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Abstract 

 Myosin proteins function as molecular motors that drive the ATP-dependent movement 

of cellular components along actin filaments. Vascular plants encode two different types of 

myosin, referred to as class VIII and class XI. Although class XI myosins have been suggested to 

function in organelle movement and cytoplasmic streaming, little is known about their cellular 

function in detail.  

 The Arabidopsis genome encodes 13 class XI myosin genes. The reasons for the 

relatively large number of myosin XI isoforms present within a single plant species are 

unknown.   To investigate the function of these gene products in the cell, we determined the 

spatial and temporal gene expression patterns by constructing promoter-reporter plants. Myosin 

genes are expressed in a variety of tissues with substantial overlap between family members. To 

study the biological function more intensively, homozygous T-DNA insertion lines were isolated 

for all 13 genes. Interestingly, five mutants showed phenotypes related to root hairs. mya2, xi-b, 

and xi-k showed shorter root hairs than in wild type while xi-h and mya1 produced a higher 

density of root hairs on the epidermis. MYA1 and XI-K are the most similar isoforms among the 

13 myosins and their double mutant showed an additive phenotype with extremely short root 

hairs suggesting that these two myosins have partially redundant functions. Interestingly 

organelle movements, especially those of peroxisomes, were reduced in mya1 xi-k.       

 Tip growth is the key growth mechanism in root hairs and pollen tubes. Many kinds of 

vesicles are trafficking toward (or backward from) the apical dome of root hairs to supply 

membrane and cell wall material as well as energy for growing tips. These movements along the 



shank of the hair occurred with velocities around 2 to 3 μm/s for Arabidopsis thaliana. In xi-k 

mutants, root hairs grew more slowly and terminated sooner than in wild type. Interestingly, this 

reduction of growth rate was correlated with a fluctuation of YFP-RAbA4b accumulation at the 

tip of growing root hairs. Other markers, including PI4P lipid and ER, as well as calcium and 

actin dynamics did not show significant differences. A YFP-XI-K construct driven by its native 

promoter could rescue the mutant phenotype and revealed accumulation of this myosin in the tip 

of growing root hairs. The distribution of YFP-XI-K in the root hair tip partially overlapped with 

CFP-RHD4-labeled vesicles at the subapex and YFP-RabA4b vesicles at the apex of root hairs, 

suggesting that myosin XI-K might be involved in the accumulation of unidentified vesicles in 

the tip of growing root hairs. 

 Characterization of two mutants that showed ectopic root hair growth in the epidermis, 

resulting in a higher density of root hairs than wild type, mya1 and xi-h, were initiated with two 

analyses. At first, staining pattern of promoter-reporter constructs of three key transcription 

factors, WER, EGL3, and GL2 were observed in mya1. Although variation in individual samples 

was too large to conclude, GL2 staining patterns in mya1 occasionally were unorganized. 

Increasing sample population and detail study is necessary. Secondly, effects of phosphate 

deficiency were observed with the mya1 and the xi-h in series of phosphate concentrations 

ranging from 1 M to 300 M. The xi-h mutant showed insensitivity on root hair production upon 

phosphate deficiency, suggesting a potential function of XI-H in the response to phosphate 

deficiency. Confirmation of these results and further study of the MYA1 and the XI-H is 

essential. In summary, this study established a systematic approach to investigate the biological 

function of class XI myosins in plant development and significantly increases our understanding 

of the function of XI-K myosin in root hair tip growth.  



Table of Contents 

 

Dedication................................................................................................................................................... iii 

Acknowledgements .....................................................................................................................................iv 

Abstract .......................................................................................................................................................vi 

Table of Contents ..................................................................................................................................... viii 

List of Tables ............................................................................................................................................ xiii 

List of Figures ...........................................................................................................................................xiv 

List of Attachments ...................................................................................................................................xvi 

List of Abbreviations .............................................................................................................................. xviii 

CHAPTER I. Introduction: myosins and root hairs ................................................................................1 

I.1. Plant Myosins and Their Functions ................................................................................................2 

I.1.1. Plant myosins: evidence of myosin function in plant cells .........................................................4 

I.1.2. Plant myosins: Class VIII ............................................................................................................5 

I.1.3. Plant myosin: Class XI ................................................................................................................8 

I.1.4. Myosin, organelle trafficking, and plant development..............................................................10 

I.2. Cytoskeleton in root hair growth ..................................................................................................11 

I.2.1. Root hair Initiation.....................................................................................................................13 

I.2.2. Root hair tip growth: general considerations and organelle distribution...................................16 

I.2.3. Conclusion .................................................................................................................................29 

I.3. Molecular Genetic Mechanism of Root Hair Positioning ...........................................................35 



I.3.1. Variations in root hair patterning in plants ................................................................................35 

I.3.2. Early embryonic fate determination mechanism of root hair cells............................................40 

I.3.3. Plasticity from environmental factors........................................................................................43 

I.3.4. Conclusion .................................................................................................................................46 

I.4. Rationale of this study ....................................................................................................................47 

CHAPTER II. Phylogenetic analysis of class XI plant myosins and Class XI myosin gene expression 

survey in Arabidopsis ................................................................................................................................49 

II.1. INTRODUCTION.........................................................................................................................50 

II.2. MATERIALS AND METHODS..................................................................................................51 

II.2.1. Myosin gene search in Arabidopsis and rice............................................................................51 

II.2.2. Identification of motifs in the putative myosin sequences .......................................................51 

II.2.3. Sequence alignment and phylogenetic analysis .......................................................................52 

II.2.4. Expression profile and gene duplication profile.......................................................................52 

II.2.5. Promoter-GUS analysis............................................................................................................52 

II.3. RESULTS.......................................................................................................................................53 

II.3.1. Identification of myosins in Arabidopsis and Rice ..................................................................53 

II.3.2. Genomic Distributions of Myosins in Rice and Arabidopsis...................................................56 

II.3.3. Characterization of Myosin protein structures .........................................................................61 

II.3.4. Expression profile survey from Genevestigator .......................................................................63 

II.3.5. Promoter-GUS analysis............................................................................................................64 

II.4. DISCUSSION ................................................................................................................................80 

CHAPTR III. Reverse genetic analysis of class XI myosin functions in Arabidopsis development ..82 

III.1. introduction ..................................................................................................................................83 

III.2. materials and methods ................................................................................................................85 



III.2.1. Mutant identification and confirmation ..................................................................................85 

III.2.2. Phenotypic analysis.................................................................................................................92 

III.2.3. Double mutant analysis...........................................................................................................95 

III.2.4. Organelle movement analysis .................................................................................................95 

III.3. results ............................................................................................................................................96 

III.3.1. Confirmation of T-DNA insertions.........................................................................................96 

III.3.2. Phenotype survey ..................................................................................................................106 

III.3.3. Double mutant screening ......................................................................................................112 

III.3.4. Organelle movements in a double mutant.............................................................................114 

III.4. discussion ....................................................................................................................................118 

CHAPTER IV. XIK is required for root hair tip growth in Arabidopsis ..........................................122 

IV.1. Introduction................................................................................................................................123 

IV.2. Materials and methods ..............................................................................................................124 

IV.2.1. Plant growth and transformation ..........................................................................................124 

IV.2.2.  XI-K complementation test..................................................................................................125 

IV.2.3. Root hair growth rate measurements ....................................................................................126 

IV.2.4. Constructs and plant transformations ...................................................................................126 

IV.2.5. Analysis of YFP-RabA4b accumulation ..............................................................................127 

IV.2.6.  YFP-XI-K localization analysis...........................................................................................129 

IV.2.7. Analysis of cytosolic Ca2+ dynamics at the tip of root hairs.................................................130 

IV.2.8. Analysis of Actin dynamics..................................................................................................131 

IV.3. Results .........................................................................................................................................131 

IV.3.1. Tip growth is altered in the root hairs of xi-k mutants..........................................................132 

IV.3.2. YFP-RABA4B accumulation is impaired in the xi-k mutant ...............................................133 



IV.3.3. PtdIns4P and ER localization were normal in xi-k root hair.................................................142 

IV.3.4. Intracellular Ca2+ dynamics during root hair growth in xi-k .................................................144 

IV.3.5. Actin dynamics in xi-k did not show significant difference from wild type.........................144 

IV.3.6. XI-Kpro:YFP-XI-K can complement the short root hair phenotype of xi-k..........................149 

IV.3.7. XI-K localizes to BFA-sensitive vesicles at the tip of growing root hairs ...........................150 

IV.3.8. YFP-XI-K vesicles partially colocalize with YFP-RabA4b vesicles at the tip of root hairs155 

IV.4. Discussion....................................................................................................................................156 

CHAPTER V. Root hair positioning and class XI myosin...................................................................161 

V.1. Introduction .................................................................................................................................162 

V.2. Materials and methods................................................................................................................166 

V.2.1. Mutant phenotype analysis.....................................................................................................166 

V.2.2. Root hair positioning markers................................................................................................166 

V.2.3. Phosphate deficiency test .......................................................................................................167 

V.2.4. MYA1 localization test ..........................................................................................................167 

V.2.5. Tissue specific complementation test ....................................................................................168 

V.3. results............................................................................................................................................169 

V.3.1. The number of root hairs is increased in mya1 and xi-h mutants...........................................169 

V.3.2. Increase in root hair numbers resulted from ectopic root hairs on atrichoblast cells.............169 

V.3.3. Mutation of MYA1 affects the normal patterning of root hairs. .............................................172 

V.3.4. mya1-1 and xi-h-1 mutants showed different responses to phosphate deficiency .................176 

V.3.5. MYA1 localization in root cells.............................................................................................178 

V.4. discussions ....................................................................................................................................181 

CHAPTER VI. Concluding remarks .....................................................................................................186 

List of references......................................................................................................................................191 



VITA .........................................................................................................................................................211 

 

 



List of Tables 

II.1. Summary of cDNA information ------------------------------------------------------ 54 

II.2. Myosins from Arabidopsis and Rice ------------------------------------------------- 55 

III.1. List of T-DNA insertion plants ------------------------------------------------------- 86 

III.2. Primers for the genotyping ------------------------------------------------------------ 88 

III.3. Gene specific primers for RT-PCR --------------------------------------------------- 93 

III.4. Results of T-DNA identification ----------------------------------------------------- 97 

III.5. Summary of mutant identification ---------------------------------------------------- 99 

III.6. List of phenotype survey -------------------------------------------------------------- 107 

IV.1. List of constructs transformed into plants ------------------------------------------- 128 

   

   

   

   

   

plantpia
Typewritten Text

plantpia
Typewritten Text

plantpia
Typewritten Text

plantpia
Typewritten Text

plantpia
Typewritten Text

plantpia
Typewritten Text

plantpia
Typewritten Text

plantpia
Typewritten Text



List of Figures 

I.1. Structure of myosin is distinct between classes in eukaryotes --------------------- 3 

I.2. Myosin domain structure ---------------------------------------------------------------- 6 

I.3. Distinct distribution of cytoskeletal elements and vesicles during root hair tip 
growth -------------------------------------------------------------------------------------- 19 

I.4. Cellular architecture during root hair development ---------------------------------- 31 

I.5. Self-reinforcing feedback regulation of tip growth ---------------------------------- 33 

I.6. Arabidopsis root architecture ----------------------------------------------------------- 36 

I.7. Three types of root hair patterning in plants ------------------------------------------ 39 

I.8. Schematic mechanism of transcriptional regulation of root hair positioning ----- 41 

I.9. Schematic pathway of root hair positioning with environmental factors --------- 45 

II.1. Myosin gene distribution on Arabidopsis chromosomes ---------------------------- 57 

II.2. Genome duplication map of class XI myosins in Arabidopsis thaliana ---------- 58 

II.3. Myosin gene distribution in the rice genome ----------------------------------------- 59 

II.4. Class XI myosin domain structure ----------------------------------------------------- 62 

II.5. Phylogenetic tree of myosins in Arabidopsis thaliana and rice based on motor 
domain ------------------------------------------------------------------------------------- 66 

II.6. Phylogenetic tree of myosins in Arabidopsis thaliana and rice based on full-
length amino acid sequences ------------------------------------------------------------ 67 

II.7. Myosin gene expression survey from microarray database ------------------------- 68 

II.8. Flower-specific gene expression of five myosins ------------------------------------ 72 

II.9. XI-F and XI-G expression in specific vegetative tissues ---------------------------- 74 

II.10. Broad expression of MYA1 and XI-K in many tissues ------------------------------ 75 

II.11. MYA2 and XI-D expressed in various tissues --------------------------------------- 77 

II.12. Simplified cladogram of class XI myosin in Arabidopsis --------------------------- 79 

III.1. Diagram of verification of T-DNA insertions ---------------------------------------- 101 

III.2. Verification of T-DNA insertion by PCR --------------------------------------------- 102 

III.3. T-DNA insertion sites in gene maps and confirmation of gene knockout by RT-
PCR ---------------------------------------------------------------------------------------- 103 

III.4. Trichome morphology ------------------------------------------------------------------- 108 



III.5. Root hair phenotypes of selected myosin mutants ----------------------------------- 109 

III.6. Hypocotyl lengths of several myosin mutants are not different -------------------- 113 

III.7. Organelle movement analysis ---------------------------------------------------------- 115 

IV.1. Root hairs in xi-k mutants grow more slowly and stop growing sooner than in 
wild type ----------------------------------------------------------------------------------- 134 

IV.2. YFP-RABA4B accumulation at the tip of growing root hairs is impaired in xi-k 
mutants ------------------------------------------------------------------------------------- 138 

IV.3. No differences of PtdIns4P and ER localization in xi-k ----------------------------- 143 

IV.4. Calcium dynamics in xi-k --------------------------------------------------------------- 145 

IV.5. Actin dynamics in xi-k ------------------------------------------------------------------- 148 

IV.6. XI-Kpro:YFP-XI-K complements the xi-k phenotype ------------------------------- 151 

IV.7. YFP-XI-K localizes at the tip of growing root hairs --------------------------------- 152 

IV.8. YFP-XI-K colocalization information ------------------------------------------------- 157 

IV.9. Working model of myosin function in root hair tip growth ------------------------- 159 

V.1 Two hypotheses of myosin involvement in root hair positioning ------------------ 163 

V.2. Schematic diagram of GAL4-UAS two component system ------------------------  170 

V.3. mya1 and xi-h mutants have a higher root hair density than wild type ------------ 173 

V.4. mya1 and xi-h mutants have ectopic root hairs on non-hair cells ------------------ 174 

V.5. Expression patterns of several regulators of epidermal cell fate ------------------- 177 

V.6. Roots of five-days-old seedlings on a series of phosphate-limited media -------- 179 

V.7. Effect of phosphate availability on root hair density -------------------------------- 180 

V.8. YFP-MYA1 localization in various tissues ----------------------------------------- 183 

   

 



  xvi 

List of Movies 

III.1. TOM in WT ------------------------------------------------------------------------------ 112 

III.2. TOM in mya1 xi-k ---------------------------------------------------------------------- 112 

III.3. TOM in WT- PX ------------------------------------------------------------------------ 112 

III.4. TOM in mya1 xi-k-PX ------------------------------------------------------------------ 112 

III.5. TOM in WT-GO ------------------------------------------------------------------------- 112 

III.6. TOM in mya1 xi-k-GO ----------------------------------------------------------------- 112 

III.7. TOM in WT-MT ------------------------------------------------------------------------ 112 

III.8. TOM in mya1 xi-k-MT ----------------------------------------------------------------- 112 

IV.1. Root hair growth-Col-1 ----------------------------------------------------------------- 131 

IV.2. Root hair growth-Col-2 ----------------------------------------------------------------- 131 

IV.3. Root hair growth-Col-3 ----------------------------------------------------------------- 131 

IV.4. Root hair growth-Col-4 ----------------------------------------------------------------- 131 

IV.5. Root hair growth-Col-5 ----------------------------------------------------------------- 131 

IV.6. Root hair growth-Col-6 ----------------------------------------------------------------- 131 

IV.7. Root hair growth-Col-7 ----------------------------------------------------------------- 131 

IV.8. Root hair growth-xi-k-1 ---------------------------------------------------------------- 131 

IV.9. Root hair growth- xi-k-2 ---------------------------------------------------------------- 131 

IV.10. Root hair growth- xi-k-3 ---------------------------------------------------------------- 131 

IV.11. Root hair growth- xi-k-4 ---------------------------------------------------------------- 131 

IV.12. Root hair growth- xi-k-5 ---------------------------------------------------------------- 131 

IV.13 YFP-RabA4b-Col-1-YFP -------------------------------------------------------------- 135 

IV.14 DIC-Col-1 -------------------------------------------------------------------------------- 135 

IV.15 YFP-RabA4b-xi-k-1-YFP -------------------------------------------------------------- 135 

IV.16 DIC-xi-k-1 -------------------------------------------------------------------------------- 135 

IV.17 YFP-RABA4b-Col-2-YFP ------------------------------------------------------------- 135 

IV.18 DIC-Col-2 -------------------------------------------------------------------------------- 135 

IV.19 YFP-RABA4b-xi-k-2-YFP ------------------------------------------------------------ 135 



  xvii 

IV.20 DIC-xi-k-2 -------------------------------------------------------------------------------- 135 

IV.21 YFP-RABA4b-Col-3-YFP ------------------------------------------------------------- 135 

IV.22 DIC-Col-3 -------------------------------------------------------------------------------- 135 

IV.23 YFP-RABA4b-Col-4-YFP ------------------------------------------------------------- 135 

IV.24 DIC-Col-4 -------------------------------------------------------------------------------- 135 

IV.25 YFP-RABA4b-xi-k-3-YFP ------------------------------------------------------------ 135 

IV.26 DIC-xi-k-3 -------------------------------------------------------------------------------- 135 

IV.27 YFP-XI-K -------------------------------------------------------------------------------- 147 

IV.28 YFP-XI-K-ethanol ---------------------------------------------------------------------- 152 

IV.29 YFP-XI-K-LatB ------------------------------------------------------------------------- 152 

IV.30 YFP-XI-K-BFA ------------------------------------------------------------------------- 152 

IV.31 YFP-XI-K+ mCherry ------------------------------------------------------------------- 153 

IV.32 YFP-XI-K+ CFP-RHD4 ---------------------------------------------------------------- 153 

IV.33 YFP-XI-K+ CFP-RabA4b -------------------------------------------------------------- 153 

V.1. YFP-MYA1 and PX-CFP-root hair --------------------------------------------------- 177 

 



List of abbreviations 

PCR Polymerase chain reaction 

RT-PCR Reverse transcription polymerase chain reaction 

CFP Cyan fluorescent protein 

YFP Yellow fluorescent protein 

FRET Fluorescence resonance energy transfer 

GUS ß-glucuronidase 

CaMV35S Cauliflower mosaic virus 35S promoter 

cDNA Complementary DNA 

DIC Differential interference contrast 

DMSO Dimethyl sulfoxide 

EDTA Ethylenediaminetetraacetic acid 

EST Expressed sequence tag 

EtBr Ethidium bromide 

KO Knock out 

MT Microtubule 

MS Murashige and Skoog plant basal medium 

PM Plasma membrane 

SEM Standard error of the mean 

SD Standard deviation 

WT Wild type 

X-gluc 5-bromo-4-chloro-3-indol-ß-D-glucuronide 

UAS Upstream activation sequences 

TOM Triple organelle marker 

  

  

 



CHAPTER I. Introduction: myosins and root hairs 

 

 Section 2 of this chapter (Cytoskeleton and root hair growth) was submitted as a chapter in a 

book on the Cytoskeleton in Plant Cells (Bo Liu, Ed.) to be published by Springer 2010. 

 

 



I.1. PLANT MYOSINS AND THEIR FUNCTIONS 

 

Myosins are actin-dependent motor proteins known to function in cytoplasmic contractile 

processes in muscles and many other mechanisms of eukaryotic motility such as cell migration, 

cytokinesis, phagocytosis, maintenance of cell shape, and organelle trafficking(Berg et al., 

2001). A myosin molecule contains one or two heavy chains of masses ranging from about 110 

to 250 KDa and different numbers of light chains of masses about 15 to 20 KDa, which bind to 

the heavy chains (Korn, 2000). All myosin heavy chains consist of three domains, a motor 

domain that moves along actin filaments and binds and hydrolyses ATP, a neck domain that 

contains IQ motifs and binds to light chains such as calmodulins or related calcium-binding 

proteins, and a tail domain that varies in function (Hasson and Mooseker, 1995). In many cases, 

the N-terminus of myosins also contains a small domain in front of the motor domain. The 

myosins constitute one of the largest protein families in eukaryotes with diverse functions that 

are reflected in their various tail domain structures (Figure. I.1.). To date, 2,269 myosins in 35 

classes of myosin have been identified from 328 species of eukaryotes based on amino acid 

sequences of the motor domain (Odronitz and Kollmar, 2007). Members in a class show the 

same domain structure which suggests the coevolution of head and tail domains (Korn, 2000). 

Among the 35 classes of myosins, plant-specific myosins are grouped in only two 

classes, VIII and XI (Odronitz and Kollmar, 2007). Phylogenetic analysis showed that class XI 

might have originated from class V suggesting that class XI might have similar functions in 

plants as class V in non-plant species (Odronitz and Kollmar, 2007). 



 

 

Figure I.1. Structure of myosin is distinct between different classes in eukaryotes  

A figure from Krendel and Mooseker 2005 (Krendel and Mooseker, 2005) was 

redrawn to include plant-specific myosins, class XI and VIII. Note that myosins were 

classified based on the amino acid sequences of their N-terminal motor domain 

(blue). However, domain organization of the proteins (represented by different 

colored shapes) is distinct across the classes while consistent within a class.    

I II VI IX X XV V XI VIII



I.1.1. Plant myosins: evidence of myosin function in plant cells  

 Intensive studies to investigate myosin functions have been performed with several 

classes of myosins, such as class II, V, and VI, in non-plant systems including human cells 

(Krendel and Mooseker, 2005). These studies confirmed myosin functions in cell motility and 

organelle transport. On the other hand, the function of plant-specific myosin has been relatively 

less studied. Involvement of myosin in organelle movements was initially suggested from 

myosin inhibitor studies. 2,3-Butanedione monoxime (BDM) is generally used as an inhibitor of 

myosin activity. BDM is known to stabilize the ADP-Pi bound state of myosins and thus inhibit 

of the release of Pi to produce the power stroke of muscle myosin (McKillop et al., 1994). It has 

been widely used to support myosin function in various cells including plant cells. Cytoplasmic 

streaming in lily pollen tubes and root hair cells were inhibited and organization of actin 

filaments was partially disrupted by treatment with BDM (Tominaga et al., 2000; Yokota et al., 

2000).  BDM treatment caused an altered tension of the actin cytoskeleton in cultured soybean 

cells (Grabski et al., 1998), and it also disturbed the distribution patterns of actin filaments in 

maize root epidermis ( amaj et al., 2000). In tobacco BY-2 cells, movement of Golgi stacks was 

inhibited by BDM (Nebenführ et al., 1999), in addition, chloroplast avoidance movements in 

Arabidopsis leaf cells under high light were also blocked by BDM (Paves and Truve, 2007), 

suggesting that myosins function in organelle movements. BDM treatments were shown to 

results in aberrant morphology of the new cell plate in the stamen hair of Tradescantia 

virginiana (Molchan et al., 2002) and in inhibition of auxin-induced cell division by disturbing 

the actin cytoskeleton and organelle trafficking in tobacco VBI-0 cells (Holweg et al., 2003). 

 Although it has been suggested that BDM affects other kinase-related proteins besides 



myosins (Grabski et al., 1998), direct evidence for these other effects is still lacking. Thus, the 

studies introduced above might be sufficient to postulate an important role of myosin in plant 

growth and development. 

 

I.1.2. Plant myosins: Class VIII  

Arabidopsis ATM1 is the first myosin identified experimentally in plants (Knight and 

Kendrick-Jones, 1993). Later one more class VIII myosin, ATM2, was identified in Arabidopsis 

(Kinkema et al., 1994) and two class VIII myosins each were isolated in maize and sunflower 

(Liu et al., 2001). As genome projects expanded, 53 myosins in this class were identified 

experimentally or by annotation in 26 species up to date (Odronitz and Kollmar, 2007).  

Typically, Class VIII myosins contain an N-terminal motor domain, four IQ motifs, a 

putative coiled-coil region, and a tail region (Figure. I.2.A). This domain organization is highly 

conserved among members of this class. Every member of identified (or predicted) myosins in 

this class has the same domain structures spanning about 115 amino acids (Kinkema et al., 1994; 

Knight and Kendrick-Jones, 1993; Liu et al., 2001; Odronitz and Kollmar, 2007). Class VIII 

myosins are distinct from other myosins with their relatively long N-terminal region prior to the 

motor domain, moreover, their C-terminal tail region is class-specific without any characterized 

domain structures. The C-terminal region contains many potential phosphorylation sites and at 

the very end of the C-terminus, they present clusters of basic residues which have been suggested 

to be involved in binding to phospholipids (Knight and Kendrick-Jones, 1993). A polyclonal 

antibody was raised against this class-specific tail, including the coiled coil region, of 

Arabidopsis ATM1 to investigate its localization in cells (Reichelt et al., 1999). This study  



 

 

Figure I.2. Myosin domain structures 

Representative domain structures of three classes of myosins are shown. 

A. ATM1, a class VIII myosin in Arabidopsis thaliana 

B. MYA1, a class XI myosin in Arabidopsis thaliana 

C. Myo5A, a class V myosin in human  
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revealed that class VIII myosins are predominantly localized as spots around the 

plasmamembrane of cells, which were later identified as plasmodesmata (Baluska et al., 2001), 

and at cell plates during cytokinesis in cress and maize root epidermis (Reichelt et al., 1999). 

Overall, it has been suggested that myosin VIII might be important for anchoring of actin 

filaments at sites of intercellular communication (Baluska et al., 2001; Reichelt et al., 1999). 

Localization of myosin VIII at the plasmodesmata has been recently confirmed with GFP-ATM1 

fusions that lack the motor domain (Golomb et al., 2008). Myosin function in protein delivery to 

plasmodesmata was also supported by ectopic overexpression of the tail domains of class VIII 

myosin in tobacco leaves (Avisar et al., 2008a). The Hsp70 homolog (Hsp70h) from beet yellow 

virus targets plasmodesmata of its host, tobacco leaves. Overexpression of truncated myosin VIII 

abolished Hsp70h localization at the plasmodesmata, suggesting that myosin VIII functions in 

targeting of Hsp70h to plasmodesmata (Avisar et al., 2008a).            

In addition to their function at plasmodesmata, myosin VIII has been suggested to 

contribute to endocytosis. Immunolocalization studies with a polyclonal antibody showed 

punctate structures of various sizes throughout the cytoplasm (Reichelt et al., 1999), moreover, 

GFP-fused ATM tails partially colocalized to endosomal markers, such as FM4-64, FYVE, 

BRI1, and ARA6 in tobacco leaf epidermis (Golomb et al., 2008; Sattarzadeh et al., 2008). 

Arabidopsis encodes 4 genes in class VIII myosin, ATM1, AMT2, VIII-A, and VIII-B. Although 

all of them showed their localization at the plasmodesmata and cytoplasmic punctate structures, 

ATM1 and VIII-A are preferentially localized at the plasmamembrane while ATM2 and VIII-B 

are mostly localized to endosomal compartments suggesting that different isoforms might have 

functional preferences while they can substitute for each other (Avisar et al., 2008a; Golomb et 

al., 2008; Sattarzadeh et al., 2008).               



I.1.3. Plant myosin: Class XI  

I.1.3.1. Resemblance of class XI myosin in plants with class V in non-plant eukaryotes  

 The class XI myosins consist of an N-terminal motor domain followed by six IQ motifs, a 

coiled coil region, and a globular C-terminal tail, which contains a dilute domain (Figure. I.2.B). 

It has been confirmed that myosin motor domains and C-terminal cargo-binding domains co-

evolved, resulting different domain structures across the classes, but conservation within a class 

(Figure. I.1.) (Korn, 2000; Odronitz and Kollmar, 2007). Class XI myosin and class V myosin 

share several of features that suggest their evolutionary linkage. The domain organization of both 

class V and class XI myosins are identical (Figure. I.2.B and C). Both classes contain six 

repeats of the IQ motif, to which calmodulins bind. In addition, among the 35 classes of myosins, 

only these two classes contain a dilute domain in the C-terminal cargo-binding globular tail 

(Odronitz and Kollmar, 2007). Class V myosins were proposed to be one of the “ancient” 

myosins together with class I myosins, which are present in most taxa of eukaryotes (Odronitz 

and Kollmar, 2007). The resemblance of class V and XI suggests that class XI myosin might 

share similar mechanisms and functions with myosin V. Class V myosins have been found to 

bind several kinds of cargo including melanosomes, early endosomes, peroxisomes as well as 

vacuoles (reviewed in (Li and Nebenführ, 2008). Taken together with the evidence from myosin 

inhibitor treatments, this suggests that class XI myosins function in organelle movements.  

