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Abstract

The accurate determination of the strengths and energies of resonances in (p,alpha)

reactions is important for understanding the influence of reaction cycles to element

synthesis in many astrophysical environments. Thus far, (p,alpha) studies in inverse

kinematics have employed solid polypropylene targets. These are not always advan-

tageous, especially when the energy loss of the incoming beam in the solid target is

significantly larger than the resonance width. At the Holifield Radioactive Ion Beam

Facility, a new technique has been developed for measuring the strengths and ener-

gies of (p,alpha) reactions. In this technique, a large differentially-pumped scattering

chamber is filled with hydrogen gas at pressures up to 4 Torr. No windows or foils

obstruct the incoming beam and reaction products are detected in coincidence by

two silicon strip arrays. The vertex of the (p,alpha) reaction is determined from the

known kinematics of the alpha particle and heavy recoil.

This new technique was applied to study the strength of the 183 keV resonance

in 17O(p,alpha)14N reaction that was previously reported to significantly increase the

reaction rate at nova temperatures and decrease 18F production by as much as a

factor of 10 in low-mass ONeMg novae. This larger strength was confirmed using the

new technique and nova simulations showed a substantial decrease in 18F production

in lower-mass novae though a much smaller effect was seen in higher-mass novae.
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Low-energy resonances in 31P(p,alpha)28Si and 35Cl(p,alpha)32S were also studied

using the same technique in order to gain a better understanding of reaction cycling in

the Si-Ar region. Resonance strengths at ECM = 599 and 622 keV in 31P(p,alpha)28Si

were measured as well as the ECM = 611 keV resonance in 35Cl(p,alpha)32S, the

lowest energy that any resonance in this reaction has been observed. The strengths of

these resonances were found to be lower than previously determined through indirect

methods, resulting in weak cycling in the Si-Ar region.
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Chapter 1

Introduction

1.1 Nuclear Astrophysics

Nuclear astrophysics is the study of nuclear structure and reactions with an aim of

understanding the synthesis of elements in the universe as well as stellar structure

and evolution. It was suggested by Eddington in 1920 that gravitational forces were

the source of energy production in stars, a theory known as the contraction hypothe-

sis [Edd20]. In this hypothesis, energy would be released by the complete annihilation

of matter, where the energy released is given by E=mc2. However, using this gave

the prediction that the age of the sun was around 20 million years, which was in

disagreement with the evidence at that time which suggested an age of around one

billion years [Bol07]. Around 1929, another explanation was offered by Atkinson and

Houterman where, due to the high temperatures in the interior of stars, nuclei could

overcome their mutual repulsion due to the Coulomb barrier and fuse together to

release energy through nuclear reactions [Bet67]. In the early 1930’s particle acceler-

ators were being built in order to observe some of these nuclear reactions. In 1957, a

theory of nucleosynthesis was presented which showed that all elements heavier than
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helium could be synthesized in the interior of stars [Bur57]. Our present understand-

ing is that the lighter elements up to lithium were produced shortly after the big bang ,

while heavier elements were synthesized by nuclear reactions in stellar interiors and

stellar explosions such as novae, supernovae and x-ray bursts.

1.2 Stellar Explosions in Binary Systems

1.2.1 Binary Systems

Most stars found in our galaxy are in binary systems [Rol88]. These stars revolve

around the common center of gravity of the binary system, and the system has a

gravitational equipotential surface defined by a Roche lobe. There are three different

classifications of binary star systems (Figure 1.1). A detached binary is where both

stars are well within their respective Roche lobe. In a semidetached binary , one of the

stars has filled its Roche lobe while in the case of a contact binary or WUMa stars,

both stars have filled their respective Roche lobe and a “neck” can develop between

the stars [Gui].

As long as each star is confined within its respective Roche lobe, the system is

stable. However, if one of the stars becomes significantly larger during its evolution,

it can fill its Roche lobe to become a semidetached binary and begin to accrete

matter (mostly H and He) onto the surface of the companion star. This accretion can

lead to several different types of astrophysical phenomenona such as novae, Type Ia

supernovae, and X-ray bursts.

2



Figure 1.1: Classifications of binary systems. The darker regions define the boundaries
of each star in the system. The top figure shows a detached binary, the middle figure
shows a semidetached binary, and the bottom figure shows a contact binary. Figure
taken from Ref. [Gui].
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1.2.2 Novae

Accretion from a companion star (typically a red giant) onto a white dwarf can lead

to a stellar explosion known as a nova (Figure 1.2). White dwarfs are remnants of

stars that have exhausted all of their available nuclear fuel for burning and consist

primarily of degenerate oxygen and carbon, though some dwarfs consisting of oxygen,

neon, and magnesium (ONeMg) are known to exist [Chi09]. Accreted gas from the

companion star approaches the white dwarf at an extremely high velocity and releases

energy upon impact with the surface, thus raising the temperature [Rol88]. At lower

temperatures, the gas of electrons on the surface of the white dwarf is degenerate, so

the layer of accreted gas gathering on the surface does not affect the pressure while

still raising the temperature.

When the temperature is sufficiently raised (T ≈ 20 x 106 K), the rate of nu-

clear reactions increase exponentially on the surface of the white dwarf, proceeding

primarily through the CNO and hot-CNO cycles as well as the rapid proton capture

process (rp process) (section 1.3), using the accreted hydrogen as fuel. Eventually

the increasing temperature will lift the degeneracy of the gas and the pressure will

increase with temperature, typically reaching up to T ≈ 0.4 GK. The resulting ther-

monuclear reactions (called a thermonuclear runaway) will blow the outer layer of

the white dwarf away and the sequences of nuclear reactions during the explosion can

produce heavy elements up to nickel (Table 1.1).

The duration of a typical novae explosion is 100-1000 seconds with the explosion

ejecting ≈10−4 of the total mass of the white dwarf, leaving open the possibilty for the

nova to reoccur, which has been observed [Gui]. The positron annihilation resulting

from the β-decay of 18F is the largest source of γ-rays in a nova explosion. Due

to the relatively long half-life of 18F (τ ≈ 2 hr), the 18F isotope can survive the
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Figure 1.2: Schematic of the accretion of hydrogen and helium from a main-sequence
star onto the surface of a white dwarf. Figure taken from Ref. [Pea05].
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Table 1.1: Inferred elemental abundances relative to hydrogen from the Nova Cygni
1992 explosion. Values taken from [Gui].

Chemical Element Abundance
He 4.5
C 70.6
N 50.0
O 80.0
Ne 250.0
Na 37.4
Mg 129.4
Al 127.5
Si 146.6
S 1.0
Ar 5.0
Ca 46.8
Fe 8.0
Ni 36.0

initial explosion [Coc00]. Observing the γ-rays from the β-decay of 18F after the

explosion could be extremely useful in constraining nova models. Therefore, nuclear

reactions leading to the production and destruction of the 18F isotope are critical for

understanding final isotopic abundances in novae.

1.2.3 Type Ia Supernovae

If the accreted hydrogen and helium onto the white dwarf from the companion star

proceeds without thermonuclear runaway occuring due to a sufficiently fast accretion

rate, the mass of the star could reach that of the Chandrasekhar limit given by [Rol88]:

Mc ≈
π
√

6

32
(1 + X)2 1

m2
H

(
hc

2πG

)3/2

≈ 1.4M" (1.1)

where X is the mass fraction for hydrogen for the white dwarf, mH = 1 amu is the

mass of hydrogen, h is Planck’s constant, c is the speed of light in vacuum, G is
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the gravitational constant, and M" is the mass of the white dwarf in units of solar

masses. A white dwarf that approaches this mass is no longer supported by the

electron degeneracy pressure in the star and becomes gravitationally instable against

collapse. This instability can ignite the carbon and oxygen in the core of the star and

a type Ia supernova can occur, in which the entire star is consumed in a thermonuclear

flash. Most of the star burns to 56Ni, which then β-decays to 56Co and 56Fe. Type Ia

supernovae explosions have been suggested to be significant contributors to the total

abundance of elements from silicon to the iron group elements in the Galaxy [Rol88].

1.2.4 X-ray Bursts

The mechanism for an X-ray burst is similar to that of novae, except that accreted

matter from the companion star collects onto a neutron star instead of a white dwarf.

Since a neutron star is much denser than a white dwarf, its gravitational field is

much stronger, thus accreted matter falls onto the neutron star at a high velocity,

resulting in the emission of radiation in the X-ray region. Due to the higher velocities

of the accreted matter, the thermonuclear runaway on the surface of the neutron

star proceeds at a much higher temperature (T ≥ 1 GK) than that of novae, and

X-ray bursts are thought to be powered primarily through the hot-CNO cycle and rp

process [Sch98]. The time scale for X-ray bursts are typically a few seconds and can

take as little as a few hours to re-occur [Gui].
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1.3 Reactions and Nucleosynthesis in Binary Sys-

tems

1.3.1 The CNO I-III and Hot-CNO Reaction Cycles

The main sequence of nuclear reactions occuring in stellar explosions in binary systems

is known as the carbon-nitrogen-oxygen (CNO) cycle. The sequence of reactions in

the main CNO cycle (also called “cold” CNO cycle) is (labeled as I in Figure 1.3):

12C + p → 13N + γ

13N → 13C + e+ + νe

13C + p → 14N + γ

14N + p → 15O + γ

15O → 15N + e+ + νe

15N + p → 12C + 4He

(1.2)

The above set of reactions is also sometimes called the CN cycle since only the carbon

and nitrogen reacts with hydrogen. Since no carbon, oxygen, or nitrogen is actually

consumed in the sequence, they serve only as a catalysts, or spectators, and the cycle

can be initiated by any of the above reactions. The net effect of the CNO cycle is the

conversion of 4 protons into helium 4:

12C + 4p → 12C + 4He + 2β+ + 2ν (1.3)

liberating 26.8 MeV of energy each time the cycle is performed. The limiting reaction

in the CNO cycle is 14N(p,γ)15O which proceeds at the slowest rate compared to the

8



Figure 1.3: The sequence of reactions in the CNO I-III cycles
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Table 1.2: Reaction rates (in reactions/second) for the reactions of the CNO cycle at
a temperature of T = 10 MK, density = 100 g/cm−3, and XH = 0.5 (fraction of total
hydrogen mass to the total mass). Value taken from [Rol88].

Reaction Reactions/second (x 1016)
12C(p,γ)13N 0.05
13C(p,γ)14N 0.3
14N(p.γ)15O 0.0002
15N(p.α)12C 3.2

other reactions in the cycle. Table 1.2 shows the reaction rates for the 12C(p,γ)13N,

13C(p,γ)14N, 14N(p,γ)15O, 15N(p,α)12C reactions. It can easily be seen from the table

that since the 14N(p,γ)15O reaction is slower by approximately two orders of magni-

tude than the next slowest reaction, it acts essentially as a “bottleneck” for the CNO

cycle.

The 15N in the CNO cycle reacts with hydrogen through the 15N(p,α)12C reaction.

However, the CNO cycle can branch out through the 15N(p,γ)16O reaction about 1

out of every 1000 cycles (for temperatures less than 108 K) [Cla83] and another cycle

known as CNO-II can emerge (labeled as II in Figure 1.3):

14N + p → 15O + γ

15F → 15N + e+ + νe

15N + p → 16O + γ

16O + p → 17F + γ

17F → 17O + e+ + νe

17O + p → 14N + α

(1.4)

The 17O(p,α)14N reaction feeds the CNO bi-cycle back into the original CNO cycle.

Still another cycle (CNO-III) is also possible at higher temperatures through the
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17O(p,γ)18F reaction:
17O + p → 18F + γ

18F → 18O + e+ + νe

18O + p → 15N + α

(1.5)

The net effect of any of these additional cycles is still the conversion of 4 protons into

4He. Breakout from the CNO cycles to higher mass isotopes can occur through the

18O(p,γ)19F reaction that competes with the 18O(p,α)15N reaction, with the ratio of

the 18O(p,γ)19F reaction rate to that of 18O(p,α)15N equal to roughly 1:150 in the

temperature range 0.02 ≤ T ≤ 0.7 GK [Rol88].

Since branching out of the main CNO cycle to the CNO II and III cycles is rela-

tively weak, the CNO II and III cycles do not appreciably contribute to the overall

energy production. However, these additional cycles are critical to nucleosynthesis

since breakout from these cycles might possibly be connected with higher mass re-

action cycles such as the NeNa cycle, where nuclei up to 23Na can be synthesized.

Overall, the isotope with the largest abundance left over after the CNO cycle is 14N,

due to its slow hydrogen burning rate as stated previously [Rol88].

The beta decay of 13N in the CNO I cycle is a weak interaction process and thus

has little dependence on temperature. However, 13N can also undergo proton capture

through the 13N(p,γ)14O reaction which is strongly temperature-dependent. At lower

temperatures, the beta decay dominates, but at temperatures reached during the

initial nova explosion of T ≥ 0.2 GK, the (p,γ) reaction begins to dominate over the

beta decay and a new cycle known as the hot-CNO cycle characterizes the reaction
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flow [Gui]. The reactions of the hot CNO cycle are given by (see Figure 1.4):

12C + p → 13N + γ

13N + p → 14O + γ

14O → 14N + e+ + νe

14N + p → 15O + γ

15O → 15N + e+ + νe

15N + p → 12C + α

(1.6)

At temperatures exceeding T = 0.4 GK (not believed to be reached in novae), the

14O from the previous set of reactions can also react with 4He through the 14O(α,p)17F

reaction to form a bi-cycle (Figure 1.4) reaching up to neon. The main breakout

reactions of the hot-CNO cycle are the 18F(p,γ)18Ne (T ≥ 0.5 GK) and 18Ne(α,p)21Na

(T ≥ 0.8 GK) reactions. The hot-CNO cycle is believed to be the main source of

energy production and nucleosynthesis in novae.

