
University of Tennessee, Knoxville
Trace: Tennessee Research and Creative
Exchange

Doctoral Dissertations Graduate School

12-2009

Sequence-Based Specification of Embedded
Systems
Jason Martin Carter
University of Tennessee - Knoxville

This Dissertation is brought to you for free and open access by the Graduate School at Trace: Tennessee Research and Creative Exchange. It has been
accepted for inclusion in Doctoral Dissertations by an authorized administrator of Trace: Tennessee Research and Creative Exchange. For more
information, please contact trace@utk.edu.

Recommended Citation
Carter, Jason Martin, "Sequence-Based Specification of Embedded Systems. " PhD diss., University of Tennessee, 2009.
https://trace.tennessee.edu/utk_graddiss/573

https://trace.tennessee.edu
https://trace.tennessee.edu
https://trace.tennessee.edu/utk_graddiss
https://trace.tennessee.edu/utk-grad
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a dissertation written by Jason Martin Carter entitled "Sequence-Based
Specification of Embedded Systems." I have examined the final electronic copy of this dissertation for
form and content and recommend that it be accepted in partial fulfillment of the requirements for the
degree of Doctor of Philosophy, with a major in Computer Science.

Jesse H. Poore, Major Professor

We have read this dissertation and recommend its acceptance:

Kenneth Stephenson, Michael G. Thomason, Lynne E. Parker

Accepted for the Council:
Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

To the Graduate Council:

I am submitting herewith a dissertation written by Jason Martin Carter entitled, “Sequence-Based

Specification of Embedded Systems.” I have examined the final electronic copy of this dissertation

for form and content and recommend that it be accepted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy, with a major in Computer Science.

Jesse H. Poore
Major Professor

We have read this dissertation

and recommend its acceptance:

Kenneth Stephenson

Michael G. Thomason

Lynne E. Parker

Accepted for the Council:

Carolyn R. Hodges

Vice Provost and Dean of the
Graduate School

(Original signatures are on file with official student records.)

Sequence-Based Specification
of

Embedded Systems

A Dissertation

Presented for the

Doctor of Philosophy

Degree

The University of Tennessee, Knoxville

Jason Martin Carter

December 2009

Copyright c© 2009 by Jason Martin Carter.

All rights reserved.

ii

Dedication

To my wife, whose love and selfless support has sustained me during life’s challenges and whose

personal perseverance has motivated me to achieve more than I ever thought possible.

iii

Acknowledgements

I would like to thank my adviser, Dr. Jesse H. Poore, for patience, guidance, and a tremendous

amount of support during my years at the University of Tennessee.

I am also very grateful to my committee: Dr. Kenneth Stephenson, Dr. Michael G. Thomason,

Dr. Lynne E. Parker, and Dr. Piotr Luszczek.

Over my years with the Software Quality Research Laboratory (SQRL), it has been a privilege

to work with many talented people. I am grateful to all of them. Specifically, I would like to

acknowledge Dr. Lan Lin. Lan is an exceptional computer science theoretician and a good friend.

Thank you Lan for your unwavering support and assistance. Dr. Stacy Prowell is an outstanding

professor and a tremendous example. Thank you Stacy for extending the invitation to work with

SQRL. Dr. Krik Sayre is a remarkable software writer, and I share his passion. Thank you Kirk

for helping me through practical application of the lab’s methods. I cannot thank Mr. Tom Swain

enough for providing opportunities. Finally, I would like to thank Mr. Bradford Smith for friendship

and great conversation.

One of the most generous men I have ever met helped me achieve this goal. Although Mr.

William Cash is not able to see the end result, I will never forget him.

I am grateful to my wife’s parents, Bill and Pat Vaughn, for years of love and support. Their

contribution to helping me achieve this goal was enormous.

Most importantly, I would like to thank my parents, Will and Judy Carter, for providing a

strong foundation and a desire to improve and grow every day. I would not be where I am today

without their love.

iv

MATLABR©, SimulinkR©, and StateflowR© are registered trademarks of The MathWorks, Inc.

LabVIEWTM is a registered trademark of National Instruments, Inc.

v

Abstract

Software has become integral to the control mechanism of modern devices. From transportation

and medicine to entertainment and recreation, embedded systems integrate fundamentally with

time and the physical world to impact our lives; therefore, product dependability and safety are of

paramount importance.

Model-based design has evolved as an effective way to prototype systems and to analyze system

function through simulation. This process mitigates the problems and risks associated with em-

bedding software into consumer and industrial products. However, the most difficult tasks remain:

Getting the requirements right and reducing them to precise specifications for development, and

providing compelling evidence that the product is fit for its intended use.

Sequence-based specification of discrete systems, using well-chosen abstractions, has proven

very effective in exposing deficiencies in requirements, and then producing precise specifications

for good requirements. The process ensures completeness, consistency, and correctness by tracing

each specification decision precisely to the requirements. Likewise, Markov chain based testing has

proven effective in providing evidence that systems are fit for field use.

Model-based designs integrate discrete and continuous behavior; models have both hybrid and

switching properties. In this research, we extend sequence-based specification to explicitly include

time, continuous functions, nondeterminism, and internal events for embedded real-time systems.

The enumeration is transformed into an enumeration hybrid automaton that acts as the founda-

tion for an executable model-based design and an algebraic hybrid I/O automaton with valuable

theoretical properties. Enumeration is a step-wise problem solving technique that complements

model-based design by converting ordinary requirements into precise specifications. The goal is a

complete, consistent, and traceably correct design with a basis for automated testing.

vi

Contents

1 Introduction . 1

1.1 The Problem . 1

1.2 Model-Based Design . 2

1.3 Results and Contribution . 4

2 System Characteristics . 5

2.1 Sets and Number Systems . 5

2.2 Relations and Functions . 6

2.3 Dynamic Behavior . 6

2.4 Signals . 7

2.5 System Boundary . 8

2.5.1 Internal Dynamics . 10

2.6 System Types . 11

2.6.1 Discrete Systems . 11

2.6.2 Continuous Systems . 11

2.6.3 Switching Systems . 12

2.6.4 Hybrid Systems . 13

2.7 Discrete Sequence-Based Specification . 14

2.8 Applicability . 16

3 Hybrid System Mathematics . 17

3.1 Introduction . 17

3.2 Intervals . 19

3.3 Function Operations . 20

vii

3.4 Sequences . 20

3.5 Time . 21

3.6 Variables . 21

3.7 Valuations . 22

3.8 Trajectories . 23

3.8.1 Prefixes and Concatenation . 24

3.9 Hybrid Sequences . 24

3.9.1 Prefixes and Concatenation . 26

3.10 Hybrid Automata . 26

3.11 Trajectory and Hybrid Sequence Ordering . 29

4 Hybrid Sequence Enumeration . 31

4.1 Enumeration Elements . 32

4.1.1 Stimulus Vectors . 33

4.1.2 Trajectory Definitions . 35

4.1.3 Condition Vectors . 37

4.1.4 Hybrid Signals . 38

4.2 Hybrid Enumeration . 40

4.2.1 Relationship of EH to Discrete Enumeration 42

4.2.2 Hybrid Enumeration Process . 44

4.2.3 Refinement . 52

4.2.4 Requirements Trace . 54

4.2.5 Relationship of EH to Hybrid Sequences . 55

4.2.6 Continuous Properties of Stimulus Vector Sequences 57

4.2.6.1 Mode Invariant . 57

4.2.6.2 Point Modes . 58

4.3 Theorizable, Specifiable, Implementable, Realizable 59

4.3.1 Infinite Hybrid Sequences . 59

4.3.2 Finite Time-Bounded Zeno Sequences . 60

4.3.3 Finite Admissible Sequences . 60

4.3.4 Finite Time-Bounded Closed Sequences . 61

viii

5 Enumeration Hybrid Automata . 62

5.1 Enumeration Hybrid Automata . 62

5.1.1 Construction Algorithm: EH to AE . 63

5.1.2 Relationship Between AE and M (Enumeration Mealy Machines) 68

5.1.3 Construction Algorithm: AE to A . 69

5.1.4 Relationship Between AE and A . 74

6 Hybrid Specification Implementations . 77

6.1 Stateflow Implementations of AE . 78

6.1.1 Implementing the State Machine Control . 78

6.1.2 Implementing the Behavior Function B . 80

6.1.3 Implementing the Condition Function Q . 81

6.1.4 Resettable Timers Implementation . 83

6.2 Simulink Fundamentals . 85

6.2.1 Elements . 85

6.2.2 Simulation . 86

6.2.3 Solvers . 87

6.2.4 Zero-Crossing Detection . 87

6.3 Simulink Implementations of AE . 88

6.3.1 Implementing the Behavior Function B . 91

6.3.2 Implementing the Condition Function Q . 93

6.4 Alternative Implementations . 96

7 Conclusion . 97

7.1 Tool Support . 99

7.2 Future Research . 100

References . 102

Appendices . 106

A Examples . 107

ix

A.1 Resettable Timers . 107

A.1.1 Requirements . 107

A.1.2 Enumeration Procedure . 109

A.1.3 Tabular Enumeration . 121

A.1.4 Constructing AE . 124

A.2 Power Window . 130

A.2.1 Requirements . 130

A.2.2 Tabular Enumeration . 132

Vita . 141

x

List of Figures

2.1 A Dynamical System . 7

2.2 Model and Software System Boundary . 9

2.3 General System Model . 10

2.4 Switching Behavior . 12

2.5 Hybrid Behavior . 14

3.1 A Hybrid Automaton . 27

3.2 A Hybrid I/O Automaton . 28

4.1 Process: Requirements to Constructive Enumeration (EH) 32

4.2 Stimulus Vectors . 34

4.3 Hybrid Signals . 38

4.4 Stimulus Vector Sequence Extensions . 43

4.5 Refinement Tree . 53

4.6 Mode Invariant . 57

4.7 Instantaneous Transitions . 59

4.8 Hybrid Sequence Classes . 60

5.1 Process: Enumeration (EH) to Specification (AE) to Algebra (A) 63

6.1 Process: Specification (AE) to Model-Based Design (M) 78

6.2 Stateflow Implementation of the Resettable Timers Example 83

6.3 Resettable Timers . 84

6.4 Discrete Output Signal orts . 84

6.5 Simulink Models . 85

6.6 Simulink Implementation of a Signal Definition . 86

xi

6.7 Simulink Implementation (M) of AE . 88

6.8 Simulink Subsystem Components of M . 89

6.9 Simulink Implementation of the Signal Definition Set in M 92

6.10 Simulink Implementation of the Transition Set in M 93

6.11 Simulink Implementation of the Condition Vector Set in M 94

6.12 Simulink Implementation of Q in M . 95

A.1 Resettable Timers Refinement Tree . 123

xii

List of Notation and Conventions

General

, Is defined as� Takes the value of

A,B,C Sets

∅ The empty set

a, b, c Elements of sets

R The set of real numbers

Z The set of integers

N The set of non-negative integers

P The set of positive integers

i, j, k Indices

infpAq The infimum (greatest lower bound) of A

suppAq The supremum (least upper bound) of A

minpAq The minimum element in A

maxpAq The maximum element in A

J An interval (J ⊆ R)

n The size of a countable set (n ∈ N)rns t 1, . . . , n u
f, g Functions

dompfq The domain of f

rangepfq The range of f

f � g f composed with g

f |A Domain restrict f to A

f ÓA Domain restrict the functions in rangepfq to A

πA Projection function onto coordinate A

ρ An equivalence relation

xiii

HIOA Algebra [13]

T A time axis

T≥0 A non-negative time axis

t An element of T

I The set of input actions

O The set of output actions

E The set of external actions (E � I ∪O)

H The set of internal actions

L The set of locally controlled actions (L � H ∪O)

A The set of actions (A � E ∪H)

U The set of input variables

Y The set of output variables

W The set of external variables (W � U ∪ Y)

X The set of state variables

Z The set of locally controlled variables (Z � X ∪ Y)

V The set of variables (V �W ∪X)

valpV q The set of valuations for V

v A valuation in valpV q
Q The set of states

Θ The set of initial states (Θ ⊆ Q)

dtypepvq The set of atomic functions describing v’s dynamic behavior (v ∈ V)

typepvq The range of all functions in dtypepvq (v ∈ V)

τ , υ Trajectories (τ : J Ñ valpV q with J left-closed)

℘pvq A point trajectory (τ : r0, 0s Ñ tv u)
trajspV q The set of all trajectories over the variables in V

τ.ltime suppdompτqq
τ.lval For τ : r0, ts Ñ valpV q, τptq
τ.fval τp0q
τ.lstate τ.lval|X
τ.fstate τ.fval|X
τ"υ The concatenation of trajectory τ with υ

D The set of hybrid automaton transitions

T The set of hybrid automaton trajectories

H A hybrid automaton pW,X,Q,Θ, E,H,D,T q
A A hybrid I/O automaton pH, U, Y, I,Oq
T A set of trajectories

xiv

finitepT q The bounded (finite) trajectories in T

closedpT q The closed trajectories in T

openpT q The open trajectories in T

fullpT q The full trajectories in T

α, β Hybrid sequences (α � τ0 a1 τ1 a2 τ2 . . .)

α.ltime
°

i∈dompαq τi.ltime
α.fval headpαq.fval
α.lval For closed α, headpαq.lval
C0pTq The set of continuous functions whose domain is T

Hybrid Enumeration

σ, ψ Sequences

λ The empty sequence

headpσq The first element in σ

tailpσq σ with the first element removed

lastpσq The last element in finite σ

initpσq Finite σ with the last element removed

S The stimulus set for a discrete sequence-based specification

S� The set of finite sequences over S

Sω The set of infinite sequences over S

M An enumeration Mealy machine

S The set of atomic stimulus vectors

S The set of stimulus vectors

a, b, c, d Stimulus vectors

σ, ψ Stimulus vector sequences

B A block in a partition of a set
χ

B The atomic characteristic predicate for B

U The continuous state space

hU The characteristic predicate for U
hQ The characteristic predicate for Q ⊆ U
ω The illegal discrete response

Ex An expression set for the variable x

R The set of atomic condition vectors

R The set of condition vectors

r A condition vector

xv

pϕ, rq A controllable hybrid signal definition

R The set of controllable hybrid signal definitions

Ω The illegal hybrid signal definition

E An enumeration (E : S� Ñ R� S�)
m a mapping in E : pσ, ppϕ, rq,ψqq
EH A hybrid enumeration: pE , V,ΘqÞÑ πR � E
⊲ πS� � EÞÑΦ πΦ � ÞÑÞÑR πR � ÞÑ
Cf The codomain of the function f

s A signal (s : T Ñ Cs)

Px A set of characteristic predicates for Cx

S A set of signal names

u, x, y Continuous-time input, state, and output signals, respectively

d, o Discrete-time input and output signals, respectively

null The null action (either input or output)

x̃ A surrogate state variable9z, 9x The first time derivative of z and x, respectively

e An expression

ϕ A trajectory definition

Φ The set of trajectory definitions

µ The mode state variable

AE An enumeration hybrid automaton: pQ,Θ, I, V,R,Φ,Q,Bq
Q The condition function of an enumeration hybrid automaton

B The behavior function of an enumeration hybrid automaton

M A model-based design

xvi

Chapter 1

Introduction

1.1 The Problem

Correctly designing complex software-intensive control systems remains a daunting task despite

more than half a century of experience and thousands of successful systems. The problem is

that software-intensive product development is still too costly and error prone. Developers are

always seeking higher quality, lower cost, and shorter development cycles, usually while increasing

functionality and complexity. This is surely a basis for errors, and developers are reluctant to release

products that are safety critical or might be subject to expensive recall. Even after extensive and

expensive measures are taken, products continue to fail in the field.

The Software Quality Research Lab (SQRL) continues to evolve a constructive approach to

transforming an expression of product requirements into a precise specification of intended prod-

uct behavior: a sufficiently precise specification from which much of the code can be generated

automatically and automated testing methods can demonstrate that products are fit for their in-

tended use. The result of this research is extension of sequence-based enumeration to directly

handle time, continuity, and nondeterminism in embedded real-time systems. By capitalizing on

the step-wise, problem solving enumeration process and its ability to elicit product requirements,

models of embedded real-time systems can be produced that function as intended.

Microprocessors with software controlled sensors and actuators have essentially replaced analog

control systems. An embedded system is an applied computer system with well-defined hardware

and software constraints designed to perform a dedicated function that requires high levels of

1

dependability [20, p. 5]. An embedded system with timing constraints is a real-time system.

With diminishing hardware constraints, the employment of embedded system software has become

common place. From transportation and medicine to entertainment and recreation, embedded

systems integrate fundamentally with time and the physical world to make our lives more safe,

productive, and enjoyable.

1.2 Model-Based Design

No specific method of software development for embedded systems is widely acknowledged as the

best or right way to work. Most companies hold all or part of their methodology, process, and

tools proprietary. Although there are standards (IEEE, ISO, IEC, and others) and ratings (CMM,

CMMI, for example), these are not uniformly respected or practiced. While various practices are

generally recognized as good, or better than others, there is not a codified set of best practices and

even if such practices existed, they would not be strictly followed.

Formal methods are used in some organizations, but are considered too expensive for the value

received in all but the most safety-critical applications. The software engineering workforce capable

of using formal methods is quite limited. Rigorous methods are somewhat more cost-effective, and

sequence-based specification is considered rigorous. The most effective organizations follow a locally

evolved process that combines elements of formal and rigorous methods with good tool support.

Code generation and automated testing (hardware-in-the-loop, software-in-the-loop, model-in-the-

loop) are typical in such organizations.

Model-based design has emerged as an effective way to prototype software-intensive systems

and analyze system function through simulation. Automatic code generation and visual design

components are also strengths of model-based design tools such as MATLAB/Simulink, LabVIEW,

and others. These strengths help resolve discrepancies in requirements, facilitate verification and

validation, and decrease overall development time. However, rapid design methods should supple-

ment, not replace, the fundamentals of good design. As more features are integrated into the design

at a faster pace, we must be sure unintended behavior is not introduced and the final result agrees

with the product designer’s intentions.

Software and physical device development are separable; however, integration of system com-

2

ponents after they have been developed separately can be problematic. Co-engineering improves

this situation. A systems perspective taking into account the context of use enhances the depend-

ability assurance case; dependability does not rely solely on the software component [8, p. 55].

During physical device design and manufacture, essential details are exposed that are needed to

engineer correct control software. During software development, physical device interface require-

ments are also revealed. System prototyping using model-based design tools allows analysis of

complete system performance without incurring the costs of physical component construction. In

highly dependable systems, the embedded processor and its associated software seamlessly interact

with the physical devices it monitors and controls. Getting one portion of the system correct is not

enough; the entire system must operate correctly as a whole.

A model-based design is a graphical data flow program whose structure has roots in engineering

block diagrams and signal flow graphs [15]. Model blocks are composed to create subsystems.

Instead of line-by-line program execution, data flow programs evaluate a set of subsystems which

replace blocks of code at each time step producing new output data for each subsystem; subsystem

output is a function of the input from the previous time step and the time between steps. A

model-based design simulation is a sequence of subsystem evaluations at critical time steps. The

block diagram paradigm opens system design to a more diverse group of developers; however, more

developers could exacerbate the inconsistencies within a model.

A model-based design simulates discrete and continuous behavior operating together; models

have the properties of hybrid and switching systems. An event that occurs instantaneously in time

is an example of discrete behavior; the finite or countably infinite set of event times makes the

behavior discrete. Behavior that evolves over an uncountable interval of time is continuous. The

set of states that characterize continuous system behavior may or may not be countable.

Sequence-based specification proceeds from an enumeration of sequences over a well-defined

set of software inputs mapping each sequence to a response. The specification method is well

suited to the design of embedded control software. Model-based designs include software, models

of physical devices, and the connections between these components. This research complements

model-based design with sequence-based methods by inserting a systematic specification process

between requirements and model development. This will help engineers get the design right.

3

1.3 Results and Contribution

Discrete sequence-based specification cannot capture the continuous aspects of hybrid and switch-

ing systems. For this, we integrate continuous functions into our extended specification. To specify

complete system models, identification of internal events is also important. We introduce inter-

nal (autonomous) events using internal system variables into the stimulus set. Real-time system

properties are made explicit in the specification by resettable clock variables that advance at the

same rate as real time and internal events based on clock values. Defining the stimulus set for

a discrete sequence-based specification requires appropriate abstractions be made prior to system

specification; sometimes the abstraction is not obvious. By making continuous system variables

and the functions that describe their behavior explicit in the specification, internal and external

stimulus refinement based on these variables can be used when necessary.

We extend existing sequence-based methods to address the characteristics of hybrid and switch-

ing systems with the following contributions:

• The elements needed to produce hybrid specifications with real-time properties are prescribed.

• A hybrid enumeration is defined and the constructive enumeration process is presented.

• A specification called an enumeration hybrid automaton is defined and an algorithm for its

construction is given.

• The mathematical basis for our specification method is the hybrid I/O automaton (HIOA)

[9, 13]. A constructive algorithm that produces a HIOA from our specification is presented

and then used to prove a hybrid enumeration satisfies the HIOA axioms.

• Finally, using the enumeration hybrid automaton, algorithms to construct model-based de-

signs in the Simulink and Stateflow design languages are presented.

Before establishing these results, several system models are explored and those characteristics

that lend themselves to specification by sequence enumeration are identified. Next, we introduce

the theory of hybrid I/O automata [9,13] and use this model as the mathematical foundation for our

specification method. Finally, the definitions, enumeration process, and construction algorithms

are presented. In summary, a process is defined for constructing complete, consistent, and traceably

correct designs of hybrid and switching systems.

4

Chapter 2

System Characteristics

A system is defined by a set of distinctive relationships among a group of components

that interact with one another and their environment through the exchange of energy,

matter, and/or information [17].

We target for specification systems that include interacting human users, control software,

subsystems, and models of physical devices. The dynamic behavior of physical devices depends

on time. The interaction between system components is often time sensitive as well. The state

of a system in time is the minimal amount of historical system information required to predict

future system behavior [27]. A hybrid I/O automaton (HIOA) is a system model that incorporates

time, continuous dynamic functions, interactions in the form of stimuli and responses, and varying

forms of nondeterminism [13]. Specially formed sequences are used to describe these behaviors in

a HIOA. The framework for our specification method is a HIOA because it is sequence based and

it includes the structures necessary to address behavior missing in our discrete method. In this

chapter, systems are classified based on the characteristics that lend themselves to specification

using sequences. They are discussed in the context of HIOA, a general definition for a dynamical

system.

2.1 Sets and Number Systems

A set with finite or countably infinite cardinality is discrete. We use capital letters (e.g., A,B) to

denote sets and lower case letters (e.g., a, b) to denote elements of sets. We use ⊆ to denote the

5

subset relation and (to denote the proper subset relation. The relative complement of set B in A

is A�B. We use , to show two objects are equivalent by definition. R is the set of real numbers.

Z is the set of integers; N � t a ∈ Z | a ≥ 0 u; P � N � t 0 u. For all n ∈ N, rns � t 1, 2, . . . , n u;rns ⊆ P and r0s � ∅. P (N (Z (R.

2.2 Relations and Functions

A relation on sets A and B is any subset of A � B. For pa, bq ∈ A � B, a is the first coordinate

of the pair and b is the second coordinate of the pair. Relations are denoted using appropriate

symbols (e.g., ≤). A total function from set A to set C, denoted f : A Ñ C, is a relation where

for each a ∈ A there exists one and only one c ∈ C that satisfies pa, cq ∈ f . A is the domain of f ,

denoted dompfq. C is the codomain of f . When needed, we use Cf to distinguish both a codomain

and the function. The range of f , or rangepfq, is the subset of C whose elements appear as the

second coordinates of the ordered pairs of f . A partial function is a function where elements from

a proper subset of A are found in the first coordinates of the pairs that make up f . We refer to

this set as the domain of the partial function. Functions are denoted with the lower case letters

f, g. When codomain C contains n-tuples for n ¡ 1, bold face type is used, i.e., f , g. Unless noted

otherwise, functions are total: dompfq � A.

2.3 Dynamic Behavior

An evolution rule that defines a trajectory as a function of a single parameter (time) on

a set of states (the state space) is a dynamical system [16, p. 105].

Following [13, p. 17], we define time, denoted T, as a subgroup of pR,�q. Although negative time

is counter-intuitive it is necessary in the mathematical description of dynamical system behavior.

For our purposes, we differentiate between an evolution rule and a trajectory. A trajectory is a

function of time, describing how a system behaves between stimuli. An evolution rule is a function

of time that describes complete system behavior; the result of our extended enumeration is an

evolution rule. In other words, an evolution rule incorporates trajectories and how system behavior

changes after each stimulus. The evolution rule may be deterministic or stochastic. Our goal is

6

Figure 2.1: A Dynamical System

to build deterministic models in Simulink (or similar systems) that incorporate both software and

models of physical devices. A deterministic evolution rule establishes a unique consequent state

from every other system state [16, p. 106]. We focus primarily on deterministic rules.

Figure 2.1 depicts a dynamical system with trajectory τ . The trajectory’s domain is time and

the codomain is an n-dimensional space over the real numbers. In Figure 2.1, the arrows represent

potential system interaction with the environment.

To provide sufficient detail to implement a specification as a model-based design, internal be-

havior is included explicitly in a system’s evolution rule. A HIOA includes definitions for trajectory

components called dynamic types; these definitions can be used for model-based design implemen-

tation. In this respect, we break from discrete sequence-based specification which transforms se-

quences with specific properties into a finite set of states upon completion of sequence enumeration.

In the extended sequence-based specification method presented here, we examine, augment, and

map state information as sequence enumeration progresses using trajectories. Additionally, internal

stimuli are explicitly discovered and defined whereas these stimuli would be inferred abstractions

in discrete sequence-based methods. Since internal and external details are included as part of the

specification, a black box perspective can be obtained by restricting the final representation to an

external set of variables and an external stimulus set.

2.4 Signals

A signal is a function of one or more independent variables. Signals convey information and are not

limited to input and output; internal system behavior can also be characterized as a signal [14, p.

3]. When time is a signal’s single independent variable, it is also a trajectory. Signals may be

stochastic but the function definition suits our deterministic aims. Two types of time-based signals

are fundamental in the discussion of hybrid systems.

7

Definition 2.1. Continuous-time signal s is a total function s : T Ñ Cs [14, p. 6].

We denote signals using lower-case script letters: u denotes a continuous-time input signal, y

denotes a continuous-time output signal, and x denotes a continuous-time state (internal) signal.

u, y, and x are also referred to as input, output, and state variables respectively. uptq is the value

of continuous-time input signal u at time t ∈ T; the parentheses in uptq distinguish signal u as

continuous-time (rather than discrete-time).

Definition 2.2. Discrete-time signal s is a partial function s : T Ñ Cs with countable dompsq.
For t {∈ dompsq, srts � null [14, p. 6].

or0s is the value of discrete-time output signal o at t � 0; the brackets in or0s distinguish signal

o as discrete-time. Discrete-time signals may result from sampling a continuous signal at fixed or

variable time increments. The range of a discrete-time signal is not restricted to a finite set.

2.5 System Boundary

The system boundary encapsulates those system components that define its state and clearly iden-

tifies signals in the environment that contribute to overall system behavior. Software is produced

to accomplish a task on a digital computer; an input-output relationship exists and the number

of states is finite. A model of a physical system, on the other hand, may operate autonomously

within its environment over an arbitrary state space. Furthermore, a model of a physical system

may not produce output. Consider an ideal spring. For this example, the arrows in Figure 2.1 are

eliminated and τ models the spring’s oscillation over time. τptq describes the spring’s motion and

position as a tuple. The values in this tuple define the spring’s state at time t. The respective

scopes of software and model designers are different. A model’s system boundary may identify both

continuous-time and discrete-time signals and the system specification must be able to define these

details.

Embedded system software must be capable of processing continuous-time input signals. A

quantizer performs the vital task of collecting and interpreting continuous-time input signals at the

software system boundary [12, p. 11]. After the signal has been quantized, the software views each

input as a discrete-time signal. The quantizer may produce the discrete-time signal by periodically

8

Figure 2.2: Model and Software System Boundary

interpreting a set of continuous-time signals. This interpretation must be sufficiently precise in the

context of the application or failures may occur.

In a discrete sequence-based specification the values of continuous-time signals are represented

with abstractions. For example, consider a system with two independent timers. Two events are

defined, one for each timer reaching a specified value. The case when both timers reach their

specified values together, however, is not represented. How to quantize each individual timer

is clear from the requirements, and the implemented specification operates correctly when each

timer reaches its specified threshold individually. However, when the timers reach their respective

thresholds simultaneously, the system fails to perform a critical function. Recognizing the special

case might be overlooked using abstraction. We provide a mechanism to address this problem in

our process.

When the boundary includes software and models of physical devices or processes, the speci-

fication must include definitions for trajectories and a means to quantize continuous-time signals.

Figure 2.2 illustrates the relationship between the software system boundary and the model system

boundary.

9

Figure 2.3: General System Model

Figure 2.3 presents a high-level view of the hybrid I/O automata model. The details of this

model are presented in Chapter 3. This high-level view is consistent with Figure 2.2. The sets U ,

X, and Y contain the signal variables (u, x, and y respectively) that detail the behavior of physical

devices and their interaction with the environment.

The sets I, H, and O detail discrete or instantaneous system behavior. Elements in I and H are

discrete stimuli. Each stimulus in I is produced in the environment. H is the set of autonomous

system stimuli; each element of this set is generated within the system boundary. Elements of

I in conjunction with quantized data from the continuous-time signals in U and elements of H

determine system function. The system responds to each stimulus with a discrete output or a

change in continuous behavior. O is the set of outputs produced by the system at discrete instants

in real time.

2.5.1 Internal Dynamics

The compelling reason to use discrete sequence-based specification is discovery of system state,

transitions between states, and the output generated by each transition. The discovery results

from serially examining a sufficient number of input sequences one at a time. The result is a precise

mathematical function definition of the system that agrees with the final requirements document(s).

System trajectories are models of established physical laws defined by differential equations.

Enumerating trajectories is unnecessary; models of their behavior are known. However, many

systems use multiple trajectory definitions to describe overall system behavior or trajectory values

may change instantaneously as a result of external or internal influence. Sequence enumeration

will account for such behavior. For these reasons a sequence-based approach to writing model

specifications is appropriate and useful.

10

2.6 System Types

The focus of this research is transforming requirements (in any form) into precise dynamical system

specifications using sequences. Specifically, we find a sequence-based approach to be useful in

defining discrete, switching, and hybrid system characteristics while ensuring requirements are

complete.

2.6.1 Discrete Systems

A discrete event system may be described as a Mealy machine, a tuple [7, p. 43]:

M � pQ,Σ,∆, δ, ν, q0q. (2.1)

Q is a finite set of system states; q0 is the start state. Σ and ∆ are the input and output

alphabets, respectively. In terms of our signal discussion, Σ is the range of a discrete-time input

signal; the same view holds for the output alphabet ∆. The function δ governs how state changes.

The function ν governs how output is produced. There is no explicit definition of time in a Mealy

machine; time is simply sequential. M could repeatedly process a fixed sequence from Σ� starting

at q0 and produce the same result regardless of the time between elements in the input alphabet

sequence.

2.6.2 Continuous Systems

A continuous system with input u, state x, and output y is defined by the equations [12, p. 4]:9x � fpxptq,uptq, tq, xp0q � x0 (2.2)

y � gpxptq,uptq, tq. (2.3)9x denotes the first derivative of x with respect to time. f is a vector field in T�R|x| produced by

plotting each vector with initial point pt,xq and terminal point pt�1,x� 9xq in Euclidean space. Since9x defines the instantaneous rate of change at all points pt,xq, f describes all possible trajectories.

Given an initial point, x0, a specific trajectory can be determined using f . Meanwhile, g describes

11

Figure 2.4: Switching Behavior

continuous system output as a function of state, input, and time. One purpose of enumeration is

to discover a function. Equation 2.2 usually describes a set of known physical laws; enumeration is

not required.

2.6.3 Switching Systems

The evolution rule of a switching system is defined using two or more vector fields to describe

trajectories. State in a switching system includes a discrete component called system mode and a

continuous component where a trajectory evolves over time [19, p. 6]. Each field, f , distinguishes

a mode. In an autonomous switching system, a threshold between two adjacent regions in the

system’s state space defines where system behavior changes fundamentally without influence from

the environment. In a controlled switching system, behavior changes are based on input changes. A

switching event is defined by properly identifying the threshold or input that triggers the switch and

then defining a new vector field to describes how trajectories evolve over time after the switching

event. Figure 2.4 illustrates switching in a two-dimensional continuous state space with two modes.

The system’s evolution rule (autonomous switching) is defined using a piecewise vector field and

definitions for adjacent regions, Ψ1 and Ψ2, in the continuous state space [12, p. 8]:9x � $'&'%f1pxptq,uptq, tq, xp0q � x0 and x ∈ Ψ1

f2pxptq,uptq, tq, xp0q � x0 and x ∈ Ψ2.

(2.4)

Consider mode 1 in Figure 2.4. For a deterministic evolution rule only one vector field can be

associated with each mode. If this were not the case, at each point in Ψ1 more than one vector

could describe a trajectory’s direction and velocity from that point. The dotted line perpendicular

12

to mode 1 in Figure 2.4 illustrates a switching event. This perpendicular transition indicates that

continuous state remains constant through the switch. If a transition includes a discontinuity in

the continuous state space, the switching system is also hybrid.

Enumeration supported by requirements can be used to identify switching events. System

behavior before and after a switching event can be defined using Equations 2.2 and 2.3.

2.6.4 Hybrid Systems

The exact definition of a hybrid system is not settled: “No common definition of a hybrid system

is available.” [12, p. 3] When system behavior does not fit nicely into either discrete system theory

or continuous system theory we must use a different method of analysis [12, p. 4]. We adopt

Hypothesis 1 from [12, p. 5] to define hybrid behavior:

Consider a dynamical system subject to some continuous input u. The basic hybrid

phenomenon is a combination of continuous state changes and abrupt state jumps.

In a hybrid system, the rate at which a continuous variable changes value at certain instants in

real time is undefined; these times are determined by boundaries in the system’s state space. When

system state reaches the boundary it is no longer continuous, jumping to a new state from which

system state continues to evolve. Hybrid behavior is illustrated in Figure 2.5. When the trajectory

reaches the boundary of Ψ1, its state changes discontinuously and trajectory evolution continues.

The vector field f1 governs trajectory behavior before and after the jump. Trajectories in a pure

switching system change their fundamental behavior but remain continuous. In a hybrid system,

discontinuities exist with or without a fundamental change in trajectory behavior after the state

jump.

As an example of hybrid behavior, consider a state variable representing a resettable clock. The

vector field describing the trajectory of a clock variable that advances at the same rate as real time

is always fptq � 1. If the clock variable resets when its value reaches 100, the clock’s trajectory

exhibits autonomous hybrid behavior.

The states and stimulus events that cause hybrid jumps are critical to identify in a hybrid

system specification and enumeration does identify them.

13

Figure 2.5: Hybrid Behavior

2.7 Discrete Sequence-Based Specification

The objective of the discrete sequence-based specification method is to discover a special Mealy

machine that correctly models the requirements provided. The discovery process proceeds from

a finite enumeration of stimulus sequences. Alternating between requirements and enumerated

sequences, the process culminates in a complete, consistent, and traceably correct specification

that matches an improved requirements document.

Let S be the finite set of system stimuli generated in the environment and R be the set of system

responses. R always includes two special responses: ω and null . ω indicates that the associated

stimulus sequence is physically impossible. null represents the absence of an observable output.

An enumeration is a partial function mapping a subset of S� to a set of pairs. pS�, q is a total

order where is defined first by sequence length and then lexicographically. The first element

of a pair in the range of the enumeration mapping is the response. The second element of the

pair is an element in the partial function’s domain; either a prior sequence by or the sequence

itself. In the later case, we say the sequence is unreduced [10, Definition 4.6]. If the sequence is

unreduced and illegal, it is not extended [10, Axiom 5]. If the sequence is unreduced and legal, the

sequence describes unique future behavior and is extended by every element in S [10, Axiom 7].