 

I.1.3.2. Functional studies of class XI myosins: localization of myosins 

Immunolocalization studies using an antibody raised against a class XI-specific peptide 

in the head domain of a Zea mays myosin showed that these motors are associated with several 



organelles in cells (Liu et al., 2001). Further analyses with a class-specific antibody raised 

against a peptide in the tail domain demonstrated that this antibody colocalized with 

mitochondria, plastids, and the molecular chaperone subunit TCP-1  in maize (Wang and 

Pesacreta, 2004). However, a relationship between a specific isoform of myosin XI and specific 

organelles was not identified, leaving the function of myosin XI unclear. Recently, it has been 

shown that MYA2 localizes to peroxisomes using an antibody raised against a peptide in the 

MYA2 tail region (Hashimoto et al., 2005). However, a subset of antibodies did not colocalize 

with peroxisomes but showed small punctate compartments suggesting either cross reactivity of 

the antibody with other isoforms in class XI or dual localization of MYA2 to two different 

membrane compartments. Recently, several groups have shown the subcellular localization of 

class XI myosins of Arabidopsis thaliana by transient expression of constructs with GFP fused to 

class XI myosin tails which revealed colocalization with various intracellular organelles (Avisar 

et al., 2009; Li and Nebenführ, 2007; Reisen and Hanson, 2007; Sparkes et al., 2008). However, 

this localization information may not be very reliable since the results were inconsistent between 

different studies. For example, MYA1 and MYA2 in one study localized to peroxisomes (Li and 

Nebenführ, 2007), while they colocalized with peroxisomes and partially with Golgi stacks in 

another study (Reisen and Hanson, 2007). In addition, YFP-XI-K showed punctate structures 

partially overlapping with Golgi stacks and mitochondria in one study (Reisen and Hanson, 

2007), but appeared to be diffusely localized near the ER in a second report (Avisar et al., 2009). 

This variation might come from the different truncation points of proteins suggesting that the 

localization of partial proteins might differ from the original localization information of native 

protein in vivo. It is also possible that myosins of Arabidopsis might not localize properly in 

tobacco cells.   



I.1.4. Myosin, organelle trafficking, and plant development 

Although myosin localization to a specific organelle is unclear so far, it is likely that 

myosin is involved in organelle trafficking in plant cells. Overexpression of myosin tail domains 

perturbed organelle movements in many studies (Avisar et al., 2009; Avisar et al., 2008b; 

Sparkes et al., 2008). For example, overexpression of the YFP-XI-K tail of Arabidopsis inhibited 

peroxisome and Golgi movements in tobacco leaf cells in two studies (Avisar et al., 2008b; 

Sparkes et al., 2008). Curiously, their localization patterns were different in the two reports- 

punctate patterns reported by Avisar et al. 2008 but diffuse signals near ER reported by Sparkes 

et al. 2008. Interestingly, expression of YFP-XIK tail in both studies showed neither peroxisome 

localization nor Golgi localization. RNAi-based knockdown of XI-K in tobacco leaves also 

showed similar results, suggesting that XI-K regulates organelle movement indirectly. Recently, 

a xi-k mutant has been reported to be impaired in the movements of three organelles, 

peroxisomes, Golgi stacks, and mitochondria (Peremyslov et al., 2008). Interestingly, this mutant 

showed shorter root hairs than wild type (Ojangu et al., 2007; Peremyslov et al., 2008) 

suggesting that XI-K might function not only in organelle trafficking but also in root hair growth. 

mya2 mutants also showed the inhibition of same three organelle movements in leaf epidermis, 

however, it is unclear how inhibition of Golgi and mitochondria movements could be achieved in 

mya2 mutants. MYA2 is known to localize to peroxisomes since their specific antibody majorly 

colocalized to peroxisomes (Hashimoto et al., 2005) and recently MYA2 tail has been reported to 

interact with small GTPases, AtRabCa and AtRabD1, which were able to colocalize with 

peroxisomes (Hashimoto et al., 2008). Taken together, although much has been learned about 

myosin in the past three years, many issues remain regarding myosin function in plant 



development and vesicle trafficking. Thus, it is necessary to more systematically figure out the 

relationship among myosin, organelle trafficking, and plant developmentally characterizing of 

myosin mutants, observing of organelle movements in mutants, and eventually identifying the 

subcellular localization of corresponding myosins.        

 

I.2. CYTOSKELETON IN ROOT HAIR GROWTH 

 

Root hairs are highly polarized outgrowths of a subset of root epidermal cells, the so-called 

trichoblasts.  The biological function of root hairs is to increase the surface area of roots in order 

to facilitate the absorption of water and nutrients from soil. Root hairs are also the site of initial 

interaction with microorganisms (Geitmann and Emons, 2000). The patterning of root 

trichoblasts varies between plant species and can also be regulated by environmental factors 

(Dolan and Costa, 2001). These genetic and environmental regulatory mechanisms have been 

studied intensively and are reviewed elsewhere (Ishida et al., 2008). Trichoblasts are unique 

plant cells that first elongate by diffuse growth over their entire surface with the other root cells 

and subsequently form an outgrowth, the root hair, which elongates only at its very tip.  

 The mechanism of root hair growth can be conceptually divided into two distinct events: 

root hair initiation, which breaks the symmetry of the root epidermis and results in the formation 

of a bulge, and unidirectional root hair elongation by tip growth in which all secretion of new 

cell wall material occurs in a small area at the tip of the hair. Root hairs are not critical for plant 

growth, so that plants can grow normally on growth media in the lab even with defective root 

hairs. This has permitted studies on the molecular mechanisms underlying root hair development 



based on mutant screens for defects in root hair growth (Schiefelbein and Somerville, 1990). 

These mutants showed diverse phenotypes from abnormal length or shape of root hairs to 

additional root hair initiation. In independent studies, pharmacological analyses using chemicals 

to disrupt cytoskeletal organization revealed the importance of the cytoskeleton, especially actin 

filaments, for tip growth (Baluska et al., 2000; Bibikova et al., 1999). More recently, studies with 

GFP-fused proteins related to root hair growth provided further support for the emerging 

regulatory network and opened up the additional dimension of temporal dynamics (Carol and 

Dolan, 2002; Cole and Fowler, 2006; Hepler et al., 2001).  

 Collectively, these studies have established that three factors are very important for this 

special type of cell morphogenesis. First, signaling from the trichoblast determination pathway 

leads to a rearrangement of the cytoskeleton in the root epidermis for bulge formation and 

ultimately for support of tip growth in the emerging hair (Baluska et al., 2000; Bibikova et al., 

1999). Second, polar membrane trafficking is required to provide new plasma membrane and cell 

wall components to the growing tip (Ovecka et al., 2005). Finally, there is a unique distribution 

of regulatory factors, primarily calcium (Felle and Hepler, 1997), reactive oxygen species 

(Monshausen et al., 2007), and pH (Bibikova et al., 1998) which regulate each other to modulate 

tip growth (Cole and Fowler, 2006). Pollen tubes, the other classical model for tip growth in 

plants, share a similar growth mechanism that involves similar key regulators (Cole and Fowler, 

2006). However, there are also some distinct differences between pollen tubes and root hairs, 

such as vacuole position and growth rate. It remains to be seen whether a common model can 

simultaneously explain the specific behavior of root hairs and pollen tubes. However, in this 

chapter, we will forgo this comparison and focus on the mechanisms of root hair growth. 

 



I.2.1. Root hair Initiation 

The first visible step during root hair initiation is that a part of the outer epidermal cell starts 

swelling in response to local signaling. The position of the initial swelling depends on the plant 

species. For example, Arabidopsis root hairs are initiated on the basal part of the trichoblast, i.e. 

closest to the root tip (Carol and Dolan, 2002), while maize roots form the root hair 

approximately in the middle of an epidermal cell (Baluska et al., 2000; Fischer et al., 2007). The 

positioning of root hairs on trichoblasts depends at least partially on hormonal signaling as 

revealed by mutant analysis. As the first step of root hair initiation, a membrane trafficking 

effector, ROP-GTPase, and a cell wall loosening enzyme, expansin, accumulate at the initiation 

site (Molendijk et al., 2001). Both actin and microtubule cytoskeleton then rearrange (Van 

Bruaene et al., 2004) and local alkalization of the cytosol occurs accompanied by acidification of 

the cell wall (Bibikova et al., 1998). In addition, the cytosolic calcium concentration increases 

locally due to a massive uptake of calcium from the environment (Very and Davies, 2000). 

Finally, actin filaments accumulate and the cell bulges outward and eventually begins tip growth 

(Ishida et al., 2008). 

 

I.2.1.1. Selection of the bulge site 

 Auxin and ethylene signaling appear to be key regulators in determining the position of 

root hairs, since many root hair defective mutants are directly or indirectly related to auxin or 

ethylene responses (Guimil and Dunand, 2007). In particular, ethylene signaling mutants showed 

altered position of root hairs on a trichoblast, suggesting that bulge site selection occurs 

downstream of a hormone signaling pathway (Masucci and Schiefelbein, 1994). The auxin 



transport mutant, aux1, also displayed root hairs in an apically shifted position and often carried 

two root hairs on a cell (Grebe et al., 2002). The apical and basal membrane localization of 

AUX1 on root epidermal cells appeared to be required for maintaining planar root hair polarity 

by facilitating the uptake of auxin from more distal cells to maintain a local proximal auxin 

maximum in the trichoblast (Swarup et al., 2001). Moreover, pharmacological interruption of 

auxin transport also disrupted proper root hair positioning, supporting the critical role of auxin in 

determining the root hair position (Grebe, 2004).  

 How auxin and ethylene signaling affect cytoskeletal reorganization is still not clear. 

However, ROP-GTPase (Rho-like GTPase of plants) may be part of the signaling cascade. In 

Arabidopsis, immunolocalization of ROP proteins revealed their accumulation under the plasma 

membrane of the root hair initiation site even before swelling started, and this accumulation was 

maintained during root hair growth (Fu et al., 2002). This localization, together with evidence 

that overexpression of ROP-GTPase resulted in multiple root hair formation on a single 

trichoblast (Yang et al., 2007), further supports the notion that ROP-GTPases are key regulators 

for root hair initiation. ROP accumulation was not sensitive to cytoskeleton-disrupting drugs 

suggesting that ROP accumulation is an upstream event of actin and microtubule rearrangement 

in trichoblasts (Baluska et al., 2000; Molendijk et al., 2001). How localization and activity of 

ROP-GTPase is functionally regulated by polar auxin transport still remains an open question to 

be investigated. Recently, a mathematical simulation model hypothesized that the auxin gradient 

might function to balance the activity of ROPs, so that the root hair can be formed at the proper 

position of root epidermal cells (Payne and Grierson, 2009). Although there is as of yet little 

experimental support for this hypothesis, this model is a good starting point to identify the 

mechanisms that ultimately lead to selection of the bulge site.  



I.2.1.2.  The cytoskeleton in bulge formation  

 Root epidermal cells have highly organized transverse cortical microtubule arrays. Once 

a trichoblast starts root hair formation, this microtubule array becomes irregular and randomized 

at the site of the future root hair bulge (Baluska et al., 2000). This is correlated with local wall 

acidification which leads to a change in cell wall formation and ultimately results in wall 

thinning so that the cell can swell in this region (Bibikova et al., 1998). Remarkably, the apex of 

the bulge is devoid of microtubules when the root hair swelling is ready to initiate tip growth 

(Baluska et al., 2000). At the same time, actin filaments at the future bulge site become arranged 

parallel to the long axis of the cell (Baluska et al., 2000). G-actin and profilin also accumulate at 

the tip of the root hair bulge, as observed by immunofluorescence in maize (Braun et al., 1999), 

and a fine actin meshwork later forms within the bulge (Baluska et al., 2000).  

 Actin mutants, act2 and act8, showed root hair bulges but no proper tip growth 

suggesting that the actin cytoskeleton does not have a critical role in the early steps of root hair 

initiation (Kandasamy et al., 2009; Ringli et al., 2002). However, actin mutants often formed 

multiple sites of root hair bulges implying that actin might be involved in the process of 

determining the root hair initiation site on the trichoblast (Kandasamy et al., 2009). Lettuce 

seedlings that were germinated on media containing 10μM cytochalasin B, an inhibitor of actin 

polymerization, did not produce any root hairs (Takahashi et al., 2003). This result suggests that 

longitudinal redistribution of actin filaments on the site of root hair emergence is necessary for 

root hair initiation.  However, cytochalasin D treatment of vetch roots did not show any effects 

on root hair bulge formation (Miller et al., 1999). Note, however, that cytochalasin variants have 

different side effects beside actin disruption. Thus, it is conceivable that long-term exposure of 

lettuce roots to cytochalasin B may have induced additional secondary effects that inhibited root 



hair development. The actin cytoskeleton is clearly more important in later steps of root hair 

initiation, namely, during the transition from bulge formation to tip growth since actin mutants as 

well as pharmacological interventions showed that a defect of actin organization prevented the 

initiation of root hair tip growth (Baluska et al., 2000; Kandasamy et al., 2009; Miller et al., 

1999; Ringli et al., 2002).  

 

I.2.2. Root hair tip growth: general considerations and organelle distribution  

 Once a bulge is established, root hairs continue to increase their surface area only at their 

tip, away from the root epidermis. Arabidopsis root hairs have been reported to be able to grow 

to a length of about 700μm with the growth rate of 1-2μm/min. However, these parameters can 

differ significantly depending on growth conditions (Monshausen et al., 2008; Ojangu et al., 

2007). Conventionally, root hairs are divided into three zones from the tip toward the root 

epidermis, apex, subapex, and shank. This subcellular organization of growing root hairs shares 

some similarity with pollen tubes with some notable differences. In growing root hairs, the 

dome-shaped apex, where active growth occurs, is predominantly filled with secretory vesicles. 

Large organelles are prevented from entering this region, presumably by mesh-like short, 

randomly distributed actin fragments in the subapex (Baluska et al., 2003). Unlike pollen tubes, 

apex and subapex of root hairs are often not clearly distinguished; the vesicle-filled apical zone 

is narrower than in pollen tubes and the actin mesh spreads more broadly. A major difference 

between root hairs and pollen tubes is the position of the large central vacuole. While the vacuole 

in pollen tubes is located far behind the tip in the shank, the vacuole in growing root hairs can 

reach into the subapex (Cole and Fowler, 2006).  



 When root hairs stop growing, the vesicle accumulation in the apex disappears and the 

vacuole can fill the entire root hair. These characteristic changes in organelle distribution and 

cell morphology depend strongly on the cytoskeleton which in turn is regulated by a feedback 

loop involving membrane transport and several signaling molecules.   

 

I.2.2.1. Actin cytoskeleton in root hair tip growth 

 Actin filaments are fundamental for root hair growth, similar to what was found in other 

cell types (reviewed in (Hussey et al., 2006; Smith and Oppenheimer, 2005). Visualization of the 

actin cytoskeleton has been performed with several different probes in fixed or living root hairs. 

While longitudinal actin bundles along the shank of growing root hairs are relatively consistent 

in images with different probes, the existence of actin at the subapex and apex is somewhat 

controversial. Confocal microscopy images of actin visualized with a freeze-shattering technique 

using actin antibodies showed high actin accumulation at the maize root hair apex (Baluska et 

al., 2000). Labeling of globular actin (G-actin) by fluorescein isothiocyanate (FITC)-DNase I 

also showed that G-actin accumulated extensively in the apex in growing root hairs of wheat. 

This accumulation disappeared and was replaced by thick filamentous actin (F-actin) extending 

into the tip in fully grown root hairs (He et al., 2006). Co-visualization of G-actin and F-actin by 

labeling with FITC-DNase I and Tetramethyl Rhodamine Isothiocyanate (TRITC)-Phalloidin, 

respectively, showed distinct localization of G-actin and F-actin in growing root hairs. While G-

actin accumulated at the apex, F-actin was presented in the shank of the growing root hairs and 

could not penetrate into the apex (He et al., 2006).  

 GFP-conjugated actin binding proteins also have been used to visualize actin filaments. 

This technique offers the advantage of revealing F-actin dynamics during root hair growth. 



However, this has to be balanced with potential artifacts resulting from over-expression of the 

labels. Initial experiments with GFP-talin transformed Arabidopsis displayed the high 

accumulation of actin at the apex of growing root hairs (Baluska et al., 2000). In subsequent 

years, it was revealed that over-expression of GFP-talin could cause severe developmental 

defects in transgenic plants (Ketelaar et al., 2004). Many studies now employ a fimbrin-based 

marker to visualize actin dynamics in all cells of several species (Figure. I.3.A). The second 

actin binding domain of fimbrin fused to the C-terminus of GFP (GFP-FABD2) displayed more 

fine actin filaments than GFP-talin and did not show any obvious developmental defects (Voigt 

et al., 2005). In contrast to GFP-talin, GFP-FABD2 (or GFP-FABD2-GFP for brighter signals) 

did not accumulate in the apex of growing root hairs of transgenic Arabidopsis seedlings 

(Sheahan et al., 2004; Wang et al., 2008). However, FABD2-GFP transformed Medicago 

truncatula displayed accumulation of actin at the apex (Miller et al., 1999; Timmers et al., 2007; 

Voigt et al., 2005), suggesting that actin organization might differ between the species. Recently, 

a new actin marker, Lifeact has been introduced which is based on the actin-binding domain of 

yeast ABP1 (Era et al., 2009). Lifeact-Venus revealed a similar actin cytoskeleton as GFP-

FABD2, however, it had a better resolution at the root hair tip, so that an irregular actin mesh in 

the subapex and highly dynamic fine filaments reaching into the tip of the apex could be 

observed (Era et al., 2009).  

  Based on results from a variety of cell types, it is generally assumed that a central 

function of actin filaments is to deliver membrane compartments to the apex of root hairs in 

order to provide cell wall components and membrane lipids necessary for growth, as well as 



 

 

Figure I.3. Distinct distribution of cytoskeletal elements and vesicles during root hair tip 

growth 

A. Actin cytoskeleton, visualized with FABD2-YFP. In growing root hairs, cortical F-

actin filaments array mostly longitudinally along the shank and are absent from 

subapex and apex of root hairs. In contrast, thick bundles of actin cables reach into 

the apex in fully-grown root hairs.     

B. Microtubules, visualized by GFP-MBD. Growing root hairs display longitudinal or 

helical microtubules along the root hair shank. Note that microtubules do not reach 

the extreme apex of the growing root hair while they do so in growing root hairs 

(Reprinted with permission from Van Bruaene et al. 2004).  

C. RabA4b-YFP-labeled vesicles accumulate at the tip of growing root hairs. This 

accumulation is tightly correlated with root hair growth; consequently, fully-grown root 

hairs lack the accumulation of the RabA4b-YFP vesicles at the tip.  



 several regulatory factors (Baluska and Volkmann, 2002). The contribution of actin dynamics to 

root hair tip growth has been exposed by treatment with actin disrupting drugs, Latrunculin B 

(LatB) (Baluska et al., 2000; Bibikova et al., 1997) and cytochalasin D (Miller et al., 1999). The 

effect of LatB is dosage-dependent. A one hour treatment with as little as 50 nM LatB reduced 

root hair growth by 25% while concentrations higher than 500 nM led to complete cessation of 

root hair growth in Arabidopsis (Bibikova et al., 1999). Concentrations of more than 1 μM 

cytochalasin D also caused cytoplasmic streaming to stop within 30 min and 10 μM cytochalasin 

D could kill root hairs within 15 min in Medicago (Miller et al., 1999). Overall, disruption of 

actin filaments causes root hairs to stop growing, suggesting that actin organization is critical for 

tip growth. Genetic studies have corroborated this conclusion. Over decades, numerous root hair 

mutants of Arabidopsis have been isolated in several studies (reviewed in (Guimil and Dunand, 

2007) and some of them are mutants of either components of actin filaments or regulators of 

actin dynamics. For example, der1, a mutant of ACTIN2 (ACT2), displayed a cessation of root 

hair growth after bulging (Ringli et al., 2002) with additional pleiotropic phenotypes in different 

tissues (Gilliland et al., 2002). ACT8, the isoform most similar to ACT2, also contributes to root 

hair tip growth. act8 mutants showed around 50% shorter root hairs than wild type and 

overexpression of ACT8 could complement the act2 mutant phenotype (Kandasamy et al., 2009). 

Mutation of several regulators of actin dynamics also displayed an arrest of tip growth in root 

hairs; induced overexpression of AIP1, a F-actin capping protein, resulted in short root hairs 

(Ketelaar et al., 2007), and overexpression of PFN1, an Arabidopsis profilin isoform, stimulated 

root hair tip growth and resulted in root hairs that were twice as long as wild type 

(Ramachandran et al., 2000).  Finally, mutation of AtFH8, an Arabidopsis group Ie formin 



known to regulate actin dynamics, caused an arrest of root hair tip growth after bulge formation 

(Deeks et al., 2005).                            

 

I.2.2.2. Myosin in root hair tip growth 

 While the actin cytoskeleton has been recognized as an important factor for tip growth, 

the involvement of myosins, motor proteins that utilize F-actin as a track, was not clear until 

recently. Based on evidence from pollen tubes and circumstantial evidence from the importance 

of the actin cytoskeleton (Tang et al., 1989; Yokota et al., 2000), the contribution of myosins to 

root hair tip growth was proposed (Tominaga et al., 2000). Recent studies with truncated class XI 

myosins fused to GFP variants at their N-terminus showed their localization on various 

membrane compartments suggesting a function in intracellular vesicle trafficking (Avisar et al., 

2009; Li and Nebenführ, 2007) Direct evidence supporting the involvement of myosin in root 

hair tip growth was provided by the identification of a mutant of Arabidopsis thaliana, xi-k. xi-k 

plants showed short root hairs and abnormal trichome branching patterns (Ojangu et al., 2007; 

Peremyslov et al., 2008). MYA2, another one of the 13 class XI myosin genes in Arabidopsis, 

also seems to be involved in root hair tip growth based on the fact that mya2 mutants also 

displayed short root hairs (Peremyslov et al., 2008). Interestingly, in these mutants, movements 

of three organelles, Golgi, peroxisomes, and mitochondria, were dramatically slower than in wild 

type (Peremyslov et al., 2008). It is still unknown how a single myosin can contribute to the 

movement of three distinct organelles, particularly, since none of the tested YFP-myosin tail 

fusions localized to these organelles (Li and Nebenführ, 2007; Reisen and Hanson, 2007; 

Sparkes et al., 2008). A possible hypothesis is that one of the cargoes of XI-K might be a 

regulator of cytoskeleton dynamics, thus resulting in defects of movements of many organelles. 



In support of this contention, recent observation using variable-angle evanescent wave 

microscopy and spinning disc confocal microscopy showed that actin turnover might be required 

for myosin-based mitochondrial trafficking (Zheng et al., 2009). Thus, while it is now firmly 

established that myosins are involved in root hair tip growth, more research is needed to decipher 

the mechanism by which myosins operate in this process. 

 

I.2.2.3. Microtubules and root hair tip growth  

 The organization of microtubules has been initially visualized in root hairs using electron 

microscopy and immunofluorescence with anti-tubulin antibodies (Lloyd and Wells, 1985; Traas 

et al., 1985). Later, transgenic plants expressing fluorescent proteins fused to -tubulin 6 (GFP-

TUA6) or to the microtubule binding domain of microtubule associated protein 4 (GFP-MBD), 

were used to reveal dynamic changes of microtubule organization during root hair growth (Bao 

et al., 2001; Timmers et al., 2007). After the reorganization event during root hair bulging, dense 

cortical microtubules (CMTs) are arranged longitudinally along the shank of the root hairs. 

Similar to the organization of F-actin, CMTs have not been detected in the apex of growing root 

hairs (Figure. I.3.B). Once root hairs are fully grown and the central vacuole approaches the root 

hair tip, longer and less dense CMTs are arranged longitudinally or spirally along the root hairs 

and can reach to the very tip of the root hairs (Timmers et al., 2007; Van Bruaene et al., 2004). 

Endoplasmic microtubules (EMTs) initially have been observed in CLSM images in the interior 

of root hairs expressing GFP-MBD in Medicago truncatula (Sieberer et al., 2002). EMTs 

displayed a more irregular arrangement than CMTs and predominantly accumulated around the 

nucleus as well as in the subapex. This distribution later has also been shown to exist in 

Arabidopsis root hairs (Van Bruaene et al., 2004). EMTs in the subapex of growing root hairs are 



highly dynamic. While the majority of CMTs array parallel to the shank of root hairs, EMTs at 

the subapex continuously change their directions and lengths (Van Bruaene et al., 2004).  

 In contrast to actin filaments, which play a major role in tip growth, microtubules are 

generally thought of being primarily important for maintaining the direction of root hair growth. 

Treatment with the microtubule-depolymerizing drug, oryzalin, and the microtubule-stabilizing 

drug, taxol, showed a loss of directionality of Arabidopsis root hair growth (Bibikova et al., 

1999). Both taxol and oryzalin-treated root hairs displayed wavy root hairs as well as branched 

root hairs. Both drugs showed a similar effect on the angular deviation from straight root hairs, 

however, taxol was more effective in triggering branching than oryzalin (Bibikova et al., 1999), 

suggesting that the two drugs can distinguish between two distinct roles of microtubules during 

root hair growth. Analysis of mutants in -tubulin (tua6) (Bao et al., 2001) and in a microtubule-

associated protein (mor1) (Whittington et al., 2001) also revealed branched or wavy root hair 

growth, consistent with the pharmacological analysis. Thus, microtubules appear to be required 

for maintaining a stable polarity for straight growth.   

 The growth rates of Arabidopsis root hairs did not change during treatment with the 

microtubule disrupting drugs treatments (Bibikova et al., 1999) although Medicago truncatula 

root hairs had only 60% of root hair growth rate of untreated root hairs (Sieberer et al., 2002). 

Thus, it is likely that microtubules do not play a direct the role in elongating root hair cell 

surface. Recent studies of mutants in armadillo repeat-containing kinesins (ARKs or MRH2) of 

Arabidopsis showed abnormal root hair growth but no reduced root hair growth rate, further 

supporting a microtubule function in restricting the elongation zone of root hair tip growth (Sakai 

et al., 2008; Yang et al., 2007; Yoo et al., 2008).  



 Given their co-alignment patterns (Geitmann and Emons, 2000) and evidence from other 

cell types (Collings et al., 2006), an interaction between microtubules and the actin cytoskeleton 

has been proposed. Using propyzamide to depolymerize microtubules and cytochalasin B to 

destabilize actin filaments, the interaction between microtubules and actin cytoskeleton has been 

studied in detail in the root hairs of Hydrocharis dubia (Tominaga et al., 1997). Simultaneous 

treatment with both inhibitors was sufficient to stop cytoplasmic streaming and growth. Washout 

of Cytochalasin B in the presence of propyzamide did not allow full recovery of the longitudinal 

actin cytoskeleton indicating that longitudinal microtubules are required to establish the actin 

cables normally found in the root hair shank (Tominaga et al., 1997). At the same time, actin 

filaments appeared to be required for normal MT dynamics since longer treatment of root hairs 

with LatB permitted the formation of MT bundles in the apical or subapical regions (Timmers et 

al., 2007). A possible candidate for this interaction between actin filaments and microtubules is 

ARK/MRH2 kinesin, since it could be shown that ARK1/MRH2 can bind to actin filaments in 

vitro (Yang et al., 2007). Further work will be necessary to confirm this hypothesis. 

 

I.2.2.4. Membrane trafficking and tip growth 

 To increase the cell size, massive secretion at the tip is required to provide membrane and 

cell wall components. Additionally, active endocytosis occurs at the apex of root hairs to recycle 

regulators and remove excess membrane (Ovecka et al., 2005). These membrane trafficking 

activities are reflected in the accumulation of secretory and endocytic vesicles in the apex of 

growing root hairs.  The small GTPase, RabA4b, has been successfully used as a vesicle marker 

in root hairs (Figure. I.3.C). In growing root hairs, RabA4b-YFP-labeled vesicles accumulated 



at the apex of root hairs and LatB treatment released this accumulation coincident with a 

cessation of growth (Preuss et al., 2004).  

