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Abstract 

 

 The rheological and structural properties of polymeric liquids cannot be 

condensed within a single numerical model. They should be described within 

hierarchical, multi-level numerical models in which each sub-model is responsible for 

different time and length scales; atomistic, mesoscopic, and continuum. In this study, 

the rheological and structural properties of linear, short-chain polyethylene liquids 

were investigated from the classical atomistic level to the mesoscopic and continuum 

levels of description. At the atomistic level of description, nonequilibrium molecular 

dynamics (NEMD) simulations of linear, short-chain polyethylene liquids spanning 

from C16H24 to C128H256 were performed to advance our knowledge of fundamental 

characteristic of chain molecules under shear and planar elongational flow. 

Furthermore, entanglement characteristics, such as the shortest primitive path length, 

and the network configurations, were investigated as functions of strain rate in both 

vastly different flow fields using the topological Z-code. At the mesoscopic level of 

description, Brownian dynamics (BD) simulations of a freely-jointed chain with 

equivalent contour length to C78H158 were carried out to compare single-chain 

dynamics in dense liquids (NEMD) and dilute solutions (BD) under shear flow. In 

addition, the macromolecular configurational diversity of individual chains in dense 

liquids and dilute solutions was explored using a brightness distribution method 

inspired by the rheo-optical investigation of DNA solutions. Based on these 

observations, a simple coarse-grained mesoscopic model for unentangled polymeric 

liquids and semi-dilute solutions was proposed and compared with NEMD simulation 



 v 

data and experiments of semi-dilute DNA solutions under shear flow in terms of the 

rheological and structural properties, such as viscosity, normal stress coefficients, 

conformation tensor, and so on. Moreover, this model was further coarse-grained to the 

continuum level through pre-averaging and compared with NEMD simulation data to 

examine the relationships between different levels of description on the rheological 

and structural properties of unentangled polymeric materials under shear flow.  
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Chapter I  Introduction 

 

Most of the day-to-day products present in the contemporary lifestyle, such as 

clothing, communication devices, computers, medical instruments, coatings and huge 

number of other crucial applications, are made by processing molten polymeric 

materials under flow conditions.  In order to obtain the final products, the polymeric 

materials undergo numerous processes under various flow conditions.  Hence, 

understanding the rheological and microstructural behavior of polymeric liquids in 

flowing systems is important in the polymer processing industry and for advancing the 

state of knowledge concerning the fundamental characteristics of chain molecules 

under flow.  However, the rich rheological and structural characteristics displayed by 

polymeric liquids are too complex to be described by a single constitutive model.  

They need to be described using hierarchical, multi-level models in which each sub-

model is responsible for different time and length scales: atomistic, mesoscopic, and 

continuum.  In this study, the rheological and structural properties of linear, short-

chain polyethylene liquids are investigated starting with a classical atomistic potential 

model and then coarse graining to the mesoscopic level, and then to a macroscopic 

continuum model.  

At the atomistic level of description, nonequilibrium molecular dynamics 

(NEMD) simulations of linear, short-chain polyethylene liquids spanning from C24H50 

to C128H256 can be used to advance our knowledge of the fundamental characteristics of 

chain molecules under shear and planar elongational flows (PEF).  In addition, to 
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obtain direct evidence regarding the effect of standard flows on chain configurations, 

visualizations of the molecular structure of linear, short-chain polyethylene liquids 

under flow conditions can be simulated and compared with their equilibrium static 

structures.  These graphics provide a structural understanding of the various statistical 

measures that are used in the literature to characterize the changes in chain 

configuration as a function of strain rate and chain length, and allow a visualization of 

the inherent chain dynamics and orientation induced by shear and elongational flows. 

Furthermore, entanglement characteristics can also be investigated as functions of 

strain rate in both shear and PEF.  For examples, it is quite instructive from a 

rheological point of view to determine how the entanglement number, shortest 

primitive path length, etc., correlate with the rheological quantities in these vastly 

different flow fields.  

The observations of the motions of individual chain molecules are crucial to 

further development and refinement of rheological and topological models of the 

dynamics of polymeric liquids.  For example, the individual chains tumble and rotate 

under shear flow, but on average they are aligned with respect to the flow direction.  

However, most past modeling efforts have been aimed at the description of the 

evolution of bulk-averaged quantities, such as the conformation or stress tensors, under 

the influence of an applied external flow field [Bird et al., 1987a].  Hence, at the 

mesoscopic level of description, Brownian dynamics (BD) simulations of a freely-

jointed chain with equivalent contour length to that simulated at the atomistic level can 

be used to compare single-chain dynamics in dense liquids (atomistic NEMD) and 
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dilute solutions (coarse-grained BD) under shear flow. In addition, the macromolecular 

configurational diversity of single chains in dense liquids and dilute solutions can also 

be explored using a brightness distribution method inspired by the rheo-optical 

investigation of DNA solutions. 

Based on observations at the atomistic and mesoscopic levels of description, it 

is possible to derive a mean-field mesoscopic model to mimic the anisotropic diffusive 

motion of an arbitrary chain within the confines of tube-like structures that are formed 

by the surrounding stretched chains at high Wi.  Herein, such a model is derived using 

a bead-spring chain with a finitely-extensible nonlinear elastic (FENE) force law for 

each spring and an anisotropic diffusion tensor.  BD simulations are used to examine 

the model’s behavior under shear flow.  Moreover, this model is further coarse-

grained to the continuum level through pre-averaging and compared with NEMD 

simulation data to examine the relationships between different levels of description on 

the rheological and structural properties of unentangled polymeric materials under 

shear flow. 
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Chapter II   Background 

 

2.1  The state of current modeling of polymeric liquids dynamics 

 

  The most fundamental theoretical tool for understanding polymer dynamics is 

an atomistic model of a polymer chain based on inter-chain and intra-chain force fields 

between atomistic units.  However, this tool has not been exploited to any significant 

degree in this field for two reasons; 1) accurate atomistic models are few and not very 

well developed yet, except for a few simple homopolymers such as polyethylene; and 

2) computational requirements are severe to examine polymeric systems of entangled 

chains, but only relatively short-chain, unentangled liquids.   

 To overcome the limitations of the atomistic models of polymer chains, the 

coarse-graining procedure has been used in modeling of polymeric liquids [Müller-

Plathe, 2002].  In coarse-graining, the degrees of freedom of an atomistic model are 

decreased by replacing them with interactions at the super-atom level.  In other words, 

the order of ten atoms or a small chemical repeat unit in the atomistic model was 

substituted by a super-atom that describes the dynamics of the collective unit.  

Although huge progress has been made during recent years in linking the atomistic 

level of description to the coarse-grained atomistic level of description systematically 

[Harmandaris et al., 2006], more accurate relationships between atomistic models and 

coarse-grained mesoscopic models are needed for describing more entangled and 

complex structures of polymeric liquids. 
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 At the mesoscopic level of description, polymeric liquids have been described 

by Brownian dynamics simulation of bead-rod, bead-spring models, and dumbbells 

[Bird et al., 1987b].  A polymer chain at the atomistic level is coarse-grained as a 

bead-rod chain by elimination of degrees of freedom associated with segmental motion 

that do not change within the time window of interest.  These stiff segments are 

modeled as rods which have the length of a Kuhn step.  This model can be further 

coarse-grained to a bead-spring chain with various spring force laws, such as Hookean 

spring, finitely extensible nonlinear elastic (FENE) spring and so on, not only to 

reduce computations requirements but also to extract useful information hiding behind 

the complexity of polymeric liquids.  The bead-spring chain can also be further 

coarse-grained to a simple dumbbell model at the macroscopic level of description for 

the  most coarse-grained system description.   

 Brownian dynamics simulations of polymeric liquids under flow conditions 

have been developed by Liu (1989), Zylka and Ottinger (1989), Grassia and Hinch 

(1996),  and Doyle et al. (1997), among many others.  These models at the 

mesocopic level of description show numerous successes in describing the behavior of 

polymeric liquids under flow conditions.  However, any information that is present on 

microscopic timescales is effectively removed from the final evolution equations due 

to subsequent approximations, such as pre-averaging.  Moreover, Brownian 

simulations seem to be restricted to a concentrations of a few c*, at most semi-dilute 

solutions [Dambal et al., 2009], where c* is defined by a concentration at which 

polymer coils start to overlap.  
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 Most of the continuum models of polymeric liquids have been developed from 

configurational distribution functions using pre-averaging [Bird et al., 1987b; Beris 

and Edwards, 1994].  These pre-averaged models are easy to solve using the typical 

numerical techniques, and are applicable to chain liquids at low field strength.  

However, their descriptions of the rheological behavior of polymer chains tend to 

break down once the field strength drives the fluid beyond the linear viscoelastic 

regime.   

 

2.2    Experimental methods on individual chain dynamics 

 

Until recently, light scattering and birefringence experiments [Fuller, 1995] 

were used for analyzing the orientational and configurational changes of polymer 

chains undergoing flow.  However, these types of experimentation were unable to 

track configurational changes of individual polymer chains.  Consequently, these 

measurement techniques were restricted to examining bulk fluid properties, and cannot 

distinguish between phenomena that occur over disparate timescales; however, this 

does not mean that the dynamics of individual chain molecules do not affect the 

observed birefringence and light scattering patterns.   

Relatively recent direct visualization of individual polymer chains using video 

microscopy offers the possibility to explore the motions of individual chain molecules 

undergoing flow [Teixeira et al., 2005, 2007; Smith and Chu, 1998; Smith et al., 1999; 

LeDuc et al., 1999; Schroeder et al., 2005; Robertson and Smith, 2007].  These initial 
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studies have seriously called into question many of the assumptions used to model 

polymer flow dynamics.  Smith et al. [Smith et al.,1999] and LeDuc et al. [LeDuc et 

al., 1999] simultaneously examined dilute solutions of DNA, in which the dynamics of 

individual, labeled chains were visualized under shear in the flow-vorticity plane using 

video microscopy.  These results demonstrated that the flexible polymer chains 

experienced both deformation and tumbling under shear, as functions of the 

Weissenberg number ( γτ &
RWi = ).  Schroeder et al. [Schroeder et al., 2005] and 

Teixiera et al. [Teixiera et al., 2005, 2007] visualized and tracked individual 

configurational changes of fluorescently-labeled DNA solutions under steady shear 

flow in the flow-gradient plane for concentrations ranging from dilute to highly 

entangled.  These experiments again demonstrated the tumbling and stretching 

dynamics of individual chains, which depended on both Wi and concentration, but the 

evidence was more direct since the visualization was carried out in the flow-gradient 

plane.  They also demonstrated a clear quasi-periodic tumbling of the individual 

DNA molecules in dilute solution at high Wi, with a characteristic frequency for this 

rotation that scaled sublinearly with shear rate as Wi
0.62.  For concentrated DNA 

solutions, two distinct timescales were observed:  the first associated with the chain 

retraction dynamics (the short timescale), and the second possibly related to the 

dynamics of constraint release and contour length fluctuations (the long timescale).  

The probability distribution of chain extension broadened dramatically at high Wi from 

its approximately Gaussian shape at low Wi, which is not typical of pre-averaged bulk 

rheological theory.  Robertson and Smith (2007) used optical tweezers to measure the 
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intermolecular forces acting on a single DNA chain as exerted by the surrounding 

entangled molecules, and found three distinct timescales:  the short timescale was 

determined as close to the theoretical value of the Rouse time, the long timescale was 

associated with the disengagement time of reptation theory, and the intermediate 

timescale was speculated to be a second reptative process that was correlated with the 

dynamics of the effective reptation tube under shear. 

Despite the numerous successes of single-chain microscopy to date, 

experimentation alone cannot resolve all of the outstanding issues that perplex 

rheologists at high Wi.  The primary limitation of these experiments is the small 

number of molecules that can be effectively tracked simultaneously, which is 

especially true of dense polymer melts.  A further limitation lies in the small number 

of flow geometries that lend themselves to direct visualization; even in steady shear 

flow, it is difficult to view all flow planes within the sample using the same apparatus.   

 

2.3  Computer simulations of individual chain dynamics 

 

 Atomistic simulation of polymeric liquids offers a complementary perspective of 

chain dynamics under flow.  Most nonequilibrium flow simulations to date have 

focused on the bulk rheological and structural properties of both atomistic [Moore et 

al., 2000; Baig et al., 2006b; Mavrantzas and Theodorou, 1998; Mavrantzas and 

Öttinger, 2002; Todd and Daivis, 1998] and coarse-grained (bead-rod and bead-spring 

chains) [Kröger et al., 1993; Kröger and Hess, 2000 ; Öttinger, 1996; Doyle et al., 
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1997; Venkataramani et al., 2008] liquids.  Although much new insight has been 

garnered from these studies, possibly this focus on bulk behavior at macroscopic 

length and time scales has resulted in overlooking key microscopic information 

concerning the molecular-scale origin of the bulk rheological and structural properties.  

Indeed, it has sometimes led to inadequate explanations of observed bulk-scale 

phenomena [Kim et al. (2009)], as described below.   

The primary advantage of simulation over experiment is that every chain within 

the sample can be examined individually, not only those which were optically labeled 

and under view in the experimental apparatus.  This allows much more detailed 

information to be gleaned from the simulation with respect to the experiment, as 

statistically meaningful correlations can be established via averaging of the dynamical 

behavior of each individual chain.  Also, simulations are readily amenable to 

topological analysis, extending equilibrium properties such as tube diameter, primitive 

path length, and number of entanglements to nonequilibrium flow situations.   

Certainly, bulk-averaged properties, such as the conformation tensor, can still be 

calculated, but now with the ability to examine the effects of short timescale individual 

chain dynamics upon them.  Ultimately, more and better information at the 

microscopic scale should lead to better rheological and structural models of polymeric 

liquids under flow. 
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Chapter III   Simulation Methodology 

 

3.1    Nonequilibrium molecular dynamics simulation  

 

The NVT NEMD simulations of the atomistic dense polyethylene liquids were 

carried out using the p-SLLOD equations of motion [Edwards and Dressler, 2001] with 

the Nosé-Hoover thermostat [Evans and Morriss, 1990] for arbitrary homogeneous 

flows.  These equations of motion with the Nosé-Hoover thermostat are  
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            (1) 

 

In these equations, iam  is the mass of ath atom in i
th molecule. The iap , iaq , and Fia 

are the momentum, position, and force vector of ath atom in i
th molecule, respectively.  

The ∇∇∇∇u is the velocity gradient tensor.  (For a recent discussion of the relative merits 

of the SLLOD and p-SLLOD algorithms, see Refs. [Edwards et al., 2005, 2006; Daivis 

and Todd, 2006]. In shear flow, the p-SLLOD equations of motion are identical to the 

SLLOD equations of motion [Edwards and Dressler, 2001] because the term 

uuq ∇∇∇∇∇∇∇∇ ⋅⋅iaiam  vanishes since  


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where γ&  is the applied shear rate.  For planar elongational flow, 








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u    ,                     (3) 

where ε&  is the applied elongational strain rate.  The other terms appearing in Eq. (1) 

are defined as 
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The N , V , and T  are total number of atoms, volume of system, and absolute 

temperature, respectively.  The Bk  and D  denote the Boltzmann constant and the 

dimensionality of the system, respectively. The ς  and ςp  represent the coordinate- 

and momentum-like variables of the Nosé-Hoover thermostat.  The Q  represents the 

inertia mass of the Nosé-Hoover thermostat, which depends on a characteristic time 

scale of the system, τ .  

For PEF, we applied the Kraynik-Reinelt Boundary Condition (KRBC) 

[Kraynik and Reinelt, 1992].  From prior studies [Todd and Daivis, 2000; Baig et al., 

2005b], the Hencky strain value was set at 9624.0≈pε , the initial orientation angle of 
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the simulation box was chosen as °= 718.310θ , and the time period for the KRBC 

application, pt , was determined from pp tεε &= . 

 The p-SLLOD equations of motion with the Nosé-Hoover thermostat were 

integrated using the reversible Reference System Propagator Algorithm (r-RESPA) 

with two time scales, as developed by Tuckerman et al. (1992) and applied by Cui. et 

al. (1996).  The long time scale was 2.35fs under shear flow and 2.26fs under PEF, 

which was used for the intermolecular interactions.  In general, the short time scale 

was 0.235 under shear and 0.226fs under PEF, which was used for intramolecular 

interactions such as bond-streching, bond-bending, and bond-torsional interactions.  

However, we used 0.452fs as a short time scale for C50H102, C78H158, and C128H258 

under shear flow.  

 In previous work on elongational flow [Baig et al., 2005b, 2006b], the 

Siepmann-Karaboni-Smit (SKS) united-atom model for linear alkanes [Siepmann et al., 

1993] was applied to shear and PEF.  However, the rigid bond between adjacent 

atoms in the original model was replaced with a harmonic potential function to relieve 

issues related to stiff integrations at small timescales, as described below.  For the 

intramolecular atomic interactions, the LJ potential was assumed: 


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ijLJ
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ε     .                  (5) 

Only atoms that were separated by more than three bonds were considered for the 

intramolecular LJ interaction energy. A cut-off distance, cr , of 
2

5.2 CHσ  (9.825 Å) 
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was employed for the LJ potential, beyond which the potential energy was assumed to 

vanish.  (Neither a shift of the LJ potential nor a finite-size correction employing the 

pair correlation function would have effects of practical importance on the results for 

the LJ energy and pressure contributions, to be presented below.)  The parameters 

BCH k/
2

ε  and BCH k/
3

ε  were 47K and 114K, respectively.  The parameters 
2CHσ  

and 
3CHσ  were 3.93 Å each.  The parameters ijε  and ijσ  were estimated using 

Berthelot mixing rules through the expressions 

( ) ( ) 2/,2
1

jiijjiij σσσεεε +==    .              (6) 

The bond-stretching interaction is governed by harmonic potential function, 

( )2
2
1

)( eqstrstr llklV −=   ,                     (7) 

where the equilibrium length was 54.1=eql Å and the bond-stretching constant was 

900,452=Bstr kk K/Å. The bond-bending interaction was described by a harmonic 

potential, 

( )2
2
1

)( eqbenben kV θθθ −=   .                    (8) 

The equilibrium angle in this expression was °=114eqθ , and the bond-bending 

constant was 500,62=Bben kk K/rad2.  The bond-torsional interaction was 

 ( )∑
=

=
3

0

cos)(
m

m

mtor aV φφ  .                      (9) 
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This function was developed by Jorgensen et al. (1984).  The parameters Bka0 , 

Bka1 , Bka2 , and Bka3  in this equation are 1010 K, 2019 K, 136.4 K, and 3165 

K, respectively.  

 The state points of the simulated liquids are summarized in Table 3.1.1.  The 

characteristic properties of these liquids, such as density, temperature, and relaxation 

(Rouse) time, are essentially the same as in the previous studies of PEF [Baig et al., 

2005b, 2006b].  The densities of each alkane are ρ = 0.7728 g/cm3 for C24H50, ρ = 

0.7426 g/cm3 for C50H102, ρ = 0.7640 g/cm3 for C78H158, and ρ = 0.7754 g/cm3 for 

C128H258.  The simulations were conducted at the temperature of 450K, with the 

exception of C24H50, which was conducted at 333K under both shear and PEF.  From 

the previous studies [Baig et al., 2005b, 2006], the longest rotational relaxation time 

was 617ps for C24H50, 500ps for C50H102, 1,450ps for C78H158, and 5,500ps for C128H258. 

(Later, it was determined that the longest rotational relaxation time was 2,300ps for 

C78H158 using the KWW method [Williams and Watts, 1970; Williams et al., 1971; 

Tsolou and Mavrantzas, 2005; Deschenes and Vanden Bout, 2001].  Here, we retain 

the previous relaxation time of C78H158 for internal consistency.) 

The fully-stretched chain lengths, with respect to all bond torsion angles assuming the 

trans-conformation, were 29.7Å for C24H50, 63.3Å for C50H102, 99.4Å for C78H158, and 

164Å for C128H258.  This length is very important to consider when setting the box 

length in the flow direction. A cubic box was used for C24H50 since this chain length 

was fairly small.  For the other chain lengths, however, non-cubic boxes with the long 

axes of the boxes in the direction of flow were used and such  
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TABLE 3.1.1. State points of linear polyethylene chain liquids. (Here, we retain the 

previous relaxation time of C78H158 for internal consistency.) 

 

Polymer C24H50  C50H102  C78H158  C128H258 

Temperature (K) 333   450   450   450  

Density (g/cm3) 0.7728   0.7426   0.7640   0.7754  

Longest rotational  

relaxation time (ps) 
617  500  1450  5500 

No. of molecules 100  96  192  416 

No. of interaction sites 2,400  4,800  14,976  53,248 

X 41.72   65.45   100.50   166.00  

Y 41.72   65.45   100.50   166.00  

P 

E 

F Box length (Å) 

Z 41.72   35.18   45.20   58.00  

No. of molecules 100  120  160  256 

No. of interaction sites 2,400  6,000  12,480  32,768 

X 41.72   93.02   130.50   212.70  

Y 41.72   45.00   54.00   68.00  

P 

C 

F Box length(Å) 

Z 41.72   45.00   54.00   68.00  
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long axes were approximately 10% longer than the fully-stretched length of each chain.  

