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ABSTRACT 

 

High doses of radiation (HDR) are clearly detrimental to human health, but relatively little 

is known about the health consequences following exposure to low doses of radiation (LDR, 

<10cGy). Understanding the risks associated with LDR is of great importance to the general 

public due to the recent dramatic increase in diagnostic radiological imaging. While HDR clearly 

suppress immune function, there is evidence that LDR can be immunostimulatory. Within the 

organism, defining the consequences of LDR is further complicated by the impact of genetic 

background, particularly in systems such as the immune system for which both radiosensitivity 

and genetic effects are profound. 

We addressed the issue of genetic susceptibility to LDR using the immune system as a 

target system and treated the LDR response as a complex trait analyzed using a systems 

genetics framework. Using the BXD recombinant inbred strain mouse panel as a genetic 

reference population allowed us to address the radiation response within the context of natural 

genetic variation. Our overarching hypothesis is that, within a population, the immunological 

effects of LDR exposure depend in part on the individual‟s baseline immunoprofile and gene 

expression which are ultimately dependent upon genetic background. We began by establishing 

the immunophenotypic variation (i.e., T:B cell ratio, CD4:CD8 ratio) within the BXD panel and 

used baseline spleen transcriptome profiling to identify putative candidate genes controlling 

these traits, specifically Acp1 and Ptprk for CD4:CD8 ratio. The same set of BXD strains was 

exposed to LDR (10cGy gamma radiation) to determine effects on immune function and 

oxidative stress. LDR significantly enhanced neutrophil phagocytosis in a manner that was 

independent of genetic background. In contrast, genetic background significantly impacted LDR-

induced changes in spleen superoxide dismutase activity.  
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By integrating these results with our previous analyses of BXD RI strains, we have 

demonstrated that baseline expression of Sod2 correlates with LDR-induced SOD activity, and 

baseline CD4:CD8 ratio is inversely correlated with LDR-induced neutrophil phagocytosis. In 

addition, spleen transcriptomic data from the BXD parental strains further highlighted the impact 

of genetic background on LDR responses. These data provide the groundwork for predicting 

LDR responses using baseline expression, immunophenotypes, and/or genotype.  
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CHAPTER I 

GENERAL EXPERIMENTAL DESIGN  

 

Our goal is to identify networks of genes which underlie basic immune phenotypes, 

determine the effect of low dose radiation (LDR, 10cGy) on immune function, and characterize 

how genetic background impacts immune function and causes differential susceptibility to LDR. 

The ultimate purpose is to identify genomic regions that mediate response to LDR and 

eventually be able to predict an individual‟s susceptibility to LDR based on their genotype at 

those loci.  

The LDR response is viewed as a complex trait which is analyzed using a systems 

genetics framework. Systems genetics is both an analytical framework through which to 

assemble gene-phenotype networks and a means to uncover genetic polymorphisms that cause 

variation in these networks and lead to variable disease susceptibility. The use of a genetic 

reference population, the BXD recombinant inbred (RI) strain panel, allows us to address the 

radiation response within the context of natural genetic variation. This RI panel provides a 

population-based, genetically characterized model system in which the parental strains 

(C57BL/6J and DBA/2J) exhibit known differential responses to low dose exposure as well as 

divergent sensitivity to radiation carcinogenesis. 

This research involves the first two steps in a larger research program designed to 

create a comprehensive understanding of the molecular pathways and expression networks 

which underlie radiation-response phenotypes and how genetic variation alters these networks 

to result in altered sensitivity to LDR.  

We began by assessing the baseline immunophenotypic variation and spleen 

expression networks in the BXD panel and identified genetic loci responsible for the variation 
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(Part 1). Immunophenotyping was performed on the peripheral blood of mice from 41 BXD 

strains. The lymphocyte subpopulations analyzed included total T cells (CD3+), B cells (CD79+), 

CD4+ T cells, and CD8+ T cells. MHCII expression on lymphocytes was also analyzed. Baseline 

spleen expression analysis was performed on 38 BXD strains (Fig. 1-1) and identified 

expression networks and candidate genes underling the immunophenotypes.  

In the second phase (Part 2), we exposed BXD mice to LDR and assessed neutrophil 

function (e.g., phagocytosis and oxidative burst) and spleen anti-oxidant status (e.g., superoxide 

dismutase activity and glutathione levels) 48 hours after radiation exposure (Fig. 1-2). 

Radiation-induced spleen expression changes were measured in the parental strains (C57BL/6J 

and DBA/2J) 24 hours after exposure to high dose (1Gy) or low dose (10cGy) radiation in order 

to assess differential sensitivity to low dose radiation at the molecular level. The data from Parts 

1 & 2 were then integrated together using graph algorithms and statistical testing to identify 

correlations between baseline immunophenotype and expression and LDR responses within the 

population (Fig. 1-2). 
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Figure 1-1. Experimental design: data collection. Part 1 included baseline immunophenotyping in the peripheral 
blood of 41 BXD strains and baseline spleen expression profiling in 38 strains. Part 2 involved analysis of BXD 
responses to LDR (10cGy γ-radiation) 48 hours after irradiation, including neutrophil function (34 strains) and spleen 
biochemical assays (39 strains). Spleen expression profiling was performed on the BXD parental strains (C57BL6J 
and DBA/2J) 24 hours after LDR. 
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Figure 1-2. Experimental design: data integration. The data collected from Parts 1 & 2 were 
integrated together along with genotype information to perform quantitative trait loci mapping 
(QTL) of the baseline immunophenotype and LDR responses as well as to identify inter-
correlated traits. 
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CHAPTER II 

LITERATURE REVIEW 

General radiation biology 

Radiation biology overview 

Almost twenty years after the initial discovery of x-rays by Wilhelm Conrad Röntgen in 

1895, the Drosophila geneticist Herman Müller demonstrated that ionizing radiation causes 

mutations in living organisms (185). In the 80 years since that discovery, the biological and 

genetic consequences of exposure to ionizing radiation (IR) have been investigated.  

In order to understand the biological effects of radiation exposure, a basic understanding 

of radiation is needed. Ionizing radiation, which consists of subatomic particles (i.e., alpha 

particles, beta particles, neutrons) or electromagnetic waves (e.g., x-rays, γ-radiation, ultraviolet 

radiation), contain enough energy to displace electrons and break chemical bonds. Here, we 

primarily focus on the biological effects from x-ray and γ-radiation, both of which are 

characterized as low linear energy transfer (low-LET) radiation. In contrast to high-LET 

radiations, low-LET radiations produce ionizations only sparsely along their tract, resulting in a 

more homogenous ionization within the cell. Because high-LET radiation deposits a larger 

amount of energy per distance traveled, it induces more cellular and molecular damage per 

dose than low-LET radiation.  

The International Commission on Radiation Units and Measurements (107) defines 

radiation exposure units. The unit of absorbed radiation dose is the gray (Gy), defined as the 

energy absorbed per unit of mass. One Gy of ionizing radiation delivers 1 joule of energy per 

kilogram of matter (J/kg). Radiation dose is also commonly expressed as an “effective dose”, 

which is used to reflect the biological effects of radiation, e.g., high-LET radiation induces more 
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biological damage per Gy than low-LET radiation. Effective dose (measured in sieverts, Sv) 

equals the absorbed dose (in Gy) times the radiation weighting factor (Q) of the radiation type. 

For low-LET radiation, including x-rays and γ-radiation, Q = 1 so the absorbed dose equals the 

effective dose, or 1Gy = 1Sv. 

The study of the health consequences of IR increased dramatically following the 

devastating effects of the atomic bombs which were detonated on Hiroshima and Nagasaki, 

Japan in 1945. The first studies focused on the immediate health detriments following acute 

exposure (23, 61). Additional data for the health consequences of high doses of radiation came 

from documenting the health of firefighters that first responded to the Chernobyl Nuclear Power 

Plant event in 1986 (168).  

Simply stated, the detrimental health effects of exposure to IR are due to the free 

electrons produced when the electromagnetic wave interacts with the atoms of the cell, causing 

damage to the biomolecules and inducing oxidative stress. If the radiation dose is high enough, 

severe damage to the structure of the cell leads to cell death immediately (195). At lower levels, 

DNA damage (either by directly interacting with the DNA macromolecule or indirectly through 

the production of reactive oxygen species) can result in delayed cell death, repair of the DNA 

and restoration of cellular function, or incorrect repair and the possible increase in cancer risk. 

Various non-targeted effects also occur. These effects are discussed in length in following 

sections.  

When exposure to radiation is relatively high (>1Gy acute exposure in humans), the 

symptoms of Acute Radiation Syndrome (ARS) become evident. The three classical syndromes 

of ARS include bone marrow syndrome (or hematopoietic syndrome), gastrointestinal (GI) 

syndrome, and cardiovascular (CV)/ central nervous system (CNS) syndrome (44). 

Hematopoietic syndrome begins with doses between 0.7 – 10Gy and is characterized by the 

destruction of bone marrow which results in infection and hemorrhage. GI syndrome occurs 
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following exposure >6Gy and results in extreme damage to the GI tract leading to dehydration 

and death within weeks. CV/CNS syndrome follows 20 – 50Gy doses, resulting in collapse of 

the circulatory system and increased cranial pressure; death occurs within days. The doses 

required to cause these syndromes reflect the radiosensitivity of the various tissues. The LD50/60, 

or the dose which is lethal to 50% of the population within 60 days, is approximately 4Gy, while 

the LD100 (lethal dose to 100% of the population) is around 10Gy (44).  

Human exposures to radiation 

Humans are exposed to radiation from a variety of natural and manmade sources. 

Natural background radiation sources include radioactive elements within the earth‟s crust, 

radon gas released from the earth, and cosmic rays. Small traces of naturally occurring 

radioactive materials, including 3H, 14C, 20K, can become incorporated into the biomolecules of 

the human body and become a source of internally emitted radiation. According to the United 

Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), the global 

average radiation dose from natural background radiation is approximately 2.4mSv (167, 268). 

The dose from natural background radiation can vary depending upon location. For example, 

inhabitants of Ramsar, Iran are exposed to 5 times more radiation from natural sources than the 

global average (268).  

Radiation exposure in the U.S. population is monitored by National Council on Radiation 

Protection and Measurements (NCRP). The NCRP recently re-assessed the exposure from all 

radiation sources in the U.S., updating their last report published in 1987 which used data from 

1980 to 1982 (189). In the last 30 years, the estimated annual per-capita dose to the U.S. 

population has almost doubled, from approximately 3.0mSv to 5.6mSv (189). While the average 

dose from natural sources has remained constant, there has been a dramatic increase in the 

average radiation dose from medical radiation procedures. This is mainly due to the increased 
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use of computed tomography (CT) scans, and it is estimated that >62 million CT scans are 

performed in the U.S. per year (189). CT scans account for approximately half of collective dose 

from all medical procedures.  

The doses associated with conventional x-ray procedures is relatively low, approximately 

0.1mGy for a typical chest x-ray (Table 2-1) (33). In comparison, a typical abdominal CT scan 

can deliver 50 times more radiation. Spiral CT scanning, which is used for the detection of 

potential disease in asymptomatic individuals, is becoming more common. A full-body spiral CT 

scan can deliver up to 100mGy (184),  although newer techniques are being developed which 

reduces the radiation dose (52). There is intense debate concerning the cancer risk from CT 

scans, an issue which is discussed in detail below. 

Epidemiological data for radiation exposure 

Atomic bomb survivors 

One of the largest cohorts for evaluating radiation risk is the Life Span Study (LSS) 

cohort which consists of approximately 86,000 survivors of the Hiroshima and Nagasaki atomic 

bombs of 1945. A couple of years after the bombings, the U.S. Atomic Bomb Casualty 

Commission was formed and followed the health of survivors, being particularly interested in the 

hematological consequences of the radiation exposure. In 1952, the first paper observing the 

excess of leukemia among the survivors was published (82).The LSS was created shortly 

afterwards to study mortality and cancer incidence among survivors. The Radiation Effects 

Research Foundation (RERF), a non-profit Japanese foundation supported by the U.S. and 

Japanese governments, oversees the LSS. The advantages of the LSS cohort is its large size, 

the long follow-up period after exposure, the inclusion of both sexes and all age groups, the 

range of radiation dosage, and the accuracy and completeness of mortality data. This data has 

been used to estimate radiation-induced risks for various cancers (and non-cancerous   
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Table 2-1. Approximate mean doses for societally-relevant radiation exposures. 

 

Source Dose 

Radiotherapy to tumor (multiple fractions) 40-70Sv 

Exposure on international space station 170mSv / year 

Upper limit for full-body spiral CT scan 100mSv 

Cranial CT scan 50mSv 

Limit for radiation worker exposure 20mSv / year 

Mammogram 3mSv 

U.S. dose from medical sources 3.0mSv / year 

U.S. dose from natural sources 2.4mSv / year 

Chest x-ray 0.1mSv 

Round-trip flight, New York to London 0.1mSv 

 
 
Data obtained from Brenner, et al., 2003 (32), Mullenders, et al., 2009 (184), and Mettler 
et al., 2009 (167). 
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diseases) across a range of doses. The estimated average for the cohort is estimated to be 

approximately 20cGy (214), although individual exposure varied widely and estimates are poor 

guesses at best. 

The data for the cohort increases over time due to the latent development of cancer and 

due to mortality (and therefore cause of death information) of the bomb survivors. Therefore, the 

LSS continues to be a source for updated epidemiological studies. The radiation-induced cancer 

risk is being continually re-assessed using updated dosing estimates and new modeling 

statistics.  

The most recent report from the RERF on solid cancer and non-cancer disease mortality 

was published in 2003 (214). In the 47-year follow-up, there were 9,335 deaths from solid 

cancer and 31,881 deaths from non-cancer diseases. It was estimated that 5% of the solid 

cancer deaths were associated with radiation exposure, noting that relative risks decline with 

increasing attained age and are highest in those who were exposed as children. This could 

translate into a 47% increased risk for the development of solid cancer by age 70 for those 

exposed to the radiation at 30 years of age (214).  

Pierce & Preston specifically analyzed cancer risk of low radiation doses in the LSS 

(211). Their study included 7,000 cancer cases among 50,000 survivors, most of whom 

received a dose less than 0.5Sv. They reported a significant increase in solid-cancer-related 

mortality in individuals who received 5-125mSv (P = 0.025). The authors stress that their data, 

which involved direct assessment of cancer incidence in the low dose cohort, did not involve 

any linear extrapolation. They suggest that other estimates of cancer in the LSS using linear risk 

estimates from a wider exposure range do not overestimate low-dose risks, an issue of intense 

debate in the low dose radiation field.  

A recent study analyzed 310 deaths due to leukemia during period from 1950 – 2000 

among 86,611 in the LSS (216). Using survivors with an estimated exposed dose >0.5cGy as a 
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reference (i.e., “control”), Poisson regression methods were used to evaluate the associations 

between estimated bone marrow radiation dose and leukemia mortality. Overall, the authors 

estimate that 103 of the 310 observed leukemia deaths were due to radiation exposure. They 

also suggest that radiation-induced leukemia death is still persistent in the cohort some 50 years 

after the bombings, a conclusion based on the most recent leukemia deaths.  

The incidence of leukemia and solid cancers among the cohort was recently analyzed by 

Dropkin, where he specifically looked at cancer mortality in survivors exposed to <20mSv (72, 

73). This is within the range of the International Commission on Radiological Protection‟s (ICRP) 

current recommendation for annual occupational radiation dose (maximum average of 20mSv 

per year averaged over 5 years with no single year exceeding 50mSv) (106). He concluded that 

liver and urinary cancer mortality risk follows a linear dose response at the low doses, while the 

risk for 5 other cancers (stomach, liver, lung, pancreas, and leukemia) follows a non-linear 

model with a higher risk at low doses than what would be predicted with a linear model. Dropkin 

suggests that the increased cancer risk following exposure <20mSv casts doubts on the ICRP‟s 

current annual occupational limit.  

Radiation workers 

In addition to the atomic bomb survivors, radiological workers provide a separate, unique 

population to study the cancer risks of LDR. Compared to the LSS, studying radiation workers 

allows for a more direct assessment of the risks of LDR. Many countries have strict regulations 

concerning the maximum radiation dose for radiation workers and require carful dosimetry to 

monitor exposure. Therefore, radiation workers provide a unique irradiated population whose 

exposure dosages are relatively well estimated. In addition, the exposures of radiation workers 

are generally of smaller dose compared to the atomic bomb survivors and are protracted over 

extended periods of time at a low dose rate. Many studies have shown an increase in leukemias 

in workers exposed to LDR (42, 243, 304). While dosimetry is more accurate in radiation worker 
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studies compared to the estimates in the LSS (in which dosages are primarily based on 

distance from the blast), dosimetry, mixed radiation types, and missing data for individuals still 

complicate analysis. For example, men who worked at Oak Ridge National Laboratory (ORNL) 

between 1943 and 1972 were found to have increased leukemia mortality (286), but adjustment 

procedures used to compensate for missing dose data suggested that effect of missing dose 

data resulted in an upward bias in dose-response coefficients (84). Indeed, one study including 

workers from the Hanford Site, ORNL, and Rocky Flats Weapons Plant concluded that the 

combined excess relative risk for leukemia was actually negative (-1.0 per Sv or ERR/Sv) (91). 

Of the 24 solid and non-solid cancer types tested, Gilbert, et. al. reported that half showed 

positive correlations and half showed negative correlations, as would be expected by chance 

fluctuations (91).The International Agency for Research on Cancer has coordinated studies in 

which radiation worker data from multiple countries are integrated together to form larger 

cohorts which increase power in detecting risk. One of the first such analysis included >95,000 

workers from combined data of three registries from the United States (including Hanford, 

ORNL, and the Rocky Flats Plant), the United Kingdom (including the Atomic Energy Authority, 

Atomic Weapons Establishment, and Sellafield Plant), and Canada (Atomic Energy of Canada 

Limited) (42). Of all the cancers monitored, a significant association was observed only for 

multiple myeloma (one-sided P = 0.037, 44 deaths). More recently, a 15-country collaborative 

cohort was analyzed and included nearly 400,000 nuclear industry workers (278). A significant 

increase was found in cancer mortality (ERR/Sv = 0.90, 5,233 deaths), with a significant 

association for lung cancer (ERR/Sv = 1.86) and an almost significant association for multiple 

myeloma (ERR/Sv 6.15, 83 deaths, P = 0.06). However, the authors concede that other 

confounding factors (i.e., tobacco use) will need to be addressed in future studies (43). 

 In general, radiation workers can be an informative population for epidemiological 

studies regarding LDR risk, but there are important limitations which must be considered when 
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interpreting the findings. The first involves the potential for bias due to confounding when 

analyzing small risks (90), such as the ERR for multiple myeloma included only 83 deaths in the 

400,000 workers. Another limitation involves what is considered a strength of radiation worker 

analyses: dosimetry. Personal dosimeters worn by workers can induce various biases. Gilbert et 

al. noted that the dosimeters were designed for radiation protection and likely overestimates 

dose to bone marrow (important for leukemia risk estimation) and most other organs (92). In 

addition, workers exposed to low doses (<10mSv) represent only a small percentage of the 

workers within the cohort, complicating the risk following LD exposure (90).  

Radiotherapy patients 

Additional epidemiological radiation-exposure data come from cancer patients who have 

undergone radiation cancer treatment. The Surveillance, Epidemiology and End Results (SEER) 

Program collects and publishes cancer incidence and survival data from population-based 

cancer registries and includes approximately 26% of the U.S. population, making it a unique 

resource for evaluating the potential risk of subsequent cancers following radiation treatment 

(http://seer.cancer.gov/about/). According to the National Cancer Institute‟s 2006 report using 

data from the SEER Program, it is estimated that cancer patients who undergo successful 

treatment for cancer are at a 14% higher risk for developing a new malignancy compared to the 

rest of the population (62). Some of the increased risk is attributable to the radiation therapy 

employed to fight the cancer, but there are many other risks and variables which need to be 

considered before developing an accurate estimate of what proportion of these new cancers are 

caused by the radiotherapy itself. One of the largest factors involves the individual‟s genetic 

susceptibility to cancer. If an individual has a germline mutation in a tumor suppressor gene, for 

example, that individual has a much higher risk of developing additional cancers even if the 

original malignancy is cured. One striking example is seen in pediatric patients with 

retinoblastoma. For those patients with germline mutations in the tumor suppressor RB1 



14 

 

(retinoblastoma-1) gene (heritable retinoblastoma), the cumulative incidence for developing a 

new malignancy within 50 years is 36%, compared to only 5.7% in retinoblastoma patients with 

non-heritable retinoblastoma (120). Other factors include sex, race, type of primary cancer, and 

use of chemotherapy (62). Despite all of these compounding factors, it is still evident that the 

radiation treatment itself increases risk. Returning to the retinoblastoma example, it was 

estimated that the increased risk do to radiation treatment in non-hereditary retinoblastoma 

patients was 3.1 fold higher, representing a significantly increased risk for sarcomas, 

melanoma, various brain cancers, and cancer of the nasal cavities (120). Similar results were 

observed with increased risk of breast cancer in female patients who underwent radiation 

treatment for childhood Hodgkin‟s disease (21). The increased risk from radiation exposure is 

most clearly seen in the treatment of childhood cancers, due to the long latency seen for 

radiogenic cancers (62). These factors must be taken into account when determining follow-up 

procedures to monitor the development of new malignancies. It is important to note that there is 

a clear benefit for radiotherapy, which exceeds that of the risk of developing new neoplasms.  

Epidemiological studies, while providing the best estimates of radiation-induced cancer 

risks in the human population, reach their limit of detection of risk at doses at and below 

100mSv (184). More research on the biological effects of lower doses of radiation is needed in 

order to accurately assess risk at these levels of exposure, and it is clear that controlled 

experiments in humans are not possible, especially with the cohorts that are available. 

Radiation-induced cell damage and repair 

The biological effects of IR exposure are mediated through direct damage to 

biomolecules (e.g., energy directly deposited on the molecule) or indirectly through the 

formation of reactive oxygen species (ROS).  
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Molecular scavenging involves the mechanisms which prevent further radiation-induced 

damage from free radicals. ROS are formed by the radiolysis of intracellular water, which in 

turn, can cause oxidative damage to DNA, proteins, and lipids (196). However, the cell is always 

exposed to ROS as a byproduct of normal oxygen metabolism, and various defense 

mechanisms are in place for protection from ROS-induced damages. These include anti-oxidant 

molecules (e.g., glutathione, Vitamins C and E, NADPH) and enzymatic scavengers (e.g., 

catalase, superoxide dismutase). During times of oxidative stress (e.g., following radiation 

exposure), pro-oxidant production exceeds the cellular antioxidant capacity to maintain normal 

redox potential (239). The cell can respond by increasing the metabolic antioxidant capacity 

through the elevation of antioxidant levels. Increased levels of glutathione and superoxide 

dismutase (Sod) have been reported in mouse tissues following exposure to low dose radiation 

(197, 204, 251, 292). It has been suggested that radiation-induced oxidative stress not only 

contributes to cellular radiation damage, but that it is the trigger for IR-induced signaling and 

adaptive responses (246). Sustained oxidative stress can result in the continued, amplified 

oxidative damage long after the initial radiation exposure, which can lead genomic instability 

(246), discussed below. 