 It is not surprising that many root hair mutants are defective in genes encoding proteins 

involved in membrane trafficking (Gilliland et al., 2002). Members of the Ras-like small GTPase 

superfamily have roles in various endomembrane compartments and several mutants of these 

proteins showed impaired tip growth. A major example is ROP, a Rho-like GTPase that 

coordinates actin organization and membrane trafficking by stimulating multiple signaling 

pathways (Yalovsky et al., 2008). Beside its contribution to root hair initiation (see section 

I.2.2.2.), ROP-GTPase functions as a critical player in root hair tip growth (Molendijk et al., 

2001). ROP-GTPase is normally localized to almost the entire plasma membrane of plant cells 

but is restricted to the apical plasma membrane of growing root hairs. ROP-GTPase activates 

phosphatidyl-inositol (PtdIns)-monophosphate kinase (PIPK), a key regulator to maintain tip 

focused membrane trafficking and actin organization (Yalovsky et al., 2008). It also stimulates 

NADPH oxidase activity, which leads to the production of reactive oxygen species (Sheahan et 

al., 2004), a critical factor involved in regulating calcium gradients at the apex of root hairs 

(Baxter-Burrell et al., 2002). Many regulators of ROP-GTPase activity were also found to be 

involved in root hair tip growth. An Arabidopsis root hair defective mutant, supercentipede 1 

(scn1), has a similar phenotype to ROP-GTPase mutants, such that mutants have multiple root 

hair initiation sites in a cell and root hair tip growth is aborted (Carol et al., 2005). SCN1 encodes 

a Rho-GTPase GDP dissociation inhibitor (RhoGDI) that restricts ROP activity to the apex in 

order to maintain a polarity for root hair growth. Similarly, ROP localization on the plasma 

membrane is a prerequisite for its function and S-acylation of ROP-GTPase is necessary for its 

membrane localization (Yalovsky et al., 2008). TIP1 encodes a S-acyl transferase (Hemsley et 



al., 2005) and Arabidopsis tip1 mutants were initially isolated based on their extremely short, 

sometimes branched root hair phenotype (Schiefelbein et al., 1993). Since S-acyl transferases 

tend to modify only specific target proteins, it will be interesting to test whether ROPs are targets 

for TIP1.  

 Other regulators of root hair tip growth are specific phosphoinositides that can serve as a 

recognition landmark for certain cytosolic proteins, thus recruiting them to membrane patches 

where they then perform their functions. For example, PI(4,5)P2 accumulates in the apical 

plasma membrane of root hairs and many modifying proteins of this lipids are important for the 

root hair tip growth mechanism (Cole and Fowler, 2006; Xue et al., 2009). RabA4b interacts 

with PtdIns-4OH Kinase, PI-4K 1 that synthesizes a precursor of PI(4,5)P2 and both proteins 

colocalize to small vesicles at the apex of growing root hairs (Preuss et al., 2006). A pi4k 1/2 

double mutant displayed shorter root hairs than wild type, which were often branched or jagged. 

PI-4K 1 also binds to CBL1, a calcium sensor, implying that activity of PI-4K 1 is dependent 

on the calcium gradient present at the root hair apex. Another root hair defective mutant, rhd4, 

showed short and wavy root hairs and RabA4b-YFP accumulation at the apex was altered in the 

mutants (Thole et al., 2008). RHD4 encodes PI4P-phosphatase and might function to balance 

PI4P levels to maintain polar tip growth at the root hair apex. RHD4 might also have a function 

in actin organization since rhd4 mutants showed more patchy actin organization and thinner 

filaments in root epidermal cells compared with wild type, however, the detailed mechanism of 

this interaction is not yet clear.   

 

I.2.2.5. Signaling factors in tip growth 



 It has long been known that intracellular calcium gradients in the root hair cytoplasm 

have an important role in root hair growth (Hepler et al., 2001). Besides a role of calcium as a 

second messenger in signaling cascades, it has been suggested that calcium might restrict the site 

of membrane trafficking and also modify the cytoskeleton at the root hair tip so that the root hair 

can grow straight (Wymer et al., 1997). For example, calcium can affect F-actin polymerization 

by controlling actin-binding protein activity, such as profilin, actin-depolymerizing factor 

(Radford and White), or villin (reviewed in Hussey et al., 2006). In support of this, profilin also 

accumulates in the root hair tip (Baluska et al., 2000) and can lead to sequestration of G-actin in 

a calcium dependent manner (Kovar et al., 2000). Calcium may also control tip growth by 

several other mechanisms in addition to a modulation of F-actin dynamics. For example, G-actin 

accumulation at the apex of wheat root hairs as visualized with FITC-DNase I could be disrupted 

by treatment with dibromo-l,2-bis(o-aminophenoxy)ethane-N,N,N’,N’-tetraacetic acid (BAPTA) 

(He et al., 2006). BAPTA is well known to rapidly dissipate calcium gradients at the growing 

root hair tip and consequently stops root hair tip growth (Felle and Hepler, 1997). It was also 

shown that membrane trafficking is regulated by the calcium gradient since treatment with the 

calcium ionophore A23187 caused the release of the accumulation of RabA4b-YFP from the 

apex and a stop of root hair growth (Preuss et al., 2006). Despite these insights, the precise 

mechanism by which calcium regulates tip growth is still unknown. Given the role of calcium as 

a key regulatory factor for many cellular events, it is likely that the calcium gradient coordinates 

tip growth by acting through multiple regulatory factors at the same time.        

 Similar to pollen tubes, the tip-focused calcium gradient in root hairs has been shown to 

oscillate within a range from 0.2 μM to more than 1.5 μM (Bibikova et al., 1997; Wymer et al., 

1997).  These calcium oscillations are tightly correlated with the cell growth rate (Monshausen et 



al., 2008). Recent studies have investigated this connection in more detail by using the 

ratiometric calcium marker, yellow Cameleon 3.6 (Monshausen et al., 2008). This study 

demonstrated that root hair growth rate oscillations are typically followed by cytosolic calcium 

oscillation at the root hair apex with about 5 sec lag time. This observation suggests that a high 

concentration of cytosolic calcium at the root hair apex restricts root hair growth. This 

hypothesis was supported by observations that treatment with 200 μM La3+, a blocker of Ca2+ 

channels, led to an acceleration of root hair growth. Similarly, treatment with 10 μM A23187, a 

calcium ionophore, blocked root hair growth (Monshausen et al., 2008). Cytosolic calcium 

gradients are accompanied by pH changes and a ROS gradient in the cytosol as well as in the cell 

wall space. ROS are also considered a critical factor to sustain polar growth, since rhd2, a mutant 

of Arabidopsis NADPH oxidase, displayed short root hairs and the typical calcium gradient in 

root hair tip was absent (Foreman et al., 2003). Given that addition of external ROS can recover 

the root hair elongation and ROS can activate calcium channels, it is likely that accumulation of 

ROS at the tip is required to open calcium channels at the plasma membrane of the root hair apex 

in order to increase the cytosolic calcium concentration at the tip (Foreman et al., 2003). 

Interestingly, unlike animal NADPH oxidase, plant NADPH oxidases have two EF hand motifs 

at their N-terminus suggesting their regulation by calcium (Sagi and Fluhr, 2001). Indeed, RHD2 

can be activated by calcium in the growing root hair, resulting in a positive feedback loop (Sagi 

and Fluhr, 2001; Takeda et al., 2008). This inter-dependence of calcium and ROS signaling leads 

to alternating oscillations of ROS and Ca2+gradients in the growing root hair tip, which appears 

to be necessary for maintaining polar root hair growth (Monshausen et al., 2007).  

 



I.2.3. Conclusion 

 Root hairs are very dynamic cells which can grow relatively fast compared to other plant 

cells. They are also unique in their asymmetric outgrowth from a part of root epidermal cells. 

The growth of root hairs is regulated by a highly elaborate mechanism that involves many 

components, such as the cytoskeleton, membrane trafficking, and signaling factors. Two distinct 

steps of root hair development, root hair initiation and tip growth, are regulated in different ways 

by the regulatory factors (Figure. I.4.). However, there are common rules for this regulatory 

system. First, signals from genetic and environmental cues are translated into a change of the 

cytoskeleton. Second, the dynamic cytoskeleton rearrangement results in polar trafficking of 

membrane compartments to facilitate surface increase at the tip. These processes are coordinated 

by signaling factors that help to maintain cell polarity and allow growth only at the root hair tip. 

Importantly, these functional steps are all interdependent, so that they reinforce each other in a 

series of interlocking feedback loops (Figure. I.5.).  

 ROPs are critical for both maintaining cell polarity and growth of root hairs since they 

determine the site of exocytosis and maintain calcium oscillation by activating ROS production 

which in turn activates calcium channels. The feedback loop of calcium and ROS oscillation is 

translated into the distinct organization of the actin cytoskeleton in different region of root hairs. 

High calcium concentration prevents F-actin formation at the apex but allows formation of a 

dynamic actin mesh in the subapex. Further back in the root hair, F-actin cables parallel to the 

shank of root hairs deliver organelles to the subapical region. Among these organelles, Golgi 

stacks provide membrane compartments that contain key regulators to the tip of root hairs. As a 

result, vesicles accumulate in the apex and exocytosis occurs preferentially at the tip. Exocytosis  



of calcium channels reinforces the calcium oscillations thereby stabilizing the feedback system. 

At the same time, PtdIns 4,5-P2 (PIP2), a derived membrane lipid that is deposited at the apex by 

exocytotic vesicles, activates ROP proteins to stimulate ROS production, while ROP activity is 

spatially limited by interaction with RhoGDI in the subapex. Remarkably, ROPs activate PIP-

kinase to produce PIP2 in the membrane, resulting in a positive feedback loop that stabilizes ROP 

activity at the apex. The net result of these interdependent feedback loops is a series of stable 

oscillation that ensures polar growth over long periods.  

 Every factor in this regulatory network plays a pivotal role, so that slight imbalances of 

any of these factors affect the entire system, resulting in failure of normal root hair growth. 

Recent studies have identified many of the genes responsible for root hair development and their 

functions, and made big strides in revealing the underlying molecular mechanisms of root hair 

development. However, it should be emphasized that many details still need to be clarified. For 

example, the precise role of myosins on root hair development, as well as the contribution of 

endocytosis to tip growth still remain in question. Further genetic, cell biological, and 

biochemical studies to investigate the dynamic interplay of the various factors involved in root 

hair growth combined with the collection of quantitative data and computational modeling will 

be necessary to elucidate these and other questions. 



Figure I.4. Cellular architecture during root hair development 

Schematic representation of root hairs during four stages of root hair development. 

Upper panels show actin filaments (grey lines) and secretory vesicles (black dots). 

Lower panels show microtubules (darker grey lines) and the tip-focused calcium 

gradient (darker color represents higher calcium concentration).  

A. Early events after bulge site selection. Note the fragmentation of actin filaments 

and the local loss of microtubule organization.  

B. Initial outgrowth and bulge formation. Actin filaments begin to form a dense mesh 

behind the tip region where vesicles accumulate and the calcium gradient forms. 

C. Tip growth. Cytoskeletal elements are mostly longitudinal along the shank but do 

not reach into the apex. Vesicle accumulation and calcium accumulation are maximal 

at the apex. 

D. Fully grown hair. Vesicle accumulation and calcium gradient at the tip disappear 

and longitudinal actin filaments and microtubules reach into the apex.   



 



Figure I.5. Self-reinforcing feedback regulation of tip growth 

Simplified model of regulatory mechanisms that affect the actin cytoskeleton in 

different areas of the root hair during tip growth. For details see text. 

 





I.3. MOLECULAR GENETIC MECHANISM OF ROOT HAIR 

POSITIONING 

 

 Although the morphology of plants differs greatly between species, there are four 

fundamental structures found in all flowering plants: root, leaves, flowers and seeds. The plant 

root is a critical organ for plants that allows them to survive by absorbing water and nutrients 

from the soil. Conceptually, roots can be divided into four different zones: a meristematic zone, a 

cell elongation zone, a root hair initiation zone, and a maturation zone (Figure. I.6.A). In the 

meristematic zone, cell divisions produce new cells and newly divided cells determine their 

fates. Cells then increase in length in the elongation zone. The root hair initiation zone can be 

viewed as a part of the maturation zone since cell differentiation occurs at this point, so that 

individual cells have their own morphologies. However, very young epidermal cells initiating 

root hair production still can elongate, thus, the root hair initiation zone could be considered as a 

transition state from cell elongation zone to maturation zone. Root hairs increase the surface area 

of the root and therefore aid in the fundamental function of this organ. In most species, not every 

epidermal cell forms a root hair. Many studies have been conducted to identify genes and their 

relationships to elucidate the elaborate signal cascade of regulatory mechanism that lead to root 

hair positioning.  

 

I.3.1. Variations in root hair patterning in plants 

 Distinctive distribution patterns of root hairs are observed depending on the species 

(Clowes, 2000; Dolan and Roberts, 1995; Tsai et al., 2003). Three patterns are represented in  



Figure I.6. Arabidopsis root architecture 

A. Arabidopsis seedling grown on a vertical plate. Four different zones can be shown 

conceptually depending on cell morphogenesis. Root apical meristem at the tip of 

root produces new cells by cell division and those cells keep dividing to form tissues 

depending on the position in meristematic zone. In elongation zone, cells, whose fate 

is already determined, increase their length and they start producing root hairs. Root 

hair growth continues on early stage of maturation zone.   

B. Cross-section of root hair initiation zone. Arabidopsis has simple root architecture 

where epidermis, cortex, and endodermis exist as single layers of cells around the 

vascular bundle in the center.     
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vascular plants based on the distribution of root hairs on the root epidermis (Figure. I.7.). Type I 

plants have root hairs randomly distributed (Figure. I.7.A.). In type I distribution, every root 

epidermal cells has the potential to produce root hairs but only a few actually form root hairs. 

This type of distribution occurs in most dicots and monocots, as well as in ferns (Clowes, 2000). 

Since all root epidermal cells can produce root hairs, there is no regular pattern for this type. 

Type II patterns are observed in many lower ferns and monocots (Clowes, 2000). Plants with this 

type have two differently sized root epidermal cells arrayed along the longitudinal axis and only 

short cells produce root hairs (Figure. I.7.B.). Finally, many eudicots show a type III root hair 

pattern (Figure. I.7.C.). Usually, epidermal cells divide a file of root hair-producing cells 

(trichoblast or H-cell) and non-hair cells (atrichoblast or N-cell.). Interestingly, type I can be 

additive to other patterns. For example, Echium plantagineum L. showed root hairs on every 

epidermal cell but root hairs were of two different lengths (Tsai et al., 2003). Echium is a type III 

plant that still has information of H-cells or N-cells, thus the epidermis can produce long hair 

cells on some files of epidermis and short hairs on the other files of cells. In most species, the 

molecular machinery of patterning is not yet clear. However, regardless of types, it has been 

thought that the upstream machinery of fate determination regulates common downstream 

players, such as genes involved in cell wall synthesis, cell wall-loosening, and cell polarity 

processes. Recently, promoter analysis has identified typical cis-elements for root hair (RHE) in 

several model plants with different root hair patterning types (Kim et al., 2006). This finding 

supports the concept of a “root hair regulon”.  

 Arabidopsis thaliana is a typical type III plant. The Arabidopsis root has a simple 

architecture. It is consist of only four types of tissues; epidermis, cortex, endodermis, and 

vascular tissues (Figure. I.6.B.). Epidermis, cortex, and endodermis are formed by single layers  



 

Figure I.7. Three types of root hair patterning in plants  

Simplified figures explaining three types of root hair patterning in higher plants (after 

Kim et al., 2006) 

A. Random distribution of root hairs. Among model plants, maize and Medicago 

truncatula are in this type.  

B. Asymmetric cell division on root epidermal cells. Plants in this type display two 

types of epidermal cells in different sizes. Rice and wheat are in this type. 

C. Positionally cued. Position of epidermal cell relative to cortex cell decides the fate 

of epidermal cell to produce root hairs. Genetic mechanism of this type has been 

well studied in Arabidopsis thaliana. Cabbage and Impatiens balsamina also fall into 

this group. 

A. Type I C. Type IIIB. Type II

Random Positionally cuedAsymmetric 
cell division



of cells; the vascular tissue also is composed of a simple set of cells. Normally, viewed in cross 

section of the Arabidopsis primary root has eight cortex cells while epidermis produces eight 

trichoblasts and approximately 11-14 atrichoblasts. The molecular genetic basis of root hair 

patterning on the epidermis has been extensively studied with Arabidopsis thaliana.           

 

I.3.2. Early embryonic fate determination mechanism of root hair cells  

 In Arabidopsis, the ultimate fate of epidermal cells relies on their position relative to the 

cortex (Galway et al., 1994). Epidermal cells are smaller than cortex cells so two kinds of 

epidermal cells can be generated based on their position relative to the cortex. Epidermal cells 

attached to two cortical cells always differentiate as hair-producing cells resulting in eight root 

hair cells since Arabidopsis has eight cortical cell files (Figure. I.6.B.). Forward genetic 

approaches have led to the identification of many genes that regulate root hair patterning in 

Arabidopsis (Bernhardt et al., 2005; Kirik et al., 2004a; Kirik et al., 2004b; Lee and Schiefelbein, 

1999; Masucci et al., 1996; Masucci and Schiefelbein, 1996; Schellmann et al., 2002). Most of 

the genes encode transcription factors that regulate downstream genes involved in root hair 

epidermis differentiation and, with single and double mutants and promoter-reporter analysis, a 

well-supported signal transduction model has been developed (Figure I.8.). This mechanism is 

very interesting in three aspects; at first, upstream regulators show position-specific expression 

patterns, so that stripe-like patterns have been observed with promoter-reporter analysis (Galway 

et al., 1994; Lee and Schiefelbein, 1999; Masucci and Schiefelbein, 1996; Schellmann et al., 

2002). Secondly, some transcription factors in the middle of signal transduction cascades can 

travel to neighboring cells where the proteins actually function (Bernhardt et al., 2005). 



 

 

Figure I.8. Schematic mechanism of transcriptional regulation of root hair positioning 

Simplified diagram of root hair positional cued signal cascade on root epidermal 

cells of Arabidopsis thaliana  (after Guimil and Dunand, 2007; Kwak et al., 2008; 

Schiefelbein et al., 2009)  
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Finally, gene expression in the early steps of this pathway is regulated by the expression of later 

steps of the pathway in a feedback loop (Kwak and Schiefelbein, 2008; Lee and Schiefelbein, 

2002).  

 There are nine major regulators that have been identified by their mutant phenotype and 

that have been characterized by double mutant analysis and promoter-reporter analysis. 

Mutations in TRANSPARENT TESTA GLABRA (Schellmann et al.), GLABRA2 (GL2), GLABRA3 

(GL3), ENHANCER OF GLABRA3 (EGL3), and WEREWOLF (WER) caused plants to produce 

more root hairs in N-cells (Bernhardt et al., 2003; Galway et al., 1994; Lee and Schiefelbein, 

1999; Masucci and Schiefelbein, 1996), while mutations in CAPRICE (CPC), TRIPTYCHON 

(Moriau et al.), and ENHANCER OF TRY AND CPC (ETC1) showed less (or no) root hairs even 

on H-cells (Kirik et al., 2004a; Schellmann et al., 2002; Simon et al., 2007; Wada et al., 2002). 

Recently, SCRAMBLED (SCM) was discovered to be involved in this root epidermal cell 

patterning (Kwak and Schiefelbein, 2007). It is remarkable that SCM encodes a leucine-rich 

repeat receptor-like kinase localized at the plasmamembrane of the root epidermis which might 

receive positional signals from cortical cells (Kwak and Schiefelbein, 2008). In H cells, SCM 

might repress WER transcription (Kwak et al., 2005), thus, WER is expressed mainly in N-cells 

(Figure. I.8.A.). WER encodes a R2R3 MYB-domain transcription factor which forms a 

complex with TTG, GL3, and EGL3 in N-cells. Several gene expression and genetic studies up 

to date suggests that the complex with GL3, EGL3, TTG, and WER in N-cells activates the 

expression of GL2, a homeo domain-leucine-zipper transcription factor which down-regulates 

several downstream genes involved in root hair formation (Bernhardt et al., 2005; Lee and 

Schiefelbein, 1999; Masucci et al., 1996; Masucci and Schiefelbein, 1996; Tominaga-Wada et 

al., 2009). TTG encodes a small protein which has WD40 repeats and GL3 and EGL3 encode 



related basic helix-loop-helix (bHLH) transcription factors. Interestingly, gene expression of 

GL3 and EGL3 occurs in H-cells although proteins actually function in N-cells. It has been 

suggested that GL3/EGL3 proteins move to N-cells for their position-specific function. The 

presence of EGL3/EGL3 in N-cells can inhibit the expression of their own genes in N-cells 

which provides a feedback loop to control gene expression (Bernhardt et al., 2005). Besides 

activation of GL2 expression and self-repression of their own genes, the GL3/EGL3 complex can 

activate three genes, CPC, TRY, and ETC, in N-cells, the encoded proteins of which have also 

been shown to travel to neighboring cells (H-cells). These three genes encode small one-repeat 

MYB proteins that appear to have a lack of transcriptional activity which inhibits GL3/EGL3 

activity by competing with WER for binding to the GL3/EGL3 proteins (Figure. I.8.B.) 

(Tominaga et al., 2007) 

 

I.3.3. Plasticity from environmental factors 

 Several studies have shown that the length and density of root hairs can be modified in 

response to differences in environmental factors, including nutrient deficiency and hormonal 

changes (Bates and Lynch, 2000a; Bates and Lynch, 2000b; Müller and Schmidt, 2004; Zhang et 

al., 2003). Limitation of essential nutrients can lead to abnormal root development and additional 

root hair production to increase uptake of these nutrients (Lopez-Bucio et al., 2003). Primarily, 

phosphorus and iron can change growth rates of the roots as well as root architecture. Under 

limiting iron and phosphorus, wild type Arabidopsis produce more root hairs on both H-cells and 

N-cells than under normal conditions (Müller and Schmidt, 2004). Observation of the effects of 

iron and phosphorus deficiency on root hair formation in wild type and several mutants involved 



in root hair formation allowed the effect of iron (Fe) to be distinguished from that of phosphorus 

(P) deficiency. Although in wild type both Fe and P deficiency caused relatively similar 

increases of root hair numbers, in mutants of GL2 and downstream genes, Fe and P display 

distinct effects suggesting that an additional pathway related to P deficiency might exist (Figure. 

I.9.) (Guimil and Dunand, 2006; Müller and Schmidt, 2004).    

 Mutant analyses revealed the involvement of hormones in determining root epidermal 

cell fates. For example, ctr1 mutants of Arabidopsis, which have a mutation in CTR1 that 

encodes a protein kinase involved in ethylene signaling, displayed root hairs on every root 

epidermal cell (Kieber et al., 1993). It also has been shown that the lack of root hairs on several 

mutants related to auxin and ethylene synthesis can be rescued by providing exogenous 

hormones (Masucci and Schiefelbein, 1994; Tanimoto et al., 1995). Although the molecular 

mechanism of hormones involved in root hair patterning is still unknown, it is likely that these 

hormones function either independently or downstream of GL2 in the type III pathway (Masucci 

and Schiefelbein, 1996). Recently, it has been shown that sucrose signaling is partly involved in 

sensing phosphate deficiency (Jain et al., 2007). It is likely that auxin and sucrose signaling 

contribute to sensing phosphate deficiency not in the primary root but in lateral roots. However, 

a detailed mechanism for how these independent signaling pathways can intertwine on root hair 

patterning still remains to be investigated.        

 



 

Figure I.9. Schematic pathway of root hair positioning with environmental factors 

Simplified diagram of the control of root hair positioning by phosphorus and iron 

deficiency in Arabidopsis thaliana  (after Müller and Schmidt. 2004; Guimil and 

Dunand, 2006) 
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I.3.4. Conclusion  

 Mutant analysis combined with ectopic gene regulation and determination of expression 

patterns has resulted in a detailed pathway leading to normal root hair patterning in Arabidopsis 

(Schiefelbein et al., 2009). However, there still are many things to be clarified. For example, it is 

unclear how proteins expressed in a specific cell (CPC/TRY/ETC in N-cells and GL3/EGL3 in 

H-cells) can move to their neighboring cells. It has been suggested that CPC proteins might 

move through plasmodesmata based on indirect evidence from SHORTROOT and KNOTTED1. 

These are also MYB transcription factors like CPC and are known to travel between cells 

through plasmodesmata (Schiefelbein et al., 2009; Wada et al., 2002). However, there is no 

direct experimental evidence to date. In addition, biochemical evidence for protein interactions in 

the complex are not sufficient. Recent computational modeling of mechanism of intracellular 

movement of CPC and GL3 would help to establish the pathway (Savage et al., 2008). Except 

for competition of binding on MYB transcription factor between CPC and WER, all protein 

complexes in the model are only predicted based on genetic evidence with mutants and gene 

expression in the mutants. Finally, the mechanism by which SCM, a receptor on the 

plasmamembrane of root epidermis can repress the gene expression of WER is still in question. 

The nature of the ligand of SCM is also unknown. Identification of additive mutants using 

existing mutants is also necessary to figure out the entire signaling mechanism of root hair 

positioning. The interaction of the positionally cued pathway and regulation by environmental 

factors also needs to be investigated further. In this context, it might be helpful to carefully 

observe the effects of hormones or nutrient deficiency on the mutants involved in positional 

pattern formation.         



I.4. RATIONALE OF THIS STUDY 

  

 Fast and efficient deposition of cell components upon internal or external signals is 

essential to plant development. In a small cell, distribution might be possible by free diffusion of 

individual components. However, in a large cell or highly polarized cell, such as root hairs, faster 

and directional delivery is more effective than slow and random diffusion. Acto-myosin 

cytoskeleton has been suggested to serve this fast and directional trafficking (Yalovsky et al., 

2008). Several studies showed examples of intracellular trafficking of molecules, or membrane 

compartments. For example, the auxin-efflux carrier PIN1 cycles between the plasma membrane 

and an endosomal compartment in an actin-dependent manner (Geldner et al., 2001). Compared 

to the study of the function of the acto-myosin cytoskeleton in trafficking of molecules in a 

single cell, there are not many studies to provide direct evidence for the involvement of acto-

myosin cytoskeleton in plant development. There might be two explanations for this lack of 

functional studies of acto-myosin cytoskeleton in plant development. First, this could be because 

this system is highly fundamental, thus during phenotypic mutant screening it might be difficult 

to isolate the corresponding mutants since they might be lethal or give a pleiotropic phenotype. 

On the other hand, gene duplication in this essential system could have resulted in elevated gene 

redundancy which would also make it difficult to isolate mutants. 

  Recent advances in bioinformatics and genomics offer a possible solution. The 

Arabidopsis genome project revealed that 13 genes of class XI myosins are encoded in the 

Arabidopsis genome (Reddy and Day, 2001). In addition, microarray databases for gene 

expression provide excellent preliminary information for designing an experiment to characterize 

the gene function as well as quality control for gene expression studies (Zimmermann et al., 



2004). The most powerful genomic tool is a genome wide insertional mutagenesis in Arabidopsis 

(Alonso et al., 2003). This collection provides insertional mutants of genes of interest and thus 

offers the opportunity to observe a global phenotype of individual myosin mutants and facilitate 

the generation of multiple gene mutants in the myosin family. Combined with an advantage of 

Arabidopsis as a model plant, providing accessibility to detailed understanding of many 

developmental pathways and easy transformability to introduce new genes into the genome, it is 

now possible to approach myosin function with a reverse genetic approach.   

 This study will employ a combination of reverse genetic experiments and additional cell 

biological studies of organelle trafficking in mutants and wild type to address in detail the 

contribution of dynamic intracellular transport by myosin in plant cell growth and development. 



CHAPTER II. Phylogenetic analysis of class XI plant myosins and 

Class XI myosin gene expression survey in Arabidopsis 

 

 Phylogenic analysis of this chapter has been studied as a term project of the functional 

genomics class (PS605, 2006). As genome projects are updated, more myosin genes in a various 

species are available to date. Moreover, rice genome sequences in this study have been also 

updated with a better gene annotation. However, a new analysis has not been conducted and 

methods and results for this part remains as they were in the report submitted to PS605 class, 

2006. New findings after the analysis are rather discussed in Chapter VI. Conclusion.  



II.1. INTRODUCTION  

 

To date, 35 classes of myosin have been classified from 328 eukaryotic species (Odronitz 

and Kollmar, 2007). Among them, plant-specific myosins are grouped in only two classes, VIII 

and XI. Class XI myosins have six IQ motifs and a tail with structural similarity to class V 

myosin in animal and fungi. Phylogenetic analysis showed that class XI has the same ancestor as 

class V suggesting that class XI might have same functions in plant as class V in non-plant 

species (Odronitz and Kollmar, 2007). Two genes in the class XI myosin were, at first, identified 

by PCR screening in Arabidopsis and named MYA1 and MYA2 (Kinkema et al., 1994) and later 

more myosins have been predicted based on the genome sequencing database, named XI-A 

through XI-K (Reddy and Day, 2001). The relatively large number of myosin XI isoforms 

present within a single plant species suggests that the possibility of functional redundancy within 

isoforms. It is also conceivable that certain myosins might have specific functions in certain 

tissues (or cell type) or in a certain developmental stage. Thus, it would be necessary to examine 

their similarity of amino acids and spatial and temporal gene expression pattern to postulate the 

functional redundancy in plant development.    

In this study, to inform the guidance of the function of class XI myosin, phylogenic tree 

with 13 myosins in Arabidopsis and 11 myosins in rice were resolved. This relatively large 

number of isoforms may be related to their functional redundancy. In the tree, most of isoforms 

paired with one of inner species isoform or intra species isoforms. In addition, promoter-reporter 

analysis showed a diverse expression pattern of myosins over tissues and developmental stages 

to support that possible functional redundancy might exist on the various tissues and yet distinct 



function on each isoforms might occur. This phylogenic analysis and expression survey might 

help to understand which isoforms may have function on specific developmental aspects and 

whether they share some functional redundancy. 