Each extension is examined and associated with a response-sequence pair.

Two unreduced sequences σ and ψ are distinguishable if one is legal and the other is illegal or

when σ and ψ are extended by the same stimulus and either their response is different or their

reductions are themselves distinguishable [10, Definition 4.9]. σ and ψ are equivalent if they are

not distinguishable [10]. σ can be reduced to ψ if they are equivalent and ψ σ [10, Definition

4.6]. A stimulus sequence is reducible if future stimulus extensions produce behavior identical to

14

the future behavior of an enumerated sequence earlier in the order. A missed equivalence by itself

does not produce an incorrect enumeration [23, p. 422]. In this case, the enumeration will not be

minimal, but that is preferred over making an incorrect reduction. Incorrect reductions produce

incorrect behavior. The above definition of equivalence is Mealy equivalence; it is based on future

behavior.

The illegal response ω is reserved for sequences that are impossible based on our knowledge of the

current requirements and the physical world. Implicitly, illegal sequences identify trap states whose

subsequent extensions remain illegal. A specification writer must use caution when classifying a

sequence as illegal. Incorrect information about the system’s operation and environment may lead

to incorrect specification.

When a system’s environment is not well understood, requirements are hard to get

right. A distinction must be made between truly impossible sequences and pathological

events that are simply unexpected. Such unexpected sequences can be handled in two

ways [4, p. 338]:

1. Define a response that puts the system in a safe state. Future legal sequence

extensions produce appropriate legal behavior.

2. Define a response that halts, but does not damage the system; future sequence

extensions are ignored. The user must correct the error before restarting the

system.

Enumeration is complete when all sequences in the domain of E are reduced, legal and unre-

duced, or classified as illegal [10, Lemma 4.14]. When complete, the function

E : S� Ñ R� S� (2.5)

provides sufficient information to produce an enumeration Mealy machine [10, Definition 5.1]. Each

unreduced sequence in E represents a class of sequences in S� and a state in the machine definition.

A sequence is canonical if it is both unreduced and the least indistinguishable sequence in the

order [10, Definition 4.10]. A canonical sequence truly characterizes a sequence of stimuli whose

follow-on behavior is unique; there is no sequence earlier in the order that also characterizes this

15

future behavior. Canonical sequences are important because they represent the minimal informa-

tion needed to specify a system correctly. Using canonical sequences, function composition, and

projections, E can be transformed into an enumeration Mealy machine.

[23] provides an overview of the sequence-based specification process and [10] provides the

formal axiomatized specification method along with algorithms to modify enumerations and convert

them into alternative forms. For consistency we adopt the notation from [10] where possible.

Some code and model-based designers are hesitant to use sequence-based specification because

it only handles explicitly the discrete part of the process and requires abstractions. They want

to specify systems that include control software and the trajectories that describe the behavior of

interacting physical devices. Extending the discrete enumeration process to include these features

will make explicit the details needed for model implementation.

2.8 Applicability

Complex hybrid and switching systems can be enumerated using the systematic method outlined in

successive chapters. When continuous system behavior can be defined using a system of first-order

differential equations and functions of time, enumerating sequences that include both signals and

events generates the series of questions necessary to reveal

• Internal autonomous system behavior,

• New trajectory definitions following a switch,

• Discrete system output,

• System state following a hybrid jump, and

• System mode changes.

By combining the fundamental characteristics of discrete, switching, and hybrid dynamical

systems with a specification method well-suited to transform requirements into computer imple-

mentations, we can produce system models that are correct by construction. These provisions will

allow specification writers to explicitly discover the interfaces between software and physical de-

vices, resolve nondeterminism, and include descriptions of continuous real-time behavior. Using this

specification, both model and software can be extracted to aid the embedded system development

process.

16

Chapter 3

Hybrid System Mathematics

3.1 Introduction

There is a significant body of literature produced by computer scientists, mathematicians, and

control engineers on specifying hybrid and switching systems. Some of the more well-known theories

introduced in the computer science community are [1,2,6,9,13]. We form our specification method

using complementary features from these works but have found the theory presented in [9, 13] to

be especially well suited to specification by enumeration.

Timed automata were introduced in [2] and provide a foundation for specifying and analyzing

real-time system behavior. This model is central to the Uppaal tool suite for verification of real-time

systems [3]. A timed automaton describes timed behavior as a pair of possibly infinite sequences,pσ, τq, called a timed word. σ is a sequence over an alphabet, and τ is a monotonically increasing

sequence of positive reals modeling time advance. The state of a timed automaton is a combination

of values from a finite set of resettable clock variables advancing at the same rate as real time and

a finite set of automaton modes. Mode-to-mode transitions are defined using an action alphabet

similar to the stimulus and response sets combined and a set of predicates defined on the clock

variables. The trajectories of a timed automaton are the advancing clocks.

More complex trajectories can be modeled by generalizing the expressions used to describe how

a variable evolves over time. In the hybrid automata of [1], state is defined as a location and the

values assigned to a set of data variables. The set of locations is finite; each data variable can

assume an arbitrary number of values. A function called an activity maps the positive reals to data

17

states thereby specifying continuous system evolution. An activity is the same as a trajectory. As

an example, the local behavior of trajectories for each data variable in a linear hybrid automaton is

described using a constant vector field whose rate possibly changes between locations. The timed

automata are a strict subset of the linear hybrid automata. A transition relation determines when

the automaton may change location, but it does not force a transition. An exception set defines

local data states that cannot be entered. An automaton location-to-location transition is required

prior to its entering the data states in the exception set. The complement of the exception set is the

invariant set. Activity continues within a location’s invariant set until a transition or an exception

occurs. In combination, the invariant set, exception set, and the transition relation allow varying

degrees of nondeterminism to be modeled. A hybrid automaton run is defined as a sequence of

5-tuples that captures both instantaneous discrete transitions and the continuous evolution of the

data variables. In [6] the theory introduced in [1] is expanded to include more complex trajectories.

The hybrid automata presented in [9, 13] are based on domain theory [24]. The theory of

hybrid automata builds upon previous hybrid system theory and also uses a sequence as the central

behavior descriptor. The behavior of each variable in the sets U , X, and Y (see Figure 2.3) is

described as a signal, a function whose domain is T. Combinations of these functions define

trajectories through an n-dimensional state space where n is the number of state variables in X.

Using a set of actions equivalent to the stimulus and response sets combined, a hybrid sequence is

used to describe system execution by alternating actions and trajectories. Well-defined operators

are provided throughout the theory to facilitate abstraction and isolate system details. Finally,

the prefix ordering relations of trajectories and hybrid sequences facilitate addressing continuity,

so called “Zeno behavior”, and infinite sequences from a domain-theoretic viewpoint.

The theory in [9, 13] approaches hybrid system verification from a high level of abstraction

called a specification using induction to prove specific system properties without resolving every

system detail. These properties cascade to system refinements called implementations as long as

an implementation relation can be established. Our goal is to construct an implementable hybrid

specification directly from requirements. To accomplish this goal, sequence-based specification is

adapted to the hybrid sequences that define hybrid I/O automata (HIOA) behavior. The adapted

process is presented in Chapter 4. The foundations of hybrid automata found in [9,13] are summa-

rized in this chapter for completeness. The final hybrid sequence-based specification satisfies the

18

axioms of (discrete) sequence-based specification theory [10] and the axioms of the Lynch HIOA

theory.

3.2 Intervals

Definition 3.1. Let J ⊆ R be nonempty and ≤ denote the less than or equal to relation:

1. b is an upper bound (lower bound) for J iff b ∈ R and �a ∈ J, a ≤ b (b ≤ a, respectively.) If

there exists an upper bound (lower bound) for J , J is bounded above (below).

2. c is the supremum (infimum) of J iff c is an upper bound (lower bound) for J and for all

upper bounds (lower bounds) b ∈ J , c ≤ b (b ≤ c, respectively.) The supremum, denoted

suppJq, is also named the least upper bound. The infimum, denoted infpJq, is also named

the greatest lower bound.

Definition 3.2. J ⊆ R is convex iff �a, b ∈ J , the line segment from a to b is a subset of J

[28, p. 353].

Definition 3.3. An interval, J ⊆ R, is a convex set described and denoted as follows [28]:

1. The following intervals are closed:

(a) ra, bs , t c ∈ R | a ≤ c ≤ b u.
(b) ra,8q , t c ∈ R | a ≤ c u.
(c) p�8, bs , t c ∈ R | c ≤ b u.

2. The following intervals are open:

(a) pa, bq , t c ∈ R | a c b u.
(b) pa,8q , t c ∈ R | a c u.
(c) p�8, bq , t c ∈ R | c b u.

3. The following intervals are half-open or equivalently half-closed:

(a) ra, bq , t c ∈ R | a ≤ c b u.
(b) pa, bs , t c ∈ R | a c ≤ b u.

4. a and b are called endpoints.

5. An interval is bounded or finite if �8 a ≤ b 8.

19

R is considered both open and closed. A left-closed interval is either right-open, ra, bq, or right-

closed, ra, bs. If J is left-closed, minpJq is the minimum element in J ; likewise, for right-closed

J , maxpJq is the maximum element in J . An interval is called degenerate if its endpoints are

equivalent. A closed degenerate is a point and an open degenerate is the empty set.

3.3 Function Operations

Definition 3.4. For function f : A Ñ B and set C, f |C is a function g such that dompgq �
dompfq ∩ C and �c ∈ dompgq, gpcq � fpcq. f is said to be restricted to C. For singleton sets, we

abuse notation and let f |a be the same as f |ta u.
Definition 3.5. Let A and C be sets and let B be a set of functions. For the function f : AÑ B,

f ÓC is a new function g such that dompgq � dompfq and �a ∈ dompgq, gpaq � fpaq|C . For

singleton sets, we let f Óa be the same as f Ót a u.
Definition 3.6. Functions f and g are compatible if f |dompgq � g|dompfq. If f and g are compatible

then f ∪ g is a function. Let F be a collection of compatible functions;
�

f∈F f is a function.

Definition 3.7. For sets A, B, and relation D ⊆ A � B, the function πA : D Ñ A defined by

πAppa, bqq � a is the projection on the first coordinate of the pairs in D. For clarity, we drop

parentheses surrounding the pair when it is used as an argument for πA.

Definition 3.8. For the finite collection tA1, A2, . . . , An u, the set of n-tuples D ⊆ A1 � . . .�An,

and i ∈ rns, the function πAi : D Ñ Ai defined by πAippa1, . . . , ai, . . . , anqq � ai is the projection

on the ith coordinate of the tuples in D. Again, we drop the parentheses surrounding the n-tuple

function argument.

3.4 Sequences

A sequence can be used to describe particular system behavior. From a finite enumeration of se-

quences over a finite set of events, we produce an automaton that defines complete system behavior

as an infinite set of sequences.

20

Definition 3.9. A sequence over S is the function σ : rns Ñ S for some n ∈ P. The length of σ,

denoted |σ|, is n. If dompσq is countably infinite, σ is an infinite sequence; otherwise, it is finite.

λ : ∅ Ñ S defines the empty sequence.

Concatenation of finite sequence σ with sequence ψ is denoted σ"ψ. If σ � ψ|dompσq, we say σ

is a prefix of ψ and denote this relationship σ ≤ ψ. Given any sequence σ, headpσq represents the

first element of σ and tailpσq represents σ with headpσq removed. If σ is finite, lastpσq is σ’s last

element, and initpσq denotes σ with its last element removed.

The set of finite sequences over S is denoted S� while the set of infinite sequences over S is

denoted Sω. We only enumerate finite sequences; therefore, we do not address infinite sequences.

This is discussed in more detail in Section 3.11.

3.5 Time

Dynamic system behavior varies over time. From Chapter 2, time axis T is a subgroup of pR,�q;
T≥0 , t t ∈ T | t ≥ 0 u. Intervals are used to define subsets of T.

Definition 3.10. For K ⊆ T and t ∈ T, K � t , t t1 � t | t1 ∈ K u.
Definition 3.11. Let K ⊆ T , f be a function, and dompfq � K. f � t is the function with domain

K � t such that �t1 ∈ K � t, p pf � tqpt1q � fpt1 � tq q.
By using T and not T≥0 in the above definitions, we can shift the interval K in either direction

along T. In Definition 3.11, f � t represents signal f shifted by t.

3.6 Variables

We use V to denote the universal set of variable names. In Section 2.5, the variable sets of the

HIOA model were introduced. Each variable name represents a continuous-time signal.

21

Definition 3.12. A variable name v ∈ V has a static component and a dynamic component.

1. The static component typepvq is a nonempty set of values.

2. The dynamic component dtypepvq is a set of functions satisfying the following closure prop-

erties. The domain of each function in dtypepvq is a left-closed interval of T; its codomain is

typepvq.
(a) Closure under time-shift:

For each f ∈ dtypepvq and t ∈ T, f � t ∈ dtypepvq.
(b) Closure under subinterval:

For each f ∈ dtypepvq and each left-closed interval J ⊆ dompfq, f |J ∈ dtypepvq.
(c) Closure under pasting:

Let f0, f1, f2, . . . be a sequence of functions in dtypepvq such that, for each nonfinal index

i, dompfiq is right-closed and maxpdompfiqq � minpdompfi�1qq. Then fptq , fiptq, where

i is the smallest index such that t ∈ dompfiq, is in dtypepvq.
Subinterval closure includes all functions derived through domain restriction. This includes

degenerate domains and the function with the empty domain. Pasting closure produces piecewise

functions that may contain discontinuities. Pasted functions are continuous from the left; the

function derived using the pasting property is defined at each time where two adjacent functions in

dtypepvq are pasted by the left function. A set of functions closed under pasting includes functions

that exhibit hybrid or switching behavior as described in [12].

Two specific variables types are described in [9, p. 18]. A variable is discrete when its dtype

is the pasting closure of the set of all constant functions. C0pTq denotes the set of all continuous

functions whose domain is time axis T. An analog variable is obtained by closing C0pTq under

pasting.

3.7 Valuations

Definition 3.13. Given V ⊆ V, v is a valuation for V and a function that maps each v ∈ V to a

value in typepvq.
22

The set of all possible valuations for V is denoted valpV q. If V � t v1, v2 u is a set of variable

names and for each i ∈ r2s, ai ∈ typepviq, then v � t pv1, a1q, pv2, a2q u is a valuation. The restriction

operator isolates value assignments in a valuation. If v1 ∈ dompvq, v|v1 is a new function that maps

v1 to vpv1q. When V � ∅, v is the special function with the empty domain.

An alternative notation for a valuation is a vector or tuple. For vi ∈ V , typepv1q� . . .� typepvnq
is a set of n-tuples each of which captures the same information as a valuation as long as we can

properly index the tuple.

3.8 Trajectories

In Chapter 2, a trajectory was informally described as a function of time that describes continuous

system behavior between two discrete stimuli. Specifically, a trajectory defines the evolution of

valuations over time.

Definition 3.14. A J-trajectory for V is a function τ : J Ñ valpV q. J is a left-closed interval of

T≥0 with left endpoint equal to 0, and for each v ∈ V , τ Óv ∈ dtypepvq.
There are two special types of trajectories. When V � ∅, τ is a constant function mapping J to

the set containing the single valuation with the empty domain. The only information trajectories

of this type provide is elapsed time. Such trajectories are used in restrictions of hybrid sequences.

A point trajectory has the domain r0, 0s and a single valuation in the range. Point trajectories are

denoted ℘pvq; v is the valuation in the range of ℘pvq. trajspV q is the set of all possible trajectories

over the variables in V .

Definition 3.15. Let T be a set of trajectories. Elements of T are classified based on their domain:

• If dompτq is a bounded interval, then τ is bounded. finitepT q is the set of bounded trajectories.

• If dompτq is bounded and closed, then τ is closed. closedpT q is the set of closed trajectories.

• If dompτq is a bounded and right-open, then τ is open. openpT q is the set of open trajectories.

• If dompτq � T≥0, then τ is full. fullpT q is the set of full trajectories.

Let τ be a trajectory. The limit time of τ , τ.ltime, is suppdompτqq. The initial valuation in τ

is τ.fval. If τ is closed, τ.lval , τpτ.ltimeq.
23

3.8.1 Prefixes and Concatenation

Definition 3.16. Let τ and υ be trajectories. We say τ is a prefix of υ denoted τ ≤ υ iff

τ � υ|dompτq.
Definition 3.17. Let T ⊆ trajspV q. prefpT q � t τ ∈ trajspV q | Dυ ∈ T : τ ≤ υ u.

prefpT q is the set of all prefixes of each trajectory in T . If prefpT q � T , then T is prefix closed.

The closed trajectories in the prefix closure are the trajectories realizable in a system simulation.

Definition 3.18. Let τ and τ 1 be trajectories for V with τ closed. The concatenation of τ and τ 1,
denoted τ"τ 1, is defined by τ ∪ pτ 1|p0,8q � τ.ltimeq.

Based on the closure properties of each variable name’s dtype, concatenated trajectories are

elements of trajspV q. The concatenation is defined using two compatible functions; τ 1 is restricted

to a left-open interval and time-shifted by the limit time of closed trajectory τ . The valuation

used in the concatenated trajectory at τ.ltime is obtained from the first trajectory. Concatenation

extends to a countably infinite sequence of trajectories provided that all nonfinal trajectories are

elements of closedptrajspV qq.
The following special operators are defined to produce trajectory prefixes and time-shifted

suffixes: τ E t , τ |r0,ts, τ ⊳ t , τ |r0,tq, and τ D t , τ |rt,8q � t.

3.9 Hybrid Sequences

Let A be the set of system actions and V be the set of system variable names.

Definition 3.19. A hybrid sequence, or an (A,V)-sequence, is a finite or infinite alternating se-

quence α � τ0 a1 τ1 a2 τ2 . . . with the following properties:

1. Each τi ∈ trajspV q.
2. Each ai ∈ A.

3. If α is a finite sequence, it ends in a trajectory.

4. If τi is not the last trajectory, then τi is closed.

24

A hybrid sequence does not immediately satisfy Definition 3.9; however, any hybrid sequence

could be re-indexed to satisfy this definition. The alternating property of a hybrid sequence is worth

more attention. In Chapter 2, the fundamentals of transforming enumerated stimulus sequences

into a discrete system specification were introduced. These enumerations do not provide sufficient

information to specify a system that also incorporates trajectories. After the initial trajectory, a

hybrid sequence always follows each action with a trajectory. This property of hybrid sequences

makes enumerating action-trajectory pairs a suitable means to write hybrid and switching sys-

tem specifications. Any hybrid sequence projected onto its actions is a well-defined sequence by

Definition 3.9.

Point trajectories provide flexibility. For example, within a hybrid sequence an arbitrary number

of action-point trajectory pairs can occur with zero time lapse. Although such an implementation

is not realizable, this level of control exemplifies the expressiveness of the theoretical model in [13].

Some of the notation used for trajectories has similar meaning for hybrid sequences. The limit

time of hybrid sequence α, denoted α.ltime, is
°

i∈dompαq τi.ltime. α.fval , headpαq.fval. If α is

finite with a closed final trajectory, α.lval , lastpαq.lval.
Definition 3.20. A hybrid sequence α is

• Time-bounded if α.ltime is finite. A time-bounded hybrid sequence can be finite or infinite;

if finite, its last trajectory could be open or closed.

• Admissible if α.ltime � 8. An admissible hybrid sequence can be finite or infinite; if finite,

its last trajectory is open.

• Closed if α is a finite sequence and its final trajectory is closed.

• Zeno if α is neither closed nor admissible, that is, if α is time-bounded and is either an infinite

sequence, or else a finite sequence ending with a trajectory whose domain is right-open.

• Non-Zeno if α is not Zeno.

25

3.9.1 Prefixes and Concatenation

Definition 3.21. Let α � τ0 a1 . . . and β � υ0 b1 . . . be (A,V)-sequences. α is a prefix of β,

denoted α ≤ β, provided that at least one of the following holds:

1. α � β.

2. α is a finite sequence ending in some τk. For every i, 0 ≤ i k, τi � υi and ai�1 � bi�1.

τk ≤ υk.

Definition 3.22.

Let α and α1 be (A,V)-sequences with α closed. The concatenation of α and α1, denoted α"α1, is

defined as initpαqplastpαq"headpα1qqtailpα1q.
In the above definition lastpαq"headpα1q is the concatenation of two trajectories; therefore,

the valuation used in the concatenated hybrid sequence at lastpαq.ltime is obtained from lastpαq.
Concatenation is extended to a countably infinite sequence of hybrid sequences provided that all

nonfinal hybrid sequences are closed.

3.10 Hybrid Automata

A HIOA provides the structures we target for specification using enumerated hybrid sequences.

In this section, we define hybrid automata that make no distinction between inputs and outputs.

Afterwords, we refine the hybrid automata definition to include this distinction [9, 13].

A hybrid automaton is an adaptable state machine that accommodates varying degrees of non-

determinism and distinguishes between continuous-time signals and discrete-time signals. Figure

3.1 illustrates the elements of a hybrid automaton.

Definition 3.23. A hybrid automaton H is a tuple pW,X,Q,Θ, E,H,D,T q:
1. W is the set of external variables. X is the set of state (internal) variables. W ∩ X � ∅.

V , W ∪X.

2. Q ⊆ valpXq is the set of states.

3. Θ ⊆ Q is the nonempty set of initial system states.

26

Figure 3.1: A Hybrid Automaton

4. E is the set of input (external) actions. H is the set of internal actions. E ∩ H � ∅.

A , E ∪H.

5. D ⊆ Q�A�Q is the set of discrete transitions.

6. T is the set of trajectories for V such that �τ ∈ T and t ∈ dompτq, τptq|X ∈ Q. Given τ ∈ T ,

τ.fstate , τ.fval|X . If τ is closed, τ.lstate , τ.lval|X . The following axioms hold for T :

T0. Existence of point trajectories. If v ∈ valpV q and v|X ∈ Q, then ℘pvq ∈ T .

T1. Prefix closure. For every τ ∈ T and every τ 1 ≤ τ, τ 1 ∈ T .

T2. Suffix closure. For every τ ∈ T and every t ∈ dompτq, τ D t ∈ T .

T3. Concatenation closure. Let τ0, τ1, τ2, . . . be a sequence of trajectories in T such that, for

each nonfinal index i, τi is closed and τi.lstate � τi�1.fstate. Then τ0"τ1"τ2 . . . ∈ T .

Axiom T0 permits hybrid sequences consisting of an arbitrary number of adjacent point trajec-

tories that define instantaneous automaton state changes. Axiom T0 also facilitates an arbitrary

number of instantaneous actions with or without corresponding state changes. Implementation of a

large system is simplified by composing smaller, more manageable, hybrid automata. Composition

is critical for scalability. The time when one component automaton interrupts another may not be

predictable. If a component automaton trajectory τ is interrupted at time t, Axiom T1 guarantees

27

Figure 3.2: A Hybrid I/O Automaton

the prefix of τ is defined; Axiom T2 ensures if the interruption does not change the component’s

behavior the suffix of τ also exists.

The HIOA model is depicted in Figure 3.2. This model distinguishes input from output and

adds two axioms to accommodate the distinction.

Definition 3.24. A hybrid I/O automaton A is a tuple pH, U, Y, I,Oq:
1. H is a hybrid automaton.

2. U and Y partition W into input and output variable sets. Z , X ∪ Y . Z is the set of locally

controllable variables.

3. I and O partition E into input and output action sets. L , H ∪O. These actions are locally

controlled.

4. A HIOA satisfies two additional axioms:

E1. Input Action Enabling. For every x ∈ Q and every a ∈ I, there exists x1 ∈ Q such thatpx, a,x1q ∈ D.

E2. Input Trajectory Enabling. For every x ∈ Q and every υ ∈ trajspUq, there exists τ ∈ T
such that τ.fstate � x, τ ÓU ≤ υ, and either

i. τ ÓU � υ, or

ii. τ is closed and some l ∈ L is enabled in τ.lstate.

28

Since a system has no control over what happens in the environment, Axiom E1 guarantees the

automaton can always handle every input action. Axiom E2 guarantees there exists a trajectory

from every system state that accommodates every possible input trajectory (signal). If the trajec-

tory can accept the input signal in its entirety, then E2 is satisfied; otherwise, there must be either

an internal or output action available to close the trajectory. In the later case, the newly initiated

trajectory must also satisfy E2.

A timed automaton is a hybrid automaton with W � ∅, and a timed I/O automaton is a timed

automaton that distinguishes input actions from output actions.

3.11 Trajectory and Hybrid Sequence Ordering

In domain theory, a domain is a partially ordered set of objects having a least element where the

ordering relation a ≤ b indicates that a approximates b or b has at least as much information

as a. The least element represents the absence of information. The ordering of trajectories and

hybrid sequences is founded in domain theory. To approximate open trajectories and infinite

hybrid sequences, we require a domain to be complete. In a complete partial order, the sets whose

elements sequentially improve upon the information provided by the previous element in the order

have supremums in the partial order [24, p. 29].

Definition 3.25. A partial order is a set, D, along with a reflexive, transitive, and antisymmetric

relation, ≤.

The antisymmetric property of a partial order can be satisfied vacuously; every pair of elements

need not be comparable. Nonempty partial orders may contain subsets containing comparable and

incomparable pairs but every pair has a common greatest element in the order. These are the

directed subsets of a partial order.

Definition 3.26. Let pD,≤q be a partial order. A set A ⊆ D is a directed subset if A � ∅ and

whenever a, b ∈ A there exists c ∈ A such that a ≤ c and b ≤ c.

A more restrictive form of a directed subset is a totally ordered set also called a chain; all

elements in a chain are pairwise comparable.

29

Definition 3.27. A chain in partially ordered set pD,≤q is a subset A ⊆ D such that for all

a, b ∈ A, a ≤ b or b ≤ a.

Given an open or closed trajectory τ ∈ T , a sequence of prefixes τ E t for strictly increasing

t ∈ r0, suppdompτqqq is an example of a chain within the partial order of trajectories.

Definition 3.28. Let pD,≤,Kq be a partial order with a least element K. pD,≤,Kq is a complete

partial order (cpo) if whenever A ⊆ D is directed, suppAq exists in D.

Definition 3.29. Let pD,≤,Kq be a complete partial order. An element a ∈ D is compact or finite

if whenever A ⊆ D is a directed set and a ≤ suppAq, there is x ∈ A such that a ≤ x. We use D0 to

denote the set of compact elements in D.

Starting with the trajectory with the empty domain and ending with τ , the dynamic behavior of

each element in the chain is more complete with respect to τ than the previous element. Informally,

the objects capable of being used in computation are the compact elements. In the definition of a

HIOA, we are particularly interested in the compact elements among its continuous components.

Furthermore, we are interested in whether using those items alone is sufficient to specify the system’s

behavior completely.

From a computability perspective it is useful to work with complete partial orders where each

element in the order can be approximated by a directed set of compact elements [24, p. 53].

Definition 3.30. A complete partial order pD,≤,Kq is an algebraic complete partial order if for

each b ∈ D, the set D0pbq � t a ∈ D0 | a ≤ b u is a directed set and b � suppD0pbqq.
Lemma 3.4 of [13] proves the set trajspV q with prefix ordering is an algebraic complete partial

order whose compact elements are the closed trajectories. Lemma 3.6 of [13] proves the set of

hybrid sequences with prefix ordering is an algebraic complete partial order whose compact elements

are the closed hybrid sequences. The building blocks required to approximate any trajectory or

hybrid sequence in a specification or model-based design are the closed trajectories and closed

hybrid sequences. These are precisely the objects we address with our enumeration process to

constructively define an automaton.

30

Chapter 4

Hybrid Sequence Enumeration

Construction of model-based designs requires specialized application knowledge. Our goal is to

supplement the application expertise and provide a process that induces analysis of all and only

those details needed to build a complete, consistent, and traceably correct specification. The

hybrid I/O automaton, or HIOA, model in [13] provides the structures necessary to specify both

the discrete and the continuous behavior simulated in a model-based design. However, the general,

implementation independent form of a HIOA requires many details be explicitly defined, and this

also requires special insight. The process of transforming requirements in any form into a model-

based design or a HIOA is precisely defined in the chapters that follow.

In this chapter, we define an enumeration process that discovers the hybrid sequences required

to describe dynamical system behavior. The enumeration provides the details needed for either

an operational model or an algebraic hybrid automaton. Enumeration is possible using sequence

abstraction and abstract values [23, p. 426], which we call enumeration elements. In our descrip-

tion, “atomic” refers to indivisible theoretical elements. The specific trajectories and actions that

make up a hybrid sequence are atomic elements. The enumeration elements are stimulus vectors,

condition vectors, and trajectory definitions. With definitions for these elements, a hybrid enumer-

ation addresses the concerns voiced in industry with our discrete specification method and will aid

engineers to produce and test embedded real-time systems. This chapter is a bridge from theory

to application.

A hybrid enumeration is an intermediary between requirements and a specification called an

enumeration hybrid automaton from which we can produce a HIOA or a model-based design as in

31

Figure 4.1: Process: Requirements to Constructive Enumeration (EH)

Simulink. Figure 4.1 depicts the work flow. This approach differs from that taken in [13] in that

we examine systems in detail for implementation and resolve nondeterminism. Although a lot of

work is unavoidable, it is minimized by using a recursive abstraction-refinement process. During

enumeration, new details emerge and are addressed with supplemental or corrective requirements

to ensure the final product is a well-defined specification of intended requirements. We address a

strict subset of the systems that can be specified in the algebra. By satisfying the axioms of the

HIOA, we construct instances of Lynch algebras, and that theory becomes available for future use.

The constructive method defined in this chapter produces a system specification that is complete,

consistent, and traceably correct. Timing, continuity, and nondeterminism are addressed explicitly.

4.1 Enumeration Elements

We use enumeration to define the function E : S� Ñ R� S� (Equation 2.5). Stimulus vectors are

enumerated, and for each stimulus vector sequence, we prescribe a trajectory definition - condition

vector pair and an equivalent stimulus vector sequence. Each line in an enumeration presents

a unique situation where the details of enumeration elements can be prescribed based on design

requirements. As defined in [10], we isolate the coordinates R and S� in the rangepEq using the

projections: ÞÑ , πR � E , and ⊲ , πS� � E . The sections that follow define each enumeration

element used to produce E in terms of the atomic elements in a hybrid system.

32

4.1.1 Stimulus Vectors

A stimulus is any event that changes system state, trajectory, or output. We adapt the description

of a stimulus set for a complex system presented in [21] and predicate refinements in [23, p. 420]

to specification of hybrid sequences. The stimulus set for an embedded system is the cross product

of a finite collection of sets. Vectors let us address events that occur simultaneously.

Definition 4.1. Given a non-empty set of signals S � t s1, . . . , sn u of the form si : T Ñ Csi , the

set of atomic vectors over S is given by

Cs1 � . . . � Csn . (4.1)

The signals named in S may be continuous-time or discrete-time signals following Definitions

2.1 and 2.2 respectively. Let d : T Ñ I be the discrete-time input signal. I always includes the

special element null that represents the absence of an external input action at a time t in T. No

two elements of I can occur simultaneously since d is a function. Each state variable x in X names

a continuous-time signal whose codomain is Cx. In the algebra, xptq is an element of typepxq.
Definition 4.2. The set of atomic stimuli S of a hybrid system is an atomic vector set over X∪t d u.

Variables named in U are not used to define S. It is safer to include a surrogate input variable in

X that follows and constrains the behavior of an input variable in U ; the values of state variables

can be controlled whereas the values of input variables are uncontrollable by the system being

designed.

Figure 4.2 illustrates a set of atomic stimuli. The codomains of the signals label each column;

dotted lines partition codomains. For B ⊆ Cx, the atomic characteristic predicate of B is χB .

If ρ is an arbitrary equivalence relation defined on Cx, Cx{ρ � tB1, . . . , Bj u is the set of blocks

induced by ρ. The characteristic predicate for a block in Cx{ρ defines a subset of Cx. In practice,

the characteristic predicate used to define a block in Cx{ρ may be written in various ways. For

example, χx�100 makes clear both the variable name and the block of Cx the predicate defines.

Definition 4.3. The continuous state space U of a system is the set of atomic vectors over X; values

in the tuples of U are ordered lexicographically by variable name. The characteristic predicate of

U is hU .

33

Figure 4.2: Stimulus Vectors

The characteristic predicate of Q ⊆ U is hQ. This predicate is defined as a conjunction of

atomic characteristic predicates. For example with k � 2, hQ , χ
x1�10 ∧ χx2¡0 denotes the subset

of the continuous state space where x1 is exactly 10 and x2 is positive. When understood by the

context, we use hQ when referring to the set Q.

In embedded real-time systems of interest, S is uncountable and requires a representation that

facilitates enumeration. The consolidation of elements in S to describe identical behavior is called

abstraction, while partitioning subsets of S to describe different behaviors is called refinement.

Characteristic predicates are used for both abstraction and refinement. In our treatment of stimuli,

I is always partitioned into labeled blocks as in Figure 4.2. The shaded block represents a subset

of codomain Cxk
that is not reachable. These unreachable or “illegal” states may be “safely”

excluded from the codomain of the corresponding continuous-time signal. Continuing with the

previous example, pnull , hQq is the abstraction of S characterized by three blocks: tnull u, r10, 10s,
and p0,8q; the final two blocks identify a subset of U . The set of actions and the set of characteristic

predicates needed to express an infinite state system as a finite automaton constitute an abstraction

of S.

Definition 4.4. Given finite I, X, and a partition of U � tQ1, . . . , Qn u defined with characteristic

predicate set P � thQ1 , . . . , hQn u, a set of stimulus vectors over I and X is given by

S � I � P. (4.2)

In Figure 4.2 with k � 3, 96 distinct stimulus vectors are depicted, 24 of which are illegal.

The enumeration process considers the infinite set of finite stimulus vector sequences by successive

abstraction and refinement managed by characteristic predicates and Boolean operations on them.

34

4.1.2 Trajectory Definitions

In order to address dynamic systems, we use functions that describe known physical laws whose

behavior depends explicitly on time. Well-defined functions, including the laws of physics, do not

require enumeration. In every hybrid sequence, each action is followed immediately by a trajectory

(see Definition 3.14). We capitalize on this structure by mapping enumerated stimulus vector

sequences to trajectory definition-condition vector pairs to incorporate well-defined continuous

functions into the specification.

For each system variable v ∈ V , dtypepvq is the set of atomic signals that contains as a subset

the signals needed to specify dynamic system behavior. The enumeration elements used to describe

this set of signals are equations and condition vectors.

Definition 4.5. An expression, denoted e, is an operation on real number constants, time (t), and

signals named in X ∪ U evaluated at t.

Definition 4.6. A signal definition is an equation of the form vptq � e or 9v � e where 9v is the

first time-derivative of the signal vptq and e is an expression.

The continuous behavior specified in a hybrid enumeration follows the definition presented in

Section 2.6.2. Based on this definition, we distinguish several signal definition types.

Definition 4.7. A state variable signal definition for x ∈ X is of the form xptq � e or 9x � e where

expression e is an operation restricted to signals named in X.

Since the system being designed does not control input signals, variables in U are excluded

from state variable signal definitions. In state variable signal definition 9x � e, e is a vector field.

When e is integrable, the differential equation can be solved given an initial condition xp0q. A

system describable by a higher order explicit differential equation can be decomposed into a system

of equivalent first-order differential equations. The signal definition 9x � 0 defines discrete state

variable behavior (see Section 3.6); its value remains fixed at its initial condition during every

trajectory.

35

Definition 4.8. A surrogate input variable x̃ has a signal definition x̃ptq � fpuptqq where u ∈ U

and f is a function. Cx̃ � Cu, and x̃ ∈ X.

For example, if u is said to be reasonable with uptq ∈ ra, bs, then the surrogate signal definition

x̃ptq � $'''''&'''''%a uptq ≤ a

uptq a uptq b

b uptq ≥ b

(4.3)

might be used to ensure x̃ does not reproduce any values outside of ra, bs. A surrogate input

variable allows safe use of an input signal. Actions defined on surrogate input variables replace

actions otherwise caused by input signals. For example, a sensor may report pressure to a system.

