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ABSTRACT 

The microcantilever (MC) has become a common transducer for chemical and 

biological sensing in gas phase and liquid phase during recent years. MC sensors 

provide superior mass sensitivity by converting weak chemical and biological stimuli 

into high mechanical response.  Moreover, other advantages such as small size, low 

cost and array format have made MCs more attractive than other comparable sensors.  

Selectivity in MC sensors can be enhanced by creating a differentially 

functionalized MC array (MCA) with responsive phases (RPs).  A well-designed 

array should incorporate RPs exhibiting a variety of possible interactions with the 

analytes, and a specific analyte should induce a distinctive response pattern 

demonstrated by the array.  

The first major division of the dissertation research work focused on enhancing 

selectivity of MC sensor by creating a differentiating MCA. The MCs within the array 

were nanostructured in a previously developed manner. A self-designed capillary array 

was set up to chemically functionalize different ligands onto individual MCs in an 

array for metal ion sensing in liquid phase. Another array was prepared by selectively 

vapor depositing different organic RPs onto nanostructured MCs and applied to landfill 

siloxane sensing in gas phase.  Both of the arrays demonstrated response diversity to 

the target analytes.  

The second major division of the dissertation research work focused on 

developing a new method to modify MC surfaces with a function nanostructure. 

Aluminium oxide nanoparticles (AONP) were uniformly dispersed onto MC and a 
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roughened surface with high surface area was achieved as stable sensor platform. 

Alkoxysilyl compounds were then grafted onto this platform as RPs.  For 

demonstration, a MCA functionalized with three different alkoxysilanes was prepared 

for volatile organic compound sensing in gas phase. Additionally, another MCA was 

functionalized with anti-human immunoglobulin G and anti-biotin for bio-sensing in 

liquid phase.  Both of the arrays were prepared with the aforementioned capillary 

array setup. Selective responses of specific analytes, as well as good sensitivity, were 

obtained from each type of AONP MCA.  
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CHAPTER 1: INTRODUCTION TO MICROCANTILEVER 

SENSORS  

1.1 Micro-electromechanical Systems and Cantilevers  

According to accomplished definitions, a chemical or biological sensor consists 

of a physical transducer and a chemically selective layer so that measurable output 

signals can be produced in response to biological or chemical stimuli. During the last 

three decades, as an “ideal” transducer, micro-electromechanical systems (MEMS) 

have facilitated development of sensors that involve transduction of mechanical energy 

and relied heavily on mechanical phenomena [1-6]. Functionality of MEMS sensors is 

based on mechanical movements and deformations of their micro-machined 

components, such as single-clamped suspended beams or suspended diaphragms  

Cantilever structures similar to atomic force microscopy (AFM) probes are 

among the simplest MEMS. Since the advent of scanning probe microscopy (SPM), a 

variety of sophisticated probes were developed with extensive efforts applied on 

converging areas of science and technology, not only for SPM but also for 

cantilever-based chemical and biological sensors. [7-11]. 

MEMS sensors can utilize electronic, optical or other means to measure chemical 

and biological stimuli [12]. In particular, microfabricated cantilevers together with 

read-out means that are capable of measuring 10-12 to 10-6 m displacements could 

operate as detectors of surface stresses [13-15], extremely small mechanical forces 

[16], charges [17], heat fluxes [18], and IR photons [19].  As this approach reaches 

the nanoscale in dimension, the mechanical behavior of the cantilever starts resembling 

vibrational modes of molecules and atoms. Specifically, it is possible to attain 
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extremely high fundamental frequencies approaching those of vibrational molecular 

modes. Nanomechanical resonators with a mass of 2.34×10-18 g and a resonance 

frequency of 115 MHz were fabricated and displacement of 2×10-15 mHz-1/2 was 

measured [20].  Mass sensitivity as low as a few femto-grams was reported recently 

using nanoscale resonators [21].  

The research presented herein mainly focused on MEMS sensors with transducers 

in a form of microscale cantilevers.  

1.2 Evolution of Microcantilever (MC) Transducer  

As early as the 1920s, studies of mechanical phenomena associated with changes 

in a system’s chemical environment were carried out, with preliminary development of 

the elastic theory by Timoshenko [22] and experimental studies of thin films by Stoney 

[23], which appeared to be significant in developing fundamental analytical models 

that would subsequently find wide applications in MEMS.  A description of a 

chemical detector based on a cantilever mechanical transducer appeared in 1943 [24] 

with a further refinement described in 1969 [25].  Mechanical stresses and 

deformation produced in response to a changing chemical environment have also 

drawn attention as a principle of powering miniature mechanical devices [26, 27].  

However, implication of these devices was limited until MEMS technology 

opened the opportunity to fabricate miniaturized mechanical components routinely and 

more precisely [28]. Although macroscopic cantilever transducers were proven to be 

sensitive early in the 20th century [29], their extremely high susceptibility to external 

vibrations restricted applications. Moreover, the optical means used for measuring 
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mechanical responses could not provide the accuracy and sensitivity required for 

chemical and biological sensors [30].  In the 1960s, with the idea of “resonance gate 

transistor” firstly introduced [31], mechanical oscillation of a resonating microscale 

cantilever could be converted into an oscillatory electronic signal and amplified by the 

field effect transistor. This represented a successful implementation of a 

microfabricated cantilever transducer integrated with an electronic readout.  

Nevertheless, the scope of this implementation was not related to chemical 

sensors until the advent of AFM in the mid 1980s [32], which is an important 

milestone in nanoscience and technology. AFM relied on MCs as transducers for its 

numerous imaging modes including topographical, electric potential, magnetic, and 

force imaging [33, 34]. As a natural succession to their application as force transducers 

in AFM, MCs were selected as a new platform for transduction in sensing technology 

more than a decade ago [35]. The mechanism that translates various environment 

components into the measured parameters such as cantilever deflection, resonance 

frequencies changes, and damping characteristics are generally quite different from the 

mechanisms that are operative in AFM. Ever since, MC sensing technology has 

emerged to find important applications in chemical, biological, and physical sensing.  

1.3 Operation Modes of MC 

In the absence of external gravitational, magnetic, and electrostatic forces, MC 

deformation is unambiguously related to a gradient of mechanical stress generated in 

the device. Based on measured parameters, cantilever deflection or resonance 

frequency, the operation mode of MC can be defined as either static or dynamic, 
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respectively. The static mode of deflection occurs when an adsorbed species causes 

differential surface stresses on the opposite surfaces of the MC, while the dynamic 

mode of detection occurs when the frequency of vibration of the beam changes as 

species are adsorbed onto the MC and mass changes.  

A MC can be modeled as a cantilever beam (thickness, t; width, w; and length, l), 

which is built in and fixed at one of its ends (see Figure 1). Note that, z denotes the 

deflection in the thickness direction along the beam length.  

1.3.1 Heat Mode 

Bimaterial MCs comprised of two layers can exhibit bending with change in 

temperature due to thermal expansion differences. This very well-known phenomenon 

is frequently referred to as the “bimetallic effect” [25, 36]. In reference to the 

MC-based sensors, this mode of operation is frequently referred to as ‘heat mode’ [35]. 

Due to the differential thermal expansion, silicon nitride cantilevers, for example, with 

a thin gold film on one side undergo measurable bending in response to extremely 

small temperature changes due to dissimilar thermal expansion of the silicon nitride 

cantilever and the gold coating [37]. Heat change can be either caused by external 

influences, such as change in environmental temperature (thermal detection) or 

occuring directly on the surface by virtue of exothermic or endothermic chemical 

process (e.g. adsorption of analyte on the MC surfaces). 

1.3.2 Static Deflection Mode 

Apart from the heat produced by the adsorption of the analyte species onto the 

MC transducer, molecular adsorption processes and interfacial chemical reactions may  
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Figure 1. MC geometry and nomenclature. 
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also affect mechanical stresses of MC more directly and independently of the thermal 

effects.  It has been known since the 1960s that molecular and atomic adsorbates on 

atomically pure faces of single crystals tend to induce significant surface stress 

changes. Long before the first microfabricated cantilevers were created, changes in 

surface stresses in these systems had been studied by measuring minute deformations 

of relatively thin plates. Using this method, often referred to as the beam-bending 

technique [38, 39], Kosch et al. [40] studied surface stress changes induced by 

adsorption of atoms on atomically pure surfaces in vacuum. Using the Shuttleworth 

equation [41], the surface stress σ and surface free energy γ can be interrelated:  

( )
γ

σ γ
∂

= +
∂ ∈

   (1) 

where σ is the surface stress. The surface strain d∈ is defined as the relative change in 

surface area ∂∈ = ∂A/A. In many cases, the contribution from the surface strain term 

can be neglected and the free energy change approximately equals the change in 

surface stress. 

The asymmetry of a functionalized top surface and a passive bottom surface is 

especially important for the static deflection mode. The MC flexural behavior is 

controlled by the spring constant k of the cantilever, which is defined by material 

properties and MC geometrical dimensions. For the rectangular MCs used in this 

dissertation research work, the spring constant k is calculated as follows: 

3

34
E w t

k
l

=    (2) 

where E is Young’s modulus. Actual spring constants can be calculated and measured 

for various complicated shapes and compositions by using a range of theoretical and 
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experimental approaches [42]. 

Assuming that uniform surface stress (∆σ) over the whole area of the cantilever is 

the cause for bending, the shape of the bent MC can be approximated as part of a circle 

with radius R given by Stoney’s equation [23] 

2

1 6(1 )

R Et

ν
σ

−
= ∆    (3) 

where ν is the Poisson’s ratio. Knowledge of the radius of curvature R allows the tip 

displacement of a MC with length l tip to be determined by 

2 2

2

1 3 (1 )
2

l l

R Et
z

ν
σ

−
=∆ = ∆    (4) 

For a given deflection, the surface stress change (schematically represented in Figure 2) 

can be derived by using Equation 3 and 4, which is, however, valid only for a surface 

layer much thinner than the beam itself [23]. The predictions for the cantilever bending 

can be based on the expected surface stress change. There have been several attempts 

to modify Stoney’s equation for thicker layers, the accuracy of which has been 

reviewed in a recent article [43]. 

Static deflection operation is possible in various environments such as vacuum, 

ambient, and fluidic. In a gaseous environment, molecules adsorb on the functionalized 

sensing surface and form a molecular layer, provided there is affinity for the molecules 

to adhere to the surface. In general, however, static-mode operation in gases and 

liquids usually requires rather specific sensing layers to interact with special analyte, 

based on molecular recognition such as, DNA hybridization or antigen-antibody 

recognition (liquid case).  
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Figure 2. Schematic representation of MC deflecting in static mode under surface 

stress. 
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1.3.3 Dynamic Resonance Frequency Shift Mode 

By oscillating a MC at its eigenfrequency (f0, the resonance frequency of an 

oscillating MC is constant if its elastic properties remain unchanged during the 

molecule adsorption/desorption process and damping effects are negligible), 

information on adsorption or desorption of mass can be obtained under the prerequisite 

that the molecules on the surface are in a dynamic equilibrium with molecules from the 

environment. 

The corresponding mass changes can be determined by tracking the change in 

eigenfrequency (∆f) of the MC during mass adsorption or desorption. In this dynamic 

mode, MC is used as a microbalance, with added mass on the surface causing the 

resonance frequency to shift to a lower value. The mass change (∆m) on a rectangular 

cantilever during molecular adsorption is related to the resonance frequency shift 

according to [44] 

2 2 2
0 1

1 1
( )

4
k

n f f
m

π
−∆ =    (5) 

where n is a geometric parameter and f1 the eigenfrequency after the mass change. 

Mass-change determination can be combined with variable but controlled 

temperature to facilitate “micromechanical thermogravimetry” [1]. In the mass-balance 

mode, the sample under investigation is mounted at the apex of the cantilevers, 

however, its mass should not exceed several hundred nanograms.  

Dynamic mode works efficiently in the gas phase where the quality factor 

(Q=f0/∆f) remains virtually unchanged as compared to vacuum (the resonance 

frequency shifts by a few percents). However, in liquid environment, this approach 
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suffers from substantial damping of the cantilever oscillation due to high viscosity of 

the surrounding medium increasing drag forces significantly. As a result, the resonance 

frequency shift is difficult to track with high resolution resulting in overall sensitivity 

decreases. Moreover, in the case of damping or changes of the elastic properties of the 

cantilever during the experiment, the measured resonance frequency will not be 

exactly the same as the eigenfrequency, and the mass derived from the frequency shift 

will be inaccurate. Dynamic operation in large damping environment is described in 

detail elsewhere [45].  

1.3.4 Other Modes and Temperature Effects 

Until now, only pure bending of a MC beam (vertical motion) has been discussed. 

Lateral and torsional motions can also be modeled [46] in similar manners to those 

presented above but will not be described herein.  

In addition, thermomechanical noise [31] (vibration due to thermal agitation), the 

consequence of a MC being in thermal equilibrium with its environment, also needs to 

be mentioned.  Energy dissipation in a MC usually causes the stored mechanical 

energy to be converted into heat. The interaction of the MC with the many microscopic 

degrees of freedom in its environment will subject the MC to constant random 

excitation. It is critical that calibration and operation of MC be performed at the same 

temperature and that the temperature is controlled within very tight tolerances. In the 

absence of temperature control, differential measurements utilizing pairs of coated and 

uncoated MCs must be performed.  
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1.4 Detection Schemes  

Operation of any cantilever sensor relies on real-time measurements of cantilever 

deflections with at least nanometer accuracy. Therefore, an important part of any 

cantilever sensor is a readout system capable of monitoring changes in one of the 

parameters directly related to the cantilever deflection, including cantilever tip position, 

spatial orientation, radius of curvature, and intrinsic stress. The detection schemes 

employed for MC sensors can be classified broadly as optical (optical lever and 

interferometry) and electrical schemes (piezoresisitve, piezoelectric, capacitance, 

electron tunneling).  All of the readout schemes are compatible with array formats. 