 

II.2. MATERIALS AND METHODS 

 

II.2.1. Myosin gene search in Arabidopsis and rice 

 Arabidopsis myosin sequences identified by Reddy and Day (2001) were modified based 

on the ESTs and the sequences of gene-specific PCR products. Rice myosins were, initially, 

searched by multiple BLASTs with 13 Arabidopsis myosins using Bioedit 

(http://www.mbio.ncsu.edu/BioEdit/Bioedit.html) with whole genome annotation sequences of 

rice downloaded fro rice genome project ver. 2.0 (http://rice.plantbiology.msu.edu/). Initially, the 

cut-off E-value to isolate candidate genes was set to E=1-E0.5 and proofread sequences 

manually based on domain structure of myosins. Amino acid sequences of the class VIII myosins 

of Arabidopsis and Chara myosin XI were obtained from the myosin homepage 

(http://www.mrclmb.cam.ac.uk/myosin/myosin.html). 

    

II.2.2. Identification of motifs in the putative myosin sequences 

Motor and dilute domains in the putative myosins were identified using Pfam 

(http://www.sanger.ac.uk) with E=0.05. The IQ motif was identified with E=2. Coiled coil 

regions were detected by web-based program (http://theory.lcs.mit.edu). 



II.2.3. Sequence alignment and phylogenetic analysis 

For a preliminary alignment, Clustal X (ftp://ftp-igbmc.ustrasbg.fr/pub/ClustalX) was 

used. The aligned amino acids sequences were then modified by removing sections of low 

similarity part with Bioedit to allow resolution of a more accurate tree. To obtain the tree with 

motor domain only, amino acids sequences of motor domain defined by Pfam were taken and 

aligned by Clustal X. Maximum-likelihood analysis was performed using PHYML 

(http://atgc.lirmm.fr/phyml/) and bootstrap values were estimated with 1000 replicates for both 

full-length trees and motor domain only trees. The resulting phylogenetic relationships were 

visualized using TREEVIEW 1.6.0. 

 

II.2.4. Expression profile and gene duplication profile 

Gene expression profiles were examined by using the Gene Atlas function in 

Genevestigator 1.0 (Zimmermann et al., 2004). Gene duplications were surveyed with the 

MAtDB genome viewer (http://mips.helmholtzmuenchen.de/plant/athal/index. jsp). Rice gene 

expression information was obtained from Jiang and Ramachandran (2004). 

 

II.2.5. Promoter-GUS analysis 

Promoter sequences were predicted from gene bank (http://www.arabidopsis.org/) and 

cloned by PCR on the upstream of GUS reporter gene in pBIN20 binary vector by Dr. Xue Cai 

in this lab. These constructs were transformed into plants with the help of Agrobacterium 

tumefaciens by dipping methods (Weigel and Glazebrook, 2002). After initial screening of T1 



lines by kanamycin selection, gene expression patterns were observed in T2 and T3 plants by 

GUS staining. Staining for GUS activity, the protocol from Blazquez et al. (1997) was modified 

as below. Plants were pre-fixed with ice-cold 90% acetone at 4°C for 30min and incubated in the 

staining buffer containing 100mM NaPO4 (pH7.0), 10mM EDTA, 0.1% Triton X-100, 5mM 

K3Fe(CN)6, 5mM K4Fe(CN)6, and 2mM X-Gluc (5-bromo-4-chloro-3-indolyl-ß-glucuronide) at 

37°C overnight. After clearing with serial concentration of ethanol (final concentration at 95%) 

for at least 4 hours, pictures of plants were taken under a stereomicroscope (Leica MZ16FA, 

http://www.leica-microsystems.com) equipped with digital camera (Leica DFC420) and Leica 

FW4000 image acquisition software. 

 

II.3. RESULTS  

 

II.3.1. Identification of myosins in Arabidopsis and Rice  

Preliminary amino acids sequences for 13 of myosin XI in Arabidopsis were obtained from 

Reddy and Day (2001). The sequences were then corrected based on ESTs and PCR products 

available in our lab (Table II.1). Total of 129 genes were retrieved from the rice genome 

database within E=1-E05 by multiple blast search with 13 Arabidopsis myosin amino acid 

sequences. 87 retrieved sequences were excluded since they were partial sequences of myosins 

or non-myosin proteins which have similarity with partial sequences of myosins, mostly the 

coiled coil domain. Among the 42 remaining results, many of the sequences were redundant or 

structurally imperfect and could not encode a complete myosin protein.  In the end, 11 rice class 



 Table II.1. Summary of cDNA information 

Gene 
name 

EST accession 
number 

Clone name 
Length of 

cDNA 
Covered domain 

MYA1  MYA1  Full length 
MYA2  MYA2  Full length 
XI-A     
XI-B BE526400.1 M66H16STM ~1000bp dilute 
XI-C R30087.1 165B7T7 ~1100bp dilute 
XI-D BE528549.1 M79H19STM ~2500bp tail +3’UTR 
XI-E     
XI-F     
XI-G     
XI-H     
XI-I AV530204.1 APZL62d09F ~2500bp tail 
XI-J  MYA3   

XI-K* BE526400.1 M65012STM ~ 2900bp IQ + full tail +3’UTR 
XI-K* AV546218.1 RZL10e06F ~3800bp 5’ UTR+ SH3 + half tail 

 * Two EST overlapped in the beginning of tail region resulting in full length of XI-K. 

 



Table II.2. Myosins from Arabidopsis and Rice 

Species Gene name Chr AGI 
AA 
size 

Note 

Arabidopsis MYA1 I At1g17580 1520  

 MYA2 V At5g43900 1505  

 XI-A I At1g04160 1723  

 XI-B I At1g04600 1500  

 XI-C I At1g08730 1572  

 XI-D II At2g33240 1611  

 XI-E I At1g54560 1529  

 XI-F II At2g31900 1556  

 XI-G II At2g20290 1502  

 XI-H IV At4g28710 1516  

 XI-I IV At4g33200 1510  

 XI-J III At3g58160 1242  

 XI-K V At5g20490 1531  

Rice OsMyoXI-A I Os1g51630 2286  

 OsMyoXI-B II Os2g57190 1495  

 OsMyoXI-C II Os2g53740 1507  

 OsMyoXI-D II Os2g34080 1510  

 OsMyoXI-E III Os3g53660 1491 
3 isoforms from different tissues 
(sizes are slightly different) 

 OsMyoXI-F III Os3g48140 1529  

 OsMyoXI-G III Os3g64290 1445  

 OsMyoXI-H V Os5g46030 2159  

 OsMyoXI-J VI Os6g29350 1529  

 OsMyoXI-L X Os10g25560 1601 
Wrong annotation, different N-
terminal domain (NAM domain) 

 OsMyoXI-K X Os10g19860 1339 
Manually searched                    
(> E < 2.1-e405) 

 



XI myosins sequences could be obtained (Table II.2). Jiang and Ramachandran (Jiang and 

Ramachandran, 2004) identified 12 class XI myosins in rice and named XI-A to XI-L, however, 

XI-I genes from their study was not identified in my screening. Thus based on the information 

from them, potential genomic segment for XI-I gene was manually searched, however, there was 

no myosin gene found.  

 

II.3.2. Genomic Distributions of Myosins in Rice and Arabidopsis 

The genome distributions of Arabidopsis myosins and rice myosins were analyzed. In 

Arabidopsis, chromosome 1 contains genes for five isoforms (XI-A, XI-B, XI-C, XI-E, and 

MYA1) whereas chromosome 3 carries only one myosin gene, XI-J (Figure II.1). To obtain the 

evolutionary relationships of the 13 myosins, Arabidopsis genome duplication map was obtained 

from MAtDB genome viewer (http://mips.gsf.de/proj/thal/ db) and myosin gene positions were 

verified on the genome. Figure II.2. shows the distribution of recent genome duplication events 

that occurred in the Arabidopsis genome. XI-H and XI-G genes are located in duplicated 

segments in chromosomes 2 and 4.  Similarly, XI-A and XI-D genes are also positioned in 

duplicated segments on chromosomes 1 and 2. However, several genes that are located in 

duplicated genome segments do not have an equivalent counterpart in the duplicated part on the 

other chromosome. For example, MYA1 lies on the left arm of the chromosome 1 and this part is 

duplicated at the end of the same chromosome. However, no myosin gene is located in the 

duplicated chromosome region. In case of rice myosins, they are located on chromosome 

1,2,3,5,6,7,and 10 while no isoforms were found on chromosome 4,8,9,11,and 12 (Figure II.3.). 

Jiang and Ramachandran (Jiang and Ramachandran, 2004) showed the gene distribution of 12 



 

 

 

Figure II.1. Myosin gene distribution on Arabidopsis chromosomes   

Sky blue circles indicate the position of centromeres.  
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Figure II.2. Genome duplication map of class XI myosins in Arabidopsis thaliana  

Colors on chromosomes indicate that those segments appeared to be formed by 

genomic duplication. Approximate positions of myosin genes are named on the 

relative position of chromosomes. Three thin lines connected two isoforms (light 

green, dark green, and red) are drawn to indicate two isoforms are similar but not 

formed by genome duplication (light green line for XI-C and XI-E, e.g.). Genome 

duplication map was obtained from MIPS (http://mips.gsf.de/proj/thal/db) and 

positions of myosins are manually confirmed.   
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Figure II.3. Myosin gene distribution in the rice genome 

Chromosome map has been outlined in Jiang and Ramachandran (2004). Based on 

the analysis in this study, corrections are marked as red comments. Position of 

OsMyoXI-I is wrong and no myosin-like sequences were found nearby (red X mark 

on the map). OsMyoXI-L and OsMyoXI-K gene annotation is not correct.    





class XI myosins in rice, however, one of the myosins was actually miss-interpreted as two  

isoforms which located on different chromosomes since the BAC clone which contained the 

gene were biased in wrong position of chromosome (Figure II.3.).  

 

II.3.3. Characterization of Myosin protein structures 

Typical class XI myosins have a domain structure with an N-terminal SH3-like domain with 

unknown function, a motor domain whose function is to walk along actin filaments, six IQ  

motifs that are bind to calmodulins as light chains, a coiled coil region for dimerization, and a 

dilute domain which might be involved in organelle binding (Kinkema and Schiefelbein, 1994). 

Most family members have this typical domain structure, however, some isoforms have a distinct 

structure (Figure II.4.). Unlike most of the class XI myosins which have SH3-like domain in the 

N-terminus, OsMyoXI-H show the different N-terminal domain, NAM domain, known as a 

DNA binding domain of transcription factors involved in apical meristem development 

(Sablowski and Meyerowitz, 1998). OsMyoXI-L has a relatively long coiled coil region, similar 

to a class XI myosin in Chara. Moreover, XI-J in Arabidopsis does not have a dilute domain. 

Since the dilute domain is a signature of the class XI myosin and the other plant specific myosin, 

class VIII, does not have the dilute domain, XI-J could be considered as a member of class VIII 

despite of some structural resemblance to be class XI, like the presence of the N-terminal SH3-

like domain and 6 IQ motifs in XI-J.  

 To clarify the class assignment of these distinct members, phylogenetic trees were 

constructed with Arabidopsis and rice class XI myosins. Class VIII myosins and Chara myosin 

XI were also included as outgroups.  Since the C-terminus of myosins is less conserved, it could  



 

 

Figure II.4. Class XI myosin domain structure 

MYA1 showed a typical domain composition of class XI myosin. Domain information 

were searched from pFam (http://pfam.sanger.ac.uk/) with standard cut-off (E=1). 

Others class XI myosins shown in this figure have different domain structure than 

conventional class XI myosins. Domains are displayed in different shaped-colors 

(SH3-like, green; motor, red; IQ motif, yellow; dilute, plum; NAM, light green) 
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be difficult to be aligned properly. Thus phylogenetic tree was also constructed based only on the 

motor domain that is highly conserved (> 68% similarity). Some of the myosins clustered as a 

pair in a species (e.g. XI-A and XI-D; OsMyoXI-G and OsMyoXI-D), while many of them 

formed onto specific clusters like XI-F and OsMyoXI-Es (Figure II.4.). Interestingly, although 

the domain structure of XI-J suggested that it might be classified as a class VIII, both 

phylogenetic trees with full-length myosins and with the motor domain only resolved XI-J in 

class XI. Moreover, XI-J was clustered with OsMyoXI-A, OsMyoXI-F, and OsMyoXI-H which 

have the typical structures (except for long coiled coil region in OsMyoXI-H) in the full-length 

tree. In the tree based only on the motor domain, XI-J was grouped with XI-C, XI-E, and 

OsMyoXI-J. Thus, XI-J is clearly a member of Class XI. Major change of the trees is the 

position of XI-A and XI-D. In the full-length tree the XI-A and XI-D pair was branched out from 

a cluster that contained XI-G and XI-H, MYA2 and XI-B, and OsMyoXI-B, OsMyoXI-G, and 

OsMyoXI-D. However, in the tree with motor domain only, XI-A and XI-D were grouped with 

the OsMyoXI-B, OsMyoXI-G, and OsMyoXI-D (Figure II.4. and 5.).  

 

II.3.4. Expression profile survey from Genevestigator 

 To evaluate spatial and temporal gene expression patterns at various developmental 

stages, gene expression profiles determined by Affymetrix chip analysis were searched in 

Genevestigator (Figure II.7.). Since no data set was included for XI-K, expression levels of 12 

myosins in Arabidopsis developmental stages were obtained (Zimmermann et al., 2004). 

Interestingly, some myosins that resolved as a relatively duplicated gene pair in the phylogenetic 

tree, e.g. MYA2 and XI-B, showed very distinct expression patterns (Figure II.7.). MYA2 showed 



broad expression in several developmental stages with particularly high expression in senescent 

leaves, whereas XI-B was expressed only in stamen and pollen. OsMyoXI-J was found to mostly 

be expressed in panicles that is a similar structure to inflorescences of Arabidopsis (Jiang and 

Ramachandran, 2004). Interestingly, XI-C and XI-E, which grouped with OsMyoXI-J in the 

phylogenetic analysis, also showed specific expression in stamen and pollen (Figure II.5. and 

II.8 C, E, and F). 

 

II.3.5. Promoter-GUS analysis 

 Gene expression patterns were then confirmed with promoter-reporter assays. Promoter 

sequences have not been identified yet, thus, intergenic genomic sequences from the second exon 

of myosin gene to the end of upstream gene were cloned by PCR. These PCR fragments were 

used to drive expression of a GUS reporter gene by Dr. Xue Cai in this lab and transformed into 

plants. Once kanamycin resistant seedlings from T1 seeds were isolated, GUS staining was 

carried out with the tissues of adult plants, i.e. leaves from T1 plants. Stems, and flowers were 

tested and GUS staining on seedlings was performed with T2 seedlings. Most staining patterns 

are consistent with gene expression profiles from Genevestigator (compare Figure II. 7, 8, 9, 10, 

and 11). Of the 13 genes, promoter-GUS analyses were conducted for 11 genes but not for XI-I 

and XI-H. Four genes are exclusively expressing in stamens especially in anthers and pollen. XI-

C and XI-E showed highest degree of sequence similarity among all myosins (Figure II.4 and 5) 

and both of them are expressed only in anthers (Figure II. 8). However, while the XI-C upstream 

sequences expressed on pollen in mature anthers exclusively, those of XI-E expressed only 

young anthers before they dehisced (Figure II. 8. B and C for XI-C and E and F for XI-E). XI-



Jpro:GUS plants showed strong GUS staining in mature pollen. Staining was visible only anthers 

of mature flowers (Figure II. 8. M-O).  

 XI-B and MYA2 are closely related paralogs (Figure II.4 and 5) and mutants of both 

genes showed short root hairs (Peremyslov et al., 2008). Both XI-Bpro:GUS and MYA2pro:GUS 

plants displayed GUS expression in roots (Figure II. 8. H and II. 11.A). In addition to roots, XI-

Bpro:GUS presented GUS expression only in flowers (Figure II.8.G-I) while MYA2pro:GUS 

showed strong expression on most tissues throughout the all developmental stages (Figure II.11. 

A-F). XI-Apro:GUS and XI-Dpro:GUS also showed different expression patterns despite their 

sequence similarity. XI-Apro:GUS expressed only in pollen strongly (Figure II.8.J-L), while XI-

Dpro:GUS expressed moderately in several tissues (Figure II.11.G-L). However, the gene 

expression profile of XI-D from Genevestigator did not concur with the GUS staining pattern. 

The gene expression profile by microarray showed exclusive gene expression in stamen and 

pollen (Figure II.7.C).  

 XI-Fpro:GUS displayed a unique expression pattern. XI-Fpro:GUS was expressed only in 

upper inflorescence stems and pedicels of flowers (Figure II. 9. A-C). XI-Gpro:GUS  is also 

interesting due to its exclusive expression in the root cap (Figure II. 9. D). Expression levels of 

XI-G based on the Genevestigator profiles are extremely low in every tissues, but the highest 

expression is in roots (data not shown), suggesting that XI-G might have a function in the root 

tip. 

 MYA1 and XI-K were in the same group on the phylogenetic tree (Figure II.4 and 5). 

They both showed broad expression gene patterns with a slight difference. MYA1pro:GUS 

showed the strong expression in young leaves and shoot apical meristem and the expression 

became weak in the old leaves (Figure II. 10. A-E). Moderate gene expression was detected in  



Figure II.5. Phylogenetic tree of myosins in Arabidopsis and rice based on motor domain 

sequences  

Tree was resolved in the Maximum-likelihood methods with 1000 bootstraps and 

visualized with TreeView. 
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Figure II.6. Phylogenetic tree of myosins in Arabidopsis and rice based on full-length 

amino acid sequences  

Differences with Figure II.5. are marked in red underline on AtXI-J and magenta 

strip over the group.  
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Figure II.7. Myosin gene expression survey from microarray database 

Gene expression profiles surveyed from Genevestigator were visualized individually 

with Gene Atlas too (Zimmermann et al., 2004). Among twelve gene profiles, three 

genes are shown.  

A-B. XI-B and MYA2 have a high degree of sequence similarity but showed different 

expression patterns  

C. Profile for XI-D. This gene is only case that appear to be different between its 

gene expression profile and its promoter-GUS analysis (compare with Figure II. 11. 

G-L)  
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Figure II.7. Genevestigator results-continued 



C 

 

 

Figure II.7. Genevestigator results-continued 



Figure II.8. Flower specific gene expression of five myosins 

A-C. XI-Cpro:GUS plants showed GUS staining only at the flower, especially pollen. 

Pollen grain inside of anther showed very strong blue staining (yellow arrow in C). 

D-F. XI-Epro:GUS plants showed GUS staining on young anther before dehiscence 

happen. Anther after dehiscence does not have staining (yellow arrow in E). 

G-I.  Unlike other genes which specifically expressed on stamen and pollen, XI-

Bpro:GUS showed staining on other organ of flower (yellow arrows in I). Consist 

with microarray profile (Figure II.6.A.), Root showed moderate staining (white arrow 

in H). Unexpectedly, first true leaves on seedling also showed relatively strong 

staining (inset of H).  

J-L. XI-Apro:GUS plants showed very strong staining on pollen and young anther (K 

and L). 

M-O. Extremely strong staining on pollen and mature anther was observed in XI-

Jpro:GUS plants.     
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Figure II.9. XI-F and XI-G expression in specific vegetative tissues  

A-C. XI-Fpro:GUS plants showed GUS staining in inflorescence stems and 

pedicles.  

D. Only lateral root cap staining was visible in XI-Gpro:GUS seedlings. 
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Figure II.10. Broad expression of MYA1 and XI-K in many tissues  

A-I. MYA1pro:GUS plants showed GUS staining in various tissues at different 

developmental stages. Panel A showed strong staining in every tissue of a young 

plant. B to D are magnified images of a part of A. strong expression in trichomes 

and veins are shown on juvenile leaves (B). Interestingly, guard cells (yellow arrow 

in C) and shoot apical meristem (yellow dashed area in D) showed strong staining. 

Old leaves do not show strong expression as in young leaves (E). Expression in 

inflorescence stem (F), and flowers (G and H) are relatively moderate. Young flower 

(G) and old flower (H) showed slight different expression. Weak staining in seeds in 

young siliques are shown (I).        

J-O. XI-Kpro:GUS plants showed GUS staining in various tissues relatively even. 

Strong staining in seedlings was observed (J). Note that root tip doesn t have XI-

Kpro:GUS expression (white arrow in K). Old leaves showed moderate GUS 

expression in vein and surrounding tissues (L). Inflorescence stem (M) and flowers 

(M, N, and O) showed relatively strong expression but anther (white arrows in N and 

O).    
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Figure II.11. MYA2 and XI-D expressed in a various tissues 

A-F. MYA2pro:GUS plants showed strong GUS staining in almost all tissues at 

various developmental stages. Strong GUS staining was observed in every 

tissues of seedling including root tip (A). This strong expression was maintained 

on tissues on later developmental stages, such as young leaves (B), inflorescence 

stems (C) and flowers (D and E). Even it was detectable in old siliques (F). 

G-L. XI-Dpro:GUS plants showed broad expression in many tissues. Expression 

in seedlings is weak (G and H). Old leaves showed relatively moderate staining in 

entire tissues (I). Inflorescence stem also showed moderate staining (J). Young 

flowers showed stronger expression than old flowers (L). Stamens were lack of 

XID expression (Yellow arrow in K) while carpel showed GUS staining (white 

arrow in L). 
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Figure II.12. Simplified cladogram of Arabidopsis Class XI Myosin  

Blue colored isoforms express broadly across tissues in various developmental stages. Among 

isoforms expressed in specific tissues, the red color indicates flower, mainly stamen including 

pollen, specific expression, while green color-coded isoforms are expressing in vegetative 

tissues, lateral root cap and stems, respectively.   
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inflorescence stems and flowers and seeds (Figure II.10.F-I). XI-Kpro:GUS showed moderate 

expression evenly in every tissues throughout the development. Neither MYA1pro:GUS nor XI- 

Kpro:GUS showed expression in pollen, although both of them expressed in the filaments of 

stamen (Figure II. 10. H and O). A major difference between the gene expression of 

MYA1pro:GUS and XI-Kpro:GUS was the expression pattern at the root tip. Both genes are 

expressed in the entire root including root hairs. However, while MYA1 expressed highly at the 

meristematic zone of root, XI-Kpro:GUS displayed the lack of staining on the meristematic zone 

of root tips (Figure II. 10. A and K).  

 

II.4. DISCUSSION 

Myosins are eukaryotic actin-dependent molecular motors that have various functions 

such as muscle contraction, vision, cell motility or vesicle trafficking. 35 groups of myosin have 

been identified, to date, from apicomplexan to human. Among them, plant myosins are grouped 

in 2 classes, class XI and VIII (Odronitz and Kollmar, 2007). Domain organizations are mostly 

identical within a class (N-terminal domain, motor domain, IQs or light chain binding domain, 

and various c-terminal structures). Class XI myosins are characterized by a SH3-like domain in 

N-terminus, 6 IQ motifs and a dilute domain at the C-terminus (Kinkema and Schiefelbein, 

1994). However, XI-J and OsMyoXI-L deviate from this pattern and either lack the dilute domain 

or have a different N-terminal domain. These different domain structures could have arisen by 

evolution or could be an artifact from wrong prediction of gene. Myosins are large genes whose 

cDNA sequences are more than 3500bp long. Moreover, myosin genes contain more than 31 



introns spread out over more than 8kb of genome fragment. Thus, there is ample opportunity for 

misannotation. For example, OsMyoXI-L in the original rice gene annotation lacked its motor 

domain and OsMyoXI-K was predicted to consist only of the dilute domain. These sequences 

could be corrected by careful analysis of the genome sequence, however, low sequence similarity 

of C-termini made this correlation diffused. Thus, to obtain a precise phylogenetic tree, isolation 

of full-length cDNAs is required. So far, only four genes in Arabidopsis (Kinkema and 

Schiefelbein, 1994; Kinkema et al., 1994; Ojangu et al., 2007) and three genes in rice (Jiang and 

Ramachandran, 2004) were identified with their full cDNA information.  

Gene diversity of myosin in the species has been suggested to have arisen before the 

majority of plant species diverged (Richards and Cavalier-Smith, 2005). The tree in this study 

shows the presence of Arabidopsis and rice myosin genes in all major branches, suggesting that at 

least some classification of class XI isoforms already happened before the split between monocot 

and dicot. However, several gene duplication events took place after the monocot-dicot split, 

making it impossible to identify simple orthologous pairs. Other groups also reported a similar 

conclusion (Goodson and Dawson, 2006; Richards and Cavalier-Smith, 2005).  

Highly similar isoforms could suggest functional redundancy within the myosin gene 

family and this could explain why knockout mutants do not show a strong phenotype (Hashimoto 

et al., 2005; Ojangu et al., 2007; Peremyslov et al., 2008). Thus, information of similarity of 

genes and overlapping expression patterns in this chapter will support the effort to select the 

candidate isoform for a further characterization of mutants.  



CHAPTR III. Reverse genetic analysis of class XI myosin functions in 

Arabidopsis development 

 

 Peter Anthopolos, an undergraduate student who earned research credit in this lab from 2004 

to 2005, isolated knockout mutants of two myosins, XI-B and XI-C, and another undergraduate 

student, Nilou Soltanian, has participated extensively in measurement of the root hair length 

from 2006 to 2008.     

 

 



III.1. INTRODUCTION 

 

 Myosins in non-plant organisms have been extensively characterized, however, less is 

known about their functions in plant cells. However, the possible functions of myosin in plants 

can be postulated indirectly based on the roles of actin since myosins are moving along actin 

filaments (Liu et al., 2001; Tominaga et al., 2000 ). The actin cytoskeleton is known to be 

involved in many processes such as signaling, cell division, organelle trafficking and 

morphogenesis in plants, suggesting that myosins may also function in a wide variety of 

processes. (Hepler et al., 2001; Liu et al., 2001).  

 A function of myosin in intracellular organelle trafficking has been suggested based on 

several pieces of evidence. First, treatment with a myosin inhibitor drug interferes with 

cytoplasmic organization and vesicle trafficking (Forer and Fabian, 2005; amaj et al., 2000; 

Tominaga et al., 2000). Immunolocalization studies using animal myosin antibodies in several 

plant species also showed that several different sized myosin isoforms are localized on the 

surface of organelles, the vegetative nuclei, generative cells in pollen grains and tubes and 

plasmodesmata in root tissues (Miller et al., 1995; Radford and White, 1998).  

 Class XI myosin was first identified as MYA1 and MYA2 in a PCR screening of 

Arabidopsis (Kinkema and Schiefelbein, 1994) and later has been found in several species 

(Odronitz and Kollmar, 2007). Immunolocalization studies using a class XI myosin specific-

antibody raised against the head domain of a myosin protein in Zea mays showed that these 

myosins are associated with several organelles in the cells (Wang and Pesacreta, 2004). 

Recently, several studies showed colocalization of various myosin isoforms with several 



organelles using fluorescent protein fused to C-terminus of myosins without motor domain (Li 

and Nebenführ, 2007; Reisen and Hanson, 2007; Sparkes et al., 2008). Mutant analyses with xi-k 

knockouts and RNAi assays of myosins in tobacco leaves showed the myosins function in 

organelle movements (Avisar et al., 2008b; Peremyslov et al., 2008). However, a relationship 

between myosin XI and specific organelles was not identified, leaving the precise function of 

myosin XI in organelle movement unclear.  

 Among the 13 myosins in Arabidopsis, ten of the genes form five pairs of closely related 

sister sequences (Odronitz and Kollmar, 2007). Spatial and temporal gene expression patterns 

overlapped highly (Discussed in Chapter II.). This relatively large number of isoforms may be 

related to a high degree of specialization among plant myosins or to a significant functional 

overlap and redundancy in plant development. Indeed, a mutation of MYA2 in Arabidopsis 

showed no strong phenotype on plant growth (Hashimoto et al., 2005), suggesting that other(s) 

isoform of class XI myosin might have functional redundancy.   

 To address the question of isoform specificity versus functional overlap, in this study, 

several myosin mutants were isolated from T-DNA insertion lines of the 13 myosin XI genes. 

Most mutants did not show a significant phenotype, however, detailed observation of different 

cell types revealed defects in the development of trichomes and in root hair development in xi-k 

and more mutants. Additive root hair phenotype in double mutants of mya1 and xi-k suggests 

their functional redundancy in root hair growth. Peroxisome movements in mya1 xi-k were 

slower than those in wild type.  

  



III.2. MATERIALS AND METHODS  

 

III.2.1. Mutant identification and confirmation 

 T-DNA insertion plants were carefully reviewed and selected from SIGnAL T-DNA 

express (Alonso et al., 2003). A total of 69 putative insertion lines for all 13 myosin genes were 

obtained from the ABRC (www.arabidopsis.org) and at least 4 plants for each line were grown to 

confirm the presence of a T-DNA insertion (Table III.1.). Seeds were surface sterilized with 

75% EtOH with 0.1% TritonX-100 and washed with sterilized water four times. Seeds were then 

plated on X MS with 1% sucrose (pH 5.8) solidified with 0.21% phytagel. Five-day old 

seedlings were transplanted to soil and one fresh rosette leaf (about 1.5 cm long) was harvested 

later for PCR genotyping.  

