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ABSTRACT 
 

 

 This dissertation proposes a simple computerized game to serve as a pure test of backward 

induction and then tests the game in the laboratory.  One of the fundamental assumptions of neoclassical 

economic theory is that human beings function as fully rational agents who maximize their utility over 

multidimensional alternatives under economic constraints.  However, numerous studies have shown 

systematic deviation from rational decision making in a laboratory setting.  While no single explanation is 

obvious for this suboptimal behavior, the literature suggests other motivations (besides maximizing utility) 

may be at play, including reciprocity, trust, reputation, and welfare.  The ―Race to 21‖ game we test 

renders these other-regarding preferences irrelevant; therefore we call it a ―pure‖ test of backward 

induction. 

 

 Chapter one introduces the game, as well as tests the effect of adding incentive payments in several 

places along the path of play.  Chapter two continues by analyzing how each different intermediate 

incentive affects the speed of learning in the game.  Chapter three concludes with a look at whether 

individual differences among laboratory subjects explain some of our experimental results.  Common to 

all chapters is the result that incentive payments offered on the subgame perfect equilibrium path near the 

midpoint of the game particularly enhance the use of backward induction among subjects.
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CHAPTER ONE:  CAN PLACEMENT OF INCENTIVES WITHIN THE STRUCTURE OF A RACE GAME 

ENHANCE BACKWARD INDUCTION? 

1. Introduction 

  

In economics, as in life, we tend to assume agents make decisions only after careful consideration 

of the choices available, the chances afforded by nature, and the outcomes that are possible as a result.  In 

fact, the fundamental assumption of neoclassical economic analysis is that human beings function as fully 

rational agents who maximize their utility over multidimensional alternatives under economic constraints.  

Most real-world decisions require multiple stages of actions, events, and consequences that are inherently 

complex.  As a result, no single explanation is obvious for the deviations from optimality we observe in the 

experimental laboratory.  Plausible explanations include cognitive limitation, incomplete specification, 

information availability (or lack of), and attitudes toward risk, among others.   

 One such deviation from rationality we see is the failure of individuals to use backward induction in 

decision making tasks.  Backward induction involves solving first for optimal behavior at the ―end‖ of a 

game, and then determining what optimal behavior is earlier in the game given the anticipation of this later 

behavior.  Many studies attribute backward induction failures to bounded rationality
1
.  Nevertheless, 

others have shown that some notion of training or experience actually increases the propensity for subjects 

to backward induct.  To that end, Kagel and Levin (1999) showed that ―super-experienced‖ subjects 

behaved differently than inexperienced.  Likewise, in a field experiment whereby baseball cards were 

auctioned at a trade show, List and Lucking-Reiley (2002) found that dealers, who commonly participate in 

auctions, bid more strategically than nondealers.  Further, Levitt et al. (2008) show that chess 

grandmasters are able to use backward induction in simple decision tasks
2
.  Finally, Johnson et al. (2002) 

concluded that untrained subjects deviate from equilibrium as a result of limited look ahead (vs. backward 

                                                           
1
 For example, see McKelvey and Palfrey (1992), Busemeyer et al. (2000), Costa-Gomes, Crawford, and Broseta 

(2001), Johnson, Camerer, Sen, and Rymon (2002), and Johnson and Busemeyer (2001).  
2
 Another notable exception is Palacios-Huerta and Volij (2008). 
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induction), and that training them in backward induction draws them far closer to equilibrium (though, 

curiously, not all the way). 

To attempt an explanation ourselves of the seemingly irrational behavior commonly observed in 

the laboratory, we implement a zero-sum game called Race to 21, whereby two players take turns choosing 

numbers that are added in sequence until one reaches the sum 21.  This game is not new or unique to our 

set of experiments; in fact, we know of several experimentalists who have used variations on this game to 

test various aspects of learning, strategic sophistication, bounded rationality, and backward induction
3
.  

Given that most previous empirical work shows that people tend not to behave rationally (at least in the 

lab), the challenge is to structure a game in such a way that we may elicit rational backward induction.  Our 

game is both different from and preferable to those games others have used to test for backward induction in 

the laboratory setting in that we employ ―teaser‖ payments both on and off the equilibrium path of play to 

see whether and how incentives impact an individual’s ability to backward induct.  Additionally, we test 

two strategy space choice sets that are different from those previously tested
4
, and our subjects play against 

an emotionless computer opponent so that deviations from the optimal path are automatically punished
5
.  

We find that subjects more often solve the game when offered incentive payments for staying on the 

equilibrium path (more specifically, when offered an incentive near the midpoint of the game) than when 

they play the baseline game with no teaser payments.  

The remainder of the study is organized as follows.  Section 2 outlines previous related literature.  

Section 3 describes our experimental design, including a detailed description of the game, subject pool, and 

laboratory procedure.  In section 4, we make predictions based on theory and discuss their implications.  

We present our empirical results in section 5, and section 6 concludes. 

                                                           
3
 See, for example, Levitt, List, and Sadoff (2008); Gneezy, Rustichini, and Vostroknutov (2007), Costa-Gomes and 

Crawford (2006), and Dufwenberg, Sundaram, and Butler (2008). 
4
 Levitt, List, and Sadoff (2008) test strategy spaces (1-9) and (1-10), Dufwenberg, Sundaram, and Butler (2008) test 

strategy space (1-2).  We test strategy spaces (1-3) and (1-4), as do Gneezy, Rustichini, and Vostroknutov (2007). 
5
 Similar to Johnson, Camerer, Sen, and Rymon’s (2002) ―robot‖ players. 
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2. Related Literature 

 

Decision theory, a complex body of knowledge that has been studied by economists, 

mathematicians, and psychologists for over 40 years, has proven useful to economic theorizing in several 

ways.  Certainly, if we can describe what variables affect decisions, we can attempt to prescribe how 

decisions should be made.   The major dichotomy that exists in decision theory is that between normative 

and positive disciplines.  The vast majority of the prior work in decision theory falls under the normative 

heading, i.e., concerned with how people should make decisions in theory (for a comprehensive review of 

the classic literature, see S. O. Hansson, 2005, and Bell et al., 1988).  These theoretically-oriented studies 

are useful to the extent that they suggest tools, methodologies, and software interfaces to help people make 

better decisions.   

Since it is obvious that human beings do not always behave optimally, the positive, or descriptive, 

discipline consists of tests of actual behavior against the predictions of the aforementioned theoretical 

models.  Most of this work, though smaller in volume than its normative counterpart, has exploded since 

the mid-20
th
 century as experiments became infinitely easier to administer with the proliferation of 

computer technology.  There is a growing body of experimental literature that studies the principles that 

govern both strategic behavior and individual decision making, surveyed in both Kagel and Roth (1995) 

and Crawford et al. (1997).  Historically, most applications of individual decision and strategic game 

theories assumed equilibrium strategies selected by backward induction in their predictions.  Backward 

induction, one of the most important solution concepts in game theory, relies on a set of commonly 

accepted economic assumptions; namely, that individuals are rational and have common knowledge that all 

other individuals are rational as well (Aumann, 1995).  Despite its widespread theoretical application, 

empirical evidence suggests that economic agents may engage in backward induction less frequently than 

the theory would predict.  In fact, nearly all laboratory experiment results indicate people are not able to 

backward induct successfully; see, for example, McKelvey and Palfrey (1992), Busemeyer et al. (2000), 
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Costa-Gomes et al. (2001), Johnson et al. (2002), and Johnson and Busemeyer (2001).  These deviations 

from equilibrium are often explained by social preferences (G. E. Bolton and A. Ockenfels, 2000; E. Fehr 

and K. M. Schmidt, 1999), risk attitudes (R. P. Cubitt et al., 1998; D. Kahneman and A. Tversky, 1979), or 

failures of rationality.  By far the most often cited and generally accepted explanation for bounded 

rationality is the practical reality that humans have finite computational resources available for decision 

making; in fact, Rapoport (1975) shows that human beings may be capable of planning only two or three 

stages ahead.  Seminal bodies of work by Tversky and Kahneman (1974) and Fischhoff, Slovic, and 

Lichtenstein (1978) introduced useful rules of thumb, or heuristics, to overcome the strict rigidity of 

optimization required by rational agent models.  More recently, Costa-Gomes and Crawford (2004) and 

others have suggested that allowing structured boundedly rational decision rules in some of these 

applications can resolve the apparent contradiction between theory and observation. 

 If perfect backward induction yields the optimal solution, and the literature suggests people don’t 

actually use backward induction unless trained, might we be able to improve outcomes by using incentives 

to help guide individuals to the subgame perfect equilibrium path identified by backward induction?  This 

study is our contribution to the larger literature on the propensity of people to actually use backward 

induction. 

3. Experimental Design 

 

The “Race to 21” game 

 While much of the experimental literature tests whether subjects use backward induction in 

strategic settings such as bilateral bargaining, centipede, and prisoner’s dilemma games, these games 

actually may be testing a host of motivations other than backward induction (e.g. reciprocity, trust, 

welfare, etc.). The ―Race to 21‖ game we studied (a variation on Levitt, List, and Sadoff’s (2008) Race 

to 100 game), by contrast, serves as a pure test of backward induction. In the baseline Race to 21 game, 
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a human subject plays opposite a computer opponent.  The human and computer alternately choose 

numbers within a given range (strategy space 1-3 or 1-4, inclusive) which are then added in sequence.  

In the 1-3 version, perfect backward induction yields a subgame perfect equilibrium strategy of 

choosing ―1‖, then on subsequent turns selecting whatever number sums to 5, 9, 13, 17, and 21.  In the 

1-4 game, the subgame perfect equilibrium path is 1, 6, 11, 16, and 21.  The computer is programmed 

to make random selections within the given action space, unless the human subject chooses a number 

that takes him off the equilibrium path of play.  In that case, the computer will move to the equilibrium 

path for the remainder of the game, rendering a victory for the human subject impossible.  Our setup 

guarantees a first-mover advantage; therefore the human player always makes his selection first.  Play 

continues until either the human or the computer chooses a number that makes the sequence sum to 21. 

This player is the winner and receives a predetermined payoff of 100 points while the loser receives 

nothing.  Race to 21 is a zero-sum game; therefore it allows us to isolate the test for backward induction 

while disregarding any assumptions on social preferences or beliefs about other players. 

Since the point of this experiment is to test the effect of incentives on backward induction, we 

complicate the baseline treatment by adding what we call ―teaser‖ payments at various points along the 

equilibrium path of play.  Subjects are offered an additional 50 points for choosing a number that yields a 

sum of, for example, 13 during the course of play.  If the action space is 1-3, the teaser payment for landing 

on 13 serves as an incentive to stay on the equilibrium path, and the subject earns 150 points.  When the 

action space is 1-4, a teaser payment at 13 could serve as a distraction from the equilibrium path; if he 

chases the teaser in this case, the subject sacrifices the larger payoff of 100 for the intermediate teaser 

payoff of 50.  To isolate whether the subject is actually chasing the teaser, we test the teaser treatments on 

and off the equilibrium path, as well as early in the game and nearer the middle of the game, against a 

control treatment with no teaser.  The computer is programmed such that if the human subject is on the 

equilibrium path the computer plays randomly, unless it can grab the teaser, in which case it does. 
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Subject Pool 

We recruited approximately 200 undergraduate students during the summer of 2009 at the 

University of Tennessee-Knoxville (UT).  The UT economics department recruits generically for 

experiments through the existence of a database called the Online Recruiting System for Economic 

Experiments (ORSEE).  Currently, there are 1,543 students registered in ORSEE; of those, we invited 

1,512 to register for the Race to 21 experiment.  Invitees received an e-mail describing the task as ―a 

market experiment … [in which] earnings are determined by the decisions you make.‖  We had 212 

students register, and 199 actually showed up to participate.  Academic majors represented were quite 

diverse, including liberal and fine arts, business, social and hard sciences, education, and nursing. 