1.3.2 The rp-process

At the higher temperatures achieved in an X-ray burst (T ≥ 1 GK), the hot-CNO cycle

can breakout into a series of proton captures, alpha captures, and beta decays known

as therp-process. This processs, thought to be the main source of energy production

and nucleosynthesis in X-ray bursts, can proceed up to 56Ni or even beyond [Sch98].

The rp-process may be responsible for the synthesis of proton-rich isotopes in X-ray

bursts, though it is unclear whether or not material made in the explosion can escape

the gravity of the neutron star [Gui].
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Figure 1.4: The sequence of reactions in the hot-CNO cycle.
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Though the hot-CNO cycle dominates the reaction flow in novae, the rp-process

can play a role in more energetic novae. However, due to the lower temperatures

and densities in novae, the burning does not proceed beyond mass 40 (Figure 1.5).

The higher mass abundances in Table 1.1 most likely come from pre-existing iron and

nickel in the white dwarf.

1.4 Reaction Rate Formalism

1.4.1 Stellar Reaction Rates

The nucleosynthesis and energy production in stars as well as in stellar explosions are

determined by reaction rates. The probablility that two nuclei will react is propor-

tional to the flux of the incident particles as well as the “geometric area”, expressed

as a nuclear cross section. If the two interacting nuclei have number densities given

by Nx and Ny, relative velocity v , cross section σ(v), and flux J, the reaction rate is

is defined to be [Cla83]:

rxy = JNyσ(v) (1.7)

where the flux J is the particles per unit volume times their velocity and is given by:

J = Nxv (1.8)

Equation 1.7 is usually written as:

rxy = NxNyvσ(v) (1.9)
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Figure 1.5: The rp-process in more energetic novae. Figure taken from Ref. [Cha92].
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In a stellar environment, much like a gas, the velocities of particles are widely

distributed, therefore the quantity vσ(v) must be thermally-averaged over all values

of v such that:

< σv >=

∫ ∞

0

φ(v)vσ(v)dv (1.10)

where φ(v) is a velocity distribution and gives the probablility that a particle will

have a velocity between v and v + dv. Replacing the quantity vσ(v) in equation 1.9

with the thermally-averaged < σv > gives:

< σv >=
rxy

NxNy
(1.11)

where < σv > is known as the reaction rate per particle pair .

Since the gas in stellar environments is normally non-degenerate and the nuclei

do not reach relativistic speeds [Rol88], the Maxwell-Boltzmann velocity distribution

is applicable:

φ(v) = 4πv2
( µ

2πkT

)3/2

exp

(
− µv2

2kT

)
(1.12)

where µ is the reduced mass of the interacting nuclei ( = mxmy/(mx + my)), k is the

Boltzmann constant, and T is the temperature. This gives for the reaction rate per

particle pair:

< σv >= 4πv2
( µ

2πkT

)3/2
∫ ∞

0

v3σ(v)exp

(
− µv2

2kT

)
dv (1.13)

Rewritting this in terms of the center-of-mass energy ECM = 1/2*µv2 gives:

< σv >=

(
8

µπ

)1/2 (
1

kT

)3/2 ∫ ∞

0

Eσ(E)exp

(
− E

kT

)
dE (1.14)
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Therefore, what is needed experimentally in order to determine stellar reactions rates

at given temperatures are the nuclear cross sections for the reactions over a wide

range of energies.

1.4.2 Nonresonant reaction rates and the Gamow window

Nuclear reactions of charged particles in stellar environments are hampered by the

repulsion between positively-charged nuclei due to the Coulomb potential. The po-

tential energy between two charged particles can be written as:

VC(r) =
Z1Z2e2

r
(1.15)

where Z1 and Z2 are the numbers of protons of the respective nuclei, e is the funda-

mental charge constant, and r is the distance between the nuclei. Typically, kT (

EC , so clasically, the vast majority of particles are not able to overcome this barrier

in order to reach the attractive nuclear potential at small distances. However, from

quantum mechanics, there is a small but finite probablility for particles with energy

E < Ecoulomb to penetrate the Coumlomb barrier, given by:

P = exp(−2πη) (1.16)

where η is the Sommerfield parameter and is equal to:

η =
Z1Z2e2

!v
(1.17)

The exponential in equation 1.16 can be rewritten as:

2πη = 31.29Z1Z2

( µ

E

)1/2

(1.18)
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where the center-of-mass energy E is given in keV and µ in amu. This expression for

the probability of tunneling is commonly referred to as the Gamow factor [Rol88].

The cross section σ(E ) is proportional to the probability for tunneling:

σ(E) ∝ exp(−2πη) (1.19)

as well as the de Broglie wavelength:

σ(E) ∝ π
(
λ

2π

)2

(1.20)

Neither of these terms have any dependence upon nuclear effects. However, it would

be expected that the cross section would exhibit some sort of dependency on nuclear

effects. To account for this, an extra factor S(E), known as the nuclear or astrophysi-

cal S-factor, is inserted into the cross section so that overall the cross section is given

by:

σ(E) =

(
1

E

)
exp(−2πη)S(E) (1.21)

Any part of the probability for a reaction that arises from nuclear effects is absorbed

into the S-factor S(E). One significant advantage of the S-factor is that in regions

where there are no resonances, it is typically a smoothly-varying function of energy

(compared to the energy dependence of the cross section), so that it is much easier

to extrapolate to lower energies [Cla83].

Equation 1.21 can be inserted into equation 1.14 to give for the reaction rate per

particle pair:

< σv >=

(
8

µπ

)1/2 (
1

kT

)3/2 ∫ ∞

0

S(E)exp

(
− E

kT
− b

E1/2

)
dE (1.22)
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Figure 1.6: Schematic of the combined nuclear and coulomb potentials. Figure not
drawn to scale.

19



where

b = (2µ)1/2πe2ZxZy/! = 0.989ZxZyµ
1/2(MeV )1/2 (1.23)

The quantity b2 is known as the Gamow energy , EG [Rol88]. Most of the energy

dependence in the integrand of equation 1.22 lies in the two exponential factors: the

Coulomb penetration factor, exp[−b/E−1/2], which is very small at low energies but

increases rapidly, and the Maxwell-Boltzmann term, exp[-E/kT] , which peaks at kT

and decreases rapidly with increasing energy. The combination of the two factors

causes a sharp peak in the integrand known as the Gamow peak (see Figure 1.7).

The range of energies inside the Gamow window is where, for a given temperature,

nuclear reactions are much more to likely take place. Since over this small window

in energy the S-factor will not change dramatically, S(E) can be approximated by its

value at the peak of the curve, E0, and equation 1.22 can be approximated as:

< σv >=

(
8

µπ

)1/2 (
1

kT

)3/2

S(E0)

∫ ∞

0

exp

(
− E

kT
− b

E1/2

)
dE (1.24)

The peak of the Gamow window, E0, can be found by taking the first derivative

of the integrand in equation 1.24, giving:

E0 =

(
bkT

2

)2/3

= 1.22(Z2
XZ2

Y µT 2
6 )1/3keV (1.25)

and the width in energy can be found by approximating the Gamow window by a

Gaussian function:

exp

(
− E

kT
− b

E1/2

)
= Imax exp

[

−
(

E − E0

∆/2

)2
]

(1.26)
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Figure 1.7: The Gamow window for the 17O + p system for a stellar temperature
of T9 = 0.1. The values of each curve have been multiplied by different factors for
purposes of comparison.
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where the width in energy, ∆ is:

∆ =
4

31/2
(E0kT )1/2 = 0.749(ZXZY µT 5

6 )1/6keV (1.27)

and

Imax = exp

(
−3E0

kT

)
(1.28)

The majority of nuclear burning takes place at energies between E0 and E0 ± ∆/2.

One of the major hurdles in experimental nuclear astrophysics is that E0 is typically in

a region where cross sections are extremely small, thus large beam intensities and long

running times for experiments are required. Therefore, making direct measurements

of σ(E) (and hence S(E)) near E0 can be extremely difficult [Rol88]. Typically,

measurements of S(E) are performed at higher energies and the value of S(E0) is

extrapolated.

Overall, inserting equation 1.26 into equation 1.24 and integrating the Gaussian

approximation for the Gamow window gives for the nonresonant reaction rate [Rol88]:

< σv >=

(
2

µ

)1/2 ∆

(kT )3/2
S(E0) exp

(
−3E0

kT

)
(1.29)

1.4.3 Resonant Reaction Rates for Narrow Resonances

In regions where no resonances are present, the non-resonant reaction rate in equa-

tion 1.29 dominates the overall reaction rate. However, in many energy regions the

reaction rate can be dominated by resonances, where the initial nuclei X and Y fuse

together to form a compound nucleus in an excited state which can then decay through

particle emmision or γ-decay to a lower-lying state. In these cases, the cross section
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is enhanced and the S-factor is no longer a smoothly varying function compared to

regions without a resonance.

An excited state of a nucleus is characterized by a mean lifetime τ0, which is

related to a width in energy by the uncertainty principle (Γτ0 = h/2π) [Rol88]. The

total width of an excited state is related to the partial widths of all allowed decay

channels by:

Γ = ΣiΓi (1.30)

where each Γi is the partial width for a decay channel. The Breit-Wigner formula for

a nuclear cross section is given by:

σBW (E) = π

(
λ

2π

)2 2J + 1

(2JX + 1)(2JY + 1)
(1 + δXY )

ΓaΓb

(E − ER)2 + (Γ/2)2
(1.31)

where J , JX , and JY are the spins of the excited state in the compound nucleus

and the interacting particles X and Y, respectively, λ = h/(2µE) is the de Broglie

wavelength, and Γa, Γb, and Γ are the partial widths of the exit channels a and b

and the total width respectively. The delta function δXY is present since the cross

section is doubled for identical interacting particles. Using equations 1.14 and 1.31,

the reaction rate per particle pair can be written as:

< σv >=

(
8

πµ

)1/2 (
1

kT

)3/2 ∫ ∞

0

σBW (E)E exp

(
− E

kT

)
dE (1.32)

In the case of a narrow resonance, the Maxwell-Boltzmann distibution factor Eexp[−E/KT ]

remains fairly constant over the energy region of the resonance, therefore it can be

approximated by its value at the resonance energy:

< σv >=

(
8

πµ

)1/2 (
1

kT

)3/2

ER exp

(
−ER

kT

) ∫ ∞

0

σBW (E)dE (1.33)
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If the resonance is narrow (Γ ( ER), the integral in equation 1.33 reduces to:

∫ ∞

0

σBW (E)dE = 2π2

(
λR

2π

)2

ωγ (1.34)

where

ω =
2J + 1

(2JX + 1)(2JY + 1)
(1.35)

γ =
ΓaΓb

Γ
(1.36)

and the quantity ωγ is referred to as the strength of a resonance. Using equations

1.33 and 1.34 gives for the resonant reaction rate:

< σv >=

(
2π

µkT

)3/2 (
h

2π

)2

(ωγ) exp

(
−ER

kT

)
(1.37)

If there are several isolated, narrow resonances present, the total resonant reaction

rate is found by summing the contributions of each resonance:

< σv >=

(
2π

µkT

)3/2 (
h

2π

)2

Σi(ωγ)i

(
− Ei

kT

)
(1.38)

Often it is useful to express the resonant reaction rate in units of reactions per particle

density per second:

NA < σv >= 1.54x1011µ−3/2(ωγ)T−3/2
9 exp

(
−11.61ER

T9

)
(1.39)

where NA < σv > has units of cm3mol−1s−1, µ is in units of amu, ωγ and ER in MeV,

and T9 is the temperature in GK.
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Chapter 2

New Experimental Technique to

Study (p,α) Reactions

2.1 Motivation

To study a particular nuclear reaction in regular kinematics, an ion beam consisting

of light particles bombards a heavy solid or gas target. Using this technique in a

17O(p,α)14N study for example, a proton beam would impinge upon a target consisting

of 17O gas. However, this reaction could also be studied using a solid target enriched

with hydrogen or by using a target of hydrogen gas. In this case, the incoming beam

would be 17O and the reaction would be performed in inverse kinematics, where the

mass of the incoming beam is much larger than the target. Using inverse kinematics

can be advantageous over regular kinematics when it is difficult to make a target of

the heavy ion, as is the case in 17O or 35Cl where a solid target can only be made

as part of a compound. Inverse kinematics also works well for reaction studies using

radioactive beams since the use of radioactive targets can be extremely limited due

to decay of the target.
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Previous (p,α) studies in inverse kinematics have been performed by using solid

foil targets. This can become problematic at lower resonance energies where the

widths of resonances can be comparable to the energy loss of the beam through even

the thinnest of targets. Furthermore, due to the presence of inactive contaminants

in solid targets (carbon in the CH2 target in the previous 17O(p,α)14N study for

example [Cha05]), the yield from the (p,α) reaction is not maximized. The target

stoichiometry can change throughout an experiment due to degradation of the target

foil as well. One way to minimize these effects would be to use pure hydrogen gas as

the target instead of foils.