 Genomic DNA was extracted with extraction buffer (200mM Tris-Cl, pH7.0, 250mM 

NaCl, 25mM EDTA, and 0.5% SDS) and precipitated with iso-propanol. The genomic DNA 

samples were then dissolved in 100 μl of ddH2O and 1-2 μl of DNA was used for PCR. To 

confirm a T-DNA insertion, specific primers flanking the predicted T-DNA insertion site were 

designed with a web-based design tool (http://signal.salk.edu/tdnaprimers.2.html) (Table III.2.). 

Three sets of amplification (1) with two gene-specific primers (xx-LP+ xx-RP), (2) with one 

gene-specific primer (xx-LP) and T-DNA left border primer (T-LBa-1 for SALK lines or LB1-

SAIL for SAIL lines), or (3) with the other gene-specific primer (xx-RP) and T-DNA primer 

were performed the following conditions: initial denaturation at 94°C for 2 min, followed by 30 

cycles with 94°C (15 s), 62°C (15 s), 72°C (1 min), and a final extension for 5 min at 72°C (PCR 



Table III.1. List of T-DNA insertion plants 

Gene Stock name Line name 
Position of 
insertion a 

Comments 

MYA1 SALK_022140 mya1-1 Exon  
 SALK_129098 mya1-2 Intron  
 SALK_129106 mya1-3 Exon No T-DNA found 
 SALK_134363 mya1-4 Intron  
 SALK_022140 mya1-5 Exon  
 SAIL_832_D02 mya1-6 Intron  

MYA2 SALK_084023 mya2-1 Promoter  
 SALK_037542 mya2-2 Intron No T-DNA found 
 SALK_127984 mya2-3 Intron  
 SALK_055785* mya2-4 Exon  

XI-A SALK_110436 xi-a-1 Exon No T-DNA found 
 SALK_086989 xi-a-2 Intron  
 SALK_086981 xi-a-3 Intron No T-DNA found 
 SALK_117717 xi-a-4 Exon  
 SALK_010100 xi-a-5 Exon No T-DNA found 

XI-B SALK_021378 xi-b-1 Intron No T-DNA found 
 SALK_113062* xi-b-2 Exon  
 SALK_016579 xi-b-3 Exon  
 SALK_054029 xi-b-4 Intron No T-DNA found 
 SALK_087951 xi-b-5 Intron  

XI-C SALK_097302 xi-c-1 5’ UTR  
 SALK_002170 xi-c-2 Intron  
 SALK_118329 xi-c-3 Exon No T-DNA found 
 SALK_118334 xi-c-4 Intron No T-DNA found 
 SALK_104026 xi-c-5 Exon  

XI-D SALK_129738 xi-d-1 Promoter  
 SALK_082078* xi-d-2 Exon  
 SALK_029987 xi-d-3 Intron  
 SALK_029988 xi-d-4 Exon No germination 
 SALK_094036 xi-d-5 Exon No T-DNA found 

XI-E SALK_122989 xi-e-1 Exon No T-DNA found 
 SALK_119881 xi-e-2 Intron  
 SALK_025293 xi-e-3 Exon  
 SALK_044890 xi-e-4 Exon  
 SALK_044875 xi-e-5 Intron  

a Information of insertion site was obtained from SIGnAL database.   
* Homozygous T-DNA insertions were identified by Peremyslov et al. 2008. 



Table III.1. Continued 

Gene Stock name Line name 
Position of 
insertion a 

Comments 

XI-F SALK_094787 xi-f-1 Intron  
 SALK_133869 xi-f-2 Exon  
 SALK_118541 xi-f-3 Exon  
 SALK_117832 xi-f-4 Exon  
 SAIL_568_H01 xi-f-5 Intron  

XI-G SALK_051949 xi-g-1 Promoter No T-DNA found 
 SALK_091589 xi-g -2 Promoter  
 SALK_018032* xi-g -3 Exon  
 SALK_009154 xi-g -4 Intron  
 SALK_109435 xi-g -5 Exon No T-DNA found 
 SAIL_97_E09 xi-g -6 Intron  

XI-H SALK_020159 xi-h-1 Promoter  
 SALK_026839 xi-h -2 Promoter No T-DNA found 
 SALK_020788 xi-h -3 Promoter No T-DNA found 
 SALK_014709 xi-h -4 Exon No T-DNA found 
 SAIL_365_D03* xi-h-5 Intron  
 SAIL_429_C07 xi-h-6 Exon  

XI-I SALK_029565 xi-i-1 Promoter  
 SALK_025181 xi-i-2 5’UTR  
 SALK_092026 xi-i-3 Intron  
 SALK_069273 xi-i-4 Intron  
 SALK_100199 xi-i-5 Intron No T-DNA found 
 SAIL_186_D11 xi-i-6 Intron  
 xi-i-7 Intron  

XI-J SALK_026367 xi-j-1 5’UTR  
 SALK_048730 xi-j-2 Exon No T-DNA found 
 SALK_063159* xi-j-3 Exon No T-DNA found 
 SALK_067361 xi-j-4 Intron No T-DNA found 
 SALK_066827 xi-j-5 Intron No T-DNA found 

XI-K SALK_028822 xi-k-1 Promoter  
 SALK_059031 xi-k-2 Promoter  
 SALK_136682§ xi-k-3 Intron No T-DNA found 
 SALK_067972*§ xi-k-4 Exon  
 SALK_018764§ xi-k-5 Exon  

a Information of insertion site was obtained from SIGnAL database.   
* Homozygous T-DNA insertions were identified by Peremyslov et al. 2008.  
§ Homozygous T-DNA insertions were analyzed in Ojangu et al. 2007.     



Table III.2. Primers for the genotyping 

Primer name Sequences a 
PCR 

product b 
Comments 

T-LBa1 TGGTTCACGTAGTGGGCCATCG  
T-LBb1 GCGTGGACCGCTTGCTGCAACT 500bp* 

T-DNA specific for 
SALK lines 

LB1-SAIL CAGAAATGGATAAATAGCCTTGCTTCC  
LB3-SAIL TGAATTTCATAACCAATCTCGATACAC  

T-DNA specific for 
SAIL lines 

1Ta-LP AGATCATCTACAATCGTGTTGC 
1Ta-RP ACATCTTGTCATCTTGAACCTAT 

920bp Used for mya1-2, -3 
and mya1-4 

1T5-LP TCCACAAAGTGCTGGATTCCC  
1T5-RP TGTGTACCGTATTTGTCGTCCCA 

913bp 
 

1T6-LP GCAGGTGCTTAGCATTCAGCAA  
1T6-RP ATGGCGGCAGTAACACCTTGA 

1187bp 
 

M1102-pro-F1 CGAGACGTCGGCGTTACGCGTTTGATCAG 
M1102-pro-R2 GCAACCGTAGCAACCTGTAGAGCAAAAGTG 

1365bp Used primers for 
MYA2pro for mya2-1 

2T2-LP ATATGGAGAATGGCTGCCACG  
2T2-RP TGGTCGAATATTCATTTCGGCTG 

923bp 
 

2T3-LP GCTCCAGTTGATTTCCTCTTTCT  
2T3-RP TTCCAGCTGCGATGAAAAAGC 

924bp 
 

2T4-LP TCGTTTTTCAGCAGAGTTTGTCA  
2T4-RP TCAAAATTGCAGAAGTGTCGCA 

943bp 
 

AT1-LP TGCACCAGAACAGGTAAGCCC  
AT1-RP TGTCAGTGAAAACAAAAGCATACCG 

916bp 
 

AT2-LP TGCAACAACATTTCAACCAGG  
AT2-RP TCCGTGGTGCTCAAACTCTCC 

921bp 
 

AT3-LP TGACAAACGAGAAGCTGCAACA  
AT3-RP TCTCCAGCAAAGATTGCAGTTG 

920bp 
 

AT4-LP CGTTCAACCTCTTCCCCGAAT  
AT4-RP GGATCCTACGAACTGCATTCAAGA 

977bp 
 

AT5-LP CCAACAAAACCTCCACAGCCA  
AT5-RP CGTTGACTGCCTGGAAAGTTGA 

957bp 
 

BT1-LP TTTGTCGGTGTATTGGAAGGC  
BT1-RP GCAGAGGAACAACTGGCAAGC 

920bp 
 

BT2-LP TTCCAGTGGCCTAGATTGGCTT  
BT2-RP TTTACATGAGAAGCTCGGCGG 

857bp 
 

BT3-LP AATTTGACCAATCGGGGAGGA  
BT3-RP TCAACGAGCCTGCATAGACAGAA 

965bp 
 

BT4-LP TGGATGTCGTCGGGATCAGTT  
BT4-RP CACTGCCTTGACGATGAAATGG 

890bp 
 

BT5-LP TGGATTCGAGAGTTTCAAGACAAA  
BT5-RP AAAACACAAGCAAGGATTAGCAA 

929bp 
 

a All primer sequences are in the 5  to 3  direction.  
b This PCR product size assumes amplification of wild type alleles.  
* This primer occasionally generated ~500bp false PCR product without a second primer.  

Underlined nucleotides indicate restriction sites for gene cloning in different experiments. 



Table III.2. CONTINUED 

Primer name Sequences a 
PCR 

product b 
Comments 

CT1-LP CTCTGGTGCTGCGCAGAGTTA  
CT1-RP GCAAACAAGTGTGGCACATGAA 

931bp 
 

CT2-LP TTCATGTGCCACACTTGTTTGC  
CT2-RP TGTAACAGCACGACCTCCCAA 

905bp 
 

CT3-LP ATCCCGTCCTTGAAGCCTTTG  
CT3-RP TGCCTTTAAATCACACCTGAAACG 

848bp 
 

CT4-LP AAGCCTTTGGGAACGCAAAAA  
CT4-RP CCGTCTCTGCTGGTTACAGCACT 

931bp 
 

CT5-LP CTGCGATTAATGGCTGGAACG  
CT5-RP GGCAGCCTTTGTTTGCTTCCT 

927bp 
 

DT1-LP CCCAATCAGCTGGTGTTTCCA  
DT1-RP CCACCACCACCATCATCTTCA 

901bp 
 

DT2-LP CCCTGGTTCATGCAAATACGC  
DT2-RP ATATTCCGAGGGAAAACGCGA 

908bp 
 

DT3-LP CCGACGAGCAATCGCATAGAA  
DT3-RP TTTTCCGGTGATTCTCACCATGT 

911bp 
 

DT4-LP TCGCTGCTTTTCTCTTTCGTCC  
DT4-RP GGGGTCATGGAAGCCATTAGG 

898bp 
 

DT5-LP TGTCCGTGCCTGCTTCTGAAT  
DT5-RP TGCATCAACTTAGGTGTGGGG 

902bp 
 

ET1-LP TGCAAGCAGAAGTTACAGGCG  
ET1-RP AAAATTGCAGGGAACTCCGGT 

947bp 
 

ET2-LP TGTTATTCCTGACAGTTTTGGCG  
ET2-RP AGGTTCAAGCCACAAACGGAA 

887bp 
 

ET3-LP TTCAAAACTGCAGGAGATCGCT  
ET3-RP TGATTGTCATTGAAAACTCTTGGCA 

929bp 
 

ET4-LP CCTTGGCGCAGTAGACATTCC  
ET4-RP CAGATTTCTGATCCAGAGCGCA 

955bp 
 

ET5-LP TGTGAAACTCAGGGGAAATGGTT  
ET5-RP GGGTCATCCCAAGACGTTTCA 

960bp 
 

FT1-LP GAACAACACTCTCGGCGAAGC 
FT1-RP TTGGTCCAGAAGGGCCAAGAT 

946bp  

FT2-LP GAACAACACTCTCGGCGAAGC 
FT2-RP TTGGTCCAGAAGGGCCAAGAT 

958bp Used for genotyping of 
xi-f-3 and xi-f-4 

FT5-LP CCACAGATTTTTCGTTATCAAACC  
FT5-RP AGTTTGAAGTGAAATGTTTTGCAC 

976bp 
 

GT2-LP TGCCTCCTCTGGATCTTGCAC  
GT2-RP CGTCTTTGTTAAATTTGGATTTTCC 

963bp 
 

a All primer sequences are in the 5  to 3  direction.  
b This PCR product size assumes amplification of wild type alleles.  
* This primer occasionally generated ~500bp false PCR product without a second primer.  



Table III.2. CONTINUED 

Primer name Sequences a 
PCR 

product b 
Comments 

GT3-LP CACTGCCAAATTTCAATGCAG  
GT3-RP AGCCGCTTTGGGAGAATTGAG 

956bp 
 

GT4-LP TCAAATACCAAGCTCGTCTGGC  
GT4-RP TTGCCACTATGCTGGTGATGTG 

913bp 
 

GT5-LP CAAACCATAAATGGGTGGAGACAA  
GT5-RP TTGCGTCTGCAACAGCTCATC 

969bp 
 

GT6-LP TTACAAAGAGAATCTTCCAGTGCC  
GT6-RP TCAAGGTGAATGTAACACACACAC 

1185bp 
 

HT1-LP GCACCCCCTCGAAGTAAAAGA  
HT1-RP ACCACCGGAGGAGGCTTATCA 

967bp 
 

HT2-LP GGTTTGTTCTTTGCAGTTAGTTGCT  
HT2-RP ACCACCGGAGGAGGCTTATCA 

907bp 
 

HT3-LP GGTTTGTTCTTTGCAGTTAGTTGCT  
HT3-RP ACCACCGGAGGAGGCTTATCA 

907bp 
 

HT4-LP TCGGAGAAATCGGATGGTGAG  
HT4-RP TGCGGTAGTCTTCTAAAAGGGTTT 

976bp 
 

HT5-LP TCTAAATCTTTTGATCGGGGATC  
HT5-RP CACCACTTACCAGAATTGATTGAC 

1117bp 
 

HT6-LP CGACGAGAATGTTGTACATTTAGC  
HT6-RP TGTGTTCTTGAAGGGACAGTACAC 

1001bp 
 

IT1-LP TGAGGTTGCGCCAGAGAATTT  
IT1-RP TGTACGTGGTTGATGATATTGTTGC 

894bp 
 

IT2-LP TCGTCAGGATCCCTCCGAAAT  
IT2-RP ATTGCCTTCTACATTTTTGACTTAC 

858bp 
 

IT3-LP TGCTTCATTAGCAACCTGCAAGA  
IT3-RP CTTCATCTCTGCACGGGCTTC 

927bp 
 

IT4-LP TCAACCCAATCAAACCTCCCA  
IT4-RP CCAGCTCTGCTTCATATGACTTG 

993bp 
 

IT5-LP TGCTGCACACAACAACAACCA  
IT5-RP GCAGGAACATCTTGGCACGAG 

902bp 
 

IT6-LP TATTACCTCGTTGAAATGTTGCTG  
IT6-RP ATGTTCTTATTTTGCTTAGGACGC 

1060bp 
 

IT7-LP ATGAAGGATGCACATCAATCTCTTG  
IT7-RP ATGATGCTACATTGAAAGCAGAG 

1261bp 
 

JT1-LP CTTCAGAAGCGGGAGGACCAT  
JT1-RP TGAAATGGCATTAGACACAAAAGCA 

962bp 
 

JT2-LP TTGGGGATATACCCCTGCCTG  
JT2-RP TGAATCAGCATCTTCTCCCTTCG 

861bp 
 

a All primer sequences are in the 5  to 3  direction.  
b This PCR product size assumes amplification of wild type alleles.  
* This primer occasionally generated ~500bp false PCR product without a second primer.  



Table III.2. CONTINUED 

Primer name Sequences a 
PCR 

product b 
Comments 

JT3-LP TCAACTTGCAGGCGTATTGGC 
JT3-RP CATCTCAACTTCTGCAGTGAGGGA 

895bp  
 

JT4-LP TCCCTCACTGCAGAAGTTGAGATG 
JT4-RP TCGAAGCCCCCTTCCTTATCA 

882bp Used for genotyping of 
xi-j-5 

M11K-pro-F1 ACGTCCGGACAGATGCCAATTGAAGACGATG Used primers for XI-K 
pro for xik-1 and xik-2 

M11K-pro-R1 GCAAGATCTGACTGGGCCAACCTACAAAAG 
2093bp 

 
KT3-LP TCTGCAATGGCAAACACATGG  
KT3-RP TATTGTCCTGGTTTTGCGGGA 

977bp 
 

KT4-LP GGAAAGTGGTGCTGGTAAGAC  
KT4-RP TCATGTGATTTAAAGCAGAACGCC 

921bp 
 

KT5-LP CCATATATCTTCTCGAGGAATGCA 857bp  
KT5-RP CGGGAACCAGAGTCTGAGGAGA   

a All primer sequences are in the 5  to 3  direction.  
b This PCR product size assumes amplification of wild type alleles.  
* This primer occasionally generated ~500bp false PCR product without a second primer. 

Underlined nucleotides indicate restriction sites for gene cloning in different experiments. 



condition named A62E60D).  PCR products were separated by electrophoresis in a 1% (w/v) 

agarose gel and stained with ethidium bromide to visualize under ultraviolet light. 

Once plants were confirmed as homozygous lines, they were backcrossed with wild type plants 

to eliminate potential secondary T-DNA insertions in other positions of the genome.  

To confirm whether homozygous insertion lines are target-gene knockout mutants, RT-PCR was 

performed with gene-specific primers. First, cDNAs were generated by using Superscript III 

(Invitrogen) with total RNA extracted from either seedlings or flowers with Trizol (Sigma) and 

then amplified by PCR with gene-specific primers (Table III.3.).                 

 

III.2.2. Phenotypic analysis 

 Confirmed homozygous lines were observed under various conditions and at different 

developmental stages to find a difference from the wild type as listed below.  

a. Whole plant growth 

Seedlings were first observed carefully to check if they have any growth defects, and then 

moved to soil to examine their development. Five features were observed; time for 

germination, size of leaves, height of plant at maturity, flowering time, and inflorescence 

stem branching pattern. 

b. Trichome development 

Trichomes on adult leaves and inflorescence were observed under a stereomicroscope 

(Olympus SZX12) and photographed with a digital camera DP10 operated by Olympus 

camera software ver. 3.1.    

c. Leaf venation 



Table III.3. Gene specific primers for RT-PCR 

Target 
gene Primer name Sequences a 

PCR 
conditionb 

PCR 
product 

M11.1-D-F1 
CGAGGATCCGCTCCAAAACCGATG

ATTGCT MYA1 
SIL-MYA1-R1 

GCATCTAGAATCAACGCATGGACA
CAACA 

A60E90D 718bp 

M11.2-D-F1 
ACGTCCGGACCCAGATCTTCTAAA

GGAGG MYA2 
M11.2.STOP-R1 

GCAGCGGCCGCAACAATCACAGA
GGAAGAGAGC 

A61E90D 739bp 

JT4-LP TCCCTCACTGCAGAAGTTGAGATG 
XI-J 

JT4-RP TCGAAGCCCCCTTCCTTATCA 
A62E90D 467bp 

11.K-D-F3 
ACGTCCGGACCAAGGACATCAAG

GGCAAG XI-K 
11.K-STOP-R1 

GCAGCGGCCGCCGAGGGCAGTTAC
GATGATGTAC 

A61E90D 729bp 

a All primer sequences are in the 5  to 3  direction. 

b PCR condition named as the way described in section III.2.1.     

Underlines indicate restriction site for gene cloning in different experiments 



One cotyledon or first true leaf was detached and immersed in fixative (ethanol:acetic 

acid [3:1]) to clear of chlorophyll and then incubated in 100% ethanol at 4°C overnight  

 (Carland et al., 2002). Samples mounted in 50% glycerol were observed and 

photographed with the stereomicroscope described above. 

d. Hypocotyl growth 

Hypocotyl lengths of dark-grown seedlings were measured. Plates wrapped with 

aluminum foil were stratified in 4°C for one day and placed at room temperature for 

about 30 minutes before transfer to a dark room to minimize precipitation from sudden 

temperature changes. Five-day old seedlings grown in the dark were then photographed 

under a stereomicroscope (see above) and the hypocotyl lengths were measured with 

ImageJ (NIH, http://rsbweb.nih.gov/ij/). 

e. Root hair growth 

Sterilized seeds were grown on the surface of 1/4X MS medium containing 1% sucrose in 

pH 5.7 solidified with 0.5% phytagel. After one-day stratification, plates were transferred 

in a vertical orientation into a growth chamber with continuous light at 22°C. Images of 

5-day-old seedlings were captured on a Leica stereomicroscope (Leica MZ16 FA, 

http://www.leica-microsystems.com) equipped with a digital camera (Leica DFC420) 

under 7.1 X magnification or 23X magnification. Lengths of 10 root hairs per plant were 

counted from more than 15 plants in each genotype and the number of root hairs was 

counted from more than 15 plants in each genotype with ImageJ. Prism 5 was used for 

statistical analysis (www.graphpad.com). 

f. Root gravitropism 

Vertically oriented square plates (medium as above) containing 3 day old etiolated 



seedlings were rotated 90° to the right to initiate a root gravitropic response. After 3 more 

days of growth in dark, seedlings were photographed under the stereomicroscope 

described above and their bending angles were measured with a protractor.    

 

III.2.3. Double mutant analysis 

 Several crosses were initiated to obtain double mutants and seeds were harvested from 

individual siliques from successful crosses. F1 seeds were grown on MS media and seedlings 

were transplanted to soil to harvest self-fertilized seeds. About 100 F2 seedlings were grown to 

maturity and their genotype identified by PCR with the primer pairs used for verification of T-

DNA insertion.  

 

III.2.4. Organelle movement analysis 

 Motility of organelles was tested using either single organelle markers generated in this 

lab (Nelson et al., 2007) or a triple organelle marker which contains peroxisome-CFP, 

Mitochondria-YFP and Golgi-mCherry within a single binary vector. Single organelle markers, 

peroxisome-CFP, Mitochondria-YFP, Golgi-YFP, and Golgi-mCherry, were transformed with 

Agrobacterium tumefaciens into wild type and mutants (Weigel and Glazebrook, 2002). Two 

types of triple organelle markers were constructed by combining either Golgi-Tomato or Golgi-

mCherry with Mitochondria-YFP and Peroxisome-CFP under individual 35S promoters in a 

binary vector, pFGC19. Several stable T1 plants per genotype were isolated and movements of 

organelles were observed in the T2 generation.  



 For the tracking of organelle movement in plants, time-lapse image sequences were 

captured with an Axiovert 200 M microscope (Zeiss, http://www.zeiss.com) equipped with filters 

for YFP, CFP fluorescence, and Texas red (filter set: 52017, YFP/CFP; 62002, Texas red, 

Chroma, http://www.chroma.com). Growing root hair cells were observed with a 63X (1.4 NA) 

plan-apo oil immersion objective and image sequences were captured in 1 (or 2) sec interval with 

a digital camera (Orca ER; Hamamatsu Photonics, http://www.hamamatsu.com) controlled by 

Openlab software (Improvision, http://www.improvision.com) for 60 to 120 sec. After 

background subtraction to remove camera noise, contrast of images was enhanced to increase 

signal intensity. Organelles in the root hairs were manually tracked with Openlab software. Data 

were analyzed and visualized with Prism 5. 

  

III.3. RESULTS 

 

III.3.1. Confirmation of T-DNA insertions  

To investigate myosin function in plant development, 4-7 T-DNA insertion lines for each gene 

were obtained from the Arabidopsis stock center (Table III.1.) (Alonso et al., 2003). Insertion of 

T-DNA was confirmed by amplification with primers specifically designed for verifying T-DNA 

insertion in a target gene (Table III.2.). In summary, 64 of the 69 myosin T-DNA insertion lines 

were tested. The exceptions are 5 lines, which were ordered recently for additionally screening 

(xi-f-5, xi-g-6, xi-i-6, and xi-i-7) and one line (xi-d-4) that did not germinate. For several lines, T-

DNA insertion in the genome could not be detected, thus only 39 lines were confirmed to have a 

T-DNA insertion (see Figure III.2. for examples, Table III.4. for detail, and Table III.5. for  



Table III.4. Results of T-DNA identification 

Gene Line name Genotype T-DNA insertiona 
Knock-outsb 
(by RT-PCR) 

mya1-1 homozygous T N 
mya1-2 homozygous T N 
mya1-3 - - - 
mya1-4 homozygous T N 
mya1-5 homozygous T KO 

MYA1 

mya1-6 homozygous S N 
mya2-1 hemizygous nd N 
mya2-2 - - - 
mya2-3 homozygous S KO 

MYA2 

mya2-4 homozygous T KO 
xi-a-1 - - - 
xi-a-2 homozygous T nt 
xi-a-3 - - - 
xi-a-4 homozygous S nt 

XI-A 

xi-a-5 - - - 
xi-b-1 - - - 
xi-b-2 homozygous nd KO 
xi-b-3 homozygous nd KO 
xi-b-4 - - - 

XI-B 

xi-b-5 homozygous nd N 
xi-c-1 homozygous nd KO 
xi-c-2 homozygous nd N 
xi-c-3 - - - 
xi-c-4 - - - 

XI-C 

xi-c-5 homozygous nd KO 
xi-d-1 homozygous S nt 
xi-d-2 homozygous T nt 
xi-d-3 homozygous T nt 
xi-d-4 no germination - - 

XI-D 

xi-d-5 - - - 
xi-e-1 - - - 
xi-e-2 homozygous nd nt 
xi-e-3 homozygous nd nt 
xi-e-4 homozygous nd nt 

XI-E 

xi-e-5 - - - 
a nd: number if insertion was not determined; S: single insertion was confirmed.; T: tandem  

  repeat T-DNA insertion was confirmed;  
b N: RT-PCR with a product; KO: RT-PCR without a PCR product; nt: not tested   



Table III.4. Continued 

Gene Line name Genotype T-DNA insertiona 
Knock-outsb 
(by RT-PCR) 

xi-f-1 - - - 
xi-f-2 - - - 
xi-f-3 homozygous nd nt 
xi-f-4 hemizygous nd nt 

XI-F 

xi-f-5 nt - - 
xi-g-1 - - nt 
xi-g -2 homozygous T - 
xi-g -3 homozygous T nt 
xi-g -4 homozygous S nt 
xi-g -5 - - - 

XI-G 

xi-g -6 nt - - 
xi-h-1 homozygous S nt 
xi-h -2 - - - 
xi-h -3 - - - 
xi-h -4 - - - 
xi-h-5 homozygous nd nt 

XI-H 

xi-h-6 homozygous nd nt 
xi-i-1 homozygous T nt 
xi-i-2 homozygous T nt 
xi-i-3 homozygous T nt 
xi-i-4 homozygous S nt 
xi-i-5 - - - 
xi-i-6 nt - - 

XI-I 

xi-i-7 - - 
xi-j-1 homozygous T N 
xi-j-2 - - - 
xi-j-3 - - - 
xi-j-4 - - - 

XI-J 

xi-j-5 - - - 
xi-k-1 homozygous S N 
xi-k-2 homozygous S N 
xi-k-3 - - - 
xi-k-4 homozygous S N 

XI-K 

xi-k-5 homozygous S KO 
a nd: number if insertion was not determined; S: single insertion was confirmed.; T: tandem  

  repeat T-DNA insertion was confirmed;  
b N: RT-PCR with a product; KO: RT-PCR without a PCR product; nt: not tested   



Table III.5. Summary of mutant identification 

Gene 
Insertion 
tested line 

Insertion 
confirmed 

Homozygotes 
Inverted repeat 

insertion 
Knock-outs  

(by RT-PCR) 

MYA1 6 5 5 4 1 

MYA2 4 3 2 1 2 

XI-A 5 3 3 1 nt 

XI-B* 5 3 3 nt 2 

XI-C* 5 3 2 nt 2 

XI-D 4 2 2 2 nt 

XI-E 5 3 3 nt nt 

XI-F 4 2 2 0 nt 

XI-G 5 3 3 2 nt 

XI-H 6 5 3 0 nt 

XI-I 5 4 4 3 nt 

XI-J 5 1 1 1 0 

XI-K 5 4 4 0 2 

nt  Not tested.  

*    Isolation of homozygous mutants and confirmation of knockout was completed  

     by Peter Anthopolos.    



summary). Before observing the phenotype of homozygous mutants, they were backcrossed with 

wild type to eliminate potential additional T-DNA insertions beside the target myosin gene. It is 

possible that there is more than one T-DNA insertion in the plants, for example, xi-j-4 failed to 

amplify T-DNA PCR products but plants were kanamycin resistant suggesting there is no T-

DNA insertion in XI-J but in an unexpected region of genome. Most of the homozygous plants 

were backcrossed to wild type and homozygotes were reisolated, except lines of xi-a, lines of xi-

e, and two lines of xi-h (xi-h-5 and xi-h-6) due to the late isolation of homozygous plants. During 

this step, mya2-1 and xi-f-4 could not be isolated as homozygous plants. Thus overall, 37 

homozygous plants for 13 myosin genes were isolated with several insertion lines per gene 

(Table III.5.).  

