
University of Tennessee, Knoxville
Trace: Tennessee Research and Creative
Exchange

Doctoral Dissertations Graduate School

5-2010

On the Irreducibility of the Cauchy-Mirimanoff
Polynomials
Brian C. Irick
University of Tennessee - Knoxville, birick@utk.edu

This Dissertation is brought to you for free and open access by the Graduate School at Trace: Tennessee Research and Creative Exchange. It has been
accepted for inclusion in Doctoral Dissertations by an authorized administrator of Trace: Tennessee Research and Creative Exchange. For more
information, please contact trace@utk.edu.

Recommended Citation
Irick, Brian C., "On the Irreducibility of the Cauchy-Mirimanoff Polynomials. " PhD diss., University of Tennessee, 2010.
https://trace.tennessee.edu/utk_graddiss/707

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Tennessee, Knoxville: Trace

https://core.ac.uk/display/268764417?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://trace.tennessee.edu
https://trace.tennessee.edu
https://trace.tennessee.edu/utk_graddiss
https://trace.tennessee.edu/utk-grad
mailto:trace@utk.edu


To the Graduate Council:

I am submitting herewith a dissertation written by Brian C. Irick entitled "On the Irreducibility of the
Cauchy-Mirimanoff Polynomials." I have examined the final electronic copy of this dissertation for form
and content and recommend that it be accepted in partial fulfillment of the requirements for the degree
of Doctor of Philosophy, with a major in Mathematics.

Pavlos Tzermias, Major Professor

We have read this dissertation and recommend its acceptance:

David Dobbs, Shashikant Mulay, Soren Sorensen

Accepted for the Council:
Dixie L. Thompson

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)



To the Graduate Council:
I am submitting herewith a dissertation written by Brian Christopher Irick entitled “On the Irreducibility
of the Cauchy-Mirimanoff Polynomials”. I have examined the final electronic copy of this dissertation for
form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree
of Doctor of Philosophy, with a major in Mathematics.

Pavlos Tzermias
Major Professor

We have read this dissertation
and recommend its acceptance:

David Dobbs

Shashikant Mulay

Soren Sorensen

Accepted for the Council:

Carolyn Hodges
Vice Provost and Dean of
the Graduate School

(Original signatures are on file with offical student records.)



On the Irreducibility of the Cauchy-Mirimanoff
Polynomials

A Dissertation
Presented for the

Doctor of Philosophy
Degree

The University of Tennessee, Knoxville

Brian Christopher Irick
May 2010



Copyright c© 2010 by Brian Irick.
All rights reserved.

ii



Acknowledgments

First and foremost, I would like to thank my advisor, Pavlos Tzermias, for suggesting the topic of this
dissertation and for all his help during my research. I am particularly grateful for the freedom I had to
pursue this in my own way. His thoughtful suggestions and personal encouragement were always what I
needed to move forward. I very much appreciate his efforts, and this dissertation is better because of it.

I would also like to thank my doctoral committee members David Dobbs, Shashikant Mulay, and Soren
Sorensen for their time and interest in this topic. I am particularly indebted to each for my education, and I
am grateful to be able to call each a friend.

iii



Abstract

The Cauchy-Mirimanoff Polynomials are a class of polynomials that naturally arise in various classical stud-
ies of Fermat’s Last Theorem. Originally conjectured to be irreducible over 100 years ago, the irreducibility
of the Cauchy-Mirimanoff polynomials is still an open conjecture. Recently, there has been renewed inter-
est in this conjecture including Helou (1997), Beukers (1997), Tzermias (2007) and (2009), and Nanninga
(2009).

This dissertation takes a new approach to the study of the Cauchy-Mirimanoff Polynomials. The re-
ciprocal transform of a self-reciprocal polynomial is defined, and the reciprocal transforms of the Cauchy-
Mirimanoff Polynomials are found and studied. Particular attention is given to the Cauchy-Mirimanoff

Polynomials with index three times a power of a prime, and it is shown that the Cauchy-Mirimanoff Poly-
nomials of index three times a prime are irreducible.
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Chapter 1

Introduction

In this dissertation, the factorization of a class of polynomials that originally arose in the first proof of
Fermat’s Last Theorem for the special case n = 7 is studied. This class of polynomials has come to be known
as the Cauchy-Mirimanoff Polynomials, and it is a long standing conjecture that every Cauchy-Mirimanoff

polynomial is irreducible.

1.1 Background

In 1839, Gabriel Lamé proved the special case of Fermat’s Last Theorem for exponent n = 7. In the proof,
Lamé used the polynomial identity:

(X + Y)7 − X7 − Y7 = 7XY(X + Y)(X2 + XY + Y2)2

In examining Lamé’s proof, Augustin-Louis Cauchy and Joseph Liouville indicated a more general identity
of which the following is a special case (set Y = 1):

Pn(X) B (X + 1)n − Xn − 1 = X(X + 1)εn(X2 + X + 1)en En(X) (1.1)

where for even n, εn = en = 0; for odd n, εn = 1 and en = 0, 1, or 2 according as n ≡ 0, 2, or 1 (mod 3).
The remaining factor En(X) of Pn(X) is called the nth Cauchy-Mirimanoff Polynomial. Dimitry Mirimanoff

studied En(X) extensively for prime n, and conjectured its irreducibility over Q[X] (Mirimanoff, 1903).
Indeed, this conjecture seems to hold for all n ≥ 2. The interested reader may find a more extensive account
of the historical connection of the Cauchy-Mirimanoff Polynomials to Fermat’s Last Theorem in Ribenboim
(1979).

Little progress was made on the conjecture until the mid 1990’s. Helou (1997) studied the Galois group
of the Cauchy-Mirimanoff Polynomials and included a proof, attributed to Michael Filaseta, that E2p(x) is
irreducible for all primes p. Many of the results from Helou (1997) will be of use in this dissertation and are
stated in Sections 2.2.3, 2.3.1, and 2.3.2. Independently, in an application to the Korteweg-de Vries equation,
Beukers (1997) proved that the Cauchy-Mirimanoff Polynomials are relatively prime to each other.

Tzermias (2007) studied the Cauchy-Mirimanoff polynomials of prime index and obtained lower bounds
for the degrees of some factors of the Cauchy-Mirimanoff polynomials of prime index p with p ≡ 2 (mod 3).
Recently, Tzermias (2009) obtained bounds for the degrees of some factors of the Cauchy-Mirimanoff poly-
nomials of prime index p with p ≡ 1 (mod 3). The main results of both papers are stated in Section 2.3.3.

1



In a submitted Ph.D. thesis, Nanninga (2009) has announced a proof that En(X) is irreducible when
n = 2km where m is an odd integer and k ∈ {1, 2, 3, 4, 5}. The thesis is under revision, but the results would
seem to indicate a generalization of Michael Filaseta’s proof of the irreducibility of E2p(X).

1.2 Contributions

This dissertation begins with a broad overview of the known results regarding the Cauchy-Mirimanoff Poly-
nomials. Then the reciprocal transform of a self-reciprocal polynomial is defined, and the reciprocal trans-
forms of the Cauchy-Mirimanoff Polynomials are found (Theorem 4.2.1). It is worth noting that the recip-
rocal transforms of the Cauchy-Mirimanoff polynomials are closely related to a problem of minimization in
Approximation Theory (Chebyshev Approximation), and are also related to Dickson Polynomials. In other
words, the Cauchy-Mirimanoff Polynomials could have applications to cryptography, coding theory, and
applied mathematics (in addition to the Korteweg-de Vries equation).

After applying Dickson’s Theorem to the Cauchy-Mirimanoff Polynomials (Theorem 4.3.2), we special-
ize to the polynomials E3pi(X) for primes p and i ∈ N. In particular, it is shown that E3p(X) is irreducible
over Q, and in fact, three distinct proofs are provided (see Section 5.2.3, Corollary 6.2.9, and Corollary
6.3.5). It is also shown that for any i ∈ N, E3pi(X) is a product of no more than i irreducible polynomials
(Corollary 6.2.8), every irreducible factor of E3pi(X) has degree d ≥ 3(p − 1) (Corollary 6.3.7), and E3pi(X)
has an irreducible factor of degree d ≥ 3(p − 1)pi−1 (Corollary 6.3.6). It is also shown that E3p2(X) is either
irreducible, or a product of two irreducible factors of degree 3(p − 1) and 3(p − 1)p (Corollary 6.3.8).

1.3 Arrangement

Chapter 2 defines the Cauchy-Mirimanoff Polynomials, and contains many of the known results regard-
ing these polynomials including results from Mirimanoff (1903), Helou (1997), Beukers (1997), Tzermias
(2007, 2009), and Nanninga (2009). Reciprocal and self-reciprocal polynomials are defined and studied.

Chapter 3 defines the Fractional, Half-Fractional, and Modified Half-Fractional Chebyshev Polynomi-
als. These functions, which are not necessarily polynomials, are closely related to the classic Chebyshev
Polynomials and have a number of analogous properties. These properties will be useful in applications to
the Cauchy-Mirimanoff Polynomials, and do not seem to appear in the literature.

Chapter 4 defines the concept of the reciprocal transform of a self-reciprocal polynomial. This is not
a new idea, but there is no universal agreement to name or notation. Dickson’s Theorem, which relates
factorization of a self-reciprocal polynomial to the factorization of the reciprocal transform, is stated and
applied to the Cauchy-Mirimanoff Polynomials. An explicit formula for the reciprocal transform of the
Cauchy-Mirimanoff Polynomials is found and the roots are studied.

Chapter 5 begins with a new proof that E2p(X) is irreducible over Q. Then, the Newton Polygon of the
reciprocal transform of E3p(X) is studied. Subsequently combining many of the results from Chapters 2 and
4, a proof that E3p(X) is irreducible is given.

Chapter 6 generalizes the results of Chapter 5 to the Cauchy-Mirimanoff Polynomials E3pi(X). Two
additional proofs of the irreducibility of E3p(X) are obtained as corollaries to more general theorems. It is
shown that for any i ∈ N, E3pi(X) is a product of no more than i irreducible polynomials, every irreducible
factor of E3pi(X) has degree d ≥ 3(p − 1), and E3pi(X) has an irreducible factor of degree d ≥ 3(p − 1)pi−1.
It is also shown that E3p2(X) is either irreducible, or a product of two irreducible factors of degree 3(p − 1)
and 3(p − 1)p.
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Chapter 2

The Cauchy-Mirimanoff Polynomials

In this chapter, the Cauchy-Mirimanoff Polynomials are defined and many of the known facts regarding
these polynomials are presented.

2.1 Definition of the Cauchy-Mirimanoff Polynomials

Proposition 2.1.1. Let n ≥ 2 be an integer, ω a primitive third root of unity, and define Pn(X) ∈ Z[X] as

Pn(X) B (X + 1)n − Xn − 1

Then

1. 0 is a simple root of Pn(X).

2. If n is even, then −1 is not a root of Pn(X); if n is odd, then −1 is a simple root of Pn(X).

3. If n is even, then ω is not a root of Pn(X); if n is odd, then ω is a root of Pn(X) of multiplicity 0, 1, or
2 according as n ≡ 0, 2, or 1 (mod 3).

Proof. Proceed by examining cases.
For all n ≥ 2:

• X | Pn(X) : Pn(0) = 0.

• X2 - Pn(X) : If X2 | Pn(X), then 0 is a root of dPn
dx . However dPn(0)

dx = n , 0.

Suppose n ≥ 2 is even:

• (X + 1) - Pn(X) : Pn(−1) = −2 , 0.

• (X2 + X + 1) - Pn(X) : Pn(ω) = −2i sin( 2πn
3 ) − 1. So either Pn(ω) has a nonzero imaginary part or

equals −1. In either case Pn(ω) , 0.

Suppose n ≥ 2 is odd:

• (X + 1) | Pn(X) : Pn(−1) = 0.

• (X + 1)2 - Pn(X) : If (X + 1)2 | Pn(X), then −1 is a root of dPn
dx . However, dPn(−1)

dx = −n , 0.

3



Suppose n ≥ 2 is odd and n ≡ 0 (mod 3):

• (X2 + X + 1) - Pn(X) : Pn(ω) = −3 , 0.

Suppose n ≥ 2 is odd and n ≡ 1 (mod 3):

• (X2 + X + 1)2 | Pn(X) : It is enough to check that ω is a root of both Pn(X) and dPn
dx . Both are easily

verified.

• (X2 + X + 1)3 - Pn(X) : If (X2 + X + 1)3 | Pn(X), then ω is a root of d2Pn
dx2 . However, in this case,

d2Pn(ω)
dx2 = n(n − 1) , 0.

Finally, suppose n ≥ 2 is odd and n ≡ 2 (mod 3):

• (X2 + X + 1) | Pn(X) : Pn(ω) = 0.

• (X2 +X +1)2 - Pn(X) : If (X2 +X +1)2 | Pn(X), then ω is a root of dPn
dx . However, dPn(ω)

dx = −
√

3in , 0.

�

Often Proposition 2.1.1 is stated more succinctly in terms of the factorization of Pn(X). This leads to the
definition of the Cauchy-Mirimanoff Polynomials.

Definition 2.1.2 (Cauchy-Mirimanoff Polynomials). Let n ≥ 2 be an integer. The nth Cauchy-Mirimanoff
Polynomial is the remaining factor En(X) of Pn(X), in Q[X], after removing X and the cyclotomic factors.
Specifically,

Pn(X) = X(X + 1)εn(X2 + X + 1)en En(X) (2.1)

where for even n, εn = en = 0; for odd n, εn = 1 and en = 0, 1, or 2 according as n ≡ 0, 2, or 1 (mod 3).

Corollary 2.1.3. If n is even, then deg(En) = n − 2. If n is odd, then deg(En) = n − 3 − 2en.

Proof. By inspection, deg(Pn) = n − 1. By Proposition 2.1.1, if n is even, then X is a factor of Pn(X) ∴
deg(En) = n − 2. Similarly, if n is odd, then X and X + 1 are factors of Pn(X) of degree 1, and X2 + X + 1 is
a factor of degree 2en ∴ deg(En) = n − 3 − 2en. �

2.2 The Roots of Pn(X) and En(X)

This section collects many of the known facts about the roots of both Pn(X) and En(X).

2.2.1 Elementary Facts

Theorem 2.2.1. Let n ≥ 2. Then

1. Pn(X) has no roots that are roots of unity beside −1 and ω in the cases already handled.

2. Pn(X) has no real roots except 0 and −1 (n odd).

3. En(X) has no roots that are roots of unity.

4. En(X) has no real roots.

5. En(X) has no repeated roots in any splitting field over Q.

4



Proof.

1. Let ζm = e
2πi
m , m ≥ 4, and n ≥ 3. Then |Pn(ζm)| = |(ζm + 1)n − ζn

m − 1| ≥ ||(ζm + 1)n| − |ζn
m + 1|| =

||ζ
n
2
m(ζ

1
2
m + ζ

−1
2

m )n| − |ζn
m + 1|| = ||(2 cos( πm ))n| − |ζn

m + 1||. As |(2 cos( πm ))n| > 2 ≥ |ζn
m + 1|, it follows

|(2 cos( πm ))n| , |ζn
m + 1| ∴ |(2 cos( πm ))n| − |ζn

m + 1| , 0 ∴ ||(2 cos( πm ))n| − |ζn
m + 1|| > 0 ∴ |Pn(ζm)| > 0.

2. Observe dPn
dX = n(X + 1)n−1 − nXn−1. If α ∈ R such that dPn(α)

dX = 0 then n(α + 1)n−1 = nαn−1. If n
is even, no solution exists; if n is odd, then α = − 1

2 is the only solution. Consequently, if n is even,
then Pn(X) can have at most one real root; if n is odd, then Pn(X) can have at most two roots. From
Proposition 2.1.1, Pn(X) has 0 as a root if n is even, and 0 and −1 as roots if n is odd, and so these are
the only real roots of Pn(X).

