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ABSTRACT

In statistical data mining research, datasetsnoftave nonlinearity and high-
dimensionality. It has become difficult to analygzech datasets in a comprehensive
manner using traditional statistical methodologiesrnel-based data mining is one of the
most effective statistical methodologies to invgstie a variety of problems in areas
including pattern recognition, machine learningpitiormatics, chemometrics, and
statistics.  In particular, statistically-sophistied procedures that emphasize the
reliability of results and computational efficienaye required for the analysis of high-
dimensional data.

In this dissertation, first, a novel wrapper metlwadled SVM-ICOMRerrRFE
based on hybridized support vector machine (SVMJ eetursive feature elimination
(RFE) with information-theoretic measure of compgXICOMP) is introduced and
developed to classify high-dimensional data setktarcarry out subset selection of the
variables in the original data space for finding best for discriminating between groups.
Recursive feature elimination (RFE) ranks varialidased on the information-theoretic
measure of complexity (ICOMP) criterion.

Second, a dual variables functional support vettachine approach is proposed.
The proposed approach uses both the first and dederivatives of the degradation
profiles. The modified floating search algorithnr the repeated variable selection, with
newly-added degradation path points, is preserdgefintd a few good variables while

reducing the computation time for on-line implenatian.
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Third, a two-stage scheme for the classificatibmear infrared (NIR) spectral
data is proposed. In the first stage, the proposelti-scale vertical energy thresholding
(MSVET) procedure is used to reduce the dimensioth® high-dimensional spectral
data. In the second stage, a few important wawalefficients are selected using the
proposed SVM gradient-recursive feature elimina(ieRRE).

Fourth, a novel methodology based on a human decisiaking process for
discriminant analysis called PDCM is proposed. pheposed methodology consists of
three basic steps emulating the thinking processcgption, decision, and cognition. In
these steps two concepts known as support vecta@hines for classification and

information complexity are integrated to evaluaarhing models.
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Chapter 1 Introduction

This chapter provides an introduction of this dit#eon research. Section 1.1
presents the motivation for the research. The dmritons of the research are presented

in Section 1.2. The organization of the rest ¢f thssertation is outlined in Section 1.3.
1.1 Motivation

Machine learning plays an important role in a wgrigf scientific fields including
text mining, machine vision, pattern recognitioredital diagnosis, bioinformatics, and
chemometrics. Practical problems arising in theskld require an approach built on
innovative analytical methods. Two particularly ionfant problems are (i) the presence
of nonlinearities in available data; and (ii) thghHidimensionality of available data. In
order to overcome these problems, kernel-basedauethave been developed by several
machine learning researchers. These methods aedffective alternative to increase
computational power by first nonlinearly mapping thata into a high-dimensional space
to avoid nonlinearities and then applying learnmgchines (modeling procedures). The
objective of this dissertation is to develop innibx& and effective analytical methods to
increase computational power and improve scalghilitcomplex data structures by (i)
nonlinearly mapping the data into a high-dimensi@pace avoiding nonlinearities; and
(ii) selecting the most relevant and informativeiables.

Kernel-based methods exploit both the geometric regdlarizing properties of a

high-dimensional reproducing kernel Hilbert spasmce the early 1990s, kernel-based
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methods have been built in several developmentsydimg (a) support vector machine
for both classification and regression (Bosgral 1992; Vapnik 1995); (b) kernel
principal component analysis (Schélkagfal 1999); and (c) kernel fisher discriminant
analysis (Mikaet al 1999). Perhaps the best-known kernel-based meshtieé support
vector machine, which has been successfully apphed diverse range of domains.
Several recent publications describe the applinatiokernel-based methods and address
their overall performance in terms of computatioreduirements and ability, for both
classification and regression (Cristianini and S&dwylor 2000, Herbrich 2002,
Schoélkopf and Smola 2002, Vapnik 1995). The properof a support vector machine
are (i) managing large input spaces powerfully vkiénnel-based methods; (ii) dealing
with noisy samples in a robust way; and (iii) proahg sparse solutions (Chistianini and
Shawe-Taylor 2000). Support vector machine camberporated with the scheme of the
kernel-based methods. The kernel-based methodbased on mapping data from the
original input space to a kernel space with highehsionality and then solving the
problem in that space which is nonlinearly relatedthe input space. A kernel is a

functionK, such that for alk,y [ X satisfies thatk,, (X,y) =< ®(x),P(y) >, where® is

a mapping fronX to an inner product feature space The purpose of using the kernel
function is as follows: (i) it provides the conniect between the data and the modeling
method; (ii) it can influence the performance of tihhodeling method by incorporating
prior knowledge about the problem domain; and (i evaluation might be
computationally advantageous compared to an ekgiistruction of the feature space

(Bloehdorn and Sure 2008).



Variable selection is an important area of redeamcmachine learning, pattern
recognition, statistics, and related fields. Theg k#ea of variable selection is to find
input variables which have predictive informationdato eliminate non-informative
variables. Variable selection identifies a smalbs®ai of variables so that the classifier
constructed with the selected variables minimizesreand the selected variables also
better explain the data (Koller and Sahami 199&)e Tuse of variable selection
techniques is motivated by three reasons: (i) farave discrimination power; (ii) to find
fast and cost-effective variables; and (iii) to aeaa better understanding of the
application process (Guyon and Elisseeff 2003Yhincase of high-dimensionality data,
variable selection plays a crucial role becausefoof challenges (Theodoridis and
Koutroumbas 2006): (i) large sets of variableg; €kistence of irrelevant variables; (iii)

presence of redundant variables; and (iv) dateenois

1.2 Contributions of the Dissertation

Based on the motivations in Section 1.1, the cbuatibns of this dissertation are as

follows:

1. Hybridized support vector machine and recursive fetre elimination with
information complexity: An innovative approach is proposed by taking athges
from both the variable ranking method and the rokamel-based method. This new
approach is the hybridized support vector machimrg recursive feature elimination

with information complexity.



Dual variable functional support vector machine: Data representation for
functional structures is one of the key issuegnplementing the functional support
vector machine. In some cases, a combination aYateres with different orders
may lead to better classification performance. @hal variables functional support
vector machine approach that uses both first aoohgederivatives.

Improved floating search method to optimize the nurber of variables: Because
dual or multiple data representations leads taghdridimension space, the modified
floating search finds the optimal variables thatenthe highest classification power,
S0 as to start with the best variable set in tigrées data.

Multi-scale vertical energy thresholding wavelet m#hod based on the scale
information: The multi-scale based wavelet transformation catraet useful
information in compressed wavelet coefficients ings can be used to perform noise
suppression and pre-processing.

. Two-stage scheme for incorporating a wavelet de-reing and reduction method
with a support vector machine-based variable seleicn method: The use of the
concentrated information with selected variablestaad of full variables, for the
classification of high-dimensional data, can miraenclassification error and improve
computation speed significantly.

Perception-decision-cognition methodology for diseéminant analysis based on
the human decision-making processThe proposed methodology consists of three
basic steps that emulate the thinking process:epéon, decision, and cognition. In
these steps two concepts known as the support rvetdchine and information
complexity are integrated to evaluate learnmagels.

9



1.3 Outlines of the Dissertation

The remainder of this dissertation is organizetbhsws:

Chapter 2 shows a novel wrapper method based ondimgdl support vector machine
and recursive feature elimination with informatimemplexity to classify nonlinear high-
dimensional data sets and to carry out subsettseienf the variables in the original data

space.

In Chapter 3, a dual variable functional supporttee machine and modified floating
search based variable selection are presenteddifieeent pre-processing techniques

and the floating search method are explained.

Chapter 4 shows a two-stage classification proeebased on multi-scale vertical energy
wavelet thresholding and support vector machinedagradient recursive feature
elimination. A wavelet-based data compression asalsing technique and a support

vector machine-based variable ranking algorithmpaesented in detail.

In Chapter 5, a novel methodology based on the hudexision-making process for
discriminant analysis is presented. The proposethodology consists of three basic

steps emulating the thinking process: perceptienisibn, and cognition.

In Chapter 6, a summary and conclusions are pregent

10



Chapter 2 Hybridized Support Vector
Machine and Recursive Feature

Elimination with Information Complexity

2.1 Introduction

In many classification problems there are veryhkdgnensional input data sets
and finding the best subset of the original inpeatfires or variables which mostly
contribute to the separation of the classes orpgas a challenge. Therefore, variable
selection is a difficult combinatorial problem inaohine learning and it has very high
practical importance in many applications.

Kernel-based methods have gained popularity fassification, clustering, and
regression analysis in machine learning sincerntreduction of support vector machine
(SVM) during the early 1990s. After obtaining sugpeectors (SVs) to classify a data set,
guestions such asHbw do we know which variables are more responsibte and
important to, the classification?have often been raised. This is due to the fadtttiea
mapping is not one-to-one and onto in SVM. The iapfibn of a kernel function is thus
an uninvertible process, and there is no way tdrgm the feature space back to the
original space. Because of this geometry, SVM dmedend itself to automated internal
relevant variable selection easily. Hence algorghfar variable selection play an

important role in SVM.

11



In the literature of machine learning, as discdsgeFrohlich (2002) in detail,
there are two main approaches to solve the varigblection problem: (a) the filter
approach, and (b) the wrapper approach. Both appesadiffer in the way they evaluate
a given variable subset. The filter method useseswoelevance measure, which is
independent of the performance of the learningrdlyn. On the other hand, in the
wrapper method, each variable subset is takencmtgideration with the classifier. That
is, the variables are evaluated by estimating tbeerplization performance (i.e. the
expected risk) of the learning machine trained.

In this chapter, the wrapper method called SVM-MIereRFE, which
combines an information-theoretic measure of coriple(ICOMP) criterion and
recursive feature elimination especially designed $VM based variable selection
developed by Guyoret al (2002) is considered and emphasized. In the uREa,
backward variable elimination is performed to fisaly, m, variables which lead to the
largest margin of class separation. This combimngtgroblem is solved in a greedy
fashion. In the two-class case the RFE algorithgirizewith the set of all variables and
sequentially evaluates each variable based ontséiysanalysis for an appropriately
defined criterion that is a measure of predictibdity (and is inversely proportional to
the margin). Then, the RFE algorithm at each stigpireates the variable which keeps
this quantity small. Assuming the change of theadetupport vectors when removing
only one variable is negligible.

An information-theoretic measure of complexity QEIP) criterion of Bozdogan
(1988a, 1988b, 1990, 1994, 2000) is used in RFEimga of the variables as an effective
measure. ICOMP plays an important role not onlghnosing an optimal kernel function

12



from a portfolio of many other kernel functions l@l$o in selecting important subset(s)
of variables. It takes into account either the lesdrof fit or the lack of fit and the model
complexity at the same time in one criterion fuoicti
The potential and the flexibility of the propose@thod is illustrated on two real

data sets, one is ionosphere data which includdar r@turns from the ionosphere, and
another is aorta data which is used for the eagtgation of atheroma most commonly
resulting heart attack. Also, the proposed metlwdaompared with other RFE based
methods (Guyort al 2002; Youn 2002; Chet al. 2009) using different measures (i.e.,

weight and gradient) for variable rankings.
2.2 Support Vector Machine

The SVM finds the optimal separable hyperplandg thaximizes the margin

between the classes (Vapnik 1995). Consider the @fBslassifying a set of training data

into two groups. Assume a set of training dataivery by{(xl, yl),---,(xn, yn)} where

X, Is an input vectory. [0(-1,1) is a binary class index, amds the size of training data.
Then, a decision boundary (i.e. classifier) thatippans the underlying vector space into
two classes can be represented by the following@tpjane:

w'x+b=0, (1)
wherew is the weight vector anld is the bias. The objective of the SVM is to fir t
maximum marginyl) decision boundary between the two parallel hylaeegs,

w'x+b=1andw'x+b=-1. An example of SVM is illustrated in Figure 1. &nthe

13



maximum margin is given &/ ||w |, the corresponding optimization problem can be

written as follows:

Minimize %”W”2 + Cznlgﬁ
i=1

yW'x +b)21-&, i=12...n @)

Subject to _
&20,i=22...,n

where ¢, is the positive slack variable ar@(>0) is a pre-designated regularization

I
coefficient. The linearly-constrained optimizatigmoblem can be solved as a dual

problem that maximizes the following function:

L(@)=Ya -5 Y Y aayy K(x.x ) 3

i=1 j=1

subject to the constraint

, X =0,i=212---,
;a'x' i=1 n @

0<a <C,i=12-n

wix+5b=1
wix+h=0

..-'WTX +h=-1
o
: Support Vectors
o
e : Classi
o : Class?2
(o)

Figure 1: lllustration of Linear SVM for NonlinegrEeparable Case
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Once the optimum value(sf,b*) are obtained, based upon the training set of

points, a new poink_, of the test data set is classified by the follaywtecision rule:

Class 1 ifD(X,e,) = Zn:crfyiK(xi X )+ <0

i=1

) %)
Class 2 ifD (X ey) = D@ YiK(X; X o) + b >0

i=1

where D() is a classifier based upon the training datalsét,,x ) is the kernel trick

proposed by Aizermaet al (1964). The kernel maps input data in the origspace
with nonlinearly into a high-dimensional featureasp with linearity. The Table 1

presents some common kernel functions.
2.3 Information-Theoretic Measure of Complexity

An information-theoretic measure of complexity edlICOMP has been proposed by
Bozdogan (1988a, 1988b, 1990, 2000) as a decislerfor model selection

Table 1: Kernel Functions

Function K(X,Y) Parameters
Linear (XY +b)? a=1,b=0
Polynomial (degree=2) (XY +Db)? a=2,b=1
Polynomial (degree=3) (XY +hb)? a=3,b=1
Gaussian exp(—(a—lb IX =Y [2)) a=2, b=c=1
Cauchy 1+ é [|X=Y | a=1
Inverse Multi-Quadratic (I X =Y | +a*)™? =1
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such as AIC (Akaike, 1973), and BIC (Schwarz, 1978he development and
construction of ICOMP is based on a generalizatibthe covariance complexity index
originally introduced by van Emden (1971). Insteddpenalizing the number of free
parameters directly, ICOMP penalizes the covariatmeplexity of the model. It is

defined by

ICOMP=-2l0g LG, )+ 2C(E 0601 ): (6)
where L(ék) is the maximized likelihood functionék is the maximum likelihood

estimate of the parameter vecrunder the modeM, , andC represents a real-valued

complexity measure anéo\\,(ék) :f‘.Mode, represents the estimated covariance matrix of
the parameter vector of the model. ICOMP should bettonfused with the stochastic
complexity (SC) or the minimum description lengMdL) of Rissanen (1986, 1987,
1989), although they both use the notion of comptexf a model class based on coding
theory. The detailed information-theoretic measwt complexity (ICOMP) is

recapitulated in the subsections for the benefithef readers who may not be familiar

with ICOMP criterion.
2.3.1 Mutual Information in High Dimensions

For a random vector, the complexity is definedoisws.
Definition: The complexity of a random vector isnmeeasure of the interdependency
among its components.

