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Abstract 

G protein-coupled receptors (GPCRs) are a class of integral membrane receptor 

proteins that are characterized by seven-transmembrane (7TM) domains connected by 

intracellular and extracellular loops, an extracellular N-terminus, and an intracellular C-

terminus. GPCRs recognize neurotransmitters, sensory molecules and chemotactic agents 

and are involved in the control of many aspects of metabolism. Since GPCRs play 

important roles in diverse processes such as pain perception, growth and blood pressure 

regulation, and viral pathogenesis, GPCRs became important target for therapeutic 

agents. The tridecapeptide α-factor pheromone (W1H2W3L4Q5L6K7P8G9Q10P11M12Y13) of 

Saccharomyces cerevisiae and Ste2p, its cognate GPCR, have been used extensively as a 

model for peptide ligand-GPCR structure and function. The power of yeast genetics has 

been used to examine the structure and function of Ste2p.  Recently, GPCR homo-

dimerization has been demonstrated for many GPCRs, although the role(s) of 

dimerization in receptor function is disputed.  In this dissertation, Ste2p has been used to 

investigate GPCR dimerization. 

Part I of this dissertation is an overview of the GPCR structure and its ligand-

induced conformational change with specific emphasis on the peptide pheromone α-

factor and its receptor Ste2p. Part II of this dissertation is a study originally designed to 

probe inter-helical interaction between TM1 and TM7 of Ste2p. Site-directed 

mutagenesis and cysteine cross-linking with targeted residues of Ste2p were carried out. 

Although the anticipated inter-helical interactions were not identified from this study, the 

results provided strong evidence for Ste2p dimerization. Part III of this dissertation 

describes dimer interfaces including TM1 and TM7 of Ste2p. By using the disulfide 
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cross-linking methodology, we studied the participation of specific residues at the 

intracellular boundary between TM1 and intracellular loop one and the entire TM7 in 

Ste2p dimerization. The final part of this dissertation contains a study of the participation 

of the Ste2p N-terminus in homo-dimer formation and the effect of ligand binding on this 

interaction. This part also includes overall conclusions and suggestions for future 

experiments that could contribute to an understanding of the dimer interfaces in Ste2p 

and the role of dimerization in the function of this receptor. 
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CHAPTER 1  G Protein-Coupled Receptors  

An overview 

 G protein-coupled receptors (GPCRs) are a class of membrane receptor 

proteins that are characterized by a signature seven-transmembrane domain (7TM) and 

heterotrimeric guanine nucleotide-binding proteins (G proteins) coupled to receptor [1]. 

GPCRs consist of large and diverse gene families found in fungi, plants, and the animal 

kingdom. In humans, GPCRs comprise the largest superfamily of proteins with more than 

1000 different GPCRs identified [2]. GPCRs are located at the cell surface and are 

responsible for the transduction of an extracellular stimulus into an intracellular response 

[3]. The endogenous ligands of GPCRs are extraordinarily diverse, including biogenic 

amines (such as adrenaline, dopamine, histamine, and serotonin), peptide and protein 

hormones (for example,angiotensin, bradykinin, endothelin, and melanocortin), peptide 

pheromones (i.e. α-factor, a-factor of various fungal species), nucleosides and 

nucleotides (adenosine, adenosine triphosphate, uridine triphosphate), and lipids and 

eicosanoids (cannabinoids, leukotrienes, prostaglandins, and thromboxanes) [4]. 

Furthermore, the awareness of exogenous signals, such as light, odor, and taste, is also 

mediated via GPCRs [5, 6]  

Heterotrimeric G proteins are regulated by GPCRs upon ligand binding to 

receptors. G proteins are composed of three subunits (α, βγ-dimer) and each subunit 

plays important roles in determining the specificity and temporal characteristics of the 

cellular responses to signals [7]. Conformational change of receptor accompanied by 

activation of GPCRs lead to release of GDP followed by binding of GTP of Gα-subunit 
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[1]. This change triggers the dissociation of the α-subunit from the receptor and the βγ-

dimer. Both the GTP bound α-subunit and the released βγ-dimer can mediate the 

stimulation or inhibition of effector proteins such as enzymes and ion channels [e.g, 

adenylate cyclase, guanylyl cyclase, phospholipase C, mitogen-activated protein kinases 

(MAPKs), Ca+2, and K+ channels]. Thus, stimulation of GPCRs with specific agonists 

results in changes in the concentration of second-messenger molecules [1] 

 Considering the wide variety of biological pathways regulated by GPCRs it is not 

unexpected that abnormal signaling by these receptors lead to disorders in tissues and 

organs in the human body [8]. Currently, GPCRs are ideal drug target for pharmaceutical 

companies due to the widespread physiological processes GPCRs mediated. 

Approximately 50% of all modern prescription drugs and 25% of the top-selling drugs 

directly or indirectly have an effect on GPCRs [3, 6, 9] (Table 1). However, only a very 

small portion of the known GPCRs represent targets of currently marketed drugs. Many 

GPCRs remain ‘orphan’, which have not been assigned functions. Even for many 

receptors whose ligands are known, there is a need for identifying agonist and antagonist 

ligands. Regarding these facts, it is suggested that GPCRs will continue to be drug targets 

of the future [10-12]. Thus, the studies of GPCRs will contribute significantly to the 

understanding and treatment of a variety of diseases.  

 

Classification of GPCRs 

Despite the fact that various agonists stimulate the special GPCR family to 

activate diverse secondary-messenger pathways, GPCRs share structural similarities [13]. 
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Table 1 Examples of Top-selling GPCR drugs in 2005 

Action Trade 

Name 

Molecular 

Entity 

Company Therapeutic 

Indication 

World 

Sales 

(US$ 

millions)

H11 

antagonist 

Allegra/

Telfast 

Fexofenadine Sanofi-Aventis Allergies 1792 

AT12 

antagonist 

Diovan Valsartan Novartis Hypertension 2214 

H23 

antagonist 

Gaster Famotidine Yananouchi Gastric ulcer 656 

5HT104 

agonist 

Lmigran Sumatriptan GlaxosmithKline Migraine 1454 

LH-RH5 

agonist 

Leuplin/

Lupron 

Leuprorelin Takeda/Abbott Cancer 904 

GABAb6 

agonist 

Neuronti

n 

GABApentin Pfizer Neurological 

pain 

2480 

Β1 agonist7 Serevent Salmeterol GlaxosmithKline Asthma 679 

Mixed 

5HT28/D19/

D210 

antagonist 

Zyprexa Olanzapine Eli Lilly Schizophrenia 4905 

 Table modified from Jacoby et al [6].  

 
1 H1, Histamin 1 receptor; 2 AT1, Angiotensin1 receptor; 3 H2, Histamin 2 receptor; 
45HT10, Serotonin (5-hydroxytryptamine, 5-HT) 10 receptor; 5 LH-RH, Luteinizing 

hormone-releasing hormone receptor; 6 GABAb, γ-Aminobutyric acid receptor; 7 Β1, 

Bradykinin 1 receptor; 8 5HT2, Serotonin (5-hydroxytryptamine, 5-HT) 2 receptor; 9 D1, 

Dopamine 1 receptor; 10 D2, Dopamine 2 receptor 
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All GPCRs contain seven transmembrane-spanning α-helical segments connected 

by alternating intracellular and extracellular loops (IL and EL, respectively), with the 

amino terminus located on the extracellular side of the cytoplasmic membrane and the 

carboxy terminus on the intracellular side. Although GPCRs share common membrane 

topological features, sequence comparisons showed little or no similarities among the 

different GPCRs [14] and the size of the each domain vary such as extracellular N-

terminal tails (7-600 amino acids), loop domains (5-230 amino acids), and C-terminal 

domains (12-360 amino acids) which indicate diverse functions of GPCRs [7].  

The GPCR superfamily has been classified into six different families. Each class 

has at least 20 %  identity of their amino acid sequence within the TMs (Transmembrane 

domains) (Table 2)[4]. The rhodopsin-like class A receptor is the most studied because it 

is easily obtainable in a purified form in large quantitites and it has the largest number of 

receptors. This class contains receptors for peptides, hormone peptide, odorants, small 

molecules such as the catecholamines and amines, and glycoprotein hormones (Fig.1 A) 

[9]. Among class A receptors, peptide receptors are the largest subgroup and mediate 

important physiological roles of endogenous peptides that act as neurotransmitters and 

hormones. Class A receptors are characterized by a series of highly conserved key 

residues such as the DRY motif at the bottom of transmembrane domain (TM) 3 and the 

NPXXY motif in TM7 (Fig. 1 A). Class B receptors are the next largest class including 

receptors for a variety of gastrointestinal peptide hormones (secretin, glucagons, 

vasoactive intestinal peptide, and growth-hormone-releasing hormone), calcitonin, 

corticotrophin-releasing hormone and parathyroid hormone [1]. Class B receptors do not 

share any of the structural features characterizing class A receptors except for the 
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Table 2 Sequence-based groupings within the G-protein-coupled receptors  

1 PTH, Parathyroid hormone receptor; 2 PTHrP, Parathyroid hormone related peptide 

receptor; 3 GABAb, γ-Aminobutyric acid receptor 

(Modified from Flower et al [4]) 

 

 

Class: A Rhodopsin-like receptors  

Family I 
Olfactory receptors, adenosine receptors,  

melanocortin receptors, and others 

Family II Biogenic amine receptors 

Family III Vertebrate opsins and neuropeptide receptors 

Family IV Invertebrate opsins 

Family V Chemokine, chemotactic, somatostatin, opioids and others 

Family VI Melatonin receptors and others 

Class B: Calcitonin and related receptors 

Family I Calcitonin and calcitonin-like receptors 

Family II PTH1/PTHrP2 receptors 

Family III Glucagon, secretin receptors and others 

Family IV Latrotoxin receptors and others 

Class C: Metabotropic glutamate and related receptors 

Family I Metabotropic glutamate receptors 

Family II Calcium receptors 

Family II GABAb3 receptors 

Family IV Putative pheromone receptors 

Class D: STE2 pheromone receptors 

Class E: STE3 pheromone receptors 

Class F: cAMP and archaebacterial opsin receptors 
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presence of a disulfide bridge between the first extracellular loop (EL1) and second 

extracellular loop (Fig.1B). The most distinguishing characteristic of class B is that the 

amino terminus contains several cysteines, presumably forming a network of disulfide 

bridges [15]. The  class C is relatively a smaller group, containing the metabotropic 

glutamate and γ-amino-butyric acid receptors, the calcium receptors, the vomeronasal, 

mammalian pheromone receptors, as well as some taste receptors [16]. All receptors in 

class C have a very large extracellular amino terminus (500-600 amino acids) (Fig.1C) 

that seems to be crucial for ligand binding and activation [17, 18]. Class D is the STE2 

yeast pheromone receptors, and class E is the STE3 yeast pheromone receptors. These 

two groups will be discussed in the next section (Chapter 2). Finally class F comprises 

the receptors that are related to slime mold cyclic adenosine monophosphate (cAMP) 

receptors and archaebacterial opsins.  

 

The tertiary structure of GPCRs  

Information about the tertiary structure of a GPCR is crucial for the understanding 

of its function and for the design of drugs to correct possible problems caused by failure 

of its function. Currently methods used to understand receptor structure and the 

interactions of the ligand with its receptor at the atomic level include X-ray 

crystallography, electron microscopy or diffraction, NMR spectroscopy and molecular 

modeling. One of the advantages for NMR spectroscopy compared to the other methods 

is that dynamic information can be obtained. However, structural information requires 

high concentrations of dissolved pure protein. Except for several studies where single 
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helices were measured in a membrane, using solid state NMR, technical problems have 

precluded NMR studies from yielding structural information on GPCRs [19].  

Currently, five crystal structures of GPCRs have been revealed (Fig. 2). The first 

crystal obtained was that rhodopsin resolved as a highly organized seven transmembrane 

bundle with 11-cis-retinal, which is a key cofactor involved in maintaining rhodopsin in 

the ground state [20]. An interesting feature is that some of the transmembrane helices in 

rhodopsin are not regular α-helices [21]. The helices are bent around proline, one of the 

strongest distortion is at Pro267 in TM6 (a highly conserved residue among GPCRs). It 

has been shown that mutations at this residue cause conformational changes on 

intracellular loop 3 [22]. In addition, a pronounced kink is observed in TM2, caused by 

flexibility in the Gly-Gly sequence in the middle of this helix. The crystal structure also 

revealed a short 8th helix, which runs parallel to the cytoplasmic membrane. This helix 

and the generated fourth cytoplasmic loop cover part of the binding site for the C-

terminus of Gtα subunit and play a role in Gtγ binding. A set of residues including the 8th 

helix on the cytoplasmic surface, where G protein activation occurs, likely to undergo a 

conformational change upon photoactivation of the chromophore that leads to G protein 

activation and signal transduction [21]. 

Several years after the rhodopsin structure was published, Kobilka and colleagues 

[23-25] published two different structures of the β2-adrenoceptor. Two initial structures 

of β2AR were crystallized, one was fused with T4-lysozyme and another was bound with 

antagonist. Also crystal structure of β2AR was crystallized in a complex with an anti 

intracellular loop (IL) 3, Fab fragment, at 3.5Ǻ resolution. Both structures were similar 

indicating that the T4 lysozyme fusion had little effect on the structural properties of the
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Figure 1 Classification of human GPCRs 

Class A GPCRs are characterized by several highly conserved amino acids in the TMs, 

and there is usually a disulfide bridge linking extracellular loops 1 and 2. Most of the 

class A receptors have a palmitoylated cysteine residue in the intracellular C-terminal tail. 

The binding sites of the endogenous small-molecule hormone ligands of class A GPCRs 

are located within the 7 TM bundle (A-1, the ligand binding site is indicated in orange). 

For peptide and glycoprotein hormone receptors (A-2 and A-3, respectively), binding 

occurs at the N terminus, the extracellular loop segments, and the extracellular parts of 

the TM helices. Class B GPCRs contain a relatively long N-terminal tail (B). The class B 

receptors show a number of conserved proline residues within the TMs. The majority of 

class C receptors are characterized by very large N- and C-terminal tails, a disulfide 

bridge connecting the first and second extracellular loops, together with a very short and 

well-conserved third intracellular loop (C). A number of the strongly conserved residues 

of class A GPCRs are also strongly conserved in class C GPCRs. The ligand binding site 

is located in the N-terminal domain, which is composed of the so-called venus flytrap 

(VFT) module that shares sequence similarity with bacterial periplasmic amino acid 

binding proteins. In all class C GPCRs except the GABAB receptor, a cysteine-rich 

domain (CRD), which contains nine conserved cysteine residues, links the VFT to the 7 

TM domain (Modified from Jacoby et al [6]).  
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A-1 A-2

A-3

B C
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antagonist bound receptor. Soon afterward, an additional structure of β2AR-T4-lysozyme, 

which had a stabilizing point mutation, E122W, was solved in complex with the inverse 

agonist timolol revealing a cholesterol-binding site [26, 27]. Then, the turkey β1AR 

structure was solved in the presence of a strong antagonist cyanopindolo [28]. The overall 

structure was very similar to that of human β2AR with the exception of the second 

intracellular loop, a short helical segment in the turkey receptor whereas it was a random 

coil in human β2AR. The adenosine A2a receptor structure was also solved in complex 

with the antagonist ZM241385 [29]. The adenosine structure showed a shifted ligand-

binding site and even greater helical shifts relative to rhodopsin and β2AR. Then, a major 

breakthrough was made by Ernst and colleagues [30, 31]. They published the crystal 

structure of light-activated opsin in complex with the C-terminal peptide corresponding 

Gα subunit, transducin. Although the agonist was lacking in this structure, it may would 

be considered to be an active state of GPCR because of the bound C-terminal Gα peptide 

[32]. Importantly, the structure demonstrated significant deviation from the inactive form 

of rhodopsin in the arrangement of the seven helical bundles. 

Compared to the rhodopsin structure, each GPCR crystal structure had similarities 

and differences [33, 34](Fig. 2). Sequence conservation among class A GPCRs is highest 

within the transmembrane regions. Thus, it is not surprising that the helical bundle 

orientation and packing is similar among the structures solved to date while the 

extracellular region of the βARs is very open compared to rhodopsin. The most 

prominent feature is a short helical segment within extracellular loop (EL) 2 that is 

supported by limited interactions with EL1 and two disulfide bridges. The extracellular 
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region of the adenosine receptor is highly constrained by four disulfide bridges and 

multiple polar and van der Waals interactions among the three loops.  

The position of the antagonist-binding pocket varies significantly as a function of 

the receptor. The binding pocket of the β-adrenergic receptor is quite similar to that of 

rhodopsin, while the ligand binding pocket seems to be very different in the A2a 

adenosine structure. Based on sequence conservation and the initial bovine rhodopsin 

structure, it was considered that the DRY motif at the intracellular base of TM3 found in 

most class A GPCRs interact with a glutamate residue at the base of TM6. However, 

looking at the structure of β2AR, β1AR, A2a, this is unlikely.  

 

Ligand binding and receptor activation 

GPCRs are activated upon binding of ligand which is varied, ranging in size from 

small molecules to large glycoproteins. Many studies on receptor research are focused on 

identification of the binding domains for ligands, using genetic, biochemical, and 

biophysical approaches [13]. Site-directed or random mutagenesis of receptor, domain 

swapping, and use of labeled probes are the most commonly used methods for 

understanding structure-function relationship between GPCRs and their ligands.  The 

binding sites of endogenous “small-molecule” ligands in class A receptors, such as for 

the retinal chromophore in rhodopsin and catecholamines in the adrenergic receptors are 

the most widely studied and well characterized of these receptor-binding domains [35-37]. 

Recent studies on several peptide receptors such as the receptors for angiotensin [38-40], 

parathyroid hormone [41, 42], secretin [43], bradykinin B2 [44, 45], gonadotropin-
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releasing hormone [46], opioids [47, 48], neurokinin (NK) [49, 50], vasopressin/oxytosin 

[51-53], cholecystokin/gastrin [54, 55], and neurotensin 1 [56] supplied valuable 

information on the binding domains for other classes of GPCRs.  Overall similarities are 

observed among ligands, although there are specific and various interactions between  

GPCRs and their cognate ligands. For example, large ligands, such as proteins, bind to 

extracellular loops, while small molecules, including pharmacological agents, bind within 

the transmembrane region of receptor (Fig. 1). On the other hand, peptides exhibit a 

combined binding mode; they bind primarily to the extracellular loops while part of the 

ligand may penetrate into transmembrane region and interacts with residues buried in 

lipids [57-60].  

 

Conformational Changes Involved in Agonist Induced GPCR Activation 

For a long time, there was a simple model that receptors were depicted as bimodal 

switches with inactive and active forms. However, a growing body of experimental 

evidence provided information that GPCR is dynamic and has many different 

conformations [61, 62]. This newer model for GPCR activation is called multi-state 

model and suggests that the receptor alternate spontaneously between multiple active and 

inactive conformations [63]. Various GPCRs, for example 5-HT2-serotonin receptors [64] 

α2A-adrenoceptors [65], AT1 receptor [66], gonadotropin-releasing hormone receptors 

[67], µ-opioid receptors [68] and many others, have been studied with respect to different 

receptor conformations supporting the multi-state model. Today, it is commonly accepted 

that different ligands can induce different receptor conformations [69] and this,  
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Figure 2 Panel of Representative GPCRs Solved to Date 

Each group of receptors is represented by one structure (same orientation). This figure 

highlights the observed differences seen in the extracellular and intracellular domains as 

well as the small differences seen in the ligand binding orientations. Light blue indicates 

transmembrane domains, darker blue indicates intracellular regions, brown indicates 

extracellular regions, orange indicates ligand. Yellow represents bound lipids and green 

represents the conserved tryptophan residue.  (Adapted from Hanson and Stevens [33])  
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phenomenon has been described by several synonyms such as ‘functional selectivity', 

‘agonist-directed trafficking' or ‘biased agonism'. Recently, it has been suggested that the 

number of different terms be limited by using the term ‘functional selectivity’ or ‘ligand-

induced differential signalling’ to describe this phenomenon [70]. 

The term ‘efficacy’ is used to describe the effect of ligand on the functional 

properties of the receptor. Agonists are defined as ligands that fully activate the receptor. 

