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ABSTRACT  

Flowering dogwood (Cornus florida L.) populations have experienced 

severe declines caused by dogwood anthracnose in the past three decades. 

Mortality has ranged from 48 to 98%, raising the concern that genetic diversity of 

this native tree has been reduced significantly. Microsatellite data were used to 

evaluate the level and distribution of genetic variation throughout much of the 

native range of the tree. In the first conducted study, we found that genetic 

variation in areas affected by anthracnose was as high as or higher than areas 

without die-offs. We found evidence of four widespread, spatially contiguous 

genetic clusters. However, there was little relationship between geographic 

distance and genetic difference. These observations suggest that high dispersal 

rates and large effective population sizes have so far prevented rapid loss of 

genetic diversity. The effects of anthracnose on demography and community 

structure are likely to be far more consequential than short-term genetic effects.  

The second study examined levels and distribution of genetic variation of C. 

florida throughout Great Smoky Mountains National Park (GSMNP). Significant 

genetic structure at both landscape and local levels were found. We infer that two 

genetic clusters exist within the park, mostly separated by the main dividing ridge 

of the Great Smoky Mountains. The differentiation is statistically significant, but 

subtle, with gene flow evident through low-elevation corridors. It seems unlikely 

that recent demographic dynamics have resulted in a depletion of genetic 

variation in flowering dogwoods. 
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Chapter 1. Introduction 
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Microsatellites or SSRs (Simple Sequence Repeats) 
 
 Microsatellites are mutation-prone DNA tracts composed of tandem 

repetitions of relatively short motifs, which contain several (one to six 

nucleotides) units (Fujimori et al.; 2003, Kashi and King 2006) in tracts up to 102 

bp (Rakoczy-Trojanowska and Bolibok 2004). They can be classified into the 

following three groups: pure, compound and interrupted repeats (Weber 1990), 

and are distributed through the whole genome. Microsatellites distributions vary 

by species and chromosome and are flanked by highly conserved sequences 

(Chambers and MacAvoy 2000). In plants, the most frequent microsatellite 

repeats are composed of dinucleotide motifs, usually (AT)n and (GT)n, whereas 

(AC)n repeats are common in animals (Rakoczy-Trojanowska and Bolibok 2004). 

Microsatellites are less abundant in plants when compared to animals 

(Lagercrantz et al. 1993), however, they exist in both nuclear and the organellar 

genomes (Pleines et al. 2009). 

 Microsatellites are used as a genetic marker due to their ubiquitous 

distribution in the genome and have a high level of allelic variation (Rakoczy-

Trojanowska and Bolibok 2004). Variation in the number of tandemly repeated 

units is primarily due to strand slippage during DNA replication (Schlotterer and 

Tautz 1992; Agarwal et al. 2008). Microsatellites represent a significant resource 

for creating genetic and physical genome maps, distinguishing individuals, 

investigating genetic relatedness, and studying genome organization (Thomas et 

al. 1993; Debener and Mattiesch 1998). These markers have shown to be useful 

for integrating the genetic, physical and sequence-based physical maps in many 
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plant species, simultaneously providing breeders and geneticists with an efficient 

tool to link phenotypic and genotypic variation (Varshney et al. 2005). Their 

popularity is also due to the fact they are assayed using PCR, thus requiring 

minute amounts of tissue for the analysis. Since molecular markers are not 

affected by environmental factors or age of the organism, they are an excellent 

tool to provide an unbiased insight into species under examination. 

Microsatellites can be used to detect DNA polymorphisms (genetic similarity or 

differences between individuals or populations) and like RFLPs, these markers 

are codominant (both alleles of a diploid organism are detected); therefore, 

homozygote and heterozygote individuals can be distinguished (Weising et al. 

1995). Microsatellites are preferred markers in plant breeding programs due to 

their uniform genome coverage, high levels of polymorphism, co-dominance and 

reproducibility (Pejic et al. 1998). In addition, they can be multiplexed to allow the 

screening of multiple markers simultaneously as well as to detect duplications 

within breeding populations (Wadl 2009). 

Most microsatellite loci are identified from small (less then 1000 bp) insert 

genomic libraries using oligonucleotide probes (Maguire 2001). Commonly used 

methods for isolation involve several step processes. Library construction starts 

with digestion of genomic DNA, ligation into a plasmid vector, transformation of 

the vector into Escherichia coli, followed by hybridization with a labeled 

microsatellite oligonucleotide probe, sequencing of positive clones, designing of 

primers, locus specific PCR amplification, and finally, identification of 

polymorphic loci (Maguire 2001).   
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Microsatellites are present in both non-coding and coding regions (which 

can cause differences in their composition). Loci located in coding regions may 

activate or inactivate genes or truncate proteins (Ince et al. 2010). However, their 

frequency is higher in transcribed regions, especially in mRNA untranslated 

regions (UTRs) (Hongtrakul et al.1998; Morgante et al. 2002; Panaud et al. 

1995). Microsatellites found in 3’-UTRs are involved in gene silencing and 

transcription slippage; microsatellites within 5’-UTRs have effects on gene 

transcription and/or regulation and microsatellites in introns have effects on gene 

transcription and regulation, messenger RNA spicing, and gene silencing (Ince et 

al. 2010). 

 Microsatellites have proved to be useful as molecular markers in many 

aspects of research, particularly for population studies. However, they are not 

without limitations. Microsatellites developed for particular species can often be 

applied to both closely related and unrelated species, but the percentage of 

amplified loci typically decreases with increasing genetic distance (Jarne and 

Lagoda 1996). Additionally, non-amplifying alleles or null alleles are often 

observed since mutations in one or both primer binding sites prevent PCR 

amplification (Weising et al. 1995). These can cause problems for population 

genetic studies because of their recessive behavior since they are recognized in 

the homozygous state only (de Sousa et al. 2005). Additionally, high variability of 

these markers is also the major disadvantage, as microsatellite loci often show 

high levels of homoplasy, especially when distant populations or higher 

taxonomic levels are studied (Jakob et al. 2007; Pleines et al. 2009). 
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Even though microsatellites have been considered to be selectively neutral and 

randomly distributed throughout the genome, recent studies have found evidence 

of evolutionary role of microsatellites as important sources of adaptive genetic 

variation within and between species (Kashi and King 2006). 

 Two studies were conducted in this doctoral research project. In both 

studies microsatellite loci were used to study genetic differentiation and 

population structure of flowering dogwoods in the eastern United States and 

Great Smoky Mountains National Park (GSMNP), respectively. By assessing 

genetic diversity and population dynamics of these native trees, the following 

issues were addressed in the first study: (1) to quantify genetic diversity of 

existing flowering dogwood populations to provide a baseline for understanding 

future population changes; (2) to compare levels of diversity in regions that have 

experienced dogwood anthracnose-associated die-offs with those in regions with 

no history of die-offs; and (3) to describe population structure and geographic 

variation of flowering dogwood for comparison with other North American species 

in the southeast.  In the second study conducted in the GSMNP, the following 

questions were addressed: (1) How much genetic diversity exists within and 

among populations of flowering dogwoods? (2) Is there an evidence of 

population structure?  (3) Is there an effect of seed vs. pollen dispersal on 

genetic structure? (4) Can a baseline be determined for understanding future 

population changes in newly colonized areas? 
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Chapter 2.  Genetic diversity of flowering dogwood maintained d espite 

massive mortality caused by dogwood anthracnose. 

 

This chapter is a revised version of paper by the same name submitted in the 
journal Genetica in 2009 by Denita Hadziabdic, Benjamin Fitzpatrick, Xinwang 
Wang, Phillip Wadl, Timothy Rinehart, Bonnie Ownley, Mark Windham and 
Robert Trigiano.  
 
Hadziabdic D, Fitzpatrick BM, Wang X, Wadl PA, Rinehart TA, Ownley BH, 
Windham MT, and Trigiano RN. Genetic diversity of flowering dogwood 
maintained despite massive mortality caused by dogwood anthracnose. Genetica 
(accepted for publication 2010).  
 
My primary contributions to this paper include (1) topic selection and project 
development into a work relevant to population genetics of flowering dogwood; 
(2) some sampling of plant material, lab work related to the project and data 
analysis; (3) gathering and interpretation of literature; (4) summarizing and 
editing contributions and suggestions from other co-authors into a single paper, 
and (5) majority of the writing related to this paper. 
 

 
 

 

 

 

 

 

 

 

 



 10 

Abstract 
 
 Flowering dogwood (Cornus florida) populations have recently 

experienced severe declines caused by dogwood anthracnose. Mortality has 

ranged from 48 to 98%, raising the concern that genetic diversity has been 

reduced significantly. Microsatellite data were used to evaluate the level and 

distribution of genetic variation throughout much of the native range of the tree. 

Genetic variation in areas affected by anthracnose was as high as or higher than 

areas without die-offs. We found evidence of four widespread, spatially 

contiguous genetic clusters. However, there was little relationship between 

geographic distance and genetic difference. These observations suggest that 

high dispersal rates and large effective population sizes have so far prevented 

rapid loss of genetic diversity. The effects of anthracnose on demography and 

community structure are likely to be far more consequential than short-term 

genetic effects.  

Introduction 
 

Recently introduced diseases and pests have caused tremendous 

mortality of various tree species over wide geographic areas (Merkle et al. 2007; 

Crowl et al. 2008). These die-offs often result in restructuring of forest 

communities and disruption of ecosystem processes (Hall et al. 2002; Becker et 

al. 2008; Elliott and Swank 2008; Eschtruth et al. 2008). Well-known examples in 

North America include the near elimination of American chestnuts [Castanea 

dentata (Marsh.) Borkh] by chestnut blight [Cryphonectria parastica, (Murrill) 
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Barr] (in addition to extensive logging) (Elliott and Swank 2008); American elms 

(Ulmus americana L.) due to Dutch elm disease  [Ophiostoma ulmi (Buisman) 

Nannf] (Brasier 2000) and Eastern hemlocks  [Tsuga canadensis (L.) Carrière] by 

hemlock wooly adelgids [Adelges tsugae Annand] (Havill et al. 2006). In the 

United States alone, the projected economic loss due to invasion of non-native 

species is over $120 billion annually and about one-fourth of this loss is caused 

by exotic plant pathogens (Pimentel 1997; USBC 2001; Pimentel et al. 2005).     

In the past three decades, flowering dogwoods (Cornus florida L.) have 

been severely affected by dogwood anthracnose caused by Discula destructiva 

Redlin (Redlin 1991) (Figure 2-1, in appendix). Poor seed production due to 

decreased flowering (Rossell et al. 2001) and greater susceptibility of smaller, 

younger trees (Hiers and Evans 1997; Holzmueller et al. 2006; Jenkins and 

White 2002) resulted in reduced dogwood regeneration and dramatic decline of 

native dogwood populations. Mortality of flowering dogwood caused by dogwood 

anthracnose has ranged from 48 to 98% in the northeast and Appalachian 

highlands (Sherald et al. 1996; Hiers and Evans 1997; Williams and Moriarity 

1999; McEwan et al. 2000; Jenkins and White 2002). In 1992, a survey of trees 

in Great Smoky Mountain National Park (GSMNP) revealed that 25% of flowering 

dogwoods had been killed by dogwood anthracnose (Windham et al. 1995). Two 

years later, an estimated 75% of the remaining trees had been eliminated 

(Windham et al. 1995). In a study by Wilds (1997), dogwood anthracnose 

infection was as high as 98% in experimental, biodiversity plots located in the 

western part of GSMNP. In the periods from 1977-1979 and 1995-2000, Jenkins 
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and White (2002) collected flowering dogwood data from 86 permanent plots 

located in the western portion of GSMNP. In their study, flowering dogwood 

density within different forest types–(typic cove, acid cove, alluvial, oak-hickory, 

and oak-pine stands) decreased between two sampling intervals, ranging from 

69-94%. The largest decline, over 94% was among smaller, younger trees (1 to 

4.9 cm diameter) in all forest types (Jenkins and White 2002). 

With large-scale mortality, genetic variation of species can decline rapidly 

(Hawley et al. 2006), with potentially deleterious effects on the ability of tree 

populations to regenerate and respond to future changes in selection pressures. 

As a result, the relationships between plant population size, fitness and genetic 

diversity are of fundamental importance in plant ecology, evolution and 

conservation (Leimu et al. 2006). In smaller, fragmented populations, the loss of 

genetic variation through genetic drift may cause reduced mean population 

fitness, elevating the risk of extinction and reducing prospects for adaptive 

change (Fischer and Matthies, 1998; Reed and Frankham, 2003; Severns 2003).  

However, no broad-scale survey of genetic variation for C. florida trees 

has been published, and there may be reason to expect tree populations to be 

somewhat resistant to apparent bottleneck effects, at least in the short term. The 

full genetic effect of a population bottleneck may take many generations to 

manifest (Chakraborty and Nei 1977; Nei 1975). In a simple model of drift with no 

mutation, the time it takes heterozygosity to fall to one-half of its initial value is on 

the order of N generations, where N is the effective population size (Wright 

1931). Therefore, the effect of a bottleneck depends on the actual population 
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size, rather than on the percent reduction in abundance, because a high level of 

heterozygosity may be maintained following a bottleneck (Nei 1975). For 

example, if 90% mortality takes a population from N = 106 to N = 105, expected 

heterozygosity in the reduced population will remain greater than 99% of its 

original value for 2,000 generations (Hartl and Clark 1997).   