2.2 Experimental Setup

At the Holifield Radioactive Ion Beam (HRIBF) at Oak Ridge National Laboratory

(ORNL) a new technique was developed to measure the strengths and energies of

narrow resonances of (p,α) reactions. A schematic of the experimental setup is shown

in Figure 2.1. In this technique, the incident ion beam enters a large scattering

chamber (43 cm x 43 cm) filled with ultra high purity hydrogen gas (>99.9999% H2)

at pressures of up to 4 Torr. The chamber is differentially pumped (section 2.3), so

no windows or foils contain the gas or obstruct the beam.

The α particles and heavy recoils from the (p,α) reaction are detected in coinci-

dence by an array of silicon strip detectors within the hydrogen gas [Moa07]. The

placement of the SIDAR silicon detector array (section 2.4) is located approximately

115 mm from the entrance of the chamber in order to detect alpha particles from

the (p,α) reaction. This position for the SIDAR array was found to give a resonable

amount of target thickness while still allowing for the thickness to be adjusted. Heavy

recoils from the (p,α) reaction pass through the center of the SIDAR array and are
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Figure 2.1: Schematic of the experimental setup. The differential pumping stages are
not shown.
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detected by an annular type S1 silicon strip detector (also known as CD or MINI

detector) (section 2.4). The distance between the S1 detector and the SIDAR array

is dependent on the kinematics of the particular (p,α) reaction being studied.

Unreacted beam passes through the centers of both detectors and impinges on a

carbon foil placed 10 cm downstream from the S1 detector. Scattered carbon atoms

are detected in two silicon monitor detectors mounted 27 cm from the foil at θlab ≈ 33o.

Yields from the 12C(x,12C)x (where x is the scattered beam) elastic scattering reaction

are used together with the Rutherford cross section for scattering to determine the

integrated beam current to use in normalization.

There are several advantages to this technique over the use of foils. The most

significant advantage is that the pure nature of the target maximizes the yield from

the (p,α) reaction. The pressure of the hydrogen gas inside the target chamber can

also be adjusted in order to match the areal target density to the expected resonance

width, thus minimizing yield from off-resonance reactions and reducing background.

This approach is also well-suited for use with radioactive ion beams (section 5.2).

2.3 Differential Pumping System

The differential pumping system used in the (p,α) studies is essentiallly the same

system used for the windowless gas target (WGT) developed at the HRIBF for use

in (p,γ) studies [Fit05]. Upstream of the target chamber, there are two cubes, each

bisected into two separate pumping stages and coupled to each other through 5 cm

long (5 mm diameter) brass apertures to restrict the flow of gas upstream. To furthur

contain the gas within the target chamber, a plate with a 5 mm diameter hole is

attached at the entrance of the chamber.
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Figure 2.2: Schematic of the differential pumping system
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The first stage located upstream of the target (labeled 1u in Figure 2.2) is pumped

by two large WSU 501 roots blowers and backed by a roughing pump. The next

three upstream stages (2u, 3u, and 4u) each have a separate turbo pump backed by

a common roughing pump. Unlike the WGT, there is no pumping downstream of the

target.

Each individual pumping stage decreases the pressure by a few orders of magni-

tude. Using this setup, gas pressures as high as 5-6 Torr can be present inside the

target chamber with a pressure of ≈10−6 Torr at the entrance aperture upstream of

the target. Though higher pressures within the chamber would increase the yield of

the (p,α) reaction and better localize the reaction vertex, the maximum achievable

pressure inside the chamber is limited by the load on the upstream pumps, which

must reduce the pressure to < 10−6 Torr in order to connect to the beamline.

The pressure inside the chamber is monitored using a MKS 10 Torr full-scale

Absolute Capacitance Baratron rated to 1 millitorr, which is mounted on the target

chamber. For an additional measurement of the central pressure, a thermocouple was

placed on the chamber. The pressure inside the chamber can be regulated to better

than ±5 millitorr. Thermocouples were also located at each differential pumping

stage to ensure that the pressure adequetly decreases in each stage.

2.4 Detectors and Electronics

In order to identify the (p,α) reaction, as well as calculate the reaction vertex and

normalize data to the number of incident beam particles, the reaction products must

be detected with good efficiency and energy resolution. In our (p,α) studies, we

employed several detectors in order to achive this.
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Figure 2.3: MSL-type YY1 wedge. Figure taken from Ref. [Mic05]

Figure 2.4: MSL Design S1 annular detector. Figure taken from Ref. [Mic05]
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Figure 2.5: Schematic of the electronics setup for the SIDAR and S1 detectors.
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The α particles from the (p,α) reaction studies were detected by the SIDAR

silicon array (one wedge is shown in Figure 2.3) located 120 mm from the entrance

of the chamber. The array consists of 8 YY1 wedges with 16 annular strips per

wedge, manufactured by Micron Semiconductor, Ltd [Tho05]. The thicknesses of the

wedges used in these studies were 300 µm and 500 µm. The wedges are arranged

perpendicular to the axis of the incoming beam so that each strip is concentric with

the beam.

Heavy recoils from the (p,α) reaction are detected in a Type S1 detector [Mic05],

also know as the CD or MINI detector. This detector is shaped like a compact disc

and has an inner(outer) radius of 24 mm (48 mm) with 16 annular strips, sectioned

into quadrants (see Figure 2.4). The placement of the S1 detector varied in each

study so as to maximize the probablity of detecting the α particle and heavy recoil

in coincidence. For the 17O(p,α)14N study, the maximum angle at which the 14N

recoils can be emitted is θlab ≈ 21o, while for the 31P(p,α)28S and 35Cl(p,α)32S studies

the maximum heavy recoil angles were ≈ 8o and 7o respectively (2.5). In order

to maximize the efficiency for the detection of the α particle and heavy recoil in

coincidence, the S1 detector was placed 14 mm (for the 17O(p,α)14N study) and 210

mm (for the 31P(p,α)28S and 35Cl(p,α)32S studies) downstream of SIDAR. A summary

of the geometric and operational parameters for the SIDAR array and S1 detector

can be seen in Table 2.1.

A schematic of the electronics setup for the SIDAR array and S1 detector can be

seen in Figure 2.5. The signals from each detector are amplified using a preamplifier

then sent to a shaping amplifier. The shaping amplifier sends a signal, the height

of which is proportional to the detected particle’s energy, to the analog-to-digital

converter (ADC). The digitized signals from the ADC are sent via the VME bus to a

single-board computer and via ethernet to a DAQ workstation. Logic signals from a
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leading-edge discriminator are also sent from the shaping amplifiers through a series

of OR modules and ECL-NIM converters into a time-to-amplitude converter (TAC)

module.

The TAC module creates a signal whose height is proportional to the time between

a particle striking a SIDAR detector and a particle striking the S1 detector, with a

delay added to the S1 signal. The TAC module starts on the signal from SIDAR

and ends with a signal from S1. The time between a signal from SIDAR and the S1

detector can be useful in filtering out unwanted events, since the signals from an α

particle in SIDAR and a heavy recoil in the S1 detector will be time-correlated. A

gate signal is also created using the SIDAR signal from the OR module, which is sent

to the ADC. This gate signal is used to tell the ADC to start searching for a signal

from SIDAR. Each ADC is then connected to the VME.

Unreacted beam that scatters off the carbon foil is detected by a two single-

collimated silicon surface barrier detectors located at angles of 36o and 38o from the

beam axis. The solid angle subtended by these detectors was measured, in a separate

measurement, using a 244Cm α-source of known decay rate that was placed at the

same postion as the carbon foil and illuminated the detector. If the decay rate is R,

and the number of α particles hitting the detectors in elasped time ∆t is N, then the

fraction of the solid angle to the total solid angle subtended by the detector is given

by:

∆Ω

4π
=

N

R∆t

The solid angle for the monitor detectors were found to be 1.89 and 1.62 msr in the

31P(p,α)28Si and 35Cl(p,α)32S studies. By comparing the relative yields of 12C and
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scattered beam, the angles of each detector can be found using Rutherford scattering

(θ = 36o and 380).

To normalize the data to the integrated incident beam, yields from the 12C(x,12C)x

elastic scattering reaction (where x is the incoming beam) are used together with the

Rutherford cross section for scattering to determine the integrated beam current for

normalization. The thickness of the carbon foil was determined by measuring the

energy loss of α particles from a 244Cm source passing through the foil. The carbon

areal target density was determined by using the stopping power for α particles in

carbon from a SRIM fit to experimental data points (ε = (14.5 ± 0.8) x 10−15 eV

cm2). Using this technique, the thickness of the carbon foil used in the (p,α) reaction

studies was found to be 32µg/cm2. [Zie03].

2.5 Reconstructing the (p,α) reaction vertex

The efficiency for detecting both the α particle and the heavy recoil in coincidence is

a function of the position of the reaction vertex. When using solid targets, the vertex

is automatically known, as it is constrained to be located within an extremely small

range within the thin foil. However, when using an extended gas target, the reaction

vertex can occur at any place along the beam axis. For this reason, the vertex must

be determined on an event-by-event basis using known kinematics of the reaction

products.

The energy of the emitted α particle (in channels) from the (p,α) reaction can be

obtained from the SIDAR array. Converting this to an energy (in MeV) can be done

by knowing the conversion factor from channels to energy (the gain). For this to be

of the accuracy needed for the vertex calculation, extremely good gain-matching is

needed. From this energy, a small correction for the energy loss of the α particle as it
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Figure 2.6: Reconstructing the reaction vertex using the segmentation of the SIDAR
detector and the energy. In the figure, z is the distance from the reaction vertex to
the plane of SIDAR, R is the distance from the beam axis to the strip in which the
alpha is detected, and θ is the laboratory angle of the α from the (p,α) reaction.
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Figure 2.7: Calculated Angle vs. Energy for the 14N recoils in the 17O(p,α)14N
reaction at a beam energy of 3.27 MeV. The turnaround angle can be seen to be
located at 21o
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travels through the hydrogen gas must be taken into account, which is obtained from

a SRIM calculation [Zie03], as well as a correction for the energy loss of the particle

as it travels through the dead layer of SIDAR. Overall, the energy of the α particle

is given by:

Eα = ESIDAR + ∆Egasloss + ∆Edeadlayerloss (2.1)

where ESIDAR is the energy deposited in the SIDAR detector, ∆Egasloss is the energy

lost by the α particles as it travels through the hydrogen gas, and ∆Edeadlayerloss is

the energy lost by the α particle going through the dead layer of SIDAR.

The energy of the α particle can be shown from conservation of energy and mo-

mentum to be [Kra88]:

E1/2
α =

(mXmαEX)1/2cosθ ± [mXmαEXcos2θ + (mY + mα)(mY Q + (mY − mX)EX ]
1/2

mY + mα

(2.2)

where the original labeling from [Kra88] of the reaction X(a,b)Y has been replaced

with that of a (p,α) reaction in inverse kinematics (p(X,α)Y). In the above expression,

Eα and EX are the energies of the alpha particle from the (p,α) reaction and the

incident beam (assumed to be the resonance energy) respectively, mX , mα, and mY

are the masses of the incoming beam, α particle and heavy recoil, Q is the reaction

Q-value, and θ is the laboratory angle of the emitted α particle.

Equation 2.2 can be solved for cosθ (using the plus sign in Eqn 2.2 since only

extremely low incident beam energies exhibit double-valued behavior):

cosθ =
A√

EXEα

[
B2Eα − B(mY Q + (mY − mX)EX)

]
(2.3)
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where

A =
1

2(mY + mα)
√

mXmα

B = mY + mα

By using the segmentation of the SIDAR array, the distance from the axis of the

incoming beam to which the alpha particle struck the SIDAR array (labeled by R in

Figure 2.6) can be found. Combining this with the inferred angle from equation 2.3

will give the reaction vertex measured from the plane of SIDAR.

There exists a maximum angle in which the heavy recoils can be emitted in the

(p,α) reaction. The heavy recoil angle in the laboratory frame is given by:

φlab
recoil = sin−1

[

sin(θlab
α )

√
mpElab

α

mY Elab
recoil

]

(2.4)

In Figure 2.7, this angle is plotted against the energy for 14N in the 17O(p,α)14N

with an initial beam energy of 3.27 MeV (near the 183 keV resonance energy). The

maximum angle at which the 14N recoils can emerge is θ ≈ 21o, corresponding to an

angle for the α particle of ≈ 38o. If this maximum angle is seen in the S1 detector

(showing up as the maximum strip in which 14N recoils from the (p,α) reaction are

seen), it can be used in conjunction with the segmentation of the S1 detector to pro-

vide a determination of the reaction vertex, independent of SIDAR and the energies

of the reaction products.
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Figure 2.8: Solid angle versus reaction vertex for the 622 keV resonance in the
31P(p,α)28Si reaction.
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2.6 Calculating the efficiency for detection in co-

incidence

In order to properly normalize the data collected in our (p,α) studies, we must calcu-

late the efficiency for detecting the α particle and recoil in coincidence in the SIDAR

array and S1 detector, respectively. The efficiency (or solid angle of detection) does

not merely encompass the geometric solid angle of the detectors at each reaction ver-

tex, but must also take into account the efficiencies of individual strips in SIDAR and

S1 and well as whether or not an α particle striking the SIDAR array will have the

corresponding heavy recoil strike the S1 detector. For these reasons we must use the

known relative kinematics of the reaction products as well as the measured efficiencies

of the strips in the SIDAR and S1 detectors to determine the overall efficiency at a

given reaction vertex.