 While plants were backcrossed to remove potential second-site insertions, several 

homozygous plants were identified that had tandem T-DNA insertion in a myosin gene. With a 

single insertion, we would expect a PCR product either with the LBa/b-1plus LP or with the 

LAa/b-1 plus RP combination, but not with both (Figure III.1.). However, some homozygous 

lines generated two PCR products in different sizes with three primers (LP+RP+LBa-1). These 

results were different from the information provide from the SIGnAL. Thus, instead of PCR with 

three primers, PCR with a pair of primers, LBa/b-1+ LP and LBa/b-1+RP, were performed and 

PCR products were sequenced to verify their precise insertion region (Figure III.2. as 

examples). Four lines including mya1-5 amplified PCR product with both combinations and 

sequencing of the PCR product revealed their exact insertion site of genome (Figure III.3.A). 

Other lines for all myosins were examined in same way and the results summarized in Table III. 

4.  

 Homozygous plants were then checked for their gene expression by RT-PCR. T-DNA  



 

 

Figure III.1. Diagram of the experiments to verify T-DNA insertion  

Genomic primers (LP and RP) can amplify a 900bp product for wild type alleles, 

but not after insertion of T-DNA. In contrast, LBa/b and RP (or LBa/b and LP in 

case of reverse orientation of T-DNA) will amplify a product of about 410 to 710bp 

for mutant alleles. The gel diagram illustrates the banding pattern expected from 

wild type (Shane et al.), hemizygous (HZ), and homozygous (HM) mutant plants 

when all three primers are included in the PCR reaction. Note that a recent update 

of the primer-designing tool in the database now includes the information of 

directionality of T-DNA. This was not available when the research for this chapter 

was conducted. 

. http://signal. salk .edu/tdnaprimers .html 
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Figure III.2. Verification of T-DNA insertion by PCR 

A. Presence of T-DNA was confirmed in mya1 mutants. mya1-3 plants have no 

T-DNA in their genome. Occasionally, TLBb-1 primers could generate around 

500bp PCR product which is not related to myosin genes (arrow).  

B. Identification of insertion alleles of XI-K. xi-k-3 plants have no T-DNA in the 

genome. 

C. mya2-3 hemizygous plant amplified PCR products both with two gene specific 

primers and with a gene specific LP and T-DNA LBa-1 primer. 
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Figure III.3. T-DNA insertion sites in gene maps and confirmation of gene knockout by  

RT-PCR 

Precise T-DNA insertion sites in the genome were identified by sequencing of 

PCR product with TLBa-1 and LP (or RP). Many insertion lines contained two 

insertions of T-DNAs. Disruption of gene expression was confirmed with RT-PCR.  

A. Representative genomic maps of T-DNA insertion in myosins. Several lines of 

mya1 contained tandem repeats of T-DNA insertions. Two arrows indicate the 

approximate primer binding region used for RT-PCR. 

B.  Confirmation of gene knockout by RT-PCR. RT-PCR with gene specific 

primers confirmed one-knockout mutant in each gene. In case of MYA2 PCR in 

mya2-4, depending on the location of primer binding site, small amount of PCR 

product appeared only after 40 cycles of amplification (mya2-4b).       
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integration in a gene is normally expected to disturb proper gene expression. However, 

depending on the site of T-DNA insertion region, it is possible that no or only mild effects on 

gene expression are observed. In fact, among the five alleles of mya1 mutants, four alleles still 

showed specific PCR products in RT-PCR experiments (Figure III.3.B). Amplified PCR 

fragments were also observed with cDNA from seedlings of three different alleles.   

Interestingly, RT-PCR of mya2-4 gene fragments showed different results depending on the 

position of primers in the coding region. PCR with primers that span the T-DNA insertion site in 

mya2-4 failed to generate a PCR product (Figure III.3.B. MYA2 PCR a), while PCR with 

primers downstream of the T-DNA insertion site amplified to an extremely low level with 40 

cycles (Figure III.3.B. MYA2 PCR b). mya1-1 also showed a PCR product with a pair of primers 

that failed to amplify with mya1-5 cDNA (Figure III.3.B). However, with a different pair of 

primers which span the T-DNA insertion region, no PCR product was generated with cDNA of 

mya1-1 suggesting that the mRNA in mya1-1 might include abnormal sequences due to T-DNA 

insertion. In addition, more knockout mutants of XI-B (xi-b-2 and xi-b-3) and XI-C (xi-c-1 and xi-

c-5) were identified and confirmed by the absence of amplification from corresponding cDNA in 

mutants by Peter Anthopolos. Thus, gene-specific RT-PCR could confirm loss of gene 

expression in mya1-5, xi-k-5, xi-b-2, xi-b-3, xi-c-1, xi-c-5, and mya2-4, supporting that those 

lines are gene knockout mutants (Table III.5.). Meanwhile, xi-k-5 and mya2-3 were isolated as 

knockout mutants from several other groups (Hashimoto et al., 2005; Ojangu et al., 2007; 

Peremyslov et al., 2008).                



III.3.2. Phenotype survey 

 Once homozygous T-DNA insertion lines were confirmed by genotype PCR, plants were 

carefully examined to detect potential mutant phenotypes. At first, overall plant growth was 

observed during the entire development. None of the insertion mutants showed detectable 

morphological differences, suggesting that myosin genes might have functional redundancy. 

Thus, more detailed observation of different tissues or responses to special environmental signals 

were performed (Table III.6.).  First, trichome morphology was observed on adult leaves and 

inflorescence stems. Normally, trichomes on leaves have three branches while trichomes on the 

inflorescence stem are not branched (Ishida et al., 2008; Pesch and Hulskamp, 2004). Among the 

observed lines, only xi-k-5 showed distorted trichomes on stems, while, interestingly, trichomes 

on leaves did not show significant defects (Figure III.4.). This phenotype of xi-k-5 was also 

observed by Ojangu et al. 2007. However, in their results, trichomes on leaves also showed 

distorted or abnormally branched trichomes (Ojangu et al., 2007).  

 Two characteristics of root hair development, root hair positioning and root hair growth, 

were also examined for several myosin mutants. To observe the two phenotypes, seedlings were 

grown on square plates positioned vertically in a growth chamber. Interestingly, mya1-5 and xi-

h-1 plants were observed to produce more root hairs than wild type. This phenotype could be 

observed in different alleles of mya1 and xi-h, mya1-1, mya1-4, mya1-6, and xi-h-5 (See chapter 

V.)(Figure III.5.A). There was no significant difference of root hair length between wild type 

and mya1-5 statistically (Col-0: 0.61 ±0.11, n= 730; mya1-5: 0.61 ±0.17, n= 311). On the other 

hand, root hair lengths of xi-k-5 and xi-b-2 were shorter than those of wild type (xi-k-5: 0.32  



Table III.6. List of phenotype survey  

Phenotypic analysis Tested lines Comments 

Whole plant growth all No visible phenotype 

Trichome development mya1, mya2, xi-f, xi-h, xi-i, xi-k xi-k 

Leaf epidermal cell shape mya1, mya2, xi-i, xi-k   No visible phenotype 

Leaf venation mya1, mya2, xi-f, xi-h, xi-i, xi-g, xi-k   No visible phenotype 

Hypocotyl growth mya1, xik-5, mya1 xi-k, mya2, xi-i  No visible phenotype 

Root hair growth mya1, xi-b, mya1 xi-k, xi-i, xi-k, mya2  
xi-k, mya1 xi-k, xi-b, 

mya2 

Root gravitropism mya1-5, xik-5, mya2, xi-i, xi-h No visible phenotype 

Root hair positioning mya1, xi-k, mya1 xi-k, xi-h mya1, xi-h 

 

 

 



 

 

Figure III.4. Trichome morphology  

Trichomes on leaves and inflorescence were compared in wild type and mutants. 

Trichomes on the inflorescence stem of xi-k-5 were not straight and this 

phenotype was more severe in mya1 xi-k double mutants. However, there was no 

visible phenotype in trichomes on leaves.     
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Figure III.5. Root hair phenotypes of selected myosin mutants 

 Several alleles of mya1 and xi-h produced more root hairs than wild type, while xi-

k and mya2 as well as mya1 xi-k double mutant showed shorter root hairs than 

wild type.  

A. Mutants that displayed additional root hairs. Note the “bushy” appearance of 

the mutants compared to Col-0.  

B. Mutants whose root hairs are shorter than wild type. 

C. Comparison of root hair length on xi-k and mya1 xi-k with Col-0 and mya1. 

Bars showed average length of at least 300 root hairs. Error bar indicate SE. 

D. Short root hairs on xi-b mutants. Note that the phenotype is milder than in xi-k.    
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Figure III.5. Continued. 
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±0.12, n=370; xi-b-2: 0.45 ±0.12, n=475; xi-b-3: 0.42 ±0.11, n=387) (Figure III.5.C and D). It 

is remarkable that root hairs in xi-k-5 could grow to only around 50% of root hair length in Col-

0, while xi-b root hairs could grow around 70% of wild type (Figure III.5.B, C, and D).  Other 

alleles of xi-k, xi-k-1, xi-k-2, and xi-k-4, also showed shorter root hairs consistent with 

descriptions from two publications (Figure III.5.B) (Ojangu et al., 2007; Peremyslov et al., 

2008). No visible phenotype was detected for several myosin mutants. Also, some of the 

characteristics examined did not yield any differences between wild type and any of the myosin 

mutants. For example, measurement of hypocotyl elongation in dark grown seedlings did not 

show any difference in myosin mutants (Figure III.6.). Hypocotyl lengths from 10 seedlings of 

each genotype were measured 6 days after germination. Wild type showed average hypocotyl 

length of 7.3 mm (±0.71 SD), while seedlings of mya1-5, xi-k-5, mya2-3, and xi-i-1 had no 

significant difference (7.9 ±1.1, 8.1 ±0.75, 8.3 ±1.0, 8.2 ± 0.92 mm, respectively).         

 

III.3.3. Double mutant screening  

 The presence of highly similar pairs of myosin paralogs in the myosin class XI gene 

family suggests that these genes might be functionally redundant (Figure II.4 and 5.). To test 

this hypothesis, mutants of two highly similar myosins were crossed to generate a double mutant. 

For example, MYA1 and XI-K are most similar to each other and knockout mutant of both genes 

has been isolated. Thus, to investigate functional relationship of MYA1 and XI-K, mya1-5 and xi-

k-5 were crossed and double mutants were identified by genotype PCR in F2 plants. Among 98 

individual F2 plants, 3 plants of mya1 xi-k double mutant were isolated. mya1 single mutants 

showed additional root hairs compare to wild type while xi-k mutants had shorter root hairs than  



 

 

Figure III.6. Hypocotyl lengths of several myosin mutants are not different 

Hypocotyl length in etiolated seedlings of mya1-5, xi-k-5, mya1 xi-k, mya2-4, and 

xi-i-1 were compared with those of wild type. There was no significant difference 

between any of tested lines (p > 0.05).  
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wild type. A total of 476 root hairs from more than 30 double mutants were observed whether 

they show both phenotype of root hair positioning and root hair growth (Figure III.5.). Root 

hairs of mya1 xi-k double mutants were significantly shorter than the root hairs of xi-k (mya1 xi-

k: 0.29 ±0.11, n=476 ; xi-k: 0.32 ±0.12, n= 370, p=0.0013). Interestingly, this was most 

pronounced in the lower (younger) part of the root (Figure III.5.C). This suggests that MYA1 

and XI-K show some overlapping activity regarding root hair growth at least in this specific 

region of the root.  

III.3.4. Organelle movements in a double mutant 

 To identify the cause of the root hair growth defect in xi-k and mya1 xi-k, organelle 

markers were transformed into several genotypes, including Col-0, mya1-5, xi-k-5, and mya1 xi-

k. Since organelle movements are very sensitive to the environment, one binary vector 

containing three organelle markers (TOM) labeled with different fluorescence proteins 

(Peroxisome-CFP, Mitochondria-YFP, and Golgi-mCherry/Tomato) were cloned  (Figure III. 

7.A) and root hairs of stable transgenic plants in wild type and mya1 xi-k were observed with 

time-lapse photography. Image sequences for each organelle marker were analyzed for organelle 

movements in root hairs (Movie III.1-8* and Figure III.7.B).  

 Peroxisome movements in wild type showed a faster average speed than those in mya1 

xi-k (Figure III.7.C). In Col-0, the mean velocity of peroxisome was 0.56 ±0.02 μm/sec with 

923 individual time intervals and the average maximum speed was 2.44 ±0.41 μm/sec within 13 

cells analyzed. In mya1 xi-k, both mean velocity of all tracks and average maximum speed were 

* Movie files are included as attachments separately. Quick time player or an equivalent video 

player is necessary to open these files.  



Figure III.7. Organelle movement analysis 

Organelle movements were traced with a triple organelle marker (TOM) in wild 

type and mya1 xi-k double mutant. 

A. Plasmid map of triple organelle marker. Three available organelle markers 

were inserted in a single binary vector, pFGC19, each with their own 35S 

promoters and nos terminators. Two variants of TOM were generated with 

different Golgi markers, either Golgi-tdTomato or Golgi-mCherry.  

B. Images of TOM in wild type and mya1 xi-k double mutants were collected in 

three channels sequentially for 60 sec with 1-2sec intervals. Then images from the 

three channels were separated and used for tracking organelles. Peroxisome-CFP 

(PX-CFP) was pseudo-colored in blue, while mitochondria-YFP (MT-YFP) and 

Golgi-tdTomato (Go-Tomato) were pseudo-colored in green and red, respectively.  

C. Cumulative distribution function plots of the speed of organelles in wild type 

and mya1 xi-k double mutants. Measurement of the speed of each organelle from 

several cells of each genotype were combined and displayed as a percentage of 

the cumulative distribution of speeds. While Golgi and mitochondria movements in 

double mutants were not significantly different, peroxisome movements in double 

mutants were slower than in wild type.    
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Figure III.7. Continued 
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slower than in wild type (0.28 ±0.007 μm/sec (n=1109) and 1.24 ±0.11 μm/sec (n=14), 

respectively). These results suggest that peroxisomes in mya1 xi-k double mutants are moving 

less overall (U test: p < 0.0001). 

 On the other hand, Golgi stack and mitochondria movement in mya1 xi-k did not show 

significant differences in either mean velocity or average maximum speed to those in Col-0 

(Figure III.7.C). Mean velocity of Golgi in Col-0 was 0.61 ±0.03 μm/sec (n=420) and average 

maximum speed was 1.92 ±0.28 μm/sec (n=11), while mya1 and xi-k double mutants showed 

similar speeds in both criteria (0.54 ±0.01 μm/sec (n=1112) for mean velocity and 1.67 ±0.16 

μm/sec (n=27) for average maximum speed, U-test: p=0.92). Mitochondria movement was also 

similar in wild type and mya1 xi-k double mutant with mean velocities of 0.58 ±0.037 μm/sec 

(n=159) and 0.63 ±0.029 μm/sec (n=381) and average maximum speeds of 2.47 ±0.18 μm/sec 

(n=5) and 2.81 ±0.21 μm/sec (n=10), respectively (U-test: p=0.64).  

 

III.4. DISCUSSION 

 

 Compared with the intensive studies in non-plant organisms, including human cells, 

functional study of plant myosins has been very limited until recent (Avisar et al., 2008b; Harries 

et al., 2009; Ojangu et al., 2007; Peremyslov et al., 2008; Richards and Cavalier-Smith, 2005; 

Sparkes et al., 2008). This might be because the functional redundancy within the gene family 

makes it difficult to find a mutant by phenotypic screening. In fact, none of the single mutants of 

myosins analyzed here showed visible defects on whole plant growth. Individual cell types, like 

root hairs and trichomes, showed a phenotype suggesting that some isoforms function 



predominantly in certain developmental processes. However, different isoforms might still share 

their function in at least root hair growth, since mya1 xi-k double mutants showed a stronger 

phenotype, although mya1 single mutants did not show a root hair growth defect. It will be 

interesting to observe the phenotype of other multiple mutants, for example, mya2 xi-b and mya1 

xi-h. 

 The observation of the phenotypes of myosin mutations may also have been difficult 

since myosin may function intensively in specific cells which are very sensitive to slight 

environmental changes. For example, three studies including two recent publications and this 

study about the xi-k mutant showed quantitatively different expression of the mutant phenotype 

(Ojangu et al., 2007; Peremyslov et al., 2008). Difference in phenotype of xi-k trichomes 

between my results and published results from Ojangu et al. (2007) might be caused by 

differences of growth condition. Slight differences of growth condition, for example, soil, light, 

or humidity, might cause variable growth defects. In fact, the average lengths of root hairs of 

wild type were different between my experiments and those of the other groups. Root hairs in my 

and Ojangu’s experiments were about twice as long as the root hairs described by Peremyslov et 

al. (Ojangu et al., 2007; Peremyslov et al., 2008). Ojangu et al. also did not include sucrose in 

the growth media causing the plants to produce longer root hairs. The average length of root 

hairs grown on sucrose-free conditions in their results was similar to those in my results. Since 

plants were grown on quarter strength MS in my experiments, limitation of nutrients might 

stimulate root hair growth. Thus, variations in growth conditions may lead to different 

expression of mutant phenotype.  

 Different growth conditions might also partially explain the differences of organelle 

movements described in this study and elsewhere (Peremyslov et al., 2008). Root hair growth is 



extremely sensitive to environmental changes (Bibikova et al., 1997; Monshausen et al., 2007). 

Slight changes of pH or nutrient contents in the medium can cause cessation of growth or even 

root hair rupture (personal communication with Monshausen and own observations). This 

suggests that organelle movements in root hairs might also be sensitive to environmental 

differences, so that different growth conditions could generate different effects on organelle 

movements. This should be examined in more detail in the future with tightly controlled 

environmental parameters.  However, it may still be hard to explain why peroxisome movements 

were slower in both experiments while two other organelles showed different sensitivity to xi-k 

mutants.  

 In fact, it is difficult to track individual spots from root hairs since the organelle 

population is very dense and organelle tracks sometimes overlap. For example, the population of 

mitochondria is large thus occasionally several mitochondria move together in a same track, 

making it difficult to track an individual spot in the next image (Movie III. 7. and 8.). In 

addition, it has been well known that organelles have a typical stop and go movement 

(Nebenführ et al., 1999). For example, Golgi stacks have about 20-45 sec periods of stop and go 

episodes in BY-2 cells (Nebenführ et al., 1999).  In my observations, they showed about 20 to 35 

sec long of one stop and go episode (data not shown). Since I tracked individual spots longer 

than 45 sec, my tracking results contain at least one stop and go episode. However, the other 

group tracked organelle movements only in 25 sec long, suggesting that they could track only a 

partial episode of stop and go movements. This might result in inaccurate measurement of 

movements. For example, Golgi stacks showed shorter moving periods than stop periods in my 

experiments (data not shown). Moreover, organelles that are not in major tracks are not moving 

or move more slowly than those in major tracks. Thus, it might be necessary to analyze the 



organelle movement in those regions separately to examine organelle dynamics more accurately. 

 Overall, the high population density of mitochondria and complex moving behavior of 

organelles might exaggerate potential experimental errors in automatic tracking by computer. In 

my experiment, although data sample sizes are smaller than automatic tracking by computer, 

since I carefully selected organelles which showed fast movements and tracked them long 

enough to observe their behavior, my results are more accurate than automatic tracking. Since 

there is no maximum speed of organelles given by other group, we cannot conclude whether my 

interpretation is correct or not. Overall, a more sophisticated method should be developed to 

analyze this complex movement. 



CHAPTER IV. XIK is required for root hair tip growth in Arabidopsis 

 The results presented in this chapter are currently being prepared for publication. 



IV.1. INTRODUCTION 

 Functional studies of class XI myosin in plants are relatively limited compared with 

studies on myosins in other classes. Recently, using fluorescent-tagged truncated myosin tails, 

localization information of several myosin in class XI was gathered (Avisar et al., 2009; Li and 

Nebenführ, 2007; Sparkes et al., 2008). Overexpression of motor-less myosins also revealed a 

potential myosin function in organelle trafficking (Avisar et al., 2009; Avisar et al., 2008b; 

Sparkes et al., 2008). However, there have been few studies to investigate a developmental 

function of class XI myosin.  

 Mutant analysis revealed a few myosin functions in plant development. Myosin XI-B in 

rice (OsMyoXIB) might control pollen development (Jiang et al., 2007), given that osmyo-xib 

mutants were male sterile under short day condition. Last year, two studies showed potential 

functions of MYA2 for a plant virus movements in tobacco leaves (Harries et al., 2009) and 

movements of plastid stromules (Natesan et al., 2009). An antibody raised against an isoform of 

class XI myosin purified from cultured tobacco BY2-cells suggested that myosin might function 

in ER movement during mitosis (Yokota et al., 2009). At last, as already mentioned in the 

chapter III of this study, xi-k mutants had much shorter root hairs than wild type and mya1 xi-k 

double mutant analysis revealed defects in peroxisome and Golgi stack movements. In addition, 

two other groups showed the same mutant phenotype of xi-k mutation (Ojangu et al., 2007; 

Peremyslov et al., 2008) and one of them also showed defects in multiple organelle movement in 

xi-k mutants (Peremyslov et al., 2008). However, it is still unclear what is a direct function of XI-

K in the mechanism of root hair growth. Root hairs are long tubular outgrowths of root epidermal 



cells that increase the root surface by growing only at their tip. This tip growth is regulated by an 

extremely complicated self-organizing feedback mechanism with dynamic cytoskeleton, vesicle 

trafficking, and signaling factors (see chapter I.2 for detail.). Although many regulatory factors 

were identified in this mechanism, there are still a lot of unknown aspects to be investigated. For 

example, it has been shown that a unique cytoskeletal organization of root hairs leads to massive 

accumulation of vesicles containing cell wall material to the apex of root hairs (Figure I. 5, for 

review). However, how these vesicles are delivered is still unknown.  

 In this study, the tip growth defect myosin mutant, xi-k, was characterized in detail to 

identify XI-K function in the tip growth mechanism of root hairs. The reduced growth of root 

hairs in xi-k was tightly correlated with the accumulation of RabA4b labeled vesicles at the tip of 

growing root hairs. This study also showed XI-K localization at an unidentified type of vesicle at 

the root hair tip, partially colocalized with RabA4b-labeled vesicles. With a lack of knowledge of 

myosin function in root hair tip growth, this study provides significant new details about the 

mechanism of root hair tip growth.         

  

IV.2. MATERIALS AND METHODS 

 

IV.2.1. Plant growth and transformation 

 Col-0 was used as wild type and xi-k-5 (SALK_018764), identified in Chapter III, was 

used for a mutant. Plants were grown in a growth chamber at 22°C in 16hr light and at 20°C in 

8hrs dark with about 60% humidity (Weigel and Glazebrook, 2002). For root hair length 



measurements, seeds were germinated on square plates of 1/4 strength MS with 1% sucrose pH 

adjusted to 5.7 and solidified with 0.5% phytagel (Sigma-Aldrich). Plates were incubated at 10° 

off vertical in a growth chamber with continuous light. 5 day-old seedlings were used for the 

measurements. Constructs used in this study were transformed into plants by the floral-dip 

method (Weigel and Glazebrook, 2002). Stable transgenic plants were screened with appropriate 

antibiotics or herbicides and observed under a fluorescence microscope.  

 

IV.2.2.  XI-K complementation test  

 The construct for the complementation test was composed with XI-K native promoter, 

which extends approximately 1kb upstream of the XI-K start codon and includes the first exon 

and intron of XI-K. This sequence was also used to construct the XI-Kpro:GUS expression 

reporter in chapter II (see table II.1. for primer information). The promoter was followed by YFP 

(yellow fluorescent protein) conjugated with a short linker DNA encoding ELYGGOGGSGSA 

and XI-K cDNA in the binary plasmid pPZP221. This construct was transformed into xik-5 

mutants. Full length XI-K cDNA was assembled by combining two EST clones, BE526400 and 

AV546218, which cover the full length of the gene including the 5’ UTR and 3’UTR. 

 Root hair lengths were measured in images of 5-day-old seedlings that were captured 

under a Leica stereomicroscope (Leica MZ16 FA, http://www.leica microsystems.com) equipped 

with digital camera (Leica DFC420) under 7.1 X magnification or 23X magnification. Images 

were acquired with Leica FW4000 software. More than 150 root hair lengths from 15 or more 

plants in each genotype were measured with ImageJ (NIH, http://rsb.info.nih.gov/ij/) and 

statistically analyzed in Prism 5 (www.graphpad.com).  



IV.2.3. Root hair growth rate measurements 

 To measure root hair growth rate, seeds were surface sterilized and stratified in water for 

2 days and then transferred to special devices as described in (Kawamura et al., 2006) with a 

modification to maintain plants healthy during observation. Briefly, 2 seeds were moved to a 

cover glass-bottomed culture dish (Electron Microscopy Sciences) and covered with 2ml of 

media containing 1/4 strength MS salt, 1% sucrose, and 0.7% type VII agarose (Sigma-Aldrich) 

in pH 5.7. Culture dish chambers were sealed and placed in the growth chamber for a day. The 

culture dish chambers were tilted 30° off vertical so that roots could grow along the cover glass. 

DIC images of root hairs were taken in 30 sec intervals for 45min or 1 hour under a 100X 

objective with binning turned off to minimize pixelation errors. Time-lapse capture was repeated 

5-7 times to observe entire growth of a root hair from shortly after bulging to fully-grown. 

Length of root hairs was measured with measurement option in OPENLAB (Improvision). Data 

were analyzed and visualized with Prism 5.0. 

 

IV.2.4. Constructs and plant transformations 

 Constructs and their transgenic plants were listed in Table IV. 1. Briefly, YFP-RABA4B, 

YFP-RABF2A, and YFP-hFAPP1 in pCambia were kindly provided by E. Nielsen from the 

University of Michigan. An actin marker, YFP-FABD2 in pFGC19, was reconstructed based on 

35Spro:GFP-FABD2 donated by Dr. Carola Holweg in Germany. YFP/mCherry-ROP2 was 

generated from amplified cDNA sequences based on the sequence information from Fu et al (Fu 



et al., 2002). YFP/CFP-RHD4 was constructed from amplified cDNA sequences with primer 

information from Thole et al. (Thole et al., 2008). Constructs were transformed into wild type 

and xi-k-5 mutants by Agrobacterium-mediated transformation (Weigel and Glazebrook, 2002).  

 For EXP7pro:YFP/mCherry, promoter sequence information of EXPANSIN 7 (EXP7)  

was obtained from Kim et al. (Kim et al., 2006). DNA fragment containing EXP7 promoter was 

obtained by PCR from genomic DNA with EXP7pro-F (5’-GCTAGCTTAGTTTATCTTTGGA 

AACGAAACGTAA-3’) and EXP7pro-R (5’-CCATGGTTCTAGACCTAGCCTCTTTTTCTTT 

ATTCTT-3’).  The PCR product was cloned in pGEM-Teasy vector and sequenced, then moved 

to a binary vector, pFCG19 with XbaI (on primer) and EcoRI (from T-vector) restriction. YFP 

with nos 3’ terminator was introduced downstream of the promoter.  

 

IV.2.5. Analysis of YFP-RabA4b accumulation 

  35Spro: YFP-RABA4B in pCAMBIA, kindly provided by E. Nielsen (University of 

Michigan, Ann Arbor, MI) was transformed independently into Col-0 and xi-k-5. Homozygous 

T3 seeds were germinated on vertical plates as described above and moved to the observation 

chamber four days after germination. After three hours incubation in the observation chamber to 

allow growth of new young root hairs, images of YFP fluorescence and DIC were collected with 

a Hamamatsu ORCA-ER digital camera sequentially every 10 sec for 30 min with a 63X (1.4 

NA) plan-apo oil immersion objective with no binning on an Axiovert 200M microscope (Zeiss, 

http://www.zeiss.com) equipped with filters for YFP and CFP fluorescence (filter set 52017; 

Chroma, http://www.chroma.com). Background was subtracted with Openlab from all YFP 

images to remove camera background.  