A continuous p-variate distribution is used with joint density nfttion
f(x)=f(x,...,%x;) and marginal density functiond,(x;), j=1,...,p. Following

16



Kullback (1997), and Harris (1978), thidormation measure of dependensealefined as

follows:

f(X,-00X)) ]
f,0¢) - f,(X,)

e (06m) o
_Lo Lo S )logfl(xl)--- fp(xp)d)i dx

I (X) =1 (X,,...x, )= E; [log
(7)

where | (X) is the Kullback-Leibler information divergence (Kiack and Leibler 1951)
against independence. The properties of the Kuthhatbler information divergence are
as follows:
« 1(X)=1(X;,....x, )= Oi.e., the expected mutual information is nonnegati
- 1(X)=1(X,....x;)=0if and only if f(x,...,x;)= f,(x)-- f, (X)) for everyp-
tuple (X,...,x, ), i.e., if and only if the random variables,...,x are mutually

statistically independent.
The KL divergence is related to Shannon's entrdpyainon 1948) by the important

identity
|(x)s|(x1,...,xp):Z:H(xj)—H(>g,...,>gD) ®)
where

- H(X;) is the marginal entropy, and

+  H(X,...,x,) is the global or joint entropy

Watanabe (1985) calls this latter quantity thersjth of structure and a measure

of inter-dependence.
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To define the information-theoretic measure of ptaxity of a multivariate

distribution, let f (x) = f (x,...,X,) be a multivariate Gaussian density function gilwgn

f(x)=f(x,...%)
b1 1 . (9)
= (@) EF expts X-p X" %-p )}
wherep = (4, iy, ..., i, ) —00 < 1, <00 ,j=1,2,..pand X > 0(positive definite)
As a short hand, let
X~N,(u,X). (10)

Then the joint entropyH (X) = H(X,...,x;) from equation (8) for the case in

which p =0 is given by
HO)=H0x, %)==, f&)log f &)k
= [0 f €] tog@n)E +3 X-w ) X Jox an
=P log(@n)E +5tr[ [, 1 X3 X-w dmm Jox ]

Then, sinceE[(x—p)(x—p) '] =X, the joint entropy is

H(x) = H(xl,...,xp):g Iog(ZT)+L2)+%2 log [£

, . (12)
=2 llog(2r )+ 1> logE |.
From equation (11), the marginal entropl(X; ) is
H(x,) :—j_:" f(x)log f(x)dx
(13)

1 1,1 .
=3 log(2r )+_2+_2 log6? )i= 1,2,.p

where JJ.Z is the variance of th&' variable.
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2.3.2 Initial Definition of Covariance Complexity

van Emden (1971, p. 61) provides a reasonablialii¢finition of complexity of

a covariance matrixs for the multivariate Gaussian distribution. Thigasure is given

by:

|(x1,...,xp)sc:0()z):21 H (% )= H(X,.o%, )

(14)

P 1 1 1] p 1 p

=3"| Zlog(2m)+ = logo. }+= | -2 log(27 )= | P

Y Sloa(em)+ Lioge, -3 |- & loatary- Sog:

This reduces to
1 1
C,(X) —EZIog(o]j )——2Iog Iz |, (15)
=1

whereg; Eajz, is the variance of thf" variable, and is thg" diagonal element oE .
The characteristics of covariance comple&gyare as follows:

« C,(X)=0ifand only if £ is a diagonal matrix.

« C,(X)=o ifand only if| X | O.

« The first term of equation (15) is not invariantlen orthonormal transformations.
As pointed out by van Emden (1971), the result guation (15) is not an effective
measure of the amount of complexity in the covagamatrixX , since:

- G,(X) depends on the coordinates of the original randarablesX, ..., X, .

- The first term of C,(X) in equation (15) would change under orthonormal

transformations.
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2.3.3 Definition of Maximal Covariance Complexity

To improve uporC,(X) in equation (15), a maximal covariance complexty

proposed as follows.
Proposition A maximal information theoretic measure of coexgly of a covariance

matrix X of a multivariate Gaussian distribution is defirsedfollows:
C,(Z) =maxC, &)= max{H (x )+---+ H(x )= H(X,....x )]

—P g r(®) |1
= Iog{ o } 2Iog E | (16)

:E] }_\'a
2 %

g

where the maximum is taken over the orthonormallaiity transformation,T of the
overall coordinate systems,...,X; and Xa and Xg are arithmetic and geometric means

of the eigenvalues. The properties of maximal im@ation-theoretic measure of
complexity are as follows:

- C/(X) is the log ratio between the arithmetic and gedmenean of the

eigenvalues.

- C,/(X) incorporates the two most basic scalar measuresuttivariate scatter-

trace and determinant.

- As interaction between variables increases, so (o€S).
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2.3.4 Modified Maximal Covariance Complexity

Following van Emden (1971), the geometric defimitimf covariance complexity

is defined by the Frobenius norm given by
1 tr(Z)Y
c.m=2i -, an

where||Z |[f=tr €'X ), the square of the Frobenius normf

In terms of the eigenvalues (or singular valu€s)(X) reduces to
_l N a2
CF(Z)-EZ(xj -1,)% (18)
=1

where s is the rank ofX, i, is thejth eigenvalue ofx> 0,j = 1,2,. . s and Xa is
arithmetic mean of the eigenvalues. Note Ba{X) >0 with C_(X) =0 only when all

A=A

J ar

C,(X) can be approximated in terms of the eigenvalueg =1,2,.. shy

C.() D%Z(%)Z. (19)
Since in the feature space orthonormal matrices dealt with to prevent th€
complexity not to go to zerd;, andC.. are related as a second order equivalent measure
of complexity denoted b . Hence, the modified maximal entropic complexity

C,: (%) is defined as follows:
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1 (r@)Y
s _ss=H{"Y)

S
C.(X — 20
e 4(tr(2‘.)j2 4 (tr(Z)jz (20)
S s
In terms of the eigenvalue€ . (X) is given by
2
()
C ==
w &7 (tr(Z)JZ
S
s 1 g = \2
“asrm b )
= w2 bR

wheres=rank(X). The properties of the modified maximal entrop@nplexity C

are as follows:

« C,(X) is scale-invariant, andC.(X)=0 with C.(X)=0 only when all

« C,(X) measures the relative variation in the eigenvahagiser than absolute

variation of the eigenvalues.

2.3.5 ICOMP as a Performance Measure: ICOMPEre

Singularity of the estimatedovariance matrixis a common problem that has
recently attracted many researchers’ work. Becaisihis, many methods have been
proposed to make the covariance matvedl-conditioned so that the covariance matrix

can be estimated. The usual responssirtgular or ill-conditioned covariance matrix
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estimates is thenaive’ ridge regularization )y :[)f. +al ], which works to counteract

the ill-conditioning by adjusting the eigenvalue‘sﬁb. The ridge parametes; , is
typically chosen to be very small. This, of coutsegs the questions

+ How large of a perturbation do we need?

« How small a perturbation can we get away With
This is a case where simplicity is not necessailgood thing; it does not solve the

problem with many real datasets. Yet another ambrdlaat does not seem to work well

in practice is to augmerﬁ: with a multiple of thekernel matrix as suggested by Mika
(2002). After much experimentation with a variefydifferent methods to improve the
condition of the covariance matrix, a stabilizatimethod (Thomaz 2004) is applied to
resolve thdll-conditioning of a covariance matrix. After the stabilization gedure, the
two-stage stabilizatiorand smoothingprocess is applied to providevweell-conditioned
covariance matrix which is both nonsingular andtpasdefinite.

- Stage 1. Stabilization algorithm (Thomaz 2004):

1. Perform spectral decomposition Bf=VAVT, where V is the matrix with

eigenvectors and has eigenvalues on the diagonal.

_ p
2. Calculate the mean eigenvalue(zxi)/ p

i=1

3. Form a new matrix of eigenvalues as

max(A,A) - 0

A = : : :
0 max(kp,i)

4. Finally, recompose the new stabilized matrix
23



Ea=VA'VT
+ Stage 2: Compute a Stabilized and Smoothed ConwexCovariance Estimator
The second step is to feed ttabilizedcovariance matrixnto asmoothedcconvex sum
covariance matrix estimator (CSE) was proposeddasethe quadratic loss function
used by Press (1975) and later by Chen (1976) sfdi®lized and smoothed convex sum

covariance estimator (STA-CSE) is as follows:

~ n A~ n ~
2‘STA_ CSE— n+ mz SsTAr (l_ n+ m)D s (22)

where 6STA: (%tr (f‘. STA)JI »- FOr p=2, mis chosen to be

2p@+B)-2]
p-8

O<m<

where

(@)

tr(Zgr)

This estimator improves upoﬁSTAby shrinking all the estimated eigenvalues of

A

X, toward their common mean. The motivation of usimgth stabilization and

smoothing of the covariance matrix in the rankimgcess of RFE subset selection is to
extract more information since a reduced rank gmbbccur in the kernel based methods.
To remedy the current existing problems in the bgeanel methods, the use of both
stabilization and smoothing the covariance magrian attractive approach.

The choice of the best mapping function is not isgpe and automatic. In the

literature a valid method for selecting the appiatprkernel function does not yet exist.
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The goal of SVM is to minimize the probability ofisolassification error. Intuitively,

then, the penalty term for a poorly-fitting modebwid be based on the classification
error rate. In SVM problems, the error variangeis estimated by the mean squared

difference between actual group labes)(and predicted group label§,( given by

"y 1L -
UZZHZ(M - %) (23)
i=1
Now following the work of Howe and Bozdogan (2010¢ information-theoretic
measure of complexity as performance measure of &Mfined as follows:

ICOMP,cee = Nl0g277+ Nogd® + N+ 2 G (Egrn con: (24)

where Z‘.STA CSE is thestabilized and smoothed convex sum covariance xnestimator

(STA-CSE) given by

o n ¢ n \a A 1. ¢
ZSTA_ CSE— n+ mz sTal (1_ n+ I’T?D st STA (—ptl’ (Z s)rgl p!
and
R 1l —
ClF (ZSTA_CSE) _WZO\'] _?\‘a) .
a =L

First, the hybrid covariance estimate is calcdagad then the diagonal matrix of
the largest singular values as a reduced rank ajppation ofﬁ‘.STA_ cselS computed. By

minimizing ICOMPrerr the classification error is minimized under thestbfitting
model. Also,|ICOMPrerris used to choose an optimal kernel function. Onida@ major
motivations of introducing the information measofecomplexity (ICOMP) criterion is

based on the fact that in SVM-RFE subset selegiioblems the number of variables is
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same from one subset to another. In such casesdkdels in terms of the number of
parameters are considered to be equivalent. Invalgmt models, AIC, BIC, or MDL
type criteria do not have provision of distinguigipione equivalent model from another.
Since their penalty terms are fixed, and not vayyim the literature cross-validation-
based criteria has been used for variable seleclibese types of criteria are too time-
consuming due to the high-dimensionality of thetdea space. The proposed method

shortens the variable selection time.

2.4 Recursive Feature Elimination (RFE)

A variable selection method based on RFE has Heealoped by Guyoet al
(2002) which is called SVM-RFE. SVM-RFE is an apgtion of a recursive feature
elimination based on sensitivity analysis usingappropriately defined cost functiow:(
weight). The SVM-Gradient-RFE method (Youn 2002p@hal 2009) used the gradient
as a cost function. In the proposed method, thd aest function is th€COMPegrg In
the proposed method, the least sensitive variatidéch has the minimum value of the
ICOMPererr is eliminated first. This eliminated variable bates rankp (p: number of
variables). Later, the machine is retrained onr#mainingp-1 variables and then the
variable with the minimum value &€OMPerereis eliminated. The process continuous in
an iterative fashion until no variable is left imat subset. This means that at the end of
this iterative ranking scheme all the variables epeked according tdCOMPpegre
criterion. This is different than the Guyat al (2002) ranking scheme where only
weights have been considered without taking intcoant the model fit and the

complexity of the model.
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2.4.1 SVM-RFE Algorithm

Let X =(X,,...,x,,)" be a training set witly =(y,,..., y,)"

=

Construct a training mod¥l = X (:,s), wheres s the subset of variables; 1,2,...p.
2. Until all values of the cost function are obtaineidh the number of non-ranked

variables, compute the cost function for all subset
C(i)=(1/2)a"Ha - (1/2)a'H _,a, (25)
whereH =y, y, K(x,%; ), andHj means & matrix without the" variable.
3. Find the variabld with the smallest cost function value, and &didto the ranked

subsety and removeé from subsets.

4. Repeat 1-3 until subsetjs empty.
2.4.2 SVM-Gradient-RFE Algorithm

Let X =(X,,...,x,,)" be a training set witly =(y,,..., ¥,)".
1. Construct a training mod¥l = X (:,s), sis the subset of variables; 1,2,...p.

2. Until all values of the average sum of the anglesobtained with the number of non-
ranked variables,

0] compute the gradient].ig(x) withouti™ variable

U-ya(x) = Z a, ymD(_i) K(X 1y X)- (26)

misv

(i) compute the sum of angles betweégmng(x) ande,,, y

yi)= Y 00, g(x).e,) (27)
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where (i) means without th#" variable, e, is unit vectors, and

<D(—i) g(x)-em>

H0, 9006 = ) A7 AT areeos) s =gl

(i)  compute the average sum of the angh¢n = 1—£-$.
T

3. Find the variabl& with the smallest the average sum of the aAgle addk into the
ranked subset, and remové from subsets.

4. Repeat 1-3 until subsetjs empty.

2.4.3 Proposed SVM1COMPpere-RFE Algorithm

T

Let X =(x,,...,x,,)" be a training set witly = (y,,..., y,)".
1. Construct a training modgl = X (;,s), wheres s the subset of variables; 1,2,...p.

2. Until all ICOMPegre values are obtained with the number of non-rankahbles,
computel COMPrerr based on the error rate obtained from SVM. IB@MPeegrr iS

given by
ICOMR,exe(i) = nlog 277+ nlog UA'(Z—i) +n+2G (iSTA_ cse- ) (28)

where 65_0 is the estimated error variance without tevariable andZ S

STA CSHE- ) i
the stabilized and smoothed convex sum covariaraeixmestimator without thé"
variable in the model.

3. Find the variablé with the smallestCOMPrerr, addk into the ranked subset,and
removek from subsets.

4. Repeat 1-3 until subsetjs empty.
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2.5 Numerical Results

In the data mining literature, data partitionirsgan important issue for finding
proper models for new datasets. In general oneusardifferent data partitioning to get
different results. Most of such data partitioninthemes do not take into account of
randomness that may affect the performance ofakelts which can be different. In the
analysis, to avoid partitioning dependency, thea datrandomly partitioned into 20% as
one set and 80% as another set based on Pareto@pl® (Pareto 1909). Two
experiments are performed with two different se2689%/80% and vice versa as
training/test sets. The variable rankings corredpanto kernel functions are determined

and reported for those different sets. Also, thalkst value of COMPperp and the 95%

confidence intervals (Cls) given b +1.964, , for the training and test errors are

rror error

reported. lonosphere and aorta datasets are usttefe experiments.