Although pressure behavior may be understood, erratic pressure or erroneous sensor readings are

possible and should not be allowed to produce a fault in the system being designed. To complete

the example, the actual uptq value remains available to report outside of the system boundary.

For output variables, we follow Equation 2.3 in the definition of continuous systems.

Definition 4.9. An output variable signal definition for y ∈ Y is of the form yptq � e where e is

an expression.

A system must be capable of reporting unmodified input signals to its environment; therefore,

an expression used in an output variable signal definition may include signals named in X and U .

T is the set of atomic trajectories required to define initial system behavior and the system’s

behavior following any action. The enumeration elements used to describe the trajectories in T are

trajectory definitions.

Definition 4.10. A trajectory definition ϕ is a |Z|-tuple; each coordinate is a signal definition for

a locally controllable variable in Z. Variable name determines the order in ϕ.

Only the locally controllable variables in Z require explicit signal definitions. Continuous input

signals are not controlled by the system being designed. Accordingly, no assumptions can be made

during system specification about trajectories over variables in U .

Definition 4.11. Φ is the set of trajectory definitions.

36

We say that two trajectories are behaviorally equivalent if they have identical trajectory defini-

tions. This does not imply the trajectories have the same initial condition or range, only that the

signal definitions that define their behavior are the same. If an action changes a system’s trajectory

definition, the system exhibits switching behavior (see Section 2.6.3).

4.1.3 Condition Vectors

The transition relation of a hybrid automaton is D ⊆ Q � A � Q (Definition 3.23). For a triple

in D, the first coordinate is the state of the system when the action in A occurs and closes the

current trajectory τ . We use last � τ.ltime and xplastq � τ.lstatepxq in our enumeration elements

to identify the time in the trajectory when an action occurs and the value of x at that time,

respectively. The third coordinate is the first state of the trajectory following the action in A.

Since the set of discrete system outputs, O, is a subset of A in a HIOA, a subset of D defines how

discrete output is generated. In our specifications, a discrete output is always the instantaneous,

externally available result of an input or internal action. In other words, an expression (possibly

null) characterizes discrete output for every sequence of stimulus vectors. Let o : T Ñ O be

the discrete-time output signal that results from an input or internal action. O includes null to

represent the absence of an observable discrete output at a time t in T and ω to indicate the

sequence of atomic stimuli is physically impossible.

Definition 4.12. The set of atomic conditions R of a hybrid system is an atomic vector set over

X ∪ t o u.
An atomic condition is an instantaneous discrete output and an internal system state; it is the

result of an applied atomic stimulus and current system state.

Definition 4.13. An expression set Es is a finite set containing the expressions used to compute

the value of signal s at t � 0 and one or more special elements to include null . Each expression in

Es operates on real number constants and signals named in X evaluated at last.

Definition 4.14. Given the collection of expression sets E � tEo, Ex1 , . . . , Exk
u where ω ∈ Eo,

the set of condition vectors over O and X � tx1, . . . , xk u is given by

R ⊆ Eo �Ex1 � . . . �Exk
. (4.4)

37

Figure 4.3: Hybrid Signals

Use of null in condition vector coordinate x indicates xp0q is defined explicitly using the signal

definition for x. When the signal definition is of the form 9x � e, xp0q is defined with xplastq when

x is continuous across the transition, or xp0q is defined by an expression.

In the first condition vector definition used in a hybrid enumeration, discrete output is always

null , and xplastq indicates nondeterministic selection of xp0q from a set of possible initial values

for x.

Each condition vector computes atomic condition values in a specific way. For example, let

r ∈ R and r � px1plastq�x2plastq, x1plastq, 2px2plastqq, 8q. The discrete output is the sum of the

values of two state variables prior to the transition. State variable x1 is continuous through the

transition, x2 jumps to twice its previous value, and x3 always starts from 8 after the transition.

4.1.4 Hybrid Signals

Definition 4.15. A hybrid signal is a composite of a continuous-time and a discrete-time signal.

In this section, we relate the atomic elements of a hybrid system to the first element of the

pairs in the range of a hybrid enumeration. A trajectory-action pair can be characterized as a

hybrid signal. In Figure 4.3, orts is the discrete-time output signal defined by or0s � a and for all

t ∈ dompτq, t ¡ 0, orts � null . Together, continuous-time signal yptq and discrete-time signal orts
form a hybrid signal. In a hybrid system, input and internal actions initiate new atomic hybrid

38

signals. This concept is illustrated in Figure 4.3 where drts and xptq produce hybrid and switching

behavior (x jumps in value and changes trajectory at t � 0) as well as changes in discrete (or0s is

a spike) and continuous output (yptq starts to decrease at t � 0). The continuous portion of the

controllable hybrid signal is only defined for the variables in Z based on Equations 2.2 and 2.3.

Definition 4.16. Given trajspZq and O, the set of controllable atomic hybrid signals of a hybrid

system is a subset of

trajspZq �O. (4.5)

For the pair pτ, aq ∈ trajspZq �O, the discrete output a is only detectable in the environment

at t � 0 of τ . The enumeration elements that characterize the set of controllable atomic hybrid

signals are defined in Sections 4.1.2 and 4.1.3.

Definition 4.17. The set of controllable hybrid signal definitions is given by

R ⊆ Φ�R. (4.6)

The pairs in R contain sufficient information to describe system behavior following every se-

quence of stimulus vectors. For the pair pϕ, rq ∈ R, the discrete output at t � 0 is computed using

the first coordinate of the condition vector r. The remaining coordinates compute initial conditions

as needed to produce a specific trajectory from ϕ.

We frequently use two projections of R:

πΦ : R Ñ Φ (4.7)

πR : R Ñ R (4.8)

The enumeration projection function ÞÑ (Section 2.7) is extended to incorporate trajectory

definitions and condition vectors: ÞÑΦ , πΦ � ÞÑ, and ÞÑR , πR � ÞÑ.

39

Definition 4.18. For stimulus vector sequence σ, a null hybrid signal definition pϕ0, r0q satisfies

the following properties:

1. If σ � λ, ϕ0 � ÞÑΦ pλq; otherwise, ϕ0 � ÞÑΦ pinitpσqq.
2. πopr0q � null .

3. For all x ∈ X, if πxpϕ0q � p 9x � eq, then πxpr0q � xplastq; otherwise, πxpr0q � null .

A null hybrid signal definition exhibits neither switching (trajectory definition does not change)

nor hybrid behavior (continuity maintained across transitions). These conditions are established

using the trajectory definition associated with the stimulus vector sequence’s prefix. A null hybrid

signal definition does not change system behavior.

Definition 4.19. An illegal hybrid signal definition Ω � pϕ, rq satisfies the following properties:

1. πoprq � ω.

2. For all x ∈ X, πxpϕq � p 9x � 0q and πxprq � xplastq.
3. For all y ∈ Y , πypϕq � pyptq � yplastqq.
An illegal hybrid signal definition fixes the value of each state and output variable for all t ∈ T≥0

and produces the illegal discrete response ω. R may or may not contain the null or illegal hybrid

signal definition.

Function composition is used to obtain the expressions associated with specific coordinates of

either element in the pair. For example, the discrete and instantaneous output value that results

from an applied stimulus can be computed using the expression produced by the function: πo � πR.

4.2 Hybrid Enumeration

A hybrid enumeration contains the details necessary to produce an abstract state machine called

an enumeration hybrid automaton. Referring to Figure 2.3 for the variable names, we start with

a set of discrete input actions (I), input variables (U), output variables (Y), and state variables

(X) gathered from the initial requirements and assume nothing about system dynamics or discrete

40

output. An appropriate codomain, e.g., R, N, t on, off u, r0, 10s, etc. is defined for each variable in

V . An enumeration builds from these essential sets, the construction of the enumeration elements

introduced in the previous sections, and such documented requirements as may be available. New

information or insight at any point necessitate restarting the enumeration process.

Definition 4.20. Given an enumeration E : S� Ñ R�S�, a set of system variables V � U∪X∪Y ,

and a set of start states Θ. A hybrid enumeration EH is a triple:pE , V,Θq. (4.9)

There are three phases in the hybrid enumeration process. The first two phases, declaration

and initialization, define the system variables, the set of initial system states, and the initial tra-

jectory definition inferred from existing requirements. The sequence enumeration phase produces

the remaining mappings that make up the partial function E .

ConstructHybridEnumeration(Requirements)

1. Declaration

2. Initialization

3. Sequence Enumeration

end ConstructHybridEnumeration

The DefineMapping procedure uses recursion to define the mappings in E in four phases.

DefineMapping(m,D,C,X 1)

1. Trajectory Definition

2. Condition Vector Definition

3. if necessary then Refinement

4. else Sequence Reduction

end DefineMapping

41

4.2.1 Relationship of EH to Discrete Enumeration

The basic iterative process of sequence enumeration remains unchanged from discrete sequence-

based specification except for the level of detail, addition of trajectory definitions for continuity

and timing, and explicit inclusion of a recursive process to define finite abstractions of a system’s

continuous state space. Notation remains consistent with discrete sequence-based specification

theory and the theory of hybrid automata with the following exceptions: the letters x, u, and v are

used as variable names and not stimuli and sequences of stimuli.

Definition 4.21. Given EH with E : S� Ñ R � S�, the distinguishability of unreduced stimulus

vector sequences σ and ψ in dompEq is defined as follows:

1. If ÞÑΦ pσq � ÞÑΦ pψq, then σ and ψ are distinguishable.

2. If ÞÑ pσq � Ω and there exists a ∈ S such that ÞÑ pψ.aq � Ω, then σ and ψ are distinguish-

able.

3. If there exists a ∈ S such that ÞÑ pσ.aq � ÞÑ pψ.aq, then σ and ψ are distinguishable.

4. If σ and ψ are distinguishable and there exists a ∈ S such that for unreduced c,d ∈
dompEq, c.a ⊲ σ and d.a ⊲ ψ, then c and d are distinguishable.

5. No two sequences are distinguishable except by a finite number of applications of the previous

rules.

This definition of distinguishability is adapted from [10, Definition 4.9] and covers all cases of

distinguishability among sequences in dompEq.
Definition 4.22. Two stimulus vector sequences are equivalent if they are not distinguishable.

Each enumerated stimulus vector sequence starting with the empty sequence is mapped to a

controllable hybrid signal definition and an equivalent sequence of stimulus vectors. Unlike discrete

sequence-based specification, the empty sequence in a hybrid enumeration does not always map to

a fixed null object; however, by Definition 4.18, the empty sequence always maps to the null hybrid

signal definition. This definition along with Θ may characterize more than one initial trajectory.

The form of each mapping added to E is pσ, ppϕ, rq,ψqq where σ is the sequence of stimulus vectors

42

Figure 4.4: Stimulus Vector Sequence Extensions

being mapped, pϕ, rq is the controllable hybrid signal definition that includes a trajectory definition

and a condition vector, and ψ is an equivalent stimulus vector sequence possibly equal to σ.

Discrete sequence-based specification assumes S is initially well-defined (although subject to

change). To make enumeration efficient and handle variables that operate over infinite sets, predi-

cate refinement is essential. Refinements are defined using a recursive process to complete mappings

not definable at a higher level of abstraction. Each unreduced and legal stimulus vector sequence σ

represents a mode i and is extended by the set of stimulus vectors Si. In Figure 4.4, σ represents

mode 1. It is extended by 96 stimulus vectors created using the partition of I and the codomains of

each variable in X based on k � 3. ψ represents mode 2, and it is extended by 72 different stimulus

vectors. The partition of I used to create each Si is always the same; however, the partition of U
may change as shown in Figure 4.4.

Let Px,i be the set of atomic characteristic predicates that partition Cx for the set of stimulus

vectors Si for mode i. For a system with n modes, the conjunctions formed using the tuples in

Px,1 � . . . � Px,n partition Cx. This set of atomic characteristic predicates along with similarly

produced predicate sets for the remaining variables in X are used to define a complete refinement

43

of U with respect to the system being enumerated. In the third row of Figure 4.4, the complete

refinement of U is created by superimposing mode 1’s partition of U on mode 2’s partition of U .

Using I and the complete refinement of U , the completely refined stimulus vector set S can be

created. With this S, E may be updated, and ÞÑ and ⊲ can be extended to make E a total function

over the domain S�.
4.2.2 Hybrid Enumeration Process

ConstructHybridEnumeration returns a hybrid enumeration based on requirements. The

procedure takes a single parameter, the requirements document(s), which may be modified by

making additions, deletions, or revisions. Procedure steps are numbered. Comments precede the

applicable procedure steps. Where useful, the line number that ends or begins an algorithm segment

is enclosed in square brackets in the line’s right margin.

In the constructive process, the following conventions are used: for v ∈ �n
i�1 typepviq, πv1pvq

produces the value associated with variable v1, while vpv1q � a1 assigns the value a1 to v1’s

coordinate in the tuple v.

ConstructHybridEnumeration(Requirements)

Elements (variable names) in the sets I, U , Y , and X are identified from existing require-

ments (see Figure 2.3).

1.1 Construct set I from input actions and include null

Input signals are not controlled by the system being specified. Surrogate input variables (see

Definition 4.8) are added to X for variables in U to facilitate controlled software function.

The set U is the continuous input interface between system and environment.

1.2 Construct set U from input variables

1.3 Construct set Y from output variables

1.4 Construct set X from state variables and include surrogates for variables in U

Z is defined for reference.

1.5 Z , X ∪ Y

44

Define the codomain of each variable’s associated signal, e.g., R, N, t on, off u, r0, 10s, etc.

1.6 for each z ∈ Z
1.7 For surrogate input variable z with zptq � fpuptqq, define codomain Cu

and let Cz � Cu

1.8 define codomain Cz for non-surrogate z

1.9 end for

1.10 U � �x∈X Cx

The mapping for the empty stimulus vector sequence λ is always included first in an enu-

meration. The initial condition vector is an p|X|�1q-tuple with null entries. The initial

trajectory definition is a |Z|-tuple with null entries. We use m to denote a mapping in E .

Each aspect of the initial mapping m will be examined in the process to ensure it satisfies

existing or new requirements. λ is always reduced to itself.

2.1 r � pnull , . . . ,nullq
2.2 ϕ� pnull , . . . ,nullq
2.3 m� pλ, ppϕ, rq, λqq

Define the set of initial continuous states as |X|-tuples ordered by variable name.

2.4 for each x ∈ X
2.5 define Ax ⊆ Cx

2.6 end for

2.7 Θ � �x∈X Ax

Based on existing or derived requirements, define the initial signal definition for each con-

trollable variable in Z. A first time-derivative may only be used if the variable is in X;

zplastq represents the nondeterministic selection of an initial condition from Az (see Section

4.1.3).

2.8 for each z ∈ Z in lexicographical order [2.20]

2.9 case z’s signal definition [2.19]

2.10 when z ∈ X and 9z � e

2.11 ϕpzq � 9z � e over X and t

45

2.12 rpzq � zplastq
2.13 when z ∈ X and zptq � e

2.14 ϕpzq � zptq � e over X and t

2.15 when z ∈ X and z is a surrogate input variable

Each surrogate signal definition must ensure safe system operation for all possible values of

u (see Definition 4.8)

2.16 ϕpzq � zptq � fpuptqq for u ∈ U

2.17 when z ∈ Y

2.18 ϕpzq � z � e over X, U , and t

2.19 end case [2.9]

2.20 end for [2.8]

2.21 E � tm u
E collects extensible stimulus vector sequences.

2.22 E � tλ u
Sequence enumeration proceeds by sequence length, l.

3.1 l � 0

3.2 while (Dσ ∈ E such that |σ| � l)

3.3 do [3.12]

Each extensible sequence is extended by every element of I paired with the characteristic

predicate for the entire continuous state space U . Future refinement of U may be necessary.

Inclusion of null in I forces discovery of internal actions and the invariant set discussed in

Section 3.1.

3.4 for each σ ∈ E of length l [3.10]

3.5 for each a ∈ I [3.9]

3.6 a� pa, hU q
46

A new default mapping is constructed using the null hybrid signal definition pϕ0, r0q (Defi-

nition 4.18). The procedure DefineMapping returns the set of mappings needed to ensure

each component of the default null hybrid signal definition pϕ0, r0q and the sequence re-

duction is re-examined and defined consistently based on existing or derived requirements.

When the characteristic predicate hU is refined new mappings are added to the set returned

by DefineMapping.

3.7 m� pσ.a, ppϕ0, r0q,σqq
3.8 E � E ∪ DefineMapping pm, Z, tou, Xq
3.9 end for [3.5]

3.10 end for [3.4]

3.11 l� l � 1

3.12 end while do [3.3]

Enumeration is complete when all the extensible sequences in dompEq are extended.

3.13 return pE , pU∪Zq, Θq
end ConstructHybridEnumeration

DefineMapping is a recursive procedure that refines the predicate in stimulus vector a in the

sequence σ.a as necessary to completely define the controllable hybrid signal definition pϕ, rq.
DefineMapping returns a set of mappings that ensures the characteristic predicates used in

refined mapped sequences cover the entire continuous state space, U , and whose definitions are

complete.

The set E has global scope; legal, unreduced stimulus vector sequences are added to E in

DefineMapping. DefineMapping takes the following parameters:

1. m � pσ.a, ppϕ, rq,σqq is the mapping being defined with a � phQ, aq. Initially it is defined

using the null hybrid signal definition. If DefineMapping is called recursively, hQ will be a

refinement of the previous predicate paired with a.

2. D contains the locally controllable variables whose signal definitions remain undefined; ini-

tially D is equal to Z.

3. The parameter C contains the names of condition vector coordinates that need to be defined.

47

4. X 1 is the set of state variable names whose atomic characteristic predicate(s) in hQ may be

refined further.

DefineMapping(m,D,C,X 1)

1.1 for each z ∈ D in lexicographical order [1.21]

When possible based on existing requirements, derived requirements, and the current re-

finement hQ, write the signal definitions for the variables in D.

1.2 case definability of z’s signal definition [1.20]

1.3 when illegal

Recursion base: σ.a is illegal.

1.4 return IllegalMapping(m)

1.5 when definable

The signal definition for z is complete and must be removed from D.

1.6 D � D � t z u
1.7 case z’s signal definition [1.18]

1.8 when z ∈ X and 9z � e

Only variable names in X may have a differential equation as a signal definition. If the

signal is defined in this way, add the variable name to the set whose coordinate in the

condition vector must be defined. By default, it is assumed to be continuous.

1.9 C � C ∪ t z u
1.10 ϕpzq � 9z � e over X and t

1.11 rpzq � zplastq
1.12 when z ∈ X and zptq � e

1.13 ϕpzq � zptq � e over X and t

1.14 when z ∈ X and z is a surrogate input variable

Each surrogate definition is a function of actual input (see Definition 4.8).

48

1.15 ϕpzq � zptq � fpuptqq for u ∈ U

1.16 when z ∈ Y

1.17 ϕpzq � z � e over X, U , and t

1.18 end case [1.7]

There may be signal definitions in ϕ that remain undefined; the refinement process will

provide a way to complete ϕ.

1.19 when undefinable for the current refinement hQ

1.20 end case [1.2]

1.21 end for [1.1]

Define the discrete output or0s and the initial condition xp0q for each variable in X whose

signal is defined by a differential equation.

2.1 for each v ∈ C in lexicographical order [2.15]

Determine whether existing or newly derived requirements support defining the condition

vector entry for v.

2.2 case definability of v’s value at t � 0 of ϕ [2.14]

2.3 when illegal

Recursion base: σ.a is illegal.

2.4 return IllegalMapping(m)

2.5 when definable

The condition vector definition for the variable named v will be completed and must be

removed from C.

2.6 C � C � t v u
Either v is the discrete-time signal o, or v is a continuous-time signal previously defined in ϕ

with a differential equation. At this point, πvprq � null in the first case and πvprq � vplastq
in the second case. If these default definitions are inconsistent with existing or derived

requirements, they must be changed.

49

2.7 if vp0q � e or vr0s � e

2.8 then

2.9 rpzq � e over X and last

2.10 else

2.11 keep the previous default definition

2.12 end if

There may be conditions in r that remain undefined; the refinement process will provide a

way to complete r.

2.13 when undefinable for the current refinement hQ

2.14 end case [2.2]

2.15 end for [2.1]

When each variable’s signal definition and condition vector coordinate are defined for the

current mapping, candidates for sequence reduction may be considered. Either the sequence

in the mapping is reducible or extensible.

3.1 if C ∪D � ∅ [4.14]

3.2 then [3.12]

Candidates for sequence reduction are the legal, extensible sequences in E.

3.3 for each ψ ∈ E [3.9]

Determining sequence equivalence is based on existing or derived requirements. Two se-

quences are equivalent if they are behaviorally equivalent and all future sequence extensions

of both have identical controllable hybrid signal definitions. A single inconsistency is suffi-

cient to eliminate the candidate from further consideration. It is safer to extend a sequence

than to make an incorrect equivalence assignment.

3.4 if σ.a and ψ are equivalent

3.5 then

3.6 σ.a ⊲ ψ

Recursion base: σ.a is legal and reduced.

50

3.7 return tm u
3.8 end if

3.9 end for [3.3]

3.10 σ.a ⊲ σ.a

3.11 E � E ∪ tσ.a u
Recursion base: σ.a is legal and extensible.

3.12 return tm u [3.2]

The controllable hybrid signal definition pϕ, rq is not defined completely since C ∪ D �
∅. Refinement of the continuous state space is necessary. X 1 contains those continuous

state variables that may be used to eliminate ambiguities in the controllable hybrid signal

definition by refining the predicate hQ. In the case where X 1 is empty, the stimulus vector

sequence is illegal.

4.1 else [4.13]

4.2 for each x ∈ X 1 in lexicographical order [4.13]

The characteristic predicate hQ may contain multiple atomic characteristic predicates for

variable x due to previous refinement.

4.3 for each atomic χx used in the conjunction hQ [4.12]

4.4 if χx can be refined into a set χ1x to define consistent elements in the

controllable hybrid signal definition pϕ, rq
4.5 then

Behavior previously defined is carried over into mapping m and m1 in pϕ, rq.
4.6 a� pa, hQ ∧ χ1xq
4.7 m� pσ.a, ppϕ, rq,σqq

To ensure complete coverage of U , the complement of the refinement χ1x is used to create a

second mapping that may be refined further in variable x.

4.8 a1 � pa, hQ ∧ χ1xq
51

4.9 m1 � pσ.a1, ppϕ, rq,σqq
The recursive step.

4.10 return DefineMappingpm,D,C,X 1 � txuq ∪
DefineMapping(m1,D,C,X 1)

4.11 end if

4.12 end for [4.3]

4.13 end for [4.1, 4.2]

4.14 end if [3.1]

There are no variables in X 1. Refinement is not possible, and the controllable hybrid signal

definition is not fully defined based on the requirements. σ.a is illegal.

4.15 return IllegalMapping(m)

end DefineMapping

The function IllegalMapping constructs and returns an illegal mapping to add to the enu-

meration. An illegal mapping fixes the values of variables in Z at their value when an illegal

sequence of stimulus vectors occurred.

IllegalMapping(m)

1.1 σ.a ÞÑ Ω

1.2 σ.a ⊲ σ.a

1.3 return tm u
end IllegalMapping

4.2.3 Refinement

Refinement is a depth-first binary search of continuous state space; maximum depth is |X| � 1.

Figure 4.5 shows refinement of the extended sequence σ.a. At the refinement tree’s root, a is in its

most abstract form pa, hU q. By starting with hU , the enumeration process is made more efficient.

Branching represents further refinement of hU using a single variable, x. In each right branch,

52

Figure 4.5: Refinement Tree

a single atomic characteristic predicate χ
x is defined to address inconsistencies in m. One or

more additional mappings are created in the left branch using the atomic characteristic predicate’s

complement χx. Each leaf in the tree represents either a legal or illegal mapping. The right most

path from the root shows the refinement needed to define the controllable hybrid signal definitionpϕ, rq. Existing definitions in pϕ, rq are passed on to new mappings associated with the refined

stimulus vector sequences in Steps 4.7 and 4.9 of DefineMapping while incomplete definitions

are tracked in the parameters C and D of DefineMapping. At the root, the variable x1 used

to refine hU is removed from X 1 since the new atomic characteristic predicate associated with x1

is specifically defined to address inconsistencies in m. The second mapping developed using the

complement may be refined further in x1, so X 1 is not modified in the call to DefineMapping.

All left branches of the refinement tree can be refined further in some x ∈ X. All right branches

have one or more specially designed characteristic predicates in X. The mapping m is examined

one last time when X 1 � ∅. If pϕ, rq remains incomplete, m is illegal.

The recursive step of DefineMapping is taken in Step 4.10. This step is illustrated as refine-

ment tree branching. The union of the mapping sets developed from the refined pair is returned.

53

The total number of mappings returned by a call to DefineMapping is equivalent to the number

of leaves in a refinement sub-tree; this includes illegal mappings. The tree in Figure 4.5 depicts j

mappings; the highlighted illegal mapping m is the first mapping defined and the highlighted legal

mapping mj is the last mapping defined in the initial call to DefineMapping.

The base of the recursion is determined by [10, Lemma 4.14, p. 8] that shows every sequence in

dompEq is legal and reduced (Step 3.7), legal and extensible (Step 3.12), or illegal (Steps 1.4, 2.4,

and 4.15).

4.2.4 Requirements Trace

Design decisions must be made at specific steps in the enumeration process. This is one of the

most important aspects of the sequence-based method; instead of being faced with multiple design

decisions at once, the enumeration process targets where design decisions must be made. The

low-level detail in a hybrid enumeration makes this especially clear. As decisions are made through

analysis of requirements, a link between enumeration elements and requirements is established.

When requirements are missing the design decision identified during enumeration is reconciled

with the product designer (or customer) and new requirements are derived.

Signal interfaces and variable names (the sets I, U , Y , X, and their elements) must be sup-

ported by requirements (Steps 1.1–1.4). The codomain of each controllable system variable is also

requirements based (Steps 1.6–1.9).

In a discrete enumeration, the empty sequence is always mapped to null as a rule of the method;

only mappings for extensions of the empty sequence are dictated by requirements. In the hybrid

enumeration initialization (phase 2), the set of initial continuous states must be supported by

requirements (Steps 2.4–2.7) in addition to the initial trajectory definition (Steps 2.8–2.14).

The design decisions that remain occur in the DefineMapping procedure. Deciding whether

or not a signal definition (Step 1.2) or an expression in the condition vector (Step 2.2) is definable as

well as the enumeration element definitions (Steps 1.3–1.16 and 2.3–2.14) is based on requirements.

This includes legality decisions. Sequence equivalence is based on requirements (Step 3.4).

When an element of the controllable hybrid signal definition cannot be decided, refinement is

necessary to resolve ambiguity. The characteristic predicate developed to eliminate the ambiguity

must be backed by requirements (Step 4.4).

54

4.2.5 Relationship of EH to Hybrid Sequences

A hybrid enumeration is a template for a set of hybrid sequences. Hybrid sequence

α � τ0 a1 τ1 . . . τk ak�1 τk�1 is an execution fragment if it satisfies the properties [13, p. 26]:

1. Each τi is an element of T .

2. If τi is not the last trajectory in α, then ai�1 transitions τi.lstate to τi�1.fstate.

When the first state of τ0 is an element of Θ, the execution fragment is an execution [13, p. 26].

We show the production of an execution α from a hybrid enumeration to establish the real-time

relationship between application and theory given the following information:

1. An initial state x0 ∈ Θ

2. An input sequence of action-time pairs e � pa1, t1q, pa2, t2q, . . . , pak, tkq such that ai ∈ I �tnull u, t0 � 0, ti ∈ T≥0, and ti�1 ≤ ti for i ∈ rks
3. An input trajectory from trajspUq
A simulated execution starts at t0 � 0. Simulation time t is the amount of time elapsed from

t0. Atomic stimuli characterize evolving system state. A stimulus vector a � pa, hQq defines an

action. a is enabled at time t when hQ is satisfied by system state and discrete time input signal

drts � a. When a� null , a is enabled as long as hQ is satisfied. During a simulation, the action

defined by a is triggered the instant it is enabled. Let ti be the simulation time when stimulus

vector ai is first enabled and the ith action is triggered.

In the Lynch algebra, the infimum of every trajectory’s domain is 0. The domain of the trajec-

tory that follows the ith action is r0, ti�1� tis, r0, tq, or r0,8q. In the first case, action i� 1 defined

by stimulus vector ai�1 in the corresponding sequence of stimulus vectors closes trajectory τi. In

the second case, τi is undefined at t. In the final case, τi is a full trajectory. In the last two cases,

the finite executions defined by the enumeration are Zeno and admissible, respectively. Since we

control continuous input signals in U by using surrogates in X, this particular type of Zeno hybrid

sequence does not arise in enumeration automata.

55

To show the relationship between a hybrid enumeration and an execution, we use an input

sequence e and the mappings in E to construct a sequence of stimulus vectors σ and the corre-

sponding execution α. With mapping m � pλ, ppϕ, rq, λqq, the initial conditions for trajectory

definition ϕ are provided in x0. The trajectory definition ϕ and the initial conditions are sufficient

to produce the domain of τ0 only if e is the empty sequence and no internal action is generated

by the behavior of ϕ as simulation time t runs without bound. In this special case, σ � λ and

α � τ0. Otherwise, the domain of τ0 is undetermined until the next action. The predicates in

stimulus vector extensions for each a ∈ I cover U ; therefore, as t progresses from 0 to t1 an internal

action (a � null) will always be enabled at t ≤ t1. One such stimulus vector corresponds to the

invariant set discussed in Section 3.1 (this special case is discussed in detail in Section 4.2.6). Ig-

noring the invariant case, if hQ is satisfied at t t1 in stimulus vector a1 � pnull , hQq, an internal

action precedes the action a1 in the input sequence. This internal action determines the current

construction of σ and α independent of the pair pa1, t1q in e. Otherwise, t � t1, and stimulus vector

a1 � pa1, hQq determines how σ and α are constructed. In either case, the domain of τ0 is r0, ts
and at simulation time t the stimulus vector sequence σ � a1 corresponds to execution α � τ0.

As the execution progresses, x0 is updated using r from the mapping m � pσ, ppϕ, rq,ψqq and

τi.lstate where i � |σ| � 1. Trajectory behavior is established using x0 and ϕ. System state is

updated as simulation time progresses until either the characteristic predicate of a stimulus vector

in S whose first component is null is satisfied or the time in the next input sequence pair is reached.

When σ �⊲ σ in enumeration mapping m, σ is replaced with the equivalent (earlier) sequence ψ.

Future mappings are selected in the partial function E using the established equivalence relation

on stimulus vector sequences.

The times assigned to each ti for a sequence in S� are mathematically totally ordered; t0 ≤ t1 ≤
t2 ≤ . . . ≤ tk. By introducing time and internal actions it is possible to produce executions that are

unexpected. Surrogate input variables provide a way to avoid one type of Zeno hybrid sequence.

Executions containing a sequence of point trajectory - internal action pairs must be considered as

well. This presents another type of Zeno hybrid sequence that cannot be avoided using surrogates.

Depending on the function E and the simulation parameters, there could be an uncountable number

of internal actions between two pairs in e.

56

Figure 4.6: Mode Invariant

4.2.6 Continuous Properties of Stimulus Vector Sequences

By introducing timing, continuity, and internal actions into the enumeration, unintended contin-

uous behavior may be introduced into the specification. In this section, we investigate properties

of sequences of stimulus vectors whose first coordinate is null by showing their relationship to

executions.

Definition 4.23. Let σ,σ1 ∈ S�. σ1 is a subsequence of σ if there exists a monotonically increasing

f : dompσ1q Ñ dompσq such that σ1piq � σpfpiqq and fpi� 1q � fpiq � 1 for all i ∈ dompσ1q
[9, p. 15].

Definition 4.24. Stimulus vector subsequence σ1 is autonomous if �i ∈ dompσ1q, σ1piq �pnull , hQq; hQ defines a subset of U .

An autonomous stimulus vector subsequence of length one is called an autonomous stimulus

vector. Let β � τi a τi�1 be the final hybrid sequence fragment associated with a stimulus vec-

tor sequence ending in autonomous stimulus vector a. hQ is satisfied by τi.lstate triggering the

transition to τi�1.fstate. The stimulus vector a defines an internal action in H (Definition 3.23).

4.2.6.1 Mode Invariant

Definition 4.25. Stimulus vector sequence σ.a where a is autonomous defines a mode invariant

if ÞÑ pσ.aq � pϕ0, r0q and σ.a ⊲ σ.

For the mode defined by unreduced sequence σ, the internal action defined by a1 is enabled in

hQ. Q is shown in Figure 4.6 as the subset of R2 enclosed by the dotted line. Q is the invariant

set of the mode defined by σ. The system progresses continuously according to the null hybrid

signal definition pϕ0, r0q in Q; τ is produced using the trajectory definition ϕ0, and r0 ensures the

57

continuity of each variable in X. Although the enumeration contains this mapping, the associated

transition may not be required in certain implementations. Along trajectory τ , a1 is continuously

enabled. The stimulus vector a2 defines the action that exits the mode defined by σ.

If all the properties of a mode invariant (Definitions 4.25 and 4.19) hold except for the null

discrete output property, o is no longer a discrete-time signal; the system produces discrete output

for all t ∈ dompτq making dompoq uncountable. This would be an error in an enumeration. If

condition vector coordinate x differs from xplastq with corresponding signal definition 9x � e, the

signal definition is contradicted by condition vector expression e1 � xplastq. This would also be an

enumeration error. To avoid these errors, the hybrid enumeration process is designed to correctly

construct mode invariant sequences by default, starting with the initial mapping defined in Step

3.7.

4.2.6.2 Point Modes

Executions that contain a subsequence of point trajectory - internal action pairs may be generated

by legal stimulus vector sequences in the domain of E . Executions of this type are generated by

autonomous subsequences. We examine two types:

1. An instantaneous, finite sequence of mode transitions that is acyclic.

2. An instantaneous, finite sequence of mode transitions that form a cycle.

Consider stimulus vector sequence σ.a.b.c where a.b.c is an autonomous subsequence. σ, σ.a,

σ.a.b, and σ.a.b.c are legal extensible stimulus vector sequences. Figure 4.7 illustrates this hybrid

automaton structure. Let execution, τ0 . . . ℘pxiq a ℘pxi�1q b ℘pxi�2q c ℘pxi�3q be a consequence of

this sequence of stimulus vectors. Type 1 behavior is characterized by the characteristic predicates

in a, b, and c being satisfied immediately by xi, xi�1, and xi�2, respectively. Type 2 behavior

occurs when σ.a.b.c ⊲ σ.

When the values of xi, xi�1, and xi�2 in the figure change gradually, the cycle may eventually

terminate. For example, when xi�2 triggers the action defined by stimulus vector d and σ.a.b.d �⊲ σ

the cycle is broken. This type of system behavior is sometimes called chattering [19, p. 15-23].

Chattering is a potentially valuable design feature. For example, anti-locking automobile brakes

exhibit chattering behavior. If the values of xi, xi�1, and xi�2 do not change, such values are called

58

Figure 4.7: Instantaneous Transitions

pinnacles [19, p. 15-21]; the cycle will continue autonomously unless interrupted by a discrete input

action. When an interrupt is not part of the design the system exhibits Zeno behavior that results

from a type 2 autonomous subsequence.

4.3 Theorizable, Specifiable, Implementable, Realizable

The essence of Zeno’s paradox is one must reach the half-way point to a goal prior to reaching the

goal itself; therefore, the goal can never be reached. This is an especially discouraging paradox.

Figure 4.8 classifies hybrid sequences based on length and their Zeno characteristics as defined

in [13, p. 18]. With respect to a hybrid enumeration, an enumeration hybrid automaton, a hybrid

I/O automaton, and an implemented model-based design, we classify the executions derivable by

enumeration using the terms theorizable, specifiable, implementable, and realizable.