3. Consequence of 1 above.

4. Consequence of 2 above.

5. Suppose α ∈ C is a multiple root of Pn(X). Then both Pn(α) and dPn(α)
dx equal 0. This implies that

(α+ 1)n −αn − 1 = 0 and (α+ 1)n−1 = αn−1 ∴ (α+ 1)n −α(α+ 1)n−1 = 1 ∴ (α+ 1)n−1 = 1 ∴ αn−1 = 1.
Therefore, α must be a root of unity. The only roots of unity of Pn(X) are −1 and ω, from 1 above,
and the multiplicity of those roots was handled in Proposition 2.1.1. Therefore, ω and ω (B complex
conjugate of z) are the only possible multiple roots of Pn(X) (which do occur in certain cases) ∴ En(X)
has no multiple roots.

�

2.2.2 Reciprocal and Self-Reciprocal Polynomials

Definition 2.2.2 (Reciprocal and Self-Reciprocal Polynomials). Let D be an integral domain, 0 , p(x) ∈
D[x], and let d B deg(p). The reciprocal polynomial of p(x) is defined to be the polynomial pa(x) B xd p( 1

x ).
A polynomial is said to be self-reciprocal if it equals its reciprocal, that is, p(x) = pa(x).

There is no universally agreed upon definition or notation for reciprocal and self-reciprocal polyno-
mials in the literature. The reciprocal of a polynomial is sometimes called the “reversal”; self-reciprocal
polynomials are sometimes simply called “reciprocals” or “palindromes”.

Proposition 2.2.3. Let D be an integral domain, p(x) ∈ D[x], and d B deg(p).

1. If x - p(x), then d = deg(pa).

2. If x | p(x), then d > deg(pa)

3. If p(x) is self-reciprocal, then x - p(x).

Proof.

1. Let p(x) = cd xd + · · · + c0. Then pa(x) = xd
(
cd

1
xd + · · · + c0

)
= cd + · · · + c0xd.

2. Let p(x) = cd xd + · · ·+ cαxα with d ≥ α > 0. Then pa(x) = xd
(
cd

1
xd + · · · + cα 1

xα
)

= cd + · · ·+ cαxd−α.

3. Assume x | p(x). Then, by 2, d > deg(pa), yet d = deg(pa) ∵ p(x) = pa(x), a contradiction. �

5



An alternative way to characterize reciprocal and self-reciprocal polynomials is by their roots.

Theorem 2.2.4. Let D be an integral domain, F the quotient field of D, and p(x) ∈ D[x] with nonzero
constant coefficient c0. Let f (x) ∈ F[x] be the monic polynomial whose roots are precisely the multiplicative
inverses of the roots of p(x) (counting multiplicity). Then c0 f (x) = pa(x).

Proof. Let F be the splitting field of p(x) over F. In F[x], suppose p(x) = cn(x − z1)α1 · · · (x − zn)αn with the
zi
′s unique roots of p(x), and αi the multiplicity of the root zi for i = 1 · · · n. Let d B deg(p) = α1 + · · ·+αn.

By the definition of f ,

f (x) =

(
x −

1
z1

)α1

· · ·

(
x −

1
zn

)αn

=
xd

zα1
1 · · · z

αn
n

(
z1 −

1
x

)α1

· · ·

(
zn −

1
x

)αn

=
(−1)d xd

zα1
1 · · · z

αn
n

(
1
x
− z1

)α1

· · ·

(
1
x
− zn

)αn

=
xd

(−1)dzα1
1 · · · z

αn
n

p
(

1
x

)
cn

=
pa(x)

c0

�

Theorem 2.2.5. Let D be an integral domain and p(x) ∈ D[x] such that ±1 are not roots of p(x). Then
p(x) is self-reciprocal if and only if when z is a root of p(x) of multiplicity α, then 1

z is also a root of p(x) of
multiplicity α.

Proof. Let F be the quotient field of D, and let F be the splitting field of p(x) over F.
(⇒) Suppose p(x) is self-reciprocal with d B deg(p). By Proposition 2.2.3, all roots of p(x) are nonzero,

so the multiplicative inverse of each root of p(x) exists in F. Factoring over F[x], say
p(x) = c(x − z1)α1 · · · (x − zn)αn with the zi

′s distinct roots of p(x) each with multiplicity αi. Consequently,

p(x) = pa(x)

= xd p
(
1
x

)
= xdc

(
1
x
− z1

)α1

· · ·

(
1
x
− zn

)αn

= (−1)dczα1
1 · · · z

αn
n

(
x −

1
z1

)α1

· · ·

(
x −

1
zn

)αn

So for each root zi with multiplicity αi of p(x), it is clear that 1
zi

is also a root of p(x) with multiplicity αi.
(⇐) Suppose that when z is a root of p(x) of multiplicity α then 1

z is also a root p(x) of multiplicity α,
and note z and 1

z are distinct since z , ±1. Let cd be the leading coefficient of p(x), c0 the constant coeffient
of p(x), and let f (x) be the monic polynomial whose roots are precisely the multiplicative inverses of the
roots of p(x) (counting multiplicity). Consequently, cd f (x) = p(x). By Theorem 2.2.4, f (x) =

pa(x)
c0

so
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cd
c0

pa(x) = p(x). The fraction cd
c0

is up to sign the product of the roots of p(x). Therefore, by hypothesis,
cd
c0

= (−1)deg(p). Also by hypothesis, it is clear that the number of roots, counting multiplicity, of p(x) is
even, so deg(p) is even ∴ cd

c0
= 1 ∴ pa(x) = p(x) ∴ p(x) is self-reciprocal. �

Theorem 2.2.6 (Cauchy-Mirimanoff Polynomials are self-reciprocal).
Let n ≥ 2. Then

1. Pn(X)
X is a self-reciprocal polynomial.

2. En(X) is a self-reciprocal polynomial.

Proof.

1. Fix n ≥ 2. Then

(
Pn(X)

X
)
a

= Xn−2
Pn

(
1
X

)
1
X

= Xn−1
((

1
X

+ 1
)n

−
1

Xn − 1
)

=
1
X

((X + 1)n − 1 − Xn)

=
Pn(X)

X

2. Fix n ≥ 2, and let z be a root of En(X). By Theorem 2.2.1, z is a root of multiplicity one, so by
Theorem 2.2.5 it is enough to show 1

z is also a root of En(X). As z is a root of En(X), it is also a root of
Pn(X). Clearly, z , 0 ∵ En(X) has no real roots, so z is a root of Pn(X)

X . Since Pn(X)
X is a self-reciprocal

polynomial, 1
z is a root of Pn(X)

X . As z , −1, ω, or ω2 it follows 1
z , −1, ω or ω2 ∴ 1

z is not a root of
X + 1 or X2 + X + 1 ∴ 1

z must be a root of En(X).

�

2.2.3 Root Orbits of the Cauchy-Mirimanoff Polynomials

Since the Cauchy-Mirimanoff polynomials are self-reciprocal, if z is a root of En(X) then 1
z is also a root of

En(X). While this is true for all n ≥ 2, even more can be said when n ≥ 9 is odd.

Definition 2.2.7. Let n ≥ 9 be odd, and let z be a root of En(X). The orbit of z, denoted Orb(z), is the set

Orb(z) B
{

z,
1
z
,−z − 1,−

1
z + 1

,−1 −
1
z
,−

z
z + 1

}
Theorem 2.2.8. Let n ≥ 9 be odd, and let z be a root of En(X). Then the elements of Orb(z) are distinct
roots of En(X).

Proof. Observe that Pn(−X − 1) = (−X)n − (−X − 1)n − 1 = Pn(X) ∴ if Pn(z) = 0 then Pn(−z − 1) = 0.
Consequently, if En(z) = 0 then −z−1 is a root of Pn(X). Since z is not real, −z−1 is not real ∴ −z−1 is not
a root of X or X + 1. If −z−1 were a root of X2 + X + 1, then (−z−1)2 + (−z−1) + 1 = z2 + z + 1 = 0 ∴ z = ω
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or ω2, which is impossible. Therefore, −z − 1 must be a root of En(X). Since En(X) is self-reciprocal, − 1
z+1

is also a root of En(X). Similarly, since 1
z is a root of En(X), the same reasoning shows −1 − 1

z and − z
z+1 are

roots of En(X).
As z , 1,−2,− 1

2 , ω or ω2, a brute force comparison of the elements of Orb(z) verifies that the elements
are distinct. �

The set Orb(z) is the orbit of z under the action of the group of unimodular transformations
T = {X, 1

X ,−X − 1,− 1
X+1 ,−

X+1
X ,− X

X+1 } on C − {0,−1}. The group T is isomorphic to G3, the symmetric
group on three elements. By Corollary 2.1.3, for odd n ≥ 9, the roots of En(X) are partitioned into
rn B

n−3−2en
6 orbits. This leads to an important observation in Helou (1997).

Theorem 2.2.9 (Helou (1997) - Lemma 2). For odd n ≥ 9, the roots of En(X) in C are partitioned into rn

orbits; and En(X) has exactly 2rn roots of absolute value 1, two conjugates in each orbit.

It is natural to consider whether the elements of a root orbit of En(X) are Q-conjugates. So for every
root z of En(X) in C, let gz(X) be the monic polynomial with roots the elements of Orb(z).

Definition 2.2.10. Let J(X) ∈ Q(X) be the rational function

J(X) B
(X2 + X + 1)3

X2(X + 1)2

Proposition 2.2.11 (Helou (1997)). Let n ≥ 9 be odd. For z a root of En(X) in C,

gz(X) = X6 + 3X5 + (6 − J(z))X4 + (7 − 2J(z))X3 + (6 − J(z))X2 + 3X + 1

All elements of Orb(z) have the same image under J. In particular, if θ . π (mod 2π) in R, then
J(eiθ) =

(2 cos θ+1)3

2(cos θ+1) . So, if z is a root of En(X), then J(z) ∈ R and gz ∈ R[X]. In fact, more can be said of J(z).

Proposition 2.2.12 (Helou (1997) - Lemma 3). For odd n ≥ 9 and z a root of En(X), J(z) is a real algebraic
number. If n is a prime, then J(z) is a real algebraic integer.

Lastly, Helou (1997) gives a lemma which will be used to give a partial answer to whether the elements
of Orb(z), for a root z of En(X), are Q-conjugates.

Theorem 2.2.13 (Helou (1997) - Lemma 4). Let n ≥ 9 be odd, z a root of En(X) in C, and
K B Q(J(z1), · · · , J(zrn)) where z j = eiθ j (1 ≤ j ≤ rn) are representatives of the root orbits of En(X) in C.

1. We have Q(z) ∩ K = Q(J(z)) and Gal(K(z)|K) ' Gal(Q(z)|Q(J(z))) ' Tz, where Tz is a subgroup of
T of order |Tz| ∈ {2, 6}.

2. For aQ-conjugate z′ of z, Tz′ = Tz. The minimal polynomial of z overQ is the product of [Q(J(z)) : Q]
minimal polynomials over K of such z′ in different orbits.

3. If |Tz| = 2 then, for any z′′ ∈ Orb(z), |Tz′′ | = 2; and, if |z| = 1 then all the roots of the minimal
polynomial of z over Q have absolute value 1.

It is not immediately obvious to see how Theorem 2.2.13 gives a partial answer to whether elements of
Orb(z) are Q-conjugates of each other. This connection will be made clear through the next results.

Lemma 2.2.14. Let n ≥ 9 be odd, and z ∈ C a root of En(X). Then for any z′ ∈ Orb(z), we have z′ ∈ Q(z).

Proof. Straightforward observation. �
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Lemma 2.2.15. Let n ≥ 9 be odd, and z ∈ C a root of En(X). Then

Q(z) = Q

(
1
z

)
= Q(−z − 1) = Q

(
−

1
z + 1

)
= Q

(
−1 −

1
z

)
= Q

(
−

z
z + 1

)
Proof. Consequence of Lemma 2.2.14. �

Lemma 2.2.16. Let n ≥ 9 be odd, and z ∈ C a root of En(X). Let z′ ∈ Orb(z) be such that there exists
σ ∈ Aut(Q(z)) with σ(z) = z′. Then σ ∈ Gal(Q(z)/Q(J(z))).

Proof. It is enough to show σ(J(z)) = J(z). Observe σ(J(z)) = J(σ(z)) = J(z′). As z′ ∈ Orb(z), both z and
z′ have the same image under J, i.e. J(z′) = J(z) ∴ σ(J(z)) = J(z). �

Corollary 2.2.17. Let n ≥ 9 be odd, z ∈ C a root of En(X), and z′ ∈ Orb(z) such that z′ , z, z. If z and z′

are Q-conjugates, then |Tz| = 6.

Proof. Let f (x) be the minimal polynomial of z over Q, and let K be the splitting field of f . Since z and
z′ are Q-conjugates, there exists σ ∈ Gal(K/Q) such that σ(z) = z′. Define φ : Q(z) → Q(z′) = Q(z) by
φ B σ|Q(z), and note φ ∈ Aut(Q(z)). It follows from Lemma 2.2.16 that φ ∈ Gal(Q(z)/Q(J(z))).

The complex conjugate root theorem guarantees that z and z are Q-conjugates, so as in the previous
paragraph, there also exists γ ∈ Gal(Q(z)/Q(J(z))) such that γ(z) = z. As id, σ, and γ are three distinct
elements of Gal(Q(z)/Q(J(z))), it follows that |Tz| ≥ 3. Consequently, by Theorem 2.2.13 (1), |Tz| = 6. �

Finally, Theorem 2.2.18 and Corollary 2.2.19 make explicit how to use Theorem 2.2.13 to determine if
the elements of Orb(z) are Q-conjugates.

Theorem 2.2.18. Let n ≥ 9 be odd, and z B eiθ be a root of En(X). Then the following are equivalent:

1. |Tz| = 2

2. The only Q-conjugate of z in Orb(z) is 1
z .

3. The only Q-conjugate of −z − 1 in Orb(z) is −1 − 1
z .

4. The only Q-conjugate of − 1
z+1 in Orb(z) is − z

z+1 .

Proof. (1⇒ 2, 3, 4) Suppose |Tz| = 2. By the complex conjugate root theorem, z and 1
z are Q-conjugates,

−z − 1 and −1 − 1
z are Q-conjugates, and − 1

z+1 and − z
z+1 are Q-conjugates. By 2.2.13 (3), all Q-conjugates

of z have absolute value 1, so the only possible Q-conjugate of z in Orb(z) is 1
z , which establishes (2).

To establish (3), suppose −z − 1 had a Q-conjugate other than itself or −1 − 1
z in Orb(z). Then by

Corollary 2.2.17, |T−z−1| = 6, which contradicts Theorem 2.2.13 (3). Similar reasoning establishes (4).
(1⇐ 2, 3, 4) By Theorem 2.2.13 (1), if |Tz| , 2, then |Tz| = 6. So suppose |Tz| = 6. As Gal(Q(z)/Q(J(z))) ⊆
Aut(Q(z)), it follows by the Isomorphism Extension Theorem that the elements of Orb(z) are Q-conjugates
of each other. As this is prohibited by (2), (3), or (4), it follows |Tz| , 6 ∴ |Tz| = 2. �

Corollary 2.2.19. Let n ≥ 9 be odd, and z ∈ C be a root of En(X). Then |Tz| = 6 if and only if the elements
of Orb(z) are Q-conjugates.

Proof. (⇒) Established in the proof of Theorem 2.2.18 for the (⇐)-direction.
(⇐) Consequence of Corollary 2.2.17. �
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2.3 Factors of En(X)

2.3.1 Self-Reciprocal Polynomials Revisited

Theorem 2.3.1. Suppose ±1 , z ∈ C such that |z| = 1. If z is algebraic over Q, then the minimal polynomial
of z over Q is a self-reciprocal polynomial of even degree.