Flowering dogwoods are widespread in the eastern United States and do 

not appear to be clustered into spatially discrete demes (USDA, NRCS, 2008) 

(Figure 2-1; Figure 2-2, in appendix). Thus, it has been difficult to evaluate the 

geographic scale of demographically or genetically meaningful “populations.” If 

the genetic neighborhood (Wright 1946) of an individual tree is typically small, 

then large die-offs may cause rapid and dramatic declines in local genetic 

diversity and increase differences among localities. On the other hand, if 

geographically distant trees are connected by extensive gene flow, the effective 

population size may be so large that ecologically dramatic die-offs have little 

short-term effect on genetic diversity.  

In this study, we used 18 microsatellite loci to study genetic differentiation 

and population structure of flowering dogwoods in the eastern United States. By 

assessing genetic diversity and population dynamics of these native trees, we 

aimed to address the following issues: (1) to quantify genetic diversity of existing 

flowering dogwood populations to provide a baseline for understanding future 

population changes; (2) to compare levels of diversity in regions that have 

experienced dogwood anthracnose-associated die-offs with those in regions with 

no history of die-offs; (3) to describe population structure and geographic 
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variation of flowering dogwood for comparison with other North American species 

in the southeast. 

Materials and Methods 

Study system 
 

Flowering dogwoods are ubiquitous understory trees throughout most 

eastern United States forest types (Hannah 1993; Martin 1987; Quarterman et al. 

1972). It has been argued that flowering dogwoods have played an important role 

in structure and function of Appalachian forests (Hiers and Evans 1997). 

Individual dogwood trees are capable of producing up to 10 kg of high protein 

berries each fall, supplying a valuable food source for more than 50 bird and 

numerous small game species (Rossell et al. 2001; Holzmueller et al. 2006). 

Dogwoods are important in rapid nutrient cycling (64% of reduction in litter mass 

in two years) within forest communities, thus providing high concentrations of 

available calcium (2-3.5% dry weight) (Jenkins and White, 2002).  

Flowering dogwoods are most common in second growth forests and 

human suppression of disturbance might contribute to local and regional declines 

(Pierce et al. 2008; Jenkins and White 2002; McEwan et al. 2000). However, 

extremely rapid and severe die-offs have been associated with the fungus D. 

destructiva, which causes dogwood anthracnose disease (Redlin 1991; 

Daughtrey et al. 1996; Holzmueller et al. 2006). Purple-rimmed lesions initially 

appear on the leaf margins and extend through the veins into the petiole in trees 

infected by dogwood anthracnose (Jenkins and White 2002). The disease usually 
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starts in the lower canopy and moves upwards in the tree. During cool, wet 

weather, the first signs of dogwood anthracnose are gray or drooping foliage 

hanging on the twigs. With disease progression, the fungus moves from the leaf 

petiole into stems resulting in twig and branch die-back due to the formation of 

annual cankers. Eventually the disease may cause death of the tree. Even 

though spread of dogwood anthracnose southward appeared to be relatively 

uninhibited, several factors, including light availability, moisture and evaporative 

potential of the leaf surface can determine the probability and severity of the 

infection (Hibben and Daughtrey 1988; Hiers and Evans 1997). Disease 

symptoms are usually more apparent on slopes facing northeast (understory 

canopies with low evaporative potential) than in southwest facing slopes 

(exposed canopies) (Chellemi and Briton 1992; Chellemi et al. 1992; Hiers and 

Evans 1997, Jenkins and White 2002). 

Currently, there are no management options for controlling dogwood 

anthracnose in large forested areas (Holzmueller et al. 2006). Fungicides are 

impractical and conventional selection and breeding approaches typically used 

for development of pathogen and/or pest resistant crop species are very difficult 

to apply to forest trees (Merkle et al. 2007). This is partially due to long juvenile 

periods of many forest trees including flowering dogwood (about seven years) 

before they can be selected for breeding qualities or resistance purposes (Merkle 

et al. 2007). Breeding for resistance is also hindered by the lack of resistant 

germplasm; only one tree, the ‘Appalachian Spring’ has confirmed resistance to 
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the disease (Windham et al. 1998), self-incompatibility (Wadl et al. 2009), and 

therefore not subject to inbreeding depression (Trigiano, unpublished data). 

DNA Collection, Isolation and PCR Amplification   
 

Genomic DNA was isolated from young leaves or unopened flower buds 

of flowering dogwood collected from 234 individuals at 46 sampling localities 

throughout the eastern United States (Figures 2-1 and 2-2, in appendix). 

Samples used in this population study were collected during 2006-2008 from the 

following states: Alabama, Florida, Georgia, Kentucky, Louisiana, Mississippi, 

North Carolina, Ohio, Pennsylvania, South Carolina, Tennessee, Texas, and 

West Virginia. For each sampling location, GPS coordinates were recorded 

(Table 2-1, in appendix). Identification of individuals collected from each location 

was based on morphological characteristics of the species. We made use of 

extensive sampling from southern portions of the range, where no anthracnose 

has been detected (Figure 2-1; Table 2-1, in appendix). Flowering dogwood 

samples were taken 30 years, or approximately four generations, after the first 

appearance of anthracnose in New York (Daughtrey and Hibben 1994).  

 Plant materials were placed into labeled sample bags on ice and stored at 

-80°C until used. Genomic DNA was extracted from sa mples using Qiagen 

DNeasy Plant Mini Kit (Qiagen, Valencia, CA, USA) according to the 

manufacturer’s protocol. All dogwood samples were ground in autoclaved 

mortars and pestles using liquid nitrogen. The concentration and purity of DNA 

samples were measured with a NanoDrop ND-1000 spectrophotometer 
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(NanoDrop Technologies, Inc., Wilmington, DE, USA) before analysis. PCR 

amplifications were performed in 10 µl reaction mixtures containing 1 µl DNA 

template (4 ng/µl), 1 µl of GeneAmp 10×PCR Buffer II (Applied Biosystems, 

Branchburg, NJ, USA), 1 µl of 20 mM MgCl2, 1 µl of each 2 mM of dNTPs, 1 µl of 

2.5 µM specific microsatellite primers, 0.08 µl of 5 U AmpliTaq Gold® DNA 

polymerase, and 4.92 µl of sterile nanopure water. Eighteen polymorphic 

microsatellite primer pairs, developed from a previous study (Wang et al. 2008) 

were selected and used for analysis (Table 2-2, in appendix). Amplification 

reactions were temperature cycled in 96-well plates using an Eppendorf 

Autorisierter Thermocycler (Eppendorf AG, Hamburg, Germany) with the 

following program: 94°C for 3 min, followed by 35 c ycles of 94°C for 40 seconds, 

58°C for 40 seconds, 72°C for 30 seconds, and a fin al extension at 72°C for 4 

min. 

 PCR products were analyzed with the QIAxcel Capillary Electrophoresis 

System (Qiagen, Valencia, CA, USA) using an internal 25-bp DNA size marker. 

Data were automatically recorded and exported using BioCalculatorTM software, 

which provides both a gel view and an electropherogram of the separated PCR 

products (alleles) (Wang et al. 2009).  

Program FLEXIBIN (Amos et al. 2007) was used for automated binning of 

allelic data. In order to achieve the best possible fit and find the most suitable 

binning parameter, the program uses a simple algorithm to conduct searches in 

two different phases and steps through all possible parameter combinations. 

When the best fit values are established, all alleles are replaced with their repeat 
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unit equivalents and graphical output file with summary statistics is generated. 

Binned and unbinned data gave identical results and we present only analyses of 

binned data (Figure 2-4, in appendix).  

Data Analyses 
 

To address the question of whether genetic variation is lower in regions 

affected by dogwood anthracnose, we estimated Nei’s gene diversity (Nei 1987) 

and allelic richness for each site and then compared each of those summary 

statistics to a null distribution generated by randomizing sites between affected 

and unaffected regions. Nei’s gene diversity is the average probability of 

nonidentity for two randomly chosen alleles from a randomly chosen locus (also 

the average expected heterozygosity). Allelic richness was estimated using 

rarefaction to three trees per site following Kalinowski’s method (Kalinowski 

2005). Both allelic richness and gene diversity calculations were performed using 

HP-Rare 1.0 software package (Kalinowski 2005). We used randomization tests 

(one tailed test) to evaluate whether anthracnose sites and no-anthracnose sites 

were more different than expected by chance. Sampling sites were randomly 

relabeled (anthracnose or no-anthracnose) 10,000 times and we recorded the 

number of randomizations with a greater mean difference between groups than 

the observed data.  

The population structure across the range was evaluated using Bayesian 

cluster analysis (Pritchard et al. 2000), analysis of molecular variance (Excoffier 

et al. 1992), and Mantel tests for isolation by distance (Bohonak 2002). Bayesian 
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cluster analysis was performed using STRUCTURE version 2.2 (Pritchard and 

Donnelly 2001). This program groups individuals on the basis of their multilocus 

genotypes. The method is based on the assumption that Hardy–Weinberg or 

linkage disequilibria are caused by population structure and attempts to find 

population groupings that are not in disequilibrium (Pritchard and Donnelly 2001). 

This is an individual-based analysis that makes no assumptions about the 

relationship between sample sites and population structure. Evanno’s method 

(Evanno et al. 2005) was used to identify the appropriate number of clusters 

using the ad hoc statistic ∆k, which is based on the second order rate of change 

in the log probability of the data between successive values of k. We used an 

admixture model with correlated allele frequencies (assuming no prior 

information of population origin). For assessing alternative values of k, we ran ten 

independent runs for each k value between one and eight for 100,000 

generations and a burn-in period of 100,000 iterations. Additional 10 runs for four 

clusters (the best k, see results) were run for 1,000,000 generations and a burn-

in period of 1,000,000 iterations to verify that results were consistent across 

independent Markov Chains. 

Differentiation among sample locations was quantified using a hierarchical 

analysis of variance (AMOVA - Analysis of Molecular Variance) using Arlequin 

(version 3.1). Two different analyses were conducted, the first one included all 

sites as a single hierarchical group and the second one grouped sites according 

to majority representation in the clusters identified by STRUCTURE. AMOVA 

complements STRUCTURE by providing estimates of the amount of variation 
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explained by grouping sites as implied by STRUCTURE, but should not be taken 

as independent confirmation of that specific hierarchical structure. 

Both STRUCTURE and AMOVA assume hierarchical clustering of 

individuals into genetic sub-populations. Alternatively, individuals might be 

continuously distributed throughout a geographic range with genetic similarity 

falling off with distance (because procreation is more likely to involve spatially 

close parents), but no inherent clustering of individuals into demes (Wright 1943). 

Under this model, each individual has a unique “genetic neighborhood” of likely 

parents (or mates). In a homogeneous habitat with “gaussian” dispersal, Rousset 

(2000) predicted a linear relationship between a pairwise genetic distance 

between individuals [ar, analogous to FST/(1 – FST)] and the logarithm of 

geographic distance. The slope of the relationship is an inverse function of 

population density and dispersal distance (providing an estimate of genetic 

neighborhood “size” in numbers of individuals). While the theoretical model is 

unlikely to apply to dogwoods (because habitats are not homogenous and 

dispersal can occur at both the pollen and seed stages), we can use the 

statistical analysis to evaluate whether geographic structure is best explained by 

hierarchical clustering, a continuous distribution, or a mixture of the two. We 

estimated ar following Roussett (2000) and compared it to pairwise geographic 

distance (km) using R 2.7.1 (Hornik 2008). Geographic distances were computed 

as great circle distance (accounting for the curvature of the Earth). Statistical 

significance of the correlation between geographic and genetic distance was 

evaluated with a modified Mantel test in which sample sites (rather than 
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individuals) were randomized in order to account for potential non-independence 

of individuals from the same locality (within a 1 km radius). 

Results  
 

All 18 microsatellite loci were highly polymorphic across the 46 sampling 

localities and binned and unbinned data gave identical results; only analyses of 

binned data are presented. The average allelic richness was 3.08 (calculated by 

rarefaction to three trees per site) and gene diversity (heterozygosity) averaged 

0.65. There was no evidence that sites within the region affected by anthracnose 

were genetically depauperate relative to sites from unaffected regions (P=0.8803 

and P=0.6267 one-tailed p-values for difference in means for allelic richness and 

gene diversity, respectively) (Figure 2-3, in appendix). In fact, the levels of 

genetic variation reported here are on par with the most diverse animals and 

plants reported in the literature (El Mousadik and Petit 1996; Innan et al. 1997; 

Bachtrog et al. 2000; Neff and Gross 2001).  

