p=2x10-3 based on 2000 permutations of the cross validation test. 

The specific nature of the classifier’s significance reflected in the performance variables. 

The composition and performance of the resulting classifier is presented in Table 4-2. 

 

The TATP Classifier 

Recursive feature elimination based on prediction rules established using support 

vector machines was used first to select 10 genes that best distinguish the gene 

expression profiles obtained from TATP exposed cultures from those obtained from 

cultures exposed to TNT, DNT, H2O2 or MIX. The composition of the resulting classifier 

is presented in Table 4-4. 

A second classifier was developed in an attempt to improve the low specificity 

observed in the cross-validation of the first classifier. The rational governing the second 

classifier’s development was simple: The additional analytical power offered by the 

inclusion of more training arrays should improve the performance of the resulting 

classifier. The composition of the optimized classifier is presented in Table 4-5. 

 The statistical significance of the initial classifier’s predictive ability is p=0.07 

based on 2000 permutations of the cross validation test. The optimized classifier has a  
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Table 4-2: Transcriptional Fingerprint for DNT expo sure.  

 

Probe  Gene Fold Change  Weight  
1762699_at micF 3.10 0.3469 
1764812_s_at nhoA ** 1.71 -0.2402 
1762628_s_at Unannotated Probe 1.05 -0.2326 
1769097_at rydB * 2.59 0.2442 
1760063_s_at ybdK * -1.53 -0.1792 
1761847_s_at lysA * 1.42 0.1734 
1761146_s_at livG -2.62 -0.1609 
1768185_at Ybfd * -2.41 -0.1676 
1768540_at c4419 3.19 0.1657 
1768359_s_at fumC 6.70 0.1584 
The threshold for the Support Vector Machine predic tor is 4.85  

 
An asterisk (*) indicates that the gene was not found to be significantly different in 
chapter 2. 
** nhoA in this list is not the same probe set as the nhoA identified as a TNT biomarker.  

 

Performance of the DNT Support Vector Machine 
Classifier  

 

P=2 x 10-3  

Class Sensitivity  Specificity  PPV NPV  

DNT 1 0.944 0.857 1  

x 0.944 1 1 0.857  

 

 

Recursive feature elimination was applied to select  10 genes that best distinguish 
the DNT generated expression profiles from all othe r exposures. These 10 genes 
serve as a transcriptional fingerprint that is indi cative of DNT exposure. Only 5 
genes are statistically significant at the FDR adju sted p ≤ 0.05 level described in 
chapter 2.  
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Table 4-3: Identification of samples during the ext ernal validation.  

 

 
 Predicted Exposure 

True 
Exposure TNT DNT NT TATP RF 

DMSO x x x x DMSO 
DNT x DNT NT x DNT 
TNT TNT DNT NT x TNT 
TNT TNT x NT x TNT 
DNT x DNT NT x DNT 

TATP x x x TATP DMSO 
H2O2 x x x x excluded 
DMSO x x x x DMSO 

MIX x x x x excluded 
TNT_LB TNT x NT x TNT 
DNT_LB x DNT NT x DNT 

TATP_LB x x x TATP TATP 
 

One array from each set of biological replicates wa s withheld from the training 
set and subjected to each classifier for identifica tion. The H2O2 and MIX were 
excluded when testing the random forest classifier because those arrays were 
not included in the training set.  
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Table 4-4 : Transcriptional Fingerprint for TATP ex posure.  

 

Probe  Gene Fold Change  Weight  
1760518_s_at torA* -1.56 -0.3898 
1759632_s_at codB* 2.45 0.2875 
1769254_s_at ydjY* 1.31 0.2227 
1762007_s_at cusB -2.64 -0.1657 
1762177_s_at metA* 2.55 0.1746 
1768650_s_at gntK 3.84 0.1931 
1762115_s_at cusF -3.65 -0.1510 
1768442_s_at zntA* 1.90 0.1376 
1761682_s_at cpxP* -1.36 -0.2272 
1764983_s_at cpxP* -1.60 -0.1859 

The threshold for the Support Vector Machine predictor is 4.85  
 
An asterisk (*) indicates that the gene was not found to be significantly different in 
chapter 2. 
 

Performance of the TATP Support Vector 
Machine Classifier  

 

P=0.07  

Class Sensitivity  Specificity  PPV NPV  

TATP 0.5 0.95 0.667 0.905  

x 0.95 0.5 0.905 0.667  

 

 

Recursive feature elimination was applied to select  10 genes that best distinguish 
the TATP generated expression profiles from all oth er exposures. These 10 genes 
serve as a transcriptional fingerprint that is indi cative of TATP exposure. Only 3 
genes are statistically significant at the FDR adju sted p ≤ 0.05 level described in 
chapter 2.  
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Table 4-5 : Optimized Transcriptional Fingerprint fo r TATP exposure 

 

 

An asterisk (*) indicates that the gene was not found to be significantly different in 
chapter 2. 
 

