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Abstract 

 

This work investigates the prediction of electricity price and power transmission network 

congestions under load variation and uncertainty in deregulated power systems. The study is 

carried out in three stages. 

In the first stage, the mathematical programming models, which produce the generation 

dispatch solution, the Locational Marginal Price (LMP), and the system statuses such as 

transmission congestions, are reviewed. These models are often referred to as Optimal Power 

Flow (OPF) models, and can be categorized into two major groups: Alternating Current OPF 

(ACOPF) and Direct Current OPF (DCOPF). Due to the convergence issue with the ACOPF 

model and the concern of inaccuracy with the DCOPF model, a new DCOPF-based algorithm is 

proposed, using a fictitious nodal demand (FND) model to represent power losses at each 

individual line. This is an improvement over the previous work that assigns losses to a few user-

defined buses, and is capable of achieving a better tradeoff between computational effectiveness 

and the accuracy of the results. 

In the second stage, the solution features are explored for each of the three OPF models to 

predict critical load levels where a step change of LMP occurs due to the change of binding 

constraints. After careful examinations of the mathematical relationship of the OPF solutions, 

nodal prices, and congestions, with respect to load variation, simplex-like method, quadratic 

interpolation method, and variable substitution method are proposed for each of the three OPF 

models respectively in order to predict price changes and system congestion.  
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In the last stage, the probabilistic feature of the forecasted LMP is investigated. Due to the 

step change characteristic of the LMP and uncertainty in load forecasting, the forecasted LMP 

represents only a certain possibility in a lossless DCOPF framework. Additional possible LMP 

values exist, other than the deterministically forecasted LMP. Therefore, the concept of 

Probabilistic LMP is introduced and a systematic approach to quantify the probability of the 

forecasted LMP, with respect to load variation, is proposed. Similar concepts and methodology 

have been applied to the ACOPF and FND-based DCOPF frameworks, which can be useful for 

power market participants in making financial decisions. 
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1 Introduction 

1.1. Background  

1.1.1. Deregulation 

The physical structure of power systems, consisting of generation, transmission, and 

distribution networks, appears the same as it did decades ago, as shown in Figure 1.1. 

However, the ownership structure and the operation of power systems have changed 

fundamentally.  

 

 

Figure 1.1. Typical electric power systems [1] 
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Traditionally, the power industry is vertically integrated, within which the generation, 

transmission, and distribution are bundled together as a utility to serve its customers. With the 

expansion of each individual power system, additional power grids are connected to reap the 

benefits of scale effect. 

In the wake of the successful deregulation of other industries, such as airlines, wireless 

communications, and mailing services, individuals, in the late 1980‟s, researched the 

possibility of deregulating the power industry in the hopes of lowering the price of electricity. 

Some argued that unbundling the generation, transmission, and distribution sectors of the 

power industry would, naturally, create competition within each sector. Later, the power 

engineering community gradually agreed that the transmission sector needs to maintain the 

power systems as a centralized operation. This is due to the natural monopoly feature of 

transmission systems created by the inefficiency and high cost of duplicate investments. For 

similar reasons, the distribution sector should maintain a monopoly mode as well. However, 

the physical network should be operated as a fair and open platform for generators and loads 

to carry out the electricity trade. Therefore, the Federal Energy Regulatory Commission 

(FERC) issued an order in 2000 to create non-profit organizations, called Independent 

System Operator (ISO) or Regional Transmission Organization (RTO), to organize regional 

power systems to ensure non-discriminatory transmission services to generation companies 

(GENCOs) and bilateral transactions. An ISO or RTO is committed to providing open and 

fair transmission access, called “Open Access”, and to treating all participants equally. In 

addition, it is responsible for operating the power grid reliably and efficiently. This is 

achieved through sound market rules, proper monitoring and regulation, and timely and 

accurate information publications, such as wholesale market prices.  

The deregulation resulted in a wholesale power market, also known as an energy market or 

electricity market, with GENCOs, load serving entities (LSEs) or distribution companies 
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(DISCOs), and traders as major market players, as seen in Figure 1.2. GENCOs, DISCOs, 

and large consumers trade electricity directly in the wholesale market, while small consumers 

purchase electricity through DISCOs who operate the distribution network and serve the 

customers within its territory. Market players in this wholesale pool market can buy or sell 

electricity by submitting offers and bids. The ISO will select the offers and bids, from an 

economical perspective, while ensuring the security of the power systems. Market players can 

also execute bilateral transactions that utilize the transmission network as a wheeling service. 

These transactions will be submitted to the ISO to ensure feasibility. 

A sufficient number of players usually ensure the effectiveness of competition in a power 

market. For example, in 2003 in the Pennsylvania, Jersey, Maryland Power Pool (PJM) 

market, there were more than 200 market buyers, sellers, and traders [18]. Besides players 

who are actively engaged in buying and selling transactions, other entities, such as 

transmission owners (TOs), legislators, and environmentalists, are also involved in the design, 

evolvement, and regulation of the power market. 

 

 

Figure 1.2. Wholesale model of electricity market [7] 



 
4 

 

It should be pointed out that the electricity market differs from regular commodity markets 

such as oil, bread, and even water, in the sense that no practical technology is available for 

large-scale storage of electricity, except for a very small portion of pumped storage units. 

This implies that electricity has to be procured in real-time from primary energy sources such 

as coal, gas, wind, and solar. In addition, the balance of supply and demand has to be 

maintained instantaneously, or the quality of the electricity, either the frequency or voltage 

level, will be compromised. A severe imbalance will lead to system instability, or even 

collapse, within a few minutes. Another important feature is electricity flow paths. Electricity, 

sent from a source to a sink, is distributed among transmission lines that are subject to 

physical laws such as Kirchhoff‟s Circuit Law; instead of taking designated paths like other 

commodities are delivered. 

1.1.2. Day-ahead and real-time energy markets 

A power market may be comprised of different types of markets. An energy market is the 

market where the financial or physical trading of electricity takes place. It typically consists 

of a day-ahead market and real-time market, while the ancillary service market is the market 

to procure services such as the synchronized reserve, regulation, and black start to support the 

reliable operation of the transmission system in the consideration of unexpected events. In 

order to help market participants hedge the risk of being exposed to high electricity prices 

due to transmission system congestions, the Financial Transmission Rights (FTR) market was 

created. Participants can acquire FTRs in monthly or annual FTR auctions to hedge against 

congestion costs. 

The energy market will be presented next in further detail as it is the primary focus of this 

work. The day-ahead market is a forward market and runs on the day before the operating 
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day. Generation offers, demand bids, and bilateral transactions are submitted to the market by 

a certain time, regulated by the market timeline. Virtual offers and bids are also accepted in 

the market as their contribution increases market liquidity. The load is estimated by Load 

Forecasting tools. An optimization model called the Security Constrained Unit Commitment 

(SCUC) and Security Constrained Economic Dispatch (SCED) is then established and solved 

to produce the generation dispatch and electricity prices for each hour of the operating day. A 

SCUC problem is to obtain a unit commitment schedule at minimum generation cost with 

system reliability requirements enforced, such as generation resource operating constraints. It 

may incorporate a subset of transmission constraints, which represent the most likely binding 

constraints, sometimes called “watch list transmission flowgate constraints” [13]. Due to the 

performance limitations of the SCUC solvers, SCUC can not handle the full set of 

transmission constraints. These are addressed in SCED [13]. SCED is an optimization 

problem similar to SCUC with a given unit commitment obtained from SCUC, and is capable 

of modeling a full set of prevailing constraints.  

The major portion of the load is matched by the generation scheduled in the day-ahead 

market, which significantly reduces price uncertainty and provides market players a tool to 

lock in an advance price as opposed to being exposed to volatile prices in real-time. This also 

helps to reduce incentives used to exercise market power [21].  

The real-time market is a spot market and aims to balance the deviations between the 

forecasted load in real-time and the forecasted load in the day-ahead market through the 

SCUC and SCED. The SCUC may be performed on an hourly basis or as needed, while the 

SCED is typically run on shorter intervals. For instance, a SCED is performed on a 5-minute 

basis in the PJM and Midwest power markets, and the price is calculated on the same interval.  

In terms of the settlement in the day-ahead market, market players will receive or make 

payments based on their hourly scheduled quantities and the day-ahead price. Participants in 
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the real-time market will receive or make payments for the deviation between their actual 

power generation/consumption and their scheduled quantities in the day-ahead market, based 

on the real-time price. This two-settlement mechanism provides incentive to market players 

to follow the dispatch instructions, and helps the two markets converge in terms of prices. 

1.1.3. Locational Marginal Price (LMP) 

When there is no transmission bottleneck and losses present during the transportation of 

the electricity, the cheapest power producer will be selected to serve the loads at all locations 

and therefore, the electricity price will be the same across the grid. This price is often called 

the market clearing price (MCP). In this scenario, the grid that connects all the generators and 

loads is similar to a single bus which has infinite transportation capability and induces no loss. 

When congestion occurs so that one or more transmission lines reach their thermal limit and 

are unable to carry additional power, a more expensive generation unit will be scheduled to 

serve the load since the cheaper generators could not reach the load location due to 

congestion. Consequently, electricity prices at this location will increase since it is served by 

the more expensive power producers. In addition to transmission congestion, power 

transmission losses also contribute to the varying prices at the different locations. For 

instance, a load, connected to the grid through a higher resistive transmission line, will be 

subject to a higher price since more electricity is lost during transportation, as opposed to the 

case of a lower resistive line. As a result, electricity price varies with locations. These 

characteristics lead to the concept of Locational Marginal Price (LMP). 

LMP was firstly introduced by F.C. Schweppe in 1998 [4]. By definition, the LMP at a 

given bus is the incremental cost of serving an infinitesimal change of load at that bus, while 

respecting all physical constraints. The Locational Marginal Pricing (LMP) methodology has 

been the dominant approach used in the U.S. power markets to calculate the electricity price 
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and to manage transmission congestion. Currently, LMP has been implemented or is under 

implementation at a number of ISO‟s such as the PJM, New York ISO, ISO-New England, 

California ISO, and Midwest ISO [11, 14, 15]. 

In theory, the LMP is the by-product of the economic dispatch (actually SCED) problem. 

Specifically, the LMP at a given bus is the shadow price of the power balance equation 

associated with that bus. Furthermore, the LMP can be decomposed into three parts: marginal 

energy price, marginal loss price, and marginal congestion price. These three parts represent 

the marginal cost associated with energy, loss, and congestion, respectively. The reason that 

the LMP is split into three components is that the marginal congestion component is used to 

calculate congestion revenue and the value of the FTR [32]. 

In practice, the day-ahead market generates the LMP, called “ex-ante LMP”, because the 

LMP is calculated before the event happens. In the real-time market, besides the calculation 

of the “ex-ante” LMP, a “post-LMP” calculation will be performed, for example, every 5 

minutes, to reflect what has actually happened in the market. The calculation respects the 

actual system conditions and generator responses, according to State Estimation results. 

These prices are called “post-LMP” prices. Theoretically, the post-LMP would be the same 

as the ex-ante LMP, if things go exactly as expected or forecasted. In practice, the post-LMP 

should be close to the ex-ante LMP, in most cases. In addition, in a well-designed and 

operated power market, the ex-ante and ex-post LMP are expected to converge over time. In 

this work, we focus on the ex-ante LMP as the research context is forecasting. 

The electricity price in a wholesale energy market changes constantly for a number of 

reasons, such as load changes, changes of generation offers and demand bids, change of 

transmission system in the event of outage and maintenance, and change of availability of 

generators due to outage. Among these factors, the load is changing the most frequently. 
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1.1.4. Economic Dispatch 

Economic dispatch (ED) is of primary interest in this dissertation as it is the model that 

produces LMP.  Economic dispatch in the day-ahead and real-time markets normally 

optimizes generation dispatch in such a way that social welfare is maximized. In the 

generation-side power market, where no dispatchable loads are available, the goal is 

equivalent to achieving minimum total generation cost without violating the safe operating 

range of any system component. However, in order to ensure minimum cost, several 

components will have to perform at their operating limits since the optimal dispatch will 

utilize the most cost effective components to their full capabilities without endangering them. 

For example, a transmission line may be scheduled to run at its thermal limit. There are three 

types of thermal limits for transmission lines: a normal operation rating, a long-term 

emergency rating (4 hours), and a short-term emergency rating (15 minutes) [65]. They 

represent the maximum ability of transporting power in the long-time, short-time, and very 

short time, respectively. The normal operation rating is used as the thermal limit in economic 

dispatch. This implies the dispatch should not endanger any transmission line after running 

for a long-time. For example, no transmission lines will be overheated due to ohmic losses 

and result in excessive sags, which could create a fault. 

In typical power market scheduling, N-1 security has to be maintained. This means the 

system has to be able to survive the disturbance of losing a single component without 

overloading any other system component and violating any constraint. When N-1 security is 

modeled in the economic dispatch problem, the problem is often called the Security 

Constrained Economic Dispatch (SCED). 
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1.1.5. Optimal Power Flow (OPF) and its models 

Mathematically, economic dispatch is a specific type of optimal power flow problem. 

Optimal power flow (OPF) normally refers to an optimization problem subject to the physical 

limitations of the power system [2]. The optimization objective has different forms other than 

the minimum generation cost, such as the minimum transmission losses or the minimum load 

shedding schedule. In this work, OPF will be used to refer to economic dispatch specifically 

for naming conventions. 

 The OPF model contains an objective function, equality constraints such as power 

balance equations, and inequality constraints such as the power flow thermal limit, generator 

ramp rate, and generator output limit. When contingency security is considered, it is 

sometimes called the Security Constrained OPF (SCOPF) to emphasize the inclusion of the 

security constraints model. In this dissertation, the contingency security is not explicitly 

modeled. However, it can be easily integrated through different sets of generation shift 

factors (GSF), as discussed in the following chapters. For notational convenience, the model 

in this work is referred to as OPF instead of SCOPF.   

According to the form of the power flow model, OPF models can be categorized into the 

Alternating Current OPF (ACOPF) and Direct Current OPF (DCOPF). The ACOPF model 

establishes the power balance equations in a regular AC model. They address the real and 

reactive power flows at the same time. In contrast, the DCOPF model employs the DC power 

flow, which is a linearized, simplified power flow model. The DC power flow model is 

derived utilizing assumptions which are reasonable for high-voltage transmission systems. 

For example, it is assumed that the voltage profile is 1.0 per unit (p.u.) throughout the 

network, and the voltage phase angle difference between adjacent buses is minimal. Reactive 

power, considered a local issue, is ignored in the DC power flow model.  
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A full ACOPF model is normally viewed as the most representative mathematical model 

to the practical scheduling problem and therefore, its corresponding results are considered as 

accurate and could be used as benchmark data. Despite the accuracy of its results, the 

ACOPF is a nonlinear programming problem and requires a good initial point to help the 

solver to converge. Occasionally, the model suffers from convergence problems, especially 

for large-scale power systems. Therefore, although the ACOPF is being used in some real-

world applications, such as in the California ISO [20], the DCOPF is used more often in 

scheduling with AC power flow verification. The DCOPF model is a much less complicated 

linear programming model, and could be solved with less effort and issues. The DCOPF has 

the advantage over the ACOPF in terms of convergence and speed. Therefore, the DCOPF is 

used by a number of ISOs in the U.S., such as the PJM [18], MISO [13], ISO New England 

[32], and NYISO [14]. The DCOPF is also often used in power system planning where 

numerous hypothetic cases are to be studied, and speed and convergence are two crucial 

factors in choosing the correct OPF model. Therefore, even though the DCOPF occasionally 

suffers from yielding inaccuracy results under heavily loaded systems, insufficient local 

reactive power supply, or transmission systems with a high r/x ratio, it is still very popular in 

the power industry among ISOs and market participants for operation and planning purposes.  

1.2. Motivation 

In power system planning and real-time operation, it is always desirable to forecast the 

system status. For a steady-state analysis, a crucial task is to identify whether the system is 

operating in a stressed condition. With more system components operating close to their 

capacity limits, the system becomes more vulnerable to potential disturbances. In contrast, if 

the system has fewer components close to its operating limits, the system has a bigger margin 

for disturbance and is more robust. 
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A stressed power system incurs economic burdens in addition to technical challenges. In a 

deregulated environment, transmission congestion will generate additional cost due to the re-

dispatch of more expensive generators [3]. In 2006, the total congestion cost in the PJM was 

approximately $1.06 billion, which accounts for 8% of the total PJM billing in that year [12]. 

Therefore, it is of great interest to investigate the influential factors that affect congestions. 

One is the load change/variation. For instance, when the load grows beyond the transmission 

capability of a transmission line or interface, congestion will occur. Corresponding actions, 

such as upgrading or new line construction, should be taken if economically viable. 

In fact, the successful prediction of important changes in the system‟s status provides 

information, in addition to congestion. For instance, when a cheap generator is reaching its 

upper-limit, a more expensive generator will be committed to serve the load increase. Then 

the LMPs throughout the system will change, with some changing dramatically. 

To date, no ready-to-use tools exist that can predict the important changes of system status, 

such as congestions, with respect to perturbations like load variation under the framework of 

the Optimal Power Flow (OPF). In fact, the power industry views the OPF problem from a 

simulation perspective, and runs the OPF under each of the operating conditions of interest 

(for instance, different load levels), while overlooking the fact that operating conditions 

change continuously since the load varies continuously, particularly in the short term. An 

individual OPF run provides a snapshot for a specific scenario while the system conditions, 

such as the load levels, change continuously. Therefore, it is of interest to investigate the 

dynamic behavior of a deregulated power system operation. For instance, it shall be 

interesting to investigate the sensitivity of OPF solutions with respect to change in load. 

Similarly, it can also be interesting to investigate the variations pattern of transmission 

congestion and price with respect to load variation.  
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On the other hand, the optimal solution of an OPF problem is a function of a number of 

parameters in the model, but the parameters are not equally significant in the study as they 

have different characteristics with respect to time. For example, the generator bounds and 

transmission line/transformer thermal limits are relatively less dynamic (i.e., more or less a 

constant value), at least in the short term. Generator offers may change on an hourly basis and 

have stochastic characteristics due to bidding strategies. However, generator offers could be 

inferred from historical data since bidding strategies may remain unchanged for days of the 

week, hours of the day, or both [6]. The availability of generation and transmission network 

components changes occasionally, either at designated times (in the case of a forced outage 

and unit commitment) or are hard to predict (in the case of an unplanned outage). Among 

these parameters, the load is the one that changes constantly, contributing directly to price 

volatility. Although the load has stochastic characteristic, it exhibits strong cyclical patterns. 

In addition, load forecasting is performed on the bus or area level, where loads under the 

same bus or area are aggregated and easier to predict.  

Therefore, the load and its variations are of the primary interest. This work intends to 

forecast potential line congestions, as well as the change of marginal units and the resulting 

LMP in response to load variations. Results of this work will help market participants in 

forecasting market prices and developing their bidding strategy. The ISO could also perform 

the prediction and publish the forecasted price signal to allow customers to make adjustments 

in advance to hedge a potential price spike, while currently, customers can only respond after 

the price is published or make predictions from historical data. This capability will in turn 

benefit the system by reducing congestion time and the need for peak generation. 

The solution pattern of the OPF is dependent on the type of OPF model that is adopted. 

The DCOPF will be studied since it is widely used. Although the AC power flow model, 

which is a system of nonlinear equations, is normally used for verification purposes, the 
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ACOPF is not normally used in real applications due to its complex formulation and 

computational issues, such as convergence and speed. Nevertheless, using ACOPF is the 

ultimate goal for the future and serves as the source of benchmarked results. Therefore, 

studies will be conducted under both the DCOPF and ACOPF frameworks. 

In addition to the OPF models used, the successful prediction of the system status and 

LMP relies on acquired model parameters. One of the more volatile parameters is the load, 

which is never exactly known and has to be estimated using load forecasting tools. 

Uncertainty in the forecasted load could result in the predicted LMP being different from the 

actual LMP. Therefore, this work will also investigate the confidence level of the forecasted 

LMP, which could be used by market participants to formulate bidding strategies and hedge 

risk against load variation and uncertainty. 

1.3. Dissertation Outline 

Literatures relevant to this work are briefly reviewed in Chapter 2. 

Chapter 3 first revisits the conventional OPF models from which generation dispatch and 

LMP are calculated. The reviewed models include the conventional Lossless DCOPF, 

ACOPF, and DCOPF with loss model. The conventional Lossless DCOPF and ACOPF have 

their advantages and disadvantages in accuracy and convergence. The conventional DCOPF 

with loss model was an attempt to achieve a tradeoff between accuracy and convergence, but 

it suffers from problems as well. Furthermore, few studies have been carried out to 

differentiate results between the DCOPF and benchmark ACOPF. In this regard, first, a new 

DCOPF-based model based on fictitious nodal demand (FND) is proposed to achieve an 

improved tradeoff between accuracy and speed. In addition, a rule of thumb will be stated 

which assesses the accuracy and confidence level of the approximated model when compared 

with the ACOPF results. 
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In Chapter 4, congestion and price prediction will be conducted for each of the three 

models: the conventional lossless DCOPF model, ACOPF model and the proposed FND-

based DCOPF model. For the lossless DCOPF dispatch model, a simplex-like, direct method 

is proposed to calculate the generation sensitivity, and identify new binding and unbinding 

limits in an efficient way. For the ACOPF model, an interpolation method is proposed to 

approximate the scheduled generation output and estimate the upcoming congestion. For the 

FND-based DCOPF model, a variable substitution approach will be presented. 

Chapter 5 presents the concept of a probabilistic LMP which takes into consideration the 

effects of load forecasting errors. Methodology for evaluating the confidence level of the 

forecasted LMP will be proposed for the lossless DCOPF first and then extended to the 

ACOPF and FND-based DCOPF models, respectively. 

The approaches and methodology are concluded in Chapter 6. Future work is presented as 

well. 

Figure 1.3 depicts the structure of this dissertation, where the green blocks represent works 

that have been presented in this dissertation. The works are organized in a two dimensional 

manner to make the connections clear to readers. The first dimension presents three research 

stages such as the OPF and LMP calculation, congestion and price prediction, and 

probabilistic LMP. The second dimension presents OPF models including the lossless 

DCOPF, ACOPF, and DCOPF with loss model. Each work in this dissertation refers to a 

module and an OPF model. 
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Figure 1.3. Dissertation Structure 

1.4. Scope and Contribution of This Work 

The problem of fast and accurate prediction of critical system status (such as congestion 

and marginal units) and LMP is considered in this work. Several general assumptions are 

taken exclusively in the work.  

 The power system under study is assumed to be a three-phase synchronous power 

system with balanced loads and system components. Therefore, a one-line diagram 

will be used for better illustration.  

 An aggregated network model is adopted. For example, a transmission line will be 

modeled as a resistance and reactance connected in series since only the voltages at 

both ends of the line, rather than the voltages across the line, are of concern. 

 Only the steady state of the power system is under consideration.  
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 The voltage stability problem is not present in the system. It is assumed that there is a 

sufficient reactive power supply in the studied system so that each load bus maintains 

a reasonable power factor (such as 0.95). 

 The load is modeled as constant power. It is reasonable since a steady state study is 

the main focus and the voltage profile is flat in the absence of the voltage stability 

issue. 

 

This work first proposes a new DCOPF-based model by introducing the concept of the 

Fictitious Nodal Demand (FND). Compared to pre-determined loss distribution factors [32], 

the FND is a concept that naturally models the distribution of power losses among 

transmission lines. A LP-based iterative algorithm is presented to solve the FND-based 

DCOPF model. Numerical studies show that the new model could be solved in 4~5 LP 

iterations for a 30-bus system and its accuracy is superior to that of the lossless DCOPF 

model. In this regard, the FND-based DCOPF method achieves an acceptable balance 

between accuracy and speed. A LMP calculation is performed for various load levels, and the 

difference of the LMP obtained from the FND-based DCOPF model and benchmarking 

ACOPF model is studied. Conclusions are drawn that the LMP difference may be large when 

a different marginal unit set is identified using different DC based algorithms. This serves as 

a good rule of thumb for assessing the credibility of results obtained from approximated 

models such as the lossless DCOPF and FND-based DCOPF. In addition, it is observed that a 

LMP step change occurs at certain load levels, called critical load levels (CLLs), where the 

marginal unit set changes and a new congestion may appear. 

A methodology for predicting the upcoming congestion and the change of marginal units 

is developed for the lossless DCOPF model, utilizing the fact that the optimal solution is 
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actually the solution of a system of linear equations. The generation output sensitivity and 

LMP sensitivity are derived as well. The proposed methodology enables fast prediction of the 

LMP with respect to load variations. Approaches for the FND-based DCOPF and ACOPF 

models will be presented afterwards. 

The predicted LMP will be further assessed in terms of its probability of occurring, with 

consideration of the load forecast uncertainty. A framework is developed for the lossless 

DCOPF model, which produces the probability mass function of the LMP at project time and 

the alignment probability curve for the deterministic forecasted LMP. It reveals the 

probabilistic characteristics of the commonly-used deterministic LMP, and assists market 

participants in formulating a bidding strategy and making financial decisions. 
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2 Literature Review 

This chapter will briefly review existing works relevant to this work. 

2.1. OPF Models and LMP Calculation 

DCOPF and ACOPF 

From the viewpoint of generation and/or transmission planning, it is always crucial to 

simulate or forecast the LMP, which may be obtained using the traditional production 

(generation) cost optimization model given the data of generation, transmission, and load [2, 

3]. Typically, the DC Optimal Power Flow (DCOPF) is utilized for LMP simulation or 

forecasting, based on the production cost model via Linear Programming (LP), due to LP‟s 

robustness and speed. The popularity of the DCOPF lies in its natural fit into the Linear 

Programming model. Various third-party LP solvers are readily available to plug into the 

DCOPF model to reduce the development effort for the vendors of LMP simulators. In 

industrial practice, the DCOPF has been employed by several software tools for 

chronological LMP simulation and forecasting, such as ABB‟s GridViewTM, GE‟s MAPSTM, 

LCG UPLAN, Promod IV®, and Siemens PTI PSSTM LMP [58, 59, 60, 61, 62].  

 

Other literature also shows the acceptability of the DC model in power flow studies if the 

line flow is not very high, the voltage profile is sufficiently flat, and the R/X ratio is less than 

0.25 [23]. A comparison between the DCOPF and ACOPF is conducted for a 12965-bus 

model of the Midwest U.S. transmission grid in [24]. Results show that the DCOPF appears 

to do an estimable job of identifying congestion patterns and can be up to 60 times faster than 

its AC counterpart, which is a substantial advantage over the ACOPF. Another issue with the 

selection of the ACOPF or DCOPF is the algorithm robustness. A Linear Programming (LP)-
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based DCOPF algorithm can always yield solutions while a Nonlinear Programming (NLP)-

based ACOPF algorithm is less robust and often experiences convergence problems [63]. In 

addition, [63] points out that a deregulated power market imposes new challenges to the 

solution of the ACOPF problem. For example, non-differentiable piecewise offer and bid 

curve brings computational difficulty to the ACOPF solution algorithms. 

Distribution Factors and Loss Factors 

In DCOPF formulations, two factors, the Generation Shift Factor (GSF) and Loss Factor 

(LF), are often used to model power flow and power loss [32].  

The Generation Shift Factor (GSF), also known as the Power Transfer Distribution Factor 

(PTDF), can be viewed as the quick calculation of line flow changes with respect to a small 

injection change at a specific bus [2]. It should be noted that the corresponding sink to absorb 

the injection change is the slack bus. The GSF or PTDF is widely used in operation, planning, 

and research. In fact, it is known empirically [26] and has been proven [27] that PTDFs are 

approximately constant values independent of the system operating condition, if the topology 

of the system does not change and bus voltage magnitudes are constants with sufficient local 

reactive power support. When these conditions are not satisfied, PTDFs can change 

significantly as the loading changes [27]. With the assumption of the DC power flow model, 

PTDFs associated with the DC model only depend on the topology and parameters of the 

transmission system, and therefore, are exactly constants. This feature of the DC PTDF 

facilitates sophisticated studies. For example, [28] proposes a scheme to reduce the power 

system to a smaller equivalent one based on zonal DC PTDFs. 

The loss factor is defined as the incremental loss incurred by the unit net injection at a 

specific bus [2]. Reference [29] demonstrates the usefulness of the DC power flow model in 

calculating loss penalty factors, which may have a significant impact on generation 

scheduling. The authors of [29] also note it is not advisable to apply the predetermined loss 
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penalty factors from a typical scenario to all cases. Reference [30] presents a real-time 

solution, without repeating a traditional power flow analysis, to calculate loss sensitivity for 

any market-based slack bus from traditional Energy Management System (EMS) products, 

based on multiple generator slack buses. 

Marginal Loss Pricing 

The Locational Marginal Price (LMP) may be decomposed into three components 

including marginal energy price, marginal congestion price, and marginal loss price [3, 6]. 

Several previous works [31, 32, 30, 29, 33] have reported the modeling of the LMP, 

especially in the marginal loss model and related issues. Reference [31] notes the significance 

of the marginal loss price, which may have a variance of up to 20% among different zones in 

the New York Control Area, based on the actual operating data. Reference [32] presents a 

slack-bus-independent approach to calculate the LMP and LMP congestion component by 

introducing loss distribution factors to explicitly distribute the losses into buses, though it 

does not specifically address how to obtain the distribution factors which are crucial to the 

LMP calculation. Reference [33] presents marginal loss pricing algorithms, based on the DC 

model, by introducing a delivery factor, which is defined as one minus the loss factor, to 

account for losses in the energy balance equation.  

LMP and its Decomposition 

The characteristics of the LMP have been discussed and interesting observations are 

presented in [35]. First, the LMP can be larger than the highest generation offer due to 

congestion, in which case the expensive unit will be committed to replace the cheaper unit. 

Second, the LMP can be lower than the cheapest generator offer, in the case that it is cheaper 

to pay customers at locations where load consumption helps to relieve congested transmission 

lines. Similar observations are presented in [44]. 
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In the LMP power market, Financial Transmission Rights (FTRs) are designed to hedge 

the risk of volatile LMPs due to congestion. The mechanism relies on the congestion 

component of the LMP and therefore, requires the decomposition of the LMP into 

components. [36] presents an integrated optimal spot pricing model and decomposes the price 

into different components associated with generation, loss, and ancillary services such as 

spinning reserve, voltage control, and security control. [37] proposes a more general 

decomposition method and states that the LMP can be theoretically and uniquely decomposed 

into independent components associated with generators and constraints. [32] presents a 

DCOPF-based LMP calculation model and derives explicitly three components (namely, 

energy, loss, and congestion), which are consistent with industrial practices [11, 14, 13]. 

Although the LMP and its congestion component are independent on the selection of the 

slack bus, the decomposed components of energy and loss are still reference bus dependent. 

The explicit formula of calculating three components using a distributed reference bus is 

derived in [38]. Another decomposition approach is presented in [39] which achieves the 

slack bus independent loss component. The differences in the congestion components 

between any two buses are also independent to the reference bus. [40] presents a general 

formulation for evaluating LMP components by using the concept of marginal nodes, to 

which an unbinding generator is connected. The comprehensive framework includes various 

published decomposition methods by defining the policy for marginal nodes. Note that 

although the decomposition method is not unique, the decomposition policy adopted for 

marginal nodes determines the decomposition for all non-marginal nodes. 

2.2. Congestion and Price Prediction 

The majority of the work associated with the prediction of the power market status has 

concentrated on price forecasting because of the importance of price signals to LMP market 
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participants and operators. In contrast, no work has yet been reported regarding the prediction 

of important power system statuses such as congestions and shift of marginal units in power 

markets. The prediction of this type of information is also crucial in delivering more detailed 

insights about the potential power system status in the projected time horizon.  

LMP forecasting has been a hot research area as the forecasted price plays a key role in the 

decision making process for both market participants and market operators. [45] lists a few of 

the typical applications. Power suppliers and consumers use the forecasted price to optimize 

the profit in the day-ahead market and bilateral contracts. Facility owners rely on the 

forecasted price to make investment decisions. The ISO could use the forecasted price to 

evaluate power market indices such as the Lerner Index. [49] presents an application from a 

power producer‟s perspective to formulate an optimal bidding strategy utilizing the 

forecasted price. 

Compared to the load, the electricity price in the power market is much more volatile. 

Factors contributing to price volatility include change of fuel price, load uncertainty, 

fluctuations in hydro and renewable power production, generation outages, transmission 

congestion, market participant behavior and so on [6]. A study shows the price forecasting 

error was 10% or more compared to a 3% error for load forecasting [6]. 

Price forecasting methods can be roughly classified into three groups. The first is 

statistical method, for instance, the time-series model, econometric model, and regression 

model, which fit a predefined mathematical formula to historical data. The underlying 

assumption is that observations closer in time tend to be more closely related than 

observations further apart. [48] employs the dynamic regression approach to establish a price 

prediction model which relates the future price with the past price, and past demand as well. 

Adjustments are made to the input data to minimize the effects of data outliers due to 

unexpected events and therefore, achieve a better prediction of performance. The authors 
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report the 24 hour ahead price forecasting error is 5% for the Spanish market and 3% for the 

California market, for the studied weeks. 

The second method employs artificial intelligence (AI) techniques including the Neural 

Network (NN) and fuzzy systems to predict price, which normally involves a training stage 

based on historical data. [46] proposed an NN-based forecasting approach and uses a similar 

day method to select the proper input data, through which each hour of the forecast day has a 

separate set of similar days. The method was tested for the PJM market and reported to 

produce accurate results. An adaptive wavelet NN-based price forecasting method is 

presented in [47], which is capable of mapping the input-output space by adapting the shape 

of the wavelet basis function, of the hidden layer neurons, to training data. The method was 

tested on the Spanish market and concluded to be superior to other forecasting techniques, 

such as the Auto wavelet-Regression Integrated Moving Average (ARIMA), multi-layer 

perceptron (MLP), Radial Basis Function Neural Network (RBFNN), and Fuzzy Neural 

Network (FNN). Reference [45] proposed a forecasting method which combines the fuzzy 

inference system (FIS) and least squares estimation (LSE). Input data included temporal 

indices, historical price, area loads at current and previous hours, and transmission constraints 

of the current hour. This method claimed to have the advantage of high accuracy and explicit 

reasoning.  