2.5.1 lonosphere Data

The ionosphere data are radar data which was taildzy a system in Goose
Bay, Labrador (Sigillitoet al 1989). The system measures radar returns from the
ionosphere. The data consist of 351 observatiods3dnvariables with binary classes;
good and bad returns. Figure 2 shows the scai¢s pf the data with groups identified
by blue (circle) and red (cross) colors. As showifrigure 2, the separation in dimension
5 against dimensions 13, 19 and dimensions 18y@9Quite poor. Tables 2 and 3 show
performances of experiments basedlG@MPpere In Table 2, the polynomial kernel

with degree 3 on the 20% set shows a narrower @endie interval than the other kernel
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functions for both training and test sets. As shawnTables 2 and 3, the smallest
ICOMPeere vValues are obtained with a polynomial kernel vddgree 3 for the 20% set
and the 80% set. Tables 4 and 5 show the besttssblgetion based on the smallest
ICOMPeere values. The training and test errors of the balssats in both partitioned sets

are within the 95% error confidence intervals.

l\ 1&

0.8 0.8
0.6 0.6
0.4 0.4

0.2 0.2

Dimension19
Dimension 29

Dimension 13 1 Dimension 18 1

Dimension 5

Dimension 5

Figure 2: Grouggchtter Plots for lonosphere Data
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Table 2: Top Subset Variables Selected 20% Set Using SVM-RFE Ranking

2.1}

Kernel Best Subset Best ICOMRF Training Error ClI Testing Error ClI
Linear {27,12} 121.14 [0.03046, 0.33089 [0.1228138356]
Ranking | {27,12,24,32,30,31,4,18,20,34,2,26,9,6,8284,25,7,5,22,3,29,17,15,21,23,10,1,11,33,19,13}
Cauchy {1-9,11-34} \ 87.61 | [0.08101,0.36773]  [0.2540.42540]
Ranking | {24,5,3,33,26,31,6,9,22,34,18,11,21,19,2325,25,12,30,29,13,2,28,20,1,8,16,27,7,14,17,10}
T;E')gr‘g;“:'g') {2-20,22-30,32-34} -47953.45 [0, 0.23670] [0.0615(B1593]
Ranking | {30,32,29,12,34,4,2,23,14,26,18,6,20,283@8,22,7,10,5,24,27,3,17,15,13,19,25,9,11,1,21,31}
Polynomial {2,3,8,12-
(degree=3)  14,18.20.22,24-32} -47957.44 [0, 0.14278] [0.10669, 0.21464]
Ranking | {3,14,24,26,13,28,2,8,20,30,12,18,27,32232,22,6,16,5,4,11,10,34,1,19,33,21,7,23,9,17,15}
Table 3: Top Subset Variables Selected 8% Set Using SVM-RFE Ranking
Kernel Best Subset Best ICOMRF Training Error ClI Testing Error ClI
Linear {7} 606.94 [0.09676, 0.23190] [0.09271, (626]
Ranking | {7,27,6,31,30,28,32,26,14,8,10,16,2,24,1841,3,20,22,34,29,13,25,21,9,33,23,17,1,12,5,15}
Cauchy {3} \ 441.65 | [0.02329, 0.20342] [0, 0.38375]
Ranking | {3,6,4,7,8,5,1,18,14,10,16,12,13,2,24,989,7,23,21,31,29,25,22,33,34,28,32,30,26,20,11,27}
Polynomial
(degree=2) {5,14} 454.56 [0, 0.13966] [0, 0.18645]
Ranking | {5,14,8,16,10,22,32,29,31,3,27,12,34,4,2226,25,19,15,9,17,13,33,24,21,28,11,30,6,18,
Polynomial
(degree=3) {5} 441.51 [0, 0.09553] [0.02858, 0.02696]
Ranking | {5,4,14,34,33,30,18,22,6,16,31,32,26,292@®,20,2,29,24,28,21,3,27,7,23,19,13,17,11,15,

1,9}
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Table 4: Subset Selection Based on IC@pAPwith 20% Set (Polynomial: degree=3)

Rank | Variable| ICOMPBeRe | Training Error| Test Error,
1 3 185.9418 0.2 0.19217
2 14 163.37627 0.2143 0.14235
3 24 125.94111 0.1 0.15658
4 26 185.42737 0.1143 0.15302
5 13 190.40902 0.0714 0.15658
6 28 158.21993 0.0571 0.21704
7 2 254.1286 0.1 0.16370
8 8 171.2137 0.0571 0.14591
9 20 123.1558 0.0286 0.14947
10 30 143.0001 0.0143 0.14235
11 12 -47854.79217 0 0.18861
12 18 48313.953 0.0286 0.17082
13 27 136.8903 0.0143 0.10676
14 31 273.9907 0.0429 0.13874
15 25 -47934.01 0 0.11744
16 29 201.188 0 0.13523
17 32 48348.9985 0.0571 0.17791
18 22 -47957.4425 0 0.17082
19 6 48366.0982 0.0571 0.1779/
20 16 96.5792 0.0143 0.18505
21 5 -47867.1294 0 0.15658
22 4 48260.6735 0.0143 0.1494]
23 11 -47852.16685 0 0.22420
24 10 196.314 0 0.15658
25 34 200.772 0 0.13879
26 1 48249.2818 0.0143 0.1459
27 19 -47847.3168 0 0.19573
28 33 185.951 0 0.12100
29 21 205.575 0 0.16370
30 7 204.57 0 0.21352
31 23 208.216 0 0.13879
32 9 188.548 0 0.17438
33 17 48266.37 0.0143 0.13874
34 15 -47870.13 0 0.15658

32



Table 5: Subset Selection Based on ICEp4Pwith 80% Set (Polynomial: degree=3)

Rank | Variable| ICOMPBRe | Training Error| Test Error,
1 5 441.5118 0.1708 0.1714
2 4 541.7953 0.0890 0.1143
3 14 698.4002 0.0676 0.1714
4 34 838.3473 0.0819 0.0857
5 33 717.6374 0.0605 0.1143
6 30 754.7581 0.0534 0.0857
7 18 752.3821 0.0463 0.1286
8 22 769.0320 0.0427 0.0857
9 6 772.8447 0.0391 0.0571
10 16 768.1328 0.0356 0.0857
11 31 697.4870 0.0249 0.0714
12 32 795.0805 0.0249 0.1143
13 26 834.1837 0.0285 0.0857
14 25 603.7533 0.0142 0.1571
15 10 950.3118 0.0249 0.0429
16 12 640.0070 0.0142 0.1429
17 8 717.9700 0.0107 0.1286
18 20 797.0560 0.0107 0.0429
19 2 679.8700 0.0071 0.0714
20 29 801.4970 0.0071 0.1286
21 24 911.7650 0.0107 0.1143
22 28 682.2560 0.0071 0.1143
23 21 907.2940 0.0107 0.0571
24 3 689.8410 0.0071 0.0714
25 27 911.3660 0.0107 0.1000
26 7 501.0110 0.0036 0.1286
27 23 994.9170 0.0071 0.1000
28 19 817.5010 0.0071 0.1143
29 13 612.9350 0.0036 0.0857
30 17 1008.7330 0.0071 0.0429
31 11 808.4890 0.0071 0.0714
32 15 623.0110 0.0036 0.0857
33 1 1001.9020 0.0071 0.0429
34 9 628.2170 0.0036 0.1143
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2.5.2 Aorta Data

The aorta data are from medical imaging for a stfdyeart tissue. Hardening of
the arteries is the leading cause of death andityeini the industrial world. Nuclear
magnetic resonance (NMR) imaging has a role inrdiamng of arteries for prognosis of
heart attack. The NMR aorta data was used by Paarlf986). The dataset sampled
from 418 patients on 20 different NMR image chagdstics. The first group consists of
194 patients who exhibited early atheroma, andgs#o®nd group consists of 224 patients
who were healthy. Figure 3 shows grouped scattetspior the poor separation of
dimension 3 against dimensions 13, 19 and agains¢rions 10, 20 (groupl: blue,
group2: red). Tables 6 and 7 show that the bestedulased ofCOMPrggrris obtained at
the Cauchy kernel in the 20% set and inverse multidratic kernel in the 80% set. The
confidence intervals are obtained basedl©®@MPerere The confidence intervals are
significantly narrow intervals in both of the sefables 8 and 9 show the best subset

selected based d6@OMPperr

Dimension 19
Dimension 20

Dimension 13 80 30

Dimension 3

Figure 3: @ped Scatter Plots for Aorta Data
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Table 6: Top Subset Variables Selected 2% Set Using SVM-RFE Ranking

Kernel Best Subset Best ICOMIRe | Cl for Training Error| Cl for Testing Error|
Cauchy {4} -57785.1 [0, O] [0, 0.00767]
Ranking {4,14,20,5,12,10,11,13,17,9,1,19,18,1623%15,7}
Gaussian | {14,13,12,17} 57071 | [0,0.11714] | [0, @23
Ranking {14,13,12,17,10,4,16,20,18,19,11,15,8,956372,1}
Polynomial
(degree=2) {4} -57679 [0, O] [0, 0.02696]
Ranking {4,15,10,11,9,6,18,2,8,14,7,1,16,13,12,39 20,3}
Inv. Multi
Quadratic {17,7,20,15} -57414.62 [0, 0.04342] [0, 0.24672]
Ranking {17,7,20,15,10,18,16,6,5,14,1,9,2,11,1213 4,19}
Table 7: Top Subset Variables Selected 8% Set Using SVM-RFE Ranking
Kernel Best Subsel Best ICOMER | ClI for Training Error| CI for Testing Errof
Cauchy {20,7,15} -228526.2 [0, 0.1254] [0, 0.26101]
Ranking {20,7,15,11,5,16,6,10,8,4,19,17,13,14,82 1,12}
Gaussian 23 | -229734.4 | [0, 0] | [0, 0.01033]
Ranking {2,17,7,10,9,16,6,15,8,20,13,14,1,11,3143,2,19}
Polynomial
(degree=2) {4} -229608 [0, O] [0, O]
Ranking {4,16,15,14,11,12,19,18,3,17,1,8,9,10,5,6320,7}
Inv. Multi
Quadratic {4} -229759.2 [0, O] [0, O]
Ranking {4,7,15,20,16,5,17,10,14,6,8,18,11,13,8,2219,3}
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Table 8: Subset Selection Based @&NMIB-errWith 20% Set (Cauchy)

Rank | Variable| ICOMPBeRe | Training Error| Test Error,

1 4 -57785.101 0 0

2 14 236.839 0 0

3 20 238.263 0 0

4 5 238.381 0 0

5 12 238.382 0 0

6 10 238.382 0 0

7 11 238.381 0 0.006
8 13 238.382 0 0.003
9 17 238.382 0 0.006
10 9 238.381 0 0
11 1 238.382 0 0
12 19 238.382 0 0
13 18 238.381 0 0
14 16 238.382 0 0
15 3 238.382 0 0
16 6 238.381 0 0.003
17 2 238.382 0 0
18 8 238.382 0 0.012
19 15 238.381 0 0
20 7 238.382 0 0
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Table 9: Subset Selection Based on IC@pPwith 80% Set (Inv. Multi Quadratic)

Rank Rank ICOMP:re | Training Error | Test Error
1 4 -229759.22 0 0
2 7 941.35 0 0
3 15 945.22 0 0
4 20 946.32 0 0
5 16 947.29 0 0
6 5 947.53 0 0
7 17 947.71 0 0
8 10 947.77 0 0
9 14 047.82 0 0

10 6 947.8 0 0
11 8 947.84 0 0
12 18 947.85 0 0
13 11 947.83 0 0
14 13 947.85 0 0
15 1 047.84 0 0
16 12 947.86 0 0
17 9 947.84 0 0
18 2 947.84 0 0
19 19 947.84 0 0
20 3 947.85 0 0
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2.6 Comparison with Other RFE Based Methods

To compare three different RFE based methods; S\R#;RSVM-Gradient-RFE,
SVM-ICOMP-ereRFE, the ionosphere and aorta datasets are usedhei same kernel
functions that are used in Tables 2, 3, 6, anch@é.datasets are randomly partitioned into
two cases; 20%/80% and 80%/20% as training/te®. S&bles 10 and 11 present
comparisons of three RFE based methods using tiespiere data with four different
kernel functions in two different cases. The averagrror rate represents the
misclassification error rate for the test set. BWM-ICOMPrer=RFE is the clear winner
for most kernel functions except the linear kerirelthe 80%/20% case. The best
performance is obtained using the Cauchy kernehéntwo cases with 88.12% and
93.28% accuracies. Tables 12 and 13 present cosopariof the three RFE based
methods using the aorta data with four differemnk&efunctions in two different cases.
As shown in Tables 12 and 13, the SVOPOMPrer=RFE is the best method for the
polynomial kernel (degree=2) with 99.99% accuracy the 20%/80% case, the
polynomial kernel (degree=2) with 99.88% accuracy the 80%/20% case, and the
inverse multi-quadratic kernel with 100% accuracy the 80%/20% case. Figure 4
shows line plots of error rates for the test séhwie Cauchy kernel function, which
gives smallest average error rates using the idrevspdata shown in Tables 10 and 11.
Figure 5 shows line plots of error rates for thet teet with the polynomial kernel
(degree=2) and inverse multi-quadratic kernel fiom&t, which give smallest average
error rates using the aorta data shown in Tablead@ 13. The SVMCOMPrereRFE

is competitive with both SVM-RFE and SVM-Gradien®&R as shown in Figure 4. Also,
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SVM-ICOMPrereRFE outperforms SVM-RFE and SVM-Gradient-RFE  witbwf

variables as shown in Figure 5.

Table 10: Comparison Using lonosphere Data with /30%

SVM-RFE SVM-Gradient-RFE SVM-ICOMRRrrRFE
Average . Average . Average .
Error Rate Time(sec.) Error Rate Time(sec.) Error Rate Time(sec.)
Linear 0.22273 137.98 0.19552 117.39 0.19510 877.81
Cauchy 0.16381 422.00 0.1614( 155.58 0.11880 907.72
Polynomial | g 19995 | 22636 | 0.18903]  158.59] 0.17522 | 887.28
(degree=2)
Polynomial
(degree=3) 0.21572 231.63 0.21195 158.78, 0.18830 970.72
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Table 11: Comparison Usiagdsphere Data with 80%/20%

SVM-RFE SVM-Gradient-RFE SVM-ICOMRR-RFE
Average . Average . Average .
Error Rate Time(sec.) Error Rate Time(sec.) Error Rate Time(sec.)
Linear 0.15546 1166.61| 0.15420 1095.47 0.16177 13352.33
Cauchy 0.08908 3557.66 0.09454 1280.13 0.06723 17755.05
Polynomial 1
(degree=2) 0.16933 1882.02 0.13445 1192.17 0.13277 16334.36
Polynomial ]
(degree=3) 0.17941 1679.30 0.15840 1228.61 0.13656 14771.78
Table 12: Comparisasirig Aorta Data with 20%/80%
SVM-RFE SVM-Gradient-RFE SVM-ICOMRRrrRFE
Average . Average . Average .
Error Rate Time(sec.) Error Rate Time(sec.) Error Rate Time(sec.)
Cauchy 0.00374 388.38 0.13488 144.78 0.0488( 480.70
Gaussian 0.05749 337.89 0.13084 143.44 0.10195 534.39
Polynomial
(degree=2) 0.05404 126.20 0.11033 114.31] 0.00015 980.63
Inv. Multi 0.02784 | 327.25 0.12590 128.97 0.05434 496.58
Quadratic ' ' ' ' ' '
Table 13: ComparisonngsAorta Data with 80%/20%
SVM-RFE SVM-Gradient-RFE SVM-ICOMRrrRFE
Average . Average , Average ,
Error Rate Time(sec.) Error Rate Time(sec.) Error Rate Time(sec.)
Cauchy 0.01548 4159.63 0.07738 1151.69 0.04167 8501.92
Gaussian 0.02083 4141.45 0.06310 1361.56 0.03393 12093.58
Polynomial | 003095 | 1235.92| 005000,  1086.34 000119 | 9572.74
(degree=2)
Iv. Multi | 53959 | 437267 | 0.06845 143259 0 8743.09
Quadratic
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Chapter 3 Dual Variables Functional
Support Vector Machine and Modified

Floating Search Based Variable Selection
3.1 Introduction

Secondary batteries have become an essentialfgaottable multimedia devices
such as mobile phones, camcorders, and compukensng a number of secondary
batteries used in the current market, lithium-ioattéries have overcome several
weaknesses of traditional nickel cadmium (Ni-Cdy amckel metal hybrid (Ni-MH)
secondary batteries, such as heavy weight and tpadtéar pollution. Further, due to their
demonstrated excellent energy density and cyatepdrformance, lithium-ion batteries
have taken the largest part of commercial marketspbwering high-end electronics
applications (Broussely and Archdale 2004).

In the mass production stage of secondary battetisscrucial to assure product
quality within a limited time. Cycle-life, which @irectly related to the battery life, is one
of the major characteristics to be monitored. Eatain of the cycle-life requires a lot of
charge/discharge cycles, thus it is a very timesoaring task. This has caused a major
difficulty for battery manufacturers to reduce pumotidevelopment time. For this reason,

a more time-efficient method for assessing theeslitdé of secondary batteries is needed.

42



In this chapter, a new time-efficient method isgmeed to assess the quality of
secondary batteries where their cycle-lives argestilio monitoring. For this, a dual-
variables functional support vector machine (FSVMBs developed to minimize the

errors in discriminating between the conforming andconforming batteries.