Performance  of the Optimized TATP Support 
Vector Machine Classifier  

 

P=5 x 10-4  

Class Sensitivity  Specificity  PPV NPV  

TATP 0.833 1 1 0.968  

x 1 0.833 0.968 1  

 

 

Recursive feature elimination was applied to select  10 genes that best distinguish 
the TATP generated expression profiles from all oth er exposures. This optimized 
classifier was generated from a training set consis ting of all 36 arrays. No arrays 
were withheld to perform an external validation tes t. Only 2 genes are statistically 
significant at the FDR adjusted p ≤ 0.05 level described in chapter 2.  

 

 

 

Probe Gene Fold Change Weight 

1768650_s_at gntK 3.85 0.3236 

1764983_s_at spy* -1.61 -0.2601 

1761682_s_at cpxP* -1.36 -0.2276 

1760518_s_at torA* -1.56 -0.3567 

1761379_s_at tdcG* -1.40 -0.2288 

1767449_s_at yqfA* -2.13 -0.2144 

1766131_s_at yagU* 1.67 0.2198 

1764483_s_at spy* -1.61 -0.1837 

1762115_s_at cusF -3.65 -0.1999 

1762007_s_at cusB* -2.64 -0.1597 

The threshold for the Support Vector Machine predictor is -10.086 
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significance of p=0.0005. The specific nature of the classifier’s significance reflected in 

the performance variables (Table 4-4 and Table 4-5).  

 

A combined Nitrotoluene Classifier 
Recursive feature elimination based on prediction rules established using support 

vector machines was used to select 5 genes that best distinguish the gene expression 

profiles obtained from both TNT and DNT exposed cultures (NT) or from those obtained 

from cultures exposed to TATP, H2O2 or MIX (Table 4-6).  The statistical significance of 

the classifiers predictive ability is p=0.0005 based on 2000 permutations of the cross 

validation test. The specific nature of the classifier’s significance reflected in the 

performance variables. The composition and performance of the resulting classifier is 

presented inTable 4-6. 

 

Random Forest  
The random forest prediction resulted in 37 genes that are significant at the 

p=0.001 level. The composition and performance of the random forest classifier are 

presented in Table 4-7.  

 

 

 

 

 

 



121 

 

 

Table 4-6 Transcriptional Fingerprint for Nitrotolu ene Exposure 

 

Probe   Gene Fold Change  Weight  
1762699_at micF  3.75 0.4677 
1767981_s_at  ompF  -2.80 -0.2441 
1762061_s_at  ybiJ  5.61 0.2925 
1763931_s_at  inaA  2.19 0.3447 
1761146_s_at  livG  -3.95 -0.1953 

The threshold for the Support Vector Machine predic tor is 
7.291  

 
Performance of the NT Support Vector 

Machine Classifier  
 

P=5 x 10-4  
Class  Sensitivity  Specificity  PPV NPV  
DNT 1 1 1 1  

x 1 1 1 1  
 

 

 
Recursive feature elimination was applied to select  5 genes that best distinguish 
the two nitrotoluene (TNT and DNT) generated expres sion profiles from all other 
exposures. These 5 genes serve as a transcriptional  fingerprint that is indicative 
of nitrotoluene exposure.  
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Table 4-7: Composition of the Random Forest Classif ier 

 

 
  

Probe  Gene Probe  Gene 
1762061_s_at  ybiJ 1764272_s_at  guaC 
1762628_s_at  --- 1762674_s_at  torC 
1764316_s_at  yhhW 1760223_s_at  yhaK 
1766518_s_at  azoR 1760768_s_at  marB 
1759339_at oxyS 1763981_s_at  aceA 
1760797_s_at  --- 1768822_s_at  ybiM 
1761485_s_at  tatA 1762825_s_at  iscA 
1765694_s_at  ypfH 1759182_s_at  yhcN 
1768980_s_at  c3865 1764745_at yqjG 
1761964_s_at  trxC 1763422_s_at  smpA 
1761862_s_at  c1838 1762699_at micF 
1759494_s_at  bhsA 1764483_s_at  spy 
1768064_s_at  sgrS 1766286_s_at  yhaV 
1769137_s_at  qorB  1764937_s_at  torD 
1760911_s_at  yceI 1759429_s_at  feoB 
1759254_at c4973 1762672_s_at  yqjF 
1765578_s_at  ygiD 1760938_s_at  marA 
1763835_s_at  --- 1766996_s_at  c2142 
1761528_s_at  soxS   

  

Performance of the Random Forest Classifier 

Class Sensitivity  Specificity  PPV NPV 
DMSO 0.25 0.812 0.25 0.812 
DNT 0.667 0.786 0.571 0.846 
TATP 0.75 1 1 0.941 
TNT 1 1 1 1 
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Discussion 

 

The SVM Classifiers 
With only one exception, each of the SVM classifiers is able to correctly identify 

all of the expression profiles used in the external validation tests (Table 4-3); the one 

exception being the DNT classifier’s incorrect classification of a TNT expression profile 

as DNT. This is, arguably, an inconsequential misclassification; any practical application 

of this assay would weigh DNT and TNT exposure similarly.  It was for this reason that 

the nitrotoluene classifier was developed.  