Proof. Since z , ±1 and |z| = 1, it follows that z , z and z = 1
z . Let f (x) be the minimal polynomial

of z over Q, and define d B deg( f ). Observe f a(z) = zd f ( 1
z ) = zd f (z) = zd f (z) = 0 ∴ z is a root of

f a(x). If f (0) = 0, then x | f (x) ∴ f (x) = x because f (x) is monic and irreducible. The only root of
f (x) = x is 0, which contradicts the hypothesis that f (x) is the minimal polynomial of z with |z| = 1. So
f (0) , 0 ∴ deg( f ) = deg( f a) by Proposition 2.2.3.

Because f (x) is the minimal polynomial of z, it follows f (x) | f a(x) ∴ f (x)h(x) = f a(x) for some
h(x) ∈ Q[x]. As deg( f ) = deg( f a), it follows deg(h) = 0 ∴ h(x) = q for some 0 , q ∈ Q ∴ q f (x) = f a(x).

Let z′ be any root of f (x). Then 1
z′ ∈ C (∵ z′ , 0), z′ , 1

z′ (∵ z′ , ±1), and 1
z′ is a root of f (x)

(∵ f ( 1
z′ ) = q−1( 1

z′ )
d f (z′) = 0). Therefore, the roots of f (x) may be partitioned into sets of order 2 consisting

of a complex number and its multiplicative inverse. In particular, the degree, d, of f (x) is even and the
product of the roots is 1. Consequently, f (0) = 1.

The leading coefficient of q f (x) is q because f (x) is monic. As f (0) , 0, the leading coefficient of f a(x)
equals the constant coefficient of f (x) ∴ the leading coefficient of f a(x) is 1. Because q f (x) = f a(x) and the
leading coefficients must be equal, q = 1 ∴ f (x) = f a(x) ∴ f (x) is self-reciprocal. �

This theorem provides information about any possible factors of the Cauchy-Mirimanoff Polynomials.
Indeed, a necessary condition that the Cauchy-Mirimanoff polynomials be irreducible is that all the elements
in Orb(z) for any root z of En(X) are Q-conjugates of each other. As the next two corollaries show, this
condition is equivalent to checking that factors of En(X) are self-reciprocal.

Corollary 2.3.2. Let n ≥ 9 be odd. Then at least one irreducible factor of En(X) over Q (or Z) is self-
reciprocal.

Proof. By Theorem 2.2.9, there exists at least one root z of En(X) such that |z| = 1. Let f (x) be the
minimal polynomial of z, and note that f (x) is an irreducible factor of En(X). By Theorem 2.3.1, f (x) is
self-reciprocal. �

Corollary 2.3.3. Let n ≥ 9 be odd. If |Tz| = 6 for all roots z of En(X), then all irreducible factors of En(X)
over Q (or Z) are self-reciprocal polynomials.

Proof. Suppose |Tz| = 6 for all roots of En(X). Let z be a root of En(X). By Corollary 2.2.19, every element
of Orb(z) is a Q-conjugate of z. Consequently, by Theorem 2.2.9, there are at least two Q-conjugates of z
with absolute value 1. Therefore, the minimal polynomial of z, which is an irreducible factor of En(X) over
Q, is a self-reciprocal polynomial by Theorem 2.3.1. �

This shows that techniques used to study self-reciprocal polynomials could be helpful in determining
the irrreducibility or reducibility of the Cauchy-Mirimanoff polynomials.

Theorem 2.3.4 (Helou (1997) - Proposition 2). For prime n ≥ 11 and any root z of En(X) in C, gz(x) is
irreducible over Q(J(z)) and Gal(Q(z) | Q(J(z))) ' G3. Any irreducible factor of En(X) over Q is a product
of some of the gz’s.
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Corollary 2.3.5. Let p ≥ 11 be prime. All irreducible factors of Ep(X) are self-reciprocal.

Proof. From Theorem 2.3.4, for any root z of En(X) it follows that |Tz| = 6. The result is immediate from
Corollary 2.3.3. �

2.3.2 Reduction Modulo a Prime

Often, to test the irreducibility of a polynomial, it is useful to consider the polynomial over Fp for a prime
p. It is well-known that if a primitive polynomial (B a polynomial such that the greatest common denomi-
nator of the coefficients is 1) over Z[X] is irreducible over Fp[X] for some prime p, then the polynomial is
irreducible over Z[X]. Of course, the converse isn’t true. In other words, there exist primitive polynomials
that are irreducible over Z[X], yet are reducible modulo every prime (the cyclotomic polynomials are such
a class of polynomials). Helou (1997) considered the Cauchy-Mirimanoff polynomials modulo a prime.

Theorem 2.3.6 (Helou (1997) - Lemma 6). Let f ∈ Z[X] be a self-reciprocal polynomial such that there
exists z in C − {0,−1} for which Orb(z) consists of six distinct roots of f . Then f is reducible modulo every
prime p.

Definition 2.3.7. Let f (x) ∈ Z[x] and p a prime. The reduction of f (x) modulo p, denoted f (x), is the
polynomial in Z/pZ[x] whose coefficients equal the coefficients of f (x) reduced modulo p.

Helou applied Theorem 2.3.6 to obtain the next two results.

Corollary 2.3.8 (Helou (1997) - Lemma 6). For odd n ≥ 9 and any prime number p, En is reducible modulo
p.

Corollary 2.3.9 (Helou (1997) - Proposition 3). Let n be a prime ≥ 11. If, for some prime p, En has at most
3 irreducible factors in Fp[X], then En is irreducible in Q[X].

One might wonder how relevant Corollary 2.3.9 is to testing the irreducibility of the Cauchy-Mirimanoff

polynomials. If the hypothesis of Corollary 2.3.9 is satisfied frequently, then Corollary 2.3.9 provides a
compelling way to try to prove that the Cauchy-Mirimanoff polynomials are irreducible. After performing
a series of numerical calculations on the Cauchy-Mirimanoff polynomials, summarized in Table A.1 in
Appendix A, the following conjecture seems reasonable.

Conjecture 2.3.10. Let n ≥ 9 be odd. Then there exists a prime p such that En is a product of exactly two
irreducible polynomials over Fp.

Of course, there is no reason to expect a theorem such as this to hold when n is even. In fact, the
numerical evidence, summarized in Table A.2 also in Appendix A, would suggest the following conjecture
when n is even.

Conjecture 2.3.11. Let n ≥ 8 be even. Then there exists a prime p such that En is irreducible over Fp.

The above, if true, would also provide structure information on the Galois groups of the Cauchy-
Mirimanoff polynomials via Chebotarev’s Density Theorem.
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2.3.3 Bounds on the Degrees of Factors of the Cauchy-Mirimanoff Polynomials

If n is a prime, then Theorem 2.3.4 implies that every irreducible factor of En(X) has degree ≥ 6. Tzermias
(2007) improves this result for certain primes.

Theorem 2.3.12 (Tzermias (2007) - Theorem 1.1). Let p be a prime such that p ≡ 2 (mod 3) and p ≥ 17.

1. Every irreducible factor of Ep(X) over Q is of degree at least 12.

2. For p ≥ 23, Ep(X) has an irreducible factor of degree d ≥ 18.

In a recent paper, Tzermias (2009), similar results are found for primes p ≡ 1 (mod 3).

Theorem 2.3.13 (Tzermias (2009)). Let S be the set of primes greater than or equal to 19 and congruent
to 1 (mod 3). There exists an effectively computable subset S 0 of S with S 0 having at most 6 elements and
such that, for any p in S \S 0, the polynomial Ep(X) has no irreducible factor of degree d ≤ 11 over Q.

Theorem 2.3.14 (Tzermias (2009)). Let p be a prime congruent to 1 (mod 3). Suppose that there exists a
prime q ≥ 11 such that p ≡ 1 (mod q) and p . 1 (mod q2). Then Ep(X) has an irreducible factor of degree
d ≥ 6

⌊ q
3

⌋
over Q.

2.4 Other Results

A couple of results remain that are certainly worth note. While these results will not be directly used in this
dissertation, they are nonetheless important in the study of the Cauchy-Mirimanoff polynomials.

2.4.1 The Cauchy-Mirimanoff polynomials are relatively prime

In an application to the Korteweg-de Vries equation, Beukers (1997) proved the following theorem:

Theorem 2.4.1 (Beukers (1997) - Theorem 4.1). For all 1 < m < n, (En(X), Em(X)) = 1.

An additional result of interest from Beukers (1997) relates to the location of the zeros of Pn(X).

Theorem 2.4.2 (Beukers (1997) - Lemma 2.1). The number of distinct zeros z of Pk(X) on the unit circle
such that z2 + z + 1 , 0 is at least [ 2k

3 ] − [ k
3 ] − 1. In particular, if k , 2, 3, 5, 7 there exists a zero z on the

unit circle such that |z + 1| < 0.5.

2.4.2 E2p(X) is irreducible for all primes p

While numerical tests have shown that the Cauchy-Mirimanoff polynomials En(X) are irreducible for at least
all n ≤ 100, almost no general irreducibility results are known. The first exception, attributed to Michael
Filaseta, was proved in Helou (1997).

Theorem 2.4.3 (Helou (1997) - Proposition 4). For any odd prime p, E2p is irreducible over Q.

The proof of this theorem used Newton Polygons to establish the form of any possible factorization of
E2p, and then a number-theoretic calculation to show that no factorization was possible.

2.4.3 A Generalization of the Irreducibility of E2p(X)

In a thesis under revision, Nanninga (2009) announced a proof that En(X) is irreducible when n = 2km
where m is an odd integer and k ∈ {1, 2, 3, 4, 5}. The proof has not yet been made available.
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Chapter 3

Chebyshev Polynomials

While there are many excellent resources and even entire books devoted to the Chebyshev Polynomials, the
results needed do not appear in the literature. All standard results on Chebyshev polynomials will simply be
quoted and can be found in either of the excellent books Mason and Handscomb (2003) or Rivlin (1990).

3.1 The Fractional, Half-Fractional, and Modified Half-Fractional Cheby-
shev Polynomials

Recall the classic definition of the Chebyshev Polynomials (of the first kind):

Definition 3.1.1 (Chebyshev Polynomial). The nth-Chebyshev Polynomial, Tn(X), is defined as

Tn(x) B cos nθ

where n is a nonnegative integer, x = cos θ, and 0 ≤ θ ≤ π.

The definition is often abbreviated by Tn(X) = cos (n arccos(X)). By de Moivre’s Theorem, cos(nθ) is
a polynomial of degree n in cos(θ), and making the substitution x = cos(θ) gives the polynomial form of
Tn(X). The first six Chebyshev Polynomials are as follows:

T0(x) = 1

T1(x) = x

T2(x) = 2x2 − 1

T3(x) = 4x3 − 3x

T4(x) = 8x4 − 8x2 + 1

T5(x) = 16x5 − 20x3 + 5x

The choice of n as a nonnegative integer guarantees Tn(X) is a polynomial in X. However, if one is
willing to forgo the guarantee that Tn(X) be a polynomial, then it is reasonable to consider any n ∈ R. This
leads to the definition of Fractional Chebyshev Polynomials.
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Definition 3.1.2 (Fractional Chebyshev Polynomial). The qth-Fractional Chebyshev Polynomial, Tq(X), is
defined as

Tq(x) B cos (q arccos x)

where q ∈ Q, and x ∈ [−1, 1].

It is unusual to call functions “polynomials” when they are not actually polynomials. This strange nam-
ing convention is meant to highlight the close relationship of these functions to the Chebyshev Polynomials,
rather than indicate a specific form of the function. Additionally, for the sake of clarity, the standard Cheby-
shev Polynomials will sometimes be called the Integral Chebyshev Polynomials.

For the purposes at hand, it will be enough to consider a particular subclass of the Fractional Chebyshev
Polynomials, called the Half-Fractional Chebyshev Polynomials.

Definition 3.1.3 (Half-Fractional Chebyshev Polynomial). The nth Half-Fractional Chebyshev Polynomial,
T n

2
(X), is defined as

T n
2
(x) B cos

(n
2

arccos x
)

where n is a nonnegative integer, and x ∈ [−1, 1].

It should be clear that if n is even, then the Half-Fractional Chebyshev Polynomial is an Integral Cheby-
shev Polynomial; and if n is odd, then the Half-Fractional Chebyshev Polynomial is not a polynomial.

There is one last modification to consider. On the surface, Definition 3.1.4 appears to be a trivial modi-
fication to Half-Fractional Chebyshev Polynomials, but the change will be important later.

Definition 3.1.4 (Modified Half-Fractional Chebyshev Polynomial). The nth Modified Half-Fractional Cheby-
shev Polynomial, C n

2
(X), is defined as

C n
2
(x) B 2T n

2

( x
2

)
where n is a nonnegative integer, and x ∈ [−2, 2].

Of course, the Modified Integral Chebyshev Polynomials, and the Modified Fractional Chebyshev Poly-
nomials are similarly defined. It also worth mention that Cn(x) B 2Tn

(
x
2

)
is the Dickson polynomial Dn(x, 1)

for nonnegative integers n.

3.2 Properties of the Half-Fractional and Modified Half-Fractional Cheby-
shev Polynomials

The modification to the definition of the Integral Chebyshev Polynomials yielding the Half-Fractional
Chebyshev Polynomials makes it clear that the two collections of functions are related, yet the relation-
ship is even closer than apparent at first blush.

Theorem 3.2.1. For any nonnegative integer n, and x ∈ [−1, 1]

T n
2
(x) = Tn

 √2x + 2
2
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Proof. Let θ B arccos
√

2x+2
2 . Then

θ = arccos

√
2x + 2

2
⇔ cos θ =

√
2x + 2

2
⇔ 2 cos2 θ − 1 = x⇔ cos (2θ) = x⇔ θ =

arccos x
2

Consequently,

arccos

√
2x + 2

2
=

arccos x
2

⇒ cos
n arccos

√
2x + 2

2

 = cos
(n
2

arccos x
)

⇒ Tn

 √2x + 2
2

 = T n
2
(x)

�

Some ambiguity in Theorem 3.2.1 may be perceived if n is even. However, let n = 2k. Using the “Nest-

ing Property” of Chebyshev Polynomials, T 2k
2

(x) = T2k

( √
2x+2
2

)
= Tk

(
T2

( √
2x+2
2

))
= Tk(x) as expected.

Corollary 3.2.2. For any nonnegative integer n, and x ∈ [−2, 2]

C n
2
(x) = 2Tn

 √x + 2
2


Proof. Immediate from Definition 3.1.4 and Theorem 3.2.1. �

In the case of odd n, Theorem 3.2.1 gives an effective way to generate the Half-Fractional Chebyshev
Polynomials. The first five odd Half-Fractional Chebyshev Polynomials are

T 1
2
(x) =

√
2x + 2

2

T 3
2
(x) =

√
2x + 2

2
(2x − 1)

T 5
2
(x) =

√
2x + 2

2
(4x2 − 2x − 1)

T 7
2
(x) =

√
2x + 2

2
(8x3 − 4x2 − 4x + 1)

T 9
2
(x) =

√
2x + 2

2
(16x4 − 8x3 − 12x2 + 4x + 1)

This suggests that the Half-Fractional Chebyshev Polynomials are always of the form
√

2x+2
2 times a

polynomial. This is, in fact, true.
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Theorem 3.2.3. Let n be an odd nonnegative integer. Then

T n
2
(x) =

√
2x + 2

2
fn(x)

with fn(x) ∈ Z[x].