1.4.1 Optical Lever 

The optical lever technique in which light is reflected from the back of the MC 

onto a position sensitive photo-detector is similar to the readout scheme widely used in 

commercial AFM systems [47]. The deflection of the cantilever is thus translated with 

excellent readout efficiency into photodiode output voltage which, with proper 

calibration, can be converted into actual z-deflection (Figure 3). This technique, which 

offers a very low limit of detection (LOD) that can be better than 1 Å, was successfully 

adapted for the detection of static and dynamic signals in MC based sensors. Moreover, 

this method has already been extended to cantilever arrays using multiple lasers [48].  

An intrinsic limitation of this technique is that the laser diode, positioning system, and 

detector must be external to the light-scattering air or fluid stream passing by the 

cantilever. Also, this technique is ineffective when the sample passing over the 

cantilever absorbs or scatters light, e.g., smoky air streams [49], and fluids with  
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Figure 3. Optical detection scheme of MC sensor. 
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suspended particles [50]. 

In this dissertation work, the optical detection method was used to monitor the 

MC static deflections. 

1.4.2 Interferometer 

Interferometric detection of cantilever deflection is based on constructive and 

destructive interferences that occur when a collimated beam of light reflects off two 

surfaces displaced from one another [51]. In the majority of the applications of this 

technique, cantilevers containing a deformable diffraction grating consisting of a 

reference and movable set of interdigitated fingers were used.  Compared to the 

optical lever technique, interferometer usually offers higher bandwidth measurement 

and has been introduced as a MEMS-based technique which shows a great promise for 

the readout approach for large 2-dimensional MCAs [16, 52]. This method can also be 

used for high-temperature vibration sensors but it has a very limited dynamic range.  

1.4.3 Piezoresistive 

The electrical conductivity of a piezoresistive material changes when stress is 

applied to it. In this method, a piezoresistive element is integrated or deposited onto 

the cantilever [53] during fabrication and the change in resistance is measured when 

the cantilever is bending. This bending also causes the induction of transient charges 

which are translated into a change in voltage.  This method obviates the need for 

complex alignment procedures which is a serious problem in optical based detection 

methods. It also offers freedom from the bulky optical instrumentation and 

inconsistencies of laser alignment, and facilitates the measurement of a larger  
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deflection range than optical method.  However, low resolution, continuous thermal 

drift in MC response, and additional expensive and cumbersome steps in the 

fabrication process make this method less common than the optical methods.  

1.4.4 Capacitive 

Another approach of cantilever deflection, capacitance method, is based on the 

principle that a change in the distance between the capacitor plates effectively changes 

the overall capacitance of the device. The deflection of the MC is measured by the 

changes in the capacitance between a conductor electrode and the MC substrate [54, 

55]. Despite its simplicity, this method suffers from undesired interference effects and 

the change in the dielectric medium between the capacitor plates which also changes 

the capacitance along with gradual discharge. 

1.5 Fabrication of MCs  

Traditionally, MC sensors have been fabricated by a photolithographic process 

and bulk micromachining or surface micromachining of single crystal silicon, 

polycrystalline silicon, silicon nitride, or silicon dioxide, producing structures with a 

wide range of lengths from 100 to 500 µm and a thickness of 0.5 to 5 µm. These 

dimensions and materials result in spring constants ranging from 0.001 to 0.1 N m–1  

[56].  The micromachining process for silicon-based cantilevers comprises four main 

techniques that, when used in combination, yield multiple cantilever chips with the 

desired shape and mechanical properties. These techniques are film deposition, 

photolithography, etching, and doping [57]. The actual fabrication sequence and the 

shape of the cantilever usually depend upon the detection scheme.  In this dissertation 
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research work, commercially available MCs made of silicon were used.  There have 

been several recent reports [58, 59] where other non-traditional materials such as 

metals, polymers, and nanocomposites have been employed to obtain cantilever 

structures, but will not be discussed in this work. 

1.6 Modification of MCs 

After being fabricated, to achieve selectivity in response, one side of the MC must 

be modified to promote binding of desired analytes to the surface and inhibit 

interfering substances from doing so. The other side should be kept passive to obtain 

large amplitude of MC deflection.   

1.6.1 Surface Modification Methods and Response Mechanisms   

There are three methods developed for understanding how chemical or biological 

stimuli impart surface stress changes to a modified MC (Figure 4).  The first method 

is to immobilize layers (monolayer or multi-layers) onto the MC surfaces [60, 61]. The 

stimuli may adsorb through non-covalent interactions (e.g., van der Waals forces, 

dipole-dipole) or chemical bonding onto the surface layer.  The second method is to 

coat MC surfaces with porous and thick analyte-permeable films [62]. As the analytes 

penetrate the films, forces including dispersion, electrostatic, steric, osmotic, and 

solvation can be altered by the invading analyte molecules. The alteration of these 

forces in the coated films can cause stress changes which are imparted to the MCs 

causing deformations. The in-plane component of the film stress can be multiplied by 

the coating thickness to give an apparent surface stress change, which can be applied 

to Stoney’s equation.  The third method is to nanostructure the MC surfaces [63]. In  



 16 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Schematic depiction of (A) immobilization of thiol monolayer on a gold 

coated MC surface, (B) analyte-induced deformation of MC coated with an 

analyte-permeable thick film, (C) analyte-induced deformation of MC coated with a 

nanostructued modifying phase. 

 

 

 

 

 

AA  BB  

CC  



 17 

nanostructured phases, analyte-induced stresses combine bulk, surface, and 

inter-surface mechanisms resulting in large stress changes and large amounts of MC 

deformations. Estimates of the mechanical energy produced by a nanostructured MC 

can be calculated. The product of the energy associated with the phase-analyte 

interactions and the number of interactions can be used to estimate the mechanical 

energy. 

1.6.2 Types of Phases  

Inorganic and organic materials are used to modify MC surfaces with the three 

methods discussed above. 

Numerous reports used inorganic materials such as metals or metal oxides as 

active absorbing layers for preferential sorption of the analytes [58, 64, 65]. These 

materials are deposited onto MC surfaces by either sputter coating or thermal 

evaporation [66].  In order to obtain enhanced surface area and achieve better 

partition of target analytes for enhanced sensitivity, MCs can be coated with films 

having nanocavities [67] or granular nanostructure [68, 69].  

However, those bimaterial cantilevers are limited in their applications due to their 

limited chemical functionality and affinity to common target molecules.  For 

improvement, organic and biological reagents have been applied as responsive 

coatings to detect various physical, chemical and biological stimuli [70-75]. These 

species include monolayer of ligands and biomolecules (DNA, specific antibodies, 

polypeptides, nucleotides), lipid layers, polymers, polymer/other nanocomposites, 

hydro-gels, and sol-gel multi-layers. Constructions of these organic phases can be 
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accomplished through various methods such as drop casting [76, 77], spin coating [78], 

inkjet printing [79], spray coating [80], capillary painting [81], plasma polymerization 

[82], in situ polymerization [83, 84], grafting to via monolayer functionalization [85], 

and matrix assisted pulsed laser evaporation [86].  In particular, responsive organic 

coatings are important to optimize several key attributes, specifically high sensitivity, 

good selectivity, fast response time, wide dynamic range, and long shelf life critical for 

their ultimate performance.  

In summary, this chapter briefly discusses MC sensors, including historical 

evolution, operation modes, detection schemes, fabrication and modification of MCs. 

For what has been accomplished in this dissertation research work, only static mode 

and optical detection method were applied. No research on MC fabrication was carried 

out and the research goals of our group primarily focus on modifying the commercially 

available MCs to obtain higher selectivity and sensitivity. This dissertation work 

involves utilizing two different types of nanostructured MCs for chemical and 

biological sensing. Those modified MCs with high surface area were functionalized by 

immobilizing self-assembled monolayers (SAMs) of binding sites or coating organic 

responsive phases (RPs) onto the nanostructured surfaces to recognize specific target 

analytes. Moreover, in order to get enhanced and distributed selectivity, the MCs in the 

same sensor chip were differentially functionalized to make a true MC multi-sensor 

array which can recognize more than one target analyte simultaneously.  

The next chapter will give a brief discussion on MC sensing arrays, mainly 

focusing on array preparation, and data analysis algorithm related to this dissertation 
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research work. A short summary of recent applications of MC sensors and MC 

multi-sensor arrays will also be included.    
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CHAPTER 2: MICROCANTILEVER SENSING ARRAY 

During the last ten years, there has been a trend to use chemical and biological 

multi-sensor arrays such as metal oxides sensing films [87], electrochemical sensors 

[88], conducting polymer sensing materials [89], quartz crystal microbalance devices 

[90], field effect transistor devices [91], and surface acoustic wave devices [92], to 

recognize individual components in mixtures. Further advantage of the multi-sensor 

array concept has been achieved by using MC transducers because MC features 

superior mass sensitivity, smaller size, lower cost, and excellent compatibility with 

large multi-sensor array platforms [93, 94]. MCAs with distributed partial specificity 

and selectivity towards various classes of compounds, used in conjunction with pattern 

recognition techniques, allows for the identification and quantification of individual 

chemical and biological components in mixture samples.  MCA essentially 

recognizes the chemical fingerprint, which is the global chemical and biological 

information of the sample or classes of samples to be recognized.  

2.1 Preparation of MCAs 

Coating individual cantilevers within arrays can be the most essential challenge 

that needs to be considered as pre-requisite for any studies on MC sensing arrays. Up 

to now, there are four approaches that have been proven useful for functionalizing 

multiple cantilevers in the same sensor chip: inkjet printing, contact printing, capillary 

arrays, and selective deposition.  The last two methods were used in this dissertation 

work.  
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2.1.1 Micro-inkjet Printing 

Micro-inkjet printing affords efficient and controlled functionalization of only 

one side of the cantilever, and the whole functionalization process is fast and modestly 

destructive [79]. This technique can be used for both immobilizing SAM and coating 

porous or nanostructured phases onto MC surfaces.  Generally, this technique 

involves pipetting small drops (µL or nL) of solutions or uniform mixtures onto one 

side of MCs, and the solutions or mixtures were prepared with the materials for 

coating and suitable solvents (Figure 5). With evaporation of the solvents, SAMs, 

films or nanostructured phases will functionalize the MC surfaces through either 

physical adhesion or chemical reactions. Cross-linking process takes place most 

commonly on the surfaces, through which condensation and polymerization (methods 

also referred to drop-casting) via covalent bonds was achieved for immobilization and 

growth of the phases.   

However, meticulous alignment is required for ink jet printing. Reproducibility 

for modification was sometimes not satisfactory (Figure 5) due to no control over 

microstructure or thickness of the coated layers [79]. High expense of the systems is 

another issue.  Commercial micro-inkjet printing systems are available from several 

manufacturers (e.g., Cantisens and Microdrop Technologies) currently.  

2.1.2 Contact-printing  

Differential modification of MCs can also be applied by contact-printing methods 

such as using dip-pen lithography [95-97]. It is a scanning probe lithography technique 

where an AFM tip is used to transfer molecules to a surface via a solvent meniscus. It  
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Figure 5. Ink-jet printing of responsive layers on an MCA, optical micrograph of the 

process, and condensation of water on cantilever array coated with hydrophilic and 

hydrophobic layers. Reproduced from Bietsch et al., Nanotechnology 2004, 15, 873. 
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enables direct deposition of nanoscale materials from the tips onto MC surfaces and 

different MCs within the same array can be modified through contacting with different 

printing tips. However, similar to ink-jet printing technique, meticulous alignment and 

high system expense are the primary drawbacks of this technique.  Commercial 

dip-pen lithography systems are available from BioForce, NanoInk, and Nanonics 

Imaging. 

2.1.3 Capillary Arrays 

This method involves inserting the desired cantilever into a capillary filled with 

reagent using a micromanipulator. The capillary must have an internal diameter larger 

than the width of the MC beam, and the wall of the capillary must be thin enough to fit 

between the MC beams in the array. The capillary is held in place for an allotted 

amount of time required for functionalization and then retracted.  

When several different MCs in the same sensor chip require functionalization to 

make a multi-sensor array, all cantilevers within the array can be simultaneously 

inserted into an array of capillaries using an appropriately designed micromanipulator 

(Figure 6) [98,99] which can be home-made.  It needs to be mentioned that both sides 

of the cantilever are wetted using this approach. Thus, if only one side of the cantilever 

is to be modified, then the reaction chemistry of the fluid within the capillary must be 

designed to react only with the desired region. The most attractive advantage of this 

method is low cost.  

2.1.4 Selective Deposition  

This method is used in our research work for preparing a MCA differentially  
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Figure 6. Immersion of a cantilever array into an array of glass microcapillaries filled 

with food coloring for demonstration purposes. Reproduced from Bietsch et al. 

Nanotechnology 2004, 15, 873. 
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coated with various organic RPs. Thermal evaporation was used to coat the phases 

onto the MC surfaces and a mask with one or more slits slightly wider than a MC 

beam was used to preferentially expose MCs to the vapor at a time. The mask can also 

be used when MCs are modified with some other approaches such as spin coating.  

Tight enough touching between the unexposed MCs and the mask can avoid cross 

contamination, and this method can be tedious and time-consuming if many different 

phases are coated onto the same MCA.  RPs’ volatility may be an issue to the phase 

stability and MC response reproducibility, although related studies have not been 

carried out yet.    

2.1.5 Integrated Microfluidic-MCA Platform 

As an extension of our most recent and ongoing efforts in the area of MCAs,  

we have begun creating advanced MCAs integrated into µ-fluidic chip platforms that 

allow convenient differential functionalization of individual MC element using flow 

of reagents that originates from the multiplexed (non-common) side of the fluidic 

device. We believe suitably engineered and integrated µ-fluidic-MCA systems will 

greatly enhance applicability of the MC sensors to studies that will advance biosening 

research.  Figure 7 illustrates the basic architecture of the integrated MCA-µ-fluidic 

chip.  Fabrication of the targeted integrated MCA-µ-fluidic systems will rely on a 

combination of photolithographic patterning, dry and wet etching, and thin film 

deposition.  

