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Abstract 

Cellular functions are controlled by genetic regulatory networks called gene circuits. 

Recently, there has been much interest in how gene circuits deal with or even exploit 

stochastic fluctuations in molecular species within the cellular environment. Through a 

coupling of analysis and simulation with experimentation, this dissertation work furthers 

the understanding of gene circuit noise behavior and makes significant contributions to 

the analytical and experimental tools that are currently available for the study and design 

of natural and synthetic gene circuits. In this study, models are developed for 

unregulated and autoregulated gene circuits. Results from the analysis are compared to 

computer simulations and experimental results. Exact stochastic simulations show that 

the derived analytical expressions are valid even for populations as low as 10 molecules, 

despite linear approximations made by the analysis. The experimental portion of this 

work presents a novel method for acquiring in vivo measurements of real-time gene 

expression. The techniques developed here are used to report the very first measurements 

of frequency content in gene circuit noise and verify theoretical predictions that 

negatively autoregulated gene circuits shift their noise spectra up to higher frequency. 

Through measured shifts in noise spectra, these frequency measurements can also reveal 

subtle and condition-dependent regulatory pathways. Measured noise spectra may also 

permit in vivo estimation of gene circuit kinetic rate parameters. 
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Chapter 1 

Introduction to Systems Biology 

Biological systems perform many complex functions that give cells the ability to 

sense, communicate, navigate, or even fabricate nanoscale materials [1-4]. All of these 

advanced behaviors are controlled by genetic circuits and gene regulatory networks. 

Understanding the structure, function, and dynamics of gene networks is the primary aim 

of systems biology. This interdisciplinary field includes biologists, chemists, computer 

scientists, engineers, mathematicians, and physicists, who are all working together to 

develop a shared language that describes genetic systems. Research in systems biology 

also promotes a strong coupling between analysis, simulation, and experimentation [5]. 

Analysis and simulation help define experiments that should be conducted; likewise, 

experimental results provide feedback that may lead to model refinements or reveal new 

functions [6]. 

The potential of systems biology research is limitless. Development of the necessary 

analytical, computational, and experimental tools may make it possible to predict the 

behavior of connected genetic circuits [7]. An ensemble of such tools could lead to 
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breakthroughs with significant applications in gene therapy and medicine. For example, 

genes responsible for the development of a genetic disorder or a viral disease could be 

turned off (or on) by engineered regulatory networks. The ability to design genetic 

networks could also lead to realization of biomolecular computers that process 

information within cells and produce desired cellular behavior [8, 9]. All of these 

advancements will accompany improvements in computation such as distributed 

computing and grid-based simulation [10]. In the pharmaceutical industry, modeling and 

simulation may one day successfully predict the side effects of drugs before clinical trials 

are even initiated [11]. The medical field is not the only area that will benefit from 

progress made in systems biology research. On the contrary, a deeper understanding of 

genetic networks found in biological systems may also guide the development of future 

architectures for electronic circuits, parallel computing, control theory, and systems 

design, just to name a few. 

1.1 Mod~ling Genetic Circuits 

The functions encoded by genes and genetic networks are carried out by chemical 

reactions. These chemical reactions describe processes such as the production, binding, 

and degradation of molecules within the cell. Modeling a gene circuit begins by applying 

biological knowledge to list all of the involved chemical reactions. This step can prove 

difficult because every gene and protein in the network might not be known or 

characterized. Next, the reactions within the network are translated into mathematical 

representations. At this point, the model can be analyzed or simulated. Analysis 
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provides insight to system response and how adjustment of circuit parameters affects the 

overall behavior. On the other hand, simulation rapidly calculates system behavior as a 

function of time and may quickly uncover interesting phenomena that are not revealed by 

analysis alone. These two methods of modeling are complementary and should be used 

in conjunction with one another. 

1.1.1 Mathematical Models 

Ordinary differential equations (ODEs) are a common tool for analyzing dynamic 

systems in science and engineering. To understand how ODEs are applied to genetic 

circuits, consider the extensively studied case in which a gene is negatively regulated by 

the protein that it produces. In the absence of repressor protein (P), the RNA polymerase 

(RNAP) can bind to the promoter (Pro) and transcribe mRNA (R). The mRNA can then 

be translated by ribosomes (Rib) to create protein. The mRNA is also degraded and 

decays (noted below as *) with a particular half-life, A... The created protein, which 

typically degrades much slower than mRNA, can then repress gene expression by binding 

to the operator (Op) and blocking RNAP. Figure 1.1 shows a model for the biological 

processes described here. Note that in this figure P does not stand for protein but rather 

the promoter region adjacent to the gene. A partial list of"the chemical reactions involved 

in this circuit are given below, along with their corresponding reaction rates, r;, derived 

from the law of mass action: 

RNAP + Pro ~ RNAP + Pro + R 'i =kl [RNAPIPro] (1.1) 

Rib+R~Rib+R+P r2 =k 2 [RibIR] (1.2) 

3 



mRNA 
Decay 

• 
Decay 

Source: Simpson, et al., Proc. Natl. Acad. Sci. USA 100, pp. 4551-4556, 2003. 

Figure 1.1. Model of an autoregulated gene. 

R~* r3 =k3[RI (1.3) 

P+Op~POp r4 =k4 [plop] (1.4) 

POp~P+Op rs =ks[POp] (1.5) 

P~* r6 =k6[P] (1.6) 

where k; is the rate constant for the reaction, and the terms in brackets represent molar 

concentrations of the chemical species. Finally, the rate equations can be rearranged to 

describe the changes in the molar concentrations of each species as a function of time. 

The equations for mRNA and protein can be simplified to [12]: 
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d[R] =h(P)-k
3 
[R], (1.7)

dt 

d[P] =k
7 
[R]-k

6 
[P], (1.8)

dt 

where it has been assumed that reactions 1.4 and 1.5 are relatively fast compared to the 

other reactions, and thus, are at quasi-steady state (Le., d[Opl'dt = 0). The reactions for 

the production of RNAP and Rib (not listed above) are usually considered to be in 

equilibrium so that [RNAP] and [Rib] are constant. Therefore, [RNAP] has been absorbed 

into the term h(P) and likewise [Rib] is included in k7• In Figure 1.1, the parameter kR 

symbolizes h(P), ')1l represents kJ, and kp and i1' correspond to k7 and kt" respectively. 

The function h(P) captures the behavior of how the production of mRNA, or 

transcription, is controlled by the protein population. This regulation function models the 

switching transition between two states (operator bound or unbound) and is typically 

described by the sigmoidal Hill expression [12]: 

kmax (1.9) 
h(P) =l+(~J 

where kmax is the maximum reaction rate, kd is the protein concentration at which the 

reaction rate equals half of kmax, and n is known as the Hill coefficient, which is positive 

for repressive feedback and negative for inductive feedback. 

To accurately model molecular interactions within cells, fluctuations (Le., noise) in 

both reaction rates and populations of chemical species must be taken into account. A 
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popular way to accomplish this is to append an additive white noise source, 11(t), to each 

of the ODEs [13]. Equations 1.7 and 1.8 become: 

d[R] = h(P) - k3 [R]+ TJ(t) , (1.10)
dt 

(1.11) 


These stochastic differential equations are referred to as Langevin equations. Despite the 

linearizations and approximations associated with this technique, careful application of 

Langevin analysis has provided many insights into gene circuit behavior [14-16]. Results 

of these analyses are discussed in more detail in the literature review of Section 1.2. 

Implicit in the ODE models described to this point is the fact that they are continuous 

and deterministic. For dynamic systems with large numbers of molecules, the error 

between discrete and continuous behavior can be safely overlooked. However, cellular 

systems involving just a few, discrete molecules and events can cause fluctuations in 

gene expression yielding nondeterministic behavior [17]. Conventional deterministic 

models may not predict these probabilistic outcomes [18]. A standard for explicitly 

treating discrete stochastic behavior is the Chemical Master Equation (CME). The CME 

describes how the probability of any state in a system evolves over time as a result of the 

chemical reactions that are allowed to occur. For M chemical reactions with initial 

condition (Xo, to), the CME can be formulated as [13]: 
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where X is a vector that indicates the number of molecules of each chemical species, aj is 

the propensity function (similar to probability) that a reaction will occur, and Vj is the 

change in the number of molecules due to the occurrence of a reaction. By definition, the 

CME is a Markov chain since the current state of the system simply depends on the 

previous state. It has been shown that as the number of molecules becomes larger, the 

CME asymptotically approaches the Langevin equation with the noise term, 'f/(t), set 

appropriately [13]. However, satisfying this condition may not be possible for some 

genetic circuits due to the small number of involved molecules. 

1.1.2 Exact Stochastic Simulation 

Given the large number of chemical species and possible reactions in even the 

simplest gene networks, analytical and numeric solutions to the CME are difficult to 

derive. As an alternative approach to this problem, Gillespie developed an algorithm for 

simulating coupled chemical reactions called the fIrSt reaction method [19], also known 

as exact stochastic simulation (ESS). Gillespie's algorithm guarantees that the resulting 

distribution of X (Eq. 1.12) at time t will approach the distribution implied by the CME 

when enough simulations have been performed. The Gillespie algorithm works by 

randomly generating a time interval 'f for when the next reaction will take place and 

determines which reaction is most likely to occur based on relative probabilities and the 

current state of the molecular populations in the system. After the selected reaction 

occurs, the state of the system is updated and the time is incremented by t: This 

procedure is repeated over and over until the total simulation time elapses. 
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Certainly the greatest advantage of ESS is that it can be used to simulate any genetic 

circuit described by chemical reactions. The Gillespie algorithm also produces inherent 

noise that accurately reflects the stochastic behavior of the biochemical processes. This 

property gives ESS the ability to reveal bifurcation or switching states that might 

otherwise go undetected by deterministic ODE models [18]. The results are accurate 

even at low molecular populations. Unfortunately, execution of the Gillespie algorithm is 

computationally demanding and time consuming for realistic genetic networks with many 

reactions. To address this issue, several improvements have been made to the ESS 

algorithm to increase its efficiency. Gibson and Bruck introduced dependency graphs 

that can greatly reduce the number of calculations to be performed [20]. Gillespie later 

developed an enhancement called 't-leaping, which combines multiple reactions into a 

single step [21]. Although these techniques can reduce simulation time considerably, 

they sometimes come at the cost of loss in accuracy. Therefore, caution must be 

exercised when applying these techniques if one is investigating stochastic effects and 

system performance of genetic circuits. 

1.2 Literature Review 

In several cases, mathematical models and simulations have guided the design of 

synthetic gene circuits that mimic silicon-based electronic devices such as toggle 

switches, logic gates, and oscillators [22-25]. Inspired by the ability of cells to operate 

precisely even when laden with noisy internal components, there has been a growing 

appreciation for analyzing and modeling the stochastic properties of gene networks [14

8 



16, 26-30]. A number of experimental studies have been reported that not only confrrm 

some results of the noise analyses but also provide new insights on the stochastic 

behavior of genetic circuits [31-35]. These popular topics in the current literature are 

briefly reviewed. 

1.2.1 Engineered Gene Circuits 

With support from modeling and analysis, researchers have been able to design 

genetic circuits that imitate the functionality of traditional semiconductor devices. One 

such device is a toggle switch, which is a bistable circuit that latches into one state or 

another depending upon a given input stimulus. Because the system remains in its state 

even after the input has been removed, the toggle switch is a I-bit memory that 

remembers a stimulus event. In electrical engineering, an example of such a device is the 

RS flip-flop, shown in Figure 1.2(a). Gardner et al. constructed a genetic toggle switch 

in Escherichia coli bacteria cells by using the mutual repression of two genes to achieve 

bistability [23]. Figure 1.2(b) illustrates the design of this genetic latch circuit. If the 

input stimulus is inducer 1, then transcription of repressor 2 is blocked. This scenario 

latches the system in its high state because repressor 1 and the observable reporter (green 

fluorescent protein, GFP) continue to be expressed. In a similar manner, the system can 

be switched to its low state by presenting inducer 2 as the input. Using ODE analysis, 

Gardner et a1. revealed how the bistable region of operation was affected by circuit 

parameters: correct operation of the genetic toggle switch depended on strong promoters, 

effective transcriptional repression, and relatively equal synthesis and decay rates for the 
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(a) 

(b) Inducer 2 

I .1 1········ .... .. 2 Promoter 1 .... 
Rcprcssor 4 h n:eprOS$()f' 1 Reporter

T Promoter 2 

T 
Inducer 1 

Source: Gardner, et at., Nature 403, pp. 339-342, 2000. 

Figure 1.2. Toggle switches. (a) Electronic RS flip-flop consisting of two NOR gates 
and (b) a genetic toggle switch constructed from two mutually repressive genes. 

proteins of repressor 1 and repressor 2. The mathematical predictions were validated by 

experimental evidence. E. coli cells, transformed with engineered plasmids (self

replicating DNA molecules) containing promoters and genes with appropriate 

characteristics, could be switched between two states using suitable chemical inducers. 

A couple of approaches for designing logic gates in cellular systems have been 

successfully implemented. First, an example of a rational design is presented for a 

logical OR gate that was realized by using a promoter that responds to two different 

inducers. Simpson et al. employed this method in whole cells using trichloroethylene 

(TeE) and toluene to activate the tod promoter (Figure 1.3(a)), which up-regulated the 
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(a) [ji]TCE or toluene 

t 

e ,rJt: 

tOdJr luxCDABE 

(b) TCE 

TolUene 

BioIomine$cence 

F F 

F T 

1FT 

T 

F 

T 

T 

T 

T 

(c) TCE~ 
Toluene ~ luxCDABE 

Source: Simpson, et aI., Trends Biotech 19, pp. 317-323,2001. 

Figure 1.3. A genetic logic gate. (a) Interaction of TeE or toluene with the tod promoter 
to induce expression of the luxCDABE genes and produce bioluminescence, (b) the 
logical truth table describing the input -output relationships, and (c) schematic diagram of 
the resulting OR gate. 

expression of the luxCDABE genes, resulting in production of bioluminescence [24]. 

Figure 1.3(b) shows that if one or both of the inducer molecules were present (True), then 

the output genes were expressed (True) and the cells produced light. Otherwise, if both 

inducer molecules were absent (False), then the output was not expressed (False). Figure 

1.3( c) shows a schematic diagram of this logical OR gate with inputs and output. 

As an alternative to rational design, Guet et al. used combinatorial methods to 

generate a library of logic circuits by shuffling the connectivity of genetic networks [36]. 

The genetic circuits were integrated into plasmids made of promoter-gene units 

constrained to the structure Pi - lacl - Pj - kl - Pk - tetR, where Pi, Pj, and Pk were one 
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of five promoters: pLl repressible by LacI, pL2 repressible by Lac I, pT repressible by 

TetR, pl_ repressible by AcI, and pl+ inducible by Acl. Inputs to the genetic circuits were 

the small inducer molecules isopropyl ~-D-thiogalactopyranoside (IPTO) and 

anhydrotetracycline (ATc) , which affect the binding states of Lac I and TetR, 

respectively. A fourth promoter-gene unit pl_-gfp controlled the expression of OFP and 

acted as an observable output to the system. Ouet et al. constructed 30 of the possible 

125 plasmids and transferred them into E. coli. By observing output fluorescence for the 

four different input conditions, with or without IPTO and with or without ATc, the 

researchers discovered genetic logic circuits that included NAND, NOR, and NOT IF 

gates. Analysis of the experimental data also showed that the 30 characterized networks 

simplified to just 13 distinct connectivity diagrams, or circuit topologies [36]. These 

results indicate that, in addition to being a useful tool for creating genetic networks 

whose underlying working mechanisms are unknown, combinatorial techniques can also 

contribute to the developing knowledge of gene circuit functi()n and structure. 

Clocks are used in many man-made and living systems to coordinate the timing of 

events. Using a closed-loop cascade of transcriptional repressor circuits, Elowitz and 

Leibler implemented an artificial clock in E. coli nicknamed the repressilator [25]. The 

design of the repressilator is shown in Figure 1.4( a). The behavior of this genetic circuit 

is analogous to an electronic ring oscillator. Expression of the tetR-lite gene produces 

TetR that represses the PLtetO-l promoter and shuts down the production of AcI. 

Repression of AcI frees the APR promoter and permits expression of the lacI-lite gene. 

Finally, the production of LacI represses the PLiacO-l promoter, which stops the expression 
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Figure 1.4. Structure and output response of the repressilator. (a) Plasmid structure of a 
genetic oscillator using three repressive genes and (b) measured oscillations in output 
fluorescence of GFP from a single cell. 
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of TetR, allowing the production of A.cI to go back up, and so on. To guide the 

construction of the repressilator, the researchers evaluated ODE models to realize that 

oscillatory behavior depended on the transcription and translation rates and mRNA and 

protein decay rates. Experimental observation coincided with deterministic analysis and 

showed several fascinating results. The expression of GFP, which was also controlled by 

the promoter for the kI-lite gene in the repressilator network, fluctuated with a typical 

period of 150 minutes (Figure 1.4(b)). As predicted by analysis, oscillations were 

favored by strong promoters, strong transcriptional repression, and comparable mRNA 

and protein decay rates [25]. Stochastic variation, or noise, also affected circuit 

performance and caused the phase of oscillators in the cell population to become 

desynchronized over time. To correct this behavior, a technique has been proposed that 

employs small signaling molecules to phase-lock the entire cell population [37]. 

1.2.2 Stochasticity in Genetic Circuits 

While noise is usually undesirable in most types of electronic circuits and systems 

that process information, it is now understood that stochasticity in genetic circuits can 

actually play an important functional role in network behavior and decision-making 

processes [29]. For example, stochastic fluctuations in molecular population largely 

control the lysis-lysogeny decision in A-phage infected cells [18]. A similar functional 

role was proposed for noise in bacterial quorum sensing systems, where the inherent 

biomolecular noise creates a redundancy, and a quorum is sensed even if there is 
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destructive interference in cell-cell signaling [15]. It has also been proposed that noise 

could be exploited to amplify the expression of regulated genes [38]. 

Researchers have studied genetic circuits to determine where sources of noise 

originate. Thattai and van Oudenaarden analyzed the CME for a single gene circuit with 

fust-order reactions like those in Figure 1.1 [26]. They defined the noise strength, v, as 

the variance of protein molecules divided by the mean and showed that v =: 1 + b for an 

unregulated gene (Le., no feedback), where the burst rate b = KplYR is the average number 

of proteins produced per mRNA transcript. The implications of their results are that the 

variation in protein population is affected primarily by the translation step and that noise 

strength is greater when the protein level is approaching steady-state [26]. These 

researchers also applied their analysis to a negatively regulated gene (Figure 1.1) and 

showed that the noise strength decreased by an amount related to the strength of the 

feedback. Stochastic simulations supported all of these findings. Swain et ale argue that 

noise in gene expression has intrinsic and extrinsic components [28]. Intrinsic noise is 

caused by randomness in molecular· binding events that cause variation in transcription 

and translation rates, while extrinsic noise is due to fluctuations in the cellular 

environment, the cell cycle, regulatory proteins, and populations of molecules such as 

RNAP and ribosomes. Using CME analysis, Swain et ale defined noise strength as the 

standard deviation of protein molecules divided by the mean and showed that the main 

source of intrinsic noise is transcription when the burst rate is greater than 2 [28]. 

Disagreement between the findings of these two research groups is likely due to 

interpretations of their results. While the translation process alone makes a contribution 
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to noise in the protein population, translation appears to amplify the transcription noise at 

higher burst rates. 