Radiation-induced DNA damage and its repair is perhaps the most studied effect of 

radiation exposure because excessive damage or inadequate repair can lead to cell death, 

genomic instability, or carcinogenesis. Ionizing radiation can either directly damage DNA (e.g., 

energy directly deposited on the DNA molecule causing single- or double-stranded breaks) or 

indirectly through ROS (resulting in DNA breaks or DNA adducts such as 8-oxo-7,8-

dihydroguanine) (213). There are two main schools of thought regarding the mechanisms which 

alter signal transduction and result in the activation of DNA repair mechanisms (270). As 

mentioned above, radiation-induced ROS and the subsequent alterations in intracellular redox 

reactions could be the trigger for the induction of signal transduction pathways. While the exact 
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mechanisms responsible are unknown, it has been hypothesized that NADPH oxidases could 

play a key role (246). The other school of thought involves the sensing of DNA damage by 

proteins such as Atm and DNA-PK, which in turn promote activation of receptors and signaling 

pathways and cell cycle checkpoints (270). It is likely that both mechanisms are involved in 

radiation response. 

While the exact mechanisms may not be fully understood, the cell must recognize the 

damage and respond appropriately, either by arresting the cell cycle, repairing the damage, 

and/or inducing apoptosis (Fig. 2-1). DNA double-stranded breaks (DSBs), the most deleterious 

form of radiation-induced DNA damage, are induced by radiation several fold above 

endogenous levels in a linear dose-dependent manner, even at very low doses (1mGy in vitro 

and 100mGy in vivo) (219). Once DSBs are formed, numerous DSB repair proteins are 

recruited to the break which creates a stabilizing complex that is vital for DSB repair and 

checkpoint activation (271). Decreased efficiency of DSB-repair is linked with radiosensitivity 

and has been proposed as a means of identifying patients who are more susceptible to radiation 

toxicities prior to cancer radiotherapy treatments (221).  

Ataxia telangiectasia mutated (Atm) kinase is a critical DNA-damage signaling enzyme. 

Following DNA damage, Atm undergoes rapid autophosphorylation and phosphorylates H2AX 

at the site of the break (15). This phosphoylated histone (γH2AX) provides a platform on which 

DSB response proteins bind and initiate repair (271). The essential role of H2AX in DSB repair 

is seen in the H2AX(-/-) mouse, whose DNA repair defects are correlated with increased 

radiosensitivity and genomic instability (45). ATM mutations are responsible for the human 

radiosensitivity disease ataxia telangiectasia, discussed below (224).  

Atm activates pathways which halt the cell cycle and initiate repair by phosphorylating 

downstream targets, including the transcription factor p53 and the checkpoint kinases Chk1 and 

Chk2 (220) (Fig. 2-1). DSBs can be repaired through homologous recombination involving   
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Figure 2-1. DNA damage response signaling mediated by ATM. 
(A) Radiation causes double-stranded DNA breaks (DSBs). The 
damage is recognized by “sensors” such as the MRN complex 
(MREII, RAD50, NBS1) and the signal is transmitted to “tranducers” 
such at ATM, which in turn pass the signal to “effectors” which 
activate various signal transduction pathways. DSBs can be repaired 
by homologous recombination (involving Rad51 and Rad52) or by 
non-homologous end joining (NHEJ). Image courtesy of Mullenders, 
et al., 2009 (184) (B) Activated ATM phosphorylates a series of 
downstream targets resulting in cell cycle arrest and DNA damage 
repair. Image courtesy of Lavin, 2008 (134). 
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Rad51, or through the more error-prone mechanism of non-homologous end-joining (NHEJ), 

which involves DNA-dependent protein kinase catalytic subunit (DNA-PKcs) (7, 103). Defective 

Atm leads to radiation hypersensitivity through inadequate DNA repair, and perhaps more 

importantly, through defective Atm signaling which results in compromised defense against DNA 

damage (134).  

It is well established that the p53 pathway is central to the DNA damage response. 

When activated through phosphorylation by Atm and DNA-PK, p53 activates cell cycle 

checkpoints which allows the cell to asses DNA damage and repair the DNA prior to replication 

or activate apoptosis (270) (Fig. 2-2). p53 can lead to cell cycle arrest through inducing the 

expression of cyclin-dependent kinase inhibitor 1A (Cdkn1a, also known as p21). The p53 – 

p21/Rb checkpoint axis leads to G1 arrest, allowing the cell to undergo DNA-repair before 

resuming the cell cycle (279). Rb has the potential to either mediate apoptosis or protect against 

it, which appears to be dependent upon the phosphorylation status of Rb, with 

hyperphosphorylated Rb correlated with low apoptotic rates and non-phosphorylated Rb  

correlated with high apoptotic rates (279). Differences in post-radiation phosphorylation status of 

Rb have been linked to differing apoptotic rates in C57BL/6J mice (279).  

Alternately, p53 can lead to apoptosis via the up-regulation of pro-apoptotic Bcl2-

associated X protein (Bax) (140). Bax induces cytochrome c release and caspase activation, 

thereby initiating apoptosis (218). It has been demonstrated that basal p53 transcription and 

protein level within a tissue partially determines its sensitivity to radiation-induced apoptosis 

(155). This response is also affected by genomic background, with mouse strains exhibiting 

varied apoptotic rates and susceptibilities to radiation-induced genomic instability (212, 223, 

279, 281). It should be noted that death of a damaged cell removes the possibility of the cell 

acquiring genomic instability and the formation of a population of daughter cells with gene and 

chromosomal abnormalities.  



19 

 

 

 

 

Figure 2-2. Activation of the p53 signaling pathway by radiation. p53 is a 
transcription factor whose activity is regulation by phosphorylation. Damage to 
DNA can lead to apoptosis via Bcl2 and Bax transcription. Alternately, Cdkn1a 
(p21) transcription can halt the cell cycle until DNA is repaired 

http://main.biocarta.com/pathfiles/h_p53Pathway.asp). 
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Genetic background and radiosensitivity 

Human radiosensitivity diseases 

It is well-known that individuals differ in their sensitivity to radiation, and the role of 

genetics in radiosensitivity is most evident in humans with radiosensitivity syndromes such as 

ataxia telangiectasia (A-T), Nijmegen breakage syndrome, xeroderma pigmentosum, and others 

(86). The mutated genes responsible for many of these diseases have been identified, revealing 

pathways and mechanisms of radiation response. 

A-T is an autosomal recessive disorder which is primarily an immunodeficiency disease 

(208), but radiosensitivity is also a hallmark of A-T (93). Other characteristics of the disease 

include cerebellar ataxia, oculocutaneous telangiectasia, bronchopulmonary disease 

susceptibility, lymphoid tumors, and insulin-resistant diabetes (134). The gene which is mutated 

in A-T (ataxia telangiectasia mutated, ATM) was identified in 1995 (224). As mentioned 

previously, ATM plays an integral role in the DNA-damage response, both in the signaling to 

DNA-repair machinery to repair DSBs and in signaling cascades leading to cell-cycle checkpoint 

activation. ATM also is involved in repairing the DSBs formed during gene rearrangement of 

immunoglobulin and T cell receptor genes. This V(D)J recombination mechanism is defective in 

A-T patients, which lead to chromosomal abnormalities in lymphocytes and development of 

lymphoid tumors (269).  

Individuals with Nijmegen breakage syndrome and ataxia-telangiectasia-like-disorder 

(ATLD) share some of the same DNA repair and DNA damage signaling defects with A-T 

patients. Nibrin (NBN, also known as NBS1), the mutated gene in Nigmegen breakage 

syndrome, is involved in the sensing of DSBs and the recruitment of ATM (274). NSB1, together 

with RAD50 and MRE11, form the MRN complex which binds to DSBs and undergoes 

conformational changes which activate ATM (205). ATLD also involves disruption of the MRN 
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complex but via MRE11 (258). Thus, it is not surprising that A-T, ATLD, and Nijmegen breakage 

syndrome patients display similar clinical symptoms.  

While A-T, ATLD, and Nijmegen breakage syndrome are due to defective DSB repair 

and signaling, xeroderma pigmentosum (XP) involves defective nucleotide excision repair 

(NER). XP patients have defects in one of several “XP genes”, all of which are involved in 

various steps in the NER pathway. Individuals with XP are particularly sensitive to DNA damage 

from UV radiation, resulting in a 1,000-fold increase in susceptibility to cancer (126).  

Mutations in TP53 (the gene which encodes p53) increases cancer risk. As the 

“guardian of the genome”, p53 is responsible for monitoring the integrity of the genome and 

inducing apoptosis in genetically damaged cells (132). It is estimated that more than 50% of 

human tumors contain a mutation or deletion of the TP53 gene (265). Some patients with Li-

Fraumeni (LF) syndrome carry inherited, heterozygous mutations of the TP53 gene which is 

correlated with high cancer risk (273). Cultured fibroblasts from patients with LF sustain less IR-

induced permanent G1 arrest than normal fibroblasts which leads to increased G1 chromosomal 

radiosensitivity (28).  

While many of these diseases are associated with increased cancer risk and 

substantially increased radiosensitivity, more subtle mutations in these genes, and other genes 

in these pathways, can lead to differences in acute tissue reactions in radiotherapy-treated 

patients (51).Determining the polymporphisms and/or mutations underlying genetic 

predisposition to radiosensitivity is an area of intense research, with profound implications on 

radiotherapy treatment and radiation exposure guidelines. 

Radiosensitivity and mouse models 

Striking variation in sensitivity to radiation is also apparent in murine models. In 1963 

Roderick published a seminal work on the differences in radiation sensitivity between inbred 

mouse strains (217). Beginning at 4 months of age, mice from 27 strains were exposed to daily 
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doses of 1Gy x-ray radiation until they died. The most susceptible strains, including CBA/J and 

BALB/cJ, succumbed to the radiation in approximately 16 days, while the most resistant strains, 

such as 129/J, survived more than twice as long. It has since been determined that the 

radiosensitivity of BALB/cJ mice is due in large part to two mutations in Prkdc, the gene which 

encodes the catalytic subunit of a DNA-break-dependent protein kinase (DNA-PK), resulting in 

decreased expression and enzymatic activity (298). As mentioned previously, DNA-PK is known 

to be involved in double-stranded break repair and signal transduction following exposure to IR 

(242).  

According to Roderick‟s study, C57BL/6J and DBA/2J have an intermediate 

radiosensitivity phenotype, differing in survival by an average of 3 days (217). By lowering the 

challenge dose as low as 5cGy, Nomura, et al. revealed significant differences between 

C57BL/6J and DBA/2J in radiation-induced apoptotic rates within various tissues (193). 

Numerous studies have highlighted the innate differences in radiosensitivity of the two strains, 

with C57BL/6J generally considered more resistant to radiation-induced genomic instability and 

DBA/2J more sensitive (193, 281, 288). Wright and colleagues determined that the strains 

exhibit differences in apoptotic rates in the spleen following whole body exposure to 1Gy x-ray 

radiation (279). These differences were found to be correlated with differential induction of 

p53/p21 pathways (57, 140, 279). C57BL/6J mice undergo early induction of p53 and 

subsequent up-regulation of pro-apoptotic Bax, while DBA/2J mice display a later but more 

prolonged p53 response and increased expression of Cdkn1a, leading to cell cycle arrest. The 

increased apoptotic rate in C57BL/6J prevents the incorporation of radiation-induced mutations 

and chromosomal aberrations into the genome and allows the tissue to return to homeostasis 

(140).  

While the BALB/cJ Prkdc mutations and human radiosensitivity diseases are examples 

of highly penetrant genetic variants which alter radiation response, it is assumed that radiation 
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sensitivity within the general population is due to the combinatorial effects of inherited genes of 

low penetrance, which are by nature more difficult to characterize, especially at low doses. 

Differing radiosensitivity between mice of different genetic backgrounds make them excellent 

models for understanding the underlying genetic networks responsible for radiosensitivity in the 

human population.  

Low dose radiation biology 

Importance and challenges of LDR biology 

While the biological effects associated with high dose radiation (HDR) exposure are 

fairly well characterized, the effects and long-term cancer risks from exposure to lower doses of 

radiation are less understood. As defined by the Department of Energy‟s Low Dose Radiation 

Research Program, low doses of radiation (LDR) are exposures at or below 10cGy. The LDR 

Research Program, the source of funding for this research, is particularly interested in the study 

of cellular and molecular responses to IR, particularly low-LET radiation, with doses at or near 

current workplace exposure limits (http://lowdose.energy.gov/).  

Standard epidemiological and toxicological approaches have been used for decades to 

attempt to characterize the health effects of LDR. However, the radiation doses of interest are 

just above natural background radiation levels, making measurable health risks to the human 

population arduous. In addition, the radiation endpoint of utmost concern, cancer, is a multi-

factorial process which takes years to develop. Therefore, the current exposure standards for 

the protection of the public and workforce have been set by using models to predict LDR-

attributable cancer risk from data obtained from much higher exposures (195).  

As mentioned above, the continued increase in the use of radiological imaging has 

exposed a larger portion of the U.S. population to radiation doses which are significantly above 

natural background radiation, but are still within the “low dose range.” A clear understanding of 
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the risks involved with LDR exposure is needed for a meaningful risk-reward analysis of such 

radiation exposures.  

Models for estimating LDR risk 

The currently accepted method for low-dose risk assessment endorsed by the U.S. 

National Academy of Sciences‟ Biological Effects of Ionizing Radiations (BEIR) VII report (195) 

and the International Commission on Radiological Protection (ICRP) is a linear-no-threshold 

(LNT) extrapolation of LD cancer risk from HD data. According to the LNT hypothesis, risk is 

directly proportional to radiation dose. This risk estimation model has formed the basis of human 

radiation protection practices since the 1960s (105). In support of this assumption, it has been 

shown that there is a linear relationship between DNA damage and radiation dose (219). LNT 

suggests that radiation-induced DNA damage accumulate over time and increase risk of 

carcinogenesis. This LNT principle is known as the “collective dose” concept, or “dose 

additivity”, which assumes that risk can only increase with additional exposure (169). LNT also 

assumes that cellular defense mechanisms are not influenced by dose or dose rate and that the 

mechanisms of carcinogenesis are the same for both HDR and LDR.  

However, an increasing amount of evidence questions the validity of the LNT model. 

Alternatives to the LNT model include the linear threshold model, in which there is a lower-limit 

radiation threshold below which there is no detectible risk (257, 262), and a non-linear model 

with decreased risk at LD levels, which takes into account the phenomena of hormesis. 

According to hormesis, low levels of radiation exposure can actually reduce risk to radiation-

induced detrimental outcomes, such as cancer, while the risk at higher doses of radiation is 

linearly correlated with dose (79). Numerous studies have shown that exposure to a low dose of 

radiation prior to a high dose actually decreases risk (65, 109, 232, 297), which is in direct 

opposition to the “dose additivity” tenant of the LNT model. In contrast, other radiation effects, 
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such as transmissible genome instability and bystander effects (both discussed below), could 

result in an increase cancer risk at low doses, and therefore, the LNT would under-estimate 

LDR risks (141). Accurate assessment of risks from LDR exposure is essential for the 

development of adequate radiation exposure limits imposed by governments. 

The LDR Research Program provides funds to projects which directly test the 

mechanisms and pathways involved in low dose radiation response at a systems level in order 

to ascertain the radiation-induced perturbations of normal physiology. The overall goal is to 

characterize an organism‟s radiation response through all levels of biological organization, from 

genes and genomes to cells, tissues, and the organism as a whole. From these data, low dose 

radiation risk can be more easily and accurately predicted for an individual as opposed to a 

simple, linear extrapolation from high dose radiation risk.  

CT scan debate 

As mentioned above, the American population is exposed to an ever increasing amount 

of radiation through medical imaging procedures. This has raised concern over the increased 

cancer risk from diagnostic radiology, especially that of CT scanning. In a 2007 landmark (and 

very controversial) report published in The New England Journal of Medicine (NEJM), Brenner 

& Hall concluded that within a few decades, 1.5-2% of all cancers within the U.S. population 

could be caused by the current rates of diagnostic CT (33). This conclusion was reached by 

using a LNT model of extrapolating LD from atomic bomb survivor data (229). They also point 

out that children exposed to IR from medical imaging are at higher risk than adults. The results 

of this article were made known to the general public through large media outlets, and a heated 

debate within the professional radiation research and medical fields ensued. Those who argued 

against the conclusions of Brenner & Hall‟s results cited errors in the methodology used to 

estimate the risk. Shortly after the original publication, The NEJM published three letters to the 
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editor from leading radiation researchers who questioned the validity of the LNT extrapolation 

model used to compute risk (78, 187, 263). In addition, Scott et al. published a lengthy editorial 

in which they critique the assumptions and methods used by Brenner & Hall (229). Scott et al. 

focused on the adaptive responses of humans to IR, a topic which is discussed in detail later, 

and concluded that there is evidence that radiation exposure from CT scans could reduce the 

risk of cancer development among irradiated adults. While they do concede that the impact of 

diagnostic radiation exposure on children is less clear, Scott et al. discount the validity of the 

LNT model-based risks estimates derived for children by the extrapolation from atomic bomb 

survivors. In a very recent editorial in The NEJM, Brenner emphasizes that CT imaging is 

overused, and effective non-radiological imaging methods (i.e., magnetic resonance imaging, 

MRI) are sufficient diagnostic tools in many situations (31).  

Responses to LDR 

Non-targeted effects and adaptive responses modulate cellular responses to both HDR 

and LDR (176). Here these effects are discussed within the context of shaping the dose-

response curve at low doses of IR.  

Non-targeted effects: Genomic instability and bystander effects 

Radiation‟s carcinogenic potential is not just a result of DNA damage and subsequent 

misrepair of the damage as once believed, but it is also a result of non-targeted effects in that 

biological effects of radiation exposure can be observed in cells whose nuclei were never 

directly irradiated (174, 175). These non-targeted effects, also known as epigenetic effects, are 

heritable genetic changes that are not primarily a result of DNA sequence modification (276). 

Non-targeted effects include genomic instability and bystander effects, both of which can 

exaggerate the effects of LDR and result in a supralinear dose-response curve at low doses.  
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Radiation-induced genomic instability (RIGI) is a delayed, long-lasting effect of IR 

exposure that is characterized by a high levels of non-clonal mutations in the apparently healthy 

cells which survived the radiation exposure (183). The genetic alterations include mutations, 

deletions, chromosomal rearrangements, micronuclei formation gene amplification, and cell 

killing. Chromosomal instability is probably the most obvious alteration and the best 

characterized. Genomic instability is evident in most cancers and is observed in pre-malignant 

states, and thus appears to play a role in carcinogenisis (148). Understanding the initiation and 

perpetuation of RIGI may reveal some of the mechanisms of radiation-induced cancer formation 

(119).  

Genomic instability following low dose radiation exposure is thought to involve bystander 

effects. Radiation-induced bystander effect (BSE) is a non-targeted effect where non-irradiated 

cells exhibit typical radiation responses, e.g., chromosomal instability (RIGI), cell death, DNA 

damage response signaling, etc. (183). Considerable inter-individual variability in the elicitation 

and response to RIGI has been observed (182). Proposed mechanisms for RIGI effect involve 

gap junction communication and the release of soluble factors by irradiated cells.  

Bystander effects are studied in vitro by a variety of methods including co-culturing 

irradiated and non-irradiated cells, transferring media from irradiated cells to non-irradiated 

cells, using very low doses of α-particles such that not every cell receives an α-particle, or using 

a focused microbeam irradiator (183). Bystander effects were first demonstrated in vivo using 

Patched heterozygous mice, which are susceptible to cerebellar tumor formation which is 

accelerated with irradiation (160). When Mancuso and colleagues developed a lead shield to 

protect the brains of the mice during irradiation of the skin, there was an unexpected 

enhancement of cerebellar tumor formation. DSBs and apoptotic cells were observed within the 

shielded cerebella. They provided evidence of gap-junctional intercellular communication of the 

bystander effects in the central nervous system (160). Wright and colleagues demonstrated a 
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genotype-dependent bystander effect by exposing normal hemaopoietic clonogenic stem cells 

to bone marrow-conditioned medium from irradiated mice (151). The descendants of the 

hemaopoietic cells demonstrated chromosomal instability while the descendants of the directly 

irradiated cells did not. This effect was genotype-dependent because it was observed in bone 

marrow cells from CBA/Ca mice, who are susceptible to radiation-induced acute myeloid 

leukemia (r-AML), but not in C57BL/6 mice, who are resistant to r-AML. The source of the 

bystander effect was determined to be macrophages through a signaling mechanism which 

involved tumor necrosis factor-α, nitric oxide, and superoxide (151). Other data supports 

mechanisms involving cytokine signaling, specifically transforming growth factor-β (165) and 

oxidative stress due to mitochondrial dysfunction (119). Interestingly, irradiation of cell culture 

medium alone (e.g. in the absence of cells) with alpha particles can also induce bystander 

effects (138). 

Adaptive responses 

A sub-lethal exposure to radiation which is above background elicits stress responses 

and stimulates adaption. The adaptive responses can provide protection for the cell/organism, 

e.g., the hormesis effect. Adaptive protection develops within a few hours after exposure but 

may last for several months or weeks depending on the mechanisms and tissues involved and 

appear to have maximum effectiveness at about 10cGy total dose (Fig. 2.3) (79). Adaptive 

responses to radiation involve molecular scavenging, molecular repair, and removal of damaged 

cells (79, 80). Molecular scavenging involves oxidative stress response, and molecular repair 

mainly involves DNA repair (see Radiation-induced cell damage and repair section above). 

Adaptive protection is discussed in terms of hormesis. There are three main types of hormesis 

(40, 228):  

 Radiation conditioning hormesis: A small radiation dose activates protective 

processes which suppress harm form a subsequent, larger radiation dose  
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Figure 2-3. Adaptive protection from low dose (low-LET) induced 
adaptive protection. (A) LDR may induce adaptive responses affecting 
various levels of biological organization which can occur within hours of 
exposure and last for several months. (B) DNA damage and apoptosis 
increase linearly with dose, but other adaptive protections have 
maximum effectiveness around 0.1Gy. Image courtesy of Feinendegen, 
2005 (79). 
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 Radiation hormesis: A small radiation dose activates protective processes and 

reduces harm below the spontaneous level. 

 Radiation post-exposure conditioning hormesis: harm caused by a large radiation 

dose (or another agent) is reduced when a subsequent small radiation dose is 

administered.  

