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ABSTRACT 
 
 In statistical data mining research, datasets often have nonlinearity and high-

dimensionality. It has become difficult to analyze such datasets in a comprehensive 

manner using traditional statistical methodologies. Kernel-based data mining is one of the 

most effective statistical methodologies to investigate a variety of problems in areas 

including pattern recognition, machine learning, bioinformatics, chemometrics, and 

statistics.  In particular, statistically-sophisticated procedures that emphasize the 

reliability of results and computational efficiency are required for the analysis of high-

dimensional data. 

In this dissertation, first, a novel wrapper method called SVM-ICOMPPERF-RFE 

based on hybridized support vector machine (SVM) and recursive feature elimination 

(RFE) with information-theoretic measure of complexity (ICOMP) is introduced and 

developed to classify high-dimensional data sets and to carry out subset selection of the 

variables in the original data space for finding the best for discriminating between groups. 

Recursive feature elimination (RFE) ranks variables based on the information-theoretic 

measure of complexity (ICOMP) criterion.  

 Second, a dual variables functional support vector machine approach is proposed. 

The proposed approach uses both the first and second derivatives of the degradation 

profiles. The modified floating search algorithm for the repeated variable selection, with 

newly-added degradation path points, is presented to find a few good variables while 

reducing the computation time for on-line implementation.  



 vi 

 Third, a two-stage scheme for the classification of near infrared (NIR) spectral 

data is proposed. In the first stage, the proposed multi-scale vertical energy thresholding 

(MSVET) procedure is used to reduce the dimension of the high-dimensional spectral 

data. In the second stage, a few important wavelet coefficients are selected using the 

proposed SVM gradient-recursive feature elimination (RFE).  

Fourth, a novel methodology based on a human decision making process for 

discriminant analysis called PDCM is proposed.  The proposed methodology consists of 

three basic steps emulating the thinking process: perception, decision, and cognition.  In 

these steps two concepts known as support vector machines for classification and 

information complexity are integrated to evaluate learning models.   
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Chapter 1 Introduction 

This chapter provides an introduction of this dissertation research.  Section 1.1 

presents the motivation for the research. The contributions of the research are presented 

in Section 1.2.  The organization of the rest of this dissertation is outlined in Section 1.3. 

1.1 Motivation 

Machine learning plays an important role in a variety of scientific fields including 

text mining, machine vision, pattern recognition, medical diagnosis, bioinformatics, and 

chemometrics. Practical problems arising in these fields require an approach built on 

innovative analytical methods. Two particularly important problems are (i) the presence 

of nonlinearities in available data; and (ii) the high-dimensionality of available data. In 

order to overcome these problems, kernel-based methods have been developed by several 

machine learning researchers. These methods are an effective alternative to increase 

computational power by first nonlinearly mapping the data into a high-dimensional space 

to avoid nonlinearities and then applying learning machines (modeling procedures). The 

objective of this dissertation is to develop innovative and effective analytical methods to 

increase computational power and improve scalability of complex data structures by (i) 

nonlinearly mapping the data into a high-dimensional space avoiding nonlinearities; and 

(ii) selecting the most relevant and informative variables. 

Kernel-based methods exploit both the geometric and regularizing properties of a 

high-dimensional reproducing kernel Hilbert space. Since the early 1990s, kernel-based 
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methods have been built in several developments, including (a) support vector machine 

for both classification and regression (Boser et al. 1992; Vapnik 1995); (b) kernel 

principal component analysis (Schölkopf et al. 1999); and (c) kernel fisher discriminant 

analysis (Mika et al. 1999). Perhaps the best-known kernel-based method is the support 

vector machine, which has been successfully applied in a diverse range of domains. 

Several recent publications describe the application of kernel-based methods and address 

their overall performance in terms of computational requirements and ability, for both 

classification and regression (Cristianini and Shawe-Taylor 2000, Herbrich 2002, 

Schölkopf and Smola 2002, Vapnik 1995). The properties of a support vector machine 

are (i) managing large input spaces powerfully with kernel-based methods; (ii) dealing 

with noisy samples in a robust way; and (iii) producing sparse solutions (Chistianini and 

Shawe-Taylor 2000). Support vector machine can be incorporated with the scheme of the 

kernel-based methods. The kernel-based methods are based on mapping data from the 

original input space to a kernel space with high-dimensionality and then solving the 

problem in that space which is nonlinearly related to the input space. A kernel is a 

function K, such that for all , X∈x y satisfies that ( , ) ( ), ( )KΦ =< Φ Φ >x y x y , where Φ  is 

a mapping fromX to an inner product feature spaceF . The purpose of using the kernel 

function is as follows: (i) it provides the connection between the data and the modeling 

method; (ii) it can influence the performance of the modeling method by incorporating 

prior knowledge about the problem domain; and (iii) its evaluation might be 

computationally advantageous compared to an explicit construction of the feature space 

(Bloehdorn and Sure 2008). 
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 Variable selection is an important area of research in machine learning, pattern 

recognition, statistics, and related fields. The key idea of variable selection is to find 

input variables which have predictive information and to eliminate non-informative 

variables. Variable selection identifies a small subset of variables so that the classifier 

constructed with the selected variables minimizes error and the selected variables also 

better explain the data (Koller and Sahami 1996). The use of variable selection 

techniques is motivated by three reasons: (i) to improve discrimination power; (ii) to find 

fast and cost-effective variables; and (iii) to reach a better understanding of the 

application process (Guyon and Elisseeff 2003). In the case of high-dimensionality data, 

variable selection plays a crucial role because of four challenges (Theodoridis and 

Koutroumbas 2006): (i) large sets of variables; (ii) existence of irrelevant variables; (iii) 

presence of redundant variables; and (iv) data noise.  

1.2 Contributions of the Dissertation 

Based on the motivations in Section 1.1, the contributions of this dissertation are as 

follows:  

1. Hybridized support vector machine and recursive feature elimination with 

information complexity:  An innovative approach is proposed by taking advantages 

from both the variable ranking method and the robust kernel-based method. This new 

approach is the hybridized support vector machine and recursive feature elimination 

with information complexity.  
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2. Dual variable functional support vector machine: Data representation for 

functional structures is one of the key issues in implementing the functional support 

vector machine. In some cases, a combination of derivatives with different orders 

may lead to better classification performance. The dual variables functional support 

vector machine approach that uses both first and second derivatives.  

3. Improved floating search method to optimize the number of variables: Because 

dual or multiple data representations leads to a higher-dimension space, the modified 

floating search finds the optimal variables that have the highest classification power, 

so as to start with the best variable set in time series data.  

4. Multi-scale vertical energy thresholding wavelet method based on the scale 

information:  The multi-scale based wavelet transformation can extract useful 

information in compressed wavelet coefficients and thus can be used to perform noise 

suppression and pre-processing.  

5. Two-stage scheme for incorporating a wavelet de-noising and reduction method 

with a support vector machine-based variable selection method: The use of the 

concentrated information with selected variables, instead of full variables, for the 

classification of high-dimensional data, can minimize classification error and improve 

computation speed significantly.  

6. Perception-decision-cognition methodology for discriminant analysis based on 

the human decision-making process: The proposed methodology consists of three 

basic steps that emulate the thinking process: perception, decision, and cognition. In 

these steps two concepts known as the support vector machine and information 

complexity are integrated to evaluate learning models. 
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1.3 Outlines of the Dissertation 

The remainder of this dissertation is organized as follows: 

Chapter 2 shows a novel wrapper method based on hybridized support vector machine 

and recursive feature elimination with information complexity to classify nonlinear high-

dimensional data sets and to carry out subset selection of the variables in the original data 

space.  

In Chapter 3, a dual variable functional support vector machine and modified floating 

search based variable selection are presented. The different pre-processing techniques 

and the floating search method are explained.  

Chapter 4 shows a two-stage classification procedure based on multi-scale vertical energy 

wavelet thresholding and support vector machine-based gradient recursive feature 

elimination. A wavelet-based data compression and de-noising technique and a support 

vector machine-based variable ranking algorithm are presented in detail.     

In Chapter 5, a novel methodology based on the human decision-making process for 

discriminant analysis is presented.  The proposed methodology consists of three basic 

steps emulating the thinking process: perception, decision, and cognition.  

In Chapter 6, a summary and conclusions are presented. 
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Chapter 2 Hybridized Support Vector 

Machine and Recursive Feature 

Elimination with Information Complexity 

2.1 Introduction 

 In many classification problems there are very high-dimensional input data sets 

and finding the best subset of the original input features or variables which mostly 

contribute to the separation of the classes or groups is a challenge. Therefore, variable 

selection is a difficult combinatorial problem in machine learning and it has very high 

practical importance in many applications. 

 Kernel-based methods have gained popularity for classification, clustering, and 

regression analysis in machine learning since the introduction of support vector machine 

(SVM) during the early 1990s. After obtaining support vectors (SVs) to classify a data set, 

questions such as: “How do we know which variables are more responsible for, and 

important to, the classification?” have often been raised. This is due to the fact that the 

mapping is not one-to-one and onto in SVM. The application of a kernel function is thus 

an uninvertible process, and there is no way to go from the feature space back to the 

original space.  Because of this geometry, SVM does not lend itself to automated internal 

relevant variable selection easily. Hence algorithms for variable selection play an 

important role in SVM. 
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 In the literature of machine learning, as discussed in Fröhlich (2002) in detail, 

there are two main approaches to solve the variable selection problem: (a) the filter 

approach, and (b) the wrapper approach. Both approaches differ in the way they evaluate 

a given variable subset. The filter method uses some relevance measure, which is 

independent of the performance of the learning algorithm. On the other hand, in the 

wrapper method, each variable subset is taken into consideration with the classifier. That 

is, the variables are evaluated by estimating the generalization performance (i.e. the 

expected risk) of the learning machine trained. 

 In this chapter, the wrapper method called SVM-ICOMPPERF-RFE, which 

combines an information-theoretic measure of complexity (ICOMP) criterion and 

recursive feature elimination especially designed for SVM based variable selection 

developed by Guyon et al. (2002) is considered and emphasized. In the usual RFE, 

backward variable elimination is performed to find say, m, variables which lead to the 

largest margin of class separation. This combinatorial problem is solved in a greedy 

fashion. In the two-class case the RFE algorithm begins with the set of all variables and 

sequentially evaluates each variable based on sensitivity analysis for an appropriately 

defined criterion that is a measure of predictive ability (and is inversely proportional to 

the margin). Then, the RFE algorithm at each step eliminates the variable which keeps 

this quantity small. Assuming the change of the set of support vectors when removing 

only one variable is negligible.  

 An information-theoretic measure of complexity (ICOMP) criterion of Bozdogan 

(1988a, 1988b, 1990, 1994, 2000) is used in RFE rankings of the variables as an effective 

measure. ICOMP plays an important role not only in choosing an optimal kernel function 
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from a portfolio of many other kernel functions but also in selecting important subset(s) 

of variables. It takes into account either the badness of fit or the lack of fit and the model 

complexity at the same time in one criterion function.  

 The potential and the flexibility of the proposed method is illustrated on two real 

data sets, one is ionosphere data which includes radar returns from the ionosphere, and 

another is aorta data which is used for the early detection of atheroma most commonly 

resulting heart attack. Also, the proposed method is compared with other RFE based 

methods (Guyon et al. 2002; Youn 2002; Cho et al. 2009) using different measures (i.e., 

weight and gradient) for variable rankings. 

2.2 Support Vector Machine 

 The SVM finds the optimal separable hyperplane that maximizes the margin 

between the classes (Vapnik 1995). Consider the case of classifying a set of training data 

into two groups. Assume a set of training data is given by ( ) ( ){ }n ny yx x⋯1 1, , , ,  where 

ix  is an input vector, ( 1,1)iy ∈ −  is a binary class index, and n is the size of training data. 

Then, a decision boundary (i.e. classifier) that partitions the underlying vector space into 

two classes can be represented by the following hyperplane: 

                                                               T b+ =w x 0,                                                        (1) 

where w  is the weight vector and b  is the bias. The objective of the SVM is to find the 

maximum margin(M) decision boundary between the two parallel hyperplanes, 

T b+ =w x 1 and T b+ = −w x 1. An example of SVM is illustrated in Figure 1. Since the 
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maximum margin is given by2 / || ||w , the corresponding optimization problem can be 

written as follows: 

                                      
T

      Minimize  
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where iξ  is the positive slack variable and )0( >C  is a pre-designated regularization 

coefficient. The linearly-constrained optimization problem can be solved as a dual 

problem that maximizes the following function: 
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Figure 1: Illustration of Linear SVM for Nonlinearly Separable Case 
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 Once the optimum values ( )bα * *,  are obtained, based upon the training set of 

points, a new point newx  of the test data set is classified by the following decision rule: 

                                    
( )

( )

Class 1 if 

Class 2 if 

n

new i i i new
i

n

new i i i new
i

D y K b

D y K b

α

α

=

=

 = + <


 = + >


∑

∑

x x x

x x x

* *

1

* *

1

( , ) 0

( , ) 0

                     (5)            

where ( )D i  is a classifier based upon the training data set. i newK x x( , )  is the kernel trick 

proposed by Aizerman et al. (1964). The kernel maps input data in the original space 

with nonlinearly into a high-dimensional feature space with linearity. The Table 1 

presents some common kernel functions.  

2.3 Information-Theoretic Measure of Complexity 

An information-theoretic measure of complexity called ICOMP has been proposed by 

Bozdogan (1988a, 1988b, 1990, 2000) as a decision rule for model selection                                                                             

                                                   Table 1: Kernel Functions 

Function K(X,Y) Parameters 

Linear T( )ab+X Y  a=1, b=0 

Polynomial (degree=2) T( )ab+X Y  a=2, b=1 

Polynomial (degree=3) T( )ab+X Y  a=3, b=1 

Gaussian c
ba

− −X Y 21
exp( ( || || ) )  a=2, b=c=1 

Cauchy 
a

−+ −X Y 2 11
(1 || || )  a=1 

Inverse Multi-Quadratic a −− +X Y 2 2 1/ 2(|| || )  a=1 
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such as AIC (Akaike, 1973), and BIC (Schwarz, 1978). The development and 

construction of ICOMP is based on a generalization of the covariance complexity index 

originally introduced by van Emden (1971). Instead of penalizing the number of free 

parameters directly, ICOMP penalizes the covariance complexity of the model. It is 

defined by   

                                            ˆ ˆ2 log ( ) 2 ( ),k ModelICOMP L Cθ= − + Σ                                 (6) 

where ˆ( )kL θ  is the maximized likelihood function, ̂kθ  is the maximum likelihood 

estimate of the parameter vector kθ  under the model kM , and C represents a real-valued 

complexity measure and � ˆ ˆ( )k ModelCovθ = Σ  represents the estimated covariance matrix of 

the parameter vector of the model. ICOMP should not be confused with the stochastic 

complexity (SC) or the minimum description length (MDL) of Rissanen (1986, 1987, 

1989), although they both use the notion of complexity of a model class based on coding 

theory. The detailed information-theoretic measure of complexity (ICOMP) is 

recapitulated in the subsections for the benefit of the readers who may not be familiar 

with ICOMP criterion. 

2.3.1 Mutual Information in High Dimensions 

 For a random vector, the complexity is defined as follows. 

Definition: The complexity of a random vector is a measure of the interdependency 

among its components. 

 A continuous p-variate distribution is used with joint density function 

1( ) ( ,..., )pf f x x=x  and marginal density functions ( ), 1,..., .j jf x j p=  Following 
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Kullback (1997), and Harris (1978), the information measure of dependence is defined as 

follows:  

                            

1
1

1 1

1
1 1

1 1

( ,..., )
( ) ( ,..., ) [log ]

( ) ( )

( ,..., )
        ( ,..., ) log

( ) ( )

p
p f

p p

p
p p

p p

f x x
I I x x E

f x f x

f x x
f x x dx dx

f x f x

+∞ +∞

−∞ −∞

= =

= ∫ ∫

x
⋯

⋯ ⋯
⋯

              (7) 

where ( )I x  is the Kullback-Leibler information divergence (Kullback and Leibler 1951) 

against independence. The properties of the Kullback-Leibler information divergence are 

as follows: 

• 1( ) ( ,..., ) 0pI I x x≡ ≥x  i.e., the expected mutual information is nonnegative. 

• 1( ) ( ,..., ) 0pI I x x≡ =x  if and only if 1 1 1( ,..., ) ( ) ( )p p pf x x f x f x= ⋯  for every p-

tuple 1( ,..., )px x , i.e., if and only if the random variables 1,..., px x are mutually 

statistically independent. 

The KL divergence is related to Shannon's entropy (Shannon 1948) by the important 

identity 

                                   1 1
1

( ) ( ,..., ) ( ) ( ,..., )
p

p j p
j

I I x x H x H x x
=

≡ = −∑x                              (8) 

where  

• ( )jH x  is the marginal entropy, and 

• 1( ,..., )pH x x  is the global or joint entropy 

 Watanabe (1985) calls this latter quantity the strength of structure and a measure 

of inter-dependence. 