Applying frequency-domain (FD) analysis to the Langevin equations, Simpson et al. 

have modeled sources of intrinsic noise in genetic circuits and revealed how gene 

networks can process noise [14]. Their results have demonstrated that noise associated 

with synthesis and decay of molecules can be accurately represented as wideband (i.e., 

white spectrum) shot noise [14, 16]. Another significant source of noise in genetic 

circuits arises from the finite lifetime of operator-inducer binding [27]. Using FD 

analysis, Simpson et al. showed that this operator noise is band-limited and contributes to 

the noise in mRNA synthesis [16]. To understand how genetic circuits can process 

inherent noise, researchers have analyzed the noise of output protein in terms of its power 

spectral density (PSD), which describes how noise is distributed across the frequency 

spectrum. Cox et al. used FD analysis to show how reversible chemical reactions (e.g., 

dimerization of protein) either whiten or band-limit the noise PSD depending on the rates 

of the forward and reverse reactions [15]. A significant prediction of the analysis by 

Simpson et al. was that gene circuits with negative feedback cause a reduction in the 

noise power at certain frequencies and shift noise up to higher frequencies (i.e., increase 

noise bandwidth) as shown in Figure 1.5 [14]. Samoilov et al. have demonstrated that 

some genetic networks can act as low-pass and band-pass filters [39]. Results from both 

of these research groups suggest how some genetic networks may have evolved for the 

purpose of filtering or reducing noise as it propagates through cascaded gene circuits. 
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Figure 1.5. Increase in noise bandwidth due to negative feedback. 

Several experiments have been conducted to determine the origins and properties of 

noise in genetic circuits. Becskei and Serrano demonstrated how a negatively regulated 

gene circuit can decrease variation in protein production [31]. The genetic constructs 

shown in Figure 1.6 were cloned into plasmids and transformed into E. coli. The output 

protein was TetR fused with GFP, which was observed in hundreds of cells under a 

fluorescence microscope. The fluorescence histogram in Figure 1.6(a) shows the small 

variance seen in GFP for the regulated gene. The genetic construct was then mutated so 

that the TetR-GFP protein lost its affinity for the PLtet0-1 promoter, disabling the feedback 

mechanism. As expected, the production of GFP by the unregulated gene exhibited 

higher levels of noise, or variation, as shown in Figure 1.6(b). 
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Figure 1.6. Effects of feedback on protein variation. (a) Negatively autoregulated gene 
with histogram showing small variation in GFP and (b) increased variation, or noise, 
when the feedback is removed. 

Experiments by Ozbudak et al. supported the theoretical predictions by Thattai and 

van Oudenaarden that translation is the strongest contributor to intrinsic noise [32]. By 

inserting a single gfp gene into the chromosome of Bacillus subtilis behind the tightly 

regulated promoter Pspac, Ozbudak et al. modulated the gene's transcriptional efficiency 

by controlling the concentration of inducer, IPTG. To modulate the translational 

efficiency, point mutations were created in the gfp gene to alter the ribosomal binding 

site. Flow cytometry was then used to measure the fluorescence of thousands of cells 

expressing GFP. With noise strength defined as variance over mean, these researchers 
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showed that noise strength was indeed strongly dependent on translational efficiency and 

that transcriptional efficiency had a very weak effect on the noise strength [32]. 

A clever experiment designed by Elowitz et al. facilitated measurements of intrinsic 

and extrinsic noise in gene expression [33]. This research group created strains of E. coli 

with a chromosome containing a gene for cyan (CFP) and yellow (YFP) fluorescent 

protein. Both of these genes had the same type of promoter, which could be induced with 

IPTG to vary the transcriptional efficiency. When intrinsic noise was low, the expression 

of CFP and YFP were equal, causing the cells to appear yellow. As intrinsic noise 

increased, the expression of the two genes became uncorrelated and cells appeared red or 

green due to the increased production of one protein over the other. Although translation 

effects were not studied here by Elowitz et aI., their results also showed that intrinsic 

noise increased strongly as the transcriptional efficiency decreased [33]. 

To study stochastic gene expression in eukaryotic cells, Blake et al. performed 

experiments similar to those of Ozbudak et al. using Saccharomyces cerevisiae (yeast) 

[34]. They created two separate genetic circuits using two different promoters that 

regulated the expression of GFP. Both genetic circuits showed similar behavior: low 

noise strength (defined here as variance over mean) at low transcriptional efficiency, a 

strong increase in noise at 20-40% transcriptional efficiency, and then a gradual decrease 

to a low noise state at 100% induction [34]. By modifying the gfp gene, Blake et al. also 

modulated the translational efficiency of the gene. Their results showed that increases in 

translation efficiency caused only slight increases in the noise strength, in contrast to the 

results by Ozbudak et al. for prokaryotic cells. Using the technique of Elowitz et al., 

-
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Raser and 0'Shea measured intrinsic and extrinsic noise in yeast. They found that 

intrinsic noise strength was gene-specific and not dependent on the absolute rate of 

expression [35]. Thus, their measurements and model assert that noise in prokaryotic and 

eukaryotic gene expression is not that dissimilar. Instead, they proposed a model in 

which differences in noise are due to relative rates of promoter activation and the rate of 

the subsequent transcription process that follows. Clearly, much more work needs to be 

done to sort out the noise contributions made to protein production by the many 

individual cellular processes. 

1.3 Problem Statement 

Innovations in technology over the past decade have accelerated genomics research to 

yield entire DNA sequences of species including bacteria, rice, and even humans [40-42]. 

There are now ongoing efforts to maintain databases (Ref. [43], for example) that list 

identified genes along with their function, if known, and any observed interactions with 

larger genetic networks. Despite all the progress made in DNA sequencing and gene 

identification, the functions of many genes remain unknown. For example, nearly 40% 

of the protein-coding genes in E. coli have no attributed function [40]. Microarray 

experiments and studies of cellular response to input perturbations have aided researchers 

in deducing underlying interconnections of genes in biochemical pathways [6, 44, 45]. 

However, the structure and function of many genetic networks have yet to be determined 

and a wiring diagram alone is not enough to understand the properties and behavior of an 

entire system. From an engineering perspective, biological systems are the products of 
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fundamental gene circuits that are connected together to form large elaborate networks 

[46]. TI1us, understanding the complex behavior of genetic networks requires a thorough 

knowledge of their components (DNA, RNA, proteins, etc.) and how these components 

interact with each other. Ultimately, an understanding of the structure-function 

relationships in genetic networks may lead to the development of new engineered 

systems that mimic the robustness, adaptiveness, and fault-tolerance seen in cellular 

systems [47,48]. To realize this great challenge, more engineering tools and methods are 

needed for modeling, simulating, and experimenting with genetic networks in biological 

systems. 

1.4 Scope of Dissertation 

By coupling analysis and simulation with experimentation, this dissertation research 

contributes to the understanding of gene circuit behavior by developing models for 

genetic networks and demonstrating an experimental technique that reveals information 

about underlying genetic processes using the spectral content of gene circuit noise. 

Chapter 2 provides the reader with a short primer on some fundamental concepts in 

molecular biology, while Chapter 3 briefly reviews some techniques in frequency-domain 

analysis of electrical circuits and random signals. Next, Chapter 4 describes the 

development of models for regulated and unregulated gene circuits in prokaryotic cells, 

the frequency-domain noise analyses, and results from computer simulations. Chapter 5 

explains experimental methods used to obtain in vivo noise measurements of gene 

expression in bacteria cells. Then, Chapter 6 presents spectral analysis of experilnental 
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data to elucidate information about the structure and behavior of the genetic circuits used 

in this work. Finally, concluding remarks are given in Chapter 7 along with suggestions 

for future possible work. 
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Chapter 2 

Primer on Molecular Biology 

Before modeling and analyzing gene circuits, it is helpful to review some 

fundamental concepts in molecular biology. This chapter describes many of the cellular 

components and genetic processes that are encountered numerous times in this 

dissertation work. Covering details of the biology here should help the reader to better 

understand the simplifications and rationales of the models formulated in Chapter 4 and 

the experimental designs developed in Chapter 5. 

2.1 Cellular Components 

A cell is a small unit of living matter enclosed in a plasma membrane. Cells can be 

classified into two types: prokaryotes and eukaryotes. Prokaryotic cells, such as 

bacteria, are single-celled organisms that lack a nucleus. In contrast, eukaryotic cells 

have a nucleus and can be single-celled (e.g., yeast) or multicellular (e.g., plants and 

animals). While the two types of cells share many similarities, the focus of attention 

hereafter is on prokaryotic cells, which are used in the work presented in subsequent 
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chapters of this dissertation. As shown in Figure 2.1, prokaryotic cells have a single 

cytoplasmic compartment just a few micrometers in length that contains all of their 

biomolecules. 

2.1.1 Genes 

The instruction sets for all cellular processes are genes, which are stored in the form 

of double-stranded molecules known as deoxyribonucleic acid (DNA). This familiar 

double-helix structure, shown in Figure 2.2, resembles a spiral ladder constructed from 

linked nucleotides [49]. Each nucleotide is composed of a 5-carbon sugar (deoxyribose) 

attached to a phosphate group and a nitrogen-containing sidegroup, known as a base. 

These bases can be of four different types: adenine, cytosine, guanine, and thymine, 

which correspond to four distinct nucleotides referred to as A, C, G, and T, respectively 

(Figure 2.2). Since the formation of base pairs occurs such that A bonds only to T and C 

bonds only to G, the two twisted strands of DNA are said to be complementary to each 

other. A group of ordered nucleotide pairs along the DNA comprises a gene, and the 

sequence of the nucleotides defines the function of the gene. A typical bacterial cell may 

contain roughly 1000-5000 genes on its chromosome, whose uncoiled length can be as 

long as a millimeter. These genes are passed down to progeny cells and may evolve over 

time. 

While the primary genes required for cell growth are stored on chromosomal DNA, 

cells may also carry genes on plasmids. Plasmids are double-stranded circular loops of 

DNA [50], typically denoted with a lower-case "p" followed by an abbreviated name of 
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Figure 2.2. Double-helix structure of DNA. 
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the derivative (e.g., pBR322). Plasmids may carry enough genes to encode just a few 

proteins or they may encode hundreds of proteins. These genes are not essential to cell 

growth, but they may generate products that benefit the cell under certain conditions. For 

experimentation, plasmids are extremely valuable because they are relatively easy to 

genetically modify and transfer into cells. 

2.1.2 RNA 

Ribonucleic acid (RNA) can be formed from DNA by replacing deoxyribose with the 

sugar ribose. Named with respect to their functions, the three types of RNA are 

messenger RNA (mRNA), ribosomal RNA (rRNA), and transfer RNA (tRNA). All three 

types of RNA are made by an enzyme, or catalytic protein, called RNA polymerase 

(RNAP). Due to their high rate of synthesis and stability, rRNA and tRNA make up 95% 

of the total RNA in bacterial cells. In comparison, mRNA has a shorter lifetime as it is 

degraded more rapidly within the cell. The structure of RNA is similar to single-stranded 

DNA [51]. The nucleotide bases of RNA are the same as DNA except that thymine is 

replaced by uracil (U). The RNA nucleotides sometimes link (A bonds to U and C bonds 

to G) causing RNA to fold up on itself and become double-stranded. 

2.1.3 Ribosomes and Proteins 

Most DNA sequences in bacteria are dedicated to genes encoding proteins, and it is 

proteins that do most of the work of a cell. Large biomolecules called ribosomes, 

composed of subunits of proteins and RNA, are responsible for protein synthesis [52]. 
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Proteins consist of polypeptide chains of amino acids. There exist 20 different amino 

acids (e.g., glutamine, leucine, and tryptophan) with which all proteins are created. The 

order of the amino acid sequence defines the primary structure of a protein. Typically 

before a protein becomes chemically active, the polypeptide chain folds into a distinctive 

shape, which is referred to as the protein's secondary structure. Proteins may also 

undergo multimerization, the process of binding to other molecules to form larger 

functional macromolecules. 

2.2 Genetic Processes 

Cells function as biochemical factories that continuously process and convert 

molecules such as amino acids and sugars. For cells to perform, genes must be 

expressed; that is, the cell's genetic instructions must be read in order to synthesize 

needed proteins. This concept forms the central dogma of biology: information in DNA 

is transcribed into RNA to be translated into protein. An overview of the processes for 

gene expression is shown in Figure. 2.3. The following sections describe transcription 

and translation in further detail. 

2.2.1 Transcription 

The grooves along a DNA molecule provide access for enzymes that transcribe the 

encoded genes. The transcription process begins when RNAP binds to a nucleotide 

sequence at the beginning of the gene called the promoter region. The RNAP separates 

the double-helix and then moves along a single strand of DNA, as shown in Figure 2.4. 
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Figure 2.4. Transcription of DNA to synthesize mRNA. 
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While it advances, the RNAP assembles individual nucleotides into a strand of RNA that 

is complementary to the strand of DNA being transcribed. As the mRNA is constructed, 

it peels away, and the DNA strands are rejoined. The transcription process stops when 

the RNAP reaches a termination site at the end of the gene. 

2.2.2 Translation 

Translation is the process in which protein molecules are assembled. In prokaryotic 

cells, ribosomes can bind to the mRNA and begin the process of translation as soon as a 

strand of mRNA extends from the RNAP. In contrast, eukaryotic cells must transport 

mRNA out of their nucleus, where their DNA is stored, before the mRNA can be 

translated. Ribosomes translate the mRNA's sequence of nucleotides into polypeptide 

chains of linked amino acids, as shown in Figure 2.5. First, a ribosome binds to mRNA 

at a translation initiation region. The ribosome then moves along the mRNA and reads 

one codon at a time. A codon is a set of three nucleotides, which represent a word of a 

symbolic genetic code. With just a few exceptions, this genetic code is universal to all 

species. Each code word (i.e., codon) specifies which amino acid the ribosome should 

append to the growing polypeptide chain. For example, the codon UGG corresponds to 

the amino acid tryptophan. A designated amino acid is brought to the ribosome by a 

tRNA that has the codon's complementary nucleotide sequence (anticodon). As 

suggested by Figure 2.5, multiple ribosomes may bind and translate the same mRNA 

once the previously bound ribosome has cleared the initiation region. In addition, an 

mRNA molecule may be polycistronic, meaning that it contains multiple translation 
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Figure 2.5. Translation of mRNA to synthesize proteins. 

initiation sites and encodes more than one protein. A ribosome continues to assemble a 

polypeptide chain until it reaches a stop codon, a sequence that does not encode for an 

amino acid. Finally, the protein is released from the ribosome. The protein may then 

undergo structural changes, such as folding, before reaching its final functional form. 

2.2.3 Gene Regulation 

For cells to function properly, they must make proteins at the right times in response 

to physiological and environmental conditions. Controlling the expression of genes is 

commonly referred to as gene regulation. Deemed to be a strategy for conserving 

resources within the cell, regulation is typically enforced at the transcriptional stage of 

gene expression [53]. Positive regulation, or induction, occurs when an inducer molecule 
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binds to an operator (part of the gene's promoter region) and enables gene expression by 

recruiting RNAP to the DNA. Negative regulation, or repression, takes place when a 

repressor molecule binds to the operator region and turns off the gene (Le., prevents 

transcription) by blocking the promoter from RNAP. A gene may be autoregulated by its 

own protein product, or it may be regulated by several other proteins, which can result in 

the formation of elaborate genetic regulatory networks. 

The lac genes in E. coli are part of a well-studied example of gene regulation [53]. 

These genes encode the enzymes for utilization of the sugar lactose. In the presence of 

lactose the lac genes are expressed because allolactose (converted from lactose) is an 

inducer for the lac promoter, lacp in Figure 2.6. Conversely, the lac genes (lacD, lacZ, 

lacY, lacA) are not expressed if lactose is unavailable. In the absence of lactose, the 

product of the lac] gene represses the lac genes by binding to one of the three lacD 

operators (oj, 02, 03). This binding blocks RNAP, which in tum inhibits transcription of 

the remaining lac genes. However, when lactose is present, the inducer (allolactose) 

binds up free repressor molecules. This changes the conformation of the repressor so that 

it no longer binds to the operator, allowing RNAP to bind to the promoter (lacp) and 

transcribe the lacD, lacZ, lacY, and lacA genes. 

2.2.4 Replication 

Cell reproduction demands the replication of DNA. Replication begins with 

separation of the DNA strands using proteins called helicases. The point of separation is 

called the replication fork, shown in Figure 2.7. The DNA chromosomes of most 
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Figure 2.7. Replication of DNA. 
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bacteria are circular, but they are coiled up many times over to fit within the confines of 

the cell (Figure 2.1). Topoisomerases undo DNA coiling ahead of the replication fork, 

breaking the strands if necessary to uncoil them. Helix-destabilizing proteins keep the 

two single strands of DNA apart. DNA polymerases start at the chromosome's origin of 

replication, and then two replication forks move in opposite directions. The polymerases 

use each separated strand of DNA as a template to join (polymerize) deoxynucleotide 

complements together (Figure 2.7). Accessory proteins help keep the polymerase on the 

DNA strand and also perform editing of the base pairs (A-T, C-G). Replication is 

completed when the two replication forks meet at the other side of the circular 

chromosome, leaving the cell with two identical double-helix strands of DNA. This 

replication process is semiconservative in that each new chromosome contains one of the 

original single strands of DNA. After chromosome replication is completed, then the cell 

can divide [54]. During cell division, one DNA chromosome is passed to each of the 

daughter cells. 

As a cell grows, any plasmids th'lt it contains replicate autonomously. Plasmids have 

at least one origin of replication and regenerate just like chromosomal DNA. Often, 

plasmids encode just one of the proteins needed for initiating their own replication. Then 

the plasmids borrow helicases and polymerases from the host cell. The average number 

of a particular plasmid in a newborn cell is referred to as the copy number. Relaxed 

plasmids have high copy numbers, and stringent plasmids have low copy numbers. There 

exist feedback mechanisms that regulate plasmid copy number within the cell [55]. For 

example, at high plasmid concentrations proteins can bind to plasmids, blocking their 
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replication. At the time of cell division, plasmids are divided among the daughter cells. 

Although plasmids are not usually distributed equally among progeny cells, partitioning 

systems ensure that at least one copy of the plasmid segregates into each daughter cell. 

2.2.5 Transformation 

Transformation occurs when cells take up free DNA directly from their environment. 

This type of gene exchange was the first to be discovered in bacteria. Transformation is 

often the best way to reintroduce experimentally altered DNA into cells. DNA gets 

bound to specific receptors on the cell surface, and the bound DNA is broken into smaller 

pieces by endonucleases. Transformation is almost always single-strand uptake [53]. 

One of the DNA strands is degraded, while the other complementary strand is transported 

into the cell. 

Cells that are capable of taking up DNA are said to be competent. Experiments show 

that competent bacteria take up DNA with relatively high efficiency [53]. Much less is 

known about the gene products that make cells permeable to DNA. Some types of 

bacteria will take up DNA from any source, while other types of bacteria will only take 

up DNA from their own species having specific uptake sequences. Most types of cells 

are not naturally transformable. However, some cells can be made competent by 

electroporation, brief electric shocks that submit the cells to strong electric fields, or with 

certain chemical treatments, such as calcium ion induction [56,57]. 
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2.3 Antibiotics 

Antibiotics are chemicals that impede genetic processes and the growth of cells [58]. 