3.2 Motivating Example

A lithium-ion battery is composed of four basicrebnts: the cathode (positive
electrode), anode (negative electrode), electrobgkition, and separator. While the
battery is being charged, lithium-ions from thehcate leaving it with a net negative
charge are forced onto the anode giving it a pasitharge. During the discharge, the
ions flow in the opposite direction, from the anddehe cathode. Because such reaction
is reversible in the secondary battery while imgmesin the primal battery, secondary
batteries are capable of being recharged and rayséd hundreds of cycles (one cycle
represents one charge/discharge). Basic performarica lithium-ion battery is
characterized by its capacity, which is generalgfimed as the amount of charge
available expressed in ampere-houfh)( Cycle-life is defined as the number of
complete charge/discharge cycles before its nomaagdacity falls below the pre-
specified value of its initial capacity. Althoughis desirable that the battery retains the
initial capacity as much as possible during usage,tthe capacity is subject to decrease
through repetitive charge/discharge cycles. Rekdasties to improve the cycle-life have
attracted a lot of attention (Johnson and White81®roussely and Archdale 2004).
Figure 6 shows the remaining capacities of 43 battells as the cycle proceeds. They

were randomly selected from the manufactured latséveral months. In the cycle-life
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tests for qualification, each sample is subjeatteck whether or not its capacity reaches
to a fixed threshold during a specific number afleg. The requirements of the threshold
level and the number of cycles are generally pterdéned based on the industry
standard or customer requirement. For instance, Bdvanced Battery Consortium
(USABC 1996) defines the threshold value as 80%tsofnitial capacity during 600-
cycles for electrical vehicle batteries (given 28 during 400-cycles here). Then, the
battery cell is classified as either a conformimgaanonconforming cell according to its
requirement.
As shown in Figure 6, the capacity degradation &dgpical nonlinear trend:

capacity degrades sharply during some initial gyc&d then the degradation rate

100
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Figure 6: Remaining Capacities of Selected BatBamples during Cycle-Life Tests
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becomes relatively slow. In recent years, much#te has been placed particularly on
relating observed phenomenon with state-of-art yaimltechniques. It is commonly
recognized that such capacity degradation is acaaieg by loss of active lithium ions
and an increase in the internal impedance of tlierdya Both of them presumably are
caused by an electrochemical parasite reactiono(Blet al 2001; Wright and Motloch
2001; Sikhaet al 2004; Yoshideet al 2006; Ninget al 2006). Because each cell in
Figure 6 has possibly experienced different souafegariation during fabrication, its
capacity degradation is slightly different. Nevetdss, some degradation paths show
catastrophic drops in the end of cycles, leadingréaucts of poor quality.

It usually takes a long time to finish the wholé sktest cycles specified in the
requirements; for example, 400 cycles require astléifty calendar days. Because such
long testing spans have been impeding efficientaifmn of manufacturing lines, battery
engineers have struggled to devise various waysdoce the test duration. However, if
one determines the acceptability of a lot with arsr cycle, more risky decisions may
be made. Figure 7 shows separate distributionseofémaining capacity for conforming
(26 cells) and nonconforming (17 cells) battery gla®s at some fixed cycles. Note that
the boundaries between both groups are not distenat relatively short cycles; even the
mean capacity of nonconforming cells is larger thhat of conforming cells. It is
practically impossible to visually discriminate Wween the conforming and

nonconforming cells with this short testing duratio
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Figure 7: Box-Plots of Remaining Capacity at Sonyel&s

This facilitates introduction to a support vectoachine (SVM). As the latest
classification technique exploited in the data-mgnfield, the SVM separates a given
data set into several groups based upon a certassification rule. Because of its
excellent classification performance and lastingpgpess from a methodological
perspective, the SVM has been found in many usedplications (Burges 1998). Making
full use of such a state-of-the-art method, a sopeule can be expected in some sense
to discriminate conforming cells from nonconformiogjls even with shorter cycle data.

In this study, the number of cycle runs is assutodzk a continuous variable.
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3.3 Dual Variables Functional Support Vector Machine fa

Classification of Cycle-Life Curves

Functional SVM (FSVM) is an extension of SVM to @lional data generated by
a number of individuals repeatedly in a regularugege, in which each observation
reflects a smooth variation in input data. In s@aese, the FSVM can be considered as a
generalization of SVM with respect to the type aftad structures (Jank and Shmueli
2006). Figure 8 shows the procedure of the duaklbes FSVM. Dual-variables FSVM
uses both first and second derivatives for dataesgmtation. In addition, a modified
floating search is proposed to reduce the communakitime in the iterative variable

selection.

Data Fepresentation
with 1% & 2" Dervative

}

Feature Selection Using
Modified Floating Search

}

Claszification of Cycle-Life
Curves Uzing 3V L

Figure 8: Flowchafthe Dual Variables FSVM
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3.3.1 Data Representation with the First and Second Deratives

Data representation for functional structures ise aof the key issues in
implementing the FSVM. Rossi and Villa (2006) preed various types of data
representations, such as derivatives, waveletsFandier representation. Ramsay and
Silverman (2005) claimed that much of the variati@tween curves can be explained at
the level of certain derivatives. For this reaseven with its own simplicity, functional
derivative representation showed successful resulteany studies (Ferraty and Vieu
2003; Rossi and Conan-Guez 2005). Figures 9a andh®lv the first and second
derivatives of degradation curves of Figure 6 &@wkycles, respectively. In some cases,
a combination of the derivatives with different ersl may lead to better classification
performance. Figures 9c and 9d show the potentialttie early discrimination of
defective lithium-ion batteries using the dual abfes of first and second derivatives.

The derivatives can be calculated using a B-splde Boor 2001) approximation to

avoid numerical stability problem of direct comgida. Let{B, B, ..., B} be the B-
spline basis wherep stands for the number of knots. Then, i derivative of
discretized curvey, :{yi(tl), y(), -, y(@ )} for observed number of cyclés can be

approximated by

p
990t =>6 B (Y), (29)
k=1

where¢ :(él,éz,---,f;p):(argmini{ V-3 5(;)} |

ol,--»,cp)DDp i=1
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3.3.2 Variable Selection Using Modified Floating Search

Because a dual or multiple data-representatiortstieéigher-dimensional space,
a variable selection technique is needed to redibeedimension. The main idea of
variable selection is to find a proper subset g@uinvariables by eliminating variables
with redundant or meaningless information. Heavsnpoting often follows, due to the
iterative process for finding the proper subsetloating search technique is an excellent
method to guarantee a near optimal subset withoptahaustive searching (Pueil al
1994).

For the given cyclg, variable selection is conducted to search fordpegmal
variables that have the highest separability betvike good and defective batteries, and
repeat for the next cycle-1. There is a high possibility of redundant itemas because
the existing algorithm is repeatedly applied toiEiminput data set as the observation
period prolongs. a modified floating search aldontis proposed so as to staith the

best variables set of cyclg—-1) at cyclet . The detailed procedure for the iterative

variable selection is explained in Figure 10. Aallgence is calculated and compared to
find the best subset af variables from a given set @& variables(l<d <G) in the
SFFS process. Divergence is one of the popularaifor class separability. It takes into
account the correlation that exists among selecteidbles and influences classification
capabilities of the selected variables. Assummdimensional multivariate normal

distribution, the divergence between a clasand j is given by (Fukunaga 1990)

3,) =5 trace] (£ + X7~ )~y )]+ trac§ (57 + 573 -57)] (30)
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wherep, and X, are the mean vector and covariance matrix of ¢lasspectively. Then,

the best subset dfvariables is chosen to maximize the divergenceevalu

Suppose that the observed number of cycles andedasumber of variables are
given byt , andd, respectively. Further, lef (t,) andS,(t,) be respective sets of
available and selected variables for gitgrandd . In the SFFS process, new variables
from A (t,) are included in the currei@,(t,) and successive steps follow to exclude
the worst variables in the newly updat8g(t,), provided further improvement can be

made to the previous set (Puelilal 1994).

3.3.1 Dual Variables FSVM-Based Detection of Defective lthium-lon Batteries

with Degradation Curves

Given a subset daf variables, dual-variables FSVM is applied to detkfective
lithium-ion batteries based on degradation cur¥ée SVM finds the optimal separating
hyperplane that maximizes the margin between tagsek (Vapnik 1995). Consider the

case of classifying a set of linearly separatintadato two groups. Assume a set of
training data is given byM :{(yl,zl),---,@n,4)} where y, is an input vector,
z, J(-11) is a binary class index, amdis the size of training data. Then, a decision

boundary (i.e. classifier) that partitions undertyivector space into two classes can be

represented by the following hyperplane:

w'y+b, =0 (31)
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where w is the weight vector and, is the bias. The objective of SVM is to find
maximum margin decision boundary between two palrdlyperplanesw’y +b, =1
andw'y +b, =-1. Since the margin is given &/ ||w || the corresponding optimization
problem can be written as (Vapnik 1995)

Minimize %||w||2 +ci<ﬁ
i=1

zw'y, +h)21-¢, i=12,..n (32)

subject to )
&2 0i=12,.n
whereé, is positive slack variable and (>0) is a pre-designated weight. The linearly

constrained optimization problem in equation (32) de solved in a dual problem that

maximizes the following Lagrangian function:

n 1 n n
L) =20 =522 44220, (33)
i=1 i=1j=1
Subject to the constraint
D&y, =0, 0si <C,i=12:-n (34)

i=1

The Lagrange multipliefs’s can be estimated using a quadratic programmiathoal.
Once the optimum value.',b_ ) are found based upon the training set of pointeva

point y° of the test data set is classified by the follayvitecision rule:

Class 1 i ¢°[M =3 N zyly’ +h' <
y'O (35)
Class 2 i ¢°|M =Y Azy/y +h > C
i=1

where W(s

M) is a classifier based upon the training datavset
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Optimal subset size” and corresponding variables at a given numberycies

t, are determined such that classification accurdcth® SVM is maximized. Leave-
One-Out Cross Validation (LOOCV) is used to esten#tie classification accuracy,

which gives proper measure when there are limigaldes. At this time,d” is given by

. 18 i
d :argmakZI[lPsa(b){yJM( )} Z} (36)

whereM ™ is the original input data witfy,;,z) removed,S;(t,) is the best subset of

d variables at,, W. {
Sd ()

M ('”} is a classifier obtained from implementing SVM twit

S, (t,) on the training data skt , I[a,,a,] =1 if a, =a, and 0 otherwise.
3.4 Motivating Example Revisited

The proposed method was applied to 43 sample cuPgesurves of conforming
samples and 17 curves of nonconforming samplesordler to see how flexible a
combination of the derivatives having different ensl was, the changes in optimal
variable sets were observed. For example, Tablehts each set of selected variables
(d =10) at 20 and 50 cycles. There is no second derwativthe list for 20 cycles (No.
1~20: £' derivative, No. 21~40:"3 derivative) and, on the other hand, 4 of 10 véeisb
are second derivatives on the list for 50 cycles. (IN-50: i' derivative, No. 51~100:"2
derivative). It implies that the functional clagsition using the first derivative only may
be successful for the data of the initial periodt may not be effective for the wider
range of the observation period. The computatitings for selecting the best subset of
variables @ =15) using the existing and modified SFFS algorithmes summarized in
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Figure 11. A computer with Pentium IV 3.6-GHz preser and MATLAB 6.5 as the
programming language are used. As expected, therithigs found the same best
variable sets but the existing algorithm requiretbrager computational time than the
modified one, particularly at the longer cycle tinkggure 12 shows error rates produced
by applying the dual-variables FSVM to discrimindietween the conforming and
nonconforming cells. During the classification pedare, if the error rate at the current
cycle run is greater than the one at the previtages then the current error rate is set to
the previous value. Therefore, the error rate hagaotonic non-increasing function of
cycles. Further, the error rates are compared thite values of the cases where either
1% or 2' derivative is solely employed. The proposed methives better performance
than the others. Note that one may have tolerabte mtes even with heavily truncated

number of cycles (e.g., 20 cycles).

Table 14: Changes in Selected Variables Sets (* Second &ére)

Cycle Runs Number of Selected Variables
(d =10)
20 7,2,12,10,15,9,4,14,17,6
S0 7,2, 74*%, 75*% 12, 73*, 76*, 10, 15, 9
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Chapter 4 Two-Stage Classification
Procedure Based on Multi-Scale Vertical
Energy Wavelet Thresholding and SVM-

Based Gradient Recursive Feature

Elimination
4.1 Introduction

Near-infrared (NIR) spectroscopy has been usedsixtely in many areas as a
fast, reliable, cost-effective, and non-destructmeasurement method (Kalivas 1997).
NIR data often consist of several hundred to sohwmeidand variables (wavelengths),
where different parts of the spectrum are corrdlatgh each other. Considering both the
high-dimensionality and the redundant nature of MHRa, it is necessary to reduce the
dimension of the data for the subsequent processidgo select a few wavelengths that
better explain the data.

Variable selection is an important problem in maehiearning (Bradlet al
1998) and is the process of selecting input vaemlthat are most predictive of a given
output. Variable selection identifies a small swbsk variables so that the classifier
constructed with the selected variables minimizesreand better explains the data

(Koller and Sahami 1996). Benefits of variable sete include reducing computation
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times, providing better discriminating hyperplarsesl giving a better understanding of
the data.

Wavelets are popular as preprocessing tools fatspedata (Chaet al 1997).
Usually variable selection is based directly orhhigmensional wavelet coefficients and
this can be computationally expensive (Staszewd8B;1 Subramani 2006). This chapter
proposes a two-stage scheme for the classificatfidfiR spectral data. In the first stage,
the dimension of high-dimensional spectral dateeduced using a multi-scale vertical
energy thresholding (MSVET) procedure. In the sdcstage, a few important wavelet
coefficients is selected using SVM gradient-reatgdeature elimination (RFE).

In order to reduce the dimension of spectral datay thresholding techniques
have been used, including the shrinkage method dbowrand Johnstone 1995), Stein’s
unbiased risk estimate (SURE) method (Donoho anbnsione 1994) and the
approximation minimum description length (AMDL) rhetd (Saito 1994). However,
these technigues were designed for de-noising pesalungt al (2006) proposed a
vertical-energy-thresholding (VET) procedure foe thata reduction of multiple data
curves. The VET procedure does not consider thenmdtion scale of wavelets, which
includes different types of information for decisimaking. A multi-scale vertical energy
thresholding (MSVET) procedure is proposed. It datees an optimal threshold for
each of the scales by extending the idea of the pi©€edure.

Recently, several researchers developed variabéet®m methods based on
support vector machines (SVM) (Rakotomamonjy 2008stonet al 2003; Mao 2004).
Kernel-based methods including SVM are fast becgnmstandard tools for solving
various problems. Guyoet al (2002) proposed SVM-RFE for the selection of geime
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micro-array data. The SVM gradient-RFE procedur@pplied to identify a subset of
predetermined size of all variables available fmtusion in the support vector classifier.
In the proposed two-stage scheme, the MSVET wawaslalysis performs noise
suppression and data reduction of high-dimensicectsgl data. SVM gradient-RFE
variable selection identifies an optimal subsetcompressed wavelet coefficients for
classification. Performing variable selection ie thavelet domain on reduced-dimension
NIR spectral is expected to yield more reliablessification accuracy, with higher
computation efficiency, than handling the full setsioisy data. The performance of the

proposed method is demonstrated using four NIR skt

4.2 Backgrounds

4.2.1 Wavelet

The wavelet transform can be used for multi-seadelysis of a signal through
dilation and translation, so it can extract timegluency variables of a signal effectively.