‘Partial agonists’ induce submaximal activation of the G protein even at saturating 

concentrations. ‘Inverse agonist’ inhibits basal activity. Antagonists have no effect on 

basal activity, but competitively block the access of other ligands [70].  

 

Intramolecualr interaction of TMs and TM movements during receptor activation 

The non-covalent interactions between TMs have an important role in 

determining the specific basal arrangement of the TM segments. For example, co-

transfecting a plasmid encoding the amino terminus to TM5 of the β2 adrenoceptor 

(β2AR) and a plasmid encoding TM6 to the carboxyl terminus of β2AR generates a 

functional ‘split’ receptor [71]. Also, in the M3 muscarinic receptor system, a functional 

receptor has been generated with discontinuity in the loop connecting TM3 and TM4, the 

loop connecting TM4 and TM5, and the loop connecting TM5 and TM6 [72]. In addition, 

analysis of the crystal structure of bovine rhodopsin suggests that the inactive state 

conformation of rhodopsin is stabilized by multiple interhelical salt bridges and 

hydrophobic interactions [73]. There is a Schiff base formation between Glu113 in TM3 

and Lys296 in TM7 of bovine rhodopsin in the resting state. Single point mutations of 
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Glu113 and Lys296 in bovine rhodopsin have been found to lead to constitutive receptor 

activity [74, 75]. Site-directed mutagenesis experiments with bovine rhodopsin have 

demonstrated that a mutation of Gly 90 to Asp 90 in TM2 can substitute for Schiff base 

counterion Glu113 in TM3 [76]. 

Agonist binding is thought to alter the network of stabilizing intramolecular 

interactions to favor an active conformation. Figure 3 shows two possible ways how 

ligands might change intramolecular interactions and the arrangement of TM domains. 

First, agonists may induce a conformational change by simply disrupting intramolecular 

interactions (Fig. 3a), thus favoring new interactions that stabilize the molecule. Second, 

agonists may serve as bridges to create new interactions between TM domains (Fig. 3b). 

For example, catecholamines can interrupt the ionic lock of β2AR without interacting 

with amino acids directly involved in the ionic lock [77].  

In rhodopsin, it was reported that TM6 undergoes the largest movement upon receptor 

activation and smaller changes were observed for TM3 [79]. Consistent with this, 

movements of TM3 and TM6 during agonist-induced conformational changes have been 

demonstrated in β-adrenoceptor [80, 81]. The angiotensin AT1 receptor also provides an 

example that Asn111 interacts with Asn295  in TM7 in the inactive state [82], while 

Asn111  seems to interact with Tyr4 in the active state [83]. Therefore, agonist binding 

might disrupt the interaction between Asn111 and Asn295.  Consistent with this 

interpretation, mutation of Asn111 to alanine leads to constitutive activity [84]. M3 

muscarinic receptor was also studied for intramolecular interactions. It was found that the 

cytoplasmic end of TM6 of this receptor undergoes a rotational movement [85], and the 

distance between the cytoplasmic ends of TM1 and TM7 was increased during activation. 
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In contrast the extracellular ends of TM3 and TM7 move closer to each other upon 

agonist stimulation [86, 87]. To gain information about the switch from an inactive 

conformation to active receptor conformation(s), as a method for probing spatial 

proximity of residues in TMs, several different techniques such as site-directed spin 

labeling, sulfhydryl reactivity study, and fluorescence resonance energy transfer (FRET) 

have been developed and used over the past decade. In addition, the disulfide cross-

linking strategy has been applied to many GPCRs such as bovine rhodopsin [88-92], M3 

muscarinic receptor [85, 87], and Ste2p [93]. For example, a disulfide bridge was built 

successfully between Val204Cys in TM5 and Phe276Cys in TM6 of bovine rhodopsin 

[89], which previously had been probed by metal ion site construction [94] and between 

Val223Cys in TM5 and Leu247Cys in TM6 of Ste2p [93]. Whereas numerous 

intramolecular constraints for inactive state conformations of GPCRs have been 

identified, much less is known about the intramolecular interactions stabilizing the active 

state conformations. The identification of intrahelical interactions will provide a 

molecular basis for understanding mechanistic information relating to GPCR activation 

pathways. In part II in this dissertation, the inter-helical interactions will be discussed in 

more detail. 
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Figure 3 Possible mechanisms how agonist binding disrupts intramolecular 

interactions that stabilize the inactive state 

(a) The agonist binds directly to amino acids involved in stabilizing the inactive state. (b) 

Agonist binding stabilizes new intramolecular interactions. (Adapted from Kobilka and 

Deupi [78]) 



 

 19

CHAPTER 2  α-factor pheromone and its G Protein-Coupled receptor 

(Ste2p) in Saccharomyces cerevisiae  

GPCRs in fungi 

Since the glucose/sugar sensor in yeast, Gpr1, and homologs in other fungi are not 

included in the classical classification of GPCR, recently new classification system for 

fungal GPCRs have been proposed (Table 3). The GPCRs in fungi are categorized into 

six classes; Ste2p-like pheromone receptor, Ste3p-like pheromone receptor, carbon/amino 

acid receptor, putative nutrient receptor, cAMP receptor-like, and microbial opsin [95].  

The pheromone sensing GPCRs in fungi are well studied and many pheromone 

receptors have been identified based on conserved sequences and structures [95]. For 

example, in A. nidulans, GprA and GprB were identified as pheromone receptors based 

on sequence homology to Ste2 and Ste3 of S. cerevisiae [96]. In addition, it is surprising 

that the pheromone receptors were found to be expressed constitutively even in species 

which have no sexual cycle documented yet, such as Candida glabrata and Aspergillus 

fumigatus [97-99]. The conserved MAPK cascade based on the model established in S. 

cerevisiae has also been linked to morphogenesis and virulence in many fungal pathogens 

such as the rice blast fungus M. grisea, and the human pathogens C. albicans and C 

glabrata. [95].  
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Table 3 Six classes of GPCRs in fungi  

Species Ste2-like 
pheromone 
receptor 

Ste3-like 
pheromone 
receptor 

Carbon 
/amino 
acid receptor 

Putative 
nutrient 
receptor 

cAMP 
receptor-like 

Microbial 
Opsin 

Ascomycetes 
  Saccharomyc
es cerevisiae 

Ste2 Ste3 Gpr1 SCRG_01312 
SCRG_02823 
SCRG_00179 

– – 

  Schizosaccha
romyces 
pombe 

Mam2 Map3 Git3 Stm1 – – 

  Candida 
albicans 

Ste2 Ste3 Gpr1 CAWG_02899
CAWG_06059
CAWG_02686 

– – 

  Aspergillus 
nidulans 

GprA GprB GprC 
GprD 
GprE 

GprF 
GprG 
AN5720 

GprH 
GprI 
AN8262 

AN3361 

  Aspergillus 
fumigatus 

Afu3g14330 Afu5g07880 Afu7g04800 Afu5g04100 
Afu1g06840  
Afu1g11900 

Afu3g01750 
Afu5g04140 
Afu3g00780 

Afu7g01430 

  Neurospora 
crassa 

Pre-2 Pre-1 Gpr-4 Gpr-5 
Gpr-6 

Gpr-1 
Gpr-2 
Gpr-3 

Nop-1 
ORP-1 

  Magnaporthe 
grisea 

MGG_04711 MGG_06452 MGG_08803 MGG_04698 
MGG_02855 

MGG_06738 MGG_09015 

Basidiomycetes 
  Cryptococcus 
neoformans 

– Ste3α/Ste3a 
Cpr2 

Gpr4 Gpr2 
Gpr3 

Gpr4 
Gpr5 

CNAG_03572
(Ops1) 

  Ustilago 
maydis 

– Pra1 
Pra2 

– UM06006 
UM01546 

UM03423 UM02629  
UM04125 

  Coprinopsis 
cinerea 

– Rcb1 
Rcb2 
Rcb3 
CC1G_ 
02129 

– CC1G_07132 
CC1G_04180 

CC1G_02288 
CC1G_02310 

– 

-, no homolog has been identified. (Modified from Xue et al [95]) 
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α-factor Pheromone and its G Protein-coupled receptor (Ste2p) in Saccharomyces 

cerevisiae 

One of the challenges in GPCR research is the complexity of eukaryotic systems, 

due to the presence of receptor subtypes and cross-talk between different types of 

receptors regulating many different pathways. S. cerevisiae is a species of budding yeast 

which is most widely known as perhaps the most intensively studied eukaryotic model 

organism in molecular and cell biology. The S. cerevisiae α-factor receptor system 

has been used as an ideal system to understand GPCR structure-function as a model for 

peptide hormones [100]. The power of yeast genetics has been used to examine the 

structure –function relationship of α -factor receptor. The mitogen-activated protein 

kinase (MAPK) system is simple but well conserved with higher eukaryotic systems. The 

S. cerevisiae has only three GPCRs, two pheromone receptors (Ste2p and Ste3p) and the 

Gpr1p which is a carbohydrate sensor. Although the pheromone and carbohydrate-

sensing pathways share some down-stream components, there is no cross-talk between 

the two systems as the pheromone receptors and the Gpr1p couple to two different G-

proteins (Gpa1p and Gpa2p, respectively) [101, 102]. Thus S. cerevisiae provides an 

ideal system to study the relation between a peptide ligand and its GPCR in the absence 

of interfering biological complexities.     

Mating in yeast, Saccharomyces cerevisiae 

S. cerevisiae can exist as a haploid or diploid [103, 104]. Haploid cells have two 

mating cell types MATa and MATα, distinguished by the expression of a set of genes 

involved in mating that are not expressed in diploids. The secretion and reciprocal 
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detection of peptide pheromones (α -factor and a-factor) by GPCRs (Ste2p and Ste3p, 

respectively) initiate mating and eventual fusion of two haploids (Fig. 4) [100, 105]. The 

mating pheromones are essential to trigger the mating cycle, therefore the cells that 

cannot produce these molecules or lack their cognate receptors Ste2p or Ste3p become 

sterile. The tridecapeptide α -factor pheromone WHWLQLKPGQPMY peptide was 

chemically synthesized and found to exhibit all the properties of the natural pheromone 

[106, 107]. The a-factor of S. cerevisiae is a dodecapeptide pheromone 

(YIIKGVFWDPAC[Farnesyl]-OCH3) [108], and post-translational modification with a 

farnesyl isoprenoid and carboxymethyl group is required for full biological activity of 

this peptide [109]. 

Pheromone binding to its GPCR and activation of the βγ subunit of G protein 

trigger the downstream MAPK cascade which activates the transcription of genes 

involved in the production of pheromone itself, pheromone receptor and the proteins of 

the signaling pathway (Fig. 5). The cells synthesize cell surface molecules necessary for 

fusion with their mating partners, arrest in the G1 phase of the growth cycle by 

eliminating the function of G1 cyclin complex and Cdc28 protein kinase to obtain 

synchrony for mating, form mating projections that are involved in the fusion process, 

thereby exhibiting a marked change in shape, and activate a number of genes that are 

necessary for sexual conjugation [110, 111]. For long time, the Gα subunit Gpa1 was 

known as a negative regulator. However, recently new evidence was reported that 

pheromone signaling is also positively transmitted via Gpa1 [112]. Also it was suggested 

that the GTP-bound form of Gpa1 can induce mating-specific transcription and 
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morphogenesis in the absence of pheromone, via binding to the phosphatidylinositol-3-

kinase Vps34 [113]. 

The activation of cells by pheromone results in morphological changes. First, 

conjugation projections are formed to facilitate connection of two opposite mating type 

cells. By the action of agglutinins, the tips of the projections fuse forming a conjugation 

bridge. Next, the nuclei migrate into the bridge and subsequently fuse to produce a 

diploid nucleus of the zygote. All these morphological processes occur with an 

involvement of cytoskeletal components, i.e., microtubules and actin structures, and the 

cell wall [114]. Many of these cellular responses have been used to measure the activity 

of this receptor and potency of pheromones and their analogs. Growth arrest (Halo) assay 

and β-galactosidase activity assay generated by a FUS1-lacZ construct (the FUS1 gene is 

transcriptionally activated by pheromone action) are the examples of methods based on 

the cellular response. 

 

Regulation of Ste2p in Saccharomyces cerevisiae and protein Signaling  

Ste2p is highly regulated by several control mechanisms like many other GPCRs. 

Among the general regulation mechanisms, three distinct processes contribute to α-factor 

receptor regulation. These are (1) rapid phosphorylation and desensitization [115], (2) 

internalization and recycling [115] and (3) down-regulation and degradation [116, 117]. 

The mating process in yeast is further regulated by the control of the expression levels or 

the activities of the downstream elements in the signaling pathway  
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Figure 4 Pheromone mediated mating in Saccharomyces cerevisiae 

Schematic representation of pheromone/receptor mediated communication between 

MATa and MATα haploid cells prior to mating.  

MATa
MATα

MATa
MATα
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Figure 5 Saccharomyces cerevisiae mating pathway 

Binding of pheromone to the receptor stimulates downstream responses such as 

transcriptional activation of pheromone-induced genes, cell-cycle arrest, and polarization 

of the cytoskeleton and growth components to the site of highest pheromone 

concentration. Receptor activation not only triggers the mitogen-activated protein kinase 

pathway (light modules) via G proteins (spotted modules), it also involves the receptor 

carboxy-terminal domain. One model is that the carboxy-terminal domain, through direct 

or indirect interaction (white circle) with the polarity-establishment complex (dark 

modules), stimulates the repolarization of the actin cytoskeleton (speckled rectangle) to 

the site of pheromone activation.  

Ste5p, the scaffold protein; Ste20p, mitogen-activated protein kinase kinase kinase kinase 

(MKKKK); Ste11p, MKKK; Ste7p, MKK; Fus3p and Kss1p, MAPK; Far1p, Cyclin-

dependent kinase inhibitor; Ste12p, Transcription factor that is activated by a MAP 

kinase signaling cascade; Bem1p, Protein containing SH3-domains involved in 

establishing cell polarity and morphogenesis functions as a scaffold protein; Cdc42p, 

Small rho-like GTPase; Cdc24p, Guanine nucleotide exchange factor (GEF or GDP-

release factor) for Cdc42p; Bni1p, Formin, nucleates the formation of linear actin 

filaments; Fus1, gene encoding membrane protein localized to the shmoo tip and required 

for cell fusion.  (Modified from Madden and Snyder [114]). 
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(i.e. subunits of the G protein and/or MAPK). One of the well characterized regulators is 

Sst2p, a yeast homologue of regulators of G protein signaling (RGS). RGS proteins are 

important negative regulators of GPCR signaling. They function as GTPase-accelerating 

proteins (GAPs) to inactivate Gα by increasing the hydrolysis rate of GTP bound Gα. 

After GTP hydrolysis, the Gα subunit returns to its GDP-bound, then sequesters the Gβγ 

complex into a heterotrimer, which lead to down regulation of G protein signaling. So far, 

37 genes have been identified that encode proteins containing an RGS or RGS-like 

domain within the human genome [118]. Sst2p is the first RGS protein identified in S. 

cerevisiae. Recently it was found that Sst2p can directly bind to the C-terminal tail of 

Ste2p via its DEP domain. In addition, binding to the receptor places Sst2p in close 

proximity to Gpa1p, its substrate, implicating that regulation is both rapid and specific 

[119].  

Additionally, the phosphatases Msg5p and Mpt5p have been reported that have a 

role in adaptive mechanism at higher concentrations of pheromone [120]. Expression of 

some proteases like Bar1p (Sst1p), which specifically cleaves α-factor pheromone, adds 

to the complexity of the regulation of mating [121].  

 

Structure-function analysis of α-factor pheromone   

The α-factor is a tridecapeptide secreted by MATα cells and has the sequence 

WHWLQLKPGQPMY. Extensive analyses of α -factor analogs in combination with 

receptor mutagenesis have provided insights into the structural basis of α-factor activity 

[122-125]. Briefly, the results of these studies indicated that residues near the amine 
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terminus play an important role in receptor activation, the carboxyl terminus of the 

peptide contributes mostly to the binding affinity and the central residues of the peptide 

forms a β-turn around the Pro8-Gly9 bond aiding the orientation of the signaling and the 

binding domains of the pheromone (Fig. 6) [126-128]. A major experiment of this model 

of α-factor activity was the systematic Ala substitute creating α-factor analogs have been 

used to study the structure-function of the α-factor pheromone [129]. Several of the D-

Ala series analogs, near the N-terminus, specifically [D-Ala2] α-factor, [D-Ala3] α-factor 

and [D-Ala4] α-factor had no measurable biological activity [129]. However, these 

peptides bound relatively strongly to Ste2p and antagonized the biological activity of 

wild type ligand. These results were consistent with previous studies showing that 

antagonists discovered involved changes in residues near the amine terminus indicating 

that residues near this region are important for signaling. In contrast, the residues at the 

carboxyl terminus of α-factor strongly affected to binding to Ste2p. Mutation of these 

residues by either L- or D-Ala decreased affinity up to 3000-fold [129]. Removal of the 

carboxyl terminal residues resulted in pheromones with significantly decreased receptor 

affinity. Similar observations, separation of functional domains for binding and activity 

have been reported for other peptide receptors [130-133].  

The Pro-Gly sequence is located at the central region of α-factor, which has a 

high probability of β-turns [134, 135]. It was suggested that a turn at this position was 

involved in biological activity of the pheromone [136] and this region of the peptide may 

create of the proper overall conformation for the pheromone [129]. Considering the 

multi-state conformation of receptor, the separation of a binding domain and an 

activation domain of α -factor suggests that there is a sequential binding of the 
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pheromone to its receptor. The binding domain of α -factor may interact with the receptor 

first, then binding of the remaining domains may occur in a sequential manner. 

 Consistent with this hypothesis, it was demonstrated that the fluorescent alpha-factor 

analogue [K(7)(NBD), Nle(12)] bound to receptor via a two-step process involving an 

initial interaction that places the fluorophore in a hydrophobic environment, followed by 

a conversion to a state in which the fluorophore moves to a more polar environment [137]. 