These substances can prevent DNA replication or change its structure. To stop 

replication, antibiotics usually halt polymerization by binding to DNA. When bound to 

DNA, antibiotics may also block RNA production. Structural changes can occur when 

antibiotics tenninate DNA chains by mimicking deoxynucleotides; for example, 

Mitomycin-C cross-links guanine bases [59]. Antibiotics can also prevent translation of 

protein by inhibiting binding of ribosomes and tRNA. While all the possible forms of 

antibiotic interference seem to have negative connotations, the effects of antibiotics can 

indeed be advantageous to a cell when preventing the expression of harmful genes. 
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Chapter 3 

Frequency-Domain Analysis 

In general, a system is a group of interconnected components that generates one or 

more outputs by processing or transforming input signals. Linear systems possess the 

property of superposition: if an input consists of a scaled sum of several inputs, then the 

output is the scaled sum of the individual responses to each single input. A system whose 

characteristics do not change over time is referred to as time-invariant. Many systems 

encountered in nature can be modeled as linear time-invariant (LTI) systems [60], 

whether it be at all times or only under certain operating conditions. Since L TI systems 

are so common, many analytical techniques have been developed for studying their 

behavior. This chapter reviews frequency-domain (FD) analysis applicable to all LTI 

systems. 

3.1 Transfer Functions 

A block diagram for a system with one input and output is shown in Figure 3.1. If the 

input signal is described by the function x(t), then the output, y(t), is found as 
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Figure 3.1. Block diagram of a system with input signal, x(t), impulse response h(t), and 
output, y(t). 

y(t) = [00x('r)h(t - -r)d-r, (3.1) 

where h(t) represents the impulse response of the system [60]. The solution of the 

convolution integral in Eq. 3.1 is sometimes nontrivial, and it is often more easily solved 

in the frequency domain. Conversion from time domain to the frequency domain occurs 

through the Fourier transfonn: 

x(f) = [x(t)e- i2
1f/1 dt , (3.2) 

where f represents frequency (Hz) and i symbolizes H. In the frequency domain, Eq. 

3.1 becomes [60] 

Y(f) =X(f)· H(f), (3.3) 
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which means that the FD output response of a system is simply the product of the Fourier 

transforms of the input signal and the system's impulse response. The time-domain 

output is then given by 

y(t) =_1 [Y(f)e i2lr/tdf, (3.4)
21& 00 

which defines the inverse Fourier transform. The term H(j) in Eq. 3.3 is called the 

transfer function. A transfer function is defined as the ratio of the FD output to the FD 

input, that is, H(j) =Y(j) I X(j). Note that a transfer function depends on what is defined 

as the input and output, and thus, a single system can have many transfer functions. 

Standard notation for a transfer function polynomial is 

n(1+iLJ 
H(f) =C m=l zm, (3.5)

n(1+iL J 
n=l Pn 

where C is a constant and Zm and pn are the zeros and poles of the system, respectively. 

To help illustrate the application of FD analysis, consider the common-emitter 

inverting amplifier shown in Figure 3.2. This system receives a small input voltage 

signal, Vj(t), and generates an amplified output voltage signal, vo(t). Derivation of the 

transfer function for this circuit begins by drawing a small-signal model and then 

applying the Fourier transform to each of the components. Figure 3.3 shows a high-

frequency model for the amplifier circuit, after Fourier transform, that substitutes base-

collector and base-emitter capacitance with Miller capacitance, CM, and ignores any base 

resistance in the bipolar junction transistor [61]. In Figure 3.3, rlf is the small-signal 

38 



Vcc=+5 V 


o vo(t) 

l00~tF 

VEE =-5 V 

Figure 3.2. Common-emitter· inverting amplifier. 

Rs 
--0_ Vo(f) 

i211/CM Rc 

Figure 3.3. Frequency-domain model of common-emitter amplifier at high frequency. 

39 



base-emitter resistance and ro is the output resistance of the transistor [61]. At high 

frequency, capacitors Cc and CE are modeled as a short circuit (Le., no impedance). 

Nodal analysis to find H(f) = Vo(f) I Vi(f) yields a single-pole transfer function: 

(3.6) 


where the passband voltage gain, Ao, is given by 

(3.7) 


/c = 1/[21tCAARsIIRBllr tr)], and gm is the transconductance of the transistor [61]. 

3.1.1 Bode Plots 

A Bode plot is a graphical tool for visualizing the frequency response, H(f), of a 

system [62]. A Bode diagram consists of two plots. The first plot displays the magnitude 

of H(f) in decibels (dB) versus frequency. The magnitude of H(f), IH(f)I, from Eq. 3.6 can 

be expressed in dB as 

(3.8) 

Forj«/c, the magnitude of H(f) is practically constant as the first term on the right-hand 

side ofEq. 3.8 dominates the expression. Whenj=/C, the magnitude of H(f) drops 3 dB 

below its maximum of 20·10g(lAol). For j» /C, the magnitude of H(f) then decreases 20 

dB per decade increase in frequency, as shown by Figure 3.4(a). As a rule, the slope of a 
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Figure 3.4. High-frequency Bode plot of the transfer function for the common-emitter 
inverting amplifier with cutoff frequency f e. 
transfer function. 

(a) Magnitude, and (b) phase angle of the 
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magnitude Bode plot decreases (increases) an additional 20 dB/decade for each pole 

(zero) that is crossed as the frequency increases [63]. The Bode plot in Figure 3.4(a) is 

characteristic of a low-pass filter. An input signal at frequency below!c is amplified by a 

gain of Ao, but then the output signal is filtered, or diminished, when the signal frequency 

exceeds the comer frequency, fn also referred to as the -3 dB or cutoff frequency. For 

the common-emitter amplifier described by Figures 3.2 and 3.3, the cutoff frequency is 

set by the pole created by the Miller capacitance, eM. In fact, for every capacitor in a 

circuit, there is a pole and a zero in the transfer function. The zero for the transfer 

function given by Eq. 3.6 occurs when f ~ 00. The cutoff frequency establishes the 

bandwidth of the amplifier, which also affects the gain-bandwidth (GBW) of the system. 

The GBW is defined as the product of the passband voltage gain Ao and the bandwidth of 

the amplifier, represented graphically by the shaded area in Figure 3.4(a). 

The second plot in a Bode diagram shows the phase angle of H(j) versus frequency. 

The phase of H(j), LH(j), from Eq. 3.6 is given by 

(3.9) 


Forf«fe, the phase of H(j) is approximately equal to the phase of Ao, which is 1800 (Eq. 

3.7) for the inverting amplifier in Figure 3.2. Whenf=!C, the phase of H(j) decreases by 

45 degrees, as shown in Figure 3.4(b). Then, for f»!C, the phase is decreased by 90 

degrees. In general, the phase angle of a Bode plot decreases (increases) an additional 90 

degrees for each left-half plane pole (zero) that is crossed as the frequency increases [63]. 

Back in the time domain, these changes in phase angle correspond to time delays in the 
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output signal: as phase angle decreases, the output signal lags further behind in time. For 

systems employing feedback, this effect can potentially yield undesirable behavior, such 

as overshooting or oscillation in the output response [63]. 

3.1.2 EtTects of Negative Feedback 

A negative feedback system can be constructed by subtracting a fraction of a system's 

output from its input signal, as shown in Figure 3.5. This classical feedback 

configuration has feed-forward gain A(j) and feedback factor p. For the common-emitter 

amplifier in Figure 3.2, negative feedback can be added simply by inserting a feedback 

resistor, RF, as shown in Figure 3.6. The transfer function, H(j) = Vo(j) I Vi(j), of this 

closed-loop system can be written as 

A(f) 
H(f)= I+T(f)' (3.10) 

where the loop transmission, T(j) =A(j)·p, isthe transfer function all the way around the 

loop. A significant benefit of adding negative feedback to a system is the extension of 

bandwidth. For the single-pole amplifier, the closed-loop transfer function, found by 

substituting Eq. 3.6 into Eq. 3.10, is given by 

Ao 

(1 +I:)
H(f) (3.11)

' 
1+· f( I (l + I:)fc )

with To =Ao·p. Consequently, the magnitude of the passband gain is reduced by a factor 

of 1+ITol, and the effective cutoff frequency (Le., bandwidth) is increased by 1+ITol. 
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Figure 3.5. Classical negative feedback system. 
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Figure 3.6. Common-emitter amplifier with negative feedback. 
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These two combined effects, illustrated by the Bode plot in Figure 3.7, are known as the 

gain-bandwidth tradeoff. 

3.2 Random Signals 

Signals that cannot be precisely described by an equation or predicted at any given 

time are called random signals. Random signals are found in all real systems. For 

example, shot noise is present in the current of semiconductor diodes, due to stochastic 

injection of carriers (electrons and holes) across the pn-junction [64]. Although the exact 

value of these fluctuations in a diode's current is nondeterministic, some properties of the 

noise can be described exactly. One of the best ways to analyze random signals as they 

propagate through systems is by examining their autocorrelation and energy spectral 

density. ' 
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~ 

·2-

C) 
co 
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Figure 3.7. Gain-bandwidth tradeoff with addition of negative feedback. 
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3.2.1 Autocorrelation 

Correlation between two different signals is a measurement of how much they are 

related to each other. The two signals are said to be positively correlated when both of 

the signals tend to move in the same direction over a long period of time. If one signal 

moves upward over a long duration of time while the other moves downward, then the 

two signals are negatively correlated. The two signals are said to be uncorrelated if, over 

a long period of time, they move together roughly half of the time and move in opposite 

directions the remainder of the time. 

Autocorrelation describes how a signal is correlated with itselfover time and is one of 

the best ways to describe a random signal. The autocorrelation function (ACF), Ri~, for 

a signal x(t) can be defined as [65] 

Rx (T) =[00 x(t)x(t +T)dt (3.12) 

for real continuous-time signals, and as 

00 
RJm] = ~x[n]x[n +m] (3.13) 

n=

for sampled (discrete-time) signals. The parameters T and m should be thought of as time 

shifts or time lags. Two random signals, x(t) and y(t), and their autocorrelation functions, 

Rx( ~ and Ry(~, respectively, are shown in Figure 3.8. This figure illustrates some 

properties of all ACFs. As indicated, the autocorrelation is always an even function and 

is always maximized at T = O. RiO) is the maximum value of every ACF because a 
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Figure 3.8. Sampling of two random signals and their autocorrelation functions. 

signal is always the most correlated with itself at zero time shift. RxCO) is also equal to 

the total energy in a signal since 

2Rx (0) = [00 x (t)dt , (3.14) 

where the right-hand side of Eq. 3.14 is defined as the total energy for a signal x(t). 

3.2.2 Energy Spectral Density 

The energy spectral density (ESD) of a signal describes the signal's distribution of 

energy as a function of frequency. From Parseval' s theorem, the relationship between a 

signal's total energy, Ex, and its Fourier transform is given by 
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(3.15) 


where JX(f)12 = X(f)·X*(f) with * denoting the complex conjugate. Since integrating JX(f)12 

over all frequency yields the total energy of the signal, the term JX(f)12 represents the ESD 

of the signal. That is, the ESD, 'I'x(f), of a signal x(t) can be defined as 

(3.16) 


A unique relationship exists between the ESD of a signal and its autocorrelation. 

Consider the random signals in Figure 3.8. The signal x(t), with dominant low-frequency 

components, varies slowly over time. The corresponding autocorrelation function, Rx(-n, 

has a relatively broad spread about T= 0, as the signal is highly correlated with itself over 

long durations of time. In comparison, the rapidly changing signal y(t) has stronger high

frequency components, and the spread of its ACF about T = 0 is noticeably narrower 

because y(t) becomes less correlated with itself after fewer time lags. Hence, information 

about the frequency composition of a signal is revealed in the features of its ACF. In 

mathematical terms, the ESD of a signal, 'I'x(f), is the Fourier transform of its 

autocorrelation function, Rx( -n [65]. Conversely, Rx( -n is the inverse Fourier transform of 

'I'x(f). Since the ACF of a signal is always even, the ESD is also even. For real systems, 

it doesn't make physical sense to discuss negative frequency. So the ESD over positive 

frequency is usually doubled, and the ESD over negative frequency is set to zero to 

preserve total energy across the spectrum. Figure 3.9 shows the single-sided ESDs for 

the random signals in Figure 3.8. In agreement with the signal descriptions given above, 
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Figure 3.9. Energy spectral densities of the random signals in Figure 3.8. 

most of the energy in x(t) is found at lower frequencies, while the energy in y(t) is 

distributed across higher frequencies. 

The effect a system has on the ESD of a signal is determined by the system's transfer 

function, H(j). Given an input signal with 'IIx(j), it can be shown that the ESD of the 

output, 'Py(j), is given by [65] 

'I' ,(I) =IH(/)1
2 
,¥x(/)· (3.17) 

Besides determining the ESD of a system output, Eq. 3.17 has significant application. 

For example, if the transfer function of a system is completely unknown, then by 

measuring the ESD of the input and output signals, one can deduce H(j). This is one 

approach that can be used for system identification. 
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There are several different ways to measure the ESD of a signal [66]. One method of 

estimating 'I'x(j) is to sample the signal, and then calculate the signal's ACF and its 

Fourier transfonn. Another approach for estimating 'I'x(j) is to square the magnitude of 

the Fourier transfonn of the sampled signal, as suggested by Eq. 3.16. However, each of 

these techniques really only provides an estimate of the ESD for a signal due to a finite 

number of available data samples. One method for improving ESD estimation is to 

window the sampled data into K blocks. The ESD for each block of data is found, and 

then the ESDs for each window are averaged. The spectral resolution of the ESD is not 

as great because fewer data points are considered in each block, but the variance of the 

ESD estimate is decreased. 
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Chapter 4 

Gene Circuit Analysis and Simulation 

In this chapter, analysis and simulation are mutually applied towards the development 

of models for two fundamental building blocks in genetic regulatory networks: the 

unregulated and autoregulated gene circuit. The analyses presented below focus 

primarily on the behavior of gene circuit noise. There are several motivations behind 

this. For one, there is considerable interest in understanding how genetic systems are 

able to function properly, even in environments with discrete numbers of molecules, 

given all of their noise generating components. Secondly, frequency-domain (FO) noise 

analysis not only gives structural detail about a system but also reveals information 

through application of transfer functions about how the circuit processes its inherent 

noise [14, 15]. Finally, current technologies now provide means for measuring noise in 

gene expression [31-33], which facilitates the coupling of analysis and simulation with 

experimentation in order to assess the accuracy of developed models and make model 

refinements as needed. 
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4.1 Modeling and Noise Analysis 

Modeling a gene circuit begins by applying biological knowledge to list all of the 

biochemical reactions considered integral to the circuit. To assist FD analysis, the 

models are converted into electrical circuits to make them more familiar to electrical 

engineers. Next, all of the identified noise sources are added to the circuit, and then FD 

transfer functions are derived for each of the noise sources. Finally, the contributions 

from each noise source (Le., biochemical process) are analyzed along with the total noise 

spectrum of the gene circuit. Although the FD approach shares some of the same 

limitations as Langevin analysis (e.g., linealization), the FD techniques applied below 

have been shown to accurately retain the spectral features of noise and remain valid in 

many regions of gene circuit operation, even at low molecular popUlations [15, 16]. 

Furthermore, FD analysis yields equations with simple forms that uncover relationships 

between circuit parameters and noise behavior [14-16]. The equations developed below 

are generalized and applicable to almost any unregulated or autoregulated gene circuit. 

4.1.1 Unregulated Gene Circuit 

Previous gene circuit models usually include only transcription, translation, and decay 

of mRNA and protein, and they describe all of these processes as simple one-step 

reactions (for example, see Figure 1.1 [14]). A more complete model would describe 

transcription and translation as two-phase processes that include initiation and elongation 

[67], creating a minimum time delay before mRNA (-t;.) and protein (-zp) molecules are 

functionally available. It is expected that the total delay between transcription initiation 
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and the formation of functional protein ('r,.+;) be on the order of a few minutes [68]. 

Oversimplified models also ignore protein multimerization processes found in many 

well-characterized biological systems [69]. For example, both CI and Cro monomers 

form homodimers before binding to the PRM and PR promoters in the A-phage lysis

lysogeny decision circuit [70]. These reversible reactions are important because they are 

known to have significant and population-dependent effects on the spectral distribution of 

stochastic fluctuations in gene circuits [15]. 

Figure 4.1 shows a schematic representation of an improved model for an unregulated 

(open-loop) gene circuit along with the respective rate constants assigned to each 

reaction. While integrating first-order reactions from previous analyses, the model in 

Figure 4.1 also includes the missing features described above. Here, RNAP binds to 

DNA at rate Kin to form complex C, and transcript initiation follows at rate Kc. After 

clearing the promoter region, the DNA is available again for RNAP-binding. Meanwhile, 

polymerase in state Mo continues to transcribe DNA (rates Kmf), Kml, ... , KmM) through M 

sequential states (Mit M2, ... , MM).Although mRNA synthesis continues after these M 

steps, at this point the ribosomal binding site is available for the initiation of translation. 

Synthesized mRNA decays (*) at rate 'Yr. Ribosomes bind with mRNA molecules at rate 

Kp, and translation initiation proceeds at rate Kmc. After clearing the translation initiation 

region, the mRNA is available again for ribosome binding. Ribosomes in state To 

continue translating protein (rates KID, Ktl , ... , KtM) through M states (T., T2, ... , TM) to 

create protein monomers, P. Protein monomers decay (*) at rate 'YP and also dimerize at 

rate Kf to form homodimers, Di. To incorporate dissolution of dimer molecules, the 
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Transcription Delay Translation Delay ___A ___ 
_ __A ___..... 
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Kin Kc Km(} Kml KmM Kp KmC KtO Ktl KtM Kf 

DNA -+ C-+ Mo-+ M 1-+ "'MM-+ mRNA -+ mC -+ To-+ T.-+ "'TM -+ P;::::! Di 

+ y,. ! J:,!+ K, 
DNA mRNA 

Figure 4.1. Unregulated gene circuit model with delays and protein dimerization. 

dimerization reaction is modeled as a reversible process, in which dimers break: down at 

rate Kr into monomer proteins, with decay occurring only from the monomer species, P. 

Similar to previous analyses, the populations of functional molecules such as RNAP and 

ribosomes are considered to be abundant and at equilibrium. Although other real-world 

effects, such as cell growth and division, are not modeled here, the results still illustrate 

qualitative observations that remain valid in certain regions of operation. Below, FD 

analysis is applied to study the noise characteristics of the dimer population, as dimers 

are the output of this gene circuit. 

Table 4.1 lists the ODEs that describe the unregulated gene circuit model. Assuming 

a single copy of the gene, the unbound operator population, 0, is either zero when the 
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Table 4.1. ODEs and steady-state equations for the unregulated gene circuit 

~erentialEquation Steady-State Equation 

d[C] =Kin[DNA]-KJC] (c) = Kin (DNA)
dt Kc 

d[Mo] =KJC]- Kmo[MO] (Mo)=~(C)
dt KmO 

d[MM] -K [MM l]-KmM[MM] (M ) =Km(M-l) (M )- m(M-l) - M K M-l
mM 

_d["""--m_Im_fl__...] =KmM[MM]-rr[mRNA]-Kp[mRNA]+Kmc[mC] (mRNA) = KmM (MM) 
~ ~ 

K 
d[mC] = K [mRNA] - KmC[mC] (mC)=-P(mRNA)

dt p KmC 

d[To] = KmC[mC] - Kto[To] (To) =KmC (mC)
dt KtO 

(T. ) = Kt(M-l) (T. )d[TM] =Kt(M-l)[TM-l]-KtM[TM] M K M-ldt tM 

d[P] 2.
-=KtM[TM]-rp[P]-K,[P] +Kr[Dl] (p) = KtM (TM) 

dt rp 

d[Di] =K ,[p]2 - Kr[Di] (Di) = K, (p)2 
dt Kr 
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RNAP is bound to the operator or one when the DNA site is freed. The average (steady

state) population, denoted by ( ), of the unbound operator is 

(4.1)(0) =T +T. ' 
u b 

where Tu = I/(Kin(O» is the average period of time the operator remains unbound, and 

Tb = lIKe is the average period of time the operator is bound. The steady-state 

populations for the remaining chemical species in Figure 4.1 are found by setting the 

ODEs equal to zero and simultaneously solving the system of equations. Expressions for 

these steady-state populations are given in Table 4.1. 