STRUCTURE analysis resulted in a clear maximum for ∆k at k =4 [four 

different clusters (Figures 2-4 and 2-5, in appendix)]. These clusters were more 

or less spatially contiguous, including “northern” (Kentucky, Ohio, Pennsylvania, 

South Carolina, and West Virginia), “middle” (Alabama, Mississippi and 

Tennessee), “southern” (Florida, Georgia, Louisiana, and North Carolina), and 

Texas clusters (Figure 2-5, in appendix). The multiple runs of the same k, used in 

this analysis, produced highly consistent individual assignment probabilities. 

Furthermore, an additional 10 runs for four clusters were run for 1,000,000 
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generations and a burn-in period of 1,000,000 iterations to verify that results 

were consistent across independent Markov Chains.  

AMOVA analysis (Excoffier et al. 2005) indicated that most of the genetic 

variance can be explained by individual variation rather than divergence among 

sample localities 84.24 and 15.76%, respectively (Table 2-3A, in appendix). 

When genetic variances within individuals, among individuals within and among 

sites within three clusters (northern, middle, and southern) were compared, they 

partitioned similarly to the previous finding, 51.57, 37.31 and 8.96% respectively 

(Table 2-3B, in appendix). The Bayesian clusters explained only 2.03% of 

variation. Due to small sample size (13 individuals from a single locality), the 

Texas cluster was not included in this analysis.   

Individual-based analysis of isolation by distance across all samples 

showed a modest positive relationship between geographic distance (km) and 

genetic differentiation (ar) (Figure 2-6A). However, when sites were grouped by 

inferred cluster (from STRUCTURE) and analyzed separately, there was no 

evidence of isolation by distance within clusters (Figure 2-6B-D). In terms of 

Rousset’s (2000) model, we cannot statistically reject infinite genetic 

neighborhoods (numbers of individuals) within the broadscale geographic 

clusters suggested by STRUCTURE. 

Discussion  
 

Despite severe die-offs of flowering dogwood over the last 30 years, there 

is no measurable difference in genetic diversity between parts of the geographic 
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range affected and unaffected by anthracnose. Although it is possible that other 

factors have depressed genetic variation in the southern part of the range, 

making the comparison an invalid test of the effect of anthracnose, the fact that 

all sites had extremely high levels of variation indicates that the genetic effects of 

recent demographic fluctuations have been minimal. More likely, the population 

structure of flowering dogwoods is such that even a 10-fold reduction in local 

abundance has little short-term effect on loss of genetic variation. 

In particular, the typical genetic neighborhood (Wright 1943; Wright 1946) 

likely still contains hundreds or thousands of trees after severe die-off events. 

The proposition of large genetic neighborhoods was supported by our inference 

that flowering dogwoods in eastern North America fall into a few widespread 

genetic clusters with no evidence of isolation by distance within clusters. This 

analysis supports the contention that the geographically contiguous genetic 

clusters identified by STRUCTURE resemble extended genetic neighborhoods 

where gene flow between the most distant sites (800 – 1,000 km apart) is just as 

likely as gene flow between sites 10 km apart.  

The geographic distributions of the Bayesian clusters were congruent with 

phylogeographic patterns exhibited by many other plants and animals in eastern 

North America (Soltis et al. 2006; Fontanella et al. 2007). We infer that this 

spatial genetic structure reflects the historical population structure of flowering 

dogwoods resulting from the distribution of suitable habitats over the Quaternary 

and from the tendency of dogwoods to be dispersed by birds that feed on 

dogwood fruits (Rossell et al. 2001). 
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These analyses suggest that any given stand of dogwoods shares a gene 

pool with thousands of other trees spread over thousands of square kilometers. 

This inference is consistent with the known breeding system and dispersal 

ecology of flowering dogwoods (Sork et al. 2005). Seeds in fruits eaten by 

migratory birds are likely to be deposited many kilometers from their sources. In 

addition, flowering dogwoods are obligate outcrossers with gametophytic self-

incompatibility (Reed 2004). This breeding system enforces a degree of 

disassortative mating and maintenance of local genetic variation. As self-

incompatible species, genetic variation of flowering dogwood is expected to be 

greater within populations then between populations when compared with self-

compatible species (Hamrick and Godt 1989; Leimu et al. 2006). In a continuous 

population structure, the relationship between genetic and geographic distance 

might be expected to be much weaker in self-incompatible species. These 

predictions are supported in this study.  

Flowering dogwood trees are native to the United States (Witte et al. 

2000) and are important components of the forests they inhabit not only for their 

ornamental values during all seasons, but also as important source of food for 

wildlife. As a result, the loss of this species would cause a serious ecological 

impact throughout the southeastern region of the United States. The flowers, 

leaves, bark and fruits provide nourishment for a variety of invertebrates and 

vertebrates, including American beavers (Castor canadensis Kuhl), which feed 

largely on the bark and outer layers of deciduous trees such as dogwood (Linzey 

and Brecht 2003a), and Eastern gray squirrels (Sciurus carolinensis Gmelin), 
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which prefer dogwood berries (Linzey and Brecht 2003b). Fruits of  flowering 

dogwood contain one of the highest fat content (approximately 18%) of any food 

available in the forest, and also contain high levels of available calcium (Blair et 

al. 1983; Halls and Epps 1969), which is used as a fall food source for neo-

tropical migratory birds (Stiles 1980). A recent study reported that individuals of 

flowering dogwood have primarily disappeared in the sub-canopy layer allowing 

other species such as Lindera benzoin Blume (Northern spicebush), Viburnum 

acerifolium L. (Mapleleaf viburnum), Nyssa sylvatica Marsh (Blackgum) and 

Tsuga canadensis (Eastern hemlock) (Hiers and Evans 1997; Jenkins and White 

2002) to become more dominant and prevalent components of forests they 

inhabit (Myers et al. 2004).   

Despite high mortality and reduced fecundity caused by dogwood 

anthracnose, this study confirmed that considerable genetic diversity still exists 

among native populations of flowering dogwood. We suggest that large-scale 

dispersal and continuous population structure has so far prevented major genetic 

consequences from the clearly dramatic local demographic effects of dogwood 

anthracnose over the last three decades. Unfortunately, long-distance dispersal 

by migratory birds may also explain the rapid spread of dogwood anthracnose 

from the north to the south; D. destructiva, the causal agent of the disease, has 

been isolated from both pulp and seeds of dogwood fruit (Rossell et al. 2001). 

While the impact of anthracnose on genetic diversity may be small, 

consequences for flowering dogwood population viability and the community 

structure of eastern North American forests are still of great concern (Daughtrey 
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and Hibben 1994; Lande 1988). However, more research is needed on the 

ecology of post-die-off recovery as well as disease ecology and population 

dynamics in widespread populations of flowering dogwood.  
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Appendix 1: Tables 
Table 2-1. Cornus florida sampling locations throughout eastern United States with GPS coordinates and county location. 
 

Sample Subsample  Latitude Longitude County  State 
 

TN 1 (1-5) 35.00466667 -85.308283 Hamilton Tennessee 
TN 2 (1-3) 36.01073333 -87.379250 Dickson Tennessee 
TN 3 (1-5) 36.01456667 -85.133200 Cumberland Tennessee 
TN 4 (1-4) 35.88146667 -84.810217 Cumberland Tennessee 
TN10 (1-5) 35.79283333 -85.637317 Warren Tennessee 
TN 20 (1-6) 36.57225 -82.388350 Sullivan Tennessee 
TN 30 (1-3) 35.62645 -88.942850 Madison Tennessee 
TN 41 (1-5) 35.94411667 -83.202433 Cocke Tennessee 
AL 1 (1-5) 34.7049 -85.555733 DeKalb Alabama 
AL 2 (2-5) 33.86745 -86.269583 St. Clair Alabama 
AL 3 (1-5) 33.18536667 -87.321983 Tuscaloosa Alabama 
AL 4 (1-3) 33.43668333 -88.201617 Pickens Alabama 
AL 5 (1-5) 30.68951667 -88.171800 Mobile Alabama 
MS 1 (1-5) 33.48821667 -88.907850 Oktibbeha Mississippi 
MS 2 (1-5) 33.37121667 -89.139700 Choctaw Mississippi 
MS 3 (1-5) 33.47568333 -89.687233 Montgomery Mississippi 
MS 4 (1-5) 32.30078333 -90.801500 Warren Mississippi 
MS 5 (1-5) 31.99165 -90.356533 Copiah Mississippi 
MS 6 (1-5) 30.78618333 -89.501300 Pearl River Mississippi 
NC 1 (1-6) 35.70246667 -83.041250 Haywood N. Carolina 
NC 2 (1-5) 35.42521667 -82.631083 Henderson N. Carolina 
NC 3 (1-5) 35.00263333 -84.083733 Cherokee N. Carolina 
LA 1 (1-5) 30.78916667 -89.839017 Washington  Louisiana 
LA 2 1 30.40905 -89.785017 St.Tammany Louisiana 
FL 1 (1-4) 30.66846667 -86.818350 Santa Rosa Florida 
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Table 2-1. Continued. 
    
Sample Subsample  Latitude Longitude County  State 

FL 2 (1-5) 30.74181667 -86.272833 Walton Florida 
FL 3 (1-5) 30.7533 -85.317633 Jackson Florida 
GA 1 (1-5) 30.73655 -84.106050 Grady Georgia 
GA 2 (1-5) 31.74313333 -83.656667 Turner Georgia 
GA 3 (1-5) 32.85881667 -83.752517 Bibb Georgia 
GA 6 (1-5) 34.86956667 -83.518083 Rabun Georgia 
KY 1 (1-5) 36.65253333 -84.184100 Whitley Kentucky 
KY 2 (1-6) 36.995000 -86.445861 Warren Kentucky 
KY 2 (2-1) 37.160000 -86.198333 Edmonson Kentucky 
KY 2 (2-2) 37.160000 -86.198333 Edmonson Kentucky 
KY 2 (2-3) 36.858056 -86.036944 Barren Kentucky 
KY 2 (2-4) 36.629722 -85.682500 Monroe Kentucky 
KY 2 (2-5) 36.840833 -86.354167 Warren Kentucky 
KY 2 (2-6) 38.309444 -85.488333 Oldham Kentucky 
OH 1 (1-7) 39.22395 -84.826117 Hamilton Ohio 
OH 2 (1-5) 39.05558333 -84.105350 Clermont Ohio 
OH 3 (1-5) 39.04873333 -83.230433 Pike Ohio 
OH 4 (1-5) 39.35825 -81.983350 Athens Ohio 
PA 1 (1-4) 40.55972222 -76.364722 Schuylkill Pennsylvania 
PA 2 (1-3) 40.54416667 -76.326111 Schuylkill Pennsylvania 
SC 1 (1-5) 35.16558333 -82.132833 Spartanburg S. Carolina 
SC 2 (1-5) 34.60138333 -82.653633 Anderson S. Carolina 
SC 3 (1-5) 34.68166667 -83.145167 Oconee S. Carolina 
WV 1 (1-4) 38.25176667 -81.427017 Kanawha W. Virginia 
WV 2 (1-5) 38.1525 -81.127150 Fayette W. Virginia 
WV 3 (1-7) 37.49175 -81.102033 Mercer W. Virginia 
TX 1 1 30.559444 -96.629722 Burleson Texas 
TX 3 1 30.559472 -96.408056 Brazos Texas 
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Table 2-1. Continued. 
     
Sample Subsample  Latitude Longitude County  State 

TX 4 1 30.559639 -96.409389 Brazos Texas 
TX 5 1 30.560056 -96.409639 Brazos Texas 
TX 6 1 30.560306 -96.409667 Brazos Texas 
TX 7 1 30.559250 -96.409861 Brazos Texas 
TX 8 1 30.559167 -96.409778 Brazos Texas 
TX 9 1 30.558306 -96.410278 Brazos Texas 
TX10 1 30.558139 -96.410500 Brazos Texas 
TX 11 1 30.557333 -96.410833 Brazos Texas 
TX12 1 30.560444 -96.407472 Brazos Texas 
TX 13 1 30.560528 -96.407417 Brazos Texas 
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Table 2-2. Primer information for 18 microsatellite loci used to analyze 234 
Cornus florida samples collected from 46 sampling localities in the eastern 
United States. 
 