Experimental Procedure 

The experiment sessions took place in the UT Experimental Economics Laboratory.  The lab is set 

up with 27 individual client workstations (Dell PCs) networked to an intranet server.  Study carrel walls 

separate each workstation to maintain subjects’ privacy.  Subjects remained anonymous to each other and 

their decisions remained private throughout the experiment.   

The Race to 21 game is programmed in Perl
6
, a highly flexible general-purpose dynamic 

programming language.  Perl allows the subject in the lab to play the game via an html interface, and 

records the subject’s and computer’s decisions to a text file for analysis.  The flexibility inherent in the 

program allowed us to make quick parameter changes between lab sessions to accommodate all 10 teaser 

treatments. 

At the start of each lab session, experimenters gave subjects a copy of written instructions for the 

game to complement the same instructions visible on the participants’ computer screens.  Subjects were 

asked to follow along as experimenters read the instructions aloud.  During each lab session, subjects 

                                                           
6
 Special thanks to Dr. Mike Shor at Vanderbilt University for programming our game. 
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played two Race to 21 games; game one consisted of 30 rounds of either action space 1-3 or 1-4, while 

game two consisted of 15 rounds of the action space that was not played in the first game
7
.  The decision 

task was framed as one of maximizing earnings by removing between 1 and 3 (or 1 and 4) numbered stones, 

alternating with the computer opponent, until all 21 stones were removed from the screen.  Figure 1 shows 

a screenshot of the graphic interface the subjects faced
8
. 

 

Subjects were told they earned points when they, and not the computer, removed the green stones.  

The boldface numbers on the green stones represent the points they earned for removing those stones.  

Players removed stones by mousing over the stones they wanted to remove (which highlighted them on the 

screen), and then clicking on the last stone in the series they wanted to remove.  Participants were given the 

opportunity to practice with the interface and ask questions before actual play began.  All navigation 

through the pages of the experiment occurred by clicking a button at the bottom of each screen labeled 

―Proceed‖.  At the completion of the final round of game two, we asked subjects to complete a short 

questionnaire.  Immediately following the experiment, we paid subjects their earnings privately in cash.  

Payments were calculated at the rate of $1 per 150 points.  Please see Appendix B for a copy of the written 

instructions, screen shots for all phases of the experiment, and the questionnaire. 

Each lab session represented one of 10 different treatment parameters.  Table 1 summarizes the 10 

treatments we tested in game one. 

4. Hypotheses 

Levitt, List, and Sadoff (2008) found in their Race to 100 game that simply changing the action 

space from (1-9) to (1-10) dramatically reduced the share of subjects who fully backward induct from 

nearly sixty percent to less than fifteen percent—a striking result given their subject pool consisted of chess 

                                                           
7
 Only the results of game one are reported in this essay. 

8
 All figures and tables may be found in Appendix A. 
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grandmasters with extensive experience in backward induction.  To explore whether the same 

phenomenon occurs with less experienced student subjects, we test each teaser against both action spaces 

(1-3) and (1-4).  Theoretically, it’s unclear which of these should make backward induction easier.  

Asking a subject to choose a number between one and three in a race to 21 leaves him with five decision 

nodes to contend with, and three options at each node.  Conversely, selecting from one to four leaves him 

with only four decision nodes, but four options to choose from at each node.  Whether backward induction 

is easier with fewer decision nodes to the end of the game but more options at each node, or fewer options to 

choose from at each node but more total nodes to analyze, remains an empirical question. 

To determine the optimal placement of an incentive within the structure of a race game, we also test 

teasers placed early in the game and near the midpoint of the game against games with no teasers.  A 

midpoint teaser might enhance backward induction by shortening the game for the subject.  In the extreme 

case, an on-equilibrium teaser at the midpoint of the game, e.g. on 11 in the (1-4) game, may effectively turn 

the four-node race to 21 game into two separate subgames of two nodes each.  Then the subject need only 

backward induct two moves at a time from the end of the each subgame, lessening his cognitive burden 

relative to one longer game.  Alternatively, encountering a teaser on one of the first several stones in the 

game could function to entice a forward-looking subject to get on the equilibrium path of play earlier in the 

game, increasing the probability that a subject will win the game.  We will look at the data from several 

different angles in an attempt to parse these effects. 

For obvious reasons, placing a teaser on the equilibrium path should make backward induction 

easier than in games with no teaser.  By offering an extra fifty points for taking the teaser along the way, 

subjects have an even greater incentive to make the ―right‖ decision at every node.  Predicting the effect of 

an off-equilibrium teaser payment is a more difficult exercise.  On one hand, the off-equilibrium teaser 

effectively shortens the game in the same manner as described above, which should make the game easier to 

solve by backward induction.  On the other hand, this teaser takes the subject off the equilibrium path of 
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play.  Since the computer program punishes any deviation from equilibrium in the context of our Race to 

21 game, we might expect that backward induction is made more difficult by this effect relative to control 

treatments with no teaser.  Again, we’ll use emprics to help us determine which of these effects dominates. 

To sum up, relative to a game with no teasers, we predict on-equilibrium teasers to enhance 

backward induction.  For the reasons outlined above, off-equilibrium teasers, early and mid-game teasers, 

and differences in action space may either enhance or detract from learning via backward induction.  We 

will use the results of our laboratory experiment to draw conclusions regarding the empirical questions. 

5. Results 

  

Due to capacity constraints in the lab, technical glitches resulting from data transfer, and the failure 

of a few subjects to follow directions, we report the results from 179 individual subjects (out of the 199 who 

showed up to participate).  Subjects earned $18.91 on average, with a median payment of $18.08, and 

mode of $5 (the minimum payoff regardless of performance on the task).  We conducted a total of 12 

sessions over June and July 2009.   

Before it is possible to analyze the effects of teasers on backward induction, first it is necessary to 

establish that subjects are actually able to backward induct.  We begin with the question of whether or not 

subjects use backward induction in the simple (no teaser) Race to 21 game.  Table 2 presents results on the 

probabilities of remaining on the equilibrium path of play at each node, conditional upon reaching that 

node.  Rows correspond to the action space tested, and columns correspond to each different decision 

node, working backward from the end of the game.  Just beneath each node’s description in the first row 

are the relevant ―key numbers‖ on the equilibrium path of play for each action space version (in 

parentheses).  Equilibrium play dictates that exactly five decision nodes will be reached in the (1-3) game, 

while only four nodes are required in equilibrium for the (1-4) game. 

 The first column of Table 2 tells us that of the 360 observations on the (1-3) version of the Race to 
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21 game, 96% successfully solved the game if they arrived on the final equilibrium node; i.e., of the 

subjects who chose a number on their penultimate move that summed to seventeen, 96% selected the 

number that summed to 21 on their next move.  Likewise, conditional on reaching the key number sixteen 

on their penultimate move in the (1-4) version, 97% of subjects will win the game.  An alternative way of 

interpreting these results is this:  46% of subjects made the ―right‖ first move to remain on the equilibrium 

path in the (1-3) game.  Of those, 58% chose a number that added up to 5 on their next move.  Of those 

subjects who still remained on the equilibrium path at node ―Final-3‖, 81% continued to the following 

equilibrium node, and so on.  These results indicate that at least some subjects are able to backward induct 

in the Race to 21 game absent distracting teaser payments.  We will compare all subsequent treatments to 

this baseline in order to draw conclusions regarding teaser effects on backward induction. 

 Table 3 shows the percentage of all rounds played that subjects won for each experimental 

condition.  Recall that each of 179 subjects played thirty rounds of the same game, four different teaser 

locations were tested (on-early, on-mid, off-early, and off-mid), and two different action space conditions 

were tested (1-3 and 1-4) for each teaser location, for a total of 5,370 unique observations.  In order to win 

the game, a subject must never deviate from the equilibrium path; therefore, we can equate winning with 

perfect backward induction
9
. 

The intersection of the first row and first column of Table 3 indicates that subjects win the game in 

which the teaser falls on the equilibrium path and early in the game 45% of the time when the action space 

is (1-3), and 41% of the time when the action space is (1-4).  For ease of exposition, we first aggregate the 

above results for whether the teaser payment falls on the equilibrium path, early or near the middle of the 

game, and whether the action space presented is (1-3) or (1-4).  Then we break the aggregate results down 

further to support our conclusions.  Our analysis leads to the following insight: 

RESULT 1:   Teaser payments that fall on the equilibrium path of play make backward induction easier 

                                                           
9
 The probability of winning just by chance is 0.0041 in the (1-3) game and 0.0039 in the (1-4) game. 
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relative to games with no teasers. 

In Table 4, we pool the data from Table 3 to compare the on-equilibrium teaser condition to the 

no-teaser condition.  Subjects win games when a teaser payment falls on the equilibrium path 52% of the 

time, more than doubling the probability of winning 25% of the time when no teaser payment exists.  This 

relationship is true regardless of whether the teaser occurs early in the game or nearer the middle. 

To complement this analysis, we test the linear probability specification
10

 of a binary regression 

model of the form 

𝑃 𝑤𝑖𝑛𝑖𝑡 = 𝛽0 + 𝛽1 𝑜𝑛 + 𝛽2 𝑜𝑓𝑓 + 𝛽3 𝑜𝑛 ∗ 𝑒𝑎𝑟𝑙𝑦 + 𝛽4 𝑜𝑓𝑓 ∗ 𝑒𝑎𝑟𝑙𝑦 + 𝜀𝑖𝑡  

where P(winit) equals one if subject i wins the game in round t and zero otherwise, and the regressors 

represent interactions between categorical dummy variables.  The regressors should be interpreted as 

follows: ―on‖ is really the ―on*mid‖ interaction, and ―off‖ is really ―off*mid‖.  To glean the marginal 

effect of the on-early teaser condition it is necessary to sum the coefficients on the ―on‖ and ―on*early‖ 

regressors, and likewise for the ―off‖ and ―off*early‖ interaction coefficients.  Empirical results are 

reported in Table 5, which presents the marginal effects associated with a change in each of the regressors 

relative to the control (no-teaser) condition.   

This model explains 11% of the variation in the data set.  The coefficients on the independent 

variables tell us that relative to the observed probability of winning over all treatments (36%), presenting 

the subject with an on-mid teaser increases the probability of winning by 34%, holding all other variables in 

the model constant.  Likewise, putting the teaser on the equilibrium path but early in the game increases 

the probability of winning by 18% (.34-.16=.18) relative to the overall probability of winning, ceteris 

paribus.  It should be noted that the default treatment for the regression, the no-teaser case, corresponds to 

                                                           
10

 A potential drawback of this model is that the estimated coefficients can imply probabilities outside the unit interval 

[0,1].  For this reason, the marginal effects probit model is often used instead.  After running the regressions using 

both linear probability and marginal effects probit using Stata, the coefficients we found were almost identical in each 

and predicted probabilities never fell outside the unit interval.  This is probably attributed to having a very large data 

set. 
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the constant term.  These results corroborate our earlier conclusion that on-equilibrium teasers are better 

than no teasers at all. 

 Finally, as a test of robustness we can look at subjects’ average earnings across treatments.  

On-equilibrium treatments result in average earnings per participant of 1,763 points ($11.75), after backing 

out the teaser payment of 50 points for each round won.  This is indeed much greater than the 717.86 points 

($4.79) earned on average in the no-teaser setting, and the difference is statistically significant at the 99% 

confidence level.   