4.3.1 Infinite Hybrid Sequences

S� is the infinite set of finite stimulus vector sequences and the domain of E in EH. Sω is the set of

infinite stimulus vector sequences. An execution derived from a stimulus vector sequence of length

n has length 2n� 1. Infinite executions in Sω whether Zeno or not are classified as theorizable and

cannot be specified using a finite enumeration. These classes are shown in light gray in the bottom

two boxes of Figure 4.8.

59

Figure 4.8: Hybrid Sequence Classes

4.3.2 Finite Time-Bounded Zeno Sequences

Finite Zeno executions end in a trajectory that is undefined at some t and therefore has a right-

open domain. This class of executions is highlighted in red in Figure 4.8. Surrogate input variables

(Definition 4.8) are used to address this type of Zeno execution.

A second type of specifiable Zeno execution is usually associated with infinite hybrid sequences;

however, as discussed in Section 4.2.6.2, executions characterized by a finite cycle of mode changes

where time does not advance is also specifiable in a finite enumeration. This type of Zeno behavior

can be avoided by ensuring there always exists a discrete input action to interrupt the unwanted

behavior. For example, a manual emergency stop in an otherwise autonomous system.

4.3.3 Finite Admissible Sequences

Finite, admissible executions are the ideal target of our specification method (specifiable, imple-

mentable). In a specification that defines only finite admissible executions, the domain of every

trajectory definition is T≥0. The ranges of system signals are bounded such that execution does

not terminate unexpectedly. r0,8s is not a defined interval in R; therefore, the upper right box in

Figure 4.8 is gray and labeled “undefined.”

60

4.3.4 Finite Time-Bounded Closed Sequences

The difference between realizable hybrid sequences and unrealizable hybrid sequences is based on

the limitations of a digital computer. A primary goal is to correctly construct specifications and

then implement models whose hybrid sequences are capable of being run forever. Unfortunately,

either the computer running the simulation or the person monitoring the simulation wears out and

the simulation terminates. This leaves us with the set of realizable hybrid sequences which is the

set of finite, closed executions.

61

Chapter 5

Enumeration Hybrid Automata

5.1 Enumeration Hybrid Automata

An enumeration hybrid automaton, denoted AE , is a state machine produced from a hybrid enu-

meration (EH). Figure 5.1 illustrates the workflow described in this chapter where we convert EH
into AE and AE into a HIOA. An enumeration hybrid automaton is an implementable specification

that incorporates continuous functions, time, and exhibits deterministic behavior beyond the initial

system state.

Definition 5.1. An enumeration hybrid automaton AE is a tuple:pQ,Θ, I, V,R,Φ,Q,Bq. (5.1)

1. Q is the set of legal system states.

2. Θ ⊆ Q is the set of start states.

3. I is the finite set of discrete input actions; null ∈ I.

4. V � U ∪ X ∪ Y is the finite set of system variables. For each v ∈ V , typepvq is the set of

values assignable to v.

5. R is the finite set of condition vectors developed during enumeration.

6. Φ is the finite set of trajectory definitions developed during enumeration.

62

Figure 5.1: Process: Enumeration (EH) to Specification (AE) to Algebra (A)

7. Mode variable µ ∈ X, and µ : T≥0 Ñ N is the signal definition for µ.

8. Q : Q{ρ� I Ñ R is the condition function mapping blocks of Q to conditions vectors. Q{ρ is

the finite partition of Q discovered during enumeration.

9. B : typepµq Ñ Φ is the behavior function mapping system modes to trajectory definitions.

In AE , we capitalize on surrogate input variables to eliminate the Zeno behaviors caused by

executions terminating in an open trajectory (see Definition 3.15). The function Q maps blocks

induced by ρ paired with a discrete input action, possibly null , to condition vectors. Each condition

vector maps the atomic states in a block to an instantaneous discrete output, possibly null , and

the next atomic system state. Each mode is associated with a single trajectory definition by B.

5.1.1 Construction Algorithm: EH to AE

The algorithm ConstructAE constructs AE from EH. During construction, unreduced stimu-

lus vector sequences (modes) are mapped by f to non-negative integers in the codomain of the

continuous-time signal µ : T≥0 Ñ N. f is constructed and used in ConstructAE , but it is not

part of the definition of AE . For the duration of every trajectory, µ is a discrete variable that does

not change (see Section 3.6). The range of each system signal typepvq is defined in AE using unre-

duced stimulus vector sequences and the characteristic predicates in extensions of those sequences;

the set of legal system states Q is defined using the set of signal ranges.

63

ConstructAE(EH)

The mode variable µ identifies discrete system state. Lexicographically µ is first in the

variable order. The signal µ : T≥0 Ñ N describes the behavior of this variable.

1.1 declare mode variable µ

1.2 X � X ∪ tµ u
1.3 Cµ � N

Initialize the continuous state space.

1.4 U � �x∈X Cx

Define a function f to map the set of unreduced sequences to a finite set of non-negative

integers that represent system mode.

1.5 f � ∅

Establish a type set for each state variable. This set will be the range of the associated

variable’s signals.

1.6 for each x ∈ X

1.7 typepxq � ∅

1.8 end for

Define the type set for each external variable (see Definition 3.23). Since the values of these

variables are not completely controllable, the codomain is used.

1.9 for each w ∈W

1.10 typepwq � Cw

1.11 end for

Each enumeration hybrid automaton has a set of trajectory definitions (Φ), condition vectors

(R), and two functions: B relates modes to trajectory definitions; Q defines the follow-on

condition vectors.

1.12 Φ � ∅

1.13 B � ∅

64

1.14 R� ∅

1.15 Q� ∅

The set of legal start states.

1.16 Q� ∅

1.17 i� 0

Each mapping in the partial function E has the form m � pσ, ppϕ, rq,ψqq. The previous

mode for σ � λ is based on the prefix of σ, initpσq. The order ensures fpλq � 1.

2.1 for each m in E ordered by sequence length and then lexicographically [2.38]

Every sequence in dompEq is either legal and reduced, legal and unreduced, or illegal. If a

sequence is unreduced (legal or illegal), it is transformed into state data in rangepfq.
2.2 if ⊲ pσq {∈ dompfq [2.15]

2.3 then

The stimulus vector sequence σ is illegal (see Definition 4.19). The integer 0 represents a

common illegal mode. Illegal stimulus vector sequences are equivalent (Definition 4.22).

2.4 if ÞÑ pσq � Ω [2.10]

2.5 then

2.6 fp⊲ pσqq � 0

The stimulus vector sequence σ is legal.

2.7 else

2.8 i� i� 1

2.9 fp⊲ pσqq � i

2.10 end if [2.4]

Each mode has a trajectory definition. Modify the trajectory definition to reflect the mode

variable’s behavior; it is always a discrete variable (see Section 4.1.2).

2.11 ϕ� πΦ ÞÑ pσq
65

2.12 ϕpµq � 9µ � 0

2.13 Φ � Φ ∪ tϕ u
2.14 B � B ∪ t pfp⊲ pσqq, ϕq u
2.15 end if [2.2]

The empty sequence is used to define the set of start states.

2.16 if σ � λ [2.30]

2.17 then [2.21]

The set of start states must incorporate mode. Redefine the set of start states using Θ from

EH and U .

2.18 hΘ is the characteristic predicate for Θ in EH
2.19 χ

µ , µ � fpλq
2.20 hQ , hΘ ∧ χµ

2.21 Θ � tx ∈ U | hQpxq u [2.17]

2.22 else [2.29]

Define the atomic characteristic predicate for the system mode where the action takes place.

2.23 χµ , µ � fpinitpσqq
Projection is used to access hQ in the stimulus vector (see Definition 4.4).

2.24 hQ , πP plastpσqq ∧ χµ

2.25 a� πIplastpσqq
2.26 r � πR ÞÑ pσq
2.27 rpµq � fp⊲ pσqq
2.28 R� R ∪ t r u
2.29 Q� Q∪ t pphQ, aq, rq u [2.22]

2.30 end if [2.16]

66

Add legal states to the type sets and Q.

2.31 if σ �ÞÑ Ω [2.37]

2.32 then

Update the type set definition (legal values) for each variable in X including µ. χ
x may

be the conjunction of two or more atomic characteristic predicates based on the refinement

process.

2.33 for each x ∈ X

2.34 typepxq � typepxq ∪ tx ∈ Cx | χxpxq u
2.35 end for

Q ⊆ U is the set of legal system states. Update Q based on hQ.

2.36 Q� Q ∪ tx ∈ U | hQpxq u
2.37 end if [2.31]

2.38 end for [2.1]

Q is defined. All the states in U �Q are illegal. Define r using the definition for the illegal

hybrid sequence (Definition 4.19) and add the condition function mapping for the set of

illegal states.

3.1 rpoq � ω

3.2 for each x ∈ X

3.3 rpxq � xplastq
3.4 end for

3.5 R� R ∪ t r u
3.6 for each a ∈ I

3.7 Q� Q ∪ t pphU�Q, aq, rq u
3.8 end for

3.9 return pQ,Θ, I, V,R,Φ,Q,Bq
end ConstructAE

67

5.1.2 Relationship Between AE and M (Enumeration Mealy Machines)

An Enumeration Mealy Machine, M , as defined in [10, Definition 5.1, p. 10] is a Mealy machine

that satisfies five conditions that place the set of Enumeration Mealy Machines in one-to-one corre-

spondence with the set of finite discrete enumerations. The theorems below show the relationship

between AE and M .

Theorem 5.1. AE � ConstructAEp pE ,∅,∅q q is an Enumeration Mealy Machine

M � pQ1,Σ,∆, δ, ν, q0q.
Proof. In EH � pE ,∅,∅q, X � ∅; therefore, X � tµ u in AE . For µ ∈ X in AE , let n � |typepµq|
and typepµq � t 0, 1, . . . , n � 1 u. Let Q1 � t qi | i ∈ typepµq u. Let f : typepµq Ñ Q1 map modes in

AE to states in M as follows:

fpiq � " qn�1 where n � |typepµq| i � 0
qi�1 i ¡ 0

Θ � t 1 u (Step 2.1 in ConstructAE). q0 � fp1q. Let Σ � I. In AE , R ⊆ Eo � Eµ. X � tµ u;
therefore, Eo is a finite set. Let ∆ � Eo. By Definition 4.14, tnull , ω u ⊆ Eo. For each mapping in

Q, the map pppµ � iq, aq, rq ÞÑ ppfpiq, aq, fpπµprqqq defines δ in M , and the map pppµ � iq, aq, rq ÞÑppfpiq, aq, πoprqq defines ν. For all i ∈ typepµq, Bpiq � p 9µ � 0q; therefore, µ changes only during

the transitions in Q.

Condition 1: There are n states in M ; qn�1 is the illegal state.

Condition 2: Every sequence in E is reduced or extensible; therefore, M is connected.

Condition 3: The relationship between canonical sequence ordering and states in M is satisfied

by Step 2.1 in ConstructAE .

Conditions 4, 5: The properties of the illegal state are satisfied by Steps 2.1-2.9 in ConstructAE .

68

Theorem 5.2. Given Enumeration Mealy Machine M � pQ1,Σ,∆, δ, ν, q0q, an

AE � pQ,Θ, I, V,R,Φ,Q,Bq can be constructed with equivalent behavior.

Proof. Let f : Q1 Ñ N map states in M to modes in AE as follows:

fpqiq � " 0 Da ∈ Σ such that pνpqi, aq � ω ∧ δpqi, aq � qiq
i� 1 Otherwise

Let V � X and X � tµ u. Let Q � rangepfq, typepµq � Q, and Eµ � typepµq ∪ tnull u. Let

Θ � t fpq0q u. Let Eo � ∆. By the definition of an Enumeration Mealy Machine, tnull , ω u ⊆ ∆.

Let R � Eo �Eµ. Let I � Σ ∪ tnull u.
For the mappings in δ and ν, the map ppq, aq, q1q, ppq, aq, rq ÞÑ pppµ � fpqqq, aq, rq where πµprq �
fpq1q and πoprq � r defines the function Q in AE . The state variable signal definition for µ is 9µ � 0;

ϕ � p 9µ � 0q; Φ � tϕ u, and B � t pi, ϕq | i ∈ typepµq u.
5.1.3 Construction Algorithm: AE to A

To prove our specification satisfies the theoretical properties of a HIOA, ConstructA is presented

to transform the enumeration elements in AE into the atomic elements in A. The result is a well-

defined HIOA where the axioms are preserved.

Lemma 3.4 of [13, p. 15] proves trajspV q with prefix ordering is an algebraic complete par-

tial order. ConstructA only constructs compact trajectories from AE . This constructed set of

compact trajectories approximates every trajectory in trajspV q by Definition 3.30.

AE is deterministic after establishing the initial start state. One trajectory definition in AE
determines the precise behavior of A from any state in Q as a trajectory. If more than one trajectory

definition are associated with a single mode, nondeterminism with respect to trajectories would be

introduced during the construction of A. The time of the next action determines the domain of

the trajectory. The null element in I is removed, and the set H is defined by naming the pairs in

the domain of Q that have the form phQ,nullq. O is defined as the range of discrete-time signal o.

There remains an element of nondeterminism in A with respect to output actions. Given a state

in Q, an output action may exist in D that is triggered by an action in I ∪H other than intended.

By completing the set A, D can be defined.

69

x, u, and y are valuations constructed from atomic vectors. The relationship between atomic

vectors and valuations is established. Given a set of atomic vectors (Definition 4.1) over S with

si ∈ S and vi ∈ Csi for i ∈ r|S|s, the map from atomic vectors to valuations is defined bypv1, . . . , vnq ÞÑ t ps1, v1q, . . . , psn, vnq u. (5.2)

In the construction algorithm, X̃ is the set of surrogate input variables in X, f̃ denotes the

composite surrogate signal definition associated with ϕ, and x̃ ∈ valpX̃q. Let p phQ, aq, r q ∈ Q
and ϕ ∈ Φ define the trajectory prior to the transition. If for all x ∈ X, πxprq � xplastq when

πxpϕq � p 9x � eq and πxprq � null otherwise, then r is invariant.

ConstructA(AE)

The input and internal action sets.

1.1 O � ∅

1.2 H � ∅

An index for internal action names.

1.3 i� 0

The hQ of the pairs in the domain of Q partition Q. A mapping in Q defines either an

invariant transition or an action transition.

1.4 for each p phQ, aq, r q ∈ Q [1.59]

Transitions and trajectories are constructed from every state in Q. Given x, ℘pxq is defined.

1.5 for each x ∈ tx ∈ U | hQpxpµq,xpx1q, . . . ,xpxkqq u, k � |X| � 1 [1.58]

Each trajectory is constructed from the trajectory definition. Since there is only one tra-

jectory definition for each mode, this eliminates nondeterminism in the constructed A.

1.6 ϕ� Bpxpµqq
1.7 if a � null and r is invariant [1.57]

1.8 then [1.26]

70

Construct the trajectories in T starting with a point trajectory; τ � ℘pvq. Thus, ℘pxq is

defined.

1.9 t� 0

1.10 do [1.26]

The trajectory over X is fixed; this includes the surrogates. There is a many-to-one relation-

ship between input trajectories and surrogate trajectories. T must include all trajectories

that satisfy the signal definitions in ϕ.

1.11 for each τ ÓU ∈ trajspUq such that dompτ ÓUq � r0, ts and

for all t1 ∈ r0, ts, f̃pτ ÓUpt1qq � τ ÓX̃pt1q [1.23]

τ ÓU and τ ÓX̃ are fixed over the domain r0, ts.
1.12 for each z ∈ Z and z is not a surrogate [1.21]

1.13 case membership of z [1.20]

1.14 when z ∈ X and πzpϕq is a differential equation

1.15 τ Ózptq � solution of πzpϕq at t with xpzq and τ ÓXptq
1.16 when z ∈ X and πzpϕq is an equation

1.17 τ Ózptq � solution of πzpϕq at t with τ ÓXptq
1.18 when z ∈ Y
1.19 τ Ózptq � solution to πzpϕq at t with τ ÓUptq and τ ÓXptq
1.20 end case [1.13]

1.21 end for [1.12]

τ has been completely defined over the domain r0, ts. τ.lstate is fixed for every τ ÓW ∈
trajspW q used to construct τ .

1.22 T � T ∪ t τ u
1.23 end for [1.11]

After all trajectories with domain r0, ts are added to T , hQ is checked to determine whether

the system remains in the invariant set or an action in I or H has occurred.

1.24 x1 � τ.lstate

71

1.25 t� the next greater t ∈ T≥0 (strict order)

1.26 while hQpx1pµq,x1px1q, . . . ,x1pxkqq [1.8, 1.10]

1.27 else [1.56]

The point trajectory over X is fixed; this includes the surrogates. There is a many-to-one

relationship between input point trajectories and the point trajectory over X̃ . T must

include all point trajectories that satisfy the signal definitions in ϕ.

1.28 for each ℘puq ∈ trajspUq such that f̃p℘puqp0qq � ℘px̃qp0q [1.33]

1.29 for each y ∈ Y

1.30 ℘pyqp0q � πypϕq evaluated at t � 0 with ℘puq and ℘pxq
1.31 end for

1.32 T � T ∪ t℘pvq u
1.33 end for [1.28]

Use the condition vector mapping to define the initial atomic system state following the

input or internal action. When a state variable’s signal definition is a differential equation,

construct the next atomic state value using the condition vector. Otherwise, define the next

atomic state value explicitly at t � 0 using the signal definition.

1.34 for each x ∈ X [1.41]

1.35 if πxprq � null [1.40]

1.36 then

1.37 x1pxq � πxprq evaluated with x

1.38 else

1.39 x1pxq � the solution of πxpϕq at t � 0

1.40 end if [1.35]

1.41 end for [1.34]

1.42 if a � null [1.50]

Name an internal action. Then, add it to the set of internal actions. Add the transition

caused by this action to the set of transitions.

1.43 then

72

1.44 i� i� 1

1.45 hi , hQ

1.46 H � H ∪ thi u
1.47 D � D ∪ t px, hi,x1q u
1.48 else

Add an input action.

1.49 D � D ∪ t px, a,x1q u
1.50 end if [1.42]

1.51 if πoprq � null [1.56]

1.52 then

Add an output action. x represents xplastq for each x ∈ X. This is the only nondeterminism

that is in A.

1.53 or0s � πoprq evaluated with x

1.54 O � O ∪ t or0s u
1.55 D � D ∪ t px1, or0s,x1q u
1.56 end if [1.27, 1.51]

1.57 end if [1.7]

1.58 end for [1.5]

1.59 end for [1.4]

The dtype sets contain all the atomic signals used to form the trajectories in T .

1.60 for each τ ∈ T

1.61 for each v ∈ V

1.62 dtypepvq � dtypepvq ∪ t τ Óv u
1.63 end for

1.64 end for

1.65 I � I � tnull u
1.66 W , U ∪ Y

73

1.67 E , I ∪O
1.68 return pW,X,Q,Θ, E,H,D,T q

end ConstructA

5.1.4 Relationship Between AE and A

In this section, we show that AE satisfies the HIOA axioms of Definition 3.23 and Definition 3.24.

Only output action nondeterminism remains in the constructed A. Trajectory behavior is selected

deterministically in the constructed A by inclusion of the mode variable in elements of Q. Certain

types of Zeno behavior is also eliminated in AE through use of surrogate input variables.

Lemma 5.1. ConstructA pAEq where AE � pQ,Θ, I, V,R,Φ,Q,Bq satisfies Axiom T0.

Proof. Let v be an arbitrary valuation in valpV q and v|X ∈ Q. Let x � v|X . The predicates of

the pairs in the domain of Q partition Q; therefore, there exists an p phQ, aq, r q ∈ Q (Step 1.4)

such that hQ is satisfied by x. The mapping p phQ, aq, r q defines an invariant set or a transition.

In the first case, the first iteration through the loop starting at Step 1.10 and ending at Step 1.26

constructs every point trajectory where x ∈ Q. In the second case, Steps 1.28 to 1.33 constructs

every point trajectory where x ∈ Q and x initiates an automaton transition. For arbitrary x, every

w ∈ valpW q is used to define v ∈ valpV q. ℘pvq is added to T .

Lemma 5.1 shows the many-to-one relationship between the point trajectories in trajspW q and

the point trajectories in trajspXq. The automaton can report the exact value of any input signal as

an output signal. Surrogate input variables ensure the internal automaton behavior is controlled. If

an action transitions the automaton to a state where another action is enabled, Lemma 5.1 proves a

point trajectory exists in T that allows the two actions to occur simultaneously. During simulation,

event times are strictly ordered and every trajectory in the algebra has a non-degenerate domain;

the point trajectories of HIOA Axiom T0 would not not exist.

Lemma 5.2. ConstructA pAEq where AE � pQ,Θ, I, V,R,Φ,Q,Bq satisfies Axiom T1.

Proof. Let τ be an arbitrary trajectory constructed from ϕ ∈ Φ (Step 1.6) and τ 1 be an arbitrary

prefix of τ . If τ.ltime � 0, Lemma 5.1 completes the proof; otherwise, τ.ltime ¡ 0. The loop

starting at Step 1.10 defines every prefix of τ and adds it to T .

74

Lemma 5.3. ConstructA pAEq where AE � pQ,Θ, I, V,R,Φ,Q,Bq satisfies Axiom T2.

Proof. Let τ be an arbitrary trajectory constructed from ϕ ∈ Φ (Step 1.6 and the loop starting

at Step 1.10) and t ∈ dompτq be an arbitrary time. If τ.ltime � 0, Lemma 5.1 completes the

proof; otherwise, τ.ltime ¡ 0. τ is constructed using the invariant set and t ∈ r0, τ.ltimes. Let

x1 � τptq|X . x1 either satisfies hQ in Step 1.26 or it does not. In the first case, x1 also satisfies the

characteristic predicate in Step 1.5. Let x � x1. The suffix of τ with initial state x, is constructed

in the loop starting at Step 1.10 and ending at Step 1.26. In the second case, x1 satisfies a transition

characteristic predicate. ℘px1q is the suffix of τ constructed and added to T in Steps 1.28 - 1.33.

Lemma 5.4. ConstructA pAEq where AE � pQ,Θ, I, V,R,Φ,Q,Bq satisfies Axiom T3.

Proof. Let τ0, τ1, . . . , τn be a finite sequence of arbitrary trajectories constructed from ϕ ∈ Φ such

that for non-final index i, τi is closed and τi.lstate � τi�1.lstate. We construct the concatenation as

τ . τi.lstate|µ � τi�1.lstate|µ for i ∈ rn� 1s; therefore, all the trajectories have the same trajectory

definition. If for any non-final index i, a transition is caused by a in τi.lstate satisfying a pair in

the domain of Q, the result is either a discrete output or an invariant transition. The first case

is a contradiction by the definition of a discrete-time signal; therefore, for all non-final i, τi.lstate

satisfies an invariant hQ producing τ .

Theorem 5.3. ConstructA pAEq is a Hybrid Automaton.

Proof. By Lemmas 5.1, 5.2, 5.3, and 5.4.

We now consider the Hybrid I/O Automata axioms of Definition 3.23.

Lemma 5.5. ConstructA pAEq where AE � pQ,Θ, I, V,R,Φ,Q,Bq satisfies Hybrid I/O Au-

tomata Axiom E1 of Definition 3.24.

Proof. Let x ∈ Q and a ∈ I � tnull u. There exists an p phQ, aq, r q ∈ Q such that

hQpxpµq,xpx1q, . . . ,xpxkqq by the definition of Q. By Step 1.4, the transition is defined in

ConstructA pAEq.
75

In the enumeration process, we introduce surrogate input variables and their signal definitions

to handle unexpected input signal behavior (Definition 4.8). For surrogate signal definition x̃ptq
defined on u ∈ U , an internal action is implicitly defined by x̃ptq at any time t where x̃ptq � uptq;
the implicit action changes uptq to x̃ptq at time t.

Lemma 5.6. ConstructA pAEq where AE � pQ,Θ, I, V,R,Φ,Q,Bq satisfies Hybrid I/O Au-

tomata Axiom E2 of Definition 3.24.

Proof. Let x ∈ Q and τ ÓU ∈ trajspUq. Let τ ÓX̃ be the trajectory produced by ϕ using variables

in X̃ . If τ ÓX̃ � τ ÓU , then E2 Case 1 is satisfied; otherwise, there exists some internal action(s)

realized by one or more surrogate input variable signal definitions f that transforms τ ÓU into

τ ÓX̃ . This set of internal actions is enabled for all x in all τ ∈ T by Step 1.11 and Step 1.28.

Theorem 5.4. ConstructA pAEq is a Hybrid I/O Automaton (Definition 3.24).

Proof. By Theorem 5.3, Lemma 5.5, and Lemma 5.6.

76

Chapter 6

Hybrid Specification Implementations

This chapter examines Simulink and Stateflow implementations of enumeration hybrid automata

specifications. With a complete hybrid enumeration, the model building problem has been pre-

scribed to the point that it can be generated algorithmically. The process outlined in Figure 6.1

places the design focus on systematic interpretation and refinement of requirements guided by the

enumeration procedure. This work eliminates errors and improves the implementation.

The sections in this chapter relate the structures of an enumeration hybrid automaton to the

Simulink and Stateflow design languages. A transformation algorithm is provided for each language.

Various techniques are used in industry to produce implementations in Simulink or Stateflow. The

techniques presented in this chapter have been developed to show the links between the specification

and the model implementation.

With imperative program design, sequential program statements produce the desired program

function. Stateflow charts are based on classical state machine definitions and their function fol-

lows the sequential programming paradigm. Stateflow implementation of an enumeration hybrid

automaton is presented first. A Simulink model, on the other hand, is a data-flow program in which

each model block is computed when necessary at each simulation time step; computations appear

to be performed in parallel. The approach used to construct Simulink block diagrams differs from

that of Stateflow; it is presented second.

77

Figure 6.1: Process: Specification (AE) to Model-Based Design (M)

6.1 Stateflow Implementations of AE

Stateflow charts are executable graphical representations of finite automata based on Statecharts [5].

The modeling fundamentals of Stateflow are those of state machines. In Stateflow, Mealy (see

Section 2.6.1) and Moore [7, p. 42] machines can be expressed as well as machines that include

continuous behavior. Stateflow charts are often used as finite state control components in a Simulink

model. The technique described in this section does not take that approach. Instead, we isolate

hybrid behavior in a single Stateflow chart. In other respects, the chart follows Stateflow’s Mealy

machine semantics. The term “state” in the Stateflow documentation refers to a mode of the AE ,
which is only one component of system state.

In the implementation algorithms, the monospaced typeface is used for Simulink and Stateflow

keywords, object names, and object properties. The math typeface is used for structures in AE
and algorithm data structures.

6.1.1 Implementing the State Machine Control

The algorithm ConstructStateflow produces Stateflow chart M using a breadth-first search

of the underlying finite automaton graph structure in AE . The set of modes in AE guides the con-

struction process. When constructing a Stateflow chart that models both discrete and continuous

behavior, the chart’s “update method” parameter must be set to “continuous”. The derivatives that

78

define continuous model behavior can only be computed in mode during actions [26, pp. 14-27–

14-29]. Variables in X have local scope and are not visible outside of M. Variables in Y are visible

outside of M; their “scope parameter” is set to “output”. The function ConstructModelMode

returns a mode object with a defined during action. The function ConstructModelTransition

returns a transition object to add to M.

ConstructStateflow(AE)

mode constructed is a function that identifies the modes in AE that have been previously

visited during the search of the automaton’s structure.

1.1 M� ∅

1.2 mode constructed� ∅

1.3 for each m ∈ typepµq
1.4 mode constructedpmq � false

1.5 end for

The breadth-first search starts from mode 1; Mode 1 is always defined in AE . Define the

start state in M. This may be a value selected nondeterministically from Θ.

1.6 add ConstructModelModep 1, Bp1q q to M

1.7 add ConstructStartStatepΘ q to M

M is the set of constructed modes whose exit transitions have not been added to M.

1.8 M � t 1 u
1.9 mode constructedp1q � true

1.10 while M � ∅ [1.23]

1.11 m ∈M

1.12 M �M � tm u
79

Create model transitions for each mapping in Q whose source mode is m.

1.13 for each p phQ, aq, r q ∈ Q such that χµpmq [1.22]

1.14 m1 � πµprq
If the destination mode has not been visited, the transitions from that mode have not been

added to M. Construct the newly discovered mode and add it to M. Then add m1 to M

so the set of transitions from that mode are added to M.

1.15 if not mode constructedpm1q
1.16 then

1.17 add ConstructModelModepm1,Bpm1q q to M

1.18 M �M ∪ tm1 u
1.19 mode constructedpm1q � true

1.20 end if

1.21 add ConstructModelTransitionpm, m1, pphQ, aq, rq q to M

1.22 end for [1.13]

1.23 end while [1.10]

1.24 returnpM q
end ConstructStateflow

6.1.2 Implementing the Behavior Function B

For each mode m in typepµq, the during action in M is defined using ϕ � Bpmq. The “update

method” parameter for state variable x whose signal definition is a differential equation is set to

“continuous” in M. Stateflow adds the variable x dot to M automatically. x dot is used to

define the behavior of x in a mode’s during action; the expression in the signal definition may be

used directly. The “update method” parameter for variables whose signal definitions are simple

equations is set to “discrete” in M. An Embedded MATLAB Function or Stateflow Graphical

Function may be used to implement surrogate input variable signal definitions.

80

ConstructModelModepm, ϕ q
1.1 create a new mode using m

1.2 for each z ∈ Z [1.12]

1.3 case z’s signal definition in ϕ [1.11]

1.4 when 9z � e

1.5 append z dot= e to the during action of mode

1.6 when zptq � e

1.7 append z= e to the during action of mode

1.8 when z is a surrogate for u

1.9 construct surrogate function f as an embedded MATLAB or a State-

flow function.

1.10 append z=f(u(t)) to the during action of mode

1.11 end case [1.3]

1.12 end for [1.2]

1.13 return (mode)

end ConstructModelMode

When all the during actions are removed and the “scope parameter” of each variable in X

is changed to “external,” M becomes a Mealy machine representative of the embedded system

control.

6.1.3 Implementing the Condition Function Q

Each mapping in Q associates a transition condition phQ, aq with a condition vector r. The general

syntax for a Stateflow transition consists of four parts: event[condition]{condition action}/
transition action. Each part is optional. To comply with Stateflow Mealy machine semantics,

we use only the condition and condition action parts of the transition definition [26, p. 6-9].

condition actions are executed when the source mode is active and the condition is satisfied.

The expressions in r are implemented in the condition action. Since the values of variables

whose coordinates in r are set to xplastq remain unchanged during the transition, they are not

81

implemented in the condition action. The function ConstructModelTransition transforms

mappings in Q into transitions in M.

ConstructModelTransitionpm, m1, pphQ, aq, rq q
1.1 create a new transition

1.2 transition.source� m

1.3 transition.destination� m1
1.4 transition.condition� rinput � a && hQs
1.5 if πoprq � null

1.6 then

1.7 append o:= πoprq to the condition action of transition

1.8 end if

1.9 for each x ∈ X [1.14]

1.10 if p πxprq � null ∧ πxprq � xplastq q
1.11 then

1.12 append x:= πxprq to the condition action of transition

1.13 end if

1.14 end for [1.9]

1.15 return (transition)

end ConstructModelTransition

Stateflow imposes an order on transition execution. The order resolves conflicting transitions

that represent implemented nondeterminism. The order is either set explicitly by the designer or

implicitly based on a set of rules [26, pp. 3-57–3-68]. By ensuring characteristic predicates are

pairwise disjoint, any unintended behavior that may result from these rules is eliminated.

82

Figure 6.2: Stateflow Implementation of the Resettable Timers Example

6.1.4 Resettable Timers Implementation

Appendix A.1 contains the requirements, enumeration, and construction process of the enumer-

ation hybrid automaton of an example with two resettable timers. Figure 6.2 is the Stateflow

implementation (M) of the resettable timers example annotated to show the relationship between

specification and implementation. In Figure 6.2, the during keyword in the Timer mode prefixes the

continuous action taken between discrete system transitions. In the figure, the trajectory definition

governs continuous system behavior between discrete actions while in the Timer mode.

In Figure 6.2, the pair pχµ�Timer ∧ χT1 100 ∧ χT2≤2, buttonq is shown in its implemented form.

The atomic characteristic predicate χµ�Timer designates the transition’s source. The discrete action

button is identified using the integer index 1. The remainder of the transition condition is defined

using hQ. The entire characteristic predicate may be used; however, χµ�Timer is made redundant

by occupation of the Timer mode.

83

Figure 6.3: Resettable Timers

Two output variables, Clock Timer and Button Timer, were added to M to illustrate “update

method” parameter effects. The signals associated with these variables for a system run are shown

in Figure 6.3. At simulation time 1.691 and 2.040, the button press event resets both timers. As

can be seen in the figure, both continuous-time signals are continuous despite the discrete “update

method” parameter setting.

Discrete-time signals that satisfy Definition 2.2 cannot be represented in Simulink and Stateflow;

each system variable will have a value at each continuous time step during a simulation of M.

During a simulation, for example, the discrete-time output signal orts is plotted in Figure 6.4. The

spikes in the plot are the instantaneous values of the Clock Timer sent to the display; for all other

simulation times the value 0 represents null .

Figure 6.4: Discrete Output Signal orts
84

Figure 6.5: Simulink Models

6.2 Simulink Fundamentals

Enumeration hybrid automata and HIOA incorporate discrete and continuous mathematics into

their respective definitions. Simulink is a graphical tool and a graphical language used to construct,

simulate, and analyze model-based designs [25, p. 2]. A model-based design simulation cannot rep-

resent the continuous mathematics in these models with fidelity. Every simulation is intrinsically

discrete. Solutions to differential equations are approximated using a variety of ordinary differen-

tial equation (ODE) solvers. Accuracy is determined by several factors: the type of solver, the

simulation step size, round-off error, and the technique and parameter settings for zero-crossing

detection (zero-crossing is discussed in Section 6.2.4). Once a model has been constructed from a

specification, different results can be produced by varying the many available parameters in the

Simulink software.

6.2.1 Elements

A Simulink model is a directed graph whose edges are signals and whose vertices are computational

elements [25, pp. 2–4]. The signals that flow from one vertex to another can be multidimensional.

Simulink contains a vast library of blocks used to transform signals. In our examples, we use a

small subset of the available blocks; those that perform the logic and the mathematical operations

needed to define characteristic predicates and expressions (see Definition 4.5). Figure 6.5 shows

two Simulink models. The model on the left computes the conjunction of continuous-time Boolean-

valued signals b1ptq and b2ptq. The model on the right computes the sum of continuous-time signals

u1ptq and u2ptq after they have been converted into a vector signal; y1ptq � u1ptq�u2ptq. Subsystem

blocks are used for hierarchical model organization and contain a collection of model blocks some of

which may be additional subsystem blocks. Two types of subsystem blocks are used in Simulink. A

non-virtual subsystem is conditionally executed; a virtual subsystem is used for model organization.

85

Figure 6.6: Simulink Implementation of a Signal Definition

The outline of a subsystem block delineates a system boundary as discussed in Section 2.5.

The Simulink block diagram shown in Figure 6.6 models a signal definition for xj where j ∈ rks
and k � |X|. The blocks in the path from left to right model the expression epx1ptq, . . . , xkptq, tq.
This expression paired with the initial condition xj(0) are solved using an ODE solver to produce

the output xj(t). With the integrator block and the initial condition removed, an algebraic equation

is modeled.

6.2.2 Simulation

A Simulink model simulation is computed by iterating over a sequence of major time steps (not

necessarily fixed) and at each time step iterating over an ordered subset of the computational model

blocks (not all blocks will require updating at every major time step). At each major time step,

the output of each computational block is computed in order. Next, blocks having states, e.g.,

integrators, are computed using the designated solver. To improve accuracy, blocks requiring state

updates may require additional iterative computation involving minor time steps within the major

time step. For each time step (major or minor), state information is used to detect discontinuities.