The third model of price forecasting is the simulation method, which is presented in [44]. 

The simulation method utilizes a transmission constrained market simulation program that 

mimics the actual dispatch and market clearing process while explicitly taking into account 

the system operating constraints. However, this method requires intensive data input/output 

such as transmission model, SCED, generation unit data, transaction data, and involves 

intensive computational efforts. 



 
24 

Statistical and AI methods rely heavily on the data of past events, and prediction results 

are less certain as the forecast lead time is longer [48]. The selection of input data is also 

crucial for predicting performance since the input data should demonstrate the pattern that is 

expected for the forecasted time. Manual picks, or techniques such as the similar day method, 

may be needed toward this requirement. The reason for these limitations lies in the fact these 

methods are basically black-box methods, which tend to discover the correlation between 

future price and the most significant factors such as the past price, load, and congestion index 

[6], while the internal model, which indeed relates these factors, is ignored. In fact, the 

correlation could be discovered by studying the OPF model, which explicitly models the 

interaction among all factors, including electricity price. Unlike the load, which is hard to 

establish in a model to study its behavior, electricity price (namely, LMP) is the shadow price 

of the OPF problem and has a definite formulation to study of price behavior. In addition, 

although the future price could be estimated by drawing patterns from historical data, the 

electricity price at any future time has no memory effect and is essentially independent of the 

past price and system conditions. In other words, the price is only determined by the 

operating conditions at that particular future time.  

Therefore, instead of pursuing a black-box prediction method, this work provides a white-

box method for the prediction of electricity price, as well as important system status such as 

congestions and change of marginal units. It should be pointed out that, although the white-

box method employs OPF as a prediction tool, similar to the aforementioned simulation 

method in [44], it is different in the sense that it explores the solution feature of the OPF with 

respect to parameter variation, and therefore, saves a significant amount of computational 

time; while the simulation method performs intensive calculations on each presumed 

condition, even if the condition has similar characteristics to a solved condition, and the new 

solution could be easily obtained from the previously solved solution. 
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2.3. Generation Sensitivity and LMP Sensitivity 

In order to predict electricity price and its spikes through exploring the solution features of 

OPF, we have to find the internal factors embedded in the OPF solutions that directly affect 

the price and trigger price spikes.  

In doing a comparison between the DCOPF and ACOPF in revealing congestion patterns 

in [24], an interesting statement is made: “once a constraint becomes binding, it will have a 

discrete, potentially large, impact on the bus LMPs. … large LMP differences do not 

necessarily indicate large deviations in the power system solutions.” It is true that the OPF 

solution itself is not a good indicator of the LMP, while other by-products of the OPF 

solution, such as binding constraints, could serve the purpose of an LMP indicator. In order to 

find the potential binding constraints, such as transmission line congestion and the marginal 

unit reaching its output limit, the sensitivities of generation output and line flow need to be 

explored. 

The PTDF, or GSF, is a type of generation sensitivity. GSF reflects the power flow change 

pattern with generation variation [2, 6]; however, it does not address how the generation 

responds, under the cost-driven economic dispatch, to system state variations like load 

changes. Moreover, the GSF does not take into account the network constraints and 

generation limits when the load changes. On the other hand, in operation and planning, it is 

extremely helpful for the dispatchers to know how the power flow will change with respect to 

the assumed load change pattern under the OPF-based economic dispatch framework. 

Mathematically, generation sensitivity is defined as the incremental generator output with 

respect to infinitesimal load changes at the given operating point, while optimal power flow 

criteria are still satisfied.  
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Recent work in [41] presents a generalized, ACOPF-based model for LMP sensitivity with 

respect to the load and other variables. The approach could be easily applied to calculate 

other sensitivities, such as generation sensitivity. The approach applies infinitesimal 

perturbations to the given operation condition, or mathematically, make a derivative to the 

optimality condition of the system, and then obtain the sensitivity values numerically by 

solving the slightly perturbed system. However, sensitivities have to be numerically 

calculated by solving a set of equations, and there is no direct, explicit formulation for the 

sensitivity, which limits the use of this method in the analytical analysis context. 

Ref. [39] employs a similar approach as in [41], while giving an analytical formulation of 

generation sensitivity. However, the formulation is written as a function of the state variables, 

which themselves are yet unknown variables at scenarios other than the given operating point. 

This implies that the sensitivity formulation also has to be evaluated individually and locally. 

For example, when the load grows and the operating point moves, it is not known if the new 

sensitivity at the new operating point will be larger or smaller when compared with the 

previous value, unless the sensitivity is numerically evaluated against at the new operating 

point. To study the sensitivity change pattern in a range of load, a sensitivity calculation has 

to be done at multiple sample points. This kind of brute-force approach is not 

computationally effective. Moreover, since the sensitivity formulation involves state 

variables that depend on the parameter settings (such as load level); it could not be presented 

as a function with only one independent variable, the studied parameter. Therefore, it does 

not offer practical help for prediction under parameter variation (such as load variation). 

In addition, the sensitivities obtained through these sensitivity analysis approaches [41, 39] 

are only valid when the perturbation is small enough that no change of marginal units under 

the load variation is present. It does not address the issue when the load continuously grows 

beyond the next critical load level (CLL) where a new binding limit occurs.  
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2.4. Load Uncertainty Impact 

The congestion and price prediction methodology proposed in this work relies on the load 

forecasting results. Therefore, it is necessary to investigate how the load forecasting error is 

passed along in the prediction model and its impact on the prediction results. 

Although no existing work has been found that specifically addresses the impact of load 

uncertainty on the LMP, a number of works have been conducted on other economic impacts 

of load forecasting uncertainty. [50] studies the impact of short term load forecasting from a 

utility perspective. A small load forecasting error may incur significant costs if it leads to the 

commitment of an extra unit or purchasing power from neighboring utilities. Results suggest 

up to 5% error in load forecasting is acceptable since the economic benefit from further 

reducing the error is small. It is also shown that the greatest benefit in load forecasting error 

reduction is the improved peak load forecasting. [51] assesses the economic cost of 

inaccurate load forecasts through a detailed simulation analysis which includes the load 

forecasting simulation, unit commitment, and economic dispatch models. Despite dependence 

on the load and generation characteristics, economic value is evaluated for specific systems. 

Conclusions are drawn that a 1% reduction in the mean absolute percentage error (MAPE) 

decreases generation costs by approximately 0.1%~0.3%, when MAPE is in the range of 

3%~5%. [54] employs similar approaches to assess the economic impact of load forecast 

errors, taking into account the energy not served due to generation outages. [52] studies the 

effect of temperature, generation availability, and load on the estimation of the generation 

production cost. It is discovered that load uncertainty accounts for a large portion of the 

variance of production costs. [53] points out that, for a specific reliability level, a higher 

capacity reserve is needed to satisfy an uncertain load than to serve a known load. Moreover, 

the load forecast uncertainty has a larger impact on deficient generation and transmission 
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systems than on strong generation and transmission networks. [55] defines a risk index based 

on the standard deviation of the load increment to quantify the impact of load forecasting 

uncertainty.  
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3  Optimal Power Flow Problem and LMP Calculation 

3.1. Chapter Introduction 

Several technical assumptions are made in this chapter: 

 The ex-ante LMP calculation is explicitly considered. The ex-post LMP is not of 

interest in this work. In fact, the principal of the ex-post LMP is to encourage 

generation units to stick with the scheduled dispatch. Hence, from a forecasting or 

prediction viewpoint, the models used in this chapter indirectly apply to the forecast 

in the ex-post LMP market from the long-run viewpoint.  

 The capacity reserve constraint is not modeled in the OPF formulation. The reason is 

that the capacity reserve issue is assumed to have already been addressed in the Unit 

Commitment.  

 The generator ramp rate constraint is not modeled in the OPF formulation for 

simplicity. In fact, it is the same type of constraint as the generation output limit 

constraint. Therefore, it could be easily modeled by revising the generator limit 

constraint.  

 Generation cost is assumed to have a linear model. In fact, a quadratic cost curve can 

be represented with piece-wise-linear curves to ensure the application of the LP, as 

evidenced by the industrial LMP simulators mentioned previously. 

The following assumptions are made for notational convenience: 

 The generator-side market is assumed in the OPF formulation. It means no demand 

elasticity is considered and the OPF objective is converted to minimize the total 

generation cost. Although the load bids are ignored, they could actually be modeled as 

dispatchable negative generation, which fits the generator-side OPF model. 
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 N-1 constraints are not explicitly modeled in the OPF formulation to provide a better 

illustration. These constraints have the same mathematical characteristics (normally 

modeled as linear algebraic inequalities) as the normal state constraints, but having 

different representations and illustrations. 

 Each bus has one generator and one load for simplicity of discussion. The actual 

implementation can be more complicated since multiple generators and/or loads may 

be connected to an individual bus.  

 Occasionally, each transmission constraint (thermal, contingency, or nomogram) is 

modeled as if it has a unidirectional limit, for simple formulation although it may 

have bidirectional limits in reality. The actual implementation should have two 

equations for each bidirectional transmission limit. 

 A single-block generation cost (or bid) model is assumed, while in reality a 

monotonically-increasing multi-block model is commonly used. This assumption is 

also for simplicity of illustration. The multi-block model requires additional 

computational and modeling effort, but does not change the mathematical kernel. 

 Dispatch is performed on an hourly base so capacity (MW) is numerically the same as 

energy (MWh). 

The above assumptions and simplifications are mainly for notational convenience and do 

not change the mathematical kernel of this work. The actual implementation, for the tests 

presented in this work, employs more complicated models such as multiple generators at a 

bus and bi-directional limits of the transmission lines.  

OPF models can be grouped into two types according to the way the power flow is 

modeled: Alternating Current OPF (ACOPF) and Direct Current OPF (DCOPF). The ACOPF 

model presents an optimization problem with a full AC power flow model, in which both the 
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active and reactive power balances are considered. The DCOPF model utilizes the DC power 

flow model, which only preserves the active power balance when certain conditions are met. 

Traditionally, the DCOPF does not address power loss, and therefore, is referred to as the 

“Lossless DCOPF”. Few works have been reported on the loss modeling in DCOPF [33, 32], 

and this type of improved model is called the “DCOPF with loss model” in this work. After 

these traditional models are introduced, a new DCOPF-based model is proposed in an attempt 

to achieve a better tradeoff between computation speed and result accuracy. 

3.2. Traditional Optimal Power Flow Models 

3.2.1. Lossless DCOPF Model 

The generic DCOPF model [2], without the consideration of losses, can be easily modeled 

as the minimization of the total production cost subject to energy balance and transmission 

constraints. The voltage magnitudes are assumed to be unity and reactive power is ignored. 

This model may be written as a Linear Programming (LP) formulation 

Min 
N

i

ii Gc
1

  (3.1) 

s.t.   
N

i

i

N

i

i DG
11

  (3.2) 

k

N

i

iiik LimitDGGSF
1

, for k=1, 2, …, M (3.3) 

maxmin

iii GGG , for i = 1, 2, …, N (3.4) 

where  

N = number of buses; 

M= number of lines; 

ci = generation cost at Bus i ($/MWh); 
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Gi = generation dispatch at Bus i (MWh); 

Gi
max, Gi

min = the maximum and minimum generation output at Bus i; 

Di = demand at Bus i (MWh); 

GSFk-i = generation shift factor to line k from bus i; 

Limitk = transmission limit of line k. 

It should be noted that the actual GSF values depend on the choice of slack bus, although 

the line flow in (3.3) is based on the GSF is the same with different slack buses.  

Equations (3.1)~(3.4) can be represented in matrix formulation as follows, 

Gc
G

Tmin    

D1G1
TTts ..    

LimitDGSFGGSF   

maxmin
GGG   

 

3.2.2. ACOPF Model 

As a comparison, a model based on the ACOPF is presented. This is not a typical model 

for market price simulation purposes due to its relatively slow computational speed and 

convergence problem in a fairly large system. Rather, it is used more often for comparison 

and illustration.  

Generally, the ACOPF model can be presented as minimizing the total generation cost, 

subject to nodal real power balances, nodal reactive power balances, transmission limits, 

generation limits, and bus voltage limits. Details may be found in [2]. The LMP at each bus 

from the ACOPF formulation is the Lagrange multiplier of the equality constraints of the 

nodal real power balance [24, 41]. 
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In general the ACOPF model can be formulated as  

Min GiGi Pc . (3.5) 

Subject to: 

0),(VPPP LiGi  (Real power balance)  (3.6) 

0),(VQQQ LiGi (Reactive power balance) (3.7) 

max

kk FF  (Line flow MVA limits) (3.8) 

maxmin

GiGiGi PPP  (Gen. real power limits) (3.9) 

maxmin

GiGiGi QQQ  (Gen. reactive power limits) (3.10) 

maxmin

iii VVV  (Bus voltage limits) (3.11) 

where 

cGi = cost of generator Gi; 

PGi , QGi = real and reactive output of generator Gi; 

PGi
min, PGi

max = min and max limit of PGi; 

QGi
min, QGi

max = min and max limit of QGi; 

PLi , QLi = real and reactive demand of load Li; 

Fk , Fk
max = line flow and its maximum limit at line k; 

Vi
min, Vi

max = min and max voltage limit at bus i. 

 

The LMPs from the above formulation are the Lagrange multipliers of the equality 

constraints as shown in equation (3.6).  
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3.2.3. DCOPF with Loss Model 

Earlier studies of LMP calculations with the DCOPF ignores the line losses. Thus, the 

energy price and the congestion price follow a perfect linear model with a zero loss price. 

However, challenges arise if losses need to be considered to calculate the marginal loss 

component in the LMP, especially considering the significance of marginal loss which may 

be up to 20% different among the different zones in the New York Control Area, based on 

actual data [31]. The prmary challenge of the loss model lies in that the conventional, lossless 

DC model represents a linear network, but lacks the capability to calculate marginal loss 

pricing, an important component in the LMP methodology. 

3.2.3.1. Loss Factor and Delivery Factor  

The key to considering the marginal loss price is the marginal loss factor, or loss factor 

(LF) for simplicity, and the marginal delivery factor, or delivery factor (DF). Mathematically, 

it can be written as 

i

Loss
ii

P

P
LFDF 11  (3.12) 

where 

DFi = marginal delivery factor at bus i; 

LFi = marginal loss factor at bus i; 

PLoss = total loss of the system; 

Pi = Gi - Di =net injection at bus i. 

The loss factor and delivery factor can be calculated as follows. Based on the definition of 

loss factor, we have 

 k

M

k

kLoss RFP
1

2
 (3.13) 
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)(
1

2

k

M

k

k

ii

Loss RF
PP

P
 (3.14) 

where  

Fk= line flow at line k; 

Rk = resistance at line k. 

In a linear DC network, a line flow can be viewed as the aggregation of the contribution 

from all power sources (generation as positive source and load as negative source), based on 

the superposition theorem. The sensitivity of the contribution to a line flow from a bus is 

known as the Generation Shift Factor (GSF). This can be written as 

j

N

j

jkk PGSFF
1

. (3.15) 

Equation (3.15) can be utilized to further expand the LF as below   
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ii

Loss

PGSFGSFR
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F
FRRF

PP

P

11

11

2

2

2

  . (3.16) 

Interestingly, the loss factor at a bus may be positive or negative. When it is positive, it 

implies that an increase of injection at the bus may increase the total system loss. If it is 

negative, it implies that an increase of injection at the bus may reduce the total loss. For 

example, Figure 3.1 shows a simple three-bus system with Bus B as the reference bus. If 

there is a hypothetical injection increase at Bus A, and the increased injection is absorbed by 

the reference bus (or the two load buses proportionally), the line flows, as well as the losses, 

will increase. Hence, the loss factor at Bus A is positive. If there is a hypothetical injection 

increase at Bus C and it is absorbed by the reference bus (or the two load buses 

proportionally), this will reduce the Line BC flow and thus, reduce the system loss. So, the 

loss factor at Bus C is negative.  
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Figure 3.1. A Three-Bus System with Bus B as the reference bus 

 

Consequently, if a loss factor is positive, the corresponding delivery factor is less than 1. If 

marginal loss factor is negative, the marginal delivery factor is greater than 1. 

3.2.3.2. DCOPF Algorithm Considering Marginal Loss 

As shown in Eq. (3.16), the loss factor depends on the net injection, Pj, which is the actual 

dispatch minus the load at Bus j. On the other hand, the generation dispatch may be affected 

by loss factors since different generators may be penalized differently, based on their loss 

factors.  

Since Pj is unknown prior to performing any dispatch, one way to address this is to have 

an estimation of the dispatch to obtain an estimated LF at each bus. Then, the estimated loss 

factors will be used to obtain new dispatch results. This logical reasoning leads to the 

proposed iterative DCOPF approach. In other words, in the (l+1)st iteration, the dispatch 

results from the lth iteration are used to update Pj and, therefore, the loss and  delivery factors. 

Here, in each iteration, a LP-based DCOPF is solved. The iterative process is repeated until 

the convergence stop criteria are reached. After convergence, the LMP can be easily obtained 

from the final iteration. Certainly, the very first iteration is a lossless DCOPF in which the 

estimated loss is zero. The algorithm can be formulated as follows  

Min 
N

i

ii Gc
1

 (3.17) 
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s.t.   0
11

est

loss

N

i

i

est

i

N

i

i

est

i PDDFGDF  (3.18) 

k

N

i

iiik LimitDGGSF
1

, for k {all lines} (3.19) 

maxmin

iii GGG , for i {all generators} (3.20) 

where  

DFi
est = delivery factor at Bus i from the previous iteration; 

Pest
Loss = Ploss from the previous iteration. 

As previously mentioned, the delivery factor, DFi, is calculated based on the dispatch 

result, i.e., Gi, from the previous iteration. Therefore, the loss and delivery factors are updated 

iteratively since they are related to the actual generation dispatch. Once converged, the 

estimated DFi and Ploss from the next-to-last iteration will be the same as the final values. It is 

not surprising that this iterative algorithm provides more accurate results with a longer 

running time than the lossless DCOPF. The number of iterations is acceptable. The tests in 

later Sections show that the iterative DCOPF (with the proposed FND model also in the later 

section) requires 4 iterations to converge for the PJM 5-bus system, even if a very low 

tolerance of 0.001 MW is applied for high accuracy. If compared with the ACOPF, the 

iterative DCOPF model is still much faster than ACOPF, which may be up to sixty times 

slower than DCOPF [24]. In addition, the ACOPF needs more careful work in preparing 

accurate input data to make it converge. Therefore, the iterative DCOPF model should still be 

of advantage to the ACOPF, especially for simulation and planning purposes. 

Note that in real-time operation, delivery factors can be quickly obtained from real-time 

EMS/SCADA data. Unfortunately, this is not a viable option for simulation or planning study. 

Therefore, it is necessary to identify a feasible approach, such as the iteration method, to 

obtain more accurate delivery factors for simulation and planning purposes. This is consistent 
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with the observations in [29], which shows that it is not advisable to apply penalty factors 

from a typical scenario with the DC model to all other cases. 

After obtaining the optimal solution for generation scheduling, the LMP, at any bus B, can 

be calculated with the Lagrangian function. This function and LMP can be written as 

M

k

N

i

kiiikk

loss

N

i

ii

N

i

ii

N

i

ii

LimitDGGSF

PDDFGDFGc

1 1
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 (3.21) 
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DFGSF

GSFDF
D

LMP

   (3.22) 

where  

LMPB= LMP at Bus B 

λ = Lagrangian multiplier of Eq. (3.18) = energy price of the system = price at the 

reference bus; 

µk = Lagrangian multiplier of Eq. (3.19) = sensitivity of the kth transmission constraint. 

From (3.22), the LMP can be easily decomposed into three components: the marginal 

energy price, marginal congestion price, and marginal loss price. The LMP formulation can 

be written as Eqs. (3.23)-(3.26), which are consistent with industry practices [11, 14]. 

loss

B

cong

B

energy

B LMPLMPLMPLMP  (3.23)  

energyLMP  (3.24) 

M

k

kBk

cong

B GSFLMP
1

 (3.25) 

)1( B

loss

B DFLMP  (3.26) 
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3.2.3.3.  On the Equality Constraints of Energy Balance 

Note that the 
est

lossP in Eq. (3.18) is used to offset the doubled system loss caused by the 

(marginal) Loss Factor, LF, and the (marginal) Delivery Factor, DF. The inclusion of the 

est

lossP eliminates the over-estimated loss issue reported in [33]. This is consistent with the fact 

that the marginal loss (injection multiplied by marginal loss factor) is twice the actual loss 

(also referred to as the average loss) in the DC model, since the line loss is linearly related to 

the square of the bus injection. The rigorous proof of the validity of Equation (3.18) is given 

as follows  
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where 

N

i

ii

N

i

i

schd

loss DGPP
11

=scheduled loss; 

)(
1

2
M

k

kk

act

loss FRP =actual loss. 

In the above derivation,
schd

lossP represents the system net injection at all buses. Therefore, it 

is called the scheduled loss of the entire system. Meanwhile, the actual loss is represented by
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act

lossP , which is the sum of the actual losses at all lines. After the iterative approach converges, 

the scheduled loss should be equal to the actual loss, or loss

act

loss

schd

loss PPP .  

From the above derivation, it is apparent that the net injection multiplied by the loss factor, 

i.e., 
N

i

i

i

loss P
P

P

1

, provides the doubled system loss. This shows the reason that Eq. (3.18) 

must include an extra deduction of system loss (
est

lossP ) when marginal loss factors are applied. 

Computationally, the actual loss value from the previous iteration is used for the current 

iteration to keep the linearity of the optimization formulation. The convergence criteria, i.e., 

the dispatch of each generator, will ensure the convergence of PLoss, i.e., 
act

loss

schd

loss PP .  

Eq. (3.18) may be verified with a sample system, shown in Figure 3.2 for illustration. The 

system is slightly modified from the PJM 5-bus system [11]. The generation cost at Sundance 

is modified from the original $30/MWh to $35/MWh in order to differentiate its cost from the 

Solitude unit for better illustration. It should be noted that the PJM 5-bus system is a realistic, 

yet simplified system, and is used often in several research works [19, 32]. 

The system may be roughly divided into two areas, a generation center consisting of Buses 

A and E with three low-cost generation units and a load center consisting of Buses B, C, and 

D with a 900MWh load and two high-cost generation units. The transmission line 

impedances are provided in Table 3.1, where the reactance is obtained from [11] and the 

resistance is assumed to be 10% of the reactance. Here, only the thermal flow limit of Line 

ED is considered for illustrative purpose.  

Table 3.2 and Table 3.3 clearly show that the dispatch will provide doubled losses if Pest
loss 

is excluded from Eq. (3.18). The result is more reasonable if Pest
loss is included.  
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Figure 3.2. The Base Case of the PJM Five-Bus Example 
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Table 3.1. Line impedance and flow limits 

 A-B A-D A-E B-C C-D D-E 

R (%) 0.281 0.304 0.064 0.108 0.297 0.297 

X (%) 2.81 3.04 0.64 1.08 2.97 2.97 

Limit (MW) 999 999 999 999 999 240 

Note: Only Line D-E has a binding limit for illustrative purposes. 

 

Table 3.2. Verification of Eq. (3.18) to avoid doubled losses caused by marginal delivery 

factors at the 900MW load level 

 With Pest
loss in Eq. (3.18) Without Pest

loss in Eq. (3.18) 

Load 900 900 

Scheduled Gen. 908.81 917.61 

Scheduled losses 8.81 17.61 

Actual line losses 8.81 8.81 

Error 0% 99.9% 

Note: (1) All units are in MWh except Error in %; 

(2) Scheduled losses = Scheduled Generation – Load. 
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Table 3.3. Verification of Eq. (3.18) to avoid doubled losses caused by the marginal delivery 

factors at selected load levels 

Total Load Without
est

lossP in Eq. (3.18) With
est

lossP in Eq. (3.18) 

Scheduled 

Losses 

Actual 

Losses 

Error Scheduled 

Losses 

Actual 

Losses 

Error 

900 17.61 8.81 100% 8.81 8.81 0% 

945 18.71 9.35 100% 9.35 9.35 0% 

990 19.73 9.86 100% 9.93 9.93 0% 

1035 19.02 9.51 100% 9.77 9.77 0% 

1080 18.35 9.18 100% 9.42 9.42 0% 

1125 17.73 8.86 100% 9.09 9.09 0% 

1170 17.14 8.57 100% 8.78 8.78 0% 

1215 16.60 8.30 100% 8.49 8.49 0% 

1260 16.10 8.05 100% 8.22 8.22 0% 

1305 15.64 7.82 100% 7.98 7.98 0% 

1350 15.22 7.61 100% 7.76 7.76 0% 

Note: (1) All units are in MWh except Error in percentage; 

          (2) Scheduled losses =

N

i

ii

N

i

i

schd

loss DGPP
11

; 

          (3) Actual losses = )(
1

2
M

k

kk

act

loss FRP . 
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3.3. FND (Fictitious Nodal Demand)-based DCOPF Model  

In this section, first, an iterative DCOPF-based algorithm is presented with the Fictitious 

Nodal Demand (FND) model to calculate the LMP. The algorithm has three features: the 

iterative approach is employed to address the non-linear marginal loss; FND is proposed to 

eliminate the large mismatch at the reference bus if the FND is not applied; and a deduction 

of system loss in the energy balance equation is proved to be necessary because the net 

injection multiplied by the marginal delivery factors creates a doubled system loss.  

Secondly, the proposed FND-based DCOPF algorithm is compared with the results from 

the ACOPF algorithm for accuracy of the LMP results at various load levels using the PJM 5-

bus system. It is clearly shown that the FND algorithm is a good estimation of the LMP, 

calculated from the ACOPF algorithm, and outperforms the lossless DCOPF algorithm.  

Thirdly, the FND-based DCOPF algorithm is employed to analyze the sensitivity of the 

LMP with respect to the system load. A simple, explicit equation of LMP sensitivity is 

presented and validated. A special case of infinite sensitivity under the step change of the 

LMP is discussed. If the operating point is close to the critical load level of the LMP step 

change, the sensitivity is less reliable and may not be applied to a large variation of the load.  

3.3.1. Iterative DCOPF Algorithm with Fictitious Nodal Demand for Losses 

3.3.1.1. Mismatch at the Reference Bus in the Traditional DCOPF with Loss Model 

The above model appropriately addresses the marginal loss price through the delivery 

factors. However, the line flow constraints in Eq. (3.19) still assume a lossless network. 

Meanwhile, the system energy balance constraint in Eq. (3.18) enforces the idea that the total 

generation should be greater than the total demand by the average system loss. This leads to a 

mismatch at the reference bus because the amount of the mismatch has to be absorbed by the 
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system reference bus. If the amount of demand is a large amount like several GW, the system 

loss may be on the scale of tens to hundreds of MW. It is inaccurate to have all the loss 

absorbed by the reference.  

Taking the PJM 5-bus sample system, the dispatch result is shown in Table 3.4 and Figure 

3.3. The result shows the nodal mismatch, defined as Nodal Generation – Nodal Demand + 

Line Injection at all connected buses. Although all buses, except the reference Bus D, have 

zero mismatches, the mismatch at Bus D is relatively large as it absorbs the total system loss 

of 8.80MW. This is a centralized loss model, which means that all losses are centrally 

absorbed by the reference bus.  

 

Table 3.4. Dispatch Results from the Iterative DCOPF 

 G (MW) L (MW) Line Inj. (MW) Mismatch (MW) 

Bus A 210 0 -210 0 

Bus B 0 300 300 0 

Bus C 0 300 300 0 

Bus D 124.88 300 183.92 8.80 

Bus E 573.92 0 -573.92 0 

Note: Line Injection at a bus is the sum of the flows of all connected lines. A positive sign 

corresponds to a net incoming flow. 
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Figure 3.3. The dispatch results for the base case 

 

3.3.1.2. FND-Based Iterative DCOPF Algorithm 

To address the mismatch issue at the reference bus, it is desirable to have the line losses 

represented in the transmission lines. Since line flow is represented with the GSF in a LP-

based DCOPF, it is challenging to include the line loss without losing the linearity of the 

model.  

This work employs the concept of the Fictitious Nodal Demand (FND) to represent the 

losses of the lines connected to a bus. The FND is similar, yet different, from the fictitious 

load and midpoint bus model in [25]. Reference [25] uses the fictitious load and midpoint bus 

to partition an inter-area tie line and eventually model a multi-area OPF. This research work 

does not need the fictitious midpoint bus and uses a different representation of the fictitious 

loss model, as shown in Eq. (3.28). More important, the FND is applied here to distribute 

system losses into each individual line in order to eliminate a significant mismatch at the 

reference bus. The FND model is illustrated in Figures 3.4 and 3.5. With this approach, the 
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loss in each transmission line is divided into two equal halves, attached to both buses of that 

line. Each half is represented as if it is an extra nodal demand. For each bus, the total of all 

equivalent line losses is the proposed fictitious nodal demand. 

Here the FND at Bus I, is written as Ei, and is defined as follows 

k

M

k

ki RFE
i

1

2

2
1  (3.28) 

where 

Mi = the number of lines connected to Bus i.  

The line flow, Fk, may be obtained from the FND calculation in the previous iteration. The 

new calculation of line flow may be formulated as 

)(
1

est

jjj

N

j

jkk EDGGSFF . (3.29) 

The loss factor calculation equation may remain the same, as that shown in (3.23), 

however, the value of Fk will be different under the new approach of the FND.  

 

 

Figure 3.4. A System with line resistance 
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Figure 3.5. A system with the FND to represent line losses 

 

Therefore, the new iterative DCOPF formulation, which replaces Eqs. (3.17) to (3.20), can 

be formulated as  

Min  
N

i

ii Gc
1

 (3.30) 

s.t.    0
11

est

loss

N

i

i

est

i

N

i

i

est

i PDDFGDF  (3.31) 

k

N

i

est

iiiik LimitEDGGSF
1

, for k {all lines} (3.32) 

maxmin

iii GGG , for i {all generators} . (3.33) 

 

When the above formulation converges using the generation dispatch of each unit (Gi) as 

the convergence criterion, other parameters, like the line flows (Fk), the delivery factors (DFi), 

and the system loss (Ploss), will converge as well. Appendix A shows a schematic proof of the 

convergence feature of this new algorithm.  

The detailed procedure of this FND-based Iterative DCOPF algorithm is given as follows: 
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1. Set LF
est

i=0, DF
est

i=1, E
est

i=0 (for i=1, 2, …, N) and 

P
est

loss=0; 

2. Perform generation dispatch using Eqs. (3.30) to (3.33); 

3. Update LF
est

i, DF
est

i, E
est

i and P
est

loss using Eq. (3.19), 

(3.20), (3.23) and (3.28);  

4. Perform another dispatch using Eqs. (3.30) to (3.33); 

5. Check the results of the dispatch of each generator with 

that from the previous dispatch. If the difference at one or 

more buses is greater than the pre-defined tolerance, go to 

Step 3. Otherwise, go to Step 6. 

6. Calculate the three LMP components using Eqs. (3.23) to 

(3.26).  

 

The results of the proposed new iterative DCOPF model are shown in Figure 3.6. The total 

loss is distributed into each individual line. At each bus, the nodal generation, plus incoming 

flow from connected lines, and then minus nodal demand is equal to the Fictitious Nodal 

Demand (FND), which represents half of the losses in all connected lines. Therefore, the 

system loss is well distributed in each line and numerically represented by the FND at each 

bus. The mismatch at the reference bus, like at any other buses, is just 50% of the losses of all 

connected lines, not the total system loss. 
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Figure 3.6. Dispatch results with the Fictitious Nodal Demand approach 

Table 3.5 shows the Fictitious Nodal Demand (FND) at each bus under various load levels. 

The second-to-last column presents the sum of the FND at all buses, namely, the actual total 

loss. The last column lists the sum of net generation at all buses, namely, the scheduled total 

loss. Note that the actual power loss is very close, but not exactly equal, to the scheduled loss. 

The slight discrepancy between these two losses is due to the fact that the power flows at 

both ends of any transmission line are considered identical in the DCOPF model when power 

loss is calculated, as shown in equation (3.13). 
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Table 3.5. FND at each bus 

Load 

Level 

FND 

@A 

FND 

@B 

FND 

@C 

FND 

@D 

FND 

@E 

N

i

iE
1

 

N

i

ii DG
1

)(  

900 2.81 2.07 0.76 1.99 1.22 8.86 8.88 

945 2.98 2.23 0.87 2.09 1.25 9.42 9.43 

990 3.12 2.35 0.95 2.16 1.27 9.85 9.86 

1035 3.12 2.34 0.90 2.12 1.27 9.75 9.76 

1080 3.11 2.32 0.84 2.07 1.27 9.62 9.63 

1125 3.04 2.25 0.74 1.98 1.25 9.27 9.29 

1170 2.97 2.19 0.65 1.90 1.24 8.95 8.97 

1215 2.90 2.13 0.57 1.82 1.23 8.65 8.68 

1260 2.83 2.07 0.50 1.75 1.22 8.37 8.40 

1305 2.77 2.02 0.44 1.68 1.21 8.12 8.15 

1350 2.70 1.98 0.38 1.62 1.20 7.88 7.92 

Note: All units are in MWh. 
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3.3.2. Benchmarking the FND-based DCOPF and Lossless DCOPF Algorithms 

with ACOPF Algorithm 

In this section, the ACOPF algorithm is briefly discussed. Then, solutions from the FND 

and lossless DCOPF algorithms are benchmarked against that of the ACOPF algorithm using 

the PJM 5-bus system.  

3.3.2.1. Test Results from PJM Five-Bus System 

 

This section provides the test results with the slightly modified PJM 5-bus system, as 

shown in Fig. 3.2. In the ACOPF run, all loads are assumed to have 0.95 lagging power 

factors. The generators are assumed to have a reactive power range between 150MVar 

capacitive to 150MVar inductive so that reactive power will not be a limiting issue. The 

ACOPF is implemented with the MATPOWER package [17]. 