At a given reaction vertex, z, the smallest and largest angle that an alpha particle

can strike a given SIDAR strip is given by:

θlow = tan−1 50 + 5(i − 1)

z
(2.5)

θlab
high = tan−1 50 + 5i

z
(2.6)

where i is the strip number and the inner diameter and strip width of the SIDAR

array (50 mm and 5 mm respectively, 2.4) are used. Each angle corresponds to a

unique α energy (equation 2.2) which, for puropses of simplifying the subsequent

calculations, can be rewritten as:

Elab
α = ET B

[
cos(θlab) +

√
D/B − sin2θlab

]2
(2.7)
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where

ET = Q + EX

A = mXmY
EX

ET

1

(mX + mα)(mp + mY )

B = mXmα
EX

ET

1

(mX + mα)(mp + mY )

C = mpmα

(
1 +

mX

mp

Q

ET

)
1

(mX + mα)(mp + mY )

D = mpmY

(
1 +

mX

mp

Q

ET

)
1

(mX + mα)(mp + mY )

and θα will be the angle in the middle of the strip. It must be determined if an α

particle originating from given vertex z and having energy Elab
α (given by equation

2.7) will have the corresponding heavy recoil strike the S1 detector. This is most

easily determined in the laboratory frame. The energy of the recoil in the laboratory

frame is straightforward from conservation of energy:

Elab
recoil = ET − Elab

α

The strip (if it exists) that the heavy recoil strikes the S1 detector is then given

by:

m =
((z + x)tan(φlab

recoil) − 24.75)

1.5
(2.8)

where φlab
recoil is given by equation 2.4 and the inner radius and strip width of the S1

detector (24 mm and 1.5 mm respectively, section 2.4) are used and x is the distance

between the detectors. In equation 2.8, an extra 0.75 mm (half of the strip width of

S1) is added to the inner radius of the S1 detector so that the expression gives the

strip as if the middle of the strip was hit (rather than the edge). If the value of m in
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equation 2.8 is between 1 and 16 (the number of strips in the S1 detector), the heavy

recoil strikes the S1 detector and the reaction products are detected in coincidence.

To calculate the center-of-mass (CM) solid angle for detection in coincidence, the

low and high angles in SIDAR can be converted to CM by:

θCM
low = π − cos−1

[
Elab

low/ET − B − D

2
√

AC

]

θCM
high = π − cos−1

[
Elab

high/ET − B − D

2
√

AC

]

where Elab
low and Elab

high are the alpha particle energies from the angles in equations 2.5

and 2.6.

Then the CM solid angle for the given reaction vertex z and SIDAR strip i is

given by:

∆ΩCM
i = −2π

[
cos(θCM

low ) − cos(θCM
high)

]
εSIDAR(i)εS1(m) (2.9)

where εSIDAR(i) and εS1(m) are the efficiencies for the corresponding SIDAR and

S1 strips (section 2.4). Equation 2.9 must be summed over all of the SIDAR strips(i)

to get the total CM solid angle at the given vertex. Overall, the CM solid angle for

detection in coincidence at a given reaction vertex is given by:

∆ΩCM = −2πΣi

[
cos(θCM

low (i)) − cos(θCM
high(i))

]
εSIDAR(i)εS1(m)δα,recoil (2.10)

where

δα,recoil = 1 if the α and heavy recoil are detected in coincidence

= 0 otherwise
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If the emitted α particles from the (p,α) reaction have an isotropic distribution,

then the solid angle for detection at a reaction vertex is given completely by equation

2.10. However, if there is some sort of angular distribution, an additional angular

dependent factor (W (θα)) must be inserted in equation 2.10.

The solid angle versus reaction vertex curve for the 622 keV resonance (with an

isotropic distribution) in 31P(p,α)28Si is shown in Figure 2.8. The curve peaks at z =

80 mm from SIDAR and begins to drop off rapidly at z = 65 mm. The rapid drop in

solid angle has a step-like behavior as each individual S1 strip (from outer to inner)

falls beyond the maximum 28Si recoil angle until finally at z ≈ 30 mm, all recoils pass

through the center of the S1 detector.

2.7 Limitations of the technique

Though this technique can be employed for many different (p,α) studies, the major

limiting factor that determines if it is advantageous over the use of foils concerns the

maximum angle of the heavy recoil. The placement of the S1 detector should be such

that this maximum angle can be seen. As seen in Figure 2.7, the larger the incoming

beam energy or mass, or reaction Q-value the smaller the maximum recoil angle. In

order to detect smaller recoil angles, the S1 detector must be positioned further and

further back from the SIDAR detector.

However, some scattering of the incoming beam off of the aperture closest to the

chamber as well as scattering off the 5 mm hole in the plate inside the chamber is

unavoidable since the beam has some diameter (typically a few millimeters). These

scatterings are heavily forward focused in the laboratory frame. If the S1 detector is

positioned far enough from the entrance of the chamber so that scattered incoming

beam impinges upon it, the count rate in the detector could become too large. Also,
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Figure 2.9: Maximum recoil angle (degrees) versus incoming beam energy (MeV) for
several (p,α) reactions
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since the energy of the scattered beam will be very close to the incoming beam energy,

it could pose problems in distinguishing heavy recoils with larger energies from the

(p,α) reaction from the scattered beam. Therefore, this technique is best suited for

(p,α) reactions with lower mass incoming beams and larger Q-values.
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Table 2.1: Operational and Geometric parameters for the SIDAR and S1 detectors
SIDAR S1

Inner Radius (mm) 50 24
Outer Radius (mm) 130 48
Number of Strips 16 16
Strip Width (mm) 5 1.5
Strip Efficiencies

1 0.933 1.000
2 0.933 1.000
3 0.933 0.933
4 0.933 0.985
5 0.933 0.978
6 0.933 0.971
7 0.933 0.964
8 0.933 0.956
9 0.933 0.949
10 0.933 0.942
11 0.933 0.935
12 0.933 0.927
13 0.933 0.920
14 0.800 0.878
15 0.622 0.777
16 0.400 0.804
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Chapter 3

The 1H(17O,α)14N Reaction Study

3.1 Motivation

The rates of the 17O(p,α)14N and 17O(p,γ)18F reactions are important for under-

standing isotopic abundances in giant stars and novae. The 17O isotope is abun-

dantly produced in novae and may be the dominant contributor to 17O production in

the galaxy [Jos98]. The 17O(p,γ)18F reaction leads to the production of 18F, whose

potentially observable beta-decay γ-rays have made it a proposed target of γ-ray as-

tronomy since its relatively long half-life (τ ≈ 2 hr) means that it can survive the

inital explosion. However, the 17O(p,α)14N reaction bypasses production of the 18F

isotope. The competition between the (p,α) and (p,γ) reactions on 17O can have a

profound effect on the final abundance of 18F in a nova explosion.

The properties of a resonance at Ecm = 183 keV have been shown to dominate the

17O(p,α)14N and 17O(p,γ)18F reaction rates in the temperature range T ≈ 1-4 GK,

which are relevant to novae and asymptotic giant branch (AGB) stars. The strength

of this resonance in the 17O(p,α)14N reaction was measured at Orsay (ωγpα = 1.6 ± 0.2

meV) [Cha05], and found to be over 50 times greater than the inferred strength from
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Figure 3.1: The ratio of the 17O(p,α)14N reaction rate (solid line) [Cha07] to the
previous rate [Ang99] (also known as the NACRE rate). The dashed lines indicate
the previous [Ang99] lower and upper limits for the total rate. Figure taken from
Ref. [Cha07].
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an 17O(p,γ)18F study at Triangle Universities Nuclear Laboratory (TUNL) (ωγpα <

0.03 meV) [Fox04]. This discrepancy in the strength of the 183 keV resonance has a

large impact on the isotopic abundances of 17O and 18F, with a reduction of as much

as a factor of 8 in 18F production in novae using the higher 17O(p,α)14N rate [Cha05].

Figure 3.1 shows the reaction rate using the larger resonance strength as compared to

the previous result [Ang99]. An independent measurement of this resonance strength

would resolve this descrepancy. This measurement would also serve as a good test of

the newly-developed experimental technique described in chapter 2.

3.2 Experimental Approach and Data

The experimental setup was the same as that described in section 2.2. Low-energy

pure beams of stable 17O with an intensity of ≈ 1 pnA from the Holifield Radioactve

Ion Beam Facility (HRIBF) bombarded hydrogen gas which filled the scattering cham-

ber at pressures of up to 4 Torr.

The α and 14N recoils from the 1H(17O,α)14N reaction were detected in coincidence

within the gas-filled chamber by the SIDAR silicon detector array and the S1 detector,

respectively (section 2.4). The SIDAR array was located 115 mm from the entrance

of the chamber, while the S1 detector was positioned 14 mm downstream of SIDAR.

Both detectors were individually calibrated using a 244Cm source.

The solid angle for detection of both recoils in coincidence (section 2.6) is plotted

against the reaction vertex (as measured fron the plane of the SIDAR array) in Figure

3.2. The efficiency for detection in coincidence is nearly constant for most of the range

of vertices, but falls rapidly for positions closer to SIDAR as 14N recoils begin to pass

throught the center of the S1 detector.
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Figure 3.2: Total solid angle (center-of-mass frame) for detection of α particles in
coincidence with detection of the 14N recoil versus the reaction vertex (measured
from the plane of SIDAR) for the Ecm = 183 keV resonance in 17O(p,α)14N

51



The kinematics and relative timing of the two detected particles allowed the

1H(17O,α)14N events to be clearly identified. In Figure 3.3, the energies of the parti-

cles detected by the S1 detector are plotted against the energies detected by SIDAR

for events coincident within 0.4 µs. The data shown are for two bombarding energies

(3.29 MeV (off-resonance) and 3.34 MeV (on-resonance)) with comparable integrated

incident beam. The 1H(17O,α)14N events can be distiguished as a straight line with

a constant energy sum, indicative of the reaction Q-value. The gate drawn in Figure

3.3 determined the number of 1H(17O,α)14N events, Y.

The segmentation of SIDAR and the energy of the emitted α particle were used

to determine the reaction vertex for 1H(p,α)14N events (section 2.5). In Figure 3.4,

the reaction yield is plotted versus distance from the reaction vertex to the plane

of SIDAR, z, for two different bombarding energies. All of the 1H(p,α)14N events

originate from a narrow range inside the chamber, indicative of a narrow resonance.

Small corrections to the measured α energy were made for the energy loss of the

particle as it traveled through the hydrogen gas and the energy loss as the particle

traveled through the dead layer of SIDAR (1% and 6%, respectively for a 2 MeV α

particle at θ lab = 45o). The energy loss of the incident 17O beam (≈ 2%) does not

significantly contribute since the reaction originates from a well-defined resonance

energy.

The reaction vertex varies linearly with incident beam energy and a least-squares

fit to the data gives the stopping power of oxygen ions in hydrogen to be ε = (63 ±

1) x 10−15 eV cm2 at E(17O) = 194 keV/u. This result is interesting in itself since it

is the only measurement of the stopping power of oxygen ions in hydrogen near the

peak of the Bragg curve.

The reaction vertex was also determined using the 14N recoils and the segmen-

tation of the S1 detector (secion 2.5). In Figure 3.5, the best fit to the distribution

52



Figure 3.3: The energy of particles detected in the S1 detector plotted against the
energy of coincident particles in SIDAR for incident 17O energies of 3.29 MeV (off-
resonance - top figure) and 3.34 MeV (on-resonance - bottom figure). The drawn box
is where (p,α) events are expected to fall.
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Figure 3.4: The distribution of 1H(17O,α)14N events as a function of the distance (z)
from the plane of SIDAR (mm) at a pressure of 4 Torr. The 3.30 MeV yield has been
multiplied by a factor of 5 for purposes of comparison.
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Table 3.1: Results for the stopping power for oxygens in hydrogen gas at 193 keV/u
compared to the semi-empirical models SRIM 2003 [Zie03] and MSTAR [Pau03]

ε (10−15 eV cm2

Present Work 63 ± 1
SRIM 2003 [Zie03] 59
MSTAR [Pau03] 53

shows the maximum angle for the 14N recoils falling at approximately strip 7 on the

S1 detector (corresponding to a 14N recoil angle of ≈ 21o).

In Figure 3.6, the incident 17O energy is plotted against the reaction vertex as

measured from SIDAR (using the detected α particles) and the S1 detector (using

the 14N recoils). Using a least-squares fit for the S1 detector data gives a stopping

power of ε = (64 ± 3)*10−15 eV cm2. A weighted average for the two techniques

was adopted. Table 3.1 compares the present value found in this study with two

widely used semi-empirical models. It should be noted that the values found for the

reaction vertices as determined by the two techniques agree (within uncertainty) by

the measured geometric distance between the SIDAR array and the S1 detector (14

mm).