Locus  Primer sequences (5’−3’) 
GenBank 
accesion 
number 

Expected 
size (bp) 

C020 F: TATGGCTTGCTTTGGCTAATTGTT  ED651708 144 
 R: CCAACTTATGCACACAGTGACACA    

C025 F: ATTATTTTTCGGGACCATTGCAT  ED651711 158 
 R: CGGCTAAGAAAATATGTCCCTTTGT    

C046 F: TGCAATTGACATTTGTTGCATTTT ED651730 151 
 R: CAACTACGTGATCAGGTGGACAAC    

C072 F: AAACACCCCACTGCCATATAATGT  ED651755 132 
 R: CCATATGGGACCCAGTGATTTTA    

C091 F: GCACTAGTATAAAAACATACGCGCC  ED651772 143 
 R: TGCCTACATGGTAGCATTCCTTTT    

C100 F: CCAAAGGCTATGAATTTACGATGC  ED651777 112 
 R: GATGCAGTCTTAATCCTCAACGTG    

C110 F: AGGCTGCGTTGATAAATGATATGC  ED651786 98 
 R: TTGACTTGACTTGAGGCAAAAACA    

C121 F: CCCGAAAATCAAATATGGTAAATAAGTG  ED651797 154 
 R: CTCTCTTAAACCACCTTTTGATGTGA    

C203 F: TCCTACGCACCCACCCTTAT  ED651865 135 
 R: ACGGTGGTGCCATTCTTTCT    

C209 F: TACAAAAGTGCAATGCCAATACC  ED651871 197 
 R: ACTCCAAAACTTCATTCCTGAGC    

C214 F: TGCAAATGGTTATTGATTGCTCTC  ED651874 129 
 R: ATTTGTTTCCCATGACCTGAAAGA    

C261 F: GGACATGTGGGCAGTTTGAT  ED651912 143 
 R: GCAATGAGATCCCTCCCCTA    

C262 F: ATGACAAATGGCAAGTTGATGTTG  ED651913 197 
 R: CAACTGTGACTCAATTCATGTCTGC    

C267 F: TTGGGTAGGTGAGGGAATTTAGGT  ED651915 95 
 R: TGCTATTACACATTTACCCCTGCC    

C290 F: GGTGGATCAAAACCCACAAATAAG  ED651936 153 
 R: CCTATAGCCCAGCGAGAGTCTTTA    

C398 F: CCTCGCTTAATTCATATACTTCTT  ER870420 156 
 R: AATAAAAGTTTGTATGAACTGCAC    
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Table 2-2 Continued.   

Locus  Primer sequences (5’−3’) 
GenBank 
accesion 
number 

Expected 
size (bp) 

    
C488 F: CTCAAAATCACCCTTCTTATATCT ER870510 114 

  R: GATAGTTCACAAGCAATGTTACTG   
C597 F: AAGTCAGATCATTTCAGATTAACA  ER870619 107 

  R: CGAATTGACGATAAATACAAAATA      
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Table 2-3 (A-B). Estimates of Analysis of Molecular Variance (AMOVA) from dogwood microsatellite data using Arlequin 
(ver 3.1).  Two analyses were conducted: the first included all sites as one hierarchical group (A); the second analysis 
accounted for sampling sites grouped according to regions identified by the program STRUCTURE (TX was excluded 
from this analysis since it did not contain any subpopulations) (B). 
 
A.                      

Variance partition         d.f.    Sum of squares       Variance component      % of variation         P value 
 
Among sites   45             334.285          0.49037 Va             15.76  <0.0001 
 
Within sites  406           1064.544          2.62203 Vb              84.24  <0.0001 
 
Total                  451    1398.830                 3.11240 
 
Fixation Index      Fst:      0.15755 
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Table 2-3. Continued. 
 

B. 
 
Variance partition          d.f.    Sum of squares         Variance component      % of variation         P value 

 
Among groups       2      31.417  0.6318 Va    2.03  <0.0001 
 
Among sites 
within groups    42             276.136          0.27951 Vb               8.96  <0.0001 
 
Among individuals 
within sites              168            661.890          1.16357 Vc               37.31  <0.0001 

 
Within individuals             213            343.500          1.61268 Vd               51.71  <0.0001 

 
Total                427     2911.923                 6.91574 
 
Fixation Indices:      Fis: 0.41912      Fsc: 0.09147     Fct: 0.02026    Fit: 0.48294 
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Appendix 2: Figures 
 
Figure 2-1. Sampling localities and distribution of Cornus florida throughout 
eastern United States (total of 234 individuals). Counties shaded in beige had 
confirmed cases of dogwood anthracnose as of 2006. Pie charts at each locality 
represent average inferred ancestry of individuals for each cluster estimated by 
STRUCTURE. Dogwood anthracnose data courtesy of United States Department 
of Agriculture (USDA) - Forest Service-Forest Health Protection; distribution map 
courtesy of United States Geological Survey (USGS). 
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Figure 2-2. Distribution map of Cornus florida in the eastern United States. Image 
courtesy of United States Geological Survey  (USGS). 
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Figure 2-3. Tukey boxplots representing no association between dogwood 
anthracnose outbreak and allelic richness (A) and gene diversity (heterozygosity) 
(B) within localities. The box represents 50% of ordered data stretching between 
the lower and the upper quartiles. The bar in the box indicates the median, and 
the whiskers extending from the boxes include all data within 1.5 × the 
interquartile range. Extreme outliers are shown as dots. The notches illustrate 
approximate 95% confidence intervals for the medians. Since these notches 
overlap broadly, there is no evidence that the two medians differ significantly. 
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Figure 2-4. Delta K (∆k) calculations for unbinned (a and c) and binned (b and d) 
data. Determination of the number of clusters (k) vs. the second order rate of 
change in k (∆k) (upper 2 graphs). The clear maximum for ∆k at k=4 indicates 
that four clusters fit the microsatellite data best for Cornus florida populations. 
The number of clusters (k) vs. the negative natural log of the likelihood [-ln 
(likelihood)] of the microsatellite data (lower 2 graphs).
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Figure 2-5. Bar plots showing Bayesian assignment probabilities using software STRUCTURE 2.2 for four clusters (K=4) 
(TN-Tennessee, AL-Alabama, MS-Mississippi, NC-North Carolina, LA-Louisiana, FL-Florida, GA-Georgia, KY-Kentucky, 
OH-Ohio, PA-Pennsylvania, SC-South Carolina, WV-West Virginia, TX-Texas) divided according to geographical location. 
The proportion of each bar that is yellow, red, green and blue indicates the assignment probability of individuals to each of 
these clusters, respectively.  

WV SC TN AL MS NC LA FL GA KY OH PA TX 
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Figure 2-6 (A-D). Scatterplots of pairwise genetic distances (ar) vs. geographical 
distances (km) of all sampled Cornus florida individuals (A), and partitioned into 
sites with predominant membership in the northern cluster (B), middle cluster (C), 
and southern cluster (D). P-values are from Mantel tests with 10,000 
randomizations. Values on the x-axis are in log scale. Lines indicate the best fit 
of least-squares regression of ar on log distance. 
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Chapter 3. Fine scale genetic structure of flowerin g dogwood in the Great  

Smoky Mountains National Park. 
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Abstract 
 
 In the past three decades, flowering dogwood (Cornus florida) populations 

have experienced severe declines caused by dogwood anthracnose. Mortality 

has ranged from 48 to 98%, raising the concern that the genetic diversity of this 

native tree has been reduced significantly. However, the response of each 

species to ecological disturbance may differ greatly depending on their biological 

attributes, particularly pollen and seed dispersal ability. Nineteen microsatellite 

loci were used to evaluate the level and distribution of genetic variation 

throughout the Great Smoky Mountains National Park (GSMNP). Significant 

genetic structure exists at both landscape and local levels. Two genetic clusters 

exist within the park separated by the main dividing ridges of the Great Smoky 

Mountains. The differentiation of the clusters is statistically significant, but subtle, 

with gene flow evident through low-elevation corridors. It seems unlikely that 

recent demographic dynamics have resulted in a depletion of genetic variation in 

flowering dogwoods. 

Introduction 
 
The levels of genetic diversity reflect genetic resources necessary for both 

short-term ecological adaptation and long-term evolutionary change. In the short 

term, genetic variability is a less critical factor in the survivability of the species 

and overall population persistence. However, long-term preservation requires 

understanding demography and genetics of small populations, as well as ecology 

and evolution of abundant taxa (Lande and Shannon 1996). Environmental 
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changes and factors influencing species abundance or rarity are often 

unpredictable. Because of those evolutionary oscillations, it is crucial to secure 

adequate genetic diversity that permit species to continuously evolve in response 

to those environmental fluctuations and changes in selection pressures. 

Preservation of biodiversity and conservation efforts has largely focused on 

endangered, threatened or relatively small populations in danger of extinction. 

However, decrease or complete loss of existing populations worldwide is mainly 

due to anthropogenic habitat destruction and the introduction of exotic species of 

parasites, predators and competitors (Lande and Shannon 1996). In the United 

States alone, the projected economic loss due to invasion of non-native species 

is over $120 billion annually and about one-fourth of this loss is caused by exotic 

plant pathogens (Pimentel 1997; USBC 2001; Pimentel et al. 2005).    

Discula destructiva Redlin (Redlin 1991) is thought to be an introduced plant 

pathogen (Trigiano et al. 1995) and has caused severe decline and reduced 

reproduction of native flowering dogwood populations in the past three decades 

(Figure 3-1, in appendix). Infection by D. destructiva, causal agent of dogwood 

anthracnose, resulted in poor seed production due to decreased flowering 

(Rossell et al. 2001) and smaller, younger trees were more susceptible to this 

disease (Hiers and Evans 1997; Holzmueller et al. 2006; Jenkins and White 

2002). Mortality of flowering dogwood has ranged from 48 to 98% in the 

northeast and Appalachian highlands (Sherald et al. 1996; Hiers and Evans 

1997; Williams and Moriarity 1999; McEwan et al. 2000; Jenkins and White 2002) 

(Figure 3-1, in appendix) because of this disease. Previous research evaluated 
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native populations of flowering dogwoods for reduced genetic diversity and 

fragmentation, which was presumably due anthracnose disease (Hadziabdic et 

al. 2010, accepted for publication). Although four widespread, spatially 

contiguous clusters were detected in the native range of flowering dogwood 

distribution, this study found little relationship between geographic and genetic 

difference. These findings suggest that high dispersal rates and large effective 

population sizes have so far prevented loss of genetic diversity. Additionally, 

genetic variation in areas affected by dogwood anthracnose was as high as or 

higher than areas without large die-offs. 

In smaller, fragmented populations, loss of genetic variation through 

genetic drift may cause reduced mean population fitness, elevating the risk of 

extinction and reducing prospects for adaptive change (Fischer and Matthies 

1998; Reed and Frankham 2003; Severns 2003). Fragmentation can 

considerably reduce heterozygosity, cause limited gene flow among populations, 

and therefore reduce effective population size by separating larger plant 

populations that were historically linked via suitable habitat (Severns 2003). 

Genetic variation in plant species with continuous distributions located at different 

geographical regions may be affected by physical barriers such as a mountain 

range or historical events like glaciations that limits gene flow among populations 

(Persson et al. 2004; Mandek et al. 2005). In these small isolated populations, 

seed production, which affects species persistence, can be significantly 

decreased owing to inbreeding depression (Fischer and Matthies 1998). 
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Population fragmentation from disease pressure or physical barriers may 

play a significant role in flowering dogwood genetic diversity since seed dispersal 

is thought to occur mainly by neo-tropical migratory birds that use the fruits seeds 

as a fall food source (Stiles 1980). The birds ingest fruits that are either 

disgorged or voided after relatively short time ingestion (Stiles 1980). Fruits of 

flowering dogwoods contain one of the highest fat content (approximately 18%) 

of any food available in the forest and also contain high levels of available 

calcium (Halls and Epps 1969). Individual dogwood trees are capable of 

producing up to 10 kg of high protein berries each fall, supplying a valuable food 

source for more than 50 bird and numerous small game species (Rossell et al. 

2001; Holzmueller et al. 2006). Understanding fine-scale genetic diversity of 

dogwood within the Great Smoky Mountains National Park will further our 

understanding of how seed dispersal affects population genetics.  

  The flowering dogwood mating system plays an important role in the 

genetic composition of populations affecting frequency of individual genotypes in 

subsequent generations and therefore influencing the degree of genetic variation 

within and among populations (Hamrick and Godt 1989; Karasawa et al. 2007).  

Mating system of the species is one of the fundamental parameters affecting 

colonizing success. Flowering dogwood has an obligate outcrossing mating 

system with self-incompatibility (Reed 2004). Consequently, they are generally 

not capable of breeding with related individuals (such as half-sibs or full-sibs), 

implying nonrandom mating and therefore deviation from Hardy-Weinberg 

equilibrium expectations.  



 56 

  Successful breeding systems involve several evolutionary factors such as 

size and population density, movement and selection of pollinators, number of 

flowers and presence of self-incompatibility systems for newly established 

colonizing species (Karasawa et al. 2007; Murawasky and Hamrick 1991; 

Franceschinelli and Bawa 2000). Greater population density increases the 

effective number of reproducing individuals within the genetic neighborhood, 

effectively increasing outcrossing rate (Franceschinelli and Bawa 2000). High 

plant densities can be found in newly colonizing species capable of fast 

establishment and quick dispersal of seeds. As long as numbers of seed parents 

are sufficiently large for reproduction purposes, landscape disturbances may not 

negatively affect the effective number of pollen parents and, hence, subsequent 

genetic diversity in flowering dogwood (Sork et al. 2005).  