The LMP calculations are performed using the lossless DCOPF algorithm, the FND-based 

Iterative DCOPF algorithm, and the ACOPF algorithm in the previous sub-section. The LMP 

results from the two DCOPF algorithms which are benchmarked with the ACOPF under 

various load levels from 1.0 per unit to 1.3 per unit of the base-case load (900MWh). Tests 

are performed with a step size of 0.0025 p.u. load increase. All bus loads are varied 

proportionally, and the same power factor is kept at each bus for the ACOPF case. Test 

results show that the FND algorithm quickly converges in 4-5 iterations for the PJM 5-bus 

case, even if a low tolerance of 0.001 MW is applied for high accuracy.  

Figures 3.7 and 3.8 plot the maximum difference (MD) and the average difference (AD) of 

the nodal LMPs between the two models. The MD and AD of the LMP at a given load level 

are given as 

100max(%)
)2(

)2()1(

},...,2,1{
i

ii

Ni
LMP

LMP

LMPLMP
MD  (3.34) 
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N

LMP

LMPLMP

AD

N

i i

ii

LMP

1
)2(

)2()1(

100

 (%)
 (3.35) 

where  

LMPi
(1) = LMP from the lossless DCOPF algorithm or the FND algorithm; 

LMPi
(2) = LMP from the ACOPF algorithm; 

Sign of MD is determined by the sign of (LMPi
(1) - LMPi

(2)). 

 

Figure 3.9 depicts the Marginal Unit Difference Flag of the FND-based DCOPF algorithm 

and Lossless DCOPF algorithm when compared with the benchmark ACOPF algorithm. At 

any load level within the investigated load range, when the DC algorithm provides the same 

marginal unit set as the benchmark ACOPF algorithm does, the Marginal Unit Difference 

Flag is set to zero; and is set to one otherwise. 

 

The MD and AD of the generation dispatch, similar to those for LMP in Eqs. 3.34-3.35, 

are also presented in Figs. 3.10 and 3.11.  
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Figure 3.7. The Maximum Difference of the LMP in Percentage between each DCOPF 

algorithm and the ACOPF for the PJM 5-bus system 

 

 

Figure 3.8. The Average Difference of the LMP in Percentage between each DCOPF 

algorithm and ACOPF for the PJM 5-bus system 
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Figure 3.9. Marginal Unit Difference Flag of each DCOPF algorithm when compared with 

the benchmark ACOPF for the PJM 5-bus system 

 

 

 

 

Figure 3.10. The Maximum Difference of Generation Dispatch between each DCOPF 

algorithm and the ACOPF for the PJM 5-bus system 
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Figure 3.11. The Average Difference of Generation Dispatch between each DCOPF 

algorithm and ACOPF for the PJM 5-bus system 

 

As Figs. 3.7-3.11 show, the LMP from the lossless DCOPF algorithm matches the ACOPF 

results for 82% of all load levels tested. This is consistent with the results reported in [24]. 

However, the lossless DCOPF has significant errors at 18% load levels.  

The FND algorithm is superior to the lossless DCOPF algorithm when using the ACOPF 

as a benchmark for the LMP, as well as generation scheduling. For example, the LMP results 

from the FND algorithm are very close to the ACOPF LMP results with exceptions at only 

two particular load levels: 1.0900 and 1.1925 per unit of the base load. As a comparison, the 

LMP from the lossless DCOPF produces significant errors in two bands of load levels, i.e., 

[1.0900, 1.1125] and [1.1625, 1.1925]. Similar observations can be found in generation 

scheduling. Since the lossless DCOPF ignores the line loss, it is not surprising that it 

performs poorer than the FND-based Iterative DCOPF algorithm. 

Further tests in the IEEE 30-Bus System are also performed. Observed results are very 

similar to the results from the PJM 5-bus system. For instance, the FND DCOPF algorithm 
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provides a much closer approximation than the lossless DCOPF algorithm in all four 

measures, MD of LMP, AD of LMP, MD of generation dispatch, and AD of generation 

dispatch. 

3.3.2.2. Tests Results from IEEE 30 Bus System 

  

The second test system is the IEEE 30-bus test system. The detailed system configuration 

and data are a revised version of the IEEE 30-bus test system [16] and available in [17]. The 

bidding prices of the 6 generators are assumed here to be 10, 15, 30, 35, 40, and 45, 

respectively, all in $/MWh. The branch susceptibilities and transformer tap ratios are all 

ignored for simplicity. To make the ACOPF converge beyond the load level of 1.05 per unit 

of the base-case load, the network data is slightly modified: 1) the load power factor is kept at 

0.95 lagging as load increases; and 2) the transmission limit of Line 6-8 is increased by 10%. 

Test results show that the FND algorithm converges in about 5 iterations for this system, even 

if a low tolerance 0.001MW is applied for high accuracy. 

Figs. 3.12-3.13 and 3.15-3.16 show the Maximum Difference and Average Difference of 

the LMP and generation dispatch between each of the two DCOPF algorithms and the 

ACOPF algorithm. Figure 3.14 shows the Marginal Unit Difference Flag of the two 

algorithms when compared with the benchmark ACOPF algorithm. Similar observations can 

be made that the FND algorithm performs better than lossless DCOPF and is a very good 

approximation of ACOPF algorithm for load levels [0.70, 1.16] and [1.22, 1.30]. 

Nevertheless, neither the FND nor lossless DCOPF algorithm can identify the same marginal 

units as the ACOPF algorithm for load levels [1.16, 1.22]. This is reasonable since DCOPF 

algorithms are based on the DC model assumptions and approximations. In general, the FND-

based Iterative DCOPF greatly outperforms the lossless DCOPF.  
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Figure 3.12. The Maximum Difference of the LMP between each DCOPF algorithm and 

ACOPF for the IEEE 30-bus system 

 

Figure 3.13. Average Difference of the LMP between each DCOPF algorithm and ACOPF 

for the IEEE 30-bus system 
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Figure 3.14. Marginal Unit Difference Flag of each DCOPF algorithm when compared with 

the benchmark ACOPF for the IEEE 30-bus system 

 

 

Figure 3.15. The Maximum Difference of Generation Dispatch between each DCOPF 

algorithm and ACOPF for the IEEE 30-bus system 
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Figure 3.16. The Average Difference of the Generation Dispatch between each DCOPF 

algorithm and ACOPF for the IEEE 30-bus system 
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lossless DCOPF ignores the line loss, and power loss does affect the LMP and generation 

scheduling, it is not surprising that it performs much more poorly than the FND-based 

Iterative DCOPF algorithm.  

B. Occurrence of significant LMP Difference between DCOPF and ACOPF 

The occurrence of significant LMP difference between the DC model and AC model is 

due to the different set of identified marginal units, as can be seen from Figs 3.7-3.8 and 

Figure 3.9 in the PJM 5-bus system and Figs 3.12-3.13 and Figure 3.14 in the IEEE 30-bus 

system, respectively. In the PJM 5-bus system, for instance, the load range of the significant 

LMP difference always lines up with the load range of different marginal unit set. On the 

other side, at the load level where the marginal unit set is the same between the DCOPF and 

ACOPF, the LMP difference is inconsiderable, since the LMP at any bus is either equal to the 

marginal unit price at that bus, or determined by all marginal unit cost/bidding. 

For example, when the load level is 1.09 per unit of the base load, the dispatch results are 

as shown in Table 3.6. The base case diagram of the PJM 5-bus system is shown in Figure 

3.2. With the ACOPF model, the marginal units are Sundance and Brighton. However, in the 

FND-based Iterative DCOPF, the Brighton unit, which is dispatched extremely close to, but 

not at, its maximum capacity as in the ACOPF is now dispatched at its maximum capacity. In 

addition, the Solitude is dispatched at a very small amount of generation. So, the marginal 

units for the FND algorithm are the Sundance and Solitude.  

Therefore, the different marginal units lead to the LMP difference because they determine 

the overall trend of the LMP. In this case, the generation cost difference between the 

Sundance and Brighton is relatively big, i.e., ($35-$10)/MWh = $25/MWh. This leads to the 

considerable MD (80%) between the FND algorithm and the ACOPF algorithm at the 1.0900 

load level, as shown in Fig. 3.7. However, once the DCOPF identifies the same marginal 

units as that of ACOPF at load levels, such as 1.0925 p.u., the LMPs will be very close. 
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Table 3.6. The Generation Dispatch Results from DCOPF and ACOPF at load level 1.09 p.u. 

 Maximum 

Capacity (MW) 

Cost 

($/MWh) 

FND-based 

DCOPF 

ACOPF 

Alta 110 14 110.00 110.00 

Park City 100 15 100.00 100.00 

Solitude 520 30 0.49 0.00 

Sundance 200 35 180.39 179.94 

Brighton 600 10 600.00 599.79 

Total   990.88 989.72 

Marginal Units (with Dispatch Amount in Bold Font): 

FND-based DCOPF – Solitude and Sundance  

ACOPF – Sundance and Brighton. 

 

This observation has practical implication for real systems. For a system consisting of a 

generation center with abundant low-cost generation resources and load center with 

expensive generators, when the units in the low-cost, net-exporting area are approaching their 

maximum capacity, it is very likely that the difference between the DCOPF and ACOPF may 

lead to a significant price difference because the two approaches may provide different sets of 

marginal units. Special care, such as verification with AC model, may be necessary for 

system planners if the DC model is the primary approach. 

Moreover, the reason for the different marginal unit sets identified by DCOPF model and 

ACOPF model lies in the natural difference between the DC and AC models. Since the DC 

model linearizes the network by setting the voltage magnitude to unity and ignoring the 
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reactive power, there must be some difference in the power flow calculation which causes the 

different marginal units and hence, affects the LMP at many buses at a particular load level.  

C. Generation Dispatch Difference 

As for the generation dispatch results shown in Figs. 3.10 and 3.11, the results from the 

FND algorithm are very close to those from the ACOPF algorithm for most cases, except for 

the load levels between 1.09 to 1.10. Actually, the difference is not as large as it first appears 

because Figs. 3.10 and 3.11 show relative difference, which can amplify the facts. For 

instance, when a unit is dispatched as a small value, e.g. 0.5MWh in the ACOPF, the 

difference percentage is as big as 100% when the FND provides 1.0MWh. In this case, the 

large relative difference is not as surprising as it appears. 

 In addition, a large dispatch difference does not necessarily correspond to a large LMP 

difference. For example, although the generation output is quite different at load levels [1.23, 

1.30] compared to benchmark data in the IEEE 30-bus system, as observed in Figs 3.12-3.16, 

LMPs at these load levels are still very close. In fact, as long as the significant generation 

difference occurs at load levels where the marginal unit set identified by the FND algorithm 

is the same as that of the ACOPF, the LMP difference may not be noteworthy. 

 

3.3.3. Sensitivity Analysis of LMP With Respect to Load 

The previous section showed that the FND-based Iterative DCOPF algorithm is a trustable 

approximation, especially when compared with the lossless DCOPF, of the ACOPF-based 

LMP. This section will examine the sensitivity of the LMP with respect to load changes 

based on the FND-based Iterative DCOPF. 
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3.3.3.1. LMP Sensitivity without Loss 

Based on the DCOPF formulation, sensitivity is strongly related to the loss model. In other 

words, if no loss is considered, the sensitivity of the LMP should be zero, if there is a very 

small change in demand (actually, as long as there is no change of marginal units). This is 

due to the linear characteristics in the DCOPF model. It can be shown as follows 
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In the above equations, λ is independent of demand because it represents the change of the 

dispatch cost with respect to the change of demand. If there is a small increase of demand, the 

same marginal unit(s) shall provide a matching amount of power to cover the demand 

increase. The reason is that the DCOPF model is based on a Linear Programming model. 

Hence, the change of generation of each marginal unit with respect to a load change at a 

specific bus should also be linear. This can be written as 
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G
 for all marginal unit l. (3.38) 

With the assumption of a small load change without new binding constraints, the energy 

price can be written as  
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where Ml = number of marginal units. 
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Hence, λ is independent of demand and 
jD

 is equal to zero. Similarly, due to the linear 

formulation, μk represents the change of cost when there is a 1MW relaxation of the kth 

transmission constraint. As long as there is no new marginal unit, the reduced cost will 

remain constant or independent of Dj. Therefore, 
j

k

D
 is equal to zero.  

The LMP sensitivity is first tested on the PJM 5-bus system [11]. The base case of the 

system is shown in Figure 3.2. Figure 3.17 shows the nodal LMP at each bus without 

considering losses, with respect to different load levels, 300 MWh to 330 MWh, at Bus B. 

The LMPs remain constant within this small range.  

 

 

Figure 3.17. LMP from Lossless DCOPF at each bus with respect to Load at Bus B 

 

3.3.3.2. LMP Sensitivity Considering Loss 

As shown in the above analysis and test, the possible non-zero sensitivity of the LMP in 

the paradigm of the DCOPF must be attributed to the loss model. When the load grows, the 

loss grows quadratically with demand.  Here, a misleading intuition is that the LMP 
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sensitivity to the load shall only be related to the delivery or loss factor since the LMP 

sensitivity is zero when there is no loss, as shown in (3.37) and Fig. 3.17.  

However, a careful analysis shows that the change of load will lead to a change of not only 

DF, but λ and μ. This is because the change of the Delivery Factor in the DCOPF model shall 

lead to a new λ and μ, when the load is varied. In summary, the sensitivity of the LMP at bus i 

to the demand at bus j can be written as 

j
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Hence, we have 
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And, 0
jD

 and 0
j

k

D
in general. This makes the case with the loss very different 

from the lossless case. 

Figure 3.18 shows the normalized DF at each bus for the PJM 5-bus system with respect to 

the Bus B Load in the range between 300 MWh and 330 MWh; Figure 3.19 shows the actual 

μ of Line ED with respect to the Bus B Load; and Figure 3.20 shows the normalized LMP at 

each bus with respect to the Bus B Load. The normalized values are used so it is easier to 

observe the linear growth of the DF or LMP at all buses versus the Bus B Load. So, the LMP 

sensitivities, with respect to load, are the slopes of the straight lines in Fig. 3.20. Fig. 3.21 

plots the actual LMP sensitivity with respect to the load at Bus B.  
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Figure 3.18. Delivery Factors normalized to base case at each bus with respect to the Load at 

Bus B. The DFs at Base Case for the 5 buses are 0.98992, 1.01130, 1.01304, 1.00000, and 

0.98561, respectively. 

 

 

Figure 3.19. μ of the Constraint of Line ED with respect to the Bus B Load 
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Figure 3.20. LMP normalized to base case with marginal loss at each bus with respect to the 

Load at Bus B. The LMPs of the base case for the 5 buses are 15.86, 24.30, 27.32, 35.0, and 

10.0 $/MWh, respectively. 

 

Figure 3.21. LMP Sensitivity ($/MWh2) with respect to the Load at Bus B (MWh) 

 

Table 3.7 shows the μ of Line ED, the DF at Bus B, the LMP at Bus B, the DF at Bus C, 

and the LMP at Bus C with respect to the Bus B Load from 300 MW to 330 MW. It can be 

easily verified that each variable is linearly related to the Bus B Load, shown in Table 3.7. 
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Table 3.7. μ, DF and LMP with respect to Different Load Levels at Bus B 

Load @ B μ of Line BD DF @ B LMP @ B DF @ C LMP @ C 

300 50.98634 1.011301 24.30337 1.013040 27.32212 

303 50.98628 1.011411 24.30721 1.013120 27.32494 

306 50.98622 1.011520 24.31105 1.013200 27.32776 

309 50.98617 1.011630 24.31490 1.013280 27.33058 

312 50.98611 1.011739 24.31874 1.013361 27.33340 

315 50.98605 1.011848 24.32258 1.013441 27.33621 

318 50.98599 1.011958 24.32643 1.013521 27.33903 

321 50.98593 1.012067 24.33027 1.013601 27.34185 

324 50.98587 1.012177 24.33411 1.013682 27.34467 

327 50.98581 1.012286 24.33796 1.013762 27.34749 

330 50.98575 1.012396 24.34180 1.013842 27.35031 

 

In addition to the results shown in Figs. 3.18-3.21 and Table 3.7, the energy component of 

the LMP, or λ, is $35/MWh, constantly. However, this is a special case because the marginal 

unit happens to be the reference bus, so λ is constant. As previously stated, λ is usually not a 

constant in the DCOPF model with loss, i.e., 0
jD

. The GSF of line DE to Bus B is -

0.2176. 

Eq. (3.40) can be validated with Figs. 3.18 to 3.21. Taking the LMP at Bus B as an 

example (i.e., i=j=Bus B), we have 

Normalized 
30

0.001028

j

i

D

DF
 (See Fig. 3.18) 
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Actual 
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    =0.004×10-3 ($/MWh2) (See Fig. 3.19) . 
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= (1.277+0+0.004) × 10-3  

=1.281 × 10-3 ($/MWh2) . 

 

From Fig. 3.20, we have  
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. This validates Eq. (3.40) and also matches the data 

in Fig. 3.21, numerically. Similar validations can be made for other buses.  
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Although the second and the third parts in Eq. (3.40) for this case is either zero or very 

small compared with the first part in Eq. (3.40), this does not mean they can be generally 

ignored. In fact, when the load level is approximately 360-390MW, the third part will play a 

larger role in LMP sensitivity than the first two parts. The next section provides test results 

from the IEEE 30-bus system, in which all three parts of LMP sensitivity are compared 

numerically. 

As shown in Figure 3.20, the LMP at the marginal unit buses (e.g. Bus E) is constant, and 

is equal to the bidding price of the local generator Brighton as this generator is always a 

marginal unit when the Bus B Load varies between 300MW and 330MW. So, the local load 

increase at Bus E will be solely picked up by the local marginal generator Brighton. Thus, the 

sensitivity of the LMP at Bus E is zero, as shown in Fig. 3.21. This is also the case for Bus D 

because the local generator Sundance is also a marginal unit.  

For non-marginal-unit buses (A, B, or C in this study), the LMPs linearly increase, as the 

load increases. Since the loss is a quadratic function of the load, the generation is a quadratic 

function of the load as well. If there is no change of marginal units (i.e., due to the very small 

change of the load), the dispatch cost is quadratically related to the load. The LMP, defined 

as incremental cost over incremental load, should be a linear function of the load, as shown in 

Fig. 3.20. Therefore, the LMP sensitivity at a bus without any marginal unit should be a non-

zero constant, as shown in Fig. 3.21. 

3.3.3.3. LMP Sensitivity results from IEEE 30-bus system 

The LMP sensitivity with the loss considered is also tested on the IEEE 30-bus system 

[17]. The network topology is shown in Figure 3.22. The system data is slightly modified for 

illustration purposes: 1) The bidding prices of the 6 generators are assumed as 10, 15, 30, 35, 



 
72 

40, and 45, respectively, all in $/MWh, and 2) the transmission limit of Line 6-8 is increased 

by 10%.  

Figure 3.23 shows the LMP sensitivity with respect to the Load at Bus 8 between 27 and 

35MWh in the system. Only the LMP sensitivities at a few buses are shown in the figure for 

better illustration. Again, LMP sensitivities have constant values at all these buses.  

Further tests show there will be a step change of the LMP sensitivity because of a new 

binding constraint when the load reaches approximately 36 MW. The diagram beyond 36MW 

is not shown simply because it is difficult to scale into one figure.  
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Figure 3.22. The Network Topology of the IEEE 30 Bus System 
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Figure 3.23. LMP Sensitivity at a few buses with respect to the Load at Bus 8 ranging from 

27 MWh to 35 MWh (base case load=30MWh) in the IEEE 30-bus system 

 

When the new (and only) binding transmission constraint appears, a non-zero μ occurs and 

its sensitivity is considerable. Equation (3.40) can be briefly verified using results at Bus 30 

with respect to the Bus 8 Load, varied from 37.500 to 37.575 MW. This can be shown as 

follows (here i=30 and j=8) 
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= -0.007383($/MWh2) . 

We also have  

j

i

D

LMP
= -0.00054264/0.075 = -0.007235 ($/MWh2) . 

Hence, the error of Eq. (3.40) is less than 2.0%. Figure 3.24 shows the LMP at Bus 30 

with respect to the Load at Bus 8 between 37.5 and 39 MWh. It can be easily verified that the 

slope of the LMP curve is roughly -0.007 $/MWh2. It remains this value since there is no new 

binding constraint when the Load at Bus 8 is increased from 37.5 to 39 MWh. 

 

 

Figure 3.24. LMP at Bus 30 with respect to the Bus 8 Load from 37.5 to 39 MWh in the 

IEEE 30-bus system 
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Notes on Delivery Factor and LMP sensitivity  

Note on Delivery Factor - Figure 3.18 and its caption show that the delivery factor may be 

greater than 1, which implies a negative penalty factor. Taking Bus C as an example, if there 

is a hypothetical injection increase at Bus C and it is absorbed by the reference Bus D, this 

will reduce the majority of the line flows such as Line EA, AB, BC, and DC, and therefore, 

reduce the system loss. So, the marginal loss factor is negative and the delivery factor is 

greater than 1. Similar observations can be obtained at other buses. 

Note on LMP Sensitivity - Reference [41] presents a generalized, ACOPF-based model for 

LMP sensitivity with respect to the load and other variables. A matrix formulation needs to 

be solved to calculate the LMP sensitivity eventually, therefore, there is no direct, explicit 

formulation available from [41] about LMP sensitivity to load. This work does not intend to 

override the work in [41]; instead, this research work does present an explicit formulation, Eq. 

(3.40), about LMP sensitivity to load, based on the DCOPF with Delivery Factor, which is 

neither applicable nor necessary in the ACOPF model. Hence, with the concept of the 

Delivery Factor, the LMP sensitivity to load in the DC model is more straightforward and 

simple in such a way that it is more helpful to obtain a big picture about LMP sensitivity. 

This is very reasonable considering the simplifications from the AC model to the DC model. 

The observed results match the analytical equation (3.40) and clearly show that the LMP 

sensitivity is related to the loss component, linear to the sensitivity of delivery factors, and a 

numerical constant. Without the loss component, the LMP sensitivity is zero if the load is 

varied over a small range.  

3.3.3.4. Sensitivity When there is a Change of Marginal Units 

Figures 3.25 and 3.26 show the normalized delivery factor and the LMP sensitivity, 

respectively, when the load at Bus B is varied from 300 MWh to 390 MWh in the PJM 5-bus 
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system. Again, other loads remain unchanged for simplicity. These two figures show there is 

a turn of delivery factors and a sharp change of LMP sensitivity, when the Bus B Load 

increases from 346.50 to 347.25 MWh. This is due to a change of marginal units from 

Brighton and Sundance to Solitude and Sundance. This will change the LMP prices at each 

bus significantly. In addition, this will change the Delivery Factor (DF) growth pattern 

because the DF is related to the generation locations. Therefore, the delivery factor sensitivity 

has a sharp change as does the LMP sensitivity.  

As shown in Fig. 3.25, the delivery factor at Bus C decreases after the critical load level of 

the step change of LMP sensitivity. At the critical load level and above, the new marginal 

unit Solitude will generate more power to supply its local load. So, the power flow through 

Lines DC and BC will be considerably reduced while the power flows through other lines 

remains unchanged. This will reduce the line losses and the fictitious demand at Bus C. Thus, 

the delivery factor decreases. Hence, the delivery factor sensitivity changes sharply as does 

the LMP sensitivity.  

 This representative case well illustrates that delivery factors may be affected by 

generation scheduling. Hence, this also shows the necessity to adopt the iterative DCOPF 

approach rather than using the DF from a pre-defined typical scenario. 

The step change pattern implies the applicability of LMP sensitivities. When the present 

operating point is far from a change of marginal units, the LMP sensitivities (due to losses) 

can indicate how the LMP will change under load variations. On the other hand, when several 

of the current marginal units are near their generation limits or several transmission lines are 

congested due to a small load growth, the LMP sensitivities calculated in the present 

operating point are less reliable because a step change of the LMP, as well as LMP sensitivity, 

may occur, even with a small load growth.  



 
77 

 

Figure 3.25. Normalized Delivery Factor at each bus with respect to the Load at Bus B 

ranging from 300 MWh to 390 MWh in the PJM 5-bus system 

 

 

Figure 3.26. LMP Sensitivity with respect to the Load at Bus B ranging from 300 MWh to 

390 MWh in the PJM 5-bus system 
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Figure 3.27. Forecasted LMP and Exact LMP 

 

Note that this step change, or infinite sensitivity, is not an artifact of the DC model. In fact, 

even with the AC model, the step change still occurs due to the marginal characteristics in the 

LMP definition. If the load grows to a critical level so that a new congestion occurs, there 

will be a new marginal unit that leads to a step change in price. This has an important 

implication on the present LMP methodology: there is significant uncertainty or risk in LMP 

forecasting due to inaccurate data or an approximated LMP algorithm. This is illustrated in 

Fig. 3.27 in which the LMP error is relatively significant when the load is between D1 and D2. 

Hence, all approximated LMP algorithms cannot completely eliminate the relatively 

considerable errors in a range of load levels in which a step change of the LMP occurs. 

However, a better approximated algorithm should be able to narrow the range of LMP errors, 

as demonstrated by the proposed FND-based DCOPF as opposed to the lossless DCOPF. 

3.4. Discussion and Conclusions 

The proposed FND algorithm may be further simplified by executing only the first two 

iterations. Basically, the first iteration is essentially a lossless DCOPF run to provide an 

estimation of delivery factors, FND, and system loss. Then, another DCOPF is performed 
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based on the estimation. The reason for this simplification is that our research found that an 

initial estimation of delivery factors and losses have a bigger impact on the LMP and dispatch 

than the later iterations used to refine delivery factors, FND, and system loss. This can reduce 

the computational effort since it does not require the algorithm to run until convergence. 

Therefore, it fits a simulation or planning purpose well if the accuracy is reasonably 

acceptable. Our tests on the PJM 5-bus system and IEEE 30-bus system show that the two-

iteration simplification of the FND algorithm produces results very close (less than 4% error 

in the Maximum Difference of nodal LMPs) to the fully converged FND algorithm. 

Nevertheless, this is a heuristic observation and needs further research to be credibly applied 

to much larger, real systems. 

The proposed FND-based Iterative DCOPF shall be applicable to the Security 

(Contingency) Constrained Optimal Power Flow, i.e., SCOPF or CCOPF, because there is no 

mathematical difference between the SCOPF and OPF, despite a more computational 

complexity. In general, additional arrays of the Generation Shift Factors under contingency 

scenarios may be added to model contingency constraints. The security limit can be modeled 

similar to the line limits presented in (3.32). 

This chapter first presents the loss and delivery factors based on the Generation Shift 

Factor (GSF). The reduction of system loss in the energy balance equality constraint is 

rigorously proved. Then, the challenge of a considerable nodal mismatch at the reference bus 

is presented. The mismatch issue is overcome with the proposed Fictitious Nodal Demand 

(FND) model, in which the total loss is distributed into each individual line and there is no 

nodal mismatch. 

This chapter also presents a comparison of the LMP results from the lossless DCOPF, the 

FND-based DCOPF, and the ACOPF algorithms. The results indicate that a FND-based 
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Iterative DCOPF provides better results than the lossless DCOPF, and represents a better 

approximation of the ACOPF LMP.  

In addition, this chapter presents a simple and explicit formulation of LMP sensitivity with 

respect to the load, based on the FND algorithm. Without the loss component, the LMP 

sensitivity is zero if the load is varied over a small range. The LMP sensitivity may be infinite 

(i.e., a step change in LMP) when the load grows to a critical level and will lead to a new 

marginal unit. This step-change nature presents uncertainty and risk in the LMP forecast, 

especially when considering the possible data inaccuracy or algorithm approximation. 

Therefore, future research could explore approaches for smoothing out the step changes using 

penalty or rebate functions on constraints, and evaluate whether such approaches would ease 

forecasting of prices while still preserving the correct economic signals. 
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4 Congestion and Price Prediction under Load Variation 

4.1. Chapter Introduction 

As previously mentioned the Locational Marginal Pricing (LMP) methodology has been a 

dominant approach in the energy market operation and planning in the identification of the 

nodal price and management of the transmission congestion. For system operators and 

planners, it is important to know the future price and possible new binding limit as the system 

load grows. This information can be used for congestion mitigation and load management in 

both the short-term and long-term. Meanwhile, for generation companies, it is also important 

in predicting the future price and possible congestion, as evidenced by the adoption of 

optimal power flow (OPF)-based market simulators incorporating full transmission models. 

These demands stimulate the research presented in this work: to devise algorithms to 

efficiently identify congestion and LMP as a function of the load levels.  

Challenges arise because there is a step change of the LMP when the load grows to a 

certain level [42]. This is caused by the occurrence of a new binding limit, either a 

transmission line or a generator reaching its limit. Then, there will be a change of the 

marginal unit set and the sensitivity of marginal generation with respect to the load. Figure 

4.1 shows a typical LMP versus load curve with a given growth pattern for a sample system 

slightly modified from the well-known PJM 5-bus system, as shown in Figure 3.2.  
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Figure 4.1. LMP at all buses with respect to different system loads 

 

Certainly, the curve can be obtained if we repetitively run an optimization model and then 

perform the LMP calculation at many different load levels. This approach of repetitive 

optimization runs can be relatively time-consuming, especially for short-term applications. 

Even though it may be still fast enough in practice for a one-scenario application, such as a 

real-time dispatch, it will be not be fast enough if many different scenarios need to be run. 

For instance, a short-term market participant or system planner may want to run multiple 

scenarios with different load growth patterns and/or different transmission and generation 

maintenances. Then, multiple curves similar to that in Fig. 4.1 need to be obtained. This will 

make the run time of the repetitive optimization-run approach less competitive. A more 

efficient algorithm is highly desired. 

The most important step is to efficiently identify the next critical load level (CLL), defined 

as a load level at which a step change occurs, and the corresponding new binding limit, either 

a congested transmission line or a marginal unit reaching its generation limit. In addition to 
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finding the next CLL, it is also desirable to solve the following questions related to the 

system status at that CLL: 

o Which unit will be the next new marginal unit? 

o What is the new generation sensitivity of each marginal unit? (Note: The generation 

sensitivity of the old units will change.) 

o What is the new LMP at each bus?  

Due to the fact that different OPF models have different mathematical characteristics, this 

study will be conducted for three major OPF models, namely, the lossless DCOPF, ACOPF, 

and the proposed FND-based DCOPF. 

4.2. Simplex-like Method for Lossless DCOPF Framework 

A conventional sensitivity analysis [39, 41] provides the sensitivity under a small 

perturbation, and no change of marginal units under the load variation is assumed. It does not 

address the issue when the load continuously grows beyond the next critical load level (CLL) 

where a new binding limit occurs. In contrast, this work will present a systematic approach, 

without a new optimization run, based on a simple matrix formulation to identify the new 

CLL, marginal units, congested lines, and nodal prices when the load growth leads to a new 

binding constraint and a step change of LMP and congestion. This is the primary 

mathematical significance of this work. The proposed approaches are very different from the 

previous works [20, 45], which solve the LMP at different hours (hence different load levels) 

using chronological optimization runs [20] or artificial intelligence [45]. This work starts 

from the present optimum and finds the solution at the next CLL by directly utilizing the 

unique features of the optimal dispatch model. Hence, it avoids repetitive optimization runs 

and should be more computationally efficient.   
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This section is organized as follows. First, the fundamental formulation of the proposed 

algorithm is presented to express marginal variables and the objective function in non-

marginal variables. Then, the formulation under load variations is established. We next 

present the calculation of the new binding limit, critical load level, set of marginal generators, 

generation sensitivity of all marginal generators, and prices as the load reaches the next 

critical level. An easy-to-follow example is shown to illustrate the algorithm in matrix 

formulation based on the PJM 5-bus system. Last, the performance speedup results with the 

PJM 5-bus, the IEEE 30-bus, and the IEEE 118-bus systems are presented.  

4.2.1. Fundamental Formulation of the Proposed Algorithm 

In this section, first, slack variables are applied to all inequality transmission constraints to 

convert them to equality constraints. Then, a matrix formulation is presented to rewrite all 

constraints so that marginal variables are expressed with non-marginal variables. Note that in 

this work a single vector is typically denoted in bold font, while a vector composed of 

multiple vectors or a matrix is denoted in bold font with brackets. 

Assume at the present load level, we have NMG marginal units. Hence, we should have 

NMG-1 congested lines, because the total number of marginal units is one more than the total 

number of congested lines [7, 42]. This can be written as 

11 ULCLMG MMMN   (4.1) 

where  

NMG = number of marginal units; 

MCL = number of congested lines; 

MUL = number of un-congested lines.  

Hence, we have energy balance equality constraint as: 
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NNGMG i

i

j

j

j

j DNGMG  (4.2) 

where MG , NG , and N  represent the marginal unit set, the non-marginal unit set, and 

the all bus set, respectively. 

The transmission inequality constraints can be written as equality constraints by 

introducing a non-negative slack variable. If we use ULk to represent the slack variables of 

un-congested lines and CLk for congested lines, we have  

CL
N

NGMG

kFCLDGSF

NGGSFMGGSF

kk

i

iik

j

jjk

j

jjk

,max

  

 (4.3) 

UL
N

NGMG

kFULDGSF

NGGSFMGGSF

kk

i

iik

j

jjk

j

jjk

,max

  

 (4.4) 

where  

CL  is the set of congested lines; 

UL is the set of un-congested lines. 

Note: CLk=0 for each congested (binding) transmission constraint. 

 

Equations (4.2) to (4.4) can be re-written in matrix formulation as follows 

CL

t

t

0

NG

r

r

1

D

q

q

1

p

p
UL

MG

AA

AA

01

2

1

2

1

2

1

2

1

2221

1211

-0

 (4.5) 

where 

MG = NMG×1 vector representing marginal generator output; 

NG = NNG×1 vector representing non-marginal generator output;  
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UL = MUL×1 vector representing the slack variables of non-congested branches (lines);  

D = [D1 D2 … DN]T = N×1 vector representing all loads with the assumption that each bus 

has a load for notational simplicity; 

CL = MCL×1 vector representing the slack variables of congested lines; and it is a zero 

vector for the base case; 

1  = row vector of 1‟s (dimension is case dependent); 

0 = row vector of 0‟s (dimension is case dependent); 

MG-CL11 GSFA  = MCL×NMG matrix representing the GSF of MCL (=NMG-1) congested 

lines w.r.t. marginal unit buses; 

0A12  = MCL × MUL  zero matrix; 

MG-UL21 GSFA  = MUL× NMG matrix representing the GSF of un-congested lines w.r.t. 

marginal unit buses; 

IA22  = MUL × MUL identity matrix; 

max

CLFp1
 = MCL×1 vector representing the line flow limit of congested lines;  

max

UL2 Fp  = MUL×1 vector representing the line flow limit of un-congested lines; 

NCL1 GSFq  = MCL×N matrix representing the GSF of congested lines w.r.t. all buses 

(load buses); 

NUL2 GSFq  = MUL×N matrix representing the GSF of non-congested lines w.r.t. all 

buses (load buses); 

NG-CL1 GSFr  = MCL×NNG matrix, representing the negative of GSF of congested 

lines w.r.t. non-marginal unit buses; 

NG-UL2 GSFr  = MUL×NNG matrix of the GSF of congested lines w.r.t. non-marginal 

unit buses; 
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It1  = MCL×MCL negative unity matrix; 

0t2  = MUL×MCL zero matrix. 