 One of the major goals of studies on GPCRs is understanding how ligands bind 

to their receptor and how this information is transferred to activation of intracellular 

pathway. Since yeast pheromones can be designed with chemically or photochemically 

active groups that promote crosslinking to the receptor, the yeast α -factor pheromone 

receptor was extensively used to study ligand binding. For example, a series of α-factor 

analogs containing p-benzoyl-L-phenylalanine (Bpa), a photoactivatable group, were 

synthesized [138]. Chemical and enzymatic fragmentation of the receptor/radio probe 

complex ([Bpa1, Tyr3(125I), Arg7, Phe13]α-factor-crosslinked-Ste2p) indicated that 

cross-linking occurred on a portion of Ste2p spanning residues 251-294 which covers a 

portion of TM6, the extracellular loop between TM6 and TM7, and a portion of TM7 

[138]. This was the first determination of a specific contact region between a Class D 

GPCR and its ligand. Later, analogues of α-factor containing Bpa and biotin as a tag, 

were synthesized to identify the pheromone binding site to receptor [139]. The study 

using Bpa(1), Bpa(3), and Bpa(13) ligand suggested that the N-terminus of the 

pheromone interacts with a binding domain consisting of residues from the extracellular 

ends of TM5-TM7 and portions of EL2 and EL3 close to these TMs. It was also shown 

that there is a direct interaction between the position 13 side chain and a region of Ste2p 
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(F55-R58) at the extracellular end of TM1 in the same study [139]. In addition to the 

mutagenesis studies, chimeric receptors between S. cerevisiae and S. kluyveri α-factor 

receptors also supplied important information to understand the ligand receptor 

interaction(s). A substitution at residues 47-49 of the the respective GPCRs affected 

specificity for the respective pheromone binding but not for activation. In contrast, 

substitution of residues 267-269 affected pheromone specificity for activation, but not for 

pheromone binding. Finally substitution of residues 104-123 modestly affected both 

types of specificity [140, 141]. Later, it was revealed that the side chain of the tenth 

residue of α-factor is in close proximity with the side chains of residues 47 and/or 48 of 

Ste2p when the pheromone is bound to the receptor [142]. Also, our group suggested that 

portions of TM1 and TM6 were important for ligand interaction by using site-directed 

mutagenesis of Ste2p and binding assays with different α -factor analogs [143] 

Taking together, a model for α-factor bound to Ste2p was proposed (Fig. 7). The 

model places α-factor bent around the Pro-Gly center of the peptide with the Lys side 

chain facing away from the transmembrane domains and interacting with a binding 

pocket formed by the extracellular loops. The side chain of Gln10 is proximal to residues 

47 and 48 near the extracellular side of TM1, whereas the Trp1 side chain is near a 

pocket formed by TM6-E3-TM7. Recently it was reported the Tyr13 side chain interacts 

with Cys59 of Ste2p at the extracellular end of TM1 [144].  
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Figure 6 Functional domains of α-factor ligand 

Studies of α-factor analogs have revealed two regions according to their major 

contributions to activity and binding affinity. The residues at the N-terminus appeared to 

mainly function in activation of the receptor signaling, the residues at the C-terminus 

strongly contribute to the binding affinity. However the two functions cannot be 

completely separated. The loop domain corresponds to residues of the peptide which are 

thought to induce a bend in the ligand structure. (Adapted from Abel et al [129]) 
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Figure 7 Working model for fitting of the α-factor pheromone into a ligand binding 

site on its GPCR Ste2p 

This schematic shows a counterclockwise orientation of TMs of the Ste2p. Two amino 

acid residues (Ser 47 and Thr 48), were proposed that there are in the proximity to Gln10 

of bound α-factor. The Tyr13 side chain of bound α-factor interacts with Cys 59 of Ste2p 

at the extracellular end of TM1. The side chains of Trp1 and Trp3 bound α-factor interact 

with the extracellular ends of TM5-TM7. The α-factor and the receptor extracellular 

loops are represented by the gray curve and dotted lines, respectively. Contact residues 

are denoted with stars with the residue number of the pheromone (Adapted from Son et al 

[139]). 
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CHAPTER 3  Oligomerization of GPCR 

An overview 

Protein-protein interactions are essential to the organizational structure and 

function of cell signaling networks. Recently, a vast range of studies have been 

documented that various classes of GPCRs form dimers and/or even higher order homo-

oligomers [145-148]. Dimerization is thought to be important for various aspects of 

GPCR function such as receptor biogenesis, formation of ligand-binding sites, signal 

transduction, and down-regulation (Table 4). For example, the studies of DOP receptor 

dimerization by Cvejic and Devi (1997) [149] provided evidence that the addition of 

certain agonists would inhibit or reverse receptor dimerization. They concluded that the 

DOP receptor was likely internalized from the cell surface as a monomer in response to 

agonist challenge. It was reported that inhibition of dimer in β2-adrenoceptor by addition 

of a synthetic peptide corresponding to TM6 of the receptor limit agonist activation of 

adenylyl cyclase [150]. Thus, the study of dimerization has significance since 

abnormalities of dimer formation may alter the function of the receptors which results in 

serious disease. Indeed, many cases of dimerization is considered as a new drug targets 

[6].  

However, specifically for G protein activation and signaling, it is not resolved 

whether a single GPCR molecule is sufficient or a dimer is necessary. Chabre and Maire 

argued that all GPCRs appear to act as monomer based on a re-assesssment of previous 

studies [151] while Park et al questioned the role and the existence of monomers in 

nature [152].  It was reported that the monomeric NTS1 receptor activates Gq more
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 Table 4 Proposed roles of GPCR dimerization/oligomerization 

 

Role of dimerisation/oligomerisation Receptor(s) 

Protein folding β2-adrenoceptor 

 CXCR11 

 α2-adrenoceptors 

 TSH2 receptor 

 Frizzled 4 receptor 

 Calcium sensing receptor 

 Melacortin-1 receptor 

Efficient signal transduction Rhodopsin 

 BLT13 leukotriene B4 receptor 
1CXCR, chemokine receptor; 2TSH, thyrotropin receptor; 3BLT2, leukotriene receptor; 

(Modified from Milligan [147]) 
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 efficiently than the receptor dimer in solubilized preparations [153] and monomeric 

rhodopsin activates transducin as fast as the rate of protein diffusion allows in detergent 

solution [22]. Also, rhodopsin monomers were found to activate transducin with the same 

efficiency as two rhodopsins in the same particle where receptors were reconstituted into 

lipid bilayer [154]. In contrast, it was reported that the higher-order rhodopsin oligomers 

are the most active species for transducin activation by using functional analyses of 

fractions from solubilized disk membranes [155].  

Various transmembrane domains have been implicated to participate in receptor 

oligomerization in different receptor systems (Table 5) suggesting that the structure of 

oligomers formed in different GPCRs may not be the same [147]. Even within the same 

receptor, homo-dimer formed by different monomer-monomer interaction from inactive 

state to activate state [156]. The studies on class C receptors provide valuable information 

that the N-terminal region may also participate into oligomerization as well as 

transmembrane domains. The N-terminal Venus flytrap (VFT) module is one of main 

characteristic for class C receptors, which is structurally and functionally homologous to 

bacterial periplasmic proteins that bind amino acids, sugars and ions [157]. It was 

reported that VFTs are important for dimerization of this receptor class [158, 159, and 

160]. Additionally, it is known that cysteine-rich domains (CRDs), localized between 

VFT and transmembrane domains, also have dimerization potential. It was demonstrated 

that VFT–CRD modules form disulfide-linked dimers even when expressed without the 

rest of the receptor from the mGlu1, mGlu4 and calcium-sensing (CaS) receptors [161-

163].  
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Table 5 Structural domains reported to be involved in GPCR 

dimerization/oligomerization 

1TM = transmembrane domain (Modified from Milligan [147]) 

Receptor Implicated domains 

Rhodopsin TM1 4, 5 

Dopamine D2 TM 4 

α1b-adrenoceptor TM 1, 4, 5, 6 

Complement C5a TM 1, 2, 4 

Adenosine A2a TM 5 

β2-adrenoceptor TM 6 
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To directly examine the physical interaction between two GPCRs, differential 

epitope tagging and selective immunoprecipitation have been valuable tools. Cysteine 

cross linking has also used to detect dimers/oligomers. In addition, a variety of reagents 

to cross-link two molecules have been employed [164, 165]. In order to address whether 

GPCR dimers exist in living cells, biophysical techniques such as bioluminescence 

resonance energy transfer, fluorescence resonance energy transfer have been employed to 

visualize dimers/oligomers. In the part III of this dissertation, the cysteine cross-linking 

method will be discussed in detail.  

 

Dimer-/Oligomerization of Ste2p 

Ste2p also can form a dimer. Two independent studies demonstrated that co-

expression of an endocytosis-defective mutant with the wild-type receptor leads to 

efficient internalization of the mutant receptor, suggesting that these receptors are 

internalized as dimers [166, 167]. Overton and Blumer used fluorescence resonance 

energy transfer (FRET) between differentially tagged receptors in whole cells as an 

indicator for dimerization. They showed that tagged receptors lacking an endocytosis 

signal were able to undergo endocytosis when co-expressed with wild-type receptor. 

They also found the efficiencies of FRET were indistinguishable with agonist and 

antagonist by dose-response and time-course experiments, thus Ste2p appeared to be 

dimeric in the absence or presence of agonist. Using either whole cell or membrane 

preparation yielded a similar FRET ratio [166, 167]. The study by Yesilaltay et al also 

indicated that dimerized receptor complexes were subject to endocytosis and unoccupied 
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receptors could also be internalized. In addition, they found that intermolecular disulfide 

bonds between two intrinsic cysteines in Ste2p (C59 and C252) were unnecessary for 

dimer formation [166, 167].  

Overton and Blumer also used FRET to identify domains of Ste2p that mediated 

dimerization and found TM1 was important for dimer formation. Various combinations 

of receptor TM fragments were expressed with YFP or CFP taggs and FRET ratios were 

measured. The major conclusion of the study was that TM1 has a significant role in 

dimerization and is possibly involved help from the N-terminal extracellular domain and 

TM2 to stabilize the dimer formation [168]. In a later study, it was also reported the 

GXXXG motif in TM1 was involved in dimerization. Mutation of this motif of Ste2p did 

not affect ligand binding but decreased cell signaling, indicating that dimerization is not 

involved in ligand binding but is important for signal transduction [169].  

It was also suggested that the dimer of Ste2p functioned in a concerted fashion. 

Two different mutants, which were defective in promoting G protein activation were co-

expressed and the ability to form a dimer in vivo and to correct their signaling were 

measured, resulting in increasing signaling significantly [170]. Analysis of dominant-

negative mutants of the receptor also suggests that dimerization may be important for 

signal transduction. A dimer receptor formed between WT Ste2p and its dominant 

negative mutant (Ste2p-Y266C) failed to signal, further supporting the idea that one role 

for dimerization of Ste2p is efficient signaling [171].  

Recently, receptors in other yeast species were found to have dimer forms that 

may mediate important physiological functions of GPCRs in fungi. For example, the S. 

pombe pheromone receptor Mam2 was found to form dimers during a study of a 
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constitutively active mutant [172]. In C. neoformans, domains of Gpr4 were shown to  

interact with another Gpr4 in a yeast two hybrid system [173]. These studies suggest that 

dimerization is a common phenomenon in fungi similar to GPCRs in other systems. In 

the part III of this dissertation, identification of dimer interfaces of Ste2p will be 

discussed in detail. 
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CHAPTER 1  Abstract 

 
The S. cerevisiae α-factor pheromone receptor, Ste2p, has been studied as a model 

for G protein-coupled receptor (GPCR) structure and function. Today, it is widely 

believed that receptors undergo conformational change(s) involving rearrangement of 

transmembrane domains (TMs) upon ligand binding. In this study, 36 different 

combinations of double Cys mutants were made by pairing six mutations on TM1 (L64 – 

M69) with six on TM7 (L289 – M294). Although no inter-helical interactions were found 

with the targeted residues under the experimental condition used, the results provided 

strong evidence for Ste2p homo-dimerization. 
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CHAPTER 2  Introduction  

 

For about a decade from 1980 to 1990, the model for GPCR activation was 

proposed to be a simple bimodal conversion between inactive and active states. However, 

studies with various GPCRs, such as 5-HT2-serotonin receptors [1], α2A-adrenoceptors [2], 

AT1 receptor [3], gonadotropin-releasing hormone receptors [4], and µ-opioid receptors 

[5] showed that a receptor can exist in several different conformations, suggesting a 

multi-state model. The multi-state model for GPCR activation proposes that the receptor 

alternates spontaneously between multiple active and inactive conformations [6]. Today, 

it is widely believed that different ligands can induce different receptor conformations [7].  

Although the intracellular and extracellular loop regions play a role in receptor 

activation, the non-covalent interactions between TMs seem to predominate for 

determining the specific basal arrangement of the TM segments [8, 9, 10, 11, 12, 13] and 

agonist binding is thought to change the inter-helical interaction between TMs potentially 

leading to multiple receptor conformations. In the rhodopsin system, it was reported that 

TM6 undergoes large movements upon receptor activation and smaller changes were 

observed for TM3 [14]. Consistent with this, movements of TM3 and TM6 during 

agonist-induced conformational changes have been demonstrated in the β-adrenoceptor 

[15, 16]. The M3 muscarinic receptor is also used for studies of intramolecular 

interactions. It was found that the cytoplasmic end of TM6 of this receptor undergoes a 

rotational movement [17], and the distance between the cytoplasmic ends of TM1 and 

TM7 was increased during activation. In contrast the extracellular ends of TM3 and TM7 
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move closer to each other upon agonist binding in the M3 muscarinic receptor [18, 19].  

As a method to detect interactions between residues in TMs, several different techniques, 

such as site-directed spin labeling, sulfhydryl reactivity studies, and disulfide cross-

linking strategies have been developed and used extensively [20-24]. 

In Ste2p, residues and regions in transmembrane domains involved in receptor 

activation and signaling have been studied extensively [25-27]. For example, the studies 

of dominant-negative mutations in the receptor indicate that most mutants exhibiting a 

dominant-negative phenotype are located on the extracellular ends of the transmembrane 

domains, especially TM5 and TM6 [28-30]. In addition, an interaction between 

Val223Cys in the intracellular part of TM5 and L247C in the intracellular part of TM6 of 

Ste2p has been identified by a cysteine-cross-linking experiment [25]. It was also 

suggested that F204 in extracellular loop 2 was important for ligand binding and Y266 at 

the extracellular end of TM6 was involved in signal transduction [31]. Consistent with 

this, Yong et al revealed that N205 in TM5 is critical for signal transduction and interacts 

with Y266 in a constitutively active receptor [32]. 

Whereas numerous intra-molecular restraints for the inactive state conformations 

of GPCRs have been identified, little is known about the actual difference between the 

inactive and active states at the molecular level. The identification of inter-helical 

interactions specific to each state will provide a molecular basis for understanding 

mechanistic information underlying GPCR activation pathways. To identify inter-helical 

interactions between TM1 and TM7, we employed cysteine cross-linking. Although the 

anticipated inter-helical interactions were not identified from this study, the results 
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provided strong evidence for Ste2p dimerization which will be discussed in depth in 

PART III of this dissertation. 
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 CHAPTER 3  Experimental procedures 

Strains, Media, and Plasmids  

Saccharomyces cerevisiae strain LM102 described by Sen and Marsh [33] was 

used in the growth arrest and LacZ assays. The genotype for the LM102 strain is: MATa, 

bar1, his4, leu2, trp1, met1, ura3, FUS1-lacZ::URA3, ste2-dl (deleted for the α-factor 

receptor). The protease-deficient strain BJS21 (MATa, prc1-407 prb1-1122 pep4-3 leu2 

trp1 ura3-52 ste2::KanR) was used in disulfide cross-linking and western blot assays to 

decrease receptor degradation during analyses [34]. The parental plasmid, pHY4 

expressing the template construct used for mutagenesis, FT-HT-Xa (cys-less Ste2p, the 

FLAG and His epitope tags with Factor Xa cleavage cite) was generated by introducing a 

tandem Factor Xa cleavage site between Val192 and Thr193 into pBec2 expressing FT-

HT (FLAG and His tagged Cys-less Ste2p) under a constitutive GPD promoter [35]. 

Twelve single Cys mutations ranging from Leu64 through Met69 on TM1 and Leu289 

through Met294 on TM7 were generated in the pHY4 background by PCR based site-

directed mutagenesis [36]. The sequences of constructs were verified by DNA sequence 

analysis completed by the Molecular Biology Resource Facility located on the campus of 

the University of Tennessee. Primers were purchased from Sigma Genosys or IDT 

(Coralville, IA). After sequence confirmation, constructs were transformed into the ste2-

deletion strains LM102 and BJS21 by the method of Gietz et al [37]. Transformants 

bearing the pHY4 constructs were selected by their growth in the absence of tryptophan 

on MLT medium (Medium lacking tryptophan) [38]. All media components were 

obtained from Difco. 
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Growth Arrest (Halo) Assay 

Growth arrest was measured as described previously [32]. Briefly, filter disks 

were impregnated with 10-µl portions of peptide solutions at various concentrations and 

placed onto the overlay containing S. cerevisiae LM102 cells. The plates were incubated 

at 30 °C for 24-36 h and then observed for clear zones (halos) around the disks. The halo 

measured included the diameter of the disc. The normalized activity of each mutant was 

determined by comparing halo size for the FT-HT-Xa receptor at 2µg of α-factor. All 

assays were carried out at least three times with no more than a 2-mm variation in halo 

size at a particular amount applied for α-factor.  

 

FUS1-lacZ Gene Induction Assay 

S. cerevisiae LM102 contains a FUS1-lacZ gene that is inducible by mating 

pheromone. Cells were grown overnight in SD (synthetic defined) medium [Yeast 

nitrogen base medium (Difco) without aminoacid] supplemented with the required amino 

acids at 30 °C to 5 x 106 cells/ml, washed by centrifugation, and grown for one doubling 

(hemocytometer count) at 30 °C. Induction was performed by adding 10-6 M of α-factor 

to 1 ml of concentrated cells (1 x 107 cells/ml). The mixtures were vortexed and, after 

incubation at 30 °C with shaking for 2 h, cells were harvested by centrifugation, and each 

pellet was resuspended and assayed for β-galactosidase activity (expressed as Miller 

units) in duplicate by using a β-galactosidase assay kit (Pierce) according to the 

manufacturer's instructions. The activity of each mutant was normalized by comparing β-
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galactosidase activity for the wild-type strain.  The standard deviation was determined 

from three independent experiments.  

Preparation of membranes  

Membrane preparation of Ste2p was carried out essentially as described 

previously [32]. Cells were grown to log phase, and then 1 x 108 cells were harvested by 

centrifugation and lysed by agitation with glass beads in a lysis buffer containing 50 mM 

Hepes, pH 7.5, 1 mM EDTA, 10 µg/ml phenylmethylsulfonyl fluoride, 2 µg/ml leupeptin, 

and 2 µg/ml pepstatin. The lysate was cleared by centrifugation at 2,000 x g for 5 min, 

and then membranes were harvested by centrifugation at 15,000 x g for 45 min. The 

membrane pellet was washed and then resuspended in 100 µl of a buffer (pH 7.4) 

containing 10% glycerol, 50mM Hepes, 0.15mM NaCl, 2mM CaCl2, 5mM KCl, 5mM 

MgCl2, 4mM EDTA [32]. The protein concentration was determined by the Lowry assay 

(Pierce), and the membrane preparation was stored at -20 ºC overnight and used for 

further assay the next day.  

 

Disulfide Cross-linking with Cu-Phenanthroline   

The 100 µg of membrane protein preparation was treated with a fresh preparation 

of Cu(II)-1,10-phenanthroline (CuP; final concentration, 2.5 µM CuSO4 and 7.5µM 

phenanthroline, pH 7.4). The treatment was carried out at room temperature for 30 min, 

terminated with 50 mM EDTA and kept on ice for 20 min followed by adding Laemmli 

sample buffer.  
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Factor Xa digestion  

The membrane protein preparation (40 µg) was incubated with 0.4 unit of Factor 

Xa (Novagen) in Factor Xa cleavage buffer (0.1M NaCl, 50 mM Tris-HCl, 5 mM CaCl2, 

pH 8.0) containing 0.1% Triton X-100 for 30min. Each sample was divided into two 

aliquots. The reactions were terminated by adding one-third the volume of Laemmli 

sample buffer (30% glycerol, 3% SDS, 0.01% bromphenol blue, 0.1875 M Tris, pH 6.8). 

To one aliquot β-mercaptoethanol (final 1%, v/v) was added for reducing conditions. 

Samples were analyzed by SDS-PAGE and Western blotting. 

 

Western blot 

Immunoblot analysis of Ste2p was carried out as described previously [32]. Each 

sample was incubated at room temperature and then separated on NuPAGE 10% Bis-Tris 

SDS-polyacrylamide gel (Invitrogen) using either non-reducing or reducing conditions 

and electrophoretically transferred to ImmobilonTM-P membrane (Millipore Corp., 

Bedford, MA). The blot was probed with anti-FLAG M2 antibody (Eastman Kodak Co.) 

or 1D4 antibody (a monoclonal antibody for rho-tag, purchased from Flintbox, BC, 

Canada), and the bands were visualized with the West Pico chemiluminescent detection 

system (Pierce).  
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CHAPTER 4  Results  

 Expression and Biological Activities of Double Cys Mutant Receptors 

To identify a possible inter-helical interaction between TM1 and TM7, 36 

different combinations of double Cys mutants were made by pairing the six mutations on 

TM1 with six on TM7. We chose twelve residues, six in TM1 (L64 – M69) and six in 

TM7 (L289 – M294) proximal to the cytoplasmic face of Ste2p (Fig. 8A) for mutation to 

Cys (Fig. 8A). These targeted residues were chosen for these reasons: (i) TM7 residues 

mutated (L291 – M294) are highly conserved among fungal pheromone receptors [39], 

(ii) TM1 and TM7 are in close proximity to one another in crystal structures of GPCRs 

[40, 41] and a model of Ste2p [39]. To eliminate non-specific cross-linking the template 

for these mutations was a Cys-less receptor. This template (FT-HT-Xa) also contained 

two C-terminal epitope tags (FLAG and 6XHis) and tandem Factor Xa cleavage sites 

(IEGRIEGR) in the second extracellular domain in order to facilitate detection of inter-

domain cross-linking (Fig. 8A). Native Ste2p, FT-HT (Cys-less Ste2p with the FLAG 

and His epitope tags) and FT-HT-Xa (the template construct) receptors used in this study 

demonstrated almost identical biological activities in a growth arrest assay indicating that 

incorporating the protease site and the epitope tags did not alter receptor function (Fig. 