The integrated beam current at each energy was determined by normalizing to

12C(17O,12C)17O elastic scattering measured simultaneously with the 1H(17O,α)14N re-

action using a carbon foil and two single-collimated surface barrier detectors (monitor

detectors) (section 2.4). The solid angles for the monitor detectors were determined

by placing a calibrated α source at the same position as the carbon foil (in a separate

measurement) and found to be 0.42 ± 0.01 and 0.50 ± 0.01 msr. A sample spectrum

is shown in Figure 3.7. The mean scattering angle for both detectors was determined

by using the ratio of 17O to 12C yields. Values of 33o and 32.4o were adopted, in

good agreement with the measured geometry. The number of incident 17O ions was

determined from the 17O yield in each monitor detector by using the Rutherford cross
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Figure 3.5: The distribution of 1H(17O,α)14N events by 14N angle (strip number)
for an incident 17O beam energy of 3.34 MeV. The solid curve shows the best fit to
the distrubution by varying the distance to the reaction vertex. The dashed curves
represent the upper and lower 1σ limits.
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Figure 3.6: Incident beam energy plotted versus the distance to SIDAR (circles) and
the S1 detector (squares). The fits do not take into account the lowest incident beam
energies where the resonance was not completely contained within the chamber.
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section for the 12C(17O,12C)17O reaction. The integrated beam current as determined

from each detector typically differed by 6% to 8% and by at most 11%. A weighted

average of the two intensities was adopted for each beam energy and the uncertainty

reflects both measurements.

3.3 Results

Since the yield originates from a narrow resonance, the resonance strength ωγpα is

related to the yield, Y , to a good approximation, by [Rol88]:

ωγpα =
2

λ2

mp

mp + m17
4πε

(
Y

I∆ΩCM

)
(3.1)

where λ is the wavelength of the incident 17O in the center-of-mass frame, mp and

m17 are the masses of the proton and 17O, ε is the stopping power for 17O ions in

hydrogen gas, I is the number of incident 17O particles and ∆Ω is the efficiency for

detection in coincidence given by equation 2.10.

The distribution of yield over the center-of-mass angles covered in this study (θα

= 70o - 130o) was found to be consistent with either an isotropic distribution or with

a distrubution from [Cha05] given by:

W (θα) = 1 + 0.16P2cos(θα) (3.2)

where P2cos(θα) is the second-order Legendre polynomial. The distribution in this

study was slightly better fit (χ2 ≤ 0.1 lower) using equation 3.2 than with an isotropic

distribution. Although not statistically significant, equation 3.2 was adopted, which

results in a 6% smaller coincidence efficiency.
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Figure 3.7: Energy spectrum from one of the monitor detectors.
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In Figure 3.8, the quantity in parenthesis in equation 3.1 is plotted against the

incident beam energy for two data sets taken at different pressures. For incident

beam energies with an insufficient number of events to determine a reaction vertex

(off-resonance points), an upper limit was set (95% confidence) using the average solid

angle for the ”on-resonance” points. Also shown in Figure 3.8 are fits to both yield

curves which vary the resonance strength, resonance energy, and resonance width.

These fits were able to determine an upper limit to the total resonance width (Γ <

0.1 keV) at a 95% confidence level.

The resonance strength is mostly independent of the other resonance parameters,

and a value (ωγp,α = (1.70 ± 0.09) meV) was obtained from the best fit to the data

shown in Figure 3.8. The three largest sources of purely systematic uncertainties that

potentially impact the overall normalization are the thickness of the carbon foil (6%

from the uncertainty in stopping power for α particles in carbon), the strength of the

α source used for determining the solid angle of the monitor detectors (section 2.4)

(3%), and the stopping power for 17O ions in hydrogen gas (2% as determined in this

study). Adding these in quadrature with the results from the fit to the yield curve

gives a resonance strength of ωγp,α = 1.70 ± 0.15 meV.

The best fit to the data at 1 Torr results in a resonance energy that is ∆E(17O) =

15 keV lower in the laboratory frame than the fit at 4 Torr when identical widths are

used. A second value for the resonance energy was extracted by linear extrapolation

to zero pressure of the resonance energy obtained from fits to the yield curves with

Γ ≈ 0. The result for this method is ∆E(17O) = 20 keV lower in the laboratory

frame than the best-fit value at 4 Torr. The uncertainty in the resonance energy was

determined from the extrapolation by including appropriate correlations between the

uncertainty in the resonance energy and the uncertainty in the width. Since the

observed width may result from experimental effects (beam resolution for example)
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Figure 3.8: Yield curves taken at pressures of 4 Torr(filled circles) and 1 Torr(open
squares). Filled(open) trianges represent upper limits. The dashed(solid) lines are
fits to the data
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Table 3.2: Results of previous and present 17O(p,α)14N studies.

Er (keV) ωγp,α (meV)
Present Work 183.5 0.1

−0.4 1.70 ± 0.15
Chafa et al. [Cha05] 183.2 ± 0.6 1.6 ± 0.2

and since only upper limits were determined for the off-resonance points and for the

total width, the uncertainty in the resonance energy is asymmetric, with the result

of Er = 183.5 0.1
−0.4 keV. Table 4.3 compares the results of the previous study and the

present findings. The results from the present study are in good agreement with the

findings of Chafa et al. [Cha05].

3.4 Astrophysical Implications

The contribution from the 183 keV resonance to the 17O(p,α)14N astrophysical reac-

tion rate can be expressed in the narrow, isolated resonance approximation (equation

1.39) as:

NA < σν >183keV ≈ 276T−3/2
9 exp(−2.128/T9) (3.3)

where a weighted average of the current results and previous results [Cha05] were

adopted. The total cross section for the 17O(p,α)14N reaction rate was calculated

using the R-matrix code SAMMY [Lar06]. Resonance properties were taken from

[Ang99], except for the 183 and 530 keV resonances. A weighted average of the

present results and those of Ref. [Cha05] were used for the properties of the 183 keV

resonance, as described in section 3.3. The contribution of the 530 keV resonance

made an insignificant contribution to the total reaction rate, therefore a strength of

ωγp,α = 0 was adopted for this resonance. The adopted resonance properties are

summarized in Table 3.3.
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Table 3.3: Adopted resonance parameters for the reaction rate calculations. Reso-
nance properties taken from Ref. [Ang99] except where noted.

Er (keV) ωγp,α (eV)
66.0 5.5 x 10−9

183.5 1.65 x 10−6 a

489.9 49
556.7 2.25
633.9 35.5
635.5 19.7
655.5 5.0
676.7 704.0

a Weighted average of present work and Ref. [Cha05]

The reaction rate was calculated by numerically integrating the calculated cross

sections using SAMMY. A total reaction rate was found that is in good agreement

(differing by at most 4%) with the recommended rate from [Cha07]. This rate is also

in good agreement with [Ang99], differing by less than 4% for T9 < 0.5.

The new total 17O(p,α)14N was parameterized in a widely-used format:

NA < σν >=
3∑

i=1

exp

(
ai1 +

6∑

j=2

aijT
2j/3−7/3
9 + ai7lnT9

)
(3.4)

from [Ang99] using online tools available from the Computation Infrastructure for

Nuclear Astrophysics (CINA) [CINA]. The coefficients in equation 3.4 determined

from a best fit to the new 17O(p,α)14N reaction rate are given in Table 3.4. The

17O(p,γ)18F reaction rate from [Ang99] was also parameterized and the coefficients

are given in Table 3.5. These parameterizations are valid over the entire temperature

range and deviate less than 5% [2%] from the numerically integrated 17O(p,α)14N

[17O(p,γ)18F] rates. Figure 3.9 shows the previous (NACRE) 17O(p,α)14N reaction

rate as well as the reaction rate from the present work using the new strength for the
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Table 3.4: The 21 coefficients aij used to parameterize the 17O(p,α)14N rate via a fit
of equation 3.4 to the numerically integrated rate. The parameterization is valid over
the temperature range 0.01-10 GK and reproduces the rate to within 5% over this
range.

j/i 1 2 3
1 -1.01810 x 102 7.98035 x 10−1 2.87049 x 102

2 -7.79071 x 102 2.95898 x 100 2.70110 x 10−1

3 -1.12473 x 101 -2.23640 x 102 -1.37840 x 102

4 2.10956 x 102 2.40491 x 102 -7.76691 x 102

5 -1.38581 x 102 -1.04420 x 101 2.22662 x 103

6 2.32187 x 101 4.70954 x 10−1 -3.08826 x 103

7 -1.34335 x 101 -1.36987 x 102 -8.66862 x 101

183 keV resonance. The deviation in the 0.1 > T9 > 0.4 temperature range is due to

the larger 183 keV resonance strength.

The impact of the new 17O + p rates was studied using CINA. A ”post processing”

approach similar to Parete-Koon et al. [Par03] was utilized following a reaction net-

work through time profiles of temperature and density in 28 radial zones taken from

one-dimensional hydrodynamic calculations of nova outbursts on 1.15, 1.25, and 1.35

M" ONeMg white dwarf stars [Sta98]. A full reaction network was used in each zone

with 169 isotopes. Reaction rates were taken from the NACRE collaboration [Ang99]

where available and otherwise from the REACLIB database [Rau01]. Models were

also calculated by using the new 17O(p,α)14N and 17O(p,γ)18F reaction rates with all

other reaction rates unchanged. The final abundances were determined by summing

the contributions of each zone weighted by the total mass of the zone.

Models using the new rates were found to reduce the production of 18F by a factor

of 10 with hydrodynamic profiles from a 1.15 M" white dwarf (Figure 3.10). This

was comparable to reductions in 18F production by a factor of 7.9 reported from

full hydrodynamic simulations on a 1.15 M" white dwarf by Chafa et al. [Cha05].

However, the impact of the new 17O + p reaction rates have less influence on 18F
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Figure 3.9: The 17O(p,α)14N reaction rate as a function of temperature. The black
curve is from a parametrization of the NACRE reaction rate [Ang99] while the red
curve utilizes the new 183 keV resonance strength. The shaded region indicates nova
temperatures.
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Table 3.5: The 21 coefficients aij used to parameterize the 17O(p,γ)14N rate via a
fit of equation 3.4 to the tabulated rate from [Cha07]. The parameterization is valid
over the temperature range 0.01-10 GK and reproduces the rate to within 2% over
this range.

j/i 1 2 3
1 -9.18598 x 102 -5.57168 x 101 6.77712 x 103

2 -2.28606 x 100 -4.92403 x 10−1 -2.75532 x 100

3 3.19374 x 101 2.47608 x 101 8.93484 x 102

4 1.31299 x 103 7.43767 x 101 -1.05467 x 104

5 -6.56844 x 102 -4.97559 x 101 4.94580 x 103

6 2.17931 x 102 1.17175 x 101 -2.34713 x 103

7 -1.33934 x 102 1.83200 x 101 1.84163 x 103

production as the mass of the white dwarf increases. The new reaction rates reduce

18F production by only a factor of 2 in the 1.25 solar mass model (Figure 3.10)

and have a negligible effect on the 1.35 solar mass model. This results from the

reaction sequence 16O(p,γ)17F(p,γ)18Ne(β)18F(p,α)15O that bypasses 17O becoming

more important for more energetic novae owing to the strong temperature dependence

of the 17F(p,γ)18Ne reaction rate [Bar00] (Figure 3.11). The much stronger influence

of the 17O + p reaction rates in lower mass white dwarf simulations results from the

decreased 17F(p,γ)18Ne reaction rate relative to 17F β-decay in cooler models.

The final abundance of 18F in each model is strongly dependent on the somewhat

uncertain 17F(p,γ)18Ne reaction rate. The 17F(p,γ)18Ne reaction rate in the previous

nova simulations was taken from the NACRE reaction rate compilation [Ang99].

However, measurements over the last several years, most notably by Bardayan [Bar00]

and Chipps [Chi09], have reduced this reaction rate by approximately a factor of 10

at temperatures of 0.3 GK and higher (see Figure 3.11). Nova simulations using this

new 17F(p,γ)18Ne reaction rate showed no significant change in the 18F ratio than

that found with the previous 17F(p,γ)18Ne reaction rate. This is because while the

new 17O(p,α)14N reaction rate deviates from the previous rate in the temperature
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Figure 3.10: Final 18F abundances by zone from simulations of a 1.25 (top) and
1.15 (bottom) M" white dwarf. The red(dashed) curve utilize the reaction rates
from [Ang99] while the black(solid) curve changes only the strength of the 183 keV
resonance in 17O(p,α)14N to that of the findings of the present study.
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Figure 3.11: The competing 17F(β)17O and 17F(p,γ)18Ne reaction rates. The blue
(solid) curve is the 17F(p,γ)18Ne reaction rate from Ref. [Ang99] while the red (dashed)
is from the more recent study by Chipps et al. [Chi09].
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Table 3.6: Ratio of the final 18F abundance produced in ONeMg nova models using
the reaction rates from Ref. [Ang99] to the final 18F abundance in models using the
rates from Tables 3.4 and 3.5.