Proof. By Theorem 3.2.1, T n
2
(x) = Tn

( √
2x+2
2

)
. By Definition 3.1.4, T n

2
(x) = 1

2Cn
(√

2x + 2
)
. It is known

that Cn(X) ∈ Z[X] (see Rivlin (1990) - Theorem 5.5 and Lemma 5.2.2), and Cn(X) is an odd function (see
Rivlin (1990) - Equation 1.13). Consequently, Cn(X) = Xτ(X2) for some τ ∈ Z[X]. Therefore, T n

2
(x) =

1
2Cn

(√
2x + 2

)
=
√

2x+2
2 τ(2x + 2), where clearly τ(2x + 2) ∈ Z[x]. Define f (x) B τ(2x + 2) to obtain the

desired result. �

Once the polynomial form is known for the Integral Chebyshev Polynomials, the domain of the Integral
Chebyshev Polynomials is extended to all of R or even all of C, as these are valid for polynomials. The same
now will be done for the Half-Fractional Chebyshev Polynomials. With this consideration, the domain for
the Integral and Half-Fractional Chebyshev Polynomials will no longer be explicitly mentioned.

A known result for nonnegative integers n, is Cn(X + X−1) = Xn + X−n (see Rivlin (1990) - Exercise
5.2.22). This is now generalized to Modified Half-Fractional Chebyshev Polynomials.

Theorem 3.2.4. For any nonnegative integer n,

C n
2
(x + x−1) = x

n
2 + x−

n
2

Proof. By Corollary 3.2.2,

C n
2
(x + x−1) = 2Tn

 √x + x−1 + 2
2


For all nonnegative integers n, a well-known identity for Integral Chebyshev Polynomials is (see Rivlin
(1990) - Exercise 1.1.1)

Tn(x) =
(x −

√
x2 − 1)n + (x +

√
x2 − 1)n

2
Consequently,

C n
2
(x + x−1) = 2Tn

 √x + x−1 + 2
2


=


√

x + x−1 + 2
2

−

√√ √x + x−1 + 2
2

2

− 1


n

+


√

x + x−1 + 2
2

+

√√ √x + x−1 + 2
2

2

− 1


n

=

 √x + x−1 + 2
2

−

√
x + x−1 + 2

4
− 1

n

+

 √x + x−1 + 2
2

+

√
x + x−1 + 2

4
− 1

n

=

 √x + x−1 + 2
2

−

√
x + x−1 − 2

4

n

+

 √x + x−1 + 2
2

+

√
x + x−1 − 2

4

n

16



=

 √x + x−1 + 2
2

−

√
x + x−1 − 2

2

n

+

 √x + x−1 + 2
2

+

√
x + x−1 − 2

2

n

=


√(

x
1
2 + x−

1
2
)2

2
−

√(
x

1
2 − x−

1
2
)2

2


n

+


√(

x
1
2 + x−

1
2
)2

2
+

√(
x

1
2 − x−

1
2
)2

2


n

=

 x
1
2 + x−

1
2

2
−

x
1
2 − x−

1
2

2

n

+

 x
1
2 + x−

1
2

2
+

x
1
2 − x−

1
2

2

n

= x
n
2 + x−

n
2

�
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Chapter 4

The Reciprocal Transform of the
Cauchy-Mirimanoff Polynomials

Over the last two hundred years, there have been many papers and results giving tests to apply to a poly-
nomial to determine irreducibility. The difficulty in testing the irreducibility of the Cauchy-Mirimanoff

Polynomials is that these polynomials, and their translates, seem to satisfy none of the hypotheses of any
known tests. So instead of studying the Cauchy-Mirimanoff Polynomials directly, the reciprocal transform
is defined and studied.

4.1 The Reciprocal Transform of a Self-Reciprocal Polynomial

4.1.1 Definition of the Reciprocal Transform of a Self-Reciprocal Polynomial

Theorem 4.1.1. LetD be an integral domain and f (x) ∈ D[x] a self-reciprocal polynomial with deg( f ) = 2k
for some k ∈ Z. Then there exists a unique polynomial f ∗(x) ∈ D[x] such that

f (x) = xk f ∗(x + x−1)

Proof. Uniqueness is straightforward. For existence, suppose

f (x) = a2kx2k + a2k−1x2k−1 + · · · + a1x + a0 (4.1)

with each ai ∈ D. Since a2k− j = a j for each j = 0, 1, · · · , k, Equation 4.1 may be rearranged as

f (x) =

k−1∑
j=0

a j(x2k− j + x j) + akxk (4.2)

= xk

k−1∑
j=0

a j(xk− j +
1

xk− j ) + ak

 (4.3)

= xk

k−1∑
j=0

a jCk− j

(
x +

1
x

)
+ ak

 (4.4)
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As mentioned in the proof of Theorem 3.2.3, it is known that Cn(x) ∈ Z[x], so the coefficients of Cn in
Equation 4.4 may be interpreted appropriately in D (i.e. as a sum of ±1’s). Thus, define

f ∗(x) B
k−1∑
j=0

a jCk− j (x) + ak

where deg( f ∗) = k. �

The existence of f ∗ has been known for at least a century, but there is no universal agreement to notation
or name.

Definition 4.1.2 (Reciprocal Transform of a Self-Reciprocal Polynomial). Let D be an integral domain,
f (x) ∈ D[x] a self-reciprocal polynomial of even degree, and d B deg( f ). The reciprocal transform of f is
the unique polynomial f ∗(x) ∈ D[x] with deg( f ∗) = d

2 such that

f (x) = x
d
2 f ∗(x + x−1)

4.1.2 Dickson’s Theorem

It is natural to consider how the factorization of a polynomial is related to the factorization of its reciprocal
transform.

Theorem 4.1.3 (Dickson (1908)). Let F be a field, and f (x) ∈ F[x] a self-reciprocal polynomial such that
f (±1) , 0 and deg( f ) = 2k for some k ∈ Z. Then f(x) is irreducible over F if and only if

1. f ∗(x) is irreducible over F, and

2. f (x) is not a product of two distinct irreducible polynomials, each of degree k.

Further commenting on Condition 2, if f ∗(x) is irreducible over F and f (x) = g(x)h(x) is a product of
two distinct irreducible polynomials, then the roots of h are the reciprocals of the roots of g. In other words,
there exists a λ ∈ F and g(x) ∈ F[x] such that f (x) = λg(x)ga(x).

Moreover, g(x) and ga(x) are not self-reciprocal polynomials. On the contrary, if g(x) is a self-reciprocal
polynomial, then ga(x) is also a self-reciprocal polynomial and both deg(g) and deg(ga) are even integers
(consequently the reciprocal transforms exist giving a factorization to f ∗(x)). That the degrees are even
follows from the hypothesis that g(±1) , 0 and ga(±1) , 0, and the fact that every irreducible self-reciprocal
polynomial over F, except X + 1, has even degree. For if z is a root of a self-reciprocal polynomial, then 1

z is
also a root, so the roots of a self-reciprocal polynomial come in pairs unless z = 1

z . This condition occurs if
and only if z = ±1 is a root of the polynomial; the minimal polynomial of 1 is X−1 and is not self-reciprocal
unless char(F) = 2, and the minimal polynomial of −1 is X + 1. Thus, the only irreducible self-reciprocal
polynomial of odd degree is X + 1.

If the hypothesis that f (±1) , 0 is dropped in Theorem 4.1.3, then the statement remains true if the word
“distinct” is dropped in Condition 2. Moreover, in this case, there is no guarantee that the two polynomials
of Condition 2 are non-self-reciprocal. For an example, consider f (x) = x2 + 2x + 1 = (x + 1)2 over Q with
f ∗(x) = x + 2.

After Dickson (1908), a number of papers have appeared on the topic including Kleiman (1974) and
Meyn (1990).
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4.2 The Reciprocal Transforms of the Cauchy-Mirimanoff Polynomials

By Theorem 2.2.6, the Cauchy-Mirimanoff Polynomials are self-reciprocal, so their reciprocal transform
exists. In this section, an equation for this reciprocal transform is found and studied.

4.2.1 An Equation for the Reciprocal Transform of the Cauchy-Mirimanoff Polynomials

Theorem 4.2.1 (The Reciprocal Transform of the Cauchy-Mirimanoff Polynomials). For any integer n ≥ 2,
the reciprocal transform of En(x) is given by

E∗n(x) =

(x + 2)
n
2 − 2Tn

( √
x+2
2

)
(√

x + 2
)εn (x + 1)en

(4.5)

where for even n, εn = en = 0; for odd n, εn = 1 and en = 0, 1, or 2 according as n ≡ 0, 2, or 1 (mod 3).

Proof. Consider the function f ∗n defined by

f ∗n (x) B
(x + 2)

n
2 −C n

2
(x)(√

x + 2
)εn (x + 1)en

Now using Corollary 2.1.3, Definition 4.1.2, and Theorem 3.2.4, if n is even, then

x
n−2

2 f ∗n

(
x +

1
x

)
= x

n−2
2

(x +
1
x

+ 2
) n

2

−C n
2

(
x +

1
x

)
= x

n−2
2

(
x−

n
2 (x2 + 2x + 1)

n
2 − x

n
2 − x−

n
2
)

= x−1((x + 1)n − xn − 1)

= En(x)

On the other hand, if n is odd, then

x
n−3−2en

2 f ∗n

(
x +

1
x

)
= x

n−3−2en
2


(
x + 1

x + 2
) n

2
−C n

2

(
x + 1

x

)
√

x + 1
x + 2

(
x + 1

x + 1
)en


= x

n−3−2en
2

 x−
n
2
(
x2 + 2x + 1

) n
2
− x

n
2 − x−

n
2

x−
1
2−en
√

x2 + 2x + 1
(
x2 + x + 1

)en


= x−1


(
x2 + 2x + 1

) n
2
− xn − 1

√
x2 + 2x + 1

(
x2 + x + 1

)en


= x−1

(
(x + 1)n − xn − 1

(x + 1)
(
x2 + x + 1

)en

)
= En(x)

In either case, f ∗n is a reciprocal transform of En ∴ E∗n is the reciprocal transform of En. �
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Corollary 4.2.2. Let n ≥ 2 be an integer.

1. If n is even, then deg(E∗n) = n−2
2

2. If n is odd, then deg(E∗n) =
n−3−2en

2

Proof. Immediate from Corollary 2.1.3. �

4.2.2 Roots of E∗n(x) and its Translates

Everything known about the roots of the Cauchy-Mirimanoff Polynomials may be translated to information
about the roots of the reciprocal transform.

Proposition 4.2.3. Let n ≥ 9 be an odd integer. If eiθ is a root of En(x), then r B 2 cos θ is a real root of
E∗n(x) such that −2 ≤ r ≤ −1.

Proof. Suppose eiθ is a root of En(x). This implies, by Defintion 4.1.2, that r B 2 cos θ = eiθ + e−iθ is a
root of E∗n(x). In Helou (1997), it was shown θ

2 ∈
(
π
3 ,

π
2

)
. Consequently, θ ∈

(
2π
3 , π

)
∴ cos θ ∈

(
−1,− 1

2

)
∴

2 cos θ ∈ (−2,−1). �

In Section 2.2.3, it is shown for odd n that the roots of En(x) can be partitioned into orbits, each of which
contains two roots of En(x) of absolute value 1. The partitioning of the roots of En(x) induces a partition
of roots of E∗n(x). The “parts” of the induced partition of the roots of E∗n(x) will be called the root orbits of
E∗n(x) to emphasize the relationship with the orbits of roots of En(x).

Definition 4.2.4. Let n ≥ 9 be an odd integer, and z B eiθ be a root of En(x). Then Orb∗(z) is the set

Orb∗(z) B
{

2 cos θ,−eiθ − 1 +
1

−eiθ − 1
,−e−iθ − 1 +

1
−e−iθ − 1

}
Theorem 4.2.5. Let n ≥ 9 be an odd integer, and z B eiθ be a root of En(x). Then the root orbit of
E∗n(x) induced by Orb(z) is Orb∗(z), and Orb∗(z) consists of three distinct roots, one real and two complex
conjugates, of E∗n(x).

Proof. Considering each root of Orb(z) separately, we find the corresponding root of E∗n(x).

1. eiθ ∈ Orb(z): Then eiθ + e−iθ = 2 cos θ is a root of E∗n(x).

2. e−iθ ∈ Orb(z): Then e−iθ + eiθ = 2 cos θ is a root of E∗n(x).

3. −eiθ − 1 ∈ Orb(z): Then −eiθ − 1 + 1
−eiθ−1 is a root of E∗n(x).

4. 1
−eiθ−1 ∈ Orb(z): Then 1

−eiθ−1 − eiθ − 1 is a root of E∗n(x).

5. −1 − 1
eiθ ∈ Orb(z): Then −1 − 1

eiθ + 1
−1− 1

eiθ
= −e−iθ − 1 + 1

−e−iθ−1 is a root of E∗n(x).

6. − eiθ
eiθ+1 ∈ Orb(z): Then − eiθ

eiθ+1 + 1
− eiθ

eiθ+1

= −e−iθ − 1 + 1
−e−iθ−1 is a root of E∗n(x).
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So Orb(z) induces a partition of the roots of E∗n(x) with parts
{
2 cos θ,−eiθ − 1 + 1

−eiθ−1 ,−e−iθ − 1 + 1
−e−iθ−1

}
.

It remains to show that these roots are distinct. As 2 cos θ is real, it is enough to show −eiθ − 1 + 1
−eiθ−1 and

−e−iθ − 1 + 1
−e−iθ−1 are two distinct nonreal roots.

A complex number is real if and only if it equals its complex conjugate. Clearly, the complex conjugate
of −eiθ − 1 + 1

−eiθ−1 is −e−iθ − 1 + 1
−e−iθ−1 , and vice versa, so suppose they are equal:

−eiθ − 1 +
1

−eiθ − 1
= −e−iθ − 1 +

1
−e−iθ − 1

Let x B eiθ, and solve for x:

−x − 1 + 1
−x−1 = −x−1 − 1 + 1

−x−1−1

⇒ (x − 1)(x2 + x + 1) = 0

So x must be a root of unity, a contradiction since En(x) has no roots that are roots of unity by Theorem
2.2.1. Thus, −eiθ − 1 + 1

−eiθ−1 and −e−iθ − 1 + 1
−e−iθ−1 are two distinct nonreal numbers. �

In Section 2.2.3, conditions are given to show when the elements of Orb(z) are Q-conjugates. That work
can be used to give conditions for when the elements of Orb∗(z) are Q-conjugates.

Lemma 4.2.6. Let n ≥ 9 be an odd integer, and z B eiθ be a root of En(x).

1. |Tz| = 6 if and only if the elements of Orb∗(z) are Q-conjugates.

2. |Tz| = 2 if and only if the only Q-conjugate of 2 cos θ in Orb∗(z) is itself.

Proof.

1. (⇒) Suppose |Tz| = 6. Let f (x) be the minimal polynomial of z over Q. Then f (x) is a self-reciprocal
polynomial of even degree by Theorem 2.3.1, so the reciprocal transform f ∗(x) ∈ Q[x] exists. Every
element of Orb(z) is a root of f (x) by Corollary 2.2.19, so every element of Orb∗(z) is a root of f ∗(x).
By Dickson’s Theorem (Theorem 4.1.3), f ∗(x) is irreducible over Q ∴ the elements of Orb∗(z) are
Q-conjugates.

(⇐) Suppose the elements of Orb∗(z) are Q-conjugates, but |Tz| = 2 (the only possibility if |Tz| , 6
by Theorem 2.2.13). Let f (x) be the minimal polynomial of z over Q. Then f (x) is a self-reciprocal
polynomial by Theorem 2.3.1, so the reciprocal transform f ∗(x) ∈ Q[x] exists. By Dickson’s Theorem
(Theorem 4.1.3), f ∗(x) is irreducible over Q. So, by hypothesis, the elements of Orb∗(z) are all roots
of f ∗(x). In particular, −eiθ − 1 + 1

−eiθ−1 is a root of f ∗(x). Consequently,

f (−eiθ − 1) = x
deg( f )

2 f ∗(−eiθ − 1 +
1

−eiθ − 1
) = 0

Therefore, −eiθ − 1 is a root of f (x) ∴ −eiθ − 1 ∈ Orb(z) is a Q-conjugate of z. This contradicts
Theorem 2.2.18 ∴ |Tz| = 6.