Using substitution, the ODEs in Table 4.1 can be reduced to four equations that 

include just four essential species: DNA, mRNA, monomer protein (P), and dimer 

protein (Di). The model for the unregulated gene is converted into an electrical circuit, 

shown in Figure 4.2, where each node, circled and numbered 1-4, corresponds to one of 

the four primary chemical species. Each capacitor is assigned a value of one so that the 

voltage at its node is the population or concentration, denoted by bracketed terms, of the 

respective species. The delay t"r is included with the transcription current source, Kin. 

Likewise, the delay 'Zp is built-in with the mRNA-dependent current source for 

translation. Finally, S2, S3, and S3b are noise sources associated with biochemical 

processes and are characterized below. 

The FD signal processing functionality of each biochemical process is found through 

Fourier transforms to yield gain transfer functions, H(j) = iJoWa(j), where 0 and i are 

output and input signals (e.g., molecular populations) respectively, andfis frequency in 
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Kin ,---------~----------rKp[mRNA] 

Dimerization 
[DNA] [mRNA] [P] " [Di] 

Figure 4.2. Electrical circuit equivalent for the unregulated gene circuit. The 
transcription delay, 'f" and translation delay, tp, are combined with their related current 
sources. 

Hz [15]. The noise ESD Sj."fJ) at any node j due to a noise source at node k with ESD 

S"Jj) is given by 

Sj,k(/)=IHj,k(/t ,Sk(/)' (4.2) 

where IHj ."fJ)12 is the power transfer function from node k to node j. If all noise sources 

are statistically independent, then the total noise ESD at node j, Sij), is 

N 

Sj(/)= ~Sj.k(/), (4.3) 
k=1 

with N equal to the number of noise sources in the circuit. 

Noise sources in gene circuits are located at points of molecular transitions including 

synthesis, multimerization, decay or dissolution [15]. The gene circuit in Figure 4.1 has 
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at least six individual noise sources that account for the stochastic nature of mRNA 

production, mRNA decay, monomer protein synthesis, protein decay, dimerization, and 

dimer dissolution. At steady state where opposing processes (e.g., synthesis and decay) 

are equal, these noise components are easily condensed into three sources (Figure 4.2). 

The first noise source, entering the circuit at node 2, describes noise due to the steady

state production and decay of mRNA, which can be accurately modeled as wideband shot 

noise [14, 16]. The single-sided ESD (positive frequency only) for this source is given 

by 

S2(f) = 4Kin (0) . (4.4) 

The second noise source for the network eriters at node 3 and has a single-sided ESD 

given by 

(4.5) 


which is a white noise source that accounts for the synthesis and decay of monomer 

protein [14]. The third noise source is due to stochastic fluctuations in dimer formation 

and dissolution, which at steady-state can be modeled as one wideband noise source 

located between nodes 3 and 4 with a single-sided ESD of 

(4.6) 


The frequency-dependent transfer functions needed to compute Eq. 4.2 are found by 

applying Fourier transforms to the deterministic ODEs for the chemical reactions in the 

gene circuit. The results of the transformation are shown in Figure 4.3. The function 
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Figure 4.3. Frequency-dependent 
unregulated gene circuit. 

functions for the biochemical processes in the 
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blocks containing exponential terms account for phase shift [65] caused by the 

transcription time delay Tr and translation (plus protein folding) time delay Tp. The 

transfer functions given for protein decay and dimerization have been reported previously 

[15]. In the frequency domain, the gain transfer function from node j to node k of the 

circuit is simply the product of all the FD function blocks between the two nodes. As a 

result, the gain transfer function from mRNA synthesis to output dimer is given by 

1 
(4.7) 

where the pole frequency fr = r,l21C is due to the decay of mRNA [14], and the coupled 

poles fp = rpl(21C[1+(2(P)Kf)IKrD and fd = Kr·[I+(2(P)Kf)IKr ]/21C are due to the 

dimerization and decay of monomer protein and move in frequency space as a function of 

protein population [15]. The gain from monomer to dimer can be written as 

1 .exp{- i211/rp}, (4.8) 

l+i L 
fd 

where the exponential term now accounts only for any translation and protein-folding 

time delay Tp. Using transfer functions derived by Cox, et al. [15], the gain from the 

dimerization noise source S3b, located between nodes 3 and 4, to the dimer output is given 

by 
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(1+i 2:J 
H 4•3b (!) = 1 

(4.9) 

K, (l+i :.J(l+i ~r 

where the pole frequenciesfp and!d are given above for Eq. 4.7. 

With all of the transfer functions derived, the ESD of the total noise generated in the 

output dimer population, S4(j) (Eq. 4.3), and its constituents, Sj.1ff) (Eq. 4.2), can be 

calculated. Figure 4.4 shows calculated ESDs of the dimer noise and its components for 

the unregulated gene circuit using the parameter values listed in Table 4.2. Matlab (The 

Math Works, Natick, MA) source code used to compute the noise ESDs can be found in 

Appendix A. The parameter values in Table 4.2 were chosen to fit within realistic 

physiological ranges and illustrate key features of the analysis. The number of elongation 

steps (M =10) was selected arbitrarily and the values of KmM and KtM were set to 0.1 s-J to 

produce an average delay time of 100 s for both 'Zj. (MIKmM) and 1p (MIKtM). The decay 

rates for mRNA (y,.) and protein (,p) correspond to a half-life (A = In(2)/;1 of 2 and 60 

min, respectively [71]. The burst rate (b =Kply,.) was chosen to be -20 proteins per 

transcript, which lies between the reported values of b = 5 for the lacA gene and b = 40 

for lacZ [72]. The remaining parameters were selected to yield (P)::= 100 and (Di)::= 10 

molecules. The results in Figure 4.4 reveal some important features about the 

composition of noise in the output dimer population. At lower frequencies, S4(j) is 

determined primarily by transcriptional noise (S4,2) caused by fluctuations in the synthesis 

and decay of mRNA. Conversely, at higher frequencies the dimer noise is controlled 

... 
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Figure 4.4. Total noise ESD in the steady-state dimer population, S4, and calculated 
contributions to S4 by each of the noise sources, Sj,k, for the unregulated gene circuit. 

Table 4.2. Parameters used to model the unregulated gene circuit 

Parameter Value Reaction 
Kin 0.001 s-I DNA..RNAP 
Kc 0.1 s-I TranscriEtion 
KmM (M= 0-9) 0.1 s-I Elongation 
'l"r 100 s Transcription delay 

l! 0.0058 S-l mRNAdecay 

Ke. 0.12 s-I MRNA-Ribosome 
Kmc 0.1 s-I Translation 
KtM (M= 0-9) 0.1 s-I Elongation 

'l"e. 100 s Translation delay 

'lP. 0.0002 S-l Protein decay 
K[ 0.0005 s-I Dimer formation 
Kr 0.6 s-I Dimer dissolution 
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almost entirely by the dimerization process (S4.3b). Interestingly, the noise contribution 

from the synthesis and decay of monomer protein (S4.3) has a negligible effect on dimer 

noise throughout the entire frequency spectrum. 

4.1.2 Autoregulated Gene Circuit 

A great deal of stochastic analysis and experimentation has focused on negatively 

autoregulated gene circuits [14, 26, 31, 32, 73], a common control motif that regulates 

more than 40% of the known transcription factors in Escherichia coli [74]. For the most 

part, previous analyses have relied on a Hill kinetics model to describe protein 

multimerization, cooperative binding, and gene expression control by protein-DNA 

binding at an operator site. Unfortunately, important noise and dynamical features of 

gene expression control are neglected in this simplified representation [16]. 

Figure 4.5 shows a schematic representation of a single autoregulated (closed-loop) 

gene circuit, along with assigned reaction rate constants, that explicitly includes gene 

regulation by dimer-DNA binding at the operator site. The features of this model are 

exactly as described above for the unregulated gene circuit, except that protein dimers 

negatively regulate gene expression by binding and unbinding with the operator (DNA) at 

rates Kb and Ku, respectively. Since dimers are the regulatory elements in this gene 

circuit, the following noise analysis is applied to the output dimer population. 

After simplification of the ODEs for the biochemical reactions in Figure 4.5, the 

average steady-state mRNA «mRNA»), protein «P»), and dimer «Di») populations are 
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Figure 4.5. Autoregulated gene circuit model with reversible operator-dimer binding. 

(4.10) 


(p) =Kp (mRNA) (4.11) 
rp 

(4.12) 


where the basal gene expression rate (leakiness) is assumed to be negligible. Assuming a 

single copy of the gene, the unbound operator population, 0, is either one or zero, and the 

average population is 

(0)= 1'" , (4.13) 
1',,+~ 

64 



---

where Tu = I/(Kb(Di» is the average period of time the operator remains unbound, and 

Tb =11Ku is the average period of time the operator is bound. 

For FD analysis, the model is converted into the electrical circuit shown in Figure 4.6. 

The three noise sources (S2, SJ, and SJb) account for the stochasticity of mRNA 

production, mRNA decay, monomer protein synthesis, protein decay, dimerization, dimer 

dissolution, and dimer-DNA binding and unbinding. The first noise source, S2, combines 

the noise components due to dimer-DNA binding, mRNA production, and mRNA decay_ 

The single-sided ESD for this source is given by 

Kin 2((0) - (0)2 )1 1 2 1+ 4Kin (0), (4.14) 
S2(f) =4K. +K.(Di) 1+(;.J 

.. 

Kin <V [mRNA] Kp[mRNA] G) [P] 

'Yr L.-J 	 'YpL ...L 

Dimerization 
...,A... 

@ [Di] 	 .~,. 
r 	

- '" Frequency 

Effects of 


[0] 	~ Operator 

Binding 


1
-

Figure 4.6. Electrical circuit equivalent for the autoregulated gene circuit. 
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where the pole frequency fb = (Ku + Kb(Di) + Kb)/21C [16]. The first term on the right-

hand side of Eq. 4.14 is the noise ESD for mRNA synthesis due to random fluctuations in 

dimer-DNA binding (operator noise) [16]; the second term describes noise due to the 

steady-state production and decay of mRNA, which is modeled as white noise [14, 16]. 

The other two noise sources S3 and S3b, which account for synthesis and decay of 

monomer and dimer protein, are the same as in the unregulated gene circuit and are 

characterized by Eqs. 4.5 and 4.6, respectively. 

The loop transmission technique is used to derive the transfer functions Hj,kif) of the 

autoregulated gene circuit. The frequency-dependent functions of the biochemical 

processes, shown in Figure 4.7, are again found by Fourier transforms. For negative 

feedback systems, the closed-loop transfer functions can be written in the form 

H _ Aj,k(f) 
(4.15)j,k(f) - 1+T(f) , 

where Aj,kif) is the forward gain transfer function from node k to node j and Tif) is the 

loop transmission. The loop transmission, T, is the transfer function around the entire 

loop and describes how the system responds to dampen perturbations introduced at any 

node in the circuit [14]. The loop transmission can be calculated as Tif) = Aj,kif)·fJk..J{j), 

where fJk..J{j) is the feedback transfer gain from node j back to node k. Hence, the loop 

transmission is a defining feature of the circuit architecture and at a given steady-state 

condition remains the same regardless of the selected input and output nodes. 

Again, the gain transfer function from node j to node k of the circuit is simply the 

product of all the FD function blocks between the two nodes. Thus, the feed-forward 
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gain, A4.2, from S2 to the dimer is given by Eq. 4.7. Likewise, Eq. 4.8 gives the feed-

forward gain, A4,3, from S3 to the dimer; and Eq. 4.9 gives the feed-forward gain, A4.3b, 

from S3b to the dimer. Finally, the feedback transfer function from dimer back to mRNA 

synthesis is given by 

(4.16) 

where the pole frequency fb =(Ku + Kb(Di) + Kb)/21t [16]. The loop transmission for the 

gene circuit is found as the product of A4.2if) and 1h.4(j), given as 

I 

(4.17) 
1 I 

l+i 
fp 

and is used to calculate the closed-loop gains (Eq. 4.15) for the three noise sources 

defined above for the autoregulated gene circuit. The pole frequencies are given above 

by Eqs. 4.7 and 4.16. These closed-loop gains, Hj.kif), are applied with their respective 

noise sources in Eqs. 4.2 and 4.3 to determine S4if), the total noise generated in the output 

dimer population. 

Figure 4.8 shows calculated ESDs of the total dimer noise, S4, and its components for 

the autoregulated gene circuit using the parameter values listed in Table 4.3. Matlab 
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Figure 4.8. Total noise ESD in the steady· state dimer population, S4, and calculated 
contributions to S4 by each of the noise sources, Sj,k, for the autoregulated gene circuit. 
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Table 4.3. Parameters used to model the autoregulated gene circuit 

Parameter Value Reaction 
Kin 0.003 s-I DNA-RNAP 
Kc 0.1 s-I TranscriEtion 
KmM (M= 0-9) 0.1 s-I Elongation 

'rr 100 s Transcription delay 

'}! 0.0058 S-l mRNAdecay 

Ke 0.12 s-I MRNA-Ribosome 
Kmc 0.1 s-I Translation 
KtM (M =0-9) 0.1 s-I Elongation 

!e 100 s Translation delay 

'lP. 0.0002 S-l Protein decay 
Kt 0.0005 s-I Dimer formation 
Kr 0.6 s-I Dimer dissolution 
Kb 0.02 s-I 0Eerator binding 
Ku 0.1 s-i Operator unbinding 
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source code used to compute the noise ESDs is located in Appendix B. Except for Kin, 

the shared parameters in Table 4.3 are identical to those used for modeling the 

unregulated gene circuit (Table 4.2). The values of Kin, Kb, and Ku were selected to yield 

(P) =1()() and (Di) =10 molecules. The resulting ESD of the dimer noise in Figure 4.8 is 

similar to the case of the unregulated gene circuit. Dimer noise at low frequency is 

primarily due to operator binding, transcription, and decay of mRNA (S4,2) , while the 

high frequency noise is generated by the protein dimerization process (S4,3b). Again, the 

synthesis and decay of protein (S4,3) has little effect on total noise in the dimer 

population. 

4.2 Simulation Results 

Monte Carlo simulations were performed using Biospreadsheet, an ESS software 

package developed by researchers at the University of Tennessee [75], which implements 

the Gibson and Bruck optimization of the Gillespie algori.thm [19, 20]. In general, 

simulations were sampled at different rates (Is = 0.1, 1, and 10Hz) to generate output 

files containing 450,000 data points for the primary species: DNA, mRNA, P, and Di. 

Except for the step induction simulations in Section 4.2.2, the initial conditions for all 

molecular populations were set to their theoretical steady-state values. Figure 4.9 shows 

an example of a simulated time series for dimer protein, sampled every 10 s. To calculate 

the noise ESD at steady state, the first 18,000 data points were discarded to insure that 

any transient response was removed. The noise for an individual species was found by 

subtracting its mean value from its time series data. Noise ESDs for each sampling rate 
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Figure 4.9. Simulated dimer population versus time at sampling ratels =0.1 Hz. 

were calculated by Welch's method in Matlab using Hanning windows of 12,000 samples 

with no overlap [66]. Matlab source code for computing the noise ESD of simulated data 

is located in Appendix C. Completed noise ESDs were then created by appending valid 

regions (low, medium, and high frequency) of ESDs from each of the three sampling 

rates to remove aliasing effects. The formation of a complete noise ESD for simulated 

data is shown in Figure 4.10. 
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Figure 4.10. Representative noise ESD from ESS results created by appending spectrums 
from different sampling rates, Is, to remove aliasing artifacts. 

4.2.1 Unregulated Gene Circuit 

To simulate the unregulated gene circuit, Biospreadsheet was setup using the 

reactions and rates listed in Table 4.4, which correspond directly to the reactions shown 

schematically in Figure 4.1 and the parameter values used previously from Table 4.2. 

Steady-state results from ESS are listed in Table 4.5 and agree nicely with the calculated 

steady-state values found using the equations in Table 4.1. The simulated noise ESD for 

the dimer population is shown in Figure 4.11 along with the calculated dimer noise ESD, 

S4 from Figure 4.4. Agreement between simulation and theory is excellent in the 

passband if < 10-4 Hz). Error reaches nearly 100% at f = 10-3 Hz and then becomes 
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Table 4.4. Biospreadsheet parameters used for the unregulated gene circuit 

Reaction Rate (S·l) Comment 
DNA->C 0.001 Kin 
C ->MO+DNA 0.1 Kc 
MO->M1 0.1 KmO 
M1->M2 0.1 Km1 
M2->M3 0.1 Km2 
M3 ->M4 0.1 Km3 
M4->M5 0.1 Km4 
M5 ->M6 0.1 Km5 
M6->M7 0.1 Km6 
M7 ->M8 0.1 Km7 
M8 ->M9 0.1 Km8 
M9->mRNA 0.1 Km9 
mRNA-> * 0.0058 Gamma-R 
mRNA->mC 0.12 KJ2 
mC -> TO + mRNA 0.1 KmC 
TO -> T1 0.1 KtO 
T1 -> T2 0.1 Ktl 
T2 -> T3 0.1 Kt2 
T3 -> T4 0.1 Kt3 
T4 -> T5 0.1 Kt4 
T5 -> T6 0.1 Kt5 
T6 -> T7 0.1 Kt6 
T7 -> T8 0.1 Kt7 
T8 -> T9 0.1 Kt8 
T9->P 0.1 Kt9 
P-> * 0.0002 Gamma-P 
2P -> Di 0.001 2*Kf 
Di -> 2P 0.6 Kr 
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Table 4.5. Comparison of steady-state populations for the unregulated gene circuit 

Species Calculated Mean Simulation Mean 
Operator (unbound) 0.990 0.990 
mRNA 0.171 0.167 
P 102 99.8 

Di 8.74 9.5 

7
10

N 
~ 

N(/) 105 

~ 
:::J 
(.) 
~ 10

4 

o 
~ 
~ 10 

3 

en 
W 
Q) 102 

(/)

·0 
Z 

10
1 

I"'"E.........- ;1 
- Model

* ESS 

10°' , , , , , , , 
10-5 10-4 10-3 10-2 10-1 10° 

Frequency (Hz) 

Figure 4.11. Comparison of dimer noise ESD between the analytical model and ESS for 
the unregulated gene circuit. 
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negligible for f > 10-1 Hz. This error is mostly likely attributed to nonlinear effects that 

are not captured by the analytical model. 

4.2.2 Autoregulated Gene Circuit 

For the negatively autoregulated gene circuit, the Biospreadsheet setup in Table 4.4 

was amended with the following two reactions to add negative feedback created by 

reversible binding of dimer molecules and DNA: 

Di + DNA ~ bDNA Kb = 0.02 s-1 (4.18) 

bDNA ~ Di + DNA Ku =0.1 s-1 (4.19) 

where bDNA represents bound DNA. All of the reaction rates for this simulation were 

taken from Table 4.3. Steady-state results from ESS are listed in Table 4.6 and agree 

well with the calculated steady-state values (Eqs. 4.10-4.13). The simulated noise ESD 

of the dimer population is shown in Figure 4.12 along with the calculated dimer noise 

ESD, S4 from Figure 4.8, for the autoregulated gene circuit. Even with an average dimer 

population of just 10 molecules, agreement between simulation and theory is excellent 

throughout the entire spectrum. 

Up to now, the transcription and translation delays have each been set equal to 100 s. 