Mass 18F ratio
1.15 M" 10.2
1.25 M" 2.0
1.35 M" 1.0

range T9 = 0.1 - 0.3 (Figure 3.9), the change in the 17F(p,γ)18Ne rate in this same

temperature range is minimal in comparison to the 18F β-decay.
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Chapter 4

The 1H(31P,α)28Si and

1H(35Cl,α)32S Reaction Studies

4.1 Motivation

Explosive hydrogen burning in novae, X-ray bursts and supernovae moves CNO cycle

material into the heavier Fe-Ni region. While proton capture reactions will transfer

material into heavier regions, β-decay and (p,α) reactions move material back to

lower mass regions. Reaction cycles have been proposed in the Si-Ar region [Ili93]

with the strength of these cycles depending on the ratio of the competing (p,γ) and

(p,α) reactions on 31P and 35Cl. Two possible SiP and SCl cycles are shown in figure

4.1.

Resonance strengths for the 31P(p,γ)32S and 35Cl(p,γ)36Ar reactions are well-

known in the energy range Ecm ≥ 400 keV, however, only upper limits have been

established for possible lower energy resonances [Ros95]. This is not particularly

problematic, since the reaction rates can be well-approximated by Hauser-Feshbach
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Figure 4.1: Possible cycles in the sequence of reactions in the SiP and SCl regions.
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calculations due to the high level density in the compound nuclei [Ili93] [Ili94]. How-

ever, this is not the case for the competing 31P(p,α)28Si and 35Cl(p,α)32S reactions,

where there are only a few allowed resonances due to the low Q-values of these

reactions. Since the α decay is only possible to the natural parity states (from

the smaller Q-value), there are fewer available resonances and approximations us-

ing Hauser-Feshbach calculations are not valid.

The most recent direct measurements of the strengths of low-energy resonances in

31P(p,α)32S and 35Cl(p,α)36Ar performed in Toronto and Bochum utilized a proton

beam impinging on targets implanted with 31P and 35Cl, respectively [Ili91] [Ili94].

Both of these measurements were hampered by beam-induced proton scattering and

background from the 11B(p,3α) reaction from 11B contamination in the tantalum

backings of the targets. Due to this background, only upper limits were determined

for the resonance strengths except for the resonance at Ecm = 371 keV in 31P (p,α)32S.

The only other resonance strengths in 31P(p,α)32S that have been measured directly

are from a study performed in 1963, where the strengths of the Ecm = 600 keV and 622

keV resonances were determined [Kup63]. No direct measurements of the strengths of

resonances in 35Cl(p,α)36Ar for the energy range Ecm ≤ 611 keV have been successful.

The most recent study of low-energy resonances in 31P(p,α)28Si and 35Cl(p,α)36Ar

was performed at Notre Dame University using an indirect method [Ros95]. In this

study, proton unbound states in 32S and 36Ar were populated using the 31P(3He,d)32S

and 35Cl(3He,d)36Ar reactions and alpha particles from the α-decay of 32S and 36Ar

were detected in coincidence with deuterons from the (3He,d) reaction [Ros95]. Reso-

nance strengths at ECM = 371 and 599 keV in 31P(p,α)28Si were determined, however,

only upper limits were able to be extracted for resonance strengths in 35Cl(p,α)36Ar.

A summary of resonance strengths and upper limits for the 31P(p,γ)32S, 31P(p,α)28Si,
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Table 4.1: Resonance energies and strengths in 31P(p,γ)32S and 31P(p,α)28Si. Values
are taken from Ref. [Ros95] except where noted.

Er (MeV) Jπ ωγp,γ (eV) ωγp,α (eV)
0.195 (1,2)− (4.8±1.6)x10−7 ≤1.9x10−8

0.201 4+ ≤3.3x10−9 ≤3.3x10−9

0.306 3+ ≤3.7x10−5

0.332 2+ ≤6.1x10−5 ≤4.2x10−4

0.344 1+ (4.2±0.7)x10−3

0.371 1− (6.0±1.2)x10−5 (2.7±0.7)x10−3

0.391 2+ (4.5±0.7)x10−4 ≤4.2x10−5

0.426 1+ (2.5±0.4)x10−2

0.524 2− (1.2±0.2)x10−1

0.600 2+ (1.1±0.2)x10−3 (2.5±0.4)x10−2

0.622 1− 1.87a

a Taken from [Kup63]

35Cl(p,γ)36Ar, and 35Cl(p,α)36Ar reactions from previous studies are listed in Tables

4.1 and 4.2.

The ratio of the 31P(p,α)28Si to 31P(p,γ)32S reaction rates is shown in Figure 4.2.

At low temperatures, where the 31P(p,γ)32S reaction rate is much stronger than that

of 31P(p,α)28Si, weak cycling is expected in the SiP region [Ros95]. The (p,α) reaction

on 31P is not expected to significantly compete with the (p,γ) reaction except at higher

temperatures (T ≥ 0.3 GK), where the Ecm = 371 and Ecm = 600 keV resonant rate

contributions are expected to dominate the (p,α) reaction rate [Ili93] (Figure 4.3).

The lower panel of Figure 4.2 shows the ratio of the 35Cl(p,α)32S reaction rate

to the 35Cl(p,γ)36Ar reaction rate. Due to the large uncertainty in the 35Cl(p,α)32S

reaction rate from the fact that only upper limits for resonance strengths are estab-

lished for the energy range Ecm ≤ 610 keV, the competition between the (p,α) and

(p,γ) reactions is uncertain by up to 8 orders of magnitude at lower temperatures.

The only (p,α) resonant rate contribution that is expected to compete with that of
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Table 4.2: Resonance energies and strengths in 35Cl(p,γ)36Ar and 35Cl(p,α)32S. Values
are taken from [Ros95].

Er (MeV) Jπ ωγp,γ (eV) ωγp,α (eV)
0.049 2+ (2.8±1.2)x10−24 ≤2.0x10−25

0.165 1− (3.4±1.6)x10−10 ≤4.0x10−11

0.302 (1,2,3−) (1.5±0.5)x10−5 ≤1.6x10−6

0.380 ≤3.1x10−5 ≤6.2x10−6

0.402 2+ (6.6±3.3)x10−5 ≤1.0x10−3

0.416 ≤1.3x10−4 ≤7.8x10−6

0.431 2+,3− (1.4±0.3)x10−2 ≤3.2x10−4

0.507 (3−-5−) (1.2±0.3)x10−3 ≤4.5x10−5

0.517 2 (3.2±0.7)x10−2

0.559 3− (3.1±0.6)x10−2 ≤7.2x10−3

0.610 1− (7.6±1.8)x10−4 ≤1.6x10−1

the (p,γ) is from the Ecm = 610 keV, where the upper limits of the (p,α) resonance

strength is ≈ 200 times larger than the measured (p,γ) strength (Figure 4.4).

Though weak reaction cycling has been predicted in both the SiP and SCl mass

regions [Ros95], these predictions have been drawn based on indirect studies paired

with older measurements (in the case of 31P(p,α)28Si) as well as upper-limit resonance

strengths (for 35Cl(p,α)32S). Direct measurements of low-energy resonance strengths

in 31P(p,α)28Si and 35Cl(p,α)32S could reduce the uncertainties in these reaction rates

and improve the understanding of possible reaction cycling in the SiP and SCl mass

regions.

4.2 Experimental Approach

The experimental setup was the same as that described in section 2.2. Low-energy

pure beams of stable 31P and 35Cl with intensities of ≈1 pnA from the Holifield

Radioactive Ion Beam Facility (HRIBF) bombarded hydrogen gas which filled the

scattering chamber at pressures of up to 3 Torr. Problems with pumping upstream
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Figure 4.2: The ratio of the 31P(p,α)28Si to 31P(p,γ)32S (upper panel) and
35Cl(p,α)32S to 35Cl(p,γ)36Ar (lower panel) reaction rates. Dashed areas indicate
the range of uncertainties in the 31P(p,α)28Si and 35Cl(p,α)32S reaction rates. The
upper limits shown take into account the upper limits for (p,α) resonance strengths
while the lower limits omit all contributions from unobserved (p,α) or (p,γ) reaction
channels. Figure taken from Ross et al. [Ros95].
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Figure 4.3: Resonant reaction rate contributions in 31P(p,γ)32S and 31P(p,α)28Si.
Figure taken from Ross et al. [Ros95].

Figure 4.4: Resonant reaction rate contributions in 35Cl(p,γ)36Ar and 35Cl(p,α)32S.
Figure taken from Ross et al. [Ros95].
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of the gas target prevented running at higher pressures inside the target while still

maintaining the required beamline pressure.

The α particles and heavy recoils were detected in coincidence within the gas-filled

chamber by the SIDAR silicon detector array and the S1 detector, respectively (sec-

tion 2.4). The SIDAR array was located 115 mm from the entrance of the chamber,

while the S1 detector was positioned 208 mm downstream of SIDAR. Both detec-

tors were individually calibrated using a 244Cm source. Plots of the energy detected

in the S1 detector versus the energy detected in the SIDAR detector gated on the

time between events in the two detectors were used to identify 1H(31P,α)28Si and

1H(35Cl,α)32S events.

The segmentation of SIDAR and the energy of the emitted α particle were used

to determine the reaction vertex for 1H(31P,α)28Si and 1H(35Cl,α)32S events (section

2.5). Small corrections to the measured α energy were made for the energy loss of the

particle as it traveled through the hydrogen gas and the energy loss as the particle

traveled through the dead layer of SIDAR as described in section 2.5.

The integrated beam current at each energy was determined by normalizing to

12C(31P,12C)31P and 12C(35Cl,12C)35Cl elastic scattering measured simultaneously with

the 1H(31P,α)28Si and 1H(35Cl,α)32S reactions using a carbon foil and two single-

collimated surface barrier detectors (monitor detectors) (section 2.4). Using a cali-

brated 244Cm α-source mounted at the same position as the 12C foil, the solid angle

subtended by each monitor detector were determined to be 1.62 and 1.89 msr at

θlab = 38.3o and 35.7o respectively. An average of the integrated beam current as

determined by the two monitor detectors was used for normalization.
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4.3 Data and Results

4.3.1 The 371 keV resonance in 31P(p,α)28Si

In order to determine the strength of the 371 keV resonance in 31P(p,α)28Si, data was

taken at incident 31P bombarding energies of Elab = 11.894, 11.864, and 11.824 MeV.

An off-resonance measurement at Elab = 11.7 MeV was taken in order to subtract

possible background from off-resonant 31P(p,α)28Si yield from on-resonance (p,α)

yield.

A plot of the energy of particles detected in the SIDAR array versus the energy

of coincident particles detected in the S1 detector is shown in Figure 4.5 for ener-

gies of Elab = 11.864 MeV(on-resonance) and Elab = 11.7 MeV (off-resonance) with

a total integrated incident beam ratio of ≈ 1.4:1. Due to the large amount of beam

scattering off the entrance aperture (section 2.7), it was extremely difficult to dis-

tinguish 1H(31P,α)28Si events from the background scattering at higher energies in

the S1 detector. Furthermore, non-resonant (p,α) background subtracted using the

off-resonant Elab = 11.7 MeV measurement (scaled for total incident beam) left the

on-resonant energies with insufficient yield to determine a resonance strength. There-

fore, no improvement on the strength of the 371 keV resonance over that of Ross et

al. [Ros95] could be made in this study.

4.3.2 The 599 keV resonance in 31P(p,α)28Si

Data was taken at incident 31P bombarding energies of Elab = 19.04, 19.07, 19.1 and

19.12 MeV at H2 pressures of 3 Torr in order to measure the strength of the 599 keV

resonance in 31P(p,α)28Si. A measurement at Elab = 19.01 MeV was also taken for

purposes of background subtraction.

78



Figure 4.5: The energy of particles detected in SIDAR plotted against the energy of
coincident particles in the S1 detector for an incident 31P energy of 11.7 MeV (top)
(off-resonance) and 11.864 MeV (bottom) (on-resonance). The drawn box is where
(p,α) events are expected to fall.
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Figure 4.6 shows plots of the energy of particles detected in the SIDAR detector

versus the energy of coincident particles detected in the S1 detector for incident 31P

energies of 19.01 MeV (off-resonance) and 19.07 MeV (on-resonance) with both plots

gated on their respective peaks in the TAC spectrum (Figure 4.7). The ratio of

the incident number of 31P particles for the two energies depicted in Figure 4.6 is

≈ 8:1. The number of counts in the gate for the off-resonant energy measurement

was scaled for the total incident beam and used for background subtraction at each

on-resonance energy. The remaining counts in the gate drawn in Figure 4.6 after

background subtraction determined the 1H(31P,α)28Si yield.

The reaction vertex at each energy was determined using the segmentation of

the SIDAR array and the energies of the emitted α particles from the (p,α) reaction

as described in section 2.5. A plot of 1H(31P,α)28Si counts versus reaction vertex

(measured from the plane of the SIDAR array) for events that fall within the within

the gate in the TAC spectrum (Figure 4.7 as well as the kinematics gate drawn in

Figure 4.6), is show in Figure 4.8. Due to the low 1H(31P,α)28Si yields for the on-

resonance energies, the uncertainty in the reaction vertex (±7 mm from a Gaussian fit

to each data set), upon which the solid angle directly depends, dominates the overall

uncertainty in the resonance strength.