Using flow from the common ends, differential systems can be exposed to the 

same sample component.  Conversely, independent flow from the functionalization  



 26 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. µ-fluidic platform consisting of several parallel channels (～200 µm wide & 

20 µm deep) housing silicon nitride free standing MCs (see B). Individual reservoirs 

mate to the channels and permit each set of MCs to be functionalized (via Fs) 

independently.  Samples can be delivered via the S reservoirs to create response 

patterns. The patterns are generated by tip deflections causing VCSEL beam 

deflections onto a single position sensitive detector (see C).   
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ends (F) can be used to differentially modify the MC in different channels. Among the 

additional advantages of this approach are high throughput, extremely low volume, the 

possibility of convenient ambient control (temperature, pressure), and systems that can 

be regenerated for reuse. These future advanced integrated systems are not the focus of 

this dissertation work. 

2.2 Detection and Data Analysis Algorithm 

It has been mentioned that the four primary detection schemes are all compatible 

with array format, and that the optical method is most widely used in MC sensing array 

systems.  A general schematic of a MC multi-sensor array are depicted in Figure 8.  

Besides a MCA differentially modified on the active sides, it also includes an array of 

photon source, such as parallel lasers, and an optical position sensitive detector (PSD), 

such as a cooled charge-coupled device (CCD) or a quadrant photodiode, which 

responds to spatial changes of the laser beams.  Because the bending extend of all 

MCs is diverse due to specific interactions between each distinctively modified MC 

and target analytes, the readout of the MCA is a complex multi-dimensional signal that 

must be analyzed using advanced mathematics.  At this stage, realization of the full 

potential of MC sensing arrays depends largely on the availability of a suitable data 

analysis algorithm.  

The construction of MC multi-sensor array makes the readout signal specifically 

amenable to independent component analysis (ICA). The concepts surrounding ICA 

were first introduced in 1991 by Jutten et al. [100] and later formalized in 1994 by 

Comon [101]. Over the course of the last decade, ICA has proven to be a powerful  
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Figure 8. Optical readout of a MCA using an array of lasers.  

 

 

 

 

 

 

 

 

 

 

 



 29 

technique in many different applications. It can provide a (linear) sparse coding 

representation of natural image data [102], and has also been adopted in bio-medical 

imaging [103].  It is a natural extension to adapt the ICA method to extract features 

and information for the present analysis of MC sensing arrays.  

It will be briefly discussed how ICA can be used as a data pre-processing method 

for neural network classification of MC multi-sensor data. Appropriate coupling of 

these mathematical methods can accurately capture information contained within the 

array of MC sensors to identify chemical mixtures and concentrations and decode 

mixtures of analytes.  As a result, the usefulness of MC multi-sensors can be greatly 

increased for complex applications. 

Suppose that x(t) represents an N-dimensional measured time series vector of 

sensor signals. Assume that linear mixing of independent sources produces this 

measured data, or 

x(t) = As(t)   (6) 

s(t) is the M-dimensional time series vector of independent sources and A is the N×M 

mixing matrix. Further assume that M≤N and A has full rank. ICA is a de-mixing 

procedure that, given only the measured data x(t), recovers W, the mixing matrix, such 

that 

W = SPA   (7) 

Here, S and P are scaling and permutation matrices, respectively. Amazingly, under 

these assumptions, both the mixing matrix and corresponding sources can be recovered 

based only on the knowledge of the measured data, to an arbitrary scaling and 
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permutation.  For systems where the measured data is the linear mixing of 

independent sources, ICA is a tool that can transform measurements into source 

information. 

For MC multi-sensor arrays, the feature extraction capability of ICA is used to 

pre-process readout data from MCAs in order to concisely portray this information to 

the neural network for classification. Specifically, the multi-dimensional signal 

produced from the bending of the MCAs is used as the measured data in the ICA 

method. Columns of the estimated mixing matrix are used as features, providing a 

vectorized input for neural network classification.  

However, direct input of the entire signal, without pre-processing, will 

overwhelm the network resulting in poor classification accuracy, and in this feature 

extraction procedure ICA can only determine the mixing matrix to an arbitrary scaling 

and permutation.  It is necessary to impose a systematic procedure that induces 

consistent scaling and permutation, which will not be discussed in detail in this work.  

The nature of the MCA system lends itself to analysis from ICA which has two 

significant properties. First, the dominant features depend strongly on the MC-analyte 

interactions. Second, the dominant sources are similar across both chemical species 

and concentration. The explanations of these properties can be traced to the physics of 

the cantilevers. Since differentially modified MCs will respond differently to a given 

analyte, these attributes will translate to the feature space. The estimation of similar 

sources stems from the fact that each cantilever to a certain degree undergoes similar 

types of characteristic bending, a direct result of the fundamental interfacial 
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interactions between the transducer and the analyte. In other words, each source 

corresponds to distinctive bending dynamics that, in turn, can be ascribed to specific 

physical and chemical processes involved in the MC-analyte interactions. 

The vector structure of the extracted features can be exploited for efficient 

recovery of the identities and concentrations of the constituents of a sample mixture 

from its MC fingerprint. Each column of the mixing matrix represents an independent 

feature of the data, and a subset of the columns is sufficient for input to an artificial 

neural network.  

A premier method of data modeling and classification over the past two decades 

involves the use of neural networks. Since these methods have been extensively 

reviewed in the literature, a brief summary is all that is needed herein. Back 

propagation networks were created with the MATLAB® Neural Network Toolbox. 

The typical architecture contained a single hidden layer and employed the hyperbolic 

tangent sigmoid transfer function for the input and hidden layers and the linear transfer 

function for the output layer. Training was accomplished through the 

Levenberg–Marquardt algorithm, a variant of Newton’s method. Training was halted 

at a specified tolerance value. 

2.3 Applications  

Several reviews have been published over the past decade on applications of MC 

as a sensor platform for chemical and biological sensing [104-107].  Currently, 

MCAs enable to control experiments to be performed simultaneously with analysis. 

They can also provide more reliable control of empirical factors such as thermal drift, 
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changes in viscosity, and solution flow dynamics. What’s more, MCAs can detect 

more than one analyte simultaneously with distinct recognition patterns produced from 

complex mixtures [108].  Therefore, MC multi-sensor arrays have already become a 

preferred format. 

During the past several years, applications of MC multi-sensor arrays include 

analysis of volatile organics [72], chemical warfare agents [109], volatile organic 

compounds (VOCs) [110] and toxic inorganic ions [111] for chemical sensing, while 

efforts are put into the studies of cells [112, 113], virus [114], antigen-antibody 

interactions [105], and DNA Hybridization [115] for biological sensing.  More details 

of recent MCA applications can be found elsewhere [116, 117] and will not be 

discussed further in this work. 

In the next two chapters, we will use two different MCAs to analyze some gas 

and liquid phase samples. The MC surfaces of the arrays were modified into a 

nanostructured surface with the approach developed by the previous group members. 

Consequently, the two arrays were differentially modified with capillary array and 

selective vapor deposition, respectively.  High sensitivity and enhanced selectivity are 

obtained from both arrays. 
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CHAPTER 3: DIFFERENTIALLY FUNCTIONALIZED MCA 

FOR METAL ION SENSING 

Chapter 3 is an adaptation of a research article Analytical Chemistry 2007, 79, 

7062-7068. The article demonstrated that SAM of different thiolated ligands could be 

immobilized onto individual gold nanostructured MCs in the MCA for metal ion 

sensing, with distributed selectivity and high sensitivity obtained.  

3.1 Introduction 

With ever-increasing industrial sprawl, the likelihood of release of pollutants into 

the environment increases.  Technologies for environmental monitoring must keep 

pace with expanding industrial demands.  One class of environmental pollutants that 

has garnered much attention recently is that of heavy metals.  Heavy metals are 

particularly dangerous to the entire ecosystem because not only are they toxic, but they 

possess the ability to bio-accumulate in organisms [118].  Bioaccumulation increases 

the heavy metal concentration present in an organism and therefore increases toxic 

effects.  Heavy metal poisoning has shown to cause medical difficulties with, but not 

limited to, nervous, gastrointestinal, and cardiovascular systems [118].  The health 

threat that heavy metal contamination can pose necessitates a technology able to detect 

and identify metal ions present in our environment.    

Currently, methods used to detect metal cations include liquid or gas phase 

chromatography [119-121], flow injection systems [122], electrochemistry [123, 124], 

atomic absorption [125], solid-phase extraction [126], fluorescent sensors [127], 

inhibition-based enzymatic assays [128], and immunoassay [129].  However, many of 

the techniques are not amenable to environmental sensing because they are expensive 
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and/or time consuming.  Newer, more adept technologies must be produced to 

confront the shortcomings of older technologies. 

MC sensors have emerged recently as sensing transducers that offer greater mass 

sensitivity than comparable sensors such as quartz crystal microbalances, flexural plate 

wave oscillators, and surface acoustic wave devices [130] due in large part to their 

very small dimensions. 

Recently, MCs have shown promise in the area of metal cation detection [131].  

Dutta et al. demonstrated that by functionalizing gold nanostructured MCs with 

thiolated ligand SAMs, the MCs would respond to different metal cations present in a 

sample.  The ligand functionality interacted with the metal cations satisfying only a 

portion of the metal’s coordination sphere; this allows for reversible interactions.  

The procedure used to nanostructure the surface prior to ligand functionalization 

results in good sensitivity despite the modest binding constants between the 

monodentated ligands and metal ions. 

In this chapter, the work of Dutta et al. is expanded upon by using MCAs with 

multiple MCs differentially functionalizing with thiolated ligand SAMs, thereby 

creating for the first time a true MCA with ionic discrimination capabilities.  The 

underlying dealloyed (DA) nanostuctured surface was created by codepositing Ag and 

Au and then etching the Ag from the composite layer [132].  Properties of this 

nanostructured DA surface such as, thickness, gold to silver deposition ratio, and 

etching time were more thoroughly studied and optimized.  Electrochemical and 

in-situ derivitization experiments were performed to demonstrate the impact that DA 
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layer changes would have on the thiolation of the surface.  Surface enhanced Raman 

spectroscopy (SERS) experiments were performed directly on MC surfaces to 

demonstrate that a capillary coating procedure could be used to successfully 

differentially functionalize each of the diminutive cantilevers in an array with a 

different thiolated ligand.  Sensor performance experiments were then performed to 

demonstrate the sensitivity and selectivity (differentiating capabilities) of the MCA 

sensor.  Finally, pattern recognition algorithms were applied to the selectivity studies 

to classify metal ions in unknown samples. 

3.2 Experimental 

3.2.1 Materials and Reagents 

Silicon MCs with dimensions 400 µm length, 100 µm width and 1 µm thickness 

were commercially available (Mikro Masch Co., Sunnyvale, CA). The chromium, gold 

and silver metals (99.9% in purity) used in vapor deposition were obtained from Kurt 

J. Lesker, Gatewest, and Alfa Aesar Co., respectively.  The flexible fused silica 

capillary was purchased from Polymicron Co. with 350 µm outer and 250 µm inner 

diameters. All the metal chloride analytes, salts for preparation of buffer solution, 

thiolated ligands (List below in Table 1), and the 4-aminothiolphenol (ATP) and 

o-Mercaptobenzoicacid (MBA) used in SERS experiments were obtained from either 

Sigma or Fisher at highest purity and used as received.  HF buffer containing 

ammonium floride and hydrofluoric acid used for the capillary etching was purchased 

from Transene Company. Water used for preparation of solutions was obtained from a 

Barnstead E-Pure water filtration system. 
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Acronyms Name of the Thiolated Ligand 

AET 2-aminoethanethiol 

MP 3-mercaptopropanol 

Cystein Cystein 

MPA 3-mercaptopropanoic acid 

MUA 11-mercaptoundecanoic acid 

Table 1.  Each RP used in the study is listed. 
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3.2.2 MC Modification  

The creation of MCs having a silver, smooth gold (SG) or DA surface was 

achieved by using a physical vapor deposition (PVD) approach. More details about the 

PVD instrumentation and approach can be found elsewhere [131, 132]. DA 

nanostructured surfaces with a composite 50/50 Au/Ag film with different thickness of 

50 nm, 75 nm, 100 nm, 150 nm and 200 nm were deposited using the PVD approach. 

3-5 nm of Cr was deposited first then 15 nm of Au was deposited subsequent to the Cr. 

Finally, the Ag/Au composite film was created by co-deposition of Ag and Au. During 

the deposition, both the deposition rate and resulting coating thickness were monitored 

using a quartz crystal microbalance. To create nanostructured DA surfaces from the 

Au/Ag film, the silver was etched out of the composite film by placing the cantilevers 

in an aqueous solution of 0.2% w/v HAuCl4 for about 2.5 min. Cantilevers were then 

rinsed with copious amounts of water after etching.  The Ag coated cantilevers for 

SERS experiments were also created through the PVD approach by depositing 10 - 15 

nm of Ag to create a SERS-active Ag-island film on the MC.  All Ag/Au, smooth Au 

or Ag-coated cantilevers used in our studies were chemically modified with SAMs of 

n-alkyl compounds with a thiol group for immobilization of the ligand to the metallic 

MC surface on one end and monodentated ligand functionality for the complexation of 

sample metal ions on the opposing end.  

To differentially functionalize each cantilever with different thiolated ligands 

(Table 2), a capillary coating apparatus was designed.  The flexible capillaries were 

aligned and mounted horizontally in sequentially parallel channels with 500 µm spacing 
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Thiol Ligand Solution Concentration (mM) 

AET 25 

MP 25 

Cystein 10 

MPA 5 

MUA 1 

ATP 0.01 mM 

MBA 0.01 mM 

Table 2. Optimized concentrations of each functionalization ligand solution. 
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between them using a V-groove holder machined in-house (note: the MC pitch is 250 

µm so alternate MCs are aligned with the capillaries). To allow the MCs to be inserted 

into the capillaries, some pretreatment of the capillaries was carried out. First the 

polyimide coating on one end of the capillaries was burned off, and the other end was 

sealed with soft playdough. The burned end was then dipped in HF buffer [Caution: HF 

is very corrosive to skin] and etched for 100 minutes to reduce the outer diameter. The 

sealed end was then cut off. De-ionized water was allowed to fully fill the etched 

capillaries several times until the etched end appeared to be clean. Meanwhile, the 

nanostructured MCAs were fixed on an x-y-z stage, with all the levers in the direction 

parallel to the capillaries. Once the capillaries were inserted into the capillary ends for 

functionalization, the opposite end of the capillaries were inserted into the appropriate 

thiol solutions and filled by simple capillary action. 