 

Generally, discussions of “adaptive responses” are referring to radiation conditioning 

hormesis. The first demonstration of radiation conditioning hormesis was published in 1984 

(198). Olivieri et al. reported that when human lymphocytes were cultured with radioactive 

thymidine (a source of low-level β-radiation at a total dose of 150cGy) prior to a 1.5Gy x-ray 

exposure, fewer chromatid aberrations were observed compared to lymphocytes not pre-

cultured with radioactive thymidine. The authors speculated that cellular defenses or repair was 

increased following the low dose exposure, or “priming dose”, which protected the cells from the 

higher dose, or “challenge dose”. This effect has also been demonstrated in vivo (65, 112, 170, 

171). The protective effect is time-dependent and dose-dependent. For example, when a 

50mGy priming dose was given to C57BL/6J mice prior to a mid-lethal (5.9Gy) challenge dose, 

the protective effect (e.g., increased survival) was observed when the challenge dose was given 

1, 3, or 7 days later but not 6 hours or 3.5 weeks later. A variety of priming doses were tested 

(50-400mGy), but the hormetic effect was only observed at the 50mGy dose (112). However, 

priming doses as low as 0.001mGy have been observed to induce adaptive responses prior to a 

1Gy challenge dose (65). Interestingly, the adaptive response was also evident if given when 

the high dose was given prior to the low dose (65), an example of radiation post-exposure 

conditioning hormesis. These adaptive responses have also been described in the lymphocytes 

of people exposed to clinical radiation (173) , and occupational radiation (18), as well as those 

exposed in the Chernobyl accident (200). It is important to note that there is considerable 
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variability in the adaptive response between individuals (25, 215), and it is clear that dose rate 

as well as absorbed dose and radiation quality are primary variables. 

The first demonstration of a pronounced radiation hormesis effect was more that 30 

years ago (267). Gamma irradiation was shown to decrease neoplastic transformation in RFM 

mice, which have a high rate of spontaneous lung-cancer and exhibit high genomic instability 

burdens, but evidently the authors attributed the results to systematic errors in their lung cancer 

detection methodology (228). The first report of in vitro radiation hormesis was by Edouard 

Azzam in 1996 (13). Mouse embryo fibroblasts had a three- to four-fold decrease in the rate of 

spontaneous neoplastic formation when exposed to a single LD x-ray exposure (as low as 

0.1cGy). This finding suggested that LDR can induce cellular processes which protect the cell 

from naturally occurring alterations which lead to cellular transformation. Since then, numerous 

studies have demonstrated a radiation-induced cancer protection (41, 98, 101, 122, 143, 170, 

194). Many of these effects are thought to involve radiation-induced modulation of the immune 

system, which is discussed in detail below.  

Impact on LDR-response models  

Both bystander effects and adaptive responses are potential modifiers of low dose 

radiation risk, neither of which is taken into account in linear extrapolation of risk from HDR 

data. However, the two phenomena appear to have conflicting effects on LDR risk. BSE tends 

to exaggerate the effects of LDR by eliciting detrimental effects to non-irradiated cells, while 

adaptive responses following LDR are protective. Both effects can impact the shape of the dose 

response curve at low doses, but how these two phenomena interact and effect overall LDR risk 

is unclear.  

An example of the interaction between a particular BSE and adaptive response in 

human–hamster hybrid AL cells was reported by Zhou et al. (303). A priming dose of x-rays 

given 4 hours before α-particle irradiation with a microbeam significantly decreased bystander 
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mutagenic response in the nearby cells which did not receive the α-particle irradiation. 

Therefore, the adaptive response decreased the bystander mutagenesis. However, bystander 

cells demonstrated an increased sensitivity following an additional challenge with x-rays. The 

authors concluded that LDR biological responses are a result of a complex interaction between 

directly induced radiation effects, bystander effects, and adaptive responses. Because these 

interactions are poorly understood, some radiation biologists believe it is premature to 

determine if the LNT model overestimates or underestimates the risk at low doses of radiation 

(176). 

LD enhancement of immunity 

There is no doubt that high doses of radiation results in immunosupression, which is 

often attributed to lymphocytes being particularly sensitive to radiation-induced apoptosis (166). 

However, numerous studies have indicated that LDR can actually be immunostimulatory. In 

humans, this is demonstrated in the treatment of chronic lymphocytic leukemia and low-grade 

non-Hodgkin‟s lymphoma (222). Typical treatment regiments include low dose fractions (0.1 – 

0.25Gy) which are given several times a week for a total dose of approximately 1.5Gy. This low 

dose rate is as effective in inducing long-term remission as chemotherapy treatment (113). 

Generally high doses of radiation are given during radiotherapy treatments because HDR is 

much more effective at cell killing. The effectiveness of the LDR treatment in these cancers 

therefore appears contradictory. It has been proposed that the efficacy of the LDR treatment is 

not due to direct cell killing, but rather an enhancement of immune system function (222). In 

other words, the LDR stimulates the immune system to recognize and kill the cancerous cells. 

There are numerous studies in experimental rodents which demonstrate a similar effect in that 

LDR can protect against tumor growth and metastasis in an immune-mediated fashion (41, 98, 
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101, 122, 143, 194). As mentioned above, these studies demonstrate radiation hormesis. The 

immune system enhancement has been demonstrated through (77, 222) :  

 The augmentation of immune cell proliferation in response to a mitogenic 

stimulus (8, 111, 192, 201, 234)  

 The alteration of cytokine release (98, 104) 

 Changes in expression of receptors on immune cells (144, 145) 

 Enhancing signal transduction pathways in lymphocytes (146) 

 

The modulation of immune response by LDR is dependent upon a number of factors 

including total dose (145), dose rate (109), and genetic background (234). In addition, the 

biological parameter of interest likely demonstrates a temporal relationship with the other factors 

(143).  The dose-response curve can also be vastly different between various target cells. For 

example, lymphocytes and their related functions usually follow a “J” shaped curve, while 

macrophage activation may demonstrate a curve with one or more peaks across a given dose 

range (143). Therefore, experimental design is key when assessing the dose-response 

relationship of immunological parameters (143).  

The immune system response is the result of a complicated interaction between multiple 

cell types within the context of the organism. We begin with a brief overview of the anti-tumor 

and ant-metastasis effects of LDR, followed by a review of the reported LDR effects on 

particular immune cell populations.  

Anti-tumor & anti-metastasis effects of LDR 

As mentioned above, LDR has been shown to protect against tumor growth and/or 

metastasis in a number of in vivo mouse models. There are three general experimental models 

used to test for these effects.  
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The first experimental design takes advantage of mice models which have a high 

spontaneous cancer, such as Trp53(-/+) mice. These mice have a high incidence of lymphomas 

and osteosarcomas. Mitchel et al. measured the effects of a single LD (1 or 10cGy) γ-irradiation 

on lymphoma and osteosarcoma frequency and latency in Trp53(-/+) (171). Radiation exposure 

had no effect on tumor frequency, which indicated that the radiation treatment had no effect on 

tumor initiation and thus all tumors were assumed to have formed spontaneously. Mice which 

received the lower radiation dose (1cGy) had significantly increased tumor latency for both 

lymphoma and osteosarcoma compared with control, indicating that the LD exposure reduced 

the rate of malignancy in the spontaneously-initiated tumors. Interestingly, the higher dose 

(10cGy) delayed lymphoma latency longer than the lower dose, but it decreased osteosarcoma 

latency compared to controls. This study suggested that the 10cGy dose could increase or 

reduce risk of metastasis, depending on the tumor type. Therefore, increased tumor surveillance 

could have been enhanced by the LDR.  

Another common experimental design involves the injection of tumor cells into LDR-

treated mice. For example, a study by Hosoi & Sakamoto demonstrated that mice which 

received low doses of radiation prior to or just after tail injection of squamous cell carcinoma 

cells developed a significantly fewer lung tumors compared to controls (101). The effect was 

observed for doses of 15 – 20cGy given from 9 hours before to 3 hours after the tumor cell 

injection. A similar suppressive effect was also observed in the spontaneous lung metastasis 

(101). 

Lastly, there are a few examples in which high dose cancer induction was suppressed 

by pre-irradiation with LDR. In one such study, Ina et al. monitored the induction of thymic 

lymphomas following exposure to high doses of fractioned X radiation (totaling 7.2Gy) in 

C57BL/6 mice which were pre-irradiated with 7.5cGy x-rays given 6 hours prior to each high 

dose irradiation (109). Sixty-three percent of the mice which received LDR prior to each HD 



35 

 

irradiation developed thymic lymphomas, compared to 90% of the mice who only received the 

HD irradiations. The lymphoma frequency was further suppressed to 43% in mice which 

received continuous γ-radiation (at 1.2mGy/hr) beginning 35 days prior to the first challenge 

dose. These results demonstrate a LDR-mediated decrease in tumor induction. Enhanced 

immune activities, as measured by increases in B cells, CD4+ T cells, and antibody-producing 

cells in the spleen following immunization with sheep red blood cells, were observed in the 

continuously-irradiated mice (109).  While tumor immunity is a very complex process, the 

parallel between tumor suppression and enhanced immune function suggests the involvement 

of immune activation in tumor suppression by low dose radiation (109), although the specific 

mechanisms involved remain to be determined.   

It is hypothesized that immune system activation plays a key role in the LDR-induced 

suppression of tumor induction and metastasis. Numerous studies have looked at the effect of 

LDR on specific immune cell populations (i.e., T cells, B cells, macrophages, etc.), as discussed 

below.  

LDR effects on T cells 

Cells of the immune system are some of the most radiosensitive cells in the body (96). 

Radiation exposure results in alterations in lymphocyte counts, but it appears that lymphocytes 

within the mouse spleen are affected differently than those in the blood (206). Specifically, the 

numbers of CD3+ T cells decrease in the blood of mice in a dose-dependent manner at 

moderate and high doses (0.5 – 3Gy γ-rays), while splenic T cell counts are only decreased with 

high doses. CD19+ B cell counts are depressed in both the blood and the spleen at high and 

moderate doses (206). Interestingly, it appears that some radiation-induced changes in 

lymphocytes can persist chronically in humans, as is seen in atomic bomb survivors (high dose 

and high dose rate). Flow cytometry analysis of peripheral blood of survivors demonstrate 
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significant reductions in T helper (Th) cells, but not T cytotoxic (Tc) cells or B cells (129). Others 

have demonstrated a decrease in T cell reactivity to mitogens and allogenic cells (2), and in the 

frequency of cells which secrete type 1 cytokines (128) in survivors. Depression or dysfunction 

of these lymphocytes can lead to serious health consequences, even increasing the risk for 

cancer (95). However, as mentioned above, there is evidence that exposure to low doses of 

radiation can stimulate the immune system, particularly T cells, which are perhaps the most 

studied target cell of the LDR effect on immune system function. 

One of the first demonstrations of LDR-induced augmentation of immune cell 

proliferation in response to a mitogen was reported in 1982 by Anderson & Troup (8). 

Splenocytes from LDR-exposed mice showed an increased response to various mitogens, and 

the authors suggested that T cells were the most responsive. Later it was confirmed that T cells 

were the primary cellular target of the LDR-induced proliferation augmentation (192). It was also 

shown that these target T cells expressed high levels of heat-shock proteins (Hsp-70 and Hsp-

72) compared to those of controls. Furthermore, the T cells from LD-irradiated mice responded 

to stimulation by anti-CD3 antibodies by further up-regulation of these genes and proliferating 

more extensively compared to the T cell of sham-irradiated mice (192). Chronic exposure to low 

dose radiation has also been shown to activate lymphocytes. In mice exposed to a low-dose-

rate (1.2mGy/ hour) of γ-radiation, CD4+ T cells and CD8 expression on CD8+ T cells were 

significantly increased, while B cells were significantly decreased (108). It has been suggested 

that the increase in “pro-mitogenic” effects which are evident following LDR are masked at 

higher doses due to an increase in thymocyte apoptosis (164).  

One of the proposed mechanisms for the LDR enhancement and HDR inhibition of T cell 

activation involves alterations in signal transduction in lymphocytes. Total-body LDR has been 

shown to increase expression of TCR/CD3 molecules, up-regulation of the transcription factors 

c-fos and c-jun, and increase expression of interleukin-2 receptor (IL2R) on thymocytes (144). 
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LDR has also been shown to up-regulate the CD28 receptor on T cells (145). The CD28 

receptor binds to the B7 ligand on antigen presenting cells (APCs), which is itself up-regulated 

following exposure to LDR or HDR. The interaction between CD28 on the T cell and B7 on the 

APCs leads to activation of the T cell, and therefore, immune function enhancement. In contrast, 

HDR exposure results in a down-regulation of CD28 and an up-regulation of CTLA-4, another 

B7 receptor which can lead to the down-regulation of T cell proliferation.  

There is evidence that CD4+ T cells are especially vulnerable to radiation exposure (94, 

206). In a recent paper, Gridley et al. analyzed the effects of low dose rate photons at low 

dosages (1cGy, 5cGy, and 10cGy) on lymphocytes in the blood and spleen of mice following 

total body exposure (96). Interestingly, T cells, B cells, natural killer (NK), CD4+ T cells, and 

CD4:CD8 T cell ratio in the spleen were depressed at all doses 21 days post-irradiation, but 

total T cells, CD4+ T cells and NK cells were increased in the blood. The greatest effect was 

seen in the CD4+ subpopulation in the 1cGy group. The authors speculate that low CD4+ cell 

number in the spleen triggered homeostatic mechanisms in order to regain balance in the 

subsets. The authors also performed gene expression analysis on the CD4+ cells isolated from 

spleen 1 – 2 hours post-irradiation, and found LDR results in a significant down-regulation of 

Inha, the gene which encodes the alpha subunit of inhibin, a member of the transforming growth 

factor beta (TGF-β) superfamily. Inhibin “inhibits” interferon-γ (IFN- γ) and interleukin-12 (IL-12) 

production by Th1 and dendritic cells, and it increases IL-4 and IL-10 production in Th2 cells. 

Thus, down-regulation of Inha suggests a shift in the Th1/Th2 balance towards the Th1 

phenotype. Because Th1 cells are involved in cell-mediated immunity, low dose radiation 

exposure could enhance responses against virus-infected and enhance tumor immunity (95). 

Conversely, HDR has been shown to shift the Th1/Th2 balance towards the Th2 phenotype 

(284). 
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The effect of LDR on lymphocytes has also been shown to be dependent upon genetic 

background. Shankar, et al. demonstrated different reactivities in the splenocytes of C57BL/6J 

and DBA/2J mice following LDR (234). Spleenocytes, particularly CD8+ T cells, from LDR-

exposed C57BL/6J mice showed an augmented response to Concanavalin A (Con A) compared 

to controls, while the opposite effect was demonstrated in LDR-exposed DBA/2J mice. The Con 

A-stimulated spleenocytes from C57BL/6J irradiated mice demonstrated a reduction in p53 

expression and reduced apoptosis compared to those from DBA/2J mice. Interestingly, the 

responses were shown to be dependent upon the mitogen used. When spleenocytes were 

challenged with Mycobacterium vaccae, C57BL/6J LDR-exposed mice demonstrated a 

suppressed response while BALB/c LDR-exposed mice had an augmented response. Thus, the 

LDR-induced alteration in lymphocyte activation appears to dependent upon antigen and 

genetic background. It also appears that p53 expression and induction of apoptosis appears to 

be involved in the differential responses (234).  

Natural killer (NK) cells also play a key role in tumor immunity (127). High doses of 

radiation have been shown to impair NK cell activity (202), while LDR has been shown to 

increase NK activity (122). The enhancement of NK activity by LDR has been shown to delay 

tumor growth. The induction of antioxidant mechanisms, particularly glutathione, may play a role 

in the modulation of NK activity (122).  

LDR effects on macrophages  

The effect of low dose radiation on macrophage function is not as well characterized as 

the effects on lymphocytes, and there have been conflicting reports on whether LDR increases 

or decreases macrophage-mediated inflammation. Irradiation with a moderate radiation dose 

(0.5Gy) of x-rays has been shown to decrease macrophage oxidative burst in vitro, which could 

translate into reduced inflammation following radiation exposure in vivo (227). This effect, 
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however, is likely to be dose-dependent, and “low” doses (e.g., ≤10cGy) were not examined in 

that study. In contrast, LDR has also been shown to enhance the phagocytic activity of 

peritoneal macrophages (201), which could result in increased protection from a subsequent 

infection, for example. It has also been shown that macrophages isolated from LDR-exposed 

mice have enhanced cytolytic activity, as measured by the ability to kill L1 sarcoma or P815 

mastocytoma cell targets in vitro (194). This enhancement may be at least partially due to 

increased amounts of nitric oxide released into tumor cell targets. This modulation of 

macrophage function could play a role in the LDR-induced inhibition of tumor metastasis, as the 

LDR-exposed mice also had suppressed development of experimental tumor colonies (194).  

 It has been demonstrated that total-body irradiation across a wide range of doses (0.05 

– 6Gy) activates the Toll signaling pathway in peritoneal macrophages, which results in 

sustained stimulation of the pro-inflammatory cytokines IL-12 and IL-18 (233), as well as TNFα 

and IL-1β (252). The expression of the surface molecules CD80 and CD86 on macrophages is 

also increased following exposure to both low and high doses of radiation (116). Because 

macrophages respond similarly to radiation exposure regardless of dose, it is assumed that 

differential changes in immunity following LDR and HDR does not reside in the direct response 

of macrophages (233). 

Other studies have suggested that the effects of LDR on macrophages are mainly 

indirect in that they are dependent upon interactions with other cells. Liu et al. investigated the 

interaction between spleenocytes and peritoneal macrophages from mice exposed to 7.5cGy x-

rays (147). They reported a suppression of IL-10 expression in spleenocytes and a 

simultaneous increase in IL-12 expression by macrophages, which could contribute to a shift of 

the immune response in favor of Th1 differentiation. These data support the mechanism 

proposed by Gridley et al. using proton-radiation data (95). Another study suggested that LDR 

induces the release of IL-1β by irradiated macrophages which stimulates neighboring cells 
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(such as lymphocytes). These stimulated neighboring cells either release cytokines or interact 

directly with the macrophages to further stimulate them (104). This mechanism would also lead 

to the increased proliferation of lymphocytes.  

LDR effects on dendritic cells 

Additional support for the Th1 shift in response to LDR involves the role of dendritic 

cells. In one study, splenic dendritic cells (DCs) were pre-irradiated with 0.02-1Gy of γ-radiation 

and were cultured with allogenic T cells (236). The DCs which were pre-irradiated with 5cGy 

radiation demonstrated the highest proliferation capacity of T cells. Dendritic cells were shown 

to have increased production of Th1 cytokines, including IL-2, IL-12, and IFN-γ, which suggests 

that the LDR augments T cell activation capacity through the increased cytokine production by 

DCs. The authors speculate that LDR effects on DCs might cause a shift in naïve T helper cells 

to Th1 cells.  

Systems Genetics Approach to LDR 

Introduction to systems genetics 

As described above, exposure to LDR results in a variety of changes within the 

organism. Ionizing radiation can damage DNA, alter gene expression, activate signal 

transduction pathways, alter intracellular oxidative status, etc. which can, in turn, result in 

systems level changes such as altered immune function. All of these responses are anchored to 

heritable variation which predisposes an individual to particular radiation outcomes. Studying 

each of these biochemical, cellular, and genetic factors in isolation is very useful in 

understanding particular radiation responses. However, to borrow the words of Aristotle, “The 

whole is more than the sum of its parts.” In this case, a comprehensive characterization of the 

health effects of LDR cannot be constructed without a holistic approach within the context of the 
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organism. Here, we use a systems genetics approach to characterize the genetic effects which 

modulate LDR-induced immune responses.  

Systems genetics is an emerging branch of systems biology in which complex traits are 

analyzed using multi-scale phenotype data that is assembled into complex molecular and 

phenotypic networks in the context of genetic variation. The basic premise is that variations in 

DNA which associate with a particular disease or response (LDR in this case) impact the 

physiological processes involved with the response through molecular, cellular, tissue, and 

organism networks (238). Statistical methods and computational algorithms are employed to 

identify correlations between the multi-level phenotypes and the underlying genetic variants.  

Reference populations and QTL mapping 

Central to the experimental design of dissecting complex traits though a systems 

genetics approach is the use of a genetically heterogeneous population. Often genetic reference 

populations are used because they are genetically stable and therefore reproducible, allowing 

direct comparison of various treatments among genetically identical individuals. As a result, 

phenotypic data can be obtained over time from various experiments and investigators and 

integrated together. Once a sufficient number of polymorphisms within the population are 

identified and the data made publicly available, researchers do not have to undergo the arduous 

and costly task of genotyping individuals for each experiment.  

Recombinant inbred (RI) mouse strains are valuable genetic reference populations. A RI 

panel is created from the intercross and subsequent sibling mating of (typically) two inbred 

mouse strains (called “parental strains” or “parentals”), but as many as eight parental strains 

have been used, as seen in the Collaborative Cross (53). The generation of RI lines from two 

parental strains is initiated with the formation of F1 progeny from crossing of the two parentals 

(Fig. 2-4). When the F1 progeny are crossed to produce the F2 generation, the original parental   
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Figure 2-4. BXD recombinant inbred mice. (A) Mating scheme for the creation of the BXD 

recombinant inbred (RI) panel. The parental strains (C57BL/6J and DBA/2J) are mated to 
produce an F1 generation. F1 mating produces the F2 generation whose genome is a 
mixture of the parental strains. Brother-sister mating for more than 20 generations leads to a 
fixation of the genome. The resulting RI strains are genetically different from one another as 
each strain has a unique combination of loci from the parental genomes. (B) Genome 
locations of the ~3,800 polymorphic markers in the BXD RI panel. R/QTL (34) was used to 
produce a genetic map using the markers downloaded from GeneNetwork 
(http://www.genenetwork.org/).  
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genomes are shuffled due to meiotic recombination. Pairs from the F2 generation are randomly 

chosen and continuous brother-sister mating for more than 20 generations results in the fixation 

of the genome. The resulting recombinant inbred lines have a unique combination of loci as a 

result of the meiotic recombination in the crossing of the F1 generation. RI strains are  

valuable resources for mapping of Mendalian and quantitative traits. One of largest mouse RI 

panels is the BXD (C57BL/6J X DBA/2J) strain panel, which consists of 81 extant strains (207, 

259, 260). The publically available genotype data for the BXD panel consists of nearly 3,800 

informative single-nucleotide polymorphisms (SNPs) and microsatellite markers throughout the 

genome (235). These markers are distributed throughout the genome (Fig. 2-4B) and make 

identification of loci responsible for quantitative traits relatively straightforward and rapid. Within 

the next year, additional markers for the BXD panel will be made available based on informative 

SNPs identified using the Affymetrix-based Mouse Diversity array (293) and will include 

~580,000 SNPs (RW Williams, University of Tennessee Health Science Center, personal 

communication).  

Quantitative trait loci (QTLs) are stretches of DNA which are closely linked to genes 

which underlie a phenotype of interest. Typically QTL analysis is performed on complex traits, or 

traits whose variability is due to the interactions of multiple loci. A large number of polymorphic 

markers throughout the genome of the reference population are needed to have sufficient power 

for informative mapping. QTL mapping is based on the premise that individuals with different 

alleles at the QTL marker locus will have different phenotypic means (131). This process has 

been used to identify genomic regions underlying a variety of human diseases (70) and 

radiation phenotypes (63, 282).  
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Transcriptomics and genetical genomics  

Transcript levels also vary genetically and somatically within populations and are 

quantitative traits, with the loci associated with their abundance called expression QTLs 

(eQTLs) (48, 225, 226). Genetical genomics combines transcriptomics with standard QTL 

mapping to identify loci responsible for regulating gene expression (115). Transcriptomics, or 

the simultaneous quantification of all expressed transcripts within a cell or tissue, is made 

possible by technologies such as microarrays.  