The DNT SVM classifier is sensitive, specific, and will, with 100% certainty, rule 

out the possibility of DNT exposure. The PPV is 0.875 indicating that 85.7% of profiles 

identified as DNT, in fact, result from DNT exposure. Inversely, this suggests a false 

positive rate of 14.3% which corresponds to a single misclassification during the cross 

validation. This was once again a situation in which a TNT profiles was incorrectly 

classified as DNT. The nitrotoluene classifier provides improved performance at the cost 

of a loss of the ability to resolve the difference between the TNT and DNT profiles. 

The initial, 10-gene TATP classifier is specific but lacks sensitivity. Initially, it 

would seem that the classifier is of relatively limited use. There is a 50% chance of 

incorrectly identifying TATP profiles as something other than TATP. There are three 

considerations that possibly mitigate the effect of spuriousness sensitivity. (i) While the 

sensitivity is low, the specificity is high. With 91% certainty, the classifier will rule out the 

possibility of TATP exposure. This translates to a low false negative rate. (ii) The PPV 
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indicates a false positive rate of only 33%.  (iii) With a pvalue of 0.07, the classifier is 

much more accurate than what would be expected by chance alone.  

The most likely explanation for the weak performance of the TATP classifier is 

the fact that the composition of the training set was less than the optimum identified by 

the sample size calculation (Dobbin and Simon 2007; Dobbin, Zhao et al. 2008). The 

ideal training set includes at least 60 samples with 10 belonging to the TATP class. The 

option of retrieving microarray experiments from public databases is feasible, and was 

attempted. The problem with this approach is that there are no TATP exposure 

experiments in any of the public databases, nor has expression data been published in 

the literature. Without adding additional arrays to the TATP training class, the addition of 

non-TATP training arrays serves only to marginally strengthen the specificity and NPV. 

However, it did little to improve the specificity or PPV of the classifier. It was possible to 

develop an improved TATP classifier by reintroducing the withheld array experiments 

for inclusion in the training set. This has the disadvantage of eliminating the pool of 

arrays to be used as an external validation tests. This is an acceptable compromise. 

The initial TATP classifier correctly identified all of the external arrays; there is no 

reason to assume that an optimized classifier with a higher significance value and 

specificity would perform poorly.    

An inherent limitation of the SVM method, as applied in the present study, is the 

binary nature of the prediction. Profiles are identified, for example, as being the result of 

TNT exposure, or any other compound. Collectively, the four SVM classifiers provide a 

level of flexibility for identifying each exposure individually; such an application would 

necessitate a hierarchically structured analysis. Each compound would be eliminated 
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sequentially as a possibility. The benefit to such an analysis is that it is adaptable. 

Additional sets of biomarkers can be identified and added as needed. If identification of 

additional compounds is desired it may not be necessary to alter the existing classifiers. 

Additionally, these classifiers were developed under the mantra of “less is more”, with 

the goal being to identify the smallest subset of genes that produce an accurate 

classifier. They were developed from the top down, eliminating genes sequentially 

based on how well the collective set of genes identified the members of the training set. 

Strengthening the classifier is simply a matter of adding more profiles to the training set. 

This was made evident by the improved performance of the optimized TATP classifier 

(Table 4-5).  

 

The Random Forest Classifier 
 The random forest classifier was developed as a larger suite of transcriptional 

biomarkers for specific identification of each expression profile in tandem. The result is 

a list of 37 genes (Table 4-7). The external validation test was successful with one 

exception. One TATP expression profile was incorrectly identified as a DMSO 

expression profile. The performance variables suggest that, in terms of its predictive 

accuracy, TNT>TATP>DNT>>DMSO.  This was no surprise considering that 

TNT>TATP>DNT in terms of the number of genes with significant differences in 

expression resulting from exposure to each compound. Additionally, all 25 of the 30 

genes in which a statistically significant change in expression was observed upon DNT 

exposure were also observed to have similar changes in expression upon TNT 

exposure.  Thus the performance of the classifier is a reflection of the overall 
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differences in the expression profiles generated from each exposure to each compound. 

DMSO is the control condition, all exposures contained equal amounts of DMSO. This is 

likely the reason for the poor performance when identifying the DMSO arrays. The 

control state, from a training standpoint, is poorly defined due to the experimental 

design.  

Intuitively, since all exposures include DMSO as the solvent, the resulting 

differences in expression profile between the experimental and control arrays 

represents the effect of each compound beyond the effects observed in the control. In 

those cases, the training set consists of classes in which the exposure conditions used 

to generate each profile are distinctly different from those found in all other classes. For 

example, the only class that contains expression profiles which were the result of TNT 

exposure is the TNT class. This is not the case for the DMSO class. All classes contain 

expression profiles which were generated from cultures exposed to DMSO. Thus the 

control arrays are likely a poor choice for a class intended to represent the default state 

of “no exposure”.  