 Now that we’ve established that on-equilibrium teasers outperform no-teaser treatments, further 

exploration into the data leads to the following result: 

RESULT 2:  Teaser payments presented near the midpoint of the game yield better results than those 

offered near the beginning of the game—but only if those teasers are simultaneously on the equilibrium 

path. 

 In Table 6, again we aggregate the data on mid- and early-game teasers from Table 3 and compare 

to the aggregated no-teaser treatment results.  Subjects win games 39% of the time when a teaser occurs 

near the midpoint of the game, and 35% of the time when they find teasers early in the game.  While both 

aggregate measures are significantly better than the no-teaser treatment, it is obvious from Table 3 that this 

result is driven by the teaser falling simultaneously on the equilibrium path.  This merely reinforces the 

conclusions drawn in Result 1 above. 

 Probing this result further, we re-examine the linear probability model introduced in the previous 

section.  In comparing the regression coefficients of on-mid to on-early teasers, it is clear that the midpoint 

teaser yields wins nearly twice as often as when the teaser is presented early in the game (34% and 18%, 

respectively).  Examining the off-equilibrium equivalents reveals that a midpoint teaser payment actually 

reduces the probability of winning the game when it occurs off the equilibrium path of play by 8%, while 
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the off-early teaser has almost no effect (0.2%) on the probability of winning the game.   

 As in the previous section, we now check average earnings for all subjects across experimental 

conditions to provide further evidence for our result.  Subjects playing games with on-mid teasers earn 

1,793.62 points ($11.96) on average, after accounting for the extra fifty points per game available in this 

setting.  This is slightly better than the 1,732.32 points ($11.55) earned on average by those playing games 

with on-early teasers.  In contrast, when the teaser is presented off the equilibrium path, subjects facing 

teasers early in the game fare slightly better than those who see teasers closer to the middle; in fact, they 

earn an average of 721.68 points ($4.81) and 523.62 points ($3.49) respectively.  This comparison 

reinforces the result that mid-game teasers outperform early game teasers if the teaser also happens to occur 

on the equilibrium path of play. 

 Our final insight concerning the effect that variation in the structure of the Race to 21 game has on 

backward induction involves the strategy space a player faces: 

RESULT 3:  Backward induction is made easier with fewer decision nodes, even if there are more choices to 

analyze at each node. 

To see this, first we pool the number of rounds won over all of the (1-3) and (1-4) strategy space treatments, 

respectively, from Table 3.  This gives us the proportions shown in Table 7.  On the whole, subjects win 

games where they choose from one to four at each of four decision nodes 38% of the time, versus 33% of 

the time for those games in which subjects choose from one to three at each of five nodes.  The data here 

suggest that it is the number of decision nodes the player faces, rather than the strategy space at each node, 

which better predicts performance in backward induction tasks. 

 To lend further credence to this result, we break out the action space results by teaser treatment in a 

marginal effects probit model: 
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𝑃 𝑤𝑖𝑛𝑖𝑡  = 𝛽0 + 𝛽1 1𝑡𝑜3 + 𝛽2 𝑜𝑛 + 𝛽3 𝑜𝑓𝑓 + 𝛽4 𝑜𝑛 ∗ 𝑒𝑎𝑟𝑙𝑦 + 𝛽5 𝑜𝑓𝑓 ∗ 𝑒𝑎𝑟𝑙𝑦 

+ 𝛽6 𝑜𝑓𝑓 ∗ 𝑒𝑎𝑟𝑙𝑦 + 𝛽7 𝑜𝑛 ∗ 1𝑡𝑜3 + 𝛽8 𝑜𝑓𝑓 ∗ 1𝑡𝑜3 + 𝛽9 𝑜𝑛 ∗ 𝑒𝑎𝑟𝑙𝑦 ∗ 1𝑡𝑜3 

+ 𝛽10 𝑜𝑓𝑓 ∗ 𝑒𝑎𝑟𝑙𝑦 ∗ 1𝑡𝑜3 + 𝜀𝑖𝑡  

where P(winit) again refers to the binary outcome (1 if subject i wins the final stone in round t, 0 otherwise), 

and the regressors represent interactions among categorical dummies.  As in the previous linear probability 

model, the coefficients must be appropriately combined to interpret the marginal effects of each teaser 

condition on the probability of winning the final stone.  Stata gives us the raw output in Table 8.  Recall 

that to interpret the marginal effects by treatment, we sum the coefficients as seen in Table 9 (using the 

alphabetical references to the regressors from Table 8).  The cells in Table 9 correspond to the marginal 

effects of each teaser treatment relative to the no-teaser control condition within the same strategy space.  

For instance, having an on-early teaser in a (1-3) action space game increases the probability that a subject 

will win the game by 31% over the (1-3) game with no teaser.  The third row in Table 9 is the most useful 

in providing further evidence in favor of Result 3.  While the games played with on-early and off-mid 

teasers did not have statistically different outcomes based on action space, subjects won the on-mid teaser 

games 10% more often when asked to select from one to four stones, and they won the off-early teaser 

games 28% more often when tasked with strategy space (1-4). 

 In sum, we find that backward induction in the Race to 21 game is made easier by placement of 

on-equilibrium teasers near the middle of the game, and especially so when a subject has to contend with 

fewer decision nodes between the root and terminal node. 

6. Conclusion 

  

In this study, we introduce undergraduate student subjects to a controlled laboratory experiment in 

a pure test of backward induction.  Making use of our Race to 21 game, we report several insights.  We 

find that these subjects exhibit the ability to strategically backward induct substantially greater than random 
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chance would explain.  Further, we find that incentives placed within the structure of the game affect 

whether subjects are more or less likely to win the game depending on their location; specifically, subjects 

offered teaser payments on the equilibrium path near the midpoint of the game win more than twice as often 

as when they play the same game with no teaser available.  The games in which subjects were offered 

teaser payments off the equilibrium path of play show variable results depending upon whether the teaser is 

offered earlier or later in the game.  Further testing of off-equilibrium teasers should be done in order to 

draw more robust conclusions.  Finally, we find that the length of the game matters for backward 

induction.  Facing fewer nodes from beginning to end improves outcomes, regardless of the strategy space 

subjects must choose from.  

 Besides revealing these insights into incentivizing backward induction tasks, our work also offers a 

methodological contribution.  It highlights the potential for computerized laboratory experiments to 

―train‖ subjects in backward induction via punishment for deviating from optimal play.  It remains to be 

seen whether this type of training in backward induction can be generalized from one setting to another.  

We hope that future efforts will explore more fully other important dimensions of controlled laboratory 

experiments for training potential. 
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CHAPTER TWO:  DO INCENTIVES SPEED UP OR SLOW DOWN LEARNING DEPENDING ON THEIR 

POSITIONS RELATIVE TO THE EQUILIBRIUM PATH AND THEIR LOCATIONS WITHIN THE GAME? 

 

1. Introduction 

  

In the previous chapter, we showed that human subjects are indeed capable of solving a decision 

task using backward induction techniques.  Additionally, we reported that introducing an intermediate 

incentive payment into the structure of the decision task that our subjects faced had the propensity to 

enhance or distract them from using backward induction to strategically maximize their payoff in the 

game.  Specifically, subjects playing the Race to 21 game won more than twice as often when offered 

teaser payments on the equilibrium path near the midpoint of the game as when they played the same 

game with no teaser payment available.  We further concluded that the length of the game matters for 

backward induction.  The fewer decision nodes a player has to contend with, the better the outcome. 

 The data we analyze in this essay is based on the same set of Race to 21 experiments that we used 

in the previous chapter.  Given that we know our subjects are able to use backward induction to solve 

simple decision tasks such as those presented here, we test whether intermediate incentive payments 

affect the speed with which a subject learns the optimal path of play based on where the incentive is 

located within the structure of the game.  We predict that the same conditions which were advantageous 

for backward induction in the first chapter will also prove to induce the fastest learning from one round to 

the next.  Specifically, we hypothesize that on-equilibrium teasers will outperform off-equilibrium 

teasers, and that a teaser offered near the midpoint of the game will result in faster learning if it is 

simultaneously on the equilibrium path of play. 

Before we can definitively say which conditions speed up or slow down learning, it is necessary 

to establish appropriate methods to measure the speed of learning.  So then, what constitutes a good 
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measure of speed of learning?  In our Race to 21 game, we say a subject ―learned‖ the game when he 

wins the final stone.  Then the appropriate question is how long does it take a subject to figure out the 

path he must take to reach the final stone?  To answer this, we will count the number of rounds a subject 

plays before he is successful in winning the game in the absence of a teaser payment.  Finally, we want 

to know whether we can hasten or postpone subjects learning the optimal sequence of game play by 

offering an incentive (teaser) payment for taking an intermediate stone somewhere along the way.  After 

analyzing the data through several different methods, we find that on-equilibrium teasers offered near the 

middle of the game result in faster learning than in games in which no teaser payment is offered, and 

further, that the on-mid combination is superior to all other teaser conditions tested.   

2. Measuring the speed of learning 

  

Since we are interested in measuring how long it takes an individual to learn the optimal 

(subgame perfect equilibrium) path between the root and terminal decision nodes, a logical first place to 

start is to count the number of rounds a subject played before he first reached the final stone in the Race 

to 21 game.  In Table 10, we compare the average number of rounds subjects took to earn both the teaser 

stone and the final stone in each treatment.  The non-italicized entries represent those averages 

conditional on subjects reaching the target stone at all, while the italicized entries refer to those averages 

calculated by what we call the unconditional method, defined immediately below.  Additionally, Table 

10 contains information on the number of rounds subjects take to get the teaser stone the first and second 

time, the number of rounds they take to reach the final stone the first and second time, the fraction of 

rounds in which these target stones were taken, and statistical tests for the differences among all of these 

numbers.  Notice the no-teaser game results near the bottom of Table 10.  These serve as our control 

treatments, against which we compare the various teaser treatments in order to draw conclusions about the 

effects of different incentives on the speed of learning. 
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 From Table 10, we see that conditional on winning the game in any round, subjects who chose 

from one to three stones at each node first found the equilibrium path of play by (on average) round six of 

thirty.  However, this result might be misleading.  Only one-third of the subjects who played this 

particular treatment ever reached the final stone in the game even once, and they account for only 18% of 

all rounds played.  So using this average to measure speed of learning is probably biased downward, 

making the game appear easier to solve than it really is.  To mitigate this effect, we alternatively assume 

that for any subject who failed to win the game at least once in thirty rounds, he would have won the 

game in round 31.  This unconditional assumption is second-best; we have no way of knowing how 

many rounds the subject really would have needed, much less if he would learn the game at all.  

Nevertheless, it better reflects the ―tougher‖ nature of the decision task.  After accounting for all subjects 

who played the no-teaser games and without conditioning on having won the game by round thirty, we 

find that on average subjects took the final stone in the (1-3) game by round 23, and the subjects who 

played the (1-4) version reached the optimal path by round 20. 

 Taking a closer look at the various teaser conditions, we likewise count the number of rounds it 

took our subjects to first reach the path to take the teaser stone.  As we might expect, when the teaser 

was presented early in the game, conditional on subjects taking the teaser at all, they grabbed it in the 

very earliest rounds of the game—on average before round three
11

.  In contrast, when the teaser occurred 

near the middle of the game, subjects took several additional rounds to take the teaser (on average by 

round seven).  We begin to see more interesting patterns in the data once we compare the speed-to-teaser 

to the speed-to-final stone. 

One caveat should accompany the discussion regarding our measure of learning: 

RESULT 1:  The first time a subject takes a teaser or final stone does not necessarily constitute learning. 