8B). 

The biological activities of the double Cys mutant receptors were measured and 

the results were summarized in Table 6. Most double mutant receptors showed similar  
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Figure 8 A. The two-dimensional topology of Saccharomyces cerevisiae Ste2p and B. 

Dose-response analysis of growth arrest assay 

A.The cartoon indicates the location of the genetically engineered Factor Xa digestion 

site in EL2 and the epitope tags in the C-terminus. The two endogenous Cys residues 

(C59 and C252) were mutated to Ser to generate FT-HT-Xa which was the parental 

plasmid used to generate the cysteine mutations in positions 64 to 69 in TM1 and 289 to 

294 in TM7 as indicated in the boxes. The zone of growth inhibition of strains carrying 

the indicated receptors was measured at various concentrations of α-factor. FT-HT-Xa is 

the Cys-less receptor containing C-terminal FLAG and His epitope tags and a tandem 

Factor Xa digestion site in EL2. FT-HT is the Cys-less receptor without the Xa digestion 

site containing the FLAG and His epitopes, and Native Ste2p is the wild-type receptor 

that has no epitope tags and has two Cys residues (C59 and C252).  
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Table 6 Biological Activities of double Cys mutants 

  LacZ Activity 
  Basal1 Induced2 Halo Activity3 

FT-HT-Xa 
1.0  ± 0.08  
(3.7 unit) 

1.0  ± 0.23 
 (32 unit) 

1  
(24mm) 

L64C L289C 1.0  ± 0.13 1.0  ± 0.14  0.89 
T65C L289C 1.0  ± 0.09 0.8  ± 0.03 0.92 
L66C L289C 1.0  ± 0.09 0.8  ± 0.05 1.11 
I67C L289C 1.1  ± 0.13 0.7  ± 0.04 1.03 
V68C L289C 1.3  ± 0.16 0.8  ± 0.09 0.97 
M69C L289C 1.0  ± 0.08 0.8  ± 0.08 1.03 
L64C P290C 1.9  ± 0.16 1.0  ± 0.01 0.98 
T65C P290C 1.9  ± 0.11 1.0  ± 0.02 0.98 
L66C P290C 1.9  ± 0.15 0.9  ± 0.02 1.07 
I67C P290C 2.9  ± 0.15 0.9  ± 0.01 1.05 
V68C P290C 2.4  ± 0.27 1.0  ± 0.04 1.16 
M69C P290C 1.7  ± 0.17 0.8  ± 0.03 1.02 
L64C L291C 1.1  ± 0.04 1.7  ± 0.08 0.71 
T65C L291C 1.2  ± 0.02 0.5  ± 0.06 0.00 
L66C L291C 1.0  ± 0.01 1.0  ± 0.05 0.76 
I67C L291C 1.5  ± 0.05 1.4  ± 0.06 1.03 
V68C L291C 1.1  ± 0.03 0.5  ± 0.07 0.00 
M69C L291C 1.0  ± 0.08 1.0  ± 0.05 0.98 
L64C S292C 0.9  ± 0.09 1.0  ± 0.02 0.76 
T65C S292C 0.9  ± 0.08 1.0  ± 0.09 0.84 
L66C S292C 1.0  ± 0.12 1.4  ± 0.07 0.89 
I67C S292C 0.8  ± 0.03 1.1  ± 0.16 0.97 
V68C S292C 0.9  ± 0.05 0.9  ± 0.06 0.00 
M69C S292C 0.7  ± 0.01 1.0  ± 0.03 1.05 
L64C S293C 0.9  ± 0.03 1.0  ± 0.05 1.05 
T65C S293C 1.2  ± 0.03 1.1  ± 0.03 1.08 
L66C S293C 1.3  ± 0.03 1.1  ± 0.02 1.05 
I67C S293C 1.1  ± 0.05 1.0  ± 0.07 1.10 
V68C S293C 1.2  ± 0.05 1.2  ± 0.11 1.10 
M69C S293C 1.1  ± 0.02 2.1  ± 0.04 0.90 
L64C M294C 1.1  ± 0.04 1.1  ± 0.01 1.08 
T65C M294C 1.1  ± 0.05 1.3  ± 0.01 1.15 
L66C M294C 0.9  ± 0.03 1.1  ± 0.04 1.10 
I67C M294C 0.9  ± 0.02 1.0  ± 0.02 1.00 
V68C M294C 1.0  ± 0.08 0.5  ± 0.00 0.00 
M69C M294C 1.1  ± 0.06 0.5  ± 0.05 0.00 

 
1Relative activity (±standard deviation) compared with basal activity of FT-HT-Xa  
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(Table 6 continued) 
2Relative activity (±standard deviation)compared with induced activity of FT-HT-Xa (α-

factor, 1µM) 
3Relative halo size compared with given halo size by FT-HT-Xa at 2 µg of α-factor. The 

standard deviation of the halo activity for all receptors was within ± 0.2 (three replicates). 

n.d. = not detected 
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activity to FT-HT-Xa with the exception of five double mutant receptors (T65C/L291C, 

V68C/L291C, V68C/S292C, V68C/M294C and M69C/M294C), which exhibited partial 

activity as measured by the FUS1-lacZ assay. Moreover, the halo assay was used to 

measure the long term effect of receptor activation [42, 43]. For example, it is possible 

that conformational change introduced by specific mutations could alter coupling of the 

receptor with G protein or influence endocytosis of the mutant receptor such that it 

cannot efficiently arrest cell division.  

The expression level of all double mutant receptors was similar to that of the FT-

HT-Xa receptor (Representative data, Fig. 9). The multiple bands on immubolots are 

typical of Ste2p expression and are due probably to differences in the glycosylation state 

receptor, which does not influence receptor function [44]. Taken together, we conclude 

that Cys mutation of the targeted residues did not severely interfere with receptor 

expression and function, with the specific exception of the five mutants (T65C/L291C, 

V68C/L291C, V68C/S292C, V68C/M294C and M69C/M294C) indicated above.  

 

Identification of Inter-molecular interaction between TMs using Factor Xa digestion 

To identify inter-molecular interaction between TM1 and TM7, Factor Xa 

digestion was used.  The Factor Xa digestion site was engineered into EL2. Digestion 

with Factor Xa cuts the intact receptor approximately in half. Therefore, if there is any 

interaction between TM1 and TM7, the disulfide bond formed between the residues will 

hold the receptor halves together following Factor Xa digestion (Fig. 10A) and a receptor 

of intact size (55 kDa) would be detected by anti-FLAG antibody on an immunoblot of 
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Figure 9 Expression of double Cys mutant receptors 

Total membrane preparation from cells expressing each mutant receptor was analyzed by 

SDS-PAGE. Receptor was detected by anti-FLAG antibody. The upper band (~110 kDa) 

represents dimerized receptor and the lower band (~55 kDa) represents monomer. 
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proteins run on a gel under non-reducing condition (Fig. 10B). Under reducing gel 

conditions, this band would disappear and a smaller band corresponding to the C-terminal 

half of the receptor would be detected by anti-epitope antibodies engineered into the C-

terminus (Fig. 10A and B). Before each double Cys mutant was tested, various 

parameters were examined to optimize the experimental conditions. Figure 11A shows 

the optimal concentration of Factor Xa for receptor cutting is between 0.4 and 1.6 unit for 

one hour incubation at 4 ºC. As expected, the C-terminal fragment of the receptor after 

protease digestion was detected at approximately 33 kDa using anti-FLAG antibody (Fig. 

11A). An anti-Ste2p antibody, which recognizes the first 100 amino acids of the receptor, 

also successfully detected the N-terminal fragment of the receptor (22 kDa) following 

digestion.  Multiple bands around 22 kDa (Fig 11B) are due to differences in 

glycosylation state as observed for the intact receptor. 

All double Cys mutant receptors were analyzed by SDS-PAGE and western blot 

after Factor Xa digestion. However, no intra-molecular interaction between TM1 and 

TM7 was detected between the targeted residues. Instead, a band corresponding to a 

66kD protein fragment (indicated by an arrow) was detected in double Cys mutant 

combinations involving five TM7 residues (L289C, L291C, S292C, S293C and M294C) 

(representative data for L291C and S293C shown in Fig. 12A and B). However, when an 

additional Cys mutation was made at P290 with the same mutations of TM1, the 66 kDa 

band was not generated (Fig. 12C). These data indicate that for specific residues in TM7, 

mutation to cysteine supports the formation of TM7-TM7 dimers. Interestingly, this band 

was detected only under non-reducing condition, and disappeared under reducing 

conditions. The size of the this novel 66 kDa corresponds to a dimer formed from two 
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fragments of C-terminal half of Ste2p joined by a disulfide bond, as would be expected to 

occur following Factor Xa digestion of a TM7-TM7 dimer. The fact that this band was 

not detected under reducing conditions supports the idea that this band was generated 

from cysteine cross linking. To test this, Cu (II)-1,10-phenanthroline (Cu-P) was used to 

treat all double Cys mutants to promote Cys-Cys disulfide bond formation. A protein 

band around 110 kDa was expected if Ste2p formed dimers through the engineered Cys 

residues in TM7. Indeed most of double cys mutants increased dimer population upon 

Cu-P treatment. Double mutants expressing the P290C mutation did not show an increase 

in dimerization, with the exception of I67C/P290C and V68C/P290C (Fig. 13). These 

results strongly suggested that Ste2p forms homo-dimers through introduced cysteines 

and led us to make single Cys  mutants and further examine the capacity of these mutants 

to form dimers. This will be discussed in Part III in detail. 
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Figure 10 2D diagram illustrated expected result for interaction 

A. After Factor Xa digestion, around 33kD size of receptor fragment will be detected by 

Anti-FLAG antibody in the absence of interaction and intact size of receptor will be 

detected in the presence of interaction. B. Left panel describes expected result from non-

reducing condition and right panel shows expected result from reducing condition.  
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Figure 11 Factor Xa digestion of FT-HT-Xa 

Total membrane was prepared from cells expressing FT-XT-Xa which is Cys-less 

receptor tagged with FLAG/His containing tandem Factor Xa digestion sites in the 

extracellular loop 2. A. Membrane was treated with different amount of Factor Xa as 

indicated for an hour at 4°C. Samples were analyzed on SDS-PAGE and immunoblotted 

with anti-FLAG antibody. B. Membrane was treated with different amount of Factor Xa 

as indicated for 30 min at 4°C. Samples were analyzed on SDS-PAGE and 

immunoblotted with anti-Ste2p antibody. 
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Figure 12 Factor Xa digestions of double cysteine containing Ste2p receptors  

Total membrane proteins derived from cells expressing indicated receptors were digested 

with Factor Xa as described in the Methods. The digested samples were subjected to 

SDS-PAGE under non-reducing (middle panel) or reducing conditions (right panel), 

immunoblotted and probed by anti-FLAG antibody. Arrow indicates 66 kDa molecular 

bands.
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Figure 13 Effect of Cu-P [Cu (II)-1, 10-phenanthroline] treatment on receptors 

containing two cysteine replacements 

Membranes were prepared, treated with Cu-P reagent, separated on SDS-PAGE. Each 

sample was immunoblotted and probed with anti-FLAG antibody. The upper band (~110 

kDa) represents dimerized receptor and the lower band (~55 kDa) represents monomer. 
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CHAPTER 5  Discussion 

 
We designed experiments to probe for inter-helical interactions between TM1 and 

TM7 using Cys scanning mutagenesis and cross-linking. This method has been 

extensively used to detect helical interactions in several GPCR systems [17, 23, 45-47]. 

Since our lab previously observed cysteine cross linking between N205C and Y266C 

without the use of an oxidizing reagent [32], we also expected to identify any interactions 

in TM1 and TM7 without using oxidizing reagents. However, no inter helical interactions 

were found with the targeted residues under the experimental condition used. It is 

possible that the intracellular parts of TM1 and TM7 in Ste2p are not close enough to 

interact, or the side chains of the targeted residues are not in the optimal orientation to 

form disulfide bonds, even though TM1 and TM7 are supposedly in close proximity 

according to established models. In contrast, we found evidence for homo-dimerization 

of Ste2p involving TM1 and/or TM7 which is discussed in detail in the next part of the 

dissertation. 

Interestingly, the expression level of the single Cys mutant P290C is very much 

lower than for the FT-HT-Xa and Cys mutants at other positions (Fig. 15 in Part III). 

However, double cys mutants with P290C showed better expression (Fig. 9). Even 

though we could not detect any intra-molecular interaction between TM1 and TM7 with 

the residues targeted in this study, the fact that adding another cysteine mutation on TM1 

compensates for the expression defect of P290C indicates TM1 and TM7 may somehow 

interact at the intra-molecular or inter-molecular level. In addition, double Cys mutant 

containing P290C did not produce the 66 kDa band observed for the other double Cys 
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mutants. This suggests that P290C may be important to maintain the proper conformation 

of TM7 to allow for the formation of disulfide bonds between the surrounding TM7 

residues (L289C, L291C, S292C, S293C and M294C). Taken together, the results 

suggests that Pro 290 plays a critical role in  receptor dimerization. Based on the results 

which will be presented in part III of this dissertation, the region of TM7 we chose to 

examine for potential interhelical interactions may not conform to the typical structure of 

a transmembrane α-helix, as this portion of TM7 may be distended and flexible, making it 

available for interaction with an adjacent receptor.   
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CHAPTER 1  Abstract 

The S. cerevisiae α-factor pheromone receptor, Ste2p, has been studied as a model 

for G protein-coupled receptor (GPCR) structure and function.  Dimerization has been 

demonstrated for many GPCRs, although the role(s) of dimerization in receptor function 

is disputed. Transmembrane domains one (TM1) and four (TM4) of Ste2p were shown 

previously to play a role in dimerization. In this study, single cysteine substitutions were 

introduced into a Cys-less Ste2p, and disulfide-mediated dimerization was assessed. Six 

residues in TM1 (L64 to M69) that had not been previously investigated and nineteen 

residues in TM7 (T278 to A296) of which fifteen were not previously investigated were 

mutated to create 25 single Cys-containing Ste2p molecules. Ste2p mutants V68C in 

TM1 and nine mutants in TM7 (cysteine substituted into residues 278, 285, 289, and 291 

to 296) showed increased dimerization upon addition of an oxidizing agent in comparison 

to the background dimers formed by the Cys-less receptor. The formation of dimers was 

decreased for TM7 mutant receptors in the presence of α-factor indicating that ligand 

binding resulted in a conformational change that influenced dimerization. The effect of 

ligand on dimer formation suggests that dimers are formed in the resting state and the 

activated state of the receptor by different TM interactions. 
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CHAPTER 2  Introduction 

 

G protein-coupled receptors (GPCRs) are membrane proteins that form one of the 

largest and most diverse families of proteins in eukaryotes ranging from yeast to human. 

Though the primary sequences are different among the GPCRs, all GPCRs share 

common structural features: seven transmembrane helical domains (TMs) across the lipid 

bilayer, with the TMs connected by intracellular and extracellular loops, an extracellular 

N-terminus and an intracellular C-terminus [1]. GPCRs mediate responses to various 

stimuli such as hormones, odors, peptides and neurotransmitters. Binding of ligand to a 

GPCR triggers receptor-specific signals through a heterotrimeric G protein. Since it has 

been reported that genetic variation of GPCRs often alters receptor functions such as 

ligand binding, G protein coupling, and receptor life cycle, GPCR mutation is considered 

a causative agent of many of human diseases [2]. GPCRs have been the most successful 

molecular drug targets in clinical medicine [3]. 

Ste2p is the α-factor pheromone receptor in Saccharomyces cerevisiae and has 

been used as a model for the study of the molecular basis of GPCR function [4-6]. Ste2p 

can be replaced in yeast cells with mammalian receptors with functionality conserved [7], 

and Ste2p can be expressed and trigger signal transduction upon ligand binding in 

HEK293 cells [8]. Also, Ste2p can serve as an established model for fungal GPCRs. 

Recently, many more GPCRs in fungi have been identified and classified into six 

different categories based on sequence homology and ligand sensing [9]. Ste2p is the 
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most well studied receptor among fungal GPCRs, some of which are suggested to be 

related to fungal pathogenesis [9].  

Recently, evidence has been growing that many GPCRs form homo- and/or 

hetero- dimeric or oligomeric complexes [9-11]. Oligomerization has been discovered by 

techniques such as crosslinking, bioluminescence resonance energy transfer, fluorescence 

resonance energy transfer, and immunoprecipitation [10]. Dimerization is thought to be 

important for various aspects of GPCR function such as receptor biogenesis, formation of 

ligand-binding sites, signal transduction, and down-regulation [11, 12]. However, the 

view that dimers are involved in the rhodopsin-like (Class 1A) receptor-activated 

signaling has been challenged [13-16].  

It has been demonstrated that Ste2p is internalized as a dimer/oligomer complex 

[17, 18], and oligomerization-defective mutants can bind α-factor but signaling is 

impaired [19]. It has also been shown that the dominant/negative effect on wild-type 

signaling of a signaling-defective mutation in Ste2p (Ste2p-Y266C) can be partially 

reversed by mutations in the G56XXXG60 dimerization motif, indicating that signal 

transduction by oligomeric receptors requires an interaction between functional 

monomers [20]. Recently, dimer interfaces were identified in Ste2p near the extracellular 

end of TM1 and TM4 [21]. In that study it was found that dimerization was symmetric, 

occurring between receptors at the TM1-TM1 interface or the TM4-TM4 interface. In our 

current study, using the disulfide cross-linking methodology, we studied the participation 

of specific residues at the intracellular boundary between TM1 and intracellular loop one 

and the entire TM7 in Ste2p dimerization.  
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CHAPTER 3  Experimental procedures 

 

Strains, Media, and Plasmids  

Saccharomyces cerevisiae strain LM102 described by Sen and Marsh [22] was 

used in the growth arrest and LacZ assays. The genotype for the LM102 strain is: MATa, 

bar1, his4, leu2, trp1, met1, ura3, FUS1-lacZ::URA3, ste2-dl (deleted for the α-factor 

receptor). The protease-deficient strain BJS21 (MATa, prc1-407 prb1-1122 pep4-3 leu2 

trp1 ura3-52 ste2::KanR) was used in disulfide cross-linking and western blot assays to 

decrease receptor degradation during analyses [23]. The parental plasmid, pHY4 

expressing the template construct used for mutagenesis, FT-HT-Xa (cys-less Ste2p with 

the FLAG and His epitope tags with Factor Xa cleavage cite, see Table 7 for description 

of the various receptor constructs used in this study) was generated by introducing a 

tandem Factor Xa cleavage site between Val192 and Thr193 into pBec2 expressing FT-

HT (FLAG and His tagged Cys-less Ste2p) under a consititutive GPD promoter [24]. 

Twenty-five single Cys mutations ranging from Leu64 through Met69 on TM1 and Thr278 

through Ala296 on TM7 were generated in the pHY4 background by PCR based site-

directed mutagenesis [25]. For co-expression experiments, plasmid pHY6 was 

constructed from p426GPD, a 2-µm based shuttle vector with a GPD promoter, CYC1 

terminator, and URA marker for selection in yeast [26]. STE2 containing C-terminal 

FLAG and His epitope tags and a tandem Factor Xa digestion site in EL2 was PCR-

amplified from plasmid pHY4 using primers that introduced BamHI and EcoRI restriction 

sites. The resulting PCR product was subcloned into the complementary sites of 
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p426GPD. Also, to create pHY6 an epitope tag comprising codons encoding a 9-amino 

acid sequence of rhodopsin (rho-tag) was substituted for the FLAG and His epitope tags 

by ligation of a C-terminus part of STE2 product amplified from pBKY1[27]. Cys 

mutants in this template were generated as described above. The sequences of constructs 

were verified by DNA sequence analysis completed by the Molecular Biology Resource 

Facility located on the campus of the University of Tennessee. Primers were purchased 

from Sigma Genosys or IDT (Coralville, IA). After sequence confirmation, constructs 

were transformed into the ste2-deletion strains LM102 and BJS21 by the method of Gietz 

et al [28]. Transformants bearing the pHY4 or pHY6 constructs were selected by their 

growth in the absence of tryptophan for pHY4 on MLT medium (Medium lacking 

tryptophan) or in the absence of uracil for pHY6 on MLU medium (Medium lacking 

uracil) [29]. All media components were obtained from Difco. 