Genome-wide transcriptional profiling can be used to identify genes whose expression is 

differentially regulated following radiation exposure, which can reveal the mechanistic 

responses employed by the cell to respond to the challenge. These responses are temporally 

regulated and have been shown to be tissue-specific (136), dose-specific (69), and genetic-

background dependent (60). By performing semi-quantitative reverse transcriptase PCR, Lee et. 

al demonstrated that the induction of LDR-responsive genes varied greatly between tissues of 

C57BL/6J mice following whole-body irradiation, indicated that genetic modifiers of radiation-

induced gene expression act differently in different tissues (136). The expression of some p53-

regulated genes, such as Cdkn1a, Gadd45a, and Mdm2, appears to up-regulated in response 

both LDR and HDR, but the magnitude of induction is dependent upon dose (4). Indeed, overall 

expression profiles following radiation exposure appear to be dose-specific (6, 69, 83, 149, 

237). For example, Ding et al. compared gene expression changes following low dose (2cGy) 

and high doses (4Gy) of x-ray radiation in normal human skin fibroblasts (69). They reported 

quantitative and qualitative differences in gene expression patterns between the two doses and 

dose rates (20cGy/min for LDR and 2Gy/min for HDR). The genes which responded to LDR 

involved functions relating to cell-to-cell signaling, signal transduction, and DNA damage repair. 

In contrast, those which responded to HDR were involved in apoptosis and cell proliferation. 

These dose-specific responses in cultured cells support a non-linear correlation between the 
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biological effects of high and low dose radiation exposures. In addition to being tissue-specific 

and dose-specific, radiation-induced gene expression varies depending on genetic background. 

Our lab performed spleen transcriptional profiling in six strains of mice following whole-body LD 

x-ray exposure and identified significant differences in the both number of genes exhibiting 

radiation responsiveness and in the pathways in which the genes function (BH Voy, et al., 

unpublished data). Others have described differences in expression depending on genetic 

variability in response to HDR (60, 241). A study which integrated global gene expression and 

various radiation survival parameters (including apoptosis) across the 60 cell lines of the 

National Cancer Institute Anticancer Drug Screen (NCI-60) demonstrated that a set of radiation-

induced cell cycle genes were commonly regulated across the panel, representing penetrant 

gene expression responses (5). Interestingly, they noted that radiosensitive and resistant lines 

were well discriminated by their basal expression patterns. They suggested that the basal 

expression could be even more informative of radiosensitivity than the radiation response 

signatures (5). Similarly, our lab analyzed differences in baseline spleen expression for 

correlation with various radiation outcomes. 

Data integration 

One of the advantages of using microarrays to assess transcript abundance is that the 

expression levels of all the genes are measured simultaneously allowing for the identification of 

genes whose expressions are correlated with each other. Genes with similar expression 

patterns are assumed to participate in common cellular pathways or functions, a concept termed 

“guilt by association” (75, 287). Computational algorithms can be used to identify interconnected 

genes and build gene networks. Gene correlation networks can be altered by LDR exposure, 

representing potential molecular pathways that mediate the radiation response (277).  
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Cumulating genotype data, expression data, and low dose radiation phenotype data may 

provide insights into LDR response, but the true power in a systems-genetic approach lies in the 

integration of these data together in a comprehensive fashion to reveal associations between 

DNA variation and LDR sensitivity and the molecular networks which drive those associations. 

Systems biology involves the integration of information through a hierarchy of networks 

beginning with genetic networks (genomics) that drive molecular networks (including RNA and 

protein expression networks) which are components of cellular networks that are interconnected 

to form tissue networks that define living systems (238). Complex phenotypes, such as low dose 

radiation responses, arise from the complex interactions of these networks.  
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CHAPTER III 

GENETIC ARCHITECTURE OF BXD IMMUNOPHENOTYPES 

This chapter is adapted from the following publication: 

Lynch RM, Naswa S, Rogers GL, Jr., Kania SA, Das S, Chesler EJ, Saxton AM, 
Langston MA, and Voy BH. Physiol Genomics 2010. 

 

The immune system plays a pivotal role in the susceptibility to and progression of a 

variety of diseases. Due to its strong genetic basis, heritable differences in immune function 

may contribute to differential disease susceptibility between individuals. Genetic reference 

populations, such as the BXD (C57BL/6J X DBA/2J) panel of recombinant inbred (RI) mouse 

strains, provide unique models through which to integrate baseline phenotypes in healthy 

individuals with heritable risk for disease because of the ability to combine data collected from 

these populations across both multiple studies and time. We performed basic 

immunophenotyping (e.g., percentage of circulating B and T lymphocytes and CD4+ and CD8+ T 

cell subpopulations) in peripheral blood of healthy mice from 41 BXD RI strains to define the 

immunophenotypic variation in this strain panel and to characterize the genetic architecture that 

underlies these traits. Significant QTL models that explained the majority (50 – 77%) of 

phenotypic variance were derived for each trait and for the T:B cell and CD4+:CD8+ ratios. 

Combining QTL mapping with spleen gene expression data uncovered two quantitative trait 

transcripts (QTTs), Ptprk and Acp1, as candidates for heritable differences in the relative 

abundance of helper and cytotoxic T cells. These data will be valuable in extracting genetic 

correlates of the immune system in the BXD panel. In addition, they will be a useful resource for 

prospective, phenotype-driven model selection to test hypotheses about differential disease or 

environmental susceptibility between individuals with baseline differences in the composition of 

the immune system.  
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Introduction 

Systems genetics takes a top-down approach to disease susceptibility by seeking to 

identify relationships between genetic variants, intermediate molecular, biochemical and cellular 

pathways, and overlying systems-level phenotypes from large-scale molecular and phenotypic 

analyses. Typically, putative interconnections are built through correlational analyses of diverse 

data types collected across genetically heterogeneous populations. These data are often 

obtained using genetic reference populations, i.e., populations that are genetically stable and 

thus reproducible, allowing data integration across time and from diverse studies and creating 

the possibility to uncover novel relationships among genes, pathways and diseases. A number 

of genetic reference populations exist for mouse, the largest of which is the BXD (C57BL/6J X 

DBA/2J) recombinant inbred (RI) strain panel, consisting of 81 extant strains for which genotype 

data are publicly available (207). As the depth of phenotyping for a reference panel like the BXD 

strain set increases, so does the ability to interconnect physiological systems through genetic 

correlation of phenotypes. Such discoveries can be valuable for determining the molecular basis 

for a phenotype, for identifying biomarkers for disease processes, and for elucidating 

interconnections between apparently divergent physiological systems.  

The burgeoning evidence that inflammation either initiates or fuels a wide variety of 

diseases and pathologies suggests that immune system components are likely to emerge in 

many systems-level networks of disease susceptibility. Disorders not traditionally linked with the 

immune system such as obesity and insulin resistance are now causally linked to inflammatory 

processes and mobilization of immune cells (100, 191, 283). While the abundance of specific 

lymphocyte subpopulations is altered by numerous environmental factors such as infection and 

diet (14, 261, 302), these traits are also under tight genetic control (3, 55, 125). The involvement 

of immune processes in myriad diseases, many of which have a genetic risk, coupled with a 

strong genetic basis for immune function, raises the possibility that genetic variation in immune 
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phenotypes per se may contribute to differential disease susceptibility between individuals. 

Supportive of this concept is a recent report by Dendrou et al., using the Cambridge 

BioResource, which is the human equivalent of a genetic reference population, consisting of 

~5,000 healthy, genotyped individuals living near Cambridge, UK who agreed to be studied 

repeatedly over time (67). Dendrou and colleagues linked a specific T cell phenotype – relative 

expression of CD25 on the surface of CD4+ memory T cells – with a haplotype previously shown 

to confer protection from type I diabetes. Understanding the genetic basis of specific 

immunophenotypes may therefore be valuable in understanding susceptibilities and/or 

progression of diseases, such as multiple sclerosis and rheumatoid arthritis, which are 

characterized by dysregulation or imbalances of distinct immune cell populations (59, 99, 240, 

253).  

As a first step toward determining the heritable differences in immunophenotypes that 

may predict outcomes of disease and environmental exposures, we profiled the abundance of 

major lymphocyte subpopulations (CD79+, CD3+, CD4+ and CD8+) in peripheral blood of 

healthy, unperturbed mice from the BXD strain panel. These data were integrated with existing 

genotype data in quantitative trait loci (QTL) mapping to characterize the genetic architecture 

that underlie these traits. They were further combined with microarray data we collected from 

spleens of the same strain panel to highlight potential candidate genes within significant QTL. 

Graph algorithms were used to identify gene expression networks that correlate with and are 

potential mediators of immunophenotypes, and are thus potential targets for environmental 

stimuli that act on the immune system. Herein we present evidence that peripheral 

immunophenotypes are under significant genetic control in the BXD population and describe 

genes and coexpression networks linking genetic variation to immunophenotypic diversity. 
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Methods 

Animals 

C57BL/6J, DBA/2J, and BXD RI stocks from strains 6 – 42 were obtained from The 

Jackson Laboratory (Bar Harbor, ME). BXD RI stocks from strains 43 – 100 were obtained from 

Dr. Lu Lu and Dr. Robert Williams from the University of Tennessee Health Science Center 

(UTHSC, Memphis, TN). BXD RI lines were housed and propagated in the specific-pathogen-

free (SPF) Russell Vivarium at Oak Ridge National Laboratory (ORNL). Mice received irradiated 

Purina Diet #5083 and chlorinated water ad libitum. The housing conditions were maintained at 

70 ± 2 °F and 40-60% humidity. A total of 45 BXD strains were used for spleen expression 

profiling, immunophenotyping, or both. This subset of the BXD panel was chosen from the set of 

strains maintained at ORNL based on consistent breeding performance and to represent a 

balanced combination of the original BXD strains developed at The Jackson Laboratory (259, 

260) and the advanced intercross strains developed at the UTHSC (207). Between 10-12 weeks 

of age, mice were sacrificed by cervical dislocation and either blood was collected for 

immunophenotyping or the spleens were harvested for RNA expression profiling. All studies 

were approved by the Animal Care & Use Committee at Oak Ridge National Laboratory. 

Immunophenotyping 

 Flow cytometry was used for the immunophenotyping of male and female mice 

(average of four mice/sex/strain) from 41 BXD strains and the parental strains. Blood was 

collected by retro-orbital sinus puncture into EDTA tubes and red blood cells were lysed using 

lysis buffer (Sigma-Aldrich, St. Louis, MO). Following centrifugation, the white blood cell pellet 

was suspended in buffer (PBS, 0.2% sodium azide, 0.02% heat-inactivated FBS) and divided 

into four aliquots for each set of monoclonal antibodies and a blank negative control. 

Lymphocytes were stained with the appropriate antibody or antibodies for 45 minutes at 4°C. 
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The negative control was incubated with PBS. One tube was dual-stained with anti-CD3 (PE, 

clone 17A2) and anti-CD79b (FITC, clone HM79b). Another tube was dual-stained with anti-

CD4 (PE, clone H129.19) and anti-CD8a (FITC, clone 53-6.7). The remaining tube was stained 

with anti-MHC Class II (R-PE, clone NIMR-4). Antibodies were purchased from BD Biosciences 

(Franklin Lakes, NJ), except MHC Class II-RPE which was purchased from Southern Biotech 

(Birmingham, AL). Following incubation, the samples were centrifuged and suspended in PBS. 

All samples were stored on ice in the dark until analyzed by flow cytometry. At least 10,000 cells 

per sample were analyzed using a Beckman Coulter Epics XL flow cytometer (Brea, CA). Data 

were analyzed using EXPO32 ADC Software (Beckman Coulter). Lymphocytes were gated for 

analysis based on forward and side scattering profiles. The immunophenotypes (IPs) measured 

included the proportion of circulating T cells (%CD3), B cells (%CD79), CD4+ T cells (%CD4), 

CD8+ T cells (%CD8), as well as the median expression of major histocompatibility complex II 

(MHCII Median) on MHCII+ lymphocytes (%MHCII). 

Identification of immunophenotype QTL  

Flow cytometric data were analyzed for quality based on efficient staining of 

lymphocytes and within-individual consistency (e.g., %CD79 approximately equaling %MHCII 

and sum of %CD4 plus %CD8 approximately equaling %CD3). Only high quality 

immunophenotype data were used for further analysis, resulting in an average of 3.3 males and 

3.2 females per strain for each IP. T cell to B cell ratio, CD4+ to CD8+ ratio, and MHCII median 

fluorescence were normalized using natural log transformation (i.e., LN T:B, LN CD4:CD8, LN 

MHCII).  

 QTL analysis was performed using genotype data obtained from GeneNetwork 

(http://www.genenetwork.org/dbdoc/BXDGeno.html). This database contains nearly 3,800 

informative single-nucleotide polymorphisms (SNPs) and microsatellite markers originally 
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reported by Shifman, et al. (235) that have been re-aligned with National Center for 

Biotechnology Information (NCBI) Build 36. QTL for each IP were identified using the QTL 

package (34) in R (http://www.r-project.org). The multiple imputation method of Sen and 

Churchill (230) was used to perform single-QTL genome-wide scans. Genome-wide significance 

thresholds were calculated based on 1,000 permutations (54). The cut-off p-values for 

significant and suggestive loci were P = 0.05 and P = 0.63, respectively (130).The ± 1 LOD 

support intervals for each QTL were calculated using the lodint function in R/QTL. Multiple-QTL 

modeling was performed using stepwise linear regression in SAS (SAS Institute, Cary, NC); a p-

value of 0.05 was used as the threshold for terms to remain in the final model.  

Expression profiling 

Transcriptome profiling was performed in spleens from an independent set of mice 

representing 38 BXD strains (34 of which were immunophenotyped). Total spleen RNA was 

isolated from spleens stabilized in RNAlater (Sigma-Aldrich) using RNeasy Mini Kits (Qiagen, 

Valencia, CA). RNA concentration and quality were assessed using Experion RNA StdSens 

Chips on the Experion system (Bio-Rad, Hercules, CA). Each BXD sample profiled consisted of 

a pool of equal amounts of RNA from either two males or two females per strain. Expression 

profiling was performed by Genome Quebec (Montreal, Canada) using the Mouse WG-6 v1.1 

BeadChip on the Illumina platform (San Diego, CA). Six strains were analyzed per chip. The 

data were normalized using Variance Stabilizing Transformation (VST) followed by Robust 

Spline Normalization (RSN) using the R/lumi package (74) in Bioconductor (87). Raw and 

normalized microarray data have been uploaded to NCBI‟s GEO database 

(http://www.ncbi.nlm.nih.gov/projects/geo; Accession GSE19935) according to MIAME 

standards (29). Expression data, along with all IP data, are also available through GeneNetwork 

(http://www.genenetwork.org).  
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Transcriptome Map and eQTL analysis 

Of the 34,492 probes on the Illumina arrays, 11,445 transcripts demonstrated variable 

expression across the panel (coefficient of variation > 0.01) and were used for expression QTL 

(eQTL) analysis. QTL Reaper (http://www.genenetwork.org/qtlreaper.html) was used to identify 

the maximum likelihood ratio statistic (LRS) and a permuted p-value (1,000 permutations) for 

each transcript. QTL Reaper performs Haley-Knott regression for QTL analysis, with an 

adaptive permutation by transcript which runs an increased number of permutations for those 

traits with significant results to ensure precise p-value estimation at the low end of the p-

distribution. This method is fast and sufficient for high density marker maps as are available for 

the BXD RI lines. At a p-value threshold of 0.05 over the entire array, 1881 transcripts were 

associated with 686 loci. These eQTLs were classified as cis or trans according to their genomic 

positions (located within or beyond 10Mb of transcription start site, respectively). Permutation 

testing was used to define the maximum number of transcripts likely to be associated by chance 

in trans with an eQTL. The 1881 transcripts were randomly assigned to the 686 significant loci; 

in 10 million permutations, the maximum number of transcripts associated in trans with a single 

marker was 19. Therefore we analyzed only the trans-eQTL bands in which a single marker was 

associated with 20 or more transcripts.  

Statistical modeling and graph algorithm 

 MGI (http://www.informatics.jax.org) was used to extract genes located within the ± 1 

LOD support intervals for the two significant QTLs identified for the CD4:CD8 

immunophenotype. Stepwise linear regression in SAS was used to model the CD4:CD8 ratio 

using the expression of these genes. Graph algorithms were performed as described previously 

(277), and all source codes are available from the authors. Graphs were created from 

microarray data by computing all pair-wise Pearson correlations between expressed transcripts 
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and then filtering the matrix to retain only statistically significant correlations based on a false 

discovery rate of 5% (q-value < 0.05; (250)). Maximal cliques were extracted and anchored 

cliques identified as previously described (277). A bipartite graph was created with one partition 

being the expressed transcripts and the second partition being a set of five immunophenotypes 

(CD3%, LN T:B, CD4%, CD8%, LN CD4:CD8). Pearson correlations were computed between 

each possible pairing of transcript expression and immunophenotype. Edges in the bipartite 

graph were filtered to retain correlations of interest (P < 0.001) and maximal bicliques were then 

extracted. Gene ontology (GO) enrichment analysis was performed using DAVID (102); 

Benjamini-Hochberg false discovery rate-corrected p-values are reported (19).  

Results 

We began by profiling a panel of immunophenotypes (IPs) in male and female C57BL/6J 

and DBA/2J mice to define baseline differences in the two BXD parental strains. Peripheral 

blood was analyzed for proportion of circulating T cells (CD3+), B cells (CD79+), T helper cells 

(CD4+), cytotoxic T cells (CD8+), and expression of major histocompatibility complex II (MHCII) 

on MHCII+ lymphocytes using flow cytometry. As shown in Table 3-1, the parental strains differ 

significantly in each of these traits (P < 0.05) except for CD3+ cells (P = 0.184) and CD8+ T cells 

(P = 0.064). C57BL/6J mice demonstrate a higher percentage of circulating B cells and CD8+ T 

cells and lower levels of CD4+ T cells compared with DBA/2J mice, which is consistent with 

previous reports (46, 186, 272). 

The same panel of immunophenotypes was profiled across a set of 41 BXD strains to 

establish the immunophenotypic diversity in this RI panel and to model the genetic regulation of 

each trait. ANOVA indicated a significant effect of strain on each IP (P < 0.0001), manifested as 

broad ranges for each of the traits across the strains. For example, the percentage of T 

lymphocytes varies over 5-fold (10.3 – 56.1%) while the percentages of CD4+ and CD8+  
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Table 3-1. Differences in peripheral blood immunophenotypes in C57BL/6J and DBA/2J 
mice.  

 

Immunophenotype C57BL/6J 
Mean 

DBA/2J 
Mean p-value 

% CD3 Lymphocytes 32.06 ± 1.03 35.60 ± 2.21 0.1840 
% CD79 Lymphocytes 61.40 ± 0.98 53.86 ± 2.73 0.0352* 
LN T:B -0.65 ± 0.03 -0.42 ± 0.09 0.0392* 
% CD4 Lymphocytes 23.84 ± 1.64 31.56 ± 2.41 0.0190* 
% CD8 Lymphocytes 7.98 ± 0.56 6.50 ± 0.47 0.0636 
LN CD4:CD8  1.10 ± 0.10 1.58 ± 0.07 0.0012

† 
% MHCII Lymphocytes  61.62 ± 1.87 51.22 ± 2.64 0.0194* 
LN MHCII Density  3.53 ± 0.16 4.31 ± 0.08 0.0003

† 
 

Data shown as mean ± SEM of 5 to 9 mice per strain. P-value indicates 
significance of strain effect (* P < 0.05, † P < 0.01). 
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lymphocytes vary over 6 fold (5.6 – 35.6% and 4.4 – 26.4%, respectively) (Fig. 3-1). These 

ranges relative to those of the parentals illustrate the genetic complexity of the traits and are 

within the range of the phenotypic diversity found in a survey of 32 standard inbred strains of 

diverse origin (22, 209). There is also a significant strain*sex interaction effect for each 

immunophenotype (P < 0.05), but the effect is much smaller (F statistic < 30%) than that of the 

main strain effects. Thus, overall strain effects were modeled for each immunophenotype.  

QTL analysis was performed on each IP as well as the T:B and CD4:CD8 ratios to 

identify overlapping and unique loci associated with each trait. We began with MHCII density as 

a reference trait with a defined genetic basis on Chromosome (Chr) 17, a region in which the 

BXD parental strains carry different haplotypes (C57BL/6J carries the H-2b haplotype and 

DBA/2J carries the H-2d). Not surprisingly, the genotype at the H2 locus is the largest factor in 

explaining median expression of MHCII on MHCII-expressing lymphocytes (Fig. 3-2A). The 

locus itself accounts for 57% of the variance within the BXD panel (LOD = 7.52, P < 0.001), with 

the DBA/2J genotype increasing MHCII expression. A suggestive secondary locus, Chr 10 @ 

114Mb, accounts for an additional 4.5% of the variance. The genetic basis for variation in the 

remaining immunophenotypes was modeled by first performing single model genome-wide 

scans (Fig. 3-2B,C) and then using suggestive and significant loci from those scans in multi-

locus regression to allow for additive and interactive contributions of multiple loci. A 9Mb region 

on Chr 17 spanning the H2 locus was identified as either suggestive or significant for single 

model scans of each trait except for the CD4:CD8 ratio (Fig. 3-3). The majority of variance (50.1 

– 77.5%) for each trait is explained by models incorporating the Chr 17 region in combination 

with at most three additional loci (Table 3-2). T and B cells were measured as a percentage of 

total gated lymphocytes and collectively represent the majority of this population, making these 

two measurements highly inversely correlated. Accordingly, the QTL models for each trait are 

very similar. The relative abundance between these two cell types (natural log transformed T:B  
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.  

Figure 3-1. Peripheral blood lymphocyte subpopulations of BXD and 
parental strains. (A) %CD3 and %CD79 lymphocytes, (B) %CD4 and 
%CD8 lymphocytes, and (C) and MHCII density on MHCII+ lymphocytes 
(LN of median MHCII fluorescence). Data shown as mean ± SEM of at 
least 3 males and 3 females per strain. 
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Figure 3-2. Genome-wide scans for peripheral blood immunophenotypes of 
41 BXD strains. (A) MHCII density as measured by the LN of the median 
fluorescence of MHCII on MHCII+ lymphocytes, (B) T:B ratio as measured by the 
LN of the ratio of %CD3 to %CD79 lymphocytes. (C) CD4:CD8 as measured by 
the LN of the ratio of %CD4 to %CD8 lymphocytes. Solid horizontal lines 
represent genome-wide significance at P < 0.05, and the dashed lines represent 
P < 0.63, based on 1,000 permutations. LOD indicates logarithm of odds scores. 
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Figure 3-3. Summary of BXD immunophenotype (IP) QTLs. The 
ranges indicate the ± 1 LOD support intervals for each significant and 
suggestive QTL, in Mb. Immunophenotypes are %CD3 lymphocytes 
(CD3), %CD79 lymphocytes (CD79), LN of CD3:CD79 (T:B), %CD4 
lymphocytes (CD4), %CD8 lymphocytes (CD8), LN of CD4:CD8 
(CD4:CD8), and LN of MHCII median expression on MHCII+ 
lymphocytes (MHC). * indicates significant QTL (P < .05) in single-
locus genome-wide scan. IP labels in black are QTLs that are 
significant in the final model (P < .05); gray IP labels are not significant 
in final model. 
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Table 3-2. Summary of final QTL models for BXD immunophenotypes. 