As discussed previously [Baig et al., 2006b], this was necessary to avoid artificially 

induced system-size effects, which could be introduced by periodicity issues associated 

with any given chain being stretched out of both ends of the simulation box.  In the 

two directions perpendicular to the direction of flow, there was no need to use and 

extended box dimension; consequently, the orthogonal axes of the simulation box are 

much shorter than the long axes to reduce the computational requirements of the 

simulations. 

 For shear flow, the simulated ranges for dimensionless shear rates 

*γ γ≡& &
reft with 2 1/ 2( / )σ ε=reft m  were  0.0005 * 1.0γ≤ ≤&  for  C24H50, 

0.001 * 1.0γ≤ ≤& for C50H102, 0.0002 * 1.0γ≤ ≤&  for C78H158, and 0.0001 * 1.0γ≤ ≤&  for 

C128H258.  For PEF, the equivalent ranges for *ε ε≡& &
reft were 0.0005 * 1.0ε≤ ≤&  for 

C24H50, 0.001 * 0.2ε≤ ≤&  for C50H102, 0.0002 * 0.2ε≤ ≤&  for C78H158, and 

0.0001 * 0.2ε≤ ≤&  for C128H258. 

The rheological characteristic functions of the liquids were calculated using 

standard procedures in NEMD simulations [Evans and Morriss, 1990].  For 

homogeneous systems, the microscopic expression of the pressure tensor, ΠΠΠΠ, which 

was developed by Irving and Kirkwood (1984), is  

∑∑ 







+=

i a

iaia

ia

iaia

mV
Fq

pp1
ΠΠΠΠ   .               (10) 

The viscous stress tensor is defined in terms of the pressure tensor Π  as 
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 δδδδΠΠΠΠσσσσ p−= .                          (11) 

Here, p  is the thermodynamic pressure, and δδδδ is the unit tensor.  The mean 

pressure, ( ) 3trΠ , is equal to the hydrostatic pressure when σ  vanishes [Aris, 

1986].  The shear viscosity is defined as 

 
γ
σ

η
&

xy−=   ,                        (12) 

where x  is the direction of flow and y  is the gradient direction.  Similarly, the 

first elongational viscosity and the second elongational viscosity are defined as  

1 2, .
4 2

σ σ σ σ
η η

ε ε

− −
= =

& &

yy xx yy zz                  (13) 

Here, x  is the extension direction, y  is the compression direction, and z  is the 

neutral direction. 

 In order to examine the entanglement properties of these polyethylene liquids, 

both steady-state and transient system configurations at various strain rates and time 

values were obtained—see Table 3.1.2.  For steady-state properties, configurational 

data were collected after steady state had been achieved, with each configuration 

approximately one Rouse time apart, so as to ensure configurational independence.  

The only exception to this rule was for C128H258, where computational requirements 

limited us to obtaining configuration only every 0.1 Rouse times.  Enough 

configurations were stored to generate average quantities with reasonable statistical 

uncertainties.  Except for C24H50, configurations at four strain rate values for all 

liquids in both shear and PEF were collected.  In all cases, the first strain rate value 

was always the equilibrium case.  The other three values lay within the nonlinear 
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TABLE 3.1.2. The number of configurations for C24H50, C50H102, C78H158, and C128H258 under planar Couette flow and 

planar elongational flow. Dimensionless strain rates are given in LJ units, introduced before Eq. (10).  

 

 
C24H50 C50H102 C78H158 C128H258 

No. of configs No. of configs No. of configs No. of configs Strain 

rate 

(LJu) 
Shear PEF 

Strain 

rate 

(LJu) 
Shear PEF 

Strain 

rate 

(LJu) 
Shear PEF 

Strain 

rate  

(LJu) 
Shear PEF 

0 50 -- 0 50 -- 0 49 -- 0 20 -- 

0.004 50 50 0.004 50 50 0.001 50 38 0.0004 21 10 

0.01 30 30 0.08 50 50 0.08 50 40 0.08 21 16 

0.02 30 30 0.2  50 0.2  20 0.2  17 

0.04 30 30 0.8 50  0.8 44  0.8 19  

0.05 30           

0.08 50 50          

0.1 30           

0.2 30 50          

0.5 30           

0.8 50            
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(strain-rate thinning) viscosity region, as determined from the known Rouse times of 

these liquids [Baig et al., 2005b, 2006b]:  617ps for C24H50, 500ps for C50H102, 

1,450ps for C78H158, and 5,500ps for C128H258.  (Note that the Rouse time for C24H50 

is out of proportion with those of the longer-chain liquids due to the fact that it was 

simulated at the lower temperature of 333K versus 450K, as mentioned earlier, since 

C24H50 is a vapor at 450K.)  For each liquid, the critical shear rate for the onset of 

shear-thinning behavior occurs near to the reciprocal of the Rouse time.  The specific 

values of strain rate examined for each liquid under both shear and PEF are tabulated 

in Table 3.1.2.  Additionally, 1000 configurations were produced under start-up 

conditions for C24H50 and C78H158 under shear and PEF at their highest dimensionless 

strain rate values to analyze the transient behavior.  The configurations of C24H50 

were saved in 2.352ps intervals.  For C78H158, the configurations were saved every 

1.176ps under shear and 0.294ps under PEF. 

 

3.2   Brownian dynamics simulation of a bead-rod chain 

 

The atomistic system was coarse-grained to a bead-rod chain with the same 

contour length and relaxation time as the atomistic systems.  Usually such a 

procedure is accomplished by setting the rod length equal to the Kuhn length, which is 

max
2 / RRk ete≡ .  In this case, this amounts to about 15 Å.  However, given the 

rotational characteristic of the PE chains to be discussed shortly, this rod length was 

determined to be too long to capture the rotational dynamics at high Wi.  Therefore 
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we chose a rod length of 4.5 Å using 
n

Rete

2
1

2

 so that 23 rods and 24 beads 

quantified the proper chain length of 99.45 Å.  This corresponds to an infinitely dilute 

(free-draining) polymer solution at its theta point.  Our purpose, then, is to compare 

the dense liquid chain dynamics to those of a freely-draining chain in the absence of 

neighboring chains.  

The Brownian dynamics (BD) simulations of the coarse-grained, bead-rod 

chain liquids were carried out under shear flow to assess the differences between 

individual molecular dynamics in dense liquids as opposed to dilute solutions.  In 

these simulations, there were three external forces acting on the beads, which satisfy 

the equation  

0=++ B

i

C

i

H

i FFF ,  kNi ...,,2,1=   .             (14) 

The H

iF , C

iF , and B

iF  represent the hydrodynamic drag force, the constraint force, 

and the Brownian force at the i-th bead, respectively.  The hydrodynamic drag force 

is described by Stokesian drag acting on the beads, 

( )∞−−= ii

H

i vrF &ζ     ,                    (15) 

where the ζ  denotes the drag coefficient.  The ir&  and ∞
iv  are the velocity of the 

bead and streaming velocity profile at bead i, respectively.  The constraint force that 

maintains constant bond length ( a ) between adjacent beads is 
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                    (16) 

The iT  represents tension between the beads and the iu  refers to the orientation of 

rod i . The Brownian force that describes collisions between neighboring beads is  
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δζ
δδζFF
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         (17) 

The δ  represents the Dirac delta function and the ijδ  refers to the unit tensor.   

The set of evolution equations for the position vectors of beads are obtained by 

combining Eqs. (15), (16), (17) with (14), and integration subject to the constraints  

i
B

C

i
ii

Tk
dt W

F
vr d

2
d

ζζ
+








+= ∞ ,   kNi ...,,2,1=   ,          (18) 

( ) ( ) 22
11 φ=−−⋅− ++ aiiii rrrr ,   1...,,2,1 −= kNi    , 

using the iterative technique developed by Liu (1989). The iWd  is a Wiener process 

and the 2φ  is the specific tolerance.  

 

3.3  Brownian dynamics simulation of a bead-spring chain 

 

3.3.1  Model development 

 

In NEMD simulations of shear flow, Section 4.1-2, the test liquid C78H158 was 

conjectured to form tube-like structures composed of highly extended molecules, 
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through which other molecules rotated in hairpin configurations, as had also been 

observed in experiments of dilute DNA/water solutions [Teixeira et al., 2005, 2007].  

Chapter 4.3 will confirm this hypothesis, revealing definite correlations and timescales 

associated with tumbling events of individual molecules passing through tube-like 

structures of highly extended molecules.  In light of this new evidence, it is possible 

that a realistic model of these linear, short-chain, unentangled molecular systems could 

be expressed in terms of a test chain placed in a mean-field that quantified the 

surrounding tube-like structure of highly extended chains through an anisotropic 

diffusion tensor, in which the diffusivity coefficient parallel to the chain or segmental 

backbone was greater than the coefficient perpendicular to the chain backbone. 

 

3.3.2  Bead-spring model  

 

The linear C78H158 chain is modeled as a bead-spring chain.  The 16 beads and 

15 springs per chain were chosen as a good representation of the C78H158 chain based 

on previous experience [Somasi et al., 2002; Venkataramani et al., 2008].  The bead-

spring chain model consists of N (16) identical spherical beads connected by 1−N  

(15) fintely extensible nonlinear elastic (FENE) springs.  The FENE spring force law 

for each spring ( )S

iF  is written as 

1,,2,1,
/1

1
, 2, −=

−
== Ni

bQ
hQhKF

s

i
i

i

i

S

i KKαα   ,         (19) 
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where the K  and iQ  denote the elastic spring constant and the connector vector of 

the i-th spring, respectively.  The sb  represents the maximum extensibility of all 

springs.  The ih  determines the specific form of elasticity inherent to the spring; 

when 1=ih , for example, the force law devolves into the linear Hookean spring.  

Note that Greek indices refer to the components of a Cartesian coordinate system and 

that the Einstein convention is assumed.  

The fully-stretched length of the bead-spring chain is matched with the linear 

C78H158 chain and the maximum extensibility of the spring ( )sb  is calculated using 

20
)A(1492

)A(989033

2

2

2

2

≈
×

=
×

=
o

o

eq

max

m
R

R
b  ,    

0.088892 ≈= /Nbb ms
,                   (20) 

where maxR  refers to the fully-stretched, end-to-end length of linear C78H158.  The 

mb  and sb  denote the maximum extensibility of the entire molecule and each spring, 

respectively.  The bead-spring model also possesses the same longest relaxation time 

as C78H158 used in the NEMD simulations 

 For the unentangled liquids and semi-dilute solutions under consideration, a 

mean-field assumption is assumed to describe the effects of the oriented surrounding 

molecules on a test chain with the properties set forth above.  This mean field is 

expressed through an anisotropic diffusion tensor, 

( )[ ]ii

αβi QQ βααβ αδαζ
~~

11
0

-1
, −+= −

ζ    ,              (21) 
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where αβδ  denotes the unit tensor, iBi Q
K

Tk
Q αα ≡
~

 and 1
0
−ζ  is the reciprocal of a 

frictional drag coefficient, assumed to be the same for each of the identical beads.  

The dimensionless parameter α quantifies the influences on an individual chain from 

its surrounding chains, which are represented within the mean-field ansatz via the 

degree of anisotropy in the diffusion matrix.  Note that this form of the diffusion 

tensor recovers the isotropic case when 1=α .   

 

3.3.3   Mesoscopic level of description 

 

According to kinetic theory of polymeric liquids [Bird et al., 1987b], three 

external forces act on each bead of a bead-spring model; the hydrodynamic drag 

force, H

iF , the effective spring force, E

iF , and the Brownian force, B

iF .  Therefore, a 

force balance on the beads may be expressed as 

NiB

i

E

i

H

i ,...,2,1,0 ==++ ,,, FFF ααα  ,            (22) 

where N is the total number of beads.  Notice, as is usually the case, that we have 

neglected inertial contributions.  In Eq. (22), the hydrodynamic drag force on each 

bead ( )H

iF  is quantified by Stokes’s law, which is expressed as 

( )iiiH

i vr ββαβα ζ −−= &
,F  .                     (23) 

The irβ&  and ( )ii rvv αβαββ κ+= 0  denote components of the velocity and streaming 

velocity profile of the i-th bead, respectively, where βακ  is a component of the 
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transpose of the velocity gradient tensor.  The i

αβζ  represents an anisotropic friction 

matrix, which is the inverse of an anisotropic diffusion matrix.  The effective spring 

force on bead i (the E

iF  in Eq. (23)) is expressed as  

i

E

i
rα

α
φ

∂
∂

−=,F   .                        (24) 

where φ  denotes spring potential energy.  The Brownian force on each bead is taken 

as  

Ψ
r

Tk
i

α

B

B

i ln, ∂
∂

−=αF  ,                      (25) 

where Bk and T denote the Boltzmann constant and temperature, respectively.  The 

{ }( ),tΨ ir  represents the configurational distribution function.  By substituting Eqs. 

(23), and (25) into (22), and rearranging the equation, one obtains the equations of 

motion for the position vectors, which are 
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From kinetic theory, the continuity equation of the distribution function { }( ),t
i

rΨ  is 

expressed as  
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Therefore, the diffusion equation for { }( ),tr iΨ  can be obtained by inserting Eq. (26) 

into Eq. (27), which results in the expression  
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For present purposes, this deterministic diffusion equation for the probability 

distribution function is rewritten in terms of a stochastic differential equation (SDE), 

which can then be split into a coupled set of evolution equations for the position 

vectors.  The specific form of the diffusion equation for the distribution function is 

converted into the corresponding form of a SDE according to [Öttinger, 1996] 
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where W  represents the Wiener process. B  is the ‘square root’ of ( )ii

i BB γβαγαβζ =−1
, , 

and is chosen as a lower triangular 3×3 matrix using Cholesky decomposition, which 

satisfies  
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Hence, Eq. (28) should be rearranged to have the specific form of configurational 

distribution as in Eq. (29) at mesoscopic level,  
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(31) 

Then one can obtain a SDE for the position vectors using Eqs. (29) and (30), 
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where S

iF  is the spring force associated with spring i.  

Since the anisotropic diffusion matrix and stress tensor depend on the 

connector vector between adjacent beads, it is convenient to express the equation of 

motion using this vector.  From definition of the connector vector ( )iii rrQ −= +1  

with Eqs. (32) and (33), the SDE for the evolution of a connector vector can be 

obtained by 
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where  
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The ikA  are the elements of the Rouse matrix [Rouse, 1953].  Equation (34) can be 

made dimensionless with the transformations 
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Note that the terms with a tilde are dimensionless. The Wi  is the Weissenberg 

number and Rτ  is the Rouse time.  The cV  is an arbitrary velocity scale and L  is 

an arbitrary length scale.  As a result, the dimensionless equation for idQα  is  
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Finally, we obtain the stochastic evolution equation of the connector vector by 

substituting the FENE spring force law and the anisotropic diffusion matrix into Eq. 

(36), 
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3.3.4  Continuum level of description 

 

One can express Eq. (26) in terms of i
Q  and { }( )tN ,1−

Qψ  
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At the continuum level, the diffusion equation of the distribution function was further 

coarse-grained through pre-averaging.  By multiplying ii QQ βα  on each side of Eq. 

(38) and then integrating over all the configuration space, one can derive the equation 

of change for ii
QQ βα , which is written as 
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for 1,...,2,1 −= Ni .  Here, the definition of the average property,
i

dEE ∫= Qψ , is 

used.  In this study, the upper convected time derivative is defined by 
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Thus, Eq. (39) can be also written as  
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Eq. (41) can be also expressed in dimensionless form using the transformations of Eq. 

(35), 
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Introducing the FENE spring force law and the anisotropic diffusion matrix 

into Eqn. (42) gives  
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In Eq. (43), the fourth-rank tensor can be written in terms of second-rank tensors using 

the closure approximation proposed by Doi (1981), which has been shown to satisfy 

time-structure invariance by Edwards and Öttinger (1997): 
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Finally, the constitutive equation at the continuum level is obtained as 
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Note that Eq. (43) should recover typical FENE dumbbell model for 1=α  and 