A discontinuity results from hybrid or switching behavior and is detected using a zero-crossing

detection algorithm. The last step in the simulation cycle is to compute the next major time

step [25].

86

6.2.3 Solvers

The accuracy of a model simulation is determined by the selected ODE solver and its parameters.

Time step size may be modulated or fixed. Smaller step size improves simulation accuracy while

increasing the number of necessary computations. Variable rate solvers improve efficiency; these

solvers vary step size based on a variable’s rate of change [25, pp. 2–5]. Larger step sizes are

used for variables whose derivatives change slowly. Signal definitions for discrete state variables

are transformed using discrete blocks, e.g., Z-transform blocks (unit delay). Discrete blocks have a

sample time parameter. The state of every discrete block in the model must be computed for each

multiple of its sample time parameter.

6.2.4 Zero-Crossing Detection

Zero-crossing detection algorithms attempt to produce simulations that precisely identify discontin-

uous system behavior. Blocks that employ zero-crossing algorithms use special detection variables

computed using state variables and block parameters [25, pp. 2–27]. The algorithm identifies a

time interval using the simulation times before and after the detection variable changes sign. The

interval includes the exact time of the zero-crossing event. The algorithm refines the interval by

changing its bounds to identify the approximate time and state of the discontinuity. Depending on

algorithm and simulation parameters, zero-crossings can be missed; this occurs when the stimula-

tion time step passes over a sign change. A zero-crossing algorithm parameter halts chattering or

excessive time interval refinement. Two types of zero-crossing algorithms are available in Simulink.

87

Figure 6.7: Simulink Implementation (M) of AE

6.3 Simulink Implementations of AE

The Simulink model M contains the top-level subsystem Main that has the interfaces of a HIOA

(see Figure 2.3). In Figure 6.7, Main is the gray subsystem located between the hybrid input

signal generator (see Section 4.1.4) and the hybrid output signal displayed using a scope block. M
contains four component subsystems as depicted in Figure 6.8:

1. The transition subsystem contains a subsystem for each element in dompQq. Each component

subsystem computes the conditions in phQ, aq and outputs an index when those conditions

are satisfied; 0 is the output when the conditions are not satisfied.

2. The state machine subsystem implements Q as a look-up table using a matrix. The object

returned from the look-up table, r, is realized using a tuple of indices; the indices in this

tuple identify a condition vector implementation.

3. The condition vector subsystem implements rangepQq or the expressions used to define the

tuples in R. Given x ∈ X ∪ t o u, |Ex| � |rangepπx �Qq| is the number of expressions required

to compute the initial state for x following any system transition.

4. The trajectory definition subsystem implements each trajectory definition in Φ, the range of

B. Given z ∈ Z, |rangepπz � Bq| is the number of signal definitions required to define the

trajectory definitions in Φ.

In ConstructSimulink, µ, signal constructed, transition index, condition index, and

condition constructed are global. The procedures ConstructModelMode and Construct-

ModelTransition modify this set of global objects.

88

Figure 6.8: Simulink Subsystem Components of M

ConstructSimulink(AE)

1.1 M� ∅

1.2 add subsystem Main to M

1.3 add subsystem Transitions, StateMachine, ConditionVectors,

and TrajectoryDefinitions to subsystem Main

Declare bookkeeping data structures. Computational elements are only added to the model

one time.

1.4 mode constructed� ∅

1.5 for each m ∈ typepµq
1.6 mode constructedpmq � false

1.7 end for

1.8 transition index� 0

1.9 condition constructed� ∅

1.10 condition index� ∅

1.11 signal constructed� ∅

A transition matrix is used to implement the function Q. It has |X|� 1 rows and |dompQq|
columns.

1.12 define transition matrix

1.13 add transition matrix to M

89

Initialize the bookkeeping function condition constructed that takes a variable name and

an expression and returns an expression index. The index is used in the transition matrix

to identify the expression. A 0 index indicates the subsystem has not been constructed.

1.14 for v ∈ X ∪ t o u [1.20]

1.15 add subsystem vCondition to subsystem ConditionVectors

1.16 condition indexpvq � 0

1.17 for e ∈ rangepπv �Qq
1.18 condition constructedpv, eq � 0

1.19 end for

1.20 end for [1.14]

Initialize the bookkeeping function signal constructed that takes a variable name and a

signal definition and indicates if the subsystem implementing that signal definition has

been constructed.

1.21 for z ∈ Z [1.26]

1.22 add subsystem zSignal to subsystem TrajectoryDefinitions

1.23 for equation ∈ rangepπz � Bq
1.24 signal constructedpz, equationq � false

1.25 end for

1.26 end for [1.21]

The breadth-first search starts from mode 1; Mode 1 is always defined in AE .

1.27 ConstructModelModepM, 1, Bp1q q
M is the set of modes whose exit transitions have not been added to M.

1.28 M � t 1 u
1.29 mode constructedp1q � true

1.30 while M � ∅ [1.43]

1.31 m ∈M

1.32 M �M � tm u
90

Construct transitions for each mapping in Q whose source mode is m.

1.33 for each p phQ, aq, r q ∈ Q such that χµpmq [1.42]

1.34 m1 � πµprq
If the destination mode has not been visited, the transitions from that mode have not been

added to M. Construct the newly discovered mode and add it to M. Then add m1 to M

so the set of transitions from that mode are added to M.

1.35 if not mode constructedpm1q
1.36 then

1.37 ConstructModelModepM, m1, Bpm1q q
1.38 M �M ∪ tm1 u
1.39 mode constructedpm1q � true

1.40 end if

1.41 ConstructModelTransitionpM, m, m1, pphQ, aq, rq q
1.42 end for [1.33]

1.43 end while [1.30]

Define the start state in M. Start states are discrete feedback block parameters.

1.44 ConstructStartStatepΘ q
1.45 returnpM q

end ConstructStateflow

6.3.1 Implementing the Behavior Function B

Figure 6.9 is one subsystem in the Trajectory Definitions subsystem of Figure 6.8. The model

implements a set of signal definitions. Each gray subsystem models a signal definition in the set and

follows the structure in Figure 6.6. The function B is realized by using mode variable predicates

that enable exactly one conditionally executed subsystems; a mode enabling signal definition is

annotated in the figure. The implemented signal definition for T1-dot of the resettable timers

91

Figure 6.9: Simulink Implementation of the Signal Definition Set in M

example in Appendix A is expanded on the right. Detailed construction of signal definitions is

performed by the function ConstructSignalDefinition.

ConstructModelModepM, m, ϕ q
A trajectory definition is associated with each model mode.

1.1 for each z ∈ Z [1.7]

1.2 if not signal constructedpz, πzpϕqq
1.3 then

1.4 add ConstructSignalDefinitionpπzpϕq,mq to subsystem zSignal

1.5 signal constructedpz, πzpϕqq � true

1.6 end if

1.7 end for [1.1]

end ConstructModelMode

92

Figure 6.10: Simulink Implementation of the Transition Set in M

6.3.2 Implementing the Condition Function Q

Figure 6.10 shows the details of the Transitions subsystem of Figure 6.8. The model implements

the set of transitions (blue subsystems) that make up dompQq. The expanded view of Transition

1 models phQ, aq and assigns it an index of 1 when the conjunction is satisfied. Each atomic

characteristic predicate in hQ is implemented using a single block. The transition condition is

completed by adding the predicate irts � a for the discrete-time signal i. The figure shows a

transition model in the resettable timers example. ConstructTransition constructs the details

in the expanded view.

In AE of the resettable timers example, there are nine transitions. Figure 6.10 shows a model

with only five transitions. Mathematically, the specification is correct; dompQq is formed using a

partition of the system’s state space and the input action set. Nine subsystem can be constructed;

however, during system simulation the illegal mode will be entered due to the limitations of an

intrinsically discrete model implementation. This behavior is correct. In order to produce a simu-

lation that behaves as expected, blocks with zero-crossing detection are used and certain transitions

93

Figure 6.11: Simulink Implementation of the Condition Vector Set in M

are eliminated from the model implementation. Blocks must be eliminated due to the round-off

error associated with zero-crossing detection that causes multiple transitions to be triggered.

Figure 6.11 shows the details of the Condition Vectors subsystem of Figure 6.8. The model on

the left side of the figure implements the set of condition vectors R in the resettable timers example.

The subsystem Discrete Output contains models of each expression needed to compute or0s. The

expanded view shows the subsystem for each expression. The function ConstructCondition

constructs the details in a subsystem added to

ConstructModelTransitionpM, m, m1, pphQ, aq, rq q
Each transition is implemented as a subsystem. transition index references a column in

the transition matrix.

1.1 transition index� transition index� 1

1.2 add ConstructTransitionp phQ, aq, transition index q to subsystem Transitions

j indexes the row in transition matrix that contains the condition vector expression index.

1.3 j � 1

94

Figure 6.12: Simulink Implementation of Q in M

1.4 for each v ∈ X ∪ t o u ordered lexicographically [1.13]

When the condition vector expression πvprq has not been implemented (0 value), define

its index, construct the expression model, and add the newly constructed model to the

appropriate subsystem.

1.5 if condition constructedpv, πvprqq � 0 [1.10]

1.6 then

1.7 condition indexpvq � condition indexpvq � 1

1.8 condition constructedpv, πvprqq � condition indexpvq
1.9 add ConstructConditionpπvprqq to subsystem vCondition

1.10 end if [1.5]

Add the index of the condition vector expression to the transition matrix.

1.11 transition matrixpj, transition indexq � condition constructedpv, πvprqq
1.12 j � j � 1

1.13 end for [1.4]

end ConstructModelTransition

The function Q is modeled in Figure 6.12. The condition vector, r � QpphQ, aqq, is retrieved

from the transition matrix used to define the Condition Vector Function block in the figure. The

indices needed to select condition expressions are selected and used by the Condition Vectors sub-

system. The mode is passed to the Trajectory Definitions subsystem.

95

6.4 Alternative Implementations

For a given AE , there are many possible implementations in many design languages. In Simulink

for example, the state machine subsystem can be implemented using only logic. This increases the

number of model blocks, but the model will still be correct. Although not investigated, it should

be possible to generate implementations in Uppaal [3] and LabVIEW, for example.

The methods outlined in this chapter highlight the relationship between the structures in AE
and the final implementation. The enumeration makes automatic implementation possible and

eliminates guesswork in hand-crafted implementations.

96

Chapter 7

Conclusion

Hybrid automata and model-based designs share common characteristics; they both are capable

of modeling discrete software function coacting with physical processes. The hybrid specification

process we have introduced complements the model-based design process. It provides a critical

link between requirements and completed model through detailed analysis of the application to be

implemented as an embedded real-time system.

This research extends existing sequence-based specification to explicitly address continuity, time,

nondeterminism, and internal events. We use the hybrid I/O automaton model developed in [9,13]

as a framework and prove our method produces well-defined HIOA. As the industry evolves with

competing embedded system design methods, we offer a unique perspective: Our systematic and

constructive approach maps sequences of time-sensitive events based on hybrid signals to models

of internal dynamic behavior and hybrid output signals. Timing constraints may be modeled using

continuous-time signals that evolve at the same rate as real time. By including functions that model

state evolution, complete system behavior and internal actions may be defined and simulated.

We design deterministic systems since complete, consistent, and correct control software func-

tion is essential in safety and mission critical systems. An enumeration hybrid automaton is de-

terministic after the initial start state has been established. The enumeration process discovers an

equivalence relation using unreduced sequences and refinements of the continuous state space to

ensure one and only one automaton transition is possible at any instant in time. The refinement-

abstraction process over a finite-dimensional (but potentially infinite) state space allows us to

address simultaneous events and define system properties at various levels of abstraction.

97

A summary of the contributions follows:

• The definitions and process needed to construct precise specifications of hybrid systems based

on requirements

• The consequential improvement in statement of requirements

• An algorithm for automated conversion from enumeration to specification

• An algorithm for automated conversion from specification to algebraic HIOA

• Algorithms for generation of Simulink and Stateflow models

• A mathematical model generated by the workflow with useful properties:

– Composition

– Potential for automated assertion proofs

– Implementation independence

• Compatibility with existing Software Quality Research Laboratory (SQRL) processes and

tools

– Discrete enumeration process

– Markov chain automated testing process

Two examples are included in Appendix A. These examples illustrate that step-by-step adher-

ence to the hybrid enumeration process produces a precise specification. The meticulous exami-

nation of requirements and sequential system events ensures all the artifacts of the design process

agree. The first example shows in detail the connection between the mathematical description of

the enumeration process and the practical working process.

The second, larger example includes more hybrid system features. In this example, we go di-

rectly from the statement of requirements to the tabular enumeration. For this derivative of the

Power Window Example [18], eight additional requirements were needed to complete the enumer-

ation. In the enumeration, 46 refinement steps were needed to create the six mappings that define

98

the modes of the power window system and the 71 mappings that define the stimulus vector sets

needed to define system behavior in those modes.

This table would be provided to programmers for product implementation. A Simulink model

would be generated to serve as an oracle for automated testing, product simulation, and system

validation. When compared to typical design methods, the effectiveness of the method is compelling.

There is always the question of scalability. One’s first reaction to the size of the enumeration

table is that the method is impractical. Realizing that every possible situation required in an

implementation has been presented in a well-organized tabular form is the better reaction. It is

exactly this set of situations that must be discovered and analyzed to ensure the system is cor-

rect. The process described herein clearly separates the process of requirements refinement and

specification development from the programming and implementation tasks. Enumeration must be

done by domain experts and product engineers because their knowledge is essential to make the

decisions prompted by enumeration. The tabular form is suitable for review with customers, man-

agement, and engineers alike. The table contains all and only the details needed by programmers

who would correctly implement the requirements; subsequent software development can be done

with full attention to implementation matters.

By keeping system boundary size reasonable and using HIOA composition theorems, larger

composite systems can be created from component hybrid specifications. This is one benefit of

strict adherence to an independent mathematical model.

7.1 Tool Support

Enumeration methods are only practical with effective tool support and model composition. A

sequence-based specification tool called Protoseq has been developed by SQRL that is very ef-

fective for discrete enumerations. The prototype implements the change-in-requirements features

developed by Lin [11]. Research in string rewriting offers additional features to improve efficiency.

This prototype is being enhanced at the Fraunhofer IESE. Also, an enumeration tool has been de-

veloped by Verum and is in commercial use. There is no doubt about the ability to bring significant

tool support to bear on the process.

Although the tables in the appendix were produced using spreadsheet software, suitable tool

99

support for hybrid enumeration will require further enhancement of Protoseq. An examination of

the examples in the appendix will immediately convey the impression that substantial tool support

is possible. From the starting point forward, the tool will ensure that details derivable through the

method are provided automatically. Furthermore, the tool will maintain the mathematical integrity

of the underlying model by prompting the designer for each step of the workflow. The tool will

detect the need for additional table blocks and automatically supply data where possible, while

highlighting the incomplete details. Domain experts will then be able to refine that state space to

produce a complete table row. As with the current version of Protoseq, complete documentation

will be maintained as enumeration progresses and can be generated on demand. Connection to the

automated testing process of JUMBL [22] will be maintained.

7.2 Future Research

There are two tracks for future research. The first and most important is field experience in

creating specifications and testing frameworks for real products. The second research focus is

further independent work in the mathematics and algorithmics to find more advancements that can

be brought to application. This includes techniques such as zero-crossing detection and simulation

of Zeno behavior. We must continue the feedback loop between the field and the laboratory, so

that field experience will inform tool development and algorithms, while research advancements

will inform application in the field. Some specific ideas follow.

• Algorithms for Stateflow and Simulink are included here, but additional algorithms could be

devised to generate Uppaal and other models as needed.

• Connections could be made to commercial requirements and documentation tools.

• A hybrid specification defines a set of hybrid sequences. From this population of hybrid

sequences, test cases can be generated. Hybrid sequences explicitly include real-time infor-

mation that can be used in the testing regimen. Since a hybrid specification models both

trajectories and actions, trajectory information may be used as a portion of the test oracle.

• Treat a component hybrid specification as a trajectory. Activate this component specification

in one or more modes of a higher level specification, forming a specification hierarchy.

100

• Integrate nondeterministic behavior into specification trajectory definitions while retaining

deterministic control. As models are evolved into products, comparisons between product,

model, and specification can be analyzed to improve the overall design and better approximate

modeled behavior of the real-world plant.

• Develop refinement and abstraction change algorithms that agree with the specification

change algorithms from [11].

• Integration of the HIOA hybrid sequence restriction operation into a complete or ongoing

hybrid enumeration.

• Elimination / minimization of theoretical Zeno behavior caused by loops of point trajectories.

This research was undertaken because discrete sequence-based enumeration does not directly

address time, nondeterminism, and continuity. Heretofore, we invented abstract stimuli to deal with

those matters based on the experience and intuition of the developers with risk of error and rework

in the enumeration. The extension to hybrid enumeration does address these matters directly by

facilitating more precise analysis and specification.

It is very reassuring that one can identify from the hybrid enumeration the precise abstrac-

tions that would be needed to revert to the simpler discrete enumeration. The end result is the

same: a complete, consistent and traceably correct specification that supports code generation and

automated testing.

101

References

102

References

[1] Rajeev Alur, Costas Courcoubetis, Thomas A. Henzinger, and Pei-hsin Ho. Hybrid automata

an algorithmic approach to the specification and verification of hybrid systems. In Hybrid

Systems, LNCS, pages 209–229. Springer–Verlag, 1993.

[2] Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer Science,

126:183–235, 1994.

[3] Gerd Behrmann, Alexandre David, and Kim G. Larsen. A tutorial on uppaal. In Formal

Methods for the Design of Real-Time Systems: 4th International School on Formal Methods

for the Design of Computer, Communication, and Software Systems, SFM-RT 2004, number

3185 in LNCS, pages 200–236. Springer–Verlag, September 2004.

[4] Jason M. Carter and Jesse H. Poore. Sequence-based specification of feedback control systems

in SimulinkR©. In CASCON ’07: Proceedings of the 2007 conference of the center for advanced

studies on Collaborative research, pages 332–345, New York, NY, USA, 2007. ACM.

[5] David Harel. Statecharts: A visual formalism for complex systems. Science of Computer

Programming, 8(3):231–274, 1987.

[6] Thomas A. Henzinger. The theory of hybrid automata. In Proceedings of the 11th Annual

Symposium on Logic in Computer Science (LICS), pages 278–292. IEEE Computer Society

Press, 1996.

[7] John E. Hopcroft and Jeffery D. Ullman. Introduction to Automata Theory, Languages, and

Computation. Addison-Wesley, Reading, MA, 1979.

103

[8] Daniel Jackson, Martyn Thomas, Lynette Millett, and Editors. Software for Dependable Sys-

tems: Sufficient Evidence? The National Academies Press, Washington, DC, 2007.

[9] Dilsun K. Kaynar, Nancy Lynch, Roberto Segala, and Frits Vaandrager. The theory of timed

I/O automata. Technical Report TR-2003-015, Massachusettes Institute of Technology, 2005.

[10] Lan Lin, Stacy J. Prowell, and Jesse H. Poore. An axiom system for sequence-based specifi-

cation. Theoretical Computer Science, pages 1–17, July 2009.

[11] Lan Lin, Stacy J. Prowell, and Jesse H. Poore. The impact of requirements changes on

specification and state machines. Software — Practice and Experience, 39(6):573–610, 2009.

[12] Jan Lunze. Modelling, Analysis, and Design of Hybrid Systems, volume 279/2002 of Lecture

Notes in Control and Information Sciences, chapter What is a Hybrid System?, pages 3–14.

Springer Berlin / Heidelberg, Cambridge, UK, January 2002.

[13] Nancy Lynch, Roberto Segala, and Frits Vaandrager. Hybrid I/O automata. Technical Report

MIT-LCS-TR-827c, MIT Laboratory for Computer Science, 2001.

[14] Mrinal Mandal and Amir Asif. Continuous and Discrete Time Signals and Systems. Cambridge

University Press, Cambridge, New York, first edition, 2007.

[15] S. J. Mason. Feedback theory – some properties of signal flow graphs. Proceedings of the IRE,

41(9):1144–1156, Sept 1953.

[16] James D. Meiss. Differential Dynamical Systems. Society for Industrial and Applied Mathe-

matics, Philadelphia, PA, first edition, 2007.

[17] Carl Mitcham, editor. Encyclopedia of Science, Technology, and Ethics, volume 4. Gale

Cengage, Farmington Hills, MI, 2005.

[18] Pieter J. Mosterman. MATLABR© file exchange: Power window system. Internet, 2002.

[19] Pieter J. Mosterman. Hybrid Dynamic Systems: Modeling and Execution (in CRC Handbook

of Dynamic System Modeling), chapter 15, page (in publication). Chapmand and Hall/CRC

Press, Boca Raton, FL, 2007.

104

[20] Tammy Noergaard. Embedded Systems Architecture - A Comprehensive Guide for Engineers

and Programmers. Elsevier, Oxford, UK, 2005.

[21] Stacy J. Prowell. Sequence-Based Software Specification. PhD thesis, The University of Ten-

nessee, Knoxville, Tennessee, December 1996.

[22] Stacy J. Prowell. JUMBL: a tool for model-based statistical testing. In HICSS ’03: Proceedings

of the 36th Annual Hawaii International Conference on System Sciences (HICSS’03) - Track

9, page 337.3, Washington, DC, USA, 2003. IEEE Computer Society.

[23] Stacy J. Prowell and Jesse H. Poore. Foundations of sequence-based software specification.

IEEE Transactions on Software Engineering, 29(5):417–429, May 2003.

[24] Viggo Stoltenberg-Hansen, Ingid Lindström, and Edward R. Griffor. Mathematical Theory of

Domains. Cambridge University Press, Cambridge, UK, first edition, 1994.

[25] The MathWorksTM . SmulinkR© 7 User’s Guide. The MathWorks, Inc., Natick, MA, 2008. This

is an electronic document.

[26] The MathWorksTM . StateflowR© and Stateflow CoderR© 7 User’s Guide. The MathWorks, Inc.,

Natick, MA, 2008. This is an electronic document.

[27] LaMar K. Timothy and Blair E. Bona. State Space Analysis: An Introduction. McGraw-Hill

Book Company, New York, NY, first edition, 1968.

[28] William R. Wade. An Introduction To Analysis. Pearson Prentise Hall, Upper Saddle River,

NJ, third edition, 2004.

105

Appendices

106

Appendix A

Examples

A.1 Resettable Timers

The resettable timers example uses two timers and a single input button. One timer’s value can

be displayed by depressing a button and resets automatically to 0 when it reaches 100. Another

timer tracks the amount of time between button presses. If the button timer is 2 seconds or less,

then both timers reset.

In this example, refinement is required to define consistent system behavior when specific com-

binations of timer values and button state occur. Enumeration provides the mechanism to identify

these details and tie them to requirements. This example demonstrates how a sequential approach

discovers individual coordinates of condition vectors and signal definitions at different levels of ab-

straction. Furthermore, a discrete-time signal is used to send a clock’s current value to a display.

This signal’s range is not a finite set; however, the signal produces output at discrete instants in

time. A detailed outline of the process is given as well as the tabular format. The tabular format

is more concise.

A.1.1 Requirements

1. The resettable timers system consists of a control logic unit, two timers, an interface to a

single external button, and an interface to a single output display.

2. Initially, both timers are set to 0 and the button is not activated.

107

(a) (D) Initially, Timer 2 is activated and incrementing.

3. Timer 1 tracks time from 0 to 100 units at a rate of 1 unit/sec. It always resets to 0 when it

reaches 100 units.

4. Timer 2 tracks the time between consecutive external button activations and advances at a

rate of 1 unit/sec.

(a) If the button is never pushed, Timer 2 will increase without bound.

5. External button activation produces the following effects:

(a) The value of Timer 1 will be sent to the display.

(b) If the value Timer 2 is less than or equal to 2 units, Timer 1 will reset to 0 units.

(c) Timer 2 will reset to 0 units.

The (D) following Requirement 2(a) above indicates that this requirement was not included in

the original statement of requirements but was derived or discovered as an augmentation to the

requirements through the enumeration process.

108

A.1.2 Enumeration Procedure

The resettable timers requirements are converted into enumeration mappings using the hybrid

enumeration process in Section 4.2.2. Headers indicate the procedure phase of either Construc-

tHybridEnumeration or DefineMapping. The steps of the process are indicated in the left

column. When decisions must be made, the requirements needed to proceed are listed in the

right column: R(1) means Item 1 of Section A.1.1, for example. When “Method” is used in the

justification column, some or all of the process step could be automated with tool support.

Resettable Timers Enumeration Steps

Step Process Justification

1 Declaration

1.1 I � t null , button u R(1), Method

1.2 U � ∅ R(1)

1.3 Y � ∅ R(1)

1.4 X � t T1, T2 u R(1, 3, 4)

1.5 Z , t T1, T2 u Method

1.8 CT1 � R≥0 R(3)1

1.8 CT2 � R≥0 R(4)

1.10 U � R≥0 � R≥0 Method

2 Initialization

2.1 r � pnull ,null ,nullq Method

2.2 ϕ� pnull ,nullq Method

2.3 m0 � pλ, ppϕ, rq, λqq Method

2.5 AT1 � r0, 0s R(2)

2.5 AT2 � r0, 0s R(2)

2.7 Θ � t p0, 0q u Method

2.8 z ∈ t T1, T2 u
z � T1 Method

2.11 ϕpT1q � 9T1�1 R(3)

2.12 rpT1q � T1plastq Method

2.8 z � T2 Method

continued on the next page
1We make the assumption timer values cannot be negative; R may be used and the process will construct a correct

specification with a larger set of illegal sequences.

109

Resettable Timers Enumeration Steps (continued)

Step Process Justification

2.11 ϕpT2q � 9T2�1 R(2a,4)

2.12 rpT2q � T2plastq Method

2.21 E � tm0 u Method

2.22 E � tλ u Method

3 Sequence Enumeration: Extending λ

3.1 l � 0 Method

3.2 Length 0 sequences in E: tλ u Method

3.4 σ ∈ tλ u
σ � λ Method

3.5 a ∈ t null , button u
a� null Method

3.6 a1 � pnull , pχT1∈R≥0 ∧ χT2∈R≥0qq Method

3.7 m1 � pa1, ppp 9T1�1, 9T2�1q, pnull , T1plastq, T2plastqqq, λqq Method

3.8 E � tm0 u ∪ DefineMapping pm1, Z, tou, Xq Method

DefineMapping: m1 � ppnull , pχT1∈R≥0 ∧ χT2∈R≥0qq, ppp 9T1�1, 9T2�1q, pnull , T1plastq, T2plastqqq, λqq
1 Trajectory Definitions

1.1 z ∈ t T1, T2 u
z � T1 Method

1.19 T1 signal definition not definable. R(3)2

1.1 z � T2 Method

1.5 T2 signal definition definable. R(4, 4a)

1.6 D � t T1 u Method

1.8 T2 ∈ X and 9T2�1 R(4)

1.9 C � t o, T2 u Method

1.10 ϕpT2q � 9T2�1 R(4)

1.11 rpT2q � T2plastq Method

2 Condition Vectors

2.1 v ∈ t o, T2 u
v � o Method

continued on the next page

2T1 only acts over [0,100].

110

Resettable Timers Enumeration Steps (continued)

Step Process Justification

2.5 Discrete output or0s is definable. R(5,5a)3

2.6 C � t T2 u Method

2.11 Keep default definition: or0s � null R(5,5a)

2.1 v � T2 Method

2.5 T2 initial condition definable. R(4a, 5c)4

2.6 C � ∅ Method

2.9 rpT2q � T2plastq R(4, 4a, 5c)5

3 Reduction

3.1 C ∪D � t T1 u Refinement Required

4 Refinement

4.2 x ∈ t T1, T2 u
x� T1 Method

4.3 χ
T1 ∈ tχT1∈R≥0 u Method

4.4 Refine χT1∈R≥0 : χ1T1�100 R(3)

4.6 a1 � pnull , pχ1T1�100 ∧ χT2∈R≥0qq Method6

4.7 m1 � pa1, ppp 9T1�1, 9T2�1q, pnull , T1plastq, T2plastqqq, λqq Method7

4.8 a2 � pnull , pχT1�100 ∧ χT2∈R≥0qq Method8

4.9 m2 � pa2, ppp 9T1�1, 9T2�1q, pnull , T1plastq, T2plastqqq, λqq Method

4.10 return DefineMapping(m1, tT1u,∅, tT2u) ∪
DefineMapping(m2, tT1u,∅, tT1, T2u) Method

DefineMapping: m1 � ppnull , pχT1�100 ∧ χT2∈R≥0qq, ppp 9T1�1, 9T2�1q, pnull , T1plastq, T2plastqqq, λqq
1 Trajectory Definition

1.1 z ∈ t T1 u
z � T1 Method

1.5 T1 signal definition definable. R(3)

1.6 D � ∅ Method

continued on the next page

3The value of T1 is only displayed when the button is pushed.
4Timer T2 is only reset with the button.
5Requirements support default assignment.
6Redefining a1 using the previous instance.
7Redefining m1 using the previous instance.
8New action. χ1

T1�100 � χ
T1�100.

111

Resettable Timers Enumeration Steps (continued)

Step Process Justification

1.8 T1 ∈ X and 9T1�1 R(3)

1.9 C � t T1 u Method

1.10 ϕpT1q � 9T1�1 R(3)

1.11 rpT1q � T1plastq Method

2 Condition Vectors

2.1 v ∈ t T1 u
v � T1 Method

2.5 T1 initial condition definable. R(3)

2.6 C � ∅ Method

2.9 rpT1q � 0 R(3)

3 Reduction

3.1 C ∪D � ∅ Method

3.3 ψ ∈ tλ u
ψ � λ Method

3.4 pnull , pχT1�100 ∧ χT2∈R≥0qq and λ are equivalent R(3,4,5)

3.6 pnull , pχT1�100 ∧ χT2∈R≥0qq ⊲ λ Method

3.7 m1 � pa1, ppp 9T1�1, 9T2�1q, pnull , 0, T2plastqqq, λqq Method

3.7 return tm1 u Method

4 Continue Refinement: pnull , pχT1∈R≥0 ∧ χT2∈R≥0qq
4.10 return tm1 u ∪

DefineMapping(m2, tT1u,∅, tT1, T2u) Method

DefineMapping: m2 � ppnull , pχT1�100 ∧ χT2∈R≥0qq, ppp 9T1�1, 9T2�1q, pnull , T1plastq, T2plastqqq, λqq
1 Trajectory Definitions

1.1 z ∈ t T1 u
z � T1 Method

1.19 T1 signal definition not definable. R(3)

2 Condition Vectors

2.1 v ∈ ∅ Method

3 Reduction

3.1 C ∪D � t T1 u Refinement Required

continued on the next page

112

Resettable Timers Enumeration Steps (continued)

Step Process Justification

4 Refinement

4.2 x ∈ t T1, T2 u
x� T1 Method

4.3 χ
T1 ∈ tχT1�100 u Method

4.4 Refine χT1�100: χ1T1∈r0,100q R(3)

4.6 a2 � pnull , pχ1T1∈r0,100q ∧ χT2∈R≥0qq Method

4.7 m2 � pa2, ppp 9T1�1, 9T2�1q, pnull , T1plastq, T2plastqqq, λqq Method

4.8 a3 � pnull , pχT1¡100 ∧ χT2∈R≥0qq Method

4.9 m3 � pa3, ppp 9T1�1, 9T2�1q, pnull , T1plastq, T2plastqqq, λqq Method

4.10 return DefineMapping(m2, tT1u,∅, tT2u) ∪
DefineMapping(m3, tT1u,∅, tT1, T2u) Method

DefineMapping: m2 � ppnull , pχT1∈r0,100q ∧ χT2∈R≥0qq, ppp 9T1�1, 9T2�1q, pnull , T1plastq, T2plastqqq, λqq
1 Trajectory Definitions

1.1 z ∈ t T1 u
z � T1 Method

1.5 T1 signal definition definable. R(3)

1.6 D � ∅ Method

1.8 T1 ∈ X and 9T1�1 R(3)

1.9 C � t T1 u Method

1.10 ϕpT1q � 9T1�1 R(3)

1.11 rpT1q � T1plastq Method

2 Condition Vectors

2.1 v ∈ t T1 u
v � T1 Method

2.5 T1 initial condition is definable. R(3)

2.6 C � ∅ Method

2.9 rpT1q � T1plastq R(3, 5b)

3 Reduction

3.1 C ∪D � ∅ Method

3.3 ψ ∈ tλ u
ψ � λ Method

continued on the next page

113

Resettable Timers Enumeration Steps (continued)

Step Process Justification

3.4 pnull , pχT1∈r0,100q ∧ χT2∈R≥0qq and λ are equivalent. R(3,4,5)

3.6 pnull , pχT1∈r0,100q ∧ χT2∈R≥0qq ⊲ λ Method

3.7 m2 � pa2, ppp 9T1�1, 9T2�1q, pnull , T1plastq, T2plastqqq, λqq Method

3.7 return tm2 u Method

4 Continued Refinement: pnull , pχT1�100 ∧ χT2∈R≥0qq
4.10 return tm2 u ∪

DefineMapping(m3, tT1u,∅, tT1, T2u) Method

DefineMapping: m3 � ppnull , pχT1¡100 ∧ χT2∈R≥0qq, ppp 9T1�1, 9T2�1q, pnull , T1plastq, T2plastqqq, λqq
1 Trajectory Definitions

1.1 z ∈ t T1 u
z � T1 Method

1.19 T1 signal definition is illegal. R(3)9

1.4 return IllegalMapping(m3) R(3)

IllegalMapping: m3 � ppnull , pχT1¡100 ∧ χT2∈R≥0qq, ppp 9T1�1, 9T2�1q, pnull , T1plastq, T2plastqqq, λqq
1.1 a3 ÞÑ pp 9T1�0, 9T2�0q, pω, T1plastq, T2plastqqq Method

1.2 a3 ⊲ a3 Method

1.3 return (m3) Method

4 Continued Refinement: pnull , pχT1�100 ∧ χT2∈R≥0qq
4.10 return tm2,m3 u Method

4 Continued Refinement: pnull , pχT1∈R≥0 ∧ χT2∈R≥0qq
4.10 return tm1,m2,m3 u Method

3 Sequence Enumeration: Extending λ

3.8 E � tm0,m1,m2,m3 u Method

3.5 a� button Method

3.6 a4 � pbutton, pχT1∈R≥0 ∧ χT2∈R≥0qq Method

3.7 m4 � pa4, ppp 9T1�1, 9T2�1q, pnull , T1plastq, T2plastqqq, λqq Method

3.8 E � tm0,m1,m2,m3 u ∪
DefineMapping(m4, Z, tou, X) Method

continued on the next page

9T1’s signal definition does not operate in the range p100,8q.
114

Resettable Timers Enumeration Steps (continued)

Step Process Justification

DefineMapping: m4 � ppbutton, pχT1∈R≥0 ∧ χT2∈R≥0qq, ppp 9T1�1, 9T2�1q, pnull , T1plastq, T2plastqqq, λqq
1 Trajectory Definitions

1.1 z ∈ t T1, T2 u
z � T1 Method

1.19 T1 signal definition not definable. R(3)

1.1 z � T2 Method

1.5 T2 signal definition definable. R(4)

1.6 D � t T1 u Method

1.8 T2 ∈ X and 9T2�1 R(4)

1.9 C � t o, T2 u Method

1.10 ϕpT2q � 9T2�1 R(4)

1.11 rpT2q � T2plastq Method

2 Condition Vectors

2.1 v ∈ t o, T2 u
v � o Method

2.13 Discrete output or0s not definable. R(3,5a)10

2.1 v � T2 Method

2.5 T2 initial condition is definable R(4, 4a)

2.6 C � t o u Method

2.9 rpT2q � 0 R(4, 5c)

3 Reduction

3.1 C ∪D � t o, T1 u Refinement Required

4 Refinement

4.2 x ∈ t T1, T2 u
x� T1 Method

4.3 χ
T1 ∈ tχT1∈R≥0 u Method

4.4 Refine χT1∈R≥0 : χ1T1�100 R(3)

4.6 a4 � pbutton, pχ1T1�100 ∧ χT2∈R≥0qq Method

4.7 m4 � pa4, ppp 9T1�1, 9T2�1q, pnull , T1plastq, 0qq, λqq Method

4.8 a5 � pbutton, pχT1�100 ∧ χT2∈R≥0qq Method

continued on the next page
10Would be T1plastq but T1plastq ¡ 100 could occur with current refinement.