 18 

 To define the information-theoretic measure of complexity of a multivariate 

distribution, let 1( ) ( ,..., )pf f x x=x  be a multivariate Gaussian density function given by 

                                    
1

1
T 12 2

( ) ( ,..., )

1
         (2 ) | | exp{ ( ) ( )},

2

p

p

f f x x

π − − −

=

= − − −

x

Σ x µ Σ x µ
                 (9) 

where T
1 2( , ,..., ) , , 1,2,...,p j j pµ µ µ µ= −∞ < < ∞ =µ and 0>Σ (positive definite) 

 As a short hand, let 

                                                        ~ ( , ).pNx µ Σ                                                          (10) 

 Then the joint entropy 1( ) ( ,..., )pH H x x=x  from equation (8) for the case in 

which =µ 0  is given by 

                   

1

T 1

1 T

( ) ( ,..., ) ( ) log ( )

1
          ( ) log(2 ) | | ( ) ( )

2 2
1

          log(2 ) | | ( ) ( )( ) .
2 2

p p

p

p

H H x x f f d

p
f d

p
tr f d

π

π

−

−

 
 
 

 
 

= = −

= + − −

= + − −

∫

∫

∫

R

R

R

x x x x

x Σ x µ Σ x µ x

Σ x Σ x µ x µ x

             (11) 

Then, since T[( )( ) ] ,E − − =x µ x µ Σ  the joint entropy is  

                                 
1

1
( ) ( ,..., ) log(2 ) log | |

2 2 2
1

         [log(2 ) 1] log | | .
2 2

p

p p
H H x x

p

π

π

= = + +

= + +

x Σ

Σ

                      (12) 

From equation (11), the marginal entropy ( )jH x  is  

                                  
2

( ) ( ) log ( )

1 1 1
           log(2 ) log( ), 1,2,..., ,

2 2 2

j j j j

j

H x f x f x dx

j pπ σ

+∞

−∞
= −

= + + =

∫
                   (13) 

where 2
jσ  is the variance of the jth variable. 
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2.3.2 Initial Definition of Covariance Complexity 

 van Emden (1971, p. 61) provides a reasonable initial definition of complexity of 

a covariance matrix Σ  for the multivariate Gaussian distribution. This measure is given 

by: 

                        
1 0 1

1

1

( ,..., ) ( ) ( ) ( ,..., )

1 1 1 1
log(2 ) log( ) log(2 ) log | | .

2 2 2 2 2 2

p

p j p
j

p

jj
j

I x x C H x H x x

p pπ σ π

=

=

 
 
 

≡ = −

= + + − − −

∑

∑

Σ

Σ

        (14) 

 

This reduces to  

                                         0
1

1 1
( ) log( ) log | |,

2 2

p

jj
j

C σ
=

= −∑Σ Σ                                       (15) 

where 2,jj jσ σ≡  is the variance of the j th variable, and is the jth diagonal element of Σ . 

The characteristics of covariance complexity0C  are as follows: 

• 0( ) 0C =Σ  if and only if Σ  is a diagonal matrix. 

• 0( )C = ∞Σ  if and only if | | 0=Σ . 

• The first term of equation (15) is not invariant under orthonormal transformations. 

As pointed out by van Emden (1971), the result in equation (15) is not an effective 

measure of the amount of complexity in the covariance matrix Σ , since:  

• 0( )C Σ  depends on the coordinates of the original random variables 1,..., px x . 

• The first term of 0( )C Σ  in equation (15) would change under orthonormal 

transformations.  
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2.3.3 Definition of Maximal Covariance Complexity  

 To improve upon 0( )C Σ  in equation (15), a maximal covariance complexity is 

proposed as follows.  

Proposition:  A maximal information theoretic measure of complexity of a covariance 

matrix Σ  of a multivariate Gaussian distribution is defined as follows: 

                    

1 0 1 1

log

( ) max ( ) max{ ( ) ( ) ( ,..., )}

( ) 1
         log | |

2 2

λ
         log , 

2 λ

p pT T

a

g

C C H x H x H x x

p tr
p

p

 
 
 

= = + + −

= −

=

Σ Σ

Σ
Σ

⋯

             (16) 

where the maximum is taken over the orthonormal similarity transformation, T of the 

overall coordinate systems 1,..., px x  and λa and λg  are arithmetic and geometric means 

of the eigenvalues. The properties of maximal information-theoretic measure of 

complexity are as follows: 

• 1( )C Σ  is the log ratio between the arithmetic and geometric mean of the 

eigenvalues.  

• 1( )C Σ  incorporates the two most basic scalar measures of multivariate scatter-

trace and determinant. 

• 1( ) 0C →Σ  as p→Σ I . 

• As interaction between variables increases, so does 1( )C Σ . 

 

 



 21 

2.3.4 Modified Maximal Covariance Complexity 

Following van Emden (1971), the geometric definition of covariance complexity 

is defined by the Frobenius norm given by  

                                               
2

2 ,
1 ( )

( ) || ||F

tr
C

s s
 
 
 

= − Σ
Σ Σ                                          (17) 

where 2 T|| || ( ),tr=Σ Σ Σ  the square of the Frobenius norm of Σ . 

 In terms of the eigenvalues (or singular values), ( )FC Σ  reduces to  

                                                  2

1

1
( ) (λ λ ) ,

s

j aF
j

C
s =

= −∑Σ                                              (18) 

where s is the rank of Σ , λ j is the jth eigenvalue of Σ > 0, j = 1,2,. . .,s and λa is 

arithmetic mean of the eigenvalues. Note that ( ) 0FC ≥Σ  with ( ) 0FC =Σ  only when all 

λ λ .j a=  

 1( )C Σ  can be approximated in terms of the eigenvalues ,  1,2, ,λ j j s= … by 

                                                    2
1

1

.
λ λ1

( ) ( )
4 λ

s
j a

j a

C
=

−
≅ ∑Σ                                            (19) 

Since in the feature space orthonormal matrices are dealt with to prevent the1C  

complexity not to go to zero, 1C  and FC  are related as a second order equivalent measure 

of complexity denoted by 1FC . Hence, the modified maximal entropic complexity  

1 ( )FC Σ  is defined as follows: 
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2
2

1 2 2

( )

.
( ) ( )

1|| ||( )
( )

4 4
F

F

tr

s

tr tr

s s

Cs s sC

 
 
 

   
   
   

−
= =

Σ

Σ Σ

Σ
Σ

Σ                         (20) 

In terms of the eigenvalues, 1 ( )FC Σ  is given by 

                                 2

2
1

2

2
1

2
T

1 2

( )

( )

1
            (λ λ )  

4 λ

1
            (λ λ ) .

4λ

1 ( )
           ( )

4

s

j a
ja

s

j a
ja

F

tr

s

tr

s

s
s

tr
s sC

=

=

 
 
 

 
 
 

= −

= −

−
=

∑

∑

Σ

Σ

Σ Σ

Σ

                                (21) 

where ( )s rank= Σ . The properties of the modified maximal entropic complexity 1FC  

are as follows: 

• 1 ( )FC Σ  is scale-invariant, and 1 ( ) 0FC ≥Σ  with 1 ( ) 0FC =Σ  only when all 

λ λ .j a=  

• 1 ( )FC Σ  measures the relative variation in the eigenvalues rather than absolute 

variation of the eigenvalues. 

2.3.5 ICOMP as a Performance Measure: ICOMPPERF 

 Singularity of the estimated covariance matrix is a common problem that has 

recently attracted many researchers’ work. Because of this, many methods have been 

proposed to make the covariance matrix well-conditioned, so that the covariance matrix 

can be estimated. The usual response to singular or ill-conditioned covariance matrix 
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estimates is the “naive”  ridge regularization, *ˆ ˆ[ ],pα= +Σ Σ I  which works to counteract 

the ill-conditioning by adjusting the eigenvalues of Σ̂ . The ridge parameter,α , is 

typically chosen to be very small. This, of course, begs the questions 

• How large of a perturbation do we need? 

• How small a perturbation can we get away with? 

This is a case where simplicity is not necessarily a good thing; it does not solve the 

problem with many real datasets. Yet another approach that does not seem to work well 

in practice is to augment Σ̂with a multiple of the kernel matrix, as suggested by Mika 

(2002). After much experimentation with a variety of different methods to improve the 

condition of the covariance matrix, a stabilization method (Thomaz 2004) is applied to 

resolve the ill-conditioning of a covariance matrix. After the stabilization procedure, the 

two-stage stabilization and smoothing process is applied to provide a well-conditioned 

covariance matrix which is both nonsingular and positive definite. 

• Stage 1. Stabilization algorithm (Thomaz 2004): 

1. Perform spectral decomposition of T=Σ VΛV ,ˆ where V is the matrix with 

eigenvectors and Λ has eigenvalues on the diagonal.  

2. Calculate the mean eigenvalue
p

i=1

λ=( λi p∑ ) /  

3. Form a new matrix of eigenvalues as  

=Λ*

λ λ

λ λp

 
 
 
 
 

⋯

⋮ ⋱ ⋮

⋯

1max( ) 0

0 max( )

,

,
 

4.  Finally, recompose the new stabilized matrix  
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T
STA =Σ VΛ V*ˆ  

• Stage 2: Compute a Stabilized and Smoothed Convex Sum Covariance Estimator 

The second step is to feed the stabilized covariance matrix into a smoothed convex sum 

covariance matrix estimator (CSE) was proposed based on the quadratic loss function 

used by Press (1975) and later by Chen (1976). The stabilized and smoothed convex sum 

covariance estimator (STA-CSE) is as follows: 

                                       _
ˆ ˆ ˆ(1 ) ,STA CSE STA STA

n n
n m n m

= + −
+ +

Σ Σ D                                (22) 

where )
1ˆ ˆ( pSTA STAtr
p

 
 
 

=D Σ I . For 2,p ≥  m is chosen to be 

2[ (1 ) 2]
0 ,

p
m

p
β
β

+ −< <
−

 

where 

( )2

2

ˆ( )
.

ˆ( )

STA

STA

tr

tr
β =

Σ

Σ
 

This estimator improves upon ˆ
STAΣ by shrinking all the estimated eigenvalues of 

ˆ
STAΣ  toward their common mean. The motivation of using both stabilization and 

smoothing of the covariance matrix in the ranking process of RFE subset selection is to 

extract more information since a reduced rank problem occur in the kernel based methods. 

To remedy the current existing problems in the usual kernel methods, the use of both 

stabilization and smoothing the covariance matrix is an attractive approach. 

The choice of the best mapping function is not so simple and automatic. In the 

literature a valid method for selecting the appropriate kernel function does not yet exist. 
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The goal of SVM is to minimize the probability of misclassification error. Intuitively, 

then, the penalty term for a poorly-fitting model would be based on the classification 

error rate. In SVM problems, the error variance 2σ is estimated by the mean squared 

difference between actual group labels (iy ) and predicted group labels (ˆiy ) given by 

                                                         2 2

1

1ˆ ˆ( ) .
n

i i
i

y y
n

σ
=

= −∑                                               (23) 

 Now following the work of Howe and Bozdogan (2010) the information-theoretic 

measure of complexity as performance measure of SVM is defined as follows:  

                                            PERF F STA CSEICOMP n n n Cπ σ= + + + Σ
2

1 _
ˆlog2 log ˆ 2 ( ),                              (24) 

where _
ˆ

STA CSEΣ  is the stabilized and smoothed convex sum covariance matrix estimator 

(STA-CSE) given by  

_ )
1ˆ ˆ ˆ ˆ ˆ(1 ) , ( ,pSTA CSE STA STA STA STA

n n
tr

n m n m p
 
 
 

= + − =
+ +

Σ Σ D D Σ I  

and  

2
1 _ 2

1

1ˆ( ) (λ λ ) .
4λ

s

j aF STA CSE
ja

C
=

= −∑Σ  

 First, the hybrid covariance estimate is calculated, and then the diagonal matrix of 

the largest singular values as a reduced rank approximation of _
ˆ

STA CSEΣ is computed. By 

minimizing ICOMPPERF, the classification error is minimized under the best fitting 

model. Also, ICOMPPERF is used to choose an optimal kernel function. One of the major 

motivations of introducing the information measure of complexity (ICOMP) criterion is 

based on the fact that in SVM-RFE subset selection problems the number of variables is 
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same from one subset to another. In such cases the models in terms of the number of 

parameters are considered to be equivalent. In equivalent models, AIC, BIC, or MDL 

type criteria do not have provision of distinguishing one equivalent model from another. 

Since their penalty terms are fixed, and not varying. In the literature cross-validation-

based criteria has been used for variable selection. These types of criteria are too time-

consuming due to the high-dimensionality of the feature space. The proposed method 

shortens the variable selection time.  

2.4 Recursive Feature Elimination (RFE) 

 A variable selection method based on RFE has been developed by Guyon et al. 

(2002) which is called SVM-RFE. SVM-RFE is an application of a recursive feature 

elimination based on sensitivity analysis using an appropriately defined cost function (w: 

weight). The SVM-Gradient-RFE method (Youn 2002; Cho et al. 2009) used the gradient 

as a cost function. In the proposed method, the used cost function is the ICOMPPERF. In 

the proposed method, the least sensitive variable, which has the minimum value of the 

ICOMPPERF, is eliminated first. This eliminated variable becomes rank p (p: number of 

variables). Later, the machine is retrained on the remaining p-1 variables and then the 

variable with the minimum value of ICOMPPERF is eliminated. The process continuous in 

an iterative fashion until no variable is left in that subset. This means that at the end of 

this iterative ranking scheme all the variables are ranked according to ICOMPPERF 

criterion. This is different than the Guyon et al. (2002) ranking scheme where only 

weights have been considered without taking into account the model fit and the 

complexity of the model. 
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2.4.1 SVM-RFE Algorithm  

Let T
n=X x x1( ,..., )  be a training set with T

ny y=y 1( ,..., ) .   

1. Construct a training model =X X s(:, ) , where s is the subset of variables; s=1,2,…,p. 

2. Until all values of the cost function are obtained with the number of non-ranked 

variables, compute the cost function for all subsets 

                                          T T
iC i −= −α Hα α H α( )( ) (1/ 2) (1/ 2) ,                                 (25) 

where i j i jy y K=H x x( , ) , and H(-i) means a H matrix without the ith variable. 

3. Find the variable k with the smallest cost function value, and add k into the ranked 

subset, r  and remove k from subset, s. 

4. Repeat 1-3 until subset, s is empty.  

2.4.2 SVM-Gradient-RFE Algorithm  

Let T
n=X x x1( ,..., ) be a training set with T

ny y=y 1( ,..., ) .   

1. Construct a training model =X X s(:, ) , s is the subset of variables; s=1,2,…,p.  

2. Until all values of the average sum of the angles are obtained with the number of non-

ranked variables,    

(i) compute the gradient, ∇(-i)g(x) without ith variable 

                                            
sv

ii m m m
m

g y Kα
−−

∈

∇ = ∇∑x x x
( )( ) ( ) ( , ).                                      (26) 

(ii)  compute the sum of angles between ∇(-i)g(x) and me , γ  

                                                   
sv

i m
m

i gγ
−

∈

= ∠ ∇∑ x e
( )

( ) ( ( ), ),                                           (27) 
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where (-i) means without the ith variable, me is unit vectors, and    

                  i

i

i
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g
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β
βπ −

−

−
∈

  ∇  ∠ ∇ = + −  ∇   

x e
x e
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( ( ), ) min ( 1) arccos .

|| ( ) ||
 

(iii)  compute the average sum of the angles 
SV

i
A i

γ
π

= − i
2 ( )

( ) 1 .
| |

 

3. Find the variable k with the smallest the average sum of the angle A(i), add k into the 

ranked subset, r  and remove k from subset, s.  

4. Repeat 1-3 until subset, s is empty.  

2.4.3 Proposed SVM-ICOMPPERF-RFE Algorithm 

Let T
n=X x x1( ,..., ) be a training set with T

ny y=y 1( ,..., ) .   

1. Construct a training model =X X s(:, ) , where s is the subset of variables; s=1,2,…,p.  

2. Until all ICOMPPERF values are obtained with the number of non-ranked variables, 

compute ICOMPPERF based on the error rate obtained from SVM. The ICOMPPERF  is 

given by 

                                           PERF i F STA CSE iICOMP i n n n Cπ σ − −= + + + Σ2
( ) 1 _ ( )

ˆ( ) log2 log ˆ 2 ( ),              (28) 

where 2
( )

ˆ
iσ −  is the estimated error variance without the ith variable and _ ( )

ˆ
STA CSE i−Σ  is 

the stabilized and smoothed convex sum covariance matrix estimator without the ith 

variable in the model. 

3. Find the variable k with the smallest ICOMPPERF, add k into the ranked subset, r  and 

remove k from subset, s.  