2=N ,  
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when 2=N , βαβααβ QQRRC
~~~~~

==  , 

where irα
~  denotes the dimensionless position vector of i-th bead and the αβC

~
 denotes 

dimensionless conformation tensor.   
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3.3.5  Rheological and structural properties 

 

The stress tensor is given by Kramers’ expression [Bird, 1987], and written in 

dimensionless form according to the transformations of Eq. (35), 
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βααβ .                       (48) 

In this study, the rheological material function plays an important role in comparing 

results from each level of description.  The viscosity and the normal stress 

coefficients are defined by   
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The average conformational changes of the chain under shear flow can be expressed 

using various properties such as the conformation tensor, radius of gyration, 

orientation angle, and so on.  These properties can be defined as follows.  The radius 

of gyration tensor is defined as 
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where the position vector of the center of mass is given by, 
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The molecular configuration thickness of the bead-spring chain is computed using the 

radius of gyration tensor with orthogonal components  

xxx Gδ
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= ,    
yyy Gδ

~
= ,    

zzz Gδ
~

= .              (54) 

The orientation angle ( )θ  also can be calculated using the radius of gyration tensor 

[Hess, 1987; Kroger, 2005; Thomas et al., 2009],  
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3.4   Topological Z-code algorithm 

 

Quantities characterizing the entanglement network have been obtained from 

configurational snapshots by using the geometric Z-code [Vladkov and Barrat, 2006; 

Kröger, 2005], which efficiently produces results in agreement with its dynamical 

counterpart, as demonstrated and discussed in detail in Shanbhag and Kröger (2006).  

The Z-code had been applied in Foteinopoulou et al. (2006) to identify entanglements 

and to quantify entanglement statistics in polyethylene melts.  The method adopted in 

our ‘topological’ analysis solves the problem of the shortest multiple disconnected path, 

in the sense of a minimum Euclidean length subject to excluded volume (uncrossability 

of primitive paths) and constraints arising from the initial state (fixed chain end 

coordinates).  In contrast to dynamical counterparts, the Z-code does not lose 

entanglements during ‘relaxation,’ and it has many common features with an alternate 

implementation of the same geometric idea--the so called CReTA package 
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[Tzoumanekas and Theodorou, 2006].  Details about the Z-code can be found in the 

literature. [Vladkov and Barrat, 2006; Kröger, 2005].  When applied to a polymeric 

configuration, it returns the instantaneous configuration of the complete entanglement 

network, from which various quantities such as network anisotropy, contour length, 

stiffness, mesh size, number of knots, and further characteristics, can be evaluated. 

For the purpose of the present manuscript, we evaluated the lengths of 

primitive paths, ppL , defined as the contour length of the whole entanglement network 

(shortest disconnected path) divided by the number of polymer chains.  From this 

length, together with the assumption of random walk statistics for the primitive path, 

one usually defines a ‘number of entanglements’ via 2 2 1= −
coil pp ete

Z L R , where 

2
ete

R  denotes the mean squared end-to-end distance, and a ‘tube radius’, 

coiletepp ZRa
2= .  As the entanglement network becomes anisotropic under flow 

conditions, ppL , rather than coilZ or ppa , contains the most relevant information for 

the reason that the above assumption is generally invalid, in particular under 

nonequilibrium conditions [Kröger,  2004, 2005; Tzoumanekas and Theodorou, 2006].  

The development of the geometric algorithms makes it possible to investigate the 

dynamics of the entanglement network, as demonstrated in this manuscript.  This is 

made possible since the analysis of many configurations can typically be completed 

within a few seconds on a laptop computer, as compared to several days for a single 

configuration not two years ago.     
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3.5   Brightness distribution for configurations of chain molecules 

 

The dynamics of individual DNA molecules have been observed under shear 

using video fluorescence microscopy during the past decade [Smith and Chu, 1998; 

Smith et al., 1999; LeDuc et al., 1999; Teixeira et al., 2005; Schroeder et al., 2005; 

Robertson and Smith, 2007]. In this technique, the internal configuration of the chain is 

related to the brightness of the signal as measured under a microscope since the 

individual DNA molecules are fluorescently marked.  In other words, the brightness 

changes according to the configurational distribution of chains at a specific spatial 

location.  For example, the coiled configuration appears brighter than other 

conformations because the radius of gyration of the chain is smaller, thus the 

fluorescently labeled atoms are more densely packed.  

In a similar vein to the experimental brightness measurements, the same idea 

has been applied to simulation data to classify numerous configurations of chain 

molecules and to track the configurational changes of specific molecules as a function 

of Wi [Venkataramani et al., 2008].  The analysis presented below follows exactly the 

scheme of Venkataramani et al. (2008), and will not be explained here.  Figure 3.4.1 

displays the configuration classes of the chain molecules considered in this work:  

they are, in order of increasing magnitude of the end-to-end vector, coil, fold, 

dumbbell, kink, half-dumbbell, and stretched. 

 

 



 - 35 - 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.4.1. Representative configuration classes of chain molecules as defined by the 

brightness distribution of Venkataramani et al. (2008). 
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Chapter IV   Results and discussion 

 

4.1 Rheological and entanglement characteristics of linear-chain polyethylene 

liquids in shear and planar elongational flows at the atomistic level using 

nonequilibrium molecular dynamics simulation 

 

In Fig. 4.1.1, the viscosities are displayed as functions of strain rate for the 

polyethylene liquids, as in Refs. [Cui et al., 1996; Baig et al., 2005b, 2006a, 2006b,].  

Note that 2η  is not displayed, for conciseness, since the results are qualitatively 

similar to those of 1η , and since they may be found in Refs. [Baig et al. 2005b, 2006a].  

Statistical uncertainties were calculated using Eq. (28) of Ref. [Flyvbjerg and Petersen, 

1989].  The values of the shear viscosity at various shear rates are tabulated in Table 

4.1.1.  Similar tables for the elongational viscosities can be found in Refs. [Baig et al., 

2005b, 2006b].  As evident, all of the viscosities decrease as the strain rate increases.  

In other words, shear- and tension-thinning behavior is observed for all four 

polyethylene melts.  Furthermore, the shear- and tension-thinning behaviors are more 

pronounced for the longer chains in both shear and PEF.  It was observed in Refs. 

[Baig et al. 2005b, 2006b] that the zero shear-rate viscosity was approximately equal 

to the zero elongation-rate viscosity for short-chain n-alkanes in both shear and PEF, in 

accordance with Trouton’s ratio. Here, the applicability of this rule to linear short-

chain polyethylenes is also observed in both shear and PEF.  Both viscosities were 

estimated based on the plateau values in Fig. 4.1.1.  The zero shear-rate viscosities of 
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the linear short-chain polyethylenes are 1.096.1
10250

±=HCη cp, 

25.104.10
258128

±=HCη cp, and 25.077.4
15878

±=HCη cp, and the zero strain-rate 

viscosities (both 1η , 2η ) are 4.02.2
10250

±=HCη cp, 8.00.5
15878

±=HCη cp, and 

8.27.10
258128

±=HCη cp.  The power-law indices ( b

shear γη &∝ , b

elong εη &∝ ) for all 

polyethylene melts were also calculated.  It is typical that the experimental value of 

b  lies within the range of [-0.4,-0.9] for polymeric liquids.  From Fig. 4.1.1, the 5 

highest strain rate values were selected to regress the power-law index.  The values of 

b  for the polyethylene melts under shear flow are -0.39±0.01 for C24H50, -0.34±0.01 

for C50H102, -0.35±0.01 for C78H158, and -0.34±0.01 for C128H258.  These values are 

close to those of the prior analysis of Moore et al. (b  = -0.35) [Moore et al., 2000].  

The b  values of the polyethylene liquids under PEF for 1η  are -0.37±0.01 for 

C50H102, -0.42±0.01 for C78H158, and -0.46±0.02 for C128H258, from the previous study 

[Baig et al., 2006b].  While the slope of 1η  increases as the chain length increases 

under PEF, the slope of η  looks to be insensitive to the chain length at high shear rate 

values.    

The shear-thinning behavior arises due the relative stress relief offered to the 

liquids as the molecules stretch and align at a small angle with respect to the flow 

direction at high rates of shear [Bird et al., 1987; Morrison, 2001].  In elongational 

flow, the chains continue to stretch at the highest strain rates we could simulate, and 

thus the longer chains continue to display a greater degree of tension-thinning—see Fig. 

4.1.2, herein, and Table II of Ref. [Baig et al., 2006b].   



 - 38 - 

 

0.00001 0.0001 0.001 0.01 0.1 1

η
(c

P
)

0.1

1

10

100

C
24

H
50

C
50

H
102

C
78

H
158

C
128

H
258

2/12 )/( εσγ m&  

0.00001 0.0001 0.001 0.01 0.1 1

η
1(

c
P

)

0.1

1

10

100

C
24

H
50

C
50

H
102

C
78

H
158

C
128

H
258

2/12 )/( εσε m&  

 

 

Fig. 4.1.1. Comparison of η  and 1η  for polyethylene melts as functions of strain 

rate.   
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TABLE 4.1.1 Shear viscosities η as functions of dimensionless shear rate for C50H102, C78H158, 

and C128H258. The numbers in parentheses represent the statistical uncertainties in the least 

significant digits calculated using Eq. (28) of [Flyvbjerg and Petersen,1989]. 

 

C50H102 C78H158 C128H258   

 *γ&  

(LJu)         
η  (cp) 

Run 

(ns) 
η  (cp) 

Run 

(ns) 
η  (cp) 

Run 

(ns) 

0.0001             10.814 (1257) 30.39  

0.0002    3.160 (1005) 16.46 11.702 (1257) 28.09  

0.0004    4.108 (604) 14.11 10.045 (1006) 25.89  

0.001 2.393 (201) 11.76 4.772 (251) 11.76 5.804 (352) 23.25  

0.002 1.992 (126) 9.15  3.549 (126) 10.58 3.765 (75) 22.13  

0.004 1.930 (75) 8.23  2.339 (63) 9.40  2.399 (45) 13.85  

0.01 1.315 (45) 5.88  1.400 (40) 5.88  1.383 (25) 5.88  

0.02 0.923 (18) 4.70  0.964 (30) 4.68  0.933 (9) 4.57  

0.04 0.655 (13) 3.05  0.689 (13) 3.52  0.653 (10) 3.48  

0.05 0.604 (7) 2.95  0.616 (10) 3.52  0.618 (15) 3.35  

0.08 0.482 (6) 2.82  0.498 (6) 2.52  0.501 (8) 2.77  

0.1 0.443 (4) 2.82  0.473 (5) 2.82  0.466 (5) 2.75  

0.2 0.338 (5) 2.35  0.361 (5) 2.35  0.352 (8) 2.12  

0.5 0.250 (2) 2.35  0.262 (4) 2.35  0.262 (3) 2.35  

0.8 0.218 (2) 2.35  0.229 (2) 2.15  0.229 (2) 2.31  

1 0.207 (2) 2.35  0.218 (2) 2.02  0.217 (2) 2.24  
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Fig. 4.1.2. The mean-square chain end-to-end distance, 2
eteR , and the mean square 

chain radius of gyration, 2
g

R , for C128H258 under shear and PEF as functions of strain 

rate. 
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TABLE 4.1.2 The mean-square, end-to-end distance of chains and the mean-square radius of 

gyration of chains as functions of dimensionless shear rate for C50H102, C78H158, and C128H258.  

The numbers in parentheses represent the statistical uncertainties in the least significant digits 

calculated using Eq. (28) of [Flyvbjerg and Petersen,1989]. 

 

C50H102 C78H158 C128H258   *γ&  

(LJu) 2
ete

R  (Å2) 2
g

R ( Å2) 2
ete

R  (Å2) 2
g

R  (Å2) 2
ete

R  (Å2) 2
g

R  (Å2) 

0 883 (9) 123 (1) 1492 (25) 218 (3) 2566 (20) 389 (2) 

0.0001         2598 (25) 396 (11) 

0.0002     1480 (22) 218 (1) 2686 (54) 407 (9) 

0.0004     1472 (31) 217 (3) 2985 (46) 436 (4) 

0.001 916 (9) 125 (1) 1628 (26) 229 (2) 3656 (124) 505 (9) 

0.002 925 (8) 126 (1) 1729 (39) 241 (4) 4217 (154) 562 (15) 

0.004 956 (14) 129 (1) 2073 (54) 270 (4) 5180 (124) 652 (11) 

0.01 1065 (23) 137 (2) 2447 (77) 302 (6) 6288 (77) 746 (4) 

0.02 1164 (29) 145 (2) 2726 (93) 324 (8) 6596 (216) 781 (15) 

0.04 1289 (23) 154 (2) 2932 (54) 341 (5) 7168 (93) 839 (8) 

0.05 1278 (17) 153 (1) 2855 (54) 335 (5) 7058 (232) 827 (15) 

0.08 1306 (31) 154 (2) 2974 (62) 345 (5) 7155 (46) 837 (3) 

0.1 1357 (17) 158 (1) 2978 (62) 345 (6) 6667 (62) 798 (6) 

0.2 1343 (15) 158 (1) 2900 (54) 339 (6) 7013 (309) 822 (31) 

0.5 1283 (19) 152 (2) 2750 (39) 327 (2) 6842 (77) 812 (6) 

0.8 1289 (17) 152 (2) 2784 (46) 329 (4) 6709 (154) 803 (23) 

1 1274 (14) 151 (1) 2787 (31) 329 (3) 6655 (124) 801 (9) 
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In Fig. 4.1.2, which offers data for C128H258, the mean-square of chain end-to-

end vector, 2
eteR , continues to increase at high strain rates, indicating that the chains 

are elongating more and more as the strain rate increases.  However, for shear flow, at 

the highest shear rates simulated, Fig. 4.1.2 and Table 4.1.2 demonstrate that the chains 

are substantially elongated, and approach a high shear-rate maximum-extension region 

at the same rate, independent of chain length.  Fig. 4.1.3 displays some sample 

configurations from the simulations of C128H258 under equilibrium, shear, and PEF 

conditions.  Note that the upper simulation boxes display the entire number of chains 

in the systems, whereas the lower boxes only display ten randomly selected chains, 

rendering the remainder invisible.  From these snapshots, some observations become 

evident which are directly compatible with the information apparent in Fig. 4.1.2.  At 

equilibrium, the chains maintain their random coil configurations, whereas under flow, 

they become stretched and oriented on average relative to the flow field.  In PEF, the 

chains stretch substantially in the direction of flow, assuming intramolecular 

configurations that are very similar to those in polyethylene crystalline structures 

[Ionescu et al., 2006].  Occasionally, a molecule will rotate within the elongational 

flow field, as the chain will fold back on itself and switch chain-end orientation in 

much the same way that a snake changes its direction by °180 . In shear flow, the 

chains continuously rotate, being only on average stretched and aligned with respect to 

the shear field.  At low shear rates, the chains rotate spherically, similarly to 

basketballs.  At high shear rates, the chains rotate in the snake-like fashion, 

maintaining rather highly elongated conformations at the extremes. 
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Fig. 4.1.3. Snapshots of molecular configurations under equilibrium (a), shear flow at 

the highest shear rate simulated, 8.0* =γ&  (b), and PEF at the highest strain rate 

simulated, 2.0* =ε& (c) for C128H258. 
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The stress tensor consists of two contributions from a microscopic viewpoint, 

the kinetic and potential, see Eq. (10).  Since the kinetic part is mandated by the 

system temperature, the potential part plays a dominant role in determining the mean 

pressure for all dense liquids (the opposite is true for gases), cf. Refs. [Kröger et al., 

1993; Baig et al., 2005b, 2006b].  Consequently, the intermolecular interaction 

energy of the system should possess a qualitative similarity with the potential part of 

the pressure tensor.  Therefore, the features of the pressure profiles with respect to 

strain rate in comparison to the profiles of the intermolecular LJ (potential) energy 

were investigated.  The mean pressure is graphed as a function of strain rate in Fig. 

4.1.4, and the intermolecular LJ energy is displayed in Fig. 4.1.5.  The qualitative 

behavior of the mean pressure is very similar between shear and PEF:  after the initial 

Newtonian plateau at low shear rates, the mean pressure decreases at intermediate 

values of the strain rate, although more substantially under PEF, and then increases 

sharply for high strain rates.  For C24H50 at the highest value of strain rate in PEF, 

there appears to be a plateau or maximum forming in the mean pressure profile.  The 

stress decreases at intermediate strain rates because the chain molecules are extending 

and reorienting rapidly in this regime (see Fig. 4.1.2), which manifests as an extreme 

degree of strain-rate thinning not only in the viscosities, but also in the diagonal 

components of the stress tensor.  For instance, in shear flow, it has been demonstrated 

that the first normal stress coefficient (which is related to the diagonal components of 

the pressure tensor) shear thins to a very high extent throughout this shear rate regime 

[Baig et al., 2006b].  Once a critical shear rate is achieved where the chain extension 
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begins to decrease with increasing shear rate—see the maximum in Fig. 4.1.2a, and the 

point where the slope decreases dramatically in Fig. 4.1.2b—there is a minimum in the 

mean pressure profiles.  Subsequently, the mean pressure increases rather 

dramatically with increasing strain rate.  

To investigate the potential contribution to the mean pressure, the 

intermolecular LJ potential energy per united atom is plotted as a function of strain rate 

in Fig. 4.1.5.  (The reason that the C24H50 intermolecular LJ energy is so much lower 

than the other three is because this simulation was at a lower value of the temperature.)  

As evident, the overall shapes of these energy curves are very similar to those of the 

mean pressure.  The intermolecular LJ energy decreases with increasing strain rate at 

low values, and then it reaches a minimum value at intermediate strain rates.  At high 

strain rates, it increases, and for C24H50 and C128H258 under PEF, it exhibits a 

precipitous drop at extremely high strain rates.  These phenomena can be explained 

by consideration of two competing effects, chain orientational effects and Brownian-

type collision effects, each manifesting in a different strain rate regime.  At low strain 

rates, the torsion angles of the chains assume more trans-conformations with 

increasing strain rate.  This increases the interaction area between neighboring 

molecules, and decreases the intermolecular LJ energy.  As the strain rate increases 

into the regime of high values, chain rotation and tumbling for shear and molecular 

collisions for elongational flow (atomic interactions, which push the molecules apart) 

play a more important role, eventually dominating over the chain extension effects. 

The intermolecular LJ energy therefore increases with strain rate.  For C24H50 and 
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Fig. 4.1.4. Comparison of mean pressure for polyethylene melts as a function of strain 

rate. 
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Fig. 4.1.5. The intermolecular LJ potential energy per united atom vs. strain rate. 
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C128H258 under PEF at the highest values of strain rate simulated, the intermolecular LJ 

energy begins to decrease again.  It was speculated in Refs. [Baig et al., 2005b, 

2006b] that this behavior was due to the chains achieving full extension only at the 

very highest strain rates:  once the chains are fully extended, the collisional effect is 

reduced since the fully stretched chains are not as sterically capable of having such 

strong collisional effects when they are all aligned in the flow direction.  Hence atoms 

on different aligned molecules cannot move perpendicular to the molecular axis as 

readily to interact with atoms on neighboring chains.  This explanation is consistent 

with the shear results of Fig. 4.1.5a, where no maximum appears in the intermolecular 

LJ energy at extremely high shear rates:  in shear flow, the chains are not nearly as 

extended at high strain rates as they are in PEF—compare the ordinate scales in Figs. 

4.1.2a and 4.1.2b. 

Since 2
eteR  and the mean-square chain radius of gyration, 2

gR , are closely 

related to the molecular conformations of the chains [Bird et al., 1987; Kröger, 2005], 

each can provide clues as to the dynamics of the polyethylene liquids under flow.  For 

C128H258 under PEF, both 2
eteR  and 2

gR  increase rapidly at low elongation rates 

due to alignment and extension of the chains within the elongational field—see Fig. 

4.1.2. At high elongation rates, the slopes of the 2
eteR  and 2

gR  profiles decrease 

significantly due to the increasing effect of intermolecular collisions.  Under shear 

flow, the magnitudes of 2
eteR  and 2

gR  for C128H258 also increase at low shear 

rates due to alignment and extension of the chains under the imposed shear field.  
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After that, however, these quantities attain their maximum values and slightly decrease 

at high shear rates due to chain rotation and tumbling.   

This overall qualitative behavior of 2
gR  under shear flow is very similar to 

that of C100H202 reported by Moore et al. (2000).   It can be explained by examining 

the bond-torsional and bond-stretching energies of Figs. 4.1.6a and 4.1.7a under shear 

flow.  At the same critical value of the shear rate where the maximum occurs in 

2
eteR  and 2

gR , the bond-torsional energy begins to increase substantially. This is 

due to the increasingly significant role of chain rotation and tumbling.  At the same 

time, the bond-stretching energy begins to decrease significantly, since the collisions 

require adjacent atoms in the same chain to synchronize their oscillations in the more 

fully extended chain conformation, thus lowering the amplitude of the vibrations and 

decreasing the bond-stretching energy.  In other words, the chains become stiff, at 

least segmentally, at high shear rates, and thus the bonds cannot fluctuate far from their 

equilibrium bond lengths.  Hence the molecular rotation becomes more difficult, and 

the local chain stiffness results in more snake-like rotational chain conformations. 

The chain flexibility can be further examined as a function of strain rate in both 

shear and PEF, as in Fig. 4.1.6.  As stated above, the bond-torsional interactions 

govern the global chain flexibility, whereas the bond-bending and bond-stretching 

interactions determine the short-range local chain flexibility.  The behavior of the 

liquids under PEF is different than that of shear, which was described in the preceding 

paragraph.  The bond-torsional energy decreases at low strain rates due to chain  
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Fig. 4.1.6. The bond-torsional energy per mode vs. the strain rate. 
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alignment with the flow field, and then reaches a minimum value at intermediate strain 

rates for all polyethylene melts.  This minimum value also is explained by the balance 

of the competing effects of chain alignment molecular collision for PEF.  After a 

rather small increase in the torsional energy, as in shear, however, there occurs a 

dramatic drop at high strain rates for C24H50 and C128H258 under PEF.  This is due to 

the reduction in the torsional energy required once the chains have become fully 

extended under PEF in their all trans-conformations, thus approaching the minimum 

energy condition.  Under shear flow, the molecules never even approximate fully 

extended chains, partially due to their ongoing rotation, thus explaining the continuous 

increase in the bond-torsional energy in this flow field. 

 The bond-stretching interactions also contribute to the short-range local chain 

flexibility.  The bond-stretching energy per mode as a function of strain rate is 

depicted in Fig. 4.1.7.  After a region of remaining constant at low strain rates, the 

bond-stretching energy decreases monotonically as the strain rate increases, exhibiting 

a sudden drop in energy at high strain rates for each polyethylene melt.  This sudden 

drop of the bond-stretching energy is understood by considering the chain flexibility, 

as in the previous articles [Baig et al., 2005b, 2006b].  At high strain rates, the chains 

become stiff due to the sharp free energy difference between the all trans-

conformational state and other states with lesser degrees of extension.  Therefore, the 

intramolecular atomistic neighbors can only fluctuate to a small degree from their 

equilibrium bond lengths, as discussed earlier.   
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Fig. 4.1.7. The bond-stretching energy vs. the strain rate. 
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Fig. 4.1.8. The intramolecular LJ potential energy per (mode - 4) as a function of strain 

rate.   
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Fig. 4.1.9. The bond-bending energy per mode vs. the strain rate. 
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To augment our understanding of the intramolecular structure, the 