 

Growth Arrest (Halo) Assay 

Growth arrest was measured as described previously [30]. Briefly, filter disks 

were impregnated with 10-µl portions of peptide solutions at various concentrations and 

placed onto the overlay containing S. cerevisiae LM102 cells. The plates were incubated 

at 30 °C for 24-36 h and then observed for clear zones (halos) around the disks. The halo 

measured included the diameter of the disc. The normalized activity of each mutant was 

determined by comparing halo size for the FT-HT-Xa receptor at 2µg of α-factor. All  
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Table 7 Receptors used in this study 

Receptor name Description 

Wild-type Native Ste2p 

Ste2p-FT-HT Wild-type with FLAG /His epitope tags 

FT-HT Cys-less Ste2p-FT-HT 

FT-HT-Xa FT-HT with tandem Factor Xa cleavage sites 

Template for all Cys mutants generated in this study 

Rho-Xa Cys-less Ste2p with tandem Factor Xa cleavage sites and Rho tagged 
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assays were carried out at least three times with no more than a 2-mm variation in halo 

size at a particular amount applied for each peptide.  

 

FUS1-lacZ Gene Induction Assay 

S. cerevisiae LM102 contains a FUS1-lacZ gene that is inducible by mating 

pheromone. Cells were grown overnight in SD (synthetic defined) medium (Yeast 

nitrogen base medium (Difco) without aminoacid) supplemented with the required amino 

acids at 30 °C to 5 x 106 cells/ml, washed by centrifugation, and grown for one doubling 

(hemocytometer count) at 30 °C. Induction was performed by adding 10-6 M of α-factor 

to 1 ml of concentrated cells (1 x 107 cells/ml). The mixtures were vortexed and, after 

incubation at 30 °C with shaking for 2 h, cells were harvested by centrifugation, and each 

pellet was resuspended and assayed for β-galactosidase activity (expressed as Miller 

units) in duplicate by using a β-galactosidase assay kit (Pierce) according to the 

manufacturer's instructions. The activity of each mutant was normalized by comparing β-

galactosidase activity for the wild-type strain.  The standard deviation was determined 

from three independent experiments.  

 

Preparation of membranes  

Membrane preparation of Ste2p was carried out essentially as described 

previously [30]. Cells were grown to log phase, and then 1 x 108 cells were harvested by 

centrifugation and lysed by agitation with glass beads in a lysis buffer containing 50 mM 
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Hepes, pH 7.5, 1 mM EDTA, 10 µg/ml phenylmethylsulfonyl fluoride, 2 µg/ml leupeptin, 

and 2 µg/ml pepstatin. The lysate was cleared by centrifugation at 2,000 x g for 5 min, 

and then membranes were harvested by centrifugation at 15,000 x g for 45 min. The 

membrane pellet was washed and then resuspended in 100 µl of a buffer (pH 7.4) 

containing 10% glycerol, 50mM Hepes, 0.15mM NaCl, 2mM CaCl2, 5mM KCl, 5mM 

MgCl2, 4mM EDTA [30]. The protein concentration was determined by the Lowry assay 

(Pierce), and the membrane preparation was stored at -20 ºC overnight and used for 

further assay the next day.  

 

Disulfide Cross-linking with Cu-Phenanthroline   

The 100 µg of membrane protein preparation were treated with a fresh preparation 

(pH 7.4) of Cu (II)-1, 10-phenanthroline (Cu-P; final concentration, 2.5 µM CuSO4 and 

7.5µM phenanthroline). The reaction was carried out at room temperature for 30 min, 

terminated with 50 mM EDTA and kept on ice for 20 min followed by adding Laemmli 

sample buffer. For study of the time course of cross-linking, Cu-P treated samples were 

aliquoted at  45 sec, 2 min, 5 min, 10 min, 20 min, and 30 min before termination. In 

experiments designed to prevent disulfide bond formation, the membranes were treated 

with 5mM of NEM for 20min prior to incubation with Cu-P reagent. Alpha-factor or 

antagonist [desW1,desH2]α-factor (10 µM final concentration) were added to the 

membrane preparation and incubation allowed to proceed for 30 min prior to Cu-P 

treatment in experiments performed to examine the influence of ligand on dimerization. 
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Factor Xa digestion  

The membrane protein preparation (40 µg) was incubated with 0.4 unit of Factor 

Xa (Novagen) in Factor Xa cleavage buffer (0.1M NaCl, 50 mM Tris-HCl, 5 mM CaCl2, 

pH 8.0) containing 0.1% Triton X-100 for 30min. Each sample was divided into two 

aliquots. The reactions were terminated by adding one-third the volume of Laemmli 

sample buffer (30% glycerol, 3% SDS, 0.01% bromphenol blue, 0.1875 M Tris, pH 6.8). 

To one aliquot β-mercaptoethanol (final 1%, v/v) was added for reducing conditions. 

Samples were analyzed by SDS-PAGE and Western blotting. 

 

Saturation Binding assay with [3H]α-Factor 

  Tritiated α-factor (10.2 Ci/mmol) [31] was used in saturation binding assays on 

total membrane preparations as described previously [29] Specific binding data were 

analyzed by nonlinear regression analysis for single-site binding using Prism software 

(GraphPad Software, San Diego, CA) to determine the Bmax value (receptors/cell) for each 

mutant receptor. Each experiment was carried out at least 3 times. The close similarity 

among three replicates is indicated by the standard deviations shown in Table 8.  

 

Western blot 

Immunoblot analysis of Ste2p was carried out as described previously [30]. Each 

sample was incubated at room temperature and then separated on NuPAGE 10% Bis-Tris 

SDS-polyacrylamide gel (Invitrogen) using either non-reducing or reducing conditions 
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and electrophoretically transferred to ImmobilonTM-P membrane (Millipore Corp., 

Bedford, MA). The blot was probed with anti-FLAG M2 antibody (Eastman Kodak Co.) 

or 1D4 antibody (a monoclonal antibody for rho-tag, purchased from Flintbox, BC, 

Canada), and the bands were visualized with the West Pico chemiluminescent detection 

system (Pierce). Blots were imaged, and the total density of all Ste2p bands in each lane 

was determined using a ChemiDoc XRS photodocumentation system with Quantity One 

one-dimensional analysis software (Bio-Rad). The intensity of the monomer and dimer 

signal was measured by densitometry and the ratio of the signals was determined. The 

percentage of dimer was calculated as [Dimer/(Dimer+Monomer) x100]. The averages of 

the ratio were measured from at least three independent experiments and standard 

deviations are presented in Table 9. 

 

HIS-select HC Nickel affinity  

Membrane preparations (500 µg protein) from each sample were resuspended in a 

solubilization buffer (50 mM Tris HCl, 150 mM NaCl, 1% Triton X-100, 5 mM 

imidazole, pH 8.0) overnight.  The solubilized proteins were then mixed with HIS-select 

HC Nickel affinity gel (Sigma) and incubated at 4OC for 30 minutes with end-over-end 

mixing.  The Nickel gel was separated from the mixture by centrifugation and then 

washed five times with buffer (50 mM sodium phosphate, pH 8.0, 0.3 M NaCl, 5 mM 

imidazole).  Ste2p was eluted from the Nickel gel two times using elution buffer (50 mM 

sodium phosphate, pH 8.0, 0.3 M NaCl, 250 mM imidazole). The eluted samples were 

analyzed by SDS-PAGE silver staining and western blotting using antibodies against 
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FLAG, a 9-amino acid sequence of rhodopsin (rho-tag), or an antibody to the N-terminus 

of Ste2p [32]. 

 

MTSEA Labeling 

 Membrane preparation was performed as decribed above. The 600 µg of the total 

proteins in PBS buffer (1ml) were treated with MTSEA (2-[(biotinoyl)amino]ethyl 

methanethiosulfonate) biotin in DMSO (0.1mM) for 2 minutes. Membranes were pelleted 

by centrifugation at 15000 RPM for 5 minutes in cold room and resuspended in 600 µl of 

RIPA buffer (0.1% SDS, 1% Triton X-100, 0.5% deoxycholic acid, 1 mm EDTA in 1× 

PBS, pH 7.4), solubilized for 1 hour at 4 °C. After addition of 150 µl of streptavidin 

slurry to the sample, it was incubated overnight at 4°C. The beads were then allowed to 

settle by gravity and supernatant was removed. The pellet was washed with RIPA buffer 

four times followed by washing with 2% SDS in PBS. The proteins were extracted from 

the beads by incubating with 40 µl of Laemmli sample buffer at 55°C for 5 minutes. The 

samples were separated on 10 % SDS PAGE. Westen blotting was performed and the 

membrane blot was probed by using anti-FLAG as decribed. Labeling was expressed as a 

percentage of accessibility for each individual mutant. Percent labeling was calculated by 

quantitating total immunoreactivity of all bands on the FLAG immunoblot, then 

normalized with T199C accessibility (=100%).  
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CHAPTER 4  Results  

 

Expression and Biological Activities of Cys Mutant Receptors 

To begin the analysis of Ste2p dimerization we chose twelve residues, six in TM1 

and six in TM7 (L289 – M294) proximal to the cytoplasmic face of Ste2p (Fig. 14A) for 

mutation to Cys. To extend the initial cross-linking results, thirteen additional residues in 

TM7 were mutated (T278C – S288C, W295C, and A296C) (Fig. 14A). These targeted 

residues were chosen for several reasons: (i) The TM1 region chosen was one helix turn 

away from the sequence G56XXXG60 previously established as being involved in Ste2p 

dimerization [19], (ii) TM7 contains the AXXXA motif also suggested to play a role in 

dimerization of other proteins [33] and 20 known growth factor receptors with tyrosine 

kinase activity [34], (iii) eight of the TM7 residues mutated (S288-S293,W295 and A296) 

are conserved among fungal pheromone receptors [35], and (iv) TM1 and TM7 are in 

close proximity to one another in crystal structures of GPCRs [36, 37] and a model of 

Ste2p [35]. To eliminate non-specific cross-linking the template for these mutations was 

a Cys-less receptor. This template (FT-HT-Xa) also contained two C-terminal epitope 

tags (FLAG and 6XHis) and tandem Factor Xa cleavage sites (IEGRIEGR) in the second 

extracellular domain in order to facilitate detection of inter-domain cross-linking (Fig. 

14A). Wild-type, FT-HT (Cys-less Ste2p with the FLAG and His epitope tags) and FT-

HT-Xa (the template construct) receptors used in this study demonstrated almost identical 

biological activities in a growth arrest assay indicating that incorporating the protease site  
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and the epitope tags did not alter receptor function (Fig. 8B in Part II). In addition, FT-

HT-Xa and Ste2p-FT-HT showed identical expression (Fig. 14B).  

The expression level of each single-Cys mutant receptor was determined by 

western blot analysis. All mutants except P290C showed several bands between 44kDa 

and 55kDa and expression levels similar to that of FT-HT-Xa (Fig. 15A and Fig. 18A). 

The multiple bands are typical of Ste2p expression and are due to differences in its 

glycosylation state, which does not influence receptor function [38]. Although two 

intrinsic Cys residues have been substituted, a weak band at 110 kDa, corresponding to a 

dimerized form of Ste2p, was observed for the FT-HT receptor (Fig. 15B). This band is 

likely a native, non-covalent dimer which was not disrupted by membrane protein 

preparation or SDS-PAGE. Such dimers have been observed on SDS-PAGE gels by other 

investigators working with Ste2p [20, 39, 40] and are also seen with the FT-HT-Xa 

receptor (Fig. 20A; Lane 1). This weak dimer observed in the Cys-less receptor is 

consistent with immunoprecipition results showing that the two intrinsic Cys are not 

involved in dimerization [18].  

Membrane expression of P290C receptor was very low when judged by western 

blot (Fig.15A). It is known that one of the roles of the conserved proline in TM7 in 

GPCRs is correct folding [41]. The reduced expression of P290C was observed 

previously when it was shown that this receptor was primarily defective in plasma 

membrane localization using a P290C-GFP receptor, but the P290C-GFP construct did 

not demonstrate a defect in signaling [42].  
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Figure 14 The two-dimensional topology of Saccharomyces cerevisiae Ste2p 

A.The cartoon indicates the location of the genetically engineered Factor Xa digestion 

site in EL2 and the epitope tags in the C-terminus. The two endogenous Cys residues 

(C59 and C252) were mutated to Ser to generate FT-HT-Xa which was the parental 

GPCR used to generate the TM1 and TM7 cysteine mutations in positions 64 to 69 in 

TM1 and 278 to 296 in TM7 as indicated in the boxes. B. Expression of FT-HT-Xa. 

Membrane proteins were analyzed by SDS-PAGE, then immunoblotted and probed with 

anti-FLAG antibody 
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Figure 15  Effect of Cu-P (Cu (II)-1, 10-phenanthroline) treatment on the 

dimerization of Ste2p containing single cysteine mutations 

Membrane proteins were treated with Cu-P or left untreated, followed by SDS-PAGE, 

then immunoblotted and probed with anti-FLAG antibody. The upper band (~110 kDa) 

represents dimerized receptor and the lower band (~55 kDa) represents monomer. A. 

Receptors with Cys in TM1 or TM7 were treated with Cu-P (Right panel) or were 

untreated (Left Panel). Receptors indicated in bold exhibited a shift in signal from 

monomeric to dimeric form. B. Controls with Cys-less Ste2p-FT-HT and Ste2p-FT-HT. 

C. V68C and S292C receptors were untreated or treated with Cu-P in the presence or 

absence of NEM (N-ethylmaleimide) added prior to Cu-P treatment. D. Each indicated 

receptors were treated with Cu-P in the presence of NEM (N-ethylmaleimide) added prior 

to Cu-P treatment. 
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Biological activity of each mutant was measured by growth arrest, β-galactosidase 

activity and binding assays and is normalized relative to the parent receptor (Table 8). 

Most mutant receptors showed similar β-galactosidase activity and growth arrest activity  

as compared to FT-HT-Xa. Two mutants (M69C and L283C) showed slightly lower 

induced β-galactosidase activities and A281C did not show growth arrest activity which 

is consistent with a previous study [43]. The difference between β-galactosidase activity 

and cell division arrest has been observed in many mutagenic studies of Ste2p [44-46]. It 

has been proposed that a short term signaling effect is measured by the β-galactosidase 

assay, whereas the long term effect is measured by the halo assay.  

The α-factor binding affinities of most Cys mutants were the same and within the 

experimental error range ( ± 2.5 fold), with the exceptions of the S292C, receptor which 

showed an increase in binding affinity (5 fold lower Kd value), and the L283C and 

S288C which showed a decrease in binding affinity (up to 4.7 fold higher Kd values) as 

compared to that of FT-HT-Xa. B-Max values determined by a saturation binding assay 

indicated that the numbers of binding sites were similar to FT-HT-Xa for most mutant 

receptors, with the exceptions of T279C V280C, A281C and T282C, which showed 

expression about 50% lower than that of FT-HT-Xa. The P290C receptor showed no 

detectable α-factor binding, consistent with lack of measureable expression in the western 

blot analysis. Nonetheless, this receptor exhibited comparable growth arrest and β-

galactosidase activities, suggesting that there were sufficient receptors expressed on the 

cell surface to elicit these biological responses upon ligand treatment (Table 8), albeit 

below detectable levels as measured by binding or western blots. Previous studies have 
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Table 8 Biological activities of Cys mutant receptors 

β-galactosidase Activity Binding Assay4           

           Receptor Basal 
Activity1 

Induced 
Activity2 

Growth 
Arrest 
activity3 B-Max Kd(nM) 

FT-HT-Xa 1.0 ± 0.1 1.0 ± 0.1 1.00  1.0 ± 0.3 1.0 ± 0.3 

TM1   L64C 1.0 ± 0.1 0.9 ± 0.2 1.00 1.7 ± 0.2 2.5 ± 0.7 

   T65C  0.9 ± 0.1 0.9 ± 0.1 1.08 1.2 ± 0.2 1.5 ± 0.7 

   L66C 1.0 ± 0.1 1.3 ± 0.5 1.00 0.5 ± 0.1 0.5 ± 0.2 

   I67C 1.0 ± 0.1 1.1 ± 0.3 1.04 1.5 ± 0.1 2.2 ± 0.5 

   V68C 1.0 ± 0.1 0.9 ± 0.3 1.00 0.9 ± 0.2 1.1 ± 0.4 

   M69C 1.1 ± 0.1 0.7 ± 0.2 1.00 0.7 ± 0.1 1.0 ± 0.4 

TM7   T278C 0.7 ± 0.1 0.9 ± 0.2 0.88 0.7 ± 0.1 0.7 ± 0.3 

   T279C 1.1 ± 0.2 0.9 ± 0.1 1.08 0.4 ± 0.1 0.4 ± 0.1 

   V280C 0.8 ± 0.1 1.3 ± 0.5 1.00 0.3 ± 0.1 0.5 ± 0.1 

   A281C 0.5 ± 0.1 1.1 ± 0.3 n.d 0.4 ± 0.1 0.8 ± 0.2 

   T282C 1.8 ± 0.5 0.9 ± 0.3 1.00 0.4 ± 0.1 0.9 ± 0.2 

   L283C 1.6 ± 0.3 0.7 ± 0.2 0.96 1.7 ± 0.7 4.7 ± 1.3 

   L284C 1.0 ± 0.1 0.8 ± 0.2 0.92 0.6 ± 0.1 1.1 ± 0.3 

   A285C 1.4 ± 0.1 1.0 ± 0.1 0.88 0.7 ± 0.2 0.9 ± 0.2 

   V286C 1.3 ± 0.1 1.0 ± 0.3 1.12 0.7 ± 0.1 1.9 ± 0.7 

   L287C 1.7 ± 0.1 1.0 ± 0.3 1.01 0.8 ± 0.1 1.1 ± 0.1 

   S288C 1.1 ± 0.1 1.0 ± 0.3 1.00 0.7 ± 0.1 4.1 ± 1.5 

   L289C 1.4 ± 0.1 0.8 ± 0.2 0.92 1.3 ± 0.2 2.1 ± 0.6 
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(Table 8 continued) 

   P290C 1.4 ± 0.1 1.0 ± 0.1 0.88 n.d. n.d. 

   L291C 1.3 ± 0.1 1.0 ± 0.3 0.88 0.6 ± 0.1 1.7 ± 0.8 

   S292C 1.4 ± 0.1 1.0 ± 0.3 1.04 0.6 ± 0.1 0.2 ± 0.1 

   S293C 1.5 ± 0.1 1.0 ± 0.3 1.00 1.2 ± 0.1 2.5 ± 0.4 

   M294C 1.2 ± 0.1 1.2 ± 0.4 0.94 0.8 ± 0.1 0.9 ± 0.2 

  W295C 1.7 ± 0.3 1.5 ± 0.3 1.01 1.3 ± 0.1 1.3 ± 0.1 

   A296C 1.7 ± 0.4 2.5 ± 0.8 1.00 0.7 ± 0.1 0.4 ± 1.5 

 

1Relative activity (±standard deviation) compared with basal activity of FT-HT-Xa 
(Miller unit of FT-HT-Xa was 3.9) 

2Relative activity (±standard deviation) compared with induced activity of FT-HT-Xa 
at 1µM of α-factor (Miller unit of FT-HT-Xa was 31.7) 

3The relative halo size (growth arrest) was compared to the halo size of the FT-HT-Xa 
receptor at 2µg of α-factor applied to a disc (the halo size of FT-HT-Xa was 24 mm). The 
standard deviation of the halo activity for all receptors was within ± 0.2 (three replicates). 
n.d. = not detected 

4The Bmax and Kd values are presented relative to those of the FT-HT-Xa receptor. 
The Bmax and the Kd were determined by saturation binding of radioactive α-factor 
according to the protocol in Methods. n.d. = not detected, as the binding was not greater 
than background (B-Max of FT-HT-Xa was 3491 and Kd was 10.7nM). 
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shown that remarkably low levels of Ste2p at the cell surface are sufficient to manifest 

the biological responses [47]. Taken together, we conclude that Cys mutation of the 

targeted residues did not severely interfere with receptor expression and function. We did 

not use the P290C receptor further in this study as it was expressed at a very low level. 