 

Equation (4.5) can be rewritten as  

CLtNGrDqp
UL

MG
A . (4.6) 

It should be mentioned that CL, the vector of slack variables for present congested lines, is 

a vector of 0 at the present load level. However, CL needs to remain as a set of variables, 

rather than constants of 0, in the formulation. The reason is that CL may change as the load 

grows beyond the next critical load level (CLL). In other words, a congested line may 

become un-congested as the load varies. Hence, CL should be kept as a vector of variables. 

This is a critical step to the following analysis.  

Equation (4.6) can be further simplified by first finding the inverse of the matrix [A], i.e., 

2221

1211

AA

AA

01

. This is given by: 

IAA

0A

IA

0A

AA

AA

01

1

1121

1

11

1

21

11

1

2221

1211  (4.7) 

where 
11

11
A

1
A , which is an NMG×NMG square matrix. 

Therefore, only the inverse of 11A requires computation. It should be noted that 11A  is 

full rank and the inverse should exist. Since only a few marginal units exist, the size of 11A

is usually very small. This will not provide a computational burden to the algorithm. With the 

inversion of the [A] matrix, we could solve equation (4.7). Hence, we have  
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CLTNGRDQP
UL

MG
 (4.8) 

where  

pAP
1

; qAQ
1

; rAR
1

; 

tAT
1

. 

 

As the above equation shows, Eq. (4.8) consists of three parts:  

o 1 equation representing the energy balance equation;  

o MCL (=NMG-1) equations representing the congested lines with slack variables CL being 

zeros;  

o MUL equations representing the un-congested lines with non-zero slack variables UL. 

As we can see, the formulation is written in a matrix form similar to the dictionary format 

of a simplex method to solve linear programming problems. The reason in doing this is to re-

write the non-zero variables (or basic variables) like MG and UL at the left-hand side, then 

any small change of load can be expressed as a corresponding change of MG or UL. Hence, 

the objective function can be written without MG or UL, as shown below.  

Using (4.8), we can rewrite the original objective function  

NGMG j

jj

j

jj NGCMGCz  (4.9) 

as 

CLTCNGCRC

DQCPC

NGCCLTNGR

DQPC

NGCMGC
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MG
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T
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NGMGMG
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T
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T

NG

T

MG

)

(

z

 (4.10) 
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where 

CMG = column vector of marginal generator costs; 

CNG = column vector of non-marginal generator costs; 

[RMG] = the first NMG rows of the [R] matrix; 

[TMG] = the first NMG rows of the [T] matrix. 

 

4.2.2. Load Variation 

If there is a change of system load, with the assumption of linear participating factors, we 

can rewrite the load as 

DfDDDD iiiii

)0()0(
 

DDDfDDD
i

ii

i

i

)0()0(

 

DfΔD  

where  

D

D
f i

i (load growth participating factor), and 1
Ni

if ; 

T
f Nfff ...21 , an N×1 column vector; 

∆D is a column vector and ∆DΣ is a scalar. 

With the above load variation model, the change of each bus load follows a linear 

participating factor with respect to the system load change. This model is reasonable because 

each bus load can be modeled to have its own variation pattern so that different load 

characteristics like industrial loads, commercial loads, and residential loads can be modeled 

accordingly. It is also flexible because the variation at each bus load is independent on the 

initial load. This model is particularly useful for short-term planning. 
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Considering the system load will be varied by ∆DΣ, we have 

ΔCLTΔNGRΔDQ
ΔUL

ΔMG
. (4.11) 

With the consideration of the linear participating factors of the load variation pattern, i.e., 

DfΔD , we can re-write the above equations to  

ΔCLTΔNGRQ

ΔCLTΔNGRfQ
ΔUL

ΔMG

D

D
 (4.12) 

where 

fQQ , a (NMG+MUL )×1 column vector.  

 

We can further decouple the above equation into  

ΔCLTΔNGRQΔMG MGMGMG ΔD  (4.13) 

ΔCLTΔNGRQΔUL ULULUL ΔD . (4.14) 

With the above two equations, we can immediately obtain the sensitivity of MG and UL 

with respect to load  

MGQ
MG

D
 (4.15) 

ULQ
UL

D
. (4.16) 

We can also write the change of the objective function z as follows 

ΔCLTC

ΔNG)CR(C)Q(C

ΔCLTC

ΔNG)CR(Cf)Q(C

MG

T

MG

T

NGMG

T

MGMG

T

MG

MG

T

MG

T

NGMG

T

MGMG

T

MG

D

D

Δ

Δz

. (4.17) 
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Therefore, we know the sensitivity of the objective function w.r.t. NG and CL are as 

follows 

j

jNG

z T

NGMG

T

MG CRC  (4.18) 

k

kCL

z
MG

T

MG TC  . (4.19) 

4.2.3. Identification of New Binding Limit, New Marginal Unit and LMP 

The above formulations can be applied to perform three important tasks: 1) identifying the 

next new binding limit, either the generation limit or transmission limit, and the next CLL; 2) 

identifying the next unbinding limit such as a new marginal unit; 3) finding the new 

generation sensitivity of all marginal units and the new LMP. These steps provide important 

information such as generation dispatch sensitivity or transmission congestion prediction, 

which is aligned with the main goal of this work, i.e., to find congestion and LMP versus the 

load, starting from any initial load level, say DΣ
(0), to any load level without running the OPF 

repetitively.  

The first section identifies the next CLL, DΣ
(1) , as shown in Fig. 4.2 below, where a new 

binding limit will appear. The algorithm utilizes the feature that marginal units and congested 

lines will remain the same when the load variation ∆DΣ does not push the load level beyond 

DΣ
(1). Then, the next section will identify the change of binding limits and marginal unit if the 

load grows to the immediate right side of DΣ
(1). The algorithm is based on finding the least 

incremental cost among all possible changes of the non-marginal units or slack variables of 

the congested lines. The algorithm has a simple final formulation and is very efficient. 

Essentially, these steps provide new dispatches and congested lines at the new CLL, DΣ
(1). 

The LMP can then be easily calculated at DΣ
(1).  
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Figure 4.2. LMP versus Load Curves 

 

Similarly, starting from DΣ
(1), we can repeat the above process to find the congestion and 

LMP at the “next-next” CLL, DΣ
(2).  

4.2.3.1. Identification of new binding limit and new critical load level 

When the load grows and this growth does not lead to any change of the marginal units, a 

non-marginal unit output should remain at its minimum or maximum, and the slack variable 

of a congested line should remain at zero. In other words, ∆NG=∆CL=0. Meanwhile, 

marginal generators and unbinding transmission lines should change and may approach their 

respective limits gradually. The one reaching its limit first will be the next binding limit. To 

analyze this, we have 

D
UL

MG

Q

Q

UL

MG
 . (4.20) 

Since all generation output and line flows at the present load level are provided from the 

initial OPF, it is not difficult to obtain the present values of the slack variables. In fact, many 

optimization solvers will give these values as output.  

For un-congested transmission lines, the slack variable is UL. Since the sensitivity of UL, 

with respect to load change ∆DΣ, is given by ULQ
UL

D
, we can obtain the allowed load 

DΣ
(2) Load  

P
ri

ce
 (

$
/M

W
h

) 

DΣ
(1) 

Critical load level (CLL): 

A new binding limit 

appears with ∆DΣ. 

DΣ
(0) 

No new binding limit 

and no new marginal 

unit with ∆DΣ. 
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growth before a line, say, the kth line, reaches its limit (i.e., ULk reaching zero). This is given 

by 

kUL

kallowed

k
Q

UL
ΔD  . (4.21) 

For generators, the slack variable is not given explicitly in the previous formulation. 

However, it can be viewed as 

max

MG MGsMG  (4.22) 

iiMG MGMGs
i

max
 (4.23) 

where 
iMGs is the slack variable of the ith marginal generator. 

Hence, the allowed load growth corresponding to the ith marginal generator as the load 

grows can be given as 

 
ii

i

MG

ii

MG

MGallowed

i
Q

MGMG

Q

s
ΔD

max

 . (4.24) 

Then, the minimum allowed load growth can be obtained by finding the minimum value 

among all 
allowedD given by (4.21) and (4.24). Hence, the new critical load is equal to

allowedΔDD min

)0(
. 

4.2.3.2. Identification of new unbinding constraint 

When the load increases or decreases, a new binding constraint will occur at the CLL, 

together with the appearance of an unbinding constraint, which could be from the generation 

or transmission. From the previous subsection, it is known that the new binding constraint 

can be transmission or generation. These two scenarios will be discussed below. 

1) Assume the lth marginal unit becomes non-marginal (binding).  
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Since the lth marginal unit is binding, it cannot grow as the load increase beyond DΣ
(1) in 

Fig. 4.2. Therefore, the change of the load ∆DΣ, must be offset by either a previously non-

marginal (binding) unit output by ∆NGj or a previously binding slack variable by ∆CLk. From 

(4.12), we have 

ΔCLTΔNGRQ MGMGMG lll
D0  (4.25) 

where  

lMGR and 
lMGT  are the lth row vectors of MGR  and MGT , respectively. 

 

It is very important to note that when the load is slightly more than the new CLL, there 

should be one and only one non-zero variables among all ∆NGj and ∆CLk. This is determined 

by the characteristics of linear programming, because the solution shall move from one vertex 

to an adjacent vertex (even though the vertices or boundaries themselves of the polytope 

should also change because of the change of DΣ). Then, the determination of which ∆NGj or 

∆CLk should be chosen as the next non-zero variable is based on the change of the objective 

function.  

If the jth non-marginal unit will become marginal, then we know from (4.25) that 

NGj
R

Q

D

NG

lj

l

MG

MGj
,  . (4.26) 

It should be noted that the above sensitivity must give NGj a possible change that will not 

violate its limit. For instance, for the case of a load increase, if NGj is already at its maximum, 

the above sensitivity should be considered only if it is negative. And, if NGj is at its minimum, 

the above sensitivity should be considered only if it is positive.  

If the kth congested line will become un-congested, then we know from (4.25) that 
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CLk
T

Q

D

CL

lk

l

MG

MGk ,  . (4.27) 

Again, the above sensitivity is considered only if it does not push CLk to negative values. 

At the CLL, CLk should be zero. 

Then, taking Eq. (4.18-27), we can easily calculate the expected incremental cost vector 
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 that can be expanded as: 
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 . (4.28) 

Finally, we can choose the smallest positive one in the load growth case (or largest 

negative one in the load drop case), and the corresponding j (or k) will be the new marginal 

unit (or new un-congested line) 

2) Assume the rth non-congested line becomes congested (binding). 

Similar to (4.25), we have 

ΔCLTΔNGR ULUL rrr
DQUL0  . (4.29) 

If the jth non-marginal unit will become marginal, then we know from (4.29) that 

NGj
R

Q

D

NG

rj

r

UL

ULj
,  . (4.30) 

If the kth congested line will become un-congested, then we know from (4.29) that 

CLk
T

Q

D

CL

rk

r

UL

ULk ,  . (4.31) 
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Similar to the discussions below (4.26) and (4.27), the sensitivity in (4.30) and (4.31) 

should be considered if and only if it presents a move away from the present binding limit.  

Next, we can calculate the incremental cost vector  

CL

NG

k
T

Q

j
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Q

rk

r

rj

r

UL

UL

k

UL

UL

j

,

,
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T

NGMG

T

MG

TC

CRC

 . (4.32) 

 

Similarly, we should choose the smallest positive one in the load growth case (or, largest 

negative one in the load drop case), and the corresponding j (or k) will be the new marginal 

unit (or new un-congested line). 

 

 

Note on the new sensitivity of marginal units when load is beyond the next CLL, DΣ
(1): 

It should be mentioned that the sensitivity of all existing marginal units will also change 

after the introduction of a new marginal unit at DΣ
(1). This can be quantitatively calculated as: 

DDD

CL
T

NG
RQ

MG
MGMGMG  . (4.33) 

If there is no new marginal unit at CLL (such as the load decreases to have a congested 

line become unbinding), then we have ][0
NG

D
while one and only one variable in 

D

CL
is not zero. Similarly, if there is a new marginal unit, then we have ][0

CL

D
 while 

one and only one variable in 
D

NG
 is not zero. 
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A more straightforward approach is to re-formulate (4.5) using the new MG, NG, UL, and 

CL vectors. The change to these vectors should be very little, because only one marginal 

variable in either MG or UL will be switched into NG or CL. In addition, only one non-

marginal variable in either NG or CL will be switched into MG or UL. Then, we can apply 

(4.12) to obtain new generation sensitivity. By doing so, we can repeat the previous process 

and eventually identify the “next-next” CLL (DΣ
(2)), the “next-next” binding limit, etc. 

4.2.3.3. LMP at the new critical load level 

The above process can identify the new congestion, CLL, and marginal unit as the load 

grows, but has not addressed the price calculation. A similar approach can be taken since 

generation sensitivity is the key to calculate LMP. However, there is a little difference 

between the previous steps and this step. In the previous step, the load variation is a “global” 

scope variation where all load buses are assumed to vary together following some pattern. 

However, the LMP is calculated as the change of cost to supply a “local” scope change of the 

load at a single bus, after the generation dispatch has been addressed for the “global” change 

of the load. Nevertheless, the LMP calculation can be performed with essentially the same 

approach, in particular, Eq. (4.12). The only difference is that we use a different participating 

factor, expressed as f=[0 0 …1…0 0], since the LMP is locational dependent.  

When the load is beyond DΣ
(1), we can first formulate the new MG, NG, UL, and CL 

vectors due to the change of marginal units and so on. Then, we can use (4.12) to calculate 

the marginal unit sensitivity with respect to a single bus load change using the “local” f=[0 

0 …1…0 0]T. Therefore, LMP at a particular bus can be easily calculated as 

iiii

i
DDDD

z
LMP

MG
C

NG
C

MG
C

T

MG

T

NG

T

MG  (4.34) 

where  
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iD = load change at a single bus i. 

 

4.2.4. Case Study with the PJM 5-bus System 

In this section, the PJM 5-Bus system with a slight modification will be employed to 

illustrate steps to identify the new binding limit, unbinding limit, generation sensitivity, and 

LMP as the load grows. The modifications to the original PJM 5-bus system [11] are as 

follows:  

o The output limit of the Alta unit is reduced from 110 MW to 40 MW, while the 

output limit of the Park City unit is increased from 100 MW to 170 MW; 

o The cost of Sundance unit at Bus D is changed from $30/MWh to $35/MWh to 

differentiate its cost from the Solitude unit;  

o Line AB is assumed to have 400MW limit.  

These changes are made so that there will be reasonably more binding limits within the 

investigated range of loading levels. Two binding limits will not occur at very close loading 

levels. Hence, a better illustration will be achieved when the price curves versus  the loading 

levels are drawn. 

We assume that the system load change is distributed to each nodal load proportional to its 

base case load for simplicity. Therefore, the load change is equally distributed at Buses B, C, 

and D since each has a 300 MW load in the base case. Fig. 4.3 shows the configuration of the 

system, Table 4.1 shows the line reactances and flow limits, and Table 4.2 shows Generation 

Shift Factors of Lines AB and ED with respect to all buses. 
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Figure 4.3. The Base Case Modified from the PJM Five-Bus Example 

 

Table 4.1. Line impedance and flow limits 

Line  AB AD AE BC CD DE 

X (%) 2.81 3.04 0.64 1.08 2.97 2.97 

Limit (MW) 400 999 999 999 999 240 

  

Table 4.2. GSF of Line AB and ED 

 A B C D E 

Line AB 0.1939 -0.4759 -0.349 0 0.1595 

Line DE 0.3685 0.2176 0.1595 0 0.4805 
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The basic OPF model for economic dispatch can be written as 

iiii

iiii

iiii

iiii

iiii
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 .  

 

After solving the initial case OPF (load = 900MW), there are 2 marginal units and 3 non-

marginal units as well as 5 un-congested lines and 1 congested line. Hence, we have 7 non-

zero basic variables, 2 for the marginal units and 5 for the un-congested lines. Then, we can 

rewrite the above equations in matrix formulation as follows 
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where MG1 and MG2 represent unit Sundance and Brighton respectively; NG1, NG2 and 

NG3 represent the units at Alta, Park City, and Solitude, respectively; CL1 represents line DE, 

UL1 to UL5 represent the remaining Lines, namely, AB, AD, AE, BC, and CD. 

 

The above equation can be re-written as 
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. (4.35) 

 

At the present operating point ( 900D ), we have the following results from the initial 

OPF 
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Therefore, we have 
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778.7505-
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If the first two equations in (4.35) are put into the objective function, as shown in (4.10), 

we have 
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MG

MG

T

MGMG

T

MG

 . 

Next, the load increase case will be taken to illustrate the process. 

4.2.4.1. Calculate the next binding limit 

Assuming a load variation ∆DΣ, we have the following equation 

 D

UL

UL

UL

UL

UL

MG

MG

0.3500

0.0166

0.2616

0.0551

0.3167-

0.2616

0.7384

5

4

3

2

1

2

1

 . 

The allowed load growth corresponding to each un-congested line is given by (4.21) 
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2225.2134

55265.5401-

2542.1269

15157.0897-

63.9391

0.3500

778.7505-

0.0166

919.2495

0.2616

665.0757-

0.0551

834.8262

0.3167-

20.2495

kUL

kallowed

k
Q

UL
ΔD  . 

Considering the maximum capacity case in (4.24), the allowed load growth of each 

marginal generator is given by  

99.6694

113.6603

0.2616

573.9243-600

0.7384

116.0757-200
max

iMG

iiallowed

i
Q

MGMG
ΔD  . 

Similarly, for the minimum capacity, the allowed load growth of each marginal generator 

is given by 

2193.7179-

157.2035-

0.2616

573.9243-0

0.7384

116.0757-0
min

iMG

iiallowed

i
Q

MGMG
ΔD  . 

Therefore, the minimum positive value of the allowed load growth is 63.94MW, which 

corresponds to the congestion of the line flow AB in the positive direction. So, the next 

binding limit will be the line flow AB at the load 963.94MW. 

4.2.4.2. Find the new marginal unit at load = 963.94 MW 

When the system load grows to 963.94 MW at which a new binding transmission limit 

occurs (Line AB), the sensitivity of the new non-marginal generator sensitivity is given by 

(4.30) 
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0.7879

4.4260-

4.4260-

0.4020

0.3167-

0.0716-

0.3167-

0.0716-

0.3167-

rj

r

UL

ULj

R

Q

D

NG
 . 

We also have  

3.30150.8256-1.8256-

30.000015.000014.0000

0.3321-0.7670-0.7670-

0.6679-0.2330-0.2330-
10.000035.0000

T

NGMG

T

MG CRC

 . 

 

The incremental cost vector for NG is 

2.6011

3.6540

8.0800

0.78793.3015

-4.4260)(0.8256-

-4.4260)(1.8256-

lj

l

MG

MG

j
R

Q
T

NGMG

T

MG CRC

 . 

If we examine the sensitivity of un-congested lines based on (4.31), we have 

 

0.9537-
0.3321-

0.3167-

rk

r

UL

ULk

T

Q

D

CL
 

-52.0344
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T

MG TC  

49.6277-0.9537)(52.0344-

rk

r
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k
T

Q
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T
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If the incremental cost for NG and UL is the smallest positive value of 2.6011, which 

corresponds to NG3, the Solitude unit is at Bus C. So, the new marginal unit will be Solitude 

and there is no new congested line in this case. 

4.2.4.3. Calculate the new LMP at load level 963.94 MW 

For the new marginal unit set, apply (4.13) with f=[0 0 …1…0 0]T, to calculate
iD

MG
 for 

the load variation at each single bus. Again, the load variation occurs at a specific bus only. 

Since we have 
54321 DDDDD

MGMGMGMGMG
 

0.00000.00001.00001.36360.1780-

1.00000.00000.00000.00000.8261

0.00001.00000.00000.3636-3519.0

, 

the LMP at Bus 1 can be calculated as 

15.2379

0.1780-

0.8261

0.3519

301035
1

1
D

LMP MG

MG
C

T
 . 

Similarly, we can obtain the LMP for all buses from 963.94 MW to the next CLL as 

10.0000

35.0000

30.0000

28.1818

15.2379

LMP  ($/MWh). 

4.2.5. Performance Speedup 

As previously mentioned, this approach is particularly suitable for a short-term or online 

application. Hence, performance is very important. The advantage of this approach is to start 

from the present optimal state to directly evaluate the new CLL, and the associated 
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congestion and price step changes. This approach avoids repetitive optimization runs by 

taking advantage of features unique to the optimal dispatch model. Not surprisingly, this 

approach is computationally more efficient than the approach of repetitive optimization runs.  

Here it is assumed that the range for trial-and-error is in 1000 intervals, such as from DΣ to 

DΣ+1000 MW with 1 MW as the acceptable accuracy or from DΣ to DΣ+100 MW with 0.1 

MW as the acceptable accuracy. With the most optimistic assumption that there is only one 

step change during these intervals, we need to execute log21000 ( 10) DCOPF runs on 

average with a binary search, which is the most efficient searching algorithm in this case. 

With this estimated number of DCOPF runs, Table 4.3 shows that the speedup can be up to 

51.6 for the IEEE 118-bus system. Here, speedup is defined as the average running time of 

the repetitive DCOPF-run approach divided by the average running time of the proposed 

algorithm, which provides the same output as the repetitive DCOPF runs such as the CLL, 

marginal units, congested lines, and LMPs. It is more encouraging to observe that the 

speedup increases with larger systems. This makes the direct approach highly promising for 

an online application, compared with the trial-and-error approach of repetitive OPF runs. 

 

Table 4.3. Speedup of the proposed algorithm compared with the common practices of 

repetitive DCOPF runs 

System Speedup compared with 

multiple (~10) DCOPF runs 

PJM 5-bus 15.2 

IEEE 30-bus 30.0 

IEEE 118-bus 51.6 
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The test of the DCOPF algorithm is implemented with Matlab packages using a linear 

programming function, linprog(). A sparse matrix technique is applied for both approaches 

for the larger systems, the IEEE 30-bus and 118-bus cases. It should be noted that although 

the kernel of some commercial LP packages may have the capability to perform a speeded 

follow-up LP run if it starts from the results of a previous case with careful data re-

preparation, the repetitive OPF-run approach would still be more time-consuming. The 

reasons are: 1) there is a need to run the OPF multiple times to find the next CLL; and 2) each 

OPF, even if speeded up, should be still slower than the direct algorithm presented in this 

work, at least due to the overhead such as data re-preparation before each OPF. Moreover, if 

a higher resolution is needed for the CLL, the number of runs will increase beyond the 

assumed 10 times in the test presented here.  

 

4.2.6. Discussion and Conclusions 

Discussion 

The above test illustrates that we can quickly obtain the congestion or binding constraints 

at the next CLL without repetitively running OPFs at many different load levels. In fact, if we 

start from zero loads, we can also efficiently calculate all binding constraints and prices at 

different load levels. Table 4.4 shows the marginal units and congested lines corresponding to  

the different CLLs for the PJM 5-bus case, calculated from the proposed approach. The price 

versus load curve can be easily plotted as well. It is ignored here since it is exactly the same 

as in Fig. 4.1. This proposed direct approach requires only six runs of the proposed algorithm 

because there are only six CLLs (i.e., step changes). As a comparison, to obtain Fig. 4.1 with 

a similar resolution of CLLs, hundreds of DCOPF runs are needed. This also shows the high 

efficiency and great potential of the proposed algorithm. 
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Table 4.4. Marginal units and congestion versus load growth 

Load Range(MW) Marginal Unit(s) Congested Line(s) 

0~600 Brighton None 

600~640 Alta None 

640~ 711.8083 Park City None 

711.8083~ 

742.7965 

Park City 

Brighton 

ED 

742.7965~ 

963.9391 

Sundance 

Brighton 

ED 

963.9391~ 

1137.0152 

Solitude 

Sundance 

Brighton 

AB 

ED 

 

Another note is that the proposed algorithm can be applied to the Continuous LMP (CLMP) 

methodology in [42] such a way that it is not necessary to re-run another optimization to 

obtain the LMP at the next CLL, DΣ
(1), after we calculate ∆DΣ from DΣ

(0). Nevertheless, it is 

more important to emphasize the application of the algorithm in the presently dominant LMP 

paradigm, because the immediate and important application in congestion and price 

prediction versus load growth is apparent.     

The best application of this work is for short-term operation and planning, when the load 

change in each bus or area should be close to linear and proportional, and the impact from 

other factors, like unit commitment, may not be a significant factor. If applied for long-term 

planning, the proposed model will be less accurate, if compared with the real-time operation. 

However, there is no existing model that can perform the same work easily and it is 
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sometimes unnecessary to obtain a high accuracy for long-term planning. So this work should 

be still valuable for long-term planning. Nevertheless, it is certain that the impact of the unit 

commitment is an area for future research.  

In addition, the generation ramping rate is another factor to consider in the future, 

especially for short-term applications in which the ramping rate is a possible constraint. Other 

possible future works may lie in the different inputs such as the non-linear load variation 

pattern, generation uncertainty, transmission outage, and so on. If these are coupled with the 

loss and ACOPF models, it will become more complicated.  

It is true that the running time of the proposed approach, after some modifications to 

address the above modeling details, will be slower than its present version. However, even 

with all these complications, the corresponding trial-and-error approach with repetitive 

optimization runs should be slower as well. Therefore, it would not be surprising if the 

relative speedup will be on the similar scale as that shown in Table 4.3. 

The proposed algorithm is named the „Simplex-like‟ method in this work because like the 

Simplex method in Linear Programming, it utilizes the concept of basic and non-basic 

variables and explores the sensitivity of constraints with respect to basic variables in order to 

determine the new basic set in the process of the algorithm. The primary difference between 

the simplex method and the proposed algorithm lies in the properties of the problem. For the 

Simplex method, it solves a linear programming problem, which is a fixed polyhedron. It 

starts from an initial point and jumps to the “best” adjacent extreme point until an optimal 

solution is found. However, for the proposed algorithm, it deals with an ever-changing 

polyhedron with respect to the load since most constraints change with the load. The 

algorithm starts from an optimal solution and finds the new optimal solution in one step when 

the load changes. 
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Conclusions 

It is very useful to market-based operation and planning, especially in the short term, if 

information regarding congestion and price versus load can be easily obtained. The proposed 

algorithm helps the system operators and planners to easily identify possible congestion as 

the system load grows. It also provides useful information to generation companies to 

identify possible congestion and price changes as the system load grows, since many of these 

companies use the OPF model for congestion and price forecasting to achieve better 

economic benefits. Technical challenges arise if the load variation leads to a change of the 

binding constraint, which will lead to a change of the marginal unit set and a step change in 

the LMP. The previous work on the sensitivity of the LMP and other variables with respect to 

the load works only for a small load variation without a change of the binding constraints and 

cannot work when there is a large variation of the system load leading to a new congestion 

and a step change of the LMP.  

This section presents a systematic approach to povide a global view of congestion and 

price versus load, from any given load level to another level, without multiple optimization 

runs. As shown in the mathematical derivation and case study, this approach is performed in 

the following steps: 

o It first expresses marginal variables as a function of other non-marginal variables.  

o Then, it identifies the next binding limit and the next critical load level (CLL).  

o Next, the next unbinding limit such as a new marginal unit can be selected.  

o Finally, the new generation output sensitivity at the CLL can be obtained because 

the objective function is expressed as non-marginal variables. Therefore, the new 

LMP can be obtained when the load is greater than the CLL.  

o The same procedure can be repeated to run through another CLL.  
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In conclusion, this approach has great potential in market-based system operation and 

planning, especially for the short term, for congestion management and price prediction. 

Future works may lie in the impact of unit commitment, generation ramping rate, different 

load variation model, uncertainties, inclusion of loss model, and using ACOPF models. 

 

4.3. Interpolation Method for ACOPF Framework 

 In the previous chapter, a computationally effective method for fast identification of CLLs 

is proposed for a fully linearized, DCOPF-based dispatch model. However, so far there are no 

available methods and tools that can predict the CLLs with respect to load variations within 

the framework of an ACOPF. It should be noted that an ACOPF is a closer representation of 

the actual operating model, which is the so-called successive LP OPF requiring iterations of 

solving the DCOPF and verifying transmission constraints by a full AC power flow.  

Several researchers have utilized the sensitivity of system state variables to predict 

changes of the LMP under the ACOPF framework when the load changes. Reference [41] 

applies the perturbation method to calculate the LMP sensitivity. A similar approach is 

presented in [39]. However, these methods identify the sensitivities by essentially linearizing 

the optimality condition of an ACOPF model at a particular operating point, and therefore, 

the calculated results are only valid for a small change around that specific operating point. 

As shown in Figure 4.4, due to the nonlinearity of the AC model, the sensitivity at the present 

load level, D0, shown as the slope of the tangent line in Figure 4.4, should not be applied 

over a wide range. Hence, it cannot be used to predict the previous and next CLLs, i.e., Points 

A and B in Figure 4.4, which have different sensitivities from the present operating point in 

the non-linear AC model.  
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Figure 4.4. Illustration of the non-linear relation between the LMP or generation versus the 

system load level 

 

 

Run ACOPF for D0, the present load level of 

interest 

Run ACOPF at these two load levels 

Find two load levels expected to be in the same 

CLL range as D0 

Two load levels within the same 

CLL range as D0? 

Yes No 

Re-estimate two load levels  

Identify the coefficients of the quadratic function of 

generation versus load using a 3-point interpolation  

Find the next and previous CLLs using the 

quadratic relationship of generation and load   

Calculate congestion and LMP at CLLs 

 

Figure 4.5. High-level illustration of the proposed method 
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To find CLLs under the non-linear model, a straightforward, brute-force approach is to 

repetitively run the ACOPF at different load levels. This is certainly not desirable, especially 

for short-term applications. Even for long term applications, this will be computationally 

problematic if multiple load variation patterns under different possibilities need to be 

considered. This essentially adds another dimension of complexity because multiple 

repetitive-ACOPF runs are needed. Hence, a more efficient way is of high interest. This is 

also the motivation of the proposed approach, schematically illustrated in Figure 4.5. As 

shown in the figure, an initial ACOPF is run at the present load level of interest. Then, the 

ACOPF runs can be performed at two load levels (such as D1 and D2 in Figure 4.4), which 

are expected to be within the same two adjacent CLLs as the present load level D0. If not, an 

adjustment will be made to D1 and D2. Then, the marginal unit generation and LMPs can be 

expressed as some analytical function (shown as quadratic in this chapter) of the system load 

through interpolation, using results at D0, D1, and D2. Two noteworthy points are listed 

below: 

1. The LMP sensitivity versus system load is directly related to the derivative of the 

marginal generation sensitivity with respect to the system load, because the LMP can be 

viewed as a weighted summation of the marginal unit costs with the marginal generation 

sensitivity as the weights. 

2. The analytical function of the marginal unit generation output versus system load may 

follow a complicated, high-order polynomial given that the system load variation is between 

two neighboring CLLs. Fortunately, the numerical study via curve-fitting technique in this 

chapter shows that a quadratic relation is sufficiently accurate. Then, only three points are 

needed to interpolate the generation output versus load level, as shown in Figure 4.4.  
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This chapter is organized as follows. First, to address the challenges of predicting the 

system status (prices, transmission congestions, and generation dispatch,) under the ACOPF 

framework, this paper applies polynomial curve-fitting to discover the quadratic variation 

pattern of the system statuses such as generator dispatches and line flows, with respect to load 

changes. Second, in order to minimize the computational efforts brought by polynomial 

curve-fitting approaches, an algorithm based on the quadratic interpolation is proposed to 

effectively identify the coefficients of the quadratic pattern and correspondingly predict the 

CLLs of the system. 

 

4.3.1. Polynomial Curve-fitting for Marginal Unit Generation and Line Flow 

4.3.1.1. Variation Pattern of Marginal Unit Generation and Line Flow with Load 

Changes 

In Section 4.2, it is rigorously proved that for a lossless DCOPF simulation model, 

generations of all the marginal units follow a linear pattern with respect to load variation. 

However, for a more accurate ACOPF framework, losses are not negligible and introduce the 

challenge of nonlinearity. It is natural to bring up the following question: What type of 

nonlinear pattern do the marginal unit generations and line flows follow, with respect to load 

changes, under an ACOPF framework?  

It is hard to address this question analytically due to the nonlinearity of the ACOPF model. 

A sensitivity analysis might be one option. It is easy to calculate the sensitivities of the 

generation or line flow, with respect to load changes, for power flow problems; however, it is 

much more difficult to calculate the sensitivities within the OPF framework. 
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Reference [41] employs a perturbation method to obtain the sensitivity of the LMP with 

respect to load. The same idea can be applied to numerically calculate the sensitivity of the 

marginal unit generation and line flow with respect to load, but an analytical formulation is 

absent. Reference [39] derives a symbolic formulation for generation sensitivity to the load; 

however, the sensitivity formula contains system state variables (such as voltage magnitudes 

and angles), which themselves are unknowns at a new operating point, and therefore, cannot 

be used for identifying the variation pattern outside a certain load range.  

Here, these questions are studied through numerical methods based on polynomial curve-

fitting. While more sophisticated pattern matching approaches could be used, the results will 

show this approach to be highly accurate. 