4. Repeat 1-3 until subset, s is empty.  
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2.5 Numerical Results 

 In the data mining literature, data partitioning is an important issue for finding 

proper models for new datasets. In general one can use different data partitioning to get 

different results. Most of such data partitioning schemes do not take into account of 

randomness that may affect the performance of the results which can be different. In the 

analysis, to avoid partitioning dependency, the data is randomly partitioned into 20% as 

one set and 80% as another set based on Pareto’s principle (Pareto 1909). Two 

experiments are performed with two different sets; 20%/80% and vice versa as 

training/test sets. The variable rankings corresponding to kernel functions are determined 

and reported for those different sets. Also, the smallest value of ICOMPPERF, and the 95% 

confidence intervals (CIs) given by 1.96 ˆerror errorX σ±  for the training and test errors are 

reported. Ionosphere and aorta datasets are used for these experiments. 

2.5.1 Ionosphere Data 

The ionosphere data are radar data which was collected by a system in Goose 

Bay, Labrador (Sigillito et al. 1989). The system measures radar returns from the 

ionosphere. The data consist of 351 observations and 34 variables with binary classes; 

good and bad returns. Figure 2 shows the scatter plots of the data with groups identified 

by blue (circle) and red (cross) colors. As shown in Figure 2, the separation in dimension 

5 against dimensions 13, 19 and dimensions 18, 29 are quite poor. Tables 2 and 3 show 

performances of experiments based on ICOMPPERF. In Table 2, the polynomial kernel 

with degree 3 on the 20% set shows a narrower confidence interval than the other kernel 
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functions for both training and test sets. As shown in Tables 2 and 3, the smallest 

ICOMPPERF values are obtained with a polynomial kernel with degree 3 for the 20% set 

and the 80% set. Tables 4 and 5 show the best subset selection based on the smallest 

ICOMPPERF values. The training and test errors of the best subsets in both partitioned sets 

are within the 95% error confidence intervals. 
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                                 Figure 2: Grouped Scatter Plots for Ionosphere Data 
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          Table 2: Top Subset Variables Selected with 20% Set Using SVM-RFE Ranking 

Kernel Best Subset Best ICOMPPERF Training Error CI Testing Error CI 
Linear {27,12} 121.14 [0.03046, 0.33089] [0.12241, 0.38356] 

Ranking {27,12,24,32,30,31,4,18,20,34,2,26,9,6,8,28,16,14,25,7,5,22,3,29,17,15,21,23,10,1,11,33,19,13} 
Cauchy {1-9,11-34} 87.61 [0.08101, 0.36773] [0.25495, 0.42540] 
Ranking {24,5,3,33,26,31,6,9,22,34,18,11,21,19,4,32,23,15,25,12,30,29,13,2,28,20,1,8,16,27,7,14,17,10} 

Polynomial 
(degree=2) 

{2-20,22-30,32-34} -47953.45 [0, 0.23670] [0.06150, 0.31593] 

Ranking {30,32,29,12,34,4,2,23,14,26,18,6,20,28,8,33,16,22,7,10,5,24,27,3,17,15,13,19,25,9,11,1,21,31} 
Polynomial 
(degree=3) 

{2,3,8,12-
14,18,20,22,24-32} 

-47957.44 [0, 0.14278] [0.10669, 0.21464] 

Ranking {3,14,24,26,13,28,2,8,20,30,12,18,27,31,25,29,32,22,6,16,5,4,11,10,34,1,19,33,21,7,23,9,17,15} 
 
 
          

 
 

       Table 3: Top Subset Variables Selected with 80% Set Using SVM-RFE Ranking 

Kernel Best Subset Best ICOMPPERF Training Error CI Testing Error CI 
Linear {7} 606.94 [0.09676, 0.23190] [0.09271, 0.26610] 

Ranking {7,27,6,31,30,28,32,26,14,8,10,16,2,24,19,4,18,11,3,20,22,34,29,13,25,21,9,33,23,17,1,12,5,15} 
Cauchy {3} 441.65 [0.02329, 0.20342] [0, 0.38375] 
Ranking {3,6,4,7,8,5,1,18,14,10,16,12,13,2,24,9,19,15,17,23,21,31,29,25,22,33,34,28,32,30,26,20,11,27} 

Polynomial 
(degree=2) 

{5,14} 454.56 [0, 0.13966] [0, 0.18645] 

Ranking {5,14,8,16,10,22,32,29,31,3,27,12,34,4,7,20,23,26,25,19,15,9,17,13,33,24,21,28,11,30,6,18,2,1} 
Polynomial 
(degree=3) 

{5} 441.51 [0, 0.09553] [0.02858, 0.02696] 

Ranking {5,4,14,34,33,30,18,22,6,16,31,32,26,25,10,12,8,20,2,29,24,28,21,3,27,7,23,19,13,17,11,15,1,9} 
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  Table 4: Subset Selection Based on ICOMPPERF with 20% Set (Polynomial: degree=3)  

Rank Variable ICOMPPERF Training Error Test Error 
1 3 185.9418 0.2 0.19217 
2 14 163.37627 0.2143 0.14235 
3 24 125.94111 0.1 0.15658 
4 26 185.42737 0.1143 0.15302 
5 13 190.40902 0.0714 0.15658 
6 28 158.21993 0.0571 0.21708 
7 2 254.1286 0.1 0.16370 
8 8 171.2137 0.0571 0.14591 
9 20 123.1558 0.0286 0.14947 
10 30 143.0001 0.0143 0.14235 
11 12 -47854.7927 0 0.18861 
12 18 48313.953 0.0286 0.17082 
13 27 136.8903 0.0143 0.10676 
14 31 273.9907 0.0429 0.13879 
15 25 -47934.01 0 0.11744 
16 29 201.188 0 0.13523 
17 32 48348.9985 0.0571 0.17794 
18 22 -47957.4425 0 0.17082 
19 6 48366.0982 0.0571 0.17794 
20 16 96.5792 0.0143 0.18505 
21 5 -47867.1294 0 0.15658 
22 4 48260.6735 0.0143 0.14947 
23 11 -47852.1665 0 0.22420 
24 10 196.314 0 0.15658 
25 34 200.772 0 0.13879 
26 1 48249.2818 0.0143 0.14591 
27 19 -47847.3168 0 0.19573 
28 33 185.951 0 0.12100 
29 21 205.575 0 0.16370 
30 7 204.57 0 0.21352 
31 23 208.216 0 0.13879 
32 9 188.548 0 0.17438 
33 17 48266.37 0.0143 0.13879 
34 15 -47870.13 0 0.15658 
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   Table 5: Subset Selection Based on ICOMPPERF with 80% Set (Polynomial: degree=3) 

Rank Variable ICOMPPERF Training Error Test Error 
1 5 441.5118 0.1708 0.1714 
2 4 541.7953 0.0890 0.1143 
3 14 698.4002 0.0676 0.1714 
4 34 838.3473 0.0819 0.0857 
5 33 717.6374 0.0605 0.1143 
6 30 754.7581 0.0534 0.0857 
7 18 752.3821 0.0463 0.1286 
8 22 769.0320 0.0427 0.0857 
9 6 772.8447 0.0391 0.0571 
10 16 768.1328 0.0356 0.0857 
11 31 697.4870 0.0249 0.0714 
12 32 795.0805 0.0249 0.1143 
13 26 834.1837 0.0285 0.0857 
14 25 603.7533 0.0142 0.1571 
15 10 950.3118 0.0249 0.0429 
16 12 640.0070 0.0142 0.1429 
17 8 717.9700 0.0107 0.1286 
18 20 797.0560 0.0107 0.0429 
19 2 679.8700 0.0071 0.0714 
20 29 801.4970 0.0071 0.1286 
21 24 911.7650 0.0107 0.1143 
22 28 682.2560 0.0071 0.1143 
23 21 907.2940 0.0107 0.0571 
24 3 689.8410 0.0071 0.0714 
25 27 911.3660 0.0107 0.1000 
26 7 501.0110 0.0036 0.1286 
27 23 994.9170 0.0071 0.1000 
28 19 817.5010 0.0071 0.1143 
29 13 612.9350 0.0036 0.0857 
30 17 1008.7330 0.0071 0.0429 
31 11 808.4890 0.0071 0.0714 
32 15 623.0110 0.0036 0.0857 
33 1 1001.9020 0.0071 0.0429 
34 9 628.2170 0.0036 0.1143 
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2.5.2 Aorta Data 

The aorta data are from medical imaging for a study of heart tissue. Hardening of 

the arteries is the leading cause of death and debility in the industrial world. Nuclear 

magnetic resonance (NMR) imaging has a role in diagnosing of arteries for prognosis of 

heart attack. The NMR aorta data was used by Pearlman (1986). The dataset sampled 

from 418 patients on 20 different NMR image characteristics. The first group consists of 

194 patients who exhibited early atheroma, and the second group consists of 224 patients 

who were healthy. Figure 3 shows grouped scatter plots for the poor separation of 

dimension 3 against dimensions 13, 19 and against dimensions 10, 20 (group1: blue, 

group2: red). Tables 6 and 7 show that the best subset based on ICOMPPERF is obtained at 

the Cauchy kernel in the 20% set and inverse multi-quadratic kernel in the 80% set. The 

confidence intervals are obtained based on ICOMPPERF. The confidence intervals are 

significantly narrow intervals in both of the sets. Tables 8 and 9 show the best subset 

selected based on ICOMPPERF.  
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                                      Figure 3: Grouped Scatter Plots for Aorta Data 
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        Table 6: Top Subset Variables Selected with 20% Set Using SVM-RFE Ranking 

Kernel Best Subset Best ICOMPPERF CI for Training Error CI for Testing Error 
Cauchy {4} -57785.1 [0, 0] [0, 0.00767] 
Ranking {4,14,20,5,12,10,11,13,17,9,1,19,18,16,3,6,2,8,15,7} 
Gaussian {14,13,12,17} -57071 [0, 0.11714] [0, 0.28813] 
Ranking {14,13,12,17,10,4,16,20,18,19,11,15,8,9,6,7,5,3,2,1} 

Polynomial 
(degree=2) 

{4} -57679 [0, 0] [0, 0.02696] 

Ranking {4,15,10,11,9,6,18,2,8,14,7,1,16,13,12,5,17,19,20,3} 
Inv. Multi 
Quadratic 

{17,7,20,15} -57414.62 [0, 0.04342] [0, 0.24672] 

Ranking {17,7,20,15,10,18,16,6,5,14,1,9,2,11,12,3,8,13,4,19} 
 

          

 

       Table 7: Top Subset Variables Selected with 80% Set Using SVM-RFE Ranking 

Kernel Best Subset Best ICOMPPERF CI for Training Error CI for Testing Error 
Cauchy {20,7,15} -228526.2 [0, 0.1254] [0, 0.26101] 
Ranking {20,7,15,11,5,16,6,10,8,4,19,17,13,14,9,3,18,2,1,12} 
Gaussian {2} -229734.4 [0, 0] [0, 0.01033] 
Ranking {2,17,7,10,9,16,6,15,8,20,13,14,1,11,3,4,5,18,12,19} 

Polynomial 
(degree=2) 

{4} -229608 [0, 0] [0, 0] 

Ranking {4,16,15,14,11,12,19,18,3,17,1,8,9,10,2,13,5,6,20,7} 
Inv. Multi 
Quadratic 

{4} -229759.2 [0, 0] [0, 0] 

Ranking {4,7,15,20,16,5,17,10,14,6,8,18,11,13,1,12,9,2,19,3} 
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              Table 8: Subset Selection Based on ICOMPPERF with 20% Set (Cauchy) 

Rank Variable ICOMPPERF Training Error Test Error 
1 4 -57785.101 0 0 
2 14 236.839 0 0 
3 20 238.263 0 0 
4 5 238.381 0 0 
5 12 238.382 0 0 
6 10 238.382 0 0 
7 11 238.381 0 0.006 
8 13 238.382 0 0.003 
9 17 238.382 0 0.006 
10 9 238.381 0 0 
11 1 238.382 0 0 
12 19 238.382 0 0 
13 18 238.381 0 0 
14 16 238.382 0 0 
15 3 238.382 0 0 
16 6 238.381 0 0.003 
17 2 238.382 0 0 
18 8 238.382 0 0.012 
19 15 238.381 0 0 
20 7 238.382 0 0 
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   Table 9: Subset Selection Based on ICOMPPERF with 80% Set (Inv. Multi Quadratic) 

Rank Rank ICOMPPERF Training Error Test Error 
1 4 -229759.22 0 0 
2 7 941.35 0 0 
3 15 945.22 0 0 
4 20 946.32 0 0 
5 16 947.29 0 0 
6 5 947.53 0 0 
7 17 947.71 0 0 
8 10 947.77 0 0 
9 14 947.82 0 0 
10 6 947.8 0 0 
11 8 947.84 0 0 
12 18 947.85 0 0 
13 11 947.83 0 0 
14 13 947.85 0 0 
15 1 947.84 0 0 
16 12 947.86 0 0 
17 9 947.84 0 0 
18 2 947.84 0 0 
19 19 947.84 0 0 
20 3 947.85 0 0 
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2.6 Comparison with Other RFE Based Methods 

To compare three different RFE based methods; SVM-RFE, SVM-Gradient-RFE, 

SVM-ICOMPPERP-RFE, the ionosphere and aorta datasets are used with the same kernel 

functions that are used in Tables 2, 3, 6, and 7. The datasets are randomly partitioned into 

two cases; 20%/80% and 80%/20% as training/test sets. Tables 10 and 11 present 

comparisons of three RFE based methods using the ionosphere data with four different 

kernel functions in two different cases. The average error rate represents the 

misclassification error rate for the test set. The SVM-ICOMPPERF-RFE is the clear winner 

for most kernel functions except the linear kernel in the 80%/20% case. The best 

performance is obtained using the Cauchy kernel in the two cases with 88.12% and 

93.28% accuracies. Tables 12 and 13 present comparisons of the three RFE based 

methods using the aorta data with four different kernel functions in two different cases. 

As shown in Tables 12 and 13, the SVM-ICOMPPERF-RFE is the best method for the 

polynomial kernel (degree=2) with 99.99% accuracy for the 20%/80% case, the 

polynomial kernel (degree=2) with 99.88% accuracy for the 80%/20% case, and the 

inverse multi-quadratic kernel with 100% accuracy for the 80%/20% case. Figure 4 

shows line plots of error rates for the test set with the Cauchy kernel function, which 

gives smallest average error rates using the ionosphere data shown in Tables 10 and 11. 

Figure 5 shows line plots of error rates for the test set with the polynomial kernel 

(degree=2) and inverse multi-quadratic kernel functions, which give smallest average 

error rates using the aorta data shown in Tables 12, and 13. The SVM-ICOMPPERF-RFE 

is competitive with both SVM-RFE and SVM-Gradient-RFE as shown in Figure 4. Also, 
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SVM-ICOMPPERF-RFE outperforms SVM-RFE and SVM-Gradient-RFE with few 

variables as shown in Figure 5.   

 

 

 

 

 

 

 

 

Table 10: Comparison Using Ionosphere Data with 20%/80% 

SVM-RFE SVM-Gradient-RFE SVM-ICOMPPERP-RFE 
 Average 

Error Rate 
Time(sec.) 

Average 
Error Rate 

Time(sec.) 
Average 

Error Rate 
Time(sec.) 

Linear 0.22273 137.98 0.19552 117.39 0.19510 877.81 
Cauchy 0.16381 422.00 0.16140 155.53 0.11880 907.72 

Polynomial 
(degree=2) 

0.19992 226.36 0.18903 158.59 0.17522 887.28 

Polynomial 
(degree=3) 

0.21572 231.63 0.21195 158.78 0.18830 970.72 
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                       Table 11: Comparison Using Ionosphere Data with 80%/20% 

SVM-RFE SVM-Gradient-RFE SVM-ICOMPPERP-RFE 
 Average 

Error Rate 
Time(sec.) 

Average 
Error Rate 

Time(sec.) 
Average 

Error Rate 
Time(sec.) 

Linear 0.15546 1166.61 0.15420 1095.47 0.16177 13352.33 
Cauchy 0.08908 3557.66 0.09454 1280.13 0.06723 17755.05 

Polynomial 
(degree=2) 

0.16933 1882.02 0.13445 1192.17 0.13277 16334.36 

Polynomial 
(degree=3) 

0.17941 1679.30 0.15840 1228.61 0.13656 14771.78 

 
 

                             Table 12: Comparison Using Aorta Data with 20%/80% 

SVM-RFE SVM-Gradient-RFE SVM-ICOMPPERP-RFE 
 Average 

Error Rate 
Time(sec.) 

Average 
Error Rate 

Time(sec.) 
Average 

Error Rate 
Time(sec.) 

Cauchy 0.00374 388.38 0.13488 144.78 0.04880 480.70 
Gaussian 0.05749 337.89 0.13084 143.44 0.10195 534.39 

Polynomial 
(degree=2) 

0.05404 126.20 0.11033 114.31 0.00015 980.63 

Inv. Multi 
Quadratic 0.02784 327.25 0.12590 128.97 0.05434 496.58 

 
 

                            Table 13: Comparison Using Aorta Data with 80%/20% 

SVM-RFE SVM-Gradient-RFE SVM-ICOMPPERP-RFE 
 Average 

Error Rate 
Time(sec.) 