 Colonization of new or expansion and domination of already existing 

populations is an evolutionary change that results in increased spatial 

heterogeneity and community complexity (Margalef 1962; Platt 1975) in these 

disturbed habitats. Gradual expansion and satellite population scenarios are two 

models explaining genetic variation in colonized areas (Mandek et al. 2005; 

Perrson 2004). Under the first model, migration is initiated from a gradually 

expanding continuous front with an assumption that genetic diversity will be 

maintained as the expansion continues. In contrast to gradual expansion, the 

satellite population model is focused on the number of spatially isolated and 

initially small and marginal populations, which eventually become a source of 

new founding events (Mandek et al. 2005), and represent only a portion of the 
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original population’s genetic variation. In the case of plant invasions, historical 

studies reveal differing levels of genetic variation within colonizing species, due 

to founder effects, number of population bottlenecks, mating systems or ability of 

colonizing plants to hybridize (Barrett 1982; Mandek et al. 2005). In flowering 

plants, genetic diversity is strongly affected by interactions between reproductive 

systems and stochastic forces associated with immigration history and range 

expansion (Barrett et al. 2008). Hence, maintaining high levels of gene flow 

results in genetic cohesion among populations, whereas disrupting that flow 

produces genetic differentiation through genetic drift and local selection 

(Bittencourt and Sebbenn 2007).   

 Although both seeds and pollen contribute to gene flow between existing 

populations of forest trees (Godoy and Jordano 2001; Smouse and Sork 2004), 

only seed dispersal can result in colonization of new patches. Therefore selection 

pressures acting on seed dispersal may differ considerably from those affecting 

pollen dispersal. Pollen dispersal determines the pattern of mating, whereas 

seeds disperse after reproduction. Furthermore, male gametes are dispersed 

from the paternal to the maternal parent via pollen (Bittencourt and Sebbenn 

2007) and embryos containing genetic material from both parents are dispersed 

in the form of seeds (Hamrick et al. 1993). As a result, both seeds and pollen are 

expected to respond differently to genetic population structure and inbreeding 

load (a decrease in fitness of inbred relative to outbred crosses) (Ravigne et al. 

2006).  
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 Kin-structured migration (via kin-structured seed dispersal) appears 

commonly in nature. In many plant species, multi-seeded fruits are a unit of 

dispersal in which larger proportions of the seeds may have closely related (or 

identical) fathers, as well as sharing the same mother plant (Torimaru et al. 

2007). In angiosperms, movement of genes is in the form of full or half-sib seeds.  

In disturbed habitats in which mortality rate of native populations result in 

near elimination of the existing flowering dogwoods, forest fragmentation may 

affect ecological determinants of reproductive parameters (seeds and pollen 

dispersal). The overall result is limited gene flow, inbreeding depression and/or 

genetic erosion at the reproductive stage. Extinction and recolonization after local 

disturbances could result in sampling from the available gene pool (founder 

effect) or in additional gene flow. As a result of dogwood anthracnose, flowering 

dogwood seedlings and saplings were reported to be absent in several studies 

(Sherald et al. 1996; Hiers and Evans 1997; Holzmueller et al. 2006; Jenkins and 

White 2002; Rossell et al. 2001) resulting in severe decline of native populations. 

With such large-scale mortality, genetic variation of species can decline rapidly 

(Hawley et al. 2006) having potentially deleterious effects on the ability of tree 

populations to regenerate and respond to future changes in selection pressures. 

Consequently, the relationships between plant population size, fitness, mating 

systems and genetic diversity are of fundamental importance in plant ecology, 

evolution and conservation (Leimu et al. 2006).  

 Both widespread and localized landscape disturbances because of 

anthropogenic expansion, invasion of non-native species or severe disease 
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outbreaks present an opportunity to understand effects of these disturbances on 

genetic structure and variability within and among populations. In this study, 

microsatellite loci were used to evaluate genetic differentiation and population 

structure of flowering dogwoods in the GSMNP. By assessing genetic diversity 

and population dynamics of this native tree, we aimed to answer the following 

questions: (1) How much genetic diversity exists within and among populations of 

flowering dogwoods? (2) Is there an evidence of population structure?  (3) Is 

there an effect of seed vs. pollen dispersal on genetic structure? (4) Can a 

baseline be determined for understanding future population changes in newly 

colonized areas? 

Materials and Methods 

 

Study system 

Cornus florida L.  (Flowering dogwood) 
 

Flowering dogwood is a small, shade tolerant tree indigenous to the 

eastern United States (Figure 2-2, in appendix). Flowering dogwood is an insect-

pollinated, self-incompatible understory species found in temperate deciduous 

forests, such as oak (Quercus), yellow poplar (Liriodendron) and pine (Pinus). 

The floral display starts in the early spring, followed by attractive summer green 

foliage. In the late summer, bright red oblong drupes are accompanied by early 

development of dark, red brown foliage (Witte et al. 2000). These features make 

flowering dogwood trees important components of the forests they inhabit not 
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only for their ornamental value during all seasons, but also as a significant 

source of food for wildlife.  

The flowers, leaves, bark, and fruits provide nourishment for a variety of 

vertebrates, including American beavers (Castor canadensis), which feed largely 

on the bark and outer layers (Linzey and Brecht 2003a); Eastern gray squirrels 

(Sciurus carolinensis), which prefer dogwood berries (Linzey and Brecht 2003b); 

and white-tailed deer (Odocoileus virginianus) that feed on dogwood twigs (Blair, 

1982; Holzmueller et al. 2006). Flowering dogwoods are also important in rapid 

nutrient cycling (64% reduction in litter mass in two years) within forest 

communities, thus providing high concentrations (2-3.5% dry weight) of available 

calcium (Ca) (Jenkins and White 2002). Due to high calcium concentration in its 

foliage, quick decomposition, and abundance in the understory, flowering 

dogwoods influenced calcium availability in the mineral soil and forest floor by 

acting as a “Ca pump” in forests (Holzmueller 2006; Jenkins et al. 2006; Thomas 

1969). Calcium, potassium and magnesium saturation in soils were positively 

correlated with the presence of flowering dogwood density in oak-hickory forests 

(Holzmueller 2006). Seedlings grown in soil with lower availability of calcium and 

potassium cations exhibited higher dogwood anthracnose severity earlier in the 

growing season when compared to seedlings grown in soils with greater inputs of 

calcium and potassium (Holzmueller 2006). 
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Discula destructiva Redlin 
 

The decline of native dogwood populations due to dogwood anthracnose 

(caused by Discula destructiva Redlin) (Figure 3-1, in appendix) was consistent 

with introduced diseases and pests that have caused tremendous mortality of 

various tree species over wide geographic areas (Merkle et al. 2007; Crowl et al. 

2008). These die-offs often result in restructuring of forest communities and 

disruption of ecosystem processes (Hall et al. 2002; Becker et al. 2008; Elliott 

and Swank 2008; Eschtruth and Battles 2008) and some examples include near 

elimination of American chestnuts [Castanea dentata (Marsh.) Borkh] by chestnut 

blight  [Cryphonectria parastica, (Murrill) Barr] (Elliott and Swank 2008); 

American elms (Ulmus americana L.) due to Dutch elm disease  [Ophiostoma 

ulmi (Buisman) Nannf] (Brasier 2000); and Eastern hemlocks  [Tsuga canadensis 

(L.) Carrière] by hemlock wooly adelgids [Adelges tsugae Annand] (Havill et al. 

2006).  

Dogwood anthracnose is manifested by purple-rimmed lesions that initially 

appear on the leaf margins and extend through the veins into the petiole in trees 

(Jenkins and White 2002). The disease usually starts in the lower canopy and 

moves upwards in the tree. During cool, wet weather, the first signs of dogwood 

anthracnose are gray or drooping foliage hanging on the twigs. With disease 

progression, the fungus moves from leaf petiole into stems resulting in twig and 

branch die-back due to the formation of annual cankers, which can eventually 

result in tree death. Although the spread of dogwood anthracnose southward in 

the United States appeared to be relatively uninhibited, several factors, including 
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temperature, light availability, moisture and evaporative potential of the leaf 

surface, can determine the probability and severity of the infection (Hibben and 

Daughtrey 1988; Hiers and Evans 1997). Disease symptoms are usually more 

apparent on slopes facing northeast (understory canopies with low evaporative 

potential) than in southwest facing slopes (exposed canopies) (Chellemi and 

Briton 1992; Chellemi et al. 1992; Hiers and Evans 1997; Jenkins and White 

2002). 

In the northeast and Appalachian highlands, dogwood mortality rates were 

as high as 98%, resulting in a severe decline of native dogwood populations 

(Sherald et al. 1996; Hiers and Evans 1997; Williams and Moriarity 1999; 

McEwan et al. 2000; Jenkins and White 2002) (Figure 3-1). In Catoctin Mountain 

Park in Maryland, Sherald et al. (1996) observed 77% reduction in flowering 

dogwood density between 1976 and 1992. Hiers and Evans (1997) compared 

responses of dogwood populations to the anthracnose in both mixed mesophytic 

forests of the Cumberland Plateau coves and the oak-hickory forests of the 

plateau uplands in Tennessee in the period between 1983 and 1995. Severity 

and incidence ratings in the study were followed by the methods of Chellemi et 

al. (1992) and symptoms included leaf necrosis, cankers, lower branch dieback 

and epicormic sprouting (Hiers and Evans 1997). They used two earlier studies 

for comparison to existing anthracnose outbreaks, changes in dogwood 

abundance and surveys of community composition (Hiers and Evans 1997; 

McGee 1986; Ramseur and Kelly 1981).  
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When compared to earlier surveys from 1976 and 1983 (McGee 1986; 

Ramseur and Kelly 1981), flowering dogwood populations showed precipitous 

decline in stem density within both examined sites, resulting in 87 and 98% 

mortality rates, respectively (Hiers and Evans 1997). The highest mortality 

occurred among smaller, younger trees. This outcome resulted in the absence of 

fruit and therefore seed production during the period of the study (Hiers and 

Evans 1997).  

During the period between 1977 and 1985, 400 permanent, 0.1-hectare 

(20 m x 50 m) plots were established for monitoring long-term biodiversity in the 

GSMNP, during which time the distribution and severity of dogwood anthracnose 

increased. In 1992, 25% of flowering dogwoods had been destroyed by dogwood 

anthracnose (Windham et al. 1995). Two years later, an estimated 75% of the 

remaining trees had been eliminated (Windham et al. 1995). Jenkins and White 

(2002) collected flowering dogwood data from 86 permanent plots located in the 

western portion of GSMNP during the periods from 1977 to1979 and 1995 to 

2000. In their study, flowering dogwood density within different forest types (typic 

cove, acid cove, alluvial, oak-hickory, and oak-pine stands) decreased between 

two sampling intervals, ranging from 69-94% (Jenkins and White 2002). The 

largest decline, over 94%, was among smaller, younger trees (1 to 4.9 cm 

diameter) in all forest types (Jenkins and White 2002). 

Other factors including (but not limited to) canopy closure and 

environmental stress have contributed to the loss of 36% of flowering dogwoods 

in native habitats over the 10-year period (McEwan et al. 2000). Loss of flowering 
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dogwoods from eastern forests has reduced the rate of soil and forest floor 

calcium mineralization, which may have negative effects on many associated 

flora and fauna (Holzmueller 2006). 

Currently, no management options exist for controlling dogwood 

anthracnose in large forested areas (Holzmueller et al. 2006). Fungicide 

applications are impractical and expensive, and breeding approaches commonly 

used for development of pathogen and/or pest resistant crop species are difficult 

to apply in large forest areas (Merkle et al. 2007). This is partially due to long 

juvenile periods of many forest trees including flowering dogwoods (about seven 

years) as well as the lack of disease resistant germplasm. To date, only one tree, 

‘Appalachian Spring’ has confirmed resistance to the disease (Windham et al. 

1998). 

Field Sampling  
 

In the spring and fall of 2007, 194 individual trees were selected for a 

population study in the GSMNP area (Figure 3-2, in appendix). Ninety-eight 

samples were randomly selected from different trail systems to the south and 96 

samples north of the main dividing ridge of the Great Smoky Mountains, marked 

by the Tennessee-North Carolina border (Figure 3-2, in appendix). For each 

sampling location, Global Positioning System (GPS) coordinates were recorded 

(Table 3-1, in appendix) and the sampling locations were determined using the 

All Taxa Biodiversity Inventory (ATBI) Database Specimen Records (Ted 
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Simmons Bird Project) (http://www.dlia.org). Identification of individuals collected 

from each location was based on morphological characteristics of the species.  