 

Immuno-
phenotype 

Final Model 
Variance 

Explained 
(%) 

QTLs 

  Marker Chr Position LOD 

%CD3 Loc1*2 + Loc2 58.9 Loc1 rs13477026 3 27 Mb 3.72* 

   Loc2 rs13482963 17 35 Mb 5.28* 

        

%CD79 Loc1 + Loc2 + Loc3 67.2 Loc1 rs13477026 3 27 Mb 4.17* 

   Loc2 rs13481119 11 79 Mb 2.54 

   Loc3 rs13482947 17 31 Mb 5.41* 

        

LN T:B Loc1*2 + Loc1*4 + 
Loc3+ Loc4 

77.5 Loc1 rs13477026 3 27 Mb 3.81 

  Loc2 rs13479274 7 58 Mb 2.64 

   Loc3 rs13481119 11 79 Mb 2.61 

   Loc4 rs13482947 17 31 Mb 5.62* 

        

%CD4 Loc1*2 + Loc3 50.1 Loc1 rs3690259 10 114 Mb 3.10 

   Loc2 rs3694890 12 118 Mb 2.70 

   Loc3 rs13482963 17 35 Mb 4.07* 

        

%CD8 Loc1*2 + Loc2 56.6 Loc1 rs13477030 3 28 Mb 3.82* 

   Loc2 rs3672987 17 33 Mb 3.79* 

        

LN 
CD4:CD8 Loc1 + Loc2 53.8 Loc1 rs13480570 10 31 Mb 

4.24* 

   Loc2 rs6225272 12 31 Mb 4.28* 

        

LN MHC 
Median Loc1 + Loc2 61.5 Loc1 rs3690259 10 114 Mb 

2.81 

   Loc2 rs13482947 17 31 Mb 7.52* 

 
 
Models were analyzed using significant and suggestive QTLs from single locus 
genome-wide scans. Representative SNP markers for each locus in the final models 
are reported; genome locations are according to NCBI Build 36. LOD indicates 
logarithm of odds scores based on single locus models. * indicates significant QTLs; all 
others are suggestive. 
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ratio, or LN T:B) was mapped to identify loci that may be involved in lymphocyte maturation.  

The T:B phenotype is partially explained by interactions between loci on Chrs 3 and 7 and 

between the Chr 3 locus and H2 locus. In combination with the additive effects of the H2 locus 

and an additional region on Chr 11, this model explains 77.5% of the variation in the T:B ratio. 

The only locus important in modeling the T:B ratio that was not identified for either lymphocyte 

population separately (i.e., %CD3 and %CD79) is the locus on Chr 7. The complete set of 

significant and suggestive QTLs for each immunophenotype is depicted in Fig. 3-3.  

Genetic control of T cell abundance was further probed by mapping loci that contribute 

to variance in the major T cell subpopulations, CD4+ and CD8+ T cells. While QTL analysis 

identified the H2 locus as contributing to both %CD4 and %CD8 (LOD of 4.07 and 3.79, 

respectively), the remaining QTLs were unique to the particular T cell subpopulations (Fig. 3-3). 

A multi-locus model consisting of three loci (on Chrs 10, 12, and the H2 locus) explains 50.1% 

of the variance in %CD4, while a model consisting of a locus on Chr 3 with the H2 locus 

explains 56.6% of the variance in %CD8. The ratio of CD4+ to CD8+ cells was used in QTL 

analysis after normalization using natural log transformation (LN CD4:CD8). Two loci (Chr 10 @ 

31Mb, LOD = 4.24 and Chr 12 @ 31Mb, LOD = 4.28) were identified as significant, independent 

contributors to this trait (Fig. 3-2C, Table 3-2). At both loci, the DBA/2J allele shifts the ratio in 

favor of CD4+ cells, consistent with the increased abundance of CD4+ cells in the DBA/2J 

parents (Table 3-1). These two loci explain nearly 54% of the variation in the CD4:CD8 ratio. 

Interestingly, neither region is implicated in control of either T cell subtype as analyzed 

independently, suggesting that these two regions contain genetic variation that contributes to a 

differentiation process in which one cell type is retained at the expense of the other. 

Expression QTL (eQTL) profiling has emerged as a means to identify loci linked directly 

or indirectly to regulation of gene expression (30, 71, 115, 226). We performed eQTL mapping 

using spleen microarray data to determine whether the QTL regions identified for IP traits also 
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harbored trans-eQTL bands, loci that are linked to expression of multiple genes and could thus 

be implicated in mechanistic control of the trait(s) through coordinated transcriptional regulation. 

Spleen was chosen because it contains abundant levels of both B and T lymphocytes and 

contributes to multiple aspects of immune function. Two trans-bands exceeded the maximal size 

of 18 transcripts obtained by permutation testing, consisting of 42 and 30 transcripts located on 

Chrs 4 (@ 139.0 Mb) and 12 (@ 15.8 Mb), respectively (Fig. 3-4). Neither trans-band co-

localized with IP QTLs, nor were the transcripts associated with each trans-band enriched for 

functions suggestive of IP regulation. Both bands did, however, contain an abundance of genes 

involved in cell cycle, cell division and DNA replication, which may have general relevance for 

heritable regulation of gene expression in the BXD panel. 

We further exploited the microarray data to identify potential IP candidate genes by 

determining if expression of one or more genes within the QTL intervals were correlated with the 

overlying trait(s), a strategy that has been used successfully for other traits (17, 152, 203). We 

identified quantitative trait transcripts (QTTs), transcripts whose expression is correlated with a 

phenotype (203), for the T:B and CD4:CD8 ratios. We focused on these two traits because they 

capture relative abundance of multiple cell types and have significant QTLs. Pearson‟s 

correlation coefficients were calculated between expression levels of genes residing within the ± 

1 LOD support intervals for each QTL and the immunophenotype data. Of the 517 genes 

located within these intervals for T:B ratio, 88 showed significant correlation with the phenotype 

(P < 0.05). GO enrichment analysis indicated that this set of genes was significantly enriched in 

processes related to antigen presentation and processing, as expected from the fact that many 

of these genes lie within the H2 locus on Chr 17. This set also contains a small number of 

genes (30 genes) that are highly correlated with T:B but reside on other chromosomes, the 

strongest of which are mitofusin 1 (r = 0.626, P < 0.0001) and phospholipase D1 (r = -0.563, P = 

0.0005), both of which are within the QTL on Chr 3. Mitofusins are mitochondrial fusion proteins  
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Figure 3-4.  

 

Figure 3-4. Spleen transcriptome map based on 38 BXD strains. The 
horizontal axis represents the genomic locations of the SNP markers/ QTL 
locations in Mb (chromosomes are in alternating colors), and the vertical axis 
represents the genomic location of each transcript in Mb. Each data point 
represents the maximum eQTL for each of the 1,881 transcripts that had a 

permuted p-value < 0.05.  
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that have recently been linked to the innate antiviral defense system (295). Phospholipase D1 

was shown to be critical for coordination of inflammatory signaling through TNF-alpha in 

leukocytes (231). 

Similar analysis of the QTL regions for the CD4:CD8 phenotype highlights a smaller set 

of potential candidate genes for this trait in the BXD panel. Of the 115 genes located within the 

QTL intervals for CD4:CD8 ratio, only 9 (7.8%) were significantly correlated with the CD4:CD8 

phenotype. Of these, the most highly correlated QTT (r = 0.575; P = 0.0004) is the transcript for 

protein tyrosine phosphatase, receptor type, K (Ptprk), a phosphatase expressed in spleen and 

other tissues (294) . Loss of Ptprk due to a spontaneous deletion in Long Evans Cinnamon 

(LEC) rats was recently shown to underlie the deficiency in CD4+ T cells in this model (124). 

Conversely, our data link increased expression of Ptprk with elevated levels of CD4+ cells. 

Stepwise linear regression of Ptprk and the eight other QTL interval genes correlated with the 

CD4:CD8 ratio was used to estimate the amount of trait variance explained by expression of 

these genes. A model containing Ptprk along with acid phosphatase 1 (Acp1; also known as low 

molecular weight protein tyrosine phosphatase) and laminin B-1 (Lamb1-1) explains 61% of 

variance in the CD4:CD8 phenotype (P < 0.0001). Like Ptprk, Acp1 is also a strong candidate 

gene for heritable variation in CD4:CD8 in the BXD panel. Polymorphisms in the human ACP1 

gene have been correlated with susceptibility to a number of inflammatory and autoimmune 

disorders such as type I diabetes, allergy and atherosclerosis, all disorders in which CD4 and/or 

CD8 cells are implicated in pathogenesis (20, 37, 162). Lamb1-1 has not been linked 

specifically to immune function but is widely expressed in spleen (154).  

Our group has developed a number of graph algorithms based on the extraction of 

cliques and other dense subgraphs to identify putative gene coexpression networks from large 

scale „omics data (16, 24, 47, 133, 277, 300). Here we use the concept of anchored clique to 

extract networks of genes co-expressed with Acp1 and Ptprk that may provide insight into the 



65 

 

mechanisms linking each gene to the CD4:CD8 phenotype. Both genes encode phosphatases 

and have been linked through genetic association studies to a number of inflammatory 

conditions, but relatively little is known about the cellular pathways in which each gene 

functions. The largest clique containing Acp1 in a graph thresholded at q-value = 0.05 (with 

corresponding P = 0.0026) consisted of a total of 500 transcripts. The correlations of genes 

within this clique range from |r| = 0.550 to 0.917. Gene Ontology enrichment revealed that this 

Acp1 coexpression network is highly enriched for genes involved in cell cycle (P = 2.0e-22, 

Benjamini = 1.1e-18), cell division (P = 1.6e-20, Benjamini = 4.2e-17), and DNA replication (P = 

2.4e-18, Benjamini = 3.2e-15). To insure that this high degree of GO enrichment was not 

somehow an artifact of our specific dataset, we identified genetic correlates of Acp1 expression 

in an independent spleen array dataset from 24 BXD strains within GeneNetwork (64). As with 

our data, Acp1 expression was highly significantly correlated with genes involved in cell cycle 

and related processes (e.g., GO term M phase, Benjamini = 1.13e-18). The cell cycle 

enrichment in our Acp1 anchored clique is also represented in the KEGG pathway for cell cycle 

control (P = 3.3e-12, Benjamini = 6.5e-10). Interestingly, of the 20 genes included in the KEGG 

pathway and co-expressed with Acp1, 18 are regulated by phosphorylation. These results 

suggest that abundance of the Acp1 transcript per se may regulate phosphorylation status of 

cell cycle targets, either directly or indirectly, in the spleen. Similar analysis was performed for 

the maximal anchored clique of 135 genes containing Ptprk, but significant GO enrichment was 

not observed. 

One of our long term interests is to identify gene coexpression networks linked to 

immune function in healthy individuals and to determine how these networks are perturbed by 

environmental factors that promote inflammation and/or alter immune function. To visualize the 

intersection between gene networks associated with IPs, we used a biclique algorithm to identify 

the largest set of transcripts in which each member is significantly correlated with each other 
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and one or more phenotypes. Pearson correlations were computed between each transcript and 

five immunophenotype measurements (%CD4, %CD3, LN T:B, %CD8, and LN CD4:CD8), and 

the matrix was thresholded to retain only those correlations most likely to symbolize true 

relationships (P < 0.001), leaving a total of 218 transcripts that are significantly correlated with 

one or more IPs. The relationship between gene expression and IPs are represented in Fig. 3.5, 

and as expected significant overlap exists between the sets of genes associated with each trait. 

For example, Notch4 is correlated with %CD3, LN T:B, %CD4, and %CD8. Notch4 is part of the 

highly conserved Notch family which play important roles in lymphocyte lineage commitment 

(256) and other cell-fate decisions (10). Specifically, there is evidence to support the role of 

Notch4 in the differentiation and expansion of hematopoietic stem cells and in 

lymphomogenesis (275, 296). These data provide a starting point from which to test the impact 

of specific environmental variables on networks of genes linked to IPs of interest. 

Discussion 

Systems genetics enables the detection of QTLs and the identification of putative 

candidate genes for further testing and validation. In parallel, it produces phenomic data that 

can be mined in the context of the system by integrating it with all of the other multi-scale and 

diverse data types obtained from the same population. At a total of 79 strains, the BXD RI strain 

panel is the largest inbred mouse RI panel, and one for which an abundance of genomic 

resources now exist (207). We characterized the range of variation and the genetic architecture 

of immunophenotypes in the BXD RI panel to produce a baseline profile of the immune system 

that can be integrated into systems genetics studies with this population. These data are 

relevant for genetic susceptibility to the plethora of environmental factors and disorders that 

invoke the immune system, e.g., ionizing radiation exposure and diet-induced obesity.  
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Figure 3-5. Bipartite graph demonstrating the 
connectivity of 5 immunophenotypes (IPs) and 
transcript expression. IPs are listed in the center of the 

graph and are symbolized by hexagons. The numbers of 
transcripts correlated (P < 0.001) with the IP(s) are 
depicted in the circles. The transcript sets symbolized by 
white circles create a maximal biclique with a single IP, 
while the transcript sets that create a maximal biclique with 
more than one IP are symbolized with gray circles. 
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 We found that genetic models explain the majority of variation in each of the 

immunophenotypes, which is consistent with reports from humans and other species that 

lymphocyte subpopulations in healthy individuals are under strong genetic control. Three of the 

immunophenotypes (proportions of B, CD4+ and CD8+ lymphocytes in peripheral blood) were 

previously profiled in 22 of the same BXD lines included in our study (46). Two of the three IPs 

are significantly correlated with our data (%B lymphocytes, r2 = 0.530, P = 0.010; %CD8 

lymphocytes, r2 = 0.437, P = 0.041) despite the passage of several years between studies and 

the use of independent BXD breeding colonies and institutions, highlighting the genetic stability 

of these phenotypes. The QTLs identified for these three traits differ between the two studies, 

likely because the Chen and Harrison (46) study relied on 35 BXD strains from the original BXD 

panel (strains 1 – 42) and a limited number of genetic markers, while ours was balanced 

between the original BXD set and the advanced recombinant inbred set produced by Peirce, et 

al. (207). Recent polymorphisms in this population (235) have been shown to influence the 

location and direction of QTL effects in these populations (210). In addition, a significant 

increase in the number of informative genetic markers are now available for the BXD panel and 

were used herein, which also may contribute to the discrepancy in QTL positions. Our reported 

QTL intervals (and those for many other traits mapped using the BXD panel) will likely be further 

refined with upcoming availability of genotype data across a panel of 580,000 SNPs, data that 

will soon be available through the GeneNetwork website (RW Williams, UTHSC, personal 

communication).  

Identifying QTLs is relatively straightforward and rapid when using genetic reference 

panels such as BXD for which genotype data are readily available; cloning the causative 

polymorphism and confirming its role in phenotypic determination is a much more elusive target 

and one that we have not attempted. However, by combining QTL mapping with gene 

expression data, we have winnowed the list of potential candidate genes for traits of interest to a 
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manageable number for further study. This approach produced two particularly compelling 

candidate genes – Ptprk and Acp1 – within the two significant QTLs associated with CD4:CD8, 

a trait used clinically as a marker for the prognosis of human immunodeficiency virus (HIV) 

(156), rheumatoid arthritis (81), and other diseases. Ptprk encodes a receptor-type protein-

tyrosine phosphatase with no specific properties that link it to lymphocyte development. 

However, a potential role for Ptprk in CD4+ T cell development was serendipitously uncovered in 

studies of the LEC rat, a model of Wilson‟s disease (due to a mutation in the copper transporting 

ATPase gene) that also had been noted to be deficient in CD4+ T cells (1). Recently, two groups 

(11, 124) used linkage analysis to identify a deletion containing Ptprk in LEC rats and confirmed 

that loss of Ptprk is responsible for defective CD4+ T cell development. Clinically, deletions of 

the chromosomal region containing PTPRK (chromosome 6q22-23) are frequently present in 

high-grade non-Hodgkin's lymphoma (188, 301), and loss of this region is also predictive of poor 

prognosis in CNS lymphoma (39), implicating this phosphatase in oncogenesis of the immune 

system. We used coexpression analysis in an attempt to gain insight into Ptprk function in 

spleen, based on the concept of genetic correlation. However, many of the transcripts with 

which Ptprk is most tightly co-expressed are un- or poorly- annotated, and no specific functions 

showed statistical enrichment. On the other hand, Acp1, the second candidate gene of interest 

for the CD4:CD8 phenotype, is part of a large clique of 500 transcripts that is highly enriched in 

functions related to cell cycle. Acp1, also known as low molecular weight protein tyrosine 

phosphatase, regulates phosphorylation status of a number of proliferative signaling molecules 

(244) and is up-regulated in several types of cancers (158, 163). Genetic screens in humans 

link polymorphisms in or near the ACP1 locus to a variety of inflammatory diseases including 

allergy, asthma and obesity (26), and Acp1 is involved in activation, adhesion, and 

differentiation of T cells (27, 88). The QTLs containing Acp1 and Ptprk reside on separate 

chromosomes that showed significant independent and additive linkage with the CD4:CD8 
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phenotype, suggesting that genes within each locus may interact to affect CD4:CD8 ratio. At the 

molecular level Ptprk positively regulates the protein tyrosine kinase Src (280), which in turn 

phosphorylates and activates Acp1 (36, 254). Whether these events occur in the same cell type, 

and in one relevant to T cell development, is unknown but is worthy of further experimentation. It 

is worth noting that both Acp1 and Ptprk have been linked through genetic screens to colon 

cancer susceptibility (245, 249). Germane to our overarching interest in radiation sensitivity is 

the fact that both Acp1 and Ptprk have been shown to be altered by radiation exposure (89, 

290).  

Although Ptprk and Acp1 emerge as attractive candidates for the CD4:CD8 phenotype, a 

potential limitation of our study is that the tissue (spleen) used to highlight these QTTs is not the 

site of T lymphocyte lineage commitment and selection, processes thought to primarily occur 

within the thymus (38). However, it has been suggested that there are compensatory 

adjustments that occur within peripheral immune organs (i.e., spleen and lymph nodes) and 

alters the T cell peripheral population (186). Therefore, it is possible that the expression levels 

of Ptprk and Acp1 in the thymus and spleen are regulated through similar mechanisms, or that 

the genetic polymorphisms that cause variation between strains exert similar effects in both 

tissues. If so, the relationship between trait values and expression levels would be predicted, 

even though the specific tissue profiled is not the primary tissue involved in the process of 

interest. Alternatively, the causative polymorphisms within the QTL intervals, whether in Ptprk 

and Acp1 or other genes or regulatory elements, may act on processes that occur in the 

periphery, such as T cell proliferation. However, the mice used in this study were not exposed to 

any known immune challenges and were maintained in an SPF facility, and we would expect 

peripheral proliferation of T cells to be minimal in these animals. It is also possible that, despite 

convergent evidence to support their contribution to CD4:CD8, the causative polymorphism for 

variation in this trait do not act through either Acp1 or Ptprk.  
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Genetic correlations between immunophenotypes in the BXD panel and disease 

susceptibility would be enriched by more detailed characterization of T cell subpopulations 

beyond the classification as either Th (CD4+) or Tc (CD8+). For example, additional surface 

markers could be used to further classify CD4+ cells as Th1, Th2, Th17, regulatory T (Treg), 

follicular helper T (Tfh), γδ T cells, etc. Each of these cell types play important roles in host 

defense and autoimmune diseases, and understanding the genetic basis of T cell subpopulation 

distributions would be invaluable in elucidating susceptibilities to T cell-mediated disorders, such 

as rheumatoid arthritis (123, 139, 291) .  

One of the advantages of using BXD strains as a reference population is the wealth of 

genotypic, phenotypic, and gene expression information available for the panel, much of which 

is freely available through the online database GeneNetwork. For example, we transiently 

uploaded our data into GeneNetwork to scan for genetic correlation between our 

immunophenotypes and other traits measured on the BXD population. This ad hoc analysis 

revealed an association between the baseline T:B ratio profiled in our study and outcomes of 

Chlamydia psittaci exposure as measured by Miyairi and colleagues (172). Among BXD strains 

that persisted 30 days post-infection, both spleen weight and pathogen load in spleen 

(GeneNetwork records 11025 and 11026) are significantly correlated (r = -0.811, P < 0.001, and 

r = -0.728, P = 0.003, respectively) with the T:B phenotype. The opportunity for such integrative 

analyses provided by the use of genetic reference populations such as the BXD panel highlights 

the strengths of systems genetics, namely the ability to assimilate genetic susceptibility to 

disease or the environment in the context of the healthy state through the stable genetic basis of 

the population. As the BXD strain continues to be phenotyped, the ability to connect seemingly 

disparate phenotypes grows proportionally. The Collaborative Cross, an idealized genetic 

reference population, should also be widely available within the next few years for expanded 

systems genetics studies (50). 
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In summary, we have characterized the genetic architecture of a set of basic but 

informative immunophenotypes in the BXD panel. We have uncovered potential candidate 

genes that contribute to genetic variation in the relative abundance of helper and cytotoxic T 

cells, and follow-on studies to test the roles of both Ptprk and Acp1 can now be initiated. 