Average 
Error Rate 

Time(sec.) 
Average 

Error Rate 
Time(sec.) 

Cauchy 0.01548 4159.63 0.07738 1151.69 0.04167 8501.92 
Gaussian 0.02083 4141.45 0.06310 1361.56 0.03393 12093.58 

Polynomial 
(degree=2) 

0.03095 1235.92 0.05000 1086.34 0.00119 9572.74 

Inv. Multi 
Quadratic 

0.03929 4372.67 0.06845 1432.59 0 8743.09 
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                 Figure 4: Best Results of SVM-ICOMPPERF-RFE Using Ionosphere Data 

(a) Cauchy Kernel Function with 20% Set (b) Cauchy Kernel Function with 80% Set  
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Chapter 3 Dual Variables Functional 

Support Vector Machine and Modified 

Floating Search Based Variable Selection 

3.1 Introduction 

Secondary batteries have become an essential part of portable multimedia devices 

such as mobile phones, camcorders, and computers. Among a number of secondary 

batteries used in the current market, lithium-ion batteries have overcome several 

weaknesses of traditional nickel cadmium (Ni-Cd) and nickel metal hybrid (Ni-MH) 

secondary batteries, such as heavy weight and potential for pollution. Further, due to their 

demonstrated excellent energy density and cycle-life performance, lithium-ion batteries 

have taken the largest part of commercial markets for powering high-end electronics 

applications (Broussely and Archdale 2004).  

In the mass production stage of secondary batteries, it is crucial to assure product 

quality within a limited time. Cycle-life, which is directly related to the battery life, is one 

of the major characteristics to be monitored. Evaluation of the cycle-life requires a lot of 

charge/discharge cycles, thus it is a very time-consuming task. This has caused a major 

difficulty for battery manufacturers to reduce product development time. For this reason, 

a more time-efficient method for assessing the cycle-life of secondary batteries is needed.      
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In this chapter, a new time-efficient method is proposed to assess the quality of 

secondary batteries where their cycle-lives are subject to monitoring. For this, a dual-

variables functional support vector machine (FSVM) was developed to minimize the 

errors in discriminating between the conforming and nonconforming batteries.  

3.2 Motivating Example 

A lithium-ion battery is composed of four basic elements: the cathode (positive 

electrode), anode (negative electrode), electrolyte solution, and separator. While the 

battery is being charged, lithium-ions from the cathode leaving it with a net negative 

charge are forced onto the anode giving it a positive charge. During the discharge, the 

ions flow in the opposite direction, from the anode to the cathode. Because such reaction 

is reversible in the secondary battery while impossible in the primal battery, secondary 

batteries are capable of being recharged and reused up to hundreds of cycles (one cycle 

represents one charge/discharge). Basic performance of a lithium-ion battery is 

characterized by its capacity, which is generally defined as the amount of charge 

available expressed in ampere-hours (Ah). Cycle-life is defined as the number of 

complete charge/discharge cycles before its nominal capacity falls below the pre-

specified value of its initial capacity. Although it is desirable that the battery retains the 

initial capacity as much as possible during usage time, the capacity is subject to decrease 

through repetitive charge/discharge cycles. Research issues to improve the cycle-life have 

attracted a lot of attention (Johnson and White 1998; Broussely and Archdale 2004). 

Figure 6 shows the remaining capacities of 43 battery cells as the cycle proceeds. They 

were randomly selected from the manufactured lots for several months. In the cycle-life 
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tests for qualification, each sample is subject to check whether or not its capacity reaches 

to a fixed threshold during a specific number of cycles. The requirements of the threshold 

level and the number of cycles are generally pre-determined based on the industry 

standard or customer requirement. For instance, U.S. Advanced Battery Consortium 

(USABC 1996) defines the threshold value as 80% of its initial capacity during 600-

cycles for electrical vehicle batteries (given by 80% during 400-cycles here). Then, the 

battery cell is classified as either a conforming or a nonconforming cell according to its 

requirement.  

As shown in Figure 6, the capacity degradation has a typical nonlinear trend: 

capacity degrades sharply during some initial cycles, and then the degradation rate  

 

 

Figure 6: Remaining Capacities of Selected Battery Samples during Cycle-Life Tests 
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becomes relatively slow. In recent years, much attention has been placed particularly on 

relating observed phenomenon with state-of-art analysis techniques. It is commonly 

recognized that such capacity degradation is accompanied by loss of active lithium ions 

and an increase in the internal impedance of the battery. Both of them presumably are 

caused by an electrochemical parasite reaction (Bloom et al. 2001; Wright and Motloch 

2001; Sikha et al. 2004; Yoshida et al. 2006; Ning et al. 2006). Because each cell in 

Figure 6 has possibly experienced different sources of variation during fabrication, its 

capacity degradation is slightly different. Nevertheless, some degradation paths show 

catastrophic drops in the end of cycles, leading to products of poor quality.  

It usually takes a long time to finish the whole set of test cycles specified in the 

requirements; for example, 400 cycles require at least fifty calendar days. Because such 

long testing spans have been impeding efficient operation of manufacturing lines, battery 

engineers have struggled to devise various ways to reduce the test duration. However, if 

one determines the acceptability of a lot with a shorter cycle, more risky decisions may 

be made. Figure 7 shows separate distributions of the remaining capacity for conforming 

(26 cells) and nonconforming (17 cells) battery samples at some fixed cycles. Note that 

the boundaries between both groups are not distinctive at relatively short cycles; even the 

mean capacity of nonconforming cells is larger than that of conforming cells. It is 

practically impossible to visually discriminate between the conforming and 

nonconforming cells with this short testing duration.  
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Figure 7: Box-Plots of Remaining Capacity at Some Cycles 

 

This facilitates introduction to a support vector machine (SVM). As the latest 

classification technique exploited in the data-mining field, the SVM separates a given 

data set into several groups based upon a certain classification rule. Because of its 

excellent classification performance and lasting progress from a methodological 

perspective, the SVM has been found in many useful applications (Burges 1998). Making 

full use of such a state-of-the-art method, a superior rule can be expected in some sense 

to discriminate conforming cells from nonconforming cells even with shorter cycle data. 

In this study, the number of cycle runs is assumed to be a continuous variable.  
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3.3 Dual Variables Functional Support Vector Machine for 

Classification of Cycle-Life Curves 

Functional SVM (FSVM) is an extension of SVM to functional data generated by 

a number of individuals repeatedly in a regular sequence, in which each observation 

reflects a smooth variation in input data. In some sense, the FSVM can be considered as a 

generalization of SVM with respect to the type of data structures (Jank and Shmueli 

2006). Figure 8 shows the procedure of the dual-variables FSVM. Dual-variables FSVM 

uses both first and second derivatives for data representation.  In addition, a modified 

floating search is proposed to reduce the computational time in the iterative variable 

selection.  

 

                                     

                               Figure 8: Flowchart of the Dual Variables FSVM 
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3.3.1 Data Representation with the First and Second Derivatives 

Data representation for functional structures is one of the key issues in 

implementing the FSVM. Rossi and Villa (2006) proposed various types of data 

representations, such as derivatives, wavelets and Fourier representation. Ramsay and 

Silverman (2005) claimed that much of the variation between curves can be explained at 

the level of certain derivatives. For this reason, even with its own simplicity, functional 

derivative representation showed successful results in many studies (Ferraty and Vieu 

2003; Rossi and Conan-Guez 2005). Figures 9a and 9b show the first and second 

derivatives of degradation curves of Figure 6 over 50 cycles, respectively. In some cases, 

a combination of the derivatives with different orders may lead to better classification 

performance. Figures 9c and 9d show the potential for the early discrimination of 

defective lithium-ion batteries using the dual variables of first and second derivatives. 

The derivatives can be calculated using a B-spline (de Boor 2001) approximation to 

avoid numerical stability problem of direct computation. Let 1 2{ , ,..., }pB B B  be the B-

spline basis where p  stands for the number of knots. Then, the qth derivative of 

discretized curve { }1 2( ), ( ), , ( )i i i i oy t y t y t=y ⋯  for observed number of cycles ot  can be 

approximated by  

                                                      
p

q q
i ik k

k

y t c B t
=
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   (a)                                                                 (b)  

 

   
    (c)                                                                  (d) 

 

Figure 9: (a) First Derivatives of the Cycle-Life Curves (b) Second Derivatives of the 

Cycle-Life Curves (c) Classification with a First-First Derivative Combination (d) 

Classification with a First-Second Derivative Combination 
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3.3.2 Variable Selection Using Modified Floating Search 

Because a dual or multiple data-representations lead to higher-dimensional space, 

a variable selection technique is needed to reduce the dimension. The main idea of 

variable selection is to find a proper subset of input variables by eliminating variables 

with redundant or meaningless information. Heavy computing often follows, due to the 

iterative process for finding the proper subset. A floating search technique is an excellent 

method to guarantee a near optimal subset without any exhaustive searching (Pudil et al. 

1994).   

For the given cycle t, variable selection is conducted to search for the optimal 

variables that have the highest separability between the good and defective batteries, and 

repeat for the next cycle t+1. There is a high possibility of redundant iterations because 

the existing algorithm is repeatedly applied to similar input data set as the observation 

period prolongs. a modified floating search algorithm is proposed so as to start with the 

best variables set of cycle ( )1−t  at cyclet . The detailed procedure for the iterative 

variable selection is explained in Figure 10. A divergence is calculated and compared to 

find the best subset of d variables from a given set of G  variables )1( Gd ≤≤  in the 

SFFS process. Divergence is one of the popular criteria for class separability. It takes into 

account the correlation that exists among selected variables and influences classification 

capabilities of the selected variables. Assuming p-dimensional multivariate normal 

distribution, the divergence between a class i and j is given by (Fukunaga 1990)                   

1 1 1 1 1 11 1
( ) ( )( )( ) ( )( )

2 2
T

ij i j i j i j i j i jJ trace trace− − − − − −   
   = + − − + + −y Σ Σ µ µ µ µ Σ Σ Σ Σ  (30)   
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                                 Figure 10: Block Diagram of the Modified SFFS 
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where iµ  and iΣ  are the mean vector and covariance matrix of class i, respectively. Then, 

the best subset of d variables is chosen to maximize the divergence value.  

Suppose that the observed number of cycles and desired number of variables are 

given by ot  andd , respectively. Further, let ( )od tA  and ( )od tS  be respective sets of 

available and selected variables for given ot  andd . In the SFFS process, new variables 

from ( )od tA  are included in the current ( )od tS  and successive steps follow to exclude 

the worst variables in the newly updated ( )od tS , provided further improvement can be 

made to the previous set (Pudil et al. 1994).  

3.3.1 Dual Variables FSVM-Based Detection of Defective Lithium-Ion Batteries 

with Degradation Curves 

Given a subset of d variables, dual-variables FSVM is applied to detect defective 

lithium-ion batteries based on degradation curves. The SVM finds the optimal separating 

hyperplane that maximizes the margin between the classes (Vapnik 1995). Consider the 

case of classifying a set of linearly separating data into two groups. Assume a set of 

training data is given by { }1 1( , ), ,( , )n nz z=M y y⋯  where iy  is an input vector, 

)1,1(−∈iz  is a binary class index, and n is the size of training data. Then, a decision 

boundary (i.e. classifier) that partitions underlying vector space into two classes can be 

represented by the following hyperplane: 

                                                              T 0sb+ =w y                                                      (31)       
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where w  is the weight vector and sb  is the bias. The objective of SVM is to find 

maximum margin decision boundary between two parallel hyperplanes, T 1sb+ =w y                                    

and T 1sb+ = −w y . Since the margin is given by 2 / || ||w , the corresponding optimization 

problem can be written as (Vapnik 1995)             

                                       

2
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1
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where iξ  is positive slack variable and )0( >C  is a pre-designated weight. The linearly 

constrained optimization problem in equation (32) can be solved in a dual problem that 

maximizes the following Lagrangian function: 
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The Lagrange multipliersλi ’s can be estimated using a quadratic programming method.      

Once the optimum values * *( , )sbλ  are found based upon the training set of points, a new 

point 0y  of the test data set is classified by the following decision rule: 

                                   

0

0

0

* T 0 *

1

* T 0 *

1

Class 1 if ( ) 0

Class 2 if ( ) 0

λ

λ

n

i i i s
i

n

i i i s
i

z b

z b

=

=

 Ψ = <∈
 Ψ = >


+

+

∑

∑

y M
y

y M

y y

y y
                    (35)         

where ( )Ψ Mi  is a classifier based upon the training data set M . 
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Optimal subset size *d  and corresponding variables at a given number of cycles 

ot  are determined such that classification accuracy of the SVM is maximized. Leave-

One-Out Cross Validation (LOOCV) is used to estimate the classification accuracy, 

which gives proper measure when there are limited samples. At this time,  *d  is given by 

                                 { }( )*
* ( )1 2 1

1
arg max ,   i

i i
odo

n

s td t i

d I z
n

−

≤ ≤ =

 
  

= Ψ∑ y M ,                              (36)              

where )( i−M  is the original input data with ( , )i izy  removed, * ( )od tS  is the best subset of 

d variables at ot , { }* ( )

( )

od

i

s t

−Ψ Mi  is a classifier obtained from implementing SVM with 

* ( )od tS  on the training data set )( i−M , [ ] 1, 21 =aaI  if 21 aa =  and 0 otherwise. 

3.4 Motivating Example Revisited 

The proposed method was applied to 43 sample curves; 26 curves of conforming 

samples and 17 curves of nonconforming samples. In order to see how flexible a 

combination of the derivatives having different orders was, the changes in optimal 

variable sets were observed. For example, Table 14 shows each set of selected variables 

( 10=d ) at 20 and 50 cycles. There is no second derivative on the list for 20 cycles (No. 

1~20: 1st derivative, No. 21~40: 2nd derivative) and, on the other hand, 4 of 10 variables 

are second derivatives on the list for 50 cycles (No. 1~50: 1st derivative, No. 51~100: 2nd 

derivative). It implies that the functional classification using the first derivative only may 

be successful for the data of the initial period, but may not be effective for the wider 

range of the observation period. The computational times for selecting the best subset of 

variables ( 15=d ) using the existing and modified SFFS algorithms are summarized in 
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Figure 11. A computer with Pentium IV 3.6-GHz processor and MATLAB 6.5 as the 

programming language are used. As expected, the algorithms found the same best 

variable sets but the existing algorithm required a longer computational time than the 

modified one, particularly at the longer cycle time. Figure 12 shows error rates produced 

by applying the dual-variables FSVM to discriminate between the conforming and 

nonconforming cells. During the classification procedure, if the error rate at the current 

cycle run is greater than the one at the previous stage, then the current error rate is set to 

the previous value. Therefore, the error rate has a monotonic non-increasing function of 

cycles. Further, the error rates are compared with those values of the cases where either 

1st or 2nd derivative is solely employed. The proposed method gives better performance 

than the others. Note that one may have tolerable error rates even with heavily truncated 

number of cycles (e.g., 20 cycles).  

 

 

 

Table 14:  Changes in Selected Variables Sets (* Second Derivative) 

Cycle Runs 
Number of Selected Variables 

( 10=d ) 
20 7, 2, 12, 10, 15, 9, 4, 14, 17, 6 
50 7, 2, 74*, 75*, 12, 73*, 76*, 10, 15, 9 
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Figure 11: Computational Time for Selecting the Best Variables ( 15=d ) 

 

 

Figure 12: Error Rate versus Cycle 
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Chapter 4 Two-Stage Classification 

Procedure Based on Multi-Scale Vertical 

Energy Wavelet Thresholding and SVM-

Based Gradient Recursive Feature 

Elimination 

4.1 Introduction 

Near-infrared (NIR) spectroscopy has been used extensively in many areas as a 

fast, reliable, cost-effective, and non-destructive measurement method (Kalivas 1997). 

NIR data often consist of several hundred to some thousand variables (wavelengths), 

where different parts of the spectrum are correlated with each other. Considering both the 

high-dimensionality and the redundant nature of NIR data, it is necessary to reduce the 

dimension of the data for the subsequent processing and to select a few wavelengths that 

better explain the data.  

Variable selection is an important problem in machine learning (Bradley et al. 

1998) and is the process of selecting input variables that are most predictive of a given 

output. Variable selection identifies a small subset of variables so that the classifier 

constructed with the selected variables minimizes error and better explains the data 

(Koller and Sahami 1996). Benefits of variable selection include reducing computation 
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times, providing better discriminating hyperplanes and giving a better understanding of 

the data.  

Wavelets are popular as preprocessing tools for spectral data (Chau et al. 1997).  

Usually variable selection is based directly on high-dimensional wavelet coefficients and 

this can be computationally expensive (Staszewski 1998; Subramani 2006). This chapter 

proposes a two-stage scheme for the classification of NIR spectral data. In the first stage, 

the dimension of high-dimensional spectral data is reduced using a multi-scale vertical 

energy thresholding (MSVET) procedure. In the second stage, a few important wavelet 

coefficients is selected using SVM gradient-recursive feature elimination (RFE). 