intramolecular LJ potential energy per mode versus strain rate was investigated using 

Fig. 4.1.8.  As the flow strength increases, the chains will align on an averaged basis 

and extend to a greater degree.  Therefore, the distance between neighboring atoms is 

longer than in the undeformed equilibrium state. This longer length between each atom 

causes the intramolecular LJ potential energy to increase; i.e., to become less negative.  

There appears to be a direct correlation between the intramolecular LJ energy and 

2
eteR , 2

gR  for both shear and PEF.  Under PEF, the chains continue to increase in 

length for all strain rates, and so the LJ energy continuously increases as well.  Under 

shear, there is a maximum in the LJ profile that roughly corresponds to the critical 

shear rate where the chains attain their maximum extensions.  As chain rotation and 

tumbling effects begin to dominate at high shear rates, the LJ energy decreases due to 

hairpin like rotational cycles, where neighboring atoms are actually closer together 

than under equilibrium conditions.  

The bond-bending interactions also contribute to the short-range chain 

flexibility. Thbond-bending energy per mode is depicted as a function of strain rate in 

Fig. 4.1.9.  The overall behavior of the bond-bending energy is qualitatively similar to 

the bond-torsional energy displayed in Fig. 4.1.6.  In shear, the bond-bending energy 

begins to increase at intermediate shear rate values due to the increasing extension of 

the chains into more trans-conformations.  As more bonded atoms adopt trans-

conformations, the bond-bending energy necessarily increases.  Under PEF, however, 

again, the dramatic drop in the interaction energy, similarly to the bond-torsional 
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energy profiles, is observed.  Again, this is due to a decrease in chain flexibility in the 

all trans-conformation, as the bond angles fluctuate to a smaller degree around their 

equilibrium values. 

The flow-induced topological changes of the entanglement network 

accompanying the rheological and energetic/entropic behavior have been analyzed as 

well.  Fig. 4.1.10 depicts a representative time-dependent variation of the contour 

length of an entanglement network divided by the number of chains (often called 

‘primitive path length’), ppL , during start up of flow for C78H158.  This quantity 

exhibits an overshoot in concert with a stress overshoot during the onset of shear flow, 

and a monotonic increase toward its steady-state value under elongational flow.  Note 

that the steady-state value of ppL  is much higher under PEF than shear, as intuitively 

expected—see Fig. 4.1.2.  The elongational behavior is also rather intuitive; the 

chains extend monotonically after start-up toward their steady-state conformations.   

The damped oscillatory shear behavior is caused by the same physical mechanism that 

leads to a shear stress overshoot upon start-up of flow, and mirrors the behavior of the 

conformation tensor.  If the time scale of the applied shear rate is large relative to the 

rotational relaxation time of the liquid (low shear rates), then the chains respond 

rapidly to the imposed flow field.  Hence the convection term dominates the ppL  

response.  This produces a monotonic increase in ppL  toward its steady-state value, 

similarly to the extensional flow case of Fig. 4.1.10b.  However, when the time scale 

of the shear flow is less than the fluid’s rotational relaxation time (high shear rates), the 
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relaxation term dominates the response of ppL  at long times until the attainment of 

steady state.  This leads to the complex oscillatory behavior displayed on Fig. 

4.1.10a:  ppL  can be expressed in qualitative fashion by the functional 

form )exp()( λttfLpp −= , where )(tf  is some monotonically increasing function of 

time.  Therefore, at relatively small values of time, )(tf  dominates the behavior of 

ppL , whereas when λ→t , the exponential relaxation term begins to affect the 

behavior.  Hence the chains are over extended at low times due to the imposed shear 

field, and then relax to the steady-state conformations at long times.  In the oscillatory 

behavior of Fig. 4.1.10a, this relaxational process results not only in overshoots, but 

undershoots as well, indicating that ppL  is a fairly dynamic system property. 

Since these systems are not well entangled even in the equilibrium state, it is 

not possible to draw conclusions about the time-dependent behavior of ‘entanglement’ 

points, but the non-affine behavior of ppL vs. time, as shown in Fig. 4.1.10, is certainly 

not a signature of low molecular weight polymers only.  It is further evident from the 

data shown that the relaxation times characterizing the rheological and conformational 

properties have counterparts in the configurational properties (the entanglement 

network), and that the topological constraints imposed by the network will dominate 

conformational relaxation processes as soon as we exceed a critical molecular weight. 

Since the analysis of the statistical properties of entanglement networks scales (only) 

linearly with the system size, the current work provides reference data and some first 
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impressions about the dynamical behavior of the flow-induced network, which may be 

considered, from a thermodynamic perspective, as a relevant and slow variable for the 

theoretical description of polymer melts. 

The steady-state values for various strain rates and chain lengths are presented in Figs. 

4.1.11 and 4.1.12 for ppL , as well as for the ‘number of entanglements,’ coilZ , and the 

‘tube diameter,’ ppa , cf. Figs. 4.1.13-15.  Each property was determined from single-

chain averages, and each, except ppL , was subjected to assumptions concerning the 

shortest path statistics. The variations of ppL  and ppa  with strain rate are 

qualitatively similar, and mirror the behaviors of the intramolecular LJ energy and 

2
eteR --compare Figs. 4.1.11 and 4.1.14 with Figs. 4.1.2 and 4.1.8.  Under shear, the 

contour length attains a maximum at the same value of shear rate where 2
eteR  and 

the intramolecular LJ energy attain their maximum values.  It thus seems reasonable 

to assert that the contour length increases at low shear rates where the intramolecular 

LJ energy decreases in strength, and decreases as this energy increases at higher shear 

rates, as discussed above.  In PEF, the contour length increases monotonically with 

chain extension, as intuitively expected.  The increasing tube diameter, evident in Fig. 

4.1.14b, may be associated with the ordering of chains, which allows the maximization 

of the intermolecular distances along the primitive paths.  As an additional interesting 

point, which may be entirely coincidental, the maxima under shear for both contour 

length and tube diameter correlate very closely with the critical shear rate at which the  
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Fig. 4.1.10. Contour length of the primitive path, ppL  vs. time after start-up of flow 

for C78H158. 
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stress-optical relationship began to fail in a previous molecular dynamics study of 

polyethylene chains [Baig et al., 2007]. A weak decrease of the value for the tube 

diameter at the largest elongation rate, and thus a weak maximum in Fig. 4.1.2b, may 

be observed if we would allow for density changes; the system tends to crystallize at 

about the largest simulated rate under constant pressure conditions, cf. [Ionescu et al., 

2006]. 

 The ‘number of entanglements’ coilZ  monotonically decreases with strain rate 

in both shear and PEF, as displayed in Fig. 4.1.13.  This is very reasonable in that one 

would expect that coilZ  would decrease as the chains uncoil during extension.  In 

shear, this decrease appears to be almost linear in shear rate, with a rather low value of 

the slope.  This slow decrease is associated with the relatively low extension of the 

chains in shear flow, as well as their rotational motion.  Although the chains extend 

more on average with increasing shear rate, thus reducing coilZ , the rotation of the 

molecules tends to favor entanglement formation.  This explains the slow decrease of 

coilZ  under shear when compared to PEF.  Under PEF, the chains are readily 

extended, even at low strain rates, and so a dramatic drop, associated with 

disentanglement events, occurs in the value of coilZ  at low values of strain rate.  For 

higher strain rates, coilZ  attains a plateau of very small magnitude, since further chain 

extension cannot produce any additional reduction in coilZ .  The decreasing coilZ  

not only characterizes a loss of chain flexibility, but also the loss of ‘knot’ formation, 

albeit incomplete at the largest chain lengths.  
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It is also interesting to examine the behavior of contour length and tube 

diameter as functions of chain length under shear and PEF, as depicted in Figs. 4.1.12 

and 4.1.15.  As intuitively expected, both quantities increase monotonically with 

chain length under all conditions examined.  For the contour length, the increase with 

chain length is much more dramatic under PEF than shear (see the respective ordinate 

scales in Fig. 4.1.12), which is again expected from the greater degree of extension in 

this flow field.  The tube diameter displays similar qualitative behavior, and again 

increases much more dramatically in PEF than shear, due to the greater degree of chain 

alignment. 
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Fig. 4.1.11. Stationary values for ppL  vs. strain rate for C24H50. 
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Fig. 4.1.12. ppL  vs. molecular weight for various strain rates. 
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Fig. 4.1.13. ‘Number of entanglements’ coilZ  (assuming equilibrium statistics) vs. 

strain rate for C24H50. 
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Fig. 4.1.14. ‘Tube diameter’ ppa  (assuming equilibrium statistics) vs. strain rate for 

C24H50. 
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Fig. 4.1.15. Tube diameter ppa  vs. molecular weight for various strain rates. 
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4.2  Visualization of conformational changes of linear short-chain 

polyethylenes under shear and planar elongational flows 

 

Snapshots of C78H158 under equilibrium, steady-state shear at a reduced shear 

rate of 0.8, and steady-state elongational flow at a reduced strain rate of 0.2 are 

displayed in Fig. 4.2.1.  These values were so chosen for two reasons.  First, they 

were the maximum values for each flow type which could be safely simulated without 

observing system size effects or thermostat artifacts.  Second, these values correspond 

to equivalent rates of deformation, as quantified through use of the second invariant of 

the deformation rate tensor for an incompressible fluid, )(tr DD ⋅  [Bird et al., 1987].  

Here, D  is the symmetric contribution to the velocity gradient tensor, so that 

)(tr DD ⋅  for elongational flow at a given value of ε&  is four times larger than 

)(tr DD ⋅  for shear flow at an equivalent value of γ& ; i.e., 2)(tr γ&=⋅DD  and ε&2 .   

In Fig. 4.2.1, it is evident that the structure and orientation of C78H158 is 

substantially different under the three conditions.  In Fig. 4.2.2(c), 4.2.3(c), and 

4.2.4(c), the same snapshots are displayed rendering all but ten random chains invisible, 

so that a greater degree of clarity is achieved with respect to the individual molecular 

structure.  In Figure 4.2.2, snapshots of each of the four liquids (C24H50, C50H102, 

C78H158, and C128H258) are displayed at equilibrium.  Figs. 4.2.3 and 4.2.4 display a 

random ten chains for the same fluids under steady-state shear and steady-state 

elongation, respectively. 
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(a) 

 

 

(b) 

 

 

(c) 

 

Fig. 4.2.1. All chains of C78H158 at equilibrium (a), reduced shear rate of 0.8 (b), and 

elongation rate of 0.2 (c). 
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The following trends are evident from Fig. 4.2.2.  Under equilibrium 

conditions, the chains are randomly oriented, in terms of an end-to-end vector drawn 

between the beads on the chain ends.  This vector obeys a well-defined Gaussian 

distribution characterizing its magnitude and direction.  The mean-square of the chain 

end-to-end vector, 2
eteR , quantifies the average conformation of the ensemble of 

chains.   For example, the quantity 2
1

2
eteR  of C128H258 under equilibrium 

conditions is 50.66 Å, whereas the length of the fully stretched chain in the all-trans-

conformation is 164 Å.  As chain length increases, the magnitude of the root mean 

square, end-to-end vector, 2
1

2
eteR , increases according to the well-known scaling 

factor of n  [Treloar, 1975; Doi and Edwards, 1986], n  being the number of bonds 

in a single chain (see Table 4.2.1); however, the orientation of the chains remains 

random.  Also, although the molecules are relatively uncoiled at low chain lengths, as 

the molecular weight of the compound increases, the chains increasingly assume 

random coil conformations.  The ratio of 2
eteR  with respect to the mean square of 

the radius of gyration, gR , decreases toward the theoretical value of six for long 

polymer chains; however, it will not plateau at this value until 140≈n  

[Foteinopoulou et al., 2006].  The step length, 
n

Rete

2
1

2

, increases from 4.21 Å to 

4.50 Å as the chain length increases, indicating a fairly flexible chain. 
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The orientations and conformations of the chains are determined by entropic 

considerations alone.  Increasing the chain length renders accessible many more 

possible chain conformations, thus increasing the intrachain entropy.  The entropy 

increases with increasing chain length according to the expression [Treloar 1975; Doi 

and Edwards, 1986]  

22
eteB RbkcS −= ,                       (56) 

where c  is an arbitrary constant, ( )22 2/3 nlb =  , and l  represents the bond length.   

 Values of topological characteristic indicators such as shortest 

primitive length, tube diameter, etc. are displayed in Table 4.2.2 at equilibrium.  The 

least primitive path displays its minimal value (with respect to an applied flow field) 

for all chain lengths, as does the tube diameter.  ppL  is generally greater than or 

equal to the value of 2
1

2
eteR  for each chain, since the end-to-end vector only 

quantifies the distance between the chain ends.  As the chain length increases, the 

chains assume more randomly coiled configurations, and consequently the difference 

between these two quantities magnifies; i.e., ppL  grows faster than 2
1

2
eteR .  For the 

shorter chains, the tube diameter is of the same order as the primitive path length; this 

is because of the relatively extended chain configurations, which are relatively stiff at 

low values of n.  It seems reasonable that these shorter chain liquids would not form 

the tortuous, tube network structures of the longer chain liquids, which have greater 

entropic degrees of freedom for configurational changes.  Therefore, the tube 

diameter decreases relative to the contour length as the chain length increases.   
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Fig. 4.2.2. Ten random chains of  C24H50 (a), C50H102 (b), C78H158 (c), and C128H258 

(d) at equilibrium. 
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Table 4.2.1  Statistical measures of polymer configurations for all four liquids at 

equilibrium, in shear, and in PEF.  Note that all liquids were simulated at 450 K, 

except for C24H50, which was simulated at 333 K. 

 

2
1

2
eteR  

(Å) 

2
1

2
eteR  

(Å) 

2
1

2
eteR  

(Å) 

2
1

2
eteR  

(Å) 

22
gete RR  Step Length 

(Å) 
Liquid 

Equilibrium Shear(0.8) PEF(0.2) 
Full 

extension 
Equilibrium Equilibrium 

C24H50 20.20 23.13 25.06 29.7 8.44 4.21 

C50H102 29.72 35.90 52.92 63.3 7.18 4.25 

C78H158 38.63 52.76 87.19 99.4 6.84 4.40 

C128H258 50.66 81.91 149.48 164.0 6.60 4.50 
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Table 4.2.2  Topological characteristic quantities at equilibrium for each liquid:  

contour length, tube diameter, and number of entanglements [Section 4.1; 

Foteinopoulou et al., 2006]. 

 

 

Liquid ppL (Å)  ppa (Å) 
coilZ  

C24H50 20.4 16.7 0.04 

C50H102 30.2 22.5 0.9 

C78H158 41.1 28.2 1.6 

C128H258 58.9 35.2 2.5 
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However, the shorter chain liquids form tube arrays more readily than the longer chain 

liquids, since they are relatively more extended than the longer chains and exhibit 

fewer entanglements.  This explains why ppa  decreases with diminishing chain 

length, whereas the density increases.  coilZ  increases steadily with chain length, as 

one would intuitively expect, and for long enough chains this increase is approximately 

linear [Foteinopoulou et al., 2006]. 

 In Fig. 4.2.3, snapshots of the ten random chains for each liquid under steady-

state shear are displayed at a reduced shear rate of 0.8.  In these figures, flow is in the 

horizontal direction and the gradient of velocity is in the vertical direction.  By 

comparing Fig. 4.2.2 with Fig. 4.2.3, it is evident that the presence of a strong shear 

flow distorts the equilibrium configurations of the chains:  there is a preferential 

orientation (on average) of the chains with respect to the flow field, and the chains are 

more highly extended.  With regard to the chain end-to-end vector orientation, it is 

well known under shear flow that the average orientation decreases from 45 degrees 

relative to the direction of flow at low shear rates, to only a few degrees north of the 

flow direction at high shear rates [Baig et al., 2005b; Bird et al., 1987; Morriss et al., 

1991].  This high shear rate behavior is fully depicted in the snapshots of Fig. 4.2.3.  

The orientation angle is generally a function of the shear rate, and decreases as shear 

rate increases [Baig et al., 2007; Cui et al., 1996; Moore et al., 2000].  For these high 

strain rates, the preferred orientation angle is very nearly parallel to the direction of 

flow.  For example the C50H102 displays an ensemble average orientation angle of five 

degrees [Baig et al., 2007]. 
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Fig. 4.2.3. Ten random chains of C24H50 (a), C50H102 (b), C78H158 (c), and C128H258 (d) 

at a reduced shear rate of 0.8. 
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The configurations of the individual chains have also been altered by the shear 

flow:  the molecules are preferentially stretched in the appropriate direction relative to 

the direction of flow (see the preceding paragraph).  The longer the chain, the greater 

the degree of extension that manifests.  On account of the vorticity of the 

macroscopic flow field, the molecules quasi-periodically rotate in the clockwise 

direction, which is also evident in the figure as some molecules are caught in mid 

rotation.  Still, the molecules are not on average even approximately fully extended.  

For example, the value of 2
1

2
eteR  of C128H258 under shear, 81.91 Å, is larger than 

the equilibrium value of 50.66 Å, but much smaller than that of the fully trans-

conformation, 164 Å.   

 These graphics also provide a visual understanding of polymer shear-thinning 

behavior under flow.  The preferential alignment of the long chains under flow 

conditions allows greater freedom of motion along the flow direction than is possible 

in a randomly oriented sample.  Thus at low shear rates, the stress scales linearly with 

the applied strain rate; however, as an increasing number of chains orient preferentially 

nearly along the flow direction, a relative stress reduction occurs as the chains are able 

to glide by each other more freely.  In previous studies [Baig et al., 2005b, 2006b; 

See also Section 4.1], it was observed that weakened intramolecular Lennard-Jones 

interaction energies between chain atoms and stronger intermolecular LJ energies 

occurred as a result of the chain unfolding (reducing the number of interacting 

intramolecular pairs) and alignment with other chains (increasing the number of 

interacting intermolecular pairs). The ten random chains under an elongational flow of  
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Fig. 4.2.4. Ten random chains of C24H50 (a), C50H102 (b), C78H158 (c), and C128H258 (d) 

at reduced shear rate of 0.2. 
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dimensionless strain rate 0.2 are displayed in Fig. 4.2.4.  The axis of extension lies in 

the horizontal direction, and the axis of compression lies in the vertical direction.  

From Fig. 4.2.4, it is clear that the chains of all four liquids align on average with the 

axis of extension.  However, it is also apparent that the relative degree of extension of 

the chains increases dramatically with chain length.  Since elongational flow is 

vorticity-free, the occasional rotation of the molecules evident in Fig. 4.2.3 is rarely 

observed.  Also, the degree of orientation (i.e., the number of molecules near to the 

preferred direction) is substantially greater than in the shear flow, and the preferred 

direction is always in the direction of extension.  As the chain length increases, the 

chains become virtually fully extended:  e.g., the value of 2
1

2
eteR  of C128H258 

under PEF, 149.48 Å, is larger than that under shear, 81.91 Å, and approaches that of 

the fully trans-conformation, 164 Å.  See Table 4.2.1 for a comparison of various 

statistical quantities for equilibrium and under shear and PEF for all of the simulated 

liquids. 

Tension-thinning behavior is also observed in these liquids [Baig et al., 2006a].  

Fig. 4.2.4 provides qualitative information regarding the relative stress reduction on 

account of chain alignment in the direction of flow.  As was the case with shear-

thinning behavior, increasing elongation rate leads to an increase in the number of 

chains aligned with respect to the direction of flow, which in turn results in a decrease 

of the relative elongational stress.  Even though the quantitative change of the 

intermolecular and intramolecular energies is very different between shear and PEF,  
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Fig. 4.2.5. Conformation tensor components of C24H50, C50H102, C78H158, and C128H258 

under shear (left column) and PEF (right column). 
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the changes of these energies is very similar qualitatively, and the same physical 

explanations apply to the liquids under PEF. 

The average extension of the polyethylene chains can be quantified through the 

dimensionless conformation tensor defined in Eqn. (47).  In Fig. 4.2.5, the diagonal 

components of the dimensionless conformation tensor are plotted under shear and PEF 

as functions of strain rate, and the trace is directly related to 2
eteR .  Here x is the 

flow direction, y is the gradient or compression direction, and z is the neutral direction.  

Under quiescent conditions, this tensor is the unit tensor.  It is evident from these 

plots that the chains undergo a dramatic extension in both types of flow at intermediate 

strain rates, although the degree of extension under PEF is much more severe.  Note 

that in both cases, the molecules extend along the flow direction, and compress along 

the other two directions increasingly with increasing strain rate.  The snapshots of 

Figs. 4.2.3 and 4.2.4 were taken at the highest values of the strain rates in Fig. 4.2.5. 

The distribution of chain conformations and the preferred direction of 

orientation can be quantified using the Eigenvalues and Eigenvectors of the 

conformation tensor.  In Fig. 4.2.6, the circles and ellipsoids represent the 

distributions of the chain extensions and orientations about the flow direction at 

various strain rates.  For shear flow, the dimensionless shear rates were 0.0004, 0.08 

and 0.8, used and for elongational flow the dimensionless elongation rates were 0.0004, 

0.08 and 0.2 used.  The first column in both rows is the equilibrium condition.  As 

expected, at equilibrium all Eigenvalues of the conformation tensor are identical, 

implying an isotropic distribution of chain end-to-end vectors with a well-defined  
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Fig. 4.2.6. Snapshots of the molecular structure under shear (upper row) and PEF 

(bottom row) and the corresponding distribution functions as determined by the 

Eigenvalues and Eigenvectors of the conformation tensor.  Under shear, the 

depictions are for reduced shear rates of 0.0, 0.0004, 0.08, and 0.8, respectively.  

Under PEF, the snapshots are for reduced elongation rates of 0.0, 0.0004, 0.08, and 0.2, 

respectively. 
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Fig. 4.2.7. Projections of atomistic chain structure of C128H258 onto shortest primitive 

path.  The first column depicts the equilibrium structure, the second column displays 

the shear structure, and the third column presents the PEF structure.  The first row 

shows the full chain structures corresponding to Fig. 4.2.1.  The second row displays 

