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Abstract 

This dissertation presents a novel method for removing scattering effects from Nuclear 

Materials Identification System (NMIS) imaging.  The NMIS uses fast neutron 

radiography to generate images of the internal structure of objects non-intrusively.  If the 

correct attenuation through the object is measured, the positions and macroscopic cross-

sections of features inside the object can be determined.  The cross sections can then be 

used to identify the materials and a 3D map of the interior of the object can be 

reconstructed.  Unfortunately, the measured attenuation values are always too low 

because scattered neutrons contribute to the unattenuated neutron signal.  Previous efforts 

to remove the scatter from NMIS imaging have focused on minimizing the fraction of 

scattered neutrons which are misidentified as directly transmitted by electronically 

collimating and time tagging the source neutrons.  The parameterized scatter removal 

algorithm (PSRA) approaches the problem from an entirely new direction by using 

Monte Carlo simulations to estimate the point scatter functions (PScFs) produced by 

neutrons scattering in the object.  PScFs have been used to remove scattering successfully 

in other applications, but only with simple 2D detector models.  This work represents the 

first time PScFs have ever been applied to an imaging detector geometry as complicated 

as the NMIS.  By fitting the PScFs using a Gaussian function, they can be parameterized 

and the proper scatter for a given problem can be removed without the need for rerunning 

the simulations each time.  In order to model the PScFs, an entirely new method for 

simulating NMIS measurements was developed for this work.  The development of the 

new models and the codes required to simulate them are presented in detail.  The PSRA 

was used on several simulated and experimental measurements and chi-squared goodness 
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of fit tests were used to compare the corrected values to the ideal values that would be 

expected with no scattering.  Using the PSRA resulted in an improvement of the chi-

squared test by a factor of 60 or more when applied to simple homogeneous objects.   
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1.  Introduction 

Neutron radiography is a powerful non-destructive technique that can be used to 

analyze the internal structure of an object.  The technique consists of passing neutrons 

through an object and onto a position-sensitive detector or series of detectors.  The 

relative number of neutrons reaching each position on the detector creates a “shadow” of 

the object on the detector which can then be used to generate a 2D image of the internal 

structure of the object.  The basic layout of a neutron imaging measurement is shown in 

Figure 1-1. 

 If a reference measurement of the detector response without an object in place is 

available, a 2D attenuation map of the object can be generated using the relation 
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where x and y represent the coordinates on the detector plane, τ is the attenuation of the 

radiation, I is the intensity with the object present, and I0 is the reference intensity.  I0 is 

also referred to as the “void” intensity since the object present is nothing (i.e., a void).  

The attenuation is measured in mean free paths (MFP), where one MFP is the average 

distance traveled by a neutron before undergoing an interaction. [1] The MFP is 

dependent on the energy of the neutron and the material it is traveling through. 

The exponential attenuation formula given in Equation 1.1 assumes that once a 

neutron suffers an interaction, it ceases to contribute to the measurement.  This 

assumption is only valid if the neutron beam is thin and the object-to-detector distance is 

much greater than the size of the object. [2]  
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Figure 1-1. A basic neutron radiography layout.  Neutrons passing through the object are 
attenuated, projecting a “shadow” of the object onto the detector screen. 

 

If these conditions are not met, non-absorption events such as scattering can 

significantly alter the measured attenuation.  In addition, neutron scattering from other 

objects in the room (room return) and background radiation can both contribute to the 

measured intensities.  Taking these factors into account, the measured attenuation, τmeas, 

can be expressed as 
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where ISO, ISR, and IBG are the contributions to the intensity at the detector caused by 

scattering in the object, scattering in other objects in the room, and background radiation, 

respectively.  These three contaminant terms cause the measured value of attenuation to 

be lower than the true attenuation in the object. 
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 The Nuclear Materials Identification System (NMIS) uses fast neutron 

radiography to nonintrusively image the contents of a container.  One possible 

application of NMIS imaging would be to verify the stated contents of a container for 

treaty verification purposes.  Another possible application is the examination a suspicious 

container suspected of holding fissile material.  By correctly measuring the attenuation 

map of the object, the macroscopic cross section values of materials inside can be 

determined.  These cross section values can be used to help identify the materials in 

question. 

NMIS uses an associated-particle sealed-tube neutron generator (APSTNG) as a 

neutron source for most imaging measurements.  The neutron generator produces 

neutrons via the 2H(3H,n)4He reaction.  The resulting neutrons are monoenergetic and 

travel away from the reaction site back-to-back with the alpha particle (4He ion) in the 

center of mass (COM) coordinate system.  A pixelated alpha particle detector built into 

the neutron generator detects the alpha particles produced by the reaction.  The alpha 

particle detector is used to time tag the neutrons and electronically collimate them into a 

series of small cones opposite the alpha particle detector.  Because the neutrons are 

monoenergetic, the measurement of I and I0 can be limited to a small time window 

consistent with the time-of-flight of the neutrons from the reaction site to the detectors.   

A diagram of the major components of the NMIS imaging array is presented in 

Figure 1-2.  The object being imaged is placed on a turntable between the deuterium-

tritium (DT) generator and the imaging detector array.  Three motors allow for the 

movement of the detector array, the DT generator, and the object in order to produce a 

full 3D tomographic image of the internal structure of the object if desired.   
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Figure 1-2. The major components of the NMIS imaging subsystem.  Neutrons are 
produced by the DT generator, where the pixelated alpha particle detector time tags and 
electronically collimates them.  The detector array then measures the transmission of 
neutrons through the object being imaged as a function of detector angle.  The scanner can 
be moved up and down for 2D radiography, and the object can be rotated by the turntable 
for full 3D tomographic imaging.  The detector array can be rotated laterally for 
subsampling. 
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The first motor rotates the turn table to allow for taking multiple projections through the 

object at different rotational angles.  The second motor moves the entire imaging array 

and the DT generator up and down synchronously in order to produce images at multiple 

heights.  The third motor rotates the entire detector array laterally.  This motion is used to 

generate multiple images with the detectors in a slightly different position each time.  All 

the images can be interlaced together to improve the horizontal angular resolution.   For 

example, on the 110 cm radius arm, the angular separation between detectors is 1.67°.  

By making an image with the detectors in one position and then rotating the array by 

0.835° and making another, the two images can be combined to halve the angular 

resolution.  This procedure is known as subsampling the detectors.  The detector 

positions are typically subsampled four to ten times at each height. 

 A typical time-of-flight curve for DT neutrons is shown in Figure 1-3.  This curve 

is a time correlation between the alpha particle detector and an imaging detector 110 cm 

away.  The fusion reaction occurs at t = 0 on the graph.  The large peak (note the 

logarithmic scale) at approximately 22 ns is produced by the directly transmitted neutrons 

which travel at approximately 5.2 cm/ns.  Because of the finite detector size and 

uncertainty of the electronic timing (~ ±1 ns), a 5 ns wide correlation window is used to 

identify directly transmitted neutrons.   

In order for scattered neutrons or background radiation to be mistaken for directly 

transmitted neutrons, they must arrive during one of the 5 ns correlation windows 

corresponding to an alpha particle.   
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Figure 1-3. A time correlation curve between the alpha detector and a detector 110 cm 
away.  The fusion reaction occurs at t = 0 ns on the graph.  Note the logarithmic scale. 
 

By keeping the rate of neutron production low enough that the average time between 

alpha counts is much greater than the width of the correlation window, the magnitude of 

the three contaminant terms in Equation 1.2 is greatly reduced.  Because the background 

radiation is random, its effect on the measurement will be reduced by a factor of 

,
T

tN
f window

util


         (1.3) 

where futil is the utilization factor, N is the total alpha rate in all pixels, Δtwindow is the 

width of the correlation window, and T is the total measurement time. Utilization factors 

of <10-3 are typical with the neutron generator used for NMIS measurements.   This 

reduction applies to both the passive background and the active background produced by 

uncorrelated neutrons falling outside the pixel cones.  Correlated neutrons scattering from 

objects other than the one being imaged typically arrive at times larger than the maximum 
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of the correlation window with the exception of scattering from objects near the detector 

array.  This contribution can be kept to a minimum by removing unnecessary objects 

from around the detector array. 

 Another technique used to prevent scattered neutrons from contributing to NMIS 

measurements is an anticoincidence technique designed to eliminate multiple detector 

counts in the same transmission time window.  For imaging measurements, multiple 

counts in the same window are typically caused by cross-talk between detectors.  In order 

to eliminate this cross talk, the anticoincidence correction keeps only the first count in an 

imaging detector for each neutron transmission window.  Other counts are rejected as 

cross talk and ignored.  An example of a single neutron generating multiple counts in the 

same directly transmitted neutron time window is shown in Figure 1-4. 

The final contaminant is scattering in the object being imaged.  The removal of 

this term is the greatest technological challenge to NMIS imaging today, and it will be the 

focus of this work.  In a thick object, only a small portion of the DT neutrons are directly 

transmitted to the detector array.  For example, if an object is 5 MFP thick, only 0.7% of 

source neutrons are directly transmitted to the detectors.  If even a small fraction of the 

99.3% of neutrons that interact scatter and reach the array during the correlation window, 

the measured attenuation will be significantly lower than the true value.  This effect is 

accentuated when the object being imaged is close to the detector array or if it is 

composed of high atomic mass (high Z) materials.  Neutrons scattering off high Z 

isotopes are preferentially forward scattered and lose only a small fraction of their energy 

in an elastic scattering event, so a large fraction of them will arrive in the 5 ns 

transmission window. 
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Figure 1-4.  An example of a neutron producing multiple counts during the same neutron 
transmission window.  Collision times are measured from the time of the associated alpha 
particle count.  All three counts lie within the 5 ns time window.  Only count 1 would be 
used for measuring attenuation in this example.  Counts 2 and 3 would be treated as cross 
talk and ignored. 
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An object designed to produce a large object scattering effect is presented in 

Figure 1-5.  A simulated 1D attenuation map resulting from a single horizontal slice 

through the object is shown in Figure 1-6.  The “Ideal” curve was calculated using the 

known geometry, material composition, and 14 MeV cross sections of the object using 

the exponential attenuation formula given in Equation 1.1.  The other curves show the 

measured values produced by various alpha detector geometries.  From Figure 1-6, it is 

clear that subdividing the alpha detector signal reduces the effect of the object scattering, 

but even with 16 pixels, the measured attenuation is more than 1 MFP lower than the true 

value at the highest attenuation levels. 