In order to reduce the dimension of spectral data, many thresholding techniques 

have been used, including the shrinkage method (Donoho and Johnstone 1995), Stein’s 

unbiased risk estimate (SURE) method (Donoho and Johnstone 1994) and the 

approximation minimum description length (AMDL) method (Saito 1994). However, 

these techniques were designed for de-noising purposes. Jung et al. (2006) proposed a 

vertical-energy-thresholding (VET) procedure for the data reduction of multiple data 

curves. The VET procedure does not consider the information scale of wavelets, which 

includes different types of information for decision-making. A multi-scale vertical energy 

thresholding (MSVET) procedure is proposed. It determines an optimal threshold for 

each of the scales by extending the idea of the VET procedure. 

Recently, several researchers developed variable selection methods based on 

support vector machines (SVM) (Rakotomamonjy 2003; Weston et al. 2003; Mao 2004). 

Kernel-based methods including SVM are fast becoming standard tools for solving 

various problems. Guyon et al. (2002) proposed SVM-RFE for the selection of genes in 
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micro-array data. The SVM gradient-RFE procedure is applied to identify a subset of 

predetermined size of all variables available for inclusion in the support vector classifier.  

In the proposed two-stage scheme, the MSVET wavelet analysis performs noise 

suppression and data reduction of high-dimension spectral data. SVM gradient-RFE 

variable selection identifies an optimal subset of compressed wavelet coefficients for 

classification. Performing variable selection in the wavelet domain on reduced-dimension 

NIR spectral is expected to yield more reliable classification accuracy, with higher 

computation efficiency, than handling the full sets of noisy data. The performance of the 

proposed method is demonstrated using four NIR data sets.  

4.2 Backgrounds 

4.2.1 Wavelet  

 The wavelet transform can be used for multi-scale analysis of a signal through 

dilation and translation, so it can extract time-frequency variables of a signal effectively. 

For orthonormal bases, the scaling and wavelet functions are selected as: 

                                                Ζ∈−= kktt LL
kL L,   ),2(2)( 2/

, φφ                                   (37) 

                                       Ζ∈≥−= kjandLjktt jj
kj ,     ),2(2)( 2/

, ψψ                           (38) 

Approximation and detail of a signal can be constructed as an orthonormal basis and then 

the signal function is: 

                                      ∑∑∑
≥

+=
Lj k

kjkj
k

kLkL tdtatf )()()( ,,,, ψφ                                     (39) 

where k ∈all the possible integer values, )(2 ℜ∈ Lf  
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The coefficients can be obtained by the following equations: 

                                                   
∫

∫

ℜ

ℜ

=

=

dtttfd

dtttfa

kjkj

kLkL

)()(

)()(

,,
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ψ
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                                                   (40) 

where kLa , is the coarse level coefficient (described as the smoother signal) and kLd , is the 

finer level coefficient (described as the finer signal).  

Let the data set T
1 2[ ( ), ( ), , ( )]Ny t y t y t=y ⋯ which come from the signal )(tf at 

time Nit i ,,1, ⋯= .  Then, the discrete wavelet transform of y  is described as:  

                                                               =d Wy                                                             (41) 

where W is the orthonormal DWT matrix NN ×  and , 1( , , , )L L L Ja d d d+=d ⋯ are 

1×N wavelet coefficient vector.  The wavelet coefficient is described as approximations 

( La ) and details ( Ld ) of signals that are determined to12 −L .   

4.2.2 Support Vector Machine  

The main goal of SVM is to determine a hyperplane which minimizes the 

empirical classification error by maximizing the distance (i.e., margin) between the 

separating hyperplane and the data (Vapnik 1995). In SVM, input data are first mapped 

into a high-dimensional feature space where an optimal decision function can be 

obtained. As shown in Figure 13, an optimally-separating hyperplane is found which 

maximizes the margin. 
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Figure 13: An Illustration of SVM for Two-Class Separation 

 This decision function satisfies inequality constraints  

                              iii by ∀≥−+Φ 01))(( xw .                                           (42) 

The optimal decision function is obtained by minimizing 
2

1/ 2 w with constraints 

(6).  Non-separable problems are solved by introducing iξ  and Lagrangian 

                          iiiiiii byCL ξµξαξ ∑∑∑ −+−+Φ−+= ]1))(([2/1
2

xww .            (43) 

Instead of this quadratic programming problem, a corresponding dual problem is 

preferred because it is easier to solve, which is given by 

                                            ∑∑ ΦΦ−= )()(2/1 jijijiid yyL xxααα .                            (44)    

The solution is obtained as )( iii y xw Φ=∑α , where this calculation is executed for 

support vectors with 0>iα . Here dot products can be replaced with a kernel function 

(called a kernel trick) )()(),( jijiK xxxx ΦΦ=  (Müller et al. 2001). Training SVM is 

to find αi, b, and support vectors with given kernel function parameters and C. The 

use of a kernel function ),( jiK xx  allows the computation of dot products in a 

nonlinear feature space F, without the use of nonlinear mappings. By replacing 
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canonical (Euclidean) dot products in F by a kernel function, the execution of the 

nonlinear mappings and the dot products in F becomes unnecessary. Commonly used 

kernel functions include a radial basis function (RBF) 

2

( , ) exp( / )i j i jK σ= − −x x x x  and polynomial d
jijiK )(),( xxxx ⋅= functions. 

4.2.3 Support Vector Machine Recursive Feature Elimination 

The variable selection method of SVM-RFE (Guyon et al. 2002) is an 

application of a recursive feature elimination based on sensitivity analysis for an 

appropriately defined cost function. In the linear kernel case, define a cost 

function w)2/1(=J . Then the least sensitive variable, which has the minimum 

magnitude of the weight, is eliminated first. This eliminated variable becomes ranking n. 

The machine is retrained without the eliminated variable and removes the variable with 

the minimum magnitude of weights. This eliminated variable becomes ranking n-1. By 

doing this process repeatedly until no variable is left, I can rank the variables. 

Given training instances ]',...,[ 1 lall xxX =  with class labels ]',...,[ 1 lyy=y , 

initialize the subset of variables ],...,2,1[ n=s  and []=r . For the linear kernel case, repeat 

(i) through (v) until s becomes an empty array:  

(i) Construct new training instances )(:,sXX all=  

(ii)  Train SVM(X, y) to obtain g(x) 

(iii)  Compute the gradient ∑ ∈=∇= SVi iii yg xxw α)(  

(iv) Find the variable f with the smallest w , )min(arg w=f  
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(v) Update r  and eliminate the variable f from s: )}({],),([ ff sssrsr −== . 

For general kernel cases, let us define a cost function  

                                               T T(1/ 2)J = −α Hα α e                                                      (45)  

where α is a vector with Lagrange multipliers, ( , )hk h k h ky y K=H x x , and e is an l 

dimensional vector of ones. To compute the change in J caused by the removal of the 

variable i, it is assumed that there is no change in α. Thus  

                                            ( ) ( ( ), ( ))hk h k h ki y y K i i− = − −H x x                                        (46)  

where (-i) indicates that the variable i has been removed. As a result, the sensitivity 

function is given by 

                                            
T T

( ) ( )

(1/ 2) (1/ 2) ( )

DJ i J J i

i

= − −
= − −α Hα α H α

                              (47) 

The SVM-RFE algorithm for general kernels is to repeat (i) through (v) until s becomes 

an empty array:  

(i) Construct new training instances )(:,sXX all=  

(ii)  Train SVM(X, y) to obtain α  

(iii)  Compute the ranking criterion T T( ) (1/ 2) (1/ 2) ( )DJ i i= − −α Hα α H α  

(iv) Find the variable f such that )(minarg iDJf i=  

(v) Update r  and eliminate the variable f from s: )}({],),([ ff sssrsr −== .  

4.3 A Two-Stage Classification Procedure for Spectral Data 

This section proposes a two-stage scheme for the classification of spectral data. 

The proposed method incorporates wavelet-based preprocessing with SVM gradient-
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based variable selection. Figure 14 shows a schematic of the proposed two-stage 

framework. As shown in Figure 14, it can be decomposed into two stages, namely, a 

multi-scale vertical-energy-thresholding (MSVET)-based data reduction and SVM 

gradient-recursive feature elimination (Gradient-RFE)-based variable selection.  

The proposed MSVET wavelet transformation can extract useful information in 

compressed wavelet coefficients and thus can be used to perform noise suppression and 

pre-processing of spectral data effectively. A schematic diagram of the proposed MSVET 

method is shown in figure 15. The proposed SVM gradient-RFE variable selection 

enables us to identify an optimal subset of compressed wavelet coefficients so that the 

classifier constructed with the selected wavelet coefficients minimizes the classification 

error. In addition, the use of this concentrated information, instead of the full spectra, for 

the classification of high-dimensional spectral data is expected to improve computational 

speed significantly.  

 

Figure 14: A Schematic of the Proposed Two-Stage Framework 
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                   Figure 15: A Schematic Diagram of the Proposed MSVET Method 

4.3.1 Multi-Scale VET-Based Wavelet 

Wavelet thresholding methods are powerful tools for de-noising (Donoho 

1995). The objective of these methods is to estimate a wide class of functions in 

smoothness spaces from noisy data. The wavelet technique is effective because the 

energy of a smooth function is often concentrated on few coefficients while the energy of 

noise is still spread over all coefficients in the wavelet domain.  

For the given M spectral data, the vertical energy of each wavelet coefficient 

can be defined by  

                                           
2 2 2 2

1 2 . . . . .vm Mmm md d d= + + +d .                                (48) 

The original VET method of Jung et al. (2006) minimizes the overall relative 

reconstruction error (ORRE) to determine the threshold value λ 
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However, the VET procedure does not consider the scale information of wavelets and a 

fixed threshold value is obtained for each scale even though each scale may include 

different types of information for further decision-making. A multi-scale vertical energy 

thresholding (MSVET) procedure is proposed. It has a different optimal thresholding 

value for each scale by extending the idea of the VET procedure. In the MSVET 

procedure, the multi-scale overall relative reconstruction error (MSORRE) is defined as 

follows: 
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Here ),...,,( 21 ijMijijji ddd=d  and 
2 2 2 2

1 2i j ij ij ijMd d d= + + +d … , where dijM represents the 

wavelet coefficient at the jth wavelet position of the ith scale for the Mth curve. The 

following Lemma 1 shows that an optimal threshold level for each scale depends on the 

vertical energy of each scale of the signal. The MSVET is compared with existing 

wavelet thresholding methods in Appendix A1, and the robustness of MSVET is shown 

in Appendix A2. 

Lemma 1 

The objective function (λ )iMSORRE , i = L , …,J, is minimized uniquely at *
λ λi i=  where 
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Proof of Lemma 1  

Denote 
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where, ( )ij ijf y  is a non-central chi-square density of ijY . Then, the first term in the 

formula of MSORRE can be represented as  

{ }2 2 222 2 2

1 1 1

(1 ( λ )) ( λ ) (λ )
J i J L J i J L J i J L

ij ij i ij ij i ij i
i L j i L j i L j

E I E I
+ − + − + −

= = = = = =

 − > = < = Λ 
 

∑ ∑ ∑ ∑ ∑ ∑d d d d  

And the MSORRE can be rewritten as follows: 

{ }
{ }

{ }

2 222 2

1 1
1 2 2

1

2 2

1 1

2 2

1

(1 ( λ )) ( λ )

(λ , λ . . . , λ )
2

(λ ) (λ )

2

J i J L J i J L

ij ij i ij i
i L j i L j

L L J J i J L J L

ij
i L j

J i J L J i J L

ij i ij i
i L j i L j

J i J L J L

ij
i L j

E I E I

MSORRE
N

E

N
E

ξ

ξ

+ − + −

= = = =
+ + − −

= =

+ − + −

= = = =
+ − −

= =

 − > > 
 = +

−

Λ Ψ
= +

−

∑ ∑ ∑ ∑

∑ ∑

∑ ∑ ∑ ∑

∑ ∑

d d d

d

d

Because 

λ

0

1 ( )
(λ )

( λ ) 0
λ λ

i

ij ij ij

i
ij i

i i

f y dy
ij

f

 
 ∂ −
 ∂Ψ  = = − ∂ <

∂ ∂

∫
 

and 

λ

0

( )
(λ ) (λ )

λ (λ ) λ
λ λ λ

i

ij ij ij ij

ij i ij i
i ij i i

i i i

y f y dy

f

 
 ∂
 ∂Λ ∂Ψ = = = −

∂ ∂ ∂

∫
. 



 68 

The thresholding value can be obtained from the following property give by  
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4.3.2 SVM Gradient-RFE Variable Selection  

The SVM Gradient-RFE combines two existing variable selection methods: 

SVM-RFE and SVM Gradient (Guyon et al. 2002; Hermes and Buhmann 2000). The 

new method has the merits of these two methods so it should be competitive to SVM-

RFE in terms of prediction accuracy while maintaining speedy computation. The SVM 

Gradient-RFE uses the gradient for variable selection criteria, but in order to give a 

ranking for all the variables, the machines are trained using all the variables, and then the 

variable with a minimum angle is eliminated. The ranking of this eliminated variable then 

becomes n. The machine is then trained without the eliminated variable, and the variable 
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with the minimum selection criterion is eliminated. This eliminated variable becomes 

ranking n-1. By recursively eliminating all the variables, one ranks the variables. 

 The time complexity of the SVM gradient-RFE algorithm can be analyzed as 

follows. The training time complexity of SVM is known to be O(max(l,n) min(l,n)2), 

where l is the number of samples and n is the number of variables (Chapelle 2007). The 

computation in each iteration of the algorithm is dominated by the step (ii) SVM training, 

which has O(max(l,n) min(l,n)2) time complexity. Suppose n <l . Then the total time 

complexity of the algorithm is ln2 + l(n-1)2 +...+ l22 + l12 = O(ln3). Similarly, I have 

O(l2n2) for the other case. One can combine these two cases using the min operator and 

this leads to the time complexity of O(ln2 min(l,n)) for the SVM gradient-RFE algorithm.  

The SVM gradient-RFE algorithm can be summarized as follows. Given training 

instances T
1[ , . . . , ]all l=X x x  with class labels T

1[ , . . . , ]ly y=y , initialize the 

subset of variables ],...,2,1[ n=s  and r=[]. For a given kernel function, repeat (i) through 

(vii) until s becomes an empty array:  

(i) Encode training instances as )(:,sXX all=  

(ii)  Train SVM(X,y) to obtain g(x) 

(iii)  Compute the gradient ( ) ( , ),i i ii SV
g y K SVα

∈
∇ = ∇ ∀ ∈∑ xx x x x  

(iv) Compute the sum of angles between )(xg∇  and ej, γj, j=1, …,s  
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gγ
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(v) Compute the averages of the sum of the angles 

                                                              
SV

c j
j

γ
π

⋅−= 2
1  

(vi) Find the variable f with the smallest cj, j=1, … , s : arg min( )jf c=  

Update r  and eliminate the variable f from s: )}({],),([ ff sssrsr −== .  

4.4 Results 

In this section the proposed framework is demonstrated using four NIR data sets. 

The four datasets are chosen to evaluate the classification accuracy and computational 

efficiency of the proposed method. For this purpose, the four datasets are divided into 

two groups: two popular public datasets with relatively small number of variables and the 

high-dimensional datasets obtained from real problem. The classification performance of 

the proposed two-stage classification method is compared with those of four traditional 

one-stage methods including an operations research-based (OR-based) variable selection 

(Fung and Mangasarian 2004). SVM-RFE, gradient-RFE with RBF kernels, linear 

kernel-based method and the OR-based method are used for comparison. These methods 

are different from the proposed two-stage framework in that all the variables available are 

used for classification without multi-scale VET-based preprocessing. Specifically, the 

idea of the OR-based variable selection is to suppress input space variables using a fast 

Newton method and linear programming formulation. Variables are ranked by the 

magnitudes of the coefficients of the linear decision function obtained from the method. 
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In addition, computational efficiency is evaluated based on run time needed for each of 

the methods.  

4.4.1 NIR Data and Implementation 

The real NIR data were obtained from two wood products (referred to as 

Example 1 and Example 2) and were collected to determine whether each of the two 

wood products (Douglas-fir and Spruce) were treated by a specific, proprietary 

preservative. This is a two-class classification problem where the preservative of interest 

should be distinguished from other competitors with similar ingredients (Taylor and 

Lloyd 2007). The public data of Example 3 measure absorbance of finely chopped meat 

samples (Ferraty and Vieu 2006). The NIR data of Example 3 are divided into two 

classes based on a fat content of a meat sample smaller or larger than 20%. Example 4 

represents wheat NIR data, which are divided into two classes, namely, low (<14.5%) 

and high (>14.5%) moisture content (Kalivas 1997).  