    3.2.3 Instrumentation 

During MCA functionalization, MCs and etched capillary ends were visualized 

with a WAT-902C camera connected to a Sony Trinitron Video Monitor, which 

provided a 20×magnification.  All SERS spectra were collected by using a modified 

version of a LabRam Spectrograph from JY-Horiba [133]. The instrument used an 

Olympus BX-40 microscope with a 10×(0.25 NA) objective that delivers up to 8.9 

mW of the 632.8 nm radiation from a He–Ne laser. The scattered light was dispersed 

with a 600 grooves mm-1 grating, imaged with a 1024×256 thermoelectrically CCD 

camera, and processed with Labspec 4.03 software. An x–y–z stage was used to adjust 
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the focusing of the microscope objective and the positioning of the laser spot under 

stationary and translating conditions. 

MCAs were mounted in a brass flow cell in an optical system [134]. The cell had 

one inlet port for background/analyte delivery, one outlet port, and a glass window to 

facilitate the observation of cantilever deflection. A beam of laser light from an array 

of vertical cavity surface emitting lasers (VCSELs) (Avalon Photonics, 850 nm, 5 

mW) was focused onto the tip of each MC, and the reflected beam was captured and 

monitored by a single PSD. A single lens was used to focus the VCSELs so that the 

beam from each VCSEL was focused onto a single corresponding cantilever (12 

VCSELs onto 12 cantilevers).  The deflection of the cantilever resulted in a 

corresponding motion of the reflected beam as monitored by the PSD. An 

in-house-created LabView program controlled a multiplexing scheme that allowed the 

VCSELs to be activated individually so that one MC was illuminated at a time and the 

motion of all MCs was monitored by the single PSD. Analyte solutions were delivered 

to the flow cell via a system of vessels connected to three-way valves allowing for 

switching between different solutions (buffer and samples) with minimal disturbances 

of the flow. Each measurement in the study represents a 60 second injection of a metal 

chloride solution.  All metal chloride solutions were prepared in pH 5 acetate buffer, 

which was also used as a background buffer solution. Chemically modified cantilevers 

were allowed to equilibrate in the background solution until stable baseline was 

achieved before any measurements. 
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3.2.4 Data Acquisition and Interpretation 

In the SERS experiment, the focusing laser scanned in a perpendicular direction 

across 4 adjacent cantilevers functionalized alternately with ATP and MBA. SERS 

spectra were recorded while the area interrogated moved laterally over a total 1 mm 

distance. For each cantilever 50 spectra were recorded (one every 2 µm translational 

step). For each spectra the peak height of the characteristic Raman band of ATP 

(1010-1050 cm-1) and MBA (1055-1095 cm-1) was recorded and plotted.  

For MCA measurements, an in-house-created LabView program was used to 

control each VCSEL to be activated individually so that one cantilever was illuminated 

by only one VCSEL at a time. At the beginning of each cycle, the first VCSEL was 

activated, illuminating the corresponding cantilever 1. The motion of the reflected 

beam was monitored by a single PSD, and output signal from the detector was sampled 

by a 16-bit A/D converter at a rate of 1 kHz. 50 samples by the A/D converter were 

averaged to comprise one point. The sequence was then repeated for 

VCSEL/cantilevers from 2nd to 12th (the last). The entire cycle of measuring and 

recording all 12 MCs takes less than 1 s; therefore, a delay was added so that the 

cycles begin at 1-s intervals. VCSEL control and data acquisition I/O were performed 

using a National Instruments NI-6014 DAQ card in an 800-MHz Pentium III PC [135].  

Although the MCA and VCSEL arrangement allows for the monitoring of all 12 

cantilevers, in the selectivity studies only 5 cantilevers responses (see below), one for 

each phase, are represented.  However, the data used by the pattern recognition 
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algorithm included responses from all 12 cantilevers comprising the array with each of 

the 5 phases represented multiple times. 

Analysis of the entire response profile (responses recorded once per second for 

each MC during the entire 60 second analyte injection period) for the array for each 

metal ion was used in an attempt to classify the metal ions. Prior to classification, the 

information contained within the analyte-induced bending dynamics of the MCAs 

must be distilled into a form that can be used with existing classification methods.  

Since inputs for general classification method are N-dimensional vectors, it is 

necessary to transform the information contained within the time series response of 

each cantilever into a single vector.  It was demonstrated in Archibald et al [134] that 

ICA can be used to compress the movement of an array of MC over a period of time, 

into a single feature, an N-dimensional vector, that was used by neural networks to 

accurately classify both the type and concentration of the tested analyte. 

Stated simply, given only the measured motion of the MCA data, the ICA method 

produces the independent sources of this signal and the mixing matrix, up to arbitrary 

scaling and permutation of the sources.  The benefit of determining this 

transformation is that the columns of the mixing matrix provide distinct features that 

can be used for accurate classification.  In this metal-ion study, only the most 

dominant feature (the column in the mixing matrix with the greatest magnitude) is 

used in classification [134]. 

Support vector machines (SVM), a classification paradigm developed over the 

last decade in the field of machine learning theory [136], have proven to be an 
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effective tool across many scientific disciplines.  In order to describe the core ideas of 

SVM we must consider the features described above or N-dimensional vectors, which 

can equally be consider as hyper-dimensional points.  SVM is a binary classifier, 

meaning it is designed to identify only two different groups.  SVM classification of 

two groups of features occurs by finding a surface that optimally separates these 

groups.  Once this surface is determined, classification occurs for any new feature 

presented to SVM by calculating which side of the surface this point lies.  The 

surface that optimally separates the two groups of features is termed the decision 

surface.  A strength of SVM is that complex decision surfaces can be generated at 

low computational cost through the use of kernel functions, which have the effect of 

transposing features into spaces that increase the linear separability of the two groups 

of features.  The geometric nature of the SVM classifier makes it possible to train 

adequately on reduced sets. One major drawback of SVM is that classification is 

binary.  However, this issue is overcome in a simple and robust procedure that 

consists of training several SVM's simultaneously in a one-against-one scheme [137], 

and this is the procedure used in this chapter (see below). 

3.3 Results and Discussion 

3.3.1 Nanostructured Surface Characterization 

In our previous studies using SAMs as a RP for metal ion detection [131], 

optimization of the sensor response focused on parameters concerning the SAMs.  

Studies involving parameters such as functionalization time, thiol concentration, thiol 

chain length and functionality were performed.  In this present work, much attention 
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was paid to optimization of the underlying DA nanostructured layer.  The first 

parameter studied concerning the DA layer was that of metal layer thickness.  

Experiments were carried out measuring responses of SAM functionalized DA layers 

to metal ions for metal layers ranging from 25 – 200 nm.  Figure 9 demonstrates that 

as the DA thickness of the MP-coated cantilever was increased up to 150 nm, the 

response to 0.1 mM of Cu2+ also increased.  However, as the DA layer thickness was 

further increased to 200 nm, the response decreased slightly.  According to the 

Stoney’s Equation, as the cantilever stiffness increases the response decreases (note Et
2 

in denominator).  The increase in DA thickness results in an increase in surface area 

(see below) and the ∆σ term in Eq. (4) that resulting from coulombic forces associated 

with metal-metal repulsion can be expected to increase as well [131].  However, at 

some point the effect of increasing stiffness (note both terms in the denominator 

change with DA thickness) appears to reverse (dominate) the trend due to increasing 

∆σ. Experiments involving varying the Ag/Au ratio from the normal 50/50 to 40/60 

and to 60/40, along with experiments varying the dealloying etching time from 2.5 

minute. to 5 and 10 minute., did not yield any improvement  

Further experiments were performed to try to better understand why the increased 

thickness of the underlying DA layer demonstrated an enhancement in response of the 

MC to metal ions.  Figure 10 shows the response of three different cantilevers coated 

with 35 nm of SG and 50 nm and 150 nm DA layers to an in-situ functionalization 

with a SAM of propane thiol.  The 35 nm SG shows the smallest response to the 

formation of a monolayer of propane thiol, with the 50 and 150 nm DA responses 
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Figure 9. The effect of DA thickness was studied by monitoring the response to a 0.1 

mM Cu2+ solution for MCs with different thicknesses of the DA layer and 

functionalized with MP. 
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Figure 10. Surface thiolation studies were carried out by measuring the response of 

each cantilever (35 nm SG, 50 and 150 nm DA) to an in-situ functionalization with 1 

mM propane thiol.  Oxidative desorption of the propane thiol from the gold surface 

through cyclic voltammetry (CV) made it possible to quantify the amount of thiol on 

each surface.  Scanning electron microscopy (SEM) images of each surface were 

taken at 8000×magnification. 
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considerably larger.  A larger thickness gives a larger response to the formation of 

propane thiol monolayer suggesting a larger amount of thiol immobilized, but as stated 

above a larger DA thickness may decrease the ability of the cantilever to respond due 

to increased stiffness. 

To quantify the amount of thiol on the each surface, CV experiments, using the 

strategy of Widrig et al [138], were performed with silicon wafers, which were vapor 

deposited and functionalized at the same time as the three cantilever types in the 

thickness study.  The cyclic voltammetry experiments demonstrated that the 35 nm 

SG coated silicon wafer was coated with 1.2 nmol/cm2 of propane thiol, while 50 and 

150 nm DA surfaces were coated with 7.4 nmol/cm2 and 18 nmol/cm2, respectively. 

The larger trend in the CV values versus actual responses during functionalization with 

propane thiol underscores the interplay between increases in surface stress with greater 

surface area and the changes in stiffness.   The SEM images, seen the figure, indicate 

the potential importance of surface morphology on determining response 

characteristics of the MCs.   The greater the degree of roughness and surface 

crevices, the greater the available surface for thiol immobilized.  It can be seen that 

the 50 nm DA has greater roughness than the SG.  The thicker 150 nm DA seems to 

have transitioned from a roughened surface to a more porous one.  Surface area may 

not be the only factor in determining ∆σ associated with functionalization and/or 

binding of metal as the effectiveness of translating the energies associated with those 

processes into potential energy stored in the bent cantilever can reasonably be expected 

to be morphology dependent [132].  
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3.3.2 Differential Array Creation 

The first step in creating a differential responding MCA involves developing a 

method that allows differential coating of the cantilevers in an array.  In our prior gas 

phase sensing work, differential coating was accomplished by singularly vapor 

depositing a RP through a slit mask onto one cantilever [134].  While this practice of 

sequentially depositing phases onto each cantilever does allow for creation of arrays, 

the process is time consuming, tedious, and the RP are not covalently anchored to the 

cantilever surface to enhance stability.  In this work, MCAs are prepared in a liquid 

phase reaction process via capillary coating individual cantilevers with thiolated 

reagents.  Figure 11 demonstrates how the capillary coating process is accomplished.  

The top photograph displays several cantilevers of the MCA inserted into different 

capillaries by way of a micrometer controlled stage.  Then, in the bottom photograph, 

the functionalization solution fills the capillary through capillary action.  The picture 

demonstrates that the functionalization solution was contained in the capillary and no 

solution leaks out on the base of the MCA chip.  If solution were to leak out of the tip 

of the capillary, cross-contamination problems could arise and the cantilevers could be 

coated with more than one type of thiolated ligand.  The SERS experiment in Figure 

11B demonstrates that the thiolated ligand RP were in fact immobilized on the surface.  

In this experiment, silver coated MCs were inserted into capillaries that were 

subsequently filled with either ATP or MBA and allowed to react for 2 hours.  After 

functionalization, the MCs were removed from the capillaries and SERS spectra were 

collected from each MC surface in a dry state by the spatial translation method  
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Figure 11. The ability to differentially functionalize adjacent cantilevers in a MCA is 

demonstrated using a SERS approach.  A silver island film (~ 10-15 nm average 

thickness) was created on the MCs, then the surfaces were functionalized with two 

different aromatic, thiolated compounds (ATP & MBA).  Subsequently, the MCA was 

spatially scanned under the objective of a Raman spectrometer and a prominent SERS 

band for each compound plotted versus displacement. 
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described above.  Figure 11B shows the intensity of two different Raman bands 

specific for ATP (1010-1050 cm-1) and MBA (1055-1095 cm-1) as the instrument 

scanned laterally across four cantilevers in the array. 

The experiment not only confirms that the cantilevers are differentially coated 

with ATP and MBA, but that the coating is fairly uniform across the width of the 

cantilever surface and there is no cross-contamination.  While MCA sensing and this 

SERS experiment were performed with distinctly different instrumental arrangements 

and different cantilever metallic coatings, in principle it should be possible to add the 

SERS component to MCA measurements directly, perhaps even using the VCSEL 

radiation for Raman excitation.  In fact, in unpublished work, we have observed that 

DA surfaces exhibit some SERS activity with visible excitation. 

3.3.3 Sensor Response and Calibration Performance 

To better characterize sensor performance, calibration studies were carried out.  

The MCA response to calibration experiments was measured for each of the six metal 

ions included in the study.  Table 3 includes the slope of the calibration curve, 

r-squared value, and relative standard deviation for each of the six metal ions.  The 

MCA sensor demonstrated limits of detection as low as 10-8 M based on 3σ of multiple 

injections of 8.0 x 10-7 M copper chloride solution divided by the slope of the copper 

chloride calibration plot. 