 

Dimerization of Some Cys Mutants in TM1 and TM7 Is Markedly Enhanced by the 

Oxidizing Reagent Cu (II)-1, 10-Phenanthroline 

 Initially we tested the involvement of twelve TM residues, six on TM1 and six on 

TM7 (L289 – M294) proximal to the cytoplasmic face of Ste2p (Fig. 14), in dimerization. 

As stated above, FT-HT-Xa and virtually all of the single Cys containing Ste2p mutants 

exhibited weak bands at about 110 kDa consistent with a small amount of dimerized 

Ste2p. However, in all cases the predominant band was near 55 kDa, the molecular mass 

of monomeric Ste2p. When these same receptors were treated with Cu (II)-1, 10-

phenanthroline (Cu-P), a reagent that has been used as an oxidizing reagent to drive 

disulfide bond formation in membrane proteins [48-51], many of the Cys mutated 

receptors showed marked increases in the 110 kDa band and a concomitant decrease in 

the monomer band (Fig 15A, Table 9). Notably, V68C, a TM1 mutant and five mutants 

on TM7 (L289C, L291C, S292C, S293C and M294C) showed strong (>60%) 

dimerization upon Cu-P treatment (Fig. 15A, Table 9). When FT-HT (epitope tagged 

Cys-less receptor) and Ste2p-FT-HT (epitope tagged receptor with intrinsic cysteine 

residues at C59 in TM1 and C252 in TM5) receptors were tested, there was no difference 

in dimerization in the presence and absence of Cu-P treatment (Fig. 15B) indicating that 

increased dimerization of mutant receptors was due to the specific cysteine residues 
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Table 9 Effect of ligand binding on Cu-P (Cu (II)-1, 10-phenanthroline) stimulated 

disulfide bond formation1  

Receptor       No treatment Cu –P2 α, Cu-P3 A, Cu-P4 

    FT-HT-Xa 15.0 ± 4.4 12.0 ± 0.1 13.1 ± 0.2 12.2 ± 0.1 

TM1 L64C 15.8 ± 0.1 11.3 ± 0.4 14.6 ± 1.0 13.6 ± 0.8 

 T65C 16.2 ± 0.1 14.4 ± 0.1 15.9 ± 0.3 12.8 ± 0.3 

 L66C 12.3 ± 0.4 11.9 ± 1.0 13.2 ± 0.4 11.9 ± 0.8 

 I67C 19.3 ± 4.5 17.0 ± 0.1 17.4 ± 4.1 18.0 ± 2.0 

 V68C 28.5 ± 3.2 99.2 ± 0.1 98.3 ± 0.8 98.8 ± 0.1 

 M69C 17.7 ± 6.9 14.2 ± 5.0 17.0 ± 6.4 28.9 ± 10.2 

TM7 T278C 15.1 ± 0.8 65.8 ± 8.8 12.5 ± 0.1 12.4 ±0.1 

 T279C 17.3 ± 0.3 10.1 ± 2.3 15.8 ± 0.2 10.9 ± 2.7 

 V280C 15.3± 2.1 14.7± 1.5 16.3 ± 0.6 12.4 ± 0.1 

 A281C 16.8± 0.5 11.9± 0.6 14.3 ± 1.5 11.3 ± 0.1 

 T282C 11.7± 0.3 15.4± 0.1 12.0 ± 0.8 11.7 ± 0.1 

 L283C 16.6± 0.4 15.7± 0.2 13.3 ± 0.1 10.7± 3.5 

 L284C 15.2± 0.1 12.0 ± 0.2 17.7 ± 3.0 15.3 ± 0.1 

 A285C 16.5 ± 0.8 53.5 ± 8.3 16.5 ± 2.1 17.7 ±0.5 

 V286C 15.6 ± 0.4 17.0 ± 0.3 13.2 ± 2.0 15.9 ±0.4 

 L287C 16.0 ± 0.1 14.3 ± 1.3 11.3 ± 1.7 16.0 ±1.8 

 S288C 14.7 ± 1.0 14.7 ± 1.5 11.5 ± 0.6 12.6 ±0.2 

 L289C 26.8 ± 2.0 61.0 ± 9.8 50.2 ± 12.9 40.9 ±8.2 

 L291C 31.8 ± 0.4 66.4 ± 0.1 52.0 ± 8.8 44.5 ± 5.6 

 S292C 30.2 ± 8.3 82.3 ± 0.4 75.5 ± 11.4 65.9 ±0.2 

 S293C 21.1 ± 0.7 70.2 ± 5.3 38.5 ± 8.3 44.0 ±0.1 
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(Table 9 continued) 

 M294C 27.0 ± 7.6 75.6 ± 1.0 57.8 ± 0.7 50.8 ± 1.0 

 W295C 15.7 ± 0.2 95.2 ± 0.7 76.2 ± 0.6 86.3 ±0.1 

 A296C 14.8 ± 2.1 91.1 ± 1.0 73.6 ± 1.5 82.1 ±0.8 

 

1The intensity of the monomer and dimer signal was measured by densitometry and the 
ratio of the signals was determined. The intensity of the monomer and dimer signal was 
measured by densitometry and the ratio of the signals was determined. The percentage of 
dimer was calculated as [Dimer/(Dimer+Monomer) x100]. 

2Cu-P = Cu-P (Cu (II)-1, 10-phenanthroline) treatment. 
3α, Cu-P = membranes treated with alpha-factor and Cu-P(Cu (II)-1, 10-

phenanthroline). 
    4A, Cu-P = membranes treated with antagonist and Cu-P(Cu (II)-1, 10-phenanthroline). 
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engineered into Ste2p. To further test whether dimerization was mediated by disulfide 

bond formation involving cysteine residues, NEM (N-ethylmaleimide) pre-treatment was 

used. NEM alkylates the free –SH group of cysteine irreversibly, so that disulfide bond 

formation cannot occur after NEM treatment. As shown in Figure 15C and D, 

pretreatment of receptors, which increased dimer upon Cu-P, with NEM completely, 

eliminated the Cu-P mediated dimerization (Fig. 15C, and D). In addition, in all cases 

where a high level of crosslinking was observed the membranes were treated with Cu-P 

and the reaction terminated by EDTA only and by EDTA and NEM to prevent 

crosslinking that might occur upon subsequent manipulation of the sample. No 

differences were found in the extent of crosslinking with the additional NEM treatment 

(Table 10). In contrast to these six residues, placement of cysteine at positions 64, 65, 66, 

67 and 69 followed by Cu-P treatment did not result in a dimer population that exceeded 

20% (Fig. 15A, right panel). Taken together, the results indicate that insertion of cysteine 

residues at position 68 on TM1 and positions 289, 291, 292, 293 or 294 on TM7 led to 

high levels of Ste2p dimerization through disulfide formation.   

Although the studies described above provided evidence for Cu-P catalyzed Ste2p 

dimerization, it was possible that the single Cys mutant Ste2p is cross-linking with other 

proteins with similar molecular weight to yield the observed high molecular weight bands. 

To confirm that the observed dimer band in the western blot was a Ste2p-Ste2p homo-

dimer, we took advantage of the protease (Factor Xa) digestion site engineered into EL2 

of Ste2p. Cross-linking between two Cys residues in TM7 followed by Factor Xa 

digestion would yield a homodimeric complex of 66 kDa (Fig. 16A). Indeed TM7 

mutants (L289C, L291C, S292C, S293C and M294C) digested with Factor Xa led to 
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Table 10 Effect of NEM on Cu-P(Cu (II)-1, 10-phenanthroline) stimulated disulfide 

bond formation1  

Receptor       No treatment EDTA2 EDTA and NEM3 

          FT-HT-Xa 16 ± 2.3 17 ± 2.3 16 ± 0.1 

  TM1 V68C 22 ± 10.3 99 ± 0.3 99± 0.1 

  TM7 T278C 22 ± 13.5 61 ± 1.7 54 ± 0.3 

 A285C 15 ± 4.5 58 ± 0.6 54 ± 0.2 

 L289C 11 ± 5.0 59± 2.5 53 ± 0.9 

 L291C 26 ± 8.8 64 ± 3.5 57 ± 0.1 

 S292C 17 ± 3.2 76 ± 0.8 70 ± 6.5 

 S293C 19 ± 5.5 75 ± 4.8 69 ± 4.8 

 M294C 26 ± 1.1 72 ± 6.3 76 ± 3.7 

 W295C 32 ± 8.3 80 ± 4.2 81 ± 3.5 

 A296C 39 ± 0.9 66 ± 8.3 79 ± 5.2 

 

1 The intensity of the monomer and dimer signal was measured by densitometry and the 
ratio of the signals was determined. The percentage of dimer was calculated as 
Dimer/(Dimer+Monomer) *100.  

2 Sample was treated with Cu-P(Cu (II)-1, 10-phenanthroline) and the reaction was 
terminated by EDTA only 

3 Sample was treated with Cu-P(Cu (II)-1, 10-phenanthroline) and the reaction was 
terminated by EDTA and NEM 
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the appearance of a band near 66 kDa when SDS-PAGE was run under non-reducing 

conditions (Fig. 16B; left panel). This band was markedly reduced when the gel was run 

in the presence of β-mercaptoethanol, a potent disulfide reducing agent. The 66 kDa band 

was specific for dimerized receptors with a disulfide connection between monomers as 

the band was not observed for FT-HT-Xa (Cys-less) and a TM1 mutant (M69C) in which 

there was no disulfide-mediated dimer formation (Fig. 16B). The monomer bands (~55 

kDa) are due to an incomplete Factor Xa digestion. We performed partial digestion 

because a longer incubation led to the degradation of all bands. Bands at ~33 kD are 

Factor Xa digestion products of the monomeric receptor species (remaining in the 

samples). The generation of this band from the S292C and S293C mutant receptors, in 

which the majority of receptors formed dimers (Fig. 15A, right panel), is likely the result 

of detergent induced (Triton X-100 in Factor Xa digestion buffer) dissociation of 

background dimers. Indeed, the presence of background dimers from all the receptors 

tested including FT-HT-Xa (Cys-less) and M69C were reduced in the presence of Triton 

X-100.  

Further support for the disulfide bond induced dimer formation was provided 

when differentially tagged receptors were co-expressed. M294C mutants and FT-XT-Xa 

were chosen for this experiment. Membranes from cells co-expressing receptors tagged 

with the FLAG/His epitopes and receptors tagged with the Rho epitope were precipitated 

using the HIS-select HC Nickel affinity column and immunoblotted with anti-Ste2p 

antibody and anti-Rho antibody. The total amount of receptors present following immune 

precipitation was determined using an antibody directed against the N-terminus of the 

receptor (left panel, Fig. 17). For both the FT-HT-Xa/Rho-Xa and M294C/M294C-Rho 
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receptors, bands corresponding to monomeric and dimeric forms were detected in both 

the presence and absence of Cu-P treatment. The dimerized form was more abundant than 

the monomer for the M294C/M294C-Rho receptor due to the presence of the engineered 

cysteines which form disulfide bond thus increasing the dimer population. In contrast, the 

FT-HT-Xa/Rho-Xa receptor showed a prominent monomer band and weak dimer signal, 

as observed for FT-HT-Xa expressed alone. As seen in right panel of figure 17, using the 

anti-Rho antibody, only dimerized receptors were observed for the M294C-Rho receptor, 

which indicates that Ste2p did indeed homo-dimerize. These results and the cross-linking 

results demonstrate the proximal location of the residues (L289-M294) on the 

intracellular parts of the TM7 domains of two Ste2p molecules, and provide evidence for 

homo-dimerization of Ste2p involving TM7 as well as TM1. The finding that six 

consecutive residues in TM7, with the exception of P290C, showed an increase in 

dimerization was unexpected since this region is believed to be α-helical. To see whether 

dimerization would occur throughout TM7, we expanded Cys replacement to include the 

full TM7 by generating eleven additional cysteine mutants N-terminal to the L289 

residue (T278C, T279C, V280C, A281C, T282C, L283C, L284C, A285C, V286C, 

L287C, and S288C) and two cysteine mutants C-terminal to the M294 residue (W295C 

and A296C). Membranes from each mutant were prepared and processed with or without 

Cu-P treatment. Compared to the Cys-less FT-HT-Xa receptor, the T278C and A285C 

receptors exhibited at least a 3-fold increase in dimerization (Fig. 18). Though dimer 

formation on T278C mutant was not observed in a recent study [21], this mutant showed 

strong dimer formation with Cu-P treatment in our study. The difference observed for this
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Figure 16  Protease Factor Xa digestions of single cysteine containing Ste2p 

receptors 

A. Diagram showing possible explanation for ~66 kDa band from TM7-TM7 interaction. 

B. Total membrane proteins derived from cells expressing indicated receptors. Cu-P 

treated membranes with Ste2p containing single Cys mutations at various positions as 

indicated were treated with Factor Xa as described in the Methods. The digests were 

subjected to SDS-PAGE under reducing or non-reducing conditions, immunoblotted and 

probed by anti-FLAG antibody.  
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Figure 17  Pull-down assay 

Total membrane was prepared from cells co-expressing differentially tagged receptors as 

indicated. Following treatment with or without Cu-P, samples were immunobloted with 

anti-Ste2p antibody (Left panel) or anti-Rho antibody (Right panel). The upper band 

(~110 kDa) represents dimerized receptor and the lower band (~55 kDa) represents 

monomer. 
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one residue is likely the result of variations in experimental design. In our current study 

Cu-P was used at a final concentration of 2.5 µM, while in the previous study the 

concentration was 500 µM. In addition, in our study we used membrane preparations 

whereas whole cells were used by Wang et al [21]. Receptors W295C and A296C 

showed a large increase in dimerization upon treatment with Cu-P compared to FT-HT-

Xa, (Fig 18; Table 9). In contrast, nine mutants (T279C-L284C, V286C, L287C and 

S288C) gave virtually identical dimerization results in the presence and absence of the 

oxidizing agent (Fig. 18; Table 9). Again NEM (N-ethylmaleimide) pre-treatment 

completely eliminated the Cu-P mediated dimerization (Fig. 18C). These results indicate 

that unlike the residues C-terminal to Pro290, residues located N-terminal to Pro290 

exhibit a periodicity with respect to dimer formation of Cys mutants which is consistent 

with the α-helical structure predicted for typical transmembrane domains of GPCRs. 

Because of a concern that disulfide crosslinking might trap and thereby favor the 

accumulation of dimer during the 30 min oxidization reaction, we analyzed the efficiency 

of the dimer formation at different times (Fig. 19). The results indicated that L291C, 

S292C, S293C, M294C, and W295C started to form dimers after 45 seconds of Cu-P 

incubation and reached half maximum levels within 5 minutes. Previously, the relative 

distance between TM residues in rhodopsin was estimated by the reaction time for 

disulfide formation between to Cys residues on different TMs [52]. Thus, our data 

indicate that TM7 C-terminal to P290 is highly flexible allowing all of the residues in this 

part of TM7 to form disulfide bonds with more or less the same rapidity.  
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Effect of Ligand Addition on Dimerization  

It is generally believed that activation of GPCRs upon ligand binding results in a 

conformational change involving rearrangement of transmembrane domains [53-56]. To 

ascertain whether this conformational change would affect Ste2p dimerization, we 

investigated the changes in the dimerization pattern of Ste2p receptors in the presence 

and absence of ligand. The membranes expressing each mutant receptor were incubated 

with agonist (α-factor) or an antagonist ([desW1, desH2] α -factor) and then treated with 

Cu-P. Dimer and monomer formation were monitored by western blots (Fig. 20A and 

20B) and the ratio of dimer to monomer was determined (see Methods, Table 9). Dimer 

formation of the Cys-less FT-HT-Xa receptor in the presence or absence of Cu-P was not 

affected by agonist or antagonist (Fig.20A and Table 9). Also, the ratio of dimer to 

monomer formed by Cu-P mediated cross-linking of the TM1 cysteine mutants did not 

change significantly after incubation with α-factor or α-factor antagonist (representative 

results for V68C is shown in Fig. 20B and Table 9). A time course of crosslinking at 0.75, 

2, 5, 10, 20, and 30 min was also performed with the V68C receptor incubated with either 

α-factor or antagonist. The reaction was complete at 45 seconds (0.75 min) and no 

change in crosslinking relative to that observed in the absence of ligand was observed 

(Fig. 21). TM7 mutants which did not exhibit increased levels of dimerization upon Cu-P 

treatment (T279C-L284C, V286C, L287C and S288C), also showed no difference in 

dimer formation in the presence of α -factor or antagonist (representative results for 

S288C is shown in Fig. 20B Table 9). However, for those TM7 receptors which exhibited 

significant increase in dimer formation upon Cu-P treatment (A285C, L289C, L291C, 

S292C, S293C, M294C, W295C, and A296C), α-factor treatment decreased the relative 
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amount of dimer formation (representative results for T278C and W295C are shown in 

Fig. 20B and Table 9). Taken together, the dimer interface of TM7 of Ste2p changed in 

response to either agonist or antagonist binding. 
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Figure 18 Effect of Cu-P (Cu (II)-1, 10-phenanthroline) treatment on FT-HT-Xa 

containing cysteine replacements in TM7 

Membranes were prepared, treated without (A) or with (B) Cu-P reagent, solubilized and 

separated on SDS-PAGE. Each sample was immunoblotted and probed with anti-FLAG 

antibody. The upper band (~110 kDa) represents dimerized receptor and the lower band 

(~55 kDa) represents monomer. C. Each indicated receptors were treated with Cu-P in the 

presence of NEM (N-ethylmaleimide) added prior to Cu-P treatment. 
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Figure 19 Time course analysis of dimer formation at the residues C-terminal to 

P290 of TM7 

Total membranes were prepared from cells expressing each receptors and treated with 

Cu-P (Cu (II)-1, 10-phenanthroline) for 45 sec, 2 min, 5 min, 10 min, 20 min, and 30 min. 

The samples were analyzed by SDS-PAGE, following by immunoblotting with anti-

FLAG antibody. The average percentage of dimer population from three independent 

experiments was calculated and plotted.  
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Figure 20 Effect of ligand binding on Cu-P (Cu (II)-1, 10-phenanthroline) 

stimulated disulfide bond formation 

A, B. Total membrane protein was derived from cells expressing indicated receptors. 

Each sample was immunoblotted and probed with anti-FLAG antibody. FT-HT-Xa 

receptor was treated as indicated. B ‘-’ indicates no treatment, ‘+’ indicates Cu-P treated 

samples, ‘α +’ indicates samples incubated with α-factor followed by Cu-P treatment and 

‘A+’ indicates samples incubated with the antagonist, [desW1, desH2]α-factor, followed 

by Cu-P treatment.  
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Figure 21 Time course cross-linking of V68C 

Total membranes were prepared from cells expressing V68C receptor and treated as 

indicated. ‘Cu-P’ indicates Cu (II)-1, 10-phenanthroline (Cu-P) treated samples, ‘α-

factor, Cu-P’ indicates samples incubated with α-factor followed by Cu-P treatment and 

‘antagonist, Cu-P’ indicates samples incubated with the antagonist [desW1, desH2] α -

factor followed by Cu-P treatment. Cross-linking was terminated at 45 sec, 2 min, 5 min, 

10 min, 20 min, and 30 min. The samples were analyzed by SDS-PAGE, following by 

immunoblotting with anti-FLAG antibody. The upper band (~110 kDa) represents 

dimerized receptor and the lower band (~55 kDa) represents monomer. 
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CHAPTER 5  Discussion 

 
In this study, using a disulfide cross-linking methodology, we identified a specific 

residue in TM1 that interacts with itself in Ste2p dimers, and we present the first evidence 

that residues in TM7 of this receptor participate in its dimerization. All of our studies 

were conducted with Ste2p in its membrane-bound state. Previously, it was shown that 

the maximum distance between α-carbons linked by disulfide bonds is about 7Å [57]. 