115

Resettable Timers Enumeration Steps (continued)

Step Process Justification

4.9 m5 � pa5, ppp 9T1�1, 9T2�1q, pnull , T1plastq, 0qq, λqq Method

4.10 return DefineMapping(m4, tT1u, tou, tT2u) ∪
DefineMapping(m5, tT1u, tou, tT1, T2u) Method

DefineMapping: m4 � ppbutton, pχT1�100 ∧ χT2∈R≥0qq, ppp 9T1�1, 9T2�1q, pnull , T1plastq, 0qq, λqq
1 Trajectory Definitions

1.1 z ∈ t T1 u
z � T1 Method

1.5 T1 signal definition definable. R(3)

1.6 D � ∅ Method

1.8 T1 ∈ X and 9T1�1 R(3)

1.9 C � t o, T1 u Method

1.10 ϕpT1q � 9T1�1 R(3)

1.11 rpT1q � T1plastq Method

2 Condition Vectors

2.1 v ∈ t o, T1 u
v � o Method

2.6 C � t T1 u Method

2.9 rpoq � T1plastq R(5,5a)

2.1 v � T1 Method

2.6 C � ∅ Method

2.9 rpT1q � 0 R(3)

3 Reduction

3.1 C ∪D � ∅ No Refinement

3.3 ψ ∈ tλ u
ψ � λ Method

3.4 pbutton, pχT1�100 ∧ χT2∈R≥0qq and λ are equivalent R(3,4,5)

3.6 pbutton, pχT1�100 ∧ χT2∈R≥0qq ⊲ λ Method

3.7 m4 � pa4, ppp 9T1�1, 9T2�1q, pT1plastq, 0, 0qq, λqq Method

3.7 return tm4 u Method

4 Continued Refinement pbutton, pχT1∈R≥0 ∧ χT2∈R≥0qq
continued on the next page

116

Resettable Timers Enumeration Steps (continued)

Step Process Justification

4.10 return tm4 u ∪
DefineMappingpm5, t T1 u, tou, t T1, T2 uq Method

DefineMapping: m5 � ppbutton, pχT1�100 ∧ χT2∈R≥0qq, ppp 9T1�1, 9T2�1q, pnull , T1plastq, 0qq, λqq
1 Trajectory Definitions

1.1 z ∈ t T1 u
z � T1 Method

1.19 T1 signal definition not definable. R(3)

2 Condition Vectors

2.1 v ∈ t o u
v � o Method

2.13 Discrete output or0s not definable. R(3,5a)

3 Reduction

3.1 C ∪D � t o, T1 u Refinement Required

4 Refinement

4.1 x ∈ t T1, T2 u
x� T1 Method

4.3 χ
T1 ∈ tχT1�100 u Method

4.4 Refine χT1�100: χ1T1∈r0,100q R(3)

4.6 a5 � pbutton, pχT1∈r0,100q ∧ χT2∈R≥0qq Method

4.7 m5 � pa5, ppp 9T1�1, 9T2�1q, pnull , T1plastq, 0qq, λqq Method

4.8 a6 � pbutton, pχT1¡100 ∧ χT2∈R≥0qq Method

4.9 m6 � pa6, ppp 9T1�1, 9T2�1q, pnull , T1plastq, 0qq, λqq Method

4.10 return DefineMapping(m5, tT1u, tou, tT2u) ∪
DefineMapping(m6, tT1u, tou, tT1, T2u) Method

DefineMapping: m5 � ppbutton, pχT1∈r0,100q ∧ χT2∈R≥0qq, ppp 9T1�1, 9T2�1q, pnull , T1plastq, 0qq, λqq
1 Trajectory Definitions

1.1 z ∈ t T1 u
z � T1 Method

1.5 T1 signal definition definable. R(3)

1.6 D � ∅ Method

continued on the next page

117

Resettable Timers Enumeration Steps (continued)

Step Process Justification

1.8 T1 ∈ X and 9T1�1 R(3)

1.9 C � t T1 u Method

1.10 ϕpT1q � 9T1�1 R(3)

1.11 rpT1q � T1plastq Method

2 Condition Vectors

2.1 v ∈ t o, T1 u
v � o Method

2.6 C � t T1 u Method

2.9 rpoq � T1plastq R(5a)

2.1 v � T1 Method

2.13 T1 initial conditions not definable. R(5,5b)

3 Reduction

3.1 C ∪D � t T1 u Refinement Required

4 Refinement

4.1 x ∈ t T2 u
x� T2 Method

4.3 χ
T2 ∈ tχT2∈R≥0 u Method

4.4 Refine χT2∈R≥0 : χ1T2≤2 R(5,5b)

4.6 a5 � pbutton, pχT1∈r0,100q ∧ χ1T2≤2qq Method

4.7 m5 � pa5, ppp 9T1�1, 9T2�1q, pT1plastq, T1plastq, 0qq, λqq Method

4.8 a7 � pbutton, pχT1∈r0,100q ∧ χT2¡2qq Method

4.9 m7 � pa7, ppp 9T1�1, 9T2�1q, pT1plastq, T1plastq, 0qq, λqq Method

4.10 return DefineMapping(m5,∅, tT1u,∅) ∪
DefineMapping(m7,∅, tT1u, tT2u) Method

DefineMapping: m5 � ppbutton, pχT1∈r0,100q ∧ χT2≤2qq, ppp 9T1�1, 9T2�1q, pT1plastq, T1plastq, 0qq, λqq
1 Trajectory Definitions

1.1 z ∈ ∅ Method

2 Condition Vectors

2.1 v ∈ t T1 u
v � T1 Method

2.6 C � ∅ Method

continued on the next page

118

Resettable Timers Enumeration Steps (continued)

Step Process Justification

2.9 rpT1q � 0 R(5,5b)

3 Reduction

3.1 C ∪D � ∅ No Refinement

3.3 ψ ∈ tλ u
ψ � λ Method

3.4 pbutton, pχT1∈r0,100q ∧ χT2≤2qq and λ are equivalent R(3,4,5)

3.6 pbutton, pχT1∈r0,100q ∧ χT2≤2qq ⊲ λ Method

3.7 m5 � pa5, ppp 9T1�1, 9T2�1q, pT1plastq, 0, 0qq, λqq Method

3.7 return tm5 u Method

4 Continued Refinement pbutton, pχT1∈r0,100q ∧ χT2∈R≥0qq
4.10 return tm5 u ∪ DefineMapping(m7,∅, tT1u, tT2u) Method

DefineMapping: m7 � ppbutton, pχT1∈r0,100q ∧ χT2¡2qq, ppp 9T1�1, 9T2�1q, pT1plastq, T1plastq, 0qq, λqq
1 Trajectory Definitions

1.1 z ∈ ∅ Method

2 Condition Vectors

2.1 v ∈ t T1 u
v � T1 Method

2.6 C � ∅ Method

2.9 rpT1q � T1plastq R(5,5b,4a)

3 Reduction

3.1 C ∪D � ∅ No Refinement

3.3 ψ ∈ tλ u
ψ � λ Method

3.3 pbutton, pχT1∈r0,100q ∧ χT2¡2qq and λ are equivalent R(3,4,5)

3.6 pbutton, pχT1∈r0,100q ∧ χT2¡2qq ⊲ λ Method

3.7 m7 � pa7, ppp 9T1�1, 9T2�1q, pT1plastq, T1plastq, 0qq, λqq Method

3.7 return tm7 u Method

4 Continued Refinement pbutton, pχT1∈r0,100q ∧ χT2∈R≥0qq
4.10 return tm5,m7 u Method

4 Continued Refinement pbutton, pχT1�100 ∧ χT2∈R≥0qq
continued on the next page

119

Resettable Timers Enumeration Steps (continued)

Step Process Justification

4.10 return tm5,m7 u ∪
DefineMapping(m6, tT1u, tou, tT1, T2u) Method

DefineMapping: m6 � ppbutton, pχT1¡100 ∧ χT2∈R≥0qq, ppp 9T1�1, 9T2�1q, pnull , T1plastq, 0qq, λqq
1 Trajectory Definitions

1.1 z ∈ t T1, T2 u
z � T1 Method

1.19 T1 signal definition is illegal. R(3)11

1.4 return IllegalMapping(m6) R(3)

IllegalMapping: m6 � ppbutton, pχT1¡100 ∧ χT2∈R≥0qq, ppp 9T1�1, 9T2�1q, pnull , T1plastq, 0qq, λqq
1.1 a6 ÞÑ pp 9T1�0, 9T2�0q, pω, T1plastq, T2plastqqq Method

1.2 a6 ⊲ a6 Method

1.3 return (m6) Method

4 Continued Refinement pbutton, pχT1�100 ∧ χT2∈R≥0qq
4.10 return tm5,m7,m6 u Method

4 Continued Refinement pbutton, pχT1∈R≥0 ∧ χT2∈R≥0qq
4.10 return tm4,m5,m7,m6 u Method

3 Sequence Enumeration: Extending λ

3.8 E � tm0,m1,m2,m3,m4,m5,m6,m7 u Method

3.11 l � 1 Method

3.4 No extensible length 1 stimulus vector sequences Method

3.13 return pE , t T1, T2 u, t p0, 0q uq Method

11T1’s signal definition does not operate in the range p100,8q.
120

A.1.3 Tabular Enumeration

During practical application of the process in Section A.1.2, information derived from the process is

recorded in tabular form. The table that follows was developed from the detailed process outlined

in Section A.1.2. The table has been annotated with arrows to indicate the workflow within each

table row: columns are filled in left to right, and in each column as many details as possible

are added from top to bottom. Each detail in the table is traced to one or more requirements;

requirement tags are added to the “Reqs” column. In the four step columns of the tabular form,

a ConstructHybridEnumeration process step is preceded with C, a DefineMapping process

step is preceded with D, and an IllegalMapping process step is preceded with I. The table tracks

every detail of the process in Section A.1.2.

121

122

Prefix
Sequence Stimulus

I Var Blocks Reqs Step Var exp Reqs Step Var exp Reqs Step Sequence Reqs Step

lambda O null method C 2.1 lambda method C2.3
T1 = 0 2 C 2.5 T1-dot(t) 1 3 C 2.11 T1(0) T1(last) method C 2.12
T2 = 0 2 C 2.5 T2-dot(t) 1 2a, 4 C 2.11 T2(0) T2(last) method C 2.12

lambda null O null 5, 5a D 2.11 lambda method C3.7
T1 [0,inf) method C 3.6 T1-dot(t) 1 3 D 1.19 T1(0) T1(last) method C 3.7
T2 [0,inf) method C 3.6 T2-dot(t) 1 4, 4a D 1.10 T2(0) T2(last) 4, 4a, 5c D 2.9

lambda null O null 5, 5a D 4.7 lambda 3, 4, 5 D3.4
T1 =100 3 D 4.4 T1-dot(t) 1 3 D 1.10 T1(0) 0 3 D 2.9
T2 [0,inf) method D 4.6 T2-dot(t) 1 4, 4a D 4.7 T2(0) T2(last) 4, 4a, 5c D 4.7

lambda null O null 5, 5a D 4.9 lambda method D4.9
T1 ≠100 method D 4.8 T1-dot(t) 1 3 D 1.19 T1(0) T1(last) method D 2.1
T2 [0,inf) method D 4.9 T2-dot(t) 1 4, 4a D 4.9 T2(0) T2(last) 4, 4a, 5c D 4.9

lambda null O null 5, 5a D 4.7 lambda 3, 4, 5 D3.4
T1 [0,100) 3 D 4.4 T1-dot(t) 1 3 D 1.10 T1(0) T1(last) 3, 5b D 2.9
T2 [0,inf) method D 4.6 T2-dot(t) 1 4 D 4.7 T2(0) T2(last) 4, 4a, 5c D 4.7

lambda null O omega method I 1.1 Illegal 3 I1.2
T1 (100,inf) method D 4.8 T1-dot(t) 0 3 D 1.19 T1(0) T1(last) method I 1.1
T2 [0,inf) method D 4.8 T2-dot(t) 0 method I 1.1 T2(0) T2(last) method I 1.1

lambda button O null 3, 5a D 2.13 lambda method C3.7
T1 [0,inf) method C 3.6 T1-dot(t) 1 3 D 1.19 T1(0) T1(last) method C 3.7
T2 [0,inf) method C 3.6 T2-dot(t) 1 4 D 1.10 T2(0) 0 4, 5c D 2.9

lambda button O T1(last) 5, 5a D 2.9 lambda 3, 4, 5 D 3.4
T1 =100 3 D4.4 T1-dot(t) 1 3 D 1.10 T1(0) 0 3 D 2.9
T2 [0,inf) method D4.6 T2-dot(t) 1 4 D 4.7 T2(0) 0 4, 5c D 4.7

lambda button O null 3, 5a D 2.13 lambda method D4.9
T1 ≠100 method D 4.8 T1-dot(t) 1 3 D 1.19 T1(0) T1(last) method D 1.19
T2 [0,inf) method D 4.8 T2-dot(t) 1 4 D 4.9 T2(0) 0 4, 5c D 4.9

lambda button O T1(last) 5a D 2.9 lambda 3, 4, 5. D4.7
T1 [0,100) 3 D 4.4 T1-dot(t) 1 3 D 1.10 T1(0) T1(last) 5, 5b D 2.13
T2 [0,inf) method D 4.6 T2-dot(t) 1 4 D 4.7 T2(0) 0 5, 5c D 4.7

lambda button O T1(last) 5a D 4.7 lambda 3, 4, 5 D 3.4
T1 [0,100) method D 4.4 T1-dot(t) 1 3 D 4.7 T1(0) 0 5, 5b D 2.9
T2 ≤2 5, 5b. D 4.6 T2-dot(t) 1 4 D 4.7 T2(0) 0 5, 5c D 4.7

lambda button O T1(last) 5a D 4.9 lambda 3, 4, 5 D 3.4
T1 [0,100) method D 4.8 T1-dot(t) 1 3 D 4.9 T1(0) T1(last) 5, 5b D 2.9
T2 >2 method D 4.8 T2-dot(t) 1 4 D 4.9 T2(0) 0 5, 5c D 4.9

lambda button O omega method I 1.1 Illegal 3 I 1.2
T1 (100,inf) method D 4.8 T1-dot(t) 0 method D 1.19 T1(0) T1(last) method I 1.1
T2 [0,inf) method D 4.8 T2-dot(t) 0 method I 1.1 T2(0) T2(last) method I 1.1

Characteristic
Predicates Trajectory Definition Condition Vector Equivalent

Sequence

Canonical Sequences (Mode) Illegal Sequences Reducible Sequences

Invariant Sequence Refinement Step Red Text: To be resolved enumeration elements.

The workflow for each row proceeds according to the arrows indicated above. The above row for the empty sequence establishes the set of initial system
states and the initial system trajectory.	

The definition that is shown in red is determined from the prefix sequence (in this case lamda); it is the default definition. White colored rows represent
intermediate work that must be completed using refinement.	

Only incomplete definitions (outlined in blue) must be added in a mapping of a refined stimulus vector sequence. When the mapping is complete, colors are
used to differentiate sequence types.	

In Section 4.2.3, the refinement process was described. Figure A.1 illustrates a refinement tree

(an application of the general structure shown in Figure 4.5) generated from the tabular enumer-

ation of the resettable timers; tree nodes are labeled with the sequences mapped in the partial

function E . The colors used in the tree have the same meaning as the colors in the enumeration

table. A black node without color corresponds to the white blocks. The dotted lines in the figure

represent extension of the empty sequence, λ. The right refinement subtree has the root sequencepnull , χT1∈r0,8q ∧ χT2∈r0,8qq, the first white block. Three mappings are defined during subsequent

refinement: two legal mappings and one illegal mapping. The left refinement subtree has the root

sequence pbutton, χT1∈r0,8q ∧ χT2∈r0,8qq. Four mappings are defined during subsequent refinement:

three legal mappings and one illegal mapping.

Figure A.1: Resettable Timers Refinement Tree

123

A.1.4 Constructing AE

The hybrid enumeration of the resettable timers example is converted into an enumeration hybrid

automaton using the algorithm in Section 5.1.1. The complete automaton maps a finite set of

predicate - action pairs to response vectors. Both the predicates and the response vectors are

augmented with a mode as determined by the unreduced stimulus vector sequences. Trajectory

definitions are unique to each mode. Indices are used to show the addition of elements to the

trajectory definition set, condition vector set, and the predicates used in the function Q.

Resettable Timers Automaton Construction Steps

Step Process

1 Initialization

1.2 X � tµ, T1, T2 u
1.3 Cµ � N

1.4 U � N � R≥0 � R≥0

1.5 f � ∅
1.7 typepµq � ∅
1.7 typepT1q � ∅
1.7 typepT2q � ∅
1.9 W � ∅
1.12 Φ � ∅
1.13 B � ∅
1.14 R� ∅
1.15 Q� ∅
1.16 Q� ∅
1.17 i� 0

2 Construction

2.1 m ∈ tm0,m1,m2,m3,m4,m5,m6,m7 u
2.1 m0 � pλ, ppp 9T1�1, 9T2�1q, pnull , T1plastq, T2plastqqq, λqq
2.2 λ {∈ dompfq
2.4 λ is legal

2.8 i� 1

2.9 fpλq � 1

continued on the next page

124

Resettable Timers Automaton Construction Steps (continued)

Step Process

2.11 ϕ0 � p 9T1�1, 9T2�1q
2.12 ϕ0 � p 9µ�0, 9T1�1, 9T2�1q
2.13 Φ � tϕ0 u
2.14 B � t p1, ϕ0q u
2.16 σ � λ

2.18 hΘ , χ
T1�0 ∧ χT2�0

2.19 χ
µ , µ � 1

2.20 hQ0 , χ
µ�1 ∧ χT1�0 ∧ χT2�0

2.21 Θ � t p1, 0, 0q u
2.31 λ is legal

2.34 typepµq � r1, 1s
2.34 typepT1q � r0, 0s
2.34 typepT2q � r0, 0s
2.36 Q� t p1, 0, 0q u
2.1 σ � pnull , pχT1�100 ∧ χT2∈R≥0qq

m1 � pσ, ppp 9T1�1, 9T2�1q, pnull , 0, T2plastqqq, λqq
2.2 λ ∈ dompfq
2.16 pnull , pχT1�100 ∧ χT2∈R≥0qq � λ

2.23 χ
µ , µ � 112

2.24 hQ1 , χ
µ�1 ∧ χT1�100 ∧ χT2∈R≥0

2.25 a� null

2.26 r1 � pnull , 0, T2plastqq
2.27 r1 � pnull , 1, 0, T2plastqq
2.28 R� t r1 u
2.29 Q� t pphQ1 ,nullq, r1q u
2.31 pnull , pχT1�100 ∧ χT2∈R≥0qq is legal

2.34 typepµq � r1, 1s
2.34 typepT1q � t 0, 100 u
2.34 typepT2q � r0,8q
2.36 Q� r1, 1s � t 0, 100 u � r0,8q

continued on the next page

12The prefix sequence is λ.

125

Resettable Timers Automaton Construction Steps (continued)

Step Process

2.1 σ � pnull , pχT1∈r0,100q ∧ χT2∈R≥0qq
m2 � pσ, ppp 9T1�1, 9T2�1q, pnull , T1plastq, T2plastqqq, λqq

2.2 λ ∈ dompfq
2.16 pnull , pχT1∈r0,100q ∧ χT2∈R≥0qq � λ

2.23 χµ , µ � 1

2.24 hQ2 , χ
µ�1 ∧ χT1∈r0,100q ∧ χT2∈R≥0

2.25 a� null

2.26 r2 � pnull , T1plastq, T2plastqq
2.27 r2 � pnull , 1, T1plastq, T2plastqq
2.28 R� t r1, r2 u
2.29 Q� t pphQ1 ,nullq, r1q, pphQ2 ,nullq, r2q u
2.31 pnull , pχT1∈r0,100q ∧ χT2∈R≥0qq is legal

2.34 typepµq � r1, 1s
2.34 typepT1q � r0, 100s
2.34 typepT2q � r0,8q
2.36 Q� r1, 1s � r0, 100s � r0,8q
2.1 σ � pnull , pχT1¡100 ∧ χT2∈R≥0qq

m3 � pσ, ppp 9T1�0, 9T2�0q, pω, T1plastq, T2plastqqq,σqq
2.2 pnull , pχT1¡100 ∧ χT2∈R≥0qq {∈ dompfq
2.4 pnull , pχT1¡100 ∧ χT2∈R≥0qq is illegal

2.9 fppnull , pχT1¡100 ∧ χT2∈R≥0qqq � 0

2.11 ϕ1 � p 9T1�0, 9T2�0q
2.12 ϕ1 � p 9µ�0, 9T1�0, 9T2�0q
2.13 Φ � tϕ0, ϕ1 u
2.14 B � t p1, ϕ0q, p0, ϕ1q u
2.16 pnull , pχT1¡100 ∧ χT2∈R≥0qq � λ

2.23 χ
µ , µ � 1

2.24 hQ3 , χ
µ�1 ∧ χT1¡100 ∧ χT2∈R≥0

2.25 a� null

2.26 r3 � pω, T1plastq, T2plastqq
2.27 r3 � pω, 0, T1plastq, T2plastqq

continued on the next page

126

Resettable Timers Automaton Construction Steps (continued)

Step Process

2.28 R� t r1, r2, r3 u
2.29 Q� t pphQ1 ,nullq, r1q, pphQ2 ,nullq, r2q, pphQ3 ,nullq, r3q u
2.31 pnull , pχT1¡100 ∧ χT2∈R≥0qq is illegal

2.1 σ � pbutton, pχT1�100 ∧ χT2∈R≥0qq
m4 � pσ, ppp 9T1�1, 9T2�1q, pT1plastq, 0, 0qq, λqq

2.2 λ ∈ dompfq
2.16 pbutton, pχT1�100 ∧ χT2∈R≥0qq � λ

2.23 χ
µ , µ � 1

2.24 hQ4 , χ
µ�1 ∧ χT1�100 ∧ χT2∈R≥0

2.25 a� button

2.26 r4 � pT1plastq, 0, 0q
2.27 r4 � pT1plastq, 1, 0, 0q
2.28 R� t r1, r2, r3, r4 u
2.29 Q� t pphQ1 ,nullq, r1q, pphQ2 ,nullq, r2q, pphQ3 ,nullq, r3q, pphQ4 , buttonq, r4q u
2.31 pbutton, pχT1�100 ∧ χT2∈R≥0qq is legal

2.34 typepµq � r1, 1s
2.34 typepT1q � r0, 100s
2.34 typepT2q � r0,8q
2.36 Q� r1, 1s � r0, 100s � r0,8q
2.1 σ � pbutton, pχT1∈r0,100q ∧ χT2≤2qq

m5 � pσ, ppp 9T1�1, 9T2�1q, pT1plastq, 0, 0qq, λqq
2.2 λ ∈ dompfq
2.16 pbutton, pχT1�100 ∧ χT2∈R≥0qq � λ

2.23 χ
µ , µ � 1

2.24 hQ5 , χ
µ�1 ∧ χT1∈r0,100q ∧ χT2≤2

2.25 a� button

2.26 r5 � pT1plastq, 0, 0q
2.27 r5 � pT1plastq, 1, 0, 0q
2.28 R� t r1, r2, r3, r4 u 13

2.29 Q� t pphQ1 ,nullq, r1q, pphQ2 ,nullq, r2q, pphQ3 ,nullq, r3q, pphQ4 , buttonq, r4q,
continued on the next page

13r5 is already an element of R.

127

Resettable Timers Automaton Construction Steps (continued)

Step ProcesspphQ5 , buttonq, r5q u
2.31 pbutton, pχT1�100 ∧ χT2∈R≥0qq is legal

2.34 typepµq � r1, 1s
2.34 typepT1q � r0, 100s
2.34 typepT2q � r0,8q
2.36 Q� r1, 1s � r0, 100s � r0,8q
2.1 σ � pbutton, pχT1¡100 ∧ χT2∈R≥0qq

m6 � pσ, ppp 9T1�0, 9T2�0q, pω, T1plastq, T2plastqqq,σqq
2.2 pbutton, pχT1¡100 ∧ χT2∈R≥0qq {∈ dompfq
2.4 pbutton, pχT1¡100 ∧ χT2∈R≥0qq is illegal

2.9 fppbutton, pχT1¡100 ∧ χT2∈R≥0qqq � 0

2.11 ϕ2 � p 9T1�0, 9T2�0q
2.12 ϕ2 � p 9µ�0, 9T1�0, 9T2�0q
2.13 Φ � tϕ0, ϕ1 u14
2.14 B � t p1, ϕ0q, p0, ϕ1q u15
2.16 pbutton, pχT1¡100 ∧ χT2∈R≥0qq � λ

2.23 χ
µ , µ � 1

2.24 hQ6 , χ
µ�1 ∧ χT1¡100 ∧ χT2∈R≥0

2.25 a� button

2.26 r6 � pω, T1plastq, T2plastqq
2.27 r6 � pω, 0, T1plastq, T2plastqq
2.28 R� t r1, r2, r3, r4 u 16

2.29 Q� t pphQ1 ,nullq, r1q, pphQ2 ,nullq, r2q, pphQ3 ,nullq, r3q, pphQ4 , buttonq, r4q,pphQ5 , buttonq, r5q, pphQ6 , buttonq, r6q u
2.31 pbutton, pχT1¡100 ∧ χT2∈R≥0qq is illegal

2.1 σ � pbutton, pχT1∈r0,100q ∧ χT2¡2qq
m7 � pσ, ppp 9T1�1, 9T2�1q, pT1plastq, T1plastq, 0qq, λqq

2.2 λ ∈ dompfq
2.16 pbutton, pχT1∈r0,100q ∧ χT2¡2qq � λ

continued on the next page
14ϕ2 is already an element of Φ.
15p0, ϕ2q � p0, ϕ1q.
16r6 is already an element of R.

128

Resettable Timers Automaton Construction Steps (continued)

Step Process

2.23 χ
µ , µ � 1

2.24 hQ7 , χ
µ�1 ∧ χT1∈r0,100q ∧ χT2¡2

2.25 a� button

2.26 r7 � pT1plastq, T1plastq, 0q
2.27 r7 � pT1plastq, 1, T1plastq, 0q
2.28 R� t r0, r1, r3, r4, r7 u
2.29 Q� t pphQ1 ,nullq, r1q, pphQ2 ,nullq, r2q, pphQ3 ,nullq, r3q, pphQ4 , buttonq, r4q,pphQ5 , buttonq, r5q, pphQ6 , buttonq, r6q, pphQ7 , buttonq, r7q u
2.31 pbutton, pχT1∈r0,100q ∧ χT2¡2qq is legal

2.34 typepµq � r1, 1s
2.34 typepT1q � r0, 100s
2.34 typepT2q � r0,8q
2.36 Q� r1, 1s � r0, 100s � r0,8q
3 Illegal Mappings

3.1 r8 � pωq
3.3 r8 � pω, 0, T1plastq, T2plastqq 17

3.5 R� t r1, r2, r3, r4, r7, r8 u
2.29 Q� t pphQ1 ,nullq, r1q, pphQ2 ,nullq, r2q, pphQ3 ,nullq, r3q, pphQ4 , buttonq, r4q,pphQ5 , buttonq, r5q, pphQ6 , buttonq, r6q, pphQ7 , buttonq, r7q,ppχµ�0∨χT1 {∈r0,100s∨χT2 {∈R≥0 ,nullq, r8q, ppχµ�0∨χT1 {∈r0,100s∨χT2 {∈R≥0 , buttonq, r8q u18
3.9 return pQ,Θ, I, V,R,Φ,Q,Bq

17The illegal mode is a trap mode; the second coordinate is µplastq that will always be 0.
18Use disjunctive form for illegal state set.

129

A.2 Power Window

The power window example is an adaptation of a similar example in [18]. The adapted requirements

listed below are used to construct a hybrid enumeration. For this example, we forgo the detailed

enumeration procedure and use the tabular form that includes the same steps. The tabular workflow

proceeds from left to right, column to column, and in each column as many details as possible

are added from top to bottom. Each detail in the table is traced to one or more requirements;

requirement tags are added to the “Reqs” column.

A.2.1 Requirements

1. A power window system includes a window, a drive motor, a processor for control software,

two timers, and a single 3 position control switch.

(a) The system is initially powered.

(b) The window can be positioned anywhere from down (0 cm) to up (50 cm). Initially the

window is not moving and its position is unknown.

(c) (D) Initially both timers are set to 0 and stopped.

(d) (D) Initially the switch is in the intermediate position.

2. Control Switch: The control switch issues interrupts in the form of a discrete-time signal

indicating driver commands. An up interrupt is issued when the switch is initially deflected

toward the front of the car; a down interrupt is issued when the switch is initially deflected

toward the rear of the car. When the switch initially returns to the spring-loaded intermediate

position an intermediate interrupt is issued. Identical consecutive interrupts should be treated

as a single interrupt.

(a) Intermediate Interrupt: This interrupt will stop the drive motor except when the

system is in the automatic mode.

i. An intermediate interrupt will always be issued during transitions between up and

down interrupts.

130

(b) Up Interrupt: This interrupt activates the drive motor to move the window up at a

rate of 10 cm/sec except as follows:

i. Window motion stops when the window is up.

(c) Down Interrupt: This interrupt activates the drive motor to move the window down

at a rate of 10 cm/sec except as follows:

i. Window motion stops when the window is down.

3. Automatic Mode: A switch timer keeps track of how long the switch is in either the up

or the down position. Window motion will continue in the previously commanded direction

when an intermediate interrupt (the control switch is released to the intermediate position)

is issued and the timer’s value is 0.5 seconds or less.

(a) Automatic motion stops when the window reaches the up or down position.

(b) Automatic motion stops when an up or down interrupt is issued.

(c) (D) An up or down interrupt that initiates motion starts the switch timer from 0.

(d) (D) The switch timer stops when window motion stops.

(e) (D) An intermediate interrupt stops the switch timer.

4. Emergency Mode: An emergency timer tracks the duration window movement commands

continuously attempt to drive the window in one direction. As a safety measure, the motor

will stop and a discrete-time emergency signal will be issued if the motor has not moved the

window to the up or down position as commanded and 6 seconds or more have elapsed on

the emergency timer. This overrides all other system behavior.

(a) (D) Initial window motion and changes in window direction start the emergency timer

from 0.

(b) (D) The emergency timer stops when the window stops.

(c) (D) System power must be turned off to exit the emergency mode.

The (D) following requirements above indicates that these requirements were not included in

the original statement of requirements but were derived or discovered as an augmentation to the

requirements through the enumeration process.

131

132

Prefix
Sequence Stimulus

I Var Blocks Reqs Step Var exp Reqs Step Var exp Reqs Step Sequence Reqs Step

lambda o[0] null method C 2.1 lambda method C 2.3

eTime [0,0] 1, 1c(D) C 2.5 eTime-dot(t) 0 1, 1c(D) C 2.11 eTime(0) eTime(last) method C 2.12
sTime [0,0] 1, 1c(D) C 2.5 sTime-dot(t) 0 1, 1c(D) C 2.11 sTime(0) sTime(last) method C 2.12
wPosit [0,50] 1, 1b C 2.5 wPosit-dot(t) 0 1, 1b C 2.11 wPosit(0) wPosit(last) method C 2.12

lambda null o[0] null 4 D 2.11 lambda 1b, 1c(D) D 3.4

eTime [0,inf) method C 3.6 eTime-dot(t) 0 1c(D) D 1.10 eTime(0) eTime(last) 1c(D) D 2.11
sTime [0,inf) method C 3.6 sTime-dot(t) 0 1c(D) D 1.10 sTime(0) sTime(last) 1c(D) D 2.11
wPosit [0,50] method C 3.6 wPosit-dot(t) 0 1b D 1.10 wPosit(0) wPosit(last) 1, 1b D 2.11

lambda down o[0] null 4 D 2.13 lambda method C 3.7

eTime [0,inf) method C 3.6 eTime-dot(t) 0 4, 4a(D) D 1.19 eTime(0) eTime(last) method D 2.13
sTime [0,inf) method C 3.6 sTime-dot(t) 0 3c(D), 3d(D) D 1.19 sTime(0) sTime(last) method D 2.13
wPosit [0,50] method C 3.6 wPosit-dot(t) 0 2ci D 1.19 wPosit(0) wPosit(last) method D 2.13

lambda down o[0] null method D 2.11 lambda 1b, 1c(D), 2, 3, 4 D 3.4

eTime [0,inf) method D 4.6 eTime-dot(t) 0 4b(D) D 1.10 eTime(0) eTime(last) 4b(D) D 2.11
sTime [0,inf) method D 4.6 sTime-dot(t) 0 3d(D) D 1.10 sTime(0) sTime(last) 3d(D) D 2.11
wPosit [0,0] 2ci D 4.4 wPosit-dot(t) 0 2ci D 1.10 wPosit(0) wPosit(last) 1, 2, 2c D 2.11

lambda down o[0] null method D 2.11 ---- 2c D 3.10

eTime [0,inf) method D 4.8 eTime-dot(t) 1 4a(D) D 1.10 eTime(0) 0 4a(D) D 2.9
sTime [0,inf) method D 4.8 sTime-dot(t) 1 3c(D) D 1.10 sTime(0) 0 3c(D) D 2.9
wPosit (0,50] method D 4.8 wPosit-dot(t) -10 2c D 1.10 wPosit(0) wPosit(last) 1, 2, 2c D 2.11

lambda int o[0] null 4 D 2.11 lambda 1b, 1c(D), 2, 3, 4 D 3.4

eTime [0,inf) method C 3.6 eTime-dot(t) 0 4b(D) D 1.10 eTime(0) eTime(last) 4b(D) D 2.11
sTime [0,inf) method C 3.6 sTime-dot(t) 0 3d(D) D 1.10 sTime(0) sTime(last) 3d(D) D 2.11
wPosit [0,50] method C 3.6 wPosit-dot(t) 0 2a D 1.10 wPosit(0) wPosit(last) 1, 2, 2c D 2.11

lambda up o[0] null 4 D 2.13 lambda method C 3.7

eTime [0,inf) method C 3.6 eTime-dot(t) 0 4, 4a(D) D 1.19 eTime(0) eTime(last) method D 2.13
sTime [0,inf) method C 3.6 sTime-dot(t) 0 3c(D), 3d(D) D 1.19 sTime(0) sTime(last) method D 2.13
wPosit [0,50] method C 3.6 wPosit-dot(t) 0 2bi D 1.19 wPosit(0) wPosit(last) method D 2.13

lambda up o[0] null method D 2.11 lambda 1b, 1c(D), 2, 3, 4 D 3.4

eTime [0,inf) method D 4.6 eTime-dot(t) 0 4b(D) D 1.10 eTime(0) eTime(last) 4b(D) D 2.11
sTime [0,inf) method D 4.6 sTime-dot(t) 0 3d(D) D 1.10 sTime(0) sTime(last) 3d(D) D 2.11
wPosit [50,50] 2bi D 4.4 wPosit-dot(t) 0 2bi D 1.10 wPosit(0) wPosit(last) 1, 2, 2b D 2.11

lambda up o[0] null method D 2.11 ---- 2b D 3.10

eTime [0,inf) method D 4.8 eTime-dot(t) 1 4a(D) D 1.10 eTime(0) 0 4a(D) D 2.9
sTime [0,inf) method D 4.8 sTime-dot(t) 1 3c(D) D 1.10 sTime(0) 0 3c(D) D 2.9
wPosit [0,50) method D 4.8 wPosit-dot(t) 10 2b D 1.10 wPosit(0) wPosit(last) 1, 2, 2b D 2.11

down null o[0] null 4 D 2.13 down method C 3.7

[0,inf) eTime [0,inf) method C 3.6 eTime-dot(t) 1 4b(D) D 1.19 eTime(0) eTime(last) method D 2.13 [0,inf)
[0,inf) sTime [0,inf) method C 3.6 sTime-dot(t) 1 3d(D) D 1.19 sTime(0) sTime(last) method D 2.13 [0,inf)
(0,50] wPosit [0,50] method C 3.6 wPosit-dot(t) -10 2ci D 1.19 wPosit(0) wPosit(last) method D 2.13 (0,50]

down null o[0] null 4 D 2.13 down method C 3.7

[0,inf) eTime [6,inf) 4 D 4.4 eTime-dot(t) 0 4b(D) D 1.10 eTime(0) eTime(last) 4b(D) D 2.11 [0,inf)
[0,inf) sTime [0,inf) method D 4.6 sTime-dot(t) 0 3d(D) D 1.10 sTime(0) sTime(last) 3d(D) D 2.11 [0,inf)
(0,50] wPosit [0,50] method D 4.6 wPosit-dot(t) 0 2ci, 4 D 1.10 wPosit(0) wPosit(last) 1, 2, 2c D 2.11 (0,50]

down null o[0] emergency 4 D 2.9 ---- 4 D 3.10

[0,inf) eTime [6,inf) method D 4.6 eTime-dot(t) 0 method D 4.7 eTime(0) eTime(last) method D 4.7
[0,inf) sTime [0,inf) 3 D 4.6 sTime-dot(t) 0 method D 4.7 sTime(0) sTime(last) method D 4.7
(0,50] wPosit (0,50] 4 D 4.4 wPosit-dot(t) 0 method D 4.7 wPosit(0) wPosit(last) method D 4.7

down null o[0] null 4 D 2.11 lambda 1b, 1c(D), 2, 3, 4 D 3.4

Characteristic
Predicates Trajectory Definition Condition Vector Equivalent

Sequence

In the four step columns, a ConstructHybridEnumeration process step is preceeded with C, a DefineMapping process step is preceeded with D, and an
IllegalMapping process step is preceeded with I. The colors indicate sequence types and refinement stages.