 

4.3.1.2. Application of Polynomial Curve-fitting for Marginal Unit Generation and 

Line Flow 

A typical ACOPF model can be found in Section 3.2.2. It should be noted that the 

objective function is the total cost of generation, which is assumed to be linear. The 

MATPOWER package is employed to solve the ACOPF problem [17]. When the solved 

ACOPF runs at sampling load levels, we obtain the data of the marginal unit generation and 

line flow. They are viewed as the benchmark data and serve as the input for the polynomial 

curve-fitting. 

Assume both the marginal unit generation and line flow data are fitted by the polynomial 

functions as follows 
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where  

MGj is the generation of the marginal unit j, which is obtained from an ACOPF run;  

ai,j represents the ith degree coefficient of the polynomial function of the marginal unit j;  

D is the total system load;  

n is the degree of the polynomial function; 

MG  is the marginal unit set;  

Fk is the line flow through line k, which is obtained from the ACOPF run;   

bi,k represents the ith degree coefficient of the polynomial function of the line flow through 

line k;  

B  represents the set of all lines; 

Bc  represents congested line set; 

}{ Bc\B represents the non-congested line set. 

 

For the j
th

 marginal unit, a set of the generation data at m different load levels are available 

from he ACOPF runs. The corresponding curve-fitting formulation is given as 
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where the superscript in parenthesis, and (i), represents the i
th

 sampling load level, i=1, 

2, …, m. 

In matrix form, this can be written as 

jj aAMG   (4.39) 

where  
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MGj is an m×1 vector;  

A is an m×(n+1) matrix; 

aj is an (n+1)×1 vector (Normally n is much less than m.). 

The problem formulated in (4.39) implies more known variables, MGj than unknowns, aj. 

So, there are redundant equations. The curve-fitting problem for line flows can be formulated 

and solved in a similar way, and therefore, is not repeated here. 

Typically, equation (4.39) can be solved using the least-square algorithms. It should be 

noted that the condition number of matrix A in equation (4.39) could be high due to its 

construction in polynomial pattern, and therefore the solution aj may be highly sensitive to 

small changes in MGj. Typically in this case, we should perform some process to the original 

data such as scaling and dropping rank, and then re-compute. This process is skipped in this 

work because the solution of (4.39) is only used in computer simulation, instead of in 

constructing physical systems. Therefore, the instability of solution will not incur significant 

additional costs. 

 

4.3.2. Numerical Study of Polynomial Curve-fitting 

This section presents the numerical study for the polynomial curve-fitting of benchmark 

data of the marginal unit generations and line flows for a modified PJM 5-bus system and the 

IEEE 30-bus system. Results show that the benchmark data can be well approximated by 

polynomial curve-fitting, with a quadratic curve-fitting having the least computational effort, 

but still maintaining a high accuracy. Therefore, only the quadratic curve-fitting results are 

presented. For simplicity, the load is assumed to follow a variation pattern where the load 

increases proportionally to the base load at each load bus. Other load change patterns can be 

defined and easily employed. 
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4.3.2.1. Results for PJM 5-Bus System 

The first test system is the small, yet informative PJM 5-bus system [11] with 

modifications, as detailed in section 4.2. The base case diagram of the system is shown in 

Figure 4.3. In the ACOPF runs, all loads are assumed to have a 0.95 lagging power factor. 

The generators are assumed to have a reactive power limit of 150 MVar capacitive to 150 

MVar inductive. This is selected so that the system has sufficient reactive power resources 

and system voltage profile is not a major concern. The R/X ratios of the transmission lines 

are set at 10%. 

Figure 4.6 compares the benchmark data from the ACOPF results and quadratic curve-

fitting results of the generation of the marginal unit Sundance with the load variation from 

900 MW to 922.5 MW, a 2.5% increase of the base case load. During this load range, the 

Line ED is always congested, and the marginal units are Sundance and Brighton. The 

differences between the benchmark data and curve-fitting results are shown in Figure 4.6.  

The benchmark data and the quadratic curve-fitting results of the flow on the Line AB, and 

their differences in percentages are shown in Fig. 4.7. The flow on Line AB is steadily 

increasing toward its thermal limit. Note that the line flow is in MVA not MW. 
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Figure 4.6. Quadratic curve-fitting results, the benchmark data, and their differences of the 

generation of the marginal unit Sundance for the PJM 5-bus system 

 

 

Figure 4.7. Quadratic curve-fitting results, the benchmark data, and their differences of the 

line flow through the Line AB for the PJM 5-bus system 
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Figures 4.6-4.7 demonstrate that the quadratically fitted curves are a good approximation 

to the benchmark data for both the marginal unit generation and line flow. It is also true for 

all other marginal unit generations and line flows. In fact, similar patterns are observed for 

simulations at other load intervals which do not contain a CLL.  

It should be noted that in Figs. 4.6-4.7, the difference percentage between the benchmark 

data and quadratic curve-fitting results is less than 0.00001%. This is a small number given 

that the simulations span a 2.5% load variation around the base case. In addition, the high 

accuracy of the approximation achieved by the quadratic curve-fitting can be maintained for 

larger load range as long as there is no change of binding constraints during the load variation 

window, namely, the load range does not contain a CLL.  

When the polynomial curve-fitting of a higher degree is applied to fit the marginal unit 

generation and line flow, a high accuracy of the fit is also expected. However, the quadratic 

curve-fitting is accurate and recommended since it leads to less computational efforts. In 

addition, the linear curve-fitting is reasonable in the modified PJM 5-bus system; however, 

this is expected to have larger errors for systems demonstrating greater nonlinearity, as 

exemplified in the next section.  

 

4.3.2.2. Results for IEEE 30-Bus System 

The second test system is the IEEE 30-bus system. The detailed system configuration and 

data are available in [16]. The bidding prices of the 6 generators are assumed here to be 10, 

15, 30, 35, 40, and 45, respectively, all in $/MWh. The branch susceptances and the 

transformer tap ratios are all ignored for simplicity. To create a scenario with more than one 

path of congestion and help the ACOPF converge over a wider range from the base-case, the 

network data is slightly modified: 1) load power factor is kept at a 0.95 lagging as load 
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changes; 2) the thermal limit of lines 6-8, 21-22, 25-27 is increased by 10%, 10%, and 30%, 

respectively; and 3) the thermal limit of Line 12-13 is reduced by 50%. 

The studied load range is from 189.20 MW to 193.93 MW, namely, 1.0 p.u. to 1.025 p.u.. 

A comparison of the benchmark data and quadratic curve-fitting results is shown in Figs. 4.8-

4.9. For simplicity, only the marginal unit generation at Bus 22 and the line flow through line 

24-25 are depicted. It can be clearly seen that the quadratic curves fit the benchmark data 

well. Again, this is true only when the studied load range is within two adjacent critical load 

levels.  

 

 

Figure 4.8. Quadratic curve-fitting results, the benchmark data, and their differences of the 

generation of the marginal unit at Bus 22 for the IEEE 30-bus system 
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Figure 4.9. Quadratic curve-fitting results, the benchmark data, and their differences of the 

line flow through Line 24-25 for the IEEE 30-bus system 

 

Table 4.5. Polynomial coefficients of the quadratic curve-fitting results for the generation of 

marginal unit at Bus 22 and the line flow through Line 24-25 for the IEEE 30-bus system 

Polynomial Coefficients 

Generation of Marginal Unit 

at Bus 22 

Line Flow 

through Line 24-25 

a2 3.20×10
-4

 0.001996 

a1 0.8699 -0.7782 

a0 -174.07 78.58 
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The polynomial coefficients of the quadratic curve-fitting for the generation of the 

marginal unit at Bus 22 and the line flow on Line 24-25 are shown in Table 4.5.  

Figure 4.9 and Table 4.5 demonstrate a clear quadratic pattern of the line flow through 

Line 24-25. From Fig. 4.9 it can be easily seen, even by visual inspection, that the line flow 

follows a non-linear curve, and the linear curve-fitting should have considerable errors even 

in the studied small range of the load variation. Hence, it is not advisable to use a linear 

approximation under the ACOPF framework. In fact, the sum of the squares, due to the error 

(SSE) and R-square for quadratic curve-fitting are 4.64×10
-9

 and 1.0, respectively, which is 

far superior to 1.71×10
-4

 and 0.96 for a linear model. 

4.3.3. Quadratic Interpolation Method 

The curve-fitting results in the previous section are encouraging since the variations of the 

marginal generation and line flow with respect to load changes suggest a nearly perfect 

quadratic pattern within two adjacent CLLs and hence, facilitate prediction of CLLs. 

However, it is not practically useful because it involves numerous ACOPF studies at different 

load levels to get the benchmark data for the curve-fitting. Therefore, a practical approach 

requiring less computational efforts is needed. In this section a quadratic interpolation 

approach is proposed. 

The basic idea is to solve an ACOPF at three different load levels and apply the quadratic 

interpolation using the benchmark data at these three load levels. The crucial problem here is 

to ensure that all the three load levels are between adjacent CLLs. To locate three load levels 

satisfying this requirement, an empirical setting or a DCOPF-based approach may offer 

assistance. 
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4.3.3.1. Three-Points Pattern for Quadratic Interpolation 

The detailed procedure of obtaining the three load levels are presented as follows: 

1) The load level of the initial operating point is taken as 

the first load level, denoted by 
)0(D ; 

2) Obtain an initial estimate for the second load level
)1(

guessD . 

It could be empirically determined, for example, 
)0(D plus 0.025 

p.u.. 
)1(

guessD  could also be set as the estimated critical load 

level in load growth direction, denoted criticalD , by solving a 

DCOPF-based congestion prediction at the initial operating 

point as in section 4.2. Some downscaling of criticalD  can be 

applied to make it more possible to be less than the next CLL; 

3) Run ACOPF at 
)1(

guessD , and examine the marginal unit and 

congested line set. If they are the same as those at the first 

load level 
)0(D , then 

)1(

guessD  is selected as the second load level, 

denoted by
)1(D , and go to 5); otherwise, go to 4); 

4) Set 2/)( )0()1()0( DDD guess  as the new 
)1(

guessD , go to 3); 

5) Take 2/)( )1()0( DD  as the third load level, denoted by
)2(D . 

In many cases, the 
)1(

guessD  obtained in step 2 will qualify for the second load level. Hence, 

in step 3, only one additional ACOPF run is performed for verification purposes. In case the

)1(

guessD  obtained in step 2 lies beyond the next (or previous) critical load level, 
)1(

guessD  will be 
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updated iteratively towards 
)0(D . Therefore, normally, in step 3, only a few additional 

ACOPF runs are needed, even in the worst case scenario.  

In step 2, it is not advisable to set 
)1(

guessD  near the initial operating point. The reason is that 

the three load levels are expected to cover as many operating points as possible to be 

representative and avoid numerical errors in the computation. 
)1(

guessD  can also be set to a value 

close to the CLL calculated for the DCOPF models, as presented in Section 4.2, since the 

DCOPF model may produce the same marginal unit and binding constraint sets as its ACOPF 

counterpart for a large portion of the load levels, as reported in Section 3.3 and Reference 

[24]. 

4.3.3.2. Quadratic Interpolation for Marginal Unit Generation and Line Flow 

The ACOPF results for the first load level is intended to be an input to interpolation, and 

the ACOPF run for the second load level is done during the search for the three load levels. 

Therefore, one more ACOPF run needs to be performed at the third load level. 

With ACOPF results at all three load levels, a quadratic interpolation can be performed on 

each marginal unit and line flow. Consider the generation of marginal unit j as an example, 

(4.39) can be rewritten as 

jj aAMG  (4.40) 

where jMG  is a 3×1 vector; A is a 3×3 matrix; and ja  is a 3×1 vector. It is apparent that 

the coefficients ja  can be uniquely determined. 

It should be noted that with a good initial guess, the quadratic interpolation requires only 

two additional ACOPF runs and can be solved very efficiently. In contrast, the quadratic 

curve-fitting requires numerous, additional ACOPF runs.  
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4.3.3.3. Prediction of Critical Load Levels 

With the knowledge of how the marginal unit generation and line flow will change with 

respect to th load variation, which is shown to follow quadratic patterns, it is easy to forecast 

the critical load levels as the load increases or decreases. Let 
ub

j
D  (

lb

j
D ) represent the 

minimum system load change from the initial operating point until the upper (lower) limit of 

marginal generator j is reached. Similarly, let  
ub

k
D  (

lb

k
D ) represent the minimum load 

change from initial operating point until the kth transmission line reaches its limit in the 

positive (negative) direction. 

Then, these load variations
ub

j
D , 

lb

j
D , 

ub

k
D  and 

lb

k
D  can be obtained by solving 

the following quadratic equations 

MGjMGaDDaDDa jj

ub

jj

ub

jj ,)()( max

,0

)0(

,1

2)0(

,2  (4.41) 

MGjMGaDDaDDa jj

lb

jj

lb

jj ,)()( min

,0

)0(

,1

2)0(

,2   (4.42) 

}{,

)()( max

,0

)0(

,1

2)0(

,2

Bc\Bk

FbDDbDDb kk

ub

kk

ub

kk
 (4.43) 

}{,

)()( max

,0

)0(

,1

2)0(

,2

Bc\Bk

FbDDbDDb kk

lb

kk

lb

kk
 (4.44) 

where  

max

jMG and 
min

jMG  are the maximum and minimum generation capacity of marginal unit j; 

and 

max

kF  is the thermal limit of line k. 
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Further, these load variations will determine the margin from the present load level to the 

nearest load level where there is a change of the binding constraints. The load variation‟s 

positive and negative directions are defined, respectively, as 

},,,{min
0

arg lb

k

ub

k

lb

j

ub

jDkj

inm DDDDD
B,MG,

 (4.45) 

},,,{max
0

arg lb

k

ub

k

lb

j

ub

jDkj

inm DDDDD
B,MG,

 .  (4.46) 

Once the margin is determined, the new binding constraint, either generation or 

transmission, is simultaneously identified. For instance, when a transmission line constraint 

becomes binding, a new congestion is identified. Thus, this important information can be 

easily obtained without doing exhaustive simulations on all load levels. 

Finally, the previous and next critical load levels are determined by 

inmDDD arg)0(
  (4.47) 

inmDDD arg)0(
  (4.48) 

where 

D and D are previous and next critical load levels respectively; and 

)0(D is the present load level. 

4.3.4. Case Study of Prediction of Critical Load Levels 

In this section, the proposed approach of predicting critical load levels, which employs a 

quadratic interpolation, will be tested on the PJM 5-bus system and IEEE 30-bus system. 

Prediction results will be compared with those utilizing a quadratic curve-fitting. In addition, 

the predicted previous and next critical load levels will be compared with the benchmark data 

obtained from the enumerative simulation. 
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4.3.4.1. Results for the PJM 5-Bus System 

For notational convenience, the generators Alta, Park City, Solitude, Sundance, and 

Brighton are numbered from 1 through 5, respectively. The congestion prediction study is 

performed at the 900 MW load level, namely, 1.0 p.u. of the base-case. In this case, there are 

two marginal units, Sundance at Bus 4 and Brighton at Bus 5, and Line ED is congested. For 

the quadratic curve-fitting, the ACOPF simulations are performed on eleven load levels 

evenly distributed between 900 MW and 922.5 MW. 

Table 4.6 shows the load variation distances calculated by the quadratic curve-fitting 

approach as introduced in Section 4.3.1, and by the quadratic interpolation approach as 

proposed in Section 4.3.3, respectively. The numbers in bold font in Table 4.6 are actually the 

load variation margins from the present load level. The predicted previous and next critical 

load levels are compared with actual values obtained from the enumerative ACOPF 

simulation, as shown in Table 4.7. 
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Table 4.6. Load margins from the present operating point for the PJM 5-bus system 

Load Variation (MW) 

Quadratic Curve-fitting 

Approach 

Quadratic Interpolation 

Approach 

ub
D

4  
107.87 107.87 

ub
D

5  
81.79 81.79 

lb
D

4  
-160.37 -160.37 

lb
D

5  
-2,247.91 -2247.85 

ub

lineAB
D

 
24.41 24.41 

ub

lineAD
D

 
-13,986.71 -13,992.13 

ub

lineAE
D

 
2195.52 2194.63 

ub

lineBC
D

 
-49377.00 -49445.66 

ub

lineCD
D

 
1951.48 1949.30 

lb

lineAB
D

 
-2825.97 -2826.52 

lb

lineAD
D

 
28,623.66 28,571.64 

lb

lineAE
D

 
N/A N/A 

lb

lineBC
D

 
67,849.08 67,682.47 

lb

lineCD
D

 
-5287.72 -5357.34 

Note: N/A represents no solution for Equations (4.41)-(4.44). 
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Table 4.7. Previous and next critical load levels for the PJM 5-bus system 

CLL 

(MW) 

Quadratic Curve-

Fitting Approach 

Quadratic 

Interpolation 

Approach 

From Actual 

Enumerative 

Simulation 

New 

Binding 

Constraint 

D
 

924.41 924.41 924.40 Line AB 

D
 

739.63 739.63 739.56 

Generator 

Sundance 

 

From Tables 4.6 and 4.7, it can be seen that Line AB will reach its limit in the positive 

direction if the system load increases by 24.41 MW from the present load level. In other 

words, the constraint for Line AB will be binding, and the system will have one additional 

point of congestion. This is the first change of the binding constraints with a load increase. In 

the case of a load decrease, the first change of binding constraints will occur when the load 

decreases by 160.37 MW, at which point the marginal unit Sundance at Bus 4 will reach its 

lower limit and is no longer a marginal unit. At this load level, the Park City unit will become 

a marginal unit, but Line ED remains congested.  

Tables 4.6-4.7 show that the predication results obtained from the quadratic curve-fitting 

and quadratic interpolation methods are almost identical and also match the benchmark 

results precisely. This demonstrates that the quadratic interpolation method successfully 

achieves the desired results while greatly reducing the computational effort.  

The reason for the good results in Table 4.7 is that the calculated polynomial coefficients 

from both approximation approaches are numerically very close. As an example, Table 4.8 

shows the nearly identical coefficients of the polynomial function for the marginal unit 

Sundance for both approaches. 
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Table 4.8. Polynomial coefficients of the generation of the marginal unit Sundance from the 

quadratic curve-fitting and quadratic interpolation approaches for the PJM 5-bus system 

Polynomial 

Coefficients 

Quadratic Curve-fitting 

Approach 

Quadratic Interpolation Approach 

a2 (MW
-1

) 4.1041×10
-6

 4.1022×10
-6

 

a1 0.7384 0.7384 

a0 (MW) -548.4064 -548.4079 

 

4.3.4.2. Results for the IEEE 30-Bus System 

The study on the IEEE 30-bus system is performed at the load level of 189.20 MW, 

namely, 1.0 p.u. of the base case load. In this case, there are two marginal units and one 

congested line. For a quadratic curve-fitting, ACOPF simulations are conducted on eleven 

load levels evenly distributed between 189.20 MW and 193.93 MW. 

For simplicity, the detailed results of the load variation distances for each marginal unit 

and non-congested line will not be detailed in this paper, and only the load variation margins 

are presented, as shown in Table 4.9. 
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Table 4.9. Previous and next critical load levels from the present operating point for the IEEE 

30-bus system 

CLL 

(MW) 

Quadratic 

Curve-Fitting 

Approach 

Quadratic 

Interpolation 

Approach 

From Actual 

Enumerative 

Simulation 

New 

Binding 

Constraint 

D  219.81 219.81 219.82 Line 8-6 

D  187.20 187.20 187.20 

Generator 

@ Bus 22 

 

Once again, Table 4.9 demonstrates that both the quadratic curve-fitting and quadratic 

interpolation approach provide highly accurate results when compared with the benchmark 

data obtained from the enumerative simulation.  

In the studied case, 11 load levels are chosen to render curve-fitting. The quadratic curve-

fitting approach therefore requires at least 10 ACOPF runs at selected load levels other than 

the initial operating point, while the quadratic interpolation approach typically requires only 2 

additional ACOPF runs. Hence, the quadratic interpolation method is a computationally 

efficient approach and produces highly reliable results, and therefore, has the potential to be 

employed in real applications to predict critical load levels. The applications can be for short-

term planning for market participants, as well as long-term planning when multiple load 

variation patterns under different possibilities are considered, leading to multiple repetitive-

ACOPF runs. 
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4.3.5. Discussion and Conclusions 

This section applies polynomial curve-fitting to identify the variation patterns of the 

marginal unit output and line flow with respect to load changes. Numerical studies on the 

PJM 5-bus system and the IEEE 30-bus system show that the marginal unit generation and 

line flow follow a nearly perfect polynomial pattern. In particular, a quadratic polynomial is 

recommended as it provides adequate accuracy and requires fewer computations than a 

higher order curve-fitting. 

Next, a quadratic-interpolation-based approach is proposed in order to further reduce 

computational efforts. The approach requires ACOPF data at three load levels to perform the 

calculation. A heuristic algorithm for seeking these three load levels within two adjacent 

CLLs is presented, in which an estimated critical load level obtained from a DCOPF may 

serve as the initial guess for the search. Then, the approach of predicting CLLs which 

employs the quadratic pattern of the marginal unit generation and line flow is presented. 

The proposed approach using quadratic interpolation is compared with the approach 

employing quadratic curve-fitting. Both approaches are tested on the PJM 5-bus system and 

IEEE 30-bus system. Results show that the polynomial coefficients calculated from the 

quadratic interpolation are very close to those obtained from the quadratic curve-fitting. The 

results of the predicted critical load levels are also verified and are sufficiently close to the 

actual values obtained from the enumerative ACOPF simulations. In addition to the 

prediction of CLLs, a new binding constraint, such as a new congestion, is simultaneously 

identified.  

The application of the proposed method can be for short-term planning, as well as long-

term planning when multiple repetitive-ACOPF runs are needed to evaluate possible different 
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load variation scenarios. Future work may include the impact of insufficient reactive power 

support. 

 

4.4. Variable Substitution Method for FND-based DCOPF Framework 

As presented in Section 3.3, the FND-based DCOPF results are shown to be reasonably 

close to the ACOPF for the majority of the studied load levels, in terms of the dispatched 

generation and LMP calculation. Certainly, the interpolation method proposed in Section 4.3 

could easily be applied to the FND-based DCOPF framework to predict CLLs, congestions, 

and LMPs. However, in contrast to the ACOPF model, the FND-based DCOPF model is a 

simplified OPF model, which makes it possible to propose methods involving even less 

computational efforts than the interpolation method, which requires three OPF runs.  

One approach is to utilize the quadratic characteristics of the marginal unit generation, 

which is verified in Section 4.3. Together with the solution features of the FND-based 

DCOPF model for load levels within two adjacent CLLs, a set of equations will be 

formulated to solve for the coefficients of the quadratic functions. 

4.4.1. Characteristic Constraints of the FND-based DCOPF model 

4.4.1.1. Revisit of the FND-based DCOPF Model 

The FND-based DCOPF model is represented by equations (3.30)-(3.33) in Section 3.3. 

According to the classification of the generation units: marginal unit and non-marginal unit 

generation, the model is rewritten as follows 

NGMG j

jj

j

jj NGcMGc
MG

min   (4.49) 
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0.. loss

i

ii

j

jj

j

jj PDFDDFNGDFMGts
NNGMG

 (4.50) 

B
NNGMG

kFEDGSFNGGSFMGGSF k

i

iiik

j

jjk

j

jjk ,)( max

     (4.51) 

MGjMGMGMG jjj ,maxmin
. (4.52) 

It should be stressed that the staircase bidding price, namely, the piece-wise linear cost 

function, is assumed in the model since it is a common practice in power markets. 

4.4.1.2. Characteristic Constraints of the Model 

Among the constraints (4.50)-(4.52), the energy balance equation (4.50) is an equality 

constraint while the line limits in (4.51) and generation output limits in (4.52) are inequality 

constraints. At the operating point of the CLL, several of the inequalities become equalities. 

In other words, some unbinding constraints become binding, such as the line limit at the 

congested lines and the generation output limits for the non-marginal units. Furthermore, 

when the system load varies within the same interval, or between two adjacent CLLs, as the 

original operating point, all binding constraints will remain binding. For instance, the non-

marginal unit set will remain unchanged, and the congested lines will remain congested. The 

binding constraints are called “Characteristic Constraints” in this section. The corresponding 

equalities are written as follows 

0loss

i

ii

j

jj

j

jj PDFDDFNGDFMG
NNGMG

   (4.53) 

Bc
N

NGMG

kFEDGSF

NGGSFMGGSF

k

i

iiik

j

jjk

j

jjk

,)( max

  

 . (4.54) 
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It should be pointed out that when losses are ignored (i.e., DFi=1, Ei = 0), the FND-based 

DCOPF becomes a lossless DCOPF model, which is a linear programming problem. For a 

lossless DCOPF model, it can be easily proved that the number of equations in (4.53)-(4.54) 

equals the number of variables ( MGjMG
j
, ), since the number of marginal units is equal 

to the number of congested lines plus 1, i.e., NMG=MCL+1 [42]. Therefore, only one solution 

exists for equations (4.53)-(4.54) for a lossless DCOPF, as previously discussed in Section 

4.2. It implies that the optimal solution can be effectively determined by only the binding 

constraints as the feasible region constrained by all the binding constraints shrinks down to a 

single point. Therefore, for the lossless DCOPF, equations (4.53)-(4.54) are essentially 

equivalent to the lossless DCOPF model in (4.49)-(4.52) with DFi=1 and Ei = 0. It should be 

noted that the cost function does not affect the generation dispatch once the binding 

constraint set is determined because a staircase constant bidding price is assumed. 

The above statements are expected to be true for a FND-based DCOPF in most cases, 

since the FND-based DCOPF is a variant of the lossless DCOPF and not highly nonlinear due 

to a low loss percentage in high voltage transmission networks. In addition, equations (4.53)-

(4.54) hold true not only at a specific operating point, but also for a range of the system load, 

as long as there is no change of the binding/unbinding constraint set.  

Like in Section 4.2, the participation factor f is used to define the load variation pattern. 

The equations are correspondingly rewritten as  

0)(
(0))0(

loss

i

iiii

j

jj

j

jj

PDFDfDDf

DFNGDFMG

N

NGMG
  (4.55) 
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Bc
N

NGMG

kFEDfDDfGSF

NGGSFMGGSF

k

i

iiiiik

j

jjk

j

jjk

,)( max(0))0(

  

 . (4.56) 

In operation, the load variation percentage of each bus could be treated as a fixed value in 

the short term. In planning, the bus load is normally assumed to vary conformingly, which is 

also assumed to be the case for other studies, such as Continuation Power Flow [8]. Therefore, 

in this section, if  is assumed to be a constant. In fact, a more complicated load variation 

pattern could be modeled by assigning piece-wise constants to the factors, and the following 

proposed method would still be applicable. 

4.4.2. Variable Substitution Method 

 In equations (4.55)-(4.56), the only independent variable is D , and dependent variables 

are MG. It is desirable to solve this set of algebraic equations for the marginal unit generation 

as a function of the system load. However, it is hard to derive a closed form because Ploss and 

Ei are nonlinear functions of MG. 

 An alternative approach is to obtain an approximated solution for MG. Since power loss is 

basically a quadratic function of the load, and is balanced by the marginal unit generation, as 

seen in the power balance equation, it is reasonable to assume the marginal unit generation 

follows a quadratic function pattern. In fact, a quadratic pattern is reported to be as a good 

approximation of the marginal unit generation under the ACOPF dispatch framework in 

Section 4.3. Therefore, we define a quadratic polynomial function jMGh ,  to approximate MGj 

as follows 

MGjaDaDaDaaah jjjjjjjMG ,),,,( ,0,1

2

,2,0,1,2,  (4.57) 
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where jjj aaa ,0,1,2 ,,  denote the 2nd degree, 1st degree coefficients, and constant part of the 

jth marginal unit generation, respectively. 

Substituting (4.57) into the left-hand side of (4.55) yields a function with respect to D  

and jjj aaa ,0,1,2 ,, , which is defined as  ),,,,( ,0,1,2 Djaaah jjje MG . Likewise, the 

function found by substituting (4.57) into the left-hand side of (4.56) is defined as 

BcMG kDjaaah jjjkl ),,,,,( ,0,1,2, . By completing this substitution, the variables 

MG are replaced with a new set of variables MGjaaa jjj ,,, ,0,1,2 . We assume that there 

exists such a set of jjj aaa ,0,1,2 ,,  so that the corresponding approximation of MG satisfies 

equations (4.55)-(4.56). It implies 

0),,,,( ,0,1,2 Djaaah jjje MG  (4.58) 

BcMG kFDjaaah kjjjkl ,),,,,( max

,0,1,2, . (4.59) 

Equations (4.58)-(4.59) are expected to hold true at the given operating point 
(0)

D  and 

any point 
(1)

D which is close to 
(0)

D  so that no change of binding constraints occurs. 
(1)

D  

could be empirically determined. For example, )0025.01(
(0)(1)

DD . Combined with 

the marginal generation MG(0) at the given operating point, a set of nonlinear equations are 

established as follows 

MGjMGDaaah jjjjjMG ,),,,( )0()0(

,0,1,2,  (4.60) 

0),,,,(
)0(

,0,1,2 Djaaah jjje MG  (4.61) 

BcMG kFDjaaah kjjjkl ,),,,,( max)0(

,0,1,2,  (4.62) 

0),,,,(
)1(

,0,1,2 Djaaah jjje MG  (4.63) 

BcMG kFDjaaah kjjjkl ,),,,,( max)1(

,0,1,2, . (4.64) 



 
139 

Equations (4.60)-(4.64) are nonlinear functions of the new variables

MGjaaa jjj ,,, ,0,1,2 . The number of equations is 3 MCL +3 (=MCL +1+1+ MCL +1+ MCL), 

which is equal to the number of variables (=3*(MCL+1)). Therefore, the set of equations could 

be solved by standard nonlinear equation algorithms. It should be noted that MCL is typically 

a small integer number, and therefore, solving the above nonlinear equations is a small-scale 

problem. 

The complete process of using the variation substitution method to predict congestions and 

CLLs is as follows: 

1) Establish equations (4.60)-(4.64) and solve for 

coefficients of the approximated marginal unit 

generation, MGjaaa jjj ,,, ,0,1,2 ; 

2) Solve equations (4.41)-(4.44) for load variations
ub

j
D , 

lb

j
D , 

ub

k
D  and 

lb

k
D ; 

3) Solve equations (4.45)-(4.48) for the previous CLL ( D ) 

and the next CLL (D ); 

 

4.4.3. Case Study of Prediction of Critical Load Level 

The proposed method is tested on the PJM 5-bus system [11] with modifications as 

detailed in Section 4.2. The base case diagram of the system is shown in Figure 4.3. The R/X 

ratios of the transmission lines are set at 10%.  

Figure 4.10 compares the benchmark data of the generation of the marginal unit Sundance 

from repetitive FND-based DCOPF runs and the corresponding quadratic approximation 
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results from the variable substitution method, with a load variation of 747 MW to 792 MW 

and a 5% increase of the base case load. During this load range, Line ED is always congested, 

and the marginal units are Sundance and Brighton. The differences between the benchmark 

data and approximation results are shown in Figure 4.10. The benchmark data and the 

quadratic approximation results of the generation of the marginal unit Brighton, and their 

differences in percentage are shown in Fig. 4.11. Similar patterns are observed for 

simulations at other load intervals which do not contain a CLL. 

 

Figure 4.10. Quadratic approximation, the benchmark data, and their differences of the 

generation of the marginal unit Sundance for the PJM 5-bus system 
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Figure 4.11. Quadratic approximation, the benchmark data, and their differences of the 

generation of the marginal unit Brighton for the PJM 5-bus system 

 

In Figs. 4.10-4.11, the differences appear to be increasing. Nevertheless, the quadratic 

approximation is engineering-acceptable, given that the difference between the benchmark 

data and quadratic approximation results is less than 0.01%, while the load variation spans a 

5% difference of the base case load. It should also be noted that although linear 

approximation is also a choice, it will generate greater differences in general. 
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critical load levels are compared with the actual values obtained from the enumerative FND-

based DCOPF simulation, as shown in Table 4.11. 

Table 4.10. Load margins from the given operating point 747 MW for the PJM 5-bus system 

Load Variation (MW) 

Variable Substitution 

Method 

ub
D

4  
259.65 

ub
D

5  
232.65 

lb
D

4  
-8.85 

lb
D

5  
-2127.84 

ub

lineAB
D

 
214.37 

ub

lineAD
D

 
-10573.63 

ub

lineAE
D

 
-5254.35 

ub

lineBC
D

 
-23059.04 

ub

lineCD
D

 
-3304.22 

lb

lineAB
D

 
-2322.95 

lb

lineAD
D

 
N/A 

lb

lineAE
D

 
2577.21 

lb

lineBC
D

 
N/A 

lb

lineCD
D

 
2402.32 

Note: N/A represents no solution for Equations (4.41)-(4.44). 
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Table 4.11. Previous and next critical load levels from the given operating point 747 MW for 

the PJM 5-bus system 

CLL 

(MW) 

Variable 

Substitution 

Method 

From Actual 

Enumerative 

Simulation 

New 

Binding 

Constraint 

D
 

214.37 212.49 Line AB 

D
 

-8.85 -8.14 

Generator 

Sundance 

 

The results in Tables 4.10-4.11 indicate that Line AB will reach its limit in the positive 

direction if the system load increases from the given load level by 214.37 MW, which is very 

close to the actual value of 212.49MW. If this occurs, the constraint of Line AB will become 

binding and the system will contain one additional congestion point. This is the first change 

of binding constraints with a load increase. In the case of a load decrease, the first change of 

binding constraints is expected to occur when the load decreases by 8.85 MW, as opposed to 

the actual value 8.14MW, at which point the marginal unit Sundance at Bus 4 will reach its 

lower limit and is no longer a marginal unit. At this load level, the Park City unit will become 

the marginal unit and Line ED will remain congested.  