                                                           
11

 For the reasons discussed in footnote 25, it is impossible for subjects to grab the teaser in the off-early (1-4) 

treatment. 
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The prior probability that a subject would select the correct move at each decision node to win the Race to 

21 game by random chance is 0.0041 in the (1-3) game and 0.0039 in the (1-4) version.  One would 

think these probabilities small enough that actually observing a subject taking the final stone is more 

likely than not evidence that learning by backward induction has taken place.  However, we have 

numerous examples in the data of a subject taking the final stone in one round, but then losing the next 

several rounds before consistently winning the final stone for the remainder of the game.  For this 

reason, we also record the second round in which subjects won either the teaser or final stone.  If the first 

time subjects take the teaser or final stone is indeed evidence of learning, then we would expect the 

second time to be the very next round.  The columns in Table 1 labeled ―deltax,‖ where x stands for 

either T (for teaser) or F (for final stone), represent the difference between the first and second times the 

subject took the teaser and final stones in each experimental condition.  These calculations demonstrate 

that subjects average between one and six rounds between their first and second successful strategies
12

.  

Testing the null hypothesis that all delta=1, we are able to reject the null in all experimental treatments.  

Taking this into consideration, we will derive an alternate measure of learning later in this essay.  But for 

now, we shall use the delta calculation to probe further the unique properties possessed by each teaser 

combination. 

In order to draw conclusions about the effects that different incentive placements have on the 

speed of learning, we calculated the difference between the first round in which our subjects took the 

teaser and the first round in which they took the final stone.  The most striking difference leads to the 

following insight: 

RESULT 2:  Finding the path to the final stone once a subject has reached the teaser stone occurs 

instantaneously for the on-mid treatment and not for any other treatment. 

                                                           
12

 Except for the on-mid treatment, which we will establish is different from the rest in Result 2. 
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From the rightmost column in Table 10, it becomes obvious that teaser payments have different 

effects on learning depending upon their position.  We can see by looking at the on-early teaser 

treatment that on average subjects need five or six additional rounds after first taking the teaser stone 

before they find the optimal path to the final stone.  In aggregate, this improves speed of learning 

relative to the no-teaser control condition by at least a couple of rounds.  However, the most striking 

difference occurs when the teaser is offered on the equilibrium path near the midpoint of the game.  In 

this case, our subjects need at most one round to find the path to the final stone after reaching the teaser.  

In fact, we are unable to reject the null hypothesis that the difference between the first round a subject 

found the teaser stone and the first time he reached the final stone are the same round in the on-mid teaser 

condition. 

 Further, this immediate teaser-to-win relationship is unique to the on-mid combination.  If the 

important component of this condition is the fact that the teaser falls on the equilibrium path, we should 

expect to see similar results in our on-early teaser treatment.  However, Table 10 shows that not only do 

subjects win fewer rounds in the on-early treatments, but it also takes them at least five extra rounds 

between getting the teaser and getting from the teaser to the final stone.  Likewise, the fact that there 

appears to be a big difference between learning in the off-mid setting (taking at least eight rounds to reach 

the optimal path to the final stone after taking the teaser) and in the on-mid setting tells us that learning is 

not improved just by placing a teaser in the middle of the game.   

 Looking more closely at the relationship between the first and second rounds in which subjects 

take the teaser and final stones, we are able to glean the following observation: 

RESULT 3:  Getting the teaser stone is somehow fundamentally different from winning the final stone in the 

on-mid teaser case. 

To see this, first we take the difference between the first and second times the subjects grabbed the teaser 

stone (column ―deltaT‖).  Restating Result 1 above, if our subjects are learning to take the teaser rather 
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than happening upon it randomly, then we should see very little (if any) time pass between the first and 

second rounds in which they take the teaser.  We test the null hypothesis that the number of rounds 

between the first and second ―takes‖ is less than the number of rounds between the start of the game and 

their first take.  The results of this hypothesis test tell us that subjects are not getting the teaser by 

accident; however, subjects playing the on-mid teaser game take longer to get their second teaser than in 

any other experimental condition.  Next, we compare the number of rounds between the first and second 

time subjects take the final stone to win the game (column ―deltaF‖).  Here, the on-mid treatment when 

the action space is (1-3) shows a significant advantage over the no-teaser control, conditional on subjects 

learning the game at all (less than one round on average between the first and second wins, compared to 

over four rounds).  Only the off-mid (1-4) treatment comes close, and that is complicated by the fact that 

the average first win comes over two rounds later in the game for the latter treatment.  Similarly, 

although the differences between first and second wins for both the on-mid (1-4) and no-teaser (1-4) 

treatments are nearly identical, the subjects playing the on-mid (1-4) game first play the winning strategy 

over five rounds sooner.  Finally, we test the null hypothesis that the deltaT-to-second-teaser ratio is the 

same as the deltaF-to-second-win ratio.  In all cases we are able to reject the null hypothesis, although 

the difference between the ratios in the on-mid treatment is only weakly significant (p=0.096).  So, we 

conclude from this analysis that the combination of an on-equilibrium teaser with the teaser located near 

the middle of the game offers significant advantages over every other condition we tested in the 

laboratory. 

3. Ranking conditions for speed of learning 

 

In Result 1 we asserted that just because a subject wins one round, does not necessarily mean he 

learned the optimal path.  We recorded numerous observations in which a subject won his first round, 

and then failed to win for several rounds in a row before getting back to the equilibrium path of play.  

Then it cannot be the case that the first round the subject won provides evidence that learning has taken 
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place.  With that in mind, we need a more robust definition of learning in the context of the Race to 21 

game.  Our new and improved definition of learning has two parts: (1) once learned, there cannot be 

gaps of more than two consecutive rounds lost, and (2) learning starts with two sequential rounds won.  

According to this new definition of learning, we rank the various teaser conditions and report the results 

in Table 15.  

Using Table 10 exclusively for all of our analysis leaves out a crucial part of the story.  While it 

is advantageous for hypothesis testing, analyzing the data conditional on observing a subject taking a 

teaser and/or final stone fails to account for sample size in each treatment.  To see why this is potentially 

problematic, notice that if a treatment is particularly difficult, then only the fastest (smartest?) fraction of 

subjects ever learn the path to either the teaser or the final stone.  Taking the average of the first round in 

which that happens tells us nothing about how many were actually able to solve the game.  Thus we 

cannot compare the average number of rounds to getting stone 21 across treatments.  The average may 

be artificially low if the slower players are sorted out. 

 One way of correcting for this problem, mentioned earlier, requires calculating an unconditional 

average for each treatment.  In doing so, we made the conservative assumption that any subject whom 

we did not observe ever playing the winning strategy would be arbitrarily assigned a win in round 31.  

While this assumption gave us higher average first-take rounds for some games than they were in the 

conditional analysis, we still have difficulty in assessing the magnitude of differences between treatments.  

 To get at the magnitude among rankings, we posit the following model.  Consider a game 

without a teaser, and let F(t) be the fraction of people who learn the game before or during round t.  

Then 1 – F(30) is the fraction of people who never win the game because they are cut off after 30 rounds.  

Next, suppose we add a teaser.  We assume that F
T1

(t) = F(β
T2

t), where the superscript Ts represent the 

particular teaser positions (i.e., on/off and early/mid) being compared.  Now suppose that in the 

no-teaser treatment a fraction x of the n subjects learn the game by period t.  These are the fast xn of the 
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n subjects.  With some teasers (e.g., on-mid) it will take them less time to learn the game, so that same 

fraction x will learn the game by period βt, where, if the game is easier, β is less than one.  If we took a 

harder treatment, like off-early, we might get β greater than one.  Now let us assume that the β value is 

the same for all choices of t.  So, if it takes twice as long for the fastest people, it also takes twice as long 

for the slow people.  Likewise, if it takes half as long for the fast people, it takes half as long for the slow 

people.   

If we have a harder treatment, everyone is slower, the slowest ones need more than thirty rounds, 

and we get fewer people solving the game.  This might lead to a faster average learning time, though.  

To see why, suppose that in the ―easy‖ treatment we get five people solving the game (one each in rounds 

one through four and one in round twenty).  The average first-win occurs in round six.  If the hard 

treatment makes everybody take twice as long, the fifth person never solves the game and we are left with 

four people who solve it in rounds two, four, six, and eight; thus, the average first-win round is five, 

which appears to be faster than in the easy treatment.  However we know this cannot be the case, since it 

takes twice as long to solve the game in the harder treatment. 

Now we have a way to estimate how difficult a game is.  We do this by arranging the data in 

such a way to compare the earliest round in which the fastest player learned the game across treatments 

(according to our new definition of learning), then we find the first round in which the next-fastest player 

learned the game for each treatment, then do it again for the third-fastest player, and so on (Table 11). 

According to our theory, in order to calculate the relative difficulty level between treatments (or 

β) we regress each experimental treatment (one column from Table 11) against its no-teaser strategy 

space analog, suppressing the constant term
13

.  We test the null hypothesis that both treatments are of 

equal difficulty (β=1).  If we reject in favor of β < 1, the experimental treatment is easier than the control 

                                                           
13

 Note the disadvantage to using this method: the OLS regression requires the same number of observations on the 

dependent and independent variables.  Therefore not all of the data is used; i.e., when testing each treatment against 

its analogous no-teaser control, the observations are truncated at whichever has the lesser number. 
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because it takes less time for the same fraction of subjects to learn it.  If we reject in favor of β > 1, the 

experimental treatment is harder than the control.  The magnitude of the regression coefficient tells us 

how much easier or harder each teaser makes the decision problem, allowing us to rank the treatments. 

 The results of each regression are presented in Tables 12 and 13.  In Table 12, we regress the 

teaser treatment on its no-teaser analog, under the assumption that all subjects who never solved the game 

in thirty rounds would have done so in the 31
st
 round.  In both the (1-3) and (1-4) strategy space games, 

the on-mid teaser proves to speed up learning the most relative to the no-teaser option, followed by the 

on-early teaser condition.  When subjects choose from one to three stones, the off-mid treatment is not 

significantly harder or easier to solve than its no-teaser analog.  Likewise, the on-early, no-teaser, 

off-mid, and off-early teaser conditions are equally easy to solve in the (1-4) version.  The relatively 

high R
2
 values indicate that our theory works well with the data. 

 In Table 13, we treat the data slightly differently to test the robustness of our theory.  Assigning 

a value of 31 to all subjects we never observed winning the final stone is useful to the extent that we do 

not artificially lower the average speed of learning; however, it turns out that in Table 12 we end up 

regressing a lot of 31s against 31s.  This makes our coefficients closer to one, thus we have a lot of 

insignificant differences.  Another alternative way to treat the data is to match the columns in Table 11 

until both have coinciding 31s.  This has the effect of reducing our sample size, but precludes the bias 

toward one in the coefficients.  We report the results of this regression in Table 13.  Notice that the 

on-mid teaser combination regression coefficients are identical in this treatment, and still win out over all 

other combinations tested.   

 These results, while helpful in that they offer evidence that some teaser treatments may make the 

game easier to learn than others, still suffer from the problem of including ―false-positive‖ observations 

(i.e., assigning a win in round 31 to those whom we never observe winning).  Then perhaps the 

appropriate comparison to make is among those subjects who would have learned the optimum strategy 
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for any treatment.  We shall call these the fastest twenty percent
14

 of subjects in each treatment.  Table 

14 illustrates the top twenty percent of first-win observations taken from Table 11 above.  Examining the 

fastest twenty percent of subjects, it seems that for the (1-3) version of the game, the on-early treatment 

proved easier than any other, followed closely by the on-mid and no-teaser treatments.  Similarly, the 

fastest subjects found the off-early treatment easiest to solve, followed by the on-mid and on-early 

treatments.  Table 15 provides a summary of our rankings under each method of analysis. 