To study the effects of delay time in mRNA and protein synthesis, Biospreadsheet was 

configured using the setup in Table 4.7 for the autoregulated gene circuit. With M =10, 

both KmM and KtM were fIrSt set equal to 0.4 S-I, resulting in 1;- =25 and -rp =25 s. Figure 

4.13 shows approximated deterministic time-domain responses of the dimer protein 

population for step induction when the total time delay ('Z"r + -rp) is 50, 200, and 800 s 
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Table 4.6. Comparison of steady-state populations for the autoregulated gene circuit 

Species Calculated Mean Simulation Mean 
Operator (unbound) 0.344 0.351 
mRNA 0.178 0.181 
p 107 108 
Di 9.52 10.3 
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Figure 4.12. Comparison of dimer noise ESD between the analytical model and ESS for 
the autoregulated gene circuit. 
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Table 4.7. Biospreadsheet parameters used to study the effects of time delays in the 
autoregulated gene circuit 

Reaction Rate (S·l) Comment 
DNA->C 0.1 Kin 
C ->MO+DNA 0.1 Kc 
MO->M1 0.4 KmO 
M1->M2 0.4 Km1 
M2 ->M3 0.4 Km2 
M3 ->M4 0.4 Km3 
M4->M5 0.4 Km4 
M5 ->M6 0.4 Km5 
M6->M7 0.4 Km6 
M7 ->M8 0.4 Km7 
M8 ->M9 0.4 Km8 
M9->mRNA 0.4 Km9 
mRNA-> * 0.0058 Gamma-R 
mRNA->mC 0.05 KE 
mC -> TO + mRNA 0.1 KmC 
TO -> T1 0.4 KtO 
T1 -> T2 0.4 Ktl 
T2 -> T3 0.4 Kt2 
T3 -> T4 0.4 Kt3 
T4 -> T5 0.4 Kt4 
T5 -> T6 0.4 Kt5 
T6 -> T7 0.4 Kt6 
T7 -> T8 0.4 Kt7 
T8 -> T9 0.4 Kt8 
T9 ->P 0.4 Kt9 
P -> * 0.0005 Gamma-P 
2P -> Di 0.0005 2*Kf 
Di ~> 2P 0.6 Kr 
Di + DNA -> bDNA 0.1 Kb 
bDNA -> Di + DNA 0.1 Ku 
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Figure 4.13. Overshooting of dimer steady-state population in time domain as total delay 
time is increased from 50 to 800 s for the autoregulated gene circuit. 

(KmM =KtM =0.4, 0.1, and 0.025, respectively). Each response was found by averaging 

10 simulated trajectories with gene copy number = 1 and all other species initially zero. 

At t =0, a copy of the gene became available (by transformation, for example) and the 

molecular populations increased to their steady-state values. With total delay <50 s, the 

dimer population reached steady-state without overshooting its mean value of 10 

molecules. Overshooting became evident when the total delay was >200 s and was 

significant when the total delay was >800 s, which was simply due to the fact that many 

proteins were already in production when the first repressors (i.e., dimers) finally became 

active and down-regulated gene expression. Figure 4.14 shows the simulated and 

calculated noise ESD, S4(j), of the steady-state dimer population with total time delays 
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Figure 4.14. Peaking in the dimer noise ESD for the autoregulated gene circuit as total 
delay time is increased from 50 to 800 s. 

('fr+tp) of 50 and 800 s for the autoregulated circuit. Increasing the delay time from 50 to 

800 seconds produced peaking in the noise ESD. This frequency peaking is the FD 

manifestation of the time-domain overshoot observed in Figure 4.13. 

4.3 Discussion 

Noise performance of regulated gene networks is dependent on the loop transmission 

T(j) of the closed-loop circuit [14]. Consider the unregulated and autoregulated dimer 

noise ESDs, shown in Figure 4.15, calculated using the parameter values in Tables 4.2 

and 4.3, respectively. For the unregulated gene circuit, the cutoff frequency, Ie = 2.8 X 

10-5 Hz, occurred at the half-power point indicated by the horizontal dashed line. This 
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Figure 4.15. Bandwidth comparison of the unregulated and autoregulated gene circuits. 

cutoff frequency was determined by the protein pole, /p given for Eq. 4.7, which was set 

primarily by the protein decay rate yP. For the negatively autoregulated gene circuit with 

the same protein pole, the bandwidth was expected to be increased by a factor of 1+IT(O)I. 

Applying Eq. 4.17 with the parameter values in Table 4.3, IT(O)I = 1.23, and the cutoff 

frequency of the negatively regulated gene circuit was extended to 6.2 x 10-5 Hz (Figure 

4.15) exactly as predicted [14]. 

Depending on the total amount of delay time and the strength of the promoter, 

molecular species may overshoot their steady-state targets [73]. Overshoot in population 

of species is typically undesirable because it costs nutrients and can have toxic effects on 

the cell. The effect of the delays, r,. and 'Z"p, on the loop transmission of the autoregulated 
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gene circuit is shown in the calculated (Eq. 4.17) Bode plot in Figure 4.16. The increased 

delays impacted the stability of the circuit by reducing phase margin (PM), which led to 

overshoot in the step response. When the total delay was 50 s, ITol =1.7 with PM = 119°, 

and there was no overshoot in the dimer step response. When the total delay was 800 s, 

ITol = 1.7 and PM = 93°, and the overshoot was 300%. From control theory, these 

sufficient values of PM should not normally generate the sizeable overshoot seen in 

Figure 4.13 [63]. This is one of the limitations of the linearization applied during loop 

transmission analysis for the autoregulated gene circuit. This gene circuit is nonlinear not 

only in the dimerization process but also in the repression feedback stage. Dimer 

molecules can block initiation of transcription, but they cannot reverse this process. So, 
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Figure 4.16. Bode plot of calculated loop transmission, T(j), for the autoregulated gene 
circuit when total delay time is increased from 50 to 800 s. 
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even as dimers try to halt gene expression, proteins are still translated until the level of 

mRNA is decreased by degradation machinery. 

Despite its shortcomings, the FD method presented in this chapter is a powerful 

analytical tool that yields relatively simple and easy-to-use equations. As long as. caution 

is exercised when applying this type of analysis, the results can reveal key features of 

gene circuit behavior, and as demonstrated, remain accurate even at low populations of 

molecular species. 
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Chapter 5 

In Vivo Measurements of Gene Expression 

This chapter describes the development and implementation of experimental 

protocols used to acquire in vivo measurements of stochastic gene expression in bacteria 

cells. The procedures are discussed in three parts: preparation of biological samples, 

data acquisition, and extraction of data via image processing. In Chapter 6, measured 

results obtained by these techniques are presented along with analysis that reveals some 

new insights about global behaviors of genetic networks. 

S.1 Sample Preparation 

Guided by results from analyses, experimental design began by selecting the genetic 

constructs to fabricate. Green fluorescent protein (GFP) was chosen as the desired gene 

product since an observable and measurable reporter protein was needed. With the a 

priori knowledge that the rate of protein degradation, or dissolution, limits the bandwidth 

of gene circuits, it was decided that three variations of GFP would be constructed, each 

having a different half-life (i.e., degradation rate). The variants included wild-type (WT) 
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GFP, GFP-asv, and GFP-aav, listed here in order of decreasing protein half-life, A. Each 

suffix corresponds to an amino acid sequence appended to the polypeptide chain that 

targets the GFP molecule for degradation by bacterial proteases. At 37°C, the 

approximate half-life of wild-type GFP is 24 hr, while A:::: 110 min and A:::: 60 min for 

GFP-asv and GFP-aav, respectively [76]. 

Unregulated gene circuits were constructed from plasmid pGFP-asv, graciously 

donated by Elowitz [25], which contained the PUetO-1 promoter [77] followed by the asv .. 

mutant of the gfp gene. This high copy number plasmid also encoded the kanamycin 

acetyl transferase gene, KmR, which conferred the host cell resistance to kanamycin and 

acted as the selectable marker of the plasmid. The donated plasmid was used as the basis 

for generating the other variant forms of GFP described above. Figure 5.1(a) shows the 

genetic constituents of the derived plasmids: pGFP-WT, pGFP-asv, and pGFP-aav. For 

construction of all three cases, pGFP-asv was digested overnight with StuI and HinDIll 

(New England Biolabs), and the parent vector was gel purified. Synthesized oligo

nucleotide sets for each GFP variant were combined in a 1:1 molar ratio in ligation buffer 

and allowed to anneal at room temperature for 1 hr. A 100: 1 molar ratio of double

stranded oligonucleotide insert DNA was added to a ligation mix containing 100 ng 

digested, gel-purified vector DNA. Ligations were conducted in 25-I.d reactions 

containing 4U T4 DNA ligase in LigaFast rapid ligation buffer (Promega) at room 

temperature for 10 min. A 5-I.d sample of the ligation mix was then transformed into E. 

coli cells per manufacturer's instructions. 
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pTetR-GFP 

(a) (b) 

pGFP 

Figure 5.1. Plasmids constructed for in vivo measurements of gene expression. (a) pGFP 
with constitutively expressed variants of gfp, and (b) pTetR-GFP with negatively 
autoregulated tetR plus GFP-asv reporter. ColEl is the origin of replication. 

To make an autoregulated gene circuit, tetR was inserted into pGFP-asv to produce 

pTetR-GFP, as shown in Figure 5.l(b). The binding of TetR protein and the PUetO-1 

promoter generated negative feedback for autoregulation of the tetR and gfp-asv genes. 

The tetR gene was amplified by polymerase chain reaction (PCR) from Repressilator 

plasmid donated by Elowitz [25] and cloned into pCR.2.l-TOPO (Invitrogen). The 

reverse primer was modified to include a stop codon at the end of the normal coding 

sequence to generate mature TetR protein with wild-type half-life. In order to minimize a 

potential difference in the burst rates, the untranslated region and ribosomal binding sites 

between the PUetO-1 promoter and the gfp gene in pGFP-asv were duplicated for tetR by 

including a copy of the untranslated region between the promoter and the KpnI site 5' of 
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the atg start codon of the gfp-asv gene. The plasmids were then transformed, propagated, 

screened, purified and sequenced for verification. 

E. coli strains used in all experiments were TOPI0 cells from Invitrogen. Luria-

Bertani (LB) medium was used for the routine cultivation of cell strains. Experiments 

were conducted using M9 minimal medium [78] supplemented with 10% LB (vol:vol) 

and kanamycin (50 f.1g1ml). For studies with pTetR-GFP, culture media were also 

augmented with anhydrotetracycline (ATc) to induce gene expression. The M9 medium 

was chosen to reduce background fluorescence during imaging, and the LB medium was 

added to provide extra nutrients for cell growth. Cell cultures containing each of the 

plasmids of interest were grown overnight, diluted back 1: lOin fresh media (M9 + 10% 

LB) and allowed to recover for 1 hr prior to deposition on slides. Slides were prepared 

using M9 + 10% LB with 1 % low-melt electrophoresis-grade agarose (FMC). Melted 

agar medium (1 mI) was deposited onto glass microscope slides (Fisher Scientific) and 

left to solidify. Once cooled to room temperature, a heated platinum wire was used to 

melt channels in the agarose to permit air exchange within the sample. Then, a 10-Jll 

solution of transformed E. coli cells in exponential growth phase was spread onto the 

cooled agarose and covered with a glass slip, as shown in Figure 5.2. The cover slip and 

solidified agarose helped immobilize the cells. Before imaging, samples were incubated 

for -1 hr at room temperature, 28°C, or 32°C, depending upon the experiment. This 

incubation period allowed the cells time to acclimate to their new environment. 
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Figure 5.2. Biological sample ready for microscopy. A cover slip lies on top of E. coli 
cells deposited on culture media, supported by a glass slide. The air channels were 
pinched off sometimes after the cover slip was pressed down. 

5.2 Data Acquisition 

Confocal microscopy is a powerful imaging modality that facilitates 3-dimensional 

(3-D) image reconstruction with sub-micron resolution [79, 80]. When equipped with an 

excitation source, such as a mercury lamp or laser, a confocal microscope can also be 

used to observe fluorescence of a substance, such as GFP. The primary components of a 

laser confocal microscope are shown in Figure 5.3. A pulsed laser beam is deflected by a 

dichroic mirror and guided through the microscope by scanning mirrors. These mirrors 

rotate under computer control to scan the laser beam over the sample. During laser 

excitation, fluorescent molecules in the sample are stimulated by the incident high-energy 

radiation, which results in emission of photons (fluorescence) with lower energy. This 
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Figure 5.3. Primary components of a laser confocal microscope. 

fluorescent light is directed back through the microscope by the scanning mirrors, passes 

through the dichroic mirror due to the difference in wavelength, and is amplified by a 

detector, such as a photomultiplier tube (PMT). However, before the fluorescent light 

reaches the detector, it must pass through a pinhole screen, which forms a conjugate 

plane with the sample plane, thereby blocking out-of-focus light. That is, the confocal 

pinhole allows only light originating from a specific point in the sample to reach the 

detector. As the scanning mirrors raster the laser across the sample, a computer then 

digitizes the PMT output to form a 2-dimensional (2-D) image depicting the thin section 

of the sample that is in the focal plane. Adjusting the size of the pinhole effectively 

increases the thickness of the viewable area in the sample by allowing more light to reach 
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the detector, but sacrifices sharpness in the acquired images. Finally, to construct 3-D 

images, a stack of 2-D image slices can be acquired while stepping the vertical position 

of the sample, typically accomplished with a piezoelectric stage for precision control. 

The in vivo expression of GFP for all constructed gene circuits was recorded by time

lapsed laser confocal microscopy using the Leica TCS SP2, shown in Figure 5.4, located 

in the Biology Microscopy Laboratory at the University of Tennessee [81]. Cells 

deposited on slides were viewed under a 20x objective (Figure 5.2). Local cell 

environment was monitored by inserting a small thermocouple into the agarose between 

the slide and cover slip. The temperature was maintained by adjusting a heating lamp 

near the microscope stage, and aluminum foil sheeting was used to block direct light 

from the lamp to eliminate interference with fluorescence measurements. Temperature 

variation during the course of an experiment was ±1°C. The laser and confocal 

microscope settings used to observe fluorescence of GFP are given in Table 5.1. The 

laser's excitation wavelength was 488 DID, and the detected green fluorescent light was 

band-limited from 500-550 DID. To prevent photobleaching of GFP [82], the laser power 

was set as low as possible (5-10% of max power) and the gain of the PMT was increased 

as high as possible (650-720 V), while preventing saturation of the detector's analog

digital converter and preserving favorable signal-to-noise ratio in acquired images. The 

confocal pinhole was adjusted such that the thickness of an image in the sample plane 

was >1 J.UI1 (Le., more than the height of the cells). The microscope zoom was adjusted 

to view a 40 J.UI1 x 40 J.UI1 area, and the size of each image was 512 x 512 pixels. The 

laser beam was rastered at 800 lines/sec, so that an image was acquired in <1 sec. Output 
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Figure 5.4. Leica TCS SP2laser confocal microscope. 

Table 5.1. Settings used for laser confocal microscopy 

Parameter Setting 
Excitation Laser Wavelength 488 run 
Excitation Laser Power 5-10% 
Detector Filter 500-550 run 
PMT (Gain) 650-720 V 
Objective 20x 
Pinhole Size 4.0 Airy 
Image Size 40 gm x 40 gm 
Image Resolution 512 x 512 pixels 
Image Type (Pixel Range) 8-bit (0-255) 
Scan Type xyzt 
Scan Rate 800 Hz 
Line Averaging 1 
Frame Averaging 1 
Number of Slices 12 
Distance Between Slices 0.28 Jlffi 
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images were 8-bit Tagged Image File Format (TIFF), with 0-255 grayscale values. To 

record time-sampled fluorescence data, cells were imaged every 5 min (sampling rate = 

1/300 Hz). In the interest of speed, the line and frame (i.e., image) averaging capabilities 

were disabled during the time-lapsed acquisitions. However, high-quality before and 

after images, like those shown in Figure 5.5, were captured with 4 frames averaged. 

Ideally, observation periods were as long as possible, with some as long as 8-9 hr. 

However, some experiments were as short as 3 hr because cell fluorescence faded 

severely. As seen in Figure 5.5, the image size of 40 Jlm x 40 Jlm was needed to provide 

enough viewable area for the cells to grow and divide over the duration of the 

experiment. 

(a) (b) 

Figure 5.5. Before (a) and after (b) images for a 7-hour experiment using E. coli cells 
with pGFP-asv at 26°C. Cells were labeled for tracking. E1 and E2 had not yet divided 
at t =0 and therefore shared some history during the observation. 
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Even for short periods of time, exposure to air caused the culture media on the slides 

to evaporate noticeably under a microscope. The result was that the cells eventually fell 

out of the focal plane. To remedy this problem, the confocal microscope was set up to 

acquire xyzt scans, which yielded images (in the xy-plane) in stacks (z-dimension) 

sampled over time. At each time sample, 12 frames were acquired as the microscope's 

piezoelectric stage was stepped 0.28 IJll1 between each exposure. Two disadvantages of 

this technique were that the cells received 12 times the radiation dose and that the number 

and total size of data files increased 12-fold. Figure 5.6 shows a stack of images acquired 

for a single time sample and provides a way to estimate the sample thickness represented 

by each frame. Because the frames above and below the best-focused image appeared 

identical to it, the thickness of each image slice was greater than that of the cells. If a cell 

was a cylinder with a I-J.1m diameter (see scale bar in Figure 5.6), then each slice was 1-2 

IJll1 thick given that the step size was 0.28 1Jll1. Although the xyzt-type scan did help 

correct for sample drift, this alone was not enough to keep ~e cells in focus over time. 

During evaporation of the culture media, the cells tended downward at an average rate of 

.... 1 J.lIllImin. To compensate for this effect, the manual fine adjustment for the 

microscope stage was repositioned as needed before the acquisition of each image stack. 

As described above, a stack of images was obtained every 5 min for the entire length of 

observation. In the end, the image from each stack with the best focus was used to 

measure the total cell fluorescence for the respective time sample. Since each frame of a 

stack was acquired in <1 sec and the sampling period was 5 min, sampling rate error 

introduced by this method was negligible. 
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Best-focused 
image 

Figure 5.6. Stack of cropped images acquired for a single time sample. The stage was 
stepped 0.28 J.lll1 between each exposure (z-dimension not to scale). 
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5.3 Image and Data Processing 

The data acquisition procedure described in the previous section produced hundreds 

of images per experiment, many of which were out of focus. For example, an 8-hour 

acquisition with 12 slices every 5 min resulted in 1,152 frames, and only the 96 best

focused images (8.3% of the total) were actually used for further analysis. Thus, a need 

developed for the ability to automatically extract focused images from large data sets. 

This task was accomplished using a custom Matlab program, located in Appendix D. 

This program scanned through every image generated by an experiment. For every stack 

of frames, the integral of each image was plotted against image number and fit to a 5th
_ 

order polynomial. The image number where this polynomial was maximized (Le., the 

brightest frame) was then taken as the image with the best focus. The order of the 

polynomial was selected based on trial and error results. 

Once the image stacks were processed, the best-focused images were compiled into a 

movie that illustrated the growth and time course of all the cells for an entire observation 

period. These movies were then used to select individual cells for tracking. Generally, 

-8 cells were tracked in each movie. Tracked cells were not chosen at random. Instead, 

cells were selected so that they had the least amount of shared lineage (Figure 5.5) in 

order to reduce correlation in measured fluorescence data among tracked cells. In 

addition, cells were chosen so that a fairly even distribution of fluorescence intensities 

was represented. 