A strong angular distribution for the emitted α particle of:

W (θα) = 1 + 1.22P2cos(θα) + 1.32P4cos(θα) (4.1)

where Pncos(θ) is the nth-order Legendre polynomial and θα is the center-of-mass

angle of the emitted α particle was reported by Kuperus et al. [Kup63] for the 599

keV resonance and increases the effective solid angle by up to 20% over that of an

isotropic distribution. Due to the low 1H(31P,α)28Si yield in this study, this angular
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Figure 4.6: The energy of particles detected in SIDAR plotted against the energy of
coincident particles in the S1 detector for incident 31P energies of 19.01 MeV (top)
(off-resonance) and 19.07 MeV (bottom) (on-resonance). The drawn box is where
(p,α) events are expected to fall.
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Figure 4.7: TAC spectrum for the Elab = 19.07 MeV measurement. The shaded region
indicates the region in which the events in Figure 4.6 fall.

Figure 4.8: The distribution of 1H(31P,α)28Si events as a function of the distance from
the plane of SIDAR (mm) at an incident 31P energy of Elab = 19.07 MeV.
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Figure 4.9: Total solid angle (center-of-mass frame) for detection of α particles in
coincidence with detection of the 28Si recoil versus the reaction vertex (measured
from the plane of SIDAR) for the Ecm = 599 keV resonance in 31P(p,α)28Si. The
solid (black curve) uses an isotropic angular distribution while the dashed (red curve)
uses the distribution from [Kup63].
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distribution could not be confirmed. Figure 4.9 shows the solid angle for detection of

the α particle in coincidence with the 28Si recoil as a function of the distance from the

plane of the SIDAR array using both angular distributions. The rapid change in the

solid angle using the distribution given by equation 4.1 has a profound effect on the

uncertainties in the solid angle, increasing the error from ≈ 20% using an isotropic

distribution to ≈ 50%.

A weighted average of the resonance strengths as determined from each on-resonant

beam energy, which incorporated the uncertainties at each energy was used to deter-

mine the overall resonance strength. The uncertainties that were common to each

energy are as follows: 1% in the uncertainty in the stopping power of 31P ions in

hydrogen gas determined from a calculation using the ORNL stopping power code

STOPIT and the measurements at ECM = 622 keV (section 4.3.3), 3% uncertainty

in the strength of the 244Cm α source used for determining the solid angle of the

monitor detectors (section 2.4), and the thickness of the carbon foil (6% from the

uncertainty in stopping power for α particles in carbon). A resonance strength of

ωγp,α = (1.6 ± 0.4)*10−2 eV (using an isotropic angular distribution) and ωγp,α =

(1.3 ± 0.9)*10−2 eV (using the angular distribution given by equation 4.1) was deter-

mined, the latter of which agrees with the findings of Ross et al. [Ros95] due to the

high uncertainty. It is unknown if the present resonance strength agrees with that

of Kuperus et al. [Kup63] (2.3*10−2 eV) since no uncertainty was reported for that

study. A summary of the previous and present resonance strengths is given in Table

4.3.
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Table 4.3: Results of previous and present studies of the 599 keV resonance in
31P(p,α)28Si

Ross et al.a Kuperus et al.b Present Work
ωγp,α (10−2 eV) (2.5 ± 0.4) 2.3 (1.6 ± 0.4)c (1.3 ± 0.9)d

a Ref. [Ros95]
b Ref. [Kup63]

c Using an isotropic angular distribution
d Using the angular distribution from [Kup63]

4.3.3 The 622 keV resonance in 31P(p,α)28Si

Data was taken at incident 31P bombarding energies of Elab = 19.78, 19.80, 19.845

and 19.875 MeV at H2 pressures of 3 Torr in order to measure the strength of the

622 keV resonance in 31P(p,α)28Si. Data was also taken at an energy of 19.73 MeV

for purposes of background subtraction.

Figure 4.10 shows plots of the energy of particles detected in the SIDAR detector

versus the energy of coincident particles detected in the S1 detector for incident 31P

energies of 19.73 MeV (off-resonance) and 19.78 MeV (on-resonance) with both plots

gated on their respective peaks in the TAC spectrum. The ratio of the incident

number of 31P particles for the two energies depicted in Figure 4.10 is ≈ 5:1. Due

to the large strength of this resonance and the low background present in the data,

the 1H(31P,α)28Si events were easily identified by gating on the peak in the TAC

spectrum.

The segmentation of SIDAR and the energy of the emitted α particle were used to

determine the reaction vertex for 1H(31P,α)31P events (section 2.5). In Figure 4.11,

the reaction yield is plotted versus distance from the reaction vertex to the plane of

SIDAR, z, for bombarding energies of Elab = 19.78 and 19.80 MeV. Small corrections

to the measured α energy were made for the energy loss as described in section 2.5

(equation 2.1).
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Figure 4.10: The energy of particles detected in SIDAR plotted against the energy of
coincident particles in the S1 detector for incident 31P energies of 19.73 MeV (top)
(off-resonance) and 19.78 MeV (bottom) (on-resonance). The drawn box is where
(p,α) events are expected to fall.
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An angular distribution for the emitted α particle of:

W (θα) = 1 + 0.62P2cos(θα) (4.2)

where P2cos(θ) in the 2nd-order Legendre polynomial and θα is the center-of-mass

angle of the emitted α particle was reported by Kuperus et al. [Kup63] for the 622

keV resonance and increases the solid angle up to 8% over that of an isotropic distri-

bution. In Figure 4.12, the solid angle for detection of the α particle and 28Si recoil

in coincidence is plotted as a function of the distance from the plane of SIDAR using

the angular distribution of equation 4.2 as well as an isotropic distribution. Though

the angular distribution of Kuperus et al. gives a slightly higher solid angle (and thus

a slightly lower resonance energy), it has little effect on the overall uncertainty since

the solid angle remains fairly constant over the range of vertices in this study.

The reaction vertex was also determined using the 28Si recoils and the segmenta-

tion of the S1 detector (section 2.5). In Figure 4.13, the reaction vertex is plotted

against the incident 31P energy as determined from the S1 detector (using the 28Si

recoils) (top panel) and the SIDAR detector (using the detected α particles) (bottom

panel). A least-squares fit to the S1 detector data gives a stopping power of ε = 108

x 10−15 eV cm2 while the stopping power extracted from the fit to the SIDAR data

gives ε = 103 x 10−15 eV cm2. Table 4.4 compares the stopping power value extracted

from these fits to the values obtained by the semi-empirical model SRIM [Zie03] and

the ORNL stopping power code STOPIT. The values for the stopping power obtained

in the present study and from STOPIT differ from that of SRIM by ≈ 33%. Also

shown in Figure 4.13 are fits where the slope has been fixed to correspond to the

stopping power from SRIM and the intercept is varied in order to minimize the χ 2.

Since both data sets are better fit using the stopping power that agrees with STOPIT,
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Figure 4.11: The distribution of 1H(31P,α)28Si events as a function of the distance
(z) from the plane of SIDAR (mm) at incident 31P energies of 19.78 MeV (black
circles) and 19.80 MeV (red squares). The black (red) curve is a gaussian fit used to
determine the centroid.

Figure 4.12: Total solid angle (center-of-mass frame) for detection of α particles in
coincidence with detection of the 28Si recoil versus the reaction vertex (measured from
the plane of SIDAR) for the ECM = 622 keV resonance in 31P(p,α)28Si. The solid
(black curve) uses an isotropic angular distribution while the dashed (red curve) uses
the distribution from [Kup63].
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Figure 4.13: The reaction vertex plotted against the distance to the plane of the S1
detector (top) and SIDAR (bottom). The red (solid) lines represent the best least-
squares fits to the data while the blue (dashed) lines are fits using a slope from the
stopping power given by SRIM [Zie03] where the intercept was varied in order to
minimize χ 2.
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Table 4.4: Results for the stopping power for phosphorous in hydrogen gas at 641
keV/u compared to the semi-empirical model SRIM 2003 [Zie03] and the ORNL
stopping power code STOPIT.

ε (10−15 eV cm2)
Present Work 106 ± 1

SRIM 2003 [Zie03] 150
STOPIT 104

no previous measurement of the stopping power of 31P ions in hydrogen gas exists

around the energy range of 641 keV/u, and the stopping power given by SRIM is an

extrapolation using only 7 data points (compared with 138 points in 17O + p), the

average stopping power obtained from fits to the S1 and SIDAR detector data was

used in determining the strength of both the 599 keV and 622 keV resonances. The

largest source of uncertainty in the stopping power arises from the uncertainty in the

gas pressure inside the target chamber (≈ 1%).

The calculated resonance strength at each energy agreed to within 10% when using

an isotropic angular distribution and within 2% when using the angular distribution

in equation 4.2. A weighted average using each distribution which incorporates the

uncertainty in the strength at each energy gives ωγp,α = (0.76 ± 0.09) eV and (0.7 ±

0.1) eV using the isotropic angular distribution and the angular distribution given by

equation 4.2, respectively. Both strengths are ≈ 2.5 times smaller than the measured

strength of Kuperus et al. (ωγp,α = 1.8 eV with no uncertainty reported).

4.3.4 The 559 keV resonance in 35Cl(p,α)32S

In order to determine the strength of the 559 keV resonance in 35Cl(p,α)32S, data was

taken at incident 35Cl bombarding energies of Elab = 19.98, 20.01, and 20.04 MeV.

An off-resonance measurement at Elab = 21.70 MeV was taken in order to subtract

possible off-resonant 35Cl(p,α)32S yield from on-resonance (p,α) yield.
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A plot of the energy of particles detected in the SIDAR array versus the energy of

coincident particles detected in the S1 detector is shown in Figure 4.14 for energies

of Elab = 20.01 MeV (on-resonance) and Elab = 21.70 MeV (off-resonance) with a

total incident beam ratio of ≈ 9.7:1. Due to the large amount of scattering off the

entrance aperture (section 2.7), it was extremely difficult to distinguish 1H(35Cl,α)32S

events from the background scattering at higher energies in the S1 detector. Further-

more, non-resonant (p,α) background subtracted using the off-resonant Elab = 21.70

MeV measurement (scaled for total incident beam) left the on-resonant energies with

insufficient yield to determine a resonance strength. Therefore, no improvement on

the strength of the 559 keV resonance over that of the upper limits set by Ross

et al. [Ros95] could be made in this study.

4.3.5 The 611 keV resonance in 35Cl(p,α)31S

Data was taken at incident “on-resonant” 35Cl bombarding energies of Elab = 21.83,

21.85, 21.87 and 21.90 MeV and “off-resonant” energy Elab = 21.70 MeV at H2

pressures of 3 Torr in order to measure the strength of the 611 keV resonance in

35Cl(p,α)31S.

Figure 4.15 shows a plot of the energy of particles detected in the SIDAR detec-

tor versus the energy of coincident particles detected in the S1 detector for incident

35Cl energy of 21.87 MeV (on-resonance). The ratio of the incident number of 35Cl

particles for the 21.87 MeV measurement and the off-resonance 21.7 MeV measure-

ment depicted in Figure 4.14 was ≈ 8:1. The number of counts in the gate for the

off-resonant energy measurement was scaled for the total incident beam and used for

background subtraction at each on-resonance energy. The remaining counts in the
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Figure 4.14: The energy of particles detected in SIDAR plotted against the energy of
coincident particles in the S1 detector for an incident 35Cl energy of 21.70 MeV (top)
(off-resonance) and 20.01 MeV (bottom) (on-resonance). The drawn box is where
(p,α) events are expected to fall.
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gate drawn in Figure 4.14 after background subtraction determined the 1H(35Cl,α)31S

yield at each energy.

In Figure 4.16, the distribtion of the 1H(35Cl,α)31S events is plotted as a function

of the distance from the plane of SIDAR for an incident beam energy of Elab =

21.87 MeV. Due to the low 1H(31P,α)28Si yields for the on-resonance energies, the

uncertainty in the reaction vertex (taken to be ± 7 mm), upon which the solid angle

directly depends, dominates the overall uncertainty in the resonance strength.

The total solid angle for detecting the α particle and 31S in coincidence is shown

as a function of the distance from SIDAR in Figure 4.17. Since this is the first time

this resonance has been seen, directly or indirectly, and the 1H(35Cl,α)31S yield was

too low to determine an angular distribution, an isotropic distribution was assumed.

A weighted average of the resonance strengths as determined from each on-resonant

beam energy which incorporated the uncertainties at each energy was used to deter-

mine the overall resonance strength. The uncertainties that were common to each

energy are as follows: 5% in the uncertainty in the stopping power of 35Cl ions in

hydrogen gas determined from a calculation using the ORNL stopping power code

STOPIT and SRIM [Zie03], 3% uncertainty in the strength of the 244Cm α source

used for determining the solid angle of the monitor detectors (section 2.4) and the

thickness of the carbon foil (6% from the uncertainty in stopping power for α particles

in carbon). A resonance strength of ωγp,α = (1.8 ± 0.2)*10−2 eV was determined, a

factor of 10 less than the previously set upper limits from Ross et al. [Ros95] for this

resonance (Table 4.2).
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Figure 4.15: The energy of particles detected in SIDAR plotted against the energy
of coincident particles in the S1 detector for an incident 35Cl energy of 21.87 MeV
(on-resonance). The drawn box is where (p,α) events are expected to fall.
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Figure 4.16: The distribution of 1H(35Cl,α)31S events as a function of the distance
from the plane of SIDAR (mm) at an incident 35Cl energy of Elab = 21.87 MeV.