2. (⇒) Suppose |Tz| = 2. Then by 1, the elements of Orb∗(z) cannot all be Q-conjugates. Since
−eiθ − 1 + 1

−eiθ−1 ∈ Orb∗(z) and −e−iθ − 1 + 1
−e−iθ−1 ∈ Orb∗(z) are complex conjugates, they are neces-

sarily Q-conjugates by the complex conjugate root theorem. So if 2 cos θ were a Q-conjugate to either
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−eiθ −1 + 1
−eiθ−1 or −e−iθ −1 + 1

−e−iθ−1 , then all the elements of Orb∗(z) would be Q-conjugates, which
is impossible. Therefore, the only Q-conjugate of 2 cos θ in Orb∗(z) is itself.

(⇐) Suppose the only Q-conjugate of 2 cos θ in Orb∗(z) is itself. By 1, |Tz| , 6 ∴ |Tz| = 2. �

Corollary 4.2.7. Let n ≥ 9 be an odd integer, and z B eiθ be a root of En(x). Then the elements of Orb(z)
are Q-conjugates if and only if the elements of Orb∗(z) are Q-conjugates.

Proof. Apply Corollary 2.2.19 and Lemma 4.2.6. �

It is also useful to consider translates of E∗n(x). There is a natural partitioning of the roots of a translate
of E∗n(x) induced by the orbits of roots of E∗n(x). To be precise, if z := eiθ is a root of En(x), then the root
orbit of z of E∗n(x − j), denoted by Orb∗j(z), is defined to be

Orb∗j(z) B
{

2 cos θ + j,−eiθ − 1 +
1

−eiθ − 1
+ j,−e−iθ − 1 +

1
−e−iθ − 1

+ j
}

Clearly, Orb∗(z) = Orb∗0(z). The elements of Orb∗j(z) satisfy a number of nice arithmetic properties.

Lemma 4.2.8. Let n ≥ 9 be an odd integer, and z B eiθ be a root of En(x).

1. The sum of the elements of Orb∗j(z) is 3( j − 1) for any j ∈ R.

2. The product of the elements of Orb∗1(z) is J(z), with J(z) as in Definition 2.2.10.

3. The product of the elements of Orb∗2(z) is 1.

Proof. Each proof is an exercise in simplification.

1.
2 cos θ + j − eiθ − 1 +

1
−eiθ − 1

+ j − e−iθ − 1 +
1

−e−iθ − 1
+ j = 3( j − 1)

2.

(2 cos θ + 1)
(
−eiθ − 1 +

1
−eiθ − 1

+ 1
) (
−e−iθ − 1 +

1
−e−iθ − 1

+ 1
)

=
(2 cos θ + 1)3

2(cos θ + 1)
= J(z)

3.

(2 cos θ + 2)
(
−eiθ − 1 +

1
−eiθ − 1

+ 2
) (
−e−iθ − 1 +

1
−e−iθ − 1

+ 2
)

= 1

�

Proposition 4.2.9. Let k ≥ 1 be odd. Then

(x + x−1 + 2)k +

(
−x − 1 +

1
−x − 1

+ 2
)k

+

(
−x−1 − 1 +

1
−x−1 − 1

+ 2
)k

=
E3k(x)

(x2 + x)k−1

Proof. Multiply both sides by (x2 + x)k and simplify. �

Corollary 4.2.10. Let n ≥ 9 and k ≥ 1 both be odd integers, and z B eiθ a root of En(X). The kth power
sum of the elements of Orb∗2(z) is (z2 + z)1−kE3k(z).

Proof. In Proposition 4.2.9, set x := z. �
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4.3 Dickson’s Theorem for the Cauchy-Mirimanoff Polynomials

Dickson’s Theorem (Theorem 4.1.3) applies to general self-reciprocal polynomials. One might wonder what
additional hypotheses are needed to make Condition 2 redundant.

Theorem 4.3.1. Let f (x) ∈ Q[x] be a self-reciprocal polynomial with a complex root of absolute value 1,
f (±1) , 0, and deg( f ) an even integer. Then f (x) is irreducible if and only if f ∗(x) is irreducible.

Proof. As f (x) is self-reciprocal of even degree, the reciprocal transform f ∗(x) exists.
(⇒) By Dickson’s Theorem, f ∗(x) is irreducible.
(⇐) Suppose f ∗(x) is irreducible. By Dickson’s Theorem, f (x) is either irreducible or a product of two
irreducible (non-self-reciprocal) polynomials. However, as f (x) has a root of absolute value 1, it must have
at least one irreducible self-reciprocal factor. Consequently by Dickson’s Theorem, this is possible only if
f (x) is irreducible. �

Corollary 4.3.2 (Dickson’s Theorem for the Cauchy-Mirimanoff Polynomials). Let n ≥ 8 be an integer.
Then En(x) is irreducible if and only if E∗n(x) is irreducible.

Proof. From Theorem 2.4.2 (a similar result can be found in Helou (1997) - Lemma 1), if n ≥ 8 then En(x)
has at least one nonreal root of absolute value 1. Apply Theorem 4.3.1. �

More can be said when the index of the Cauchy-Mirimanoff Polynomials is odd.

Corollary 4.3.3. Let n ≥ 9 be an odd integer, and let f (x) ∈ Q[x] be a factor of En(x) such that |Tz| = 6 for
all roots z of f (x). Then f (x) is irreducible over Q if and only if f ∗(x) is irreducible over Q.

Proof. The condition that |Tz| = 6 for all roots z of f (x) guarantees that f (x) will have at least one nonreal
root of absolute value 1. Apply Theorem 4.3.1. �

Corollary 4.3.4. Let n ≥ 9 be an odd integer, and |Tz| = 6 for all roots z of En(x). Then the number of
irreducible factors of En(x) is equal to the number of irreducible factors of E∗n(x).

Proof. The condition that |Tz| = 6 for all roots z of En(x) guarantees that every irreducible factor of En(x)
has at least one nonreal root of absolute value 1. By Theorem 4.3.1, there is a one-to-one correspondence
between the factors of En(x) and E∗n(x) yielding the result. �

The following corollary could also be obtained from results in Helou (1997).

Corollary 4.3.5. Let p ≥ 11 be a prime integer. Then the number of irreducible factors of Ep(x) equals the
number of irreducible factors of E∗p(x).

Proof. Apply Corollary 4.3.4 to Theorem 2.3.4. �
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Chapter 5

The Irreducibility of E2p(x) and E3p(x)

5.1 The Irreducibility of E2p(x) - A New Proof

Visually inspecting E∗2p(x) for small primes p leads to the observation that the reciprocals (E∗2p)a are irre-
ducible by Eisenstein’s criteria with respect to p.

Theorem 5.1.1. Let p be an odd prime. Then E∗2p(x) is irreducible over Q.

Proof. By Theorem 4.2.1,

E∗2p(x) = (x + 2)p − 2T2p

 √x + 2
2

 = (x + 2)p − 2Tp

( x
2

)
It is convenient to consider the polynomial f2p(x) ∈ Z[x] defined as

f2p(x) B 2p−1(x + 1)p − Tp(x)

If f2p(x) is irreducible over Q, then E∗2p(x) is irreducible ∵ a factorization of E∗2p(x) yields a factorization of

E∗2p(2x), which yields a factorization of
E∗2p(2x)

2 = f2p(x) over Q, a contradiction.
It is known that the leading coefficient of Tp(x) is 2p−1. So, the xp-terms in f2p(x) cancel. Moreover, the

powers of x in Tp(x) differ by 2 (Rivlin (1990) - Exercise 1.2.1). Therefore, the leading coefficient of f2p(x)
is 2p−1 pxp−1.

The constant coefficient of f2p(x) is f2p(0) = 2p−1 − Tp(0) = 2p−1 (again apply Rivlin (1990) - Exercise
1.2.1 to find Tp(0) = 0). Every coefficient of (x + 1)p beside the leading and constant coefficient is divisible
by p. It is known (Rivlin (1990) - Equation (5.32)) that every coefficient beside the leading coefficient of
Tp(x) is divisible by p ∴ all coefficients of f2p(x) are divisible by p except the constant coefficient.

By the previous two paragraphs, f a2p(x) is irreducible by Eisenstein’s Criteria with respect to p. Conse-
quently f2p(x) is irreducible ∴ E∗2p(x) is irreducible. �

Corollary 5.1.2. Let p be an odd prime. Then E2p(x) is irreducible over Q.

Proof. Verify directly for p = 3. If p ≥ 5, apply Corollary 4.3.2 and Theorem 5.1.1. �
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5.2 The Irreducibility of E3p(x) - First Proof

Rather than study E∗3p(x) directly, the translate E∗3p(x − 2) is studied. Unfortunately, nothing as easy as
Eisenstein’s Irreducibility Criteria may be applied, yet the irreducibility of E∗3p(x) can still be proven.

5.2.1 The Newton Polygon of E∗3p(x − 2)

Newton Polygons are the main tool of this section; we follow the terminology in Mott (1995).

Theorem 5.2.1 (Dumas’ Theorem - cf. Mott (1995)). Let f (x), g(x), h(x) ∈ Q[x] and p a prime integer. If
f (x) = g(x)h(x) where g(x) and h(x) are nonconstant polynomials, then the Newton Polygon of f (x) with
respect to p is composed of segments that have the same width and slope as the segments of the Newton
Polygons of g(x) and h(x) with respect to p. Moreover, the degree of a factor of f (x) is the sum of the widths
of some of the segments of the Newton Polygon of f (x) with respect to p.

Theorem 5.2.2. Let p ≥ 5 be prime. Then the Newton Polygon of E∗3p(x − 2) has precisely three vertices -

(0, 1), ( p−1
2 , 0), ( 3p−3

2 , 1).

Proof. The following three claims and their proofs are enough to establish the form of the Newton Polygon.

• Claim: All coefficients of E∗3p(x − 2), except of x
p−1

2 , are divisible by p.

It is enough to show E∗3p(x − 2) = 3x
p−1

2 , with E∗3p(x − 2) the image of E∗3p(x − 2) in Fp(
√

x). Before

beginning, note Tp(x) ≡ xp (mod p) (see Rivlin (1990) - Equation (5.32)). So using Theorem 4.2.1,

E∗3p(x − 2) =

x
3p
2 − 2T3p

( √
x

2

)
√

x

=

x
3p
2 − 2Tp

(
T3

( √
x

2

))
√

x

=

x
3p
2 − 2Tp

( √
x

2 (x − 3)
)

√
x

=

x
3p
2 − 2

( √
x

2 (x − 3)
)p

√
x

=
x

3p
2 − x

p
2 (x − 3)p

√
x

= x
3p−1

2 − x
p−1

2 (x − 3)p

= x
3p−1

2 − x
p−1

2 (xp − 3)

= x
3p−1

2 − x
3p−1

2 + 3x
p−1

2

= 3x
p−1

2
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• Claim: The leading coefficient of E∗3p(x − 2) is 3p.

It is known that a general formula for the Chebyshev Polynomials is

Tn(x) =
n
2

b n
2 c∑

r=0

(−1)r

n − r

(
n − r

r

)
(2x)n−2r (5.1)

Consequently,

E∗3p(x − 2) =

x
3p
2 − 2T3p

( √
x

2

)
√

x
(5.2)

=
x

3p
2 − 3p

∑b 3p
2 c

r=0
(−1)r

3p−r

(
3p−r

r

)
x

3p−2r
2

√
x

(5.3)

= −3p
b

3p
2 c∑

r=1

(−1)r

3p − r

(
3p − r

r

)
x

3p−2r−1
2 (5.4)

The largest power of x occurs when r = 1 ∴ the leading term is −3p −1
3p−1

(
3p−1

1

)
x

3p−3
2 = 3px

3p−3
2 .

• Claim: The constant coefficient of E∗3p(x − 2) is (−1)
3p+1

2 (3p).

From Equation 5.4, the constant coefficient comes when r = b
3p
2 c =

3p−1
2 . So the constant coefficient

is −3p (−1)
3p−1

2

3p− 3p−1
2

(3p− 3p−1
2

3p−1
2

)
= −3p (−1)

3p−1
2

3p+1
2

( 3p+1
2

3p−1
2

)
= (−1)

3p+1
2 (3p).

�

Corollary 5.2.3. Let p ≥ 5 be prime. Then E∗3p(x − 2) is either irreducible or a product of two irreducible

polynomials, one of degree p−1
2 and the other of degree p − 1.

Proof. By Theorem 5.2.2, the Newton Polygon of E∗3p(x − 2) consists of precisely two segments, one of

width p−1
2 and the other of width p − 1. The result follows from Dumas’ Theorem. �

5.2.2 Root Orbits of E3p(x) and E∗3p(x)

Theorem 5.2.4. Let p ≥ 5 be prime. Then |Tz| = 6 for all roots z of E3p(x).

Proof. On the contrary, suppose En(x) has a root z so that |Tz| = 2. By Theorem 2.2.13, there exists a
z′ ∈ Orb(z) such that |Tz′ | = 2 and the absolute value of z′ is 1. Define f (x) ∈ Z[x] to be the irreducible
factor of En(x) such that f (z′) = 0. Additionally by Theorem 2.2.13, every root of f (x) has absolute value
1. In particular, f (x) is a self-reciprocal polynomial of even degree by Theorem 2.3.1 ∴ f ∗(x) ∈ Z[x] exists.
By Dickson’s Theorem, f ∗(x) is irreducible, and clearly f ∗(x) | E∗3p(x).

By Proposition 4.2.3, each root of f ∗(x) is real and between −2 and −1. Hence, f ∗(x − 2) ∈ Z[x] is
an irreducible factor of E∗3p(x − 2) with all real roots between 0 and 1. As E∗3p(x) has exactly p−1

2 real

roots, it follows deg( f ∗(x)) ≤ p−1
2 ∴ deg( f ∗(x − 2)) ≤ p−1

2 . On the other hand, Corollary 5.2.3 requires
deg( f ∗(x − 2)) ≥ p−1

2 ∴ deg( f ∗(x − 2)) =
p−1

2 .
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From Theorem 5.2.2, the segment of the Newton Polygon of width p−1
2 has vertices (0, 1) and ( p−1

2 , 0).
Thus, by Dumas’ Theorem, the Newton Polygon of f ∗(x − 2) also consists of precisely one segment with
vertices (0, 1) and ( p−1

2 , 0). Consequently, all coefficients, except for the leading coefficient, of f ∗(x − 2) are
divisible by p (in fact, f ∗(x − 2) is irreducible by Eisenstein’s Criteria with respect to p).

For convenience, explicitly write f ∗(x − 2) as a polynomial:

f ∗(x − 2) = a p−1
2

x
p−1

2 + · · · + a1x + a0 (5.5)

Restate the conclusions of the previous paragraph in the notation of Equation 5.5, gcd(a p−1
2
, p) = 1 and

p | a0 (but p2 - a0). By the second claim in the proof of Theorem 5.2.2, the leading coefficient of E∗3p(x− 2)
is 3p ∴ the leading coefficient, a p−1

2
, of f ∗(x − 2) is 1, 3, p, or 3p. That gcd(a p−1

2
, p) = 1 forces a p−1

2
= 1, or

3, and both yield contradictions.

• Suppose a p−1
2

= 1.

Then the leading coefficient of f ∗(x) is 1, which forces the leading coefficient of f (x) to be 1. In other
words, f (x) ∈ Z[x] is a monic polynomial with every root on the unit circle. By Kronecker’s Theorem
(Kronecker (1857)), the roots of f (x) are roots of unity contradicting Theorem 2.2.1.

• Suppose a p−1
2

= 3.