Beyond the classical follow-ups to QTL mapping, these data can be a useful resource in 

choosing BXD strains with a particular baseline immunoprofile for the study of a particular 

disease susceptibility or progression. For example, we have gene expression data from spleen 

suggesting that low dose radiation exposure differentially impacts T cell subpopulations in a way 

that depends on genetic background (BH Voy et al., unpublished data). We can now use these 

BXD data to select strain subsets based on differences in T cell subpopulations and 

prospectively test if heritable differences in immunophenotypes alter radiation effects on 

immune function. 
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CHAPTER IV 

IDENTIFYING GENETIC DIFFERENCES UNDERLYING   

DIFFERENTIAL LOW DOSE RADIATION RESPONSES 

 

This manuscript will be submitted to Radiation Research with the following author list: 

Lynch RM, Naswa S, Rogers GL, Jr., Kania SA, Das S, Chesler EJ,  
Saxton AM, Langston MA, Bogard JS, and Voy BH 

 

The immune system illustrates the challenges of assigning risk to low dose radiation 

(LDR) exposure in a population. While high radiation doses clearly suppress immune function, a 

number of studies have shown that LDR affects immune cell subpopulations in ways that could 

be beneficial. In the intact organism, defining the consequences of LDR is further complicated 

by the impact of genetic background, particularly in systems such as the immune system for 

which both radiosensitivity and genetic effects are profound. We employed a systems genetics 

approach to test for heritable differences in LDR responses. Mice from 39 BXD recombinant 

inbred (RI) strains were exposed to 10cGy gamma radiation to determine effects on immune 

function and oxidative stress 48h after irradiation. LDR significantly enhanced neutrophil 

phagocytosis in a manner that was independent of genetic background. In contrast, genetic 

background significantly impacted LDR-induced changes in spleen superoxide dismutase 

activity. Transcriptome data from spleens of the BXD parental strains highlighted the impact of 

genetic background on LDR responses and also indicate that genetic variation in radiosensitivity 

is further unmasked at low radiation doses. Taken together, these data highlight the need to 

consider genetic variation when assessing LDR outcomes. 
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Introduction 

Average levels of radiation exposure over the past thirty years are estimated to have 

doubled, largely due to the widespread use of diagnostic imaging procedures such as computed 

tomography (190). Physically, the likelihood of an individual cell receiving a radiation track is 

proportional to dose, and the current model used to predict dose-dependent risk is based on 

linear extrapolation from high dose effects. Biologically, however, low doses of ionizing radiation 

elicit responses that are not necessarily observed at higher doses. A number of microarray 

studies have reported dose-specific gene expression profiles using mouse and human cell lines 

irradiated in vitro (6, 69, 83, 149, 237). Higher order phenotypes, such as reactive oxygen 

species (ROS) scavenging (292), DNA damage and repair (299), and immune responses (79), 

have also been shown to exhibit non-linear responses to increasing radiation dose (79). 

Therefore the physiological consequences of exposure to low doses of radiation (LDR, ≤10cGy) 

are not easily extrapolated from the responses characteristic of high dose radiation (HDR) 

exposure (79, 228, 262, 264).  

The immune system, which is known for its radiosensitivity, illustrates the challenges in 

delineating health effects of radiation exposure at low doses. High radiation doses (>1Gy) 

clearly suppress immune function through destruction of myeloid and lymphoid cell populations 

in bone marrow. In contrast, several studies of various immune cell types suggests that low 

doses of radiation enhances cellular functions that could be viewed as beneficial to the 

organism (143). For example, LDR has been shown to increase mitogen-induced lymphocyte 

proliferation (8, 111, 192, 201, 234), macrophage and natural killer cell activation (104, 147, 

194, 201, 233), and tumor surveillance (41, 98, 101, 122, 143, 194). At the molecular level, LDR 

alters gene expression (95), cytokine secretion (94, 104, 145), expression of surface molecules 

on immune cells (145, 146), and apoptosis (234), which can lead to LDR-induced modification 

of leukocyte distribution (96). Relatively little is known, however, about how this sensitivity 
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translates into efficacy of immune system, and if LDR alters the organism‟s ability to respond to 

invading pathogens.  

Classical studies of radiation sensitivity in mice illustrate the importance of considering 

genetic variation when ascribing biological consequences of radiation dose. In 1963, Roderick 

characterized survival times of 27 inbred mouse strains following daily exposure to 1Gy of x-ray 

radiation (high dose delivered at a high dose rate). The most susceptible strains, including 

CBA/J and BALB/cJ, succumbed to the radiation in approximately 16 days, while the most 

resistant strains, such as 129/J, survived more than twice as long. Since then, differences 

between strains at sublethal radiation doses have been reported for a number of outcomes, 

including radiation-induced apoptosis (178-181, 279) and carcinogenesis (157, 177, 266, 298). 

With respect to carcinogenesis, differences between strains have been described even though 

most are not inherently sensitive to radio-carcinogenesis. Given that genetic variation alters the 

effects of lethal doses, it is reasonable to suspect that evidence for radiation sensitivity would be 

even more apparent at low doses that present a more subtle challenge to cells and tissues. A 

limited number of studies have reported differential effects of low radiation doses in inbred 

mouse strains and in cell lines derived from a panel of human donors (117, 285).  

Incorporating genetic variation into models of environmental susceptibility in humans is 

challenging even for prevalent factors such as high fat diets or cigarette smoke. Population-

based mouse models, such as outbred crosses or recombinant inbred strain panels provide a 

means to address the impact of genetic variation on responses to environmental stimuli, such 

as radiation, for which large, controlled study populations or purposeful exposures are not 

available in humans. We describe the results of using BXD (C57BL/6J X DBA/2J) recombinant 

inbred (RI) mouse strains as a population-based model to assess the impact of genetic variation 

on response to LDR and to test the hypothesis that LDR alters aspects of immune function. The 

BXD recombinant inbred (RI) strain panel was used as a genetically characterized reference 
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population in which the parental strains (C57BL/6J and DBA/2J) exhibit known differences in 

baseline immune function and differential sensitivities and responses to LDR exposure (153, 

172, 281). Part of our overarching hypothesis is that the immunological effects of LDR exposure 

within a population depend in part on the individual‟s baseline immunoprofile and gene 

expression which are ultimately dependent upon genetic background. We utilize our previously 

published baseline peripheral blood immunophenotype and spleen expression data in the BXD 

panel to identify correlations with LDR responses. We focused our efforts on a limited number of 

biochemical and functional endpoints that could be efficiently assayed across a large number of 

mice. Transcriptomic profiling of spleen from the BXD parental strains was used to assess 

differential sensitivity to low dose radiation at the molecular level, and to test the hypothesis that 

genetic variation in the radiation response is more apparent at low doses. Here we show that 

LDR enhances neutrophil phagocytosis across the BXD panel, while spleen superoxide 

dismutase activity and spleen gene expression changes in response to LDR exposure vary 

significantly depending upon genetic background. 

Methods 

Radiation exposure 

C57BL/6J, DBA/2J, and BXD RI stocks from strains 6 – 42 were obtained from The 

Jackson Laboratory (Bar Harbor, ME). BXD RI stocks from strains 43 – 100 were obtained from 

Dr. Lu Lu and Dr. Robert Williams from the University of Tennessee Health Science Center 

(UTHSC, Memphis, TN). Mice were housed and propagated in the specific-pathogen-free (SPF) 

Russell Vivarium at Oak Ridge National Laboratory (ORNL) as previously described (153). 

Approximately 10 week-old mice from a balanced subset of 39 BXD strains selected from the 

original Jackson Laboratory strains (259, 260) and the advanced intercross strains developed at 

UTHSC (207) were exposed to a single dose of 10cGy radiation from a 137Cs source delivered 
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at a rate of ~9cGy/h. Each strain*treatment group consisted of an average of 4 irradiated or 4 

sham-exposed control mice per strain, and each group was balanced between males and 

females. Only 2 mice (1 irradiated and 1 sham control) per strain were exposed on any given 

day, and strains were randomized across the study. Following radiation or sham exposure, mice 

were housed for 48h in a satellite facility prior to dissection. Blood was collected by retro-orbital 

sinus puncture into heprinized tubes for neutrophil function assays. Spleens were harvested and 

snap-frozen in liquid nitrogen and stored at -80°C for subsequent biochemical assays.  

For spleen expression profiling, male C57BL/6J and DBA/2J mice were exposed to 

either a low dose (10cGy, as described above), or a high dose (1Gy) of γ-radiation delivered by 

a 60Co source with a dose rate of ~6Gy/min. Mice were sacrificed 24 following exposure, and 

spleens were stabilized in RNAlater (Sigma-Aldrich, St. Louis, MO) until RNA was extracted. All 

studies were approved by the Animal Care & Use Committee at Oak Ridge National Laboratory. 

Neutrophil functional assays 

Flow cytometry was used to assay neutrophil function in peripheral blood from 34 BXD 

strains 48h after sham or radiation exposure. For both assays, red blood cells in the blood 

samples were lysed and leukocytes were fixed prior to flow cytometric analysis. DNA staining 

was used to distinguish between aggregation artifacts and murine cells. At least 10,000 

leukocytes per sample were analyzed using a Beckman Coulter Epics XL flow cytometer and 

EXPO32 ADC Software (Beckman Coulter, Brea, CA). Neutrophils were gated for analysis 

based on forward and side scattering profiles. Gating based on fluorescence was set on 

unstimulated samples from each mouse to include approximately 10% of the evaluated cell 

population, and the same gating parameters were used to evaluate percentage and median 

channel fluorescence (MCF) of stimulated neutrophils exhibiting phagocytic or oxidative burst 

activity. Neutrophil phagocytosis (Phagotest Kit, Orpegen Pharma, Heidelberg, Germany) and 
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oxidative burst assays (Phagoburst Kit, Orpegen Pharma) were performed as previously 

described (135).  

Biochemical assays 

 Response to oxidative stress was assayed by quantification of superoxide dismutase 

(SOD) activity, glutathione (GSH), and oxidized glutathione (GSSG) in spleens from 39 BXD 

strains. Spleens were homogenized in 1mL of cold HEPES buffer (20mM HEPES, pH 7.2, with 

1mM EGTA, 210mM mannitol, and 70mM sucrose). The homogenate was aliquoted for SOD, 

GSH, and Bradford assays. SOD activity was measured in the spleen extracts using an 

enzymatic assay (Cayman Chemical Company, Ann Arbor, MI) that reflects the combined 

activity levels of all three SOD isoforms (SOD1, SOD2, and SOD3), normalized to the protein 

concentration of the spleen extract (Bio-Rad, Hercules, CA), and reported as the units of SOD 

activity per mg of protein (U/mg). The percentage of GSSG to total GSH in deproteinated spleen 

extracts was determined with a kit which utilizes an enzymatic recycling method using 

glutathione reductase (Cayman Chemical Company). GSSG levels were assayed separately 

from the determination of total GSH levels; both were assayed according to manufacturer‟s 

instructions using the end-point method. The percentage of GSSG to total GSH was 

determined, as well as the GSSG and total GSH concentration normalized to the protein 

concentration of the original spleen lysate. 

QTL mapping 

Quantitative trait loci (QTL) mapping was performed on SOD activity in sham and LDR-

exposed BXD mice. Estimates from the models described above were used for QTL mapping. 

QTL analysis was performed using nearly 3,8000 single-nucleotide polymorphisms (SNPs) and 

microsatellite markers for the BXD panel obtained from GeneNetwork database 

(http://www.genenetwork.org/dbdoc/BXDGeno.html). The genotype information was based on 
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the markers originally reported by Shifman et al. (235) which were re-aligned with National 

Center for Biotechnology Information (NCBI) Build 36. QTLs were identified using WebQTL (49), 

which creates a linkage map using a mixture mapping algorithm combining simple marker 

regression, linear interpolation, and standard Haley-Knott interval mapping. Genome-wide 

significance thresholds were calculated based on 1,000 permutations (54), and the cut-off p-

values for significant and suggestive loci were P = 0.05 and P = 0.63, respectively (130). 

Multiple-QTL modeling was performed using stepwise linear regression in SAS; a p-value of 

0.05 was used as the threshold for terms to remain in the final model. 

Parental gene expression profiling 

Transcriptome profiling in C57BL/6J and DBA/2J spleens was performed by Genome 

Quebec (Montreal, Canada) using the Mouse WG-6 v1.1 BeadChip on the Illumina platform 

(San Diego, CA). as previously described (153). Quantitative polymerase chain reaction (Q-

PCR) was used to confirm the microarray results of myeloperoxidase (Mpo) differential 

expression in the parental strains following radiation exposure. Reverse transcription was 

performed on 500ng of RNA using the Bio-Rad iScript cDNA Synthesis kit from Bio-Rad. 

QuantiTect primers were used in conjunction with the QuantiTect SYBR Green PCR kit 

(Qiagen) on a CFX96 real-time PCR detection system (Bio-Rad). All samples were analyzed in 

triplicate; Mpo expression was normalized to hypoxanthine guanine phosphoribosyl transferase 

(Hprt) expression. Fold changes were calculated based on the ΔΔCt method and differences 

between groups were tested using ANOVA. 

Statistical testing  

Statistical testing was performed using SAS (SAS Institute, Cary, NC). For biochemical 

and neutrophil function assays, Proc Mixed was used to test for strain, radiation, and 

strain*radiation interaction effects, using the assay date as a random variable. If the 
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strain*radiation term was not significant (P = 0.05), then a reduced model was rerun using only 

the strain and radiation terms. All neutrophil function and biochemical data reported are least 

squares means from the Proc Mixed model. 

Expression data from Illumina bead chips were normalized using Variance Stabilizing 

Transformation (VST) followed by Robust Spline Normalization (RSN) using the R/Bioconductor 

(87) package lumi (74). Fold changes were calculated after reverse transforming the data using 

inverseVST function of lumi package. Raw and normalized expression data are available 

through NCBI‟s GEO database (http://www.ncbi.nlm.nih.gov/projects/geo). SAS procedure GLM 

(General Linear Model) was used for analysis of variance (ANOVA) to test the effects of strain, 

dose and their interaction on expression (expression ~ strain + dose + strain*dose). Post 

ANOVA contrast tests were used to compare the groups C57BL/6J LD and C57BL/6J HD vs. 

C57BL/6J control, DBA/2J LD and DBA/2J HD vs. DBA/2J control, strain*LD interaction and 

strain*HD interaction. An alpha of 0.05 was used for all statistical tests. False discoveries due to 

multiple comparison testing were controlled by using q-value (250). Differential expression was 

considered significant if both p and q values were < 0.05 and fold change > 1.5. DAVID (68, 

102) was used for gene ontology (GO) enrichment analysis of differentially expressed genes. 

Benjamini-Hochberg false discovery rate-corrected p-values are reported (19).  

Results 

Neutrophil Function 

Across the panel of BXD strains, LDR exposure significantly increased both the 

percentage of phagocytic neutrophils (i.e., phagocytosis of one or more FITC-labeled bacteria 

per cell; P = 0.0437) and the median channel fluorescence (MCF) of phagocytic neutrophils, 

reflecting the number of bacteria phagocytosed per E.coli-positive cell (P = 0.0193, Fig. 4-1). 

The radiation effect translates into approximately a 4% increase in the number of cells   
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Figure 4-1. Effect of radiation on neutrophil function. Peripheral 
neutrophils were assayed using flow cytometry 48h after irradiation; N ≥ 
66 mice / group (A) A greater percentage of neutrophils from radiation-
exposed mice engulfed FITC-labeled E. coli compared to those of 
controls (p = 0.044). (B) E. coli-positive neutrophils from radiation-
exposed mice had a greater median channel fluorescence (Phagocytic 
MCF, indicating more bacteria engulfed per cell) compared to those of 
control (p = 0.019). Error bars reflect the SEM. 
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undergoing phagocytosis and an 11% increase in the number of bacteria engulfed by those 

cells, relative to sham controls. In addition to a main effect of radiation, both measures of 

phagocytic activity showed significant effects of strain (% Phagocytic Neutrophils, P < 0.001 and 

Phagocytic MCF, P = 0.0023), reflecting the impact of genetic variation on phagocytic function 

in the BXD panel. Despite the wide range of baseline variation across strains, there was no 

significant interaction between strain and radiation exposure (% Phagocytic Neutrophils, P = 

0.99 and Phagocytic MCF, P = 0.38). These results demonstrate for the first time using an in 

vivo model that low dose radiation alters neutrophil function. 

Flow cytometry also was used to measure the generation of intracellular reactive oxygen 

species (ROS) generated during oxidative burst. The percentage of oxidative burst-positive 

neutrophils (%OB Neutrophils) was analyzed as well as the MCF of positive neutrophils 

(measurement of enzymatic activity). While both %OB Neutrophils and OB MCF varied 

significantly by strain (P = 0.020 and P < 0.001, respectively), radiation and strain*radiation 

interaction effects were not significant (P = 0.66 and P = 0.54, respectively).  

Anti-oxidant defense system 

Total SOD activity in spleen varied significantly across the BXD strain panel (P < 0.001), 

reflecting the impact of genetic background on baseline SOD activity. Genetic background 

further altered the SOD response to LDR, as indicated by the very significant strain*radiation 

interaction (P < 0.001). Unlike for phagocytosis, the main effect of radiation was not significant 

(P = 0.32). Neither the GSSG levels nor percentage of oxidized (GSSG) to total glutathione 

(GSH) levels significantly differed among strains or between radiation and sham-exposed mice 

within strains (all P-values > 0.1). When total GSH levels were normalized to the protein 

concentration in the spleen lysate, a significant strain effect was observed (P = 0.0014), but 

there was no radiation main effect (P = 0.21) or strain*radiation interaction effect (P = 0.97).  
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The significant interactive effect of strain and radiation on SOD activity demonstrates 

that genetic factors play a pivotal role in the antioxidant response to low dose exposure. We 

performed QTL analysis to identify loci associated with this differential response to LDR, using 

genotype data readily available for the BXD panel (235). QTL analysis (Fig. 4-2) revealed a 

significant QTL on Chromosome (Chr) 15 (@ 74Mb, LOD = 3.54), as well two suggestive QTLs 

on Chr 16 (@ 69Mb, LOD = 2.34 and @ 93Mb, LOD = 2.80), that are linked to SOD activity in 

unexposed controls. The QTL on distal Chr 16 encompasses the Sod1 gene. In contrast, QTL 

analysis of LDR SOD activity identified a locus on Chr 17 (@ 76Mb, LOD = 1.17) which was not 

present in analyses of control SOD activity, suggesting that this locus mediates the SOD 

response to LDR but not baseline SOD activity. Further, the Chr 16 locus containing Sod1 was 

not present in the LDR QTL model. A multi-locus regression model which includes additive 

effects of the Chr 15, which were present in both models, and the Chr 17 loci explains 24% of 

the variance in SOD activity in the spleens of LDR-exposed mice.  

Correlations between baseline IP and gene expression with radiation outcomes 

The concept of genetic correlation (210) was applied to search for relationships between 

baseline traits in unexposed mice and low dose radiation responses, which may identify genes 

that are involved in or biomarkers of differential low dose response. Transcriptomic and 

immunophenotype data from spleens of an overlapping set of BXD strains were integrated with 

SOD activity and neutrophil function data, and all possible pair-wise Pearson correlations were 

computed between expressed transcripts, immunophenotypes and SOD activity in sham and 

LDR-exposed BXD strains. Spleen microarray data and immunophenotypes (e.g., CD79+, CD3+, 

CD4+ and CD8+ lymphocytes) in peripheral blood were collected as described previously (153). 

We were particularly interested in genes for which baseline expression levels were significantly 

correlated with post-radiation SOD activity but not with sham SOD activity. Interestingly, these   
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Figure 4-2. SOD activity QTL analysis. WebQTL interval mapping of spleen 

SOD activity in sham (A) and radiation-exposed (B) BXD mice. The mouse 
genome is portrayed along the horizontal axis, while the vertical axis shows the 
logarithm of odds (LOD). Significant and suggestive levels of association were 
determined based on permutation testing and are depicted by horizontal red 
and gray lines, respectively. Significant and suggestive loci are indicated by red 
and gray arrows, respectively. LOD scores are indicated by the blue line across 
the genome; the red line indicates that the C57BL/6J allele at the marker 
increases the SOD activity, while the green line indicates the DBA/2J allele 
increases activity. Strength of additive effects is indicated by the scale on the 
right. 
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parameters include expression of Sod2 which was significantly correlated with LDR SOD activity 

(r = 0.47, P = 0.0026) but not with sham SOD activity (r = 0.030, P = 0.86). In addition to Sod2, 

baseline expression of apoptosis-inducing factor, mitochondrion-associated 2 (Aifm2) was 

differentially correlated with LRD SOD activity (r = 0.55, P < 0.001) but not sham SOD activity (r 

= 0.16, P = 0.35). AIFM2 is a DNA-binding protein with oxidoreductase activity (161) and was 

originally described as a caspase-independent inducer of apoptosis (289), functions that have 

clear relevance to radiation response. With respect to immunophenotypes, we found a 

significant and inverse correlation between % Phagocytic Neutrophils and the CD4:CD8 ratio (r 

= -0.48, P = 0.0082, N = 29 strains) in LDR but not control mice which was largely due to an 

inverse correlation with the percentage of CD4+ lymphocytes (r = -0.33, P = 0.078) (Fig. 4-3).  

Spleen gene expression 

We used microarrays to compare and contrast effects of LDR in the two BXD parental 

strains based on differences in gene expression profiles. A higher dose (1Gy) exposure was 

included to determine if the effects of genetic variation, based on molecular phenotypes, were 

more apparent at a lower level of radiation exposure. Low dose radiation significantly altered the 

expression of 74 genes in both C57BL/6J and DBA/2J mice (q-value < 0.05 and fold change > 

1.5). This gene set is highly enriched in immune-related functions, including the Gene Ontology 

(GO) terms “response to wounding” (15 genes, Benjamini = 7.1E-8) and “defense response” (13 

genes, Benjamini = 2.9E-5). GO enrichment highlighted qualitative differences in the response 

of each strain. Genes differentially expressed in C57Bl/6J but not DBA/2J (N = 138) were 

significantly enriched in heme biosynthesis, while DBA/2J-specific LDR genes (N = 752) were 

enriched in various immune processes, including lymphocyte activation (Table 4-1). In total, 

1200 genes showed a significant strain*LDR interaction, reflecting genes for which the response 

to LDR depends upon genetic background. Consistent with previous reports of differential   
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Figure 4-3. Scatterplots of neutrophil phagocytosis of BXD mice with baseline 
immunophenotypes. Percent phagocytic neutrophils in low dose radiation-exposed mice 
(LDR) is significantly (P = 0.0082) correlated with the natural log of the CD4:CD8 ratio (LN 
CD4:CD8), which is largely due to the correlation with %CD4-positive lymphocytes (%CD4) 
and not %CD8-positive lymphocytes (%CD8). 
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Table 4-1. GO enrichment of genes demonstrating a LDR*Strain interaction. 

 

GO Biological Processa  

# of 

Genesb  Bonferroni  

hemopoietic or lymphoid organ development  44  4.21E-08  

M phase  41  1.18E-06  

DNA metabolic process  43  7.58E-04  

nucleosome organization  17  1.13E-04  

regulation of apoptosis  47  1.33E-02  

hemopoiesis  37  2.66E-06  

heme biosynthetic process†  8  1.32E-04  

B cell activation‡  14  4.57E-03  

T cell activation‡  16  1.87E-02  

antigen receptor-mediated signaling 

pathway‡  8  4.50E-02  

antigen processing and presentation of 

exogenous peptide antigen via MHC class II‡  
10  3.33E-06  

 

 
aSelection of enriched GO biological processes, level 5 
bNumber of genes with significant LDR*Strain interaction (q-value < 0.05) 
†Significant GO process unique to C57BL/6J low dose  
†Significant GO process unique to DBA/2J low dose  
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apoptotic responses in irradiated C57BL/6J and DBA/2J strains (44, 89), the list of significant 

LDR*strain interaction genes includes 50 genes involved in apoptosis regulation.  