3.3.4 Selectivity 

The purpose of creating a sensor array based on this ligand approach is to impart 

a greater degree of distributed selectivity to the system.  Arrays of RPs can be  
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Phase

Metal Slope R Squared RSD Slope R Squared RSD Slope R Squared RSD Slope R Squared RSD

CuCl2 0.0069 0.9578 9.02 0.0104 0.9343 11.24 0.0091 0.9979 9.92 0.0079 0.9373 12.35

CoCl2 0.0046 0.9698 8.94 0.0049 0.9577 9.97 0.0043 0.9039 10.42 NA NA 11.64

CsCl 0.0022 0.6635 11.14 0.0024 0.9236 12.48 0.0214 0.8797 10.89 NA NA 9.95

LiCl 0.0033 0.9255 10.68 0.0037 0.9333 12.32 0.0164 0.9736 12.63 0.0057 0.9114 9.02

FeCl3 0.0018 0.9712 4.3 NA NA 5.67 NA NA 4.71 0.004 0.9607 4.29

AlCl3 0.0041 0.8878 10.24 0.0042 0.9997 10.13 NA NA 10.78 0.0023 0.7668 9.58

CystMP AET MPA

 

Table 3. The slope, r-squared value, and RSDs for the response to the MCA to three 

injections of each metal ion at five different concentrations including (1.6 × 10-7, 8.0 

×10-7, 8.0 ×10-6, 2.0 × 10-5, and 1.0 × 10-4 M). 
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designed to incorporate a range of analyte-phase interactions (e.g. dipole, van der 

Waals, hydrogen bonding, electrostatic, coordinate covalent bonding).  Each RP in 

the array may be designed to utilize one interaction more so than the others.  The 

diverse range of analyte-RP interactions in turn provides diversity to the sensor 

responses.  The advanced processing capabilities of pattern recognition algorithms 

can then be applied to aid in interpretation of the sensor array response.  Rather than a 

high degree of selectivity between a very specific analyte-RP interaction (e.g., 

Bioaffinity or chelate metal interactions), that generally involves large binding 

constants and a lack of reversibility, differential selectivity has been imparted to the 

system through the approach applied herein.  In this paper, electrostatic and 

coordination analyte-phase interactions were taken advantage of by each monodentated 

RP.  However, the ligand functionality for each RP was altered (distributed among 

the various MCs in the array), effectively changing the interaction of the RP with each 

metal ion.  Selectivity studies were carried out to determine the diversity of response 

signature of each analyte.  Responses to different concentrations of each analyte were 

measured for all the RPs in the array.  Figure 12 demonstrates the diversity of 

response from metal ion to metal ion.  No two response patterns are extremely similar 

to each other.  This apparent response diversity bodes well for metal ion classification 

via pattern recognition algorithms. 

3.3.5 Classification  

The classification (metal ion identification) accuracy of the MCA sensor was 

determined using a leave-one-out cross-validation scheme on the ICA generated  
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Figure 12. The response diversity to each metal ion is demonstrated in the selectivity 

plot. In these experiments, 0.01 mM solutions of each metal ion were injected. The 

insert shows a representative entire response profile of a mercaptopropanol coated 

cantilever to 0.01 mM Cu2+.  In this work a 1 mV response corresponds to 1 nm MC 

tip deflection. 
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features.  For each trial, a one-against-one SVM multi-classifier was trained using all 

the remaining trials.  The experimental trials consisted of triplicate injections of five 

concentrations (range of 10-4-10-7 M) of each analyte.  One of the concentrations in 

the middle of the range was repeated in triplicate for a total of 18 trials for each metal 

ion analyte.  Each trial contained 12 data sets, one for each cantilever (even though 

some of the cantilevers were redundant or DA blanks).  Thus for each trial, the SVM 

is trained blind to that particular one-out-of-eighteen trial.  Once the SVM is 

completely trained the trial that was removed from the training can be tested and 

classified.  The generalized prediction rate for each analyte is the fraction of times 

each trial was classified correctly from a blindly trained SVM. 

The generalized prediction rate is a powerful measurement of how much 

informational content is generated from the sensor array for each analyte, and these 

generalized prediction rates are given in Table 4.  It can be seen in this table that the 

sensor array is responsive to Al3+, Cs+, Fe2+, and Li+; producing enough information 

that these metal ions can successfully be identified at rates approaching 90%.  

However, this is not the case for the doubly charged cations Co2+ and Cu2+ where the 

generalized prediction rates are considerably less significant. For example, the Cu2+ 

was misclassified half the trials.  Improvements in classification may be realized with 

improved feature extraction methods and as the library of experimental results for this 

sensor array builds, providing increased information about the dynamical range and 

details for each analyte.  The fact that the pattern recognition incorporated the entire 

concentration range, including the concentrations close to the LOD where responses  
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Predicted Fraction for each Analyte Tested 

Analyte AlCl3 CoCl2 CsCl CuCl2 FeCl3 LiCl 

AlCl3 0.8889 0 0 0.0556 0.0556 0 

CoCl2 0 0.6111 0.0556 0.2222 0.1111 0 

CsCl 0 0.0556 0.7778 0.0556 0 0.1111 

CuCl2 0.0556 0.2222 0.0556 0.5000 0.1111 0.0556 

FeCl3 0 0.1667 0.1111 0 0.7222 0 

LiCl 0 0 0.1667 0 0 0.8333 

Table 4. Generalized prediction rates for each analyte using leave one out 

cross-validation of one-against-one SVM multi-classification with ICA feature 

extraction. 
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were less reproducible, underscores the power of this approach to accurately classify 

unknown analyte injections.  

In summary, the advantages afforded by configuring MCs in an array format 

functionalized for differential selectivity is demonstrated for the first time.  An ability 

to uniquely functionalize the individual cantilevers in arrays is verified by a 

spectroscopic approach. Sensor performance is optimized through altering parameters 

related to the underlying nanostructured DA layer.  The optimal DA layer for sensing 

was shown by various surface characterization methods to be related to increasing 

amount of thiol ligand bound to the sensing surface, while also limiting overall 

cantilever thickness.  At optimal conditions the MCA demonstrated limits of 

detection as low as 1 x 10-8 M.   Selectivity experiments yield response signatures 

that appear unique to the metal ions tested and, when used in conjunction with pattern 

recognition algorithms, provide a good ability to classify each metal ion even with 

limited training sets.   
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CHAPTER 4: DIFFERENTIATING, RESPONSIVE PHASE 

COATED MICROCANTILEVER ARRAY FOR LANDFILL 

SILOXANE SAMPLE SENSING 

Chapter 4 is an adaptation of a research article Analytical Chemistry 2009, 81, 

2575-2580. This article developed a promising way to facilitate in-field detection of 

siloxanes in landfill gas using a RP-coated MCA. The MCA was nanostructured with 

DA phase and subsequently coated with 7 RPs. Distinctive response pattern was 

obtained when the MCA was exposed to specific siloxane in a realistic matrix, with a 

LOD comparable with that of GC/MS reported by other researchers.  

4.1 Introduction  

Due to stringent environmental standards and security regulations in many 

countries of the world, detection of VOCs at trace levels from industrial waste [139], 

environmental chemical vapors [140], and chemical warfare sources [141] has 

presented significant analytical challenges. In order to address issues related to 

selectivity, repeatability, sensitivity, linearity, interferent response, calibration and 

drift, current research is motivated in material science[142, 143] (directed toward the 

development of multiple RPs), various sensor measurement strategies (hybrid sensor 

arrays [144, 145] static and dynamic measurements [146], etc.) and signal processing 

algorithms (mutli-variate statistical analysis [147, 148], pattern recognition methods 

[149-151], etc.).   

A modern challenge to the analysis of VOCs is derived from landfill gases. 

Landfill gas produced during the decomposition of organic materials in municipal 
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waste sites has potential toxicological significance as a contributor to greenhouse 

effects [152], explosion potential [153], and annoying odors [154].  Owing to the 

scarcity of traditional natural energy worldwide, it has become important to identify 

and tap new energy sources for industrial and transportation purposes. Recognizing 

that the aforementioned detrimental characteristics of landfill gases can be turned to 

advantages, developed countries have made an increase use of landfill gas, of which 

methane composes more than 50%, as a new fuel resource [155].  However, the 

landfill gas is usually contaminated with volatile siloxane compounds, formed from 

decomposed waste silicon containing organic compounds (e.g., those found in 

shampoos, tooth paste, silicon oils, etc.), which will form silicon dioxide when they are 

burned.  If the landfill gas containing siloxanes is utilized as fuel, there will be an 

increase abrasion of gas combustion engines due to silicon dioxide residues forming on 

surfaces and this leads to loss of engine efficiency. Hence, detection and removal of 

siloxanes has become a prerequisite to use original landfill gas as fuel and some 

attempts to accomplish this goal have already been carried out [156]. 

A real challenge to analytical researchers lies in developing methodologies that 

are sensitive enough to recognize multiple siloxanes usually present at trace levels in 

landfill gas. The only reported technique for its trace-level detection in this application 

has been GC/MS [157,158], but this technique is relatively expensive and also has 

some limitations for in-field analysis. Fortunately, increasing effort has been spent on 

the study of inexpensive and portable chemical gas-sensors applied to the detection of 

VOCs, including multi-sensor arrays with distributed partial selectivity that are 
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employed in conjunction with chemometric pattern recognition techniques [159, 160].  

Specific to our work, during the past several years sensor arrays based on MC 

transducers have demonstrated advantages [2, 35, 107, 117, 161] over some other 

comparable sensors such as quartz crystal microbalance or surface acoustic wave 

devices.  These advantages include superior mass sensitivity, small dimensions, and 

very low cost.  

Our previous studies [162, 163] mainly focused on the design of MC sensors in 

which weak chemical or biochemical stimuli could be converted into mechanical 

responses with very high efficiency. We have realized high response gain by 

nanostructuring the active side of the MC.  This was most commonly accomplished 

by depositing an alloy of gold and silver and then preferentially chemically oxidizing 

the Ag to form a highly granular Au “DA” surface [162]. This surface has much higher 

surface area and also supplies 3-D obstacles compared to smooth-surface MCs 

[162-164], which can enhance analyte interactions with RPs deposited on the DA 

surface and provide better surface stress modulation.  

It has been shown that MCs fabricated in different ways have utility for gas phase 

sensing [151, 165-169]. In the work reported herein, thin films of seven different RPs 

were vapor deposited onto the DA surface of commercially available MCs to make a 

MCA for siloxane sensing. Four standard gas samples with different trace amount of 

siloxane dissolved in helium and a simulated realistic matrix containing methane, 

carbon dioxide, nitrogen and water vapor were tested and the MCA was showed to 

supply a characteristic response signature for each siloxane sample.   Calibration 
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plots were obtained that produced limits of detection (LODs) that in some cases were 

very close to those [158] reported for GC/MS.  Calibration of the developed MCA 

can be performed by standard addition methods [170, 171] if necessary, which is 

particularly useful at compensating the effects of matrix on the responses of the 

measured siloxane samples when the effects can not be neglected. However, in our 

present work, no distinctive differentiation was observed between the helium and 

matrix siloxane samples in terms of the recognition performance and sensitivity, and 

the long term stability of the MCA is also demonstrated. The work reported herein 

represents an excellent example of how nanomechanics based on MCAs can aid in 

areas of energy and environmentally related significance. 

4.2 Experimental 

    4.2.1 Chemicals and Materials 

Information of MCs and metals can be found in the previous chapter. RPs for MC 

coatings included heptakis(6-O-tert-butyldimethylsilyl-2,3-di-O-acetyl)  

-β-cyclodextrin (AcβCD), tetrabutylammonium p-toluenesulfonate (TBATS), 

poly(ethyleneimine) (PEI), poly(diphenoxyphosphazene) (PDPP), 

4-tert-butylcalix[6]arene (Cal-6), 4-tert-butylcalix[6]arene (Cal-4) and squalane (Squ). 

AcβCD, TBATS and Squ were obtained from Sigma-Aldrich, PEI and PDPP were 

purchased from Scientific Polymer Products (Ontario, NY), and Cal-6 and Cal-4 were 

acquired from Lancaster (Pelham, NH). Standard siloxane reagents included 

pentamethyldisiloxane (PMDS), hexamethyldisiloxane (HMDS), octamethyltrisiloxane 

(OMTS) and decamethylcyclopentasiloxane (DMCPS). PMDS and OMTS were 
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obtained from Oakwood Products (West Columbia, SC), while HMDS and DMCPS 

were purchased from TCI AMERICA (Portland, OR). All chemicals were above 99% 

in purity and used as received.  

4.2.2 Instrumentation and Sample Preparation 

Background gas was controlled at a certain flow rate by a multi-tube flow meter 

(Cole-Palmer Co.). Especially for matrix sample analysis, due to a more complex 

background in which the volume percentage of each gas component  was fixed, a 

special flow system was set up to control the flow rate of each. As showed in Figure 

13, gas flow streams of CH4, CO2 and N2 were controlled by the multi-tube flow meter 

to be at a constant flow rate converging into a stream in the ratio (CH4 : CO2 : N2 = 10 

: 1 : 9). The mixture stream was then saturated with water vapor to produce a 

simulated matrix background gas flow. Because of the potential detrimental affect of 

water vapor on RPs, a desiccator filled with Dryright
TM was assembled into the flow 

system to dry the matrix background gas before it flowed across the RPs-coated 

nanostructured MCA.  The MCA was mounted in a home-made flow cell having a 

total volume of approximately 100 µL, with an inlet and an outlet port. The flow cell 

was placed in an optical system and contained a window to facilitate the observation of 

MC deflection. The same VCSEL system was used as described in the previous 

chapter for data acquisition.  

The background gas collected from the outlet of the flow cell into the Tedlar 

sampling bag (SKC South Inc) was used as the solvent to dilute pure siloxane vapor 

into any needed siloxane samples. Siloxane vapor was extracted from a headspace vial  
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Figure 13. Schematic representation of the instrumental set-up: matrix background 

flow generation, diluted siloxane sample delivery and MC deflection monitoring. The 

insert picture shows a front view of the flow cell with the MCA mounted inside. 
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with an analyte syringe (Fisher). The requisite amount of headspace vapor for 

preparing a siloxane sample at certain concentration level can be calculated with the 

equation (PV = nRT) in which P is vapor pressure of the siloxane at ambient 

temperature T in Kelvin and V is the headspace volume in the vial. The number of 

moles for the siloxane, n, can be calculated thereafter (R is a constant). Vapor pressure 

value of each siloxane could be deduced from the Antoine Equation (Eq. 8), one of the 

most wildly used equations to estimate the temperature dependent vapor pressure of 

pure organic liquids [172-175].  

ln
vp

B
P A

T C
= −

+
   (8) 

Pvp is the vapor pressure at certain temperature T, while A, B and C are constants for 

specific siloxane. Despite poor performance to some organics such as fatty acid esters 

[176], Flaningam [177] has provided the experimental vapor pressure value perfectly 

fitting with the Antoine Equation for those linear, cyclic and branched methyl siloxane 

liquids with low molecular weight. Thus, reliable vapor pressures of the siloxanes 

could be obtained in our present study. 