Table. IV.1.  List of constructs transformed into plants 

Name 
Localization 

Information 
Selection marker Comments 

XIKpro:YFP-XI-K Vesicles at root 
hair tipsA 

Gentamicin This studyB 

35Spro:YFP-RABA4B Vesicles at root 
hair tips 

Hygromycin B 
E. Nielsen lab (Preuss et 

al., 2006) 

35Spro:CFP-RABA4B Vesicles at root 
hair tips 

Hygromycin B 
E. Nielsen lab (Preuss et 

al., 2006) 

35S:YFP-PHFAPP1 Plasma membrane 
at root hair* 

Hygromycin B 
E. Nielsen lab (Vermeer 

et al., 2009) 

35S:CFP-HDEL Endoplasmic 
reticulum 

Basta 
Nebenführ lab (Nelson et 

al., 2007) 

35Spro:YFP-FABD2 Actin filaments Basta This studyB 

35Spro:YFP-RHD4 
Root hair tip 

accumulation 
Basta This studyB 

35Spro:CFP-RHD4 
Root hair tip 

accumulation 
Basta This studyB 

EXP7pro:mCherry 
Cytoplasmic 

localization 
Basta This studyB 

EXP7pro:YFP 
Cytoplasmic 

localization 
Basta This studyB 

EXP7pro:YFP-ROP2 Plasma membrane 
at root hair 

Basta This studyB 

35Spro:YC3.6 Calcium dynamics Basta 
S. Gilroy lab 

(Monshausen et al., 2007) 

*  YFP-PHFAPP1 at the shank of root hairs can label Golgi stacks 
A This information was shown in this study 
B constructs were generated by author of this study 

 



 The time-lapse sequences of YFP and DIC were then separated and analyzed using 

ImageJ. YFP image sequences from individual root hairs were bleach corrected using a plug-in 

in ImageJ (ImageJ> plug-in> Stacks-T-function> bleach correction) with a decay constant 

calculated from whole image sequences based on fitting of an exponential decay curve (R2 > 

0.68, overall). To measure accumulation of YFP fluorescence at the root hair tip, an oval area of 

about 2.1 μm2 was selected within 4μm from the tip of the root hair and average fluorescence 

intensity was measured over time. Coefficient of variation of mean intensity was taken as a 

measure for the consistency of YFP accumulation at the tip of root hairs. DIC image sequences 

captured along with YFP images were used to measure root hair growth rate. Due to the limited 

pixel resolution of images, every third DIC image was selected and used for the measurement of 

root hair tip position. Statistical analyses and visualization of result were performed with Prism 

5.0.  

 

IV.2.6.  YFP-XI-K localization analysis  

 XI-Kpro:YFP-XI-K xi-k-5 plants were observed for their YFP expression in root hairs. 

Microscope setting was identical to the analysis of RabA4b accumulation except that long 

exposure times were used. Sequential images were obtained under 63X with 2X binning for 1 

min with 1sec intervals. 

 For drug treatment, 5-day-old seedlings grown as described above were transferred to the 

observation chambers. Inhibitors were diluted in liquid media and applied underneath solid 

media bed covering the root of a seedling in the observation chambers (10μg/ml final 

concentration of BFA from a 5mg/ml stock in EtOH and 100nM of Latrunculin B from 1mM 



stocks in DMSO). EtOH was used for mock treatment. Images were taken for 60 min with 10sec 

interval (BFA and EtOH) or 30sec interval (LatB) and processed as described above.  

 For colocalization test, 35Spro:CFP-RHD4, EXP7pro:mCherry-ROP2, and 

EXP7pro:mCherry were transformed into homozygous XI-Kpro:YFP-XI-K xi-k-5 plants. T1 

seedlings were screened on media with double selection and moved to a vertical plate without 

selection for additional growth for a day to allow normal growth of root hairs. Once seedling 

started producing normally shaped root hairs, they were moved to an observation chamber and 

sequential dual color images were acquired for one minute in 1sec intervals.    

 

IV.2.7. Analysis of cytosolic Ca2+ dynamics at the tip of root hairs  

 35S-driven YC3.6 in the binary vector pEarleyGate100 was kindly donated by Dr. Simon 

Gilroy at the University of Wisconsin and transformed into wild type and xi-k. Successful 

transformants were isolated in a screen and T2 seeds were harvested. Imaging of cytosolic Ca2+ 

levels was performed by fluorescence resonance energy transfer (FRET). 5-day old seedlings 

were transferred to a minimal media plate described in Monshausen et al. 2008. After 3 hours of 

growing on the minimal media plate, agar surrounding the seedling was cut out and transferred to 

the observation chamber with 200μl of sterilized water. CFP, FRET, and YFP images were 

acquired using a dichroic mirror with two-transmission windows, 476/40nm and 550/50nm, 

under CFP excitation and YFP excitation sequentially. Separate images in CFP channel and YFP 

channel were recorded simultaneously through a beam splitter. These image acquisitions were 

repeated every 2 sec for 3 min. Images were manipulated in Openlab and normalized FRET was 

calculated with NFRET algorithm developed by (Xia and Liu, 2001) using the FRET module in 



Openlab software. Bleed-through constants were determined experimentally to be 0.8 for donor 

and 0.01 for acceptor. Input thresholds were set up by averaging 5 randomly picked background 

intensities for each image. NFRET values were visualized and analyzed statistically with Prism 

5.0. 

 

IV.2.8. Analysis of Actin dynamics 

 An actin marker, YFP-FABD2, was transformed into both wild type and xik mutant and 

stable transgenic plants were screened for reliable fluorescence expressions. Time-lapse images 

of 15 growing root hairs were taken in 1 sec interval for 1 min under microscope with a 

microscope setting described in the section IV.2.6. Images were then analyzed and visualized 

with ImageJ.  

 To differentiate dynamic actin movements, subtraction of sequential images using ImageJ 

plug-in (ImageJ> plug-in> Stacks-T-function> Delta F up) was performed. Individual images 

were background subtracted with high stringency and then differentiated image sequences were 

generated. For statistical analysis, the relative area of the actin cytoskeleton the showed 

differences above a threshold was calculated. Statistical analysis was performed with Prism 5.0.  

For visualization, four image sequences in 5-second intervals were pseudo-colored in rainbow 

spectrum (red, yellow, green, and blue) and merged in one image.        

  

IV.3. RESULTS 

 



IV.3.1. Tip growth is altered in the root hairs of xi-k mutants  

 As described in chapter III, xi-k mutants showed shorter root hairs than wild type 

(Figure III.5. B and C). Root hairs of xi-k usually grew to about 60% of root hair length in wild 

type. This phenotype may have resulted from two different mechanisms: Mutant root hairs might 

have grown normally but stopped growing earlier than wild type, or they might have grown more 

slowly than wild type for the same time period. To identify the cause of these short root hairs, 

root hair growth rates were measured over time. A seedling was moved to an observation 

chamber and photographed sequentially every 30 sec for up to one hour. The microscope stage 

was then moved to start tracking the same root hair until it stopped growing. xi-k mutants could 

grow for 4-5 hours under these conditions while wild type could grow up to about 7 hours. This 

experiment was repeated four times and one representative result is shown in Figure IV.1. 

Complete image sequences are available online in Movie IV. 1-7 for Col-0 and Movie IV. 8-12 

for xi-k. Both wild type and mutants showed growth rate oscillations which also has been 

reported (Monshausen et al., 2007). As root hairs got older, their growth rate dropped down and 

eventually became zero. However, comparison of growth rates of root hairs with similar length 

revealed that growth rates of xi-k were much smaller than those of wild type (Figure IV.1.A). 

Interestingly, growth rates of xi-k root hairs were similar to those of wild type root hairs that 

were 2 hours older (Figure IV.1.A and B) suggesting that root hairs in xi-k grew more slowly 

than in wild type. Maximum root hair growth rate in xi-k in this condition was 1.67μm/min while 

wild type showed 2.33μm/min of maximum growth rate suggesting that root hairs in xi-k grow 

slower from their initiation (Figure IV.1.C). Overall, average growth rates were 1.26 

±0.53μm/min and 0.918 ±0.21(SD) μm/min in wild type and xi-k, respectively. This difference 



of root hair growth rates of wild type and xi-k mutants was statistically significant (p< 0.001). As 

a result, xi-k mutants produced shorter root hairs than wild type since root hairs in xi-k mutants 

grew more slowly and also stopped growing earlier than in wild type (Figure IV.1.D).  

 

IV.3.2. YFP-RABA4B accumulation is impaired in the xi-k mutant 

 YFP-RABA4B has been used as a marker for growing root hairs (Preuss et al., 2006; 

Preuss et al., 2004; Thole et al., 2008). When root hairs are growing, YFP-RABA4B accumulates 

at the tip of root hairs; when root hairs stop growing this accumulation disappears (Preuss et al., 

2004). Since root hairs in xi-k mutants are growing more slowly and stop growing earlier than in 

wild type, the effect of the xi-k mutation on YFP-RABA4B accumulation was observed in 

mutants. Root hairs from both wild type and xi-k mutants displayed accumulation of YFP-

RABA4B at the tip of growing root hairs (Figure IV.2.A). However, interestingly, tip 

accumulation of YFP-RABA4B of xi-k frequently displayed a stochastic loss and recovery at the 

tip of root hairs, while the accumulation was more consistent in wild type (Figure IV.2.A and 

Movie IV.13-26). To investigate the relationship between the rate of root hair growth and the 

accumulation of YFP-RABA4B at the tip of root hairs, YFP fluorescence at the tip of root hairs 

and root hair growth were monitored over time. Mean intensities in the tip area of growing root 

hairs are changing spontaneously over time even in wild type, however, the variation of mean 

intensity in wild type was not as large as in xi-k (Figure IV.2.B-E). 



Figure IV.1. Root hairs in xi-k mutants are growing more slowly and stop growing sooner 

than in wild type  

A. Montage of DIC image sequences of Col and xik during one hour. Young root 

hairs in xi-k grew more slowly than wild type root hair at the same stage. 

B. Growth rate of three root hairs shown in panel A were compared. Root hair 

growth oscillated over time, however, growth rates of young root hairs in wild type 

(light green) were higher than those of xi-k root hairs at the same developmental 

stage (magenta), while about two hours older root hairs of wild type (dark green) 

showed a similar growth rate as younger xi-k root hairs. 

C. Overview of growth rate from after root hair initiation to termination of root hair 

growth. Root hairs in xi-k mutant (magenta) cannot grow as fast as in wild type 

from the beginning and eventually stop growing earlier than wild type (green). 

D. Cumulative growth over time. Wild type is shown in green while xi-k is shown in 

magenta.           
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Figure IV.1. Continued  
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 With comparing two root hairs from wild type and xi-k with similar average growth rate over 

time (Figure IV.2.B and C), coefficients of variation of the growth rates of xi-k root hairs were 

larger than those of wild type root hairs. While the coefficient of variation of wild type root hairs 

were 8.62% (green in Figure IV. 2.B), 14.71% (green in Figure IV.2.C), and 7.02% and 

10.79% (Figure IV. 2.C), xi-k showed higher coefficient of variation than any of wild type 

(17.65%, magenta in Figure IV.2.B; 26.11%, magenta in Figure IV.2.C; 20.96%, Figure 

IV.2.E). This result suggests that YFP-RabA4b accumulation in xi-k is less stable than in wild 

type.  

 To understand the relationship of YFP-RabA4b accumulation and growth rate, growth 

rates from each sample were compared with their YFP-RabA4b accumulation (Figure IV.2.F-I). 

Although we frequently observed similar changes in RabA4b accumulation and growth rate of 

root hairs (Figure IV. 2. F-I, black arrows), there were also occasional counter examples 

(Figure IV. 2. F-I, yellow arrows), suggesting that there is only a loose correlation of YFP-

RAbA4b accumulation and growth rate. However, growth rates of xi-k mutants fluctuated more 

than those of wild type similar to the unstable YFP-RabA4b accumulation in the root hairs of xi-

k mutants. While coefficients of variation of the growth rates of wild type root hairs are 20.28% 

(average growth rate: 0.88 ±0.18μm/min, Figure IV.2.F) and 30.56% (average growth rate: 0.71 

±0.21μm/min, Figure IV.2.G), xi-k mutants had coefficients of variation of the root hair of 

32.39% (average growth rate: 0.90 ±0.30μm/min, Figure IV.2.H) and 31.61%(average growth 

rate: 0.78 ±0.25μm/min, Figure IV.2.I).  

 

 

 



Figure IV.2. YFP-RabA4b accumulation at the tip of growing root hair is impaired in xi-k 

mutants   

A. Montage of YFP-RabA4b image sequences of Col and xi-k. Yellow arrows point 

to reduced YFP-RABA4b signal at the root hair tip in xi-k mutants.  

B – E. Coefficient of variation plot of RabA4b accumulation at the root hair tip over 

time in wild type (green) and xi-k (magenta). Grey area indicates the range of 

variation of RabA4b intensity in wild type. Cumulative growths over time are 

superimposed with a black line and a grey line for Wild type and xi-k, respectively.  

Panel B and C show root hairs from wild type and xi-k that showed relatively 

similar growth rates. Panel D showes two wild type root hairs whose growth is 

almost finished. Note that they still showed relatively consistent accumulation of 

RabA4b at the tip. Interestingly, very young root hairs (panel E) in xi-k also showed 

large variation of YFP-RabA4b accumulation. 

F-I. Comparison of RabA4b variation and growth rate per min. Overall, there was 

only a loose correlation between in both wild type (green) and xi-k (magenta). 

Black arrows indicate the periods that showed a good match of variation of growth 

rate with RabA4b variation. Yellow arrows indicate the periods that showed a no 

match of variation of growth rate with RabA4b variation.  
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 Although we failed to detect a tight correlation between YFP-RabA4b accumulation and root 

hair growth rate, overall results suggest that growth rate in xi-k were more variable that in wild 

type consistent with the instability of the YFP-RabA4b accumulation at the tip of growing root 

hairs in xi-k.     

 

IV.3.3. PtdIns4P and ER localization were normal in xi-k root hair   

 PtdIns4P kinase is a known effector of RabA4b and their colocalization at the tip of 

growing root hair has been shown (Preuss et al., 2006). Since RabA4b accumulation at the tip of 

root hairs in xi-k was altered (Figure IV. 2), PtdIns4P distribution was observed in the root hairs 

of xi-k using the pleckstrin homology domain of the human phosphatidylinositol-4-phosphate 

adaptor protein-1 (FAPP1) (Vermeer et al., 2009). However, there was no visible difference 

between wild type and xi-k (Figure IV. 3.A) suggesting that the reduced accumulation of 

RabA4b in xi-k root hairs does not affect the availability of PI4P at the plasma membrane.  

  Previously, it was suggested that XI-K might localize to the ER, based on results with 

fluorescently labeled truncated XI-K without motor domain (Sparkes et al., 2008). To test the 

prediction that XI-K might be involved in ER dynamics, ER distribution was observed in the root 

hairs of xi-k and overall their localization was not different between in wild type and xi-k mutants 

(Figure IV. 3.B). 



 

 

Figure IV.3. No differences of PtdIns4P and ER localization in xi-k 

A. YFP-PHFAPP1 in wild type and xi-k. This marker can visualize PI4P lipid in the 

plasmamembrane particularly stronger at the tip of root hairs.  

B. CFP-HDEL in wild type and xi-k. This marker labels the ER lumen. Not that this 

marker does reach into the apex of both wild type and xi-k root hair.  

YFP-PHFAPP1

CFP-HDEL

COl-0 xi-k
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B



IV.3.4. Intracellular Ca2+ dynamics during root hair growth in xi-k 

 It has been reported that calcium concentrations in the root hair tip oscillate with 5 sec 

intervals and are tightly correlated with root hair growth (Monshausen et al., 2008). To define the 

relationship of XI-K function with calcium oscillations, calcium dynamics were measured by a 

FRET-based calcium tracker, YC3.6., in wild type and xi-k mutants (Figure IV.4.). Due to a 

large variation of data among the samples, it is difficult to conclude whether there is a difference 

between the genotypes or not. Only a subset of the samples could be fit with low stringency to a 

sine wave. In particular, only four out of eight observations in wild type root hairs and three out 

of nine observations in mutant root hairs showed clear oscillations (Figure IV.4.). Among these 

root hairs, the averages of the coefficient of variation of amplitude in wild type and xi-k mutants 

showed statistically no difference (8.20 ±0.032% and 8.71 ±0.026%, respectively. T-test 

=0.254). Thus, xi-k might not have a significant difference in calcium oscillation events during 

root hair growth.           

 

IV.3.5. Actin dynamics in xi-k did not show significant difference from wild 

type  

 The actin cytoskeleton is highly dynamic during root hair tip growth (see section I.2. for 

detail.). As described in chapter III of this study as well as other studies, xi-k mutants showed 

defects in the movements of several organelles (Peremyslov et al., 2008). Since XI-K 

localization does not match with any of these organelles, actin filament dynamics were observed 

to determine whether secondary effects of xi-k on actin dynamics existed. Similar to calcium  



Figure IV.4. Calcium dynamics in xi-k 

Dynamic calcium changes were monitored at the tip of root hair with the calcium 

indicator YC3.6. Each sample was grouped based on the genotype (wild type in 

green and xi-k in magenta) and how well its variation could be fit to a sine wave. 

A. Wild type group with oscillations 

B. xi-k group with oscillations 

C. Wild type group without clear oscillations 

D. xi-k group with without clear oscillations 
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Figure IV.4. Continued  

 



 

Figure IV.5. Actin dynamics 

Actin filaments are visualized with YFP-FABD2 and shown as superimposition of 4 

images taken in 5sec interval. Individual images were a pseudo-colored with 

rainbow spectrum to reveal movements (red, yellow, green, and blue). White 

indicates no change of position. 
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dynamics, sample to sample variation was very large (Figure IV.5.).  Differences of pixel 

brightness from second to second over a one-minute observation period were calculated and 

coefficients of variation of each time lapses were compared within wild type and xi-k mutants. 

Statistically, there was no difference between wild type and xi-k mutants (12.8 ±0.038% and 

14.40 ±0.043, respectively. T-test = 0.075), although visual inspection of the time-lapse seemed 

to suggest reduced activity in xi-k mutants (Figure IV.5.).          

  

IV.3.6. XI-Kpro:YFP-XI-K can complement the short root hair phenotype of 

xi-k  

 To confirm that the root hair growth defect was caused by knockout of XI-K, a wild type 

XI-K cDNA was transformed into xi-k mutant under the control of its native promoter. In 

addition, YFP was conjugated in front of XI-K cDNA to observe the localization of XI-K. Three 

individual transgenic lines were identified and measured their root hair length. In all cases, XI-

Kpro:YFP-XI-K could complement xi-k root hair growth (Figure IV.6.A and B). While an 

average root hair length of xi-k were 0.32 ±0.06mm (SD, n= 370), XI-Kpro:YFP-XI-K xi-k had 

an average root hair length of 0.62 ±0.006mm (SD, n=660) similar to those in wild type (0.61 

±0.004mm, n=730), This  suggests that the slower growth of root hairs in xi-k mutants resulted 

from the lack of XI-K motor proteins. In addition, this could also confirmed that YFP-XI-K can 

function normally in plants, so that we can use these transgenic plants to observe XI-K 

localization in cells. 

  



IV.3.7. XI-K localizes to BFA-sensitive vesicles at the tip of growing root hairs 

 YFP-XI-K expression was observed in root hairs. Interestingly, high accumulation of 

YFP was observed at the tip of growing root hairs, similar to the distribution of YFP-RAbA4b 

(Figure IV.7. A and Movie IV. 27.). This accumulation of YFP-XI-K was stable while root hairs 

are growing, but disappeared when root hairs were fully grown (data not shown). Occasionally, 

distinct small spots appeared in the shank of root hairs (arrows in Figure IV.7.A). The YFP-

labeled compartments at the tip of root hairs could have resulted from diffuse cytoplasmic 

labeling since the root hair tip has a thick cytoplasm unlike the rest of the root hair. Thus, an 

actin filament inhibitor, LatB, and a vesicle trafficking inhibitor, BFA, were used to observe their 

effects on YFP-XI-K labeled compartments. Root hairs in ethanol treatments continued to show 

tip focused YFP-XI-K during the entire hour of observation and root hairs could grow normally 

(Figure IV. 7.B and Movie IV. 28.). At the relatively low concentrations of LatB (100nM), tip 

accumulations of YFP-XI-K dispersed throughout the root hairs with some very large clumps of 

YFP combined with a stop of root hair growth (Figure IV. 7.C and Movie IV. 29.). This 

suggests that YFP-XI-K localization at the tip of root hairs is actin cytoskeleton dependent.  

 Interestingly, treatment of 10μg/ml of BFA for 30min showed a gradual loss of YFP-XI-

K at the tip of root hairs and the appearance of bigger spots of YFP-XI-K in the shank of root 

hairs (Figure IV. 7.D and Movie IV. 30.), suggesting that YFP-XI-K transports small post-

Golgi, or endocytic vesicles normally accumulate at the tip of root hairs for root hair growth. 

 



  

Figure IV.6. XI-Kpro:YFP-XIK complements the xi-k phenotype 

A. Root hairs in transgenic plants showed recovery of root hair growth to levels 

similar to wild type. 

B. Measurement of root hairs lengths in Wild type (green), xi-k (magenta), and 

complemented plants (blue) 
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Figure IV.7. YFP-XI-K localizes at the tip of growing root hairs 

A. YFP-XI-K accumulation at the tip of growing root hairs. Occasionally, small 

punctate spots (white and yellow arrow in different time point) appear in the shank 

of root hairs while the tip focused fluorescence is more broadly localized.  

Scale bar indicate 10 μm. 

B. Ethanol treatment did not have any effect on YFP-XI-K accumulation at the tip of 

growing root hairs. 

C. 100nM LatB treatment released YFP-XI-K accumulation at the tip within 30 min. 

YFP-XI-K then accumulated in large undefined structures throughout the root hairs. 

D. 10 μg of BFA treatment led to the gradual release of YFP-XI-K from the tip of 

root hair. Interestingly, many large spots are resulted from BFA treatment (white 

arrow).    
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Figure IV.7. Continued  
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IV.3.8. YFP-XI-K vesicles partially colocalize with YFP-RabA4b vesicles at 

the tip of root hairs 

 Several kinds of vesicles were known to accumulate at the tip of growing root hairs (see 

section I.2. for detail.). Recently, YFP-RHD4 has been shown to accumulate at the tip of 

growing root hairs and rhd4-1 showed stochastic YFP-RabA4b fluctuation similar to those in xi-

k (Thole et al., 2008). Thus, to test for colocalization of YFP-XI-K and CFP-RHD4 or CFP-

RabA4b, which are well known to accumulate at the growing root hairs, root hairs of double 

transgenic plants were observed. While cytoplasmic mCherry was diffuse throughout in the 

cytoplasm and appeared evenly in the root hair tip, YFP-XI-K was more accumulated at the 

apical region of root hair tip, confirming that YFP-XI-K is not freely diffusing in the cytoplasm 

consistent with the results from the previous section. (Figure IV. 8.A. and Movie IV. 31.). CFP-

RHD4 was partially colocalized with YFP-XI-K in the tip region. However, CFP-RHD4 did not 

accumulate in the apex of the root hair tip, while YFP-XI-K was highly accumulated in that area 

(Figure IV. 8.B. and Movie IV. 32.) Interestingly, CFP-RabA4b and YFP-XI-K were 

colocalized at the apex which is the area whose RHD4 does not localize (Figure IV. 8. C.). 

However, CFP and YFP could be distinguished clearly in different spots along the shank 

frequently.  In addition, tip accumulation of YFP-XI-K and CFP-RabA4b ocassionally were 

temporally and spatially separated (Movie IV.33.), suggesting that vesicles that XI-K attached to 

might be different from the YFP-RabA4b labeled vesicles. mCherry-ROP2 clearly highlighted 

the plasmamembrane of root hairs as well as a diffuse distribution in the cytoplasm, as reported 

previously (Fu et al., 2002) and YFP-XI-K was lack on the plasmamembrane (Figure IV. 8.D).     

 



IV.4. DISCUSSION 

  

 One isoform of class XI myosin, XI-K, has been identified in the previous chapter of this 

study as well as by other groups as being involved in root hair growth in Arabidopsis (Ovecka et 

al., 2005; Peremyslov et al., 2008). Shorter root hair length in xi-k is due to both slow growth of 

root hairs and early termination of root hair growth in xi-k mutants (Figure IV. 1.D).  

 Information from the colocalization analysis of YFP-XI-K and observation of the 

localization of other markers demonstrate the presence of YFP-XI-K labeled vesicles at the apex 

of root hair (Figure IV. 9.A). Since root hairs can only grow with a massive delivery of vesicles 

which provide cell wall materials and membrane lipid to the tip (Guimil and Dunand, 2007), XI-

K might deliver important vesicles to control actual cell growth. It is unclear whether XI-K can 

deliver one kind of vesicles or multiple types of vesicles. There are many vesicle markers which 

can label an intermediate membrane compartment in secretory pathway. For example, YFP-

RabA4b and YFP-PHFAPP1 were found in the TGN in addition to secretory vesicles and at the 

plasmamembrane, respectively (Preuss et al., 2004; Vermeer et al., 2009) Partial colocalization 

of YFP-XI-K and CFP-RabA4b suggested the existence of new kind of vesicles which XI-K 

might transport to the tip of root hair, however, we cannot exclude the possibility that XI-K 

might be able to transport multiple types of vesicles, including RabA4b-labeled vesicles. Careful 

observation of behavior of YFP-XI-K and CFP-RabA4b in time-lapse images during the 

treatment with inhibitors to distinguish vesicles from crowded root hair apex might give more 

information.  



 

Figure IV.8. YFP-XI-K colocalization information 

Colocalization of YFP-XI-K with several markers. 

A. EXP7pro:mCherry. mCherry signal was diffuse in the entire cytoplasm. 

B. 35Spro:CFP-RHD4.YFP- XI-K and CFP-RHD4 partially overlapped in the 

subapex of the root hair.  

C. 35Spro:CFP-RabA4b. RabA4b signal largely overlapped with YFP-XI-K at the 

apex of root hair. 

D. EXP7pro:mCherry-ROP2. ROP2 labeled the plasma membrane and was clearly 

distinct from YFP-XI-K 
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 Unlike the tight correlation of tip growth rate with calcium and ROS oscillation 

(Monshausen et al., 2009), RabA4b accumulation appeared to have only a loose correlation with 

root hair growth rate (Figure IV.2). This might be explained by the difference of time scale 

between RabA4b accumulation variation and calcium oscillations. Calcium oscillation has been 

reported with a wave length of about 20 sec and root hair growth rate also oscillate with a similar 

frequency, although with 5 sec lag behind calcium oscillations (Monshausen et al., 2008). On the 

other hand, fluctuations of growth rate in this study and of RabA4b accumulation in this study 

and in previous reports (Preuss et al., 2004; Thole et al., 2008) were observed on the minute 

scale. Thus, the contributions of calcium and ROS signaling on the one hand and of secretory 

vesicle trafficking by myosin on the other hand might be different temporal event. This 

assumption can be supported with the results of calcium dynamics in xi-k (Figure IV.4.). 

Although our results included a large variation, we could observe no difference of calcium 

dynamics between wild type and xi-k. This suggests that XI-K functions in a different event of 

the regulatory mechanism of tip growth and operates on a different time scale than calcium.  

 The distinctive actin organization and dynamics during tip growth are known to be 

controlled by multiple factors (reviewed in section 2 of chapter I.). Although there are few 

studies about the temporal regulation of actin cytoskeleton yet, lack of significant differences of 

actin dynamics in wild type and in xi-k in this study (Figure IV.5.) might be explained with the 

different temporal regulation mentioned above. It might be helpful to more carefully examine 

longer-term changes of calcium and actin organization in xi-k since several studies suggested that 

vesicle trafficking regulates calcium oscillations and global actin organization (Figure I.5 for 

review).        

 



Figure IV.9. Working model of myosin function in root hair tip growth  

A. Relative position of markers including YFP-XI-K at the tip of root hairs based 

on the evaluation of time lapse movies with root hairs in double transgenic plants.  

B. Schematic model of XI-K function in root hair tip growth. Results presented in 

this study that myosin XI-K functions specifically in the delivery of secretory 

vesicles from the sub apex to the apex. 
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 Due to the lack of information of potential XI-K functions in root hair tip growth, it was 

not possible to explain the connection between a mutation of xi-k and altered organelle 

movements during tip growth of root hairs. In this chapter, more information about XI-K 

function in root hair tip growth has been obtained and we proposed a potential myosin function 

in root hair tip growth (Figure IV.9.B). While many studies using various approaches have 

enforced the relationship of calcium and ROS with root hair tip growth (Monshausen et al., 

2007; Monshausen et al., 2009; Monshausen et al., 2008; Takeda et al., 2008), it was relatively 

unclear how vesicles are transported to the apex of root hairs and how this transport regulates 

root hair growth in detail. It has been well known that vesicle trafficking in root hairs is actin 

dependent.  This study showed for the first time direct evidence for the myosin dependent vesicle 

movement to the root hair.  

     



CHAPTER V. Root hair positioning and class XI myosin 

 

 This chapter introduces background and experimental design with some preliminary data. 

Many of the preliminary data in this chapter have been collected by undergraduate students 

under the author’s guidance (Nilou Soltanian, Annabel Rodriguez, and Kevin Kuo,). Some 

students presented their research in posters at the conference of undergraduate research (K. K. 

and A. R.) and will write an honor thesis (K. K.). N.S. contributed to isolating root epidermal cell 

specific markers in mutant background and K.K. confirmed homozygous mutants with a marker 

and analyzed GUS expression patterns. A.R. generated results from phosphate deficiency test. 