For orthonormal bases, the scaling and waveletimms are selected as:
A0 =2"¢@2't-k), L kOZ (37)
W, =2"y@'t-k), j2LandjkOZ (38)

Approximation and detail of a signal can be corterd as an orthonormal basis and then

the signal function is:

f(t)= zaL,k(”L,k t)+ szj,kwj,k ) (39)

=L k

wherek [Jall the possible integer value$,0 L*(0)
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The coefficients can be obtained by the followingations:

a, = [ f @, @)dt
; (40)
d, = [ f O, @)t

0
wherea,_, is the coarse level coefficient (described as theather signal) andl, , is the
finer level coefficient (described as the finemsl.
Let the data sety =[y(t), Y(t,),":-, Y({)]" which come from the signalf(t) at
timet,,i =1---,N. Then, the discrete wavelet transformyofs described as:

d=Wy (41)
where W is the orthonormal DWT matrixNxN and d=(a ,d_d,,, -, d,) are

N x1wavelet coefficient vector. The wavelet coeffitciehdescribed as approximations

(a, ) and details ¢, ) of signals that are determinedc" .

4.2.2 Support Vector Machine

The main goal of SVM is to determine a hyperplangictv minimizes the
empirical classification error by maximizing theswince (i.e., margin) between the
separating hyperplane and the data (Vapnik 19958MM, input data are first mapped
into a high-dimensional feature space where ann@btidecision function can be
obtained. As shown in Figure 13, an optimally-sapag hyperplane is found which

maximizes the margin.
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Figure 13: An lllustration of SVM for Two-Class Sepgtion
This decision function satisfies inequality coastts
Y, (Wd(x;)+b)-1=010;. (42)
The optimal decision function is obtained by miring 1/2|w|*with constraints
(6). Non-separable problems are solved by introdué, and Lagrangian
L=1/2w| +CX& - S aly, (wd(x,) +b) -1+ E] - & . (43)

Instead of this quadratic programming problem, aesponding dual problem is

preferred because it is easier to solve, whiclivergby

Ly =20 -2 aa,y,y,®(x)P(X;) . (44)
The solution is obtained as=) a;y,®(x; , Where this calculation is executed for
support vectors witlr, > OHere dot products can be replaced with a keunmattfon
(called a kernel trickK (x;,x;) = ®(x;)®(x; YMduller et al 2001). Training SVM is
to find «;, b, and support vectors with given kernel functiomapaeters andC. The

use of a kernel functioK(x;,x;) allows the computation of dot products in a

nonlinear feature spack, without the use of nonlinear mappings. By replgcin
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canonical (Euclidean) dot products fnby a kernel function, the execution of the
nonlinear mappings and the dot product§ ibecomes unnecessary. Commonly used

kernel functions include a radial basis function BR

K(x,x,) = exp|x - x| /o) and polynomialk (x,,x;)=(x, X,) functions.

4.2.3 Support Vector Machine Recursive Feature Eliminatio

The variable selection method of SVM-RFE (Guyeh al 2002) is an
application of a recursive feature elimination lthsen sensitivity analysis for an

appropriately defined cost function. In the line&ernel case, define a cost
function J = (1/2)|w| . Then the least sensitive variable, which has mfi@imum
magnitude of the weight, is eliminated first. Thigninated variable becomes ranking
The machine is retrained without the eliminatedalde and removes the variable with
the minimum magnitude of weights. This eliminatetiable becomes rankingl. By
doing this process repeatedly until no variablefis | can rank the variables.

Given training instancesX,, =[x,,...,x, Jwith class labelsy =[y,,...,y, |
initialize the subset of variables= [12,...,n] andr =[]. For the linear kernel case, repeat
(i) through (v) untils becomes an empty array:

(i) Construct new training instanceés=X_,(:,s )
(i) Train SVM(X, y) to obtaing(x)
(iif) Compute the gradient = 0g(X) =2 ., @; Vi X

(iv) Find the variablé with the smallestv, f =argmin(w|)
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(v) Updater and eliminate the variabfdroms: r =[s(f),r],s=s—{s(f)}.
For general kernel cases, let us define a costibamc
J=(1/20'Ho-a'e (45)
where o is a vector with Lagrange multiplier$],, =vy,y, K(x,.x,), ande is an |

dimensional vector of ones. To compute the changkdaused by the removal of the

variablei, it is assumed that there is no change.imhus

H(=Dne = Yy KX 1(=1).x (1)) (46)
where (i) indicates that the variablehas been removed. As a result, the sensitivity
function is given by

DJI(i) = J - J(-)

; o (47)
=(1/ 2} Ho— (L/2u"H Ei

The SVM-RFE algorithm for general kernels is toeafp(i) through (v) untis becomes
an empty array:

(i) Construct new training instancés= X, (:,s )

(i) Train SVM(X, y) to obtaina

(iii) Compute the ranking criterioBJ (i) = (1/2)o'Ho— (1/2p"H i

(iv) Find the variablé such thatf =argmin, DJ(i)

(v) Updater and eliminate the variabfdroms: r =[s(f),r],s=s—{s(f)}.

4.3 A Two-Stage Classification Procedure for Spectral Bta

This section proposes a two-stage scheme for #ssification of spectral data.

The proposed method incorporates wavelet-basedrquegsing with SVM gradient-
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based variable selection. Figure 14 shows a schenoétthe proposed two-stage
framework. As shown in Figure 14, it can be decosegointo two stages, namely, a
multi-scale vertical-energy-thresholding (MSVET)skd data reduction and SVM
gradient-recursive feature elimination (Gradient=pbased variable selection.

The proposed MSVET wavelet transformation can ektugeful information in
compressed wavelet coefficients and thus can be tasperform noise suppression and
pre-processing of spectral data effectively. A sehigc diagram of the proposed MSVET
method is shown in figure 15. The proposed SVM igmteRFE variable selection
enables us to identify an optimal subset of conga@svavelet coefficients so that the
classifier constructed with the selected wavel@ffatients minimizes the classification
error. In addition, the use of this concentratddrimation, instead of the full spectra, for
the classification of high-dimensional spectraladiatexpected to improve computational

speed significantly.

Compressed
Wavelet
Coefficients

Raw Wavelet-based SVM-based Selected

Spectra —» : — g —  Wavelet
Data Pre-processing Feature Selection Coefficients

Proposed MSVET Proposed Gradient-RFE

Figure 14: A Schematic of the Proposed Two-StagenEwork
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Figure 15: A Schematic Diagraithe Proposed MSVET Method

4.3.1 Mulii-Scale VET-Based Wavelet

Wavelet thresholding methods are powerful tools d@-noising (Donoho
1995). The objective of these methods is to esenamtwide class of functions in
smoothness spaces from noisy data. The wavelehitpeh is effective because the
energy of a smooth function is often concentratedesv coefficients while the energy of
noise is still spread over all coefficients in thavelet domain.

For the givenM spectral data, the vertical energy of each wavaefficient
can be defined by

sd2+di4 ... +d2. . (48)

de

The original VET method of Jungt al (2006) minimizes the overall relative

reconstruction error (ORRE) to determine the tho&skialuel

S E[Ildy, @1 (i A5 IF S EDN (K o2 IF
ORRH)) = = : + It N (49)
> Elld,, ]
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However, the VET procedure does not consider théesoformation of wavelets and a
fixed threshold value is obtained for each scalenethough each scale may include
different types of information for further decistomaking. A multi-scale vertical energy
thresholding (MSVET) procedure is proposed. It hadifferent optimal thresholding
value for each scale by extending the idea of ti€rl \procedure. In the MSVET

procedure, the multi-scale overall relative recargdion error (MSORRE) is defined as

follows:
S effo.a-1gal >0 |
MSORREA,, AL, . ., o)== 12 U ”
2 JZ; E{"du | } (50)
HETCIED

i N-27t

Here d;; =(d;;,d;,,..,d;y) and Hdij H2 =d’ +d%+...+ ¢y , whered; represents the

wavelet coefficient at th¢"" wavelet position of the™ scale for theM™ curve. The
following Lemma 1 shows that an optimal thresh@del for each scale depends on the
vertical energy of each scale of the signal. TheVHE¥ is compared with existing
wavelet thresholding methods in Appendix Al, anel thbustness of MSVET is shown
in Appendix A2.

Lemmal

The objective functioMSORREL,), i =L, ...,J, is minimized uniquely ak, =, where

> el

[ 2i +J-2L
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Proof of Lemmd

Denote

Ay )= E{HI(HdU [ <n)d H}= e{1dd [ <2le [}=liey <2)w} =Iuyufcjy)py
0,0)={1fa [ >3} =pdla [ >3 } =Py >1} 1T 5 0o

where, f;(y;) is a non-central chi-square density Yf. Then, the first term in the

formula of MSORRE can be represented as

EHEL E{Hdij @-1 d‘dij Hz >\ ))Hz} = gHjZ:L E{qu Hz I(Hq]. H2 <) )} :§i+§L/}) )

And the MSORRE can be rewritten as follows:

S 2 2 J i+J-2L )
22 E{Hdu -1, >’*”H} >Y g{ida,[ =)
== 1= L =
e | ijstEmmﬂj ’ | N =27t
d i+J3-2L - J i+3-2L
PO RSN IR A
—_i=t i= gt =l
>yefar} M
i=L  j=1
Because ]

0[1—]1 f, (y; )dy J

6‘P|j (}LI ) — =—f. (67\, ) <0
o\, o\, o
and
iAI): 0 =4 () =\ ”('X
o, o, o

67



The thresholding value can be obtained from thievehg property give by

OMSORREA, A . - ., Ay)
o,
J i+J—2Lal.|J__ ()\,) 1
(550
i < - a}\q J i+J-2L P a[_pl(}\/l)
= > E{||dij||} A
i=L  j=1 i
J i+J-2L .
p L[N0
N _2J_L i=L j=1 a}\.l

J i+J-2L
N O L1 ( "”’”"“)j:o
i=L  j=1 o\,

. ) 1 J i+J-2L 2
if and only if A, :WZ > E{Hd” H }

i=L  j=1
4.3.2 SVM Gradient-RFE Variable Selection

The SVM Gradient-RFE combines two existing variaBkdection methods:
SVM-RFE and SVM Gradient (Guyoet al 2002; Hermes and Buhmann 2000). The
new method has the merits of these two methods$ slmould be competitive to SVM-
RFE in terms of prediction accuracy while maintaghspeedy computation. The SVM
Gradient-RFE uses the gradient for variable selactriteria, but in order to give a
ranking for all the variables, the machines armé@ using all the variables, and then the
variable with a minimum angle is eliminated. Thekiag of this eliminated variable then

becomes. The machine is then trained without the elimidatariable, and the variable
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with the minimum selection criterion is eliminatebhis eliminated variable becomes
rankingn-1. By recursively eliminating all the variablesieoranks the variables.

The time complexity of the SVM gradient-RFE algiom can be analyzed as
follows. The training time complexity of SVM is knm to beO(max(,n) min(,n)?),
wherel is the number of samples ands the number of variables (Chapelle 2007). The
computation in each iteration of the algorithm ésrgnated by the step (i) SVM training,
which hasO(max(,n) min(,n)? time complexity. Suppose #l. Then the total time
complexity of the algorithm i$n? + I(n-1)? +...+ 122 + 112 = O(In®. Similarly, | have
O(1°n?) for the other case. One can combine these twesaasing the min operator and
this leads to the time complexity ©{In?> min(,n)) for the SVM gradient-RFE algorithm.

The SVM gradient-RFE algorithm can be summarizedfa@®ws. Given training
instancesX,, =[x,, . . ., X, |" with class labelsy =[y,, . . ., y]', initialize the
subset of variables= [12,...,n] andr=[]. For a given kernel function, repeat (i) thrdug
(vii) until sbecomes an empty array:

(1) Encode training instancesXas X, (:,s )
(i) Train SVM(X,y) to obtaing(x)

(i)  Compute the gradierifig(x) = >’ yO K(x,x), OxO SV

iosv a;

(iv)  Compute the sum of angles betweég(x) ande, y;, =1, ...,

yj = mesvD(Dg(x)’ ei )

where D(Dg(x),ej) = minﬁD{O’l} {,Bﬂ'+ (_1),8 arCCOE<D”gD(gX()XjT >}}
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(v) Compute the averages of the sum of the angles

2 YV
=1-— ]
© T[SV

(vi)  Find the variablé with the smallest;, j=1, ..., |§: f =argming; )

Updater and eliminate the variabfdroms: r =[s(f),r],s=s—{s(f)}.

4.4 Results

In this section the proposed framework is demotedrasing four NIR data sets.
The four datasets are chosen to evaluate the fatasi®in accuracy and computational
efficiency of the proposed method. For this purpdbe four datasets are divided into
two groups: two popular public datasets with rgklii small number of variables and the
high-dimensional datasets obtained from real prablEhe classification performance of
the proposed two-stage classification method ispayed with those of four traditional
one-stage methods including an operations resdmsbd (OR-based) variable selection
(Fung and Mangasarian 2004). SVM-RFE, gradient-Rt#Eh RBF kernels, linear
kernel-based method and the OR-based method adefarseomparison. These methods
are different from the proposed two-stage framewottkat all the variables available are
used for classification without multi-scale VET-bdspreprocessing. Specifically, the
idea of the OR-based variable selection is to seggpmput space variables using a fast
Newton method and linear programming formulatiorarigbles are ranked by the

magnitudes of the coefficients of the linear dexrisiunction obtained from the method.
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In addition, computational efficiency is evaluatessed on run time needed for each of

the methods.

4.4.1 NIR Data and Implementation

The real NIR data were obtained from two wood puotslu(referred to as
Example 1 and Example 2) and were collected torohete whether each of the two
wood products (Douglas-fir and Spruce) were treabsd a specific, proprietary
preservative. This is a two-class classificatioobpem where the preservative of interest
should be distinguished from other competitors wstimilar ingredients (Taylor and
Lloyd 2007). The public data of Example 3 measunsogbance of finely chopped meat
samples (Ferraty and Vieu 2006). The NIR data ohrBple 3 are divided into two
classes based on a fat content of a meat sampléesmalarger than 20%. Example 4
represents wheat NIR data, which are divided imto tlasses, namely, low (<14.5%)
and high (>14.5%) moisture content (Kalivas 1997).

Multi-scale VET wavelet was implemented using MATBAThe MathWorks
Inc., Natick, MA) and WavelLab version 8.02. For thgolementation of the proposed
SVM-based gradient-RFE method a SVM MATLAB toolbe¥as used, which is
available at http://www.isis.ecs.soton.ac.uk/reses#svminfo/. All computations for this
study were done on an IBM compatible PC with aellRentium IV CPU running at 3.6

GHz with 1GB RAM. The family of Symmlet-8 was uded all NIR spectra.
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4.4.2 Results of Two Real Data Sets

The Douglas-fir NIR data consisted of 360 instanats 2,151 wavelengths.
The data is randomly divided into training (288 etvations) and test (72 observations)
data sets. The data sets were treated by paddingyitfinal signal into the nearest dyadic
length, which are done by zero or linear paddingedeling on the problem of interest.
Thus prior to performing multi-scale VET-based waveanalysis, a zero padding was
applied to the Douglas-fir data so that 2,151 wengihs were reduced to 2,048 {32

The Douglas-fir NIR data were preprocessed by apglyhe proposed multi-
scale VET-based wavelet for a compression and d@agoof the high-dimension data.
Figure 16 shows the comparisons of the original ddastfir NIR data and the
reconstructed ones using the multi-scale VET promedhat uses only 410 wavelet
coefficients among 2048 wavelet coefficients. Asi dae seen in this figure, the
reconstruction seems to be quite successful bedheseeconstructed data can capture
most of important patterns such as peaks and atiEgpectra.

Table 15 shows classification accuracy for the Dasfjir data using the five
different methods. Here the bold numbers underliregesent the maximum accuracy
for each column. Overall, the best classificationuaacy is obtained from the proposed
method: 99% classification accuracy using only d8iables. This implies that the set of
37 variables is enough for the classification ahd other non-selected variables are
either irrelevant or redundant. On the other hamel other methods to be compared have

lower classification accuracy even though they usede variables. For example, the
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gradient-RFE method achieved 96% classificatioruezy using 139 variables, whilst
the SVM-RFE method achieved 93% accuracy with l&tbles.