In this work, the scattering produced by objects composed of various types and 

thicknesses of materials at different object-to-detector distances from the NMIS detector 

array will be characterized.  This will be accomplished by using Monte Carlo N-Particle 

(MCNP) simulations to measure the additional response per source neutron in each 

detector of the array as a function of the angle of scattering.  This type of function is 

known as a point scatter function (PScF) and has been used successfully to reduce object 

scattering in other neutron radiography applications (See Chapter 2).  Once the PScFs are 

measured, the resulting curves will be parameterized and the parameters will be fit using 

the scattering material, thickness, and object-to-detector distance as input variables.  

These multivariate fit equations will be referred to as PScF Generating Equations 

(PScFGEs), and they will be used to determine the appropriate PScF based on inputs 

from the operator.  The PScFGEs will be the primary component of the parameterized 

scatter removal algorithm (PSRA), which will remove the object scattering from the 

measured values and return the corrected attenuation values. 

9 



 

 
Figure 1-5. Overhead view of an object designed to accentuate the effects of forward 
scattering.  The object is composed primarily of high Z materials. 
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Figure 1-6. Attenuation curves of the object shown in Figure 1-5 using different levels of 
alpha detector pixelization.  The “Ideal” curve assumes pure exponential attenuation using 
Equation 1.1. 
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This work will be significantly different from any application of PScFs to remove 

scattering that have been done before.  In order to develop PScFs for NMIS imaging, the 

differences in source geometry, detector geometry must be accounted for.  Previous work 

used a parallel beam source and a flat detector screen.  By contrast, NMIS uses multiple 

pixelelated neutron cones and an array of scintillators.  In addition, time-of-flight 

techniques are used to limit the number of scattered and background neutrons that 

contribute to the measured values.  Therefore, the PScFs must consist only of scattering 

that arrives during the directly transmitted neutron windows.  In order to simulate NMIS 

imaging and compute the value of these PScFs, new techniques had to be developed.  The 

methodology used for simulating the measurements is presented in detail. 

In the following chapters, this methodology will be explained in detail and the 

results will be presented.  The history of NMIS imaging and previous attempts to remove 

scattering from radiography measurements are reviewed in Chapter 2.  In Chapter 3, 

calculations designed to characterize the alpha detector pixels and provide a first order 

estimate of the object scattering effect on NMIS imaging is presented.  The simulation 

methodology and each of the codes written in order to properly simulate an imaging 

measurement are discussed in Chapter 4.  In Chapter 5, the simulations used to generate 

the PScFs are presented and the resulting scattering curves and their parameters are 

discussed.  The resulting values of the PScF parameters are presented and used to 

develop the PScFGEs in Chapter 6.  The development of the PSRA and its coding into a 

program to remove the scatter from measurements is also presented in Chapter 6.  In 

Chapter 7, the PSRA is tested using both simulated and laboratory measurements.  
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Finally, the conclusions of the work are presented and future work that might improve 

this technique is discussed in Chapter 8.   



 

2.  Review of Previous Work 

2.1 The Nuclear Materials Identification System 

The Nuclear Materials Identification System (NMIS) uses a fast processor to 

compute time correlations between detector signals. [3] The current processor acquires 

data from 10 input channels at a rate of 1 GHz. [4] When first developed and fielded in 

the mid- to late-90s, the NMIS was used to verify weapons components or determine the 

quantity of fissile material inside a sealed container. [5, 6] Although some measurements 

were conducted passively, [7] most used active interrogation to induce fissions in the 

fissile material.  A 252Cf spontaneous fission source mounted inside an ionization 

chamber allowed the processor to record the time of (time tag) each spontaneous fission. 

[3] One common measurements made was the time correlation between the 252Cf source 

and a detector on the opposite side of the object. [5] Because of their different speeds, 

gamma rays and neutrons of various energies arrive at the detectors at different times 

after the spontaneous fission.  If the source-detector separation is known, a specific 

window of time lags between the source and detector can limit the measurement to either 

gamma rays or a certain energy range of fission neutrons. [3] By comparing the number 

of correlations in the region of interest with and without a sample between the source and 

detector, the average attenuation for gammas and neutrons can be measured 

simultaneously. 

In 2003, imaging capabilities were added to NMIS by adding multiple small-area 

detectors. [8] By measuring the transmission of radiation through the object as a function 

of position, a 2D attenuation map can be generated. [9] With a tagged 252Cf source, both 
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gamma and neutron radiography can be conducted simultaneously by using multiple time 

windows of each source-detector time correlation. [8] These radiographs can 

subsequently be converted to 3D tomographs by taking multiple projections through the 

object at different angles or by assuming cylindrical symmetry. [8]  

The next improvement to NMIS radiography capabilities came in the form of an 

improved source.  A sealed-tube DT neutron generator produces monoenergetic 14.1 

MeV neutrons. [9] An integral alpha particle detector electronically collimates and time 

tags each neutron produced within a desired solid angle.  This is referred to as the 

associated-particle technique (APT). [10] Because the neutrons are approximately 

monoenergetic, most scattered neutrons and induced radiation can be eliminated by 

limiting transmission measurements to a small time window corresponding to the neutron 

time-of-flight from the generator to the detector.   

The neutron generator currently used with NMIS is an API-120 produced by 

Thermo Scientific. [11] The target and alpha detector geometry define a cone 

approximately 45° wide.  The imaging detectors consist of a horizontal array of 32 fast 

plastic scintillators.  As many as 64 detector signals can be sampled simultaneously with 

the NMIS processor by combining signals with a fan-in module.  Initially, a light opaque 

plastic mask was placed between the alpha detector and the photomultiplier tube.  

Various mask shapes were used to further collimate the neutrons into smaller cones or fan 

beams directed towards the detector array. [5, 12] More recently, a pixelated 

photomultiplier tube (PMT) has been coupled to the alpha detector to subdivide the alpha 

detector response into an 8 × 8 or a 16 × 16 array of pixels. [13] The NMIS uses a 

horizontal array of imaging detectors, so only a single row of 8 or 16 horizontal pixels are 
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used.  This row of pixels is aligned so that the center of each is in line with the plane of 

the imaging detectors. 

 

2.2 Previous Scattering Corrections in Thermal Neutron Radiography (TNR) 

The field of radiography began in 1895 with the first X-ray radiogram of Anna 

Bertha Roentgen’s hand. [14] Neutron radiography got off to a much later start.  The first 

neutron radiographs were made by Kallmann and Kuhn in Berlin beginning in 1938. [15] 

Another facility in Berlin under O. Peter began making radiographs in 1944. [15] These 

facilities were destroyed by the Allies at the end of the Second World War and nuclear 

research in Germany did not restart until 1955. [15] Serious study of neutron radiography 

did not resume until about 1960 [16], and the technique was not standardized until the 

publication of the Neutron Radiography Handbook in 1981. [17] 

Heller and Brenizer give a description of conventional neutron radiography. [16] 

Neutrons are first produced using an accelerator, radioisotope, or reactor source.  In these 

previous studies, the neutrons are thermalized to the thermal/epithermal range (0.025 eV-

10 keV) using a moderator and then collimated into a beam.  The beam is passed through 

a sample and into a detector where the radiograph will be formed.  Because of their low 

energy, these neutrons require a converter material to produce easily detectable radiation.  

The converter typically contains a material such as gadolinium which produces light 

through a capture reaction.  This light is then recorded on film, a video camera, or a 

charge-coupled device (CCD) to produce the radiograph. 

Segal et al. made one of the first non-analytical attempts to correct scatter in 

thermal neutron radiography in 1982. [18] They used a point spread function (PSF) to 
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quantify the contribution of scattered flux to each point in the imaging plane from each 

point on the surface of the sample.  Although the PSF accounts for other factors such as 

imaging geometry and scatter from sources other than the sample, Segal et al. focused 

only on the scatter occurring in the sample.  Traditionally, the PSF was solved directly 

using a Fourier transform, but this required the use of a general statistical operator, which 

the authors found unsatisfactory.  A Monte Carlo code (Morse-CG) was used to simulate 

a monoenergetic, infinitely thin beam of neutrons impinging on infinite slabs of different 

materials and thicknesses.  Two separate sample-to-detector separations were simulated.  

The scatter of neutrons away from the beam axis was tallied as a function of distance 

from the projected point on the detector.  The PScF for each material and geometry was 

computed by fitting the fraction of scattered neutrons versus radial scattering distance 

using an exponential of the form .  A and β were the fitting parameters 

measured by the simulation and they were presented in tabulated form for the various 

scenarios modeled. 

rAerS )(

In 1990, Hrdlicka and Peterka published a paper describing an experimental 

method for measuring and subtracting scatter from a thermal neutron radiograph. [19] By 

moving the sample far enough away from the imaging plane, they found that the scatter 

was spread uniformly across the detector.  This scatter could then be determined by 

comparing the flux at a point on the detector outside the shadow of the sample with and 

without the sample in place.  This difference could then be subtracted from both the 

transmitted (I) and direct (I0) fluxes to remove the scatter.  Hrdlicka and Peterka stated 

that while the minimum source-to-detector distance for using their method could be 

estimated mathematically, it was best verified experimentally. 
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In 1992, Kobayashi et al. suggested that the scatter could be estimated by using a 

strip of cadmium between the source and the sample. [20] Because cadmium is opaque to 

thermal neutrons, no directly transmitted neutrons would reach the umbra behind the 

cadmium strip and the scattering contribution could be measured directly there and then 

subtracted.  Using this technique, they were able to estimate the effective total 

macroscopic cross section of homogenous samples to within ± 20% for most materials. 