Using the random forest classifier eliminates the need for a binary analysis. A 

profile can be identified as resulting from exposure to TNT, DNT, or TATP from a single 

suite of transcriptional biomarkers. Though this does not necessarily result from a 

smaller list of genes, in fact, there are 37 genes in the random forest predictor as 

opposed to the 30 included in the 3 SVM classifiers combined. However, the random 

forest predictor is much faster. The machine used for the computational analyses is 

equipped with a dual core 2.13 GHz processor and 2Gb of memory. Each of the SVM 

predictors required a minimum of 5 hours (15+ total) of processing time to develop the 
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classifier and perform the permutation tests. Calculations for the random forest, which 

included all 3 compounds, were completed in less than an hour.  In the identification of 

future samples, this time discrepancy is mitigated once the classifier has been 

developed because predictions using the classifier only involve the selected genes.  
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Exposure to energetic materials results in distinct  patterns of gene expression 

The microarray experiments and subsequent gene expression profiling were conducted 

in the testing of the first major hypothesis: 

I. Microbial exposure to energetic materials will result in distinct, characteristic 

patterns of gene expression. 

This hypothesis was directly addressed through contrasts of the expression ratios 

resulting from each compound’s exposure. Consistently, TNT, DNT, and TATP 

exposure resulted in patterns of gene expression that are not found in any other 

exposure including the two alternate control exposures (H2O2, or H2O2 + Acetone). 

From the composition of the gene expression profiles alone, it is reasonable to conclude 

that there are clearly differences in the transcriptional profile obtained from cultures 

exposed to each compound.  This is definitive confirmation of the stated hypothesis.  

 

TATP is not sensed as a xenobiotic toxin by E.coli, S.cerevisiae or P. putida  

 P. putida and E.coli expression profiles resulting from TATP exposure were 

composed of genes facilitating metabolism of cyclic organic compounds. The most 

dominant functional class in the E.coli profile was galactitol metabolism, also present 

were genes involved in metabolism of various hexose sugars. Furthermore there were 

significant decreases increase in expression of genes characteristic of xenobiotic 

compounds and drug resistance.  The data does seem to suggest a toxic interaction 

however.  There were significant similarities between the TATP and peroxide exposures 
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for both the E.coli and S.cerevisiae cultures. Many of these include increases in DNA 

repair mechanisms and copper/iron homeostasis.  

 

Exposure to energetic materials can be identified f rom the resulting gene 

expression profiles alone  

Indicative transcriptional biomarkers were developed for exposure to each of the 

energetic materials. The E. coli training set used to develop the SMV classifiers 

consisted of expression profiles obtained from both MSM and LB cultures.  The result is 

a collection of classifiers that is sufficient to indicate exposure of TNT, DNT, or TATP in 

each of the externally tested E.coli cultures. Further, the LB media represents a 

complex chemical environment. It has a vast array of constituents that are of higher 

concentration than the TNT, are biologically available and have well documented effects 

on the global gene expression and metabolism of the cultures. The ability of these 

transcriptional biomarkers to identify each compound under such potentially masking 

conditions is evidence that these transcriptional fingerprints represent the core 

transcriptional changes that are characteristic of these materials.  

These genes represent ideal candidates for future development of PCR based 

assays as well as bioluminescent bioreporters for these compounds.  Further, the ability 

to develop these classifiers serves as definitive evidence that the stated hypothesis is 

true; these energetic materials indeed induce distinct, characteristic changes in 

transcription, and these alterations are indicative of exposure to the respective 
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compound. These changes have been shown to be distinct from those induced by 

DMSO, hydrogen peroxide, or a mixture of acetone and hydrogen peroxide.  

 

TNT induces expression of the superoxide stress res ponse regulon in E.coli. 

TNT exposure resulted in the increased expression of 31 genes associated with the 

SoxRS response regulon. Among these genes is the SoxS transcriptional activator. 

 

TNT induced alterations in gene expression are sugg estive of nitrosative stress. 

The physiological effects of reactive nitrogen stress are often similar to those 

caused by reactive oxygen. This is because, in many cases, the cellular components 

involved in responding to both classes of compounds are the same. Typically, the 

mechanism of reactive nitrogen stress involves displacement of sulfur atoms from iron 

sulfur centers, sulfur containing amino acids and thiol containing proteins.   

• Both E.coli and S. cerevisiae have significantly increased expression of genes 

involved in iron-sulfur center assembly, sulfate transport, and sulfur containing 

amino acid synthesis.  