The absolute value of the product of the roots of f ∗(x − 2) is |a0 |∣∣∣∣∣∣a p−1
2

∣∣∣∣∣∣ =
|a0 |
3 . Because p | |a0|, it

immediately follows that 1 < p
3 ≤

|a0 |
3 ∴ the absolute value of the product of the roots of f ∗(x − 2) is

greater than 1. However, as already noted, each root of f ∗(x − 2) is real and between 0 and 1 ∴ the
absolute value of the product of the roots is less than 1, a contradiction.

�

Corollary 5.2.5. Let p ≥ 5 be prime. The degree of any factor of E∗3p(x) is divisible by 3.

Proof. By Theorem 5.2.4, |Tz| = 6 for all roots z of E3p(x). By Lemma 4.2.6, for each root z B eiθ of
E3p(x), the elements of Orb∗(z) are Q-conjugates. Consequently, the number of roots of any irreducible
factor of E∗3p(x) is divisible by 3 ∴ the degree of any factor of E∗3p(x) is divisible by 3. �

5.2.3 The Irreducibility of E∗3p(x) and E3p(x)

Lemma 5.2.6. Let p ≡ 2 (mod 3) be an odd prime. Then E∗3p(x) is irreducible over Q.

Proof. By Corollary 5.2.3, E∗3p(x − 2) is either irreducible or a product of two irreducible polynomials, one

of degree p−1
2 and the other of degree p − 1. The same holds true for any translate, so in particular, E∗3p(x)

is either irreducible or a product of two irreducible polynomials, one of degree p−1
2 and the other of degree

p − 1. Suppose E∗3p(x) is a product of two irreducible polynomials. Then p − 1 ≡ 1 (mod 3), so E∗3p(x) has
an irreducible factor of degree p−1, which is not divisible by 3, contradicting Corollary 5.2.5. Thus, E∗3p(x)
must be irreducible. �
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Lemma 5.2.7. Let p ≡ 1 (mod 3) be an odd prime. Then E∗3p(x) is irreducible over Q.

Proof. By Corollary 5.2.3, E∗3p(x − 2) is either irreducible or a product of two irreducible polynomials, one

of degree p−1
2 and the other of degree p− 1. Suppose E∗3p(x− 2) is a product of two irreducible polynomials

in Z[x], and let f ∗(x − 2) be the irreducible factor of degree p−1
2 . By Dumas’ Theorem and Theorem 5.2.2,

the Newton Polygon of f ∗(x − 2) has precisely two vertices, (0, 1) and ( p−1
2 , 0). For convenience, consider

f ∗(x − 2) as in Equation 5.5. Then gcd(a p−1
2
, p) = 1 and a p−3

2
= p · n for some n ∈ Z. Consequently, the sum

of the roots of f ∗(x − 2) is −
a p−3

2
a p−1

2

= −
p·n

a p−1
2

.

By Theorem 5.2.4, |Tz| = 6 for all roots z of E3p(x). Therefore, by Lemma 4.2.6, for each root z B eiθ

of E3p(x) the elements of Orb∗(z) are Q-conjugates ∴ the elements of Orb∗2(z) are also Q-conjugates. As
p − 1 ≡ 0 (mod 3), there exist p−1

6 roots z1, · · · , z p−1
6

of E3p(x) of absolute value 1 such that the roots of
f ∗(x − 2) can be partitioned into Orb∗2(z1), · · · ,Orb∗2(z p−1

6
). By Lemma 4.2.8, the sum of the elements of

each Orb∗2(zi) is 3 ∴ the sum of the roots of f ∗(x − 2) is 3 · p−1
6 =

p−1
2 .

Consequently, there are two expressions for the sum of the roots of f ∗(x − 2) which must be equal:

−
p · n
a p−1

2

=
p − 1

2
⇒ −2pn = a p−1

2
(p − 1)

As p | −2pn, it holds that p | a p−1
2

(p − 1) ∴ p | a p−1
2

or p | p − 1. However, p - a p−1
2
∵ gcd(a p−1

2
, p) = 1, and

clearly p - p−1, which yields a contradiction. Therefore, E∗3p(x−2) is irreducible ∴ E∗3p(x) is irreducible. �

Corollary 5.2.8. Let p ≥ 5 be prime. Then E∗3p(x) is irreducible over Q.

Proof. Combine Lemmas 5.2.6 and 5.2.7. �

Theorem 5.2.9. Let p ≥ 5 be prime. Then E3p(x) is irreducible over Q.

Proof. Apply Dickson’s Theorem for the Cauchy-Mirimanoff Polynomials (Corollary 4.3.2) to Corollary
5.2.8. �

Corollary 5.2.10. E3p(x) is irreducible over Q for all primes p.

Proof. The only primes not included in Theorem 5.2.9 are p = 2, 3. If p = 2, then E3p(x) is irreducible by
Corollary 5.1.2. It isn’t hard to check the case p = 3 numerically. Alternatively, E∗9(x) is a polynomial of
degree 3 - apply the rational root test to prove it is irreducible and then apply Dickson’s Theorem. �
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Chapter 6

A Study of E3pi(x)

The results of Chapter 5 are now generalized to the Cauchy-Mirimanoff polynomials E3pi(X). The main
result of this chapter is |Tz| = 6 for all roots z of E3pi(X). A number of corollaries are obtained, including
lower bounds on the degrees of possible factors of E3pi(X), and two new proofs that E3p(X) is irreducible.

6.1 The Newton Polygon of E∗3pi(x − 2)

Theorem 6.1.1. Let p ≥ 5 be prime, and i ∈ N. The Newton Polygon of E∗3pi(x − 2) with respect to p has
vertices: (

p0 − 1
2

, i
)
,

(
p1 − 1

2
, i − 1

)
, · · · ,

(
pi − 1

2
, 0

)
=(

3pi − 3
2

− (pi − 1), 0
)
, · · · ,

(
3pi − 3

2
− (p1 − 1), i − 1

)
,

(
3pi − 3

2
− (p0 − 1), i

)
Proof. Using Equation 4.5 and Equation 5.1, find

E∗3pi(x − 2) =

3pi−3
2∑

k=0

(−1)
3pi−3

2 −k 3pi

3pi−1
2 − k

( 3pi−1
2 + k

3pi−3
2 − k

)
xk

For fixed p and i, define ak B (−1)
3pi−3

2 −k 3pi

3pi−1
2 −k

( 3pi−1
2 +k

3pi−3
2 −k

)
. The following four claims and their proofs are

enough to prove the Newton Polygon of E∗3pi(x − 2) is as asserted.

• Claim: Fix j so that 1 ≤ j ≤ i. If k is such that p j−1−1
2 ≤ k < p j−1

2 , then pi− j+1 | ak.

It is enough to show that p j -
(

3pi−1
2 − k

)
. On the contrary, suppose that p j |

(
3pi−1

2 − k
)
∴

p jz =
3pi−1

2 − k for some z ∈ Z. By the bound on k, there exists a κ ∈ Z with 1 ≤ κ ≤
(

p−1
2

)
p j−1 such
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that k =
p j−1

2 − κ. Consequently,

p jz =
3pi − 1

2
− k

=
3pi − 1

2
− (

p j − 1
2
− κ)

= p j
(
3pi− j − 1

2

)
+ κ

Thus, κ = p jz − p j
(

3pi− j−1
2

)
∴ p j | κ. However, κ ≤

(
p−1

2

)
p j−1 < p j, a contradiction.

• Claim: Fix j so that 0 ≤ j ≤ i. If k =
p j−1

2 , then pi− j+1 - ak.

In this case, ak may be simplified to

ak = (−1)
3pi−3

2 −k 3pi− j(3pi− j−1
2

)( 3pi+p j−2
2

3pi−p j−2
2

)

So it is enough to show p -
( 3pi+p j−2

2
3pi−p j−2

2

)
. Begin by rewriting the binomial coefficient as

( 3pi+p j−2
2

3pi−p j−2
2

)
=

( 3pi+p j−2
2

p j

)
=

(
3pi+p j

2 − 1
)

1

(
3pi+p j

2 − 2
)

2
· · ·

(
3pi+p j

2 − p j
)

p j

Consequently, it is enough to show ordp

(
3pi+p j

2 −α

α

)
= 0 for each 1 ≤ α ≤ p j. Let ordp(α) = β, and

note β ≤ j ∵ α ≤ p j. So α = pβz for some z ∈ Z with gcd(p, z) = 1. Four cases must be considered:

– β < j < i

ordp

 3pi+p j

2 − α

α

 = ordp

 3pi+p j

2 − pβz

pβz

 = ordp

(
3pi−β + p j−β

2
− z

)
= 0

– β = j < i
If β = j, then α = p j. So

ordp

 3pi+p j

2 − α

α

 = ordp

 3pi+p j

2 − p j

p j

 = ordp(3pi− j − 1) = 0

– β < j = i

ordp

 3pi+p j

2 − α

α

 = ordp

(
2pi − pβz

pβz

)
= ordp(2pi−β − z) = 0
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– β = j = i
As noted before, α = p j. So

ordp

 3pi+p j

2 − α

α

 = ordp(1) = 0

• Claim: Fix j so that 1 ≤ j ≤ i. If k is such that 3pi−3
2 − (p j−1) < k ≤ 3pi−3

2 − (p j−1−1), then pi− j+1 | ak.

It is enough to show that p j -
(

3pi−1
2 − k

)
. On the contrary, suppose that p j |

(
3pi−1

2 − k
)
∴

p jz =
3pi−1

2 − k for some z ∈ Z. By the bound on k, there exists a κ ∈ Z with 1 ≤ κ ≤ (p − 1) p j−1 such

that k =
3pi−3

2 − (p j − 1) + κ. Consequently

p jz =
3pi − 1

2
− k

=
3pi − 1

2
− (

3pi − 3
2

− (p j − 1) + κ)

= p j − κ

Clearly then p j | κ. However, κ ≤ (p − 1)p j−1 < p j, a contradiction.

• Claim: Fix j so that 0 ≤ j ≤ i. If k =
3pi−3

2 − (p j − 1), then pi− j+1 - ak.

In this case, ak may be simplified to

ak = (−1)
3pi−3

2 −k(3pi− j)
(
3pi − p j − 1

p j − 1

)
So it is enough to show p -

(3pi−p j−1
p j−1

)
. Begin by rewriting the binomial coefficient as(

3pi − p j − 1
p j − 1

)
=

(3pi − p j − 1)
1

(3pi − p j − 2)
2

· · ·
(3pi − p j − (p j − 1))

p j − 1

So it is enough to show ordp

(
3pi−p j−α

α

)
= 0 for 1 ≤ α ≤ p j − 1. Let ordp(α) = β, and as α ≤ p j − 1

note that β < j. So α = pβz for some z ∈ Z with gcd(p, z) = 1. Thus

ordp

(
3pi − p j − α

α

)
= ordp

(
3pi − p j − pβz

pβz

)
= ordp(3pi−β − p j−β − z) = 0

�

Corollary 6.1.2. Let p ≥ 5 be prime, and i ∈ N. There are exactly 2i segments in the Newton Polygon of
E∗3pi(x − 2) with respect to p, and the segments have widths (in order from left to right):(

p − 1
2

)
p0,

(
p − 1

2

)
p1, · · · ,

(
p − 1

2

)
pi−1, (p − 1)pi−1, · · · , (p − 1)p1, (p − 1)p0

Proof. Immediate from Theorem 6.1.1. �
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6.2 The Root Orbits of E3pi(x)

The main result of this section is |Tz| = 6 for all roots z of E3pi(x). While the basic idea is the same as that
in Theorem 5.2.4, there are a number of technicalities that must be resolved.

6.2.1 Technical Results

Lemma 6.2.1. Let 0 ≤ i, j ∈ Z, and 5 ≤ p ∈ Z. Then
(

p−1
2

)
pi , (p − 1)p j.

Proof. On the contrary, suppose
(

p−1
2

)
pi = (p− 1)p j for some i, j ∈ Z. Then pi = 2p j ∴ pi− j = 2. The only

way this could happen is for p = 2, which is prohibited by the hypothesis, so a contradiction is reached. �

Theorem 6.2.2. Let 0 ≤ j ∈ Z, and 7 ≤ p ∈ Z. Define setsA B
{(

p−1
2

)
pi | 0 ≤ i ≤ j

}
,

B B
{
(p − 1) pi | 0 ≤ i ≤ j

}
, and S B A∪B. If ∅ , D,E ⊆ S such that

∑
d∈D 2d =

∑
e∈E e, then

1. D ⊆ A

2. E ⊆ B

3. For each 0 ≤ i ≤ j such that
(

p−1
2

)
pi ∈ D, it follows (p − 1)pi ∈ E

Proof. Proceed by induction on j. Let j = 0 ∴ A =
{

p−1
2

}
, B = {p−1}, and S =

{
p−1

2 , p − 1
}
. By inspection,

it is clear that the only choice of ∅ , D,E ⊆ S so that
∑

d∈D 2d =
∑

e∈E e isD =
{

p−1
2

}
and E = {p− 1}. The

three conclusions follow trivially.
Let j ≥ 1, and assume the inductive hypothesis for all nonnegative integers less than j. As S = A ∪ B,

any sum of elements from S is of the form

j∑
i=0

αi

(
p − 1

2

)
pi +

j∑
i=0

βi(p − 1)pi (6.1)

where αi, βi ∈ {0, 1} for all 0 ≤ i ≤ j.
Let ∅ , D,E ⊆ S such that

∑
d∈D 2d =

∑
e∈E e. Applying Equation 6.1, let

∑
d∈D

d =

j∑
i=0

ai

(
p − 1

2

)
pi +

j∑
i=0

bi(p − 1)pi (6.2)

∑
e∈E

e =

j∑
i=0

ci

(
p − 1

2

)
pi +

j∑
i=0

di(p − 1)pi (6.3)

where ai, bi, ci, di ∈ {0, 1} for all 0 ≤ i ≤ j. Then

0 =
∑
e∈E

e − 2
∑
d∈D

d (6.4)

0 =

j∑
i=0

ci

(
p − 1

2

)
pi +

j∑
i=0

di(p − 1)pi − 2

 j∑
i=0

ai

(
p − 1

2

)
pi +

j∑
i=0

bi(p − 1)pi

 (6.5)
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Moving the jth-term from each sum on the right of Equation 6.5 to the left of Equation 6.5 yields the formula

(a j+2b j−
c j

2
−d j)(p−1)p j =

j−1∑
i=0

ci

(
p − 1

2

)
pi+

j−1∑
i=0

di(p−1)pi−2

 j−1∑
i=0

ai

(
p − 1

2

)
pi +

j−1∑
i=0

bi(p − 1)pi

 (6.6)

Two cases are considered based on whether the left of Equation 6.6 equals 0.

• Case 1: (a j + 2b j −
c j
2 − d j)(p − 1)p j , 0

Consider the absolute values of the two sides of Equation 6.6.∣∣∣∣∣∣∣
j−1∑
i=0

ci

(
p − 1

2

)
pi +

j−1∑
i=0

di(p − 1)pi − 2

 j−1∑
i=0

ai

(
p − 1

2

)
pi +

j−1∑
i=0

bi(p − 1)pi


∣∣∣∣∣∣∣

= (p − 1)

∣∣∣∣∣∣∣
j−1∑
i=0

(
ci

2
− ai + di − 2bi)pi

∣∣∣∣∣∣∣
≤ (p − 1)

j−1∑
i=0

∣∣∣∣∣ci

2
− ai + di − 2bi

∣∣∣∣∣ pi

≤ (p − 1)
j−1∑
i=0

3pi

= 3(p j − 1)

< 3p j

≤
p − 1

2
p j (∵ p ≥ 7)

≤

∣∣∣∣∣a j + 2b j −
c j

2
− d j

∣∣∣∣∣ (p − 1)p j

Of course, the conclusion is that the absolute value of the left side of Equation 6.6 is strictly greater
than the absolute value of the right side of Equation 6.6, a contradiction. This case is impossible.