Two years later, Murata et al. used the technique of Kobayashi et al. for imaging. 

[21] A series of cadmium strips was laid across a concentric stack of disks.  The neutron 

flux in the umbra shadows was measured and subtracted from the direct and uncollided 

fluxes to subtract the scatter from the radiograph.  The areas lost to the cadmium strips 

were then reconstructed by interpolation.  This was the first experimental scatter 

subtraction from a 2D thermal neutron radiographic image. [22]  

In 1996, Tamaki et al. focused on the performance of several collimator designs 

for the qualitative removal of neutron scatter. [23] They designed a new gadolinium 

honeycomb collimator to obtain quantitative attenuation coefficients in slabs of sample 

material. 

In 1999, Pleinert et al. used a Monte Carlo code to estimate the scatter in various 

samples. [24] They started by deriving a signal transfer function that mathematically 

transformed the detector response without a sample (I0) into the response with a sample 

present (I).  The signal transfer function used a discrete point attenuation function, point 

spread function, and an energy dependent detector response function to map the response 

at each detector pixel due to the attenuation and scatter of neutrons in each 2D pixel of 

the sample.  The MCNP-4A code [25] was used to determine the PSFs and PScFs and 
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then a continuous signal transfer function was determined.  The authors’ motivation was 

the unknown moisture content in samples of known composition.  Simulations showed 

that the signal transfer method measured the moisture content to within 3% of the true 

value, compared to 10% using a calibration curve and approximately 100% using 

uncorrected values. 

Kardjilov et al. extended on the method of Pleinert et al. by determining the 

scattered response at each discretized point on the detector due to each discrete point on 

the source. [26] They described the portion of the detector response due to scattering in 

the sample as a point scatter function (PScF). The group used the MCNP-4B code [27] to 

simulate the imaging of objects at the Neutron Transmission Radiography (NEUTRA) 

facility [28] at the Paul Scherrer Institute (PSI) in Villigen, Switzerland.  The simulated 

objects included a slab and a step-wedge made of Plexiglas.  The PScF was computed for 

each simulation and then an identical experimental measurement was conducted.  The 

PScFs were applied to the measurements and the resulting attenuation curves were within 

a few percent of the true values.   

Hassanein et al. expanded on the work of Kardjilov et al. to account for the 

differing path lengths of scattered neutrons as a function of angle. [29] The angle affects 

both the intensity of scattered neutrons and the detector response due to an increased 

angle of incidence.  The MCNPX 2.4.0 code [30] was used to derive the PScF for 

different sample configurations.  The PScFs were then mathematically weighted to 

account for the angular dependence of the detector response.  The authors noted that the 

PScF depended on the sample material and geometry, energy spectrum, detector, and 
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sample-to-detector distance.  They recommended that a library for the PScFs of various 

materials should be constructed for use in future experiments. 

De Beer et al. used the methods of Kardjilov et al. and Hassanein et al. to 

parameterize the PScFs due to the thickness of a water sample and sample to detector 

distances. [22] They used the MCNP-4C code [31] to determine the PScF for each 

configuration and then used a Gaussian function to fit it.  The full width at half maximum 

(FWHM) and maximum of the Gaussians were fit versus thickness and object-to-detector 

distances.  These curve fits could then be used to generate the PScF and subtract it from 

measurements for a given sample thickness and object-to-detector distance without the 

need to rerun Monte Carlo simulations. 

 

2.3 Previous Scattering Corrections in Fast Neutron Radiography (FNR) 

While thermal neutron radiography has achieved a degree of relative maturity, 

fast neutron radiography (FNR) is still not a commonly used procedure. [32] This is 

largely because of the initial difficulty in capturing the fast neutron response using 

thermal radiography techniques.  E. Tochilin tested fast neutron radiography with 

traditional film techniques in 1965 and wrote that the poor response of photographic 

films to neutrons with energies >10 keV presented serious technical difficulties and the 

buildup of scattered neutrons and induced gammas limit the technique to objects less than 

a few inches thick. [33] Tochilin suggested that organic scintillators offered a better 

response by acting as image intensifiers. [33] In 1970, H. Berger examined several 

techniques including direct film, film coupled with image intensifying screens, track-etch 

detectors, and scintillator screens coupled with film. [34] Berger concluded that the 
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scintillator-film method produced the best contrast and was less sensitive to secondary 

radiation than other techniques. [34] 

J. S. Brzosko et al. wrote in 1992 that the previous problems of fast neutron 

source strength and detection systems “have now been overcome.” [35] The authors used 

a Monte Carlo code (3D-MCSC-RWR [36]) to simulate neutron radiographs on a 

scintillator fiber detector with fast and thermal neutrons and compared the results.  They 

concluded that FNR was the only viable option for slabs >5 cm thick and that FNR 

offered an advantage in portable source strength because neutrons are not lost in the 

thermalization process1.  Brzosko et al. reduced the problem of neutron scatter and 

gamma ray contamination in their FNR simulations by using a 7 MeV threshold for their 

scintillators. 

In 1994, Rhodes et al. described a rudimentary 1D radiograph that they 

constructed using an associated-particle DT neutron generator and a single imaging 

detector. [37] Two hollow lead spheres were placed in sand between the imaging detector 

and the APSTNG.  The counts in the detector corresponding to the DT neutron time-of-

flight were recorded as a function of the horizontal position of the detector to generate an 

attenuation map.  The authors reported that because the imaging detector was sufficiently 

far from the sample, scattering was negligible.  

One of the first attempts to quantify the scattering in FNR was made by Yoshii 

and Kobayashi in 1996. [38] Their work sought to apply the method of Hrdlicka and 

Peterka [19] to FNR.  The authors tested the detector response in the center of the neutron 

                                                 

1 Fixed, thermal reactor-based radiography systems do not suffer from this limitation because they have a 
ready supply of high flux thermalized neutrons. [16] 
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shadow produced by cylindrical iron samples of various thicknesses and sample-to-

detector distances.  They concluded that the scattered neutron intensity at the center of 

the shadow produced by a 3 cm thick sample dropped to a negligible level if it were 

located a distance of twice the radius plus 1 cm from the detector screen. 

Two papers published in 2002 by Rahmanian et al. [39] and Ambrosi and 

Watterson [40] in 2004 used ray tracing and the MCNP-4A code [25] to study the effects 

of source geometry and neutron scatter on FNR.  These papers focused primarily on the 

effects of source and detector geometry, but they concluded that while scattering lowered 

the overall contrast of a feature in the sample, it did not affect the resolution. 

In 2009, Hassan used Monte Carlo simulations to estimate the PScF of various 

samples using 252Cf, deuterium-deuterium (DD), and DT sources. [41] His work was 

based off the methodology developed for thermal neutron radiography by Kardjilov et al., 

[26] Hassanein et. al, [29] and de Beer et al. [22] Unlike the previous TNR work which 

focused mainly on hydrogenous materials, Hassan used primarily metallic objects.  He 

showed that various parameters, such as the shape of the sample, material, source type, 

sample-to-detector distance, and beam divergence could be used as fitting parameters for 

the FWHM and maximum of the Gaussian PScF.  Hassan examined each of these effects 

separately and suggested that future work could be used to determine the correct PScF 

using sample parameters without the need for a simulation. 

One fast neutron imaging application that bears a strong resemblance to the NMIS 

detector layout is the fast neutron / gamma-ray radiography scanner developed by The 

Commonwealth Scientific & Industrial Research Organisation [sic] (CSIRO). [42-44] 

The CSIRO scanner uses a high intensity pulsed DT neutron source and 60Co gamma ray 
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source to image cargo containers at the Brisbane International Airport.  The neutron and 

gamma images are formed separately, and material compositions are determined by 

measuring the ratio of the measured neutron and gamma attenuations. [42] The neutron 

detector array consists of 192 2 cm × 2 cm plastic scintillators in a 2D array. [42] Liu et 

al. reported that they observed a deviation of approximately 10% from narrow-beam 

geometry due to scattering. [44] They further stated the scattering was “highly local, 

between neighbouring [sic] pixels and can be corrected rather accurately.” [44] No details 

of the methodology used were given.  Unlike NMIS the associated particle technique is 

not used to time tag the neutrons, but the neutrons are physically collimated by a steel 

collimator. [42] 

 

 



 

3.  Initial Calculations 

Before proceeding to the development of the parameterized scattering removal 

algorithm (PSRA), it is necessary to perform some initial calculations.  The results of 

these calculations will prove invaluable for modeling NMIS imaging measurements and 

understanding the physics behind the scattering.  In Section 3.1, the DT neutron pixels 

will be examined in detail in order to develop a high fidelity MCNP model.  In Section 

3.2, a first order approximation of the PScFs for simple cases will be derived using basic 

physics principles.  These calculations will serve to validate the more robust models that 

will be developed using MCNP simulations and to help provide insights that may be 

useful for developing those simulations. 