• The E.coli expression profiles indicates increased expression cysteine 

biosynthetic networks yet cellular abundance of cysteine is decreased 

(Metabolite profile: Appendix 1) 

• AzoR which has a 62 fold increase in expression responds specifically to thiol 

damage resulting from covalent modification. 
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• Transcription of SoxS is regulated by the transcription factor SoxR. SoxR 

activation can occurs through displacement of its iron-sulfur center. 

 

E.coli NhoA may play a role in the reductive transformati on of TNT 

 A 5 fold increase in nhoA was observed upon exposure to TNT. While increased 

expression of this gene was not observed in any other gene expression profile, nhoA 

was selected by the support vector machine as a potential transcriptional biomarker for 

DNT as well. The inclusion of this gene as biomarkers for TNT and DNT exposure but 

none of the other chemical exposures confirms that this response is specific to 

nitroaromatics.  The reported activity of this enzyme is capable of initiating the HADNT 

Bamberger rearrangement proposed by Gonzolez and others.  It is possible that this 

protein is directly involved in the liberation of nitrogen from TNT via reductive 

transformation.  
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Suggested Future Work 
  



136 

 

Time-course Gene Expression Profile 

The mechanistic insight into the interactions with each compound was less 

productive than what was originally envisioned. This was realized very early in the 

project; as early as the first preliminary set of E.coli microarrays. By taking an 

expression “snapshot”, that is measuring expression values at a single time point and at 

a single compound concentration, there is simply not enough information to identify all 

of the biologically relevant changes in gene expression. What is missing is a direct link 

between each compound exposure and the specific changes in gene expression 

observed. This raises several pertinent questions: 

• Are these changes primary or secondary responses?  

• Are they due to a specific interaction with each compound or are they the result 

of a combination of less specific primary responses?  

• Are the differences observed among the expression profiles truly unique or are 

those differences limited to that specific time point? In other words, might DNT or 

TATP induce an expression profile similar to TNT at an earlier or later time point, 

or perhaps at a different concentration?  

These questions are best answered through a comprehensive pathway analysis. This 

would require a time-course expression study.  This would provide more information 

about nature of the response with regards to the regulatory networks involved. The 

ontology enrichment analysis was based on the statistical significance of a given 

biological process with respect to the distribution of genes in the data set.  Networks 

and pathways that lacked significant representation in this study may emerge as highly 

significant in the context of the entire exposure period.  Additionally, the time course 
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experiment may yield a more complete list of responsive genes, since the most 

significant changes may occur at an earlier or later time point.  Although such an 

approach has become standard practice in the literature, it was not included in the 

original design of this study because these questions were outside of the scope of this 

project which was to simply identify biomarkers for compound exposure. That specific 

aim required expression data from a diverse array of compounds for the comparisons. 

Had the study focused on a single compound, it may have resulted in more biologically 

meaningful results but there would have been no way if identifying the most 

characteristic results.  

 

The Effect of Growth Media 

 E. coli gene expression data were generated from cultures grown in both Luria-

Bertani (LB) media and a minimal salts media. As expected, there were considerable 

differences between the two sets of expression data. A proper comparison could not be 

made because data resulting from DMSO control exposures were not collected for the 

LB grown cultures.   

If TNT is inducing nitrosative stress as suggested, a comparison of the LB and 

MSM grown cultures may yield informative results. It has been established that the 

effects of nitrosative stress are more pronounced in cells exposed in LB media than 

defined minimal media (Flatley, Barrett et al. 2005; Spiro 2006). This is due to the fact 

that, although LB is regarded as a rich media, it is relatively iron poor when compared to 

defined media which is supplemented with iron. Direct comparisons of the TNT-LB and 
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TNT-MSM expression profiles support this idea but without the DMSO-LB control, any 

such comparison is inconclusive. However, the role of iron should be addressed by 

performing an expression study in iron limited MSM. It is a more direct method of 

assessing this relationship.  

 

Metabolomics 

 The metabolite profiling study was understated to a great extent in this text. In 

fact, it was briefly mentioned in the conclusions and only presented in full in Appendix 1.  

This facet of the project is incomplete; there not enough technical/biological replicates 

performed to provide the statistical power to draw conclusions. This is especially true in 

the context of this study in which much emphasis was placed on the statistical analysis 

of each experiment.  

 The next logical step in completing the metabolomics study would be to first 

repeat the experiments using more replicates. The data presented in Appendix 1 

resulted from a single technical replicate for each of the 2 biological replicates for each 

condition. Given the variability observed, there should be at least 3 technical replicates 

for each biological replicate. Also, specific attention should be given to TNT and DNT 

transformation products. From the expression data, expected metabolites would include 

hydroxylamino-dinitrotoluenes (HADNTs), acetylated HADNTs, and azoxy-nitrotoluenes. 