4.2.3 Cantilever Modification and Coating. 

DA nanostructured modification and RPs coating of the MCs were both 

accomplished using a PVD procedure which was carried out in a vacuum chamber 

with a resistively heated source at a pressure of approximately 1×10-6 torr [163, 164, 

169]. Tungsten boats and alumina crucibles with thermal heaters were used for 

evaporation of the metals (Cr, Au and Ag) and the RPs. Deposition rate and resulting 

coating thickness were monitored using a quartz crystal microbalance. Initially 8 nm of 
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Cr was deposited onto cleaned MCs followed by 15 nm of Au. A 100 nm thick Ag/Au 

composite film was then created by co-deposition of Ag and Au in equal proportion. 

To create DA nanostructured surfaces from the Au/Ag film, the silver was etched out 

of the composite film by placing the cantilevers in an aqueous solution of 0.2% w/v 

HAuCl4 for about 3 minutes. The cantilevers were then rinsed with copious amounts of 

water after etching [162]. Thereafter, films of RPs were vapor deposited onto the DA 

surface of the MCs. A slit with ~150 µm width was used to selectively expose only one 

lever to the organic vapor so that the vapor could be deposited onto only one lever at a 

time without cross contamination. The VCSEL radiation was focused onto 12 MCs 

coated with seven different RPs. Some levers were duplicates and some others were 

coated with the same phase but at different thicknesses. 

4.2.4 Data Acquisition 

Data acquisition using Labview program was the same as previous chapter. 

Throughout the experiment, background gas (either helium or matrix) was maintained 

at a constant flow rate of 4.0 mL/min, controlled by a mass flow meter connected to 

the outlet of the flow cell. A flow of siloxane sample was injected into the background 

gas stream via the tee shown in Figure 13 by a syringe pump at a rate of 0.8 mL/min. 

Injection lasted for 60 seconds, followed by a 180-second background gas flow. For 

response time studies, a six-port injector with 1 mL injection loop was used instead of 

the syringe pump for siloxane sampling, and injection was followed by a 120-second 

background gas flow.   
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4.3 Result and Discussion 

All the parameters for DA surface modification have been optimized in our 

previous work [150] such as the thickness of nanostructured film, the relative amount 

of Au and Ag contained in the DA film, and dealloying duration time. It has also been 

verified by FTIR spectra and gel permeation chromatography that the RPs used can be 

vapor deposited without much structural change [169].  The conversion of analyte 

(siloxane compounds herein) induced swelling of the RPs into surface stress and 

bending of the cantilever is inefficient if slippage of the phase occurs.  A major 

benefit of our DA surface, with previously determined root mean square roughness of 

about 35 nm [162], is that thin films of RPs in the range of thicknesses used herein are 

stabilized from slippage [163].  A depiction of siloxane induced MC surface changes 

is seen as an insert in Figure 13. 

4.3.1 Calibration Performance and Sensitivity 

MCA sensor performance can be summarized with a calibration study.  Figure 

14A shows a calibration curve for 60-second injections of 0.1, 0.25, 0.5 and 1 ppm of 

siloxane in the matrix environment. The magnitude of response increased with the 

concentration of siloxane in a linear fashion (Table 5). Moreover, our prior work [5, 71, 

162, 163] has shown that the calibration plots were generally linear for two or more 

orders of magnitude while coefficients of variation for measurements using a given 

MC-phase were generally 10% or better.  In the present study, a LOD as low as 0.017 

ppm was obtained based on 3σ of multiple injections of 0.25 ppm of siloxane sample 

divided by the slope of the corresponding calibration plot [178].  
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Figure 14. (A) HMDS response profiles from the cantilever having 400 nm PEI RP, 

obtained by 60-second injections of HMDS with a syringe pump in triplicate, as well 

as the corresponding calibration plot; (B) 0.5 ppm HMDS response profiles obtained 

by three consecutive injections of HMDS samples with 1 mL injection loop. 
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 r-Square LOD (ppm) CV (%) 

PMDS 0.8819~0.9940 0.050~1.5 2.11~8.88 

HMDS 0.8337~0.9995 0.048~0.17 1.65~13.5 

OMTS 0.7527~0.9920 0.047~1.1 2.63~17.8 

DMCPS 0.9799~0.9811 0.017~0.083 0.57~6.53 

Table 5. Results of calibration study in terms the range of calibration plot r-squared 

value, LOD and CV (coefficients of variation) obtained from all the RPs on the MCA 

to each of the four siloxanes.  
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For this MC sensor in signaling the presence of siloxanes, performance is also 

characterized by response and recovery times.  Herein, we define the response time as 

the time to reach 90% of full-scale cantilever deflection and recovery time as the time 

for the response signal decreasing from maximum to 10% of full-scale cantilever 

deflection for our injection protocol. An injection loop with fixed volume (1.0 mL) 

filled with siloxane sample was used for response time measurement. To ensure high 

accuracy for response time measurements, the injection loop was overfilled with the 

siloxane sample and the distance between the loop outlet and flow cell inlet was 

minimized. Response data are plotted in Figure 14B. Evaluation of response profiles 

shows the response and recovery times of all the RPs on the MCA to siloxane samples 

are all less than 15 seconds and 35 seconds, respectively.   

4.3.2 Study of Matrix Effect 

In real-life sensing applications, the matrix effects vary with chemical and physical 

conditions such as temperature and humidity in the sensing environment. Water vapor is 

always present in the realistic landfill gas matrix, but in our present study, we noted that 

overly-high humidity degraded the responsive function of the MCA. Our experiments 

showed that RPs coated DA MCs lost almost all response to siloxanes after overnight 

exposed to water vapor saturated air. Hence, an on-line desiccator was assembled in our 

flow system to avoid MCA water vapor exposure. Response data of the MCA were 

compared between wet background flow with desiccator treatment and dry background 

flow. No distinct deviation was observed between the two response profiles as seen in 

Figure 15.  
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Figure 15. Response profiles of the MCA to 0.5 ppm PMDS delivered into desiccated 

wet matrix background flow (top) and the matrix background flow without water vapor 

(bottom). 
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The discrepancy between the matrix background flow and the matrix sample 

solvent collected in the Tedlar bag was minimized in this work. It was observed that 

some of the RPs on the MCA responded slightly to injection of the blank matrix 

sample solvent without any siloxanes. Fortunately, response subtraction of the 

generated matrix from the siloxane samples yielded an overall response profile that 

closely resembled siloxane samples in helium, with no significant increase in the 

LODs or decrease in calibration linearity (Table 6). 

4.3.3 Distributed Selectivity 

Selectivity studies were carried out to determine the diversity of response 

signatures between the four siloxane samples. Responses to different concentrations of 

each siloxane sample were measured for all the RPs coated levers on the MCA. Well 

designed arrays of RPs should incorporate several different modes of siloxane-phase 

interactions such as dipole, Van der Waals, hydrogen bonding, electrostatic, etc.  

When this is accomplished, distributed selectivity of the system can be achieved based 

on the differences in sensor responses provided by a range of siloxane-RPs 

interactions.  Figure 16 demonstrates the diversity of responses of the MCA to each 

of the four siloxane samples injected in triplicate (details are in the caption). We can 

easily see that DMCPS has a distinguishable signature response compared to the other 

three, which is reasonable because cyclic molecules should apply different spatial 

interactions on the RPs from linear molecules. The other three siloxanes have more 

similar signatures but are distinguishable.  For example, the Cal-6 phase only 

responded to HMDS, while the response deviation between AcβCD and TBATS (300 
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Matrix Environment Helium Environment  

r-Square LOD (ppm) r-Square LOD (ppm) 

PMDS 0.9940 0.072 0.9946 0.061 

HMDS 0.9713 0.048 0.9916 0.097 

OMTS 0.9920 0.047 0.9833 0.021 

DMCPS 0.9799 0.017 0.9858 0.022 

Table 6.  LOD & r-square obtained in matrix environment compared with those in 

helium environment from the same RP coated MC. 
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Figure 16. The selectivity plot shows the response diversity to each siloxane for MCA. 

In these experiments, 0.5 ppm of each siloxane in a matrix environment was injected 

for 60 seconds in triplicate and the average peak signals are plotted. 
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nm) is distinct for PMDS but not for OMTS.   In prior gas phase work this level of 

variability in overall MCA response signatures was adequate for classification 

(identification) of analytes using pattern recognition techniques [151, 179, 180].   

4.3.4 MC-to-MC and Long-Term Reproducibility 

Three pairs of DA cantilvers on the MCA were coated with the same RPs in the 

same (AcβCD and PEI) and different (TBATS) thickness respectively. Figure 17 

shows that good responsive lever-to-lever reproducibility was observed if the thickness 

of the coated RPs were the same. Otherwise, distinct deviation was observed: the DA 

cantilever coated with a thinner TBATS phase gave a larger response than thicker 

TBTAS phase (Figure 15).  In general, the magnitude of signals scales with thickness 

[163] so this was not expected.  

Response profiles for the seven RPs on the same MCA to the same four siloxane 

samples obtained in the matrix were recorded 5 weeks after collecting the initial 

response profiles. Using 1 ppm OMTS as an example, Figure 18 illustrates the 

excellent reproducibility over a 5 week time period for MC responses. It should be 

noted that during the 5 week period the array was in continuous use. Considering that 

VCSEL-MCA systems usually undergo calibration with standards on a frequent basis, 

the reproducibility was pleasing given that no unique calibration or normalization 

work was performed. However, the array to array reproducibility was not satisfying, 

which may be due to array to array size and stress variations. Note that MCs on 

different chips usually show an obvious variation in the resonance frequency of higher 

than 15% within the same purchased batch. Also, the conditions of vapor deposition of  
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Figure 17. Response profiles of two MCs coated with identical RP: 300 nm AcβCD 

and 400 nm PEI respectively, exposed to 0.1, 0.25, 0.50 and 1.0 ppm DMCPS for 60 

seconds. 
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Figure 18. Comparing the response profiles of the MCA to 1 ppm OMTS (top) in 

matrix environment with those of an identical measurement obtained after 5 weeks of 

use (bottom).  Each grid corresponds to a 280 second response. 
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RPs were not precise enough for array to array duplication.  Hence, each MCA 

should be uniquely calibrated. 

4.3.5 Potential Applicability to Realistic Landfill Sample Analysis. 

The apparatus depicted in Figure 13 is utilized to generate a flow of gas mixture 

mimicking real landfill gas background, which may not be the same as normal 

atmospheric conditions.  When adapted for in-field use it is envisioned that the 

apparatus will actually be simplified.  The cumbersome gas cylinders and flow meter 

will be replaced by a simple gas pump that will sample and deliver ambient landfill gas 

to the flow cell.  In addition, the tee in the figure would be replaced by a multi-port 

valve, for example an HPLC six port injector, that allows one to switch between flow 

through an active carbon adsorber [181] or gas permeation membrane [182] to scrub 

the siloxanes (if present) from the stream and a path that bypasses the scrubber.  In 

this manner the valve would permit toggling between landfill gas with and without the 

siloxanes to effectively make siloxane or siloxane-void injections. 

In summary, we have developed a new approach for detecting trace siloxanes in 

matrix landfill gas sample with RP coated MCAs. The seven RPs created a unique 

recognition pattern for each siloxane and the RPs exhibited stability for a period of 

more than a month. LODs as low as 0.017 ppm were obtained from the siloxane 

calibration plots. A matrix effect study was carried out and based on simple 

background subtraction a comparable LOD was obtained for siloxanes in both a 

realistic matrix and inert helium environment. The high sensitivity of the MCA 

combined with a rapid response time renders our approach very competitive to GC/MS 
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which has previously been used for trace siloxane analysis. However, our method is 

much less expensive and requires less power. The small dimensions and portability of 

our setup will make it promising to facilitate in-field siloxane analysis, which can be 

expected to improve the cost effectiveness of harnessing landfill gas as an energy 

source.  

Vapor deposition of gold and silver usually causes a lot of waste because most of 

the evaporated metal will not be coated onto the MCs. What’s more, the deposition 

protocol needs to be carried out under vacuum and any mild leaking of the vacuum 

system will lead to poor adhesion of DA phase to the MC surfaces.  The next chapter 

will discuss a newly developed nanostructured MC sensor which is stable, cheap, and 

applicable to both chemical and biological sensing.  
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CHAPTER 5: ALUMINIUM OXIDE NANOSTRUCTURED 

MCA FOR NANOMECHANICAL-BASED SENSING 

Chapter 5 is an adaptation of a research manuscript submitted to Langmuir.  

In this manuscript, uniform layers of aluminium oxide nano-particles (AONP) were 

chemically immobilized on MC surfaces. Optimization studies were carried out for 

better surface uniformity and higher surface area of this new phase. One MCA was 

functionalized with three alkoxysilanes for VOC sensing, and a second MCA was 

functionalized with two different immunological receptors for biological sensing. 

Highly selective response and good sensitivity were obtained from both of the MCAs.  

The controlled, variable chemical natures of the MC surfaces were validated by FT-IR 

and fluorescence microscope images.        

5.1 Introduction 

As one of the most common micromechanical devices, MCs have been 

extensively applied in chemical [67, 164, 183, 184], biological [169, 185-186] and 

physical [187] sensing areas during the last decade or so. Significant efforts have been 

spent to achieve higher sensitivity using this sensing technology [184, 185, 188-192]. 

In general, cantilevers intended to be used as sensors are modified so that one side can 

preferentially absorb or adsorb the target analyte [107]. Enhanced surface area of this 

side is always advantageous for higher sensitivity, because the number of 

analyte-binding sites on the cantilever is substantially increased. Nanostructured 

surfaces and coatings, such as surface-immobilized nano-scale colloids, are now 

recognized as one of the paradigms for increasing surface area of the active side of 
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MCs for better sensitivity [162, 163, 164, 184, 193, 194]. Earlier studies have 

demonstrated that up to two orders of magnitude increase in cantilever responses can 

be obtained when receptor molecules are immobilized on nanostructured instead of 

smooth, coated MC surfaces [69, 163].  