• Case 2: (a j + 2b j −
c j
2 − d j)(p − 1)p j = 0

Then a j + 2b j −
c j
2 − d j = 0, and the only two ways this may happen are if a j = b j = c j = d j = 0,

or a j = d j = 1 and b j = c j = 0. Consequently, either
(

p−1
2

)
p j, (p − 1)p j < D ∪ E; or

(
p−1

2

)
p j ∈ D

and (p − 1)p j ∈ E. Moreover, the right side of Equation 6.6 equals 0, so by the inductive hypothesis
bi = ci = 0 and if ai = 1 then di = 1 for all 0 ≤ i ≤ j − 1. Rephrasing the results, we have D ⊆ A,
E ⊆ B, and for each 0 ≤ i ≤ j such that

(
p−1

2

)
pi ∈ D, it follows (p − 1)pi ∈ E.

�

Theorem 6.2.3. Let 0 ≤ j ∈ Z. Define setsA B {2 · 5i | 0 ≤ i ≤ j}, B B {4 · 5i | 0 ≤ i ≤ j}, and S B A∪B.
If ∅ , D,E ⊆ S such thatD∩ E = ∅ and

∑
d∈D 2d =

∑
e∈E e, then

1. D ⊆ A

2. E ⊆ B

3. For each 0 ≤ i ≤ j such that 2 · 5i ∈ D, it follows 4 · 5i ∈ E
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Proof. Proceed by induction on j. Let j = 0 ∴ A = {2}, B = {4}, and S = {2, 4}. By inspection, it is clear
that the only choice of ∅ , D,E ⊆ S so thatD∩E = ∅ and

∑
d∈D 2d =

∑
e∈E e isD = {2} and E = {4}. The

three conclusions follow trivially.
Let j ≥ 1, and assume the inductive hypothesis for all nonnegative integers less than j. As S = A ∪ B,

any sum of elements from S is of the form

j∑
i=0

αi · 2 · 5i +

j∑
i=0

βi · 4 · 5i (6.7)

where αi, βi ∈ {0, 1} for all 0 ≤ i ≤ j.
Let ∅ , D,E ⊆ S such thatD∩ E = ∅ and

∑
d∈D 2d =

∑
e∈E e. Applying Equation 6.7, let

∑
d∈D

d =

j∑
i=0

ai · 2 · 5i +

j∑
i=0

bi · 4 · 5i (6.8)

∑
e∈E

e =

j∑
i=0

ci · 2 · 5i +

j∑
i=0

di · 4 · 5i (6.9)

where ai, bi, ci, di ∈ {0, 1} for all 0 ≤ i ≤ j. Then

0 =
∑
e∈E

e − 2
∑
d∈D

d (6.10)

0 =

j∑
i=0

ci · 2 · 5i +

j∑
i=0

di · 4 · 5i − 2

 j∑
i=0

ai · 2 · 5i +

j∑
i=0

bi · 4 · 5i

 (6.11)

Dividing by 2, and moving the jth-term from each sum on the right of Equation 6.11 to the left of Equation
6.11 yields the formula

(2a j + 4b j − c j − 2d j) · 5 j =

j−1∑
i=0

ci · 5i +

j−1∑
i=0

di · 2 · 5i −

 j−1∑
i=0

ai · 2 · 5i +

j−1∑
i=0

bi · 4 · 5i

 (6.12)

Two cases are considered based on whether the left of Equation 6.12 equals 0.

• Case 1: (2a j + 4b j − c j − 2d j) · 5 j , 0

It is clear that |2a j + 4b j − c j − 2d j| ≥ 1. In fact, it is shown |2a j + 4b j − c j − 2d j| ≥ 2. There are
precisely three ways for |2a j + 4b j − c j − 2d j| = 1: the first is when a j = c j = 1 and b j = d j = 0; the
second is when b j = c j = d j = 1 and a j = 0; the third is when c j = 1 and a j = b j = d j = 0. In the
first case, a j = c j = 1 means 2 · 5 j ∈ D ∩ E = ∅, a contradiction. In the second case, b j = d j = 1
means 4 · 5 j ∈ D ∩ E = ∅, a contradiction.

It remains to show the impossibility of the third case. Suppose c j = 1 and a j = b j = d j = 0. Then
Equation 6.12 may be simplified to

−5 j =

j−1∑
i=0

(ci + 2di − 2ai − 4bi) · 5i (6.13)
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Define k ∈ Z as k B min{h | ch + 2dh − 2ah − 4bh , 0} with 0 ≤ k ≤ j − 1. Then Equation 6.13 may
be simplified further to

−5 j =

j−1∑
i=k

(ci + 2di − 2ai − 4bi) · 5i (6.14)

If k = j − 1, then Equation 6.14 reduces to −5 j = (c j−1 + 2d j−1 − 2a j−1 − 4b j−1) · 5 j−1 ∴
−5 = c j−1 + 2d j−1 − 2a j−1 − 4b j−1. The only way for this to happen is for a j−1 = b j−1 = c j−1 = 1 and
d j−1 = 0. However, a j−1 = c j−1 = 1 implies 2 · 5 j−1 ∈ D ∩ E = ∅, a contradiction.

If 0 ≤ k < j − 1, then Equation 6.14 may be rewritten as

−5 j = 5k
j−k−1∑
i=0

(ci+k + 2di+k − 2ai+k − 4bi+k) · 5i (6.15)

∴ −5 j−k =

j−k−1∑
i=0

(ci+k + 2di+k − 2ai+k − 4bi+k) · 5i (6.16)

Rearranging Equation 6.16 yields

ck + 2dk − 2ak − 4bk = −5 j−k −

j−k−1∑
i=1

(ci+k + 2di+k − 2ai+k − 4bi+k) · 5i (6.17)

The right side of Equation 6.17 is divisible by 5 ∴ 5 | ck+2dk−2ak−4bk. As ck+2dk−2ak−4bk , 0, the
only possibility is ak = bk = ck = 1 and dk = 0. In particular, ak = ck = 1 implies 2 · 5k ∈ D ∩ E = ∅,
a contradiction. This exhausts the ways that |2a j + 4b j − c j − 2d j| = 1 ∴ |2a j + 4b j − c j − 2d j| ≥ 2.

Finally, compare the absolute values of the two sides of Equation 6.12∣∣∣∣∣∣∣
j−1∑
i=0

ci · 5i +

j−1∑
i=0

di · 2 · 5i −

 j−1∑
i=0

ai · 2 · 5i +

j−1∑
i=0

bi · 4 · 5i


∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣
j−1∑
i=0

(ci + 2di − 2ai − 4bi) · 5i

∣∣∣∣∣∣∣
≤

j−1∑
i=0

|ci + 2di − 2ai − 4bi| · 5i

≤

j−1∑
i=0

6 · 5i

=
3
2

(5 j − 1)

< 2 · 5 j

≤ |2a j + 4b j − c j − 2d j| · 5 j

Of course, the conclusion is that the absolute value of the left side of Equation 6.12 is strictly greater
than the absolute value of the right side of Equation 6.12, a contradiction. This case is impossible.
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• Case 2: (2a j + 4b j − c j − 2d j) · 5 j = 0

Then 2a j + 4b j − c j − 2d j = 0, and the only two ways in which this may happen are if a j = b j = c j =

d j = 0, or a j = d j = 1 and b j = c j = 0. Consequently, either 2 · 5 j, 4 · 5 j < D ∪ E; or 2 · 5 j ∈ D

and 4 · 5 j ∈ E. Moreover, the right side of Equation 6.12 equals 0, so by the inductive hypothesis
bi = ci = 0 and if ai = 1 then di = 1 for all 0 ≤ i ≤ j − 1. Rephrasing the results, we have D ⊆ A,
E ⊆ B, and for each 0 ≤ i ≤ j such that 2 · 5i ∈ D, it follows 4 · 5i ∈ E.

�

Corollary 6.2.4. Let 0 ≤ j ∈ Z, and 5 ≤ p be a prime. Define setsA B
{(

p−1
2

)
pi | 0 ≤ i ≤ j

}
,

B B
{
(p − 1) pi | 0 ≤ i ≤ j

}
, and S B A∪B. If ∅ , D,E ⊆ S such thatD∩E = ∅ and

∑
d∈D 2d =

∑
e∈E e,

then

1. D ⊆ A

2. E ⊆ B

3. For each 0 ≤ i ≤ j such that
(

p−1
2

)
pi ∈ D, it follows (p − 1)pi ∈ E

Proof. Immediate by Theorems 6.2.2 and 6.2.3. �

6.2.2 |Tz| = 6 for all Roots z of E3pi(x)

Theorem 6.2.5. Let p ≥ 5 be prime and i ∈ N. Then |Tz| = 6 for all roots z of E3pi(x).

Proof. On the contrary, let z be a root of E3pi(x) such that |Tz| = 2. By Theorem 2.2.13, there exists a root
z′ ∈ Orb(z) of E3pi(x) of absolute value 1 such that |Tz′ | = 2. Define f (x) ∈ Z[x] to be the irreducible
factor of E3pi(x) with f (z′) = 0. Again, by Theorem 2.2.13, every root of f (x) has absolute value 1, and by
Theorem 2.3.1, f (x) is a self-reciprocal polynomial of even degree.

Define g(x) B f (−x−1) ∈ Z[x]. Then g(x) is a non-self-reciprocal irreducible factor of E3pi(x) (by The-
orems 2.2.5, 2.2.18). As E3pi(x) is self-reciprocal, it follows ga(x) is also a non-self-reciprocal irreducible
factor of E3pi(x). Hence h(x) B g(x)ga(x) ∈ Z[x] is a self-reciprocal factor of E3pi(x).

As both f (x) and h(x) are self-reciprocal polynomials of even degree, the reciprocal transforms
f ∗(x), h∗(x) ∈ Z[x] exist. By Dickson’s Theorem, f ∗(x) is irreducible. By Theorem 4 of Kleiman (1974),
h∗(x) is irreducible. Consequently, f ∗(x) and h∗(x) are distinct irreducible factors of E∗3pi(x). Also note, if

deg( f ) = d, then deg( f ∗) = d
2 and deg(h∗) = d.

It is apparent that f ∗(x − 2), h∗(x − 2) ∈ Z[x] are distinct irreducible factors of E∗3pi(x − 2) with

deg( f ∗(x − 2)) = d
2 and deg(h∗(x − 2)) = d. By Dumas’ Theorem, the Newton Polygons of f ∗(x − 2)

and h∗(x − 2) are composed of mutually disjoint segments of the Newton Polygon of E∗3pi(x − 2). Since
deg(h∗(x− 2)) = 2 deg( f ∗(x− 2)), the sum of the widths of the segments of the Newton Polygon of h∗(x− 2)
is twice the sum of the widths of the segments of the Newton Polygon of f ∗(x − 2). Applying Corollary
6.2.4 to the widths of the segments of the Newton Polygon of E∗3pi(x − 2) from Corollary 6.1.2, it follows

that any segment of the Newton Polygon of f ∗(x − 2) has width
(

p−1
2

)
p j for some 0 ≤ j ≤ i − 1.

The segments of the Newton Polygon of E∗3pi(x − 2) with width
(

p−1
2

)
p j for some 0 ≤ j ≤ i − 1 all

have negative slope. Consequently, if f ∗(x − 2) = a0 + a1x + · · · + a d
2
x

d
2 , then ordp(a0) > ordp(a d

2
) ∴
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ordp

(
a0
a d

2

)
> 0. As the leading and constant coefficients of E∗3pi(x−2) are both ±3pi, it follows 1 < p

3 ≤

∣∣∣∣∣∣ a0
a d

2

∣∣∣∣∣∣.
In other words, the absolute value of the product of the roots of f ∗(x − 2) is greater than 1.

Every root of f (x) has absolute value 1, so by Proposition 4.2.3 every root of f ∗(x − 2) is real and
between 0 and 1. Therefore, the absolute value of the product of the roots of f ∗(x − 2) is less than 1, a
contradiction. �

Corollary 6.2.6. Let p ≥ 5 be prime and i ∈ N. The product of the roots of any factor of E∗3pi(x − 2) is 1.

Proof. Let f ∗(x − 2) be a factor of E∗3pi(x − 2). By Lemma 4.2.6, the roots of f ∗(x − 2) may be partitioned
into some number of orbits Orb∗2(zk). From Lemma 4.2.8, the product of the elements of each Orb∗2(zk) is
1 ∴ the product of all the roots of f ∗(x − 2) is 1. �

Corollary 6.2.7. Let p ≥ 5 be prime and i ∈ N. Up to sign, the leading and constant coefficient of any
factor of E∗3pi(x − 2) are equal.

Proof. Immediate from Corollary 6.2.6. �

Corollary 6.2.8. Let p ≥ 5 be prime and i ∈ N. Then E3pi(x) is a product of at most i irreducible polynomi-
als.

Proof. From Theorem 6.1.1, each segment of the Newton Polygon of E∗3pi(x − 2) has nonzero slope. On
the other hand Corollary 6.2.7 shows that the leading and constant coefficient of any irreducible factor has
the same p-valuation. Consequently, by Dumas’ Theorem, the Newton Polygon of any irreducible factor
of E∗3pi(x − 2) consists of at least two segments from the Newton Polygon of E∗3pi(x − 2). By Corollary
6.1.2, there are 2i segments in the Newton Polygon of E∗3pi(x− 2) ∴ there are at most i irreducible factors of
E∗3pi(x − 2) ∴ there are at most i irreducible factors of E∗3pi(x). The result follows from Corollary 4.3.4. �

The special case of i = 1 provides the second proof of the irreducibility of E3p(x).

Corollary 6.2.9. Let p ≥ 5 be prime. Then E3p(x) is irreducible.

Proof. Immediate from Corollary 6.2.8. �

6.3 Additional Results

In Helou (1997), Tzermias (2007), and Tzermias (2009), it is shown that for each odd n ≥ 9 there exists a
polynomial Tn(X) ∈ Q[X] of degree r B n−3−2en

6 such that En(X) = n(X2 + X)2rTn(J(X)) (Note: Tn(X) is
not a Chebyshev Polynomial.) In fact, if |Tz| = 6 for all roots z of En(X), then En(X) and Tn(X) have the
same number of irreducible factors, and for each distinct irreducible factor of Tn(X) of degree d there is a
distinct irreducible factor of En(X) of degree 6d. This is leveraged in the mentioned papers to obtain results
regarding the Cauchy-Mirimanoff polynomials Ep(X) for primes p because |Tz| = 6 for all roots z of Ep(X)
(by Theorem 2.3.4). Theorem 6.2.5 proves |Tz| = 6 for all roots z of E3pi(X), so T3pi(X) is studied.

Theorem 6.3.1 (Tzermias (2009)). For odd n ≥ 9, we have

Tn(X) =

r∑
m=0

1
1 + 2r − 2m

(
m + en + 2r

3m + en

)
Xm

with en as in Definition 2.1.2.
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Corollary 6.3.2. Let p ≥ 5 be prime and i ∈ N. Then

T3pi(X) =

pi−1
2∑

m=0

1
pi − 2m

(
m + pi − 1

3m

)
Xm

Proof. In Theorem 6.3.1, substitute n = 3pi and simplify. �

Theorem 6.3.3. Let p ≥ 5 be prime and i ∈ N. The Newton Polygon of T3pi(X) with respect to p has vertices

(0,−i), (
pi − pi−1

2
,−(i − 1)), · · · , (

pi − p2

2
,−2), (

pi − p1

2
,−1), (

pi − 1
2

, 0)

Proof. Using Corollary 6.3.2, let

ak B
1

pi − 2m

(
m + pi − 1

3m

)
The following two claims, and their proofs, are enough to determine the Newton Polygon of T3pi(X)

• Claim 1: Let 1 ≤ j ≤ i. If pi−p j

2 < k ≤ pi−p j−1

2 , then ordp(ak) > − j.