The evidence of oxidative and nitrosative stress would also suggest an increased 

abundance of s-nitrosylthiols and nitrosylated proteins, heme groups and amino acids.  
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 The inherent limitation of the current experimental design is also worth 

consideration. As designed, these experiments will only yield information about the 

abundance of a given metabolite. What may be more meaningful is to gain information 

about the flux of metabolites through the cell.  Are these metabolites accumulating 

because of increased biosynthesis or a decrease in the activities that deplete them? Are 

these changes in metabolite abundance originating from the metabolism of the 

energetic compounds or are they due to overall changes in cellular metabolism caused 

by exposure to the compounds?  These questions could be answered using isotope-

labeled substrates. Spiking with labeled carbon and/or nitrogen at the time of the 

exposure should help resolve these questions. Labeled TNT, DNT and TATP would 

allow for the identification of compounds originating from metabolism of each 

compound.  
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Appendix 1 

Metabolite Profile of TNT exposed E.coli Cultures 
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Metabolomic analysis 

The gene expression data was supplemented with an analysis of the changes in 

intracellular metabolite abundance associated with TNT exposure. E.coli cultures were 

grown and exposed according to the method described for the microarray experiments.   

 

Extraction and ESI-MS/MS 

Cells were lysed and metabolites were collected following one hour of exposure. 10mL 

of each culture was passed through a 0.45µm nylon filter to collect cells. The filters were 

immediately transferred , cell side down, to a petri dish containing the     -20°Cextraction 

solvent (40% MeOH, 40% ACN, and 20% 0.1 M formic acid).  Filters were incubated at -

20°C for 15 minutes.  

After the 15 minute incubation, filters were forcibly rinsed in the extraction solvent using 

a pasture pipette to remove cellular debris and metabolites from the filter.  Extraction 

solvent was collected and centrifuged for 5 minutes at 4°C at 1300 rpm in pre-cooled 

microcentrifuge tubes.  

For each extraction 2 auto sampler vials were prepared containing 36µL 15% 

ammonium bicarbonate and 5µL internal standard. The positive polarity standard was 

Tris (+) and the negative polarity standard was benzoic acid (-). 

420µL of the cell extract was added to each vial and thoroughly mixed by vortexing.  

Metabolites were analyzed via ESI-MS. Metabolite abundance was normalized to each 

of the internal standards. 
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Table of Metabolite Abundances from TNT exposed E.coli Cultures 

KEGG ID Metabolite  Fold Change  
C00498 ADP-D-glucose 7.15 
C00300 Creatine 6.08 
C00024 (-)acetyl-CoA 5.49 
C00100 Propionyl-CoA 5.19 
C00015 UDP 5.03 
C00460 dUTP 4.69 
C00440 5-methyl-tetrahydrofolate 4.17 
C00091 Succinyl-CoA 4.14 
C02557 Methylmalonyl-CoA 4.14 
C00363 TDP 3.24 
C00061 FMN 3.18 
C00214 Thymidine 2.55 
C00286 dGTP 2.54 
C01179 Hydroxyphenylpyruvate 2.45 
C00767 Glucarate 2.43 
C00257 Gluconate 2.36 
C00417 Aconitate(cis+trans) 2.04 
C02341 trans aconitate 2.04 
C04256 N-acetyl-glucosamine-1-phosphate 2.02 
C00169 Carbamyl phosphate 1.94 
C00015 UDP 1.89 
C00864 Pantothenic acid 1.80 
C00526 Deoxyuridine 1.79 
C00882 Dephospho-CoA 1.69 
C06400 Trehalose 1.65 
C00074 Phosphoenolpyruvate 1.63 
C00254 Prephenic acid 1.51 
C06893  6-Phospho-D-gluconic acid  1.51 
C00043 UDP-N-acetyl-glucosamine 1.44 
C00365 dUMP 1.42 
C03539  S-Ribosyl-Homocysteine(SRH) 1.42 
C00158 Citrate+IsoCitrate 1.38 
C00311 isocitrate 1.38 
C00437 N-acetyl-Ornithine 1.34 
C00354 Fructose-1,6-bisphosphate 1.32 
C00236 glycerate-1,3-diphopshate 1.32 
 Acadesine (AICAR without phosphate) 1.22 
C00103 Glucose-1P 1.22 
C00711 Malate 1.22 
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KEGG ID Metabolite  Fold Change  
C02672 D-hexose-phosphate -1.21 
C00062 Arginine -1.23 
C00385 Xanthine  -1.24 
C00542 Cystathionine -1.24 
C00408 DL-Pipecolic acid -1.24 
C00438  N-Carbamoyl-L-aspartate -1.25 
C00806 Tryptophan -1.26 
C02057 Phenylalanine -1.26 
C01103 Orotidine-phosphate -1.27 
C16434 isoleucine -1.27 
C16439 (Iso)Leucine -1.27 
C00197 3-Phospho-glycerate -1.28 
C00303 Glutamine -1.30 
C00689 Trehalose-6-Phosphate -1.31 
C00979 O-acetyl-L-serine -1.37 
C00295 Orotic acid -1.41 
C00559 Deoxyadenosine -1.43 
C16436 Valine -1.45 
C00499 Allantoic acid -1.54 
C00624 N-acetyl-glutamate  -1.54 
C00119 5-Phospho-D-ribose-1-diphosphate(PRPP) -1.57 
C00114 Choline -1.66 
C00736 Cysteine -1.68 
C05512 Deoxyinosine -1.70 
C00118 D-glyceraldehdye-3-phosphate -1.72 
C01026 Dimethylglycine -1.75 
C00025 Glutamate -1.78 
C00003 NAD -1.79 
C00353 Geranyl-pryophosphate -1.80 
C00035 GDP -1.83 
C00458 dCTP -1.84 
C00448 trans, trans-farnesyl diphosphate -1.86 
C00166 Phenylpyruvate -1.92 
C00294 Inosine -1.93 
C00008  ADP -1.97 
C00002 (-)ATP -2.02 
C01762 Xanthosine -2.08 
C00020 AMP -2.08 
C00198 Glucono-?-lactone -2.11 
C00063  (-)CTP -2.16 
C00258 glycerate -2.26 
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KEGG ID Metabolite  Fold Change  
C00008 ADP -2.28 
C00131 dATP -2.46 
C00575 cyclic-AMP -2.46 
C00147 Adenine -2.60 
C05330  Homocysteine -2.65 
C00104 IDP -2.92 
C00493 Shikimate -3.18 
C00299 Uridine -3.66 
C00504 Folate -4.46 
C00362 dGMP -7.67 
C00224 Adenosine 5'-phosphosulfate (APS) -8.66 
C00108 Anthranilic acid(oABA) -10.09 
C01081 Thiamine-phosphate -18.50 
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Appenix 2 