 

3.1 Determining the Profile of the API-120 Pixels 

 In order to accurately simulate NMIS imaging, the distribution of the DT neutron 

pixels needs to be accurately characterized.  This will be accomplished by combining the 

kinematics of the 3H(2H,n)4He reaction with the geometry and operational characteristics 

of the API-120 neutron generator and the H8500 PMT.  This information will be used to 

develop a Monte Carlo code to simulate the neutron cones corresponding to each alpha 

pixel.  Once these pixel profiles are calculated, they will be validated against 

experimental results and then coded into MCNP-PoliMi decks to simulate imaging 

measurements. 
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3.1.1 The Kinematics of the DT Reaction 

 The Thermo Scientific API-120 neutron generator produces neutrons via the 

reaction 

,Qnα TD          (3.1) 

where D is a deuterium (2H) atom, T is a tritium (3H) atom, α is an alpha (4He) particle, n 

is a neutron, and Q is the mass difference between the reactants and the products.  The 

API-120 generator produces this reaction by accelerating ions from a DT plasma source 

into a fixed target with embedded deuterium and tritium atoms.  For this reaction, the Q-

value is 17.5893 MeV. [45] The masses of the alpha particle and neutron are 4.00260 and 

1.00866 AMU, respectively. [46] In the COM coordinate system, the kinetic energies of 

the products are  

MeV 54035.3201279.0 


 QQ
mm

m
T

n

n


     (3.2) 

MeV 0489.14798721.0 


 QQ
mm

m
T

n
n



 .    (3.3) 

 Because there are only two products, the neutron and alpha particle leave the 

reaction site back-to-back in the COM coordinate system.  The momentum of the 

incoming deuteron or triton is transferred to the products causing the angle between them 

to be folded forward so that it is less than 180° in the LAB coordinate system.  This effect 

also causes the kinetic energy of the outgoing particles to have an angular dependence 

with particles in the forward direction (<90° from the direction of the incoming deuteron 

or triton) having greater energy than shown in Equations 3.2 and 3.3 and particles in the 

backward direction having less.   
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A diagram of the DT reaction is presented in Figure 3-1.  A deuteron or triton 

comes in traveling in the –y direction and fuses with a deuterium or tritium atom.  In the 

COM system, the alpha particle and neutron move away from the fusion site back-to-

back at an angle θ with respect to the x-axis in the x-y plane.  The COM velocity vectors 

are converted to the LAB frame by adding the velocity of the center of mass of the 

deuteron and triton to the velocity vectors of the alpha particle and neutron.  This folds 

the resulting velocity vectors forward and the alpha particle and neutron now form angles 

of φ and ψ, respectively, with the x-axis. 

 For the scenario shown in Figure 3-1, the COM velocity can be computed using 

the equation [47] 

,
21

11

mm

vm
VCM 

         (3.4) 

where m1 is the mass of the incoming particle moving at a velocity of v1, and m2 is the 

mass of the stationary particle.  Using classical dynamics, the speed of the incoming 

particle can be calculated using the equation 

,
2

m

E
v           (3.5) 

where E is the kinetic energy of the particle and m is its rest mass.  For example, a 

deuteron with a kinetic energy of 90 keV has a speed of 0.009795c, where c is the speed 

of light in a vacuum.  Using the same equation, the speeds of the neutron and alpha 

particle are 0.173015c and 0.043564c, respectively.  The neutron speed calculated using 

classical dynamics differs from the relativistic result by only 1%.  The deuteron and alpha 

particle results are even closer because of their lower speed.   
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Figure 3-1. A diagram of the DT reaction and its products.  A particle traveling in the –y 
direction initiates a DT fusion resulting in an outgoing alpha and neutron.  In the COM 
system, these particles move away from each other back-to-back at an angle of θ with 
respect to the x-axis.  The momentum of the deuteron or triton which triggered the DT 
reaction causes the alpha and neutron angles to be folded forward to angles φ and ψ in the 
LAB coordinate system.  
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These results indicate that classical dynamics can produce sufficiently accurate results for 

the problem here.  For the 90 keV deuteron incident on a triton, the velocity of the COM 

would then be  

ccVCM 003922.0009795.0
016.3014.2

014.2



 .    (3.6) 

From Figure 3-1, it can be seen that the angle of the alpha particle in the LAB 

coordinate system can be related to its angle in the COM system via the relation [47] 

.
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       (3.7) 

Because V and VCM are known, Equation 3.7 can easily be solved for φ if θ is known.  

This relation will be used in Section 3.1.4 to calculate the LAB angles of the neutron and 

alpha particle given the COM angle. 

 

3.1.2 Determining the Mean Center of Mass Velocity 

 The API-120 generator produces neutrons by accelerating a plasma consisting of 

deuterium and tritium ions onto a titanium target that has adsorbed a DT gas.  Because 

the mass of the incoming particle will differ depending on whether an incoming triton or 

deuteron initiates fusion, the COM velocity will also be different.  Because both the 

incoming plasma and the gas in the target are mixed, the DT reaction competes with the 

DD and TT reactions.  However, at low energies, the DT cross section is approximately 

two orders of magnitude greater than these competing reactions.  For this reason, the 

API-120 operates with a maximum voltage of 90 kV, which accelerates deuterons and 
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tritons to energies near the peak of the DT cross section.  The data in Figure 3-2 shows 

the relative cross sections of the three reactions. [45] 

According to the manufacturer, the majority of excited plasma consists of 

molecular (DD+, DT+, TT+) rather than atomic ions. [10] These singly ionized molecules 

have a greater mass and thus a lower velocity than the atomic ones.  In addition, when 

one of the atoms in the molecule fuses, the second one will continue on and not 

contribute its momentum to the resulting neutron and alpha particle.  This also results in a 

lowering of the cross section because the energy of the fusing particle is only its mass 

fraction of the total molecular energy.  If the titanium atoms are much more numerous 

than the deuterium and tritium atoms, the incoming ions are equally likely to have any 

energy between 0 and the initial beam energy when they encounter a deuterium or tritium 

atom.  The average energy of the ion when it initiates a DT fusion can be calculated using 

the equation 

,

)(

)(

max

max

0

0






E

E

dEE

dEEE

E




        (3.8) 

where Emax is the incident energy of the ion and σ(E) is the DT reaction cross 

section.  Using this equation, a deuteron with an incident energy of 90 keV would have 

an average energy of 70.5 keV when initiating DT fusion.  Using Equations 3.5 and 3.6, 

the resulting center of mass velocity is 0.003471c, which is only 89% that of the 

incoming deuteron is at its initial beam velocity. 
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Figure 3-2. The DD, DT, and TT fusion cross sections from 10 keV to 1 MeV.  The DT 
reaction dominates over most of this region.  The vertical line shows the maximum 
accelerator voltage (90 keV) produced by the API-120 generator. 

 

 In order to calculate an average COM velocity, the following assumptions were 

made.  First, the accelerating voltage was assumed to be 90 keV, which is the typical 

operating voltage of the API-120.  All ions in the accelerated beam were assumed to have 

a kinetic energy exactly equal to the accelerating voltage.  The composition of ions in the 

beam was assumed to be 10% atomic and 90% molecular.  The atomic portion consists of 

an equal quantity of deuterium and tritium ions.  The molecular ions consist of 25% DD+, 

25% TT+, and 50% DT+.  Another assumption was that the slowing of the incoming ions 

did not change their direction vector significantly.  Using the SRIM-2008.04 code [48], 

the average range of 90 keV deuterons in titanium is 680 nm and the range of 60 keV 

deuterons is 500 nm.  The penetration depth of a beam of 90 keV deuterons incident on a 

180 nm (680 nm – 100 nm) titanium slab is depicted in Figure 3-3.   
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Figure 3-3. Results from a SRIM simulation of 90 keV deuterons incident on a 180 nm thick 
titanium target.  This thickness approximates the depth required to slow a deuteron from 
90 keV to 60 keV.  The plot shows only a relatively small divergence of the deuterons as they 
travel through this distance. 
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The deuteron beam shows only a small divergence from the initial direction, even at the 

back side where the average energy has been slowed to approximately 60 keV. 

One final assumption is that the magnitude and direction of the outgoing alpha 

particle velocity will not be significantly changed exiting the titanium target.  Using the 

SRIM code, the average depth of interaction for a 70.5 keV deuteron (average energy at 

interaction for an incoming 90 keV deuteron) is 110 nm.  The average energy loss of a 

3.54 MeV neutron through 110 nm of titanium is approximately 30 keV, less than 1% of 

the initial energy.  The plot in Figure 3-4 shows that these alpha particles suffer almost no 

angular divergence crossing this thickness of material.  Thus, the assumption that the 

alpha particles velocities are not significantly altered exiting the target is quite 

reasonable. 

 In order to determine the average COM velocity for all DT fusions initiated by the 

beam described in the preceding paragraphs, a weighted average of COM velocities from 

all of the possible reactions was used.  All of the possible reactions are given in Table 

3-1.  The beam fraction is the fraction of that ion in the beam.  The DT+ ion is divided 

into two equal rows because it can interact with either a deuteron or a triton.  Emax is the 

mass fraction of the interacting atom in the molecular ion multiplied by 90 keV.  E is the 

average interaction energy calculated using Emax in Equation 3.8.  The COM velocity and 

cross section at that energy were then multiplied together and normalized to give the 

fraction of reactions due to each interaction.  Finally, a weighted sum was calculated by 

multiplying VCM by the reaction fraction.  The sum of the last column yields the weighted 

average for the COM velocity of 0.003306c.  This value will be used in Section 3.1.4 to 

calculate the resulting neutron angle distribution. 
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Figure 3-4. Results from a SRIM simulation of 3.54 MeV alpha particles incident on a 110 
nm thick titanium slab.  This thickness is the average interaction depth of a 90 keV 
deuteron.  The beam of alpha particles shows almost no divergence traveling through this 
thickness of material. 
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Table 3-1. The possible DT reactions.  The average DT cross section of each possible 
reaction was calculated and weighted by the fraction of that ion in the beam to calculate the 
weighted average COM velocity. 
Projectile 
 

Target 
 

Beam 
Frac 

Emax 
(keV) 

E  
(keV) 

VCM( E ) 
(fraction of c) 

σ( E ) 
(b) 

Rx 
Frac 

VCM × Rx. 
(fraction of c) 

D+ T 0.05 90 70.5 0.003471 3.1 0.1897 0.000659 

T+ D 0.05 90 70.5 0.004248 3.1 0.1897 0.000806 

DD+ T 0.225 45 36.3 0.002491 0.50 0.1373 0.000342 

DT+ D 0.225 54 44 0.003356 1.0 0.2746 0.000921 

DT+ T 0.225 36 29.1 0.002230 0.26 0.0714 0.000159 

TT+ D 0.225 45 36.3 0.003048 0.50 0.1373 0.000418 

Weighted average COM velocity: 0.003306 

 

3.1.3 The API-120 Target and PMT Geometry 

 The geometry of the DT target spot, alpha particle detector, and photomultiplier 

tube in the API-120 DT neutron generator is pictured in Figure 3-5.  The target consists 

of a titanium metal which has adsorbed a DT gas.  The target is mounted at a 45° angle 

with respect to both the incoming ion beam and the alpha detector.  In order to create 

smaller cones, the target spot was limited to a 5 mm diameter circle on the target by 

placing a mask over the target to stop incoming ions outside of that range. [49] The alpha 

particle scintillator crystal is located 57 mm from the center of the target spot 

perpendicular to the direction of the incoming ion beam.  A thin layer of aluminum in 

front of the scintillator stops light and any deuterium or tritium ions that are scattered 

from the target from reaching the scintillator crystal.  The scintillator is an inorganic 

YAP:Ce crystal.  Alpha particles interacting in the scintillator generate photons which are 

transmitted through a fiber optic faceplate.   
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Figure 3-5. The geometry of the API-120 target spot, alpha particle detector, and pixelated 
Hamamatsu H8500 photomultiplier tube. 
 