The tracking of discrete cells was performed manually, for accuracy, with the aid of 

an image-processing tool called ImageJ, available from the National Institutes of Health 
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[83]. To avoid deciding which daughter cell was followed after a cell division event, 

movie frames were opened in reverse order and cells were tracked backwards through 

time. Demonstrated in Figure 5.7, a cell of interest was circled as one image was 

examined after another. bnageJ then measured the selected area and the average 

fluorescence within the drawn boundary. Figure 5.8 shows the measured area versus 

time for the cell tracked in Figure 5.7. The discontinuities were caused by cell division. 

The Matlab program in Appendix E was used to fit the measured area to exponential 

growth curves (Figure 5.8). The average doubling time, Td, for a cell was found as 

Td =~f, In(2) (5.1)
N~ ,

,=1 'i 

where ri was the exponential growth rate per cell cycle and N was the total number of cell 

cycles that occurred during the observation. Assuming that fluorescence intensity was 

directly proportional to the number of GFP molecules, the average fluorescence measured 

for each cell area corresponded directly to the GFP concentration in that cell. After all of 

the frames in the movies had been examined, time trajectories of GFP concentration for 

individual cells over the length of each experiment were available for analysis. 

To obtain a measurement of noise in GFP expression, the noise time series for an 

individual cell was defined as the deviation of that cell's fluorescence from the mean of 

the population. A systematic method using threshold segmentation was developed for 

measuring the population's mean fluorescence as a function of time throughout an entire 

experiment. For segmenting each image, thresholds were set such that any grayscale 

pixel value above the threshold was taken to be fluorescence from a cell, while pixels 
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Figure 5.7. Tracking a single cell through selected frames of a movie. 
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Figure 5.8. Measured cell area and exponential growth for a single cell. 

below the threshold were considered to be part of the image background. To ensure that 

the thresholds were set above background levels, measurements of dark regions in images 

were taken using the Matlab program in Appendix F. This program scanned every frame 

of a movie, analyzed a user-defined area (e.g., upper left-hand comer), and returned the 

mean and max pixel values in the selected region. Figure 5.9 shows mean and max 

background values (in arbitrary units, a.u.) measured for a complete set of images from 

an experiment. The max values corresponded to speckles, or noise, in the image 

backgrounds. Next, the minimum fluorescence values of the hand-traced cells were 

plotted and fitted to a line. This line was then shifted down as low as possible, while 

remaining above the background noise, and used to define the decision thresholds for 
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Figure 5.9. Selection of thresholds used to segment cells from their image background. 

image segmentation (Figure 5.9). These threshold values were applied to images by the 

Matlab program in Appendix G. This program integrated the total fluorescence in each 

movie frame, and used the predetermined thresholds to segment images, as shown in 

Figure 5.10, and to calculate the total cell area per frame (i.e., time sample). Then, the 

background-corrected mean fluorescence of the cell population at each time sample was 

determined as follows: total background fluorescence (mean of background times size of 

image) was subtracted from the total image fluorescence to get total cell fluorescence; 

total cell fluorescence was divided by total cell area to obtain average fluorescence per 

cell pixel; average fluorescence/pixel was smoothed with an averaging filter given by 
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Figure 5.10. Image segmentation used to determine total cell area per image. (a) Input 
image from a single time sample, and (b) the corresponding thresholded image. 

1
M 

[ •y [n] = - I x n + 2z - M-1] (5.2)
M j=( 2' 

where M was an odd number set roughly as 10% of the total number of samples. Finally, 

the noise for a single, tracked cell was found, as shown in Figure 5.11, by subtracting the 

background and the population means from the measured fluorescence of the cell. Mter 

repeating this procedure for all cells tracked in a movie, a set of single-cell noise 

measurements, as shown in Figure 5.12, was obtained for each experiment performed. 

Close examination of images revealed cell crowding that sometimes occurred near the 

end of long observation periods. Instead of continuing to spread out laterally, cells began 

to overlap each other as they grew. This phenomenon, indicated by the brighter and 

somewhat blurred region in center of Figure 5.5(b), skewed the calculations for the mean 

t..i. 
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Figure 5.11. Noise measured for a single cell. Noise (red) for a cell is defined as its 
background-corrected fluorescence (blue) minus the population mean (green). 

80.-----~-------.-------.------~----__. 

_60L-----~------~-------L------~----~ 

o 	 5,000 10,000 15,000 20,000 25,000 

Time (5) 

Figure 5.12. Noise in GFP concentrations for the 8 labeled cells of Figure 5.5. 
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fluorescence of the cell population. To correct for this effect, these specific areas were 

manually traced in ImageJ. Then, the total fluorescence and area of these regions was 

appropriately subtracted out from the measurements of total fluorescence and total cell 

area. Thus, near the end of long acquisitions that suffered from cell crowding, the 

estimate for the population's mean fluorescence was in fact the average 

fluorescence/pixel for the remaining single-layered cells close to the perimeter of the 

images, which was acceptable since this was also the region where tracked cells were 

always selected (Figure 5.5(b». 

The experimental and data processing techniques described in this chapter comprised 

the development of a novel method for acquiring in vivo measurements of stochasticity in 

gene expression. These procedures were repeated many times while varying several 

experimental parameters. E. coli cells were observed as they expressed each of the 

constructed plasmids described above, under various temperatures, and with different 

concentrations of inducer (ATc) when applicable. Results from all of these experiments 

are presented and analyzed in the following chapter. 
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Chapter 6 

Analysis of In Vivo Noise Measurements 

In Chapter 5, experimental procedures were developed for acquiling measurements of 

real-time gene expression in living whole cells. In this chapter, noise data obtained from 

predefined experiments are analyzed and compared. The results show that cell behavior 

and gene circuit noise depend on factors such as temperature and the variant, or half-life, 

of the GFP reporter protein. In addition, spectral analysis of noise data verifies that 

negative autoregulation shifts gene circuit noise to higher frequencies, confirming the 

predictions of previous theoretical analysis [14]. Finally, measured noise data presented 

here are used to support gene circuit models and demonstrate that noise may have a 

probative value. That is, frequency content of noise may reveal information about 

enzyme kinetics and subtle condition-dependent feedback mechanisms. 

6.1 Experiments and Conditions 

Table 6.1 provides a list of completed experiments along with each of the varied 

conditions. All experiments were conducted using E. coli cells. Studies began with the 
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Table 6.1. List of experiments and conditions 

Experiment Plasmid InducerlAdditive Temp Duration Cells 
Name Type (cone.) (OC) (min) Tracked 

AAV25 pOFP-aav None 25 360 6 
AAV30 pOFP-aav None 30 180 7 
ASV22 pOFP-asv None 22 480 8 
ASV26 pGFP-asv None 26 420 8 
ASV26+ATc pGFP-asv ATc (100 nglml) 26 240 6 
ASV32 pGFP-asv None 32 270 8 

WT26 pGFP-WT None 26 480 7 
WT36 pOFP-WT None 36 250 8 
TetR21* pTetR-OFP* ATc (100 nglml) 21 300 6 
TetR26* pTetR-OFP* ATc (100 nglml) 26 240 7 

• Negatively autoregulated gene circuit. 

pGFP-asv plasmid since it was available first. Results with OFP-asv protein, having the 

median half-life (A, ~ 110 min, [76]), were acquired at several different temperatures. 

Likewise, the short half-life OFP variant (aav) with A, ~ 60 min and the wild-type (WT) 

OFP with A, ~ 24 hr were also observed at various temperatures. All of the experiments 

listed so far incorporated unregulated gene circuits on high copy number plasmids. To 

investigate the effects of negative autoregulation, expression of pTetR-OFP was also 

studied and at different temperatures. Results with this plasmid were compared directly 

to pOFP-asv since they both contained the same gfp-asv reporter gene. As a control, cells 

with pGFP-asv were also observed in the presence of anhydrotetracycline (ATc), which 

was the inducer used to activate fluorescence in cells transformed with pTetR-OFP. 

... 
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Durations of experiments also varied, and as pointed out in Chapter 3, data sets with 

limited samples can bias spectral density estimates. As a rule, a low bandwidth signal 

recorded over a long period of time should contain approximately the same amount of 

spectral information as a high bandwidth signal sampled for a proportionately shorter 

time interval. Results from Chapter 4 showed that gene circuit bandwidth was affected 

by the decay rate of output protein and negative autoregulation. Keeping all of this in 

mind, experiments with long half-life variants (pGFP-asv and pGFP-WT) at lower 

temperatures (slower kinetics) ran for durations that were 2-3 times longer than 

experiments with gene circuits anticipated to have higher bandwidths (pGFP-aav and 

pTetR -GFP). Results presented below in Section 6.3 justify the differences in the 

experimental durations found in Table 6.1. 

6.2 Autocorrelations 

To study in vivo noise behavior of genetic systems, correlation analysis was applied 

to measured noise data collected by the methods developed in Chapter 5. Cells from each 

experiment were grouped together. Adjusted noise time selies, Xm(n·Ts), for cells (1, 2, 

... , M) were found by subtracting the mean noise of the group from each individual noise 

series, which consisted of N time samples acquired with a five-minute sampling period, 

Ts. Normalized autocorrelation functions (ACFs) for individual cells were then found 

using the following biased algorithm [84]: 
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~x..(n:z:.)x ..((n+ j'pJ 
Cl>j (jT:) = ..,!:;;n=::.:..,..1--N---- (6.1) 

LX~(nTs) 
n=1 

where n was the sample number (1, 2, ... , N) andj had integer values from 0 to N-1. A 

biased ACF was used because N was <100 for all experiments. The composite ACF for 

M cells was found using 

f. ~Xm(nT,)Xm((n+ /JI',) 
CI> c (jTs ) = .;.;.;..m=-,,-I~n=..::.-I~M---:-N----- (6.2) 

2L L Xm (nT:) 
m=1 n=1 

which is the normalized average of the individual (unnormalized) ACFs for each cell in a 

group. The Matlab program used to compute <ll;('" and <llc( '" is located in Appendix H. 

The mean noise for a group of cells was removed from the individual time series above 

so that <llc( '" ~ 0 as l' ~ co. To illustrate this, Figure 6.1 shows individual cell and 

composite normalized ACFs for the ASV22 experiment conducted at room temperature. 

Individual and composite ACFs were calculated for tracked cells in every experiment. 

Below, these autocorrelations are presented to unveil some of the underlying information 

that is inherent to gene circuit noise. 

6.2.1 Temperature EtTects 

Gene circuits are coupled chemical reactions and their behavior is often temperature-

dependent as reaction rates are affected by changes in the kinetic energy of involved 

molecular species. To explore temperature effects on gene circuit noise, each of the 
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Figure 6.1. Individual cell (<1>;( '0) and composite (<I>c( '0) normalized ACFs of GFP noise 
for pGFP-asv at 22°C. 

constructed gene circuits was studied at various temperatures (Table 6.1). Figure 6.2(a) 

shows measured growth curves of cell population for pGFP-asv cells at different 

temperatures. In general, the rate of cell growth increased at higher temperatures for all 

experiments. Conversely, the doubling time of cell volume decreased with increasing 

temperature in a linear fashion, as shown in Figure 6.2(b). Doubling times for all other 

experiments are covered in Section 6.3. 

The individual and composite ACFs in Figure 6.3 reveal indirectly how frequency 

content of GFP noise was modified by the pGFP-asv gene circuit under different 

temperature conditions. The individual normalized ACFs, <1>;( '0, are shown to illustrate 

the variation of cells among a group and potential error in autocorrelation estimation 
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Figure 6.2. Cell growth versus temperature for pGFP-asv cells. (a) Volume of entire cell 
population grew exponentially over time as a function of temperature. (b) Doubling time 
of cell volume was inversely related to temperature. 
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Figure 6.3. Individual cell (<<I>i( 'Z) and composite (<<I>c( 'Z) normalized ACFs of GFP noise 
for pGFP-asv at different temperatures. 

caused by obtaining limited time histories. The composite ACFs, «I>c( 'Z), provide a better 

estimate of the true autocorrelations for the random processes. The decrease in spread, or 

width, of the composite ACFs at higher temperatures revealed an interesting feature of 

the gene circuit noise: as temperature was increased, the spectral distribution (i.e., 

bandwidth) of the noise shifted to higher frequencies. This characteristic is consistent 

with the gene circuit analysis in Chapter 4. The maximum bandwidth of GFP noise in an 

unregulated gene circuit should be largely determined by the rate at which the protein 

decays [14]. In growing cells, the protein decay rate is controlled by two mechanisms: 

degradation of the linked polypeptide chains and dilution of protein concentration due to 

cell growth. The degradation rate of protein, yP, is determined by its half-life 
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(JP = In(2)/A), while the dilution rate, 8, is set by the cell doubling time (8 = In(2)/Td). A 

protein's total decay rate is then JP + 0. As suggested by the results in Figure 6.2, the 

dilution rate increased directly with temperature, and correspondingly, the ACFs of GFP 

noise shifted to lower values of reFigure 6.3), signifying an increase in the bandwidth of 

the circuit. 

6.2.2 	 Protein Half-life 

The effects of protein half-life were studied using the three GFP variants: GFP-aav, 

GFP-asv, and WT GFP. Listed by experiment name (Table 6.1), normalized ACFs 

acquired at similar temperatures (25-26°C) for these three gene circuits are shown in 

Figure 6.4. As expected, the composite ACF for AA V25, which had the shortest GFP 

"""""" <1>; AAV25 
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Figure 6.4. Individual cell (<Pi( '0) and composite (<Pe( '0) normalized ACFs of noise for 
GFP half-life variants at 25-26°C. <PiS for ASV26 are given above in Figure 6.3. 
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half-life, was located furthest to the left (smaller values of ~, indicating the increase in 

bandwidth associated with the fast decay of GFP-aav. The ACFs of ASV26 and WT26, 

on the other hand, exhibited an unexpected behavior. Instead of cfJc( ~ for WT26 being 

shifted toward higher values of 1; it seemed to follow cfJc( ~ for ASV26. These results 

motivated experiments described below to explore the existence of any global cellular 

responses that may have contributed to the peculiar behavior of these two gene circuits. 

Differential equations describing steady-state production of protein (Table 4.1) 

describe how fluorescence (i.e., concentration) of GFP is directly proportional to its half

life. An unbiased comparison of pGFP-asv and pGFP-WT was performed by observing 

cells of each type deposited on opposite ends of the same microscope slide. As shown in 

Figure 6.5(a), the fluorescence intensity was greater for cells carrying pGFP-WT, as 

expected. Similarly, cells with pGFP-aav were the least fluorescent of the three GFP 

variants (data not shown). Given a higher protein concentration for GFP-asv and even 

more so for WT GFP, it is possible that the GFP degradation pathways were saturated in 

these two cell types. That is, the decay rate of these proteins was not proportional to the 

half-life, perhaps due to limited resources in the cell. Figure 6.5(b) shows that the growth 

of pGFP-WT cells on slides was notably slower (-2x) than pGFP-asv cells. However, a 

reduced doubling time for pGFP-WT would have yielded a lower dilution rate and shifted 

the ACF toward higher values of 1; which was not the result in Figure 6.4. A comparison 

of these two cell strains in bulk solution (culture media) demonstrated completely 

opposite behavior in cell growth. Figure 6.5( c) shows that the growth of pGFP-WT cells 

in solution was in fact better than that of pGFP-asv. The combination of all these results 
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Figure 6.5. Fluorescence and growth comparison of pGFP-asv and pGFP-WT. (a) 
Fluorescence (i.e., GFP concentration) measured over time. (b) Growth curves of cells 
on a shared slide. (c) Optical density (O.D.) at 405 nm of cells growing in solution. 
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suggested that the microenvironment on the slides might have affected cellular behavior 

by limiting resources required for proper cell functioning. In addition, WT GFP may 

have amplified this effect because of its extremely slow turnover of amino acids through 

protein decay, which would have further inhibited other cellular processes, including cell 

growth. This, in turn, may have created an unintentional negative feedback path in the 

unregulated gene circuit, causing the ACF for pGFP-WT to shift left toward lower values 

of l' and line up with the ACF of pGFP-asv. Such effects caused by negative feedback 

are described in more detail in the following section. 

6.2.3 Negative Feedback 

It has been predicted that negative autoregulation shapes the frequency content of 

gene circuit noise by shifting the noise to higher frequency [14]. To confirm this theory, 

negatively autoregulated gene circuits were introduced into E. coli cells by transforming 

them with pTetR-GFP. In this gene circuit, TetR blocked its own promoter region and 

that of the gfp-asv to shut off transcription of the two genes. Gene expression was 

induced by adding anhydrotetracycline (ATc), which worked to clear the promoter region 

by binding up TetR. A Tc is a decomposition product of the widely used antibiotic 

tetracycline and is known to cause some interference in translation by binding to the 

ribosome. An ATc induction curve for pTetR-GFP is given in Figure 6.6, describing the 

output fluorescence measured as a function of ATc levels. These ATc concentrations 

were supplements to culture media deposited on slides. For the pTetR-GFP experiments, 

it was desired to operate in a region with large slope (i.e., sensitivity) because this 
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Figure 6.6. ATc induction curve for pTetR-GFP. 

corresponded to higher loop transmission, T, in the autoregulated gene circuit. Though 

under compromise, an ATc concentration of 100 ng/ml was used in order to maintain 

GFP production at detectable levels. 

Normalized ACFs for an unregulated (ASV22) and negatively autoregulated gene 

circuit (TetR26) are shown in Figure 6.7. The ACFs of these two experiments were 

compared to each other because they had similar cell doubling times, ranging from -70

90 min, and the same GFP half-life. The composite ACFs showed a clear separation 

from each other. The spread of <l>c( '0 for ASV22 was nearly four times that of <l>c( '0 for 

TetR26. The significant shift toward lower r for the ACF of the autoregulated gene 

circuit proved that the frequency spectrum of the GFP noise had been increased. For a 
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Figure 6.7. Individual cell (<I>i( 'l) and composite (<I>c( 'l) normalized ACFs of noise for 
an unregulated (ASV22), control (ASV26+ATc), and autoregulated (TetR26) gene 
circuit. 

control experiment (ASV26+ATc), 100 ng/ml of ATc was added to pGFP-asv cells 

lacking the tetR gene. With respect to ASV22, the <l>c( 'l) for ASV26+ATc showed a 

measurable shift toward lower To This shift in the ACF may have been due to a noise 

whitening effect introduced by ATc-ribosome binding events [15]. Even so, the shift of 

<l>c( 'l) for TetR26 was significantly larger than the shift seen in the control experiment. 

Thus, the results presented here confirmed previous theoretical predictions and provided 

the first measured evidence that gene circuit noise is shifted to higher frequency by 

negative autoregulation. 
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6.3 Noise Bandwidth 

The tenn noise bandwidth is used here to describe the frequency range that contains 

most of the spectral content of a noise signal. To visualize frequency ranges for all of the 

gene circuits studied in this work., the noise bandwidth of each circuit was defined as 

1/'iJ12., where "C112 was the half-correlation time., the value of "C where <I>,{ -n or <l>c(-n 

decreased to 0.5. Measured noise bandwidth as a function of cell doubling time, Td, is 

shown in Figure 6.8 for all of the conducted experiments. In this figure, empty symbols 

represent individual cells while filled symbols are derived from composite ACFs. The 

composite measurements provide a better estimate of the true noise bandwidth., while the 

individual cell measurements illustrate variance in the estimation. Td for each cell was 

found using Eq. 5.1, while doubling times for composite data points were found as the 

average Td of the individual tracked cells in the respective cluster. Cells were clustered 

by experiment, as noted in the figure legend. 