Functional Characterization of the E.coli TATP response  
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Galactitol Metabolism   

gatC galactitol-specific PTS system component IIC 2.84 

gatA  galactitol-specific PTS system component IIA  1.65 

gatY tagatose-bisphosphate aldolase 1.62 

gatZ putative tagatose 6-phosphate kinase 1 1.42 

 

Glucose  Metabolism   

gntK  gluconate kinase 1 & 2 3.85 

pckA  phosphoenolpyruvate carboxykinase 1.65 

gatY D-tagatose 1,6-bisphosphate aldolase 2 1.62 

 
DNA Repair/Modification   

hsdS  specificity determinant for hsdM and hsdR 1.50 

pyrD  dihydroorotate dehydrogenase 2 2.30 

yebG DNA damage-inducible protein , regulated by LexA  1.86 

 
Amino Acid Biosynthesis    

ilvC  ketol-acid reductoisomerase, NAD(P)-binding 1.73 Valine & Isoleucine 
asnA  asparagine synthetase  2.56 Asparagine 
cysZ  putative inner membrane sulfate transport protein  1.58 Cysteine 
hisG  ATP phosphoribosyltransferase 3.25 

Histidine 
hisD  histidinol dehydrogenase 1.16 

thiP  thiamine transporter membrane protein subunit 2.60 
Thiamine 

thiL  thiamine monophosphate kinase  2.01 

thrB  homoserine kinase  -1.74 
Threonine 

thrC  threonine synthase -1.92 

 
Copper ion Binding and Transport   

cusA  copper/silver efflux system -2.06 

cusB  copper/silver efflux system  -2.64 

cusF  periplasmic copper-binding protein -2.99 

cusX  periplasmic copper-binding protein  -3.65 
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Cellular Response to Stress  

rpoS  RNA polymerase sigma factor  -1.28 

osmC  osmotically inducible protein -1.45 

rseA  anti-RNA polymerase sigma factor -1.20 

psiE  phosphate-starvation-inducible protein  -1.95 

cusB  copper/silver efflux system -2.64 

dps  Fe-binding and storage protein ,  DNA starvation/stationary phase protection  -1.69 

yebG DNA damage-inducible protein , regulated by LexA  1.86 

 
 
RedOx and Respiration   

c2467 putative 3-hydroxyacyl-CoA dehydrogenase -1.01 

gapA  glyceraldehyde-3-phosphate dehydrogenase -1.19 

osmC  osmotically inducible protein -1.45 

dps  Fe-binding and storage protein ,  DNA starvation/stationary phase protection  -1.69 

torC  trimethylamine N-oxide reductase cytochrome c-type subunit -1.87 

gltA  type II citrate synthase -1.52 
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Appendix 3 