A segmented light guide then spreads the light evenly onto the face of one of the PMT 

pixels.  This light guide makes the response of the pixels less sensitive to the relative 

position of the incoming photons on the pixel.  The PMT shown is a Hamamatsu H8500 

PMT [13] with eight rows of eight pixels.  Each pixel is a 6.08 × 6.08 mm square except 

for pixels 1 and 8 which are 6.26 mm wide.  For NMIS imaging, only a single row of 

pixels centered vertically on the target spot is used. 

 

3.1.4 A Monte Carlo Simulation to Determine Neutron Cones 

 In order to calculate the effective neutron cones, a Monte Carlo code named 

MCPixelGeom was written using the Fortran-90 programming language. [50] The code 

uses the API-120 geometry and the kinematics derived in the previous sections to 
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simulate DT reactions.  The program begins by randomly sampling a point on the DT 

target spot and the outgoing alpha particle (and neutron) angle in the COM coordinate 

system.  The alpha angle is then converted to the LAB frame using Equation 3.7 and the 

location where the alpha particle intersects the plane of the scintillator is calculated.  No 

light transfer from the scintillator to the PMT pixels is simulated.  Instead, each (x,z) 

point on the scintillator plane is assumed to correspond directly to the same (x,z) point at 

the pixel plane.  If this location corresponds to one of the alpha pixels, the LAB angle of 

the outgoing neutron is calculated using Equation 3.7.  For each neutron, the horizontal 

(x-y) and vertical (y-z) components of the LAB angle are calculated to the nearest 0.1°.   

This process is repeated over and over again.  For each pixel, a two-dimensional 

array is used to tally the direction of the outgoing neutrons correlated to it by adding 1 to 

a bin corresponding to the (x-y) and (x-z) angles of the outgoing neutron.  After all of the 

iterations are complete, the array is normalized by dividing each bin by the average 

number of alpha particles in each pixel.  An additional array stores the total number of 

correlations occurring in a 2.54 × 2.54 cm detector centered vertically (θxz = 0) at a given 

neutron angle (θxy).  These values are calculated using the equation 

    ,,
det

det

det

det

det  
















xy

xy

xzxyxzxyxy ddRR      (3.9) 

where R(θxy, θxz) is the number of neutrons per source alpha in a given horizontal and 

angular bin; θdet is the half angle subtended by the detector face; and Rdet(θxy) is the 

neutrons per source alpha entering the detector face.  For a 2.54 × 2.54 cm detector 

located 110 cm from the DT target spot, θdet ≈ 0.6°.  The resulting arrays are output to a 
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text file for further analysis and processing.  The source code for the MCPixelGeom 

program is shown in Appendix A. 

 

3.1.5 Results of the Monte Carlo Pixel Simulation 

 A 3-D view of the simulated pixel profiles is presented in Figure 3-6.  Note that 

the pixel on the left (pixel 1) shows a rounded top and a square base.  This effect is 

caused by the convolution of shape of the pixel (square) with the target spot (round).  

Progressing from left to right, each successive pixel becomes more and more rectangular.  

This effect occurs because the angle of incidence to the target is increasing which causes 

the apparent size of the target spot to be smaller.  The variation in neutron angle is then 

dominated by the position of the alpha particle on the square pixel face.  If the target spot 

was infinitesimally small, the neutron profiles would be perfect rectangles. 

 The total neutron correlation profile is shown in Figure 3-7.  This figure was 

generated by summing the correlations for all pixels in each angle bin.  Although the 

individual pixel shapes varied somewhat, the shape of the total profile is uniform with the 

exception of the ends.  The right end shows a steeper drop off than the left because of the 

angle of the target spot. 

 The detector response versus horizontal angle at a vertical angle of 0° generated 

using Equation 3.9 and assuming 100% detector efficiency is given in Figure 3-8.  

Integrating the angular bins over the angles incident on the detector face tends to soften 

the corners of the square pixels a bit, but the flat tops are still visible on the higher 

numbered pixels.  The center of the pixels is shifted approximately -5.5° due to the 

momentum of the incoming deuterons and tritons. 
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Figure 3-6. Profile of the alpha pixels produced by the MCPixelGeom simulation for an 
eight pixel row of the H8500 PMT.   
 

 
Figure 3-7. The total correlation profile produced by summing all eight pixels.  Although 
the individual pixel shapes varied considerably, the overall shape is nearly uniform with the 
exception of the ends. 
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Figure 3-8. The detector profiles produced by each pixel and the total detector response. 
 

 The data plotted in Figure 3-8 represents an idealized version of the alpha-neutron 

correlation curves assuming a perfect, uniform response across the entire range of pixels.  

In the laboratory, the light transmission from the scintillator crystal, through the fiber 

optic face plate and light guide, and the response across the face of the detectors all serve 

to alter the shape and size of the pixel profiles.  In particular, light near the edge of a 

pixel boundary tends to produce a smaller number of photons and/or bleed across pixels 

and generate cross talk.  This has the effect of rounding out the tops of the pixels and 

widening the tails at the base.  In addition, the MCPixelGeom simulations were 

conducted using the average COM velocity for incoming ions.  In practice, there will be a 

distribution of COM velocities which will tend to spread the pixel distributions. 
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The change in the pixel shapes alters the overall neutron profile as well.  This 

results in an overall profile which is not flat.  This can have a deleterious effect on 

imaging measurements.  Because the exact form of the alterations is a function of many 

factors such as PMT voltage and constant fraction discriminator settings, they can change 

from measurement to measurement and would be difficult to model.  In addition, the 

absolute position of the peaks (and thus the fluctuations) can change slightly each time 

the generator is removed from and replaced on its mount.  In order to produce the most 

widely useful model, a combination of the idealized pixels of Figure 3-8 and those seen 

in the laboratory will be used.   

A cosine squared (COS2) function has a rounded top similar to that seen in the 

laboratory pixels and a short tail like the pixels generated in the model.  This function 

also has the benefit that two curves separated by exactly one FWHM sum to a horizontal 

line between the peaks.  This creates a smooth, flat profile like that seen in Figure 3-8.  

Because the API-120 is mounted at an angle to correct for the forward shift in the 

neutrons, the approximate peak locations were determined from experimental data.  

Although these may change slightly from measurement to measurement, the simulations 

should still follow the data well except at the edges of the total pixel profile. 

 

3.1.6 Validation of the Pixel Model with Experimental Data  

The modeled pixels and an experimental pixel profile are compared in Figure 3-9.  

In general, the modeled pixels match the peak locations and the shape of the top of the 

experimental pixels well.  The experimental pixel profiles widen at the base as a result of 

detector and pixel cross talk.   
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Figure 3-9. A comparison of simulated and experimental pixel profiles.  The simulated 
pixels generally match the experimental ones with the exception of the tails of the pixels.  An 
E stands for experimental and an MC stands for Monte Carlo in the legend. 
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The center of the modeled pixels has been matched to the center of the experimental 

pixels at -1.5°.  This offset is considerably smaller than the calculated value of -5.5° 

because the generator was mounted at an angle in an attempt to correct for the forward 

momentum of the neutrons and alpha particles. 

In order to validate the pixel model, a test object was constructed and a 1D 

attenuation profile was measured in both the laboratory and simulations.  The object used 

is pictured in Figure 1-5.  In the laboratory measurement, the detectors were subsampled 

six times in order to improve angular resolution.  Each subsample was measured for 15 

minutes, resulting in a total measurement time of 90 minutes.  For the simulations, each 

subsample was modeled separately.  For each pixel, a total of 2.5 × 107 neutrons was 

used which is approximately the number of alpha counts per pixel detected during the 

laboratory measurements.  The simulation procedure will be explained in greater detail in 

Chapter 4.   

A comparison of the simulated and measured attenuation curves is presented in 

Figure 3-10.  The center of the simulated curve was shifted two detector positions 

(~0.4°).  This discrepancy was likely due to the object being slightly off center in the 

laboratory measurement.  Otherwise, the experimental and simulation measurements 

show excellent agreement indicating that the modeled pixel curves are suitable for 

simulating NMIS imaging measurements. 

 

3.2 A First Order Approximation of Elastic Scattering  

Before conducting simulations to measure scattering, it is desirable to perform a 

simple calculation of the scattering effect.   
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Figure 3-10. A comparison of simulated and experimental attenuation curves of the object 
shown in Figure 1-5.  The simulated curve was shifted two detector positions to align the 
two curves. 
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This will be a first order calculation that only takes into account single elastic scattering 

in a thin object.  As the thickness of the intervening target increases, multiple scatterings 

will contribute a greater portion of the scattering component.  The scattering calculation 

here will take into account the fact that the neutrons are time tagged, so scattered 

neutrons add to the signal only if they arrive during the time window used to define 

directly transmitted neutrons. 

 

3.2.1 Scattering Geometry 

The geometry used in these scattering calculations is shown in Figure 3-11.  A 

thin beam of DT neutrons is incident on a horizontal detector array.  The front faces of 

the detectors are aligned so that each is a distance, R, from the neutron source.  The depth 

of the detector crystals from the front to the back faces is L.  A thin slab of material is 

placed in the beam at a distance, D, from the point where the neutron beam crosses the 

front face of the detector array.  Neutrons scattering in the slab scatter through an angle, 

φ, before arriving at the detector array.  The path length of the neutrons from the 

scattering site in the slab to the front of the array is D’.  The detector angle, θ, defines the 

angle between the initial neutron beam direction and the location where the scattered 

neutron arrives at the front of the array relative to the DT target spot. 