the entanglement networks of the three cases.  The third and fourth rows depict the 

same as above but for only three random chains of the overall liquid system presented 

in the first two rows. 
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average magnitude.  Under shear flow, the distribution narrows and orients toward the 

flow direction as the shear rate is increased.  Notice that the orientation angle 

decreases with shear rate relative to the direction of flow.  Here, the preferred 

direction of orientation is quantified by the Eigenvector of the primary Eigenvalue.  

Under PEF, the distribution becomes much narrower than for shear flow, and always 

points in the flow direction.   

 In Fig. 4.2.7, the entanglement network of the C128H258 atomistic chain and its 

shortest primitive path is presented at equilibrium (first column), under shear (second 

column), and under PEF (third column).  The first row is the full atomistic chain 

system structure, as illustrated in previous figures.  The second row presents the full 

entanglement structure as obtained from the Z-code of Kröger et al. (2002, 2005, 2006).  

The third row depicts three random chains for easy visualization, and the bottom row 

presents the primitive paths for the same three chains.  Note the coarse graining of the 

atomistic chain with many degrees of freedom onto a chain composed of the primitive 

paths between entanglements bearing much fewer degrees of freedom.  At 

equilibrium, the primitive path length is relatively large as compared to 2
1

2
eteR , but 

this difference diminishes as the chains stretch in response to the imposed flow field.  

This behavior is depicted in Fig. 4.1.12. 

As the strain rate increases, the degree of extension of the chains under both 

shear and PEF increases, thus raising significantly the length of the shortest primitive 

path.  Indeed, under PEF at a very high strain rate, the primitive path is essentially 

equivalent to the fully extended chain length.  Consequently, the number of 
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entanglements decreases as the strain rate increases due to the unraveling of the chains, 

as might be expected, and the reputation tube diameter grow dramatically, as depicted 

in Fig. 4.1.15.  Visually, it is also apparent from the snapshots of Fig. 4.2.7 that the 

tube length and diameter increase with increasing strain rate, thus allowing easy 

conceptualization of the strain-thinning behavior observed in these fluids:  as the 

reptation tube lengthens, the chains are able to move axially with greater freedom, 

which manifests in lower relative stress between the atomistic constituents. 

Figs. 4.2.8 and 4.2.9 present the transient behavior of C50H102 under start-up 

conditions (from equilibrium) of high strain rate shear and PEF (dimensionless shear 

rate of 0.8 and elongation rate of 0.2). The arrow is an imaginary visualization of the 

rotational macroscopic flow field, as quantified by the vorticity vector of the shear 

field, v×∇−= 2
1ω , where the vector ω  quantifies the macroscopic angular 

velocity.  Note that this can be quite different than the rotational rates of the 

individual atomistic chains.  For shear flow, the time interval between each snapshot 

was 4.62 ps and the total time for one rotation was 36.96 ps.  Under PEF, the time 

interval between each snapshot was 1.616 ps, with the exception of the last one, which 

was chosen at the starting point of the next applications of the KRBC ( 319.11=pt ps).  

The imaginary box depicts the macroscopic behavior of the simulated liquid.  It 

expands in the flow direction at the rate )exp()( txtx ε&= , and contracts at the rate of 

)exp()( tyty ε&−= , according to the theory of macroscopic fluid dynamics.  
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Fig. 4.2.8. Snapshots of the C50H102 liquid undergoing shear at a reduced shear rate of 

0.8. The shear flow is applied at time zero, and each successive frame is taken at an 

interval of 4.62 ps.  The superimposed arrow indicates the macroscopic rotation of the 

fluid. 

 

 

 

 



 - 86 - 

 

 

 

 

 

 

 

   

   

   

 

Fig. 4.2.9. Snapshots of the C50H102 liquid undergoing PEF at a reduced strain rate of 

0.2.The elongational flow is applied at time zero, and each successive frame is taken at 

an interval of 1.616 ps.  The superimposed box indicates the macroscopic extension 

of the fluid. 
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4.3    Comparison of single chain dynamics at atomistic and mesoscopic levels  

 

Nonequilibrium molecular dynamics (NEMD) simulations of linear C78H158 

liquids were conducted at the fine-grained atomistic level, and the BD simulations 

were performed using a dilute solution of bead-rod chains, which was generated 

using the atomistic-scale information via a straightforward coarse-graining procedure 

in Section 3.2.  Note that one can refer to Section 3.1-2 for the details of the NEMD 

and BD simulations.  The atomistic-level simulations allow a direct investigation to 

be made of the individual chain dynamics of the linear polyethylene chains, and 

hence into the microscopic origins of macroscopic rheological properties.  

Comparison between NEMD and BD simulations allows assessment of the 

differences between the dynamics of individual molecules that constitute dense 

liquids with respect to the corresponding dynamics of the same chains in dilute 

solution. 

A plot of the mean-squared, end-to-end vector, 2
eteR , versus Wi is displayed 

in Figure 4.3.1.  (Note that the error bars in all cases of the atomistic simulation data 

presented in the figures below are approximately equal to the sizes of the symbols 

themselves.)  This quantity provides a determination of the absolute extension of the 

molecules.  At low values of Wi, 2
eteR  assumes its quiescent value of 1500 Å2.  As 

Wi approaches unity, 2
eteR  begins to increase as the chain molecules begin to extend 

due to the hydrodynamic forces imposed by the shear field.  In this Wi regime, the 
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free energy change of the fluid, relative to its equilibrium value, is dominated by the 

entropic configurational reduction as the molecules extend, thereby drastically 

diminishing the number of allowable configurations of the chains’ constituent atomic 

units.  Once Wi increases beyond unity, the nonlinear viscoelastic regime begins, 

wherein the timescale of the shear flow becomes smaller than the Rouse time.  As Wi 

increases from a value of 1 to about 40, a very dramatic increase is observed in 2
eteR , 

which has traditionally been used to explain the onset of shear-thinning behavior in 

polymeric liquids beyond a Wi of unity; i.e., the deformation and preferential 

orientation of the chains relative to the flow direction relieves some of the 

hydrodynamic stress imparted to the molecular segments by the shear field.  This 

result in a value of the shear stress that increases slower than the kinematics of the 

shear field would suggest.   

The 2
eteR  curve in Figure 4.3.1 begins to approach a maximum at a Wi value 

of approximately 50.  This behavior is unexpected based upon the predictions of bulk-

averaged rheological theories, which mandate that the chain extension should either 

increase continuously as Wi is raised, or else reach a plateau value as the chains 

approach their maximum extensions.  The 2
eteR  decreases substantially after 

attaining its maximum value of 3,000Å2  (corresponding to a value of eteR  of 55 Å) 

at higher Wi, ultimately saturating at Wi on the order of 1,000.  

The NEMD simulation results for the polyethylene liquid C78H158 can be 

compared and contrasted to the behavior of the free-draining bead-rod chain at  
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Fig. 4.3.1. The mean-square chain end-to-end distance, 2
eteR , for C78H158 as a function 

of Wi from the atomistic NEMD (open symbols) and BD (filled symbols) simulations. 
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corresponding Wi using Brownian dynamics.  In these simulations, five values of Wi 

were examined:  one in the low Wi linear viscoelastic regime (Wi = 0.4), at the 

transition to the nonlinear viscoelastic regime (Wi = 1), within the Wi regime where 

eteR  is increasing dramatically (Wi = 10), at the maximum value of eteR  (Wi = 

100), and at a very high value (Wi = 780) after the maximum has been achieved.   

Results of the BD simulations are also presented in Figure 4.3.1.  At the 

lowest two values of Wi, the mean-squared, end-to-end distance is much smaller than 

the values computed from the NEMD simulations.  This is as expected since the 

freely-jointed bead-rod model does not contain the excluded volume effect associated 

with the intramolecular potential energy, or any of the other four potential energy 

contributions either—see previous section.  Hence the bead-rod chains are much more 

tightly coiled on average than those of the NEMD simulations, which are relatively 

stiff in comparison.  A Kuhn step analysis of the polyethylene chains in the dense 

liquid reveals that 7 rods would be sufficient to describe a coarse-grained version of 

the PE molecule; however, these rods would have a length of 15 Å, which is too large 

to catch the fine-scale dynamics of bending that are required to assume the hairpin-like 

tumbling structures, as described below.  (The present chains are too short for this 

analysis to apply in a strict sense.)  Here, 23 rods of length 4.4 Å are used as 

described in Section 3.2 in order to capture the high shear rate behavior adequately, 

and the low shear rate behavior is not of direct interest. 
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For all values of Wi beyond unity, 2
eteR  is almost quantitatively the same 

between the two model liquids.  Indeed, the maximum chain extension of the bead-

rod chain is the same as that of the atomistic model, and it occurs at the same value of 

Wi.  It is very curious that these two vastly different models, one for a dense liquid, 

and one for an infinitely dilute solution, provide the same values of 2
eteR  for large 

values of Wi.   

Other research groups have found similar interesting behavior of molecular 

extension in solutions by comparing data over large variations of concentrations 

ranging from very dilute to semi-dilute.  Hur et al. (2001) studied the dynamics of 

DNA solutions of concentrations ranging from 10-5
c* to 6c* using fluorescence 

microscopy and c* is defined by a concentration at which polymer coils start to 

overlap.  Their results for the mean fractional extension of the chain molecules 

indicate that this quantity is independent of concentration when it is normalized by the 

contour length of the molecule.  The value of this extension asymptotes to a value of 

0.4 at high Wi, which is again independent of the solution concentration.  This is in 

contrast to the value of about 0.55 (it is the square of the extensions that appear in 

Figure 4.3.1) at the maximum chain extension in the NEMD simulations of C78H158.  

In the BD simulations of Hur et al. (2001) based on a bead-rod and worm-like bead-

spring chain, they do not present data of mean-square, end-to-end distance, 2
eteR , so 

no evidence is available to support this conclusion.  However, the critical value of Wi 

where the two simulation results show evidence of attaining a plateau (BD) or 
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maximum (NEMD) is roughly the same value of approximately 75.  Stoltz et al. 

(2006) also noticed that the fractional chain extension was independent of 

concentration in BD simulations of a bead-spring model representing DNA solutions at 

concentrations varying from infinitely dilute to 2c*. 

The seemingly bizarre behavior of 2
eteR  with Wi was first observed by 

Morriss et al. (1991) and later by Cui et al. (1996) in NEMD simulations of shear flow 

for liquids of n-alkanes with chain lengths up to 24 carbon atoms.  Moore et al. 

(2000) performed NEMD simulations of C100H202 under shear, and observed a limiting 

plateau value of 2
eteR  at high values of Wi.  Moore et al. explained the maximum 

by comparing the hydrodynamic pressure of the simulation with the potential LJ 

energy of intermolecular interactions; i.e., the energetic interactions of united-atoms on 

separate macromolecules.  They hypothesized that it occurred due to a balance 

between two opposing phenomena generated by the shear field.  The expected (from 

bulk-averaged rheological theories) deformation and orientation of the macromolecules 

was generated by the hydrodynamic forces at low Wi; however, for high values of the 

shear rate, they argued that the high amount of kinetic energy imparted to the atomic 

units of the chain molecules induces a randomizing Brownian-like collisional force, 

which causes the chains to retract from their overly extended configurations.  Moore 

et al. based this hypothesis on the simulated behavior of the intermolecular LJ potential 

energy used in the SKS model.  To illustrate this, Figure 4.3.2 reproduces data of 

Section 4.1 for the intermolecular LJ potential of C78H158; the same qualitative 
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behavior is observed for all short-chain polyethylenes simulated to date.  The data 

displays a clear decrease at low Wi, followed by a minimum value that corresponds to 

the value of Wi where the maximum occurs in Figure 4.3.1.  Subsequently, there is a 

very sharp rise in the LJ potential energy with increasing Wi.  The sign convention of 

the energetic expressions 

used herein is standard:  the interparticle force is negative for attraction and posi tiv

e  

for repulsion.  Therefore, the decrease in the potential energy at low Wi implies a 

situation in which the extension and preferential orientation of the chain molecules is 

attractive; i.e., once extended and aligned, the chains are able to pack more closely 

with each other.  At high Wi, however, the potential energy becomes much more 

repulsive and thus the atomistic units on different chains must be revisiting their less-

extended and less-oriented configurations from low values of Wi.  The hypothesis that 

these repulsive forces are due to increasingly violent interactions as the kinetic energy 

of the atomic units is augmented by the increase in the magnitude of the imposed 

hydrodynamic shear force, is thus a natural deduction from the intermolecular LJ 

energy data. 

Although the data presented thus far seem to support the hypothesis of Moore 

et al. (2000), there are two inconsistencies which call into question this analysis.  

First, note from Figure 4.3.2 that the values of the intermolecular LJ potential energy 

in the high Wi regime are actually smaller in absolute magnitude than the equilibrium 

value.  This implies a more repulsive system configuration than exists under 
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Fig. 4.3.2. The intermolecular and intramolecular Lennard-Jones potential energies as 

functions of Wi. 
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quiescent conditions, and hence implies that the chain-like molecules inhabit 

configurations that are more entropically favorable than those which exist when there 

are no hydrodynamic forces within the system.  This appears to contradict the 

principle of maximum entropy within the perspective of Moore et al., since a purely 

randomizing Brownian-like force could not produce an entropic state higher than that 

which is present at equilibrium.  The second inconsistency can be deduced from the 

data of Baig et al. (2006), who performed NEMD simulations of planar elongational 

flow of the same short-chain polyethylene as modeled herein.  Plots of the 

intermolecular LJ potential energy versus elongation rate from the cited article display 

a much more dramatic decrease in this energy for low and intermediate values of 

elongation rate as the molecules become highly extended and oriented in the direction 

of flow [Baig et al., 2006b]. At the highest values of elongation rate examined, the LJ 

energy reaches a plateau value that is much lower than its quiescent value.  This 

plateau occurs as the chains attain their maximum extensions of 99 Å [Baig et al., 

2006b]. However, at these high values of elongation rate, the hypothesis of Moore et 

al. still mandates that Brownian-like collisional forces would cause a reduction in the 

extension and orientation of the chains, which is not observed in the simulation data. 

Here, an alternative mechanism is proposed to explain the maximum observed 

in the 2
eteR  versus Wi curve of Figure 4.3.1.  It is assumed that the primary 

contributor to the observed behavior was the development of a significant degree of 

single-chain rotation or tumbling at high Wi.  Although the system is dominated by 

the entropic effects at low Wi, the vorticity imposed by the shear field ultimately 
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results in molecular chain tumbling events which occur with greater frequency, on 

average, with increasing Wi.  As the chain tumbles, it assumes a configuration that 

takes on a hairpin-like structure at high Wi, which Smith et al. (1999) likened to 

pulling a rope over a pulley. This chain configuration increasingly narrows in width as 

Wi increases until the two chain segments (i.e., the two sides of the rope rotating 

around the pulley) are essentially nearest neighbors. This idea allows a rationalization 

of the behavior of the intermolecular LJ potential energy in shear and planar 

elongational flow, which was described above. 

Again, the entropic configurational effect dominates the system at low Wi, 

which induces more energetically favorable side-to-side interactions between 

neighboring chains.  This is manifested by the decrease in the intermolecular LJ 

energy for low values of Wi.  However, once the molecules begin to tumble with 

increasingly hairpin-like configurations at higher Wi, the intermolecular LJ energy 

increases dramatically as separate chains are effectively pushed farther away and 

screened from each other as different segments of the same chain pass by each other 

during the tumbling event.  Note that these hairpin-like configurations are not present 

at equilibrium, which explains the fact that the intermolecular LJ energy at high Wi 

does not assume the equilibrium value. 

Further evidence confirming this explanation is provided by examining the 

behavior of the intramolecular LJ potential energy, which is also displayed in Figure 

4.2.3.  This energy is associated with the interactions of atoms on the same chain that 

are separated by more than three bonds.  At low values of Wi, the intramolecular LJ 
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energy is only marginally higher than its equilibrium value; however, it increases 

dramatically in the nonlinear viscoelastic regime, when Wi > 1, and attains a maximum 

at nearly the same Wi as apparent from Figure 4.2.1.  This is the expected behavior 

one should observe as the chain molecules extend under shear; i.e., the atoms on the 

same chain are pushed farther apart, and hence a less negative value of the 

intramolecular LJ energy.  At high Wi, the energy decreases dramatically, ultimately 

falling below its equilibrium value.  This is consistent with the notion of chain 

tumbling, since separate segments of the chain move past each other in close 

proximity.  Also, the exclusion of different chains from the immediate vicinity of a 

tumbling molecule creates a situation in which the intramolecular LJ energy must be 

lower than the equilibrium condition, since the atomic units of the same chain are 

closer together at high Wi during a tumbling event than they are under quiescent 

conditions.  The data for the intramolecular LJ energy under planar elongational flow 

of Baig et al. (2006) displayed a monotonically increasing intramolecular LJ potential 

energy, which was due to the continuous stretching of the chain molecules in the flow 

direction. 

Dunstan et al. (2004) performed steady shearing experiments on semi-dilute 

solutions of polydiacetylene 4-butoxycarbonylmethylurethane in chloroform.  

Optically polarized rheometry was performed on the solutions, revealing significant 

segmental orientation and distortion in the shear-vorticity plane.  At low shear rates, 

the behavior of the molecules was similar to that described above, which is consistent 

with pre-averaged rheological theories; i.e., the chains extend and orient relative to the  
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Fig. 4.3.3. Probability distributions of eteR  for the five values of Wi designated by 

the vertical lines in Figure 4.3.1 as calculated in the NEMD (4.3.3a) and BD (4.3.3b) 

simulations. 
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direction of flow.  However, at higher shear rates, a maximum occurs in the 

segmental extension, with a subsequent decrease in this quantity with further increase 

of shear rate.  Dunstan et al. describe these high shear chain configurational changes 

as “balling,” since the chains appear to become less oriented and extended as the shear 

rate increases beyond the maximum.  However, it is evident that this bulk-average 

rheo-optical measurement might simply be responding to the onset of rotational 

motion, which reduces the ensemble average of the extension of the end-to-end vectors 

of the chain molecules.  Note that these molecules contain a significant degree of 

side-chains, which could result in more coiled than hairpin-like rotation at high shear 

rates beyond the maximum. 

Further evidence of chain tumbling is provided by Figure 4.3.3, which displays 

the probability distribution of finding a chain with an end-to-end vector of a certain 

magnitude.  The distributions at the five values of Wi presented in this figure 

correspond to the vertical lines in Figure 4.3.1.  These values of Wi were chosen to 

depict the behavior in the five regimes of interest:  one in the linear viscoelastic 

regime, one at the transition from linear to nonlinear viscoelasticity, one in the regime 

of dramatically increasing chain extension, one at the maximum chain extension, and 

one at very high Wi beyond the maximum. 

According to Figure 4.3.3a of the NEMD simulations, the distribution at the 

lowest value of Wi = 0.39 displays the expected Gaussian behavior, with the peak 

centered around a value of eteR  that is very close to the equilibrium value of 38Å.  

As Wi is increased to unity, the distribution retains its Gaussian character, and the peak 
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location shifts to higher values of eteR .  This is the expected behavior from a pre-

averaged rheological theory.  However, at the same time, the peak of the distribution 

is decreasing in height, and the whole distribution is widening.  This behavior has 

also been observed by Morriss et al. (1991), for liquids decane and eicosane.  These 

trends are not expected from pre-averaged theories, and indicate that the degree of 

alignment around the preferred direction of orientation is diminished by the increasing 

hydrodynamic shear forces within the liquid.  When Wi ( > 1) is well within the 

nonlinear viscoelastic regime, where the average extension of the molecules is 

increasing rapidly (see Figure 4.3.1), the distribution has widened considerably, and 

has developed a rudimentary shoulder on its left side.  The peak of the distribution 

has continued to shift to longer values of eteR , corresponding to the increasing 

extension of the molecules. For larger values of Wi, it is apparent that the distributions 

become inherently bimodal, with a high “stretch” peak at large values of eteR , and a 

second “rotational” peak at low eteR .  No hint of a rotation peak appears in the 

decane simulations of Morriss et al. (1991); however, their simulations of the longer 

molecule eicosane begin to display similar behavior at the highest shear rates 

As the degree of chain tumbling increases with Wi, the average value of eteR  

must decrease since this quantity becomes relatively small as the chain ends of the 

hairpin-like structure pass each other during mid-cycle.  Thus on a time-averaged 

basis, the distribution is smeared to the left side of the stretch peak, and to such an 
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extent that a second rotational peak develops at high Wi.  Note that the stretch peak at 

Wi = 782 corresponds to eteR  ~ 80Å, which is approaching the maximum extension 

of 99Å.  Further note that the rotational peak occurs at eteR  ~ 20Å, which is less 

than the equilibrium value of 38Å; this implies that the chain ends during the tumbling 

cycle are closer together on average than they are under quiescent conditions since the 

chain ends are tumbling with the kinked, hairpin-like configurations.  At the same 

time, the overall average of the chain extension is determined from Fig. 4.3.1 as eteR  

~ 53Å, which correspond to neither the stretch nor the rotational peak in Fig. 4.3.3a but 

is very close to the value of at the maximum extension of 55Å in Fig. 4.3.1. 

Some of the characteristic behavior of the distribution of chain lengths 