 Under our new definition for learning, the (1-3) on-early and on-mid treatments swap ranks under 

the fastest twenty percent test.  Additionally, the no-teaser, off-early, and off-mid treatments vary in 

their rank by the strategy space of the game and the method of data analysis.  The most important result 

to take from this robustness check is that the on-mid treatment proves to speed up learning more than any 

other treatment under the majority of testing methods addressed, lending further support for the 

superiority of this teaser combination.  The rankings illustrated in Table 15 allow us to summarize the 

data in the following way: 

RESULT 4:  Offering a teaser payment in the on-mid position is the consensus fastest way to induce 

learning relative to the no-teaser control treatment in the Race to 21 game.  However, rankings among all 

treatments are sensitive to the method of analysis. 

4. Conclusion 

  

Looking at the data collected in our Race to 21 laboratory experiment, we report several insights 

into how the speed of learning may be affected based on the location of an intermediate incentive 

payment.  We find that combining an on-equilibrium incentive payment with the mid-game location is 

unique for several reasons.  First, once a subject learns how to find the optimal path of play from the first 

stone to the teaser stone via backward induction, learning the optimal path to solve the game occurs 

                                                           
14

 We chose to test the fastest 20% (rather than 10% or 30%) by counting the smallest number of observations we have 

for any treatment and dividing by the number of subjects who participated in said treatment.  We only observed two 

out of eleven subjects ever winning the off-early (1-3) treatment, which represents 20% of those who played. 
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nearly instantaneously.  The same is not true for any other experimental condition.  Additionally, we 

find that for some reason, learning to get the teaser stone is somehow fundamentally different from 

learning to get the final stone in the on-mid teaser case.  Subjects playing the on-mid game take longer to 

get their second teaser, while they need much fewer rounds to grab their second final stone, than any other 

experimental treatment tested.  Finally, we show that although these results are sensitive to the method 

of analysis tested, the superiority of the on-mid teaser treatment holds in aggregate. 
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CHAPTER THREE:  WHAT FACTORS PREDICT BACKWARD INDUCTION, AND TO WHAT DEGREE? 

1. Introduction 

 

In the previous chapter, we demonstrated that subjects learn how to solve the Race to 21 game over 

time.  Further, we showed that the speed of learning is affected by the position of incentive payments 

within the structure of the game.  Specifically, unlike any other teaser condition, placing an incentive on 

the equilibrium path near the midpoint of the game allows for backward induction to transfer almost 

instantaneously once a subject has learned the path to the teaser stone.  Finally, we discussed how learning 

to get the teaser stone is somehow fundamentally different from learning to win the game for only the 

on-mid teaser experimental condition. 

The data we use in this essay comes from the same set of Race to 21 experiments that we analyzed 

in previous chapters.  As in previous chapters, we analyze the effect that various ―teaser‖ incentive 

payments had on backward induction.  However, in this study we add to the analysis demographic 

variables (i.e., age, gender, number of economics courses taken, and the number of economic experiments a 

subject previously participated in), as well as the results of a simple cognitive ability/patience battery to test 

whether, and if so to what degree, these factors predict backward induction in our decision task. 

2. The Data 

 

Subject Pool  

Before reporting the results of demographic effects on backward induction, first it is necessary to 

have a good idea of the characteristics of our subject pool.  As in the first two essays, we report on 179 

undergraduate student subjects, of whom 74 are female and 105 are male.  They range in age from eighteen 

to forty-three, with a mean age of 21.43 and median twenty.  Figure 2 depicts age distribution via 

histogram.   
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In addition to age and gender, we asked subjects to report the number of economics courses they 

had taken at the university level, as well as whether they had participated in economics experiments 

previous to this one
15

.  Nearly twenty-five percent of all subjects report they had never taken a single 

economics course, and the vast majority of our subjects (59.78%) have taken one economics course
16

.  The 

remaining 15.64% of subjects report taking anywhere from two to fifteen
17

 economics courses at the 

university level.  Additionally, 141 of 179 subjects (78.77%) report having previously participated in an 

economics experiment.   

Cognitive Reflection Test (CRT) 

In addition to the demographic variables mentioned above, our subjects also faced a series of three 

questions designed to measure cognitive ability and patience
18

, displayed in Figure 3.  Frederick (2005) 

discusses the difference between the ―intuitive‖ (and wrong) answers impulsive and/or unintelligent 

subjects give (ten cents, 100 minutes, and 24 days), and the correct responses given by subjects with a 

higher proclivity for computation (five cents, five minutes, and 47 days).  His collective analysis of 

previous literature demonstrates a strong enough correlation between those who get the CRT questions 

correct and those with high scores on standardized tests of intelligence to conclude the CRT functions as a 

good test of cognitive ability.  Additionally, his own results show that those who scored high on the CRT 

also made decisions which implied low discount rates of time preference, offering evidence of a positive 

relationship between cognitive ability and patience. 

                                                           
15

 We also have data on each subject’s academic major as well as their responses to a 42-question personality-type 

survey.  Future work along these dimensions should prove most enlightening. 
16

 Apparently introductory economics is not a graduation requirement to earn an undergraduate degree from the 

University of Tennessee.  Rather, there is a ―social science‖ general education requirement that students may satisfy 

by taking two courses from a list of twenty-one offered in Africana, Anthropology, Child and Family Studies, 

Economics, Geography, Political Science, Psychology, Sociology, and Women’s Studies.  That more than half of our 

subjects have taken at least one economics course may be due to some economics instructors calling attention to the 

registration process for ORSEE (web-based lab management software) in class. 
17

 The economics major requires only ten economics courses to graduate.  Methinks fifteen a dubious claim. 
18

 These questions are borrowed from Frederick (2005).  He finds that CRT scores are predictive of the types of 

choices that feature prominently in tests of decision-making theories, e.g. expected utility or prospect theory. 
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 Our subjects were required to answer the CRT questions as part of a survey they completed after all 

rounds of the Race to 21 game were complete (the computer was programmed in such a way that their final 

score would not be displayed until all survey questions were accomplished).  To make their responses 

salient, subjects were paid an additional fifty cents for each correct answer.  Summary statistics on the 

CRT responses appear in Table 16.  It is interesting to note that while nearly one-third of subjects failed to 

calculate a correct answer in any of the three questions, more than twenty percent in our sample came up 

with the correct answer to all three questions
19

.   

3. Estimation Strategy 

  

We assume that if a subject learned how to solve the Race to 21 game via backward induction at all, 

then he should have won the final round of the game.  Therefore, our first measure of learning backward 

induction is whether he won or lost the game in round thirty.  Using this binary outcome as our limited 

dependent variable, we report the results of a series of four marginal effects probit regressions to measure 

the degree to which experimental condition, demographic information about subjects, and subject 

performance on a cognitive ability/patience battery predict backward induction in our decision task.  As a 

test of robustness, we regress via ordinary least squares (OLS) all of the same right hand side variables 

against the total number of points scored in all thirty rounds of the game.  Each model tested is presented 

below, where we substitute ―Total Points‖ for P(wini,30) on the left hand side in our second (OLS) set of 

tests: 

 Teaser treatment effects: 

𝑃 𝑤𝑖𝑛𝑖 ,30 = 𝛽0 + 𝛽1 1𝑡𝑜3 + 𝛽2 𝑜𝑛 + 𝛽3 𝑜𝑓𝑓 + 𝛽4 𝑜𝑛 ∗ 𝑒𝑎𝑟𝑙𝑦 + 𝛽5 𝑜𝑓𝑓 ∗ 𝑒𝑎𝑟𝑙𝑦 + 𝛽6 𝑜𝑓𝑓 ∗ 𝑒𝑎𝑟𝑙𝑦 

+ 𝛽7 𝑜𝑛 ∗ 1𝑡𝑜3 + 𝛽8 𝑜𝑓𝑓 ∗ 1𝑡𝑜3 + 𝛽9 𝑜𝑛 ∗ 𝑒𝑎𝑟𝑙𝑦 ∗ 1𝑡𝑜3 + 𝛽10 𝑜𝑓𝑓 ∗ 𝑒𝑎𝑟𝑙𝑦 ∗ 1𝑡𝑜3 + 𝜀𝑖 ,30  

 

 Teaser treatment, demographic effects: 

                                                           
19

 The twenty percent who got all three questions here is slightly higher than the seventeen percent that Frederick 

found in his study, though his sample is far larger. 
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𝑃 𝑤𝑖𝑛𝑖 ,30 = 𝛽0 + 𝛽1 1𝑡𝑜3 + 𝛽2 𝑜𝑛 + 𝛽3 𝑜𝑓𝑓 + 𝛽4 𝑜𝑛 ∗ 𝑒𝑎𝑟𝑙𝑦 + 𝛽5 𝑜𝑓𝑓 ∗ 𝑒𝑎𝑟𝑙𝑦 + 𝛽6 𝑜𝑓𝑓 ∗ 𝑒𝑎𝑟𝑙𝑦 

+ 𝛽7 𝑜𝑛 ∗ 1𝑡𝑜3 + 𝛽8 𝑜𝑓𝑓 ∗ 1𝑡𝑜3 + 𝛽9 𝑜𝑛 ∗ 𝑒𝑎𝑟𝑙𝑦 ∗ 1𝑡𝑜3 + 𝛽10 𝑜𝑓𝑓 ∗ 𝑒𝑎𝑟𝑙𝑦 ∗ 1𝑡𝑜3 
+ 𝛽11 𝑔𝑒𝑛𝑑𝑒𝑟 + 𝛽12 𝑎𝑔𝑒 + 𝛽13 𝑝𝑟𝑒𝑣. 𝑒𝑥𝑝 + 𝛽14 𝑒𝑐𝑜𝑛. 𝑐𝑜𝑢𝑟𝑠𝑒𝑠 + 𝜀𝑖,30  

 

 Teaser treatment, cognitive battery effects: 

𝑃 𝑤𝑖𝑛𝑖 ,30 = 𝛽0 + 𝛽1 1𝑡𝑜3 + 𝛽2 𝑜𝑛 + 𝛽3 𝑜𝑓𝑓 + 𝛽4 𝑜𝑛 ∗ 𝑒𝑎𝑟𝑙𝑦 + 𝛽5 𝑜𝑓𝑓 ∗ 𝑒𝑎𝑟𝑙𝑦 + 𝛽6 𝑜𝑓𝑓 ∗ 𝑒𝑎𝑟𝑙𝑦 

+ 𝛽7 𝑜𝑛 ∗ 1𝑡𝑜3 + 𝛽8 𝑜𝑓𝑓 ∗ 1𝑡𝑜3 + 𝛽9 𝑜𝑛 ∗ 𝑒𝑎𝑟𝑙𝑦 ∗ 1𝑡𝑜3 + 𝛽10 𝑜𝑓𝑓 ∗ 𝑒𝑎𝑟𝑙𝑦 ∗ 1𝑡𝑜3 
+ 𝛽11 𝑏𝑎𝑙𝑙 + 𝛽12 𝑙𝑎𝑘𝑒 + 𝛽13 𝑤𝑖𝑑𝑔𝑒𝑡 + 𝜀𝑖 ,30  

 

 Teaser treatment, demographic effects, cognitive battery effects: 

𝑃 𝑤𝑖𝑛𝑖 ,30 = 𝛽0 + 𝛽1 1𝑡𝑜3 + 𝛽2 𝑜𝑛 + 𝛽3 𝑜𝑓𝑓 + 𝛽4 𝑜𝑛 ∗ 𝑒𝑎𝑟𝑙𝑦 + 𝛽5 𝑜𝑓𝑓 ∗ 𝑒𝑎𝑟𝑙𝑦 + 𝛽6 𝑜𝑓𝑓 ∗ 𝑒𝑎𝑟𝑙𝑦 

+ 𝛽7 𝑜𝑛 ∗ 1𝑡𝑜3 + 𝛽8 𝑜𝑓𝑓 ∗ 1𝑡𝑜3 + 𝛽9 𝑜𝑛 ∗ 𝑒𝑎𝑟𝑙𝑦 ∗ 1𝑡𝑜3 + 𝛽10 𝑜𝑓𝑓 ∗ 𝑒𝑎𝑟𝑙𝑦 ∗ 1𝑡𝑜3 
+ 𝛽11 𝑔𝑒𝑛𝑑𝑒𝑟 + 𝛽12 𝑎𝑔𝑒 + 𝛽13 𝑝𝑟𝑒𝑣. 𝑒𝑥𝑝 + 𝛽14 𝑒𝑐𝑜𝑛. 𝑐𝑜𝑢𝑟𝑠𝑒𝑠 + 𝛽15 𝑏𝑎𝑙𝑙 + 𝛽16 𝑙𝑎𝑘𝑒 
+ 𝛽17(𝑤𝑖𝑑𝑔𝑒𝑡) + 𝜀𝑖 ,30  

 

The goal of this estimation method is twofold.  First, we want to determine how much more variation each 

model is explaining over and above the baseline teaser treatment effects.  Second, among the demographic 

and cognitive battery variables, we want to know precisely which regressor is picking up the biggest effect 

on backward induction.  The results of our analysis will tell us the answers to both. 