Currently, to prepare a nanostructured surface, MCs are usually coated with a 

layer of sensing materials such as metal [195], polymer [196, 197], silicon compounds 

[198, 199] and carbon nano-tubes [194], followed by further treatment if necessary to 

make the layer more roughened or porous [163, 164, 200]. During recent years, there is 

an uptrend to modify MCs with metal oxides for better sensitivity due to their specific 

properties [201-203]. The metal oxide layer was usually obtained through either direct 

depositing [204, 205] or oxidizing the deposited metal layer [206, 207] to create a 

nanostructured surface. Although these oxide phases had an increased surface area, the 

lack of functional groups having more intricate structures on the surface confines the 

range of their applications. Being aware of that restriction, some attempts have been 

initiated for gaining more versatile surfaces by grafting a linker compound, such as, 

alkoxysilane, onto the surface of the metal oxide phases for MC sensors [208-210].    

Inspired by the utilization of alkoxysilanes [208-210], a new method for 

nanostructuring MCs with metal oxides was developed in the work reported herein. 

Previous reports [211, 212] have shown that aluminium oxide could be functionalized 

by alkoxysilanes, so we chemically immobilized tetramethoxysilane (TMOS)-modified 

AONP onto the MC surfaces through cross-linking, to form a stable and uniform layer 

of AONP. Optimization work was performed to make a high density layer of AONP 
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uniformly dispersed on the MC active surfaces. This layer can be subsequently 

functionalized with other alkoxysilanes with a variety of surface active functional 

groups (Figure 19). To our knowledge, no studies have been carried out before on 

modifying aluminium oxide phase coated on MC surfaces for detecting specific target 

analytes.  Furthermore, in order to impart an enhanced selectivity to the 

AONP-modified MC sensor by earning diverse response patterns for various target 

analytes, MCs on the same chip were differentially functionalized with various 

receptor phases to create a true MC sensor array. This MCA was prepared by 

immersing MCs in different solutions for functionalization using a capillary array 

setup (Figure 20) as described in detail elsewhere [150]. As previously demonstrated 

by the Sepaniak group [110,150,151,169] and other researchers [213-215], 

differentially functionalized MCAs can impart a good degree of distributed selectivity 

to a system. Moreover, the advanced processing capabilities of pattern recognition 

algorithms could be utilized for differential selectivity, aiding in the interpretation of 

the sensor array responses and facilitating identification of analytes having similar 

structures [150,151].   

One MCA was prepared by differentially functionalizing MCs with three different 

alkoxysilanes to form a SAM of recognition sites on each MC surface, for VOC 

sensing in gas phase. In order to improve sensitivity, both the component of the 

alkoxysilane solution and the MC immersion time in the solution were optimized in 

advance. The MCA was exposed to samples composed individually of four VOC 

headspace vapors, and a highly selective response signature for each VOC was easily  
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Figure 19. Scheme of nanostructuring MC surface with AONP and then functionalized 

with alkoxysilanes.  
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Figure 20. AONP-nanostructured MC chip were differentially functionalized with a 

capillary array filled via capillary action with various alkxoysilane solutions (the 

middle capillary is in process of filling). The functionalized MCA was then loaded in a 

low volume (~5 µL) flow cell and demonstrated diversity in deflection from lever to 

lever when exposed to the same analyte. 
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obtained. A LOD down to 0.13 µg/mL was derived from the calibration plots with 

good and respectable r-squared and CV values. Long-term and lever-to-lever 

reproducibility of the MCA’s response to the same analyte was also demonstrated.  A 

second MCA was prepared for biological sensing in liquid phase. In this array, 

anti-immunoglobulin G (anti-IgG) and anti-biotin were immobilized onto two MCs as 

bio-receptors with the capillary coating manner, with the same procedures reported in 

our previous works involving MC bio-sensors [216], except using 

(3-aminopropyl)trimethoxysilane (APTMS) to produce a SAM of amino groups. 

Although no optimization work was performed, a true immuno-based MCA was 

created with biological discrimination capabilities in this work.  

5.2 Materials and Methods 

5.2.1 Reagents and Materials 

The same MCs, deposited metals, and flexible capillaries as the previous chapters 

were used. AONP (99.97 %, 20-30 nm) were purchased from NanoAmor (Houston, 

TX) and dried at 120 ºC for at least 24 h prior to any use. Alkoxysilanes and 

glutaraldehyde (GA) were obtained from Sigma-Aldrich. All biological reagents were 

also obtained from Sigma-Aldrich except Alexa Fluor 633 goat anti-hIgG which was 

purchased from Invitrogen Co. (Carlsbad, CA). All the other chemicals used in our 

study were purchased from either Sigma-Aldrich or Fisher. All the chemicals were 

purchased at highest available purity and used as received. Water used to prepare 

solutions was obtained from a Barnstead E-Pure water filtration system. 
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5.2.2 MC Modification 

The MCs were modified by spin coating a slurry prepared with AONP, TMOS 

and absolute ethanol. Initially, 0.02 g AONP was homogeneously dispersed in 5 mL 

absolute ethanol by sonicating for 1 h. Then 0.1 mL TMOS was added and the 

sonicating was maintained for another 1.5 h before the slurry was ready to use. Before 

spin coating, the MCs were boiled in piranha solution (VH2SO4 : VH2O2 = 7 : 3) for 1 h. 

50 µL of the slurry was spin coated onto the surface of the MC chip at the rate of 6,000 

rpm and the rate was held for 30 s to evaporate all the ethanol. This coating procedure 

was repeated seven times and the coated MCs were cured in desiccator for at least 12 

h.  

5.2.3 Modification of AONP-modified MCs 

The capillary coating apparatus was used to differentially functionalize 

AONP-modified MCs (see Figure 20). Detailed information can be found in previous 

chapters.  For VOC sensing in gas phase, three pairs of MCs on the AONP-modified 

MCA were functionalized with 2 % (v/v) solution of APTMS, 

octadecyltrimethoxysilane (ODTMS) and (3-Glycidyloxypropyl)-trimethoxysilane 

(GPTMS) in absolute ethanol one after another, and the immersion time of MCs in 

each solution was 7 minute, 4 h and 2 h. 2 % (v/v) acetic acid was added in the 

solutions of ODTMS and GPTMS as a catalyst.  

For biological sensing in liquid phase, AONP-modified MC chip was immersed in 

2 % (v/v) solution of APTMS in absolute ethanol for at least 4 h [212]. The MC chip 

was then removed from solution and rinsed with copious amount of absolute ethanol 
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and dried under nitrogen flow. The formed amino groups on the MC surfaces were 

derivatized with the cross-linker by immersing the MC chip in 1 % (v/v) solution of 

GA in water/phosphate buffered saline (10 mM pH 8 PBS) for 3-h incubation and then 

rinsed with a large volume of 10 mM pH 8 PBS to remove any non-specifically bound 

GA on both sides of the MCs. The bio-receptors were then immobilized onto the MC 

surfaces by capillary coating 0.5 mg/mL solution of the receptors in 10 mM pH 7 PBS 

for 1 h to create a differentially functionalized bio-sensing array, followed by rinsing 

with copious amount of 10 mM pH 7 PBS.  

A 50 nm layer of gold was vapor deposited onto the passive silicon sides of the 

MCs with a 5 nm layer of chromium underneath the gold for better adhesion. This was 

performed on the bio-sensing array after AONP-modification but on the VOC-sensing 

array as the last step. The gold layer can make this side more passive and supply 

enhanced reflection of source laser to obtain better signal.    

5.2.4 Instrumentation 

The same capillary coating setup and VCSEL systems as previous chapters were 

used.  FT-IR spectra were collected by performing specular reflectance with a Varian 

4100 FT-IR spectrometer.  SEM images were collected with a LEO 1525 microscope 

with a field-emission gun operating at 5.00 kV.  A Leica SP2 laser scanning confocal 

microscope having an Ar ion laser with 488 nm beam and a He-Ne laser with 633 nm 

beam was used for capturing fluorescence images.  
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5.2.5 Data Acquisition  

For gas-phase experiments, pure nitrogen background gas was controlled at a 

constant rate of 3.2 mL/min by a mass flow meter. Gas samples were prepared by 

diluting the headspace vapor of VOCs with nitrogen in either a sample syringe 

(Hamilton) or a gas sampling bag. The prepared sample was transferred to a sample 

syringe and injected into the nitrogen stream by a syringe pump at a rate of 0.8 

mL/min for 60 second. The injection was followed by another 100 second nitrogen 

background flow.  For liquid-phase experiments, 10 mM pH 7 PBS was used as 

background with a flow rate of 0.1 mL/min. Analyte were delivered to the flow cell via 

a system of vessels connected to three-way valves allowing for switching between 

background and analytes. The injection of analyte lasted for 100 second.   

5.3 Results and Discussion 

5.3.1 Spectral Characterization of Functionalized AONP-Modified Surface 

The IR spectra of plain and functionalized AONP-modified surface are shown in 

Figure 21. Due to the difficulty of focusing the laser spot onto MCs, silicon wafer with 

a similar size to a MC chip was modified with AONP and then functionalized. In order 

to simulate the capillary coating method, the wafer was partially dipped in small 

amount of solution for functionalization (except Figure 21e and 21f). After the 

modification with APTMS, either by partially dipping (Figure 21b) or by 

functionalizing in bulk (Figure 21e), a broad band occurred in the 2850-3050 cm-1 

region due to the stretching of methylene in the alkylamine group, and another new 

peak occurred in the 1580-1650 cm-1 region due to N-H deformation [217-219]. After  
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Figure 21. FT-IR spectra of AONP-nanostructured surface (a) and functionalized with 

APTMS (b), ODTMS (c), and GPTMS (d). FT-IR spectra were also collected while 

AONP-nanostructured surface was functionalized with APTMS (e) first, then with GA 

(f) and ultimately with protein A (g). 
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the modification with ODTMS, one sharp peak was seen in the 2840-2975 cm-1 region 

for C-H stretching in aliphatic hydrocarbons [220,221] while two additional new peaks 

in the 1350-1500 cm-1 region were derived from the deformation of methylene and 

methyl [217] (Figure 21c). After the modification with GPTMS, due to the 

deformation of methylene and methine in the epoxide ring, two new bands at 1400 

cm-1 and 1460 cm-1 were observed [217] (Figure 21d). After the APTMS-modified (in 

bulk) surface was functionalized (in bulk) with GA, a new peak at 1388 cm-1 was seen 

due to C-H rocking vibration in the aldehyde group [217], while the peak at 1620 cm-1 

disappeared as a result of the reaction between amino groups on the AONP’s surfaces 

and carbonyl groups in GA (Figure 21f). The surface was subsequently functionalized 

with anti-IgG and accordingly the peak in the 3240-3500 cm-1 region became broad 

due to N-H stretching vibrations (Figure 21g) in peptide bonds [217]. 

5.3.2 Optimization  

Optimization of the sensor’s response is influenced by uniformity and density of 

the functioning sites on the nanostructured surface. However, exorbitantly high density 

of binding sites may lead to a decrease in sensitivity due to steric hindrance effects. 

The prerequisite to make a highly responsive MCA is the uniformity of the 

surface morphology. Our optimization work focused on five aspects that may influence 

the uniformity of the AONP modified surface, including the type of solvent, density of 

the AONP slurry, spin coating times, concentration of TMOS and sonicating time, 

with evaluations based on the SEM images. In order to evaluate surface uniformity, 

shorter working distance and Inlens (upper) mode of the LEO 1525 microscope was  



 89 

applied to collect the SEM images.  AONP slurry prepared with ethanol could form a 

homogeneous film after being spin coated onto silica surface, while aggregates of 

AONP were obtained if other solvents such as acetone, chloroform or toluene were 

used.  Figure 22A shows the nanostructured surface modified with the optimal 

manner as explained previously in this chapter. A lower density of the AONP-slurry 

produced a very sparse coating (Figure 22B), while a higher density caused 

aggregation of AONP (Figure 22C), both of which resulted in non-homogeneity.  50 

µL of AONP-slurry was spin coated each time. Spin coating the AONP-slurry 4 times 

or 6 times (See Figure 22D & 22E) produced a sparse non-homogeneous layer, while 

coating more than 8 times led to aggregation of AONP on the surface. The density of 

the AONP slurry was the primary factor in determining uniformity. In other words, a 

uniformly nanostructured surface could not be obtained without a specific slurry 

density, no matter how many times the slurry is spin coated.  As a cross-linker, the 

TMOS concentration is important. If the TMOS concentration is too low then it may 

not form linkages on all the AONP as illustrated in Figure 22F, while too much TMOS 

may cause aggregation of the AONP. This can occur due to cross-linking between the 

AONP as seen in Figure 22G.  Sonicating for 1 h produced a homogeneous 

AONP-slurry before TMOS was added, while sonicating for at least 1.5 h was needed 

to modify all the AONP. Sonicating for longer than 2.5 h caused aggregation of AONP 

and led to weak adhesion onto MC surfaces.  In summary, the optimized protocol for 

nanostructuring MCs with AONP involved dispersing 0.02 g AONP in 5 mL absolute 

ethanol by sonicating for 1 h, adding 0.1 mL TMOS into the slurry with sonication for  
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Figure 22. SEM images of AONP-fabricated surface prepared: (A) with the optimized 

manner, (B) with AONP slurry with density of 0.002 g/mL, (C) with AONP slurry 

with density of 0.008 g/mL, (D) with the optimal AONP slurry spin coated for 4 times, 

(E) with the optimal AONP slurry spin coated for 6 times, (F) with AONP slurry 

modified with 0.5 % (v/v) TMOS, (G) with AONP slurry modified with 5 % (v/v) 

TMOS, (H) with optimized conditions and then functionalized with GPTMS. All 

micrographs were collected at 10 K magnification.another 1.5 h, and finally spin 

coating the slurry onto MC surfaces 8 times, with 50 µL coated with each application.  
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In order to obtain the highest sensitivity for VOC detection, both the immersion 

time of MCs for functionalization and the components of alkoxysilane solutions were 

optimized. Concentration of alkoxysilane solutions should be kept low enough to avoid 

polymerization. Weak acid was sometimes used to accelerate the reaction between the 

hydroxylated surface and alkoxysilanes [222, 223]. Solutions with concentrations of 

GPTMS and ODTMS as 2 % (v/v) were modified with acetic acid in different 

percentages ranging from 0.4 % to 5 % (v/v) for optimization. 2 % was determined to 

be the optimal concentration, while the solution with less acid leaked out of the coating 

capillary causing cross-contamination. The solution with more than 2 % acid was 

corrosive to the AONP-modified surfaces. The reaction between APTMS and the 

modified MCs was very fast when the APTMS solution was capillary coated, so no 

catalyst was used.     