described above has been observed before in experiment.  Teixeira et al. (2007) 

observed the widening of the distribution with shear rate in concentrated DNA 

solutions when individual molecular tumbling events were contributing significantly to 

the dynamics of the liquid.  However, the mean of the distribution continuously 

shifted to the right, indicating a significant, continuous domination of the probability 

distribution by its stretching component.  Smith et al. (1999) also observed this 

widening of the distribution with shear rate in their dilute DNA solutions; however, 

one can observe a slight degree of bimodality (which might be due to statistical error) 

in their distribution at the highest value of Wi = 76--see their Figure 4 [Smith et al. 

(1999)].  This value of Wi is approximately the same as that at which the present 
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simulations begin to reveal a bimodality in the distribution (Wi ~ 80), as evident from 

Figure 4.3.3a. 

Figure 4.3.3b displays the corresponding probability distributions as calculated 

from the BD simulations at the same five values of Wi as stated above.  At the lowest 

value of Wi, the distribution is again Gaussian.  As Wi increases, the distribution 

begins to widen as the transition zone to the nonlinear viscoelastic region is surpassed.  

For high values of Wi, the distributions become extremely wide, covering almost the 

full range of reasonable values of eteR .  Note that the distribution continues to 

extend to lower values of eteR  with increasing Wi, as in the NEMD simulations, and 

that there is a significant probability of finding chain with eteR  values that are lower 

than the equilibrium value.  Although there is no hint of bimodality in these 

distributions, it is readily apparent that the same physical phenomena are involved in 

this system:  the chain molecules are tumbling between highly stretched and barely 

extended configurations. 

The tumbling dynamics of a single, random individual chain from the NEMD 

simulation are displayed in Figure 4.3.4a at the highest value of Wi = 782.  The value 

of eteR  changes dramatically with time, in a quasi-periodic fashion.  It oscillates 

between very extended chain configurations, near the fully extended length of 99Å, 

and very low values that are less than the equilibrium extension of 38Å.  As 

demonstrated below, these low values of eteR  correspond to the folded 
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configurations of the hairpin-like molecular conformations as the chain ends pass each 

other during a tumbling cycle.  Note that eteR  spends more time in the stretched 

configurations, on average, than it does in folded conformations.  Meanwhile, the 

orientation angle, θ , measured with respect to the direction of flow, undergoes 

dramatic fluctuations that correspond to the changes in the magnitude of the end-to-end 

vector.  Indeed, the orientation angle flips sign at exactly the same times as the 

minima in the eteR  time variation.  This again indicates that the chain ends 

approach each other very closely during the tumbling cycle.  Nevertheless, the 

orientation angle remains at a small, positive value of approximately 5 degrees, on 

average, which corresponds very well to the value expected from pre-averaged 

rheological theories.  The fact that the value of eteR  is essentially large on average, 

and that the value of θ  attains a value of approximately 5 degrees at high Wi, 

explains why the pre-averaged theories give the predictions that they do.  It also 

demonstrates that the pre-averaged theories fail to describe the small timescale 

tumbling dynamics of the molecules; i.e., they are coarse-grained out of the system 

description during the averaging process.  (Baig and Mavrantzas (2009) also have 

recently witnessed this in their multiscale simulations.) Note that this molecule spends 

most of its time with a positive orientation, but once it is tipped into a negative 

orientation it quickly tumbles back into a positive orientation with the two ends of the 

chain swapping places.  These negative configurational excursions are induced by 

either hydrodynamic or Brownian forces. 
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It is possible to speculate concerning the highly elliptical, hairpin-like rotation at high 

Wi.  When viewed from a perspective involving more than one molecule, i.e., when 

viewing an individual molecule along with its set of nearest neighbors, it is apparent 

that a reptative type of dynamical mechanism is in operation, even though the liquid is 

not even remotely entangled.  The rotating molecule is essentially diffusing through 

tube-like structures that are composed of the highly stretched surrounding molecules.  

A hydrodynamically-induced Brownian excursion of a stretched chain end into a 

negative orientation often results in the chain diffusing out of its original tube-like 

structure into a similar tube below it in the flow-gradient plane.  The rotating chain is 

essentially diffusing from a tube-like structure at a higher velocity into one directly 

below it with a lower velocity, just as one would expect from a rotating rigid particle 

suspended in a solvent undergoing shear flow.  However, in the present case, the

 surrounding molecules inhibit the allowable chain configurations during the rotational 

period to those which are highly elliptical (hairpin-like).   

The type of tumbling mechanism just described can, in principle, be very much 

different than what is observed for a liquid composed of flexible polymer chains 

suspended in dilute solution, as simulated using Brownian dynamics.  eteR  and θ  

for a random chain from the BD simulation at Wi = 782 are plotted versus time in 

Figure 4.3.4b.  It is evident from this figure that the tumbling of the chain molecule is 

again occurring in a hairpin-like configuration; however, in this case, it is apparent that 

the time dependence is decidedly periodic in nature, rather than merely quasi-periodic 
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Fig. 4.3.4. The magnitude of end-to-end vector, eteR , and the orientation angle with 

respect to the flow direction, θ, as functions of time for a random chain of the NEMD 

(4.3.4a) and BD (4.3.4b) simulations. 
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as in the NEMD simulations of Figure 4.3.4a.  This is due to the assumption of the 

free-draining bead-rod chain in the BD simulations, which eliminates all 

intermolecular effects that constrain the tumbling motion in the dense liquid of the 

NEMD simulations. 

 In Fig. 4.3.5, plots of the components of the radius of gyration tensor vs. time 

displayed remarkable differences between rotation of the chain molecules in the 

NEMD and BD simulations.  In the dense liquid case, the xx-component of the 

gyration tensor fluctuated within a relatively narrow range of values with intermediate 

extension.  However, in the case of the free-draining chains, this component 

oscillated dramatically between highly extended and very low values, especially at 

high Wi.  In both cases, the other components did not change much with time 

although there was a marked difference in the yy-component of the gyration tensor 

with the dense liquid attaining a much higher value.  This suggests that the chain 

molecules are rotating with very different configurational motions than is suggested by 

Figure 4.3.4.  In the dense liquid, the chains tumble in a highly extended 

conformation, as if on a conveyor belt.  However, the free-draining chains experience 

an almost complete retraction or recoil collapse to a configuration that is more tightly 

coiled than at equilibrium during the nexus of the tumbling cycle.  (This is not 

prohibited because of the neglect of excluded volume effects.)  Further evidence of 

this configurational motion will be discussed below. 

Figure 4.3.6 depicts the probability that a specific macromolecule has an 

orientation angle that is positive or negative.  This probability is 0.5 for either positive 
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Fig. 4.3.5. The xx component of radius of gyration of a random single chain as a 

function of time 
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Fig. 4.3.6. Probability distribution of positive and negative end-to-end vector 

orientations in the dense liquids (NEMD simulations) at four values of Wi. 
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or negative orientation under quiescent conditions.  At low Wi, the probability of a 

positive orientation grows steadily in the regime where the orientation angle is 

dropping rapidly from the quiescent value of 45 degrees to its high Wi limit of about 5 

degrees.  This probability saturates at roughly 0.65 at high Wi, indicating that the 

theoretical pre-averaged value of the orientation angle has been attained.  This 

confirms that the individual chain behavior displayed in Figure 4.3.4a is consistent 

with the pre-averaged theories after the coarse-graining step (the averaging) has been 

performed.   

BD simulations of the free-draining chains exhibited behavior that was 

quantitatively consistent with that of the NEMD simulations at the lowest two values 

of Wi, but the chains had a smaller probability of exhibiting a positive orientation at 

high Wi than the NEMD liquids.  This is due to the fact that the BD free-draining 

chains are tumbling with greater frequencies at high Wi, as expected (compare Figures 

4.3.4a and 4.3.4b; also see Figure 4.3.10 below); therefore, on a time-averaged basis, 

chains spend more time inhabiting the negative quadrants.  In the case of the dense 

liquid, Brownian forces cause the foremost chain end to dip eventually into the fourth 

quadrant in the gradient plane, thereby inducing a tumbling cycle.  This is a less 

common event in the dense liquid than in the free-draining chain, since the chain end 

must diffuse around neighboring chains to execute the entry into the fourth quadrant. 

Figure 4.3.7 displays data for the probability density function of the possible 

chain configuration classes at four values of Wi.  The configuration classes are 

aligned from left to right in order of increasing molecular extension of the end-to-end 
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vector.  As expected, mildly extended configurations dominate the conformational 

space of the macromolecules at low Wi.  There are relatively few coil configurations 

relative to folded ones since these molecules are too short in length to allow the 

occurrence of many tightly coiled conformations, as defined by the brightness 

distribution described above. For these short-chain liquids, the molecules are relatively 

stiff, even though much longer polyethylene chains are very flexible; there are only 7 

Kuhn segments at equilibrium.  This relative stiffness also explains the occurrence of 

the more highly extended configurations, half dumbbells and stretched, even at this 

low value of Wi.  However, one must keep in mind that these classifications are based 

on the brightness distribution defined in the previous section; in this definition, the 

configurations are based on shape, rather than absolute length.  For example, consider 

two pieces of string with the same length; one is tightly stretched so that the end-to-end 

vector assumes its maximum value, and the other has a wavy character with a small 

period and amplitude.  Both of these strings will be classified as stretched 

configurations, even though the second one has a much shorter end-to-end vector than 

the first. 

 Increasing Wi from the linear viscoelastic regime to the transition region (Wi ~ 

1) reduces the number of chains occupying tightly coiled or folded configurations, and 

promotes configurations of intermediate extensions.  As Wi increases further into the 

nonlinear viscoelastic regime, the number of coiled configurations is reduced further, 

and the probability of highly extended configurations, such as half dumbbells and 

stretched, is dramatically increased.  Even so, the probability of finding a less  
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Fig. 4.3.7. Probability distribution of representative chain configuration classes in the 

dense liquids (NEMD simulations) at four values of Wi. 

 

 



 - 112 - 

extended fold configuration is still significant.  This is due to the fact that as the 

chains are rotating with greater frequency, and in an increasingly elliptical fashion:  

this demands that the fold configuration becomes more prominent.  At very high Wi, 

the number of highly extended molecules continues to increase, and the number of 

folded and coiled configurations remains approximately constant.  These trends 

become more obvious when comparing the plots of Wi = 0.39 and Wi = 782 of Figure 

4.3.6:  one again observes a rather bimodal distribution of chain configuration classes 

at high Wi, whereas it is essentially Gaussian at low Wi.   

Roughly the same qualitative behavior as depicted by Figure 4.3.7 can be seen 

in the BD simulation data of the 15-segment bead-spring chain model of dilute 

macromolecular solutions of Venkataramani et al. (2008). Furthermore, the new BD 

simulations reported herein compared favorably with those of the NEMD simulations, 

except that there were far fewer of the relatively extended half-dumbbell and stretched 

configurational states near the equilibrium state; this is to be expected since the degree 

of extension of the chains in this Wi regime was much smaller than for the dense liquid 

due to the absence of intramolecular and intermolecular potential energies in the free-

draining, bead-rod model—refer to Figure 4.3.1.  Furthermore, at high Wi the free-

draining solution showed a much higher percentage of coiled configurations, whereas 

the dense liquid chains showed a greater percentage of folded conformations.  This is 

due to the differences in the configuration tumbling cycles (extended in the dense 

liquid, and tightly coiled in the dilute solution), as described above. 
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In order to analyze further the simulation data, eteR  was split into three 

regions, relative to the distributions of Figure 4.3.3:  in units of Å, region 1, [0,40]; 

region 2, [40,65]; and region 3, [65-100].  The vertical lines delineate the regimes of 

interest, which were defined relative to the distributions of the lowest (0.39) and 

highest (782) Wi that were simulated.  Region 1 contains the rotational peak at high 

Wi, and region 3 contains the stretch peak.  At low Wi, regions 1 and 2 each contain 

about half of the stretch peak.   

Figure 4.3.8 displays a histogram of the probability distribution function at the 

four values of Wi indicated on the plot for the dense liquid model used in the NEMD 

simulations.  At the lowest value of Wi, the highest probability lies in region 1, with 

the remainder in region 2 and practically no molecules in the highly stretched region 3.  

There is a significant difference in the probabilities of regions 1 and 2 because the 

separator between these two regions is not centered at the peak—refer to preceding 

paragraph.  At Wi = 0.98, the probabilities in the first two regions are about equal, 

which is a result of the fact that the distribution function remains almost Gaussian, but 

the peak has shifted to a slightly higher value of eteR , thus making the demarcation 

line between regions 1 and 2 more nearly centered at the peak.  Stretched chain 

configurations in region 3 also begin to become evident at this value of Wi.  At Wi = 

97.8, all three regions have roughly the same probabilities, with the rotational 

configurational probability slightly favored; however, the stretch region (3) now has a 

significant probability of occurrence.  As Wi is increased to 782, the probability of  



 - 114 - 

. 

 

 

 

P
ro

ba
bi

lit
y 

D
en

si
ty

 F
un

ct
io

n

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Region 1
Region 2
Region 3

Wi = 0.39 Wi = 0.98 Wi = 97.78 Wi = 782.21  

 

Fig. 4.3.8. Probability distribution of molecules within the three regions of eteR  

defined in the text for the dense liquids (NEMD simulations). 
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region 1 increases from its previous value at Wi = 97.8, which is due to the 

hydrodynamic augmentation of the chain tumbling dynamics; i.e., more chains are 

rotating and with greater frequencies, creating more folded structures on a time-

averaged basis.  At the same time, the number of chains in stretched configurations 

has decreased from the previous value of Wi as the molecules spend less time in 

stretched configurations due to the increasing frequency of the tumbling behavior. 

The behavior of the chains in the BD simulations is qualitatively and 

quantitatively similar, except at the lowest two values of Wi.  At those shear rates, 

there were almost no contributions to the regions 2 and 3 probabilities, which again 

reflects the lack of interbead repulsive forces in the free-draining chain model. 

The mechanistic dynamics of the chains can be investigated through 

calculation of time correlation functions for the components of eteR .  This allows 

determination of characteristic timescales intrinsic to the dynamical chain processes.  

Aust et al. (2002) examined time correlations of the components of the gyration tensor 

for a dilute polymer solution via NEMD simulation, and demonstrated that the average 

chain angular velocity approached the theoretical value of the vorticity ( )2γ&−  as 

0→γ& .  As the shear rate increased, the chain became increasingly elongated and 

its angular velocity dropped relative to the vorticity of the shear field [Aust et al., 

2002] 

Figure 4.2.9a displays data for the correlation )()( τ+tRtR yx
 with respect to 

observation time at values of Wi = 0.98, 97.8, and 782 for the dense liquid NEMD 
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Fig. 4.3.9. Time cross-correlation functions versus observation time for three values of 

Wi (4.3.9a), and the power spectral density (4.3.9b) versus frequency for two values of 

Wi that exhibit minima in the cross-correlation function curves in the dense liquid 

simulations. 
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simulations.  Note that the correlations )()( τ+tRtR xx  and )()( τ+tRtR yy  

displayed the same qualitative behavior as indicated in the figure, and that similar plots 

were obtained at all values of Wi investigated.  Cross correlations between other off-

diagonal pairs of components of eteR , as well as the zzRR  correlation exhibited no 

correlations.  These data reveal definite correlations between certain components of 

eteR , with characteristic timescales that are dependent on Wi.  At low values of Wi, 

within the linear viscoelastic regime, the typical behavior is observed in which the 

chain relaxation is dominated by the longest relaxation time, Rτ .  However, for Wi > 

2, the correlation curves each exhibit a characteristic minimum, followed by a local 

maximum, and then a damped oscillatory behavior at longer times; this behavior is 

indicative of characteristic timescales beyond the Rouse time.  The free-draining 

chain model exhibited the same features. 

These time scales can be quantified using the power spectral density, which is 

displayed in Fig. 4.2.9b, through Fourier transformation of the correlation signal.  

With respect to the dynamics of eteR , it is evident that the correlations describe 

various aspects of the dynamics of the rotation motion of the chains.  Characteristic 

frequencies can be determined from the maxima in the power spectral density curves, 

as indicated in the figure. 

Fig. 4.2.10 displays data for the intrinsic timescales associated with the 

dynamical chain motion:  Rτ , the Rouse time (horizontal line), as well as xxτ , xyτ , 

yyτ ,  and convτ , as functions of Wi from both the NEMD and BD simulations.  The  
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Fig. 4.3.10. Characteristic timescales versus Wi.  The horizontal line represents the 

Rouse time.  The vertical dashed line represents the value of Wi at which the stress-

optical rule begins to breakdown in simulations of C50H102.  Diamonds represent the 

timescale of relaxation of the extended molecules, and all other symbols represent the 

timescales associated with the various auto and cross correlations of the end-to-end 

vector.  Solid symbols represent dilute solution data, and unfilled symbols denote 

dense liquid data. 
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iiτ  are associated with the correlations of the corresponding components of eteR , as 

defined above.  These timescales are expected to be associated with various aspects of 

the chain rotation, such as the tumbling frequency, wagging motion, etc.  Although 

these timescales are slightly different for the various components of eteR , it is not 

evident what are their exact interpretations; presumably, each represents a distinct facet 

of the chain tumbling dynamics, which is not apparent at the present time.  Since eteR  

has both magnitude and direction, it is possible that these small differences arise due to 

the stretch contribution (i.e., the magnitude) of eteR  rather than its directional 

contribution.  Furthermore, the ensemble average of any component of eteR , which is 

performed when calculating the correlation )()( τ+tRtR yx
 for example, is weighted 

toward molecules of high extension.  To investigate this issue, correlations were also 

computed in terms of the unit vector, 
ete

ete

R
Ru = , in which each molecule is 

weighted equally, regardless of its length.  These correlations, such as 

)()( τ+tutu yx
, should eliminate any stretch contribution to the intrinsic timescales 

that are manifested through the correlations; however, no statistically discernable 

difference was noted between these correlations and the data presented in Figure 4.2.10. 

The timescale convτ  is assumed to correspond with the relaxation of the stretched 

chain configurations, which may be associated with the convection and deformation of 

the tube-like structures, described above, which are formed by neighboring chains that 

are almost fully stretched. These timescales can be quantified by assuming that the 

xx RR  correlation bears the functional form of ( ) ( )xxconv ttA τπτ 2cosexp − , where A  
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is a constant.  From this expression, at equilibrium, ∞→xxτ , so that Rconv ττ → .  

As ∞→convτ , the motions of the chains would become purely tumbling, similarly to 

rigid rods. 

Using this assumed expression, as the shear rate decreases toward zero from a 

finite value, the iiτ  assume values between 5 and 10 times the Rouse time.  For Wi < 

2, one can no longer observe minima in the time correlations of eteR , implying that 

the rotational timescales are no longer evident in the system response.  (Note that this 

value of Wi = 2 corresponds to the profile in Figure 4.3.3a where the distribution 

became non-Gaussian.)  This is caused by the low degree of vorticity in the flow field, 

which inhibits the excursions of the molecules into negative orientations.  In other 

words, at low values of Wi, the dynamics are dominated by the deformation of the 

macromolecules because the shear flow has a timescale greater than the Rouse time 

(i.e., γ&
1 ), implying that the rotational motion is insignificant relative to the dynamics 

of the deforming chains.  Apparently, the Brownian-like fluctuations induced by the 

shear forces are only capable of deforming the molecules in this Wi regime, and can 

only induce fluctuations that lead to tumbling once the molecules are at least partially 

extended and, more importantly oriented near to the flow direction.  Once the chains 

are oriented near to the flow direction (about 5 degrees) at high Wi, it is easier for 

random Brownian-like forces to induce the chain orientation to progress into the fourth 

quadrant, thus initiating a tumbling cycle.  At low shear rates, the orientation of the 

deformed chains is above 15 degrees, which makes it relatively difficult for a 

Brownian excursion into the negative quadrant.  In principle, the rotational timescales 
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should approach infinity as Wi approaches zero.  Thus, at low values of Wi, only the 

Rouse time is evident in the relaxational response of the liquid. 

As Wi increases into the nonlinear viscoelastic regime, all of the rotational 

timescales are reduced dramatically, until they have decreased below the Rouse time; 

this indicates a higher frequency of tumbling and induces the first peak in the 

distributions of Fig. 4.3.3a.  Thus at high shear rates, the rotational motion of the 

chains dominates the system response. The timescale convτ  is equivalent to Rτ  at low 

shear rates, but then also decreases substantially at higher shear rates.  Presumably, 

this quantifies the affect of the flow kinematics on the convection and orientation of 

the reptative tube network within the fluid; i.e., as the chains become stretched to their 

maximum lengths, they form highly oriented, tube-like structures between neighboring 

stretched chains, which allow freer rotation of other chains occupying the same 