Some trends in the measured data of Figure 6.8(a) illustrate spectral features for each 

of the ACFs discussed above in Section 6.2. For example, the three ASV data points 

(green) show the increase in noise bandwidth that occurred with decreasing doubling time 

as the temperature was increased. As expected, the noise bandwidth for the AA V points 

(blue) was shifted above the ASV points due to, at least in part, the shorter half-life of the 

GFP-aav. However, the WT data points (red) were not shifted below the ASV points, 

despite the longer half-life of WT GFP. As suggested earlier, the unexpected increase in 

the noise bandwidth of the WT data points may have been the result of global negative 

feedback in an unknown pathway. 
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Empty symbols represent individual cells while filled symbols are derived from 
composite ACFs. Trend lines in (b) are from analytical noise models in Section 6.4. 
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Increased noise bandwidth caused by deliberate addition of negative feedback is 

displayed in Figure 6.S(b) for the ASV (green) and TetR (purple) data points. At 

doubling times of -SO min, the increase in noise bandwidth due to negative 

autoregulation was -4x. As discussed above, a slight increase in noise bandwidth did 

occur for the ASV26+ATc control experiment. The increase in doubling time for the 

ASV26+ATc and TetR experiments was a side effect of the added ATc. The trend lines 

in Figure 6.S(b) are derived from models presented in the next section. 

6.4 Gene Circuit Models 

Figure 6.9 shows simplified models for the variant pGFP and the autoregulated 

pTetR-GFP gene circuits. For the pGFP model in Figure 6.9(a), plasmid DNA is 

transcribed at rate Km to produce mRNA molecules, which are translated at rate Kp to 

(a) (b) 

ATe 
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K·l 
):. 
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K, 1 
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_----II DNA 
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):. 
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Figure 6.9. Simple models for (a) variant pGFP and (b) pTetR-GFP gene circuits. 

117 



synthesize GFP. The mRNA and GFP decay (*) at rates y,. and yP, respectively. In the 

pTetR-GFP model, mRNAG is not transcribed until after mRNAT has been created. GFP 

is then translated from mRNAG. The TetR is translated from mRNAT but then forms a 

dimer before it actively binds to the DNA to regulate transcription [77]. ATc induces 

gene expression by suppressing TetR-DNA binding. The indicated species decay at their 

respective rates. 

Recent reports by Elowitz and Rosenfeld indicate that both intrinsic and extrinsic 

noise sources are prevalent in gene circuits [33, 85]. Therefore, a model was developed 

that included high bandwidth intrinsic noise and bandwidth-limited extrinsic noise. The 

energy spectral density (ESD) of GFP noise for this noise model is shown in Figure 

6.10(a). As indicated in the figure, the bandwidth of the extrinsic noise is set by the 

dilution rate, 0, which is determined by the cell doubling time [85]. Then both extrinsic 

and intrinsic noise sources are filtered by the dilution and protein decay rates (0+ yP). An 

equivalent noise circuit for the noise model is shown in Figure 6.1O(b). Through reverse 

Fourier transform of the ESD, the theoretical ACF for GFP noise is given by 

(6.3) 

where a = (0 + yP) / 0. The first term on the right-hand side of Eq. 6.3 accounts for 

extrinsic noise and the last term corresponds to filtered intrinsic noise. The scalars, WE 

and WI, set the contributions from the extrinsic and intrinsic noise sources, respectively, 

and they must sum to unity for the normalized ACF. For the negatively autoregulated 
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Figure 6.10. Extrinsic and intrinsic contributions to GFP noise. (a) Energy spectral 
density of GFP noise from the noise model. (b) Equivalent circuit for the noise model. 

gene circuit, the dilution and protein decay pole shifts to higher frequency by 1 +111 [14]. 

The theoretical ACF then becomes 

<Pth (r)=W (~e-M +_1_e-(8+y
p XI+1TI)r]+W -(8+Yp XI+ITI)r (6.4)eory E 2 1 1 2 Iec - -c ' 

where c =(£5 +1P)(1 +111) / 8. 

Again, noise bandwidth was defined as 11'[1/2, where '[1/2 was the half-correlation time 

found through solution of Eq. 6.4. WE and WI were set equal to 0.65 and 0.35, 

respectively, as determined by previous estimates [85]. Using IP =110 min for GFP-asv 

[76], theoretical noise bandwidths were calculated to derive the trend lines shown in 

Figure 6.8. 111 =4 was used to model the strength of negative autoregulation for TetR 
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and yields a reasonable fit to the measured TetR data points. All of the composite ASV 

data points, however, fall below the model prediction. One likely explanation is that the 

weights of the extrinsic and intrinsic noise contributions are different for the pGFP-asv 

gene circuit. In Section 6.2.2, it was suggested that the protein degradation pathway for 

GFP-asv might have been saturated. This effect would also contribute to a decrease in 

the noise bandwidth of the measured ASV data points. 

6.5 Estimation of Model Parameters 

Sets of normalized ACFs for individual cells in each experiment exhibited rather 

large variance. As seen in Figure 6.11, this situation is far from ideal when attempting to 

fit a model to measured data points. <l>theory( 'zJ is shown here using the parameter values 
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Figure 6.11. Individual cell (<I>j('zJ), composite (<I>c('zJ), and theoretical (<I>theory('zJ) 
normalized ACFs of GFP noise for the ASV22 experiment. 

120 



.. 

given in Section 6.4 and with 6 =In(2)/Td, where Td =68 min for ASV22 (Figure 6.8). 

The large variation in <1>; is due to the fact that a limited number of time samples was 

acquired for a small population of cells. As a result, there is too much uncertainty to be 

able to specify model parameters with a strong level of confidence. This problem can be 

solved easily though; all that is needed is more samples and a lot more time. 

--------------------------------------------------------~--~------------~--~ 
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Chapter 7 

Conclusions and Future Work 

Cells are complex systems made up of delicately balanced, interconnected gene 

circuits. Exploring and understanding the structure, function, and dynamic behavior of 

these circuits is a tremendous challenge. By coupling analysis and simulation with 

experimentation, this dissertation work has contributed substantially to the study of gene 

circuits. Deeper understanding of gene circuit behavior has been attained through 

refinement of analytical models and the development of a novel technique for mining 

infonnation about underlying genetic processes from the frequency content of measured 

gene circuit noise. 

Using available biological knowledge, more complete models were developed for 

unregulated and autoregulated gene circuits. These models included improvements such 

as transcription and translation time delays, reversible protein dimerization, and 

frequency-domain (FD) effects from the dynamics of reversible binding at the gene 

operator site. FD Langevin noise analysis applied to the models yielded relatively simple 

equations that uncovered relationships between model parameters and circuit behavior. 
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Derived transfer functions provided details of how signals were processed as they 

propagated through gene circuits. Despite limitations of the FD approach, careful 

application yielded valid results for many regions of gene circuit operation that were in 

excellent agreement with exact stochastic simulation, even at very low molecular 

populations. 

Results from the FD noise analysis showed that the bandwidth of the gene circuit was 

determined by the protein decay rate, which was the slowest chemical reaction among the 

involved genetic processes. The analysis also revealed the composition of the total noise 

in the output protein population. Under certain conditions (i.e., moderate to high burst 

rates), the low-frequency noise in the protein levels was determined almost entirely by 

the noise of transcription and mRNA decay, as the process of translation amplified this 

noise. Under the same conditions, noise in synthesis and decay of protein made a 

negligible impact on the energy spectral distribution of the dimer protein noise. Such 

findings could possibly be used to improve the efficiency of stochastic simulation. That 

is, simulators could be made more efficient by simplifying or eliminating reactions that 

are known to make little or no difference in the outcome of the simulation. 

The developed models also showed that it may be important to include time delays 

associated with transcription and translation in autoregulated gene circuits operating 

under certain conditions. For unregulated gene circuits, these delays simply extend the 

time that must elapse before active protein molecules are readily available. However, in 

negatively autoregulated gene circuits these delays can cause sizeable amounts of 

overshoot in the populations of molecular species during transitions in gene circuit 
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operating conditions. This is not only wasteful of limited resources but may also have 

toxic or lethal effects on the cell. 

The data collection and processing methods developed in this work have made 

significant contributions to the experimental toolset that exists for studying the behavior 

of gene circuits. Protocols designed for laser confocal microscopy enabled observation 

and in vivo measurement of real-time gene expression in discrete cells. Software 

programs written in Matlab automated some of the image processing steps required for 

data extraction and obtained measurements of cell doubling times and mean fluorescence 

of cell populations. 

Several opportunities exist for improving the process of obtaining fluorescence data 

for many cells. During many experiments, fluorescence of cells decreased over time. 

Although the exact mechanism is unknown, one possibility is that the environment on the 

microscope slide was gradually deprived of oxygen, a requirement for production of fully 

mature, fluorescent GFP molecules [86]. Perhaps modification to the packaging of 

biological samples would greatly benefit the cells. Next, correction of the microscope 

stage height needs to be automated so that the user does not have to be present for every 

acquired time sample. Finally, the tracking of individual cells through movie frames 

should be automated by image processing software because tracking cells manually 

consumes an enormous amount of time. 

The experimental methods developed in this dissertation work were used to acquire 

the first reported measurements of frequency content in gene circuit noise. Experimental 

designs were guided by results of preliminary analysis. Unregulated gene circuits were 
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constructed with different protein decay rates to verify that gene circuit bandwidth was 

limited by the protein half-life. Autocorrelation functions of measured noise data were 

used to estimate the noise bandwidth for each gene circuit. It was found that the protein 

half-life did have an affect on the noise bandwidth. However, measurements revealed 

that bandwidth was more directly related to dilution of protein by cell growth, as cell 

doubling time was generally less than the protein half-life. Some disagreement between 

theory and measured results then motivated additional experiments to explore the cause 

of the unexpected increase in noise bandwidth for the wild-type (WT) GFP gene circuit. 

Negatively autoregulated gene circuits were also constructed, and measured frequency 

content of their noise provided experimental verification that noise was shifted to higher 

frequency by the negative autoregulation. The fact that the noise bandwidth for WT GFP 

was higher than expected suggested the possible existence of a condition-dependent 

negative feedback path in the WT gene circuit. This subtlety may have gone undetected 

by other traditional measurement techniques, demonstrating that noise does have 

probative value for studying gene circuit behavior. 

This dissertation work provides a foundation for the potential development of a non

invasive technique for measuring gene circuit parameters in living cells. As proven in 

this research, gene circuits shape the frequency spectrum of their noise. Accurate 

measurements of this spectral distribution would allow confident fitting of models and 

the extraction of the gene circuit parameters. Eventually, experiments will get even more 

sophisticated: spectral analysis of input and output signals will be used to deduce transfer 

functions for whole genetic systems. This is all just a matter of time. 

-
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Appendix A 


% Cmog.m 
% 
% Complete Model of Gene (unregulated) 
% This Matlab file generates ESD plots 
% for an unregulated gene circuit 
% 
% Written by: Derek Austin 

% Rate constants 
Kin = 0.001; % DNA -> C 
Kc = O.li % C -> T + DNA 
KmM = 0.1; % T -> mRNA (delay for Tau-R) 
M = 10i % number of steps in transcription 
Tr M/KmM % mRNA synthesis delay 
Gr = 0.0058; % mRNA -> * (2 min half-life) 
Kp = 0.12; % mRNA -> mC 
KmC = 0.1; % mC -> mT + mRNA 
KtN = 0.1; % mT -> P (delay for Tau-P) 
N = 10; % number of steps in translation 
Tp N/KtN % protein synthesis delay 
Gp 0.0002; % P -> * (60 min half-life) 
Kf 0.0005; % 2P -> Di (double in ESS) 
Kr = 0.6; % Di -> 2P 
burst = Kp/Gr % burst rate 

% Calculate average specie populations 
Op = roots([Kin Kc -Kc]); % solve for mean unbound operator 
ans = find(Op>O); % find positiv~ root 
Op_avg = Op(ans) % mean unbound operator 
C_avg = Op_avg*Kin/Kc 
T_avg = C_avg*Kc/KmM 
mRNA_avg = KmM*T_avg/Gr % mean mRNA population 
mC_avg = mRNA_avg*Kp/KmC 
mT_avg mC_avg*KmC/KtN 
P avg = mT avg*KtN/Gp % mean protein population 
Di_avg = P=avgA 2*Kf/Kr % mean dimer population 

% ESS results 
% Op_avg = 0.9901 
% mRNA_avg = 0.1666 
% P_avg = 99.78 
% Di_avg = 9.575 

% Pole frequencies 
Fr Gr / (2*pi) % mRNA pole 
Fp Gp /(1+(2*P_avg*Kf)/Kr) /(2*pi) % protein pole 
Fd = Kr*(1+(2*P_avg*Kf)/Kr) /(2*pi) % dimer pole 
Fz Gp / (2*pi) % dimerization zero 
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tttttttt Transfer Functions tttttttt 

start = -5.2; t start frequency lOA# 

endpt = 0; t end frequency lOA# 

f = logspace(start, endpt, 50}j t create frequency space 


t From mRNA to Dimer 

Ao = (2*P_avg*Kf}*Kp/(Kr*Gr*Gp); 

H_4_2 Ao./(l+i*f/Fr) ./(l+i*f/Fp) ./(l+i*f/Fd) ... 


. *exp(-i*2*pi*(Tr+Tp) .*f); 

t Single-sided ESD of Protein noise due to mRNA synthesis and decay 

Sr 2*2*Kin; 

So 4 2 = Sr .* H_4_2 * conj(H_4_2); 


t Transfer function from translation noise to Dimer 

Ao = (2*p_avg*Kf)/(Kr*Gp); 

H_4_3 = Ao./(l+i*f/Fp) ./(l+i*f/Fd) .*exp(-i*2*pi*Tp.*f); 


t Single-sided ESD of Protein noise due to Protein synthesis and decay 

Sp = 2*Kp*mRNA_avg; 

SO_4_3 = Sp .* H_4_3 * conj(H_4_3)j 


t From Dimer noise to Dimer 

Ao = l/Kr; 

H_4_3b = -Ao.*(l+i*f/Fz) ./(l+i*f/Fp) ./(l+i*f/Fd); 


t Single-sided ESD of Dimer noise due to Protein synthesis 

Sd = 4*Kr*Di_avg; 

SO_4_3b = Sd .* H_4_3b * conj(H_4_3b); 


t Sum up all noise 

S 4 = So 4 2 + So 4_3 + SO_4_3b; 


t Plot all ESDs on one graph 

figure(l) 

10glog(f,So_4_2, 'g:', f,So_4_3, Ir:', f,So 4 3b,lm:I, f, S_4,lb l ); 

legend ( 1 S 4 2 I I IS 4 , 3 I IS 4 I 3 b I IS 4 I ) ;
I I I 

axis([lOAit;rt 10Aendpt leO le7])- - - 
xlabel('Frequency (Hz) I) 

ylabel('Noise ESD (MoleculesA2/Hz) I) 


.. 
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AppendixB 


% Cmonag.m 
% 
% Complete Model of Neg. Autoregulated Gene 
% This Matlab file generates Bode and ESD plots 
% for an autoregulated gene circuit 
% 
% Written by: Derek Austin 

% Rate constants 
Kin = 0.003; 
Kc = 0.1; 
KmM = 0.1; 
M = 10; 
Tr M/KmM 
Gr = 0.0058; 
Kp = 0.12; 
KInc = 0.1; 
KtN = 0.1; 
N = 10; 
Tp N/KtN 
Gp 0.0002; 
Kf 0.0005; 
Kr 0.6; 
Kb 0.02; 
Ku 0.1; 
Kba = 0; 
burst = Kp/Gr 

% Op = Ku / (Ku + Kb*Di) 
% mRNA = Op * Kin / Gr 
% P = mRNA * Kp / Gp 
% Di = pA2 * Kf / Kr 

% DNA -> C (fully induced rate) 
% C -> T + DNA 
% T -> mRNA (delay for Tau-R) 
% number of steps in transcription 
% mRNA synthesis delay 
% mRNA -> * (2 min half-life) 
% mRNA -> mC 
% mC ->mT + mRNA 
% mT -> P (delay for Tau-P) 
% number of steps in translation 
% protein synthesis delay 
% P -> * (60 min half-life) 
% 2P -> Di (double in ESS) 
% Di -> 2P 
% Di + DNA -> bDNA 
% bDNA -> Di + DNA 
% basal transcription rate 
% burst rate 

% avg % time operator unbound 
% mRNA @ steady-state 
% Protein @ steady-state 
% Dimer @ steady-state 

% Calculate Dimer population by solving the 4 equations above 
A Kb A 2; 
B 2*Ku*Kb; 
C Ku A 2; 
D -(Ku*Kin*Kp/Gr/Gp)A2*Kf/Kr; 
Di [A BCD] ; 
Di roots (Di) ; % roots for dimer equation 
Di Di(find(imag(Di)==O)) % find real root 
Tb l/Ku; % avg time operator bound 
Tu l/(Kb*Di); % avg time operator unbound 
Op_avg = Tu / (Tu + Tb) % avg % time operator unbound 
free_DNA = Op_avg 
C_avg = Kin*Op_avg/Kc 
T_avg = Kc*C_avg/KmM 
% mRNA_avg = Op_avg*Kin/Gr % mean mRNA population 
mRNA_avg = KmM*T_avg/Gr 
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mC avg = Kp*mRNA avg/Kmc 
mT=avg = Kmc*mC_ivg/KtN 
% P_avg = mRNA_avg*Kp/Gp % mean protein population 
P avg = KtN*mT avg/Gp

ADi_avg = p_avg 2*Kf/Kr % mean dimer population 

bDNA_avg = 1 - C_avg - Op_avg 


% ESS results 

% Op_avg = 0.351 

% mRNA_avg = 0.181; 

% P_avg = 108; 

% Di_avg = 10.3; 


% Pole frequencies 

Fr Gr / (2*pi) % mRNA pole 

Fp Gp /(1+(2*P avg*Kf)/Kr) /(2*pi) % protein pole 

Fd Kr*(1+(2*P_ivg*Kf)/Kr) /(2*pi) % dimer pole 

Fz Gp / (2*pi) % dimerization zero 

Fb (Ku+Kb*Di_avg+Kb) /(2*pi) % operator pole 


%%%%%%%% Transfer Functions %%%%%%%% 


start = -5.2; % start frequency 10A-6 

endpt = 0; % end frequency 10A2 

f = logspace{start, endpt, 200); % create frequency space 


% From mRNA to Dimer: A_4_2{f) 

Ao = (2*P avg*Kf)*Kp/{Kr*Gr*Gp); 

A = Ao./{l+i*f/Fr) ./(l+i*f/Fp) ./(l+i*f/Fd) .*exp{-i*2*pi*{Tr+Tp) .*f); 


% Feedback: B 2 4(f) 

Bo = Kin*Ku*Kb/(Ku+Kb*Di_avg)/(Ku+Kb*Di_avg+Kb)i 

B = Bo./(l+i*f/Fb); 


% Loop transmission: T(f) 

To = Ao*Bo 

T = -A. *B; 


% Calculate phase margin of loop T 

ind = find(abs(T»=l)i 

if length(ind»O 


tmp = T(ind(length(ind»); 
Pmargin = angle(tmp)*180/pi 

end 

% Bode plot of T(f) 

figure{l), semilogx(f, 20*log10(abs(T», 'b- ' } 

title{'Bode Plot of Loop Transmission: T(f) ') 

hold, semilogx(f, angle{T}*180/pi, 'r:') 

xlabel('Frequency (Hz) '} 

ylabel('Mag (dB) & Phase (Degrees) '} 

legend('Magnitude', 'Phase', 3} 

grid on, hold off 
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% Transfer function from mRNA to Dimer 
H_4_2 = A./(l-T)i 

% Bode plot of H_4_2(f) 

figure(2), semilogx(f, 20*10glO(abs(H_4_2», 'b- ' ) 

title('Bode Plot of H_4_,_2(f) ') 

hold, semilogx(f, angle(H_4_2)*180/pi, 'r: I) 

xlabel(IFrequency (Hz) ') 

ylabel(IMag (dB) & Phase (Degrees) I) 

legend(IMagnitude l , IPhase', 3) 

grid on, hold off 


% Single-sided PSD of Dimer noise due to mRNA synthesis 

Sn 4*(Kba + Op avg*(Kin-Kba»j 

Bn 4* (Kin-Kba)A2 *(op avg-Op avgA2)/(Ku+Kb*Di avg)i 

Bn Bn./(l+(f/Fb) .A2)~ - -

Sr = Sn + Bni 

So_4_2 = Sr .* H 4 2 .* conj(H_4_2)j 


% From Protein to Dimer: A_4_3(f) 

Ao = (2*p_avg*Kf}/(Kr*Gp}i 

A = Ao./(l+i*f/Fp) ./(l+i*f/Fd) .*exp(-i*2*pi*Tp.*f)j 


% Transfer function from Protein to Dimer 

H_4_3 = A./(l-T) i 


% Single-sided PSD of Dimer noise due to Protein synthesis 

Sp = 4 * Kp*mRNA_avg j 

SO_4_3 = Sp .* H_4_3 .* conj(H_4_3); 


% From Dimer to Dimer: A_4_3b(f) 

Ao = l/Krj 

A = -Ao.*(l+i*f/Fz) ./(l+i*f/Fp) ./(l+i*f/Fd); 


% Transfer function from Protein to Dimer 

H_4_3b = A./(l-T) ; 


% Single-sided PSD of Dimer noise due to Protein synthesis 

Sd = 4*Kr*Di_avgj 

SO_4_3b = Sd .* H_4_3b * conj(H_4_3b); 


% Sum up all PSDs 

S 4 = So 4 2 + SO_4_3 + SO_4_3bi 


% Plot all ESDs on one graph 

figure (3) 

10glog(f,So 4 2,lg:I, f,So 4 3, Ir: l , f,SO_4_3b, 'm:',f, S_4, 'bl) 

aXis([lOAstart loAendpt leO le6]) 

xlabel('Frequency (Hz) I) 


Aylabel('Noise ESD (Molecules 2/Hz) ') 
legend(IS_4_,_2I, IS_4_,_3 I , 'S_4_,_3_b', 'S_41) 
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Appendix C 

% Biopsd.m 

% 

% Loads input file with column vectors 

% for time, rnRNA, protein, and dimer. 