Multi-scale VET wavelet was implemented using MATLAB (The MathWorks 

Inc., Natick, MA) and WaveLab version 8.02. For the implementation of the proposed 

SVM-based gradient-RFE method a SVM MATLAB toolbox was used, which is 

available at http://www.isis.ecs.soton.ac.uk/resources/svminfo/. All computations for this 

study were done on an IBM compatible PC with an Intel Pentium IV CPU running at 3.6 

GHz with 1GB RAM. The family of Symmlet-8 was used for all NIR spectra.   
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4.4.2 Results of Two Real Data Sets 

The Douglas-fir NIR data consisted of 360 instances with 2,151 wavelengths. 

The data is randomly divided into training (288 observations) and test (72 observations) 

data sets. The data sets were treated by padding the original signal into the nearest dyadic 

length, which are done by zero or linear padding depending on the problem of interest. 

Thus prior to performing multi-scale VET-based wavelet analysis, a zero padding was 

applied to the Douglas-fir data so that 2,151 wavelengths were reduced to 2,048 (=211).  

The Douglas-fir NIR data were preprocessed by applying the proposed multi-

scale VET-based wavelet for a compression and de-noising of the high-dimension data. 

Figure 16 shows the comparisons of the original Douglas-fir NIR data and the 

reconstructed ones using the multi-scale VET procedure that uses only 410 wavelet 

coefficients among 2048 wavelet coefficients. As can be seen in this figure, the 

reconstruction seems to be quite successful because the reconstructed data can capture 

most of important patterns such as peaks and valleys of spectra. 

Table 15 shows classification accuracy for the Douglas-fir data using the five 

different methods. Here the bold numbers underlined represent the maximum accuracy 

for each column. Overall, the best classification accuracy is obtained from the proposed 

method: 99% classification accuracy using only 37 variables. This implies that the set of 

37 variables is enough for the classification and the other non-selected variables are 

either irrelevant or redundant. On the other hand, the other methods to be compared have 

lower classification accuracy even though they used more variables. For example, the 
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gradient-RFE method achieved 96% classification accuracy using 139 variables, whilst 

the SVM-RFE method achieved 93% accuracy with 156 variables.  

The overall pattern of the five methods in classification accuracy is shown in 

Figure 17. The proposed two-stage method outperformed the other four methods no 

matter the number of variables used. When the same number of variables as the proposed 

method, i.e., 37, is selected, the other methods yield lower classification accuracy. The 

proposed method also is more efficient computationally than the other methods: the 

computing time of the proposed method was 83.36 seconds, whilst gradient-RFE required 

140.09 seconds and SVM-RFE 2.78 hours.  

The Spruce NIR data of Example 2 consisted of 240 instances with 2,151 

wavelengths, which were randomly split into 180×2,151 for training and 60×2,151 for 

test. As in Example 1, prior to performing multi-scale VET-based wavelet analysis, the 

2,151 wavelengths were reduced to 2,048 (=211) by a zero padding. By applying the 

proposed multi-scale VET-based wavelet, a total of 560 wavelet coefficients were 

selected out of 2,048.  

 

                       Figure 16: Original versus Reconstructed Data for Example 1 



 74 

 

                               Table 15: Classification Accuracy for Example 1 

Number  
of 

Variables 

Linear  
Kernel 

SVM-RFE Gradient-RFE OR-Based 
Proposed 
Method 

1 0.50 0.67 0.64 0.72 0.68 
2 0.50 0.69 0.71 0.71 0.81 
3 0.50 0.82 0.76 0.72 0.86 
4 0.50 0.82 0.79 0.72 0.85 
37 0.85 0.88 0.93 0.69 0.99 
50 0.83 0.88 0.93 0.69 0.97 
100 0.86 0.90 0.92 0.93 0.97 
111 0.89 0.90 0.92 0.93 0.97 
115 0.88 0.90 0.92 0.92 0.97 
139 0.89 0.90 0.96 0.96 0.97 
156 0.88 0.93 0.94 0.93 0.97 
200 0.88 0.89 0.92 0.92 0.97 

 

 

 

                        Figure 17: A Plot for Classification Accuracy for Example 1 
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The performance comparison in terms of classification accuracy for the test data 

of Example 2 is shown in Figure 18 and Table 16. The best classification accuracy was 

obtained from the proposed method: 100% classification accuracy with 14 variables. The 

other methods provided performance comparable to the proposed method. The linear 

kernel and Gradient-RFE achieved 97% classification accuracy using 12 and 15 

variables, respectively. In case of SVM-RFE, however, 100 variables were required to 

obtain similar performance. A comparison of computational time showed that the 

proposed method (30.67 seconds) was more efficient that the others, especially the SVM-

RFE method that required 0.38 hours. Figure 19 shows the comparisons of the original 

NIR data and the reconstructed ones. As shown in Figure 19, the reconstruction from the 

multi-scale VET method seems to approximate the original Spruce NIR spectra quite 

well.  

 

Figure 18: A Plot for Classification Accuracy for Example 2 
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                      Figure 19: Original versus Reconstructed Data for Example 2 

 

                               Table 16: Classification Accuracy for Example 2 

Number  
of 

Variables 

Linear 
Kernel 

SVM-RFE Gradient-RFE OR-Based 
Proposed 
Method 

1 0.75 0.75 0.75 0.75 0.75 
2 0.75 0.75 0.93 0.75 0.97 
3 0.75 0.75 0.95 0.75 0.98 
4 0.75 0.75 0.95 0.93 0.97 
12 0.97 0.92 0.93 0.92 0.98 
14 0.97 0.97 0.93 0.92 1.00 
15 0.97 0.97 0.97 0.92 1.00 
50 0.97 0.93 0.97 0.90 0.98 
58 0.95 0.95 0.97 0.97 0.98 
100 0.97 0.98 0.97 0.97 0.98 
150 0.95 0.97 0.97 0.97 0.98 
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4.4.3 Results from the Two Public Data Sets 

 The fat NIR data of Example 3 had 215 instances with 100 wavelengths, which 

were divided randomly into 175 for training and 40 for test. In this case, a linear padding 

was applied to the original signal so that their wavelengths are increased to the nearest 

dyadic length (i.e., 128=27). The wheat NIR data of Example 4 had 100 instances with 

701 wavelengths and is randomly divided into 75 for training and 25 for test. A zero 

padding was applied to the original spectra data so that 701 wavelengths were reduced to 

512 (=29). For the two public data sets, the proposed multi-scale VET-based wavelet was 

performed, selecting a total of 63 and 59 wavelet coefficients in Example 3 and Example 

4, respectively.  

The classification performance of the five methods is shown in Table 17 and 

Figure 20. In case of Example 3, the best classification accuracy (i.e., 100%) was 

achieved by three methods: linear kernel using 4 variables, OR-based using 7 variables 

and the proposed method using 6 variables. The SVM-RFE and Gradient-RFE gave 

lower classification accuracy. The good performance of the linear kernel method 

comparable to that of the proposed method can be explained by investigating the original 

spectral curves of Example 3. As shown in Figure 21, there were few peaks and valleys in 

these curves, in contrast to the other examples. It should be noted that the proposed 

method is preferred because its computational time (16.75 seconds) is much less than the 

linear kernel method (276.59 seconds). Similar results were obtained in Example 4; the 

proposed method achieved the best performance with fewer variables and less 

computational time. The improved performance of the proposed two-stage method can be 
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explained by comparing plots of original vs. reconstructed data shown in Figure 21. Only 

a small number of wavelet coefficients were required to capture most of the patterns in 

the NIR data sets. 

 

 

 

 

 

 

   
    (a)                                                                      (b) 

             Figure 20: Classification Accuracy Plots for (a) Example 3 (b) Example 4 
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                                (a)                                                                             (b) 

            Figure 21: Original versus Reconstructed Data for (a) Example 3 (b) Example 4 

 
                        Table 17: Classification Accuracy for Two Public Data Sets. 

Number  
of Variables 

Linear 
Kernel 

SVM-RFE Gradient-RFE OR-Based 
Proposed 
Method 

1 0.58 0.68 0.68 0.68 0.68 
2 0.98 0.98 0.70 0.95 0.98 
3 0.98 0.98 0.70 0.95 0.98 
4 1.00 0.98 0.88 0.98 0.98 
5 1.00 0.98 0.88 0.98 0.98 
6 1.00 0.98 0.88 0.98 1.00 
7 1.00 0.98 0.98 1.00 1.00 

Example 3 

8 1.00 0.98 0.98 1.00 1.00 
1 0.84 0.84 0.84 0.84 0.88 
2 0.88 0.84 0.84 0.84 1.00 
3 0.92 0.92 0.92 0.88 1.00 
4 0.96 0.96 0.96 0.88 1.00 
5 0.96 1.00 0.96 0.88 1.00 
6 0.96 1.00 1.00 0.88 1.00 
7 0.96 1.00 1.00 0.88 1.00 
8 1.00 1.00 1.00 0.88 1.00 

Example 4 

50 1.00 1.00 1.00 0.96 1.00 
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Chapter 5 Perception-Decision-Cognition 

Methodology for Discriminant Analysis 

Based on Human Decision-Making Process 

5.1 Introduction 

Data mining procedures are based on statistical principles and machine learning 

theory, creatively integrated to effect and facilitate the identification of significant 

informative patterns for a given database.  Recurrent strategies used in data mining 

include preprocessing, data partitioning, machine learning (modeling), and validation.  

The ultimate goal of these procedures is the disclosure of unknown and valuable 

information.  Hand et al. (2000) have discussed several models and patterns. 

As indicated by Meisel and Mattfeld (2007), operations research and data mining 

are complementary and supportive due to three facts: (i) operations research techniques 

expedite the efficiency of data mining; (ii) data mining methodologies enlarge the scope 

of operations research applications; and (iii) integration of both data mining and 

operations research boost systems performance.  Furthermore, the key element that 

allows effective fusion of both areas is the use of optimization algorithms (with particular 

emphasis on search procedures) to find an accurate model and to develop metaheuristics.  

An example of such procedures is the search algorithm by Olafsson et al. (2008) to find 

the best variable subset. 
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 Discriminant analysis methods, based on several types of algorithm, have been 

proposed to find successful models for complicated data in an extensive range of 

application domains. The objective of discriminant analysis is to identify groups of 

observations, based on the input variables, which minimize the within-group variability 

and maximize the between-group variability. Recently, not only the discriminant analysis 

area but also other supervised or unsupervised learning areas have faced two challenging 

issues: (i) dimensionality; and (ii) nonlinearity. Several researchers developed new 

discriminant analysis techniques for preventing problems of high-dimensionality: spectral 

regression discriminant analysis (Cai et al. 2008), automatic non-parameter uncorrelated 

discriminant analysis (Yang et al. 2007), high-dimensional discriminant analysis 

(Bouveyron et al. 2007), and, for avoiding problems of nonlinearity: adaptive nonlinear 

discriminant analysis (Kim et al. 2006), kernel Fisher discriminant analysis (Mika 2002) 

and support vector machines for classification and regression (Vapnik 1995).    

Variable selection is an important area of research in machine learning, pattern 

recognition, statistics, and related fields. The key idea of variable selection is to find 

input variables which have predictive information and to eliminate non-informative 

variables. The use of variable selection techniques is motivated by three reasons: (i) to 

improve discriminant power; (ii) to find fast and cost-effective variables; and (iii) to 

reach a better understanding of the application process (Guyon and Elisseeff 2003). In the 

case of high-dimension data, variable selection plays a crucial role because of four 

challenges (Theodoridis and Koutroumbas 2006): (i) a large set of variables; (ii) 

existence of irrelevant variables; (iii) presence of redundant variables; and (iv) data noise.  
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 This chapter proposes a novel methodology based on the human decision-making 

process to perform three steps known as perception, decision, and cognition.  For this 

reason, the proposed procedure will be referred to as a Perception-Decision-Cognition 

Methodology (PDCM).  The main idea of this methodology is to emulate a biological 

thinking process by integrating both optimal search and data mining procedures.  The 

perception step includes five different dimension reduction methods, based on wavelets, 

to transform the original data into a representation form that exhibits orthogonality and 

low noise.  The decision step uses information complexity to find informative variables 

which can be used to identify groups based on prior modeling information.  The 

cognition step recognizes the best model based on the support vector machines for 

classification, a well-known kernel-based statistical data mining approach. Three 

numerical experiments were run to compare PDCM to other often-used procedures.  The 

results from the experiments show that the proposed method outperforms all the other 

procedures tested. 

5.2 Wavelet-Based Dimension Reduction Techniques 

Dimension reduction is a preferred strategy in the area of machine learning. As 

anticipated, there are several approaches to perform dimensional reduction.  The 

following methods are among the most popular: principal component analysis (Jolliffe 

2002), rotational linear discriminant analysis technique (Sharma and Paliwal 2008), 

independent component analysis (Stone 2004), semi-definite embedding (Weinberger and 

Saul 2006), multifactor dimensionality reduction (Ritchie and Motsinger 2005), factor 
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analysis (Basilevsky 1994), and wavelet-based dimension reduction (Donoho and Jonston 

1994; Chang and Vidakovic 2002; Jung et al. 2006; Cho et al. 2009). 

The dimension reduction strategy has important benefits that can be measured not 

only in terms of computational time savings, but also in accuracy improvement. In the 

new PDCM, the wavelet-based dimension reduction is applied in Step 1.  The wavelets 

approach was selected because of several attributes, among which the following two are 

most relevant: (a) wavelets adapt effectively to spatial variables of a function such as 

discontinuities and varying frequency behavior; (b) wavelets have efficient O(n) 

algorithms to do transformations (Mallat 1999). Wavelet-based techniques are applied to 

obtain a well-fitted reduced-dimension representation of the original data. 

The fitness of the representations can be observed in Figure 22.  In this figure, the 

first curve corresponds to the original data and the remaining five to the following 

wavelet-based techniques: VisuShrinkUnion, VisuShrinkIntersect, VertiShrink, VET 

(Vertical Energy Thresholding), and MSVET (Multi-Scale Vertical Energy 

Thresholding). The wavelet-based techniques are compared in Appendix A1 and checked 

the robustness in Appendix A2.      

 Discrete Wavelet Transformation (DWT) is often used for dimension reduction 

(also known as shrinkage or threshold).  Let T

1 2[ , , , ]m m m mNy y y=y ⋯ is an thm observed 

sample. For a single sample, the DWT procedure uses the orthonormal matrix W of 

dimension NN × to find the wavelet coefficient 

                                                   L L JL+=d c d d d⋯1( , , , , )                                               (52) 
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                                  Figure 22: Original and Reconstructed Data Curves 

where 

0 0 02 1 2 1 2 1
( ,..., ), ( ,..., ),..., ( ,..., )L L JL L L L J JL L J
c c d d d d

− − −
= = =c d d  

through the transformation  

=d Wy. 

 For multiple samples, let vector 1 2[ , ,..., ]M=Y y y y  be the data set with M 

observed samples.  The wavelet coefficient vector is obtained from the transformation  

                                                                =D WY                                                          (53) 

where 1 2[ , ,..., ]M=D d d d , and m mL mL mJmL+=d c d d d⋯1( , , , , ) , 1,2,...,m M= . 

Small absolute values of wavelet coefficients are undesirable since they may be 

influenced more by noise than by information.  On the other hand, large absolute values 

are more influenced by information than noise. This observation motivates the 

development of threshold methods. There are two threshold rules usually referred to as 
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soft and hard thresholds. The soft rule is a continuous function of the data that shrinks 

each observation, while the hard rule retains unchanged only large observations (Donoho 

and Johnston 1994). The hard and soft threshold methods are defined as following:  

                                       

( , ) sgn( )max(0,| |λ)  (Soft)

,    all | | λ
( , )   (Hard)

0,    otherwise

D U U U

U U
D U

λ

λ

= −
> 

=  
 

                                (54) 

where λ is the threshold value. The threshold method can be used not only for data 

reduction but also for de-noising.   

5.2.1 VisuShrink (VS) 

VisuShrink is a soft thresholding technique that applies a universal threshold 

proposed by Donoho and Jonstone (1994). The VisuShrink threshold is given by 

2logNσ , where N is the number of wavelet coefficients, and σ is the standard 

deviation of the wavelet coefficients (or noise standard deviation). When iε is a white 

noise sequence, independent and identically distributed as (0,1)N , then 

as ,  {max | | 2 log } 0iN P Nε→ ∞ > → . That is, the maximum of the N values will most 

likely be smaller than the universal threshold. The VisuShrink guarantees a noise free 

reconstruction.  However, when setting the threshold large, the degree of data fitting may 

be unsatisfactory.  For multiple curves or samples, the VS procedure uses the union 

(VisuShrinkUnion, VSU) or intersection (VisuShrinkIntersection, VSI) of data sets in the 

selection of wavelet coefficients (Jung et al. 2006).  
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5.2.2 VertiShrink (VERTI) 

Chang and Vidakovic (2002) developed a Stein-type shrinkage method, known as 

VertiShrink, to maximize the predictive density under appropriate model assumptions 

regarding wavelet coefficients.  The main goal of VertShrink is the estimation of the 

baseline curve by using the average of block vertical coefficients. The estimated wavelet 

coefficients are given by: 

                                                         
2

T
ˆ 1

Mσ 
 
 

= − +θ d
d d

                                                (55) 

where d is the wavelet coefficient, L L L J+=d c d d d⋯1( , , , , ) , M is the number of curves and 

σ  is the standard deviation of the wavelet coefficients. 