DNA Collection, Isolation and PCR Amplification   
 

Genomic DNA was isolated from young leaves or unopened flower buds 

of flowering dogwoods collected from 194 individuals at different sampling 

localities throughout the GSMNP (Figure 3-2, in appendix). Collected samples 

were initially placed in 2 ml tubes containing 70% ethanol to preserve plant 

material during field sampling. Genomic DNA was extracted from samples using 

Qiagen DNeasy Plant Mini Kit (Qiagen, Valencia, CA, USA), according to the 

manufacturer’s protocol. All samples were homogenized using Bio101 FastPrep 

Homogenization System FP120 (Thermo Savant, Waltham, MA, USA). The 

concentration and purity of DNA samples were measured with a NanoDrop ND-

1000 spectrophotometer (NanoDrop Technologies, Inc., Wilmington, DE, USA) 

before analyses. PCR amplifications were performed in 10 µl reaction mixtures 

containing 1 µl DNA template (4 ng/µl), 1 µl of GeneAmp 10×PCR Buffer II 

(Applied Biosystems, Branchburg, NJ, USA), 1 µl of 20 mM MgCl2, 1 µl of each 2 

mM of dNTPs, 1 µl of 2.5 µM specific microsatellite primers, 0.08 µl of 5 U 

AmpliTaq Gold® DNA polymerase, and 4.92 µl of sterile, nanopure water. 

Nineteen polymorphic microsatellite primer pairs for flowering dogwood, 

developed from a previous study (Wang et al. 2008) were selected and used for 

analyses (Table 3-2, in appendix). Amplification reactions were temperature-

cycled in 96- well plates using an Eppendorf Autorisierter Thermocycler 
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(Eppendorf AG, Hamburg, Germany) with the following program: 94°C for 3 min, 

followed by 35 cycles of 94°C for 40 seconds, 58°C for 40 seconds, 72°C for 30 

seconds, and a final extension at 72°C for 4 min. 

 PCR products were analyzed with the QIAxcel Capillary Electrophoresis 

System (Qiagen, Valencia, CA, USA) using an internal 25-bp DNA size marker. 

Data were automatically recorded and exported using BioCalculatorTM software, 

which provided both a gel view and an electropherogram of the separated PCR 

products (alleles) (Wang et al. 2009). QIAxcel Capillary Electrophoresis System 

provides analyses with resolution of 2–4 bp compared to CEQTM 8000 (CEQ 

8000: Genetic Analysis System, Beckman Coulter, USA) and ABI 3100xl DNA 

Sequencer (ABI 3100xl: Applied Biosystems, USA) systems that provide 1 bp 

resolution. 

Program FLEXIBIN (Amos et al. 2007) was used for automated binning of 

allelic data. In order to achieve the best possible fit and to find the most suitable 

binning parameter, the program uses a simple algorithm to conduct searches in 

two different phases and steps through all possible parameter combinations. 

When the best fit values are established, all alleles are replaced with their repeat 

unit equivalents and a graphical output file with summary statistics is generated. 

Binned and unbinned data gave identical results and only analyses of binned 

data are presented (Figure 3-3, in appendix).   
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Data Analyses 
 

To address the question of how much genetic diversity exists within 

populations of flowering dogwood affected by dogwood anthracnose, we 

estimated Nei’s gene diversity (Nei 1987), allelic count and allelic richness (a 

measure of allele number independent of sample size) for all samples. Observed 

and expected heterozygosities within samples (either side of the main dividing 

ridge) were estimated using program FSTAT version 2.9.3 (Goudet 2001). Nei’s 

gene diversity is the average probability of non-identity for two randomly chosen 

alleles from a randomly chosen locus (also, the average expected 

heterozygosity). Allelic richness was estimated following Kalinowski’s rarefaction 

method (Kalinowski 2005) (minimum sample size of 81 trees (total of 162 genes)) 

using HP-Rare 1.0 software package (Kalinowski 2005). Gene diversity 

calculations were performed using both FSTAT version 2.9.3 and ML Relate 

(Kalinowski et al. 2006) (100,000 randomization performed using Monte Carlo 

randomization as described by Guo and Thompson (1992)). 

 The genetic structure of flowering dogwood populations was evaluated 

using two clustering methods based on Bayesian models and analysis of 

molecular variance (Excoffier et al. 1992). Bayesian cluster analysis was 

performed using STRUCTURE version 2.2 (Pritchard and Donnelly 2001). This 

program groups individuals on the basis of their multilocus genotypes. The 

method is based on the assumption that Hardy–Weinberg or linkage disequilibria 

are caused by population structure and attempts to find population groupings that 

are not in disequilibrium (Pritchard and Donnelly 2001). This is an individual-
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based analysis that makes no assumptions about the relationship between 

sample sites and population structure. Evanno’s method (Evanno et al. 2005) 

was used to identify the appropriate number of clusters using the ad hoc statistic 

∆k, which is based on the second order rate of change in the log probability of 

the data between successive values of k. An admixture model with correlated 

allele frequencies (assuming no prior information of population origin) was used. 

For assessing alternative values of k, we ran ten independent runs for each k 

value between one and eight for 100,000 generations and a burn-in period of 

100,000 iterations.  

 Differentiation among groups of trees was quantified with an analysis of 

molecular variance (AMOVA) using Arlequin (version 3.1) (Excoffier et al. 2005) 

and the basic F-statistics to partition variation within vs. between individuals (FIS) 

and populations (FST). Two different analyses were conducted, each with a single 

level of grouping. The first one partitioned individuals into groups north and south 

of the main dividing ridge of the Great Smoky Mountains (marked by the 

Appalachian Trail along the Tennessee-North Carolina border). The second one 

grouped sites according to majority representation in the clusters identified by 

STRUCTURE. AMOVA complements STRUCTURE by providing estimates of 

the amount of variation explained by grouping sites as implied by STRUCTURE, 

but should not be taken as independent confirmation of that specific hierarchical 

structure. 

Continuous, fine-scale structure was evaluated by testing for a correlation 

between genetic and geographic distance. Roussett’s (2000) aR and the great-
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circle distance (km) between each pair of trees in the sample were calculated 

and fitted linear regressions of aR vs. the natural logarithm of distance for the 

entire sample, separately for the samples on either side of the dividing ridge, and 

separately for the main genetic clusters inferred from STRUCTURE. 

Computations were done using R 2.7.1 (Hornik 2008) and statistical significance 

of the correlation between geographic and genetic distance was evaluated using 

Mantel test. Given that Roussett’s (2000) theoretical model does not include 

many features of the dispersal and colonization biology of dogwoods, and given 

that population genetic equilibrium is unlikely in GSMNP, estimation of  

demographic parameters (e.g., genetic neighborhood size, mean dispersal 

distance) were not attempted. Rather, this analysis was used to descriptively 

evaluate the kind of fine-scale, continuous genetic differentiation that is not 

captured by other analyses, which assume discrete demes or genetic clusters. 

Results 
 

Nineteen microsatellite loci were genotyped in each of 194 individuals of 

flowering dogwood, revealing a total of 233 unique alleles. Between nine and 18 

alleles per locus with an average of 12 alleles per locus were detected. The 

observed frequency of heterozygotes (Ho) in the total sample was 0.384, which 

deviated from the expected calculated heterozygosity (He) of 0.829. Total gene 

diversity (expected heterozygosity) was 0.841 (Table 3-3, in appendix). The 

discrepancy between these numbers implies substantial population structure (or 

a systematic genotyping error, see below). All microsatellite loci were 
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polymorphic across sampling localities. The average allelic richness across all 

loci was 11.4 (calculated by rarefaction to 81 individuals or 162 gene copies per 

population) (Table 3-3, in appendix). The average private allelic richness was 

0.78 (0.92 for northern and 0.64 for the southern area of the park). 

STRUCTURE analysis resulted in a clear maximum for ∆k at k =2 [two 

different clusters (Figures 3-3 and 3-4, in appendix)]. Multiple runs of the same k, 

used in this analysis, produced highly consistent individual assignment 

probabilities. These clusters were more or less spatially contiguous and 

corresponded well to the a priori grouping of trees into “northern” (above the 

Appalachian trail) and “southern” (below the Appalachian trail) groups (Figure 3-

4, in appendix). The greatest evidence of gene flow between the two groupings  

was in the Abrams Creek area near the Little Tennessee River gorge at the west 

end of the mountain range, and in the Chattahoochee area near the French 

Broad River gorge at the east end of the mountain range. 

AMOVA analysis indicated that most of the genetic variance can be 

explained by individual variation rather than divergence across the dividing ridge: 

97.31 and 2.69% respectively, corresponding to FST = 0.027 (Table 3-4, in 

appendix). However, average deviation from Hardy-Weinberg expectations (FIS) 

for both populations was 0.537, a significant deficit of heterozygotes (see 

discussion for additional explanations). The heterozygote deficiency was 

common to all markers (Table 3-3, in appendix), implying a population-level 

explanation (nonrandom mating) rather than a marker-specific explanation 

(selection or null alleles).  
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Analysis of isolation by distance across all samples showed significant 

correlation between genetic and geographic distance (r=0.151, P < 0.0001 and 

r=0.143, P < 0.0001, for populations south and north of the Appalachian trail, 

respectively), supporting the interpretation of spatial structure within the groups 

owing to restricted pollen flow. 

Discussion 
 
 The patterns of genetic diversity and structure of native flowering dogwood 

populations showed evidence of high levels of genetic diversity within 

populations on both sides of the main ridge in the GSMNP, significant but low 

genetic differentiation between these populations, and evidence of substructure 

and isolation by distance within populations. This finding is consistent with other 

comparative surveys based on molecular markers suggesting that trees are more 

likely to have reduced among-population differentiation and increased within-

population genetic diversity when compared to herbaceous plants and shrubs 

(Hamrick and Godt 1996; Nybom 2004; Petit and Hampe 2006). This is because 

of their obligate outcrossed mating system, extensive gene flow and diversifying 

selection, and large effective population sizes (Petit and Hampe 2006; Dubreuil 

et al. 2010). Flowering dogwoods are obligate outcrossers with gametophytic 

self-incompatibility (Reed 2004), which enforces a degree of disassortative 

mating and maintenance of local genetic variation. As a self-incompatible 

species, genetic variation of flowering dogwood is expected to be greater within 

populations than between populations when compared with self-compatible 
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species (Hamrick and Godt 1989; Leimu et al. 2006), which was confirmed in this 

study.  

 Substantial population structure for both northern (north of the 

Appalachian trail) and southern (south of the Appalachian trail) populations 

suggests strong limitations to gene flow across the main ridge of the Great 

Smoky Mountains. This pattern of variation implies a population-level explanation 

(nonrandom mating) that occurs between related individuals despite wide 

dispersal of seeds. In this study, significant heterozygote deficiencies were 

shown across all loci further suggesting that populations may not be panmictic. 

However, this result needs to be analyzed additionally because of constrains and 

limitations of QIAxcel system and allele scoring when compared to most 

commonly used capillary electrophoresis devices such as CEQTM 8000 (CEQ 

8000:Genetic Analysis System, Beckman Coulter, USA) and ABI 3100xl DNA 

Sequencer (ABI 3100xl: Applied Biosystems, USA), the QIAxcel System (Qiagen, 

USA). Preprogrammed methods, combined with the corresponding disposable 

gel cartridges, allow separation and analysis of a variety of nucleic acids, 

including single or multiple PCR fragments, DNA digested with restriction 

endonucleases, synthesized oligonucleotides, total RNA, and cRNA 

(http://www.qiagen.com). When compared to two previously mentioned 

instruments, QIAxcel system is a relatively inexpensive machine since it utilizes 

disposable 12 micro-channel cartridges containing sieving-gel matrix with 

ethidium bromide dye to generate both gel image view and an electropherogram 

of the separated PCR products (Wang et al. 2009). Wang et al. (2009) compared 
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five different electrophoresis methods used in microsatellite studies and reported 

advantages and disadvantages of each including QIAxcel system, agarose and 

polyacrylamide gels, as well as CEQTM and ABI. Both CEQTM and ABI showed 

clear separation of products and were able to detect single base polymorphism. 

However, both high resolution systems are significantly more expensive when 

compared to other examined methods (Wang et al 2009). The QIAxcel system 

when compared to CEQTM and ABI showed lower resolution (2-4 bp difference) 

limiting possibility of showing heterozygotes that are 1-3 bp apart. Because of 

this, we believe that our calculations of heterozygote deficit may be 

overestimated and further analysis is necessary.  

 One of the biggest advantages of using  QIAxcel system are the fact it is 

cost effective (20% of the price of CEQTM or ABI) and less labor intensive then 

other systems due to its minimal input volumes and automated loading and 

analysis. QIAxcel system offers higher detection sensitivity and rapid analysis of 

96- well plate (approximately 2 h), resulting in automatic gel image view and 

possibility of automatic data export using Biocalculator software. Additionally, 

only small amounts of nucleic acid concentrations (as low as 0.1 ng/µl) are 

needed for system detection. Although small amounts of nucleic acid are needed 

to obtain results, resolution is between 3-5 bp.  

 The results obtained using classical population genetics were supported 

by Bayesian model-based clustering analysis. STRUCTURE identified two 

contiguous clusters that corresponded well to the a priori grouping of trees. This 
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result is unlikely to be an artifact of genotyping error, which would affect each 

region equally. 