The list of genes with the most significant LDR*strain interactions was further probed to 

identify specific cellular functions that manifested the strongest genetic differences in LDR 

response. After sorting the list based on q-value, 14 of the top 15 genes were found to be 

involved in varying aspects of neutrophil function (9, 35, 56, 58, 110, 114, 118, 137, 142, 159, 

255) (Table 4-2), all of which showed an inverse response to radiation between strains. Q-PCR 

was used to validate differential effects of LDR on Mpo, which confirmed significant down-

regulation in C57BL/6J (4.8-fold; P < 0.001) and up-regulation in DBA/2J (3.3-fold; P < 0.001). 

We used the text mining tool FABLE (http://fable.chop.edu) to query the entire LDR*strain 

interaction list for correlations with neutrophil function. A total of 157 genes were found in 10 or 

more PubMed articles relating to neutrophils, suggesting that LDR had differential effects on 

aspects of neutrophil function, depending upon genetic background.  

We compared the molecular responses to 10cGy (LDR) vs. 1Gy (high dose radiation, 

HDR) exposures in C57BL/6J and DBA/2J mice to determine if a more subtle environmental 

stimulus unmasked genetic variation that was less apparent with a higher dose. ANOVA 

identified a total of 562 genes differentially expressed in HDR mice, regardless of strain. As 

expected, this set of genes was significantly enriched in KEGG pathways for cell cycle (17 

genes, Benjamini = 2.4E-5), p53 signaling (10 genes, Benjamini = 7.3E-3), and DNA replication 

(7 genes, Benjamini = 0.011). Out of the 562 HDR and 964 LDR genes, 307 had altered 

expression in response to both radiation doses. This set of overlapping genes was significantly 

enriched in functions related to various biological processes including hemostasis (10 genes, 

Benjamini = 3.8E-04), chromatin assembly (8 genes, Benjamini = 0.0093), and immune system 

development (14 genes, Benjamini = 0.023). In contrast to LDR, in which a total of 1200 genes 

showed significant LDR*strain interaction, only five genes demonstrated differential HDR   
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Table 4-2. Top 15 genes demonstrating the most significant LDR*Strain interaction 
effects. 

 

Gene 
Symbol Gene Name q-valuea  

C57BL/6J  
Fold  
Changeb  

DBA/2J     
Fold  
Change  

     Prtn3 proteinase 3 1.7E-05  -14.9 12.2 

Ltb4r1 leukotriene B4 receptor 1 1.7E-05  -2.4 4.3 

Mpo myeloperoxidase  1.7E-05  -14.2 9.0 

Elane elastase, neutrophil expressed 1.7E-05  -12.8 9.8 

Tmem180 transmembrane protein 180 1.7E-05  -1.3 1.9 

Mt1 metallothionein 1 2.2E-05  -1.3 2.4 

Fcnb  ficolin B 2.2E-05  -3.9 5.0 

Cebpe CCAAT/enhancer binding protein (C/EBP), epsilon 3.5E-05  -3.3 4.6 

Mt2 metallothionein 2 3.8E-05  -1.2 2.9 

Camp cathelicidin antimicrobial peptide 4.9E-05  -9.0 5.9 

Ltf lactotransferrin 5.5E-05  -12.5 6.4 

Lcn2 lipocalin 2 7.2E-05  -8.3 7.6 

F5 coagulation factor V 7.2E-05  -1.7 1.9 

Pglyrp1 peptidoglycan recognition protein 1 7.2E-05  -1.5 3.6 

Chi3l1 chitinase 3-like 1 7.2E-05  -2.9 4.3 

          

 
 
aANOVA q-value for LDR*Strain interaction term  
bEstimated by reverse transformation of normalized microarray data  
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response between strains (q-value < 0.05 for interaction effect). These results suggest that 

while C57BL/6J and DBA respond to high dose radiation in a qualitatively similar manner at the 

level of gene expression, their responses diverge at a lower dose exposure.  

Discussion 

 We assessed the impact of LDR on the immune system by measuring the response of 

neutrophils to bacteria, a functional endpoint of the innate immune system. We demonstrated 

that across the BXD population, a single exposure to 10cGy of radiation significantly enhanced 

both the numbers of cells that engaged in phagocytosis and the phagocytic activity of those 

cells. These data suggest that, at least acutely, LDR increases the ability to respond to invading 

pathogens. Our findings are consistent with a study of immune function in residents of two 

villages in Iran, Taleshmahaleh and Chaparsar, who are exposed to background radiation levels 

13 times greater than normal due to elevated natural levels of radiation exposure. Residents of 

these two villages were shown to have increased neutrophil phagocytosis and motility, as well 

as differences in circulating cytokines such as IL-2, IL-4 and IL-10 (12). It is important to note, 

however, that both radiation quality and dose rate differ significantly between these two studies. 

One limitation of our study is that only one time point was analyzed (48 hours post-exposure), 

which was chosen to fit the overall study design characterizing LDR-effects that are downstream 

of the initial radiation stress. This time point may not be optimal for this phenotype; greater 

enhancement of phagocytosis might be observed at earlier or later time points following 

irradiation. Because the half-life of murine neutrophils in peripheral blood is approximately 8 

hours (150), the cells assayed by flow cytometry were irradiated while undergoing maturation in 

bone marrow. Therefore the mechanism of increased phagocytosis could include maturational 

effects on cells prior to their release into circulation. Alternatively, LDR may have increased 

phagocytosis by altering levels of cytokines and chemokines such as TNFα, IL-8, and IFNγ that 
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act on neutrophils in circulation (85, 94, 104). Phagocytosis is one of a series of steps that lead 

to bacterial killing, and only phagocytosis and oxidative burst (which was not affected by LDR) 

were measured in this study. Follow-up studies are necessary to more broadly define the 

functional effects of LDR on neutrophils. Our microarray data collected from the BXD parental 

strains further support significant effects of LDR on neutrophils, as indicated by the abundance 

of neutrophil-related genes with significant strain*radiation interaction effects (Table 4-2). 

Moreover, they suggest that these effects differ markedly between the two strains, as indicated 

by the inverse patterns of gene expression. Mature neutrophils were once thought to be 

transcriptionally inert, but are now known to respond to a number of stressors and cellular 

signals through changes in gene expression (rev. in (121)). We do not have parallel functional 

data in these two strains and thus cannot determine if phagocytosis was also differentially 

impacted by LDR in C57BL/6J and DBA/2J. Current efforts are directed to collecting these data 

and expanding the scope of LDR-induced neutrophil phenotypes, including chemotaxis and cell 

killing. We should also point out that the expression data were collected in spleen rather than in 

isolated neutrophils or in bone marrow, and divergent effects of LDR on gene expression could 

be due to indirect effects, such as differential neutrophil migration into spleen or clearance of 

apoptotic neutrophils. Further experiments will be necessary to test these hypotheses.  

In contrast to phagocytosis, SOD activity in response to LDR varied significantly 

between strains. SOD activity increases after radiation exposure to mitigate oxidative stress 

resulting from the radiolysis of intracellular water, a response that is largely due to increased 

activity of mitochondrial SOD (SOD2) (97, 199). We interpret the significant interaction between 

strain and treatment to reflect genetic differences in the kinetics of SOD activity and its repletion 

following radiation stress, as opposed to opposite regulation of the enzyme across strains. 

Increased SOD activity in spleen occurs within hours of LDR-exposure (292), but less is known 

about the persistence of the response over time. Our data indicate that certain individuals within 
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a population mount a more persistent antioxidant defense to LDR, or that the supply of SOD 

available is rapidly depleted in some individuals, while others have intrinsically greater response 

to oxidative LDR stress. The significant genetic correlation we observed between Sod2 

expression in spleen of unexposed mice and SOD activity after LDR exposure further supports 

this relationship. This relationship is consistent with results seen from genetically engineered 

Sod2 deficient mice, in which heterozygous C57BL/6J Sod2(+/-) mice have increased radiation 

sensitivity compared to wild type Sod2(+/+) controls (76). It would now be interesting to 

determine if BXD strains with the highest heritable levels of Sod2 expression are less 

susceptible to LDR responses that have been shown to be influenced by SOD2 activity, 

including adaptive radio-resistance and DNA damage (66).  

QTL mapping using existing resources for the BXD strain panel allowed us to identify a 

region on Chr 17 associated with LDR-induced but not control SOD activity. To our knowledge, 

this is the first identification of a QTL for differential responses to LDR. The gene encoding Sod2 

is located on Chr 17, but is positioned >60Mb downstream of the maximum LDR SOD activity 

QTL. Therefore it does not appear that genetic variation within the Sod2 locus itself, or in 

proximal regulatory regions, contributes to the LDR SOD variation between strains. In contrast, 

a QTL for control SOD activity encompassed the position of the Sod1 enzyme locus. Using 

previously collected microarray data from BXD spleens (153) we identified a gene, xanthine 

dehydrogenase (Xdh), that is located approximately 2Mb upstream of the maximum LOD, and 

has expression levels that are significantly correlated with LDR-induced but not sham control 

SOD activity (r = -0.34, P = 0.041 and r = -0.19, P = 0.26, respectively). XDH, along with 

xanthine oxidase, forms the xanthine oxidoreductase (XOD) system. XDH can be converted to 

the superoxide-generating enzyme xanthine oxidase (XO) by reversible sulfhydryl oxidation or 

irreversibly by proteolytic modification (248), a process that has been shown to occur in 

response to high (>3Gy) doses of ionizing radiation, potentiating tissue oxidative stress beyond 
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the initial radiochemical reactions (247). Whether variation in activity of the XOD system could 

potentially alter SOD activity upon radiation remains to be determined. Access to high density 

SNP-based genotypes, which will soon be available for the BXD panel, should allow us to 

narrow the QTL interval and facilitate the search for causal polymorphisms linked to differential 

SOD activity with LDR. 

Differences in radiation sensitivity between the BXD parental strains were first described 

by Roderick more than 45 years ago, with DBA/2J succumbing more quickly than C57BL/6J to a 

lethal dose of radiation (217). At more modest doses, C57BL/6J mice were shown to be more 

resistant to radiation-induced genomic instability than DBA/2J (193, 281, 288). Wright and 

colleagues described differential apoptotic responses between the two strains after 1Gy 

radiation, with C57BL/6J favoring apoptosis through rapid induction of p53 and up-regulation of 

pro-apoptotic Bax, and DBA/2J having a delayed but prolonged p53 activation with more 

emphasis on p21 activation and cell cycle arrest (57, 140, 279). Our microarray data collected 

from spleen further illustrates that genetic variation plays a major role in how these two strains 

respond to radiation, particularly at low doses. Based on the strain*radiation interaction term in 

the ANOVA model, 1200 genes showed evidence for response to LDR that depended upon 

genetic background. This set of genes is enriched for numerous GO terms, including aspects of 

cell maintenance and immune defense (Table 4-1). In general, genes altered by LDR in DBA/2J 

were more closely related to lymphocyte functions (e.g., B cell and T cell activation) than were 

genes responsive to LDR in C57BL/6J mice, which showed differential enrichment in processes 

related to erythropoiesis.  

How these distinct expression profiles manifest in differential immune consequences of 

LDR remains to be determined, but they do further confirm that genetic background plays a key 

role in LDR response. 
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In stark contrast to LDR exposure, only five genes showed a significant interaction 

between strain and radiation after a 1Gy exposure. These differential effects across a rather 

modest (10-fold) increase in dose suggest that above a certain threshold, the response to 

radiation between individuals qualitatively becomes more similar as the demand to abate 

damage overrides other less critical processes. As dose is lowered to a level that imposes 

oxidative stress rather than immediate damage, genetic variation in mechanisms for coping with 

stress and the consequential effects on other pathways begin to emerge. Our array data also 

support the concept that the mechanisms of LDR response are not simply a subset of those 

enlisted with higher radiation exposures. Only 32% (307 of 964 genes) of the genes differentially 

expressed following LDR-exposure were also changed in response to HDR. Taken together, 

these array data highlight the need to consider genetic variation when assessing LDR 

outcomes, perhaps even more so than for higher radiation doses. 

Using a genetically stable reference population for this study allowed us to go beyond 

QTL analysis and exploit genetic correlation as a means to identify other phenotypes correlated 

with, and potential functionally related to, LDR response. With respect to SOD activity, this 

enabled the discovery that Sod2 expression in the baseline, un-irradiated state is positively 

correlated with SOD activity after LDR exposure, using microarray data that we previously 

generated from spleens of BXD strains (153). Similar relationships between baseline gene 

expression and radiation sensitivity were reported by Amundson et al. using the National 

Cancer Institute Anticancer Drug Screen (NCI-60) panel of cell lines (5). In our case, Sod2 was 

an obvious candidate because of its known role in LDR adaptation, but nonetheless it was 

identified using a method that did not require a priori knowledge about what genes might be 

uncovered. Genetic correlation also uncovered a significant inverse relationship between 

neutrophil phagocytosis following LDR exposure and the CD4:CD8 lymphocyte ratio in un-

irradiated mice. Whether this relationship stems from a common regulator of T cell maturation 
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and radiation effects on phagocytosis or from an indirect association remains to be determined. 

Nonetheless, these relationships illustrate how systems genetics provides a framework for 

extracting interrelationships between phenotypes that might not otherwise be suspected. 

Mechanistically, this approach can uncover potential functional relationships that can be further 

tested, resulting in fundamental advances in physiology. At the translational level, systems 

genetics can potentially improve the assessment of risk through identification of phenotypes, 

whether they be molecular, cellular or biochemical, that signal differential sensitivity to radiation 

and other environmental challenges of concern.  

In summary, our results show both responses to low dose exposure that are robust to 

genetic variation (enhanced neutrophil phagocytosis) and those from which genetic background 

significantly impacts the response (SOD activity). By integrating these results with our previous 

analyses of BXD RI strains, we have demonstrated that heritable differences in baseline 

expression and immunophenotypes can correlate with various low dose radiation responses. 

These data provide the groundwork for predicting LDR responses using baseline expression, 

immunophenotypes, and/or genotype.  
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CHAPTER V 

FUTURE STUDIES 

 

This dissertation research has demonstrated that the BXD recombinant inbred (RI) strain 

panel is a powerful reference population for analyzing the effects of low dose radiation (LDR) on 

immune function. To our knowledge, this is the first report showing that neutrophil function can 

be enhanced following in vivo LDR exposure. Future studies will focus on further 

characterization of neutrophil function and the mechanisms behind the LDR induced stimulatory 

effects. While we have shown that phagocytosis of bacteria is enhanced following LDR, other 

important steps in neutrophil-mediated innate defense will need to be analyzed. For example, 

does LDR lead to an increase in bacterial recognition by the neutrophils? Are the stimulated 

neutrophils more efficient at bacteria killing once the bacteria are engulfed? Do chemokines 

such as IL-8 active neutrophils following LDR? Can a similar response be observed with an in 

vivo bacterial challenge? These questions need to be answered to have a better understanding 

of the mechanisms involved in LDR-modulated neutrophil function. It would also need to be 

determined if other general LDR responses, such as oxidative stress and the induction of 

apoptosis, are involved in the neutrophil response to exposure. Furthermore, our gene 

expression profiling highlighted the differential regulation of neutrophil-related genes between 

the two parental strains following LDR. On-going studies are determining if the expression of 

these same genes are altered in the bone marrow, the site of neutrophil maturation.  

By comparing LDR responses with baseline immunophenotype data, we found a 

negative correlation between neutrophil phagocytosis following LDR and the percentage of 

peripheral lymphocytes which are CD4+. Numerous studies have shown that CD4+ cells are 

particularly responsive/sensitive to LDR. It would be interesting to see if CD4+ cell counts or 
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gene expression is altered in a genetic-background dependent manner following LDR exposure, 

or if LDR alters the Th1/Th2 balance. 

Our analyses also suggested that baseline expression of mitochondrial SOD (Sod2) 

might be a predictor of SOD activity following radiation exposure. This possibility can be further 

explored by determining if the BXD strains with the highest Sod2 expression levels are more 

resistant to radiation-induced DNA damage. 

The results presented here, combined with previously published data, raise some 

interesting possibilities regarding the effects of low dose radiation exposure in humans. As 

mentioned above, there is concern over the risks associated with the dramatic increases in 

radiation exposure from medical diagnostic procedures. Because numerous animal studies 

have demonstrated that low doses of radiation can suppress harm from a subsequent larger 

radiation dose (“radiation conditioning hormesis”), it would very useful to determine similar 

responses can be observed in humans. A low dose radiation exposure, or “priming dose”, would 

be given prior to the larger radiation dose. Of course, in most cases, an individual does not 

know a priori when they will receive a significant radiation dose, but priming doses could 

possibly be administered prior to certain radiological medical procedures. For instance, would a 

“priming” chest x-ray administered prior to a CT or PET scan reduce long-term cancer risk? If 

so, the protective effect of the priming x-rays might be especially important for individuals who 

undergo multiple diagnostic scans. 

The data presented in this dissertation provide intriguing glimpses into the genetic basis 

of low dose radiation responses. These data provide the groundwork for developing 

personalized risk assessments of low dose radiation risk based on genetic background.  
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ASSESSING THE PULMONARY TOXICITY OF  

SINGLE-WALLED CARBON NANOHORNS 

    

This data was published in the journal Nanotoxicology in 2007. This research does not 

directly relate to low dose radiation biology, therefore it is presented in its entirety here instead 

of in the body of the dissertation. This study is the first study published, to our knowledge, 

assessing the potential toxicology of single-walled carbon nanohorns, and one of the first in vivo 

toxicology studies of carbon nanoparticles.  

This data is adapted from the following publication: 

Lynch R, Voy B, Glass D, Mahurin S, Zhao B, Hu H, Saxton A, Donnell R, Cheng M. 
Nanotoxicology. 1: 157-166, 2007.  

 

Abstract 

Previous studies have suggested that single-walled carbon nanotubes (SWCNTs) may 

pose a pulmonary hazard. We investigated the pulmonary toxicity of single-walled carbon 

nanohorns (SWCNHs), a relatively new carbon-based nanomaterial that is structurally similar to 

SWCNTs. Mice were exposed to 30 μg of surfactant-suspended SWCNHs or an equal volume 

of vehicle control by pharyngeal aspiration and sacrificed 24 hours or 7 days post-exposure. 

Total and differential cell counts and cytokine analysis of bronchoalveolar lavage fluid 

demonstrated a mild inflammatory response which was mitigated by day 7 post-exposure. 

Whole lung microarray analysis demonstrated that SWCNH-exposure did not lead to robust 

changes in gene expression. Finally, histological analysis showed no evidence of granuloma 

formation or fibrosis following SWCNH aspiration. These combined results suggest that 
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SWCNH is a relatively innocuous nanomaterial when delivered to mice in vivo using aspiration 

as a delivery mechanism. 

Introduction 

Burgeoning use of engineered nanoparticles and nanomaterials in commercial 

applications has raised concern about the potential health effects of both intentional and 

accidental exposures. Although exposure can occur by a variety of mechanisms, the inhalation 

route is of primary interest because of the ease with which particles of nanoscale dimensions 

become aerosolized (5). The lung is particularly susceptible to respirable toxicants because it 

has a large surface area which is in constant contact with the external environment (11). Unlike 

larger particles which are mainly deposited in the nasopharyngeal compartment, nano-sized 

particles can be deposited in the alveolar region of the lung with high efficiency (1). Once 

resident in the alveoli, nanoparticles may promote oxidative stress and trigger inflammation 

through proinflammatory cytokines released from epithelial cells and macrophages (12). If 

unchecked, persistent pulmonary inflammation may trigger fibrotic changes and loss of 

pulmonary function (23). 

While nanoparticles have been developed from an array of materials, carbon-based 

particles are at the center of the nanotechnology revolution (15). Most in vivo toxicity data for 

engineered carbon-based nanoparticles are from studies using single-walled carbon nanotubes 

(SWCNTs). Carbon nanotubes have unique physico-chemical, electrical, thermal, and 

mechanical properties which make them attractive for a variety of applications (3). Animal 

studies conducted with SWCNTs suggest that exposure to aggregates of SWCNTs induces 

pulmonary toxicity (16, 17, 21, 24). In each of these studies, rodents were exposed to a large 

bolus of nanotubes to mimic chronic inhalation exposure.  
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Although all of the studies reported that SWCNT-exposure induced the formation of 

granulomas and/or fibrosis, they disagreed on the presence or degree of pulmonary 

inflammation. These differences in these studies could be due to the preparation of the 

nanotubes (e.g., degree of purity or method of dispersion), the animal studied (e.g., mice or 

rats), the exposure method (e.g., intratracheal instillation or aspiration), dose, or even the 

agglomeration state of the SWCNTs. It is important to note that the results from previous 

SWCNT toxicity studies do not immediately imply the toxicity of other carbon-based 

nanoparticles. Indeed, it has been demonstrated that carbon-based nanoparticles exhibited 

differential cytotoxic effects to alveolar macrophages depending on the geometric arrangement 

of the carbon atoms (14). Surprisingly, SWCNTs were more cytotoxic than multi-walled carbon 

nanotubes (MWCNTs) and fullerene (C60). In addition, SWCNTs and MWCNTs were more 

cytotoxic than quartz (SiO2), a well-documented pulmonary hazard. Therefore, the potential 

toxicity of a nanomaterial cannot be inferred from its elemental composition alone.  

Here we investigated the pulmonary toxicity of single-walled carbon nanohorns 

(SWCNHs), a relatively new engineered carbon-based nanomaterial. Carbon nanohorns are of 

particular interest to hydrogen storage in energy (10) and fuel cell applications. In addition, 

SWCNH aggregates were studied as a carrier for the chemotherapy drug cisplatin (2).  

Individual carbon nanohorns are engineered as short (in length) horn-shaped tube 

structures, the tips of which are capped with five-membered carbon rings. Individual SWCNHs 

tend to self-aggregate into a larger structure approximately 80-100nm in diameter during 

formation, with the tips of individual nanohorns projecting outward from the center in all 

directions. Although individual SWCNH structure is similar to individual carbon nanotubes, the 

former may find interesting and large-scale applications earlier than SWCNTs. For example, 

SWCNHs can be produced through laser ablation of a pure carbon target without the use of 

transition metal catalysts. This is of particular relevance for toxicity studies because metal 
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contaminants themselves could provoke inflammatory responses and oxidative stress. Although 

SWCNTs can be acid-washed to remove the majority of the catalysts, the residual metals can 

still contribute to the inflammatory response (17) making it difficult to assess the toxicity of 

SWCNTs. In a recent in vitro cell line based study, amino-modified SWCNH aggregates were 

shown be taken up by mammalian cells but caused little cytotoxicity (13). At the time of this 

writing, however, we are not aware of any published studies documenting the in vivo toxicity of 

SWCNHs.  