The overall pattern of the five methods in classifion accuracy is shown in
Figure 17. The proposed two-stage method outpeddrihe other four methods no
matter the number of variables used. When the samber of variables as the proposed
method, i.e., 37, is selected, the other methodksl yower classification accuracy. The
proposed method also is more efficient computatipnthan the other methods: the
computing time of the proposed method was 83.36rskx; whilst gradient-RFE required
140.09 seconds and SVM-RFE 2.78 hours.

The Spruce NIR data of Example 2 consisted of 2#€lances with 2,151
wavelengths, which were randomly split into 180%2,Tor training and 60x%2,151 for
test. As in Example 1, prior to performing multete VET-based wavelet analysis, the
2,151 wavelengths were reduced to 2,048"{=By a zero padding. By applying the
proposed multi-scale VET-based wavelet, a total560 wavelet coefficients were

selected out of 2,048.

L I I =
1m0 1200 1400 16
Origina Data

’ I L I L I I 1
[t} 200 400 600 800 1000 1200 1400 1600 1800 2000
Reconstructed Data

Figure 16: Original versuscd@nstructed Data for Example 1
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Table 15: Classifioa Accuracy for Example 1

Number Linear Proposed
of SVM-RFE | Gradient-RFE OR-Based
. Kernel Method
Variables
1 0.50 0.67 0.64 0.72 0.68
2 0.50 0.69 0.71 0.71 0.81
3 0.50 0.82 0.76 0.72 0.86
4 0.50 0.82 0.79 0.72 0.85
37 0.85 0.88 0.93 0.69 0.99
50 0.83 0.88 0.93 0.69 0.97
100 0.86 0.90 0.92 0.93 0.97
111 0.89 0.90 0.92 0.93 0.97
115 0.88 0.90 0.92 0.92 0.97
139 0.89 0.90 0.96 0.96 0.97
156 0.88 0.93 0.94 0.93 0.97
200 0.88 0.89 0.92 0.92 0.97
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Figure 17: A Plot for Cldgstion Accuracy for Example 1
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The performance comparison in terms of classifocaticcuracy for the test data
of Example 2 is shown in Figure 18 and Table 16 Bhst classification accuracy was
obtained from the proposed method: 100% classificaccuracy with 14 variables. The
other methods provided performance comparable ¢optioposed method. The linear
kernel and Gradient-RFE achieved 97% classificatemturacy using 12 and 15
variables, respectively. In case of SVM-RFE, howe\®0 variables were required to
obtain similar performance. A comparison of compateal time showed that the
proposed method (30.67 seconds) was more effittiabthe others, especially the SVM-
RFE method that required 0.38 hours. Figure 19 shihve comparisons of the original
NIR data and the reconstructed ones. As shownguar€il9, the reconstruction from the
multi-scale VET method seems to approximate thgimal Spruce NIR spectra quite

well.
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Figure 18: A Plot for Classification Accuracy fox&mple 2
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Figure 19: Original versuscBestructed Data for Example 2

Table 16: Classifioa Accuracy for Example 2

Number Linear Proposed
of SVM-RFE | Gradient-RFE OR-Based
) Kernel Method

Variables
1 0.75 0.75 0.75 0.75 0.75
2 0.75 0.75 0.93 0.75 0.97
3 0.75 0.75 0.95 0.75 0.98
4 0.75 0.75 0.95 0.93 0.97
12 0.97 0.92 0.93 0.92 0.98
14 0.97 0.97 0.93 0.92 1.00
15 0.97 0.97 0.97 0.92 1.00
50 0.97 0.93 0.97 0.90 0.98
58 0.95 0.95 0.97 0.97 0.98
100 0.97 0.98 0.97 0.97 0.98
150 0.95 0.97 0.97 0.97 0.98
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4.4.3 Results from the Two Public Data Sets

The fat NIR data of Example 3 had 215 instancdh W00 wavelengths, which
were divided randomly into 175 for training andfé®test. In this case, a linear padding
was applied to the original signal so that theiv@angths are increased to the nearest
dyadic length (i.e., 128<2 The wheat NIR data of Example 4 had 100 instsuwaieh
701 wavelengths and is randomly divided into 75tfaining and 25 for test. A zero
padding was applied to the original spectra datinab701 wavelengths were reduced to
512 (=2). For the two public data sets, the proposed rsalile VET-based wavelet was
performed, selecting a total of 63 and 59 wavebeffficients in Example 3 and Example
4, respectively.

The classification performance of the five meth@ashown in Table 17 and
Figure 20. In case of Example 3, the best clasdino accuracy (i.e., 100%) was
achieved by three methods: linear kernel usingrbbkes, OR-based using 7 variables
and the proposed method using 6 variables. The RA®-and Gradient-RFE gave
lower classification accuracy. The good performamdethe linear kernel method
comparable to that of the proposed method can pkieed by investigating the original
spectral curves of Example 3. As shown in Figurgeti2dre were few peaks and valleys in
these curves, in contrast to the other exampleshduld be noted that the proposed
method is preferred because its computational (k675 seconds) is much less than the
linear kernel method (276.59 seconds). Similar ltesuere obtained in Example 4; the
proposed method achieved the best performance Wetler variables and less

computational time. The improved performance ofgr@osed two-stage method can be
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explained by comparing plots of original vs. redomsted data shown in Figure 21. Only
a small number of wavelet coefficients were reqlit@ capture most of the patterns in

the NIR data sets.

T 1 —
095+
w3y —— Proposed
09 — Gradient-RFE (RBF)
0.96 — SWN-RFE [REF)
oy z Linear Kernel
S oesy S nml — - OR-Based
< b
T us :
] S 092y .
= — Proposed = I
S oot —— Gradisnt-RFE (RBF) & ;!
23 — SYM-RFE (REF) @ 08r [N
f L}
S 07 Linear Kemel = ; lJ
— - OR-Based 0.83 |- R [
0Bs+ 1 f 1 .
0.86 ! | | !
06 E 1 | | !
084} T S
! \
0.55 L L L . L . L . . i i L L .
1] Gl 10 15 20 25 30 5 40 45 50 o 10 20 30 40 a0 B0

MNumber of Features Selected MNumber of Features Selected

(@) (b)

Figure 20: Classification Accuracy ®Blétor (a) Example 3 (b) Example 4
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Figure 21: Original versus Reconstrdddata for (a) Example 3 (b) Example 4

Table 17: Classificationciicacy for Two Public Data Sets.

Number Linear . Proposed
of Vaniables | Kormsl | SYM-RFE | Gradient-RFE OR-Based Me'i’ho d
1| 058 0.68 0.68 0.68 0.68
2 098 0.98 0.70 0.95 0.98
3| 0.98 0.98 0.70 0.95 0.98
J 4] 100 0.98 0.88 0.98 0.98
Example 3—2-—7"5 0.98 0.88 0.98 0.98
6 | 1.00 0.98 0.88 0.98 1.00
7 | 1.00 0.98 0.98 1.00 1.00
8 | 1.00 0.98 0.98 1.00 1.00
1| 084 0.84 0.84 0.84 0.88
2 | 0.88 0.84 0.84 0.84 1.00
3| 0.92 0.92 0.92 0.88 1.00
4| 0.96 0.96 0.96 0.88 1.00
Example 4 5 | 0.96 1.00 0.96 0.88 1.00
6 | 0.96 1.00 1.00 0.88 1.00
7 | 0.96 1.00 1.00 0.88 1.00
8 | 1.00 1.00 1.00 0.88 1.00
50| 1.00 1.00 1.00 0.96 1.00
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Chapter 5 Perception-Decision-Cognition
Methodology for Discriminant Analysis

Based on Human Decision-Making Process
5.1 Introduction

Data mining procedures are based on statisticatipies and machine learning
theory, creatively integrated to effect and faatht the identification of significant
informative patterns for a given database. Reatirstrategies used in data mining
include preprocessing, data partitioning, macheerring (modeling), and validation.
The ultimate goal of these procedures is the dise of unknown and valuable
information. Hancet al. (2000) have discussed several models and patterns

As indicated by Meisel and Mattfeld (2007), operas research and data mining
are complementary and supportive due to three:fégteperations research techniques
expedite the efficiency of data mining; (ii) datining methodologies enlarge the scope
of operations research applications; and (iii) gné¢ion of both data mining and
operations research boost systems performance.therfomore, the key element that
allows effective fusion of both areas is the usemifmization algorithms (with particular
emphasis on search procedures) to find an accomadel and to develop metaheuristics.
An example of such procedures is the search algority Olafssoret al (2008) to find

the best variable subset.
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Discriminant analysis methods, based on sevepmstyof algorithm, have been
proposed to find successful models for complicatiadla in an extensive range of
application domains. The objective of discriminamalysis is to identify groups of
observations, based on the input variables, whigtinmze the within-group variability
and maximize the between-group variability. Regemtbt only the discriminant analysis
area but also other supervised or unsuperviseditepareas have faced two challenging
issues: (i) dimensionality; and (ii) nonlinearitgeveral researchers developed new
discriminant analysis techniques for preventingopgms of high-dimensionality: spectral
regression discriminant analysis (@ial 2008),automatic non-parameter uncorrelated
discriminant analysis (Yanget al 2007), high-dimensional discriminant analysis
(Bouveyronet al 2007), and, for avoiding problems of nonlinearagaptive nonlinear
discriminant analysis (Kinet al 2006), kernel Fisher discriminant analysis (Mi&D2)
and support vector machines for classification i@mglession (Vapnik 1995).

Variable selection is an important area of reseamciachine learning, pattern
recognition, statistics, and related fields. Thg k#ea of variable selection is to find
input variables which have predictive informationdato eliminate non-informative
variables. The use of variable selection technigsesnotivated by three reasons: (i) to
improve discriminant power; (ii) to find fast andst-effective variables; and (iii) to
reach a better understanding of the applicationgs® (Guyon and Elisseeff 2003). In the
case of high-dimension data, variable selectiorypla crucial role because of four
challenges (Theodoridis and Koutroumbas 2006): a(iJarge set of variables; (ii)

existence of irrelevant variables; (iii) presenteeglundant variables; and (iv) data noise.
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This chapter proposes a novel methodology basdadeohuman decision-making
process to perform three steps known as percepdiecision, and cognition. For this
reason, the proposed procedure will be referredst@Perception-Decision-Cognition
Methodology(PDCM). The main idea of this methodology is to emulatei@dobical
thinking process by integrating both optimal seaadd data mining procedures. The
perception step includes five different dimensieduction methods, based on wavelets,
to transform the original data into a representafmrm that exhibits orthogonality and
low noise. The decision step uses information dexity to find informative variables
which can be used to identify groups based on pmadeling information. The
cognition step recognizes the best model basedhensupport vector machines for
classification, a well-known kernel-based statatiddata mining approach. Three
numerical experiments were run to compare PDCMherooften-used procedures. The
results from the experiments show that the propasethod outperforms all the other

procedures tested.

5.2 Wavelet-Based Dimension Reduction Techniques

Dimension reduction is a preferred strategy in dhea of machine learning. As
anticipated, there are several approaches to perfdimensional reduction. The
following methods are among the most popular: gogccomponent analysis (Jolliffe
2002), rotational linear discriminant analysis t@goe (Sharma and Paliwal 2008),
independent component analysis (Stone 2004), sefmig embedding (Weinberger and

Saul 2006), multifactor dimensionality reductionit@Rie and Motsinger 2005), factor
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analysis (Basilevsky 1994), and wavelet-based damwarreduction (Donoho and Jonston
1994; Chang and Vidakovic 2002; Jugtgal 2006; Cheet al. 2009).

The dimension reduction strategy has important fitsrtbat can be measured not
only in terms of computational time savings, bigoain accuracy improvement. In the
new PDCM, the wavelet-based dimension reducticapied in Step 1. The wavelets
approach was selected because of several attrjlautesg which the following two are
most relevant: (a) wavelets adapt effectively tatigh variables of a function such as
discontinuities and varying frequency behavior; (Wavelets have efficienO(n)
algorithms to do transformations (Mallat 1999). \&la¢-based techniques are applied to
obtain a well-fitted reduced-dimension represeatatf the original data.

The fitness of the representations can be obsemnvEdjure 22. In this figure, the
first curve corresponds to the original data and temaining five to the following
wavelet-based techniques: VisuShrinkUnion, Visudftintersect, VertiShrink, VET
(Vertical Energy Thresholding), and MSVET (Multié8e Vertical Energy
Thresholding). The wavelet-based techniques argaced in Appendix Al and checked
the robustness in Appendix A2.

Discrete Wavelet Transformation (DWT) is often diger dimension reduction
(also known as shrinkage or threshold). Ygt=[Y.,, Y.0r' " Y.l' IS anm"observed

sample. For a single sample, the DWT procedure tlsesorthonormal matrixVv of
dimensionN x N to find the wavelet coefficient

d=(c.,d.,d,,.d;) (52)
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Figure 22: Origirand Reconstructed Data Curves

where
¢ =(conCy )d =(dgy,.dy )ty = @ o dy, )
through the transformation
d=Wy.
For multiple samples, let vector =[y,,Y,,....y, ] be the data set witt

observed samples. The wavelet coefficient vestobtained from the transformation
D=WY (53)

whereD =[d,,d,,...,d,, ], andd , = (c,,.,d . d

mo s d ), M=12,...,M.
Small absolute values of wavelet coefficients andasirable since they may be
influenced more by noise than by information. @e bther hand, large absolute values

are more influenced by information than noise. Tligservation motivates the

development of threshold methods. There are twestiold rules usually referred to as
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soft andhard thresholds. The soft rule is a continuous functibrthe data that shrinks
each observation, while the hard rule retains ungéd only large observations (Donoho
and Johnston 1994). The hard and soft thresholbdodstare defined as following:

DU, A) =sgnU )max(0Y +1r) (Soft)

D(U,/1)={U’ all U Px} (Hard) (54)
0, otherwisg

where A is the threshold value. The threshold method carusexl not only for data

reduction but also for de-noising.
5.2.1 VisuShrink (VS)

VisuShrink is a soft thresholding technique thaplegs a universal threshold

proposed by Donoho and Jonstone (1994). The VisoiShthreshold is given by
am, where N is the number of wavelet coefficients, aamtis the standard
deviation of the wavelet coefficients (or noisenstad deviation). Whe®, is a white
noise sequence, independent and identically didgetb as N(0,1) , then
asN - oo, P{max |¢, PJWgN }— 0. That is, the maximum of th¢ values will most

likely be smaller than the universal threshold. MisuShrink guarantees a noise free
reconstruction. However, when setting the threslanige, the degree of data fitting may
be unsatisfactory. For multiple curves or sampths, VS procedure uses the union
(VisuShrinkUnion, VSU) or intersection (VisuShrimkérsection, VSI) of data sets in the

selection of wavelet coefficients (Juagal. 2006).
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5.2.2 VertiShrink (VERTI)

Chang and Vidakovic (2002) developed a Stein-typekage method, known as
VertiShrink, to maximize the predictive density endappropriate model assumptions
regarding wavelet coefficients. The main goal a@rt@hrink is the estimation of the
baseline curve by using the average of block \artioefficients. The estimated wavelet

coefficients are given by:

~ 2
0= (1—“3%} +d 155

whered is the wavelet coefficient = (c_,d ,d ,,,--,d,), M is the number of curves and

L+10”

o is the standard deviation of the wavelet coeffitie
5.2.3 Vertical-Energy-Thresholding (VET)

VET was proposed by Jureg al. (2006). The procedure is based on the concept
of energy of a functiorwith some smoothness, since it is often concesxdrain few
coefficients, while theenergy of noiseés still spread over all coefficients in the waatel

domain. Thevertical energy of wavelet coefficients is defined by
— A2 2 2
”dvj |f_d11 + d2j ot q\/lj (56)
whered, ;is the wavelet coefficient at tH€ wavelet position for then" data curve,
m=12,...M

The VET method minimizes the overall relative mstouction error QRRB,

formulated below, to determine a threshold val@malyA:
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N

> E[lld, @1 (I, A>2)IF] ZN:E[III (e, f>21F]
ORRH)) == += (57)

> E[lld, I N

5.2.4 MultiScale-Vertical-Energy-Thresholding (MSVET)

Since the VET procedure does not consider the scfemation of wavelets, an
improved procedure proposed by Cébal (2009) and known as multi-scale vertical
energy thresholding (MSVET) obtains a differentimat thresholding value for each
scale by extending the idea of the VET proceduréehé MSVET procedure, the multi-
scale overall relative reconstruction errtSORRIE is defined as follows to determine

the threshold values,; :

i+J-2L

S SUE(Id, @1, B> 2 ) IF]

MSORREA , A ,.,.h,) = 12 5
%E[udw. f] )
> S E[ 1, 11> 20 IF]
- N-2""

whered; =(d;,dy; ,...,0y; ). lld,; [f=d +d3; + ..+ d;; d,; represents the wavelet

coefficient at thej" wavelet position of thé" scale for then™ curve,m =1,2,...,M.
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5.3 Variable Selection Based on Information Complexityand

Recursive Feature Elimination

Once the reduced sample space is determined in1Stée decision regarding
which of the remaining variables should be seleftedanking is made on the basis of
minimal information complexity values, following éh Information Complexity
Performance Testing with Recursive Feature Elinbmafl COMPrer=RFE) procedure.
This procedure essentially generates a smoothedriaoee estimator to calculate the
information complexity measure, and, finally perf@r ranking using recursive
elimination on the remaining variables.