 Flowering dogwood fruits (shiny, dark-red drupe, usually single seeded), 

are used as a food source by migratory birds and are likely to be deposited many 

kilometers from their sources (Trigiano, personal comm.). There are several 

ways in which long-distance seed dispersal can occur and they include 

vertebrate-mediated (by adhesion or ingestion), wind-mediated, and water-

mediated seed dispersal (Yan et al. 2009). Since seeds are the only mean of 

natural propagation for flowering dogwood trees, frugivorous birds are important 

agents of seed distribution, carrying seeds in their bowels for up to 24 hours. This 

complies with the fact that broadscale, genetically autocorrelated dispersal of 

fruits in which large sets of seeds from a local area might all experience the 

same long-distance dispersal events, but possibly localized dispersal of pollen. 

Forest management or fragmentation can indeed influence pollen movement in a 

species pollinated by generalist pollinators (Sork et al. 2005). They estimated 

that pollen movement in both insect-pollinated C. florida and wind-pollinated 

Pinus echinata Mill. (Dyer 2002) is most restricted in the uncut sites and highest 

in the clear-cut sites (Sork et al. 2005).  

 In most models of population genetics, each offspring is assumed to have 

an independent dispersal path. However, seed dispersal in fruiting trees might 

not be independent for several reasons. Genetically autocorrelated dispersal 

might create a distinctive population structure, especially in species with highly 

dynamic spatial distributions. Genetic structure in species with animal-mediated 
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seed dispersal may depend on the type of fruit involved and the behavior of 

individual dispersers. Contrary to large, single seeded fruits in woody species 

where no clear genetic structure has been found, seedlings and/or adult plants in 

which birds may move seeds in groups of half- or full-siblings (kin-structured 

seed dispersal) through seed catching or multiseeded smaller fruits, showed 

clear fine-scale genetic structure (Torimaru et al. 2007). First, related individuals 

will be dispersed in groups (in the bowels of frugivorous birds due to repeated 

feeding off the same tree). Second, flocks of birds feeding on the same local set 

of trees might tend to move a large propagule en masse a long distance before 

depositing seeds all together in a new location. If these events tend to found new 

stands (e.g., after large disturbances due to fire, improper forest management or 

severe die-offs created by disease outbreaks), rather than join existing stands, a 

shifting mosaic of genotypic clusters with little large-scale isolation by distance,  

but significant small scale spatial-genetic autocorrelation could be established.   

 The migration of seed has the potential to introduce novel alleles into a 

population, thereby increasing genetic diversity and slowing the rate of 

divergence within the population. Subtle, but statistically significant difference in 

allele frequencies across the main dividing ridge of the Great Smoky Mountains 

was observed. Allele frequencies and genetic diversity in newly colonized 

populations could be negatively altered, too, considering that immigrant seeds 

may carry only a small portion of alleles from the source population. The founder 

event can be associated with a decline in genetic diversity, where most common 

alleles will more likely prevail and reduce frequency of rare alleles in the 
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population. Besides the number of founding propagules in comparison to 

migrants among existing populations, other factors such as kin structure and 

inbreeding within the colonizing populations, as well as the rate of population 

growth and immigration after colonization, can impact allele frequencies and 

genetic diversity in newly colonized populations. Since kin-structured seed 

dispersal can generate spatial aggregations of related individuals, it is likely to 

lead to evolutionary phenomena in which the spatial distribution of related 

individuals is important (biparental inbreeding depression and kin selection) 

(Torimaru et al. 2007). 

 Flowering dogwood trees are native to the United States (Witte et al. 

2000) and therefore are important components of the forests they inhabit for both 

ornamental value during all seasons and as an important source of food for 

wildlife. Although high mortality rate and reduced fecundity caused by dogwood 

anthracnose severely affected native populations throughout the entire GSMNP, 

this study confirmed that considerable genetic diversity of flowering dogwoods 

exists at the population level. The study also implies that there is limited gene 

flow across the main ridge of the Great Smoky Mountains indicating nonrandom 

mating that occurs between related individuals despite wide dispersal of seeds. 

While the impact of dogwood anthracnose on genetic diversity may be small, 

consequences for flowering dogwood population viability and the community 

structure of eastern North American forests are still of great concern (Daughtre 

and Hibben 1994; Lande 1988). However, more research is needed on the 
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ecology of post-die-off recovery as well as disease and special ecology and 

population dynamics in widespread populations of flowering dogwood.  
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Appendix 3: Tables 

Table 3-1. Cornus florida sampling locations throughout Great Smoky Mountains National Park, United States with GPS 
coordinates and trail/road location within the park. 
 

Sample Location Latitude Longitude 
Altitude 
(meters)  

BC NC 1 Big Creek Parking Lot, NC 35.752883 -83.109417 564 
BC NC 2 Baxter Creek Trail, NC 35.749383 -83.113267 557 
BC NC 3 Bridge near Baxter Creek Trail 35.750900 -83.108750 550 
BC NC 4 Big Creek Camping Site 35.749900 -83.112350 572 
BC NC 5 Big Creek Trail 35.749783 -83.115533 560 
BC NC 6 Big Creek Trail 35.750200 -83.115583 551 
CBT 7 Chestnut Branch Trail, NC 35.759717 -83.120233 546 
CBT 8 Chestnut Branch Trail, NC 35.759517 -83.120233 549 
CBT 9 Chestnut Branch Trail, NC 35.765500 -83.132950 813 
CBT 10 Chestnut Branch Trail, NC 35.764950 -83.131617 816 
RD 11 Road to Mt. Sterling Gap 35.751650 -83.094500 686 
RD 12 Road to Mt. Sterling Gap 35.749367 -83.094717 696 
RD 13 Road to Mt. Sterling Gap 35.721317 -83.086333 978 
RD 14 Road to Mt. Sterling Gap 35.698983 -83.097467 1266 
CP 15 Cosby Picnic Area 35.756750 -83.208600 699 
CP 16 Cosby Picnic Area 35.757767 -83.209500 671 
CP 17 Cosby Picnic Area 35.757150 -83.207883 668 
LGT 18 Low Gap Trail 35.754900 -83.207217 750 
LGT 19 Low Gap Trail 35.754167 -83.206950 743 
LMC 20 Lower Mountain Cammerer 35.755533 -83.198950 774 
LMC 21 Lower Mountain Cammerer 35.757883 -83.195500 588 
CCG 22 Cosby Campground 35.752133 -83.206967 824 
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Table 3-1 Continued.    

Sample Location Latitude Longitude 
Altitude 
(meters)  

CCG 23 Cosby Campground 35.752750 -83.210067 769 
SDT 24 Snake Dan Trail 35.752150 -83.210467 799 
CR 25 Cosby Road 35.759583 -83.209450 712 
CR 26 Cosby Road 35.783533 -83.218433 556 
HWY 32 #27 Highway 32 35.783783 -83.203167 543 
HWY 32 #28 Highway 32 35.787233 -83.147650 686 
HWY 32 #29 Highway 32 35.774883 -83.112500 628 
HWY 32 #30 Highway 32 35.766300 -83.111067 602 
G 31 Greenbriar 35.737867 -83.416250 468 
G 32 Greenbriar 35.733033 -83.410633 464 
G 33 Greenbriar 35.729700 -83.406533 495 
G 34 Greenbriar 35.726633 -83.401683 511 
G 35 Greenbriar 35.727283 -83.400917 513 
GPA 36 Greenbriar Picnic Area 35.712367 -83.384267 511 
GRT 37 Grapeyard Ridge na na na 
RCT 38 Greenbriar Rd towards Ramsey Cascades  na na na 
RCT 39 Greenbriar Rd towards Ramsey Cascades  na na na 
RCT 40 Ramsey Cascades Trail 35.705350 -83.356300 1007 
RCT 41 Ramsey Cascades Trail 35.705950 -83.353033 992 
RCT 42 Ramsey Cascades Trail 35.702233 -83.347667 812 
OST 43 Old Settlers Trail 35.708200 -83.380367 548 
OST 44 Old Settlers Trail 35.710533 -83.381583 549 
OST 45 Old Settlers Trail 35.714883 -83.382100 550 
OST 46 Old Settlers Trail 35.717417 -83.377500 551 
PCT 47 Road towards Porter Creek Trail na na na 
PCT 48 Porter Creek Trail 35.696367 -83.388550 644 
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Table 3-1 Continued.    

Sample Location Latitude Longitude 
Altitude 
(meters)  

PCT 49 Porter Creek Trail 35.690917 -83.391917 638 
PCT 50 Porter Creek Trail 35.684383 -83.396400 756 
BMT 51 Brushy Mountain Trail 35.686400 -83.398100 747 
BMT 52 Brushy Mountain Trail 35.686517 -83.400567 743 
RMNT 53 Low Gap Road 35.717983 -83.486483 465 
RCC 54 Road to Cades Cove 35.659017 -83.709283 411 
RCC 55 Road to Cades Cove 35.643050 -83.713733 418 
SHG 56 Schoolhouse Gap 35.630100 -83.732033 415 
SHG 58 Schoolhouse Gap 35.634933 -83.732100 558 
SHG 59 Schoolhouse Gap 35.638467 -83.738200 556 
SHG 60 Schoolhouse Gap 35.643883 -83.747983 645 
CTT 61 Chestnut Top Trail 35.646550 -83.746550 646 
CTT 62 Chestnut Top Trail 35.648333 -83.743017 715 
CTT 63 Chestnut Top Trail 35.651000 -83.735117 717 
RTR 64 Rd. to Treemont 35.653117 -83.701200 561 
RTR 65 Rd. to Treemont 35.650583 -83.696267 434 
RTR 66 Rd. to Treemont 35.642117 -83.692083 439 
WPT 67 West Prong Trail 35.641050 -83.695067 454 
GTR 68 Gravel Rd. to Treemont 35.628717 -83.685050 456 
GTR 69 Gravel Rd. to Treemont 35.623300 -83.682067 516 
GTR 70 Gravel Rd. to Treemont 35.622200 -83.674383 554 
MPT 71 Middle Prong Trail 35.609500 -83.671183 646 
MPT 72 Middle Prong Trail 35.607317 -83.667750 644 
LR 73 Little River Rd. 35.662717 -83.701200 645 
LR 74 Little River Rd. 35.668533 -83.691633 640 
LR 75 Little River Rd. 35.668533 -83.683567 632 
MCT 76 Meig's Creek 35.670517 -83.660933 719 
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Table 3-1 Continued.    

Sample Location Latitude Longitude 
Altitude 
(meters)  

MBP 78 Metcalf Bottoms Picnic Area 35.679467 -83.648383 552 
LBI 79 Little Briar Trail 35.686367 -83.638983 591 
AWC 80 Alice Walker Cabin 35.695083 -83.629567 648 
LR 81 Little River Rd. 35.672817 -83.640933 548 
LR 82 Little River Rd. 35.670400 -83.626583 658 
CC 83 Cades Cove 35.606167 -83.776300 634 
CC 84 Cades Cove 35.606967 -83.787367 560 
CC 85 Cades Cove 35.605517 -83.801767 550 
CC 86 Cades Cove 35.607700 -83.825400 607 
CC 87 Cades Cove 35.597533 -83.842867 558 
RCT 88 Rabbit Creek Trail 35.585900 -83.865533 629 
RCT 89 Rabbit Creek Trail 35.585950 -83.869183 608 
RCT 90 Rabbit Creek Trail 35.587283 -83.876717 813 
AF 91 Abram Falls 35.600517 -83.865967 637 
AF 92 Abram Falls 35.607600 -83.873133 534 
AF 93 Abram Falls 35.608333 -83.879400 531 
AF 94 Abram Falls 35.609233 -83.879400 525 
AF 95 Abram Falls 35.591333 -83.853433 523 
CCRA 96 Cades Cove 35.584917 -83.842933 564 
CC 97 Cades Cove 35.588783 -83.835433 565 
CC 98 Cades Cove 35.589267 -83.817533 574 
CC 99 Cades Cove 35.588300 -83.802617 574 
CC 100 Cades Cove 35.597750 -83.787683 600 
LBT 101 Little Bottom Trail 35.614083 -83.929883 404 
CRT 102 Cooper Road Trail 35.624967 -83.916433 403 
CRT 103 Cooper Road Trail 35.628417 -83.911967 402 
GMT 104 Goldmine Trail 35.635383 -83.905450 489 
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Table 3-1 Continued.    