Figure 23 shows the effect of the immersion time of AONP-modified MC in the 

alkoxysilane solutions. Two MCAs were prepared by immersing different MCs in the 

same 2 % solution of GPTMS and ODTMS, respectively, for different time periods. 

Under SEM, the MC surfaces appeared non-homogeneous when they were immersed 

for 6 h or longer. The two MCAs were exposed to hexane and ethanol samples and 

accordingly the obtained response profiles were compared.  For the 

GPTMS-functionalized array, the MC functionalized for 2 h gave a much larger 

response than the one functionalized for 4 h. For the ODTMS-functionalized array, the 

hexane response increased with immersion time. The MC functionalized for 4 h gave 

the smallest response to ethanol, which may mean the phase surface had been 
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Figure 23. Response magnitude and associated profiles of AONP-nanostructured 

MCAs on exposure to 10 % hexane and 20 % ethanol diluted with nitrogen. The array 

was prepared by immersing three MCs in 2 % alkoxysilane (A: ODTMS, B: GPTMS) 

solution filled in capillarie for 1 h, 2 h and 4 h, respectively.  
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sufficiently functionalized and is very hydrophobic.  For APTMS, no immersion time 

study was performed, due to the high reacting rate. The concentration of APTMS 

solution was optimized, ranging from 0.1 % (v/v) to 2 % (v/v). However, agglomerates 

appeared on the MC surface around 10 minute after capillary coating started, and was 

not dependent on the APTMS solution concentration. Consequently, 7 minute was 

picked as the immersion time.  The nanostructured appearance was well retained after 

being functionalized with each alkoxysilane, which demonstrates the high stability of 

this new aluminium oxide phase in a liquid environment with no polymerization 

occurring on the surface. Figure 22H shows the SEM images of modified MC surface 

functionalized with GPTMS in the optimal manner. The image was obtained in 

secondary electron detection mode to reduce charge build-up for higher resolution.  

5.3.3 Selectivity and Sensitivity 

For VOC sensing, the MCA invokes different modes of interactions with the 

analytes, e.g. van der Waals, H-bonding, and π-π interactions. Figure 24 demonstrates 

the diversity of responses of the array to the four VOCs. There are primarily dispersive 

and induction interactions between hexane and the array (Figure 25A), with the former 

playing the dominating role, which most likely led to the largest deflection of the lever 

functionalized with ODTMS. H-bonding could form among hydroxyl groups, amino 

groups and glycidyloxy groups, which may explain why levers functionalized with 

APTMS and GPTMS responded to ethanol and aniline with a much bigger signal than 

the lever functionalized with ODTMS. The glycidyloxy group can act as donator of 

lone pairs to form H-bonding (Figure 25B) but the amino group may act as both  
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Figure 24. Selectivity plots demonstrate the response diversity to each headspace 

vapor for the MCA. In these experiments, each headspace vapor was injected for 60 

second in triplicate and the peak signals were then averaged and plotted. A 

representative response profile of ODTMS-functionalized MC to 25 % hexane diluted 

in nitrogen is shown by the inset. 
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Figure 25. Representative conceptual diagram: (A) dispersive and induction 

interactions between hexane and octadecyl group in ODTMS, (B) H-bonding between 

aniline and glycidyloxy group in GPTMS, (C) H-bonding between ethanol and amino 

group in APTMS, (D) π-π interaction between toluene and amino group in APTMS. 
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donator and receptor (Figure 25C).  Hence, the APTMS-functionalized MC can be 

expected to exhibit a greater diversity of interactions. Although toluene does not tend 

to H-bond, the delocalized π electrons of the benzene ring could overlap with the lone 

pairs of electrons of oxygen and nitrogen. The donation of lone pairs into the ring 

increases the density of π electrons [224] (Figure 25D), indicating toluene can interact 

more readily through π-π interaction with amino groups and glycidyloxy groups than 

octadecyl groups. As a result, the MCs functionalized with APTMS and GPTMS 

experienced more surface stress than those functionalized with ODTMS when exposed 

to toluene.  Because the gaseous analytes have different vapor pressures, the response 

signals to different analytes are not comparable unless a S/C (signal:concentration) 

factor is applied. Hexane had the smallest S/C factor due to van der Waals forces 

which are often rather weak. S/C factor of toluene is smaller than ethanol and aniline 

because the π-π interaction is not expected to be as strong as H-bonding, while 

additional π-π interactions caused aniline to have a bigger S/C factor than ethanol.  

The MCA was also capable of providing quantitative information by 

differentiating between varying concentrations of a given analyte. With analyte 

headspace diluted with nitrogen in different ratios, the response magnitude varied in a 

linear fashion (r-square value as high as 0.9962). This is demonstrated in Figure 26. 

The CVs in peak responses obtained from triplicate sample-injections were generally 

around 10 % (inset, Figure 24). Our prior work [162,163] has shown that the 

calibration plots were generally linear for 2 or more orders of magnitude while CVs for 

measurements using a given MC phase were generally 10 % or better. The array 
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Figure 26. Representative response profile of MC functionalized with APTMS to 

aniline in order of decreasing sensor response at injected concentrations of 100 %, 75 

%, 50 % and 25 % of the headspace vapor, respectively. The inset shows a 

representative entire response profile of one MC functionalized with ODTMS to 25 % 

hexane diluted in nitrogen. The arrows denote points of introducing hexane sample and 

nitrogen background in the flow cell, respectively. 
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demonstrated limits of detection as low as 0.13 µg/mL for aniline, based on 3σ of 

triplicate injections divided by the slope of the corresponding calibration plot. 

Figure 27A shows the response profiles from a MCA in which two MCs were 

differentially functionalized with 0.5 mg/mL anti-hIgG and anti-biotin, respectively. 

Antibody-antigen interactions involving high specificity is a desirable characteristic 

for biosensors. We exploit the high affinity that is inherent to antibody-antigen 

binding. This provides our array with high selectivity and sensitivity. The MC 

functionalized with anti-IgG only responded to 0.05 mg/mL hIgG, while the MC 

functionalized with anti-biotin only responded to 0.05 mg/mL biotin, and no response 

was observed at all on exposure to 0.05 mg/mL BSA which was used as a non-specific 

protein. The functionalized MC started to deflect less than 1 min after the 

corresponding analyte was injected, which demonstrated a satisfactory sensitivity. 

It is a base requirement of any true sensor that reversibility must be maintained 

while achieving high sensitivity and selectivity. Especially for biosensors, problems 

can arise from a potential lack of reversibility due to the high binding constants of 

bioaffinity reagents. In our previous work, we observed sensitive, reversible 

bio-nanomechanical responses [185, 216].  In a similar manner, it can be seen from 

Figure 27A that we observed reversible responses for antibody-AONP-modified MCs.  

The interplay between sensitivity, selectivity, and reversibility is interesting and under 

investigation by our group.  Among the possible influencing factors are the complex 

effects of nano-confinement, chemical immobilization, and the fact that we expose the 

surfaces to sample for variable lengths of time but not to point of establishing 
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Figure 27. (A) Response profiles of AONP-fabricated MCs in the same array but 

differentially functionalized with 0.5 mg/mL anti-hIgG (solid line) and anti-biotin 

(dotted line) on exposure to 0.05 mg/mL hIgG (left) and 0.05 mg/mL biotin (right), 

respectively. The arrows denote points of introducing hIgG, biotin and PBS 

background in the flow cell, respectively. (B) Combined fluorescence microscopy 

images of differentially functionalized AONP-fabricated MCA: FITC labeled anti-IgG 

immobilized on the right lever was excited by 488 nm laser and Alexa 633 labeled 

anti-IgG immobilized on the left lever was excited by 633 nm laser. 
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equilibrium or saturation.  

Furthermore, in order to validate the feasibility to successfully immobilize 

bio-receptors onto the AONP-modified MC surfaces through cross-linking with GA, 

with the same manner, another MCA was differentially functionalized with 0.5 mg/mL 

fluorescein isothiocyanate (FITC) labeled anti-bovine IgG and 0.5 mg/mL Alexa fluor 

633 labeled goat anti-hIgG. Two fluorescence microscope images were taken by the 

Leica SP2 microscope, with the MCA excited by the 488 nm laser and the 633 nm 

laser one after the other (Figure 27B). Green color and red color were emitted on the 

FITC-labeled and Alexa fluor 633-labeled MC, respectively. The non-labeled MCs 

appeared very slightly red when excited by the 633 nm laser, which we believe is due 

to the auto-fluorescence of the aldehyde groups [225, 226].     

5.3.4 Long-term and MC-to-MC Reproducibility  

Response profiles for the six MCs in the VOC-sensing array were highly 

reproducible among replicate exposures to VOCs on the same day, and there was no 

distinct difference between the response pattern of the MCA collected initially and 4 

weeks later. It should be noted that during that period of time the array was always 

kept in the flow cell even when it was not used. From our results, long-term MC 

response reproducibility is quite satisfactory.  Good lever to lever reproducibility was 

observed between two duplicate MCs functionalized in the same manner, which 

demonstrates the uniformity of the AONP layer immobilized on the surface of the 

whole MCA chip. However, the array-to-array reproducibility was not satisfactory 

probably due to array-to-array variations of both size and lever stress, even though the 
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two arrays were modified with the same AONP slurry. It should be noted that the 

variation in resonance frequency for the commercial MCAs we purchased often varies 

by around 15 % in a given batch.        

5.3.5 AONP-Modification and Enhanced Sensitivity  

A MCA without being modified by AONP on the surface was functionalized with 

the three alkoxysilanes in the same optimized protocol. Although functionalized in the 

same manner, plain silicon MCs gave much smaller response signals than the 

AONP-nanostructured MCs. It should be noted that the silicon MCs were activated in 

boiled piranha solution before being functionalized so there should be an abundance of 

hydroxyl groups on the surface to react with alkoxysilanes like aluminium oxide. 

Hence, enhanced surface area with AONP-treatment should be the primary reason for 

such an obvious increase in response magnitude (in some case with a factor higher 

than 100 %), even considering the array-to-array variation in resonance frequency 

(only around 15 %).  

In summary, we developed a novel method to modify MC surfaces with AONP. 

This creates a stable nanostructured MC with high surface area. We used commercially 

available metal oxide nano-particles to create a functional nanostructure for the future 

of MC sensing. This work explores in detail the potential of aluminium oxide and 

other metal oxides that can be functionalized with linker compounds as a sensing 

surface in the field of MC sensors by functionalizing the newly developed 

AONP-modified MCs with chemical or biological receptors for enhanced selectivity 

and sensitivity.   
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CHAPTER 6: CONCLUSION 

In the field of MC-based sensing, great effort has been spent to achieve higher 

sensitivity and enhanced selectivity. MCs with increased surface areas are usually 

preferred for obtaining better sensitivity.  Realistic sample analysis has introduced 

new challenges that necessitate the distributed specificity and selectivity of MC 

multi-sensor arrays. This dissertation work demonstrates the application of MCAs on 

the analysis of realistic gas-phase and liquid-phase analytes.  

In the first two chapters, MCs and MCAs are introduced and their background is 

discussed. This background discussion includes the evolution and fabrication of MC 

sensors. Types of surface modification, operation modes, and detection schemes of 

MCs and MCAs are presented.  

All of the MCAs utilized in this dissertation work were differentially 

functionalized after the cantilever’s active surface was modified with nanostructured 

phases. Specific recognition phases were immobilized onto each individual lever so 

that the MCA could demonstrate distributed selectivity, with a distinct response pattern 

for each analyte. Moreover, for each MCA, the magnitude of response for each phase 

increased with the concentration of analyte in a linear fashion.  

The first major division of this dissertation work focuses on preparing MCAs with 

previously developed nanostructured MCs and demonstrating their highly distributed 

selectivity. Chapter 3 discusses the detailed research of metal ion sensing with a MCA 

modified with gold nanostructured (DA) phase and subsequently functionalized using 

capillary coating. Different thiol ligands are immobilized onto the DA surface and then 
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each type of cation interacts with the MCA phases to generate a distinguishable 

response pattern. LOD as low as 10-7 M was derived from the calibration plots. 

Moreover, all metal cations were identified using SVM with some of the metals 

showing high prediction rates.  Chapter 4 discusses the detection of landfill siloxane 

compounds with another gold nanostructured MCA coated with different RPs. The 

MCA incorporates several different interactions with the gas phase analyte. The cyclic 

siloxane produces a more distinguishable response pattern when compared to linear 

siloxanes, which demonstrated satisfactory recognition character of the array. LOD as 

low as 0.017 ppm was obtained, which is comparable with the more traditional 

GC-MS technique used for siloxane detection.  

The second major division of this dissertation work focused on developing a new 

nanostructured MC sensor. This innovation involved chemically immobilizing AONP 

onto MC surfaces using TMOS as cross-linker, to generate a new stable and 

nanostructured platform for preparing MCAs. Optimization work was carried out on 

this new AONP phase to ensure good surface uniformity and high surface area. 

AONP-nanostructured MCs were subsequently differentially functionalized using 

capillary coating and immobilization of sensing sites was validated by FT-IR.  One 

MCA was prepared for gas phase VOC sensing, which illustrated good sensitivity with 

a LOD as low as 0.13 µg/mL.  Another ANOP-nanostructured MCA was prepared 

with two model biological proteins, to differentiate biological analytes in liquid phase.  

Both MCAs provided a distinctive response pattern for each specific analyte, showing 

that well-behaved MCAs can be created on this new AONP-nanostructured MC 
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platform.  

In conclusion, the goal and major accomplishment of all the research presented in 

this work lies in developing MCAs which may be more applicable to realistic sample 

analysis.  Contributing to MCA advancement helps further MC sensor technology for 

the future.    
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