The development of information complexity for thésaliminant analysiss

evaluated using the modified maximal entropic caxpy Cir

ClF(i) :4_%22(7% —Xi), (59)

wheres= rank(f:) , Al thej™ eigenvalue of£>0,j = 1,2,. . sand Xais arithmetic

mean of the eigenvalues.

ICOMPeere can be evaluated as indicated below:

ICOMRy = nlog 277+ nlog@” )+ + 2G; Eery coc) (60)
where lack of fit is assessed by means of the firste terms and complexity by the
fourth one. In the above expressiadY.is the estimated mean squared error given

by &2 :%Z(yi -¥)?, and ):“.STA_CSE is the stabilized and smoothezbnvex sum
i=1

covariance matrix estimatqPress 1975; Chen 1976) given by
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- . n & n | trace(
2‘STA_ CSE™ )2 STAT (l_ j{ STA) ] I h? (61)

n+k n+ k h

where ism is the stabilized covariance matrix proposed bgriaz (2004)h is the

number of variables] , is hxh identity matrix, andk is chosen such that

o<k < 2n@+B)=2]
h-p

and

(&)

tr (=5

Specific details on this procedure are providecChgpter 2.
5.4 Cognition Accuracy of Selected Models

When the ranking decision is finished in Step 2, ¢brresponding accuracies are
determined using the corresponding cognition set$ the support vector machines
(SVM) for classification described below. Once thccuracies are calculated for the
selected models the most-accurate one is chosen.

The SVM finds an optimal separating hyperplane tmaiximizes the margin
between the classes (Vapnik 1995). Consider the o<lassifying a set of linearly

separating data into two groups. Assume a set aiitg data is given by
(X, YD), (X5 Vo), &, .Y, )], wherex, OO" is an input vectory, {-1,1} is a binary

class index, anadh is the size of the training data set. Then, agi@ciboundary that
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partitions the underlying vector space into twossks can be represented by the

hyperplane

w'x+b=0 (62)
wherew is the weight vector anld is the bias. The objective of the SVM is to find a
maximum margin decision boundary between the twalleh hyperplanesw'x+b=1

and w'x+b=-1. The dual model with Lagrange multipliers of therresponding

primal model can be formulated as

n 1 n n
Ma®(a) =2 a, =22 2 aa;yy Kx.%) (63)
i=1 i=1j=1
subject to
Zn:crixi =0,0=<a,<C,i=12,..n (64)
i=1

where K(x;,X;)is the kernel function an@ is a predefined coefficient. Kernel functions

used in the numerical experiments are describdalobe 18.
The pointx°® with coordinates corresponding to new data carclbssified as

indicated below:

Class 1:Zn:ai°vyi K% ,x° }b%< ( (65)
i=1
and
Class Z:Zn"ai‘”yi K X ,X° ¥b%> ( (66)
i=1

wherea® andb® are optimal values found based on the training.datclassification

example based on the PDCM is illustrated in FiglBe
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Tabk: Used Kernel Functions

Kernel Function K(X,X;) Parameters
. 1 ‘
Gaussian expl — 0 I, —x; A a=2,b=c=1
1 -1
Cauchy (1+5||xi—xj ﬁj a=1
. . -1/2
Inverse Multi-Quadratic (||xi -x; |f +a2) =1

Training Set [TR]

Cognition Set [CG

Wil WSl WERTI WET MASVET
Ranking Ranking Ranking Ranking Ranking
with wiith wiith with with
Featurerp.var Featurerpve Featurere.vemn Featurerg.yer Featurere paer
Iterative lterative lterative Iterative Iterative
T WA WA S WA
Modeling todeling taodeling todeling Modeling
Baszed on Bazed on Bazed on Based on Baszed on
Curnulative Cumulative Curmnulative Cumulative Cumulative
Rankegyss Rankrpys Rankzgyeen Rankgp.yer Rankzemeer
St Classify S Classify S Classify Sy Classify SWhA Classify
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Figure 23: Classification Example Based on PDCM\V@&VM
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Figure 24: Conceptual View of the Percept@ecisionCognition Methodology

5.5 Perception-Decision-Cognition Methodology (PDCM)

The proposed Perception-Decision-Cognition Methagp (PDCM) for
discriminant analysis is conceptually representedigure 24. As indicated in this

figure, it is analogous to a biological thinkingopess, which consists of three steps:

1. Perceive environmental information.
2. Decide on response (actions).

3. Recognize (evaluate) the accuracy of results tosadpe response.

The algorithm used by the PDCM consists of threpsiconceptually described
below, after assuming that all data have beenitkedsccording to three sets: training
set, cognition set, and test set.

Step 1: Perceive Sample Space and Data Dimensions
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Let the sample data bé:(xl,xz,...,xq),and the corresponding response be

Y=Yy Yor-er Y, ) » Whereq is the dimension ok andn is the number of samples. Now

apply all available dimension reduction techniquesVisuShrinkUnion,
VisuShrinkintersect, VertiShrink, VET, and MSVET.

For each dimension reduction technique, generanatraining seX =(d,,d,,...d,),

where thereduceddimensionp is the number of coefficienserceivedby the reduction
techniques p< Q).
Step 2: Decide on Variables given Information Caewrjily

The procedure can be described as follows. Reraauh of thep variables one
at a time, and evaluate the corresponding infoonatomplexity measuréCOMPperr
Once thep-1 removal procedures are completed, the removed blarigesulting in
minimum value ol COMPerege is identified and assigned the lowest rank (@)e. This
procedure is repeated for the remainpg variables for which there is no rank yet. As a
result of this, a variable receives rank equag-th This procedure is repeated until fhe
variables have been arranged according to thesran
Step 3: Recognize (evaluate) the Accuracy of $stellodels

Compute the accuracy value of each cognition datausing the SVM for all
possible subsets of the ranked variables select8tep 2. Specifically, first consider the
variable with the highest rank (i.e, rank=1), amdtualate the cognition accuracy value.
After this, the two variables with rank=1 and ra@kare considered, and a new cognition

accuracy value is calculated. This procedure peated until all ranked variables are
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considered. Finally, the subset of variables tasylin the highest accuracy value is

chosen as the best model.

5.6 Analysis of Proposed PDCM

In order to emphasize the effectiveness of the PDEMill be applied to three
different data sets (heart imaging, fat contentmeat, and handwritten) used for
experiments with low-dimension/high sample sized high-dimension/low sample size.
For the wavelet transformation of the three dats, 9be linear padding suggested by
(Strang and Nguyen 1997) is applied. This articbewinents the comparison of the
PDCM to the following procedures:

(a) SVM recursive feature elimination (SVM-RFE) (Guyetal 2002).

(b) Two-stage method (Chet al 2009).

(c) Several different ranking criteria with SVM: KullbeLeibler distance

(Theodoridis and Koutroumbas 2006); accuracies emelrest neighbor
(KNN) classifier with k=1 (Hastiet al 2001); absolute value of the u-statistic
of a two-sample unpaired Wilcoxon test (Liab al 2007); absolute value
two-sample t-test with pooled variance estimate (Zhet al 2003);
Mahalanobis distance (Theodoridis and Koutroumb&96p Euclidean
distance (Theodoridis and Koutroumbas 2006); andtBbharyya distance

(Theodoridis and Koutroumbas 2006).
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5.6.1 Heart Data (44 Variables)

The data set includes 267 samples and 44 variavlesardiac single proton
emission computed tomography (SPECT) images with ¢ategories, i.e., normal and
abnormal (Cios and Kurgan 2001). The data setvislelil into 80 samples as a training
set, 13 samples as a cognition set, and 174 samaplagdest set. Table 19 and Table 20
show comparison results in terms of the variabtdecsed, the cognition accuracy, and
the test accuracy. Cauchy and Inverse Multi-Quéadkarnel functions are used in Table

19 and Table 20, respectively.

Table 19: PDCM versus Various Ragkdased Method Using Cauchy

Methods Selected Variables (# of Variables Aogmtlon Test
ccuracy | Accuracy
PDCM 21, 30, 33, 34, 36,...,51 (20) 84.62% 79.31%
SVM-RFE 89,14, 22, 28’0?9’ 30, 32,35, 36 92.31% 77.01%
Two-Stage 27, 38, 50 (3) 84.62% 64.94%0
Entropy 16, 26, 30, 40, 41, 42, 43, 44 (8 92.31% 7.59%
KNN 4,9, 10, 12, 26, 27, 30, 38, 41 (9 84.62% 74.14%
Wilcoxon test 30, 40, 43 (3) 92.319 72.41%
t-test 30, 40 (2) 84.62% 71.84%
Mahalanobis 30, 40 (2) 84.629 71.84%
Euclidean 26, 30 (2) 92.31% 74.14%
Bhattacharyya 30, 40 (2) 84.62% 71.84%
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Table 20: PDCM versus Various Ranking Based Metbsidg Inverse Multi-Quadratic

Methods Selected Variables (# of Variables) Cognition Test
Accuracy Accuracy
1,...,6,9, 10, 11, 13,...,20, 27, 31, 33, 35, 0 0
PDCM 36, 39, 41, 43.... 47, 50 (31) 84.62% 74.71%
SVM-RFE 4,6,...,9,14, 32, 33, 36 (9) 100% 71.26%
i 1,2, 3,5, 6, 13, 14, 15, 25,...,29, 31,...,44, 0 0
Two-Stage 46, 48,....52 (33) 76.92% 73.56%
Entropy 40 (1) 76.92% 61.49%
KNN 4,9, 10, 12, 18, 2(?2)27 30, 38, 39, 41, 42 84.62% 24.71%
Wilcoxon test 40 (1) 76.92% 61.49%
t-test 40 (1) 76.92% 61.49%
Mahalanobis 40 (1) 76.92% 61.49%
Euclidean 26, 30 (2) 84.62% 71.26%
Bhattacharyya 40 (1) 76.92% 61.49%

As observed in Table 19, PDCM achieves the samaitioig accuracy of other

methods, but it yields more accurate results inescases. Also, as shown in Table 20,

PDCM and KNN both reach the highest test accuratthough KNN requires fewer

variables.

5.6.2 Near Infrared Spectroscopy Data (100 Variables)

These data were collected by a Tecator infrated toul feed analyzer to predict

the fat content of a meat sample based on nearaur(NIR) spectroscopy. The data set

was divided into two classes defined on the bakfatacontent; one class corresponded

to 20% or less, and another class to more thanléked (Rossi and Villa 2006). The

entire data set consists of 215 samples with medsealues for each of 100 predictive

variables (wavelengths). These samples were dividadomly to configure a training
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set consisting of 108 samples; a cognition setisbng of 11 samples for cognition; and
a test set consisting of the remaining 96 samples.

Table 21 and Table 22 show the results in termthefvariables selected, the
cognition accuracy, and the test accuracy. CaunbyGaussian kernel functions are used
in Table 21 and Table 22, respectively. Althougthb®DCM and Two-Stage reach the
100% accuracy level for the cognition set in Table the test accuracy of PDCM is
higher than that of Two-Stage and other methodslitAwhally, Table 22 shows that the
cognition accuracy of PDCM is 100% and the tesueay is higher than that of other
methods. Furthermore, PDCM uses only 3 and 5 bl@sato reach the accuracy levels

previously mentioned.

Table 21: PDCM versus Various RagkBased Method Using Cauchy

Methods Selected Variables (# of Variables) Cognition Test
Accuracy | Accuracy
PDCM 1,5,9(3) 100% 88.54%
SVM-RFE 1,...,17, 54, 55, 56 (20) 81.82% 62.5%
Two-Stage 1,...,45 (45) 100% 83.33%
Entropy 33,...,48, 54,...,100 (63) 81.82% 77.08%
1,...,12, 17, 18, 25, 26, 40,...,43, 53, 56,...,64
KNN 72,....75, 78,...,81 (38) 90.91% | 87.5%
Wilcoxon test 24,...,100 (77) 90.91% 83.33%
t-test 24,...,100 (77) 90.91% 83.33%
Mahalanobis 24,...,100 (77) 90.91% 83.33%
Euclidean 24,...,100 (77) 90.91% 83.33%
Bhattacharyya 24,...,100 (77) 90.91% 83.33%
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Table 22: PDCM versus Various Rani@aged Method Using Gaussian

Methods Selected Variables (# of Variables) Cognition Test
Accuracy | Accuracy
PDCM 5,11, 19, 20, 31 (5) 100% 89.58%
SVM-RFE 1,...,34, 46,...,100 (89) 90.919 79.17%
Two-Stage 1,2,3,7,..,45 (42) 90.91% 77.08%
Entropy 18,...,100 (83) 90.91% 83.33%
KNN 1,2, 25,41, 43,57, 58, 62, 73, 80, 81 (11) 91 85.42%
Wilcoxon test 1,2,4,5,6,21,...,100 (85) 90.91% 3.38%
t-test 18,...,100 (83) 90.91% 83.33%
Mahalanobis 18,...,100 (83) 90.91% 83.33%
Euclidean 18,...,100 (83) 90.91% 83.33%
Bhattacharyya 18,...,100 (83) 90.91% 83.33%

5.6.3 Handwritten Data (240 Variables)

This data set has variables of handwritten numdrai O to 9 extracted from a

collection of Dutch utility maps. The entire sehswsts of 200 samples digitized in binary

images per class and six different variable seas @reukeleret al 1998). One of six

variable sets is used for the experiment; pixerayes in 23 windows. Two classes (0

and 1 in handwritten numerals) out of 10 classessalected to verify the proposed

method. Each class has 200 samples and only 10@fo2@0 samples per class are
included in the experimental data set. 20 samplkesised as training set, 9 samples are
used as cognition set and 171 samples are usestaset. Table 23 and Table 24 show
comparison results in terms of the selected vagtihe cognition accuracy, and the test
accuracy.