The author was involved in developing hypothesis, designing experiments, generating 

preliminary results. Similar to chapter III in this dissertation, the studies described in this 

chapter will be from the bases for a future project in this lab.  



V.1. INTRODUCTION 

 

 Class XI myosin is generally considered to transport intracellular molecules along actin 

filaments (Liu et al., 2001). Intracellular trafficking of vesicles and proteins is one of the key 

regulatory processes for development of multicellular organisms ( amaj et al., 2006). Although 

there is up to now not much direct evidence, it is assumed that class XI myosins transport cargo 

that has which have critical roles for plant development (Campanoni and Blatt, 2007).   

 As mentioned in the previous chapter, two mutants of class XI myosins in Arabidopsis 

thaliana, mya1 and xi-h, showed an increase of frequency of root hairs on root epidermis 

(Chapter III.3.3.). Arabidopsis normally has type III root hair positioning plan that displays a 

“stripe” pattern of root hairs which depends on the relative position of epidermal cell files on 

cortical cells. Molecular and genetic mechanisms of root hair patterning have been extensively 

studied with several mutants and corresponding gene expression patterns (Schiefelbein et al., 

2009). However, the contribution of myosins to the determination of cell fate in the root 

epidermis has not been studied. Based on the biochemical function of myosin which transports 

cargo in the cell, we can hypothesize that MYA1 and XI-H transports factor(s) which is (are) 

involved in cell patterning process of root epidermis.  

 Based on the pathway established for positionally cued patterning and environmental 

factors (Figures I.8. and 9.), it is possible to hypothesize that myosin is involved in one of two 

events (Figure V.1.). First, myosin might be involved in the trafficking of GL3/EGL3 

transcription factors (Figure V.1.A.). Although it is predicted that GL3/EGL3 travel from H-

cells to N-cells for their function, there is no study about how these proteins move from cell to 



Figure V.1. Two hypotheses of myosin involvement in root hair positioning   

A. Potential myosin function in GL3/EGL3 trafficking from H-cells to N-cells.      

B. Potential myosin function in phosphate perception in root epidermis.    
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cell. CPC, a transcription factor that is assumed to travel from N-cells to H-cells, was proposed 

to travel through plasmodesmata based on the studies of the related of proteins, e.g. 

SHORTROOT which has been shown to travel through plasmodesmata (Wada et al., 2002). 

Whether GL3/EGL3, bHLH transcription factors, can move through the plasmodesmata has not 

been demonstrated yet.  

 As a second possibility of myosin function in root hair positioning mechanism, myosin 

might be involved in phosphate uptake or perception in the root epidermis (Figure V.1.B.). 

Ectopic root hairs on N-cells have been observed in phosphate limitation (Bates and Lynch, 

2000b; Müller and Schmidt, 2004; Zhang et al., 2003). Furthermore, it has been shown that this 

mechanism is independent of the cell fate determining mechanism by a positional cue based on 

studies with several mutants involved in root hair positioning (Müller and Schmidt, 2004). 

However, mechanism of this signaling has not known in detail. Since myosin mya1 and xi-h 

mutants produce ectopic root hairs on N-cells, it is necessary to verify myosin involvement in the 

phosphate-signaling pathway on root hair positioning.    

 In this study, two myosin mutants have been used to investigate the role of myosins on 

root hair positioning mechanism. At least two alleles of mya1 and xi-h mutants were observed for 

root hair production in N-cells as well as H-cells and crossed with promoter:GUS plants of major 

genes involved in positional signaling cascade, WERpro: GUS, EGL3pro: GUS, and GL2pro: 

GUS. In addition, sensitivity of phosphate deficiency was tested to test for possible myosin 

involvement in root hair production mechanism in response to phosphate deficiency. because of 

the lack of functional study of myosins in plant development, this study might be significant as a 

preliminary contribution to investigate myosin function in plant root development.          



V.2. MATERIALS AND METHODS  

 

V.2.1. Mutant phenotype analysis 

 Four lines of mya1 and two lines of xi-h were confirmed as homozygous for T-DNA 

insertion (Table II. 4. in chapter II.). Images of 5-day-old seedlings grown on vertical plates 

described in the previous chapter were captured with a Leica stereomicroscope (Leica MZ16 FA, 

http://www.leica-microsystems.com) equipped with a digital camera (Leica DFC420) under 23X 

magnification or 75X magnification. The number of root hairs were counted over 5mm length of 

root for each genotype and statistically analyzed by Prism 5 (www.graphpad.com).  

 

V.2.2. Root hair positioning markers 

Homozygous plants containing root hair specific promoter:GUS constructs were obtained 

from the Schiefelbein lab, the Unversity of Michigan (Schiefelbein, 2003). Since they were in 

different ecotypes- WERpro:GUS in Col-0, EGL3pro:GUS in Ler, and GL2pro:GUS in WS, they 

were crossed to Col-0 as well as mya1-5 and xih-1. Genotypes of F2 plants were confirmed by 

PCR with primers for detecting T-DNA insertion (TLba-1, 1T5-LP, and 1T5-RP; see chapter III 

for primer sequences) and GUS staining. Conventional GUS staining was modified to yield 

better distribution between expressing and non-expressing cells. Plants were pre-incubated in 

staining buffer containing without X-Gluc (100mM NaPO4 (pH7.0), 10mM EDTA, 0.1% Triton 

X-100, 5mM K3Fe(CN)6, and 5mM K4Fe(CN)6) for 15minutes at room temperature followed by 

incubation in the staining  buffer (with 2mM X-Gluc) for 20 min at 37°C. After clearing with 



serial concentration of ethanol for at least 4 hours, pictures of plants are taken under the 

stereomicroscope (Leica MZ16FA, http://www.leica-microsystems.com) equipped with digital 

camera (Leica DFC420) and Leica FW4000 image acquiring software.  

 

V.2.3. Phosphate deficiency test 

 Col-0, mya1-5, and xi-h-1 seeds were germinated on one-quarter strength MS media 

containing different concentrations of phosphate. Phosphate concentrations were chosen based 

on the previous research (Müller and Schmidt, 2004). Briefly, MS media without phosphate 

(Caisson laboratories Inc.) were solidified with 0.5% phytagel including 1% sucrose and five 

different concentrations of phosphate (1 μM, 10 μM, 30 μM, 100 μM, and 300 μM) adjusted pH 

to 5.7. After two days of stratification, plates were placed vertically in a growth chamber at 22°C 

under long day conditions (16 light, 8 dark). Pictures were taken seven days after germination 

with a stereomicroscope at a magnification of 23X. Root hairs on 5 mm of roots were then 

counted with ImageJ (NIH).  

 

V.2.4. MYA1 localization test 

 For myosin localization and mutant complementation test, full-length MYA1 fused with 

YFP under control of its native promoter was assembled by several lab members and 

transformed into plants by Agrobacterium-mediated transformation. Stable transgenic plants 

were selected on hygromycin B selection media followed by fluorescence observation in T2 or 

T3 generations.  



V.2.5. Tissue specific complementation test 

 For tissue specific complementation, GAL4-UAS two components systems were 

designed (Figure V. 2). Epidermis or cortex-specific enhancer trap plants were selected in a 

catalog from Haseloff lab at the University of Cambridge and ordered from the Haseloff and 

Poethig collections in ABRC (http://www.arabidopsis.org). These enhancer trap plants were 

already confirmed for GAL4 activity in specific tissues of root. J0481 (CS9093) and Q1220 

(CS9224) have confirmed GFP expression only in epidermal cells, while J0571 (CS9094) 

showed exclusive GFP expression in the cortex. Those plants were then crossed with mya1-5 to 

yield mutants with the GAL4 construct.    

 To construct the other component, five repeats of GAL4 responsive upstream activation 

sequences (UAS) were obtained from the plasmid pUAST by PCR with UAS-F (5’- CGGAGCT 

CCCTGCAGGTCGGTCGGAGTAC -3’) and UAS-R (5’-CGGTCGACCCCAATTCCCTATTC 

AGAG -3’). A minimal plant prove to, i.e. a sequence of the -90 region of 35S promoter was also 

amplified using primers (35S(-90)-F; 5’-GAGCTCGCCTCGAGACATCTCCACTGACGTAAG 

G  -3’ and 35S(-90)-R; 5’- ACTAGTGGATCC GGTCGACGATCTGGGCTGTCCTCTCC -3’). 

The UAS PCR fragment and 35S(-90) PCR fragment were then inserted into the plasmid pBS-

KSII. Full-length MYA1 was ligated behind the 35S(-90) fragment. 

 



V.3. RESULTS 

 

V.3.1. The number of root hairs is increased in mya1 and xi-h mutants  

 In chapter III of this dissertation, it was described that mya1 mutants and xi-h mutants 

showed more root hairs than wild type. To confirm whether they produce more root hairs, 

different alleles of mya1 and xi-h mutants were grown on the vertical plates for 5 days and 

photographed. The number of root hairs on a 5 mm long segment of root were counted in 

individual seedlings (Figure V.3.). Wild type seedlings displayed 24.48 ± 2.47 root hairs per mm 

of root. Four alleles of mya1 mutants showed different results. While mya1-1 produced 26.15 ± 

1.53, which is not significantly different from Col-0, on the other hand, mya1-2, mya1-4, and 

mya1-5 produced 26.84 ± 1.53, 29.0 ± 1.74, and 29.69 ± 4.17, root hairs per mm, respectively. 

These members are significantly different from wild type (P < 0.002). mya1 xi-k double mutants 

also showed increased numbers of root hairs compared with wild type, as expected. Interestingly, 

two alleles of xi-h, xi-h-1 and xi-h-5, showed a dramatic increase of root hair numbers over wild 

type (36.29 ± 1.24 and 36.86 ± 4.84, respectively). In summary, mya1 and xi-h mutants produced 

more root hairs than wild type in the same growth condition. 

  

V.3.2. Increase in root hair numbers resulted from ectopic root hairs on 

atrichoblast cells  

 The increase in root hair numbers could be caused by two different mechanisms. First, it 

is possible that root epidermis lost their fate to be non-hair cells thus non-hair cells could 



Figure V.2. Schematic diagram of GAL4-UAS two components system 

To test MYA1 function, targeted expression system was introduced. System was 

adopted by Haseloff laboratory in University of Cambridge from similar system 

widely used in Drosophila.  

A. GAL4 activator with UAS-GFPER construct. This construct contains GAL4-VP16 

transcription factor gene as well as ER targeted-mGFP5 under control of UAS 

elements. Plants containing this construct can express GAL4 based on a plant-

driven enhancer upstream of the integration site of this construct. Then GAL4 

transcription factor can activate GFP, resulting in localized expression of GFP as 

controlled by the plant enhancer.  

B. UAS-MYA1 construct. As a counterpart of GAL4 activator construct, this 

construct contains six repeats of upstream activation sequences (UAS) and a 

minimal promoter region GAL4 can specifically bind to the UAS elements to 

activate the downstream gene, i.e. MYA1. Full length MYA1 introduced UAS for 

targeted expression by GAL4.  

C. Experimental strategy. GAL4 activator constructs were randomly transformed 

into plants and categorized by their GFP expression patterns. Pre-selected three 

lines which show GFP expressions only in either root epidermis (Q1220 and 

J0481) or cortex and endodermis (J0571) were crossed to mya1 to integrate GAL4 

activation in mya1 mutants. Meanwhile the construct containing MYA1 under UAS 

will be generated and transformed into mya1. Crossing two transgenic plants in 

mya1 mutant background then leads to MYA1 expression only in the targeted 

tissue.  
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 produce root hairs. On the other hand, hair cells might have a defect on maintaining planar 

polarity, so that an additional root hair grows at a different site on a single hair-producing root 

epidermal cell.  Based on pictures used for root hair counting (23X magnification), mutants 

seemed to have ectopic root hairs in N-cells but not more root hairs from single H-cells. 

However, it was not always possible to distinguish individual epidermal cells. Thus, to clarify 

the cause of increase of root hair numbers in mutants, images were taken at a higher 

magnification under stereomicroscope (75X magnification) and root hair position on epidermis 

was observed carefully (Figure V.4.). Interestingly, N-cells of mutants occasionally produced 

root hairs (white arrows in Figure V.4.B and C) while individual H-cell (ectopic root hair 

producing N-cell, as well) did not have multiple root hairs (yellow arrows in Figure V.4.B and 

C). In addition, position of N-cell and H-cell files were often shifted, so that N-cell pile started 

producing root hairs and changed to a H-cell file later while a neighbored H-cell eventually 

became N-cell file resulting two root hair cell files in parallel (Figure V.4.B. and C.). This 

observation suggests that, in mya1 and xi-h mutants, the cells fate determination machinery in the 

root epidermis is not functioning properly.  

V.3.3. Mutation of MYA1 affects the normal patterning of root hairs. 

The genetic mechanism of determining root hair epidermal cell fate depending on positional cues 

has been studied extensively (see chapter I.3 in this dissertation and Schiefelbein et al. 2009 for 

detail). To understand a potential myosin function on fate determination in the root epidermis, 

we develop two hypotheses of myosin function in the root hair positioning signaling pathway 

(Figure V. 2.). 



 

Figure V.3. mya1 and xi-h mutants show more root hairs than wild type. 

Several alleles of mya1 (mya1-1, mya1-2, mya1-4, and mya1-5) and xi-h (xi-h-1 

and xi-h-5) were counted their root hair frequency. xi-k-5 does not produce more 

root hairs but shorter root hairs. Double mutation of MYA1 and XI-K still retain 

both mya1 and xi-k phenotypes.     

 



Figure V.4. mya1 and xi-h mutants have ectopic root hairs on non-hair cells  

A. Col-0. Root hairs are growing on H-cell files resulting a longitudinal array of root 

hairs. Cell files adjacent to H-cells did not produce root hairs.  

B. mya1-5. While yellow arrows indicate normal root hairs from H-cells, white 

arrows indicate additional root hairs from N-cells. Unlike in wild type, two cell files 

produced root hairs.   

C. xi-h-1. While yellow arrows indicate normal root hairs from H-cells, white arrows 

indicate additional root hairs from N-cells. 
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 To evaluate these hypotheses, three markers of root hair positioning were obtained from 

Schiefelbein lab. WER, EGL3, and GL2 are key players in positional signaling for cell fate 

determination and their cell file-specific expression is well established (Bernhardt et al., 2003; 

Lee and Schiefelbein, 1999). WERpro:GUS in Col-0, EGL3pro:GUS in Ler, and GL2pro:GUS in 

WS ecotype of Arabidopsis were crossed with mya1-5 plants. F2 plants from this cross were 

genotype by PCR with primers for identifying T-DNA insertion in MYA1. So far, we could 

obtain GL2pro:GUS mya1. The pattern of GL2pro:GUS expression were observed by GUS 

staining  with seedlings (Figure V. 5.). To eliminate possible effect from different ecotype, F2 

progenies identified to have MYA1/+; GL2pro:GUS/+ were used as controls. Interestingly, 

homozygous mya1 seedlings showed misplaced GUS expression. Although range of 

disarrangement of the GUS staining is large in individual seedlings and wild type plants also 

displayed irregular patterns of GUS staining occasionally, frequency of disarrangement and 

strength of irregularity in mya1 background are significant larger than those in wild type, 

suggesting that MYA1 might function upstream of GL2 expression. This experiments were don 

by Kevin Kuo.  

 

V.3.4. mya1-1 and xi-h-1 mutants showed different responses to phosphate 

deficiency  

 In addition to increase of the frequency of root hairs, mya1 and xi-h mutants showed 

slightly longer root hairs than wild type. Since root hair length is also variable in wild type, the 

increase of length in mutants was not statistically significant (data not shown). However, it has 

been reported that Arabidopsis roots produce longer root hairs in limited phosphate condition as  



  

Figure V.5. Expression patterns of several regulators of epidermal cell fate  

WERpro:GUS, EGL3pro:GUS and GL2pro:GUS show characteristic expression patterns. 

GL2pro:GUS expression seems to be more variable in some mya1 plants, but quantitative 

analysis of staining patterns does not reveal a statistically significant difference to wild type. 

Images with light background were provided by Keven Kuo.  
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well as more root hairs on N-cells (Müller and Schmidt, 2004) which is similar to mya1 and xi-h 

grown under normal condition. 

 To test whether MYA1 and XI-H are involved in phosphate perception or uptake from 

environment, mya1-5 and xi-h-1 were grown on MS media containing various concentration of 

phosphate (Figure V. 6.). Root hair frequency of wild type increased depending on limitation of 

phosphate availability, however, root hair frequency significantly decreased on 1 μM phosphate 

medium, the lowest concentration tested (Figure V.7.). Interestingly, mya1 and xi-h showed 

distinct responses to the limited availability of phosphate. Root hair frequency of mya1 grown in 

a concentration of 100 μM of phosphate decreased significantly, however, root hair density in 

mya1 was inconsistent at lower concentrations of phosphate. xi-h-1 showed insensitivity of 

phosphate deficiency. Interestingly, their root hair frequency remained fairly constant across the 

concentrations suggesting that XI-H might be involved in phosphate perception mechanism of 

root epidermis. This experiment has been done by Annabel Rodriguez.  

 

V.3.5. MYA1 localization in root cells 

 Localization of MYA1 was observed with stable transgenic plants containing YFP fused 

full-length MYA1 under native promoter (Chapter III.3.5. for more information). Since MYA1 

seemed to be involved in two developmental mechanisms in roots, MYA1 expression in root 

cells has been observed carefully. YFP-MYA1 showed colocalization with tiny punctate 

structures throughout cytoplasm. YFP-MYA1 expression on root of Arabidopsis seedlings was 

relatively stronger than those in shoot. Root epidermal cells showed punctate YFP-MYA1 

localization in addition to root hairs (Figure V. 8.). YFP-MYA1 expression in roots of  



 

 

 

Figure V.6. Roots of five-days-old seedlings on a series of phosphate-limited media 

Wild type, mya1-5, and xi-h-1 were germinated on MS plates containing 1 μM, 10 

μM, 30 μM, 100 μM, or 300 μM of phosphate. Images were taken by Annabel 

Rodriguez in her own experiment.  

 

  



 

Figure V.7. Effect of phosphate availability on root hair density 

Wild type plants produced more root hairs on phosphate deficient plates while 

mya1 and xi-h mutants showed insensitivity to phosphate deficiency. This graph 

was generated by Annabel Rodriguez based on her own results.  
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 Arabidopsis seedlings was stronger than in shoot (Figure V. 8.D-F). Punctate spots of visible 

size were detected in every cell that showed YFP-MYA1 expression. Since YFP fusion to 

truncated MYA1 without the N-terminal motor domain occasionally showed colocalization with 

peroxisomes (Li and Nebenführ, 2007), colocalization of YFP-MYA1 with peroxisomes were 

observed in double transgenic plants, YFP-MYA1 PX-CFP in mya1 or mya1 xi-k backgrounds. 

Interestingly, YFP-MYA1 and PX-CFP were not colocalized (Figure III.8. E-H). Since they both 

were highly abundant in a cell, sometime they looked colocalized, however, careful observation 

of several spots confirmed YFP-MYA1 is not colocalized with PX-CFP (Movie V.1, and Figure 

III.8. G and H).      

     

V.4. DISCUSSIONS  

 

 The mechanism of root hair positioning has been studied extensively in Arabidopsis 

thaliana. Research over several decades has established a detailed model for the genetically 

controlled mechanism by positional signaling from inner cortex cells to the epidermis. 

Additional pathways respond to basic nutrients and hormones, especially ethylene, phosphate, 

and iron, deficiency (Müller and Schmidt, 2004; Schiefelbein et al., 2009). Although major 

players of this pathway are clear since they have been identified with corresponding mutants and 

their molecular genetic relationship have been studied for a long time, there are still many 

aspects that remain to be identified. Particularly, information in biochemical interaction of 

proteins and mechanism of their trafficking cell to cell are still lacking. The higher frequency of 



root hairs in mya1 and xi-h mutants suggests a potential involvement of myosin in root hair fate 

determination. Since myosin proteins can deliver their cargo along actin filaments, investigation 

of myosin contribution in root hair positioning mechanism can enforce the weak point of the 

model. Occasionally, mutants which have a defect in genes related to hormone synthesis or 

signaling have been reported to produce more root hairs not only because of ectopic root hairs in 

N-cells but also because of multiple root hair initiation in a single H-cell (Lopez-Bucio et al., 

2003; Masucci and Schiefelbein, 1994; Masucci and Schiefelbein, 1996; Müller and Schmidt, 

2004). Neither mya1 nor xi-h showed additional root hair initiation site in H-cells and increases 

of the root hair density of mya1 and xi-h were only due to additional root hair production in N-

cells. Therefore, possibility of direct involvement of myosin in hormone-related mechanism 

seems less likely. 

  In phosphate deficient condition, plants can produce more and longer root hairs to 

increase surface area for faster nutrient uptake (Lopez-Bucio et al., 2003). As expected, wild type 

seedlings produced more root hairs upon phosphate deficiency except that phosphate starvation 

condition (1 μM phosphate in this experiment) inhibited root hair production. We assume that 

plants might suspend normal plant growth resulting less root hairs as well as inhibition of root 

growth under these conditions. However, in this experiment, wild type and mutants failed to be 

statistically different, since variation between individual seedlings in same genotype was too 

high (Figure V.7.). In addition, root hair frequency of xi-h-1 in normal condition (300 μM of 

phosphate) in this experiment was lower than previous observation in regular media condition 

(Figure V.4). Evaluating media condition and careful repeat of this experiment to increase 

sample size might help to resolve this apparent contradiction.  



Figure V.8. YFP-MYA1 localization in a various tissues 

MYA1pro:YFP-MYA1 was expressed in a various tissues.  

A. YFP-MYA1 in leaf epidermal cells. Not every cell expresses YFP-MYA1. Yellow 

inset shows relatively strong expression of YFP-MYA1 in guard cells.  

B. YFP-MYA1 in hypocotyl epidermis.  

C. YFP-MYA1 in leaf pavement cells and guard cells  

D. YFP-MYA1 in root tip. Most cells have  clear YFP-MYA1 expression.  

E. YFP-MYA1 (green) and peroxisome-CFP (magenta) in root epidermis  

F. YFP-MYA1 (green) and peroxisome-CFP (magenta) in root hairs.  

G. Sequential images of YFP-MYA1 and PX-CFP in a root hair and a root 

epidermal cell. In a root hair cell, white arrows track a peroxisome initially 

colocalized with one spot of YFP-MYA1 (yellow arrows), however they were  

clearly separated from tracking after 11 sec. Fast movement of peroxisome 

without YFP-MYA1 association tracked with orange arrows. In a root epidermal 

cell, sky blue arrows identify a YFP-MYA1 spot that seems to colocalize with a 

PX-CFP spot at 1s, However, tracking their movement over time confirmed they 

are not associated.      
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Figure V.8. Continued
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CHAPTER VI. Concluding remarks 



 Myosin proteins function as molecular motors that drive the ATP-dependent movement 

of cellular components along actin filaments. Vascular plants encode two different types of 

myosin, referred to as class VIII and class XI (Odronitz and Kollmar, 2007). Although class XI 

myosin has been suggested to function in organelle movement and cytoplasmic streaming, little 

is known about their cellular function in detail. The Arabidopsis genome encodes 13 class XI 

myosin genes (Reddy and Day, 2001). The reasons for the relatively large number of myosin XI 

isoforms present within a single plant species are also unknown.  

 As a first step to investigate potential myosin function in plant growth and development, 

the sequence similarity of isoforms was examined in order to identify the phylogenetic 

relationships of myosins in Arabidopsis and rice. Interestingly, most of isoforms have a highly 

similar isoform which might lead to functional redundancy (Figure. II.5. and 6.). 22 isoforms 

(12 from Arabidopsis and 8 from rice) of the 24 found in these species could be resolved in two 

large groups, a group including MYA2 or the other group including MYA1 (Figure. II.5. and 6.). 

This might indicate functional differences between those two groups. However, further 

experimental support is essential to confirm this assumption. Interestingly, mya2 and xi-b 

produce shorter root hairs than wild type (Peremyslov et al., 2008) supporting that they are 

functionally in a same group that the phylogenetic tree showed. However, xi-k showed same 

phenotype, but XI-K is most similar to MYA1 in a different group in the tree and mya1 showed a 

redundant phenotype with xi-k. However, remarkably, mya1 single mutants did not showed a 

difference in root hair length but a higher density of root hairs on epidermis, which is similar 

phenotype to xi-h mutants. XI-H is resolved in a same group as MYA2. These results could be 

interesting since two functionally separate groups, which are involved in either root hair tip 

growth or root epidermis patterning, are mixed in two different phylogenetic groups. This might 



suggest that two different intracellular function of myosin contribute to a developmental process. 

However, there is not sufficient evidence to support this hypothesis yet.  

MYA2-specific antibody has been shown to colocalize with peroxisomes in Arabidopsis leaf 

epidermis (Hashimoto et al., 2005), while YFP-XI-K colocalizes with undefined secretory 

vesicles at the root hair tip (Figure. IV.8.) and YFP-MYA1 colocalizes with undefined 

organelles throughout the cytoplasm but not peroxisomes (Figure. V.8.), suggesting that they are 

involved in different intracellular trafficking processes. Although the actual cargo binding 

happens at the globular tail domain (GTD) of myosins, coevolution of myosin domains within a 

class has been postulated (Foth et al., 2006; Korn, 2000; Odronitz and Kollmar, 2007). In this 

study, the phylogenetic tree with full-length myosins also showed same results (Figure. II.6.). as 

the one based on motor domains (Figure. II.5.) or the dilute domain in GTD (data not shown), 

suggesting that the phylogenetic tree with the motor domain is sufficient to represent the 

similarity of GTD in group. However, this assumption also should be supported by experiments, 

since there is an example of one myosin V that can bind to multiple cargoes (Karcher et al., 

2002). Myosin Va in human was shown to have 6 binding partners in different tissues. Class V 

myosin has the same evolutionary origin as class XI myosin (Odronitz and Kollmar, 2007), 

suggesting that myosin cargo binding might not be solely related to protein sequence but rather 

depend on accessibility. However, more detailed studies should be conducted to test this 

hypothesis. Further analysis using YFP-XI-K and YFP-MYA1 to identify the nature of the 

vesicles that they transport will be an excellent system to inspect this hypothesis.  

 In fact, it is not easy to distinguish the vesicles from secretion and endocytosis. However, 

several proteins have been successfully used to differentiate membrane lipid composition 

(Vermeer et al., 2009), thus it will be informative to observe colocalization of those markers and 



YFP-XI-K. In addition, identification of XI-K binding proteins might give a clue to define the 

vesicles that XI-K transports to the root hair tip. Recently, binding of GTD of class XI myosin 

from Chara to phospholipid vesicles were demonstrated using GST-Myosin GTD fusion protein 

and GST antibody (Nunokawa et al., 2007). In addition, two GTPases, AtRabD1 and AtRabC2a, 

were also identified as adaptor proteins of MYA2 binding to peroxisomes (Hashimoto et al., 

2008). Thus, using XI-Kpro:YFP-XI-K xi-k transgenic plants, we might be able to conduct 

immunoprecipitation experiment to isolate adaptor proteins. At the same time, an EMS 

mutagenesis of XI-Kpro:YFP-XI-K xi-k transgenic plant and screening for mutants which show 

altered YFP-XI-K localization will genetically provide more details about the regulatory 

mechanism of YFP-XI-K function. 

 It is also necessary to determine the relationship of those myosins whose mutants showed 

similar phenotypes in a specific tissue. Since intracellular trafficking might be more active in a 

highly polarized cell, screening myosin mutants should be targeted to those cells which have an 

extreme polarity.  For example, root hairs might be a good system since they are one of tip-

growing cells in which active transport happens. It is not surprising that multiple myosin mutants 

showed phenotype in root hair growth. Since MYA2 and XI-B are most similar to each other and 

XI-K and MYA1 also most similar to each other in a different group of the phylogenetic tree, it 

will be interesting to check their overlapping function on root hair growth by checking the 

phenotype of double or triple mutants. It has been reported that MYA2 and XI-B show mild 

redundancy in a double mutant (Prokhnevsky et al., 2008), thus defining the functional 

relationship of them with XI-K and MYA1 is necessary. In addition, observation of XI-B 

localization in root hairs is also essential to figure out the functional relationship between these 

myosins. 



 As an independent approach to examine whether multiple intracellular trafficking 

pathways might contribute to a single developmental mechanism, we can also design another 

experiment to characterize myosin function in pollen tube growth. Pollen tube is the most 

polarized cell in plant and, interestingly, many myosins are specifically expressed in pollen tubes 

(Figure. II. 8.). Thus, identification of the functional relationship of these myosins on pollen 

tube growth using the mutants generated in chapter III, accompanied with characterization of 

their intracellular localization will be informative.    

 Combining a biochemical approach to identify myosin-cargo binding and a genetic and 

cell biological approach to understand myosin function in intracellular trafficking and its 

developmental effects, we can significantly increase our understanding of myosin function. The 

study in this dissertation has provided initial insights in this topic and also can serve as a critical 

resource to design future research more systematically.  
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