Canonical Sequences (Mode) Illegal Sequences Reducible Sequences

Invariant Sequence Refinement Step Red Text: Unresolved enumeration elements.

A.2.2 Tabular Enumeration

133

Prefix
Sequence Stimulus

I Var Blocks Reqs Step Var exp Reqs Step Var exp Reqs Step Sequence Reqs Step

Characteristic
Predicates Trajectory Definition Condition Vector Equivalent

Sequence

[0,inf) eTime [6,inf) method D 4.8 eTime-dot(t) 0 method D 4.9 eTime(0) eTime(last) method D 4.9
[0,inf) sTime [0,inf) method D 4.8 sTime-dot(t) 0 method D 4.9 sTime(0) sTime(last) method D 4.9
(0,50] wPosit [0,0] method D 4.8 wPosit-dot(t) 0 method D 4.9 wPosit(0) wPosit(last) method D 4.9

down null o[0] null 4 D 2.11 down method C 3.7

[0,inf) eTime [0,6) method D 4.8 eTime-dot(t) 1 4b(D) D 1.19 eTime(0) eTime(last) method D 2.13 [0,inf)
[0,inf) sTime [0,inf) method D 4.8 sTime-dot(t) 1 3d(D) D 1.19 sTime(0) sTime(last) method D 2.13 [0,inf)
(0,50] wPosit [0,50] method D 4.8 wPosit-dot(t) -10 2ci D 1.19 wPosit(0) wPosit(last) method D 2.13 (0,50]

down null o[0] null method D 4.7 lamda 1b, 1c(D), 2, 3, 4 D 3.4

[0,inf) eTime [0,6) method D 4.6 eTime-dot(t) 0 4b(D) D 1.10 eTime(0) eTime(last) 4b(D) D 2.11
[0,inf) sTime [0,inf) method D 4.6 sTime-dot(t) 0 3d(D) D 1.10 sTime(0) sTime(last) 3d(D) D 2.11
(0,50] wPosit [0,0] 2ci D 4.4 wPosit-dot(t) 0 2ci D 1.10 wPosit(0) wPosit(last) 1, 2, 2c D 2.11

down null o[0] null method D 4.9 down 2c, 2ci, 4 D 3.4

[0,inf) eTime [0,6) method D 4.8 eTime-dot(t) 1 4 D 1.10 eTime(0) eTime(last) 4 D 2.11 [0,inf)
[0,inf) sTime [0,inf) method D 4.8 sTime-dot(t) 1 3 D 1.10 sTime(0) sTime(last) 3 D 2.11 [0,inf)
(0,50] wPosit (0,50] method D 4.8 wPosit-dot(t) -10 2ci D 1.10 wPosit(0) wPosit(last) 1, 2, 2c D 2.11 (0,50]

down down o[0] null 4 D 2.13 down method C 3.7

[0,inf) eTime [0,inf) method C 3.6 eTime-dot(t) 1 4b(D) D 1.19 eTime(0) eTime(last) method D 2.13 [0,inf)
[0,inf) sTime [0,inf) method C 3.6 sTime-dot(t) 1 3d(D) D 1.19 sTime(0) sTime(last) method D 2.13 [0,inf)
(0,50] wPosit [0,50] method C 3.6 wPosit-dot(t) -10 2ci D 1.19 wPosit(0) wPosit(last) method D 2.13 (0,50]

down down o[0] null 4 D 2.13 down method C 3.7

[0,inf) eTime [6,inf) 4 D 4.4 eTime-dot(t) 0 2ci, 4b(D) D 1.10 eTime(0) eTime(last) 4b(D) D 2.11 [0,inf)
[0,inf) sTime [0,inf) method D 4.6 sTime-dot(t) 0 3d(D) D 1.10 sTime(0) sTime(last) 3d(D) D 2.11 [0,inf)
(0,50] wPosit [0,50] method D 4.6 wPosit-dot(t) 0 2ci, 4 D 1.10 wPosit(0) wPosit(last) 2ci D 2.11 (0,50]

down down o[0] emergency 4 D 2.9 down.null 4 D 3.4

[0,inf) eTime [6,inf) method D 4.6 eTime-dot(t) 0 method D 4.7 eTime(0) eTime(last) method D 4.7 [0,inf).[6,inf)
[0,inf) sTime [0,inf) 3 D 4.6 sTime-dot(t) 0 method D 4.7 sTime(0) sTime(last) method D 4.7 [0,inf).[0,inf)
(0,50] wPosit (0,50] 4 D 4.4 wPosit-dot(t) 0 method D 4.7 wPosit(0) wPosit(last) method D 4.7 (0,50].(0,50)

down down o[0] null 4 D 2.11 lambda 1b, 1c(D), 2, 3, 4 D 3.4

[0,inf) eTime [6,inf) method D 4.8 eTime-dot(t) 0 method D 4.9 eTime(0) eTime(last) method D 4.9
[0,inf) sTime [0,inf) method D 4.8 sTime-dot(t) 0 method D 4.9 sTime(0) sTime(last) method D 4.9
(0,50] wPosit [0,0] method D 4.8 wPosit-dot(t) 0 method D 4.9 wPosit(0) wPosit(last) method D 4.9

down down o[0] null 4 D 2.11 down method C 3.7

[0,inf) eTime [0,6) method D 4.8 eTime-dot(t) 1 4b(D) D 1.19 eTime(0) eTime(last) method D 2.13 [0,inf)
[0,inf) sTime [0,inf) method D 4.8 sTime-dot(t) 1 3d(D) D 1.19 sTime(0) sTime(last) method D 2.13 [0,inf)
(0,50] wPosit [0,50] method D 4.8 wPosit-dot(t) -10 2ci, 4 D 1.19 wPosit(0) wPosit(last) method D 2.13 (0,50]

down down o[0] null method D 4.7 lamda 1b, 1c(D), 2, 3, 4 D 3.4

[0,inf) eTime [0,6) method D 4.6 eTime-dot(t) 0 4b(D) D 1.10 eTime(0) eTime(last) 4b(D) D 2.11
[0,inf) sTime [0,inf) method D 4.6 sTime-dot(t) 0 3d(D) D 1.10 sTime(0) sTime(last) 3d(D) D 2.11
(0,50] wPosit [0,0] 2ci D 4.4 wPosit-dot(t) 0 2ci D 1.10 wPosit(0) wPosit(last) 1, 2, 2c D 2.11

down down o[0] null method D 4.9 down 2c, 2ci, 4 D 3.4

[0,inf) eTime [0,6) method D 4.8 eTime-dot(t) 1 4 D 1.10 eTime(0) eTime(last) 4 D 2.11 [0,inf)
[0,inf) sTime [0,inf) method D 4.8 sTime-dot(t) 1 3 D 1.10 sTime(0) sTime(last) 3 D 2.11 [0,inf)
(0,50] wPosit (0,50] method D 4.8 wPosit-dot(t) -10 2ci D 1.10 wPosit(0) wPosit(last) 1, 2, 2c D 2.11 (0,50]

down int o[0] null 4 D 2.13 down method C 3.7

[0,inf) eTime [0,inf) method C 3.6 eTime-dot(t) 1 4b(D) D 1.19 eTime(0) eTime(last) method D 2.13 [0,inf)
[0,inf) sTime [0,inf) method C 3.6 sTime-dot(t) 0 3c(D), 3d(D) D 1.10 sTime(0) sTime(last) 3d(D) D 2.11 [0,inf)
(0,50] wPosit [0,50] method C 3.6 wPosit-dot(t) -10 2ci D 1.19 wPosit(0) wPosit(last) method D 2.13 (0,50]

down int o[0] null 4 D 2.11 down method C 3.7

[0,inf) eTime [0,6) 4 D 4.4 eTime-dot(t) 1 4b(D) D 1.19 eTime(0) eTime(last) method D 2.13 [0,inf)
[0,inf) sTime [0,inf) method D 4.6 sTime-dot(t) 0 method D 4.7 sTime(0) sTime(last) method D 4.7 [0,inf)
(0,50] wPosit [0,50] method D 4.6 wPosit-dot(t) -10 2ci, 3 D 1.19 wPosit(0) wPosit(last) method D 2.13 (0,50]

down int o[0] null method D 4.7 down method C 3.7

[0,inf) eTime [0,6) method D 4.6 eTime-dot(t) 1 4b(D) D 1.19 eTime(0) eTime(last) method D 2.13 [0,inf)
[0,inf) sTime [0,0.5] 3 D 4.4 sTime-dot(t) 0 method D 4.7 sTime(0) sTime(last) method D 4.7 [0,inf)
(0,50] wPosit [0,50] method D 4.6 wPosit-dot(t) -10 2ci, 3 D 1.19 wPosit(0) wPosit(last) method D 2.13 (0,50]

down int o[0] null method D 4.7 lambda 1b, 1c(D), 2, 3, 4 D 3.4

134

Prefix
Sequence Stimulus

I Var Blocks Reqs Step Var exp Reqs Step Var exp Reqs Step Sequence Reqs Step

Characteristic
Predicates Trajectory Definition Condition Vector Equivalent

Sequence

[0,inf) eTime [0,6) method D 4.6 eTime-dot(t) 0 2c, 4b(D) D 1.10 eTime(0) eTime(last) 4b(D) D 2.11
[0,inf) sTime [0,0.5] method D 4.6 sTime-dot(t) 0 method D 4.7 sTime(0) sTime(last) method D 4.7
(0,50] wPosit [0,0] 2ci D 4.4 wPosit-dot(t) 0 2ci D 1.10 wPosit(0) wPosit(last) 1, 2, 2a, 2c D 2.11

down int o[0] null method D 4.9 ---- 3 D 3.10

[0,inf) eTime [0,6) method D 4.8 eTime-dot(t) 1 2c, 4 D 1.10 eTime(0) eTime(last) 4 D 2.11
[0,inf) sTime [0,0.5] method D 4.8 sTime-dot(t) 0 method D 4.9 sTime(0) sTime(last) method D 4.9
(0,50] wPosit (0,50] method D 4.8 wPosit-dot(t) -10 2c, 3 D 1.10 wPosit(0) wPosit(last) 1, 2, 2c D 2.11

down int o[0] null method D 4.9 lambda 1b, 1c(D), 2, 3, 4 D 3.4

[0,inf) eTime [0,6) method D 4.8 eTime-dot(t) 0 4b(D) D 1.10 eTime(0) eTime(last) 4b(D) D 2.11
[0,inf) sTime (0.5,inf) method D 4.8 sTime-dot(t) 0 method D 4.9 sTime(0) sTime(last) method D 4.9
(0,50] wPosit [0,50] method D 4.8 wPosit-dot(t) 0 2a, 3 D 1.10 wPosit(0) wPosit(last) 1, 2, 2a, 2c D 2.11

down int o[0] null 4 D 2.13 down method C 3.7

[0,inf) eTime [6,inf) method D 4.8 eTime-dot(t) 0 2ci, 4b(D) D 1.10 eTime(0) eTime(last) 4b(D) D 2.11 [0,inf)
[0,inf) sTime [0,inf) method D 4.8 sTime-dot(t) 0 method D 4.9 sTime(0) sTime(last) method D 4.9 [0,inf)
(0,50] wPosit [0,50] method D 4.8 wPosit-dot(t) 0 2ci, 4b(D) D 1.10 wPosit(0) wPosit(last) 2ci D 2.11 (0,50]

down int o[0] emergency 4 D 2.9 down.null 4 D 3.4

[0,inf) eTime [6,inf) method D 4.6 eTime-dot(t) 0 method D 4.7 eTime(0) eTime(last) method D 4.7 [0,inf).[6,inf)
[0,inf) sTime [0,inf) 3 D 4.6 sTime-dot(t) 0 method D 4.7 sTime(0) sTime(last) method D 4.7 [0,inf).[0,inf)
(0,50] wPosit (0,50] 4 D 4.4 wPosit-dot(t) 0 method D 4.7 wPosit(0) wPosit(last) method D 4.7 (0,50].(0,50)

down int o[0] null 4 D 2.11 lambda 1b, 1c(D), 2, 3, 4 D 3.4

[0,inf) eTime [6,inf) method D 4.8 eTime-dot(t) 0 method D 4.9 eTime(0) eTime(last) method D 4.9
[0,inf) sTime [0,inf) method D 4.8 sTime-dot(t) 0 method D 4.9 sTime(0) sTime(last) method D 4.9
(0,50] wPosit [0,0] method D 4.8 wPosit-dot(t) 0 method D 4.9 wPosit(0) wPosit(last) method D 4.9

down up o[0] illegal method I 1.1 Illegal 2ai I 1.2

[0,inf) eTime [0,inf) method C 3.6 eTime-dot(t) 0 2ai D 1.4 eTime(0) eTime(last) method I 1.1
[0,inf) sTime [0,inf) method C 3.6 sTime-dot(t) 0 method I 1.1 sTime(0) sTime(last) method I 1.1
(0,50] wPosit [0,50] method C 3.6 wPosit-dot(t) 0 method I 1.1 wPosit(0) wPosit(last) method I 1.1

up null o[0] null 4 D 2.13 up method C 3.7

[0,inf) eTime [0,inf) method C 3.6 eTime-dot(t) 1 4b(D) D 1.19 eTime(0) eTime(last) method D 2.13 [0,inf)
[0,inf) sTime [0,inf) method C 3.6 sTime-dot(t) 1 3d(D) D 1.19 sTime(0) sTime(last) method D 2.13 [0,inf)
[0,50) wPosit [0,50] method C 3.6 wPosit-dot(t) 10 2bi D 1.19 wPosit(0) wPosit(last) method D 2.13 [0,50)

up null o[0] null 4 D 2.13 up method C 3.7

[0,inf) eTime [6,inf) 4 D 4.4 eTime-dot(t) 0 4bD) D 1.10 eTime(0) eTime(last) 4b(D) D 2.11 [0,inf)
[0,inf) sTime [0,inf) method D 4.6 sTime-dot(t) 0 3d(D) D 1.10 sTime(0) sTime(last) 3d(D) D 2.11 [0,inf)
[0,50) wPosit [0,50] method D 4.6 wPosit-dot(t) 0 2bi, 4 D 1.10 wPosit(0) wPosit(last) 1, 2, 2b D 2.11 [0,50)

up null o[0] emergency 4 D 2.9 down.null 4 D 3.4

[0,inf) eTime [6,inf) method D 4.6 eTime-dot(t) 0 method D 4.7 eTime(0) eTime(last) method D 4.7 [0,inf).[6,inf)
[0,inf) sTime [0,inf) 3 D 4.6 sTime-dot(t) 0 method D 4.7 sTime(0) sTime(last) method D 4.7 [0,inf).[0,inf)
[0,50) wPosit [0,50) 2bi, 4 D 4.4 wPosit-dot(t) 0 method D 4.7 wPosit(0) wPosit(last) method D 4.7 (0,50].(0,50)

up null o[0] null 4 D 2.11 lambda 1b, 1c(D), 2, 3, 4 D 3.4

[0,inf) eTime [6,inf) method D 4.8 eTime-dot(t) 0 method D 4.9 eTime(0) eTime(last) method D 4.9
[0,inf) sTime [0,inf) method D 4.8 sTime-dot(t) 0 method D 4.9 sTime(0) sTime(last) method D 4.9
[0,50) wPosit [50,50] method D 4.8 wPosit-dot(t) 0 method D 4.9 wPosit(0) wPosit(last) method D 4.9

up null o[0] null 4 D 2.11 up method C 3.7

[0,inf) eTime [0,6) method D 4.8 eTime-dot(t) 1 4b(D) D 1.19 eTime(0) eTime(last) method D 2.13 [0,inf)
[0,inf) sTime [0,inf) method D 4.8 sTime-dot(t) 1 3d(D) D 1.19 sTime(0) sTime(last) method D 2.13 [0,inf)
[0,50) wPosit [0,50] method D 4.8 wPosit-dot(t) 10 2bi D 1.19 wPosit(0) wPosit(last) method D 2.13 [0,50)

up null o[0] null method D 4.7 lamda 1b, 1c(D), 2, 3, 4 D 3.4

[0,inf) eTime [0,6) method D 4.6 eTime-dot(t) 0 4b(D) D 1.10 eTime(0) eTime(last) 4b(D) D 2.11
[0,inf) sTime [0,inf) method D 4.6 sTime-dot(t) 0 3d(D) D 1.10 sTime(0) sTime(last) 3d(D) D 2.11
[0,50) wPosit [50,50] 2bi D 4.4 wPosit-dot(t) 0 2bi D 1.10 wPosit(0) wPosit(last) 1, 2, 2b D 2.11

up null o[0] null method D 4.9 up 2b, 2bi, 4 D 3.4

[0,inf) eTime [0,6) method D 4.8 eTime-dot(t) 1 4 D 1.10 eTime(0) eTime(last) 4 D 2.11 [0,inf)
[0,inf) sTime [0,inf) method D 4.8 sTime-dot(t) 1 3 D 1.10 sTime(0) sTime(last) 3 D 2.11 [0,inf)
[0,50) wPosit [0,50) method D 4.8 wPosit-dot(t) 10 2bi D 1.10 wPosit(0) wPosit(last) 1, 2, 2b D 2.11 [0,50)

up down o[0] illegal method I 1.1 Illegal 2ai I 1.2

[0,inf) eTime [0,inf) method C 3.6 eTime-dot(t) 0 2ai D 1.4 eTime(0) eTime(last) method I 1.1

135

Prefix
Sequence Stimulus

I Var Blocks Reqs Step Var exp Reqs Step Var exp Reqs Step Sequence Reqs Step

Characteristic
Predicates Trajectory Definition Condition Vector Equivalent

Sequence

[0,inf) sTime [0,inf) method C 3.6 sTime-dot(t) 0 method I 1.1 sTime(0) sTime(last) method I 1.1
[0,50) wPosit [0,50] method C 3.6 wPosit-dot(t) 0 method I 1.1 wPosit(0) wPosit(last) method I 1.1

up int o[0] null 4 D 2.13 up method C 3.7

[0,inf) eTime [0,inf) method C 3.6 eTime-dot(t) 1 4b(D) D 1.19 eTime(0) eTime(last) method D 2.13 [0,inf)
[0,inf) sTime [0,inf) method C 3.6 sTime-dot(t) 0 3d(D), 3c(D) D 1.10 sTime(0) sTime(last) 3d(D) D 2.11 [0,inf)
[0,50) wPosit [0,50] method C 3.6 wPosit-dot(t) 10 2bi D 1.19 wPosit(0) wPosit(last) method D 2.13 [0,50)

up int o[0] null 4 D 2.11 up method C 3.7

[0,inf) eTime [0,6) 4 D 4.4 eTime-dot(t) 1 4b(D) D 1.19 eTime(0) eTime(last) method D 2.13 [0,inf)
[0,inf) sTime [0,inf) method D 4.6 sTime-dot(t) 0 method D 4.7 sTime(0) sTime(last) method D 4.7 [0,inf)
[0,50) wPosit [0,50] method D 4.6 wPosit-dot(t) 10 2bi, 3 D 1.19 wPosit(0) wPosit(last) method D 2.13 [0,50)

up int o[0] null method D 4.7 up method C 3.7

[0,inf) eTime [0,6) method D 4.6 eTime-dot(t) 1 4b(D) D 1.19 eTime(0) eTime(last) method D 2.13 [0,inf)
[0,inf) sTime [0,0.5] 3 D 4.4 sTime-dot(t) 0 method D 4.7 sTime(0) sTime(last) method D 4.7 [0,inf)
[0,50) wPosit [0,50] method D 4.6 wPosit-dot(t) 10 2bi, 3 D 1.19 wPosit(0) wPosit(last) method D 2.13 [0,50)

up int o[0] null method D 4.7 lambda 1b, 1c(D), 2, 3, 4 D 3.4

[0,inf) eTime [0,6) method D 4.6 eTime-dot(t) 0 2b, 4b(D) D 1.10 eTime(0) eTime(last) 4b(D) D 2.11
[0,inf) sTime [0,0.5] method D 4.6 sTime-dot(t) 0 method D 4.7 sTime(0) sTime(last) method D 4.7
[0,50) wPosit [50,50] 2bi D 4.4 wPosit-dot(t) 0 2bi D 1.10 wPosit(0) wPosit(last) 1, 2, 2a, 2b D 2.11

up int o[0] null method D 4.9 ---- 3 D 3.10

[0,inf) eTime [0,6) method D 4.8 eTime-dot(t) 1 2b, 4 D 1.10 eTime(0) eTime(last) 4 D 2.11
[0,inf) sTime [0,0.5] method D 4.8 sTime-dot(t) 0 method D 4.9 sTime(0) sTime(last) method D 4.9
[0,50) wPosit [0,50) method D 4.8 wPosit-dot(t) 10 2b, 3 D 1.10 wPosit(0) wPosit(last) 1, 2, 2a, 2b D 2.11

up int o[0] null method D 4.9 lambda 1b, 1c(D), 2, 3, 4 D 3.4

[0,inf) eTime [0,6) method D 4.8 eTime-dot(t) 0 4b(D) D 1.10 eTime(0) eTime(last) 4b(D) D 2.11
[0,inf) sTime (0.5,inf) method D 4.8 sTime-dot(t) 0 method D 4.9 sTime(0) sTime(last) method D 4.9
[0,50) wPosit [0,50] method D 4.8 wPosit-dot(t) 0 2b, 3 D 1.10 wPosit(0) wPosit(last) 1, 2, 2a, 2b D 2.11

up int o[0] null 4 D 2.13 up method C 3.7

[0,inf) eTime [6,inf) method D 4.8 eTime-dot(t) 0 2bi, 4b(D) D 1.10 eTime(0) eTime(last) 4b(D) D 2.11 [0,inf)
[0,inf) sTime [0,inf) method D 4.8 sTime-dot(t) 0 method D 4.9 sTime(0) sTime(last) method D 4.9 [0,inf)
[0,50) wPosit [0,50] method D 4.8 wPosit-dot(t) 0 2bi, 4b(D) D 1.10 wPosit(0) wPosit(last) 2bi D 2.11 [0,50)

up int o[0] emergency 4 D 2.9 down.null 4 D 3.4

[0,inf) eTime [6,inf) method D 4.6 eTime-dot(t) 0 method D 4.7 eTime(0) eTime(last) method D 4.7 [0,inf).[6,inf)
[0,inf) sTime [0,inf) method D 4.6 sTime-dot(t) 0 method D 4.7 sTime(0) sTime(last) method D 4.7 [0,inf).[0,inf)
[0,50) wPosit [0,50) 4 D 4.4 wPosit-dot(t) 0 method D 4.7 wPosit(0) wPosit(last) method D 4.7 (0,50].(0,50)

up int o[0] null 4 D 2.11 lambda 1b, 1c(D), 2, 3, 4 D 3.4

[0,inf) eTime [6,inf) method D 4.8 eTime-dot(t) 0 method D 4.9 eTime(0) eTime(last) method D 4.9
[0,inf) sTime [0,inf) method D 4.8 sTime-dot(t) 0 method D 4.9 sTime(0) sTime(last) method D 4.9
[0,50) wPosit [50,50] method D 4.8 wPosit-dot(t) 0 method D 4.9 wPosit(0) wPosit(last) method D 4.9

up up o[0] null 4 D 2.13 up method C 3.7

[0,inf) eTime [0,inf) method C 3.6 eTime-dot(t) 1 4b(D) D 1.19 eTime(0) eTime(last) method D 2.13 [0,inf)
[0,inf) sTime [0,inf) method C 3.6 sTime-dot(t) 1 3d(D) D 1.19 sTime(0) sTime(last) method D 2.13 [0,inf)
[0,50) wPosit [0,50] method C 3.6 wPosit-dot(t) 10 2bi D 1.19 wPosit(0) wPosit(last) method D 2.13 [0,50)

up up o[0] null 4 D 2.13 up method C 3.7

[0,inf) eTime [6,inf) 4 D 4.4 eTime-dot(t) 0 2bi, 4b(D) D 1.10 eTime(0) eTime(last) 4b(D) D 2.11 [0,inf)
[0,inf) sTime [0,inf) method D 4.6 sTime-dot(t) 0 3d(D) D 1.10 sTime(0) sTime(last) 3d(D) D 2.11 [0,inf)
[0,50) wPosit [0,50] method D 4.6 wPosit-dot(t) 0 2bi, 4 D 1.10 wPosit(0) wPosit(last) 1, 2, 2b, 2bi D 2.11 [0,50)

up up o[0] emergency 4 D 2.9 down.null 4 D 3.4

[0,inf) eTime [6,inf) method D 4.6 eTime-dot(t) 0 method D 4.7 eTime(0) eTime(last) method D 4.7 [0,inf).[6,inf)
[0,inf) sTime [0,inf) method D 4.6 sTime-dot(t) 0 method D 4.7 sTime(0) sTime(last) method D 4.7 [0,inf).[0,inf)
[0,50) wPosit [0,50) 2bi, 4 D 4.4 wPosit-dot(t) 0 method D 4.7 wPosit(0) wPosit(last) method D 4.7 (0,50].(0,50)

up up o[0] null 4 D 2.11 lambda 1b, 1c(D), 2, 3, 4 D 3.4

[0,inf) eTime [6,inf) method D 4.8 eTime-dot(t) 0 method D 4.9 eTime(0) eTime(last) method D 4.9
[0,inf) sTime [0,inf) method D 4.8 sTime-dot(t) 0 method D 4.9 sTime(0) sTime(last) method D 4.9
[0,50) wPosit [50,50] method D 4.8 wPosit-dot(t) 0 method D 4.9 wPosit(0) wPosit(last) method D 4.9

up up o[0] null 4 D 2.11 up method C 3.7

[0,inf) eTime [0,6) method D 4.8 eTime-dot(t) 1 4b(D) D 1.19 eTime(0) eTime(last) method D 2.13 [0,inf)
[0,inf) sTime [0,inf) method D 4.8 sTime-dot(t) 1 3d(D) D 1.19 sTime(0) sTime(last) method D 2.13 [0,inf)

136

Prefix
Sequence Stimulus

I Var Blocks Reqs Step Var exp Reqs Step Var exp Reqs Step Sequence Reqs Step

Characteristic
Predicates Trajectory Definition Condition Vector Equivalent

Sequence

[0,50) wPosit [0,50] method D 4.8 wPosit-dot(t) 10 2bi D 1.19 wPosit(0) wPosit(last) method D 2.13 [0,50)

up up o[0] null method D 4.7 lamda 1b, 1c(D), 2, 3, 4 D 3.4

[0,inf) eTime [0,6) method D 4.6 eTime-dot(t) 0 4b(D) D 1.10 eTime(0) eTime(last) 4b(D) D 2.11
[0,inf) sTime [0,inf) method D 4.6 sTime-dot(t) 0 3d(D) D 1.10 sTime(0) sTime(last) 3d(D) D 2.11
[0,50) wPosit [50,50] 2bi D 4.4 wPosit-dot(t) 0 2bi D 1.10 wPosit(0) wPosit(last) 1, 2, 2b D 2.11

up up o[0] null method D 4.9 up 2b, 2bi, 4 D 3.4

[0,inf) eTime [0,6) method D 4.8 eTime-dot(t) 1 4 D 1.10 eTime(0) eTime(last) 4 D 2.11 [0,inf)
[0,inf) sTime [0,inf) method D 4.8 sTime-dot(t) 1 3 D 1.10 sTime(0) sTime(last) 3 D 2.11 [0,inf)
[0,50) wPosit [0,50) method D 4.8 wPosit-dot(t) 10 2b D 1.10 wPosit(0) wPosit(last) 1, 2, 2b D 2.11 [0,50)

down.null null o[0] null 4 D 2.11 down.null 4 D 3.4

[0,inf).[6,inf) eTime [0,inf) method C 3.6 eTime-dot(t) 0 4b(D) D 1.10 eTime(0) eTime(last) 4b(D) D 2.11 [0,inf).[6,inf)
[0,inf).[0,inf) sTime [0,inf) method C 3.6 sTime-dot(t) 0 3d(D) D 1.10 sTime(0) sTime(last) 3d(D) D 2.11 [0,inf).[0,inf)
(0,50].(0,50] wPosit [0,50] method C 3.6 wPosit-dot(t) 0 4 D 1.10 wPosit(0) wPosit(last) 1, 2, 2a, 2b, 2c 4 D 2.11 (0,50].(0,50]

down.null down o[0] null 4 D 2.11 down.null 4 D 3.4

[0,inf).[6,inf) eTime [0,inf) method C 3.6 eTime-dot(t) 0 4b(D) D 1.10 eTime(0) eTime(last) 4b(D) D 2.11 [0,inf).[6,inf)
[0,inf).[0,inf) sTime [0,inf) method C 3.6 sTime-dot(t) 0 3d(D) D 1.10 sTime(0) sTime(last) 3d(D) D 2.11 [0,inf).[0,inf)
(0,50].(0,50] wPosit [0,50] method C 3.6 wPosit-dot(t) 0 4 D 1.10 wPosit(0) wPosit(last) 1, 2, 2a, 2b, 2c 4 D 2.11 (0,50].(0,50]

down.null int o[0] null 4 D 2.11 down.null 4 D 3.4

[0,inf).[6,inf) eTime [0,inf) method C 3.6 eTime-dot(t) 0 4b(D) D 1.10 eTime(0) eTime(last) 4b(D) D 2.11 [0,inf).[6,inf)
[0,inf).[0,inf) sTime [0,inf) method C 3.6 sTime-dot(t) 0 3d(D) D 1.10 sTime(0) sTime(last) 3d(D) D 2.11 [0,inf).[0,inf)
(0,50].(0,50] wPosit [0,50] method C 3.6 wPosit-dot(t) 0 4 D 1.10 wPosit(0) wPosit(last) 1, 2, 2a, 2b, 2c 4 D 2.11 (0,50].(0,50]

down.null up o[0] null 4 D 2.11 down.null 4 D 3.4

[0,inf).[6,inf) eTime [0,inf) method C 3.6 eTime-dot(t) 0 4b(D) D 1.10 eTime(0) eTime(last) 4b(D) D 2.11 [0,inf).[6,inf)
[0,inf).[0,inf) sTime [0,inf) method C 3.6 sTime-dot(t) 0 3d(D) D 1.10 sTime(0) sTime(last) 3d(D) D 2.11 [0,inf).[0,inf)
(0,50].(0,50] wPosit [0,50] method C 3.6 wPosit-dot(t) 0 4 D 1.10 wPosit(0) wPosit(last) 1, 2, 2a, 2b, 2c 4 D 2.11 (0,50].(0,50]

down.int null o[0] null 4 D 2.13 down.int method C 3.7

[0,inf).[0,6) eTime [0,inf) method C 3.6 eTime-dot(t) 1 2ci, 4b(D) D 1.19 eTime(0) eTime(last) method D 2.13 [0,inf).[0,6)
[0,inf).[0,0.5] sTime [0,inf) method C 3.6 sTime-dot(t) 0 3 D 1.10 sTime(0) sTime(last) 3 D 2.11 [0,inf).[0,0.5]
(0,50].(0,50] wPosit [0,50] method C 3.6 wPosit-dot(t) -10 2ci, 4b(D) D 1.19 wPosit(0) wPosit(last) method D 2.13 (0,50].(0,50]

down.int null o[0] null 4 D 2.11 down.int method C 3.7

[0,inf).[0,6) eTime [0,6) 4 D 4.4 eTime-dot(t) 1 2ci, 4b(D) D 1.19 eTime(0) eTime(last) method D 2.13 [0,inf).[0,6)
[0,inf).[0,0.5] sTime [0,inf) method D 4.6 sTime-dot(t) 0 method D 4.7 sTime(0) sTime(last) method D 4.7 [0,inf).[0,0.5]
(0,50].(0,50] wPosit [0,50] method D 4.6 wPosit-dot(t) -10 2ci, 4b(D) D 1.19 wPosit(0) wPosit(last) method D 2.13 (0,50].(0,50]

down.int null o[0] null method D 4.7 lamda 1b, 1c(D), 2, 3, 4 D 3.4

[0,inf).[0,6) eTime [0,6) method D 4.6 eTime-dot(t) 0 4b(D) D 1.10 eTime(0) eTime(last) 4b(D) D 2.11
[0,inf).[0,0.5] sTime [0,inf) method D 4.6 sTime-dot(t) 0 method D 4.7 sTime(0) sTime(last) method D 4.7
(0,50].(0,50] wPosit [0,0] 2ci D 4.4 wPosit-dot(t) 0 2ci D 1.10 wPosit(0) wPosit(last) 1, 2, 2a, 2c D 2.11

down.int null o[0] null method D 4.9 down.int 3 D 3.4

[0,inf).[0,6) eTime [0,6) method D 4.8 eTime-dot(t) 1 4 D 1.10 eTime(0) eTime(last) 4 D 2.11 [0,inf).[0,6)
[0,inf).[0,0.5] sTime [0,inf) method D 4.8 sTime-dot(t) 0 method D 4.9 sTime(0) sTime(last) method D 4.9 [0,inf).[0,0.5]
(0,50].(0,50] wPosit (0,50] method D 4.8 wPosit-dot(t) -10 2c D 1.10 wPosit(0) wPosit(last) 1, 2, 2a, 2c D 2.11 (0,50].(0,50]

down.int null o[0] null 4 D 2.13 down.int method C 3.7

[0,inf).[0,6) eTime [6,inf) method D 4.8 eTime-dot(t) 0 2ci, 4b(D) D 1.10 eTime(0) eTime(last) 4b(D) D 2.11 [0,inf).[0,6)
[0,inf).[0,0.5] sTime [0,inf) method D 4.8 sTime-dot(t) 0 method D 4.9 sTime(0) sTime(last) method D 4.9 [0,inf).[0,0.5]
(0,50].(0,50] wPosit [0,50] method D 4.8 wPosit-dot(t) 0 2ci, 4 D 1.10 wPosit(0) wPosit(last) 2ci, 4 D 2.11 (0,50].(0,50]

down.int null o[0] null 4 D 2.11 lamda 1b, 1c(D), 2, 3, 4 D 3.4

[0,inf).[0,6) eTime [6,inf) method D 4.6 eTime-dot(t) 0 method D 4.7 eTime(0) eTime(last) method D 4.7
[0,inf).[0,0.5] sTime [0,inf) method D 4.6 sTime-dot(t) 0 method D 4.7 sTime(0) sTime(last) method D 4.7
(0,50].(0,50] wPosit [0,0] 2ci D 4.4 wPosit-dot(t) 0 method D 4.7 wPosit(0) wPosit(last) method D 4.7

down.int null o[0] emergency 4 D 2.9 down.null 4 D 3.4

[0,inf).[0,6) eTime [6,inf) method D 4.8 eTime-dot(t) 0 method D 4.9 eTime(0) eTime(last) method D 4.9 [0,inf).[6,inf)
[0,inf).[0,0.5] sTime [0,inf) method D 4.8 sTime-dot(t) 0 method D 4.9 sTime(0) sTime(last) method D 4.9 [0,inf).[0,inf)
(0,50].(0,50] wPosit (0,50] method D 4.8 wPosit-dot(t) 0 method D 4.9 wPosit(0) wPosit(last) method D 4.9 (0,50].(0,50]

down.int down o[0] null 4 D 2.13 down.int method C 3.7

[0,inf).[0,6) eTime [0,inf) method C 3.6 eTime-dot(t) 1 4b(D) D 1.19 eTime(0) eTime(last) method D 2.13 [0,inf).[0,6)
[0,inf).[0,0.5] sTime [0,inf) method C 3.6 sTime-dot(t) 0 3d(D) D 1.19 sTime(0) sTime(last) method D 2.13 [0,inf).[0,0.5]