Cauchy and Inverse Multi Quadratic kernel functi@me used in Table 23 and

Table 24, respectively. As seen in the tables, MD€aches a 100% cognition accuracy
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level as did the other methods, except SVM-RFEthteumore, PDCM achieves a higher

accuracy level than the other methods for thesetst

Table 23: PDCM versus Various Ragkdased Method Using Cauchy

D

%

o

Methods Selected Variables (# of Variables) Cognition Test

Accuracy | Accuracy
PDCM 19, 32, 33, 43 (4) 100% 99.42¢

1,....4,8,9,14,...,17, 21,...,26, 29,...,32, 35, 36,

40,...,43, 45, 46, 50, 51, 55,...,59, 61, 64, 65, @69,

70,73, 74, 76,...,80, 82,...,85, 87, 88, 89, 91,...,95,
97,...,100, 102, 103, 104, 106,...,109, 112,...,115, 147

SVM-RFE 118, 119, 121,...,130, 132,...,149, 151,...,164, 88.89% 88.89%

167,...,185, 187, 188, 191, 192, 193, 195, 196,

198,...,201, 205,...,208, 210, 211, 213,...,222,

224,...,227, 229,...,240 (183)
3, 18, 20, 27, 31, 32, 49,...,53, 63, 81, 82, 84,.,.,87

Two-Stage 89,...,93, 95, 97,...,101, 103, 104, 107, 108, 111, 113 100% 75.44%

114,117,...,120, 122, 123, 124, 126,...,132 (50)
Entropy 83 (1) 100% 95.91%
KNN 68, 82, 83 (3) 100% 94.15¢
Wilcoxon test 67, 68, 82, 83 (4) 100% 88.89
t-test 83 (1) 100% 95.91%
Mahalanobis 83 (1) 100% 95.919
Euclidean 83 (1) 100% 95.91¢9
Bhattacharyya 83 (1) 100% 95.91¢
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Table 24: PDCM versus Various Ranking Based Methsidg Inverse Multi-Quadratic

Methods Selected Variables (# of Variables) iognltlon Test
ccuracy Accuracy
PDCM 9, 22, 33, 43, 56 (5) 100% 98.83%
162, 163, 164, 167,...,170, 172, 173
174,177,178, 183, 184, 185, 191, 19
SVM-RFE 193, 198, 199, 200, 205, 206, 207, 21 88.89% 95.32%
214, 217, 218, 220, 221, 225, 226, 22,
234, 240 (35)
Two-Stage 18, 97, 120 (3) 100% 67.25%
Entropy 83 (1) 100% 96.49%
KNN 68, 82, 83 (3) 100% 95.32%
Wilcoxon test 67, 68, 82, 83 (4) 100% 92.4%
t-test 83 (1) 100% 96.49%
Mahalanobis 83 (1) 100% 96.49%
Euclidean 83 (1) 100% 96.49%
Bhattacharyya 83 (1) 100% 96.49%
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Chapter 6 Summary and Conclusion

A novel SVMICOMPpereRFE method is proposed using an information
complexity (COMPpgrp) criterion in Chapter 2. SVM-RFE is used in comtion with
ICOMPeere NOt ONly to choose an optimal kernel function framortfolio of many other
kernel functions, but also to select important stfs$ of variables. The numerical
examples on two benchmark datasets show that tpoged hybridized method exhibits
a promising performance for the variable subsetand the optimal kernel selection.
This method provides a unification of bd@OMPpere as the variable selection criterion
and RFE as the search algorithm. In this frame&kw@QOMPpereis a key cost function.
Furthermore, the hybridized covariance matrix knoaathe stabilized and smoothed
convex sum covariance estimator (STA-CSE) is usedvoid the singularity in the
kernel based methods. In the literature relatedetursive feature elimination such
stabilization issues have not been addressed befsrshown in Tables 10, 11, 12, and
13, the comparisons of variable ranking methods aestnate that SVMEOMPpere
RFE is a promising way to obtain the best subseanables.

A new framework is proposed for assessing the diads- of rechargeable
batteries within shorter test times in Chaptern3suich a framework, the dual variables
FSVM is proposed and proved to give excellent parémce in screening for the purpose
of qualification, even with a sizable reductiortle test time. Also, a boosting algorithm
can be applied to improve the performance of thepgsed algorithm under the

environment of small sample sizes.
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A novel two-stage classification scheme for higmensional spectral data that
combines MSVET-based wavelet preprocessing and Syfstlient-based variable
selection is proposed in Chapter 4. It is demotedraising four NIR data sets that the
proposed two-stage method has higher computateffielency due to its effective pre-
processing of spectral data. In addition, the psepotwo-stage method produced
significantly better classification performance th@VM-RFE, Gradient-RFE, and OR-
based methods. This is tested by paired t-testdoh of the datasets with the results from
SVM-RFE (p-value=0.048), Gradient-RFE (p-value=Q)linear kernel method (p-
value=0.061), and OR-based (p-value=0.047). Ittrdbated to the fact that the proposed
method incorporates wavelet-based preprocessing $itM gradient-based variable
selection. The proposed method would also be baakfo other spectral signals such as
mid infrared (MIR) and nuclear magnetic resonamMt®R), to compress high-dimension
data and select useful variables in wavelet domain.

The development and application of a new Percegdecision-Cognition
Methodology (PDCM) for discriminant analysis, basedthe human decision-making
process is documented in Chapter 5. Five differemtelet-based dimension reduction
techniques are applied in the perception steg.shown that the procedure yields a good
representation of the original data, using onlyuced variables. The decision step is
performed using a rank-based variable selectionroggh, using the information
complexity criterion. The information complexitydsd variable selection approach
shows a good ability to achieve reasonable variabtks, which in turn can affect
decision making. In the cognition step, the numbérvariables and accuracy are
recognized for further discrimination. As supporteg the numerical experiments
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documented in Chapter 5, the PDCM outperforms tireently available data mining
approaches, and, furthermore, appears to be apjdic@ various areas, such as
bioinformatics, chemometrics, pattern recognitiand other data mining fields. The

PDCM has three advantages:
0] Dimension simplification.
(i) Multiple model choices based on simplified dimensio

(i) Analogous to the biological process of human denisnaking.
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APPENDICES

Al. Comparison of Wavelet Based Dimension ReductioMethods

Antenna data curves, tonnage signals and Mallatepisse signals are used for
comparison. The antenna data curves were colleateNortel's production facility
located in the Research Triangle Park, North CaaoliThe testing equipment receives
antenna signals at different degrees of azimuthedendhation. The antenna data set consist
of 18 curves (Zhou 1998). The tonnage signals wellected from sheet-metal stamping
processes which are known as very complicated anslits/e manufacturing processes.
Recently, stamping tonnage sensors have been widelyto measure the stamping force
for each stamped part in order to monitor the healtstamping processes (Jin and Shi
1999 & 2000). Mallat's piecewise signals charazéethe combined pattern of transient
signals with sharp changes and smooth signals rae quarts (Mallat 1999). The six
different measures are used for comparison of feeelet based dimension reduction

methods (VisuShrinkUnion, VisuShrinkintersectioneriiShrink, VET, and MSVET).
M R M
The comparison measures are as follows: (1) Rel&ivor: RE:ZHfi -f. | /Z||fi [l
i=1 i=1
(2) Reduction Ratio: RR= (&), wherek is the number of selected positions; (3) ORRE

(Overall Relative Reconstruction Error); (4) Appiroate Minimum Description Length:

M ~

AMDL(k)=1.5kM log, NM +0.5 NMIogZZIIfi —f, || which is close to the Akaike
i=1

information criterion used in model selection fbe tregression problem (Antoniadis
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M ~
al. 1997); (5)L; Error:ZHfi —f. || which is the root mean square error; (6)

i=1

A

Error= max| f; - f, | which is the maximum error where,=12,....M and
i, ' ’

j=12..,N.

Figure 25 shows the original antenna curves andetenstructed ones using the
wavelet based methods. As shown in figure, thenstcoction curves of MSVET are
very similar to original ones. The reconstructedves capture the patterns in peaks and
valleys reasonably. Table 25 presents results ofeled based methods with different
comparison measures. The data reduction ratio ofVBS is 61.72% and the
reconstructed curves of MSVET in the Figure 25ragsonably reconstructed as similar
as original curves in terms of capturing the pagen peaks and valleys, although the
RE, RR and ORRE of VET are smaller than the MSVBMareover, the MSVET has the
smallest AMDL. Figure 26 shows 24 tonnage curvedeurthe normal conditions. We
applied the 5 data reduction procedures to theagarsignals. Table 26 presents results
of wavelet based methods with different comparis@masures. The relative error and the
L, error of MSVET is very small, comparing to VET.sAl the reduction ratio of
MSVET is 66% which is reasonable for reconstructidie VET method has the largest

reduction ratio and the smallest overall relateeonstruction error.
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Figu25: Antenna Data Curves

(d) VertiShrink (e) VET (f) MSVET

(a) Original (b) VisuShrink-Union (c) VisuShrinkigrsection

Table 25: Resuitir Antenna Curves\(= 128)

Methods RE RR ORRE AMDL derror L, error
V'Slljfim”k' 0.0005566| 0.64063 0.35993 2.3729e+00%9.3948 | 2.6610
Visushrink-1 4 gn14363] 075 | 0.25444 2.2956e+0054.7550 | 16.5182
Intersection
. ) 5.3168e-
Vertishrink | %752 0.34375| 0.6563| 3.1286e+0045.9943 | 0.9324
VET 0.0035937| 0.77344 0.2301p 2.1701e+0049.2814 | 10.3224
MSVET | 0.00056168 0.61719| 0.39572] 1.4998e+00419.4831| 3.2759
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gkre 26: Tonnage Signals

(a) Original (b) VisuShrink-Union (c) VisuShrinkigrsection
(d) VertiShrink (e) VET (f) MSVET

Table 26: RestitisTonnage Signals\(= 256)

Methods RE RR ORRE AMDL Jerror L, error

VisuShrink-| - 6.9778e- | 4 15391| 087109| 1.3009e+005 26.5281 3.2870
Union 007

Visushrink-| 4 0416532 0.77344] 0.22673| 7.9568e+004 408.3273 | 43.3440

Intersection

VertiShrink 7'%‘8%86' 0.38672| 0.61329| 1.1050e+005 84.8870 | 7.8056
VET | 0.0011886| 0.933500.067595| 6.07356+004 1.09496+003 69.0460
MSVET 8'%%%46' 0.66016| 0.3509 | 7.5510e+004 301.1338 | 27.4553
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Figure 27 shows the Mallat's piecewise signals Wit combined pattern of
transient signals with sharp and smooth changestlamdeconstructed curves. The
reconstructed curves are quite reasonable usinghér anethods. Table 27 presents
results of wavelet based methods with different gamnson measures. The relative error,
L, error andL., error of MSVET are smaller than the results of VHT this case, the
reduction ratio of MSVET is smaller than other nwets: VisuShrinkUnion,
VisuShrinkintersection, and VET except VertiShrildince the Mallat signals have the
sharp changes, it may affect the performance ofMI®/ET. When we compare the
results of Table 25, 26, 27, MSVET has consistedtction ratio (around 60%). In other
words, MSVET may give promising results for comated datasets which have high-

dimensions and many peaks or shapes.

100 100
50 50
0 ]
-0 -0
200 400 GO0 800 1000 200 400 BOD 800 1000
100 (a) 100 (b)
50 50
0 ]
-0 -0
200 400 GO0 800 1000 200 400 GO0 800 1000
100 fc) 100 )
&0 &0
0 0
-0 -50

200 400 600 800 1000 200 400 600 800 1000
(e) ()

Figure Mallat's Piecewise Signals

(a) Original (b) VisuShrink-Union (c) VisuShrinkigrsection
(d) VertiShrink (e) VET (f) MSVET
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Table 27: Results for MaPiecewise SignaltN(= 1024)

Methods RE RR ORRE AMDL Jerror L, error
VisuShrink-

Union 0.0022 0.9141 0.0881 3.6018e+005186.8799 3.6834
Visushrink-\ 5 5555 | 09326  0.0697 3.4575e+005192.4471 7.2698
Intersection
VertiShrink 0.0009 0.4717 05298 7.1909e+00921.6239 3.4212

VET 0.0026 0.9346 0.0681 3.4747e+00%204.8175 12.2439

MSVET 0.0013 0.5934 0.414( 5.6902e+005144.6165 5.5863

A2. Robustness of Reduction Methods against RandoNvises

Dimension reduction methods against random noiseseated for robustness in
this section. For the experimental study, threse®iwith random normal are added to

the signals and compared. Signal-to-noise-r&H is defined asi(f)\ o where,d(f)

is the standard deviation of each signal pointd, @ns the standard deviation of noise.
Figure 28, 29, and 30 shows one original curve Zimdbise added curves. Table 28, 29,
30, and 31 provide relative error for model fittiagd reduction ratio for dimension
reduction using five wavelet based methods in #ees ofSNR= 3, 15, and 30. Smaller
SNRmeans that signals includes more noise. Thabiserievel @) is large and a few of
wavelet coefficients should be selected. As shawtables, for all methods, the relative
error with less noiseSNR= 30) is much smaller than one with more noBER= 3). It
means that it is difficult to find suitable modesing complicated dataset with more
noise. VET has better reduction ratio than MSVETt kelative error of MSVET s
smaller than one of VET. Moreover, when curvesignas has more nois&NR=3),

MSVET mostly has smaller relative error than Vistakinion, VisuShrinkintersection
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and VET. Even though, the signals have much ndéereduction ratio of MSVET is

similar to one of less noise. Consequently, MSVEG$ fobustness for noise dataset.

20 5]

a0 100 150 o a0 100 150
() (d)

&ig 28: Antenna Data Curves

(a) Original (b)SNR=3 (c) SNR=15 (d)SNR=30
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Figure 29: Tonnage Signals.

(a) Original (0)SNR=3 (c) SNR:15 (d)SNR=30
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Figug@: Mallat's Piecewise Signals

(a) Original (0)SNR=3 (c) SNR:15 (d)SNR=30
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Table ZXRResults for Antenna Curves

SNR=3 SNR:=15 SNR=30
Methods RE RR RE RR RE RR
VisuShrink-Union 0.0176 0.7109| 0.0007| 0.5391| 0.0001| 0.3750
VisuShrink-Intersection] 0.02330.7500| 0.0042| 0.7344| 0.0038| 0.7344
VertiShrink 0.0043 0.4844| 0.0002| 0.3984| 0.0001| 0.3594
VET 0.0286| 0.7969| 0.0042| 0.7734| 0.0036| 0.7734
MSVET 0.0052| 0.7578| 0.0008| 0.7813| 0.0006| 0.8516

Table ZNRResults for Tonnage Signals

SNR=3 SNR:=15 SNR=30
Methods RE RR RE RR RE RR
VisuShrink-Union 0.0850 0.8750| 0.0039| 0.8594| 0.0009| 0.8008
VisuShrink-Intersection] 0.08500.8750| 0.0041| 0.8672| 0.0013| 0.8594
VertiShrink 0.0181] 0.6367| 0.0008| 0.5898| 0.0002| 0.5469
VET 0.1019| 0.9766| 0.0065| 0.9609| 0.0031| 0.9570
MSVET 0.0206| 0.7461| 0.0011| 0.7461| 0.0004| 0.7461

Table 3@NRResults for Mallat Piecewise Signalé=1024)

SNR=3 SNR=15 SNR=30
Methods RE RR RE RR RE RR
VisuShrink-Union 0.097% 0.9600| 0.0056| 0.9170| 0.0012| 0.4648
VisuShrink-Intersection| 0.10060.9619| 0.0068| 0.9580| 0.0037| 0.9580
VertiShrink 0.0185 0.6396| 0.0022| 0.6240( 0.0015| 0.5938
VET 0.1129| 0.9688| 0.0077| 0.9600| 0.0037| 0.9590
MSVET 0.0240| 0.7100| 0.0031| 0.7227| 0.0022| 0.7080

Table 3BNRResults for Mallat Piecewise Signalé=8192)

SNR=3 SNR:=15 SNR=30
Methods RE RR RE RR RE RR
VisuShrink-Union 0.1027 0.9673| 0.0063| 0.9418| 0.0019| 0.6694
VisuShrink-Intersection| 0.12530.9785| 0.0170| 0.9692| 0.0113| 0.9679
VertiShrink 0.0217 0.6638| 0.0024| 0.6492| 0.0015| 0.6051
VET 0.2139| 0.9894| 0.1123| 0.9883| 0.1047| 0.9880
MSVET 0.1129| 0.6969| 0.0945| 0.7255| 0.0938| 0.7059
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