Sample Location Latitude Longitude 
Altitude 
(meters)  

CRT 105 Cooper Road Trail 35.637783 -83.898817 446 
CRT 106 Cooper Road Trail 35.634200 -83.894333 568 
CRT 107 Cooper Road Trail 35.626300 -83.883350 502 
HMT 108 Hatcher Mountain Trail 35.619433 -83.890350 644 
LBT 110 Little Bottom Trail 35.609817 -83.900133 492 
LBT 111 Little Bottom Trail 35.611400 -83.905317 427 
LBT 112 Little Bottom Trail 35.616617 -83.912450 422 
LBT 113 Little Bottom Trail 35.619517 -83.919033 413 
WRT 114 Walf Ridge Trail na na na 
TML 115 Twenty Mile Loop 35.484783 -83.865567 643 
TML 116 Twenty Mile Loop 35.483533 -83.861100 826 
TML 117 Twenty Mile Loop 35.484117 -83.849700 821 
McKee 118 McKee Branch Trail 35.597933 -83.103400 265 
Caldwell 119 Caldwell Fork Trail 35.597933 -83.103400 265 
McKee 120 McKee Branch Trail 35.595383 -83.099050 278 
McKee 121 McKee Branch Trail 35.585950 -83.088533 352 
Hemphill 122 Hemphill Bald 35.582033 -83.114600 323 
Caldwell 123 Caldwell Fork Trail 35.585750 -83.120400 299 
Caldwell 124 Caldwell Fork Trail 35.585750 -83.120400 299 
Caldwell 125 Caldwell Fork Trail 35.585750 -83.120400 299 
Caldwell 126 Caldwell Fork Trail 35.585750 -83.120400 299 
Rough 127 Rough Fork Trail 35.593650 -83.139617 332 
Rough 128 Rough Fork Trail 35.607450 -83.128217 264 
Rough 129 Rough Fork Trail 35.607450 -83.128217 264 
Rough 130 Rough Fork Trail 35.616733 -83.121567 251 
Rough 131 Rough Fork Trail 35.616733 -83.121567 251 
Cat 132 Cataloochee Road 35.622317 -83.117567 246 
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Table 3-1 Continued.    

Sample Location Latitude Longitude 
Altitude 
(meters)  

Cat 133 Cataloochee Road 35.627183 -83.110017 244 
Cat 134 Cataloochee Road 35.628700 -83.099900 239 
Cat 135 Cataloochee Road 35.634067 -83.083983 236 
BF 136 Bradley Fork 35.569267 -83.309883 818 
BF 137 Bradley Fork 35.605083 -83.328467 808 
CC 138 Chasteen Creek 35.607267 -83.292083 1345 
CC 139 Chasteen Creek 35.586533 -83.310683 795 
CC 140 Chasteen Creek 35.586533 -83.310683 795 
CC 141 Chasteen Creek 35.578000 -83.312750 745 
Scamp 142 Smokemont Campground 35.561767 -83.312500 690 
Scamp 143 Smokemont Campground 35.561767 -83.312500 690 
Entrance 144 Entrance to Smokemont 35.552633 -83.308983 680 
MMP 145 Mingus Mill Parking 35.552583 -83.309100 680 
MMP 146 Mingus Mill Parking 35.552583 -83.309100 680 
Ocntr 147 Oconaluftee Center 35.520867 -83.309017 645 
US 441 #148 US 441 35.532950 -83.303633 640 
TSR 149 Tow String Road 35.542383 -83.297467 650 
TSR 150 Tow String Road 35.542450 -83.297417 650 
US 441 #151 US 441 35.554383 -83.314817 695 
US 441 #152 US 441 35.563450 -83.329967 710 
US 441 #153 US 441 35.563450 -83.329967 710 
CCP 154 Collins Creek Picnic 35.563350 -83.330100 710 
CCP 155 Collins Creek Picnic 35.568050 -83.338550 765 
US 441 #156 US 441 35.588600 -83.364267 870 
BMR 157 Balsam Mtn. Rd. 35.615283 -83.212417 940 
BMR 158 Balsam Mtn. Rd. 35.615283 -83.212417 940 
BMR 159 Balsam Mtn. Rd. 35.615283 -83.212417 940 
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Table 3-1 Continued.    

Sample Location Latitude Longitude 
Altitude 
(meters)  

BMR 160 Balsam Mtn. Rd. 35.615283 -83.212417 940 
BMR 161 Balsam Mtn. Rd. 35.610033 -83.221667 905 
BMR 162 Balsam Mtn. Rd. 35.609917 -83.221517 900 
BMR 163 Balsam Mtn. Rd. 35.589183 -83.235583 825 
BMR 164 Balsam Mtn. Rd. 35.586800 -83.236117 810 
DCR 165 Deep Creek Rd. 35.460750 -83.436817 545 
DCHT 166 Deep Creek Horse Trail 35.466150 -83.434133 600 
DCHT 167 Deep Creek Horse Trail 35.471550 -83.435050 675 
DCT 168 Deep Creek Trail 35.473600 -83.430283 595 
DCT 169 Deep Creek Trail 35.472317 -83.428600 590 
DCC 170 Deep Creek Campground 35.461433 -83.434983 560 
DCR 171 Deep Creek Rd. 35.460750 -83.435050 560 
FET 172 End Tunnel 35.461483 -83.544000 645 
173 Lakeshore Trail 35.470033 -83.558367 605 
174 Lakeshore Trail 35.466333 -83.558367 600 
175 Lakeshore Trail 35.460200 -83.564050 600 
176 Lakeshore Trail 35.456550 -83.576633 575 
177 Lakeshore Trail 35.457867 -83.585733 580 
179 Lakeshore Trail 35.453983 -83.564717 580 
180 Lakeshore Trail 35.448017 -83.608017 555 
181 Lakeshore Trail 35.445167 -83.622400 510 
182 Lakeshore Trail 35.446483 -83.635750 515 
183 Lakeshore Trail 35.445000 -83.648783 540 
184 Lakeshore Trail 35.440683 -83.659450 580 
185 Lakeshore Trail 35.446817 -83.665950 510 
186 Lakeshore Trail 35.445833 -83.676967 635 
187 Lakeshore Trail 35.446317 -83.689900 590 
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Table 3-1 Continued.    

Sample Location Latitude Longitude 
Altitude 
(meters)  

188 Lakeshore Trail 35.454267 -83.694600 555 
189 Lakeshore Trail 35.451300 -83.703500 550 
190 Lakeshore Trail 35.451217 -83.703483 550 
191 Lakeshore Trail 35.472983 -83.722967 555 
192 Lakeshore Trail 35.478950 -83.739833 585 
193 Lakeshore Trail 35.483867 -83.759100 660 
194 Lakeshore Trail 35.482250 -83.781267 590 
195 Lakeshore Trail 35.482233 -83.781150 590 
196 Lakeshore Trail 35.465550 -83.791267 540 
197 Lakeshore Trail 35.465483 -83.791400 550 
198 Lakeshore Trail 35.461050 -83.811283 595 
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Table 3-2. Primer information for 19 microsatellite loci used to analyze 194 Cornus florida samples collected in Great 
Smoky Mountains National Park, United States. 
 

Locus Primer sequences (5’−3’) 

GenBank 
accesion 
number 

Expected 
size (bp) 

CF 020 F: TATGGCTTGCTTTGGCTAATTGTT  ED651708 144 
 R: CCAACTTATGCACACAGTGACACA    

CF 025 F: ATTATTTTTCGGGACCATTGCAT  ED651711 158 
 R: CGGCTAAGAAAATATGTCCCTTTGT    

CF 046 F: TGCAATTGACATTTGTTGCATTTT ED651730 151 
 R: CAACTACGTGATCAGGTGGACAAC    

CF 072 F: AAACACCCCACTGCCATATAATGT  ED651755 132 
 R: CCATATGGGACCCAGTGATTTTA    

CF 091 F: GCACTAGTATAAAAACATACGCGCC  ED651772 143 
 R: TGCCTACATGGTAGCATTCCTTTT    

CF 100 F: CCAAAGGCTATGAATTTACGATGC  ED651777 112 
 R: GATGCAGTCTTAATCCTCAACGTG    

CF 121 F: CCCGAAAATCAAATATGGTAAATAAGTG  ED651797 154 
 R: CTCTCTTAAACCACCTTTTGATGTGA   

CF 203 F: TCCTACGCACCCACCCTTAT  ED651865 135 
 R: ACGGTGGTGCCATTCTTTCT    

CF 209 F: TACAAAAGTGCAATGCCAATACC  ED651871 197 
 R: ACTCCAAAACTTCATTCCTGAGC    

CF 214 F: TGCAAATGGTTATTGATTGCTCTC  ED651874 129 
 R: ATTTGTTTCCCATGACCTGAAAGA    

CF 261 F: GGACATGTGGGCAGTTTGAT  ED651912 143 
 R: GCAATGAGATCCCTCCCCTA    

CF 262 F: ATGACAAATGGCAAGTTGATGTTG  ED651913 197 
 R: CAACTGTGACTCAATTCATGTCTGC    
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Table 3-2 Continued.   

Locus Primer sequences (5’−3’) 

GenBank 
accesion 
number 

Expected 
size (bp) 

CF 267 F: TTGGGTAGGTGAGGGAATTTAGGT  ED651915 95 
 R: TGCTATTACACATTTACCCCTGCC    

CF 290 F: GGTGGATCAAAACCCACAAATAAG  ED651936 153 
 R: CCTATAGCCCAGCGAGAGTCTTTA    

CF 398 F: CCTCGCTTAATTCATATACTTCTT  ER870420 156 
 R: AATAAAAGTTTGTATGAACTGCAC    

CF 488 F: CTCAAAATCACCCTTCTTATATCT  ER870510 114 
 R: GATAGTTCACAAGCAATGTTACTG    

CF 597 F: AAGTCAGATCATTTCAGATTAACA  ER870619 107 
 R: CGAATTGACGATAAATACAAAATA    

CF 599 F: TATGGTTTTCTTTTTCTTCTTTTT ER870621 150 
 R: ACCTAATAAAGGATGTTGGATAAG   

CF 862 F: AAGTGAGAGGAGAATGCTACAG ED652042 150 
  R: GCGTATTCACAAACTTGATTG     
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Table 3-3. Nei’s estimation of heterozygosity across all loci in Cornus florida 
populations was computed using FSTAT version 2.9.3.  HP-Rare version 1.0 was 
used for allelic richness calculations.  Allelic richness (AR) for both populations, 
observed heterozygosity (Ho), expected heterozygosity (gene diversity) under 
Hardy Weinberg equilibrium (He), total expected heterozygosity (Ht), inbreeding 
coeficient (FIS). 

 

Locus A R     Ho     He     Ht    FIS 
 Pop1 Pop2     
       

CF20 13.684 11.997 0.618 0.901 0.902 0.314 
CF25 9.893 9.820 0.124 0.689 0.724 0.821 
CF46 11.934 10.832 0.232 0.851 0.854 0.728 
CF72 17.957 12.915 0.465 0.911 0.911 0.49 
CF91 7.843 7.840 0.047 0.725 0.755 0.935 
CF100 9.000 9.850 0.45 0.86 0.868 0.476 
CF121 9.931 8.975 0 0.574 0.61 1 
CF203 11.861 12.508 0.559 0.859 0.875 0.35 
CF209 8.979 8.931 0.641 0.81 0.813 0.209 
CF214 16.812 15.984 0.408 0.917 0.916 0.555 
CF261 14.000 12.982 0.46 0.919 0.918 0.499 
CF262 13.861 13.998 0.551 0.915 0.915 0.398 
CF267 7.998 10.567 0.346 0.714 0.762 0.516 
CF290 13.858 14.841 0.601 0.862 0.862 0.303 
CF398 9.000 8.000 0.105 0.762 0.776 0.862 
CF488 11.820 11.973 0.615 0.899 0.899 0.316 
CF597 11.844 12.976 0.573 0.896 0.895 0.36 
CF599 9.000 10.000 0.137 0.848 0.87 0.838 
CF862 9.931 8.910 0.358 0.839 0.844 0.573 

       
Overall 11.537 11.258 0.384 0.829 0.841 0.537 
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Table 3-4. Estimates of Analysis of Molecular Variance (AMOVA) from Cornus florida microsatellite data using Arlequin 
(version 3.1).  This analysis included all sampling sites as one hierarchical group. 
         

Variance partition     d.f. Sum of squares         Variance component     % of variation           P v alue 
 
Among populations     1               32. 958         0.14323 Va                2.69  <0.0001 
 
Within populations 386            1997.122          5.17289 Vb              97.31  <0.0001 
 
Total                387    2030.080                 5.31712 
 
Fixation Index      Fst:      0.027 
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Appendix 4: Figures 
 
Figure 3-1. Confirmed cases of dogwood anthracnose for the past three 
decades.  Dogwood anthracnose data courtesy of United States Department of 
Agriculture (USDA) - Forest Service-Forest Health Protection; distribution map 
courtesy of United States Geological Survey (USGS). 
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Figure 3-2.  Cornus florida sampling locations in the Great Smoky Mountains 
National Park.   
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Figure 3-3. Delta K (∆k) calculations for unbinned (a and c) and binned (b and d) 
data. Determination of the number of clusters (k) vs. the second order rate of 
change in k (∆k) (upper 2 graphs). The clear maximum for ∆k at k=2 indicates 
that two clusters fit the microsatellite data best for Cornus florida populations. 
The number of clusters (k) vs. the negative natural log of the likelihood [-ln 
(likelihood)] of the microsatellite data (lower 2 graphs).
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Figure 3-4. Bar plots showing Bayesian assignment probabilities using software STRUCTURE 2.2 for two clusters (K=2) 
(Cluster 1–north of Appalachian trail and Cluster 2 –south of Appalachian trail). The proportion of each bar that is red or 
green indicates the assignment probability of Cornus florida individuals to each of the two clusters, respectively.
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