4. Results 

 

We begin the analysis of our results by looking at how well our models explain the variation in the 

experimental data.  Table 17 shows the respective R
2
 values for each regression form.  The baseline 

marginal effects probit model we posit explains 14% of the variation in the probability a subject will win 

round thirty, while the analogous baseline OLS regression accounts for 23% of variability in total points 

earned by subjects.  To analyze how much more variation is explained away by adding demographic 

information, we take the difference between the second and first columns.  This difference tells us that 

adding demographic information accounts for an additional 8.5% of variation in the probit, and an 

additional 10.21% in the OLS model.  Likewise, we want to compare the baseline to the model in which 

we include the cognitive ability/patience battery.  Here, the latter adds 17.97% explanatory power to the 

baseline probit, and adds 23.85% to the OLS baseline.  These values suggest our first result: 
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RESULT 1:  The cognitive ability/patience battery is better able to predict backward induction than simple 

demographic information.   

Running a test on ―all of the above‖ regressors indicates a marginal improvement in explanatory power over 

the cognitive ability probit model, and a larger but still modest increase over the cognitive battery in the 

OLS version
20

.   

 Tables 18 and 19 provide the results of each probit and OLS regression run using the data specified 

in section 2 of this essay.  The leftmost column identifies the pertinent regressors, and each subsequent 

column contains the coefficients on those independent variables included in each model.  Recognizing that 

it is necessary to calculate linear combinations to ascertain the marginal effects of each teaser treatment on 

backward induction, we present those marginal effects that correspond to the ―f(Treatment)‖ column in 

Tables 18a and 19a.  These will serve as our baselines for comparison.   

 Recall that in the first essay we employed the same marginal effects probit model on all 

observations over thirty rounds of our race game.  Comparing the results in Table 9 to Table 18a below 

(using data on round thirty only), we see the coefficients are very similar in direction and magnitude, 

allowing us to re-state the following result from our first essay: 

RESULT 2:  On-equilibrium-path teasers make backward induction easier; more specifically, on-mid 

teasers are superior to any other combination; and fewer decision nodes are preferable to more, even if 

there are more alternatives to choose from at each node. 

The similarity between Tables 9 and 18a also implies that the relative degree to which different teaser 

treatments affect success in backward induction is unlikely to vary across the four models we present in this 

essay, regardless of which other independent variables we include.  Therefore, for ease of exposition of the 

remaining probit results we will take the teaser treatment relationships as given and discuss only the 

                                                           
20

 It should be noted that adding more independent variables to a model necessarily increases R
2
; however, the 

relatively large jump in R
2
 we get from adding demographic and cognitive battery information to the baseline model 

suggests the chance we are overfitting the model is negligible. 
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demographic and cognitive battery effects. 

 Following our baseline regressions, we test whether four demographic variables (age, gender, 

previous experiments, and number of economics courses) predict backward induction.  In both the 

marginal effects probit and the OLS regression, age proves a positive but insignificant predictor of 

backward induction.   However, that is not to say that age cannot predict backward induction necessarily.  

Our results are complicated by the fact that our subject pool consists only of undergraduate students; recall 

that Figure 2 displays a tight age distribution of our subjects.  In fact two-thirds of our sample is nineteen, 

twenty, or 21 years old.  Likewise, having participated in previous economics experiments demonstrates a 

positive, but not significantly different from zero, prediction for backward induction in both the probit and 

OLS measures.   

 Analyzing Tables 18 and 19 for demographic variables that serve as significant predictors of 

backward induction leads to the following insight: 

RESULT 3:  Females find solving the Race to 21 game via backward induction more difficult than do males. 

From Table 18, we see that when demographics are included on the right hand side with experimental 

conditions, female subjects are 37% less likely to successfully win the game than males.  Similarly, when 

included in our ―all of the above‖ model, females are 25% less likely to use backward induction than males.  

Our robustness test results in Table 19 show the same negative and highly significant relationship.  

Frederick (2005) found very similar gender effects in his CRT study, and suggests that the gender gap may 

exist because men might be better at quantitative endeavors
21

.   

 Also significant is the coefficient on the number of economics courses a student has taken.  

Specifically, the results of our tests imply that taking economics courses negatively relates to the propensity 

                                                           
21

 Larry Summers’ infamous and intensely controversial hypothesis regarding gender disparity in tenure-track science 

and engineering positions at top research institutions pointed to high variability in IQ scores between men and women, 

similarly suggesting that some men may have an intrinsic aptitude advantage. 
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to use backward induction.  While these results are significantly different from zero in three out of four 

models tested, they are likely biased by the fact that 84% of our sample have zero or only one economics 

course under their belts.  Since undergraduate students can hardly be taught how to think strategically in a 

single principles course (much less if they have never taken a class in economics at the university level), it 

is not likely that this variable tells us much that is meaningful. 

 Finally, analysis of the results on the inclusion of the cognitive ability/patience battery leads to the 

following result: 

RESULT 4:  Correctly answering the “ball” and “lake” questions from Frederick’s CRT survey predicts 

backward induction in the Race to 21 game. 

Specifically, the ―lake‖ question is a far better predictor of backward induction than the ―ball‖ question, 

although both coefficients are large and significant.  Answering the lake question correctly increases the 

probability that a subject will win the final stone by over forty percent, compared to nearly 25% for 

answering the ball question correctly.  Likewise, testing our OLS model for cognitive battery effects 

shows that calculating the correct answer to the lake problem leads to an increase of over 1,100 total points 

earned over the entire game, compared to an increase of over 700 points for providing the right answer to 

the ball question.  Curiously, the prediction value of the ―widget‖ problem in our Race to 21 game, while 

positive, proved insignificantly different from zero.  One possible explanation for this is fatigue, as it is 

among the last questions our subjects are faced with in a fairly strenuous decision task lasting 

approximately 45 minutes.  However, considering the lake question appeared just after the widget 

question, fatigue is unlikely to be the reason that particular question was missed so often.  In the future, it 

would be interesting to switch the order in which subjects read the problems to see if this effect holds
22

. 

                                                           
22

 Frederick (2005) does not report how subjects performed on each problem in his CRT studies—only how many 

problems subjects answer correctly out of three. 



 

34 

5. Conclusion 

 Analyzing our Race to 21 game data after accounting for demographic variables and the results of a 

cognitive ability and patience battery allows us to report several insights into what factors may predict 

backward induction.  Our analysis reinforces the results of the first essay in this study, in that teaser 

placement within the structure of the race game predict backward induction based on their location relative 

to the equilibrium path of play.  Further, we find that certain demographic variables predict backward 

induction, namely gender (females struggle with backward induction more than males) and to a lesser 

extent the number of economics courses one has taken at the university level (though for reasons we 

discussed, this effect may not be as significant as it appears).  Finally, we find that two of the three 

problems on Frederick’s (2005) cognitive reflection test are significant predictors of backward induction.  
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FIGURE 1: GUI SCREENSHOT 
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FIGURE 2: AGE DISTRIBUTION 
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1. A bat and a ball cost $1.10 in total. The bat costs $1 more than the ball. How much does the ball cost? 

 

2. If it takes five machines five minutes to make five widgets, how long would it take 100 machines to 

make 100 widgets? 

 

3. In a lake, there is a patch of lily pads. Every day, the patch doubles in size. If it takes 48 days for the 

patch to cover the entire lake, how long would it take for the patch to cover half the lake? 
 

FIGURE 3: CRT QUESTIONS 
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TABLE 1: TREATMENTS 

Teaser 

Game 1 

Action Space 

(Teaser On/Off Equilibrium) 

Control (No Teaser) 1-3 

Control (No Teaser) 1-4 

5 
1-3 

(On) 

5 
1-4 

(Off) 

6 
1-3 

(Off) 

6 
1-4 

(On) 

11 
1-3 

(Off) 

11 
1-4 

(On) 

13 
1-3 

(On) 

13 
1-4 

(Off) 
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TABLE 2: CONDITIONAL PROBABILITIES 

 
Conditional Probabilities

23
 

Node 

(1-3) 

[1-4] 

Final 

(17) 

[16] 

Final-1 

(13) 

[11] 

Final-2 

(9) 

[6] 

Final-3 

(5) 

[1] 

Final-4 

(1) 

 

No T (1-3) 

(n=360) 
.96 .88 .81 .58 .46 

No T (1-4) 

[n=630] 
.97 .88 .64 .54 

 

  

                                                           
23

 The conditional probabilities at each node are not statistically different from one another depending on action space, 

except for those at node ―Final-2‖, which are different at the 99% confidence level per two-sample test of proportions. 
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TABLE 3: PERCENTAGE OF ALL ROUNDS WON 

Percentage of all rounds won
24

 

   

Teaser location within the game 

(n) 

   

Early 

(1,950) 

Mid 

(2,430) 

None 

(990) 

Teaser position 

w.r.t. equilibrium 

path 

(n) 

On 

(2,520) 

[1-3] 0.45 0.54 
 

[1-4] 0.41 0.65 
 

Off 

(1,860) 

[1-3] 0.06 0.18 
 

[1-4] 0.42
25

 0.16 
 

None 

(990) 

[1-3] 

  

0.18 

[1-4] 0.30 

 

  

                                                           
24

 The statistical significance of each comparison will be addressed in turn.  All comparisons are made using a 

two-sample test of proportions, unless otherwise noted. 
25

 In the (1-4) treatment, it turns out that putting the teaser payment on stone 5 actually serves no purpose but to 

frustrate the subject.  Suppose the subject selects stone 1 to begin on the equilibrium path.  Then the computer is 

programmed to take the teaser on 5, since it’s available and the subject has not yet deviated from the equilibrium path.  