5.2.3 Vertical-Energy-Thresholding (VET) 

 VET was proposed by Jung et al. (2006).  The procedure is based on the concept 

of energy of a function with some smoothness, since it is often concentrated on few 

coefficients, while the energy of noise is still spread over all coefficients in the wavelet 

domain. The vertical energy of wavelet coefficients is defined by   

                                                 
2 2 2 2

1 2|| || ...vj j j Mjd d d= + + +d                                        (56) 

where mjd is the wavelet coefficient at the jth wavelet position for the mth data curve, 

1,2,..., .m M=  

 The VET method minimizes the overall relative reconstruction error (ORRE), 

formulated below, to determine a threshold value, namely λ: 
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5.2.4 MultiScale-Vertical-Energy-Thresholding (MSVET) 

Since the VET procedure does not consider the scale information of wavelets, an 

improved procedure proposed by Cho et al. (2009) and known as multi-scale vertical 

energy thresholding (MSVET) obtains a different optimal thresholding value for each 

scale by extending the idea of the VET procedure. In the MSVET procedure, the multi-

scale overall relative reconstruction error (MSORRE) is defined as follows to determine 

the threshold values, λi : 
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where 1 2( , ,..., )vji Mjiji jid d d=d , 2 2 2 2
1 2|| || ...vji Mjiji jid d d= + + +d ; mjid  represents the wavelet 

coefficient at the thj  wavelet position of the thi scale for the mth curve, m = 1,2,…, M. 
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5.3 Variable Selection Based on Information Complexity and 

Recursive Feature Elimination 

Once the reduced sample space is determined in Step 1, the decision regarding 

which of the remaining variables should be selected for ranking is made on the basis of 

minimal information complexity values, following the Information Complexity 

Performance Testing with Recursive Feature Elimination (ICOMPPERF-RFE) procedure.  

This procedure essentially generates a smoothed covariance estimator to calculate the 

information complexity measure, and, finally performs ranking using recursive 

elimination on the remaining variables.  

The development of information complexity for the discriminant analysis is 

evaluated using the modified maximal entropic complexity C1F 

                                             2
1 2

1

1ˆ( ) (λ λ ),
4λ

s

j aF
ja

C
=

= −∑Σ                                               (59) 

where ˆ( )s rank= Σ , λ j is the jth eigenvalue of Σ > 0, j = 1,2,. . .,s and λa is arithmetic 

mean of the eigenvalues. 

ICOMPPERF can be evaluated as indicated below: 

                          2
1 _

ˆˆlog 2 log( ) 2 ( )PERF F STA CSEICOMP n n n Cπ σ= + + + Σ                    (60) 

where lack of fit is assessed by means of the first three terms and complexity by the 

fourth one.  In the above expression, 2σ̂ is the estimated mean squared error given 

by 2 2

1

1ˆ ˆ( )
n

i i
i

y y
n

σ
=

= −∑ , and _
ˆ

STA CSEΣ  is the stabilized and smoothed convex sum 

covariance matrix estimator (Press 1975; Chen 1976) given by 



 89 

                                 _ ,
ˆ( )ˆ ˆ 1 STA

STA CSE STA h

tracen n
n k n k h

  
  

    
= + −

+ +
Σ

Σ Σ I                   (61) 

where ˆ STAΣ  is the stabilized covariance matrix proposed by Thomaz (2004), h is the 

number of variables,  hI  is h×h identity matrix, and k is chosen such that  
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Specific details on this procedure are provided by Chapter 2. 

5.4 Cognition Accuracy of Selected Models 

When the ranking decision is finished in Step 2, the corresponding accuracies are 

determined using the corresponding cognition sets and the support vector machines 

(SVM) for classification described below.   Once the accuracies are calculated for the 

selected models the most-accurate one is chosen. 

The SVM finds an optimal separating hyperplane that maximizes the margin 

between the classes (Vapnik 1995). Consider the case of classifying a set of linearly 

separating data into two groups. Assume a set of training data is given by 

1 1 2 2[( , ),( , ),..., ( , )]n ny y yx x x  , where n
i ∈ ℜx  is an input vector, { 1,1}iy ∈ −  is a binary 

class index, and n is the size of the training data set. Then, a decision boundary that 
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partitions the underlying vector space into two classes can be represented by the 

hyperplane 

                                                            T 0b+ =w x                                                         (62)             

where w  is the weight vector and b  is the bias. The objective of the SVM is to find a 

maximum margin decision boundary between the two parallel hyperplanes, T 1b+ =w x  

and T 1b+ = −w x . The dual model with Lagrange multipliers of the corresponding 

primal model can be formulated as 

                                 Max 
1 1 1

,
1

( ) ( )
2

n n n

i i j i j i j
i i j

y y Kα α α α
= = =

= −∑ ∑∑Q x x                          (63) 

subject to 

                                             
1

0
n

i i
i

α
=

=∑ x , 0 i Cα≤ ≤ , 1,2,...,i n=                                 (64) 

where ,( )i jK x x is the kernel function and C is a predefined coefficient. Kernel functions 

used in the numerical experiments are described in Table 18. 

The point ox  with coordinates corresponding to new data can be classified as 

indicated below: 

                                         
1

,Class 1: ( ) 0
n

ov o ov
i i i

i

y K bα
=

+ <∑ x x                                     (65) 

and  

                                         
1

,Class 2: ( ) 0
n

ov o ov
i i i

i

y K bα
=

+ >∑ x x                                     (66) 

where ovα  and ovb  are optimal values found based on the training data. A classification 

example based on the PDCM is illustrated in Figure 23.   



 91 

                                            Table 18: Used Kernel Functions 

Kernel Function ,( )i jK x x  Parameters 

Gaussian 21
exp || ||

c

i jba

  
  
   

− −x x  a=2, b=c=1 

Cauchy 
1

21
1 || ||i ja

−
 
 
 

+ −x x  a=1 

Inverse Multi-Quadratic ( ) 1/ 2
2 2|| ||i j a

−
− +x x  a=1 

 

 
Figure 23: Classification Example Based on PDCM with SVM 
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  Figure 24: Conceptual View of the Perception-Decision-Cognition Methodology 

5.5 Perception-Decision-Cognition Methodology (PDCM) 

 The proposed Perception-Decision-Cognition Methodology (PDCM) for 

discriminant analysis is conceptually represented in Figure 24.  As indicated in this 

figure, it is analogous to a biological thinking process, which consists of three steps: 

 

1. Perceive environmental information. 

2. Decide on response (actions). 

3. Recognize (evaluate) the accuracy of results to adjust the response. 

 

The algorithm used by the PDCM consists of three steps conceptually described 

below, after assuming that all data have been classified according to three sets: training 

set, cognition set, and test set. 

Step 1: Perceive Sample Space and Data Dimensions 

Perception-Decision-Cognition Methodology (PDCM) 

Decide on variables 
given information 

complexity 

Perceive sample 
space and data 

dimensions 

  Perception   Decision   Cognition 

Cognize accuracy 
of a selected model 
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 Let the sample data be 1 2( , ,..., ),q=X x x x and the corresponding response be 

T
1 2( , ,..., )ny y y=y , where q is the dimension of X and n is the number of samples. Now 

apply all available dimension reduction techniques: VisuShrinkUnion, 

VisuShrinkIntersect, VertiShrink, VET, and MSVET.   

For each dimension reduction technique, generate a new training set 1 2,( , ..., )p=X d d d , 

where the reduced dimension p is the number of coefficients perceived by the reduction 

techniques ( p< q). 

Step 2: Decide on Variables given Information Complexity 

 The procedure can be described as follows.  Remove each of the p variables one 

at a time, and evaluate the corresponding information complexity measure, ICOMPPERF.  

Once the p-1 removal procedures are completed, the removed variable resulting in 

minimum value of ICOMPPERF is identified and assigned the lowest rank (i.e. p).  This 

procedure is repeated for the remaining p-1 variables for which there is no rank yet.  As a 

result of this, a variable receives rank equal to p-1.  This procedure is repeated until the p 

variables have been arranged according to their ranks. 

 Step 3: Recognize (evaluate) the Accuracy of Selected Models 

Compute the accuracy value of each cognition data set using the SVM for all 

possible subsets of the ranked variables selected in Step 2.  Specifically, first consider the 

variable with the highest rank (i.e, rank=1), and calculate the cognition accuracy value.  

After this, the two variables with rank=1 and rank=2 are considered, and a new cognition 

accuracy value is calculated.  This procedure is repeated until all ranked variables are 
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considered.  Finally, the subset of variables resulting in the highest accuracy value is 

chosen as the best model.   

5.6 Analysis of Proposed PDCM 

In order to emphasize the effectiveness of the PDCM, it will be applied to three 

different data sets (heart imaging, fat content in meat, and handwritten) used for 

experiments with low-dimension/high sample size, and high-dimension/low sample size. 

For the wavelet transformation of the three data sets, the linear padding suggested by 

(Strang and Nguyen 1997) is applied. This article documents the comparison of the 

PDCM to the following procedures: 

(a) SVM recursive feature elimination (SVM-RFE) (Guyon et al. 2002). 

(b) Two-stage method (Cho et al. 2009). 

(c) Several different ranking criteria with SVM: Kullback-Leibler distance 

(Theodoridis and Koutroumbas 2006); accuracies of K-nearest neighbor 

(KNN) classifier with k=1 (Hastie et al. 2001); absolute value of the u-statistic 

of a two-sample unpaired Wilcoxon test (Liao et al. 2007); absolute value 

two-sample t-test with pooled variance estimate (Zhu et al. 2003); 

Mahalanobis distance (Theodoridis and Koutroumbas 2006); Euclidean 

distance (Theodoridis and Koutroumbas 2006); and Bhattacharyya distance 

(Theodoridis and Koutroumbas 2006).   
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5.6.1 Heart Data (44 Variables) 

The data set includes 267 samples and 44 variables on cardiac single proton 

emission computed tomography (SPECT) images with two categories, i.e., normal and 

abnormal (Cios and Kurgan 2001). The data set is divided into 80 samples as a training 

set, 13 samples as a cognition set, and 174 samples as a test set. Table 19 and Table 20 

show comparison results in terms of the variables selected, the cognition accuracy, and 

the test accuracy.  Cauchy and Inverse Multi-Quadratic kernel functions are used in Table 

19 and Table 20, respectively.  

 

 

               Table 19: PDCM versus Various Ranking Based Method Using Cauchy  

Methods Selected Variables (# of Variables) 
Cognition 
Accuracy 

Test 
Accuracy 

PDCM 21, 30, 33, 34, 36,…,51 (20) 84.62% 79.31% 

SVM-RFE 
8, 9, 14, 22, 26, 29, 30, 32, 35, 36 

(10) 
92.31% 77.01% 

Two-Stage 27, 38, 50 (3) 84.62% 64.94% 
Entropy 16, 26, 30, 40, 41, 42, 43, 44 (8) 92.31% 77.59% 
KNN 4, 9, 10, 12, 26, 27, 30, 38, 41 (9) 84.62% 74.14% 

Wilcoxon test 30, 40, 43 (3) 92.31% 72.41% 
t-test 30, 40 (2) 84.62% 71.84% 

Mahalanobis  30, 40 (2) 84.62% 71.84% 
Euclidean  26, 30 (2) 92.31% 74.14% 

Bhattacharyya  30, 40 (2) 84.62% 71.84% 
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 Table 20: PDCM versus Various Ranking Based Method Using Inverse Multi-Quadratic  

Methods Selected Variables (# of Variables) 
Cognition  
Accuracy 

Test  
Accuracy 

PDCM 
1,…,6, 9, 10, 11, 13,…,20, 27, 31, 33, 35, 

36, 39, 41, 43,…,47, 50 (31) 
84.62% 74.71% 

SVM-RFE 4, 6,…,9, 14, 32, 33, 36 (9) 100% 71.26% 

Two-Stage 
1, 2, 3, 5, 6, 13, 14, 15, 25,…,29, 31,…,44, 

46, 48,…,52 (33) 
76.92% 73.56% 

Entropy 40 (1) 76.92% 61.49% 

KNN 4, 9, 10, 12, 18, 26, 27, 30, 38, 39, 41, 42 
(12) 

84.62% 74.71% 

Wilcoxon test 40 (1) 76.92% 61.49% 
t-test 40 (1) 76.92% 61.49% 

Mahalanobis  40 (1) 76.92% 61.49% 
Euclidean  26, 30 (2) 84.62% 71.26% 

Bhattacharyya  40 (1) 76.92% 61.49% 
 

As observed in Table 19, PDCM achieves the same cognition accuracy of other 

methods, but it yields more accurate results in some cases.  Also, as shown in Table 20, 

PDCM and KNN both reach the highest test accuracy, although KNN requires fewer 

variables.  

5.6.2 Near Infrared Spectroscopy Data (100 Variables) 

These data were collected by a Tecator infratec food and feed analyzer to predict 

the fat content of a meat sample based on near infrared (NIR) spectroscopy. The data set 

was divided into two classes defined on the basis of fat content; one class corresponded 

to 20% or less, and another class to more than this level (Rossi and Villa 2006).  The 

entire data set consists of 215 samples with measured values for each of 100 predictive 

variables (wavelengths).  These samples were divided randomly to configure a training 
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set consisting of 108 samples; a cognition set consisting of 11 samples for cognition; and 

a test set consisting of the remaining 96 samples. 

Table 21 and Table 22 show the results in terms of the variables selected, the 

cognition accuracy, and the test accuracy. Cauchy and Gaussian kernel functions are used 

in Table 21 and Table 22, respectively. Although both PDCM and Two-Stage reach the 

100% accuracy level for the cognition set in Table 21, the test accuracy of PDCM is 

higher than that of Two-Stage and other methods. Additionally, Table 22 shows that the 

cognition accuracy of PDCM is 100% and the test accuracy is higher than that of other 

methods.  Furthermore, PDCM uses only 3 and 5 variables to reach the accuracy levels 

previously mentioned.    

 

 

                Table 21: PDCM versus Various Ranking Based Method Using Cauchy 

Methods Selected Variables (# of Variables) 
Cognition  
Accuracy 

Test  
Accuracy 

PDCM 1, 5, 9 (3) 100% 88.54% 
SVM-RFE 1,…,17, 54, 55, 56 (20) 81.82% 62.5% 
Two-Stage 1,…,45 (45) 100% 83.33% 

Entropy 33,…,48, 54,…,100 (63) 81.82% 77.08% 

KNN 1,…,12, 17, 18, 25, 26, 40,…,43, 53, 56,…,64, 
72,…,75, 78,…,81 (38) 

90.91% 87.5% 

Wilcoxon test 24,…,100 (77) 90.91% 83.33% 
t-test 24,…,100 (77) 90.91% 83.33% 

Mahalanobis 24,…,100 (77) 90.91% 83.33% 
Euclidean 24,…,100 (77) 90.91% 83.33% 

Bhattacharyya 24,…,100 (77) 90.91% 83.33% 
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             Table 22: PDCM versus Various Ranking Based Method Using Gaussian 

Methods Selected Variables (# of Variables) 
Cognition  
Accuracy 

Test  
Accuracy 

PDCM 5, 11, 19, 20, 31 (5) 100% 89.58% 
SVM-RFE 1,…,34, 46,…,100 (89) 90.91% 79.17% 
Two-Stage 1, 2, 3, 7,…,45 (42) 90.91% 77.08% 

Entropy 18,…,100 (83) 90.91% 83.33% 
KNN 1, 2, 25, 41, 43, 57, 58, 62, 73, 80, 81 (11) 90.91% 85.42% 

Wilcoxon test 1, 2, 4, 5, 6, 21,…,100 (85) 90.91% 83.33% 
t-test 18,…,100 (83) 90.91% 83.33% 

Mahalanobis 18,…,100 (83) 90.91% 83.33% 
Euclidean 18,…,100 (83) 90.91% 83.33% 

Bhattacharyya 18,…,100 (83) 90.91% 83.33% 
 

5.6.3 Handwritten Data (240 Variables) 

This data set has variables of handwritten numerals from 0 to 9 extracted from a 

collection of Dutch utility maps. The entire set consists of 200 samples digitized in binary 

images per class and six different variable sets (van Breukelen et al. 1998). One of six 

variable sets is used for the experiment; pixel averages in 2×3 windows. Two classes (0 

and 1 in handwritten numerals) out of 10 classes are selected to verify the proposed 

method. Each class has 200 samples and only 100 out of 200 samples per class are 

included in the experimental data set. 20 samples are used as training set, 9 samples are 

used as cognition set and 171 samples are used as test set. Table 23 and Table 24 show 

comparison results in terms of the selected variables, the cognition accuracy, and the test 

accuracy.  