Tables 4.10-4.11 show that the predicated results obtained from the proposed variable 

substitution method are acceptable when compared with the benchmark results obtained from 

the enumerative FND-based DCOPF runs, while the proposed method involves a lower 

computational effort and complexity.  
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For any given operating point, we can obtain an estimated previous CLL and next CLL by 

applying the variable substitution method. Table 4.12 shows the estimated previous and next 

CLLs for different given load levels. For each CLL, it can be estimated from the left and 

from the right, and the results may differ. In this regard, the estimated CLLs in Table 4.12 are 

rearranged, as shown in Table 4.13, such that each actual CLL can be conveniently compared 

with the estimated values from the left and right. Consequently, the differences between the 

estimated CLLs and the actual CLLs are shown in Table 4.14. The maximum error is 

approximately 0.008 p.u. of the base-case load, or 7.2 MW, when estimating the CLL as 

0.7873 p.u. from the left. The results in Table 4.13 and Table 4.14 suggest that the proposed 

variable substitution method can provide results with acceptable accuracy. 

 

Table 4.12. Previous and next critical load levels from various of given operating points for 

the PJM 5-bus system 

Given Load Level (MW) D  (MW) D  (MW) 

450 594.36 N/A 

603 634.14 594.72 

648 701.37 634.14 

711 738.18 708.57 

765 961.38 738.18 

990 1126.44 959.49 

1260 N/A 1122.66 

Note: N/A represents undefined or meaningless CLL. 
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Table 4.13. Actual CLLs and estimated CLLs for the PJM 5-bus system 

 

Actual CLLs (MW) 

Estimated CLLs (MW) 

Estimated From Left Estimated From Right 

594.63 594.36 594.72 

634.14 634.14 634.14 

708.57 701.37 708.57 

738.09 738.18 738.18 

959.49 961.38 959.49 

1126.35 1126.44 1122.66 

 

Table 4.14. Differences between the estimated CLLs and actual CLLs for the PJM 5-bus 

system 

 

Actual CLLs (MW) 

Error of Estimated CLLs (MW) 

Estimated From Left Estimated From Right 

594.63 -0.27 0.09 

634.14 0 0 

708.57 -7.11 0.09 

738.09 0.09 0.09 

959.49 1.89 0 

1126.35 0.09 -3.69 
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4.4.4. Discussion and Conclusions 

When the load is in the range of the two adjacent critical load levels (CLLs), the FND-

based DCOPF model could be essentially represented by the binding constraints. By 

introducing  the load variation participation factor, the equations for the binding constraints 

can be written as a set of implicit functions of the marginal unit generation with respect to 

only one variable, namely, the system load. With the intuition and impression gained from 

Section 4.3 that shows the marginal unit generations can be well approximated by quadratic 

polynomials, we substitute the quadratic polynomials for the marginal unit generation in 

those functions; which are correspondingly transformed into functions of the quadratic 

coefficients with respect to the load and can be easily solved due to their small scale. The 

quadratic coefficients can be consequently used to perform congestion prediction and 

estimate the previous and next CLLs. A case study on the PJM 5-bus system demonstrates the 

applicability of the proposed method. 

As indicated by the case study results, the variable substitution method does not yield 

results as accurate as the interpolation method. The reason for this is that the interpolation 

method utilizes OPF solutions at a couple of other load levels in addition to the given 

operating point; whereas for the variable substitution method only the OPF solution at the 

given operating point is available. Hence, the input to the interpolation method contains more 

information about the future when the load varies. Despite providing less accuracy, the 

variable substitution method can produce engineering-acceptable results with less 

computations and an easier implementation. 
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4.5. Conclusions 

In previous chapters we have observed the step change phenomenon of the LMP versus 

load curve, the next step is to effectively and efficiently locate the step changes, which are 

called critical load levels (CLLs). 

The study is firstly performed on lossless DCOPF model. The linear characteristics of the 

lossless DCOPF enable the use of a simplex-like analytical method to quickly calculate the 

CLLs. No additional OPF runs are needed, and the performance is shown to be much superior 

to a binary search method. 

ACOPF incorporates power losses and is a nonlinear programming model, which makes it 

hard to perform analytical study. Therefore, a simulation based approach is adopted. The 

marginal generation and line flow are numerically shown to follow perfectly quadratic 

polynomial patterns. Then, a quadratic interpolation method is proposed to help reduce the 

computation efforts with repetitive ACOPF runs. The proposed approach typically requires 

only two additional ACOPF runs and gives highly accurate estimation of CLLs. 

In order to further reduce the computation with the additional OPF runs, a variable 

substitution method is presented for FND-based DCOPF model. The characteristic 

constraints are defined and used to form a set of nonlinear equations, which can be easily 

solved with much less computation. Nevertheless, the drawback is the loss of high accuracy 

due to limited information on load levels other than current operating point. 

The proposed methods for the various OPF models present efficient calculations for the 

LMP versus Load curve. The curve may be used to predict price spikes, given the forecasted 

Load versus time curve. Another application is for the quick estimation of a new dispatch and 

LMP. When the forecasted load for the next interval and the current load level are within the 

same two adjacent critical load levels, the new dispatch and LMP at the forecasted load could 
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be quickly obtained by looking up the LMP versus Load curve/table and applying the 

generation sensitivities. There is no need to re-run the optimization solver repetitively when 

the load keeps changing back and force within the two adjacent CLLs. This efficient 

application could be useful in both operation and planning.  
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5 Probabilistic LMP Forecasting Under Load Uncertainty 

5.1. Chapter Introduction 

The prediction of the load, especially a short-term load consumption, has long been an 

important topic in academia and industrial research and practices [43]. With the deregulation 

of the power industry and the adoption of the locational marginal pricing (LMP) 

methodology, LMP forecasting has garnered attention because of the significance of the LMP 

in delivering market price signals and its use for settlements [44, 45, 46].  

It is known that the LMP can be decomposed into three components, with each 

representing the marginal energy price, loss price, and congestion price, respectively [36, 20]. 

The decisive factors of the LMP include supply bids, demand offers, load forecasting, and 

network topology. In the day-ahead power market, once the market is closed (for example at 

12:00 noon before the operating day), the offers and bids are fixed and a transmission 

network model will be used for day-ahead market scheduling. Nevertheless, the load remains 

uncertain as there is essentially no way to discover the exact load of each hour of the next 

operating day. Load forecasting is applied to address this issue, but performance varies with 

models, algorithms, and the nature of the problem. It is apparent that the uncertainty 

associated with the load directly leads to the uncertainty of the LMP. Therefore, as equally 

important as the study of the other economic impacts of load forecasting [50, 52, 53, 54], it is 

necessary to investigate how the LMP will be affected by the uncertainty of load, or, the 

uncertainty of load forecasting results in practice.  

The Optimal Power Flow (OPF) problem has been discussed in [63] with special attention 

to the computational issues created by deregulation. A methodology of computing LMP 

sensitivities with respect to the load in the AC Optimal Power Flow (ACOPF) framework has 
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been presented in [41]. Approaches for the DC Optimal Power Flow (DCOPF) have been 

applied in Section 4.2. In Section 4.2, a perturbation-based algorithm is proposed to identify 

the next critical load level (CLL), defined as the load level at which a LMP step change, as 

well as the change of binding and unbinding limits, occurs. This algorithm is demonstrated to 

be very computationally efficient since it does not require multiple optimization runs. It 

essentially enables the efficient study of the LMP over any range of load variations.  

Figure 4.1 is redrawn as Figure 5.1 for quick reference. It shows a typical LMP versus load 

curve for a sample system slightly modified from the original PJM 5-bus system defined in 

[11]. Losses are ignored in these studies so that this research is concentrated on the overall 

behavior of the LMP due to congestion. In theory, the horizontal axis denotes the actual load. 

In practice, the axis represents the forecasted load, since the forecasted load is utilized to 

perform the dispatch and LMP calculations.  

 

Figure 5.1. LMP at all buses with respect to the different system loads for the modified PJM 

5-bus system 
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It can be seen that there is a step change of the LMP when the load increases to a CLL, e.g., 

the load level at 600 MW, 640MW, 711.81MW, etc. At each new CLL, a new binding limit, 

either a transmission line thermal limit or a generator capacity limit, occurs. Meanwhile, there 

is a change of the marginal unit set and marginal generation sensitivity with respect to the 

load, which results in the LMP step change. 

At the CLLs, the LMP is highly sensitive. The sensitivity of the LMP with respect to load 

is evaluated as mathematically infinite. This step change characteristic of the LMP leads to 

the ambiguity of the LMP evaluation at the CLLs. For example, when the forecasted load 

happens to be 711.81MW, there are at least two choices to set the price at Bus D: 

$15.00/MWh or $31.46/MWh. However, which price should be chosen is not justified. By 

taking into account the load variation direction, either an increase or decrease, an option for 

the price may be produced. 

A more important impact of this step change is that the slight difference in the forecasted 

load may result in a dramatic difference in the LMP. For example, the LMP at Bus D is 

$15.00/MWh when the forecasted load is 711.80MW, whereas the price soars to 

$31.46/MWh when the forecasted load is slightly off by 0.1MW, making it 711.90MW. On 

the other hand, it is very likely that a load forecasting tool, even well-tuned, will produce a 

result with an error greater than 0.1MW for a target load at approximately the 700MW level. 

Therefore, the load forecasting uncertainty may significantly affect LMP forecasting and 

consequently, market participants‟ financial or bidding decisions.  

A few reasons exist that lead to the uncertainty of the load forecasting result. First, the 

future load is a random variable indeed and cannot be accurately predicted. Each load 

forecasting method has its own theoretical foundations and will likely produce results that 

differ from the other method‟s results. Each method may excel in certain applications, but no 

one method can achieve 100% accuracy. There is always a certain error range associated with 
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the forecasted results as well. Second, even for the same method, the results may be different 

by using different settings, tunings, and assumptions. Last, the majority of methods suffers 

from missing data and relies heavily on the accuracy of the input data. 

Although the uncertainty in the load forecast is unavoidable, load forecasting errors are 

often described by certain probability distributions, which enable the study of the correlation 

between the forecasted load and LMP in a probabilistic sense. The LMP study, considering 

probabilistic factors, has been presented in [56, 57] by modeling the generator biddings as 

stochastic variables. However, no existing research work exists to specifically investigate the 

impact of the load forecast uncertainty on the LMP simulation results for a price forecast 

purpose. We intend to reveal the probabilistic aspect of the traditional LMP with respect to 

load uncertainty and present useful information such as the likelihood that a forecasted 

deterministic LMP will occur. This assists generation companies or load serving entities to 

formulate their bidding strategies, risk hedging policies, and even long-term contract 

negotiations. More importantly, this work systematically presents the concept of a 

probabilistic LMP from the viewpoint of forecasting, and indicates that the forecasted 

probabilistic LMP should be a set of discrete values with the associated probabilities at 

different load intervals. These two aspects are the motivation and significance of this work.  

As in Chapter 4, the study will be conducted for the lossless DCOPF, ACOPF, and the 

proposed FND-based DCOPF, respectively, due to the different price patterns for these 

models. 
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5.2. Probabilistic LMP Forecasting for Lossless DCOPF Framework 

5.2.1. Probabilistic LMP and its Probability Mass Function 

5.2.1.1. Assumptions 

The actual load, or load forecasting error, can be assumed to be a random variable and will 

follow a certain probability distribution. However, it is difficult to determine the distribution 

type due to insufficient historical data [53]. A normal distribution is frequently used and has 

been employed to model the actual load in a number of research works [50, 52, 53, 54], and 

therefore, will be used in this work to describe the actual load at hour t. Then, we have 

),(~ 2

ttt ND  (5.1) 

e t

tx

t

x 2

2

2

)(

2

1
)(  (5.2) 

duux
x

)()(  (5.3) 

where  

tD  = a random variable for the actual load at hour t; 

N  denotes the normal distribution; 

t = mean of tD ; 

2

t = variance of tD ; 

)(x  = probability density function of tD ; 

)(x  = cumulative density function of tD . 

It should be emphasized that for a well-tuned load forecasting model, the forecasted load 

at hour t,
F

tD , should be very close to the mean value of tD , i.e., t . However, 
F

tD is also not 

precisely equal to t due to the error of the load forecasting. Nevertheless, it is a common 
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practice in a market simulation or forecast to use a single forecasted value of load (
F

tD ) to 

perform a deterministic market simulation to forecast the LMP, congestion, etc [5]. In 

addition, there is no reported research work to incorporate the load forecasting uncertainty 

into a LMP simulation and price forecasting and to study its effect. This explains the novelty 

of this research work.  

5.2.1.2. Models for the LMP-Load Curve 

As the value of the random variable tD is represented by the horizontal axis, the LMP-

Load curve (similar to the curves in Fig. 5.1) is illustratively redrawn in Fig. 5.2 to facilitate 

the following study.  

As shown in Fig. 5.2, the load axis is divided into n-1 segments by a sequence of critical 

load levels (CLLs), 
n

iiD 1}{ . Here D1 represents the no-load case (i.e., D1=0), and nD

represents the maximum load that the system can supply due to the limits of total generation 

resources and transmission capabilities. Associated with each load segment i, is a 

corresponding actual LMP value, ip , which is considered a constant in this study, as we 

ignore the loss model for simplicity. The model to calculate the LMP without losses was 

previously discussed in Section 3.2.1.  

The LMP-Load curve in Figure 5.2 includes two extra segments. One is for the load from 

0D to 1D , where 0D  denotes a negative infinite load, and the associated price, 0p , is zero. The 

second additional segment is defined as the load range from nD  to 1nD , where 1nD  

represents the positive infinite load. In this segment, the price is set to be the Value of the 

Lost Load (VOLL) to reflect the demand response to the load shedding. Although the VOLL 

varies with customer groups and load interruption time and duration, it is a common practice 
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to produce an aggregated VOLL to represent the average loss for an area. Therefore, the 

VOLL is assumed to be a constant value for simplicity in this work. 

The two extra segments are added for mathematical completeness. In fact, they have a 

minimal, if any, impact on the study because the typical load range under study (for instance, 

from 0.8 p.u. to 1.2 p.u. of an average case load) is far from these two extreme segments; and 

the possibility of having the forecasted load close to zero or greater than nD  , the maximum 

load that the system can supply, is extremely rare and numerically zero. 

 

 

Figure 5.2. Extended LMP versus Load Curve 
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The curve can be formulated as 

1

11

211

100

,

,

,

,

)(

nnn

nnn

DDDp

DDDp

DDDp

DDDp

DLMP   (5.4) 

where 

00p  

VOLLpn  

0D  

01D  

1nD  . 

 

The compact representation is given as follows 

}},,,1,0{|{)( 1iii DDDnipDLMP   . (5.5) 

Apparently, 
D

LMP
, the LMP sensitivity with respect to the load, is infinite at the critical 

load levels (CLLs),
1

1}{ n

iiD . 

5.2.1.3. Probabilistic LMP and its Probability Mass Function 

Here it is assumed that the economic dispatch and LMP calculation are performed on an 

hourly basis. The LMP at hour t, denoted by tLMP , is a function of tD  which is a random 

variable, from the viewpoint of forecasting. Therefore, at the forecasting or planning stage, 

tLMP should also be viewed as a random variable. This characteristic is inherited from 

forecasted load. Fig. 5.3 shows the LMP-Load curve and probability distribution function 
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(PDF) of tD . It can be inferred from Fig. 5.3 that tLMP  should be a discrete random variable, 

with n+1 possible values denoted by the sequence
n

iip 0}{ . Certainly, the probability that the 

actual price is aligned with a different pi will vary. The random variable tLMP  is named the 

Probabilistic LMP in this work in order to differentiate it from the traditionally deterministic 

LMP. 

Furthermore, the probability that the tLMP  has an actual value of ip can be expressed as 

)()()()Pr( 1

1

ii

D

D
it DDduupLMP

i

i

. (5.6) 

The cumulative density function )(x  can be well estimated by the available 

approximation methods to ease the computation [9]. A schematic graph of the probability 

mass function (PMF) of tLMP is shown in Fig. 5.4. Note that mathematically the PMF graph 

is usually presented in a way so that the possible values are sorted in ascending order, and the 

probability of identical prices (for example when pi = pj where i≠j) are merged together. 

However, this is not done in Fig. 5.4 for the purpose of easy presentation. That is, Fig. 5.4 

shows the PMFs in the order of the occurrence of the associated price, pj, as the load 

increases. It is apparent the probabilities of all possible prices should add up to 1.0. 

Eqs. (5.5)-(5.6) and Fig. 5.4 show the important characteristics of the concept of the 

probabilistic LMP proposed in this work: 

The Probabilistic LMP at a specific (mean) load level is not a single deterministic value. 

Instead, it represents a set of discrete values at a number of load intervals. Each value has an 

associated probability. 
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Figure 5.3. LMP-Load curve and probability distribution of Dt 

 

 

Figure 5.4. Probability Mass Function of the Probabilistic LMP at hour t 

 

5.2.1.4. Alignment Probability of Deterministic LMP Forecasting versus Forecasted 

Load Curve 

At hour t, if a single value of the forecasted load 
F

tD is used for LMP forecasting, the 

calculated LMP can be deterministically identified by looking up the LMP-Load curve, as 
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shown in Fig. 5.2. Suppose
F

tD is between Dj and Dj+1, then the corresponding )( F

tDLMP is 

equal to jp . This can be written as 

1,)( j

F

tjj

F

t DDDpDLMP  (5.7) 

where 

 )( F

tDLMP  is the LMP corresponding to the forecasted load 
F

tD . This can be called 

the deterministic LMP forecast. 

Then, the probability that the actual price tLMP is the same as )( F

tDLMP , i.e., jp , can be 

obtained from the probability mass function (PMF), as shown in Fig. 5.4. It should be noted 

that the actual load may not be
F

tD , or even in the range of [Dj, Dj+1]. Hence, the actual price 

is not always the same as the forecasted price. In a rigorous way, we define an alignment 

probability that the actual price is the same as forecasted price in deterministic LMP 

forecasting. This can be written as 

)()()(

Pr)(PrAP

1

1

jj

D

D

jt

F

tt

DDduu

pLMPDLMPLMP

j

j

 (5.8) 

where AP or )Pr( jt pLMP is the alignment probability in deterministic LMP forecasting. 

Apparently, the probability that the actual price is not the same as the forecasted price in a 

deterministic approach is equal to )Pr(1 jt pLMP ,generally. 

When the above equation is evaluated for every
F

tD  in the entire interval [ 1D , nD ], an 

alignment probability versus 
F

tD curve can be obtained. Each point of the curve represents 

the alignment probability that the projected )( F

tDLMP  is the actual price when the load is

F

tD . When combined with the LMP-Load curve, this LMP alignment probability versus 
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forecasted load curve delivers very useful information such as how likely the projected LMP,

)( F

tDLMP  at the forecasting stage, is the same as the actual LMP at hour t, tLMP .  

The alignment probability defined in Eq. (5.8) provides the probability that the 

deterministically forecasted LMP and the actual LMP are exactly the same. This may not be 

appropriate if the actual LMP has a good chance, such as 70%, to provide a price that is very 

close to, but not exactly the same as, the deterministic LMP result. With Eq. (5.8), the two are 

not considered aligned, and the alignment probability will be as low as 30%. Hence, the 

tolerance level can be applied to address this. For instance, if we choose 10% as the price 

tolerance level, then the result of the deterministically forecasted LMP is considered aligned 

with the actual LMP, if the actual LMP is within [90%, 110%] of the deterministic LMP. 

Namely, we can define the alignment probability with tolerance, AP as 

%)1(%)1( jtj pLMPpPrAP  (5.9) 

where is the tolerance percentage. This gives the confidence of having the LMP forecast 

within an acceptable range. 

The above discussion will be further detailed in the numerical studies. 

5.2.2. Expected Value of the Probabilistic LMP 

5.2.2.1. Expected Value of Probabilistic LMP 

Since LMP at hour t, tLMP , is a random variable, it is interesting to see the expected value 

of LMP at hour t 
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where )(E is the expected value operator. 

It can be seen that )( tLMPE  is a function of t and t . The function is defined as  

)(),( tttLMP LMPEE
t

 . (5.11) 

5.2.2.2. Expected Value of Probabilistic LMP versus Forecasted Load Curve 

If ),( ttLMPt
E  is evaluated for every t  in the interval [ 1D , nD ], the expected value of 

the probabilistic LMP versus t curve will be obtained.  

In practice, it is sometimes more interesting to see the expected value of probabilistic LMP 

with respect to the forecasted load (
F

tD ) curve since
F

tD , instead of t , is actually available. 

If there is a constant deviation devC of 
F

tD from t (for instance, due to model calibration 

error), namely, devt

F

t CD , then )()( devtLMP

F

tLMP CEDE
tt

. This implies that the 

expected value of the probabilistic LMP versus 
F

tD  curve can be obtained by left-shifting the 

expected value of the probabilistic LMP versus t  curve by devC . Likewise, if the deviation 

of
F

tD from t  is the constant portion r  of t , namely, )1( rD t

F

t , then 

))1(()( rEDE tLMP

F

tLMP tt
. This indicates that the expected value of the probabilistic LMP 

versus 
F

tD  curve can be obtained by laterally scaling the expected value of the probabilistic 

LMP versus t  curve by a factor of )1( r  along the t  axis. Therefore, in both cases, the 

shape of the expected value of the probabilistic LMP versus 
F

tD  curve is similar to, if not the 
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same as, that of the expected value of the probabilistic LMP versus t  curve. In general, one 

curve can be obtained by performing a simple geometrical operation on the other curve. 

Furthermore, despite the possible differences between 
F

tD and t , it can be normally 

assumed that the forecasted load 
F

tD is equal to t as previously mentioned. Consequently, we 

have )()( tLMP

F

tLMP tt
EDE . For notational convenience, this assumption is used in the 

following study. Therefore, )( tLMPt
E and )( F

tLMP DE
t

 are interchangeable, and so are t  and 

F

tD . 

It should be noted that ),( ttLMPt
E  is continuously differentiable at t . Therefore, the 

sensitivity of the expected value of the probabilistic LMP with respect to t can be derived 

using the theory of parametric derivative of integration, which is stated as follows: 

If ),(),,( yxfyxf x  are continuous on ],[],[ dcba , then the derivative of 

dyyxfxI
d

c
),()( is continuous, and dyyxfxI

d

c
x ),()( . 

By this theory, the sensitivity of probabilistic LMP is derived as 
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Eq. (5.12) can be further derived as (5.13). Details of the derivation are included in 

Appendix B. 
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5.2.2.3. Lower and Upper Bound of the Sensitivity of the Expected Value of 

Probabilistic LMP 

The absolute value of the sensitivity of the expected value of the probabilistic LMP has an 

upper bound as follows. The derivation is given in Appendix C. 

n

i

i

tt

ttLMP
p

E
t

12

1),(
 . (5.14) 

Therefore, 
t

ttLMPt
E ),(

 has a finite lower and upper bound for a given non-zero, t  

n

i

i

tt

ttLMP
n

i

i

t

p
E

p t

11 2

1),(

2

1
 . (5.15) 

Equation (5.15) implies that the upper bound increases when the standard deviation 

becomes smaller. An extreme case is when the load forecast is completely accurate, namely, 

when t is zero then the upper bound is infinite. This means that the step change may occur 

in this particular situation. This pattern will be exemplified in the numerical studies. 

5.2.2.4. Approximate Calculation of the Expected Value of the Probabilistic LMP 

The calculation of the expected value of the probabilistic LMP involves complicated 

mathematical integration; however, it can be simplified by applying certain approximations 

for particular cases. 
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Figure 5.5. Two cases of the approximated calculation of the expected value of the 

probabilistic LMP 

 

For a normal distribution with mean and standard deviation , the ratio of the 

probability in ]3,3[ and the probability outside this interval is 

384
)3Pr()3Pr(

)33Pr(

xx

x
 . (5.16) 

Therefore, if it is satisfied that 4.38
0|)min(

)max(

ii

i

pp

p
, then the calculation of the 

expected value of the probabilistic LMP under certain conditions, as shown in Fig. 5.5, can 

be approximated as follows  

(a) if titti DD 33 1 , then  

it pLMPE )(  

(b) if titti DD 33 2 , then  

11 1)( iiiit papapbpaLMPE  

where )()()( 11 iii DDDa  

aDDDb iii 1)(1)()( 112 . 
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These approximations will be close enough to the actual values and help to lower 

computational efforts for the cases with a broad range between CLLs. For example in Fig. 5.1, 

the load in the range of (0MW, 570MW) falls into case (a) category, and the expected value 

of the Probabilistic LMP could be easily calculated, which is essentially $10/MWh 

throughout this interval.  

Moreover, considering the fact that well-tuned commercial load forecasting tools are 

capable of generating only a fairly small amount of error, an analyst could focus on a narrow 

range around the forecasted load, such as 2 or 3 standard deviations. This could overcome the 

increases in computation for large market areas where many more LMP-load segments will 

appear due to multiple bid segments, more generators, and potentially more congested 

transmission lines. 

5.2.3. Numerical Study of a Modified PJM 5-Bus System 

In this section, a numeric study will be performed on the PJM 5-Bus system [11], with 

slight modifications. The modifications are for illustrative purposes and were detailed in 

Section 4.2.4. The configuration of the system is shown in Figure 4.3, and redrawn here in 

Figure 5.6 for a quick reference. 

To calculate the LMP versus load curve as shown in Fig. 5.1, it is assumed, for simplicity, 

that the system load change is distributed to each bus load proportional to its base case load. 

Therefore, the load change is equally distributed at Buses B, C, and D since each has a 300 

MW load in the base case. This is approximately reasonable because the proportional 

distribution from the area load to the bus load is commonly used in industrial practices in 

planning, at least for conforming loads. The proportional distribution is used in the 

continuation power flow for voltage stability studies. Note that the distribution pattern of the 

system load variation could be modeled in a more sophisticated way (see Section 4.2). Since 
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this work aims to illustrate the concept of a probabilistic LMP considering load uncertainty, 

we use the proportional variation pattern for simplicity. A more complicated model, such as 

when considering conforming and non-conforming loads, can be addressed in future works.  

The critical load levels (CLLs) and the corresponding LMPs at each bus are shown in 

Table 5.1. This data is the data source for Fig. 5.1 and is calculated by the efficient solver 

presented in Section 4.2.  

 

 

Figure 5.6. The Base Case Modified from the PJM Five-Bus System 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.1. CLLs and LMPs 
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CLL(MW) LMP@A LMP@B LMP@C LMP@D LMP@E 

0.00 10.00 10.00 10.00 10.00 10.00 

600.00 14.00 14.00 14.00 14.00 14.00 

640.00 15.00 15.00 15.00 15.00 15.00 

711.81 15.00 21.74 24.33 31.46 10.00 

742.80 15.83 23.68 26.70 35.00 10.00 

963.94 15.24 28.18 30.00 35.00 10.00 

1137.02 16.98 26.38 30.00 39.94 10.00 

1484.06 16.98 26.38 30.00 39.94 10.00 

Note: LMPs are all in units of $/MWh; Prices in the gray boxes show the LMP at Bus B decreases 

when the load increases. 

 

For simplicity and better illustration, it is assumed that t is always equal to the forecasted 

load 
F

tD , and the standard deviation t is taken as 5% of the mean t . The VOLL is set at  

$2000/MWh, which is reasonable, as the typical range of the VOLL is between $2000/MWh 

and $50,000/MWh [64]. 

5.2.3.1. Probability Mass Function of Probabilistic LMP 

The probability mass function of tLMP at Bus B at two representing forecasted load levels, 

730MW and 900MW, is calculated and shown in Table 5.2. The same results are presented as 

a pie chart in Fig. 5.7. From the results it was discovered that the deterministic LMP with 

respect to
F

tD may or may not be the price with the highest probability. For example, when the 

forecasted load is 900MW, the corresponding deterministic LMP is $23.68/MWh and has the 

highest probability of 92.21%. However, the deterministic LMP $21.74/MWh for the 
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forecasted load 730MW has only the second highest probability of 32.80%, less than the 

probability of 36.29% for $23.68/MWh. This shows that the deterministic LMP associated 

with the mean value of the actual load does not necessarily bear the biggest probability. It 

should be noted that the price $28.18/MWh is listed before $26.38/MWh simply because this 

is the trend of price at Bus B when the load grows. This is also shown within the gray boxes 

in Table 5.1.  

 

Table 5.2. PMF of the LMPt for Bus B 

LMP($/MWh) 

Probability(%) 

when DF
t=730MW 

Probability(%) 

when DF
t =900MW 

0 0.00 0.00 

10 0.02 0.00 

14 0.67 0.00 

15 30.23 0.00 

21.74 32.80 0.02 

23.68 36.29 92.21 

28.18 0.00 7.77 

26.38 0.00 0.00 

2000 0.00 0.00 

Total 100 100 
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Figure 5.7. PMF of the LMPt at Bus B. 

 

Table 5.2 and Fig. 5.7 can be very useful for buyer and sellers to develop bidding 

strategies, demand response offers, and even create long-term contracts, since the results 

reveal the likelihood of realizing the forecasted LMP, considering the fact that there is always 

certain error in the load forecast results. 

Fig. 5.7 may look messy when quite a few price candidates with considerable probability 

exist. In this case, it would be convenient to classify the prices into groups. Depending on the 

strategies, planners or decision makers may also care more about the probability of a range of 

LMP, instead of any individual LMP. For example, a planner may group all the possible 

prices into 3 categories, 0≤LMP≤15, 15<LMP<30, and 30≤LMP. The corresponding 

probabilities for each of the groups are 30.92%, 69.09%, and 0% for the forecasted load of 

730MW, and 0%, 100%, and 0% for the forecasted load of 900MW. 

5.2.3.2. Alignment Probability of Deterministic LMP 

Fig. 5.8 shows the curve of the alignment probability of the deterministic LMP at Bus B 

versus the forecasted load. By comparing Fig. 5.8 with Fig. 5.1, we can see that the low 

probabilities occur near the CLLs, and the lowest probability is approximately 30%, 
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indicating little confidence in the occurrence of the deterministic forecasted LMP. When the 

forecasted load is over 1300MW, the probability continues to decrease as the forecasted load 

approaches the maximum level (i.e., price of the VOLL) that the system can afford, namely, 

1484.06MW. 

Fig. 5.9 shows the alignment probability with a 10% price tolerance. Taking Table 5.2 as 

an example, without tolerance, the alignment probability at 730MW, where the deterministic 

LMP is $21.74/MWh, is 32.80% using (5.8). As a comparison, if a 10% price tolerance is 

adopted, the alignment probability will be 69.09% (=32.80% + 36.29%) using (5.9).  

As shown in Figs. 5.8 and 5.9, the alignment probability curve will be higher with a 10% 

price tolerance, and the worst-case probability increases from 30% to 50%. Especially, the 

valley at around 1137MW in Fig. 5.8 disappears in Fig. 5.9. The alignment probability at the 

load of 1137MW is approximately 54% in Fig. 5.8, while it increases to nearly 99% with a 10% 

price tolerance considered; because in this case the difference of the deterministic LMP at the 

CLL of 1137.02MW is within 10%.  

 

 

Figure 5.8. Alignment probability of deterministic LMP at Bus B versus the forecasted load 
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Figure 5.9. Alignment probability of the deterministic LMP at Bus B versus the forecasted 

load (with 10% price tolerance) 

5.2.3.3. Expected Value of Probabilistic LMP 

The expected value of the probabilistic LMP for the above case is compared with the 

deterministic LMPs, )( F

tDLMP , which are shown in Table 5.3. It shows that the expected 

value of the probabilistic LMP can differ from the deterministic LMP for a specific 

forecasted load.  

 

Table 5.3. Expected value of the probabilistic LMP in comparison with the Deterministic 

LMP for Bus B 

DF
t(MW) 

Expected Value of Probabilistic 

LMP($/MWh) 

Deterministic 

LMP($/MWh) 

730 20.35 21.74 

900 24.03 23.68 
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Figure 5.10. Expected value of the probabilistic LMP versus the forecasted load 

The expected value of the probabilistic LMP versus the forecasted load curve is shown in 

Fig. 5.10. A load range beyond 1350MW is not shown simply because the high VOLL will 

make the curve hard to scale illustratively. It should be noted that the expected LMP will 

escalate sharply when the load is close to the maximum load level the system can afford, and 

will eventually reach 2000 $/MWh.  

In the deterministic LMP-Load curve in Fig. 5.1, the sensitivity for Bus E at the 600MW 

load level is mathematically infinite since a step change occurs at 600MW. In the probability-

based LMP-Load curve, we know that $/MWh9820
1

n

i

ip , MW600t , and 

MW30%5 tt , therefore, the u pper bound of sensitivity is 

2/MWh$78.27
230

2089),(

t

ttLMPt
E

. 

 

Contrasted with the deterministic LMP-Load curve in Fig. 5.1, the curve of the expected 

value of the probabilistic LMP in Fig. 5.10 demonstrates the same overall trend. However, 
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Fig. 5.10 shows a much smoother curve without any step changes. This nice characteristic 

indicates that if the price simulation is based on the probabilistic approach described in this 

work, the error or uncertainty, with respect to the actual LMP in operation, will be reduced 

because of the elimination of step changes as shown in Fig. 5.10. Hence, the planners will not 

face the 1-or-0 type questions in their decision-making process when the loads are around the 

CLLs. This continuous function, as well as the PMF function of the Probabilistic LMP shown 

in Table 5.2 and the alignment probability shown in Figs. 8 and 9, gives market-participating 

planners, forecasters, or decision-makers a better idea regarding the potential risk due to the 

uncertainty in load forecasting so they can better evaluate bidding strategies, demand offers, 

and forward contracts. 

Also shown in this probabilistic LMP forecasting figure is that when the load is closer to 

the CLLs, price uncertainty, i.e., the uncertainty associated with the forecasted deterministic 

LMP, will be higher. This matches the overall trend in the deterministic LMP in Fig. 5.1. 

5.2.3.4. Impact of Load Forecasting Accuracy 

In this section, three different levels of the standard deviation of load forecasting are 

examined, 5%, 3%, and 1%. Fig. 5.11 shows the probabilities of all possible values of tLMP  

at Bus B for these three levels of standard deviation when the system load is 730MW. It can 

be seen from Fig. 5.11 that the probability of realizing 21.74 $/MWh, the deterministic LMP 

at 730MW load level, increases considerably with a smaller standard deviation. This is 

reasonable as a more accurate load forecast should lead to less deviation in the forecasted 

price. 

Fig. 5.12 compares the expected value of the probabilistic LMP curves at the same bus. 