% Asks how many data points to remove from beginning. 

% Calculates steady-state mean, var, and noise figure. 

% Calculates noise PSD of the three species using Pwelch algorithm 

% Plots noise PSD of the three species. 

% 

% Written by Derek Austin 


filename = input('Name of input file:', 's'): 

numpts = input ('Number of data points in input vectors:'): 

remove = input('Number of data points to remove from beginning: '); 

winsize = input('Enter window size for PSD:'): 

tmp = length(filename)-3i 

tmpstr = filename(l:tmp): 

outfile = strcat('Biopsd_',tmpstr, 'mat'): 

tmpstr = sprintf('Save PSD outputs to %s ? (yIn) :', outfile) i 

savepsds = input (tmpstr, IS'); 


% Load data from file 

range = [1 0 numpts 0]; 

time = dlmread(filename, '\t" range); 

range = [1 1 numpts 1]: 

rnRNA = dlmread(filename, ,\t', range); 

range = [1 2 numpts 2]; 

P = dlmread(filename, ,\t', range); 

range = [1 3 numpts 3]; 

Di = dlmread(filename, ,\t', range); 


% Plot time series of each species 

figure(l), plot (time, rnRNA): 

title('rnRNA Population'); 

xlabel ( 'Time (s)'); 

ylabel('Molecules'); 


figure(2), plot (time, P); 

title('Protein Population'); 

xlabel('Time (s) '); 

ylabel('Molecules'); 


figure(3), plot (time, Di); 

title('Dimer Population'); 

xlabel('Time (s) I): 

ylabel('Molecules'); 
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% Process data 
Ts time(2) - time(l) i % sampling period 
Fs = l/Tsi % sampling rate 

% Remove transient signal 
mRNA_ss = mRNA(remove+l:numpts)i 
mRNA_ss_mean = mean(mRNA_ss) 
% Remove DC signal 
mRNA_ss = mRNA_ss - mRNA_ss_meani 
mRNA_ss_var = var(mRNA_ss) 
mRNA_ss_nf = mRNA_ss_var / mRNA_ss_mean 
%[P, f] = psd(data, window_size, sample_freq, window_type, detrending) 
[Psd_mRNA, fre~mRNA] = psd(mRNA_ss, winsize, Fs, I I Inone ' ) i 

Psd_mRNA = 2*Ts*psd_mRNAi 
figure (4) , loglog(fre~mRNA, Psd_mRNA) i 

title('PSD of mRNA Noise ' ) i 

xlabel('Frequency (Hz) I) 
ylabel('Power (Molecules A 2/Hz) I) 

% Remove transient signal 
P_ss = P(remove+l:numpts)i 
P ss mean = mean(P_ss) 
% Remove DC signal 
P_ss = P_ss - P_ss_meani 
P_ss_var = var(P_ss) 
P_ss_nf = P_ss_var / P_ss_mean 
[Psd_P, fre~P] = psd(P_ss, winsize, Fs, I I Inone ' ) i 

Psd_P = 2*Ts*Psd_Pi 
figure (5) , loglog(fre~P, Psd_P) i 

title('PSD of Protein Noise ' ) i 

xlabel('Frequency (Hz) I) 
ylabel('Power (Molecules A 2/Hz) I) 

% Remove transient signal 
Di_ss = Di(remove+l:numpts) i 

Di_ss_mean = mean(Di_ss) 
% Remove DC signal 
Di_ss = Di_ss - Di_ss_meani 
Di_ss_var = var(Di_ss) 
Di_ss_nf = Di_ss_var / Di_ss_mean 

I[Psd_Di, fre~Di] = psd(Di_ss, winsize, Fs, I Inone ' ) i 

Psd_Di = 2*Ts*Psd_Dii 
figure (6) , loglog(fre~Di, Psd_Di) i 

title('PSD of Dimer Noise ' ) i 

xlabel('Frequency (Hz) I) 
ylabel('Power (Molecules A 2/Hz) I) 

if savepsds=='Y' 
tmpstr = sprintf('save %s mRNA_ss_mean fre~mRNA Psd_mRNA... 
P_ss_mean fre~P Psd_P Di_ss_mean fre~Di Psd_Di', outfile) i 

eval(tmpstr) i 

end 
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AppendixD 


% Focus all.m 

% 

% Loads sequence of stacks of Leica TIF images. 

% Uses integral of total light to autofocus. 

% Copies brightest images, which should have best focus, 

% into specified directory. 

% 

% Written by Derek Austin 


clear 
numimgs = input(IEnter number of images in a single time stack: I) i 

if numimgs>99 
error(IAborted -- Too many images in stack. ') 

end 
numstacks = input('Enter number of stacks in sequence: I); 
if numstacks>99 

error('Aborted -- Too many stacks. I) 
end 
[infile, pathname] = uigetfile(I*.tif', 'Select First Input File'); 
if infile==O 

error('Aborted -- No input file selected. I) 
end 
cd (pathname) 
outputdir = input('Specify output directory:', IS'); 

% Loop thru stacks 
for j = l:numstacks 

% Loop thru a single stack 
imgnums = 0: (numimgs-l)i 
imgsums = zeros(l,numimgs)i 
stop = findstr('zOOO',infile); 
basename = infile(l:stop); 
filelen = length(infile); 
ext = infile(filelen-8:filelen)i 

for i = l:numimgs 
infile 
input = imread{infile, 'tif')i 
imgsums{i) = sum(sum{input»i 
% Read next image 
stmp = num2str(i)i 
if i<lO 

infile strcat(basename, '00', stmp, ext); 
else 

infile strcat{basename, '0', stmp, ext); 
end 

end 
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% Reset z# 

infile = strcat(basename, '000', ext); 


% Show plot of focus curve 

plot (imgnums, imgsums, 'b') 

xlabel('Image Number') 

ylabel(ITotal Lightl) 


% Fit to polynomial and pick max point 

[P,S] = polyfit(imgnums, imgsums, 5); 


Y = polyval(p,imgnums) i 


hold on; plot (imgnums, Y, 'gl); hold off 

best = max (Y) ; 

best = find(Y==best)-li 

if length(best»l 


best = best(l); 
end 
sprintf(IBest Image is #: %d l , best) 
pause(0.5); 

% Copy best image to output directory 
stmp = num2str(best)i 
if best<lO 

outfile strcat (basename, 100 I, stmp, ext); 
else 

outfile strcat(basename, 10 1, stmp, ext)i 
end 
copyfile(outfile, outputdir); 

% Adjust filename for next stack 
if j<=lO 

tmpstr = strcat(l_tO I , num2str(j-l»i 
stop = findstr(tmpstr, infile); 
basename = infile(l:stop)i 
filelen = length (infile) ; 
ext = infile(filelen-13:filelen)i 
if j<lO 

tmpstr strcat(ltO', num2str(j»; 
else 

tmpstr strcat(lt', num2str(j»i 
end 

else 
tmpstr = strcat('_t', num2str(j-l»; 
stop = findstr(tmpstr, infile)i 
basename = infile(l:stop)i 
filelen = length(infile); 
ext = infile(filelen-13:filelen); 
tmpstr = strcat('t', num2str(j»i 

end 

infile = strcat(basename, tmpstr, ext); 


end 
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AppendixE 


% Estimatedts.m 
% 
% Estimates doubling times for cells 
% Loads tab-delimited fluorescence data file for all cells 
% Assumes first line of input file is labels 
% Assumes first column of data is time in seconds 
% Looks at Area vs Time and fits exponentials to each cell cycle 
% Returns a 2-D array of doubling times per cell 
% Length of output array is equal to max number of cell divisions 
% 
% Written by: Derek Austin 

[infile, pathname] = uigetfile('*.*', 'Select Input File'); 
if infile==O 

error('Aborted -- No input file selected.') 
end 
cd (pathname) ; 

numcells = input('Number of cells in input file:'); 

numpts = input('Number of data points (N) in input vectors: '); 

minblocksize = input('Enter min # of points to use per curve fit 

(default=5) :'); 
if isempty(minblocksize) 

minblocksize = 5; 
end 

% Initialize input/output arrays 
areas = zeros (numpts, numcells); 
dts = zeros (12, numcells); % assumes there are <12 cell cycles 

% Load data from input file 
range = [1 0 numpts 0]; 
time = dlmread(infile, ,\t', range); 
for i = l:numcells 

range = [1 i numpts i]; 
areas(:,i) = dlmread(infile, ,\t', range); 

end 

for i = l:numcells 

% plot input data vs time 

if i==l 


figure(l), plot (time, areas(:,i), 'btl 

else 


figure(gcf+1), plot (time, areas(:,i), 'btl 

end 
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cellcycle 1; 

blocksize 1; 


for j = l:numpts-l 
if (areas(j+l,i) > 0.8*areas(j,i)) % look for discontinuity 

blocksize = blocksize + 1; 
elseif blocksize >= minblocksize % enforce min # of pts/block 

tempa areas (j-blocksize+l:j ,i) ; 
[a,b] = expfit(time(l:blocksize), tempa); % fit exp curve 
tempt = time(j-blocksize+l:j); 
% append exponential fit to the data plot 
hold on 
plot (tempt, exp(b)*exp(a*time(l:blocksize)), 'r') 
dts(cellcycle, i) = log(2)/a/60; % doubling time (min) 
cellcycle cellcycle+l; 
blocksize 1; 

else 

blocksize 1; % reset 


end 

end 


% analyze end of data 

j = j + 1; 
if (blocksize >= minblocksize) % check for min # pts 

tempa areas(j-blocksize+l:j,i); 
[a,b] = expfit(time(l:blocksize), tempa); 
tempt = time(j-blocksize+l:j); 
% append exponential fit to the data plot 
hold on 
plot (tempt, exp(b)*exp(a*time(l:blocksize)), 'r') 
dts(cellcycle, i) = log(2)/a/60; % doubling time (min) 
cellcycle cellcycle+l; 
blocksize = 1; 

end 

end 

dts % show doubling times of all cells in array 
beep % finished 

save Doublingtimes.tab dts -ascii -tabs 

% Get mean of non-zero values 
[m,n] = size(dts); 
dts = reshape (dts, 1, m*n); 
dtsum = 0; 
numpts = 0; 
for i = l:m*n 

if dts(i) -= 0 

dtsum = dtsum + dts(i); 

numpts = numpts + 1; 


end 
end 
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dtavg dtsum/numpts 


% Get std dev of non-zero values 

dtvar = 0; 

nzvals = zeros (l,numpts) ; 

j = 1; 

for i = l:m*n 


if dts(i} -= 0 

dtvar = dtvar + (dts(i) - dtavg}A2; 

nzvals(j} = dts(i}; 

j = j + 1; 


end 
end 
dtstd sqrt(dtvar/(numpts-l}} 

% Plot histogram of doubling times 

figure (gcf+l) , hist(nzvals} 


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 


function [a,b] = expfit(x,y} 

% [a,b] = expfit(x,y} 

% fits data to eA(ax+b} = eAb * eAax 


fit = polyfit(x, log(y}, I}; 

a fit(l}; 

b = fit(2}; 
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AppendixF 


% Measure_background.m 
% 
% Loops thru TIF images in working directory 
% Images must have filename: #.tif 
% Looks at 100x100 user-defined region 
% "outputs" array contains mean; std dev; min; max 
% 
% Written by Derek Austin 

startfile = input('Enter file number for first image to analyze:'); 
numfiles = input('Enter number of image files to analyze:'); 
corner = input('Choose corner: l=upper-left, 2=lower-left, 3=upper
right, 4=lower-right:'); 

% Initialize output array 
outputs = zeros (numfiles, 4); 
len = 100; % length & width of area to analyze 

% Loop thru images and integrate 
for k = startfile: (numfiles-1+startfile) 

filename = sprintf('%d.tif', k) 

[img, map] = imread(filename, 'tiff'); 

[n,m] = size (img) ; % image size 

if corner==l 


dd = double (img(1:1en, 1: len) ) ; % sample data 

elseif corner==2 


dd = double (img(n-len+1:n, 1: len) ) ; % sample data 

elseif corner==3 


dd double (img(1:1en, n-len+1:n)); % sample data 

else 


dd double (img(n-len+1:n, n-len+1 :n) ) ; % sample data 

end 


dd = reshape (dd, len*len, 1); % make column vector 
outputs«k-startfile+1), 1) mean (dd) ; 
outputs«k-startfile+1), 2) std (dd) i 

outputs«k-startfile+1), 3) min{dd) ; 
outputs«k-startfile+1), 4) = max (dd) i 

end 

% done looping thru all image files 

clear img; % free some memory 
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AppendixG 


% Threshold_images.m 
% 
% Loops thru TIF images in working directory 
% Images must have filename: #.tif 
% Integrates grayscale values in each image 
% Output array is "imgsums" 
% Total image areas (rnxn) are in array "imgareas" 
% 
% Integrates area considered to be only cells (using thresholds) 

% Array of 'thresholds' can already be defined 

% Output array is "cellareas" 

% 
% Written by Derek Austin 

numfiles = input('Enter number of image files in directory:'); 
gotthresh = exist('thresholds', 'varl)i 
if gotthresh-=l 

thresh = input('Enter threshold to classify cells from background 

(enter -1 to use histogram) :'); 

thresholds = zeros (numfiles, 1); 


else 
thresh 1i % needed for logic below 

end 

% Initialize output array 
imgsums = zeros(numfiles, l)j 
cellareas = zeros (numfiles, 1); 
imgareas = zeros (numfiles, l)i 

% Loop thru images and integrate 

for k l:numfiles 

filename = sprintf('%d.tif', k) 
[img,cmap] = imread(filename, 'tiff'); 
[m,n] = size(img); % get image size 
imgareas(k) = m*nj 
imgsums(k) = sum(sum(img»i % integrate image 
dd = double(img); % convert data type 
%figure(l), image(dd); % plot input image 
%colormap(cmap) 
%title('Input Image') 
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------.-'---~~-~ 

t automatically set threshold if user entered -1 for threshold 
t this feature does not work well for fixed # of bins 

if (thresh<O) 
d = reshape (dd, 1, m*n); t change to 1-D array 
bins = 16; 
[h, centers] = hist(d, bins); t histogram pixel values 
clear d; t free some memory 
der = diff (h) i t derivative of histogram 
tfigure(2), plot (der) 
taxis([O bins -10 10]) 

t Find derivative's zero-crossing 
for 	i = 2: (bins-2) 


if (der(i-1)*der(i+1) < 0) break 

end 


end 

thresholds(k) centers(i)j t background-cell thresholds 

elseif gotthresh-=l 
thresholds(k) = thresh; t constant user-defined threshold 

end 

threshold thresholds(k) t user feedback on screen 

t Threshold the input image and sum up pixels >= threshold 

for i = l:m 


for j = l:n 

if (dd(i,j) >= thresholds(k» 


cellareas(k) = cellareas(k) + 1; 

end 


end 

end 


end 

t done looping thru all image files 

clear img; t free some memory 
beep 
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AppendixH 


% Bioautocorr.m 
% 
% Calculates autocorrelation functions (ACFs) for cells 
% Asks how many cells are in tab-delimited input file 
% Loads input file containing noise vectors for cells 
% Assumes first line of input file is labels 
% Assumes first column of data is time (not used) 
% Can subtract local or global mean from each noise vector 
% Outputs biased or unbiased ACF of each cell for Tau>O only 
% Saves autocorrelations to file: outputs. tab 
% Note: this function requires Matlab's signal processing toolbox 
% 
% Written by Derek Austin 

[infile, pathname] uigetfile('*.*', 'Select Input File'); 
if infile==O 

error ( 'Aborted No input file selected.') 
end 
cd(pathname)i 

numcells = input('Number of cells in input file:'); 

numpts = input('Number of data points (N) in input vectors:'); 

globaldetrend = 


input('Subtract global mean from noise data? (y/n) :', IS'); 
if globaldetrend == In' 

localdetrend = input('Subtract individual means from each... 
noise data? (y/n);', IS'); 

else 
localdetrend = Inti 

end 

flag = input('Select scaling: n=none, b=biased (*1/N), u=unbiased ... 
(*1/ (N-abs (lags) ) ) : " 's'); 

if flag == fbi 
cflag = 'biased'; 

elseif flag == 'u' 
cflag 'unbiased'; 

else 
cflag 'none' ; 

end 

% Initialize input/output arrays 

noisedata = zeros (numpts, numcells)i 

doublelength = 2*numpts-1; 

outputs = zeros (doublelength, numcells); 
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% Load data from file 
for 	i = l:numcells 

range = [1 i numpts i]; 
noisedata(:,i) = dlmread(infile, ,\t', range); 

end 

% Detrending - if selected by user 

% Subtract global mean from each vector 
if globaldetrend == 'y' 

avgnoise = mean(mean(noisedata)); 
noisedata = noisedata - avgnoise; 

end 

% Sutract local mean from each vector 
if localdetrend == 'y' 

for i = l:numcells 
noisedata(:,i) noisedata(:,i) - mean(noisedata(:,i)); 

end 
end 

% Calculate autocorrelations 
for i = l:numcells 

outputs(:,i) = xcorr(noisedata(:,i), cflag); 
end 

% Truncate output array for Tau>O 
outputs = outputs(numpts:doublelength, :); 

save outputs.tab outputs -ascii -tabs 
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