Using the law of cosines, the relationship between the length of D’ and the 

detector angle can be written 

     .cos222 RDRDRRD'        (3.10) 
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Figure 3-11. The geometry used for the elastic scattering calculations.  Neutrons interacting 
in the sample scatter through an angle φ.  When measured in reference to the DT target 
spot, the neutrons are scattered through a detector angle θ. 
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The scattering angle, φ, can then be related to the detector angle, θ, by the relation 

.sinsin'  RD          (3.11) 

 

3.2.2 The Derivation of the Scattering Function 

 In order for a scattered neutron to be mistaken for a directly transmitted one, it 

must reach the detector array during the time window assigned for DT neutrons and 

generate a pulse in a detector.  The total scattered response in a detector at angle θ is the 

product of the incoming neutron flux, Φ; the probability of scattering towards the 

detector; and the probability that the incoming neutron generates a pulse that is mistaken 

for a directly transmitted neutron.  Mathematically, this can be written 

  ).()(0  EffPR scatter        (3.12) 

The next several paragraphs will detail how this response function is calculated. 

For the purpose of these calculations, the electronic timing resolution of events 

will be assumed to be perfect.  This limits the fast neutron window to the time between 

when a directly transmitted neutron arrives at the front of the detector crystal and when it 

leaves the back face.  For an unscattered neutron travelling at speed v, the time window is 

limited to the range 

.
v

LR
t

v

R 
         (3.13) 

The fraction on the left side of Equation 3.13 will be referred to tmin and the fraction on 

the right as tmax. 
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When a neutron scatters, its energy decreases and its path length to the detector 

array increases.  Each of these two factors increases the arrival time at the front of the 

detector.  The new arrival time is now 

,
'

'
'

v

D

v

DR
t 


         (3.14) 

where v' is the neutron speed after scattering.  Because t′ – tmin < tmax – tmin, the maximum 

depth the scattered neutron can penetrate into the detector decreases.   

In order to calculate v′, the scattered neutron energy must be known.  Fortunately, 

there is an exact relationship between the angle of scattering and the outgoing energy.  

From Duderstadt and Hamilton [47], the outgoing energy is 
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2

cos11
i

C
f EE 



 




      (3.15) 

where Ei and Ef are the neutron energy before and after scattering, φc is the scattering 

angle in the COM coordinate system, and α is the minimum possible neutron energy after 

the collision.  α is calculated using the equation 

,
1

1
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A

A          (3.16) 

where A is the atomic mass number of the scattering nuclide.  The COM scattering angle, 

φc, is related to the LAB scattering angle φ via the equation [47] 
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         (3.17) 
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Solving for φc, this equation is transcendental; however, it can be solved easily by using 

an iterative method.  Once the outgoing neutron energy is known, its speed can be 

calculated using Equation 3.5. 

With the velocity of the scattered neutron calculated, the new effective detector 

depth can be calculated using the equation 

 '.'' max vttL           (3.18) 

For the purposes of this calculation, all neutrons will be assumed to enter perpendicular 

to the detector face.  Although this assumption is rather poor for large scattering angles, 

the complex detector geometry makes it extremely difficult to define the actual detector 

interacted with as a function of scattering angle at large angles.  The PScF simulations in 

Chapter 5 will model the detector cells explicitly, thereby eliminating this problem. 

A scintillator detects neutrons primarily through elastic scattering of neutrons on 

the hydrogen in the detector.  The intrinsic efficiency of a scintillator to fast neutrons (ε) 

can be written [51] 

 ,'exp1 LNN
NN

N
CCHH

CCHH

HH 


  


     (3.19) 

where NH and NC are the atom densities of hydrogen and carbon and σH and σC are the 

microscopic scattering cross sections for hydrogen and carbon.  The cross sections are 

energy dependent, so they will also be affected by the resulting energy of the scattered 

neutron.  In order to use these cross sections analytically, their tabulated values were fit 

using the JMP 7 statistical package. [52] The resulting fits are 

 
,0.001809E-0.0718101E+0.906192E-4.4929537
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32

32





(E)σ

E.-E.E+.-.(E)σ

C

H    (3.20) 

47 



 

where the cross sections are in barns.  The hydrogen cross section fit gives good results 

for energies 1 MeV < E < 14.1 MeV.  Because of resonances, the carbon cross section fit 

is only accurate in the range 9 MeV < E < 14.1 MeV.  As will be shown in Section 3.2.3, 

neutrons at energies below 9 MeV have little impact on the PScF.  

 The efficiency calculation in Equation 3.19 assumes that any neutron elastically 

scattering off a hydrogen atom will generate a pulse in the detector.  In practice, 

scintillators are operated with a pulse height threshold.  The NMIS imaging detectors 

typically use a detector threshold of approximately 1 MeV for neutrons.  When a neutron 

scatters off a hydrogen atom, it can transfer any amount of energy between 0 and its total 

kinetic energy to the proton.  The distribution of these energies is uniform. [47] 

Neglecting the small contribution from neutrons that scatter more than once, the 

probability a neutron with an energy of E′ scattering off a hydrogen atom generates a 

pulse is 

  .
E'

'
' threshEE

EPH


         (3.21) 

Because the neutron energy and effective detector depth can be expressed as explicit 

functions of energy, the total probability a scattered neutron generates a pulse in a 

detector can be written 

   .)(  PHEff          (3.22) 

 The probability that a neutron first scatters while passing through an infinitesimal 

layer, dx, of a slab of material composed of a single isotope can be written 

 ,)(exp)( xENN dxscatter inP ss        (3.23) 
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where N is the atomic number density, σs is the microscopic scattering cross section, and 

x is the distance the neutron has penetrated into the slab before the first scattering.  In 

order for the scattered neutron to reach the detector array, it must then escape the back 

side of the slab.  The total probability of scattering in a layer at a distance x into the slab 

and then escaping can be written 

     , )(exp)(exp)( xTENxENNd escapescatter anP tss    (3.24) 

where T is the total thickness of the slab and σt is the total microscopic scattering cross 

section.  Equation 3.24 assumes that all further interactions will prevent the neutron from 

reaching the back side of the slab, i.e., it is a first order scattering approximation.  The 

equation also neglects the increased distance between the initial scattering location and 

the back of the slab due to the scattering angle; however, for small scattering angles, this 

difference should be relatively small.  Integrating Equation 3.24 from x = 0 to x = T 

yields 

   . )(exp)(exp)( TENTENd escapescatter anP ts
st

s 






  (3.25) 

 Rather than describing the slab thickness in units of length that will change for 

each material, it is desirable to use attenuation lengths.  One attenuation length (MFP) is 

the thickness which attenuates the beam by a factor of 1/e.  The thickness of the slab in 

attenuation lengths, τ, can be written 

. TN t          (3.26) 

Using Equation 3.26, Equation 3.25 can be rewritten 
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The probability of scattering to a detector at angle θ can then be written 
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where  
d

d s  is the differential scattering cross section and  det  is the solid angle 

subtended by the detector at angle, θ. 

 The differential scattering cross sections are available online in tabulated form 

from the National Nuclear Data Center. [53] The cross sections are given in terms of 

COM scattering angle, which can then be converted to the LAB frame using Equation 

3.17.  As with the intrinsic efficiency calculation, calculating the Ωdet explicitly as a 

function of angle would be extremely difficult at large scattering angles because of the 

complex detector geometry.  Instead, the solid angle subtended by the detector will be 

approximated using the relation 

,
'2

2

det D

l
          (3.29) 

where the solid angle Ωdet is in units of steradians and l is the dimension of square 

detector face. 

 Combining all of the terms from the previous paragraphs, Equation 3.12 can be 

rewritten 
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The PScF into a detector at angle, θ, is the ratio of the scattering response divided by the 

response of the detector at θ = 0 to the beam with no slab in place.  The equation for the 

PScF is then  
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3.2.3 Elastic Scattering Calculation Results 

 The scattering calculations were performed using a Fortran-90 program named 

Elastic written for this purpose.  This program first reads a text file containing the atomic 

mass number and cross sections into memory and then performs the calculations shown 

in the previous sections.  The parameters of the detector and target geometry were R = 

110 cm, D = 40 or 70 cm, L = 10.16 cm, l = 2.54 cm, τ = 3 MFP, and Ethresh = 1 MeV.  

Four different scattering isotopes were modeled to sample across a wide range of atomic 

masses.  The isotopes were 1H, 12C, 56Fe, and 208Pb.  The results of each calculation were 

output to a text file for analysis.  The source code used for the Elastic program is shown 

in Appendix B. 

 The calculated results for some of the important components of the PScF for the 

four scattering nuclei at 40 cm from the detector array are shown in Figure 3-12 through 

Figure 3-15.  The x-axis of all of these figures is the detector angle, θ, through which the 

neutron was scattered in degrees.   
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Figure 3-12. A plot of the outgoing energy of neutrons scattered off four different isotopes 
as a function of the detector angle the neutron scatters through in degrees. 
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Figure 3-13. The differential scattering cross sections of four nuclides as a function of the 
detector angle the neutron scatters through in degrees. 
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Figure 3-14. The solid angle subtended by the detector face as a function of the detector 
scattering angle in degrees. 
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Figure 3-15. The probability of each of the five nuclides generating a pulse as a function of 
detector scattering angle in degrees. 
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The outgoing energy of the scattered neutron, Ef, computed using Equation 3.15 is shown 

in Figure 3-12.  Neutrons scattering from heavy nuclides such as iron and lead lose 

almost no energy even at large scattering angles, while lighter nuclei lose a considerable 

fraction of their energy.  The differential scattering cross sections are plotted in Figure 

3-13.  The hydrogen cross section is almost completely flat and featureless, indicating 

nearly isotropic scattering.  As the atomic mass increases, the cross sections become 

increasingly forward peaked.  In addition, heavy nuclei, particularly lead, show a 

pronounced diffraction pattern.  The detector solid angle computed using Equation 3.29 is 

presented in Figure 3-14.  Because the solid angle is independent of the scattering 

isotope, only a single curve is shown.  The probability a scattered neutron generates a 

pulse, Eff(θ), calculated using Equation 3.22, is shown in Figure 3-15.  Because the 

energy of the scattered neutron is the most important component of Eff(θ), the efficiency 

of neutrons scattered from heavy nuclei drops more slowly than those scattering off light 

nuclei.  The efficiency rapidly drops to zero at the point when a scattering results in the 

neutron arriving after the end of the correlation window.  In the laboratory, where there is 

some uncertainty in the timing, the final drops would be more gradual and extend out 

farther.  