If, instead, the subject takes stones 2, 3, or 4, the computer will skip the teaser on 5 to move to the equilibrium path and 

take stone 6.  Either way, it’s impossible for the subject to get the teaser.  Although a perfect backward inductor 

should see this game in the same way as a no-teaser setting, the fact remains that the early-off teaser yields better 

results than no teaser (42% > 30%).  It could be that merely having a teaser present induces more/better backward 

induction vs. forward-looking behavior.  
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TABLE 4: ON-EQUILIBRIUM VS. NO TEASER 

Teaser 
% rounds 

won 
n 

on 0.52 2,520 

no teas. 0.25 990 

p-value 0.000 
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TABLE 5: STATA OUTPUT 1.1 

      R
2
=0.1108 

Dependent Variable: 

 

n=5,370 

Win [0,1] 

  

P(win=1) = 0.359 

Independent Variables: 

Marginal 

Effect t stat p>|t| 

on 

  

0.340 17.78 0.000 

off 

  

-0.083 -4.25 0.000 

on*early 

  

-0.162 -8.98 0.000 

off*early 

  

0.085 3.92 0.000 

constant     0.255 17.69 0.000 
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TABLE 6: EARLY VS. MID VS. NO TEASER 

Teaser 
% rounds 

won 
n 

p-values  

relative to ―none‖
26

 

mid .39 2,460 0.000 

early
27

 .35 1,560 0.000 

none .25 990  

  

                                                           
26

 Mid and early are also significantly different from each other. 
27

 Excluding (1-4) off-early, for the reasons discussed in an earlier footnote. 
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TABLE 7: ACTION SPACE 

Action 

Space 

% rounds 

won 
n 

(1-3) 0.33 2,400 

(1-4) 0.38 2,970 

p-value 0.000 
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TABLE 8: STATA OUTPUT 1.2 

 

    Pseudo R
2
=0.1109 

Dependent Variable: 

 

n=5,370 

Win 

  

Observed P: 0.3594 

Predicted P: 0.3385 (at x-bar) 

Independent Variables: 

Marginal 

Effect
28

 z stat p>|z| x-bar 

a) 1to3     -0.1317 -3.91 0.000 0.4469 

b) on     0.3283 12.71 0.000 0.4693 

c) off     -0.1634 -5.96 0.000 0.3464 

d) on*early   -0.2023 -8.40 0.000 0.2291 

e) off*early   0.3094 9.33 0.000 0.1341 

f) on*1to3     0.0284 0.66 0.511 0.2346 

g) off*1to3     0.1895 3.83 0.000 0.1453 

h) on*early*1to3   0.1533 3.96 0.000 0.1229 

i) off*early*1to3   -0.3367 -9.54 0.000 0.0615 

 

  

                                                           
28

 Marginal effect = dF/dx for discrete change of dummy variable from 0 to 1. 
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TABLE 9: MARGINAL EFFECTS 

Action Space 

Comparison 

Teaser Treatment 

On-Early On-Mid Off-Early Off-Mid 

(1-3) vs. No Teaser 
(b+d+f+h) (b+f) (c+e+g+i) (c+g) 

0.3077* 0.3567* -0.0012 0.0261 

(1-4) vs. No Teaser 
(b+d) (b) (c+e) (c) 

0.1260* 0.3283* 0.1460* -0.1634* 

(1-3) vs. (1-4) 
(a+f+h) (a+f) (a+g+i) (a+g) 

0.0500 -0.1033* -0.2789* 0.0578 

*Statistically different from 0 at 99% confidence level 
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TABLE 10: LEARNING-RAW COUNTS 

  
Teaser 

 
Final 

     

  

1st 

round 

taken 

2nd 

round 

taken deltaT
29

 Pdelta<1st 

% of 

rounds 

 

1st 

round 

taken 

2nd 

round 

taken deltaF
30

 Pdelta<1st 

% of 

rounds 

P1st=No 

Teaser 

 

delta/2nd T: 

delta/2nd F 

(p-value) 

 

1st 

Final-1st 

Teaser PdiffT=diffF
31

 

On-Early 
(1-3) 1.27 2.45 1.18 0.246 0.91 

 
6.91 11.80 4.89 0.140 0.45 0.000 

 
0.001 

 
5.64 0.002 

(1-4) 2.32 3.53 1.21 0.058 0.84 
 

8.58 12.26 3.68 0.019 0.41 0.000 
 

0.048 
 

6.26 0.001 

On-Mid 

(1-3) 
6.90 8.35 1.45 0.182 0.54 

 
7.05 7.94 0.89 0.202 0.54 0.720 

   
0.15 

 
6.90 11.75 4.85 0.098 

  
7.05 12.55 5.50 0.209 

 
0.000 

 
0.096 

 
0.15 0.468 

(1-4) 
4.81 7.62 2.81 0.028 0.68 

 
5.10 8.62 3.52 0.040 0.65 0.000 

   
0.29 

 
6.48 9.52 3.04 0.026 

  
7.61 10.30 2.69 0.014 

 
0.000 

 
0.050 

 
1.132 0.040 

Off-Early 

(1-3) 
1.27 2.73 1.46 0.253 0.65 

 
14.00 19.50 5.50 0.155 0.06 0.085 

   
12.73 

 

      
27.91 29.73 1.82 0.000 

 
0.234 

 
0.001 

 
27.91 0.000 

(1-4) 
--- --- --- --- --- 

 
5.90 10.78 4.88 0.378 0.42 0.021 

   
--- 

 

      
11.69 17.23 5.54 0.096 

 
0.053 

     

Off-Mid 

(1-3) 
6.82 9.10 2.28 0.017 0.25 

 
17.20 18.75 1.55 0.001 0.19 0.009 

   
10.38 

 
13.27 16.67 3.40 0.010 

  
21.80 24.80 3.00 0.000 

 
0.833 

 
0.085 

 
8.533 0.009 

(1-4) 
1.52 3.35 1.83 0.087 0.46 

 
9.63 9.60 -0.03 0.381 0.16 0.419 

   
8.11 

 

      
23.30 26.57 3.27 0.000 

 
0.272 

 
0.067 

 
23.3 0.001 

No 

Teaser 

(1-3)       
6.00 10.33 4.33 0.356 0.18 

    
6 

 

      
22.67 26.50 3.83 0.003 

     
22.67 0.000 

(1-4)       
10.17 13.91 3.74 0.005 0.30 

    
10.17 

 

      
19.57 22.48 2.91 0.000 

     
19.57 0.000 

Pdelta<1st:  1-tail, paired t-test 
         

P1st=NoTeaser: 2-tail, unpaired t-test 
         

*Unconditional = for any treatment in which a subject never got it, we conservatively assume they would have gotten it in round 31. 

                                                           
29

 In a simple paired t-test for means, we test the null hypothesis that delta=1.  We reject the null in all treatments. 
30

 In a simple paired t-test for means, we test the null hypothesis that delta=1.  We reject the null in all treatments. 
31

 In a simple paired t-test for means, we test the null hypothesis that (1
st
 Final-1

st
 Teaser)=0.  We reject the null hypothesis in all treatments except on-mid (1-3). 
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TABLE 11: FINAL STONE-1ST "REDEFINED" WIN 

Final stone-1
st
 Redefined "win" 

On-Early On-Mid Off-Early Off-Mid No Teaser 

(1-3) (1-4) (1-3) (1-4) (1-3) (1-4) (1-3) (1-4) (1-3) (1-4) 

1 1 3 1 14 1 11 4 3 6 

1 1 3 1 29 1 16 5 10 7 

1 1 3 2 31 1 19 8 16 9 

1 8 5 3 31 14 20 11 31 10 

2 8 5 3 31 16 22 23 31 14 

5 14 6 4 31 16 23 31 31 15 

9 19 6 5 31 18 23 31 31 17 

13 22 6 6 31 26 31 31 31 17 

14 22 8 6 31 31 31 31 31 18 

21 27 9 7 31 31 31 31 31 23 

25 27 12 8 31 31 31 31 31 31 

25 31 18 8 - 31 31 31 31 31 

27 31 18 8 - 31 31 31 - 31 

28 31 22 11 - - 31 31 - 31 

31 31 31 12 - - 31 31 - 31 

31 31 31 16 - - - 31 - 31 

31 31 31 19 - - - 31 - 31 

31 31 31 21 - - - 31 - 31 

31 31 31 23 - - - 31 - 31 

31 - 31 23 - - - 31 - 31 

31 - - 31 - - - 31 - 31 

31 - - 31 - - - 31 - - 

- - - 31 - - - 31 - - 
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TABLE 12: REGRESSION RESULTS-UNCONDITIONAL 

Regression results: Unconditional (31 for all unobserved subjects)
32

 

(*significantly different from 1) 

 
y x β SE R

2
 n 

(1-3) on-mid noT 0.2676* 0.0392 0.8088 12 

 
on-early noT 0.3987* 0.0862 0.6604 12 

 
off-mid noT 0.8908 0.0578 0.9557 12 

 
off-early noT 1.0575* 0.0919 0.9298 11 

(1-4) on-mid noT 0.4885* 0.0522 0.8141 21 

 
on-early noT 0.9903 0.0353 0.9776 19 

 
off-mid noT 1.0973 0.0579 0.9472 21 

 
off-early noT 1.1054 0.8122 0.9378 13 

 

  

                                                           
32

 Boxes surrounding treatments in this and all subsequent tables indicate indifference. 
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TABLE 13: REGRESSION RESULTS-CONDITIONAL 

Regression results: Conditional (truncated at coinciding 31s) 

(*significantly different from 1) 

  y x β SE R
2
 n 

(1-3) on-mid noT 0.2676* 0.0392 0.8088 12 

  on-early noT 0.3987* 0.0862 0.6604 12 

  off-mid noT 0.8097* 0.0834 0.9309 8 

  off-early noT 1.3492 0.3703 0.8157 4 

(1-4) on-mid noT 0.4885* 0.0522 0.8141 21 

  on-early noT 0.9743 0.0735 0.9410 12 

  off-early noT 1.1712 0.1097 0.9193 11 

  off-mid noT 1.4011* 0.1244 0.9269 11 
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TABLE 14: FINAL STONE-TOP 20% 

  

  

  

  

Final stone-1
st
 round learned-Top 20% 

On-Early On-Mid Off-Early Off-Mid No Teaser 

(1-3) (1-4) (1-3) (1-4) (1-3) (1-4) (1-3) (1-4) (1-3) (1-4) 

1 1 3 1 14 1 11 4 3 6 

  1 1 3 1 29 1 16 5 10 7 

  1 1 3 2 - 1 19 8 - 9 

  1 8 5 3 - - - 11 - 10 

  - - - 3 - - - 23 - - 

Avg 1 2.8 3.5 2 21.5 1 15.3 10.2 6.5 8 

            

  



 

56 

TABLE 15: SUMMARY RANKINGS 

Summary Rankings 

Action Rank 
Conditional 

regression 

Unconditional 

regression 
Fastest 20% 

Unconditional 

average 1
st
 

round (Table 1) 

(1-3) 1 on-mid on-mid on early on-mid 

 
2 on-early on-early on-mid on-early 

 
3 off-mid off-mid no-teaser off-mid 

 
4 no-teaser no-teaser off-mid no-teaser 

 
5 off-early off-early off-early off-early 

(1-4) 1 on-mid on-mid off-early on-mid 

 
2 on-early on-early on-mid on-early 

 
3 no-teaser no-teaser on-early off-early 

 
4 off-early off-mid no-teaser no-teaser 

 
5 off-mid off-early off-mid off-mid 
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TABLE 16: CRT-CORRECT ANSWERS 

CRT: correct answers 

  Frequency 

% of 

subjects 

Lake 97 0.54 

Ball 82 0.46 

Widget 59 0.33 

Ball+Lake 60 0.34 

Lake+Widget 50 0.28 

Ball+Widget 43 0.24 

All 3 correct 38 0.21 

Zero correct 56 0.31 
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TABLE 17: R
2
-GOODNESS OF FIT 