When the forecasted load is at a distance from any CLL, for example at 850MW, the three 

curves overlap very well. This suggests that different levels of the standard deviation make 
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trivial differences on the expected LMP at this load level. In addition, the sensitivity of the 

expected LMP at this load level is small, which indicates the expected LMP remains nearly 

constant when the forecasted load varies slightly around this level. In contrast, when the 

forecasted load is close to a CLL, for example at 600MW, the lower the standard deviation is 

and the closer the curve is to a step change curve shape. Furthermore, the inset in Fig. 5.12 

shows that when the load level is closer to a CLL, the absolute value of the sensitivity of the 

expected LMP grows rapidly and the expected LMP becomes more sensitive to variations of 

the forecasted load. 

 

 

Figure 5.11. PMF of LMPt at Bus B for three levels of standard deviation when the system 

load is 730MW 
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Figure 5.12. Expected value of the probabilistic LMP at Bus B versus the forecasted load for 

three levels of standard deviation 

5.2.4. Numerical Study of the IEEE 118-Bus System 

The study results on the IEEE 118-bus system [16] are briefly presented in this section to 

demonstrate the applicability of the proposed concepts and methods to larger systems. 

Conclusions similar to those for the PJM 5-bus system can be made. The system consists of 

118 buses, 54 generators, and 186 branches. The system total load is 4242MW with a 

9966.2MW total generation capacity. The detailed system data and diagram can be found in 

[16]. 

In the original IEEE 118-bus system, there is no generator bidding data and branch thermal 

limit data, which are indispensable in the performance of this study. Therefore, the generator 

bidding data is assumed as follows for illustrative purpose: 20 cheap generators with bidding 

data from $10 to $19.5 with $0.5 increments; 20 expensive generators with bidding data from 

$30 to $49 with $1 increments; and 14 of the most expensive generators with bidding data 

from $70 to $83 with $1 increments. Five thermal limits are added into the transmission 
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system: 345MW for Line 69-77, 630MW for Line 68-81, 106MW for Line 83-85, and Line 

94-100, 230MW for Line 80-98. The VOLL is set at 2000 $/MWh for all loads.  

The deterministic LMP versus load curve for the IEEE 118-bus system is shown in Fig. 

5.13. For better illustration, the curves are drawn only for a few selected buses and in the 

broad neighborhood of the base case load, namely, from 3550MW to 5820MW. Once again, 

the step change characteristic of the deterministic LMP curves is observed in Fig. 5.13. 

Fig. 5.14 shows the curve of alignment probability of the deterministic LMP at two 

selected buses versus the forecasted load. The locations where low probabilities occur are 

aligned with the CLLs very well because the step changes, which the deterministic LMP 

contributes to the price uncertainty when there load forecast errors, are present. In Fig. 5.14, 

the majority of the alignment probability is less than 70%, and only a small range of the load 

(around 4920MW~5230MW) carries an 80% or more probability for realizing the 

deterministic forecasted LMP. Compared to the smaller system results in Fig. 5.8, larger 

systems tend to have a lower overall alignment probability since there are more CLLs or 

narrower ranges among two adjacent CLLs. This due to the involvement of more generators, 

and potentially, more congested lines. 
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Figure 5.13. Deterministic LMP curve at selected buses with respect to different system loads 

for the IEEE 118-bus system 

 

It can be seen from Fig. 5.14 that the alignment probabilities for Bus 81 and Bus 94 are 

almost identical for a vast load range (3550MW~ 5538MW). This is because the price 

changes at these two buses synchronize well with the load changes. This is a common pattern 

because the LMP at any specific bus will change at the CLLs unless there is a marginal unit 

at that bus to keep the LMP unchanged. 
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Figure 5.14. Alignment probability of the deterministic LMP at Bus 81 and Bus 94 versus the 

forecasted load for the IEEE 118-bus system 

Fig. 5.15 presents the expected value of the probabilistic LMP versus the forecasted load 

curve at the same selected buses as in Fig. 5.13. The curves are observed to be highly smooth 

and there is no step change. Meanwhile, the curves track the overall trend of their 

deterministic counterparts. It should be noted that skyrocketing pattern in the right part of Fig. 

5.10 for the PJM 5-bus system is not present in Fig. 5.15, because the load window shown in 

Fig. 5.15 is a large distant from the maximum affordable load. Therefore, the VOLL does not 

have any impact on this load range of interest. 
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Figure 5.15. Expected value of the probabilistic LMP at selected buses versus the forecasted 

load for the IEEE 118-bus system 

5.2.5. Conclusions 

Load uncertainty exists due to a variety of reasons. Meanwhile, the LMP-Load curve has 

step changes at critical load levels where a new binding limit occurs. These are the major 

reasons of the LMP uncertainty. This work studies the LMP uncertainty with respect to the 

load in a probabilistic sense. The contribution can be summarized as follows: 

 With the assumption of a normal distribution of the actual load, the concept of the 

probabilistic LMP is proposed and its probability mass function at hour t is presented. 

The probabilistic LMP does not correspond to a single deterministic value. Instead, it 

represents a set of discrete values (pi) at a number of load intervals, and each value pi 

has an associated probability.  

 The alignment probability is proposed and formulated to define the likelihood that the 

deterministic LMP calculated based on a single value of the forecasted load is the same 
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as (or within a tolerance level of) the result from the probabilistic LMP. The alignment 

probability curve delivers the information of how likely the actual result from the 

probabilistic LMP is acceptable if compared with the deterministic LMP.  

 The expected value of probabilistic LMP is derived and its curve with respect to the 

forecasted load is presented. The sensitivity of the curve is derived and shown to be 

bounded by finite values. In addition, the expected value of the probabilistic LMP 

versus the forecasted load curve is smooth and has no step changes. This avoids the 0-

or-1 type of step changes if the deterministic LMP forecast is performed, and helps 

market participants make less risky decisions in generation bidding, demand offers, 

and/or forward contract negotiations.  

The proposed concept and method are illustrated on a modified PJM 5-bus system as well 

as the IEEE 118-bus system. The results provide additional and useful information for 

understanding the LMP-Load curve from a probabilistic perspective. 

5.3. Probabilistic LMP Forecasting for ACOPF Framework 

ACOPF is deemed as the most representative mathematical model to the power generation 

scheduling problem and has gained some real-world applications [20]. Therefore, the impact 

of load forecasting uncertainty on LMP forecasting will be studied for the ACOPF 

framework in this section. The effect of power loss will be also examined since loss is well 

modeled in ACOPF while it is absent in lossless DCOPF.  

The ACOPF is a much more complex model than the lossless DCOPF and contains a 

number of nonlinear constraints, which makes it very difficult, if not impossible, to perform 

analytical studies on the ACOPF solutions and by-products, such as LMPs. Apparently, the 

useful features of the lossless DCOPF, such as the linear marginal unit generation pattern and 

constant LMPs when the load varies within two adjacent CLLs, will not be valid for the 
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ACOPF due to existence of losses. Specifically, the LMP versus load curve will be different, 

though the step change phenomenon is still expected. For the lossless DCOPF framework, the 

LMP is constant between two adjacent critical load levels, while in the ACOPF framework, 

the LMP will steadily, but slightly, increase or decrease with a load variation within two 

adjacent critical levels. Consequently, the random variable, LMP at hour t, is no longer a 

discrete random variable; rather, it is a continuous random variable. In addition, the step 

change characteristic makes it a piece-wise continuous random variable. Therefore, we do not 

expect to produce the same representation of the probabilistic LMP for the ACOPF, even 

though the methodology will likely be the same. As such, we will examine the probability 

density function of this random variable and apply a methodology similar to that introduced 

in Section 5.2 to reveal its probabilistic features, such as probability density function, 

expected value, and its sensitivity.  

It should be pointed out that same assumptions on the load made in Section 5.2 are used 

hereafter. That is, the actual load at hour t, i.e., Dt, is assumed to be a random variable and 

follows a normal distribution with mean t  and standard deviation t . Its PDF and CDF 

functions are defined in equations (5.2)-(5.3).  

5.3.1. Numeric Approach and Its Limitation 

A straightforward approach is to numerically compute the Cumulative Density Function 

(CDF) and Probability Density Function (PDF), as well as the expected value of the random 

variable LMPt.  
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5.3.1.1. Calculation of CDF of LMPt 

Assume the LMP versus load curve is composed of K (load, price) pairs, denoted by 

KkpD kk ,...,2,1),,( , where K is a sufficiently large number. The entire load range is 

evenly divided by 
K

kkD
1
. 

By definition, the CDF of LMPt at price p is formulated as follows 

pLMPpF tLMPt
Pr)(  . (5.17) 

If K is sufficiently large, the probability can be approximated as follows 

ppppkk

ktktLMP

kk

t
DDDpLMPpF

1,|

1PrPr)(  . (5.18) 

Apparently it is very computational expensive when K is a large number due to the large 

number of evaluations of the CDF for a normal distribution. To reduce computational efforts, 

we can filter out every segment [Dk, Dk+1] which is outside 5,5  since the 

probability outside this interval is numerically 0. 

5.3.1.2. Calculation of PDF of LMPt 

The PDF of LMPt  at price p is defined as 

p

pFppF

p

ppLMPp
pf tt

t

LMPLMP

p

t

p
LMP

)()(
lim

Pr
lim)(

00
.(5.19) 

When p  is sufficiently small, the PDF of LMPt can be computed using CDF as follows 

p

pFppF
pf tt

t

LMPLMP

LMP

)()(
)(  . (5.20) 

5.3.1.3. Calculation of Expected Value of LMPt 

When the PDF of LMPt  is computed, the expected value of LMPt  can be approximated by 
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ppfpdppfpLMPE
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j

jLMPj

p

p
LMPt tt

1

)()(
max

min

 (5.21) 

where pmin, pmax are the minimum and maximum price of LMPt respectively; n is a 

sufficiently large number; the interval [pmin, pmax] is evenly divided into n smaller intervals 

and 
n

pp
p minmax . 

5.3.1.4. Discussions on the Numerical Approach 

Although the numerical approach for calculating the CDF, PDF, and expected value of 

LMPt is easy to implement, the computation is extremely expensive because of discretization 

and the large number of evaluations of complex functions such as the CDF of the normal 

distribution. In general, the higher the accuracy, the more computationally expensive the 

method will be. In addition, the results suffer significantly from an insufficient sampling 

resolution of discretization. Figure 5.16 illustrates how an insufficient sampling resolution 

may cause a change of the PDF shape and the miss of a spike area in discretizing a PDF 

curve. In fact, it happens for LMPt in the ACOPF. As an example, for the PJM 5-bus system, 

when the load varies between two adjacent CLLs, 739.80MW and 924.75MW, the LMP at 

Bus A changes from 15.7977 $/MWh to 15.7951 $/MWh. When the forecasted load is 

900MW, the actual PDF curve contains a pulse portion in a very narrow price range 

[15.7951$/MWh, 15.7977$/MWh]. The area is so narrow (about 0.0026$/MWh) that a 

sample resolution of 0.01$/MWh can hardly catch the pulse. This issue, worsened by the 

computational burden arising from the numerical method, is hard to overcome. 
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Figure 5.16. Illustration of insufficient sampling resolution in discretizing a PDF curve 

 

5.3.2. Probabilistic LMP and its Probability Density Function 

In order to reduce computational efforts and obtain more accurate results, an analytical 

approach will be adopted, which first establishes a mathematical model for the LMP versus 

the Load curve, and then derives, analytically, the formulations for CDF, PDF, expected 

value of LMPt, etc. 

By definition, the LMP is the partial derivative of the total generation cost with respect to 

the load change, and total generation cost is a linear combination of generation due to the 

adoption of the linear generation cost function. In addition, marginal unit generations are 

demonstrated to follow a perfect quadratic pattern when the load varies within two adjacent 

CLLs in the ACOPF framework. Hence, roughly speaking, the LMP should follow a linear 

pattern between any two adjacent CLLs, which can be observed in Figure 5.17. Figure 5.17 

shows a typical LMP versus load curve for the modified PJM 5-bus system, defined in 

Section 4.3. It can be seen that step changes still exist at a few load levels, which are the 
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CLLs. The LMPs between the two adjacent CLLs suggest a linear pattern, as can be seen in 

the inset of Figure 5.17. 

5.3.2.1. Models for the LMP-Load Curve 

Figure 5.18 shows an illustrative picture of the LMP versus load curve in the ACOPF 

framework. The load axis is divided into n-1 segments by a sequence of critical load levels 

(CLLs), 
n

iiD 1}{ . Here, D1 represents the no-load case (i.e., D1=0), and nD represents the 

maximum load that the system can supply due to the limits of total generation resources and 

transmission capabilities. The actual LMP in each load segment i is considered to be a 

straight (linear) line, with slope ai and intercept bi. The model to calculate LMP in the 

ACOPF was introduced in Section 3.2.2.  

The LMP-Load curve is extended to include two extra segments in Figure 5.18. One is for 

the load from 0D to 1D , where 0D  denotes a negative infinite load, and the associated price is 

zero. The second additional segment is defined as the load range from nD  to 1nD , where 

1nD  represents a positive infinite load. In this segment, the price is set as the Value of the 

Lost Load (VOLL) to reflect demand response to load shedding. Although the VOLL varies 

with customer groups and load interruption time and duration, it is a common practice to 

produce an aggregated VOLL to represent the average loss for an area. Therefore, the VOLL 

is assumed to be a constant value for simplicity in this work. 

The two extra segments are added for mathematical completeness. In fact, they have a 

minimal, if any, impact on the study because the typical load range under study (for instance, 

from 0.8 p.u. to 1.2 p.u. of an average case load) is far from these two extreme segments, and 

the possibility of having the forecasted load close to zero or greater than nD  , the maximum 

load that the system can supply, is extremely rare and numerically zero. 
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Figure 5.17. LMP at all buses with respect to different system loads for the modified PJM 

five-bus system 

 

 

Figure 5.18. Extended LMP versus load curve 
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The LMP versus load curve can be formulated as 

1
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where 

000 naba  

VOLLbn  

0D  

01D  

1nD  . 

The compact representation is given as follows 

1,,,1,0|)( iiii DDDnibDaDy   . (5.23) 

Apparently, 
D

LMP
, the LMP sensitivity with respect to the load, is infinite at the critical 

load levels (CLLs),
1

1}{ n

iiD . 

5.3.2.2. Probabilistic LMP 

Here it is assumed that the economic dispatch and LMP calculations are performed on an 

hourly basis. The LMP at hour t, denoted by LMPt, is a function of tD  which is a random 

variable from the viewpoint of forecasting. Namely 

)( tt DyLMP . 
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Figure 5.19. LMP-Load curve and probability distribution of Dt 

 

Therefore, at the forecasting or planning stage, LMPt should also be viewed as a random 

variable. This characteristic is inherited from the forecasted load. Fig. 5.19 shows the 

overlapping picture of the LMP-Load curve and the probability density function (PDF) of tD .  

Three types of curve segments exist in terms of the value of the price slope ai. For example, 

for a curve segment with a positive price slope, the corresponding price range is 

0|,,2,1,0,, 1 iiiiiii anibDabDa  . In theory, the actual value of LMPt could 

be any number in this price interval, and therefore, LMPt is a continuous random variable. 

For a curve segment with a negative price slope, the price range is 

0|,,2,1,0,,1 iiiiiii anibDabDa  ; for a curve segment with a zero price 

slope, the price will be a constant value 0|,,2,1,0, ii anib   throughout the load 

interval.  Due to the step change phenomenon of the LMP versus load curve, there may or 
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may not exist intersections among these price intervals. Therefore, it can be inferred that 

LMPt should be a piece-wise continuous random variable.  

For an arbitrary price p, we can look up the LMP versus load curve to locate the 

corresponding load level(s). If there is no corresponding load level, for instance, p is not in 

any of the price intervals, the probability density value associated with p will be zero. If the 

corresponding load level(s) does exist, the probability density value associated with p will 

depend on the distance from the corresponding load level to the mean value of Dt, namely, 

t . Intuitively, the shorter the distance, the higher the probability density value is. 

Furthermore, the probability density function is continuous on prices within any one of the 

price intervals, as will be shown in a later section. A special case is with the curve segment 

with a zero slope. The probability density value for the constant value bi for the curve 

segment will be infinite because the CDF function has a step change at bi. Figure 5.20 shows 

a schematic graph of a PDF curve of the piece-wise continuous random variable LMPt. The 

vertical arrow represents the infinite probability density value. 

It should be pointed out that the probability distributions of the price intervals are 

amplified for illustration purposes. In fact, the price intervals are typically so narrow that they 

will be displayed as single vertical bars when the PDF curve is drawn for the entire price 

range. However, if only one price interval is shown and well scaled in the graph, the 

corresponding PDF should manifest a continuous curve over the interval, excluding the two 

end points of the interval, as illustrated in Figure 5.20. This characteristic of the PDF curve 

will be exemplified in the case study section. 
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Figure 5.20. Probability Density Function of the Probabilistic LMP at hour t 

 

Fig. 5.20 shows an important characteristic of the concept of the probabilistic LMP in the 

ACOPF framework: 

The Probabilistic LMP at a specific (mean) load level is not a single deterministic value. 

Instead, it is a piece-wise continuous random variable with a piece-wise continuous 

probability density function and may contain infinite probability density values at certain 

price(s). 

5.3.2.3. Cumulative Density Function of Probabilistic LMP 

In order to obtain the formula of PDF of LMPt, we need to firstly derive the CDF of LMPt. 

Using probability theory, the cumulative density function of LMPt can be derived as follows 

t

t

tLMP

D

pDy

pLMPpF
t

Pr

)(Pr

Pr

 (5.24) 

Where pxyx )(| . 
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Define 1,)( itiititi DDDbDaDy  and pxyx ii )(| , then we have 


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  (5.25) 

jiji , . (5.26) 

Therefore, the CDF function can be further derived as 
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In order to calculate 1,|Pr iiiit DxDpbxaxD , three cases need to be 

considered respectively, i.e., (a) ai>0., (b) ai<0., and (c) ai=0, as shown in Figure 5.21. 
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(a) 

 

(b) 

 

 (c) 

Figure 5.21. Three cases in computing the CDF of LMPt. (a) ai>0. (b) ai<0. (c) ai=0 
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(1) Case I: ai>0 
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(2) Case II: ai<0 
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(3) Case III: ai=0 
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Summarizing the three cases, we have 
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5.3.2.4. Probability Density Function of Probabilistic LMP 

To derive the formula for the PDF of LMPt, we need to study the differentiability of the 

CDF function first. 

Define 0|,,1,0,)()(,1 i

D

D
i aniduupF

i
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 , then we have 
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Figure 5.22 shows the schematic graph of the function F1,i(p). It is a continuous function, 

yet not differentiable at both )( iDy  and )( 1iDy . Therefore, we have 
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It should be noted that )(
'

,1 pF i  does not exist at both )( iDy  and )( 1iDy .  

 

 

Figure 5.22. Function F1,i(p) 
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Likewise, define 0|,,1,0,)()(
1
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Figure 5.23 shows the schematic graph of the function F2,i(p). It is a continuous function, 

yet not differentiable at both )( iDy  and )( 1iDy . Therefore, we have 
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It should be noted that )(
'

,2 pF i  does not exist at both )( iDy  and )( 1iDy .  

 

 

Figure 5.23. Function F2,i(p) 
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Similarly, define 0|,,1,0,)()(,3 i

D

D
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Figure 5.24 shows the schematic graph of the function F3,i(p). It is not a continuous 

function; rather, it is a step change function, which has an infinite derivative at b, namely, 

)( iDy . Therefore, we have 

)(,0

)(,

)(,0

)(
'

,3

i

i

i

i

Dyp

Dyp

Dyp

pF  . (5.37) 

 

 

Figure 5.24. Function F3,i(p) 
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With the definition of F1,i(p), F2,i(p), and F3,i(p), the CDF function of LMPt can be 

rewritten as 
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 (5.38) 

Therefore, pF
tLMP  is differentiable almost everywhere, except for prices at the 

boundaries of each interval, namely, 
n

iiDy 1)}({ . 

In fact, we can assign arbitrary finite numbers as the derivative at those non-differentiable 

points. One option is to use the value of right derivative as the derivatives at those points, 

which is consistent with the calculations used in the numerical method. Therefore, we have 
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The formula of the CDF function of LMPt can be broken down into additional parts 
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Then, the probability density function of the LMPt is derived as follows 
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Specifically, we have 

0|,,1,0),(, iiLMP aniDyppf
t

  .  

5.3.2.5. Alignment Probability of Probabilistic LMP 

At hour t, if a single value of the forecasted load 
F

tD is used for the LMP forecasting, the 

calculated LMP can be deterministically identified by looking up the LMP-Load curve, as 

shown in Fig. 5.17. This can be written as 

F

tDyp~   

where p~  is the LMP corresponding to the forecasted load 
F

tD . This is called the 

deterministic LMP forecast. 

It should be noted that the actual load may not be
F

tD , and correspondingly, the actual 

price is not always the same as the forecasted price.  

In practice, it is interesting to know the probability associated with the deterministically 

forecasted LMP p~ . On the other hand, we have shown the LMPt is a piece-wise continuous 

random variable in the ACOPF framework, and therefore, the probability of realizing any 

single value is zero in theory. In this regard, similar to the alignment probability concept 

presented in Section 5.2, we define the alignment probability in the ACOPF framework as the 

probability that the actual price is in a close neighborhood around the deterministic LMP  
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where  is the tolerance percentage which gives the confidence of having the LMP 

forecast in an acceptable range. p~  is the deterministically forecasted LMP. 

For instance, if we choose 10% as the price tolerance level, then the results of the 

deterministically forecasted LMP is considered aligned with the actual LMP, if the actual 

LMP is within [90%, 110%] of the deterministic LMP p~ . 

When the above equation is evaluated for every
F

tD  in the entire interval [ 1D , nD ], an 

alignment probability versus 
F

tD curve will be obtained. Each point of the curve represents 

the alignment probability that the actual price and the projected price 
F

tDy  are in close 

vicinity when the load is
F

tD . When combined with the LMP-Load curve, this LMP 

alignment probability versus the forecasted load curve delivers very useful information such 

as how likely the projected price, at the forecasting stage, is close enough to the actual LMP 

at hour t, tLMP .  

 

5.3.3. Expected Value of Probabilistic LMP 

5.3.3.1. Expected Value of Probabilistic LMP 

By the Conditional Expectation theory [10], the expected value of LMPt is derived as 
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If a random variable Y is a linear function of a random variable X, namely, Y=l(X), where 

l(.) denotes the linear function, then the expected value of Y is XElXlEYE . By 

this theory, we have 
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By the definition of the conditional probability density function [10], the conditional 

density function of tD , given any event 1iti DDD  is 
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Therefore, the expected value of tD  given any event 1iti DDD  is 
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Then, the expected value of the LMPt is further derived as follows 
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The ultimate formula for the expected value of LMPt is derived as 
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5.3.3.2. Sensitivity of Expected Value of Probabilistic LMP 
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Taking the partial derivative with respect to t  gives 
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In Appendix B, we have already derived that 
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Therefore, the sensitivity of the expected value of LMPt is 
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5.3.3.3. Lower and Upper Bounds of the Sensitivity of the Expected Value of 

Probabilistic LMP 

In order to study the lower and upper bounds of the sensitivity of the expected value of 

LMPt, we need to first study the bounds of the item 
2
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So the maximum and minimum values of )(xg  are )
2

1
(g  and )

2

1
(g  respectively, i.e., 

)
2
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1
( gxgg . This function is depicted in Figure 5.25. 

 

Figure 5.25. Function g(x) 
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Similarly, the lower bound of 
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In summary, the lower and upper bound of 
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In addition, we have 
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Hence, the upper bound of the sensitivity of the expected value of the LMPt is derived as 

follows 
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 (5.62) 

Similarly, the lower bound of sensitivity of expected value of LMPt is presented as follows. 
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 (5.63) 

 

5.3.4. Numerical Study of a Modified PJM 5-Bus System 

In this section, a numeric study will be performed on the PJM 5-Bus system [11], with 

slight modifications. The modifications are for illustration purposes and are detailed in 

Section 4.2.4. The configuration of the system is shown in Figure 4.3. 

To calculate the LMP versus load curve as shown in Fig. 5.17, it is assumed that the 

system load change is distributed to each bus load proportional to its base case load for 

simplicity. For better illustration, it is assumed that t is always equal to the forecasted load 

F

tD , and the standard deviation t is taken as 5% of the mean t  unless otherwise stated. 

The VOLL is set at $2000/MWh. 

 



 
207 

5.3.4.1. Approximation of LMP Curve 

A linear polynomial curve-fitting is employed to approximate the actual LMP between 

every two adjacent CLLs, and the coefficients are used to establish the mathematical model 

for the LMP versus load curve. Table 5.4 shows the curve-fitting coefficients for the LMP 

curves at all buses when the load is within [0, 590] MW. It implies that the LMPs at all buses, 

except Bus E, increase slightly, while the LMP at Bus E remains 10$/MWh for the entire load 

interval. 

With the linear polynomial coefficients obtained through the curve-fitting, the 

mathematical LMP versus load model is established, which is a piece-wise linear curve with 

step changes at the CLLs. The mathematical representation of the curve is a very good 

approximation to the actual LMP versus load curve, and therefore, can be used to facilitate an 

analytical study on topics such as CDF, PDF, etc. In fact, the curve represented by the 

mathematical formula looks almost identical to the actual curve shown in Figure 5.17. The 

largest difference is less than 0.07$/MWh, approximately 0.7% of the lowest LMP, 

$10/MWh. Therefore, the curve is not redrawn here. 

Table 5.4. Curve-fitting coefficients for the LMP curves at all buses when the load is within 

[0, 590] MW 

  a ($/(MWh*MW)) b ($/MWh) 

LMP@A 0.0001 9.9999 

LMP@B 0.0003 9.9993 

LMP@C 0.0003 9.9993 

LMP@D 0.0002 9.9997 

LMP@E 0 10 
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5.3.4.2. Cumulative Density Function of Probabilistic LMP 

Figure 5.26 shows the CDF curve of the probabilistic LMP at Bus B for the forecasted 

load at 730 MW and 900 MW, respectively. The figure suggests the staircase pattern of the 

CDF curve. Combined with the LMP versus the Load curve such as in Figure 5.17, it can be 

seen that the prices at which a step change occurs coincide with the price intervals near the 

forecasted load level for Bus B. The corresponding PDF values for these prices are expected 

to be higher than the PDF values of other prices, as will be verified in the next section.  

A careful study reveals that the majority of the step changes observed in the CDF curve 

are not really step changes. Figure 5.27 redraws the same curves in Figure 5.26 in a narrow 

range around $24/MWh, where a step change appears. It can be seen that both CDF curves 

move smoothly from $23.95/MWh to $24.02/MWh. It is actually consistent with the 

aforementioned theoretical part in Section 5.3.2.3, where the CDF function is shown to be 

differentiable almost everywhere except at the price boundaries of each interval of the LMP 

versus the Load curve, namely, 
n

iiDy 1)}({ . Nevertheless, the change of the CDF values 

happens in such narrow price intervals that it looks just like a step change when plotted for a 

broader range of prices. 
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Figure 5.26. Cumulative density function of the probabilistic LMP at Bus B for two 

forecasted load levels 

 

 

Figure 5.27. Cumulative density function of the probabilistic LMP at Bus B for two 

forecasted load levels in the price interval 23.95~24.02 $/MWh 
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5.3.4.3. Probability Density Function of Probabilistic LMP 

The PDF curve of the probabilistic LMP at Bus B is shown in Figure 5.28 for the same 

two forecasted load levels. When the forecasted load is 730 MW, the probability density 

function of the probabilistic LMP is mainly scattered in three price intervals: 15.19~15.23 

$/MWh, 22.01~22.05 $/MWh, and 23.95~24.02 $/MWh while 23.95~24.02 $/MWh and 

27.94~28.02 $/MWh are the two price intervals with a high probability density for the 

forecasted load at 900MW. The probability density is numerically zero for almost 

everywhere else outside these price intervals. Furthermore, these price intervals are consistent 

with those where the CDF values have a jump, as seen in Figure 5.26. 

It should be noted that the vertical bars in Figure 5.28 are actually smooth curves which 

are not legible due to scaling issues. A well scaled graph is shown in Figure 5.29. It can be 

seen from Figure 5.29 that the probability density functions are continuous, and differentiable, 

curves in the 23.95~24.02 $/MWh range. 

 

Figure 5.28. Probability density function of the probabilistic LMP at Bus B for two forecasted 

load levels 
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Figure 5.29. Probability density function of the probabilistic LMP at Bus B for two forecasted 

load levels in the price interval 23.95~24.02 $/MWh 

Since the probability of any single price is zero, it is more useful to divide the entire price 

range into a few intervals and investigate the probability of an actual LMP falling into each 

interval. The vertical bars observed in the PDF curves, such as in Figure 5.28, can be used to 

help make this classification. In practice, the categorization is at the discretion of the decision 

maker and can vary with cases and purposes. 

The probability of the tLMP at Bus B falling into the selected price intervals is calculated 

and shown in Table 5.5 for two representing forecasted load levels, 730MW and 900MW. 

The same results are presented as a pie chart in Fig. 5.30. The results discover the fact that 

the deterministic LMP with respect to
F

tD may or may not fall into the price interval with the 

highest probability. For example, when the forecasted load is 900MW, the corresponding 

deterministic LMP is $24.01/MWh and its close neighborhood $23.9~24.1/MWh has the 

highest probability of 70.87%. However, the close neighborhood $22.0~22.1/MWh of the 

deterministic LMP $22.03/MWh for the forecasted load 730MW has only the second highest 

probability of 30.88%, less than the probability of 39.42% for the price interval 
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$23.9~24.1/MWh. It shows that the deterministic LMP associated with the mean value of the 

actual load does not necessarily bear the largest probability. 

 

Table 5.5. Probability of LMPt at Bus B in the Selected Price Intervals 

LMP Range 

Probability(%) 

when DF
t=730MW 

Probability(%) 

when DF
t =900MW 

0~15.0 $/MWh 0.48  0.00  

15.0~15.3 $/MWh 25.11  0.00  

15.3~22.0 $/MWh 4.12  0.00  

22.0~22.1 $/MWh 30.88  0.02  

22.1~23.9 $/MWh 0.00  0.00  

23.9~24.1 $/MWh 39.42  70.87  

24.1~27.9 $/MWh 0.00  1.52  

27.9~28.0 $/MWh 0.00  27.53  

28.0~2000 $/MWh 0.00  0.07  

Total 100 100 
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Figure 5.30. Probability of LMPt at Bus B for the selected price intervals 

Table 5.5 and Fig. 5.30 reveal the likelihood of realizing the forecasted LMP and its close 

vicinity, and therefore, can be very useful for buyer and sellers in making their financial 

decisions, such as developing bidding strategies.  

 

5.3.4.4. Alignment Probability of Probabilistic LMP 

Fig. 5.31 shows the curve of the alignment probability of the deterministic LMP at Bus B 

versus the forecasted load, with a 10% and 20% price tolerance, respectively. By making a 

comparison between Fig. 5.31 and Fig. 5.17, we can see that the low probabilities occur near 

the CLLs. For instance, the lowest probability is 51.44% at the forecasted load level 

924.21MW, which is very close to the CLL at 924.75MW. When the forecasted load is over 

1300MW, the probability keeps decreasing as the forecasted load is approaching the 

maximum level (i.e., price of the VOLL) that the system can afford, namely, 1467MW. 

As shown in Figure 5.31, the alignment probability curve is closer to 1.0 with a higher 

price tolerance, and the valley at around 924.21MW disappears when the price tolerance is 
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20%. For example, the deterministic LMP is $24.03/MWh at the load level 924.21MW, and 

the prices in the close neighborhood of 924.21MW differ by up to $4.01/MWh, which is less 

than 20% of the deterministic LMP. Therefore, the alignment probability at the load level 

924.21MW increases from 51.44% with a 10% price tolerance, to nearly 100% with a 

doubled price tolerance. 

 

 

Figure 5.31. Alignment probability of the deterministic LMP at Bus B versus the forecasted 

load, with a 10% and 20% price tolerance, respectively 

 

 

 

 

 

 

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400

Forecasted Load

A
li

g
n
m

en
t 

P
ro

b
ab

il
it

y

10% Price tolerance 20% Price tolerance



 
215 

5.3.4.5. Expected Value of Probabilistic LMP 

The expected value of the probabilistic LMP for the above case is compared with the 

deterministic LMP, 
F

tDy , which is shown in Table 5.6. It shows that the expected value of 

probabilistic LMP may differ from the deterministic LMP for a specific forecasted load.  

The expected value of the probabilistic LMP versus the forecasted load curve is shown in 

Fig. 5.32. A load range beyond 1300MW is not shown simply because the high VOLL will 

make the curve hard to scale for a good illustration. It should be noted that the expected LMP 

will escalate sharply when the load is close to the maximum load level the system can afford, 

and will eventually reach 2000 $/MWh.  

 

Table 5.6. Expected value of the probabilistic LMP in comparison with the Deterministic 

LMP for Bus B 

DF
t(MW) 

Expected Value of Probabilistic 

LMP($/MWh) 

Deterministic 

LMP($/MWh) 

730 20.78 22.03 

900 25.13 24.01 
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Figure 5.32. Expected value of probabilistic LMP versus forecasted load 

In the deterministic LMP-Load curve in Fig. 5.17, the sensitivity for Bus B at 924.75MW 

is mathematically infinite since a step change occurs at this load level. In the probability-

based LMP-Load curve, the upper and lower bounds of the sensitivity can be estimated using 

(5.62) and (5.63)  

2/$50.18
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ttLMPt

. 

When contrasted with the deterministic LMP-Load curve in Fig. 5.17, the curve of the 

expected value of the probabilistic LMP in Fig. 5.32 demonstrates the same overall trend. 

However, Fig. 5.32 shows a much smoother curve without any step changes, which 

contributes to the reduction of price uncertainty, especially around the CLLs.  