E.coli Genes responding to TATP but not H2O2 or MIX 
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Gene Fold Change  
edd phosphogluconate dehydratase 3.50 
c2215 hypothetical protein 2.55 
borD  DLP12 prophage; predicted lipoprotein 2.44 
fecE KpLE2 phage-like element; iron-dicitrate transporter subunit 2.02 
thiL  thiamine monophosphate kinase  2.01 
yraQ predicted permease 1.89 
yedE putative inner membrane protein 1.88 
rbsC  ribose ABC transporter permease protein 1.81 
ilvC  ketol-acid reductoisomerase, NAD(P)-binding 1.73 
gatA  galactitol-specific PTS system component IIA 1.65 
cysZ  putative sulfate transport protein 1.58 
rbsB  D-ribose transporter subunit 1.56 
hsdS  specificity determinant for hsdM and hsdR 1.50 
rtn  hypothetical protein 1.32 
hisD  histidinol dehydrogenase 1.16 
yabI  conserved inner membrane protein -1.51 
gltA  type II citrate synthase  -1.52 
thrB  homoserine kinase -1.74 
mglA  galactose/methyl galaxtoside transporter ATP-binding protein -1.89 
cusA  putative cation efflux system protein cusA -2.06 
1764701_s_at  unannotated probe-set -2.18 
ilvG  acetolactate synthase 2 catalytic subunit (pseudogene) -2.21 
1768644_s_at  unannotated probe-set -2.53 
cusB  copper/silver efflux system membrane fusion protein CusB -2.64 
cusC  copper/silver efflux system, outer membrane component -2.67 
cusF  periplasmic copper-binding protein -3.65 
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Appendix 4 

Gene expression profile of Pseudomonas putida resulting from TNT 
exposure 
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JCVI 
Locus 

CMR annotation  Fold 
Change 

--- intergenic region 2295676-2295883 32.27 

PP_3426 multidrug efflux RND transporter MexF 20.89 

PP_3425 multidrug efflux RND membrane fusion protein MexE 14.70 

PP_3427 multidrug efflux RND outer membrane protein OprN 6.12 

PP_2022 hypothetical protein 4.06 

PP_1684 transporter, putative 2.62 

PP_2944 sensor histidine kinase -1.34 

PP_2260 sugar ABC transporter, ATP-binding protein -1.29 

--- intergenic region 4102513-4102659 -1.23 

PP_3541 transporter, MgtC family -1.18 

PP_1761 sensory box protein GGDEF family protein -1.14 

PP_5096 YGGT family protein 1.13 
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Appendix 5 

Gene expression profile of Pseudomonas putida resulting from TATP 
exposure 
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JCVI 
Locus 

CMR Annotation  Fold 
Change  

PP2675 cytochrome c-type protein 17.04 

PP2334 carboxyvinyl-carboxyphosphonate phosphorylmutase, putative 14.07 

PP2335 methylcitrate synthase, putative 13.03 

PP2336 aconitate hydratase, putative 11.31 

PP2676 periplasmic binding protein, putative 9.92 

PP2680 aldehyde dehydrogenase family protein 8.99 

PP2674 quinoprotein ethanol dehydrogenase 7.72 

PP2669 outer membrane protein, putative 6.81 

PP2681 coenzyme PQQ synthesis protein D, putative 6.65 

PP2677 hypothetical protein 5.10 

PP2672 DNA-binding response regulator, LuxR family 4.18 

PP0378 coenzyme PQQ synthesis protein C 4.01 

--- intergenic region 2663973-2664134 3.69 

PP2337 hypothetical protein 3.66 

PP0056 oxidoreductase, GMC family 3.60 

--- intergenic region 66596-66692 3.35 

PP2663 hypothetical protein 3.18 

PP0376 coenzyme PQQ synthesis protein E 2.78 

PP0379 coenzyme PQQ synthesis protein B 2.74 

PP2668 ABC efflux transporter, ATP-binding protein 2.70 

PP0377 coenzyme PQQ synthesis protein D 2.54 

PP2664 sensory box histidine kinase response regulator 2.04 

PP2678 hydrolase, putative 1.79 

--- intergenic region 3070430-3070782 1.78 

PP2422 carboxymuconolactone decarboxylase family protein 1.49 

--- intergenic region 458779-458941 1.40 

PP0375 prolyl oligopeptidase family protein 1.30 

PP3541 transporter, MgtC family -1.17 

 

 

 

 

 

 



156 

 

 

 

 



157 

 

Vita 
 

Vernon Lashawn McIntosh Jr. was born to Vernon and Debra McIntosh in Memphis, TN 
on February 18, 1983.  He graduated from the University of Tennessee in Knoxville, TN 
with Bachelor of Science degree in Microbiology.  During his undergraduate career, he 
participated in research internships at the Tennessee Health Science Center in 
Memphis, TN and the Center for Environmental Microbiology at the University of 
Tennessee in Knoxville, TN.  It was this research experience that motivated the pursuit 
of his PhD. Vernon entered the Department of Microbiology at the University of 
Tennessee in Knoxville Tennessee as a graduate student in August of 2005.  There he 
worked under the guidance of Dr. Gary Sayler at the Center for Environmental 
Biotechnology until he completed the requirements for his PhD in May 2010.  

 

 

 


	An Analysis of Global Gene Expression Resulting from Exposure to Energetic Materials
	Recommended Citation

	Microsoft Word - 207651-text.native.1276694820.doc