Cauchy and Inverse Multi Quadratic kernel functions are used in Table 23 and 

Table 24, respectively.  As seen in the tables, PDCM reaches a 100% cognition accuracy 
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level as did the other methods, except SVM-RFE.  Furthermore, PDCM achieves a higher 

accuracy level than the other methods for the test set.        

 

 

               Table 23: PDCM versus Various Ranking Based Method Using Cauchy 

Methods Selected Variables (# of Variables) 
Cognition  
Accuracy 

Test  
Accuracy 

PDCM 19, 32, 33, 43 (4) 100% 99.42% 

SVM-RFE 

1,…,4, 8, 9, 14,…,17, 21,…,26, 29,…,32, 35, 36, 
40,…,43, 45, 46, 50, 51, 55,…,59, 61, 64, 65, 66, 68, 69, 

70, 73, 74, 76,…,80, 82,…,85, 87, 88, 89, 91,…,95, 
97,…,100, 102, 103, 104, 106,…,109, 112,…,115, 117, 

118, 119, 121,…,130, 132,…,149, 151,…,164, 
167,…,185, 187, 188, 191, 192, 193, 195, 196, 
198,…,201, 205,…,208, 210, 211, 213,…,222, 

224,…,227, 229,…,240 (183) 

88.89% 88.89% 

Two-Stage 
3, 18, 20, 27, 31, 32, 49,…,53, 63, 81, 82, 84,…,87, 

89,…,93, 95, 97,…,101, 103, 104, 107, 108, 111, 113, 
114, 117,…,120, 122, 123, 124, 126,…,132 (50) 

100% 75.44% 

Entropy 83 (1) 100% 95.91% 
KNN 68, 82, 83 (3) 100% 94.15% 

Wilcoxon test 67, 68, 82, 83 (4) 100% 88.89% 
t-test 83 (1) 100% 95.91% 

Mahalanobis 83 (1) 100% 95.91% 
Euclidean 83 (1) 100% 95.91% 

Bhattacharyya 83 (1) 100% 95.91% 
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 Table 24: PDCM versus Various Ranking Based Method Using Inverse Multi-Quadratic 

Methods Selected Variables (# of Variables) 
Cognition 
Accuracy 

Test 
Accuracy 

PDCM 9, 22, 33, 43, 56 (5) 100% 98.83% 

SVM-RFE 

162, 163, 164, 167,…,170, 172, 173, 
174, 177, 178, 183, 184, 185, 191, 192, 
193, 198, 199, 200, 205, 206, 207, 211, 
214, 217, 218, 220, 221, 225, 226, 229, 

234, 240 (35) 

88.89% 95.32% 

Two-Stage 18, 97, 120 (3) 100% 67.25% 
Entropy 83 (1) 100% 96.49% 
KNN 68, 82, 83 (3) 100% 95.32% 

Wilcoxon test 67, 68, 82, 83 (4) 100% 92.4% 
t-test 83 (1) 100% 96.49% 

Mahalanobis 83 (1) 100% 96.49% 
Euclidean 83 (1) 100% 96.49% 

Bhattacharyya 83 (1) 100% 96.49% 
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Chapter 6 Summary and Conclusion  

 A novel SVM-ICOMPPERF-RFE method is proposed using an information 

complexity (ICOMPPERF) criterion in Chapter 2. SVM-RFE is used in conjunction with 

ICOMPPERF not only to choose an optimal kernel function from a portfolio of many other 

kernel functions, but also to select important subset(s) of variables. The numerical 

examples on two benchmark datasets show that the proposed hybridized method exhibits 

a promising performance for the variable subsetting and the optimal kernel selection. 

This method provides a unification of both ICOMPPERF as the variable selection criterion 

and RFE as the search algorithm.  In this frame work, ICOMPPERF is a key cost function. 

Furthermore, the hybridized covariance matrix known as the stabilized and smoothed 

convex sum covariance estimator (STA-CSE) is used to avoid the singularity in the 

kernel based methods. In the literature related to recursive feature elimination such 

stabilization issues have not been addressed before. As shown in Tables 10, 11, 12, and 

13, the comparisons of variable ranking methods demonstrate that SVM-ICOMPPERF-

RFE is a promising way to obtain the best subset of variables.  

 A new framework is proposed for assessing the cycle-lives of rechargeable 

batteries within shorter test times in Chapter 3. In such a framework, the dual variables 

FSVM is proposed and proved to give excellent performance in screening for the purpose 

of qualification, even with a sizable reduction in the test time. Also, a boosting algorithm 

can be applied to improve the performance of the proposed algorithm under the 

environment of small sample sizes.  
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  A novel two-stage classification scheme for high-dimensional spectral data that 

combines MSVET-based wavelet preprocessing and SVM gradient-based variable 

selection is proposed in Chapter 4. It is demonstrated using four NIR data sets that the 

proposed two-stage method has higher computational efficiency due to its effective pre-

processing of spectral data. In addition, the proposed two-stage method produced 

significantly better classification performance than SVM-RFE, Gradient-RFE, and OR-

based methods. This is tested by paired t-test for each of the datasets with the results from 

SVM-RFE (p-value=0.048), Gradient-RFE (p-value=0.011), linear kernel method (p-

value=0.061), and OR-based (p-value=0.047). It is attributed to the fact that the proposed 

method incorporates wavelet-based preprocessing with SVM gradient-based variable 

selection. The proposed method would also be beneficial to other spectral signals such as 

mid infrared (MIR) and nuclear magnetic resonance (NMR), to compress high-dimension 

data and select useful variables in wavelet domain.  

The development and application of a new Perception-Decision-Cognition 

Methodology (PDCM) for discriminant analysis, based on the human decision-making 

process is documented in Chapter 5.  Five different wavelet-based dimension reduction 

techniques are applied in the perception step. It is shown that the procedure yields a good 

representation of the original data, using only reduced variables. The decision step is 

performed using a rank-based variable selection approach, using the information 

complexity criterion. The information complexity-based variable selection approach 

shows a good ability to achieve reasonable variable ranks, which in turn can affect 

decision making. In the cognition step, the number of variables and accuracy are 

recognized for further discrimination. As supported by the numerical experiments 
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documented in Chapter 5, the PDCM outperforms the currently available data mining 

approaches, and, furthermore, appears to be applicable to various areas, such as 

bioinformatics, chemometrics, pattern recognition, and other data mining fields. The 

PDCM has three advantages: 

(i) Dimension simplification. 

(ii)  Multiple model choices based on simplified dimension. 

(iii)  Analogous to the biological process of human decision making.    
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APPENDICES 

A1. Comparison of Wavelet Based Dimension Reduction Methods 

Antenna data curves, tonnage signals and Mallat piecewise signals are used for 

comparison. The antenna data curves were collected at Nortel's production facility 

located in the Research Triangle Park, North Carolina. The testing equipment receives 

antenna signals at different degrees of azimuth and elevation. The antenna data set consist 

of 18 curves (Zhou 1998). The tonnage signals were collected from sheet-metal stamping 

processes which are known as very complicated and sensitive manufacturing processes. 

Recently, stamping tonnage sensors have been widely used to measure the stamping force 

for each stamped part in order to monitor the health of stamping processes (Jin and Shi 

1999 & 2000). Mallat's piecewise signals characterize the combined pattern of transient 

signals with sharp changes and smooth signals at some parts (Mallat 1999). The six 

different measures are used for comparison of five wavelet based dimension reduction 

methods (VisuShrinkUnion, VisuShrinkIntersection, VertiShrink, VET, and MSVET). 

The comparison measures are as follows: (1) Relative Error: RE=
1 1

ˆ|| || / || ||
M M

i i
i i= =

−∑ ∑if f f ; 

(2) Reduction Ratio: RR= (1-k/N), where k is the number of selected positions; (3) ORRE 

(Overall Relative Reconstruction Error); (4) Approximate Minimum Description Length: 

AMDL(k)= 2 2
1

ˆ1.5 log 0.5 log || ||
M

i i
i

kM NM NM
=

+ −∑ f f  which is close to the Akaike 

information criterion used in model selection for the regression problem (Antoniadis et 
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al. 1997); (5) L2 Error=
1

ˆ|| ||
M

i i
i=

−∑ f f  which is the root mean square error; (6) L∞ 

Error= , ,,

ˆmax | |i j i j
i j

f f−  which is the maximum error where, 1,2, ,i M= … and 

1,2, ,j N= … .  

Figure 25 shows the original antenna curves and the reconstructed ones using the 

wavelet based methods. As shown in figure, the reconstruction curves of MSVET are 

very similar to original ones. The reconstructed curves capture the patterns in peaks and 

valleys reasonably. Table 25 presents results of wavelet based methods with different 

comparison measures. The data reduction ratio of MSVET is 61.72% and the 

reconstructed curves of MSVET in the Figure 25 are reasonably reconstructed as similar 

as original curves in terms of capturing the patterns in peaks and valleys, although the 

RE, RR and ORRE of VET are smaller than the MSVET.  Moreover, the MSVET has the 

smallest AMDL. Figure 26 shows 24 tonnage curves under the normal conditions. We 

applied the 5 data reduction procedures to the tonnage signals. Table 26 presents results 

of wavelet based methods with different comparison measures. The relative error and the 

L2 error of MSVET is very small, comparing to VET. Also, the reduction ratio of 

MSVET is 66% which is reasonable for reconstruction.  The VET method has the largest 

reduction ratio and the smallest overall relative reconstruction error.   
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                                              Figure 25: Antenna Data Curves 

(a) Original (b) VisuShrink-Union (c) VisuShrink-Intersection  
(d) VertiShrink (e) VET (f) MSVET 

 

 

                                   Table 25: Results for Antenna Curves (N = 128) 

Methods RE RR ORRE AMDL L2 error L∞ error 
VisuShrink-

Union 
0.0005566 0.64063 0.35993 2.3729e+004 19.3948 2.6610 

VisuShrink-
Intersection 

0.0044363 0.75 0.25444 2.2956e+004 54.7550 16.5182 

VertiShrink 
5.3168e-

005 
0.34375 0.6563 3.1286e+004 5.9943 0.9324 

VET 0.0035937 0.77344 0.23016 2.1701e+004 49.2814 10.3224 
MSVET 0.00056168 0.61719 0.39572 1.4998e+004 19.4831 3.2759 

 

 

 

 



 120 

 

 

 

                                                 Figure 26: Tonnage Signals 

(a) Original (b) VisuShrink-Union (c) VisuShrink-Intersection  
(d) VertiShrink (e) VET (f) MSVET 

 

 

 

                                  Table 26: Results for Tonnage Signals (N = 256) 

Methods RE RR ORRE AMDL L2 error L∞ error 
VisuShrink-

Union 
6.9778e-

007 
0.12891 0.87109 1.3009e+005 26.5281 3.2870 

VisuShrink-
Intersection 

0.00016532 0.77344 0.22673 7.9568e+004 408.3273 43.3440 

VertiShrink 
7.1448e-

006 
0.38672 0.61329 1.1050e+005 84.8870 7.8056 

VET 0.0011886 0.93359 0.067595 6.9735e+004 1.0949e+003 69.0460 

MSVET 
8.9914e-

005 
0.66016 0.3509 7.5510e+004 301.1338 27.4553 
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Figure 27 shows the Mallat's piecewise signals with the combined pattern of 

transient signals with sharp and smooth changes and the reconstructed curves.  The 

reconstructed curves are quite reasonable using 5 other methods. Table 27 presents 

results of wavelet based methods with different comparison measures. The relative error, 

L2 error and L∞ error of MSVET are smaller than the results of VET. In this case, the 

reduction ratio of MSVET is smaller than other methods: VisuShrinkUnion, 

VisuShrinkIntersection, and VET except VertiShrink. Since the Mallat signals have the 

sharp changes, it may affect the performance of the MSVET. When we compare the 

results of Table 25, 26, 27, MSVET has consistent reduction ratio (around 60%). In other 

words, MSVET may give promising results for complicated datasets which have high-

dimensions and many peaks or shapes.   

 

 

                                         Figure 27: Mallat's Piecewise Signals 

(a) Original (b) VisuShrink-Union (c) VisuShrink-Intersection  
(d) VertiShrink (e) VET (f) MSVET 
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                          Table 27: Results for Mallat Piecewise Signals (N = 1024) 

Methods RE RR ORRE AMDL L2 error L∞ error 
VisuShrink-

Union 
0.0022 0.9141 0.0881 3.6018e+005 186.8799 3.6834 

VisuShrink-
Intersection 

0.0023 0.9326 0.0697 3.4575e+005 192.4471 7.2698 

VertiShrink 0.0009 0.4717 0.5293 7.1909e+005 121.6239 3.4212 
VET 0.0026 0.9346 0.0681 3.4747e+005 204.8175 12.2439 

MSVET 0.0013 0.5938 0.4140 5.6902e+005 144.6165 5.5863 
 

A2. Robustness of Reduction Methods against Random Noises 

Dimension reduction methods against random noises are tested for robustness in 

this section. For the experimental study, three noises with random normal are added to 

the signals and compared. Signal-to-noise-ratio (SNR) is defined as fˆ( ) \σ σ  where, ˆ( )fσ  

is the standard deviation of each signal points, and σ  is the standard deviation of noise. 

Figure 28, 29, and 30 shows one original curve and 3 noise added curves. Table 28, 29, 

30, and 31 provide relative error for model fitting and reduction ratio for dimension 

reduction using five wavelet based methods in the cases of SNR = 3, 15, and 30. Smaller 

SNR means that signals includes more noise. That is, noise level (σ ) is large and a few of 

wavelet coefficients should be selected. As shown in tables, for all methods, the relative 

error with less noise (SNR = 30) is much smaller than one with more noise (SNR = 3). It 

means that it is difficult to find suitable model using complicated dataset with more 

noise. VET has better reduction ratio than MSVET, but relative error of MSVET is 

smaller than one of VET. Moreover, when curves or signals has more noise (SNR=3), 

MSVET mostly has smaller relative error than VisuShrinkUnion, VisuShrinkIntersection 
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and VET. Even though, the signals have much noise, the reduction ratio of MSVET is 

similar to one of less noise. Consequently, MSVET has robustness for noise dataset.       

 

 

 

 

 

 

 

 

 

 

                                                Figure 28: Antenna Data Curves 

(a) Original (b) SNR=3 (c) SNR=15 (d) SNR=30 
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                                                   Figure 29: Tonnage Signals. 

(a) Original (b) SNR=3 (c) SNR=15 (d) SNR=30 
 

 
 

                                            Figure 30: Mallat's Piecewise Signals 

(a) Original (b) SNR=3 (c) SNR=15 (d) SNR=30 
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                                       Table 28: SNR Results for Antenna Curves 

SNR=3 SNR=15 SNR=30  
Methods RE RR RE RR RE RR 

VisuShrink-Union 0.0176 0.7109 0.0007 0.5391 0.0001 0.3750 
VisuShrink-Intersection 0.0233 0.7500 0.0042 0.7344 0.0038 0.7344 

VertiShrink 0.0043 0.4844 0.0002 0.3984 0.0001 0.3594 
VET 0.0286 0.7969 0.0042 0.7734 0.0036 0.7734 

MSVET 0.0052 0.7578 0.0008 0.7813 0.0006 0.8516 
  
 
                                       Table 29: SNR Results for Tonnage Signals 

SNR=3 SNR=15 SNR=30  
Methods RE RR RE RR RE RR 

VisuShrink-Union 0.0850 0.8750 0.0039 0.8594 0.0009 0.8008 
VisuShrink-Intersection 0.0850 0.8750 0.0041 0.8672 0.0013 0.8594 

VertiShrink 0.0181 0.6367 0.0008 0.5898 0.0002 0.5469 
VET 0.1019 0.9766 0.0065 0.9609 0.0031 0.9570 

MSVET 0.0206 0.7461 0.0011 0.7461 0.0004 0.7461 
 
 
                      Table 30: SNR Results for Mallat Piecewise Signals (N=1024) 

SNR=3 SNR=15 SNR=30  
Methods RE RR RE RR RE RR 

VisuShrink-Union 0.0975 0.9600 0.0056 0.9170 0.0012 0.4648 
VisuShrink-Intersection 0.1006 0.9619 0.0068 0.9580 0.0037 0.9580 

VertiShrink 0.0185 0.6396 0.0022 0.6240 0.0015 0.5938 
VET 0.1129 0.9688 0.0077 0.9600 0.0037 0.9590 

MSVET 0.0240 0.7100 0.0031 0.7227 0.0022 0.7080 
 
 
                        Table 31: SNR Results for Mallat Piecewise Signals (N=8192) 

SNR=3 SNR=15 SNR=30  
Methods RE RR RE RR RE RR 

VisuShrink-Union 0.1027 0.9673 0.0063 0.9418 0.0019 0.6694 
VisuShrink-Intersection 0.1253 0.9785 0.0170 0.9692 0.0113 0.9679 

VertiShrink 0.0217 0.6638 0.0024 0.6492 0.0015 0.6051 
VET 0.2139 0.9894 0.1123 0.9883 0.1047 0.9880 

MSVET 0.1129 0.6969 0.0945 0.7255 0.0938 0.7059 
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