Also shown in this probabilistic LMP forecasting figure is that when the load is closer to 

the CLLs, price uncertainty, i.e., the uncertainty associated with the forecasted deterministic 

LMP, will be higher. This matches the overall trend in the deterministic LMP in Fig. 5.17. 
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5.3.4.6. Impact of Load Forecasting Accuracy 

In this section, three different levels of standard deviation of load forecasting are examined, 

5%, 3%, and 1%. Fig. 5.33 shows the probabilities of the random variable tLMP  at Bus B 

falling into a few price ranges for these three levels of standard deviation when the system 

load is 730MW. It can be seen from Fig. 5.33 that the probability of realizing the actual price 

in the range of 22.0~22.1 $/MWh where the deterministic LMP $22.03/MWh falls into, 

increases considerably with a smaller standard deviation. This is reasonable because more a 

accurate load forecast should lead to less deviation in the forecasted price. 

Fig. 5.34 compares the expected value of the probabilistic LMP curves at the same bus. 

When the forecasted load is at a large distance from any CLL, for example at 850MW, the 

three curves overlap very well. This suggests that different levels of the standard deviation 

make minimal differences on the expected LMP at this load level. In addition, the sensitivity 

of the expected LMP at this load level is small, which indicates the expected LMP remains 

nearly constant when the forecasted load varies slightly around this level. In contrast, when 

the forecasted load is close to a CLL, for example at 595.80MW, the lower the standard 

deviation is, the closer the curve is to a step change curve shape. Furthermore, the inset in Fig. 

5.34 shows that when the load level is closer to a CLL, the absolute value of the sensitivity of 

the expected LMP grows rapidly, and the expected LMP becomes more sensitive to 

variations of the forecasted load. 
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Figure 5.33. Probability of LMPt at Bus B in a few price ranges for three levels of standard 

deviation when the system load is 730MW 

 

 

Figure 5.34. Expected value of the probabilistic LMP at Bus B versus the forecasted load for 

three levels of standard deviation 
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5.3.5. Discussions and Conclusions 

A methodology similar to that in the lossless DCOPF framework has been employed for 

studying probabilistic LMP in the ACOPF framework. Similar to what has been done in 

Section 5.2, concepts such as the alignment probability and the expected value of 

probabilistic LMP and its sensitivity are presented. And, mathematical formulas are derived, 

including the upper and lower bounds of the sensitivity of the expected value of the 

probabilistic LMP. The proposed concepts and formulas are exemplified and verified with a 

case study on a modified PJM 5-bus system.  

5.3.5.1. Differences between Probabilistic LMP in the ACOPF framework and that in 

the Lossless DCOPF framework 

Although the LMP versus load curves for ACOPF and lossless DCOPF look alike as 

shown in Figure 5.1 and 5.17, they differ in a few aspects.  

First, the locations where LMP exhibits a step change may be significantly different. Table 

5.7 compares the CLLs for ACOPF and lossless DCOPF for the modified PJM 5-bus system 

studied in Section 5.2.4. Most of the CLLs for ACOPF have been identified by lossless 

DCOPF with an acceptable accuracy, however, the CLL at 1299.6MW is quite distant from 

the estimated CLL 1137.02MW in the lossless DCOPF framework. 
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Table 5.7. CLLs for ACOPF and Lossless DCOPF for a modified PJM 5-bus system 

CLL for ACOPF (MW) CLL for Lossless DCOPF (MW) 

595.8 600.00 

635.4 640.00 

706.05 N/A 

710.55 711.81 

739.8 742.80 

924.75 963.94 

927 N/A 

1299.6 1137.02 

1467 1484.06 

Note: N/A represents no CLL 

 

Second, the LMPs for ACOPF framework and lossless DCOPF framework can be quite 

close in most cases, yet may be quite different at load levels close to a CLL. For instance, 

when load is 900MW, the corresponding LMP at Bus B is $24.01/MWh on LMP versus load 

curve for ACOPF framework while the LMP is $23.68/MWh for the lossless DCOPF 

framework, close to $24.01/MWh. In contrast, when load level is 930MW, the LMPs for the 

two frameworks are considerably different, which are $27.96/MWh and $24.01/MWh, 

respectively. 

Third, the price between two adjacent CLLs in the LMP versus the Load curve for the 

ACOPF framework is not a constant value; rather, it is typically a steadily and slightly 

increasing or decreasing curve. In the lossless DCOPF framework, LMP always remains as a 

constant within each segment of LMP versus load curve. 



 
221 

The aforementioned differences in the LMP versus load curves result in the following 

major differences in the probabilistic LMP studies. 

 The price between two adjacent CLLs in the LMP versus Load curve can be modeled 

by a linear polynomial, instead of a constant value. 

 The Probabilistic LMP in the ACOPF framework is a piece-wise continuous random 

variable, rather than a discrete random variable. 

 The cumulative density function and probability density function are derived and 

shown to be differentiable at almost everywhere except for the prices at the CLLs, 

namely, the boundary prices of each segment of the LMP versus Load curve. 

 The probability associated with the deterministic LMP is not meaningful due to the 

continuous feature of the probabilistic LMP. Instead, the probability is used to reflect 

the likelihood of the actual price falling into a range of prices. This is why it is more 

reasonable to define alignment probability with an acceptable tolerance. 

In addition, some noteworthy differences between numeric results of probabilistic LMP in 

the lossless DCOPF and ACOPF frameworks could be recognized with a careful examination. 

As shown in Tables 5.2-5.3 in the case study section for lossless DCOPF on the modified 

PJM 5-bus system, when forecasted load is 900MW, the resultant deterministic forecasted 

LMP is $23.68/MWh, and its corresponding probability is 92.21%. The expected value of 

LMP is $24.03/MWh. In contrast, as shown in Tables 5.5-5.6 for ACOPF, the deterministic 

LMP is $24.01/MWh, which is close to that in the lossless DCOPF framework; however, the 

probability of the actual LMP falling into a close vicinity of the deterministic LMP is 70.87%, 

considerably less than 92.21%, and the expected value of LMP is $25.13/MWh, about 4% 

greater than its counterpart for lossless DCOPF.  

These differences result from the different CLLs identified in both frameworks. For 

instance, in the lossless DCOPF framework, as shown in Tables 5.2 and 5.7, LMP remains 
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constant as $23.68/MWh when load varies from 900MW to 963.94MW and jumps to 

$28.18/MWh at the CLL of 963.94MW. In the ACOPF framework, the LMP step change 

occurs at the CLL of 924.75MW, much closer to the forecasted load 900MW than 

963.94MW, which leads to less probability for price range $23.9/MWh ~ $24.1/MWh and 

greater expected value of LMP at the deterministic LMP $24.01/MWh. In fact, the 

differences will become more significant when the forecasted load is closer to the CLL at 

924.75MW. 

For each CLL identified in the ACOPF framework, its counterpart in lossless DCOPF 

framework could not be accurate because the lossless DCOPF is a simplified model with 

losses ignored. Therefore, the differences in probabilistic LMP as illustrated above will 

always be expected, especially when the forecasted load is close to CLLs of which the 

lossless DCOPF framework fails to produce a good estimation. 

 

5.3.5.2. Connections between Probabilistic LMP in the ACOPF framework and that in 

the Lossless DCOPF framework 

Despite the differences discussed in the previous section, probabilistic LMP in the ACOPF 

framework does have connections with that in the lossless DCOPF framework, as implied in 

the similarities observed in case study sections 5.2.4 and 5.3.4. 

As shown in Table 5.2 for the lossless DCOPF framework, the three most significant 

probabilities are 30.23%, 32.80% and 36.29%, corresponding to LMPs at $15/MWh, 

$21.74/MWh and $23.68/MWh, respectively, when forecasted load is 730MW. The results 

for the ACOPF framework have been shown in Table 5.5, where the three most significant 

probabilities are 25.11%, 30.88%, and 39.42% for price ranges $15.0/MWh ~ $15.3/MWh, 

$22.0/MWh ~ $22.1/MWh, and $23.9/MWh ~$24.1/MWh, respectively. It suggests that 
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probabilistic LMP may demonstrate similar patterns in the ACOPF framework as those in the 

lossless DCOPF framework, which will be analyzed carefully as follows. 

The LMP versus load curve for the ACOPF framework can be considered as a piece-wise 

linear curve and the LMP between two consecutive CLLs slightly increases or decreases. In 

most of the cases, the non-constant characteristic of each LMP segment results from the 

power losses. The slope of the LMP slight change is typically so small for a high voltage 

power transmission system that it is hard to be visually perceived in the LMP versus load 

curve, unless specifically scaled as shown in Figure 5.17. With the consideration of step 

changes at CLLs, it implies the possible values of random variable LMPt reside in a few 

narrow price ranges, denoted by 
n

iii DyDy
01, , where it is assumed that 

1ii DyDy  for notational convenience. 

The probability that actual LMP falls into 1, ii DyDy  in the ACOPF framework is 

defined as 

iLMPiLMPiit DyFDyFDyDyLMP
tt 11,Pr  (5.64) 

For simplicity, we assume that the price ranges 
n

iii DyDy
01,  are mutually exclusive, 

namely, 

jiDyDyDyDy jjii ,,, 11  (5.65) 

Therefore, substituting equation (5.31) into (5.64) yields 

)()()(,Pr 11

1

ii

D

D
iit DDduuDyDyLMP

i

i

 (5.66) 

For easy comparison, equation (5.6) for lossless DCOPF framework is rewritten as follows. 

)
~

()
~

()()Pr( 1

~

~

1

ii

D

D
it DDduupLMP

i

i

 (5.67) 
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where iD
~

 and 1

~
iD  represent the load levels at the two sides of the LMP segment that has 

the value ip . In fact, iD
~

 and 1

~
iD  are two CLLs in the lossless DCOPF framework. 

It should be noted that equation (5.66) represents the probability of the probabilistic LMP 

for ACOPF while equation (5.67) denotes the probability of the probabilistic LMP for the 

lossless DCOPF framework. It should also be noted that the deterministic LMP ip  in lossless 

DCOPF is typically close to the price range 1, ii DyDy , as we have seen earlier in this 

section, except when the forecasted load is close to a CLL where lossless DCOPF generates a 

significantly different estimation. 

If the two CLLs 1, ii DD  identified in ACOPF are exactly the same as those 1

~
,

~
ii DD  in 

lossless DCOPF, we can conclude 

itiit pLMPDyDyLMP Pr,Pr 1  (5.68) 

Normally, the CLLs identified in ACOPF and lossless DCOPF are not exactly the same, 

but are typically close as illustrated in Table 5.7. Therefore, in most cases we expect 

itiit pLMPDyDyLMP Pr,Pr 1  (5.69) 

When one of the CLLs 1, ii DD  is significantly different from its counterpart in 

1

~
,

~
ii DD , as has been illustrated and discussed in the previous section, equation (5.69) will 

not hold true. An exceptional case is when the forecasted load is adequately distant from the 

CLLs (for instance, larger than t*3 ), and consequently the inaccurate CLLs may lead to 

trivial differences in the probabilities calculated by (5.66) and (5.67). 

Furthermore, price range 1, ii DyDy  is normally so narrow that the price difference 

ii DyDy 1  is not comparable to iDy  in magnitude. Suppose %1

i

ii

Dy

DyDy
 

and therefore we have 



 
225 

1,%1~,%1~
ii DyDypp  (5.70) 

where p~  is the deterministically forecasted LMP. 

For simplicity, we assume the price interval %1,%1 1ii DyDy  has no 

intersection with any other price intervals 
n

ijjjj DyDy
,01, . Therefore, the alignment 

probability can be derived as follows 

1

)(

Pr

%1~%1~Pr

1

i

i

D

D

iti

t

duu

DyLMPDy

pLMPpAP

 (5.71) 

Equation (5.71) implies that the alignment probability from the ACOPF framework is the 

same as that from the lossless DCOPF framework when the CLLs identified in both 

frameworks are exactly the same. In practice, the CLLs can be close, and consequently the 

alignment probabilities will be close. It may still be true when the assumption of no 

intersection of price ranges is relaxed, as long as the probabilities on the same price ranges 

are lumped together, which matches the observations in Figures 5.8 and 5.31. 

In summary, the probabilistic LMP by the lossless DCOPF framework could serve as a 

good estimation of the probabilistic LMP by the ACOPF framework as long as the CLLs 

identified in the lossless DCOPF framework is sufficiently close to those in the ACOPF 

framework. 

5.4. Probabilistic LMP Forecasting for FND-based DCOPF  

As discussed in Chapter 3, the FND-based DCOPF model is superior to the lossless 

DCOPF model mainly due to its modeling of power losses. With the loss considered, the 

corresponding LMP between the two adjacent CLLs normally is not a constant value; instead, 

as shown in the LMP sensitivity study in Section 3.3.3, the LMP demonstrates a clear linear 
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pattern between the adjacent CLLs. Therefore, the LMP versus Load curve of the FND-based 

DCOPF framework has the same characteristics as those of the ACOPF framework. Hence, 

exactly same methodology, including the concepts, formulas, and conclusions, for the 

probabilistic LMP in the ACOPF framework, as presented in Section 5.3, can be directly 

applied to study the probabilistic LMP forecasting for the FND-based DCOPF framework. It 

is, therefore, not repeated in this section. Only a case study on a modified PJM 5-bus system 

will be presented. 

5.4.1. Numerical Study of a Modified PJM 5-Bus System 

 In this section, a numeric study will be performed on the PJM 5-Bus system [11], with 

slight modifications. The modifications are for illustration purposes and are detailed in 

Section 4.2.4. The configuration of the system is shown in Figure 4.3. Again, it is assumed 

that the system load change is distributed to each bus load proportional to its base case load 

for simplicity. The resulting LMP versus load curve is shown in Figure 5.35.  

For study on probabilistic LMP, it is assumed that t is always equal to the forecasted load 

F

tD , and the standard deviation t is taken as 5% of the mean t  unless otherwise stated. 

The VOLL is set at $2000/MWh.  
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Figure 5.35. LMP versus load curve for FND-based DCOPF model 

 

5.4.1.1. Approximation of LMP Curve 

A linear polynomial curve-fitting is employed to approximate the actual LMP between 

every two adjacent CLLs, and the coefficients are used to establish the mathematical model 

for the LMP versus load curve. Table 5.8 shows the curve-fitting coefficients for the LMP 

curves at all buses when the load is within [0, 590] MW. It implies that the LMPs at all buses, 

except Bus E, increase slightly, while the LMP at Bus E remain 10$/MWh for the entire load 

interval. 
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Table 5.8. Curve-fitting coefficients for the LMP curves at all buses when the load is within 

[0, 590] MW 

 a ($/(MWh*MW)) b ($/MWh) 

LMP@A 0.0001 9.9998 

LMP@B 0.0003 9.9994 

LMP@C 0.0004 9.9994 

LMP@D 0.0002 9.9995 

LMP@E 0.0000 10.0000 

 

With the linear polynomial coefficients obtained through the curve-fitting, the 

mathematical LMP versus load model is established, which is a piece-wise linear curve with 

step changes at the CLLs. The mathematical representation of the curve is a very good 

approximation to the actual LMP versus load curve, and therefore, can be used to facilitate an 

analytical study on topics such as CDF, PDF, etc. The curve represented by the mathematical 

formula looks almost identical to the actual curve shown in Figure 5.35. For example, Figure 

5.36 shows the actual LMP curve at Bus B and its approximation curve through linear 

polynomial curve-fitting overlap very well. In fact, when the two curves are compared at the 

sampled load levels with a step of 0.005 p.u. load, the largest difference is less than 

0.01$/MWh, approximately 0.1% of the lowest LMP, $10/MWh. 
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Figure 5.36. Comparison of actual LMP versus load curve and its approximation through 

linear polynomial curve-fitting 

 

5.4.1.2. Cumulative Density Function of Probabilistic LMP 

Figure 5.37 shows the CDF curve of the probabilistic LMP at Bus B for the forecasted 

load at 730 MW and 900 MW, respectively. The figure suggests the staircase pattern of the 

CDF curve. Combined with the LMP versus Load curve such as in Figure 5.35, it can be seen 

that the prices at which a step change occurs coincide with the price intervals near the 

forecasted load level for Bus B. The corresponding PDF values for these prices are expected 

to be higher than the PDF values of other prices, as will be verified in the next section.  
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Figure 5.37. Cumulative density function of the probabilistic LMP at Bus B for two 

forecasted load levels 

 

A careful study reveals that the majority of the step changes observed in the CDF curve is 

not really step changes. Figure 5.38 redraws the same curves in Figure 5.37 in a narrow range 

around $24/MWh, where a step change appears. It can be seen that both CDF curves move 

smoothly from $24.10/MWh to $24.40/MWh. It is actually consistent with the 

aforementioned theoretical part in Section 5.3.2.3, where the CDF function is shown to be 

differentiable almost everywhere except at the price boundaries of each interval of the LMP 

versus the Load curve, namely, 
n

iiDy 1)}({ . Nevertheless, the change of the CDF values 

happens in such narrow price intervals that it looks just like a step change when plotted for a 

broader range of prices. 
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Figure 5.38. Cumulative density function of the probabilistic LMP at Bus B for two 

forecasted load levels in the price interval 24.10~24.40 $/MWh 

 

5.4.1.3. Probability Density Function of Probabilistic LMP 

The PDF curve of the probabilistic LMP at Bus B is shown in Figure 5.39 for the same 

two forecasted load levels. When the forecasted load is 730 MW, the probability density of 

the probabilistic LMP is mainly scattered in three price intervals: 15.23~15.28 $/MWh, 

22.10~22.20 $/MWh, and 24.10~24.40 $/MWh, while 24.10~24.40 $/MWh and 27.94~27.98 

$/MWh are the two price intervals with a high probability density for the forecasted load at 

900MW. The probability density is numerically zero for almost everywhere else outside these 

price intervals. Furthermore, these price intervals are consistent with those where the CDF 

values have a jump, as seen in Figure 5.37. 

It should be noted that the vertical bars in Figure 5.39 are actually smooth curves which 

are not legible due to scaling issues. A well scaled graph is shown in Figure 5.40. It can be 
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seen from Figure 5.40 that the probability density functions are continuous and differentiable 

curves in the 24.18~24.34 $/MWh range. 

 

 

Figure 5.39. Probability density function of the probabilistic LMP at Bus B for two forecasted 

load levels 

 

 

Figure 5.40. Probability density function of the probabilistic LMP at Bus B for two forecasted 

load levels in the price interval 24.10~24.40 $/MWh 
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Since the probability of any single price is zero, it is more useful to divide the entire price 

range into a few intervals and investigate the probability of an actual LMP falling into each 

interval. The vertical bars observed in the PDF curves, such as in Figure 5.39, can be used to 

help make this classification. In practice, the categorization is at the discretion of the decision 

maker and can vary with cases and purposes. 

The probability of the tLMP at Bus B falling into the selected price intervals is calculated 

and shown in Table 5.9 for two representing forecasted load levels, 730MW and 900MW. 

The same results are presented as a pie chart in Fig. 5.41. The results discover the fact that 

the deterministic LMP with respect to
F

tD may or may not fall into the price interval with the 

highest probability. For example, when the forecasted load is 900MW, the corresponding 

deterministic LMP is $24.30/MWh and its close neighborhood $24.1~24.4/MWh has the 

highest probability of 91.90%. However, the close neighborhood $22.1~22.2/MWh of the 

deterministic LMP $22.14/MWh for the forecasted load 730MW has only the second highest 

probability of 33.27%, less than the probability of 36.60% for the price interval 

$24.10~24.40/MWh. It shows that the deterministic LMP associated with the mean value of 

the actual load does not necessarily bear the largest probability. 
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Table 5.9. Probability of LMPt at Bus B in the Selected Price Intervals 

LMP Range 

Probability(%) 

when DF
t=730MW 

Probability(%) 

when DF
t =900MW 

0~15.0 $/MWh 0.44 0.00 

15.0~15.3 $/MWh 29.69 0.00 

15.3~22.1 $/MWh 0.00 0.00 

22.1~22.2 $/MWh 33.27 0.02 

22.2~24.1 $/MWh 0.00 0.00 

24.1~24.4 $/MWh 36.60 91.90 

24.4~27.9 $/MWh 0.00 0.00 

27.9~28.0 $/MWh 0.00 8.08 

28.0~2000 $/MWh 0.00 0.00 

Total 100 100 

 

 

Figure 5.41. Probability of LMPt at Bus B for the selected price intervals 
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Table 5.9 and Fig. 5.41 reveal the likelihood of realizing the forecasted LMP and its close 

vicinity, and therefore, can be very useful for buyers and sellers in making their financial 

decisions, such as developing bidding strategies.  

 

5.4.1.4. Alignment Probability of Probabilistic LMP 

Fig. 5.42 shows the curve of the alignment probability of the deterministic LMP at Bus B 

versus forecasted the load, with a 10% and 20% price tolerance, respectively. By making a 

comparison between Fig. 5.42 and Fig. 5.35, we can see that the low probabilities occur near 

the CLLs. For instance, the lowest probability is 54.29% at the forecasted load level 

968.22MW, which is very close to the CLL at 963MW. When the forecasted load is over 

1300MW, the probability keeps decreasing as the forecasted load is approaching the 

maximum level (i.e., price of the VOLL) that the system can afford, namely, 1467MW. 

As shown in Figure 5.42, the alignment probability curve is closer to 1.0 with a higher 

price tolerance, and the valley at around 968.22MW disappears when the price tolerance is 

20%. For example, the deterministic LMP is $27.94/MWh at the load level 968.22MW, and 

the prices in the close neighborhood of 968.22MW differ by up to $3.80/MWh, which is less 

than 20% of the deterministic LMP. Therefore, the alignment probability at the load level 

968.22MW increases from 54.29% with a 10% price tolerance, to nearly 100% with a 

doubled price tolerance. 
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Figure 5.42. Alignment probability of the deterministic LMP at Bus B versus the forecasted 

load, with a 10% and 20% price tolerance, respectively 

 

5.4.1.5. Expected Value of Probabilistic LMP 

The expected value of the probabilistic LMP for the above case is compared with the 

deterministic LMP, 
F

tDy , which is shown in Table 5.10. It shows that the expected value of 

probabilistic LMP can differ from the deterministic LMP for a specific forecasted load.  

The expected value of the probabilistic LMP versus the forecasted load curve is shown in 

Fig. 5.43. A load range beyond 1300MW is not shown simply because the high VOLL will 

make the curve hard to scale illustratively. It should be noted that the expected LMP will 

escalate sharply when the load is close to the maximum load level the system can afford, and 

will eventually reach 2000 $/MWh.  
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Table 5.10. Expected value of the probabilistic LMP in comparison with the Deterministic 

LMP for Bus B 

DF
t(MW) 

Expected Value of Probabilistic 

LMP($/MWh) 

Deterministic 

LMP($/MWh) 

730 20.82 22.14 

900 24.59 24.30 

 

 

 

Figure 5.43. Expected value of probabilistic LMP versus forecasted load 

 

In the deterministic LMP-Load curve in Fig. 5.35, the sensitivity for Bus B at 963MW is 

mathematically infinite since a step change occurs at this load level. In the probability-based 

LMP-Load curve, the upper and lower bounds of the sensitivity can be estimated using (5.62) 

and (5.63) shown as follows: 
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When contrasted with the deterministic LMP-Load curve in Fig. 5.35, the curve of the 

expected value of the probabilistic LMP in Fig. 5.43 demonstrates the same overall trend. 

However, Fig. 5.43 shows a much smoother curve without any step changes, which 

contributes to the reduction of price uncertainty, especially around the CLLs.  

Also shown in this probabilistic LMP forecasting figure is that when the load is closer to 

the CLLs, price uncertainty, i.e., the uncertainty associated with the forecasted deterministic 

LMP, will be higher. This matches the overall trend in the deterministic LMP in Fig. 5.35. 

 

5.4.1.6. Impact of Load Forecasting Accuracy 

In this section, three different levels of standard deviation of load forecasting are examined, 

5%, 3%, and 1%. Fig. 5.44 shows the probabilities of the random variable tLMP  at Bus B 

falling into a few price ranges for these three levels of standard deviation when the system 

load is 730MW. It can be seen from Fig. 5.44 that the probability of realizing the actual price 

in the range of 22.10~22.2 $/MWh where the deterministic LMP $22.14/MWh falls into, 

increases considerably with a smaller standard deviation. This is reasonable because more a 

accurate load forecast should lead to less deviation in the forecasted price. 

Fig. 5.45 compares the expected value of the probabilistic LMP curves at the same bus. 

When the forecasted load is a large distance from any CLL, for example at 850MW, the three 

curves overlap very well. This suggests that different levels of the standard deviation make 

minimal differences on the expected LMP at this load level. In addition, the sensitivity of the 

expected LMP at this load level is small, which indicates the expected LMP remains nearly 

constant when the forecasted load varies slightly around this level. In contrast, when the 
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forecasted load is close to a CLL, for example at 598.50MW, the lower the standard deviation 

is, the closer the curve is to a step change curve shape. Furthermore, the inset in Fig. 5.45 

shows that when the load level is closer to a CLL, the absolute value of the sensitivity of the 

expected LMP grows rapidly, and the expected LMP becomes more sensitive to variations of 

the forecasted load. 

 

 

Figure 5.44. Probability of LMPt at Bus B in a few price ranges for three levels of standard 

deviation when the system load is 730MW 
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Figure 5.45. Expected value of the probabilistic LMP at Bus B versus the forecasted load for 

three levels of standard deviation 

5.5. Conclusions 

Based on the step change phenomenon of the LMP versus load curve observed in previous 

chapters, the load forecasting errors are expected to have considerable impacts on the 

forecasted LMP. This chapter therefore aims to investigate and quantify the impact. 

The lossless DCOPF framework is firstly studied, with assumptions of normal distribution 

taken on the probability distribution of the system load. The concept of probabilistic LMP is 

proposed to reflect the fact that the actual LMP is not a deterministic value; rather, it is a 

discrete random variable. Consequently, the probability mass function and the expected value 

of the random variable are derived. The sensitivity of the expected value of the probabilistic 

LMP has been carefully studied with the proof that it is bounded by finite numbers, which 

matches the observations that the expected value of the probabilistic LMP versus load curve 

is highly smooth. In addition, the concept of alignment probability is presented to define the 
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probability of the actual LMP falling into a price range, which is practically useful for those 

who are interested in performing price forecasting with some accuracy tolerance. 

As lossless DCOPF is a simplified dispatch model and does not address power losses, the 

probabilistic LMP for ACOPF framework has been examined. The probabilistic LMP is 

shown to be a piece-wise continuous random variable, which brings much more complexity 

into the study. The cumulative density function and probability density function are derived, 

and used to derive formulas for alignment probability, the expected value of probabilistic 

LMP, as well as its sensitivity. Interestingly, it has been shown that the CDF and PDF are 

differentiable almost everywhere except for the prices at two sides of each segment of the 

LMP versus load curve. Again, the sensitivity of the expected value of the probabilistic LMP 

has been proved to be bounded by finite numbers. The similarities and disparities between the 

probabilistic LMP in the ACOPF framework and that in the lossless DCOPF are presented.  

The FND-based DCOPF framework produces a similar LMP versus load curve to that of 

ACOPF, and therefore the entire methodology, as well as formulas, can be applied directly to 

the FND-based DCOPF framework. Therefore, only a case study is shown for conciseness. 
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6 Conclusions 

 

6.1. Summary of contributions 

In Chapter 3, the reduction of system loss in the energy balance equality constraint in the 

DCOPF-with-loss model is rigorously proved. Then, the challenge of a considerable nodal 

mismatch at the reference bus is presented. The mismatch issue is tackled with the proposed 

Fictitious Nodal Demand (FND) model, in which the total loss is distributed into each 

individual line and thus, resulting in no nodal mismatches. 

Chapter 3 also presents a comparison of the LMP results from the lossless DCOPF, the 

FND-based DCOPF, and the ACOPF algorithms. Results indicate that the FND-based 

Iterative DCOPF provides much better results than the lossless DCOPF and represents a 

better approximation of the ACOPF LMP model.  

In addition, Chapter 3 presents a simple and explicit formulation of the LMP sensitivity 

w.r.t. load, based on the FND algorithm. Without a loss component, the LMP sensitivity is 

zero if the load is varied within a small range. The LMP sensitivity may be infinite (i.e., a 

step change in LMP) when the load grows to a critical level leading to a new marginal unit. 

This step-change nature presents uncertainty and risk in the LMP forecast, especially 

considering the possible data inaccuracy or algorithm approximation. 

 

In Chapter 4, the problem of predicting price and congestion is conducted for each of the 

three major OPF models, namely, the lossless DCOPF, ACOPF, and the proposed FND-

based DCOPF.  
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For the lossless DCOPF model, through the exploration of the characteristics of the 

optimal solution, a systematic approach is proposed to give a global view of congestion and 

price versus load, from any given load level to another, without multiple optimization runs. It 

first expresses marginal variables as a function of other non-marginal variables. Then, it 

identifies the next binding limit and the next critical load level (CLL). Next, the next 

unbinding limit such as a new marginal unit can be selected. Finally, the new generation 

output sensitivity at the CLL can be obtained because the objective function is expressed as 

non-marginal variables. Therefore, the new LMP can be obtained when the load is greater 

than the CLL. In this way, the LMP versus load curve is quickly obtained, and the curve 

could be used to predict price spikes, given the forecasted load versus time curve. This 

approach has great potential in market-based system operation and planning, especially in the 

short term, for congestion management and price prediction. 

The nice linear feature associated with the lossless DCOPF is not valid when power loss is 

considered. Therefore, different methods need to be investigated for the OPF models which 

will address the loss issues. For the ACOPF model, the marginal unit generation and line 

flow are numerically verified to follow a nearly perfect quadratic polynomial pattern through 

polynomial curve-fitting as higher order terms are negligible. Then, a quadratic interpolation 

method is proposed to reduce the computational efforts arising from the polynomial curve-

fitting. However, the interpolation method generally still requires at least two additional OPF 

runs at load levels other than the given operating point. In this regard, a variable substitution 

method is proposed to further reduce the computational efforts for the FND-based DCOPF 

model. It takes the assumption that marginal unit generations can be approximated by 

quadratic polynomials, and substitutes the polynomials into the characteristic constraints 

formed by binding constraints. This method does not require any additional OPF runs, and 
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involves a very limited computation involved in solving a small-scale nonlinear equation 

problem. However, the computation efforts are saved at the expenses of losing accuracy. 

 

Price prediction relies on the results of load forecasting. Therefore, it is highly interesting 

to investigate how the load forecasting uncertainty affects the price forecasting. This study is 

conducted in Chapter 5 for each of the three OPF models.  

For the lossless DCOPF model, the concept of a probabilistic LMP is proposed and its 

probability mass function at hour t is presented. The probabilistic LMP does not correspond 

to a single deterministic value. In stead, it represents a set of discrete values (pi) at a number 

of load intervals, and each value pi has an associated probability. The alignment probability is 

proposed and formulated to define the likelihood that the deterministic LMP will be realized. 

The expected value of the probabilistic LMP and its sensitivity is derived and shown to be 

bounded by finite values. In addition, the expected value of the probabilistic LMP versus the 

forecasted load curve is smooth and has no step changes. This avoids the 0-or-1 type of step 

changes if a deterministic LMP forecast is performed, and helps market participants make 

wise decisions in generation bidding, demand offers, and/or forward contract negotiation. 

For the ACOPF model, the probabilistic LMP is also proposed and carefully studied. The 

probabilistic LMP for the ACOPF framework is a piece-wise continuous random variable, 

whose cumulative density function and probability density function are derived and shown to 

be differentiable at almost everywhere except a finite number of prices. The alignment 

probability is proposed to reflect the probability that the actual price falls into certain price 

range. The expected value of the probabilistic LMP is shown to be highly smooth and its 

sensitivities are shown to be bounded by finite values, just as those for the lossless DCOPF 

framework. The same methodology is applied to FND-based DCOPF framework due to the 



 
245 

similarity between the LMP versus Load curves of the ACOPF model and the FND-based 

DCOPF model. 

6.2. Future Works 

The following issues may be considered as future works of this dissertation. 

 On OPF problem and LMP Calculation:  

o To investigate the convergence issue of the iterative algorithm for the FND-

based DCOPF model with respect to system sizes and parameters like R/X 

ratios. 

o To Study the accuracy of congestion component of the LMP obtained from the 

FND-based DCOPF by comparing it with that of the ACOPF. 

 On Congestion and Price Prediction under Load Variation 

o To investigate the case with insufficient reactive power support for the ACOPF 

model 

o To obtain the LMP versus time curve by combining the LMP versus Load curve 

and load forecasting data 

o To study the impact of the unit commitment on congestion and price prediction. 

 On Probabilistic LMP under Load Uncertainty  

o To employ more sophisticated load models to consider the randomness as well 

as correlation among the different load areas and among consecutive hours. 
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Appendix A 

Schematic proof of the convergence feature of FND-based DCOPF algorithm 

Proposition: If Gi converges after the (l+1)st iteration, Fk, Ei, DFi, and Ploss all converge 

for the FND-based DCOPF algorithm. 

Schematic Proof: Sequence iG converges for any 0 , there exists a positive integer 

N such that for any integer number n, m>N, 
m
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where Mi = number of lines connected to Bus i; b = the maximum bk of all lines connected 

to Bus i.  

(3)  
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Appendix B 

Derivation of equation (5.13) 

Equation (5.12) can be further decomposed into several parts. 
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Each integration of equation (B.1) can be solved as follows: 
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Specifically, when ni , (B.2) can be further derived as 
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Plugging (B.2) and (B.3) into (B.1), we have the formula of sensitivity of expected value 

of probabilistic LMP 

e

ee

ee

t

tn

t

ti

t

ti

n

n

t

t
i

i

t

t

t

D

t

n

n

i

DD

t

i

D

D

u

t

t

n

n

i

D

D

u

t

t

i

t

ttLMP

p

p

du
u

pdu
u

p

E

2

2

2

2
1

2

2

1
2

2

1
2

2

2

)(

1

1

2

)(

2

)(

2

)(

3

1

1

2

)(

3

2

1

2

1

22

),(

 

eee t

tn

t

ti

t

ti D

n

n

i

DD

i

t

pp 2

2

2

2
1

2

2

2

)(1

1

2

)(

2

)(

2

1
 (B.4) 

The last step of equation (B.4) gives equation (5.13). 
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Appendix C 

Derivation of equation (5.14) 

Based on equation (5.13), the bounds of the sensitivity of expected value of probabilistic 

LMP can be obtained as follows, 
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The last step in equation (C.1) gives equation (5.14). 
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