Our primary objective in this study was to characterize the pulmonary response of 

SWCNHs and compare the results to published SWCNT data. Keep in mind SWCNTs can be 

completely different from SWCNHs in eliciting biological responses and the comparison was 

made with care. We were not intending to establish a dose-response relationship of SWCNHs 

nor were we interested in dose rate of this new nanomaterial in this research. Thus, a single 

dose was chosen for this exploratory toxicity study. Each mouse in this study was exposed to 30 

µg of surfactant-suspended SWCNHs or to an equal volume of vehicle control by pharyngeal 

aspiration. To assess the pulmonary inflammatory response, the accumulation of cytokines and 

chemokines, total cell counts, and differential cell counts in bronchoalveolar lavage (BAL) fluid 

were measured. Oxidative stress was estimated by the reduction of glutathione (GSH) in lung 

tissue. Gene expression profiling by microarray analysis was used as an unbiased estimator of 

overall changes within the whole lung in response to SWCNH exposure. The ability of SWCNHs 

to induce granuloma formation and/or fibrosis was evaluated by histological examination of lung 

tissue following the exposure.  



121 

 

Methods 

SWCNH preparation and exposure 

Single-walled carbon nanohorns (SWCNHs) were synthesized using laser ablation of a 

pure carbon source as previously described (8). The detailed characterization of SWCNHs and 

their formation could also be found in Cheng et al. (2007). In order to expose the mice to a 

homogenous suspension of nanoparticles, SWCNHs were solubilized in phosphate buffered 

saline (PBS) using the nonionic surfactant Pluronic F-127 (Molecular Probes), which is 

biocompatible. A 1 mg mL-1 solution of SWCNHs suspended in PBS with 1% Pluronic was used 

for nanoparticle aspiration; 1% Pluronic in PBS was used for vehicle exposure. The SWCNH 

suspension was sonicated for 5 minutes just prior to aspiration. 

Male C57BL6/J mice were obtained from The Jackson Laboratory (Bar Harbor, ME). The 

mice were housed in a specific pathogen-free vivarium maintained at Oak Ridge National 

Laboratory (ORNL) and were acclimated to this facility for at least two weeks before use. All 

experiments were performed under an approved ORNL Animal Care and Use Committee 

protocol. Mice were exposed to 30 μg of SWCNHs or an equal volume of vehicle control 

(surfactant/PBS only) via pharyngeal aspiration. Aspriation is a minimally invasive technique 

that effectively delivers particles to the alveolar region of the lung with even distribution (20) and 

has been used in previous nanotoxicology studies to assess the pulmonary response to 

SWCNTs (17, 21). The mouse was anesthetized using isoflurane in a bell jar and once it 

reached the appropriate anesthetic plane, it was suspended by its front incisors on a thin wire 

attached to an inclined board. The tongue was extended with blunt forceps and the fluid was 

placed on the back of the tongue and aspirated into the lungs upon inspiration. When there was 

no more fluid within the mouth cavity, the tongue was released.  
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Bronchoalveolar Lavage 

Mice were sacrificed 24 hours or 7 days after aspiration by an overdose of isoflurane 

followed by exsanguination. Bronchoalveolar lavage (BAL) was performed as previously 

described (21) with minor modifications. A blunt 22-gauge needle was inserted into the trachea 

and secured with suture material. BAL was performed three times with cold, sterile Ca+2 and 

Mg+2 – free PBS. For the first lavage, 0.6 mL of PBS was used, and the recovered fluid was kept 

separate from subsequent lavages for cytokine analysis. Two additional lavages were 

performed with1.0 mL of PBS each and pooled together. After centrifugation at 4°C, the BAL 

cellular pellet was resuspended in cold PBS for total and differential cell counts. A 

hemocytometer was used to determine the total number of cells in the BAL fluid. Differential cell 

counts were performed on cytospin slides stained with a Hema-3 kit (Fisher Scientific). A 

minimum of 200 cells per slide were counted. The supernatant from the first lavage was stored 

at -80°C until analyzed. Cytokine and chemokine analysis of BAL samples was performed by 

Linco Diagnostics. The full panel of mouse cytokines and chemokines, a total of 22 analytes, 

were measured.  

Oxidative Stress 

As a biomarker of oxidative stress, lung glutathione (GSH) levels were quantified on 

samples obtained from mice 24 hours after aspiration using a Glutathione Assay Kit (Cayman 

Chemical). Post-lavaged lungs were homogenized, deproteinated, stored at -20°C, and assayed 

according to the manufacturer‟s instructions. This assay utilizes an enzymatic recycling method 

for the quantification of total glutathione or oxidized glutathione (GSSG) levels. The production 

of the product was monitored using the absorbance at 405 nm. The total glutathione and GSSG 

levels were determined in separate assays. Each sample was performed in duplicate. The 
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concentrations of GSSG and total GSH were calculated based on appropriate standard curves 

of known concentrations. 

Histology 

For histological analysis, vehicle and SWCNH-exposed mice were sacrificed 7 days after 

exposure by isoflurane overdose in a bell jar followed by exsanguination, and lung fixation was 

performed using standard protocols. The trachea was cannulated as described above, and the 

lungs were fixed with 10% neutral buffered formalin suspended 20 cm above the work surface 

to allow the lungs to fill through the cannulated trachea. The flow of formalin was stopped when 

the lungs were fully inflated with fixative. The trachea was sealed off with sutures, and the 

trachea, lungs, and heart were removed and submerged in additional formalin. After 24 hours, 

the tissues were switched to 70% ethanol for gross trimming and sectioning. Thin sections were 

stained with haematoxylin and eosin.  

Gene Expression Profiling 

For analysis of lung RNA expression, 3 vehicle and 3 SWCNH-exposed mice were 

euthanized by cervical dislocation 24 hours after aspiration. The lungs were immediately 

extracted and submerged in RNAlater (Ambion) and stored at 4°C until processed. Total RNA 

was isolated from homogenized lungs using an RNeasy kit (QIAGEN) according to the 

manufacturer‟s protocols. RNA samples were shipped to the Microarray Core Facility at 

Washington University for analysis. RNA quality and concentration was analyzed using the 

Agilent Bioanalyzer. Gene expression profiling was performed using the Mouse-6 Expression 

BeadChip (Illumina). Differentially expressed genes were identified using mixed model analysis 

of variance (ANOVA) implemented in Statistical Analysis Software (SAS Institute, Inc.) (25), and 

controlling the false discovery rate at 5% using QVALUE software (22) implemented in the 

statistical language R (bioconductor.org).  
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Electron microscopy  

A high resolution transmission electron microscope (HR-TEM; Hitachi HF-2000) was 

used to confirm the morphology and size of the SWCNHs as previously described by Cheng et 

al. (2007). Scanning electron microscopy (SEM) analysis was performed to assess the 

morphology of BAL macrophages after SWCNH exposure. SEM analysis was performed on 

BAL cells harvested from SWCNH and vehicle-exposed mice 24 hours after aspiration. Lavage 

cells were isolated using the BAL procedure described above, except all lavages from each 

animal were pooled together and a total of 4.6 mL of PBS was used in order to maximize the 

total cell yield. The BAL cells were centrifuged at 4°C and resuspended in warmed Dulbecco's 

Modified Eagle's Medium supplemented with 10% fetal bovine serum (InvitrogenTM). Cells were 

seeded on 12 mm glass coverslips in 12-well tissue culture plates and incubated at 37°C and 

5% CO2 for one hour to adhere. The media and non-adherent cells were aspirated off, and the 

cells were fixed in 3% gluteraldehyde (Sigma ®) in 0.1M phosphate buffer (pH 7.4) for 1 hour at 

room temperature. Samples were rinsed in phosphate buffer 3 times for 10 minutes each and 

then post-fixed in 2% osmium tetraoxide in 0.1M phosphate buffer for 1 hour at room 

temperature. The samples were dehydrated in a graded ethanol series and critical-point dried 

with CO2. Samples were sputter-coated with a thin layer of gold for imaging. 

Results 

As shown in Fig. A-1A, individual SWCNH aggregate structures were approximately 80-

100nm in diameter with horn-like projections, consistent with that reported earlier (8). To 

facilitate a homogenous particle suspension for exposures, SWCNHs were suspended in PBS 

with 1% Pluronic and sonicated prior to aspiration.  

SWCNH-exposed mice exhibited no overt clinical symptoms of distress from the time of 

anesthesia recovery until the time of sacrifice 24 hours or 7 days post-exposure. Lungs of  
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Figure A-1. Single-walled carbon nanohorn (SWCNH) exposures. (A) TEM image of 
an aggregate of SWCNHs containing individual cone-shaped SWCNHs in a spherical 
orientation. The arrow indicates a single SWCNH projecting from the aggregate. Image 
reproduced with permission of Nanotechnology (IOP Publishing Limited, Cheng et al. 
2007). (B) Dorsal view of formalin-filled lungs from SWCNH (left) and sham-exposed 
(right) mice 7d after aspiration. Cytospin preparations of BAL cells from sham (C) and 
SWCNH-exposed (D) mice 24h after aspiration. The arrow points to one of the multiple 
aggregates of SWCNHs. (E) SEM image of a BAL cell from a SWCNH-exposed mouse 
24h after exposure. Note the large aggregate of SWNCH adjacent to the cell indicated 
by the arrow. 



126 

 

SWCNH-exposed mice were slightly darker in color than were those from vehicle-exposed 

controls 7 days post-exposure (Fig. A-1B), indicating that the nanoparticles were well distributed 

through the lung and that complete clearance of SWCNHs had not occurred. BAL fluid was 

examined for increases in total cell count as a general assessment of neutrophil and 

macrophage recruitment in an inflammatory response to SWCNHs. Total number of cells in BAL 

fluid did not differ between SWCNH and vehicle-exposed mice 24 hours or 7 days post-

exposure. Consistent with these results, neutrophils were rarely observed in BAL fluid from 

SWCNH-exposed mice, and macrophage numbers did not significantly differ between the two 

exposure groups. Visible differences in macrophages were, however, observed. Carbonaceous 

material was clearly visible as dark aggregates within the cytoplasm of alveolar macrophages in 

SWCNH-exposed mice (Fig. A-1D) but was not present in samples obtained from vehicle-

exposed mice (Fig. A-1C). Although the SWCNHs were coated with surfactant and delivered as 

a suspension of particles in the 100 nm size range, their visibility with light microscopy in 

macrophage cytoplasm suggests the presence of larger aggregates within the cell. Whether 

formation of larger aggregates occurred before or after phagocytosis by macrophages cannot 

be determined from these samples. As shown in Fig. A-1E, large aggregates of SWCNHs near 

or on the surface of lavage cells were detected in samples obtained from mice 24 hours post-

exposure.  

To investigate the pulmonary cellular response to SWCNH exposure, the concentration 

of 22 cytokines and chemokines in the acellular BAL fluid was measured to assess early (24 

hours post-exposure) and sustained (7 days) inflammatory responses. Seventeen of the 22 

analytes were not significantly different between control and nanoparticle-exposed mice at 

either time point: IFN-γ, IL-10, IL-12, IL-13, IL-15, IL-17, IL-1α, IL-1β, IL-2, IL-4, IL-6, IL-7, IL-9, 

MCP-1, MIP-1α, RANTES, and TNF-α. Five analytes were statistically different between 

exposure groups (α = .05) (see Fig. A-2). Granulocyte macrophage colony-stimulating factor  
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Figure A-2. Cytokine accumulation in BAL fluid 24h and 7d after aspiration of 
SWNCH solution or vehicle. (A) GM-CSF, (B) G-CSF, (C) IP-10, (D) IL-5, (E) KC. 
Results are the mean ± SE of duplicate measurement (n = 4 mice / group). Compared 
with sham-exposed mice, * P<.05. 
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(GM-CSF), granulocyte colony-stimulating factor (G-CSF), interferon-inducible protein-10 (IP-

10), and interleukin-5 (IL-5) were significantly elevated in BAL fluid from SWCNH-exposed mice 

compared to the vehicle-exposed mice 24 hours after aspiration (Fig. A-2A-D). These 

differences did not persist at 7 days, at which time there were no significant differences in GM-

CSF, G-CSF, IL-5 and IP-10 concentrations between SWCNH and vehicle-exposed mice. Only 

one cytokine, the neutrophil chemoattractant KC, was significantly higher in SWCNH-exposed 

mice at both 24 hours and 7 days after aspiration (Fig. A-2E). These results suggest an early 

but mild inflammatory response which is primarily resolved by 7 days post-exposure. The 

responses might be different (e.g., enhanced), if the mice were predisposed with allergic genes.  

In addition to inducing inflammation, various nanoparticles can trigger oxidative stress 

after uptake into cells (6, 19). The ratio of oxidized to total glutathione (GSSG:GSH) in lung 

homogenates was used to assess the overall pulmonary anti-oxidative balance after SWCNH 

exposure. The GSSG:GSH ratio was not different between the two experimental groups 

(vehicle-exposed ratio = 0.298 + 0.043; SWCNH-exposed ratio = 0.292 + 0.034), indicating that 

the presence of SWCNH particles within pulmonary macrophages did not promote a 

generalized oxidative stress within the lung.  

While BAL fluid data presented in Fig. A-2 indicate a mild but significant acute increase 

in inflammation, the response of the lung itself determines the long-term effect on pulmonary 

function. Global gene expression profiling was used to detect potential SWCNH-induced 

changes in the lung in an unbiased and comprehensive manner, and to identify molecular 

events that could signal activation of response pathways not captured by cytokine/chemokine 

assays or by assay of oxidative stress.  

Total RNA extracted from both lungs of the vehicle and SWCNH-exposed mice was 

used to profile relative expression levels of approximately 46,000 mRNAs (n = 3 / group). While 

some transcripts showed a treatment-related trend for altered expression levels, no statistically 
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significant differences in expression were identified when using statistical procedures to control 

for multiple testing. These results are consistent with the mild inflammatory changes in BAL fluid 

and with the lack of indication of oxidative stress in lung.  

Histological analysis was used to determine if SWCNHs resulted in pulmonary structural 

changes that could be suggestive of inflammation or early fibrosis development, as has been 

reported for SWCNT exposure in rodents (16, 21, 24). Lung sections from four SWCNH and 

four vehicle-exposed mice were analyzed by microscopic examination. There were no signs of 

granulomas or early fibrosis in either group. No other indicators of inflammation (increased 

neutrophils, lymphocytes, plasma cells, vascular dilation, or fibrin accumulation) were observed. 

The only discernible difference between the two groups was the presence of carbonaceous 

material within the cytoplasm of intra-alveolar and septal macrophages in the SWCNH-exposed 

lungs (Fig. 3), consistent with the presence of carbon in BAL macrophages (Fig. 1D).  

Discussion 

As research and development of engineered carbon-based nanomaterials races forward, 

it is expected that the risk of intentional and unintentional pulmonary exposure will increase. 

Recent animal studies have shown that carbon nanotubes, a cousin of carbon nanohorns, can 

cause pulmonary inflammation and/or lung tissue damage with granuloma formation and fibrosis 

(16, 17, 21, 24). Because engineered carbon nanoparticles of different geometries have shown 

differential toxicity in vitro (14), we investigated whether exposure to SWCNHs could lead to 

similar lung inflammation as SWCNTs did in rodents. Mice were exposed to SWCNHs in 

suspension using pharyngeal aspiration. Using the same technique, Shvedova et al. (2005) 

exposed mice to 0, 10, 20, or 40 μg of SWCNTs. This range was chosen to be comparable to 

occupationally relevant exposures. They had determined that a 20 μg dose of SWCNTs per 

mouse was equivalent to 20 8-hour workdays of exposure to graphite particles at the USA  
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Figure A-3 SWCNH in lungs of exposed mice. Thin lung sections from a sham (A) 
and SWCNH-exposed (B) mice 7d after aspiration. Carbonaceous material is visible 
within alveolar macrophages (arrow heads in B). (C) and (D) higher resolution images of 
images A and B, respectively. Carbonaceous material is clearly visible within the 
alveolar macrophages of SWCNH-exposed mice (D). 
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Occupational Safety and Health Administration (OSHA) permissible exposure limit. In our study, 

mice were exposed to a comparable amount (30 μg) of SWCNHs.  

We found evidence of mild but significant acute pulmonary inflammation in response to 

SWCNH exposure, indicated by increased levels of GM-CSF, G-CSF, IP-10, IL-5 and KC in 

BAL fluid 24 hours post-exposure. Levels of all but one chemokine (KC) were no longer 

statistically different from vehicle-exposed controls at 7 days post-exposure, suggesting a 

transient response. Both KC and IP-10 act as neutrophil chemoattractants by recruiting 

neutrophils to sites of inflammation and tissue damage. However, despite these increases, no 

evidence was found of neutrophil recruitment into the lung following exposure. This could be 

due to the relatively modest induction of KC and IP-10 levels. Of the cytokines that were 

increased at 24 hours post-exposure, only GM-CSF has been implicated in the formation of  

fibrosis (26). Other cytokines known to pro-fibrotic, such as interleukin-1β (IL-1β), tumor 

necrosis factor-α (TNF-α), and transforming growth factor-β1 (TGF-β1) were not significantly 

elevated in SWCNH-exposed mice over vehicle-exposed controls (data not shown). These 

results are consistent with lack of pre-fibrotic lesions in the lung 7 days after SWCNH exposure. 

No evidence for granuloma formation was observed, which is consistent with the mild and 

transient inflammatory response measured by cytokines and differential cell counts. In addition, 

there was no evidence of alveolar wall thickening or hypertrophied epithelial cells. The only 

apparent difference between SWCNH and vehicle-exposed controls was the presence of 

carbonaceous material within the cytoplasm of alveolar macrophages. Although it is possible 

that fibrosis could develop at a later point after exposure, the previous studies with SWCNTs 

reported obvious granuloma formation within 7 days post-exposure (16, 21, 24).  

Collectively, the BAL cytokine profiles and histological analysis of lung after SWCNH 

aspiration differ significantly from what has been reported for in vivo exposure to SWCNTs. Both 

Warheit et al. (2004) and Lam et al. (2004) described the presence of granulomas and 
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inflammation following intratracheal delivery of SWCNTs to rodents. In a more comprehensive 

study, Shvedova et al. (2005) performed a dose-response and time course study of SWCNT 

toxicity in mice, using particles that had been purified to remove the majority of contaminating 

iron particles. Granulomas were only found in association with dense SWCNT aggregates, but 

alveolar wall thickening was described at sites distal to aggregates, leading to the conclusion 

that even dispersed SWCNTs promoted fibrosis. In parallel, levels of TNF-α and IL-1β were 

markedly increased (up to 16-fold over vehicle-exposed levels) 24 hours post-exposure in BAL 

fluid, as were neutrophil and macrophage recruitment, followed by increased levels of the pro-

fibrotic cytokine TGF-β1 7 days post-exposure. The amounts of nanoparticles (i.e., SWCNTs) 

used in that study were comparable to those used herein, indicating that the differences in 

outcomes were not due to large differences in particle load. We also did not find evidence for 

increased oxidative stress based on the general marker of glutathione levels. A variety of 

nanoparticles have been shown to create reactive oxygen species in vitro and in vivo (4, 7). 

Specifically, SWCNTs have been shown to deplete the antioxidant glutathione (GSH) store in 

the lung with the most severe decrease occurring about 24 hours post-exposure (21). In 

contrast, we found no effects of SWCNH exposure on either total or oxidized GSH levels 24 

hours post-exposure.  

The basis for what appear to be marked differences in the potential pulmonary toxicity of 

SWCNTs and SWCNHs after in vivo exposure remains to be determined. As a relatively new 

nanomaterial, little is known about the interaction of SWCNHs with cells and with intracellular 

biochemistry. To our knowledge, only a single study has explored the response to SWCNHs, 

and it used an in vitro system (13). The authors found minimal cytoxicity associated with amino-

modified SWCNHs. There are several possible explanations for the difference in pulmonary 

toxicity of SWCNHs compared to previous studies with SWCNTs. First, although nanotubes and 

nanohorns are structurally similar, their inherent physiochemical differences could affect their 
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biological impact. These apparent toxicity differences within the general class of engineered 

carbon-based nanoparticles are not unprecedented. For example, SWCNTs show significantly 

increased cytotoxicity compared to similar amounts of multi-walled carbon nanotubes, quartz, 

and fullerene (14).  

Another contributing factor could be that  the agglomeration state of the engineered 

nanoparticles affects their toxicity (18). The agglomeration in our studies was minimized by 

using a non-ionic surfactant (Pluronic) and vigorously sonicating the material prior to aspiration. 

It is possible that coating the particles with surfactant not only facilitates material dispersion, but 

also affects their bioavailability and cellular uptake. Prior in vivo studies have relied on 

aggressive mechanical dispersion methods to maintain particle suspensions prior to delivery, 

which we combined with surfactant coating.  

A recent in vitro study reported that SWCNTs solubilized in Pluronic were readily 

phagocytosed by macrophages in a time- and temperature-dependent manner, but that uptake 

did not lead to cellular toxicity (9). On this note, we were able to easily identify particle 

aggregates within the cytoplasm of macrophages from BAL samples of mice exposed to 

Pluronic-suspended SWCNHs. In contrast, Shvedova et al. (2005) noted that RAW 264.7 

macrophages did not actively engulf SWCNTs in vitro. Further studies may be necessary to 

determine exact immunological pathways and the extent to which macrophage clearance of 

engineered carbon-based nanoparticles contributes to the net effect on pulmonary inflammation 

and pathological changes.  

Another important distinction between SWCNTs and SWCNHs is the lack (in SWCNHs) 

of metal contaminants. SWCNT production typically relies on metal catalysts that remain in final 

particle preparations, and trace amounts persist even after purification steps. In contrast, the 

SWCNHs used in this study were produced using laser ablation of pure carbon containing no 

metals. This difference in SWCNTs and SWCNHs could be an important factor in their relative 
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utility for in vivo applications, if future studies do reveal that trace metals promote secondary, 

detrimental responses to particles in vivo.  

Although we found that SWCNH-exposure resulted in an increase in the levels of several 

cytokines and chemokines in BAL fluid within 24 hours of exposure, we did not find parallel 

changes in gene expression in lung. In fact, we did not identify any genes with changes in 

expression between SWCNH and vehicle-exposed mice that were robust to statistical methods 

that controlled for multiple testing. In part this may be due to the low statistical power from a 

relatively small sample size (n=3) that is typical of microarray experiments due to their cost. In 

addition, we noted significant inter-individual variation in the expression of numerous genes, 

which would further reduce overall statistical power. The goal of the array hybridizations was to 

identify genes and pathways that were activated or repressed in the lung as part of the 

mitigation of SWCNH exposure.  

In light of the relatively modest increase in inflammatory cytokines, the lack of 

histopathological lesions, and the fact that gene expression was profiled in the whole lung 

(rather than in BAL fluid), it is perhaps not surprising that we did not observe marked alteration 

in gene expression. To our knowledge, this is the first attempt to profile the global transcriptomic 

response to engineered carbon nanoparticle exposure in vivo. The lack of detectable 

differences with SWCNH exposure will serve as a reference point for future studies of gene 

expression changes in response to other types of nanoparticles and with other experimental 

manipulations.  

In conclusion, we report that SWCNHs are a relatively innocuous agent when delivered 

to mice in vivo using aspiration as a delivery mechanism. As described above, these results are 

in contrast to those with other types of engineered carbon-based nanoparticles, raising the 

potential value of SWCNHs for in vivo applications such as drug delivery. Further study will be 
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necessary to more precisely characterize the physiochemical properties of SWCNHs and to 

define their interactions within the physiological milieu. 
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