 The calculated values of the point scatter functions for the four scattering nuclei 

are shown in Figure 3-16.  The curves follow the general shape of the differential 

scattering cross sections superimposed with the drop off in detector efficiency at larger 

scattering angles.  With the exception of lead, the PScFs are generally well behaved and 

monotonically decreasing.   
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Figure 3-16. The point scatter functions for each of the four nuclides at a 40 cm object-to-
detector distance. 
 

The diffraction pattern of the lead PScF will result in some inaccuracy in the tail region 

of the Gaussian functions used for fitting the scattering in Chapter 5.  In a real slab of 

scattering material with a finite thickness, scattering will occur along the entire thickness, 

which should blur the features of the diffraction pattern to some extent. 

 The PScFs of lead and carbon, respectively, at 40 and 70 cm from the detector 

array are compared in Figure 3-17 and Figure 3-18.  As the slab moves farther from the 

array, the point scatter functions widen and the maximums decrease.  The shapes of the 

functions remain nearly constant.  As the slab moves farther from the array, the PScFs 

widen because the scattering angle, φ, corresponding to a given detector angle θ 

decreases.  With a slab of finite thickness, some of the scattering will occur farther from 

the array and the PScF curve will widen.   
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Figure 3-17. A comparison of the PScFs for 208Pb at 40 and 70 cm from the array. 
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Figure 3-18. A comparison of the PScFs for 12C at 40 and 70 cm from the array. 
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The PScF curves developed in this chapter will be compared to the ones measured using 

MCNP simulations after the PScFs are developed in Chapter 5. 

 
 



 

4.  Simulation Code Development 

4.1 The MCNP-PoliMi Code 

For this work, the MCNP-PoliMi code [54] was used for simulating all NMIS 

imaging measurements.  MCNP-PoliMi is a modification of the MCNP-4C code [31] 

designed to model each neutron-nucleus interaction as accurately as possible.  Unlike 

newer versions of MCNP, MCNP-PoliMi can only utilize a single processor for running 

simulations.  The version of MCNP-PoliMi (1.22) used for these simulations is a slightly 

modified version of the standard version (1.0) available from the Radiation Safety 

Information Computational Center (RSICC). [55] The memory dynamically allocated 

storage variable in all modules was changed to “mdas=500000000” to allow for more 

complex models.  In addition, the format of the output files was altered slightly in order 

to more easily identify events corresponding to directly transmitted neutrons or cross talk 

between detectors.  The modules were compiled for the Linux operating system with the 

Portland Group [56] compiler.  The modules were compiled with the “–Mlfs” flag, which 

allows the program to produce output files in excess of 2 gigabytes.   

The latest versions of MCNP, MCNP-5 [57] and MCNPX [58], make some 

approximations that generally produce accurate results when averaged over a large 

number of particles.  However, when the quantity of interest is the behavior of a single 

particle, these approximations can generate unsatisfactory results. [59] One example is 

the production of neutrons and gamma rays from fission events.  MCNP-PoliMi samples 

the number of neutrons and gammas produced by each fission event from a probability 
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distribution function, whereas the other codes use average values2.  When calculating 

source-triggered multiplicities or detector-detector correlations, these approximations can 

yield incorrect results because the relatively rare fission events which produce a large 

number of particles simultaneously are not accounted for.   

Another area where standard MCNP codes do not accurately model each collision 

is the production of gamma rays.  These codes sample the gamma ray production of each 

interaction from a single table without regard to the type of neutron interaction.  This 

table gives the average number and energy of gamma rays produced by all possible 

interactions, which speeds simulation times at the cost of the fidelity of individual 

interactions.  By sampling gamma ray production separately for each different type of 

reaction, MCNP-PoliMi produces accurate results for each history. 

MCNP-PoliMi was selected for NMIS modeling because the more accurate 

modeling of interactions produces more accurate results for multiplicities and detector-

detector correlations.  Although these features are not generally important for the 

simulation of imaging measurements, another important feature of MCNP-PoliMi is that 

it produces an ASCII text file containing information about all interactions in detector 

cells specified by the user.  This information includes the type of projectile, nucleus 

interacted with, type of interaction, energy imparted by the interaction, time of the 

interaction (relative to the start of the history), position of the interaction, and the number 

of previous interactions.  A small section of one of these output files with headers 

identifying each column is shown in Figure 4-1.   

                                                 

2 The latest version of MCNPX (2.6.0) now samples the fission neutron multiplicity distribution correctly, 
but still uses average values for the gamma ray production. [60] 
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Figure 4-1. A section of a .dat file with column headings.  The MCNP-PoliMi User’s Guide 
[54] provides a detailed explanation of each column. 

 

This text file, typically referred to as a .dat file because of its standard extension, 

is then analyzed with a post-processing code.  The post-processor explicitly simulates the 

response function, energy threshold, and dead time of a specific detector type to calculate 

time correlations and multiplicities.  For simulated imaging measurements, the post-

processor also calculates the number of correlations falling in the relevant time windows 

and sums them up for each detector.  Specific details of the post-processor, PoliMiPP, 

used for this work are provided in Section 4.3.2. 

 

4.2 The Methodology of Simulating an NMIS Imaging Measurement 

 The process of running a single MCNP-PoliMi simulation is fairly simple.  First, 

an input deck is created with the desired source, detector cells, and other geometry such 
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as the object being interrogated or imaged.  The MCNP-PoliMi program is then executed 

and produces a .dat file with all of the collision information in the detector cells.  The .dat 

file is post-processed to calculate correlations, multiplicities, and a file with the extension 

.peaks which contains the number of correlations falling in the desired time window for 

each detector. 

 Simulating an imaging measurement requires considerably more work.  Even a 

single 1D slice through an object requires many simulations.  Each of the pixels has a 

different angular distribution of source neutrons.  A separate simulation is required for 

each.  In addition an NMIS imaging measurement typically subsamples the detector 

locations in order to increase the angular resolution of the image.  This is done by 

repeating the measurement multiple times, and rotating the entire detector array slightly 

with each subsample.  Because MCNP-PoliMi explicitly records the interactions in each 

detector volume, each subsample requires a separate simulation with the appropriate 

angular transform of the detector array.  If there are m pixels and n subsamples, a total of 

m × n MCNP-PoliMi runs are required to simulate the measurement. 

 In order to minimize the tedious work (and the likely errors) involved with 

building, executing, post-processing, and recombining each of the m × n MCNP-PoliMi 

runs manually, a series of codes were written to make the process largely automated.  A 

flowchart of the programs used to simulate an NMIS imaging measurement is presented 

in Figure 4-2.  The MakeInp program reads a single PoliMi input deck containing the 

geometry of the object being imaged and (if desired) other objects in the room.  Using 

information about the detector array and source distribution contained in another file, it 

produces MCNP-PoliMi input decks for each pixel-subsample combination and places  

61 



 

MCNP-
PoliMi

Base
Input
File

Param.
File

MakeInp
PoliMi
Input
Files

PoliMi
Input
Files

PoliMi
Output
Files

PoliMi
Output
Files

PoliMiPP
m × n
Peaks
Files

m × n
Peaks
Files

JoinPixels

Batch
File

Batch
File

JoinSS

Object
Peaks

File

Scatter
Subtract

Void
Peaks

File

m Pixel
Peaks
Files

m Pixel
Peaks
Files

Corrected
Attenuation

Curve

 
Figure 4-2. A flow chart showing the procedure used to simulate an NMIS imaging 
measurement with MCNP-PoliMi. 
 

them in appropriate directories.  The MakeInp program also produces two batch files.  

The first batch file starts all of the MCNP-PoliMi runs (two different versions are created 

- one for Windows systems and one for Linux servers).  Once all of the runs are 

complete, the second batch file post-processes the resulting .dat files and then combines 

all of the resulting .peaks files into a single file.  The ScatterSubtract code will then read 

the final output and, using the output from a void measurement as well, apply the scatter 

subtraction methodology developed in this work to produce the corrected attenuation 

values.  With the exception of MCNP-PoliMi, all of the programs shown in Figure 4-2 

were written specifically for the purpose of simulating NMIS measurements.  A detailed 

description of each of these codes is presented in Section 4.3.   

 

62 



 

4.3 Fortran Codes For Simulating Imaging Measurements 

4.3.1 The MakeInp Code 

The MakeInp program takes a single base input deck containing information about the 

object being imaged and produces a series of MCNP-PoliMi input decks with the proper 

detector array configuration and pixel source distribution.  The program is launched from 

an MS-DOS command prompt or batch file using the syntax 

MakeInp <Parameter File>. 

The parameter file contains information specified by the user about the detector 

array and the DT pixels as well as the name of the base input file.  The information about 

the detector array includes the number and size of detectors, their separation, the source-

to-detector distance and the detector cell numbers.  The information about the pixels 

includes the number of pixels, FWHM of the pixels, angular offset, and the number of 

angular bins to be used for simulating the neutron distribution of the pixels.  The 

parameter file also specifies the number of times each detector is to be subsampled, the 

number of source neutrons to be used for each simulation, and the file name of the base 

input deck.  If the parameter file name is not specified at the command prompt, the 

program prompts the user to input the name.  An example of a parameter input file is 

presented in Appendix C. 