Thus, cross-linking experiments should identify amino acid side chains that are in close 

proximity when using the Cu-P oxidation reagent, which facilitates oxidation of 

sulfhydryl groups in cysteine residues. In analyzing our data, it is important to note that 

disulfide crosslinking might trap transient intermediates. Depending on the time of cross-

linking relative to the rates of interconversion of the monomeric and dimeric states of the 

receptor, covalent cross-linking might affect the equilibrium and bias the sample to yield 

more dimeric species than are present in the native population of the receptor. However, 

by comparing the cross-linked population of a receptor mutated in a specific region we 

believe we can learn about the relative tendencies of individual residues to participate in 

receptor-receptor contacts. Cross-linking between cysteine residues engineered into 

GPCRs and the use of Cu-P as an oxidizing reagent to facilitate disulfide bond formation 

between TMs in GPCRs has been used extensively by the Wess and Oprian laboratories 

[48, 51, 55, 58, 59] and was recently applied to Ste2p dimerization [21]. 

It had been suggested that TM1 formed a component of the interface between the 

two receptors in the Ste2p dimer [19, 21, 60]. Our results support these findings and 

furthermore provide direct evidence for the involvement of V68 in TM1 in Ste2p 
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dimerization. The mutant receptor V68C showed markedly increased dimerization over 

that of the FT-HT-Xa after Cu-P treatment, while under identical conditions all of the 

remaining TM1 Cys receptors showed at most a minor increase in dimer formation (Fig. 

15A; Table 9). The ability of V68C to form dimers is in good agreement with the recently 

published finding of a V45C-V45C cross-linking [21] since V45 and V68 are both 

located on the same face of TM1 and on opposite ends of TM1 (Fig. 22A). It was 

previously proposed that G56XXXG60 residues in TM1 of one GPCR monomer interacted 

with a hydrophobic-rich surface of TM1 (perhaps involving residues I53, V57, A61, and 

L64), on the second monomer by a kind of “groove-in-ridge” association with Gly being 

the “groove” residues and the hydrophobic residues acting as the “ridges” [19]. In this 

study, we found that V68C formed a disulfide bond. The fact that only one residue in the 

sequence (L64T66L67I67V68M69) formed this linkage suggests that the Ste2p-Ste2p 

interactions involving this region of the TM1 helix have significant spatial restrictions 

and that the TM1 helix at the carboxyl side of the G56XXXG60 sequence may be 

relatively rigid. We note that a biophysical analysis of TM1 in micelles indicates that the 

G56XXXG60 motif itself is flexible [[61] and unpublished results] and may facilitate TM-

TM interactions between proximal helical elements. In any event our mutational analysis 

of the TM1 domain defines a specific residue (V68) that appears to be involved in Ste2p 

dimerization. In a previous FRET analysis, Overton and Blumer [60] analyzed the 

transmembrane domains of Ste2p that are involved in dimerization by expressing various 

combinations of Ste2p fragments. They concluded that TM1 is necessary and probably 
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Figure 22 Dimerization interfaces of Ste2p 

A. V68 (red), a dimer contact found in the current study, is located on the same plane 

with V45 (green) a dimer contact at the extracelluar end of TM1 [21]. The backbones of 

two glycine residues (blue) known to play a role in Ste2p dimerization are shown. Two 

residues (F55, R58) involved in ligand binding are presented as a stick model located on 

the opposite side of the dimer interface. B. TM7/TM7 dimer interface. The backbones of 

three dimer contacts identified from the current study (T278, A285 and L289, from top to 

bottom) are colored green. A281 (light gray) and T282 (red) would appear to be 

candidates for dimer contact based on a sideview of TM7 (Fig. 23A), but the model here 

shows that alignments of these two residues are not favorable for disulfide bond 

formation. C. Proposed oligomerization interfaces of Ste2p. Dimerization of Ste2p 

involving TM1/TM1 (magenta) and/or TM7/TM7 (yellow) interface allows TM4/TM4 

interface (dark grey) to mediate a new dimerization contact enabling oligomerization. An 

extracellular view of a representative trimer is shown.  
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sufficient for dimerization, although they speculated that the N-terminus and TM2 may 

contribute to  stabilize the dimers. However, our disulfide cross-linking data 

demonstrated that TM7 is also involved in the interface for dimerization of Ste2p. In the 

present study we have analyzed full-length receptors and it is possible that the fusion of 

fluorescent protein at the C-terminal of truncated receptors in the previous FRET studies 

hampered the interactions between TM7 domains. The involvement of TM7 in dimer 

formation is consistent with our previous observation that a TM6-TM7 fragment of Ste2p 

runs as a dimer in SDS-PAGE gel [62].  

The finding that TM7 residues are involved in Ste2p dimerization leads us to 

propose that at least three dimerization interfaces can exist in Ste2p. In addition to the 

TM1 and TM4 interfaces previously found [21, 60], our data suggests that TM7-TM7 

interactions are also involved in direct contacts in the Ste2p dimer. Since TM1-TM1 and 

TM4-TM4 contacts have been previously suggested to be involved in higher order 

oligomers [21] and a Ste2p trimer was demonstrated by crosslinking in a gel and by 

atomic force microscopy [40] it is possible that in a single receptor can interact 

simultaneously with two additional receptors with different interfaces between the 

monomers: TM7 and/or TM1 can interact with TM7 and/or TM1 of a second receptor, 

while TM4 can interact with TM4 of a third receptor to form oligomers. A representation 

of a trimer is shown in Fig. 22C. With higher oligomers envisaged to contain additional 

interactions.  Based on the existing experimental data it is not possible to conclude 

whether TM1-TM1 and TM7-TM7 dimers can be formed simultaneously in the cell. The 

results described in this study show that cysteine residues introduced in positions T278, 

A285 and L289 on the extracellular half of TM7 form a disulfide bond with their 
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counterpart in another Ste2p monomer (Fig. 23A). This finding provides valuable 

information relating to the arrangement of the TM bundles of Ste2p and allow us to 

present a helical wheel projection of TM7 (Fig. 23B) in which these three residues are 

oriented outward instead of facing inside the TM bundles as proposed previously in the 

Ste2p model based on rhodopsin [35]. A281 and T282, which in a two dimensional 

representation (Fig. 23A, 23B) appear to lie on the same helix face, do not form dimers. 

However, our 3D model suggests that A281 and T282 are not close enough to form 

disulfide bonds when replaced by Cys as illustrated in the modified model (Fig. 22B). 

Therefore, the dimerization mediated by T278, A285, and L289 is consistent with the 

alpha-helical periodicity in TM7 that continues up to Pro 290. In the absence of a crystal 

structure for Ste2p, the disulfide crosslinking results contributes to understanding 

structural features of the functional receptor such as inter-helical interactions that may be 

involved in oligomerization.  

In contrast to the specific pattern of residues which could participate in cross-

linking in the portion of TM7 most adjacent to the extracellular surface, when the 

engineered cysteine residues were located at the intracellular end of the TM7, C-terminal 

to Pro290 which creates a kink in TM7, all residues were able to form disulfide bonds 

(Fig. 23A) implying an absence of an ordered structure. We do not believe that the 

experimental protocol, specifically the use of the oxidizing agent, leads to a global 

denaturation of Ste2p because native cysteine residues in TM1 (C59) and TM5 (C252) 

did not form an inter-GPCR disulfide linkage under the same experimental conditions 
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Figure 23 Representation of cross-linking results of TM7 and helical wheel 

presentation of TM1 and TM7 in Ste2p 

A. Summary of TM7 cysteine cross-linking results. The horizontal lines represent the 

boundary of the cell membrane. Residues indicated by a circle filled in gray when 

mutated to Cys are involved in dimer formation, whereas those residues shown in a box 

do not form disulfide bonds. Residues marked by an * compensate for the non-functional 

Y266C mutation. B. Helical wheel presentation of TM1 and TM7. Residues indicated by 

a circle filled in gray are involved in dimer formation as found in this study. Residues 

marked by an X are important for ligand binding. 

 



 

 140

 

 

 

 

 



 

 141

(Fig. 15B). Additionally, only one of the TM1 cysteine mutants formed Ste2p dimers and 

only three residues out of twelve in the extracellular part of the TM7 showed increased 

dimerization. Rather we propose that the L291-W295 region of Ste2p may be flexible 

enough to allow these residues to be exposed for disulfide bond formation with their 

counterpart in a second Ste2p monomer. Proline residues disrupt hydrogen bonding and 

have been shown to twist the standard structure of helices by introducing a kink between 

the segments contiguous with each other and to form molecular hinges [41, 63]. The 

dynamic nature of the residues at the carboxyl side of Pro290 is consistent with the 

results of a high resolution analysis of a 73 residue fragment of Ste2p in DPC micelles 

which indicated that the Pro290 resulted in a kinked helix in this membrane mimetic 

environment [64]. An irregular helical structure in part of a TM has been documented in 

the crystal structures of other GPCRs. In rhodopsin, TM7 contains a helical segment near 

the extracellular face of the receptor, followed by a non-helical segment in the vicinity of 

P303 [36]. The crystal structure of the beta-adrenergic receptor also indicates the 

presence of a short extended area in TM7 [65]. In addition, it has been proposed, using 

computational simulations of the NPXXY motif, that this region was not an ideal alpha 

helical structure [66]. Thus, there is precedent to propose that the part of TM7 in Ste2p 

that is near the cytoplasmic membrane interface is not helical in structure. Although there 

is a possibility that the residues C-terminal to Pro290 are not in the transmembrane 

domain, this is unlikely because a previous study [42] and our cysteine accessibility 

results  for these residues, strongly suggested that W295 and A296 are the boundary 

between TM7 and the intracellular space (Fig. 24 and Table 11). Obviously, non-

hydrogen bonded elements of a peptide in a membrane represent a high energy state 
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Figure 24 Cysteine labeling of selected mutants 

Membranes were prepared from cells expressing each receptors and treated with 

MTSEA-biotin or non-treated as indicated. Then, the samples were analyzed by SDS-

PAGE, following by immunoblotting with anti-FLAG antibody.  
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Table 11 Cysteine labeling of selected mutants 

Residue % of MTSEA biotin labeling1 

T199C 100 

L291C 22.5 

M294C 37 

W295C 40 

A296C 63 

1Labeling was expressed as a percentage of accessibility for each individual mutant after 

normalization with T199C accessibility (=100%) as described in the Experimental 

Procedures  
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and it is possible that critical water molecules satisfy some of the required interactions for 

Ste2p. Water molecules that bridge various receptor regions have been implicated in the 

crystal structure of other GPCRs [36, 65]. Their involvement in the structure of Ste2p 

must await a high resolution structure of this GPCR.     

It has been observed that the homo-dimer interface of the dopamine D2 receptor 

can be altered upon ligand binding [50]. To monitor possible ligand-induced 

conformational changes in Ste2p dimerization, membrane samples were incubated with 

either agonist or antagonist followed by Cu-P treatment. TM1 mutants showed similar 

degrees of dimer formation in the presence or absence of ligand, which is consistent with 

a recent study showing that dimer formation of V45C at TM1 was insensitive to α-factor 

treatment [21]. In contrast, both agonist and antagonist treatment led to a decrease in the 

level of dimer formed by TM7-TM7 interaction indicating that ligand binding caused a 

conformational change in this region. In addition to a conformational change inTM7 

induced by ligand binding, we can not rule out changes elsewhere in Ste2p upon ligand 

binding that affects dimer formation. 

The effect of ligand binding on TM7-mediated dimer formation suggests that 

resting state dimers and activated state dimers involve different TM arrangements. 

Previously it was shown that the ratio of monomer to dimer did not change in the 

presence of ligand in Ste2p as tested by FRET [17]. Thus, it is possible that the 

equilibrium distribution between monomer-dimer is maintained during receptor 

activation, even while the dimer interface may differ. In addition, a recent study of the 

serotonin 5HT2c receptor demonstrated that ligand binding induces a differential effect 
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on the dimer interfaces. While the TM1/TM1 interface was insensitive to ligand 

treatment, the TM4/5 interface changed during receptor activation [67].  

Interestingly, a number mutations of residues (V276, V280, A281, T282, and 

L284) which compensated for the activity of the signaling defective mutant receptor 

Y266C are clustered at the extracellular portion of the TM7 (Fig. 23A, TM7 residues 

labeled as *)[68]. The cluster of compensatory mutations at the extracellular part of TM7 

indicates that this region is important for receptor activation. The decrease in dimer 

formation at TM7 after ligand binding that we showed for T278C and A285C, both 

located in the extracellular part of TM7, also suggest a conformational change in this 

portion of Ste2p. In addition, two residues in TM1 (M54 and F55) were also identified 

[68] as compensatory mutations for Y266C. Residues F55 and R58 are known to be 

ligand contact sites and M54 is adjacent to F55 [23, 69]. Therefore, the extracellular ends 

of TM1 and TM7 may play a key role in initiating receptor activation after ligand binding 

to TM1 and the subsequent conformational change of TM7 may facilitate the receptor to 

adopt a fully activated state. Thus, the regions of the receptor that experience changes in 

the formation of dimers upon ligand binding might be important for the activation 

mechanism. Many GPCRs assume different conformations in their active and inactive 

states, and it is widely accepted that GPCRs sample many states even when occupied by 

ligand [for review see [70]]. Under our experimental conditions Cu-P mediated disulfide 

formation appears to distinguish these different conformations, possibly implicating a 

change of the dimer interface as part of the receptor activation mechanism. 

The similar effects of agonist and antagonist binding on disulfide formation 

involving residues in the TM7 dimer interface can be understood in terms of distinct 
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binding and signaling domains for α-factor [71]. Extensive structure-function analysis of 

α-factor and Ste2p has revealed that the N-terminus of α-factor has a role in activating 

the receptor while the C-terminus is critical for receptor binding. Since agonist 

(WHWLQLKPGQPNleY) and antagonist (WLQLKPGQPNleY) are very similar (10 

identical residues out of 13 ), and both ligands compete with each other with high affinity 

in binding to Ste2p, it is reasonable to suppose that the binding sites of both ligands in the 

receptor are highly overlapping especially at the C-terminal end of the ligands. Moreover, 

we believe that ligand binding is a multi-step process in which the carboxyl terminus of 

α-factor and α-factor antagonists bind first and then several conformational changes 

occur along the activation pathway [72, 73]. Finally, the carboxyl terminus has been 

shown to interact with residues in TM1 [23, 73]. Based on this understanding it is not 

unreasonable that both agonists and antagonists first bind to TM1 promoting changes in 

the conformation of both TM1 and of TM7, which is next to TM1 in the tertiary structure 

of Ste2p. These conformational changes apparently restrict disulfide formation at the 

TM7 dimerization interface between Ste2p monomers except the region between the 

boundary of TM7 and cytoplasmic tail.  

Much remains to be understood concerning the significance of GPCR 

dimerization in the signaling process. The residues in TM7 examined in this study, 

S288LPLSSMWA296, are highly conserved in Class D receptors and are considered to 

have a similar function to the NPXXY residues in Class A receptors [35]. In Class A 

receptors, the NPXXY motif is regarded to be important for receptor activation. For 

example, mutations in this motif affected receptor expression, ligand affinity, receptor 

sequestration, and heterotrimeric G protein coupling [74-77]. It is possible that TM7 
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plays an important role in both receptor activation and dimerization in Ste2p and in other 

GPCRs as well, and that dimerization is linked to signaling by these ubiquitous proteins. 

The results presented herein provide residue level information concerning the proximity 

of different sites on two Ste2p monomers in their native membrane environment. The 

physiological relevance of this information and of dimerization in GPCRs continues to be 

an intriguing area of GPCR biology. 
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Part IV   Participation of the Ste2p N-terminus in Homo-Dimer 

Formation and the Effect of Ligand Binding on this Interaction 
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CHAPTER 1  Introduction  

 
The structural hallmark of GPCRs is their seven membrane-spanning domains 

connected by extracellular and intracellular loops, oriented such that the N terminus is 

outside of the cell and the C terminus is inside. As discussed in the part I, GPCRs sense 

signals in the extracellular environment. Ligand binding to its cognate GPCR promotes a 

conformational change in the receptor and triggers signal transduction. As the receptor 

goes through the activation mechanism, it is well known that movement of the 

transmembrane domains are involved in the change of conformation [1], [2-6]. It is 

expected that concurrent changes in conformation also occur in the N-terminus and 

extracellular loops of the receptor, though limited structural information is available for 

these regions.  

Using the substituted cysteine accessibility method (SCAM) [7] our lab found that 

the first extracellular loop (EL1) of the α-factor receptor has a tertiary structure that limits 

solvent accessibility to some residues, and this accessibility changes in a ligand-

dependent manner presumably through induced conformation changes. SCAM analysis is 

being used currently in our lab to study the accessibility of residues of the N-terminus of 

Ste2p. During these analyses it was noted that the N-terminal mutant Y26C promotes 

receptor dimerization under both reducing and non-reducing conditions. This observation 

stimulated the investigation into whether other N-terminal residues participate in the 

dimerization of Ste2p, as was observed for residues in TM1 and TM7 (Part 3, 

Dissertation).   In the Class C group of GPCRs, it has been established that a motif 

known as the Venus fly trap (VFT) at the N-terminus, and cysteine-rich domains (CRDs), 
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localized between VFT and transmembrane domains are important for dimerization of 

this receptor class [8, 9] [10-13]. Thus there is a precedent for the involvement of N-

terminal residues in GPCR dimerization.   
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CHAPTER 2  Experimental procedures 

 

Strains, Media, and Plasmids  

The Saccharomyces cerevisiae strain BJS21 was used in all assays [7]. The 

relevant genotype is MATa, prc1-407 prb1-1122 pep4-3 leu2 trp1 ura3-52 ste2::KanR. 

For disulfide cross-linking, yeast strain BJS21 (ste2-deletion strain) bearing each fifteen 

different single cys mutants ranging from Gln20 through Ser34 of N-terminus of Ste2p 

were given from Seraj Uddin (at UT knoxville). Cells were grown in the absence of 

tryptophan on MLT medium [7]. All media components were obtained from Difco and 

were of the highest quality available.  

Preparation of membranes  

Membrane preparation of Ste2p was carried out essentially as described 

previously [14]. Cells were grown to log phase, and then 1 x 108 cells were harvested by 

centrifugation and lysed by agitation with glass beads in a lysis buffer containing 50 mM 

Hepes, pH 7.5, 1 mM EDTA, 10 µg/ml phenylmethylsulfonyl fluoride, 2 µg/ml leupeptin, 

and 2 µg/ml pepstatin. The lysate was cleared by centrifugation at 2,000 x g for 5 min, 

and then membranes were harvested by centrifugation at 15,000 x g for 45 min. The 

membrane pellet was washed and then resuspended in 100 µl of a buffer (pH 7.4) 

containing 10% glycerol, 50mM Hepes, 0.15mM NaCl, 2mM CaCl2, 5mM KCl, 5mM 

MgCl2, 4mM EDTA [14]. The protein concentration was determined by the Lowry assay 

(Pierce), and the membrane preparation was stored at -20 ºC overnight and used for 

further assay the next day.  
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Disulfide Cross-linking with Cu-Phenanthroline   

The 100 µg of membrane protein preparation were treated with a fresh preparation 

(pH 7.4) of Cu (II)-1,10-phenanthroline (CuP; final concentration, 2.5 µM CuSO4 and 

7.5µM phenanthroline). The reaction was carried out at room temperature for 30 min, 

terminated with 50 mM EDTA and kept on ice for 20 min followed by adding Laemmli 

sample buffer. In experiments designed to prevent disulfide bond formation, the 

membranes were treated with 5mM of NEM for 20min prior to incubation with Cu-P 

reagent. α-factor or antagonist,[desW1,desH2]α-factor (10 µM final concentration), were 

added to the membrane preparation and incubation allowed to proceed for 30 min prior to 

Cu-P treatment in experiments performed to examine the influence of ligand on 

dimerization  

 

Western blot 

Immunoblot analysis of Ste2p was carried out as described previously [14]. Each 

sample was incubated at room temperature and then separated on NuPAGE 10% Bis-Tris 

SDS-polyacrylamide gel (Invitrogen) using either non-reducing or reducing conditions 

and electrophoretically transferred to ImmobilonTM-P membrane (Millipore Corp., 

Bedford, MA). The blot was probed with anti-FLAG M2 antibody (Eastman Kodak Co.) 

and the bands were visualized with the West Pico chemiluminescent detection system 

(Pierce).  
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CHAPTER 3  Results   

 
Cells expressing each of the different Cys mutants were grown and membranes 

were prepared. The samples were analyzed by SDS-PAGE and probed with anti-FLAG 

antibody (Fig. 25). In general, all mutants showed higher dimer formation than WT under 

non-reducing conditions without Cu-P treatment (Fig. 25A and Fig. 26). About 20% of 

the WT receptor was in the dimer form under conditions that we showed previously (Part 

III, Dissertation) was due to non-disulfide mediated, inter-molecular interactions, 

whereas from 30 to 90 % of the mutant receptors were in the dimer form (Fig. 26). Nine 

mutants (G21C, T23C, N25C, T27C, I29C, G31C, N32C, G33C, and S34C) showed a 

small increase in dimerization (ranging from 1.3 ~ 1.8 fold) in comparison to WT (Fig. 