Figure 4.17: Total solid angle (center-of-mass frame) for detection of α particles in
coincidence with detection of the 31S recoil versus the reaction vertex (measured from
the plane of SIDAR) for the Ecm = 611 keV resonance in 35Cl(p,α)31S.
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4.4 Astrophysical Implications

4.4.1 The 31P(p,α)28Si reaction rate

The 31P(p,α)28Si reaction rate is dominated by narrow resonances in the temperature

range T9 ≤ 0.1 [Ili93]. Since the 599 and 622 keV resonances are not expected to

contribute to the reaction rate below this temperature range, the overall contributions

to the astrophysical reaction rate due to the new strengths measured in this study

can be expressed in the narrow, isolated resonance approximation as:

NA < σν >599keV ≈ 2557T−3/2
9 exp(−6.951/T9) (4.3)

for the 599 keV resonance, and:

NA < σν >622keV ≈ 121463T−3/2
9 exp(−7.218/T9) (4.4)

for the 622 keV resonance where T9 is the temperature in units of 109 K. The resonant

(p,α) and (p,γ) reaction rates at each temperature were determined by summing the

individual contributions from each resonance in the energy range ECM = 195-1963

keV, where the properties of each resonance were taken from Ross et al. [Ros95] where

available and otherwise from the energy levels compilation by Endt [End90].

The ratio of the 31P(p,α)28Si and 31P(p,γ)32S resonant reaction rates is shown in

Figure 4.18. The upper limits for both the previous and present studies take into

account upper limits of resonance strengths of previously undetected resonances (see

Table 4.1), while the lower limits omit the contributions of these resonances. While

the previous studies of Ross and Iliadis [Ros95] [Ili93] had the 31P(p,α)28Si reaction

starting to compete with the 31P(p,γ)32S reaction around a temperature of T9 ∼ 0.7,
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the decreased resonance strengths of the 599 keV and 622 keV resonances in this

study lower the 31P(p,α)28Si rate so that this competition does not occur until higher

temperatures (T9 ≥ 0.9) with the new lower limit a factor of ≈2 below the previous

lower limit in the 0.6 ≤ T9 ≤ 1 temperature range. Since no improvement on the

strength of the 371 keV resonance could be made, cycling at lower temperatures in

the SiP region is still uncertain.

4.4.2 The 35Cl(p,α)32S reaction rate

The resonant contribution of the newly-measured strength of the 611 keV resonance to

the 35Cl(p,α)32S astrophysical reaction rate can be expressed in the narrow, isolated

resonance approximation as:.

NA < σν >611keV ≈ 2861T−3/2
9 exp(−7.091/T9) (4.5)

The resonant (p,α) and (p,γ) reaction rates at each temperature were determined

by summing the individual contributions from each resonance in the energy range

ECM = 49-2344 keV, where the properties of each resonance were taken from Ross

et al. [Ros95] where available and otherwise from the energy levels compilation by

Endt [End90].

The ratio of the 35Cl(p,α)32S and 35Cl(p,γ)36Ar resonant reaction rates are shown

in Figure 4.19. The upper limits for both the previous and present studies take into

account upper limits of resonance strengths of previously undetected resonances (see

Table 4.2), while the lower limits omit the contributions of these resonances.

At lower temperatures (T9 ≤ 0.4), the new strength of the 611 keV resonance

greatly improves upon the previous lower limits of the resonant reaction rate (up to
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Figure 4.18: The ratio of the astrophysical reaction rates of the 31P(p,α)28Si and
31P(p,γ)32S reactions. Only resonant contributions are considered. The red(dashed)
curves are the previous upper and lower limits while the black(solid) curves change
only the strengths of the 599 and 622 keV resonances to the results of this study.

98



two orders of magnitude), but has little effect on the upper limits where the contri-

butions of lower lying resonances are expected to dominate. At higher temperatures

where this resonance dominates the reaction rate, the factor of 10 reduction in the

strength compared to the previous upper limit suggests even weaker cycling that what

was previously stated [Ros95]. Overall, even if the previously unmeasured strengths of

the lower-lying resonances are close to the upper limits, less than 10% of SCl material

will proceed through an SCl reaction cycle in hot hydrogen burning environments.
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Figure 4.19: The ratio of the astrophysical reaction rates of the 35Cl(p,α)32S and
35Cl(p,γ)36Ar reactions. Only resonant contributions are considered. The red(dashed)
curves are the previous upper and lower limits while the black(solid) curves change
only the strength of the 611 keV resonance to the result of this study.
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Chapter 5

Conclusions and Future Directions

5.1 Summary of Performed (p,α) Studies

A new experimental technique has been developed in order to study narrow resonant

(p,α) reactions. In this technique, a heavy ion beam bombards hydrogen gas which

fills a large scattering chamber at pressures up to 4 Torr. The chamber is differentially

pumped so that no windows or foils obstruct the beam as it enters the chamber.

The alpha particles from the (p,α) reaction is detected by a silicon detector array

(SIDAR) and the heavy recoil pass through the center of SIDAR and are detected by

a type S1 silicon detector. The reaction vertex from the (p,α) reaction is determined

independently using the energy of the emitted alpha particle and the maximum angle

of the heavy recoil. Unreacted beam passes through the centers of both detectors

and impinges upon a carbon foil and scattered carbon is detected by two surface

barrier monitor detectors for purposes of beam normalization. Advantages of this

new technique are that the pure nature of the target maximizes the resonance yield,

the target stoichiometry is well-known due to utilizing hydrogen gas instead of a
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mixed foil target, and the target density can be varied in order to match the expected

width of the resonance.

This new technique was utilized in order to measure the strength of the ECM =

183 keV resonance in 17O(p,α)14N which had previously been measured [Cha05] and

found to be up to 50 times greater than that inferred from a 17O(p,γ)18F study [Fox04].

This increased strength was reported to decrease 18F production in novae by as much

as a factor of 10. The results from the present study (ωγpα = 1.70 ± 0.15 meV) were

in good agreement with the previous increased strength (ωγpα = 1.6 ± 0.2 meV).

A 17O(p,α)14N reaction rate was calculated using the new strength and nova model

simulations using the new rate showed decreased 18F production in 1.15M" ONeMg

by approximately a factor of 10, though higher mass novae showed a much smaller

effect.

Low-energy resonances in 31P(p,α)28Si and 35Cl(p,α)32S were studied in order to

gain a better understanding of reaction cycling in the Si-Ar region. Previous studies

of these resonances were either outdated or performed indirectly, resulting in high

uncertainties in the (p,α)/(p,γ) reaction rate ratios which determine the strength of

cycling in the region. Resonance strengths at ECM = 599 and 622 keV in 31P(p,α)28Si

were measured as well as the ECM = 610 keV resonance in 35Cl(p,α)32S, which is the

lowest energy that any resonance in this reaction has been observed. The strengths

for each resonance were found to lower than the previous results, sometimes by as

much as a factor of 2. Reaction rates using these new strengths resulted in weak

cycling in the Si-Ar regions except at higher temperatures, in agreement with the

findings of Ross et al [Ros95].
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5.2 Future Plans: The 330 keV resonance in 18F(p,α)15O

The 18F(p,α)15O reaction plays an important role in the hot-CNO cycle that drives

nova explosions (sections 1.2.2 and 1.3). The 18F(p,α)15O reaction rate significantly

influences nucleosynthesis in novae, including the production of 18F, which is be-

lieved to be the largest source of observable gamma rays after the initial explo-

sion [Coc00] [Jos99]. The special importance of the 18F(p,α)15O reaction has resulted

in measurements at several radioactive ion beam facilities including the HRIBF. These

measurements have greatly reduced uncertainties in the 18F(p,α)15O reaction rate, but

some significant questions remain.

The largest uncertainty in the 18F(p,α)15O currently results from the potential

contributions of resonances with spins of J π = 3/2−. There are believed to be 4

or more 3/2− resonances in the energy region relevant for novae. The 18F(p,α)15O

reaction rate depends sensitively on the properties of these resonances. Therefore, the

resonance strengths, widths, widths, and signs of inference between these resonances

must be accurately determined in order to reduce the uncertainties in the 18F(p,α)15O

reaction rate, In addition, there are many known states in the mirror nucleus 19F that

have yet to be observed in 18F.

Three direct studies of the 18F(p,α)15O reaction cross section have been conducted

at the HRIBF thus far. The combined results from these measurements are shown

in figure 5.1. In the first measurement, the properties of a resonance at ECM = 665

keV were accurately measured [Bar01]. In the second, the strength of what may be

the single most important resonance for 18F production in novae (ECM = 330 keV)

was measured with about 30% precision [Bar01]. The most recent measurements at

energies above the ECM = 665 keV resonance set the first constraints on the sign of

interference between the 3/2− states in the region [Cha06] (see Figure 5.2). These
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Figure 5.1: A plot of the cross section σ versus ECM showing the previous studies
done at the HRIBF on the 18F(p,α)15O reaction [Bar01] [Bar02] [Cha06].
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measurements resulted in the reduction of the uncertainties in 18F production in novae

between 1 and 2 orders of magnitude. However, large uncertainties still remain in

the 18F(p,α)15O reaction rate due to the uncertain properties of the narrow resonance

near 330 keV.

The previous measurements all used CH2 targets. However, the total widths of

the resonances in the shaded energy range in Figure 5.2 are expected to be less than

5 keV (for the 330 keV resonance), while the targets commonly used produce beam

energy loss of 50 keV or greater in the center-of-mass frame. Therefore, the technique

discussed in chapter 2 is better suited for measurements in this energy range, as the

pressure of the hydrogen gas inside the target chamber can be adjusted to match the

expected total width.

Using the technique discussed in chapter 2, the placement of the detectors will

be the same as for the 17O(p,α)14N measurement, with the SIDAR array located 115

mm from the entrance of the chamber, covering an angular range of ≈32 - 60o. The

S1 detector will be located ≈14 mm downstream, covering an angular range of ≈14

- 27o in order to detect the maximum 15O recoil angle of 22.4o.

Since the 18F(p,α)15O reaction study will be using a radioactive 18F beam, a con-

siderable amount of stable 18O contamination is expected to be present in the incom-

ing beam as well, possibly with a ratio of 18O/18F as high as 10:1. The 18F(p,α)15O and

18O(p,α)15N events can be distinguished from one another by the differing Q-values

of the two reactions (2.882 MeV for the 18F(p,α)15O reaction compared to 3.981 MeV

for 18O(p,α)15N) using a similar technique in past measurements with CH2 targets

(see Figure 5.3) [Bar01] [Bar02] [Cha06]. Use of a thin target will also greatly reduce

yield from the 18O(p,α)15N reaction, which is nonresonant in this energy range. Mea-

surements with a pure 18O will also be taken for purposes of background subtraction.
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Figure 5.2: Astrophysical S-factor vs. energy for the four allowed possibilities for
interference. The signs of the reduced widths for the ECM = 8, 38, and 665 keV
resonances are shown in the legend. The shaded region shows the energies most
relevant for novae.
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Figure 5.3: Alpha energy versus heavy recoil energy for the 18F(p,α)15O and
18O(p,α)15N reactions for the ECM = 330 keV resonance in 18F(p,α)15O
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In order to determine the total number of incident beam particles (sum of both the

incoming 18F and 18O), a carbon foil will be utilized in the same manner as described

in chapter 2. However, the kinematics of 18F and 18O scattering off of carbon is nearly

indistinguishable. To determine the ratio of incoming 18O to 18F, incoming beam that

scatters at low angles will enter a gas-filled ionization counter placed after the gas

target. A schematic of the ion counter can be seen in Figure 5.4. The ion counter

that will be used is a 30 cm long particle detector with 3 anodes of length 5 cm, 5

cm and 20 cm, and one cathode and is filled with isobutane gas. As the scattered

beam enter the chamber, energy from both the 18F and 18O particles is transferred

to the gas, creating electron-ion pairs along the track of the particle. An external

electric field attracts the electrons and ions to the electrodes, creating a voltage signal

whose amplitude is proportional to the total number of ion pairs produced. Since the

stopping power (proportional to Z2, where Z is proton number) is different for the

incoming 18F and 18O, the two beam constituents will lose energy in the ion counter

at a different rate and therefore create electron-ion pairs at a different rate in each

anode. Plotting the energy lost in the first two anodes versus the total energy lost

will show separation between the 18F and 18O (see Figure 5.5), allowing the ratio of

incoming 18F to 18O to be determined. Scaling the total incident beam (as determined

from the monitor detectors) by the 18F to 18O ratio will allow the determination of

the total incident number of particles of each beam species

The current plans are to measure the strength and energy of the 330 keV resonance

and possibly the 287 keV resonance if sufficient 18F beam is available. Measurements

of off-resonance yield between these two resonances will also be taken in order to

differentiate between the curves shown in Figure 5.2. The 18F(p,α)15O reaction study

was approved in December of 2006 by the HRIBF Program Advisory Committee

(PAC).
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Figure 5.4: Schematic of the gas-filled ionization chamber.
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Figure 5.5: Sample ion counter spectrum from the 18F(p,α)15O reaction study by
Chae [Cha06].
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nanz, J. José, J. Kiener, A. Lefebvre-Schuhl, S. Ouichaoui, N. de Séréville,
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