137

Prefix
Sequence Stimulus

I Var Blocks Reqs Step Var exp Reqs Step Var exp Reqs Step Sequence Reqs Step

Characteristic
Predicates Trajectory Definition Condition Vector Equivalent

Sequence

(0,50].(0,50] wPosit [0,50] method C 3.6 wPosit-dot(t) -10 2ci, 4 D 1.19 wPosit(0) wPosit(last) method D 2.13 (0,50].(0,50]

down.int down o[0] null 4 D 2.11 down.int method C 3.7

[0,inf).[0,6) eTime [0,6) 4 D 4.4 eTime-dot(t) 1 4b(D) D 1.19 eTime(0) eTime(last) method D 2.13 [0,inf).[0,6)
[0,inf).[0,0.5] sTime [0,inf) method D 4.6 sTime-dot(t) 0 3d(D) D 1.19 sTime(0) sTime(last) method D 2.13 [0,inf).[0,0.5]
(0,50].(0,50] wPosit [0,50] method D 4.6 wPosit-dot(t) -10 2ci D 1.19 wPosit(0) wPosit(last) method D 2.13 (0,50].(0,50]

down.int down o[0] null method D 4.7 lamda 1b, 1c(D), 2, 3, 4 D 3.4

[0,inf).[0,6) eTime [0,6) method D 4.6 eTime-dot(t) 0 4b(D) D 1.10 eTime(0) eTime(last) 4b(D) D 2.11
[0,inf).[0,0.5] sTime [0,inf) method D 4.6 sTime-dot(t) 0 3d(D) D 1.10 sTime(0) sTime(last) 3d(D) D 2.11
(0,50].(0,50] wPosit [0,0] 2ci D 4.4 wPosit-dot(t) 0 2ci D 1.10 wPosit(0) wPosit(last) 1, 2, 2c D 2.11

down.int down o[0] null method D 4.9 down 2c, 2ci, 4 D 3.4

[0,inf).[0,6) eTime [0,6) method D 4.8 eTime-dot(t) 1 4 D 1.10 eTime(0) eTime(last) 4 D 2.11 [0,inf)
[0,inf).[0,0.5] sTime [0,inf) method D 4.8 sTime-dot(t) 1 3c(D) D 1.10 sTime(0) 0 3c(D) D 2.9 [0,inf)
(0,50].(0,50] wPosit (0,50] method D 4.8 wPosit-dot(t) -10 2c D 1.10 wPosit(0) wPosit(last) 2c D 2.11 (0,50]

down.int down o[0] null 4 D 2.13 down.int method C 3.7

[0,inf).[0,6) eTime [6,inf) method D 4.8 eTime-dot(t) 0 4, 4b(D) D 1.10 eTime(0) eTime(last) 4b(D) D 2.11 [0,inf).[0,6)
[0,inf).[0,0.5] sTime [0,inf) method D 4.8 sTime-dot(t) 0 3d(D) D 1.10 sTime(0) sTime(last) 3d(D) D 2.11 [0,inf).[0,0.5]
(0,50].(0,50] wPosit [0,50] method D 4.8 wPosit-dot(t) 0 2ci, 4 D 1.10 wPosit(0) wPosit(last) 1, 2, 2c D 2.11 (0,50].(0,50]

down.int down o[0] null 4 D 2.11 lamda 1b, 1c(D), 2, 3, 4 D 3.4

[0,inf).[0,6) eTime [6,inf) method D 4.6 eTime-dot(t) 0 method D 4.7 eTime(0) eTime(last) method D 4.7
[0,inf).[0,0.5] sTime [0,inf) method D 4.6 sTime-dot(t) 0 method D 4.7 sTime(0) sTime(last) method D 4.7
(0,50].(0,50] wPosit [0,0] 2ci D 4.4 wPosit-dot(t) 0 method D 4.7 wPosit(0) wPosit(last) method D 4.7

down.int down o[0] emergency 4 D 2.9 down.null 4 D 3.4

[0,inf).[0,6) eTime [6,inf) method D 4.8 eTime-dot(t) 0 method D 4.9 eTime(0) eTime(last) method D 4.9 [0,inf).[6,inf)
[0,inf).[0,0.5] sTime [0,inf) method D 4.8 sTime-dot(t) 0 method D 4.9 sTime(0) sTime(last) method D 4.9 [0,inf).[0,inf)
(0,50].(0,50] wPosit (0,50] method D 4.8 wPosit-dot(t) 0 method D 4.9 wPosit(0) wPosit(last) method D 4.9 (0,50].(0,50]

down.int int o[0] null 4 D 2.13 down.int method C 3.7

[0,inf).[0,6) eTime [0,inf) method C 3.6 eTime-dot(t) 1 2ci, 4b(D) D 1.19 eTime(0) eTime(last) method D 2.13 [0,inf).[0,6)
[0,inf).[0,0.5] sTime [0,inf) method C 3.6 sTime-dot(t) 0 3 D 1.10 sTime(0) sTime(last) 3 D 2.11 [0,inf).[0,0.5]
(0,50].(0,50] wPosit [0,50] method C 3.6 wPosit-dot(t) -10 2ci, 4b(D) D 1.19 wPosit(0) wPosit(last) method D 2.13 (0,50].(0,50]

down.int int o[0] null 4 D 2.11 down.int method C 3.7

[0,inf).[0,6) eTime [0,6) 4 D 4.4 eTime-dot(t) 1 2ci, 4b(D) D 1.19 eTime(0) eTime(last) method D 2.13 [0,inf).[0,6)
[0,inf).[0,0.5] sTime [0,inf) method D 4.6 sTime-dot(t) 0 method D 4.7 sTime(0) sTime(last) method D 4.7 [0,inf).[0,0.5]
(0,50].(0,50] wPosit [0,50] method D 4.6 wPosit-dot(t) -10 2ci, 4b(D) D 1.19 wPosit(0) wPosit(last) method D 2.13 (0,50].(0,50]

down.int int o[0] null method D 4.7 lamda 1b, 1c(D), 2, 3, 4 D 3.4

[0,inf).[0,6) eTime [0,6) method D 4.6 eTime-dot(t) 0 4b(D) D 1.10 eTime(0) eTime(last) 4b(D) D 2.11
[0,inf).[0,0.5] sTime [0,inf) method D 4.6 sTime-dot(t) 0 method D 4.7 sTime(0) sTime(last) method D 4.7
(0,50].(0,50] wPosit [0,0] 2ci D 4.4 wPosit-dot(t) 0 2ci D 1.10 wPosit(0) wPosit(last) 1, 2, 2a, 2c D 2.11

down.int int o[0] null method D 4.9 down.int 3 D 3.4

[0,inf).[0,6) eTime [0,6) method D 4.8 eTime-dot(t) 1 4 D 1.10 eTime(0) eTime(last) 4 D 2.11 [0,inf).[0,6)
[0,inf).[0,0.5] sTime [0,inf) method D 4.8 sTime-dot(t) 0 method D 4.9 sTime(0) sTime(last) method D 4.9 [0,inf).[0,0.5]
(0,50].(0,50] wPosit (0,50] method D 4.8 wPosit-dot(t) -10 2c D 1.10 wPosit(0) wPosit(last) 1, 2, 2a, 2c D 2.11 (0,50].(0,50]

down.int int o[0] null 4 D 2.13 down.int method C 3.7

[0,inf).[0,6) eTime [6,inf) method D 4.8 eTime-dot(t) 0 2ci, 4b(D) D 1.10 eTime(0) eTime(last) 4b(D) D 2.11 [0,inf).[0,6)
[0,inf).[0,0.5] sTime [0,inf) method D 4.8 sTime-dot(t) 0 method D 4.9 sTime(0) sTime(last) method D 4.9 [0,inf).[0,0.5]
(0,50].(0,50] wPosit [0,50] method D 4.8 wPosit-dot(t) 0 2ci, 4 D 1.10 wPosit(0) wPosit(last) 2ci, 4 D 2.11 (0,50].(0,50]

down.int int o[0] null 4 D 2.11 lamda 1b, 1c(D), 2, 3, 4 D 3.4

[0,inf).[0,6) eTime [6,inf) method D 4.6 eTime-dot(t) 0 method D 4.7 eTime(0) eTime(last) method D 4.7
[0,inf).[0,0.5] sTime [0,inf) method D 4.6 sTime-dot(t) 0 method D 4.7 sTime(0) sTime(last) method D 4.7
(0,50].(0,50] wPosit [0,0] 2ci D 4.4 wPosit-dot(t) 0 method D 4.7 wPosit(0) wPosit(last) method D 4.7

down.int int o[0] emergency 4 D 2.9 down.null 4 D 3.4

[0,inf).[0,6) eTime [6,inf) method D 4.8 eTime-dot(t) 0 method D 4.9 eTime(0) eTime(last) method D 4.9 [0,inf).[6,inf)
[0,inf).[0,0.5] sTime [0,inf) method D 4.8 sTime-dot(t) 0 method D 4.9 sTime(0) sTime(last) method D 4.9 [0,inf).[0,inf)
(0,50].(0,50] wPosit (0,50] method D 4.8 wPosit-dot(t) 0 method D 4.9 wPosit(0) wPosit(last) method D 4.9 (0,50].(0,50]

down.int up o[0] null 4 D 2.13 down.int method C 3.7

[0,inf).[0,6) eTime [0,inf) method C 3.6 eTime-dot(t) 1 4, 4b(D) D 1.19 eTime(0) eTime(last) method D 2.13 [0,inf).[0,6)
[0,inf).[0,0.5] sTime [0,inf) method C 3.6 sTime-dot(t) 0 3d(D) D 1.19 sTime(0) sTime(last) method D 2.13 [0,inf).[0,0.5]

138

Prefix
Sequence Stimulus

I Var Blocks Reqs Step Var exp Reqs Step Var exp Reqs Step Sequence Reqs Step

Characteristic
Predicates Trajectory Definition Condition Vector Equivalent

Sequence

(0,50].(0,50] wPosit [0,50] method C 3.6 wPosit-dot(t) -10 2b, 2bi D 1.19 wPosit(0) wPosit(last) method D 2.13 (0,50].(0,50]

down.int up o[0] null 4 D 2.11 down.int method C 3.7

[0,inf).[0,6) eTime [0,6) 4 D 4.4 eTime-dot(t) 1 4, 4b(D) D 1.19 eTime(0) eTime(last) method D 2.13 [0,inf).[0,6)
[0,inf).[0,0.5] sTime [0,inf) method D 4.6 sTime-dot(t) 0 3d(D) D 1.19 sTime(0) sTime(last) method D 2.13 [0,inf).[0,0.5]
(0,50].(0,50] wPosit [0,50] method D 4.6 wPosit-dot(t) -10 2b, 2bi D 1.19 wPosit(0) wPosit(last) method D 2.13 (0,50].(0,50]

down.int up o[0] null method D 4.7 lamda 1b, 1c(D), 2, 3, 4 D 3.4

[0,inf).[0,6) eTime [0,6) method D 4.6 eTime-dot(t) 0 4b(D) D 1.10 eTime(0) eTime(last) 4b(D) D 2.11
[0,inf).[0,0.5] sTime [0,inf) method D 4.6 sTime-dot(t) 0 3d(D) D 1.10 sTime(0) sTime(last) 3d(D) D 2.11
(0,50].(0,50] wPosit [50,50] 2ci D 4.4 wPosit-dot(t) 0 2bi D 1.10 wPosit(0) wPosit(last) 1, 2, 2b D 2.11

down.int up o[0] null method D 4.9 up 2b, 2bi, 4 D 3.4

[0,inf).[0,6) eTime [0,6) method D 4.8 eTime-dot(t) 1 4 D 1.10 eTime(0) 0 4c(D) D 2.9 [0,inf)
[0,inf).[0,0.5] sTime [0,inf) method D 4.8 sTime-dot(t) 1 3 D 1.10 sTime(0) 0 3c(D) D 2.9 [0,inf)
(0,50].(0,50] wPosit [0,50) method D 4.8 wPosit-dot(t) 10 2b D 1.10 wPosit(0) wPosit(last) 1, 2, 2b D 2.11 [0,50)

down.int up o[0] null 4 D 2.13 down.int method C 3.7

[0,inf).[0,6) eTime [6,inf) method D 4.8 eTime-dot(t) 0 4, 4b(D) D 1.10 eTime(0) eTime(last) 4b(D) D 2.11 [0,inf).[0,6)
[0,inf).[0,0.5] sTime [0,inf) method D 4.8 sTime-dot(t) 0 3d(D) D 1.10 sTime(0) sTime(last) 3d(D) D 2.11 [0,inf).[0,0.5]
(0,50].(0,50] wPosit [0,50] method D 4.8 wPosit-dot(t) 0 2bi, 4 D 1.10 wPosit(0) wPosit(last) 1, 2, 2b D 2.11 (0,50].(0,50]

down.int up o[0] null 4 D 2.11 lamda 1b, 1c(D), 2, 3, 4 D 3.4

[0,inf).[0,6) eTime [6,inf) method D 4.6 eTime-dot(t) 0 method D 4.7 eTime(0) eTime(last) method D 4.7
[0,inf).[0,0.5] sTime [0,inf) method D 4.6 sTime-dot(t) 0 method D 4.7 sTime(0) sTime(last) method D 4.7
(0,50].(0,50] wPosit [50,50] 2ci D 4.4 wPosit-dot(t) 0 method D 4.7 wPosit(0) wPosit(last) method D 4.7

down.int up o[0] emergency 4 D 2.9 down.null 4 D 3.4

[0,inf).[0,6) eTime [6,inf) method D 4.8 eTime-dot(t) 0 method D 4.9 eTime(0) eTime(last) method D 4.9 [0,inf).[6,inf)
[0,inf).[0,0.5] sTime [0,inf) method D 4.8 sTime-dot(t) 0 method D 4.9 sTime(0) sTime(last) method D 4.9 [0,inf).[0,inf)
(0,50].(0,50] wPosit [0,50) method D 4.8 wPosit-dot(t) 0 method D 4.9 wPosit(0) wPosit(last) method D 4.9 (0,50].(0,50]

up.int null o[0] null 4 D 2.13 up.int method C 3.7

[0,inf).[0,6) eTime [0,inf) method C 3.6 eTime-dot(t) 1 2bi, 4b(D) D 1.19 eTime(0) eTime(last) method D 2.13 [0,inf).[0,6)
[0,inf).[0,0.5] sTime [0,inf) method C 3.6 sTime-dot(t) 0 3 D 1.10 sTime(0) sTime(last) 3 D 2.11 [0,inf).[0,0.5]
[0,50).[0,50) wPosit [0,50] method C 3.6 wPosit-dot(t) 10 2bi, 4b(D) D 1.19 wPosit(0) wPosit(last) method D 2.13 [0,50).[0,50)

up.int null o[0] null 4 D 2.11 up.int method C 3.7

[0,inf).[0,6) eTime [0,6) 4 D 4.4 eTime-dot(t) 1 2bi, 4b(D) D 1.19 eTime(0) eTime(last) method D 2.13 [0,inf).[0,6)
[0,inf).[0,0.5] sTime [0,inf) method D 4.6 sTime-dot(t) 0 method D 4.7 sTime(0) sTime(last) method D 4.7 [0,inf).[0,0.5]
[0,50).[0,50) wPosit [0,50] method D 4.6 wPosit-dot(t) 10 2bi, 4b(D) D 1.19 wPosit(0) wPosit(last) method D 2.13 [0,50).[0,50)

up.int null o[0] null method D 4.7 lamda 1b, 1c(D), 2, 3, 4 D 3.4

[0,inf).[0,6) eTime [0,6) method D 4.6 eTime-dot(t) 0 4b(D) D 1.10 eTime(0) eTime(last) 4b(D) D 2.11
[0,inf).[0,0.5] sTime [0,inf) method D 4.6 sTime-dot(t) 0 method D 4.7 sTime(0) sTime(last) method D 4.7
[0,50).[0,50) wPosit [50,50] 2bi D 4.4 wPosit-dot(t) 0 2bi D 1.10 wPosit(0) wPosit(last) 1, 2, 2a, 2b D 2.11

up.int null o[0] null method D 4.9 up.int 3 D 3.4

[0,inf).[0,6) eTime [0,6) method D 4.8 eTime-dot(t) 1 4 D 1.10 eTime(0) eTime(last) 4 D 2.11 [0,inf).[0,6)
[0,inf).[0,0.5] sTime [0,inf) method D 4.8 sTime-dot(t) 0 method D 4.9 sTime(0) sTime(last) method D 4.9 [0,inf).[0,0.5]
[0,50).[0,50) wPosit [0,50) method D 4.8 wPosit-dot(t) 10 2b D 1.10 wPosit(0) wPosit(last) 1, 2, 2a, 2b D 2.11 [0,50).[0,50)

up.int null o[0] null 4 D 2.13 up.int method C 3.7

[0,inf).[0,6) eTime [6,inf) method D 4.8 eTime-dot(t) 0 2bi, 4b(D) D 1.10 eTime(0) eTime(last) 4b(D) D 2.11 [0,inf).[0,6)
[0,inf).[0,0.5] sTime [0,inf) method D 4.8 sTime-dot(t) 0 method D 4.9 sTime(0) sTime(last) method D 4.9 [0,inf).[0,0.5]
[0,50).[0,50) wPosit [0,50] method D 4.8 wPosit-dot(t) 0 2bi, 4 D 1.10 wPosit(0) wPosit(last) 2bi, 4 D 2.11 [0,50).[0,50)

up.int null o[0] null 4 D 2.11 lamda 1b, 1c(D), 2, 3, 4 D 3.4

[0,inf).[0,6) eTime [6,inf) method D 4.6 eTime-dot(t) 0 method D 4.7 eTime(0) eTime(last) method D 4.7
[0,inf).[0,0.5] sTime [0,inf) method D 4.6 sTime-dot(t) 0 method D 4.7 sTime(0) sTime(last) method D 4.7
[0,50).[0,50) wPosit [50,50] 2bi D 4.4 wPosit-dot(t) 0 method D 4.7 wPosit(0) wPosit(last) method D 4.7

up.int null o[0] emergency 4 D 2.9 down.null 4 D 3.4

[0,inf).[0,6) eTime [6,inf) method D 4.8 eTime-dot(t) 0 method D 4.9 eTime(0) eTime(last) method D 4.9 [0,inf).[6,inf)
[0,inf).[0,0.5] sTime [0,inf) method D 4.8 sTime-dot(t) 0 method D 4.9 sTime(0) sTime(last) method D 4.9 [0,inf).[0,inf)
[0,50).[0,50) wPosit [0,50) method D 4.8 wPosit-dot(t) 0 method D 4.9 wPosit(0) wPosit(last) method D 4.9 (0,50].(0,50]

up.int down o[0] null 4 D 2.13 up.int method C 3.7

[0,inf).[0,6) eTime [0,inf) method C 3.6 eTime-dot(t) 1 4, 4b(D) D 1.19 eTime(0) eTime(last) method D 2.13 [0,inf).[0,6)
[0,inf).[0,0.5] sTime [0,inf) method C 3.6 sTime-dot(t) 0 3d(D) D 1.19 sTime(0) sTime(last) method D 2.13 [0,inf).[0,0.5]

139

Prefix
Sequence Stimulus

I Var Blocks Reqs Step Var exp Reqs Step Var exp Reqs Step Sequence Reqs Step

Characteristic
Predicates Trajectory Definition Condition Vector Equivalent

Sequence

[0,50).[0,50) wPosit [0,50] method C 3.6 wPosit-dot(t) 10 2c, 2ci D 1.19 wPosit(0) wPosit(last) method D 2.13 [0,50).[0,50)

up.int down o[0] null 4 D 2.11 up.int method C 3.7

[0,inf).[0,6) eTime [0,6) 4 D 4.4 eTime-dot(t) 1 4, 4b(D) D 1.19 eTime(0) eTime(last) method D 2.13 [0,inf).[0,6)
[0,inf).[0,0.5] sTime [0,inf) method D 4.6 sTime-dot(t) 0 3d(D) D 1.19 sTime(0) sTime(last) method D 2.13 [0,inf).[0,0.5]
[0,50).[0,50) wPosit [0,50] method D 4.6 wPosit-dot(t) 10 2c, 2ci D 1.19 wPosit(0) wPosit(last) method D 2.13 [0,50).[0,50)

up.int down o[0] null method D 4.7 lamda 1b, 1c(D), 2, 3, 4 D 3.4

[0,inf).[0,6) eTime [0,6) method D 4.6 eTime-dot(t) 0 4b(D) D 1.10 eTime(0) eTime(last) 4b(D) D 2.11
[0,inf).[0,0.5] sTime [0,inf) method D 4.6 sTime-dot(t) 0 3d(D) D 1.10 sTime(0) sTime(last) 3d(D) D 2.11
[0,50).[0,50) wPosit [0,0] 2ci D 4.4 wPosit-dot(t) 0 2ci D 1.10 wPosit(0) wPosit(last) 1, 2, 2a, 2c D 2.11

up.int down o[0] null method D 4.9 down 2c, 2ci, 4 D 3.4

[0,inf).[0,6) eTime [0,6) method D 4.8 eTime-dot(t) 1 4 D 1.10 eTime(0) 0 4c(D) D 2.9 [0,inf)
[0,inf).[0,0.5] sTime [0,inf) method D 4.8 sTime-dot(t) 1 3 D 1.10 sTime(0) 0 3c(D) D 2.9 [0,inf)
[0,50).[0,50) wPosit (0,50] method D 4.8 wPosit-dot(t) -10 2c D 1.10 wPosit(0) wPosit(last) 1, 2, 2a, 2c D 2.13 (0,50]

up.int down o[0] null 4 D 2.13 up.int method C 3.7

[0,inf).[0,6) eTime [6,inf) method D 4.8 eTime-dot(t) 0 4, 4b(D) D 1.10 eTime(0) eTime(last) 4b(D) D 2.11 [0,inf).[0,6)
[0,inf).[0,0.5] sTime [0,inf) method D 4.8 sTime-dot(t) 0 3d(D) D 1.10 sTime(0) sTime(last) 3d(D) D 2.11 [0,inf).[0,0.5]
[0,50).[0,50) wPosit [0,50] method D 4.8 wPosit-dot(t) 0 2ci, 4 D 1.10 wPosit(0) wPosit(last) 1, 2, 2c D 2.11 [0,50).[0,50)

up.int down o[0] null 4 D 2.11 lamda 1b, 1c(D), 2, 3, 4 D 3.4

[0,inf).[0,6) eTime [6,inf) method D 4.6 eTime-dot(t) 0 method D 4.7 eTime(0) eTime(last) method D 4.7
[0,inf).[0,0.5] sTime [0,inf) method D 4.6 sTime-dot(t) 0 method D 4.7 sTime(0) sTime(last) method D 4.7
[0,50).[0,50) wPosit [0,0] 2ci D 4.4 wPosit-dot(t) 0 method D 4.7 wPosit(0) wPosit(last) method D 4.7

up.int down o[0] emergency 4 D 2.9 down.null 4 D 3.4

[0,inf).[0,6) eTime [6,inf) method D 4.8 eTime-dot(t) 0 method D 4.9 eTime(0) eTime(last) method D 4.9 [0,inf).[6,inf)
[0,inf).[0,0.5] sTime [0,inf) method D 4.8 sTime-dot(t) 0 method D 4.9 sTime(0) sTime(last) method D 4.9 [0,inf).[0,inf)
[0,50).[0,50) wPosit (0,50] method D 4.8 wPosit-dot(t) 0 method D 4.9 wPosit(0) wPosit(last) method D 4.9 (0,50].(0,50]

up.int int o[0] null 4 D 2.13 up.int method C 3.7

[0,inf).[0,6) eTime [0,inf) method C 3.6 eTime-dot(t) 1 2bi, 4b(D) D 1.19 eTime(0) eTime(last) method D 2.13 [0,inf).[0,6)
[0,inf).[0,0.5] sTime [0,inf) method C 3.6 sTime-dot(t) 0 3 D 1.10 sTime(0) sTime(last) 3 D 2.11 [0,inf).[0,0.5]
[0,50).[0,50) wPosit [0,50] method C 3.6 wPosit-dot(t) 10 2bi, 4b(D) D 1.19 wPosit(0) wPosit(last) method D 2.13 [0,50).[0,50)

up.int int o[0] null 4 D 2.11 up.int method C 3.7

[0,inf).[0,6) eTime [0,6) 4 D 4.4 eTime-dot(t) 1 2bi, 4b(D) D 1.19 eTime(0) eTime(last) method D 2.13 [0,inf).[0,6)
[0,inf).[0,0.5] sTime [0,inf) method D 4.6 sTime-dot(t) 0 method D 4.7 sTime(0) sTime(last) method D 4.7 [0,inf).[0,0.5]
[0,50).[0,50) wPosit [0,50] method D 4.6 wPosit-dot(t) 10 2bi, 4b(D) D 1.19 wPosit(0) wPosit(last) method D 2.13 [0,50).[0,50)

up.int int o[0] null method D 4.7 lamda 1b, 1c(D), 2, 3, 4 D 3.4

[0,inf).[0,6) eTime [0,6) method D 4.6 eTime-dot(t) 0 4b(D) D 1.10 eTime(0) eTime(last) 4b(D) D 2.11
[0,inf).[0,0.5] sTime [0,inf) method D 4.6 sTime-dot(t) 0 method D 4.7 sTime(0) sTime(last) method D 4.7
[0,50).[0,50) wPosit [50,50] 2bi D 4.4 wPosit-dot(t) 0 2bi D 1.10 wPosit(0) wPosit(last) 1, 2, 2a, 2b D 2.11

up.int int o[0] null method D 4.9 up.int 3 D 3.4

[0,inf).[0,6) eTime [0,6) method D 4.8 eTime-dot(t) 1 4 D 1.10 eTime(0) eTime(last) 4 D 2.11 [0,inf).[0,6)
[0,inf).[0,0.5] sTime [0,inf) method D 4.8 sTime-dot(t) 0 method D 4.9 sTime(0) sTime(last) method D 4.9 [0,inf).[0,0.5]
[0,50).[0,50) wPosit [0,50) method D 4.8 wPosit-dot(t) 10 2b D 1.10 wPosit(0) wPosit(last) 1, 2, 2a, 2b D 2.11 [0,50).[0,50)

up.int int o[0] null 4 D 2.13 up.int method C 3.7

[0,inf).[0,6) eTime [6,inf) method D 4.8 eTime-dot(t) 0 2bi, 4b(D) D 1.10 eTime(0) eTime(last) 4b(D) D 2.11 [0,inf).[0,6)
[0,inf).[0,0.5] sTime [0,inf) method D 4.8 sTime-dot(t) 0 method D 4.9 sTime(0) sTime(last) method D 4.9 [0,inf).[0,0.5]
[0,50).[0,50) wPosit [0,50] method D 4.8 wPosit-dot(t) 0 2bi, 4 D 1.10 wPosit(0) wPosit(last) 2bi, 4 D 2.11 [0,50).[0,50)

up.int int o[0] null 4 D 2.11 lamda 1b, 1c(D), 2, 3, 4 D 3.4

[0,inf).[0,6) eTime [6,inf) method D 4.6 eTime-dot(t) 0 method D 4.7 eTime(0) eTime(last) method D 4.7
[0,inf).[0,0.5] sTime [0,inf) method D 4.6 sTime-dot(t) 0 method D 4.7 sTime(0) sTime(last) method D 4.7
[0,50).[0,50) wPosit [50,50] 2bi D 4.4 wPosit-dot(t) 0 method D 4.7 wPosit(0) wPosit(last) method D 4.7

up.int int o[0] emergency 4 D 2.9 down.null 4 D 3.4

[0,inf).[0,6) eTime [6,inf) method D 4.8 eTime-dot(t) 0 method D 4.9 eTime(0) eTime(last) method D 4.9 [0,inf).[6,inf)
[0,inf).[0,0.5] sTime [0,inf) method D 4.8 sTime-dot(t) 0 method D 4.9 sTime(0) sTime(last) method D 4.9 [0,inf).[0,inf)
[0,50).[0,50) wPosit [0,50) method D 4.8 wPosit-dot(t) 0 method D 4.9 wPosit(0) wPosit(last) method D 4.9 (0,50].(0,50]

up.int up o[0] null 4 D 2.13 up.int method C 3.7

[0,inf).[0,6) eTime [0,inf) method C 3.6 eTime-dot(t) 1 4b(D) D 1.19 eTime(0) eTime(last) method D 2.13 [0,inf).[0,6)
[0,inf).[0,0.5] sTime [0,inf) method C 3.6 sTime-dot(t) 0 3d(D) D 1.19 sTime(0) sTime(last) method D 2.13 [0,inf).[0,0.5]

140

Prefix
Sequence Stimulus

I Var Blocks Reqs Step Var exp Reqs Step Var exp Reqs Step Sequence Reqs Step

Characteristic
Predicates Trajectory Definition Condition Vector Equivalent

Sequence

[0,50).[0,50) wPosit [0,50] method C 3.6 wPosit-dot(t) 10 2bi, 4 D 1.19 wPosit(0) wPosit(last) method D 2.13 [0,50).[0,50)

up.int up o[0] null 4 D 2.11 up.int method C 3.7

[0,inf).[0,6) eTime [0,6) 4 D 4.4 eTime-dot(t) 1 4b(D) D 1.19 eTime(0) eTime(last) method D 2.13 [0,inf).[0,6)
[0,inf).[0,0.5] sTime [0,inf) method D 4.6 sTime-dot(t) 0 3d(D) D 1.19 sTime(0) sTime(last) method D 2.13 [0,inf).[0,0.5]
[0,50).[0,50) wPosit [0,50] method D 4.6 wPosit-dot(t) 10 2bi D 1.19 wPosit(0) wPosit(last) method D 2.13 [0,50).[0,50)

up.int up o[0] null method D 4.7 lamda 1b, 1c(D), 2, 3, 4 D 3.4

[0,inf).[0,6) eTime [0,6) method D 4.6 eTime-dot(t) 0 4b(D) D 1.10 eTime(0) eTime(last) 4b(D) D 2.11
[0,inf).[0,0.5] sTime [0,inf) method D 4.6 sTime-dot(t) 0 3d(D) D 1.10 sTime(0) sTime(last) 3d(D) D 2.11
[0,50).[0,50) wPosit [50,50] 2bi D 4.4 wPosit-dot(t) 0 2bi D 1.10 wPosit(0) wPosit(last) 2bi D 2.11

up.int up o[0] null method D 4.9 up 2b, 2bi, 4 D 3.4

[0,inf).[0,6) eTime [0,6) method D 4.8 eTime-dot(t) 1 4 D 1.10 eTime(0) eTime(last) 4 D 2.11 [0,inf)
[0,inf).[0,0.5] sTime [0,inf) method D 4.8 sTime-dot(t) 1 3c(D) D 1.10 sTime(0) 0 3c(D) D 2.9 [0,inf)
[0,50).[0,50) wPosit [0,50) method D 4.8 wPosit-dot(t) 10 2b D 1.10 wPosit(0) wPosit(last) 2b D 2.11 [0,50)

up.int up o[0] null 4 D 2.13 up.int method C 3.7

[0,inf).[0,6) eTime [6,inf) method D 4.8 eTime-dot(t) 0 4, 4b(D) D 1.10 eTime(0) eTime(last) 4b(D) D 2.11 [0,inf).[0,6)
[0,inf).[0,0.5] sTime [0,inf) method D 4.8 sTime-dot(t) 0 3d(D) D 1.10 sTime(0) sTime(last) 3d(D) D 2.11 [0,inf).[0,0.5]
[0,50).[0,50) wPosit [0,50] method D 4.8 wPosit-dot(t) 0 2bi, 4 D 1.10 wPosit(0) wPosit(last) 2b D 2.11 [0,50).[0,50)

up.int up o[0] null 4 D 2.11 lamda 1b, 1c(D), 2, 3, 4 D 3.4

[0,inf).[0,6) eTime [6,inf) method D 4.6 eTime-dot(t) 0 method D 4.7 eTime(0) eTime(last) method D 4.7
[0,inf).[0,0.5] sTime [0,inf) method D 4.6 sTime-dot(t) 0 method D 4.7 sTime(0) sTime(last) method D 4.7
[0,50).[0,50) wPosit [50,50] 2bi D 4.4 wPosit-dot(t) 0 method D 4.7 wPosit(0) wPosit(last) method D 4.7

up.int up o[0] emergency 4 D 2.9 down.null 4 D 3.4

[0,inf).[0,6) eTime [6,inf) method D 4.8 eTime-dot(t) 0 method D 4.9 eTime(0) eTime(last) method D 4.9 [0,inf).[6,inf)
[0,inf).[0,0.5] sTime [0,inf) method D 4.8 sTime-dot(t) 0 method D 4.9 sTime(0) sTime(last) method D 4.9 [0,inf).[0,inf)
[0,50).[0,50) wPosit [0,50) method D 4.8 wPosit-dot(t) 0 method D 4.9 wPosit(0) wPosit(last) method D 4.9 (0,50].(0,50]

Vita

Jason Martin Carter was born in Dayton, Ohio, on June 27, 1968. After completing Morristown-

Hamblem High School East, Morristown, TN in 1986, he entered the United State Naval Academy

and graduated with a Bachelor of Science degree in Computer Science in 1990. He was designated

a Naval Aviator in August of 1992 and flew missions all over the world until 1997. From 1997 to

2000, Lieutenant Carter was responsible for applications, process improvement, and advancements

in technology for admissions at the United States Naval Academy. After leaving active duty in

2000, Jason was a general manager for a small business and then a supervisor for an automated

production facility in the automotive industry. From January 2005 to December 2009, he attended

the University of Tennessee, Knoxville and worked in the Software Quality Research Laboratory

(SQRL). Jason continues to serve in the United States Navy Reserve and was promoted to the rank

of Commander in 2007. He received his Master’s of Science Degree in Computer Science in May

2007 and Doctor of Philosophy Degree in Computer Science in December of 2009.

141

	University of Tennessee, Knoxville
	Trace: Tennessee Research and Creative Exchange
	12-2009

	Sequence-Based Specification of Embedded Systems
	Jason Martin Carter
	Recommended Citation

	tmp.1266948721.pdf.V07Py