25A and Fig. 26). Six Cys mutants, Q20C, S22C, I24C, Y26C, S28C, and Y30C, showed 

a large increase in the dimer population relative to the monomer receptor (Fig. 25A and 

Fig 26).  

Under reducing conditions (data not shown, results from Seraj Uddin, a student in 

the Becker Lab), the percentage of dimer for all Cys mutants, except Y26C, dropped to 

that of WT indicating that these dimers were formed via disulfide bonds between the 

mutated Cys residues.  The fact that the Y26C dimer was not affected by reducing 

conditions indicated that this unique dimer was formed by a non-disulfide interaction. 

Mutation of the residue might lead to increased non-covalent interactions between 

residues on two Ste2p molecules resulting in dimerization of the receptor.   

N25C and T27C receptors showed different band patterns compared to WT (Fig. 

25A). When analyzed by SDS-PAGE, WT Ste2p migrates as a group of three bands, 
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consisting of the two major glycosylated forms of Ste2p along with the lower molecular 

weight unglycosylated form (see WT lane, Fig. 25A). N25 and T27 are known to be 

within the motif of N-linked glycosylation (Asn-X-Ser/Thr) of the receptor [15]. Thus, 

substitution of these residues to Cys decreased heterogeneity of the glycosylated 

receptors leading to a more prominent lower molecular weight band which is the non-

glycosylated form of Ste2p and a concomitant lesser amount of higher molecular weight 

band(s). While N32C and S34C also are within an N-linked glycosylation motif, there 

were no readily observable differences with these two mutants with respect to WT (Fig. 

25A).  

It was possible that disulfide bonds were prevented from forming in some mutants 

due to the environment of the Cys residue. Addition of Cu-P to provide a more oxidative 

environment that facilitates Cys cross-linking has been used in many experiments to 

determine Cys-Cys disulfide formation in membrane proteins [16-20]. Treatment of Cu-P 

was performed with all fifteen N-terminal Cys mutants (Fig 25B). Nine mutants (Q20C, 

G21C, T23C, Y26C, and from Y30C through S34C) were not affected by Cu-P treatment 

(Fig. 25A, B, Fig. 27). However, three mutants (S22C, I24C, and S28C) exhibited 

increased dimerization upon Cu-P treatment. In addition, three mutants (N25C, T27C, 

and I29C) which in the previous experiment did not form dimers without Cu-P addition, 

did dimerize in the presence of Cu-P.  

To verify that this increase was due to disulfide bond formation, NEM 

pretreatment was performed with the N25C, T27C and I29C mutants. NEM pretreatment 

blocked dimerization for all three mutants (Fig. 25E), showing that the dimers were 

indeed formed via a disulfide bond. These data suggest that the α-carbons of the two Cys 
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residues are located close to each other, within 7 Å, the  maximum distance to form a Cu-

P mediated disulfide bond [21]. We did not observe any change in dimer ratio upon Cu-P 

addition with the five mutants spanning residues Y30C to S34C, indicating that those 

residues are not in close proximity (Fig 25A, B and Fig. 27). 

It has been observed that ligand binding can induce a change in the receptor dimer 

interface (this Dissertation, Part III) and [22, 23]. To examine the ligand effect on Cys-

mediated dimerization at the N-terminus, membranes were incubated with either α-factor 

or [desW1desH2] α-factor (an antagonist) prior to Cu-P treatment. The dimerization of the 

Q20C and Y26C mutants was not influenced by the presence of either ligand. In contrast, 

the S22C mutant increased dimerization in the presence of Cu-P and α-factor or the 

antagonist. While pre-incubation with α-factor did not affect the ratio of dimer for the 

G21C, T23C and I24C mutants, antagonist pre-treatment of these three mutants resulted 

in increased Cu-P dependent dimer formation (Fig.25 and Fig 27A).   

The presence of ligand also altered the dimer population for the N25C, T27C, and 

I29C mutants. These three mutants exhibited an increase in dimerization stimulated by 

the presence of Cu-P. However, pre-treatment with α-factor prior to Cu-P treatment 

blocked the formation of dimers for these mutants. In contrast, Cu-P stimulated 

dimerization did occur with antagonist treatment. (Fig. 25C, D and Fig. 27B). These 

results suggest that the N-terminus dimer interface is changed by ligand binding, with 

different effects of agonist and antagonist. Once again, no change was observed in the 

dimer ratio in the presence of agonist or antagonist for the five mutants spanning Y30C to 

S34C, suggesting that these residues are not components of the dimer interface in the 

resting or activated receptor (Fig. 25C, D and Fig. 27C).
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Figure 25 Dimer formation of Cys mutants 

Membrane proteins untreated (A), treated with Cu-P (B), incubated with α-factor 

followed by Cu-P (C), incubated with antagonist followed by Cu-P (D) or NEM added 

prior to Cu-P (E) were analyzed by SDS-PAGE, then immunoblotted and probed with 

anti-FLAG antibody. The upper band (~110 kDa) represents dimerized receptor 

(indicated by a D)  and the lower band (~55 kDa) represents monomer (indicated by a M). 
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Figure 26 The percent of dimer formed by each Cys mutant 

Membrane proteins were analyzed by SDS-PAGE, then immunoblotted and probed with 

anti-FLAG antibody. The intensity of the monomer and dimer signal was measured by 

densitometry and the ratio of the signals was determined. The percentage of dimer was 

calculated as [Dimer/(Dimer+Monomer) x100]. 
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Figure 27 Effect of ligand binding on Cu-P [Cu (II)-1, 10-phenanthroline] 

stimulated disulfide bond formation 

Total membrane protein was prepared from cells expressing the indicated receptors:  (A) 

Q20C-I24C, (B) N25C-I29C. Each sample was immunoblotted and probed with anti-

FLAG antibody. Receptors were treated as indicated. ‘(-)’ indicates no treatment, ‘Cu-P’ 

indicates Cu-P treated samples, ‘α Cu-P’ indicates samples incubated with α-factor 

followed by Cu-P treatment and ‘A Cu-P’ indicates samples incubated with the antagonist 

[desW1, desH2]α-factor followed by Cu-P treatment. The intensity of the monomer and 

dimer signal was measured by densitometry and the ratio of the signals was determined. 

The percentage of dimer was calculated as [Dimer/(Dimer+Monomer) x100]. 
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CHAPTER 4  Discussion  

 

In this study, we found that a part of the N-terminus participates in the formation 

of a dimer interface. Within the N-terminus the sequence between residues 19 to 31 was 

predicted to form a beta strand [24]. In this dissertation, residues were found that 

increased dimerization in the absence of Cu-P upon mutation to Cys (Q20C, S22C, I24C, 

Y26C, S28C, and Y30C).  If these residues are localized on one side of the predicted beta 

strand in the native Ste2p, then this may place them in position to interact with a 

corresponding beta strand on a second Ste2p molecule. Residues G21, T23, N25, T27, 

I29, and G31 are expected to be located on other side of the beta strand, and these 

residues when replaced by Cys do not form dimers in the absence of Cu-P. As the 

collision rate between the two thiols is dependent on the inter-residue distance [25, 26], 

the odd-numbered residues may not be in close enough proximity to each other to form 

effective disulfide bonds in the absence of Cu-P. However, dimers are formed in the 

presence of Cu-P with N25C, T27C, and I29C. We believe that Cu-P functioned to 

enhance dimerization by providing a more oxidative environment that facilitated disulfide 

bond formation. We postulate that these receptors are impaired in their glycosylation due 

to mutation (N25c and T27C) in the N-X-T/S motif or a mutation (I29C) that affected 

glycosylation. The lowered glycosylation allows these residues to be in close enough 

proximity to react when Cu-P is present. This hypothesis needs to be tested by 

determination of the glycosylation state of these mutant receptors. We did not observe 

high levels of dimerization for residues N32C, G33C, or S34C in either the presence or 
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absence of Cu-P. Residues N32, G33, and S34 are not part of the predicted beta strand, 

therefore the region containing these residues might not be in close enough proximity to 

cross-link well.  They showed only a small increase (1.5 fold or less) in dimer population 

with or without Cu-P.  

Prior incubation with α-factor prevented the Cu-P induced increase in 

dimerization for the N25C, T27C, and I29C mutants, indicating a ligand-dependent 

change occurred in this region. In contrast, treatment with antagonist, which binds but 

does not activate the receptor, did not prevent the Cu-P-mediated dimer increase. Alpha-

factor binding to the receptor may alter the position of this region of the N-terminus, or 

cause a distortion in the beta strand which makes the residues unable to interact and form 

a disulfide bond. Interestingly, the G21C and T23C receptors, which do not form dimers 

in the presence or absence of α-factor, did display an increased dimer formation in the 

presence of antagonist. This indicates that the receptor adopts an intermediate 

conformation between active and inactive state upon antagonist binding, which shifts the 

G21 and T23 residues into a position favorable for dimer formation. Thus, although 

phenotypically the antagonist binding maintains the receptor in the inactive state, 

antagonist can still influence receptor conformation. Taken together, the ligand dependent 

change of the dimer interface provided significant evidence that the N-termimus of Ste2p 

is structured and that this structure can be altered either directly in response to ligand 

binding or indirectly as part of the receptor activation mechanism.  
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CHAPTER 5  Summary and Future direction 

Summary 

This dissertation reports the identification of homo-dimer interfaces for Ste2p, the 

yeast α-factor receptor, a model system for mammalian GPCR peptide hormone receptors. 

Information regarding ligand-induced change at the dimer interface is reported as well. 

To identify the dimer interfaces, single cysteine substitutions were introduced into Ste2p, 

and disulfide-mediated dimerization was assessed. It was determined that one specific 

residue was involved in dimerization in transmembrane domain 1 (TM1) and 9 residues 

were involved in dimers formed via TM7. Interestingly, for the TM7 mutant receptors the 

formation of dimers decreased in the presence of α-factor, indicating that ligand binding 

resulted in a conformational change in this domain. Based on these results, it was 

proposed that the dimer interfaces may differ in the resting and the activated states of the 

receptor. Furthermore, the pattern of dimer formation resulted in a re-evaluation of the 

structure of TM7, indicating that the full TM7 did not behave as a perfect α-helix as 

predicted by modeling. In addition, residues at N-terminus of Ste2p were also found to 

participate in dimer formation and surprisingly, dimerization mediated through some of 

these residues was influenced by the presence of ligands. Future experiments, suggested 

below, are proposed to provide further details on the dimer structure-function relationship. 
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Whole cell, In vivo, cross-linking 

The study of dimer formation in this dissertation was done with receptors in 

membrane preparations. While the receptors in membrane preparations still maintain 

their native conformation, as determined by receptor binding affinity, whole cell cross-

linking would be useful. For these experiments, cross-linking could be assessed in a 

native, intact cell for residues that are exposed to the extracellular surface. Since we 

found residues that form dimers at the N-terminus, which is external to the cell 

membrane, it should be feasible to do in vivo cross-linking with Cu-P by using whole 

cells expressing those mutants. Such an approach was used recently by Wang and 

Konopka to identify residues involved in dimerization of Ste2p via the extracellular 

extracellular surface of the receptor, although N-terminal residues were not investigated 

[27]. The effect of whole cell cross-linking on the physiological function of the receptor 

has not been examined in this dissertation and might shed new light on the biological 

relevance of receptor dimerization. However, when testing the biological activity of the 

receptor in an intact cell, the metal toxicity of Cu-P must be considered since copper is 

toxic at high concentration [28]. We observed an orange discoloration of the cells after 

prolonged incubation (1-2 hrs) with Cu-P at 2.5 µM. Thus, a future experiment should be 

determination of concentration of Cu-P which allows cross-linking without toxicity. 

Alternatively, a chemical cross-linker can be used for the in vivo studies in lieu of Cu-P. 

Currently, many cross-linkers with a variety of characteristics are commercially available. 

For example, Shi et al used succinimidyl trans-4-(maleimidylmethyl) cyclohexane-1-

carboxylate (SMCC) to demonstrate Ste2p dimer and trimer formation [29]. Another 

common reagent used to explore protein-protein interactions are the bismaleimide 
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crosslinkers, BMOE, BMB and BMH, used to specifically connect the thiol groups 

between two Cys residues (Fig. 28) [30-32]. The use of cross-linkers to detect and 

stabilize protein-protein interactions at the dimer interface in intact cells will contribute to 

our understanding of dimer structure-function relationships. Furthermore, comparison of 

results using whole cells with those obtained from membrane preparations will be useful 

to determine how accurately results obtained with membrane preparations reflect those 

obtained with the intact cell.  
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              Figure 28 Reaction of maleimide-activated compounds to sulfhydryls 

 (http://www.piercenet.com/Objects/View.cfm?type=File&ID=0796) 
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Study of receptor function and dimer relationship 

N-terminal mutants that spontaneously dimerize upon introduction of Cys are 

good candidates to test for the relationship between dimer formation and receptor 

function. We can compare the biological activities of those mutants to WT without 

adding oxidizing reagents, which might affect the physiological function of the yeast cell 

itself. Recently, Shi et al suggested that the N-terminal tail of Ste2p may have a role in 

modulation of mating, specifically the fusion of the MATa and MATα cells [24]. They 

found that deletion of the first 20 amino acids ( N20) of Ste2p led to a decrease in 

mating efficiency, but had little impact on receptor mediated G1growth arrest. Thus the 

mutant cells responded properly in the growth arrest assay, indicating that the signal was 

transduced by the receptor, but the cells failed to physically fuse to form diploids. They 

also performed targeted scanning mutagenesis and cysteine accessibility studies to 

investigate the site specific functional contributions of N-terminus. In that study, they 

identified two highly conserved hydrophobic residues, I24 and I29, involved in the 

mating process. The mating activity associated with these sites was shown to be 

independent of receptor mediated G1 arrest signaling. Interestingly, mutation of either 

I24 or I29 to Cys dramatically dropped mating abilities of the mutants compared to 

mutation to Ala. In our study I24C and I29C were found to dimerize more readily than 

WT. It is possible that disulfide bond formation at these residues may inhibit the proper 

conformational change necessary for mating ability but not growth arrest. Indeed, it has 

been observed that the functions of the receptor can be separated. For example, Ste2p-

Y266A mutant can bind ligand without triggering the MAPK pathway [33]. Though all 

Cys mutants (of residues Q20C- S34C of the N-terminus) were found to retain normal 
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function in the growth arrest assay (personal communication with Seraj Uddin at UT), the 

mating ability of the dimerized mutants have not yet been tested. A comparison of mating 

competence in WT Ste2p with the N-terminal Cys mutants will contribute to the 

understanding of the possible roles for dimerization in this GPCR.  

 

Relationship of Dimers to Glycosylation State of Ste2p 

The two residues, N25 and T27, at the N-terminus, which form dimers upon Cu-P 

treatment, are known to be within the motif for N-linked glycosylation (Asn-X-Ser/Thr) 

of Ste2p. The role of N-glycosylation in the dimerization of GPCRs has been described 

previously. In the β1-adrenergic receptor, the mutant N15A, which results in the 

elimination of a glycosylation site, is functional but deficient in dimerization relative to 

the wild-type receptor [34]. The roles of N-glycosylation in the dimerization of the 

human Bradykinin B2 receptor were also examined. It was determined that N-

glycosylation participated in stabilization of dimers [35]. For the epidermal growth factor 

receptor, receptor-receptor self-association was also reported to be highly dependent on a 

conformation induced by N-linked glycosylation [36]. 

While most GPCRs are known to be N-glycosylated, the functional effects of 

glycosylation vary significantly from receptor to receptor [37], in Ste2p, the 

nonglycosylated receptor (N25Q/N32Q) displayed normal growth arrest activity and 

subcellular localization, indicating that glycosylation is not important for wild-type 

receptor signaling activity [15]. To test whether N-glycosylation has any effect on dimer 

formation of Ste2p, three forms of the receptor having zero, one or two N-glycosylation 
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sites can be used as templates to carry residue-specific Cys mutations. Dimer formation 

of the mutants in the glycosylation deficient and WT backgrounds can be compared via 

Western blot analysis. Alternatively, Cys mutant and WT Ste2p can be compared with 

respect to disulfide bond formation following treatment with enzymes, such as 

Endoglycosidase H or PNGase F, which deglycosylate proteins.   

 

Study for higher order oligomer of Ste2p  

Recently, many studies have documented that various classes of GPCRs form 

dimers and/or even higher order oligomers [38-41]. Consistent with this, TM1, TM4, 

TM7 and the N-terminus were found to serve as dimer interfaces for Ste2p [27, 42] 

leading us to propose the existence of higher-order oligomerization for Ste2p. It is 

possible that a single receptor can interact simultaneously with two additional receptors, 

by utilizing different dimer interfaces between the monomers: TM7 and/or TM1 can 

interact with TM7 and/or TM1 of a second receptor, while TM4 can interact with TM4 of 

a third receptor to form oligomers. Dimerization via the N-terminus can also occur with 

either TM1 and/or TM7 interaction to form oligomers. To test this, double Cys mutants 

containing one Cys in either TM1 or TM7 and another Cys in TM4 can be used. Cross-

linking of receptors with Cys substituted simultaneously into both TM1/or TM7 and TM4 

should lead to the formation higher order species that can be identified by 4-12% gradient 

SDS-gels (personal communication, George Umanah of the Becker lab).  

Another method that might be used to identify the intrinsic (non-disulfide 

mediated) oligomerization of Ste2p is perfluoro-octanoic acid (PFO)-PAGE [43-46]. PFO 
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is a mild detergent. Thus, it maintains interactions within protein oligomers and permits 

assessment of the native quaternary structure of membrane proteins when it is used to 

replace SDS in gel electrophoresis.  

For in vivo testing, biophysical assays such as FRET and protein fragment 

complementation assay [47] also can be used. Split fluorescent proteins are not 

fluorescent when expressed alone, but when fused to proteins in close proximity, they 

assemble, fluoresce and thus serve to report on molecular proximity. This method has 

been applied to find higher oligomerization of D2 dopamine receptor. Taken together, all 

of the methods described above may be used to document and understand further the 

nature of dimer/ higher order oligomerization of Ste2p.  

Investigation of dimer formation pattern of TM7 mutants in C-terminal tail truncated 

Ste2p  

It was observed that consecutive six TM7 residues (from L291 to A296) were all 

involved in dimer formation of Ste2p in this study and we proposed that this cytoplasmic 

end of TM7 may not be a typical α-helical structure. It is possible the junction between 

TM7 and C- terminal tail may be loosend due to the protein interactions with the C-

terminal tail of Ste2p which contains around 160 amino acids (~18.5 kDa). To test this, 

Ste2p truncated at residue 304 can be used. Previously, it was shown that truncated Ste2p 

was still fuctional and able to form dimers [48]. Single cysteine mutants from L291C to 

A296C can be constructed in the truncated Ste2p and dimer formation patterns can be 

compared with those of  the full length Ste2p by same methods as performed in this study.  
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