Fix j with 1 ≤ j ≤ i. It is enough to show that ordp(pi − 2k) < j. By the bound on k, there exists an

α ∈ Z with 0 ≤ α <
(

p−1
2

)
p j−1 such that k =

pi−p j−1

2 − α. Let β B ordp(α), and note β < j. Then

ordp(pi − 2k) = ordp(p j−1 + 2α) = ordp(α) = β < j

• Claim 2: Let 0 ≤ j ≤ i. If k =
pi−p j

2 , then ordp(ak) = − j.

Fix j with 0 ≤ j ≤ i. Then substituting k =
pi−p j

2 and simplifying,

ordp(ak) = − j + ordp


( pi−p j

2 + pi − 1

3
(

pi−p j

2

) ) = − j + ordp

( 3pi−p j−2
2

p j − 1

)
Expand the binomial coefficient as

( 3pi−p j−2
2

p j − 1

)
=

(
3pi−p j

2 − 1
)

1

(
3pi−p j

2 − 2
)

2
· · ·

(
3pi−p j

2 − (p j − 1)
)

p j − 1

So it is enough to show that ordp


(

3pi−p j
2 −α

)
α

 = 0 for all 1 ≤ α ≤ p j − 1. Let β B ordp(α), and note

β < j. Then

ordp


(

3pi−p j

2 − α
)

α

 = ordp

(
3pi − p j

2
− α

)
− ordp(α) = β − β = 0

�
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Corollary 6.3.4. Let p ≥ 5 be prime and i ∈ N. There are exactly i segments in the Newton Polygon of
T3pi(X) with respect to p, and the segments have widths (in order from left to right):(

p − 1
2

)
pi−1,

(
p − 1

2

)
pi−2, · · · ,

(
p − 1

2

)
p1,

(
p − 1

2

)
Proof. Immediate from Theorem 6.3.3. �

In the case i = 1, Corollary 6.3.4 gives a third proof of the irreducibility of E3p(x).

Corollary 6.3.5. Let p ≥ 5 be prime and i ∈ N. Then E3p(x) is irreducible.

Proof. Applying Dumas’ Theorem to Corollary 6.3.4 shows that T3p(X) is irreducible. Since |Tz| = 6 for
all roots z of E3p(x) by either Theorem 5.2.4 or 6.2.5, the irreducibility of T3p(X) implies the irreducibility
of E3p(x). �

From Corollary 6.3.4, a number of results regarding the possible number of factors of E3pi(X) and their
degrees may be obtained. This chapter ends with three such results.

Corollary 6.3.6. Let p ≥ 5 be prime and i ∈ N. Then E3pi(X) has an irreducible factor of degree
d ≥ 3(p − 1)pi−1.

Proof. The widest segment of the Newton Polygon of T3pi(X) has width
(

p−1
2

)
pi−1, so T3pi(X) has an irre-

ducible factor of degree at least
(

p−1
2

)
pi−1. As |Tz| = 6 for all roots z of E3pi(x) by Theorem 6.2.5, E3pi(X)

has an irreducible factor of degree at least 6
(

p−1
2

)
pi−1 = 3(p − 1)pi−1. �

Corollary 6.3.7. Let p ≥ 5 be prime and i ∈ N. Then every irreducible factor of E3pi(X) has degree
d ≥ 3(p − 1).

Proof. The least wide segment of the Newton Polygon of T3pi(X) has width p−1
2 , so every irreducible factor

of T3pi(X) has degree at least p−1
2 . As |Tz| = 6 for all roots z of E3pi(x) by Theorem 6.2.5, every irreducible

factor of E3pi(X) has degree at least 6 p−1
2 = 3(p − 1). �

Corollary 6.3.8. Let p ≥ 5 be prime. Then E3p2(X) is either irreducible or a product of two irreducible
polynomials of degrees 3(p − 1) and 3(p − 1)p.

Proof. By Dumas’ Theorem, either T3p2(X) is irreducible or a product of two irreducible polynomials of
degrees

(
p−1

2

)
p and

(
p−1

2

)
. As |Tz| = 6 for all roots z of E3p2(x) by Theorem 6.2.5, E3p2(X) is either

irreducible or a product of two irreducible polynomials of degrees 3(p − 1) and 3(p − 1)p. �

40



Bibliography

41



Beukers, F. (1997). On a sequence of polynomials. J. Pure Appl. Algebra, 117/118:97–103. Algorithms for
algebra (Eindhoven, 1996).

Dickson, L. E. (1908). Criteria for the irreducibility of a reciprocal equation. Bull. Amer. Math. Soc.,
14(9):426–430.

Helou, C. (1997). Cauchy-Mirimanoff polynomials. C. R. Math. Rep. Acad. Sci. Canada, 19(2):51–57.

Kleiman, H. (1974). On irreducibility criteria of Dickson. J. London Math. Soc. (2), 7:467–475.

Kronecker, L. (1857). Zwei sätze über Gleichungen mit ganzzahligen Coefficienten. J. Reine Angew. Math.,
53:173–175.

Mason, J. C. and Handscomb, D. C. (2003). Chebyshev polynomials. Chapman & Hall/CRC, Boca Raton,
FL.

Meyn, H. (1990). On the construction of irreducible self-reciprocal polynomials over finite fields. Appl.
Algebra Engrg. Comm. Comput., 1(1):43–53.

Mirimanoff, D. (1903). Sur l’équation (x + 1)l − xl − 1 = 0. Nouv. Ann. Math.

Mott, J. L. (1995). Eisenstein-type irreducibility criteria. In Zero-dimensional commutative rings (Knoxville,
TN, 1994), volume 171 of Lecture Notes in Pure and Appl. Math., pages 307–329. Dekker, New York.

Nanninga, P. (2009). Euclidean and Hyperbolic Diophantine Equations (Under Revision). PhD thesis,
Australian National University, Canberra.

Ribenboim, P. (1979). 13 lectures on Fermat’s last theorem. Springer-Verlag, New York.

Rivlin, T. J. (1990). Chebyshev polynomials. Pure and Applied Mathematics (New York). John Wiley &
Sons Inc., New York, second edition. From approximation theory to algebra and number theory.

Tzermias, P. (2007). On Cauchy-Liouville-Mirimanoff polynomials. Canad. Math. Bull., 50(2):313–320.

Tzermias, P. (2009). On Cauchy-Liouville-Mirimanoff polynomials II. Preprint.

42



Appendices

43



Appendix A

Numerical Evidence Supporting
Conjectures 2.3.10 and 2.3.11

In Section 2.3.2, Conjecture 2.3.10 and Conjecture 2.3.11 deal with the minimal number of irreducible
factors of En over Fp for any prime p. In fact, the two conjectures, if proven, would prove the irreducibility
of the Cauchy-Mirimanoff polynomials. In Table A.1, the first ten primes p such that, for odd n, En factors
into exactly two distinct irreducible polynomials over Fp are given. This table provides numerical support
to Conjecture 2.3.10. In Table A.2, the first ten primes p such that, for even n, En is irreducible over Fp

are given. This table provides numerical support to Conjecture 2.3.11. While listing one prime would be
sufficient to support the conjectures, the first ten primes are given to satisfy the curious reader that may be
interested in looking for patterns or distributions amongst these primes.

Table A.1: For odd n, the first ten primes p, not dividing
Disc(En(X)), such that En factors into exactly two distinct irre-
ducible polynomials over Fp

Odd n First Ten Primes p
9 2, 7, 11, 19, 29, 37, 41, 47, 53, 73
11 2, 5, 7, 19, 41, 59, 71, 97, 101, 103
13 3, 11, 13, 17, 29, 47, 79, 97, 103, 109
15 11, 31, 41, 53, 67, 79, 83, 89, 173, 227
17 11, 29, 31, 53, 97, 103, 139, 199, 233, 239
19 13, 31, 79, 103, 109, 179, 199, 227, 239, 251
21 97, 109, 113, 167, 331, 349, 379, 463, 491, 499
23 23, 109, 227, 233, 347, 359, 367, 409, 421, 547
25 59, 149, 283, 307, 347, 353, 367, 383, 401, 467
27 113, 229, 269, 313, 353, 401, 479, 547, 571, 593
29 71, 83, 107, 181, 229, 359, 397, 587, 617, 691
31 23, 47, 79, 97, 157, 317, 367, 443, 463, 491
33 41, 73, 107, 173, 281, 313, 547, 593, 661, 683
35 113, 467, 563, 1069, 1103, 1163, 1237, 1279, 1307, 1321
37 31, 37, 79, 97, 269, 311, 457, 467, 503, 769

Continued on Next Page. . .
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Table A.1 – Continued
Odd n First Ten Primes p

39 11, 79, 353, 379, 449, 467, 571, 617, 787, 877
41 179, 233, 347, 389, 401, 463, 827, 1061, 1409, 1871
43 5, 83, 397, 419, 491, 503, 601, 887, 919, 1229
45 29, 151, 167, 331, 463, 887, 1109, 1117, 1223, 1279
47 19, 107, 191, 349, 547, 601, 631, 757, 863, 947
49 127, 337, 569, 601, 761, 857, 1291, 1523, 1559, 1801
51 139, 163, 179, 397, 577, 1097, 1103, 1451, 1489
53 191, 449, 647, 761, 883, 929, 1187, 1201, 1213, 1307
55 41, 389, 491, 659, 1213, 1889, 1907, 2753, 3191, 3469
57 83, 277, 307, 643, 1597, 1759, 1913, 1993, 2207, 2287
59 2, 5, 251, 311, 461, 601, 659, 691, 1301, 1451
61 233, 269, 419, 563, 593, 769, 941, 1069, 1297, 1381
63 41, 79, 127, 131, 179, 227, 239, 353, 419, 431
65 211, 347, 457, 601, 631, 887, 911, 953, 1031, 1039
67 67, 127, 421, 491, 1657, 1999, 2039, 2053, 2239, 2423
69 101, 191, 211, 401, 683, 1429, 1621, 1663, 1993, 2557
71 317, 1321, 1663, 2647, 2833, 3119, 3187, 3373, 3457, 4021
73 23, 179, 467, 953, 991, 1117, 1543, 2141, 2551, 2897
75 263, 421, 457, 563, 643, 733, 839, 2111, 2311, 2621
77 89, 313, 509, 661, 829, 1301, 1327, 1481, 1511, 1693
79 61, 89, 401, 701, 761, 919, 1021, 1229, 1459, 1627
81 199, 617, 911, 1277, 2143, 2447, 2647, 3697, 4229, 4441
83 29, 131, 433, 577, 1129, 2131, 2591, 2909, 3299, 3709
85 223, 499, 787, 797, 1063, 1277, 2617, 2803, 3259, 3673
87 167, 257, 397, 461, 577, 1423, 1627, 2339, 2617, 2633
89 7, 223, 461, 619, 941, 971, 1319, 1543, 1889, 2011
91 79, 109, 131, 307, 313, 337, 853, 1303, 1373, 1483
93 709, 1493, 1723, 1877, 1973, 2027, 2063, 2909, 3307, 3319
95 13, 397, 1303, 1321, 1439, 1483, 2087, 2357, 2687, 2969
97 151, 457, 719, 1087, 2957, 2999, 3257, 3623, 3761, 4447
99 23, 647, 761, 1409, 1433, 1567, 1901, 1987, 2111, 2333
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Table A.2: For even n, the first ten primes p, not dividing
Disc(En(X)), such that En is irreducible over Fp

Even n First Ten Primes p
8 3, 5, 43, 53, 109, 181, 233, 241, 257, 281

10 23, 59, 67, 71, 89, 103, 131, 167, 269, 271
12 5, 13, 31, 41, 53, 79, 127, 239, 349, 353
14 103, 107, 223, 281, 401, 409, 457, 491, 601, 613
16 5, 71, 173, 239, 373, 409, 443, 751, 929, 953
18 7, 13, 61, 151, 163, 173, 337, 397, 569, 631
20 83, 113, 577, 631, 859, 863, 881, 937, 1051, 1609
22 67, 229, 347, 491, 821, 859, 1129, 1499, 1549, 1583
24 5, 269, 431, 457, 487, 557, 709, 757, 1399, 1427
26 43, 139, 431, 1051, 1181, 1433, 1453, 1559, 1733, 1973
28 23, 307, 373, 419, 467, 587, 619, 701, 727, 977
30 7, 31, 61, 739, 823, 911, 1031, 1291, 1543, 1663
32 467, 673, 739, 863, 1093, 1109, 1231, 1453, 1543, 1669
34 277, 467, 499, 557, 719, 727, 1049, 1171, 1223, 1229
36 149, 373, 619, 823, 829, 1063, 1153, 1319, 1439, 1907
38 89, 197, 283, 313, 719, 991, 1091, 1307, 2003, 2423
40 193, 503, 839, 881, 907, 1277, 1289, 1459, 1667, 1823
42 59, 521, 661, 1187, 1429, 2339, 2687, 3253, 3413, 3457
44 281, 487, 577, 1013, 1181, 1607, 1697, 1901, 2293, 2549
46 1097, 1117, 1201, 1399, 1567, 1951, 2237, 2477, 3221, 3457
48 163, 181, 367, 491, 641, 997, 1601, 1627, 2381, 2447
50 701, 1399, 1993, 2251, 2393, 2957, 3109, 3491, 3517, 4373
52 17, 293, 733, 1163, 1637, 1787, 2153, 2179, 2267, 2699
54 607, 673, 881, 1277, 2239, 3251, 3613, 4111, 4289, 4591
56 359, 1021, 1153, 1459, 2213, 3253, 3301, 3343, 3853, 4093
58 593, 1249, 1901, 1979, 2381, 2551, 2729, 2927, 2999, 3847
60 61, 769, 887, 1523, 1621, 1847, 3079, 3847, 4783, 5507
62 37, 2699, 3169, 4603, 4673, 5023, 5209, 5581, 6653, 7349
64 13, 61, 97, 467, 523, 709, 1087, 1249, 1619, 1949
66 307, 563, 727, 2447, 3469, 3547, 3697, 3833, 4451, 4513
68 167, 277, 293, 659, 1861, 2179, 3067, 3853, 5987, 8581
70 37, 107, 701, 1229, 2399, 3701, 4271, 4337, 4733, 5167
72 449, 457, 479, 839, 911, 1039, 1609, 2141, 2473, 2549
74 769, 991, 1091, 1997, 2089, 3001, 4099, 4951, 4957, 5003
76 73, 149, 331, 617, 2137, 2161, 2861, 3863, 4007, 4127
78 131, 197, 1579, 2087, 3889, 3917, 4651, 6361, 6581, 6917
80 3, 653, 1237, 2131, 2237, 2683, 3169, 3301, 3313, 3673
82 647, 2729, 3067, 3229, 3251, 3413, 3637, 4273, 4289, 4919
84 17, 311, 821, 1861, 3067, 3547, 3583, 3623, 4447, 6823
86 5867, 6287, 7151, 8779, 9733, 10259, 11243, 11321, 11939, 12163

Continued on Next Page. . .
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Table A.2 – Continued
Even n First Ten Primes p

88 139, 821, 1033, 1759, 1877, 2251, 2381, 3559, 3929, 10883
90 283, 599, 2579, 2687, 3671, 4259, 4357, 4721, 5021, 5303
92 41, 337, 857, 1277, 1847, 3457, 3511, 3559, 4021, 4177
94 439, 2269, 5021, 5507, 5569, 6827, 8081, 8117, 8233, 8839
96 251, 911, 1051, 1423, 2647, 3119, 3169, 3853, 4339, 5527
98 367, 373, 1399, 1607, 1931, 2273, 2909, 4871, 6287, 6689
100 719, 2357, 2731, 3449, 4201, 4561, 6427, 6571, 7159, 7591
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