vicinity.  All of these timescales possess power-law behavior with Wi, as discussed 

below in reference to Figure 4.3.11.   

Recent experiments of semi-dilute and concentrated DNA solutions have 

revealed multiple timescales associated with the kinematics of shear flow [Teixeira et 

al., 2007; Robertson and Smith, 2007]. Teixeira et al. (2007) observed two distinct 

timescales, in addition to the Rouse time, for their most concentrated solution; however, 

for unentangled solutions of lower concentration, they observed only a single timescale.  

For the highly entangled solution, they observed a ratio of the slow to fast timescales 

of approximately 50.  Furthermore, the fast timescale was roughly a factor of 10 

higher than the estimated Rouse time, and was attributed to chain retraction.  
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Robertson and Smith (2007) recorded three distinct timescales, each differing from the 

next by an order of magnitude.  The shortest timescale was estimated as the Rouse 

time, the longest timescale was associated with the disengagement time of reptation 

theory, and the intermediate timescale was related to a second reptative phenomenon 

that was correlated with the dynamics of the effective reptation tube.  The ratio of the 

tube dynamics (the intermediate) timescale to the Rouse time was roughly 12 

[Robertson and Smith, 2007], which is of comparable magnitude to the factor 

determined by Teixeira et al. (2007).  Although the liquids simulated in the present 

study are not even remotely entangled, the rotational timescales are roughly a factor of 

6 higher than either the Rouse time or convτ  at all values of Wi.  Given the 

differences in the entangled solutions and the unentangled liquids examined herein, it 

is difficult to compare directly experiment and simulation.  However, in the present 

case, it does appear that the faster timescale, convτ , is associated with some sort of 

constraint release through the formation of tube-like structures which allow some 

molecules to tumble more freely with respect to almost fully stretched surrounding 

chains in the NEMD simulations.  Recall that this timescale is associated with the 

decay of the correlation between configurations at a specified time with those of later 

times.  Consequently, the data of Figure 4.3.10 indicate that this correlation dies out 

faster at higher Wi values than it does in the linear viscoelastic regime; i.e., the 

molecular configurations become statistically independent at a faster rate when the 

shear rate is high.  This is reasonable since smaller segments of the chain molecules 
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become dynamically active as Wi is increased, thus providing additional degrees of 

freedom to the chain’s overall configurational state.   

It is very interesting that the NEMD and BD simulations appear to yield similar 

characteristic timescales, despite the large conceptual differences in the models used in 

the computations.  The BD simulations show faster rotational timescales, which 

correspond to greater frequencies of rotation.  This is to be expected since the free-

draining chain model is not constrained by the presence of surrounding 

macromolecules.  It is interesting that the convected timescale, convτ , is also apparent 

in the BD simulations, which could support the hypothesis that this timescale is 

associated with the enhanced configurational dynamics at high Wi of the stretched 

chain configurations as opposed to the configurations present during the tumbling 

cycle, whether in the free-draining solution or the dense liquid.  Note that the 

difference in convτ  between the NEMD and BD simulations is not assured to be 

statistically significant based on the present analysis; however, the trend of the data in 

Figure 4.3.10 suggests that the correlation time is longer for the free-draining chains 

than it is for the dense liquid.  To explain this observation, one can recall the 

argument presented above concerning the Wi dependence of the segmental dynamics:  

as the shear rate increases, smaller chain segments become dynamically active, and 

contribute to the configuration constraint release.  In the free-draining chain 

simulations, the course-graining procedure dictates the constant bond length between 

beads, thus permanently freezing the small segmental dynamics beyond a certain limit.  

Once this limit is achieved, increasing Wi further does not contribute any additional 
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degrees of freedom to the configurational chain decorrelation, thus effectively slowing 

down the decay of the correlation relative to the atomistic chain model used in the 

NEMD simulations.   

An additional explanation for the more rapid decay of the correlation in the 

NEMD simulation of the dense liquid can be rationalized on the basis of Figure 4.3.4.  

Recall that the dense liquid displayed only quasi-periodic temporal behavior of the 

end-to-end vector cycles, whereas the free-draining chain solution experienced a more 

regular periodic tumbling cycle.  Consequently, it is apparent that the dense liquid 

should exhibit a faster rate of decorrelation than the free-draining liquid, leading to a 

smaller convτ  timescale.  Hence another possible interpretation of the simulation data 

is that the iiτ  characterize the rotational frequencies of the tumbling molecules, and 

convτ  quantifies the timescale over which the correlation in the rotational motion 

decays. 

Another interesting observation from Figure 4.3.10 is the apparent correlation 

between the appearance of the rotational timescales, the deviation of the Rouse time 

from its equilibrium value, and the onset of the breakdown in the stress-optical rule 

observed for a similar liquid (C50H102) by Baig et al. (2007).  The rotational 

timescales and the deviation from the Rouse time appear well beyond the transition 

between the linear and nonlinear viscoelastic regimes (Wi = 1).  A plausible 

hypothesis then is that the breakdown in the stress-optical rule under shear is caused by 

the tumbling motion of the macromolecules, which also could be partially responsible 

for the shear-thinning behavior; i.e., not only are the stretched configurations of the 
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chains relieving the hydrodynamic stresses induced by the shear, but the chain 

tumbling is also offering some relief.   

The data of the iiτ  and convτ  presented in Figure 4.3.10 appear to follow 

power-law behavior at high Wi.  Figure 4.3.11 displays this power-law dependence of 

the NEMD simulations using graphs of 







R

xy

τ
τ

ln  and 






R

conv

τ
τln  with respect to 

Wiln .  (The regression of the timescales xxτ  and yyτ  revealed essentially the same 

results as that of xyτ .)  The power-law exponent of xyτ  was calculated as - 0.75 over 

the entire data range, without much deviation from the norm.  If this rotational 

timescale were scaling linearly with shear rate, this exponent would have been -1.0; 

consequently, it is apparent that the molecules within the sheared liquids are not 

tumbling with frequencies that are determined by the hydrodynamically imposed 

vorticity of the flow field.  This is most likely due to the fact that over a small period 

of time, many of the liquid molecules are almost fully stretched at high values of Wi, 

and are not in the process of tumbling.  As mentioned above, these fully stretched 

molecules dominate the statistically based averages, and could account for this 

discrepancy between the vorticity and the tumbling frequency; however, this type of 

sublinear scaling has been observed experimentally.  Teixeira et al. (2005) observed a 

tumbling frequency in dilute DNA solutions that scaled as Wi
 0.62.  Hence the 

chain  
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Fig. 4.3.11. Log-log plots of the characteristic timescales, relative to the Rouse time, 

versus Wi for the NEMD (open symbols) and BD (filled symbols) simulations.  Note 

that plots of the characteristic frequencies would possess slopes of opposite sign but of 

the same absolute values as those presented in the figures. 

 



 - 127 - 

tumbling frequency does not necessarily need to match the vorticity; however, as these 

solutions were dilute, it is still likely that the background solvent was evolving as 

dictated by the local kinematics.  In other words, although the isolated chains were 

tumbling at frequencies other than the vorticity, the local solvent was experiencing the

 vorticity demanded by the shear field, barring hydrodynamic interactions between the 

macromolecule and the solvent.  A similar regression of the BD simulation of the 

free-draining chain modeled in this study yielded a characteristic tumbling frequency 

that scaled with a factor of - 0.68. 

In the NEMD simulations of the dense liquid, however, the situation is more 

complicated by the fact that there is no solvent, and the molecules are not isolated.  In 

this circumstance, the hydrodynamic field is solely due to the molecules themselves, 

not the surrounding solvent.  It is also evident from Figure 4.3.11 that convτ  scales 

sublinearly as Wi
 -0.63, as fitted to a truncated Spriggs power-law equation in which 

Rconv ττ =  when Wi < 1, and αττ WiRconv =  when Wi > 1.  This value is very close to 

the value of - 0.62 observed in the experiments of Teixeira et al. (2005).  The BD 

simulations of the present study provided a scaling exponent of - 0.66.  This fact is 

either a coincidence, or hints at some underlying universal connection between the 

tumbling frequencies and the deformation and orientation of macromolecular chains 

under shear. 

Partial rationalization of the similarity in the NEMD and BD results is provided 

by the realization that the relatively short, stiff chains in the dense liquid are not tightly 

coiled at equilibrium, whereas the chains in the free-draining model are assumed to be 
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ideal with no interactions between the beads.  According to the Flory Theorem, 

macromolecules in dense polymer melts behave like ideal chains, similarly to dilute 

solutions at the theta temperature.  Although the short-chain polyethylene liquid 

examined here is not a fully entangled system, it is still likely that the same type of 

screening of the long-range interactions (between beads of the same chain separated by 

three or more bonds) of a particular chain by neighboring and interpenetrating chains.  

Were the system entangled, however, it is highly likely that this quantitatively similar 

scaling behavior would not be evident. 

Several groups of researchers have postulated a deformational dependence of 

the longest relaxation time, Rτ , under application of an external flow field [Marrucci, 

1996; Souvaliotis and Beris, 1992; Apelian et al., 1988].  For example, Souvaliotis 

and Beris (1992) postulated the functional form of 
k

Rconv 




= 3

Ctrττ , where k  is a 

negative constant and C  is the conformation tensor defined in Eq. (47).  This 

power-law dependence of the relaxation time was then inserted into the pre-averaged 

Upper-Convected Maxwell Model, and allowed for the prediction of shear thinning in 

the shear viscosity.  However, any connection between molecular tumbling and the 

degree of molecular deformation and orientation is lost through this procedure, and 

only the pre-averaged contributions on the longest timescale will be evident in the 

macroscopic model behavior.  Clearly, pre-averaged theories have little possibility of 

capturing the dynamical tumbling phenomena that are occurring at very small time and 

length scales. 
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4.4  A mean-field anisotropic diffusion model for unentangled polymeric 

liquids and semi-dilute solutions 

 

In Figure 4.4.1, the 2~
eteR  is calculated by changing the dimensionless parameter α , 

and plotted as a function of Wi.  From the figure, it is evident that the mesoscopic 

model at 6.0=α  is best at describing the overall behavior of atomistic model.  This 

α  value nearly corresponds to Doi and Edwards’ result [Doi and Edwards, 1986] that  

the ratio of the perpendicular and parallel diffusion coefficients of a rod-like molecule 

is 0.5 in dilute and semi-dilute solutions.  However, the continuum model at the same 

value of α  diverges from NEMD simulation data in the neighborhood where the 

rotational effect begins to become significant.  This is an explicit demonstration that 

the rotational effect is not described by the continuum model.  Note that 2~
eteR  of the 

mesoscopic model reaches plateau, whereas the atomistic model attains a maximum at 

high values of Wi.  The plateau and maximum value correspond to 30% of square of 

the fully-stretched chain length. (The value of 2~
eteR  at the plateau is around 6 and the 

2
max

~
R  is 20.  Thus, the ratio is approximately 0.3.)  In this work, 6.0=α  is chosen 

based solely on Fig. 4.4.1 and this value is subsequently used to calculate further the 

rheological and structural properties to compare with the NEMD simulation data and 

experimental results of semi-dilute DNA solutions. The rheological behavior of 

polymeric liquids can be expressed by the rheological materials functions, such as 

viscosity, normal stress coefficients, and so on. Therefore, by comparing rheological  
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Fig. 4.4.1. The mean-square end-to-end distance, 2
eteR , for all levels as a function of  

Wi at various of values of α .  Note that in this and all subsequent figures, symbols 

were calculated from the mesoscopic model and lines were obtained from the 

continuum model, and most figures are normalized with respect to the equilibrium 

values.  
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material functions computed from our model with NEMD simulation data, the 

reliability of our model can be verified.  Figure 4.4.2 exhibits the stead-shear 

viscosity as a function of Wi.  Note that viscosity is normalized with respect to its 

zero-shear viscosity.  The shear-thinning behavior is observed at all levels of 

description.  The mesoscopic model at 6.0=α  is consistent with the NEMD 

simulation data over all values of Wi examined in the simulations.  However, the 

continuum model at the same value of α  underpredicts the NEMD simulation data.  

In the mesoscopic and continuum models, as α  decreases, the viscosity becomes 

smaller for a given value of Wi.  This is reasonable from a physical point of view.  

As α  decreases, an individual chain tends to move along its contour, which implies 

that the chain will experience fewer interactions with the surrounding chains, reducing 

frictional drag.  As a result, the hydrodynamic stress imposed by the shear flow 

decreases and viscosity decreases with decreasing α  at the same value of Wi.  In the 

continuum model, it is reasonable that the value of Wi at the onset of shear thinning 

behavior decreases with decreasing α .  The power-law index (b) was calculated at 

high values of Wi at each level ( )b−∝ γη & .  While the power-law index is 0.48±0.02 

in NEMD simulations, it changes with α  in mesoscopic and continuum models.  In 

the mesocopic and continuum models, the power law index decreases from 0.58 to 

0.53 and from 0.83 to 0.64 as α  increases from 0.6 to 1.0, respectively. 

Figure 4.4.3 displays the normal stress coefficients as functions of Wi.  From 

the figure, it is evident that the first normal stress coefficient, 1Ψ , and second normal 

stress coefficient, 2Ψ , decrease with increasing values of Wi.  In other words, the 
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Fig. 4.4.2. The steady shear viscosity vs. Wi. 
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thinning behavior is observed in 1Ψ  and 2Ψ  for all models.  In the first normal 

stress coefficient, the mesoscopic model at 6.0=α  remarkably captures the overall 

behavior of the NEMD simulation data over the entire range of Wi, whereas the 

continuum model at the same value of α  always underpredicts the NEMD simulation 

data.  In the second normal stress coefficient, there is an extremely remarkable 

overlap between the mesoscopic model at 6.0=α  and NEMD simulation data in 

spite of the difficulty in measurement.  However, the continuum model always 

predicts a value of zero for 2Ψ .  In the mesoscopic and continuum models, 1Ψ  

appears to decrease with decreasing α  for a given value of Wi.  However, 2Ψ  

seems to be insensitive to α  at the same value of Wi.  

The steady-state shear stress, xyσ~ , of mesoscopic and continuum models are plotted in 

Figure 4.4.4 as functions of Wi at various values of α .  The xyσ~  of the semi-dilute 

T4 DNA solutions is displayed as a function of Dτγ& , where Dτ  is disengagement 

time.  Note that the xyσ~  for comparison is provided from previous experimental 

work on semi-dilute T4 DNA solutions instead of the NEMD simulation data and the 

semi-dilute T4 DNA solutions (C = 0.49 mg/ml) compared in this figure have around 

7-8 entanglements per chain [Jary et al., 1999].  In the mesoscopic model, it seems 

that there are three characteristic regimes as function of Wi.  In the first regime, xyσ~  

increases linearly with increasing Wi.  In the second regime, the xyσ~  increases very 

slowly with increasing value of Wi resulting in a characteristic slight stress plateau.  
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In the third regime, xyσ~  increases again as Wi increases.  This characteristic 

behavior of the mesoscopic model corresponds well with experimental results of semi-

dilute DNA solutions [Jary et al., 1999].   It is also interesting that the boundary 

between the first and second regimes roughly corresponds to Wi = 1 where the 

transition between linear and nonlinear viscoelastic regimes, and the boundary between 

the second and third regimes located around critical value of Wi (Wi = 100) 

corresponds to the point where the rotational motion of the chains begins to dominate 

the system response.   The overall behavior of xyσ~  is very similar between the 

mesoscopic model at 6.0=α  and the semi-dilute DNA solutions.  However, the 

continuum model at the same value of α  overpredicts at low values of Wi and 

underpredicts beyond Wi = 10.  In the mesoscopic model, xyσ~  increases with 

decreasing α  at the same value of Wi, whereas the continuum model shows different 

behavior.  In the continuum model, the dependence of  xyσ~  on α  

switches at Wi  = 1.While xyσ~  also increases with decreasing α  for Wi < 1, it 

behaves in the opposite direction for Wi ≥ 1.  In other words, xyσ~  increases with 

increasing values of α  in this region for a given value of Wi.  Recently, Zhu et al. 

(2008) measured the rheological properties of λ -phase DNA solutions at various 

concentrations.  The xyσ~  obtained from the mesoscopic model also compared well  
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Fig. 4.4.3. The normal stress coefficients as a function of Wi. 
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Fig. 4.4.4. Comparison of the shear stress computed from models with experimental 

results of semi-dilute DNA solutions as a function of Wi. 
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with λ -phase DNA solutions for further proof.  The xyσ~  of λ -phase DNA 

solutions was calculated as a function of Wi using the Cox-Merz rule [Morrison, 2001], 

and qualitative agreements with the results of Zhu et al. (2008) have been found 

between the mesoscopic model and experiments of λ -phase DNA solutions. 

The orientation angle, θ , of the mesoscopic model is displayed in Figure 4.4.5 

as a function of Wi.  Typically, under shear flow, the orientation angle decreases from 

45° with increasing shear rate, and approaches a value of a few degrees above the 

direction of flow at high shear rates [Kroger, 2005; Baig et al., 2007].  This is due to  

the random orientation of chains under quiescent conditions and alignment of the chain 

molecules in the direction of flow at high shear rates.  As shown in Figure 4.4.5, the 

orientation angle follows typical behavior.  It decreases from around 45° with 

increasing Wi and remains a few positive degrees above the direction of flow, on 

average, at high values of Wi.  Note that the orientation angle for all α  is expected 

to converge to 45° at low values of Wi.  In the inset of the figure, the slope of the 

orientation angle at α = 0.6 is -0.497 and is very close to -0.46 obtained from DNA 

solutions [Teixeira et al., 2005].  

The radius of gyration represents the size of polymeric chains.   Thus, the 

mean configuration thickness has been calculated using the radius of gyration tensor in 

previous studies [Schroeder et al., 2005; Teixeira et al., 2005; Thomas et al., 2009].   

Figure 4.4.6 shows the mean molecular configuration thickness computed from the 

mesoscopic model as a function of Wi.   It is very reasonable that the mean molecular  

 



 - 138 - 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.4.5. The orientation angle of the mesoscopic model as a function of Wi.  The 

inset of this figure displays the orientation angle at α = 0.6 vs. Wi in log-log plot.  
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configuration thickness in the flow direction, xδ , exhibits very similar behavior to  

2~
eteR .  It maintains its equilibrium value near the quiescent condition, and increases 

rapidly at intermediate values of Wi.  At high values of Wi, xδ  begins to plateau, 

as does 2~
eteR .  It is also evident that xδ  increases with decreasing α  at the same 

value of Wi because the chain moves along its contour more freely than in the 

perpendicular direction.  As expected, the mean molecular configuration thickness in 

the flow gradient direction, yδ , and in neutral direction, zδ , decrease with 

increasing Wi.  The yδ  and zδ  decrease with decreasing α  for a given value 

of Wi for the same reasons as above.  It is also interesting that the slope of yδ  at 

6.0=α  is very close to that of the DNA solutions in a previous study [Teixeira et al., 

2005].  They are - 0.255 and - 0.26, respectively. 

 Although the end-to-end distance is one of the most important properties in 

polymer dynamics, it is hard to measure it experimentally due to poor resolution and 

dimensional limitations of typical experimental devices. (In experiment, 2D images are 

observed instead of 3D ones.)  In previous experimental studies, the projected 

distance s between the two farthest beads to the flow-gradient and flow-vorticity planes 

were calculated [Smith et al., 1999; Hur et al, 2001; Schroeder et al., 2005; Teixeira et 

al., 2005, 2007].  In Figure 4.4.7, the projected farthest distance between two beads 

on the chain at each plane is shown as a function of Wi.  Reasonably, the overall 
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Fig. 4.4.6. Molecular configuration thickness in the mesoscopic model as a function of 

Wi.  
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Fig. 4.4.7. The mean molecular extension in the mesoscopic model vs. Wi.  The inset 

of this figure is the mean fractional extension vs. Wi. Note that the Rmax is the fully- 

stretched chain length of the bead-spring chain and the L is the contour length of the 

DNA molecules. 
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behavior of mean molecular extension to flow-vorticity plane, x~ , is qualitatively 

similar to 2
eteR  and xδ

~
.  It increases with increasing Wi at low values of Wi.  At 

intermediate values of Wi,  xδ
~

 increases dramatically, but it does not reach the 

plateau value at high values of Wi.  In the inset of Figure 4.4.7, the maxRx
~

/~  is 

consistent with DNA solutions [Teixeira et al., 2005, 2007].  The mean molecular 

extension in the vorticity-gradient and flow-gradient planes, y~  and z~ , display 

corresponding behavior to  the yδ
~

 and zδ
~

 as functions of Wi:  they decrease 

with increasing Wi.  The dependence of the mean molecular extension, x~ , y~ , 

and z~ , on α  exhibits the same behavior as the mean configuration thickness, 

xδ
~

, yδ
~

, and zδ
~

, respectively. 

The conformation tensor is not only the simplest descriptor of polymer chain 

configurational properties, but also one of the most important properties in 

characterizing polymeric materials under flow conditions since it has information 

regarding both the orientation and extension of the constituent chains [Beris and 

Edwards, 1994].  Note that conformation tensor is the unit tensor under equilibrium 

conditions.  The conformation tensor components are shown in Figure 4.4.8.  The 

mesoscopic and continuum models are displayed at 6.0=α  in this figure.  It is 

reasonable that the overall behavior of xxC
~

 is very similar to 2~
eteR .  At low values 
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of Wi, xxC
~

 increases with increasing Wi due to the alignment and extension of chain 

molecules.  At high values of Wi, the mesoscopic model achieved values 

corresponding to 30% of square of the fully-stretched chain length due to the rotational 

motion of the chains, whereas the continuum model approached to fully-stretched 

chain length.  This provides direct evidence that the rotational effect is not accounted 