 
R

2
: Goodness-of-Fit 

 
f(Treatment) 

f(Treatment, 

demographics) 

f(Treatment,                  

cognitive battery) 

f(Treatment, 

demographics, 

cognitive battery)  
 

Probit (Win) 0.1407 0.2256 0.3204 0.3606 

OLS (Total points) 0.2307 0.3328 0.4692 0.5122 
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TABLE 18: MARGINAL EFFECTS PROBIT 

Marginal Effects Probit (Win=0,1) 

Independent 

Variable 
f(Treatment) 

f(Treatment, 

demographics) 

f(Treatment,                  

cognitive battery) 

f(Treatment, 

demographics, 

cognitive battery) 

(a) 1to3 
-0.2414              

(0.200) 

-0.3280*           

(0.093) 

-0.0338            

(0.876) 

-0.0983           

(0.659) 

(b) on 
0.4444***               

(0.006) 

0.3752**             

(0.031) 

0.5835***             

(0.001) 

0.5369***             

(0.005) 

(c) off 
-0.2813*             

(0.072) 

-0.4302***           

(0.009) 

-0.3629**           

(0.035) 

-0.4609**           

(0.011) 

(d) on*early 
-0.3502**             

(0.035) 

-0.3239*           

(0.071) 

-0.3563*           

(0.068) 

-0.3511*           

(0.089) 

(e) off*early 
0.3727**               

(0.019) 

0.4350***             

(0.008) 

0.4964***             

(0.002) 

0.5093***             

(0.002) 

(f) on*1to3 
0.0059               

(0.982) 

0.0531             

(0.847) 

-0.3186           

(0.274) 

-0.2846           

(0.353) 

(g) off*1to3 
0.4336**               

(0.043) 

0.5096**             

(0.014) 

0.3832             

(0.117) 

0.4382*             

(0.066) 

(h) on*early*1to3 
0.2372               

(0.289) 

0.2320             

(0.327) 

0.1695             

(0.505) 

0.1905             

(0.466) 

(i) off*early*1to3 
-0.5271***              

(0.008) 

-0.5663***           

(0.002) 

-0.5573**           

(0.010) 

-0.5873***            

(0.005) 

gender - 
-0.3676***           

(0.000) 
- 

-0.2486**            

(0.011) 

age - 
0.0038             

(0.748) 
- 

0.0026             

(0.840) 

prev. experiments - 
0.1355             

(0.191) 
- 

0.0865             

(0.450) 

econ courses - 
-0.0389            

(0.120) 
- 

-0.0550**           

(0.045) 

ball - - 
0.2497**             

(0.010) 

0.2454**             

(0.017) 

lake - - 
0.4231***             

(0.000) 

0.4007***             

(0.000) 

widget - - 
0.0822             

(0.450) 

0.0495             

(0.666) 

 

TABLE 18A 

Action Space 

Comparison 

Teaser Treatment 

On-Early On-Mid Off-Early Off-Mid 

(1-3) vs. No Teaser 
(b+d+f+h) (b+f) (c+e+g+i) (c+g) 

0.3373** 0.4503*** -0.0021 0.1523 

(1-4) vs. No Teaser 
(b+d) (b) (c+e) (c) 

0.0942 0.4444*** 0.0914 -0.2813* 
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TABLE 19: OLS-TOTAL POINTS 

OLS: Total points 

Independent 

Variable 
f(Treatment) 

f(Treatment, 

demographics) 

f(Treatment,                  

cognitive battery) 

f(Treatment, 

demographics, 

cognitive battery) 

(a) 1to3 
-604.7619         

(0.283) 

-905.7305*       

(0.095) 

161.1973        

(0.738) 

-130.2171       

(0.786) 

(b) on 
2236.5420***          

(0.000) 

1875.2630***      

(0.000) 

2334.5440***      

(0.000) 

2125.8470***      

(0.000) 

(c) off 
688.7164          

(0.143) 

313.8169        

(0.490) 

720.8602*        

(0.069) 

534.8416        

(0.177) 

(d) on*early 
-575.5149         

(0.233) 

-411.0410       

(0.370) 

-222.3133       

(0.593) 

-195.2261       

(0.631) 

(e) off*early 
502.6756          

(0.352) 

593.9525        

(0.248) 

773.7315*        

(0.092) 

741.7474*        

(0.099) 

(f) on*1to3 
100.9576          

(0.891) 

334.1922        

(0.634) 

-776.1969        

(0.219) 

-541.6589       

(0.385) 

(g) off*1to3 
914.6170          

(0.232) 

1317.3930*      

(0.073) 

300.1094        

(0.642) 

606.6432        

(0.344) 

(h) on*early*1to3 
674.3785          

(0.322) 

625.0268        

(0.333) 

226.4560        

(0.693) 

303.7275        

(0.587) 

(i) off*early*1to3 
-869.6453         

(0.289) 

-1149.7260     

(0.143) 

-549.4719       

(0.434) 

-721.5144       

(0.297) 

gender - 
-1053.2750***       

(0.000) 
- 

-526.4939**       

(0.013) 

age - 
42.4044               

(0.212) 
- 

36.1500          

(0.220) 

prev. experiments - 
315.6775         

(0.259) 
- 

55.6498          

(0.819) 

econ courses - 
-149.1424**       

(0.022) 
- 

-170.6020***         

(0.003) 

ball - - 
711.0321***        

(0.002) 

707.9256***        

(0.002) 

lake - - 
1215.9400***          

(0.000) 

1154.219***        

(0.000) 

widget - - 
311.8999        

(0.205) 

188.2037        

(0.435) 

(j) constant 
1604.762***          

(0.000) 

1360.9760*      

(0.090) 

331.0680        

(0.304) 

208.6719        

(0.767) 

 

TABLE 19A 

Action Space 

Comparison 

Teaser Treatment 

On-Early On-Mid Off-Early Off-Mid 

(1-3) vs. No Teaser 
(b+d+f+h+j) (b+f+j) (c+e+g+i+j) (c+g+j) 

4041.126 3942.260 2841.126 3208.095 

(1-4) vs. No Teaser 
(b+d+j) (b+j) (c+e+j) (c+j) 

3265.789 3841.304 2796.154 2293.478 
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APPENDIX B: LABORATORY SCRIPT AND SCREENSHOTS
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Laboratory script: 

Welcome to the UT Experimental Economics Laboratory.  My name is Kelly Padden, and joining me 

today is _________.  We are researchers from the Department of Economics.  We understand that many 

of you have busy schedules and really appreciate your willingness to participate. 

Before we begin I need to go over a few lab rules.  Once the experiment begins, please refrain from 

communicating with each other (talking, texting) and please do not open or play any games on the computer 

(no solitaire or minesweeper). 

In this study, you will be asked to make a series of market-like decisions.  Your earnings in this experiment 

are based on the decisions you make.  The money you will be paid with comes from a research grant, and 

this money can only be used to pay experiment participants.  You will be paid in cash after the experiment 

is completed. 

The decision-making setting may be unfamiliar to you.  This is common.  Therefore, in writing the 

instructions for this experiment, we have done our very best to clearly describe to you all relevant 

information from which to base your decisions. 

There are two important protocols in experimental economics that we would like you to be aware of.  First, 

the instructions contain only true information.  There are no hidden tasks, and the experiment works 

exactly as stated in the instructions.  Second, your decisions are confidential.  What this means is that you 

have been randomly assigned an ID number.  All decisions you make will be associated with this ID 

number and not your name.  Therefore, when we analyze the data and present results, your name will in no 

way be affiliated with this study. 

We have provided everyone with a pencil, calculator, and paper.  Use these items, if you wish, as you make 

your decisions.  But please do not write on the instructions. 

Has everyone had a chance to read the informed consent sheet?  Is everyone comfortable with the risks 

involved with participation in this experiment?  If you would, please raise your hand to indicate you have 

read the Informed Consent Sheet and you agree to participate in the experiment. 

Today, you will play two experimental games and then answer a short questionnaire.  We will proceed by 

reading the instructions for the first game.  I will read the instructions aloud and ask that you follow along 

on your copy. 

Let’s begin…<read instructions for Race to 21 game> 

After you are finished with the final round of the first game, please DO NOT proceed to the second game.  

We will go through the instructions to the second game as a group before proceeding. 

If any question should arise during the experiment, please raise your hand and one of us will address your 

question privately.  Good luck, and we hope you earn lots of money!  
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Race to 21 game instructions: 

Welcome 

Thank you for participating in this experiment. You will be playing games against a computer for 

money. You will be paid for your participation in cash, immediately at the end of the experiment. 

How much you earn depends on your decisions. A research foundation has contributed the money 

for this study.  

It is very important that you read all instructions carefully and that you strictly follow the rules of 

this experiment. If you disobey the rules, you will be asked to leave the experiment. You should 

never use the browser's forward or back button. All navigation through this experiment should be 

done by hitting the "proceed" button on each screen. 

Your id number for this experiment is ________. 

 

Do not press the PROCEED button until instructed to do so. 

Rules of the Game 

You will be playing a simple game against a computer opponent. You will see 21 stones, 

numbered 1 through 21. You will move first. On each of your turns, you may remove between 1 

and <3, 4> consecutive stones beginning with the lowest-numbered remaining stone. You will 

remove stones by mousing over the stones you want to remove and clicking on the last stone you 

want to remove. After your turn, the computer will remove between 1 and <3, 4> consecutive 

stones. The stones removed by the computer will flash briefly, and then it will be your turn again. 

You and the computer alternate moves until all of the stones have been removed. 

Profit 

Most of the stones in the game are colored gray but one or more may be colored green. You make 

money when you, and not the computer, click on a green stone. Green stones have boldface 

numbers equal to the number of points that you earn for removing that stone. At the end of the 

experiment, points will be converted into dollars at the rate of $1.00 for every 150 points.  If you 

remove a green stone in passing but without clicking on it, you do NOT earn points on that turn. 

Practice 

On your screen is a panel to help you practice removing stones. In the practice panel, there are only 

8 stones. The last stone is a green stone and has a value of 100 points. You may remove between 1 

and <3, 4> on each turn. Take this opportunity to try removing different numbers of stones. Notice 

that moving your mouse over a stone highlights it and the remaining stones with lower values, but 

that if you try to take more than <3, 4> stones, nothing happens. If you would like more tries, hit 

the RESET button and continue the practice round.  
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To sum up, you will play a game against a computer opponent in which you and the computer will 

alternate removing between 1 and 4 stones until all 8 stones have been removed. If, on your turn, 

you click on a green stone, you will earn the amount written on that stone. 

You will play 30 rounds of this game. Then, you will play 15 rounds of a different game. 

Do not press the "Proceed" button until instructed to do so. 

 

Game 2 

You have finished the first game. You will now play 15 rounds of game 2. 

In game 2, there will be a total of 21 stones. You and the computer will alternate removing between 

1 and <3, 4> stones on each turn. You will go first.  

Practice 

If you wish to practice removing stones, the practice panel on your screen contains 8 stones. You 

may remove between 1 and <3, 4> on each turn. If you would like more tries, hit the RESET button 

and continue the practice round.  

Do not press the "Proceed" button until instructed to do so. 

 

Survey 

Once you have finished the second game, you will complete a brief survey. 

These questions will be used for statistical purposes only.  

THIS INFORMATION WILL BE KEPT STRICTLY CONFIDENTIAL and WILL BE 

DESTROYED UPON COMPLETION OF THE STUDY.  
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Screen shots of the Race to 21 game interface: 
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