for in the continuum model.  Note that the continuum model diverges from the 

NEMD simulation data beyond Wi = 10.  It is also obvious that yyC
~

 decreases with 

increasing Wi since chains are compressed in flow gradient direction under shear flow.  

The zzC
~

 component also decreases with increasing Wi because the chains are 

stretched and aligned with respect to the flow direction.  The dimensionless parameter 

α , which is ratio of the perpendicular and parallel diffusion coefficients, becomes 1 as 

Wi approaches zero since the anisotropic diffusion tensor reduces to the isotropic 

diffusion tensor under equilibrium conditions.  However, α  has a constant value in 

the mesoscopic model over the entire range of Wi.  Thus, yyC
~

 and yyC
~

 do not 

approach the appropriate values near equilibrium conditions in this model.  Further 

refinement of this model would include a Wi-dependent α , however, the dynamical 

effects that we are interested in currently, are at high values of Wi, where this issue is 

not present.  In the mesoscopic and continuum models, the overall behavior of xyC
~

 is 

very similar to that of the NEMD simulation.  The continuum model overpredicts the 

NEMD simulation data, whereas the mesoscopic model underpredicts the NEMD 
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Fig. 4.4.8. The non-zero components of the conformation tensor as function of Wi. 
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simulation data at the same value of Wi.  Interestingly, the continuum model in the 

yyC
~

, zzC
~

, and xyC
~

 plots is closer to the NEMD simulation data than mesoscopic 

model.  However, the magnitude should be considered between xxC
~

 and the other 

components in these plots. 

As stated before, the dimensionless parameter α  is the ratio of the 

perpendicular and parallel diffusion coefficients( ||/ΛΛ= ⊥α  ).  When 1=α , the 

anisotropic diffusion tensor reduces to an isotropic diffusion tensor.  When 10 <<α , 

parallel diffusion is preferred.  Thus, it is very meaningful to examine the dependence 

of the probability distribution of eteR  on α  in the mesoscopic model.  In Figure 

4.4.10, two values of α  were chosen: one with isotropic diffusion tensor ( )1=α , 

and one with anisotropic diffusion tensor ( )6.0=α .  For the isotropic diffusion 

tensor ( )1=α , the probability distributions exhibit typical overall behavior of dilute 

solutions [Smith et al., 1999; Hur et al., 2001; Texeira et al., 2007].  It follows 

Gaussian behavior at low values of Wi, and becomes wide at intermediate values of Wi.  

At high values of Wi, the probability distributions display bimodal behavior with 

stretch and rotational peaks.  At high shear rates, the different qualitative behavior of 

distribution (bimodal and wide spread) between our simulation and previous studies 

are caused by bin size.  If we increase the bin size in the bead-rod model of Section 

4.3, we observe the typical widely spread distribution in Fig. 4.4.9. 

 For the anisotropic diffusion tensor ( )6.0=α , the probability distribution 

displays different behavior compared to dilute solutions or the isotropic diffusion  
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Fig. 4.4.9. Same probability distribution functions of a bead-rod chain vs. eteR  at 

five values of Wi with different bin sizes.  Fig. 4.4.9 (b) has the smaller bin size than 

Fig. 4.4.9 (a). 
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tensor model.  Although it maintains the Gaussian character at low values of Wi, the 

entire width of the distributions becomes wider and the peaks of the distributions lower 

in height compared to the isotropic diffusion tensor.  It is reasonable that the 

anisotropic diffusion, where chains are diffusing along their contours, results in this 

change of shape of the probability distribution.  Since parallel diffusion is preferred, 

the number of chains with extended lengths should increase.  At intermediate values 

of Wi, the shape of the probability distribution is no longer Gaussian.  At high values 

of Wi, the bimodal behavior is also observed with stretch and rotational peaks for the 

anisotropic diffusion tensor ( )6.0=α .  It is very interesting that the overall behavior 

of the probability distribution depends on α  at low and intermediate values of Wi, 

whereas it is independent of α  at high values of Wi.  This might be related to a 

competition between the entropic spring effect (deformation of the chains) and 

hydrodynamic drag imposed by shear flow (rotational motion of the chain) on system 

response.  At low values of Wi, the system response is dominated by the entropic 

spring effect since the hydrodynamic drag imposed by shear flow (or vorticity) is weak.  

The entropic spring effect is thus strongly affected by the anisotropic diffusion matrix.  

Hence, the probability distribution depends to some degree on α  in this Wi regime.  

However, at high values of Wi, the hydrodynamic drag imposed by strong shear flow 

overcomes jte entropic spring effect.  Hence, only the rotational motion of the chains 

dominates the system response and the probability distribution is independent of α . 

The probability distributions of the mesoscopic model at 6.0=α  are also 

compared with NEMD simulation data in this figure since it predicted well other  
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Fig. 4.4.10. The probability distribution of the NEMD simulations and the mesoscopic 

model vs. eteR . 
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rheological and structural properties of the NEMD simulations.  As expected, the 

probability distributions of the mesoscopic model at 6.0=α  show very similar 

behavior to the NEMD simulations.  Especially, the probability distributions at low 

values of Wi considerably resemble NEMD simulation data.  For example, the width 

of the probability distribution for Wi = 1 is roughly the same between the mesoscopic 

model and the NEMD simulations.  Note that the peak is much narrower for the 

isotropic diffusion tensor ( )1=α  than the NEMD simulations.  At intermediate 

values of Wi, the overall shape of the probability distributions are very similar between 

the mesoscopic model at 6.0=α  and the NEMD simulations.  However, the 

probability distribution of the NEMD simulations is slightly biased to higher eteR  

compared to the mesoscopic model.  At high values of Wi, the bimodal behavior with 

stretch and rotational peaks is observed in both simulations. 

Time correlation functions of the components of the end-to-end vector provide 

significant characteristic time scales of the system response through Fourier transform 

of the correlation signal.  Thus, rheological and structural responses of the 

mesoscopic model can be confirmed by comparing characteristic time scales between 

the mesoscopic model and NEMD simulation data.  Figure 4.4.11 exhibits time 

correlation functions of the xx component of the end-to-end vector, eteR
~

, as functions 

of observation time, t
~ .  The correlation curves of the mesoscopic model show 

similar behavior to the NEMD simulations at corresponding values of Wi.  For 

example, the correlation curves of the mesoscopic model display typical exponential 
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Fig. 4.4.11. The time correlation functions of xx component of the eteR
~

 vs. 

observation time at Wi = 0.1 and Wi = 1000. 
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decay for Wi < 2, and exhibit a characteristic minimum, local maximum, and damped 

oscillatory behavior at longer times for Wi ≥ 2.  Note that the slope of the decay at 

low values of Wi and the appearance of characteristic minimum at high values of Wi 

depend on α . 

In Figure 4.4.12, the characteristic time scales are displayed as functions of 

Wi.  In this figure, Rτ  denotes the longest relaxation time (Rouse time) and xxτ  

refers to the characteristic time scales extracted from the correlation of xx components 

of eteR
~

.  More detailed explanations regarding characteristic time scales have been 

already discussed in Section 4.3.  Note that the characteristic time scales of the 

mesoscopic model were normalized by the Rouse time at 6.0=α .  

For Wi < 2, the characteristic time scales were extracted by fitting the time correlation 

of the end-to-end vector with an exponential.  On the other hand, the power spectral 

density function through Fourier transform of the correlation signal was used to extract 

the characteristic time scales for Wi ≥ 2.   

There are two regimes in Figure 4.4.12.  In the first regime (Wi < 2), the 

characteristic time scales of the mesoscopic model converge to the Rouse time near 

quiescent conditions. However, they increase with increasing Wi.  In addition, the 

characteristic time scales become larger with decreasing α  at the same value of Wi.  

This might be related to the entropic spring effect.  With decreasing α  and 

increasing Wi, the bead-spring chain moves more easily in the parallel direction, and is 

slightly stretched from its equilibrium chain length, respectively.  Thus, a given chain 

has a slightly longer correlation time.  As a result, the characteristic time scales 
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increase with increasing Wi and decreasing α .  The previous results of the bead-rod 

chains in Section 4.3 also support this assumption.  In the bead-rod chain model, the 

characteristic time scales maintain nearly constant values since the bead-rod chain 

might not admit small bond extensions caused by weak shear flow.  In the second 

regime (Wi ≥ 2), the characteristic time scales of the mesoscopic model almost overlap 

with the NEMD simulation data, and are independent of α . The same explanation 

regarding the behavior of the probability distribution as a function of Wi can be applied 

here.  For Wi < 2, the entropic spring effect or deformation of chains controls the 

system response since the rotational motion of chains caused by shear flow is 

insignificant.  Thus, the characteristic time scales are influenced by α .  However, 

for Wi ≥ 2, the rotational motion of chains imposed by shear flow begins and then 

eventually dominates the entropic spring effect or deformation of chains on the system 

response at high values of Wi.  Thus, the characteristic time scales are independent of 

α .  This suggests a conjecture that the characteristic power-law exponents of the time 

scales as function of Wi and independent of the exact nature of the “reptation tube”. 

According to Doi and Edwards (1986), there is a possibilities that the characteristic 

time scales xxτ  and yyτ  can be related to parallel and perpendicular diffusion 

coefficients, respectively.  In Doi and Edwards’ results of rod-like polymers in dilute 

and semi-dilute solutions, the ratio of the parallel and perpendicular diffusion 

coefficients is 0.5.  The ratio of xxτ  and yyτ  obtained from NEMD simulation is 

0.6-0.7, and is very close to Doi and Edwards’ result.  Furthermore, this ratio is also 
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very similar to 6.0=α  for the mesoscopic model which captures well the NEMD 

simulation data.  Thus, it is reasonable that the characteristic time scale xxτ  is related 

to parallel diffusion and the characteristic time scale yyτ  corresponds to perpendicular 

diffusion. 
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Fig. 4.4.12. The characteristic time scale, xxτ , as a function of Wi. 
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Chapter V   Summary and Conclusion 

 

At the atomistic level of description, NEMD simulations of linear short-chain 

polyethylene liquids were performed under shear and planar elongational flows to 

collect fundamental rheological and structural properties and to examine entanglement 

characteristics.  The viscosities for both flow fields became larger as the chain length 

increased. Thinning behavior with strain rate in these liquids was observed under both 

shear and PEF.  The zero shear-rate viscosity for these polyethylene liquids was 

approximately equal to the zero elongation-rate viscosity, as predicted from Trouton’s 

rule.  All viscosities followed the power-law model.  Although the power-law index 

of 
1η  under PEF increased as the chain length increased, it was independent of chain 

length under shear.  

From a microscopic viewpoint, the pressure is determined from potential and 

kinetic contributions.  The intermolecular LJ potential energy appears to dominate the 

potential contribution to pressure, and therefore bears a close relationship to the mean 

pressure since the kinetic contribution is linear in particle density, and thus small for 

the dense liquid under examination here.  The behavior observed for the mean 

pressure and the intermolecular LJ potential displayed a distinct correlation for all 

polyethylene liquids.  Similarly, the behavior of 2
eteR  and 2

gR  seemed to 

correlate with the intramolecular LJ potential energy for all liquids.   

The global and local chain flexibilities were examined by investigating the 

bond-torsional, bond-bending, and bond-stretching energies per mode.  As might be 
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expected, the chains are highly flexible at low strain rates, but become fairly stiff at the 

very highest strain rates simulated. Some quantitative measures of the shear and 

extensional flow-induced variations in the number of topological constraints were also 

presented.  Although the simulated systems must be considered as unentangled, since 

their molecular weight is below the known critical entanglement molecular weight for 

polyethylene liquids [Foteinopoulou et al., 2006; Tzoumanekas and Theodorou, 2006; 

Kröger, 2005; Kröger and Hess, 2000], there is reason to believe that the transient 

behavior should have been captured qualitatively by the present results, and should 

remain to some extent unaffected also for liquids with larger molecular weights.  

Some of the depicted results for viscosities, pressure, and energies resemble behavior 

observed for more coarse-grained models, such as the anharmonic multibead spring 

model [Kröger, 2005].  Such evidence, substantiated through the present study, could 

be used to motivate replacing the atomistically detailed, and computationally 

demanding SKS model with a coarse-grained one.  This would allow the attainment 

of the fully entangled state, for which structure-property relationships are still required 

to test theoretical approaches [Öttinger, 1999; Fang, 2000; Nair and Schieber, 2006], or 

the dynamics of the entanglement network. 

Understanding the dynamics of the entanglement network subject to flow 

conditions will help to establish new multiscale methods for describing the dynamics 

of polymeric liquids, in which not only the atomistic configuration is mapped to a 

network, but the reverse operation needs to be established.  The present work 
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demonstrated the feasibility of this approach concerning the accumulation of reference 

data for two relevant, ‘orthogonal’ flow types, from atomistically detailed simulations. 

At the mesoscopic level of description, Brownian dynamics simulations of a 

free-draining bead-rod model with equivalent contour length to linear C78H158 were 

performed to examine the motion of individual molecules as a function of shear rate.  

In this work, the Brownian dynamics simulations of the bead-rod model were used to 

describe dilute solutions and nonequilibrium molecular dynamics was used to simulate 

the dense liquids.  The mean-squared, end-to-end vector, 2
eteR , was shown to 

increase from its equilibrium value to attain a maximum at high shear rates.  Moore et 

al. (2000) hypothesized that this effect was due to a competition between chain 

stretch/alignment, and a Brownian-like collisional force.  However, the present study 

suggested that the rotational motion of the chain molecules is primarily responsible for 

this peculiar behavior.   

Both NEMD and BD simulations revealed a probability distribution of eteR  

that was Gaussian at low Weissenberg number (Wi); however, non-Gaussian behavior 

was evident at intermediate values of Wi, in contrast to the predictions of pre-averaged 

theories.  At high Wi, the NEMD distribution was bimodal, with two distinct peaks 

associated with rotation (low Wi peak) and stretching (high Wi peak).  The BD 

simulations of the free-draining chain exhibited a non-Gaussian and very wide 

distribution of chain lengths, with the absolute width increasing dramatically with 

increasing Wi as chain rotation became increasingly significant.  Time correlations 
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between the components of eteR  of the dense liquid used in the NEMD simulations 

exhibited characteristic tumbling frequencies that scaled as Wi
 0.75 power.  An 

additional characteristic timescale appeared after a critical Wi of about 2, which scaled 

as Wi
 -0.63.  The BD simulations also exhibited characteristic timescales, which scaled 

as Wi
 -0.68 and Wi

 -0.66.  The scaling behavior of these timescales is consistent with 

experimental values reported by Teixeira et al. (2005). 

Time trajectories of individual chain eteR  values and orientation angles 

revealed a dramatic onset of tumbling behavior of the chains at a critical Wi (~2).  

Auto-correlations and cross-correlations between the components of eteR  revealed 

characteristic frequencies of molecular rotation, which scaled as Wi
 -0.75 power.  

Furthermore, after a critical Wi of approximately 2, another characteristic timescale 

appeared which scaled as Wi
 -0.63.  This was associated with a dramatic decrease in the 

elastic response of the system, which was apparently associated with the relaxation of 

rotational constraints and the decorrelation of the tumbling cycles (resulting in the first 

peak of the bimodal probability distribution) due to the formation of loosely-defined, 

tube-like structures of fully-stretched neighboring chains (comprising the second peak 

of the distribution).  Although the free-draining solution is very different in character 

than the dense liquid, the BD simulations revealed a similar behavior, with the 

characteristic timescales mentioned above scaling as Wi
 -0.68 and Wi

 -0.66, respectively.  

Individual chain configurations were explored as functions of Wi and eteR ; NEMD 

and BD simulations provided similar results at high values of Wi, both qualitatively 
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and quantitatively.  At low values of eteR , the chain configurations were 

predominantly coiled at low Wi and folded at high Wi, indicating increasingly hairpin-

like rotation with growing shear strength.  At high values of eteR , the chain 

configurations were essentially either fully stretched or of half-dumbbell nature at high 

Wi, thus constituting a loose network of tube-like structures. 

Based on enormous information on the dynamics of linear, short-chain 

polyethylene liquids, a coarse-grained mesoscopic model was proposed and compared 

with NEMD simulation data of linear, short-chain liquids and experiments of semi-

dilute DNA solutions under shear flow.  Moreover, this model was further coarse-

grained to the continuum level through pre-averaging. 

The 2~
eteR  of the mesoscopic model at 6.0=α  was remarkably consistent 

with NEMD simulation data.  However, the continuum model at the same value of 

α  diverged from NEMD simulation data beyond a critical value of Wi and reached 

the fully-stretched chain length at high values of Wi.  This is a direct demonstration 

that the rotational effect is absent in the continuum model.  In addition, the value of 

the dimensionless parameter ( )6.0=α  is very similar to Doi and Edwards’ result of 

rod-like chains in dilute and semi-dilute solutions, which is 0.5.  The steady shear 

viscosity displayed well shear-thinning behavior.  The mesoscopic model at 6.0=α  

agreed well NEMD simulation data.  However, the continuum model at the same 

value of α  underpredicted NEMD simulation data.  In the mesoscopic and 

continuum models, the viscosity depended on α  at the same value of Wi.  Although 
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power-law behavior was observed in all models, the power-law index (b) was different 

in each case.  The first and second normal stress coefficients, 1Ψ  and 2Ψ , exhibited 

thinning behavior.  Also the mesoscopic model at 6.0=α  captured well the overall 

behavior of 1Ψ  and 2Ψ .  However, the continuum model at the same value of α  

for 1Ψ  underpredicted the NEMD simulation data and the continnum model for 2Ψ  

was zero, as expected.  

The steady-state shear stress, xyσ~ , of the mesoscopic and continuum models 

was compared with experiments of semi-dilute DNA solutions. It seems that three 

characteristic regimes of the mesoscopic model correspond well with data of semi-

dilute DNA solutions, and the overall behavior of xyσ~  was very similar between the 

mesoscopic model  6.0=α  and the semi-dilute DNA solutions.  However, the 

dependence of xyσ~  on α  was different between the mesoscopic and continuum 

models.  The orientation angle, θ , of the mesoscopic model displayed the typical 

behavior under shear flow:  it decreased from 45° with increasing Wi and eventually 

formed a small positive angle with respect to the flow direction at high values of Wi.  

The orientation angle of the mesoscopic model at 6.0=α  scaled as 497.0−∝Wiθ , 

and, interestingly, compared well with DNA solution results, which were given by 

04.046.0 ±−∝Wiθ .   

The mean configurational thickness and mean molecular extension of the 

mesoscopic model showed similar behavior as functions of Wi.  The xδ  and x   
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increased with increasing Wi, and reached plateaus at high values of Wi.  On the other 

hand, 
yδ  and y  decreased with increasing Wi, and zδ  and z  exhibited 

similar behavior.  The dependence of both properties on α  was also very similar.  

It was very interesting that the slope of yδ  at 6.0=α  was very close to that of the 

DNA solutions in the previous study, and the ratio maxRx /  was consistent with the 

DNA solutions also.   

The conformation tensors of the mesoscopic and continuum models at 6.0=α  

were examined as functions of Wi.  As expected, xxC  of the mesoscopic model 

behaved very similar to 2~
eteR .  However, 

xxC  of the continuum model diverged 

from NEMD simulation data in the Wi range where the rotational effect became 

important.  In the mesoscopic and continuum models, the yyC  and zzC  components 

decreased with increasing Wi, and xyC  was very closed to NEMD simulation data.  

The influence of α  on the probability distribution functions of the 

mesoscopic model was examined.  Although the probability distributions attained 

from both isotropic and anisotropic diffusion tensors showed Gaussian characteristic at 

low values of Wi, the characteristic shapes were different each other.  All probability 

distributions obtained from the anisotropic diffusion tensor became wider, and lowered 

in height compared to probability distributions calculated from the isotropic diffusion 

tensor.  At high values of Wi, the probability distributions obtained from both 

isotropic and anisotropic diffusion tensors exhibited bimodal behavior with both 
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stretch and rotational peaks.  This can be explained by a competition between the 

entropic spring effect and hydrodynamic drag imposed by shear flow.  The 

probability distributions of the mesoscopic model were also considerably similar to 

that of the NEMD simulations.  The characteristic time scales were extracted and 

plotted as functions of Wi.  There were two regimes of characteristic time scales vs. 

Wi.  In the first regime (Wi < 2), the characteristic time scales recovered the longest 

rotational relaxation time (Rouse time) near equilibrium.  However, they increased 

with increasing Wi, and were heavily influenced by α . In the second regime (Wi > 2), 

the characteristic time scales overlapped with the NEMD simulation data, and were 

independent of α .  This kind of behavior of characteristic time scales at low and 

high values of Wi might be related to the competition between the entropic spring 

effect and hydrodynamic drag imposed by shear flow. 

The coarse-grained mesoscopic model revealed quantitative agreement with 

NEMD simulation of linear short-chain polyethylene liquids and experiments of semi-

dilute DNA solutions in the rheological and structural properties such as viscosity, 

normal stress coeffiecients, and so on.  In addition, the characteristic time scales of 

this model were similar to NEMD simulation data.  Thus, it is reasonable to conclude 

that the coarse-grained mesoscopic model proposed in this study is able to describe the 

dynamics of unentangled polymeric liquids and semi-dilute solutions under shear flow.  

However, the continuum model, which is further coarse-grained from mesoscopic 

model through pre-averaging, is not appropriate to express the dynamical behavior of 

polymeric liquids since the rotational effect is absent.   
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