Once the parameter file name is input, the program reads the value of each 

parameter from the file and then closes it.  Each value is specified with a keyword, just as 

in an MCNP deck.  Using this information, MakeInp calculates the values needed to 

generate the surfaces for each of the detectors in the array.  These values are computed 

for an array with no angular rotation, i.e., the center of the detector array lies on the x-z 
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plane.  These detector surface values are computed using the source-to-detector distance, 

number of detectors, and detector-to-detector separation values read in from the 

parameter file and saved in an array for later use. 

Once the detector positions are computed, the base input deck is opened and read 

into memory.  The base deck is a standard MCNP-PoliMi deck containing information 

about the object being imaged and other objects in the room, such as the turntable used 

for rotating the object.  The base input deck does not contain an “NPS” card since the 

number of source particles is specified in the parameter file.  It also contains three special 

comments of the form “c 111111,” “c 222222,” or “c 333333” to indicate the location 

where the MakeInp program should add the detector cell cards, detector surface cards, 

and data cards in each of the resulting output decks.  An example of a base input deck is 

given in Appendix C. 

The program then creates a directory structure that will be used to hold the 

resulting PoliMi decks it creates.  The directory name is the first four characters of the 

base input file.  Once the directory is created, the program loops over the pixel numbers.  

For each pixel, a subdirectory is created to hold all of the input decks relating to that 

pixel.  The program then loops over the subsample number and creates a blank file which 

will hold the input deck for the specific pixel-subsample combination.  The filename 

given to this new input deck is the first two characters of the base file name plus the pixel 

number plus the subsample number followed by the extension “.i.”  For example, if the 

base input file is named “void.inp,” the input deck for pixel 5, subsample 1 would be 

“vo51.i.”  This naming scheme is necessitated by the fact that MCNP-PoliMi file names 

must contain eight or fewer total characters.  Up to 99 pixels and 99 subsamples can be 
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utilized with this naming scheme while maintaining a file name of eight characters or 

less. 

Next, the program writes the MCNP-PoliMi cards to this new input file.  This is 

accomplished by looping over each line read in from the base input deck.  The output 

depends on the contents of the line from the input file. 

 If the input line = “c 111111,” the detector cell cards are written.  Each cell card 

contains the appropriate detector cell number, material number, density, and 

surfaces for the detector.  Cell numbers are assigned so that they increase 

sequentially with angle and each detector position is given a unique cell number.  

If there are four subsamples and the starting detector number is 401, subsample 

one would have detector cells 401, 405, 409, …; subsample two would have 

detector cells 402, 406, 410, …; etc. 

 If the input line = “c 222222,” the detector surface cards are written.  The detector 

surfaces are specified using a BOX macrobody card.  The BOX card specifies a 

starting point and three perpendicular vectors for the detector crystal.  It also 

specifies an angular transform specific to the subsample.  Each detector surface 

card is given the same number as its corresponding cell card. 

 If the input line = “c 333333,” the detector transform (TR), source definition 

(SDEF), number of source particles (NPS), random number (DBCN), physics 

(PHYS), problem cutoff (CUT), and PoliMi specific (IDUM, RDUM) cards are 

written.   

o The detector transform cards rotate the entire detector array by up to ±½ 

the angle between detector centers for subsampling and translates the 
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position of the array if the source location is not at the origin of the MCNP 

coordinate system.   

o The SDEF card specifies the location of the DT neutron source, the 

direction of the center of the current pixel, and a probability distribution 

function which defines the shape of the pixel.  The source particles are 

monoenergetic neutrons.  No deuterons or alphas are simulated and all 

neutrons emerge from a point source.  The FWHM parameter from the 

parameter file determines both the width of the pixel PDF and the distance 

from the center of one pixel to the next.  The absolute angle of each pixel 

includes an offset which specifies how many degrees the center of the 

pixels lies from the y-axis.   

o The number of source particles is taken directly from the parameter file.  

All simulations created by MakeInp use the same number of source 

particles. 

o For each simulation, the same random number seed and stride is specified 

with the DBCN card.  Within a given pixel, the starting history for each 

subsequent subsample is incremented by the total number of histories in 

previous subsamples.  This prevents any pattern in the random numbers 

from repeating across subsamples. 

o The PHYS:n and PHYS:p cards specify how the program is to handle the 

physics parameters.  MCNP-PoliMi requires analog operation, so these 

cards specify the proper values. 
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o The CUT:n and CUT:p  cards specify when a history should be ended.  A 

maximum time window is specified in the parameter file, and this value is 

written into the cut cards.  The time window represents the maximum time 

difference the post-processor will use when computing source-detector 

and detector-detector correlations. 

o The IDUM and RDUM cards provide MCNP-PoliMi-specific information.  

The IDUM card can be used to specify one of the built in PoliMi sources 

such as 252Cf spontaneous fission.  This card is also where the number of 

detectors and cell number of each is specified.  Only detectors listed on the 

IDUM card have their collision information written into the .dat file.  The 

RDUM card specifies the minimum energy that must be transferred by an 

interaction in a detector cell for it to be recorded in the .dat file. 

 All other lines from the base input deck are written directly into the output deck 

with no changes. 

Once the output deck is written, it is copied into the appropriate directory form where 

it will be executed.  The command for executing that deck is written into the execution 

batch file, and the command for post-processing it is written into the post-processor batch 

file.  At the end of each subsample, a command calling the JoinSS program is written into 

the post-processor batch file.  A call for the JoinPixels is added to the very end.  Once the 

batch files are completed, they are moved into the correct directory and the MakeInp 

program terminates.  An example of an input deck produced by MakeInp is shown in 

Appendix C. 
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4.3.2 The PoliMiPP Post-Processor 

After the MCNP-PoliMi simulations are complete, the PoliMiPP code is used to 

post-process the resulting .dat files.  Although the RSICC release of the MCNP-PoliMi 

code includes a post-processor, it was found to be unsatisfactory for some aspects of 

NMIS simulations.  The RSICC post-processor is written in the MATLAB [61] 

programming language.  This code can only process small .dat files of less than ~100 

MB.  Larger files have to be separated into multiple pieces smaller than this limit before 

post-processing.  The MATLAB code processes the files at a considerably slower rate 

than a comparable Fortran code.  The MATLAB code also lacks some features, such as 

an adjustable detector dead time.  The PoliMiPP code was written to provide all of the 

necessary features and the ability to process large .dat files of up to 4 GB without the 

need for splitting.  The source code for PoliMiPP is shown in Appendix D. 

PoliMiPP is executed from an MS-DOS command line with the syntax 

PoliMiPP <.dat file> <start detector> <NPS> <Correlation Window> <dead time> 

<detector threshold>. 

All of the input values are optional with the exception of the .dat file name.  The start 

detector specifies which detector should be used as the start detector when computing 

cross-correlations.  For imaging measurements, this value is set to “0” which tells the 

post-processor not to calculate cross-correlations.  The NPS value should be the same one 

specified in the MCNP-PoliMi input deck for proper normalization.  The correlation 

window specifies the maximum time difference that should be used when computing 

source-detector correlations and detector-detector cross-correlations.  The correlation 

window time is in nanoseconds.  By default, the PoliMiPP output will be binned in 1 ns 
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intervals, but if a window size of greater than 2048 ns is entered, bins of 1 μs will be used 

instead.  The detetector dead time is also specified in ns.  Once a pulse is generated in a 

detector, any other events in that detector will be ignored until the dead time expires.  The 

detector threshold specifies the minimum neutron energy that can generate a pulse if it 

transfers its full energy in a collision.  The energy threshold is in MeV.  If only the .dat 

file name is entered at the command line, the other values will assume default values.  

These values are the equivalent of launching PoliMiPP with the values 

PoliMiPP <.dat file>  0  1  256  35  1.0. 

The PoliMiPP code begins by opening the .dat file and reading through it to 

determine the number of source histories it contains.  In order to minimize the total 

amount of random access memory (RAM) used by the program, the entire .dat file is not 

read into memory.  Instead, each history is read into memory individually.  For a given 

history, each event is sorted by the detector number and then by interaction time.  For 

each event, the light output is computed using an algorithm based on the detector type.  

For a plastic scintillator, the light output (pulse height) produced by an energy transfer, 

Ein, is [62] 

 Photon on hydrogen or carbon: PH = Ein. 

 Neutron scattering off hydrogen: PH = 0.125*Ein + 0.0364*Ein
2. 

 Neutron scattering off carbon: PH = 0.02*Ein. 

Once the light output for each event in the history is computed, the detector threshold is 

applied to see which events produce an electronic pulse.  Multiple events that occur 

within the pulse generation time can combine to produce an electronic pulse if their sum 

is greater than the threshold.  Once a pulse is triggered, any events occurring in that 
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detector during the specified dead time after the pulse are ignored.  Each pulse produced 

is written into an array for further processing.  While recording the pulses, each pulse is 

checked to determine if it was produced by a directly transmitted neutron. 

 Once the list of pulses is calculated, the PoliMiPP code calculates the multiplet 

for each history.  The multiplet is the total number of pulses (from all detectors) produced 

in a given history within the total time window specified in the program.  In addition to 

the total multiplet, the total number of pulses produced only by neutrons is computed.  

The total number of times each multiplet (single, double, triple, etc) occurs is recorded 

and then output into a multiplicity file with a “.multip” extension. 

 After the multiplicities are computed, the post-processor calculates the source-

detector correlation for each detector.  This is accomplished by recording the number of 

times a pulse occurs in a given 1 ns time bin from the beginning of each history in a 

given detector.  The correlations are divided into total, neutron, and gamma pulses.  For 

an event in which more than one pulse occurs, cross-correlations are also computed if one 

of the pulses occurs in the start detector.  These cross-correlations are computed by 

recording the time difference between each pulse in the start detector and all other pulses 

for that history in 1 ns bins.  The cross-correlations are broken down into total, neutron-

neutron (nn), photon-photon (pp), neutron-photon (np), and photon-neutron (pn) subsets.  

Each subset of correlations and cross-correlations is then output to text files. 

 Once the correlations are calculated, the location of the neutron peak is calculated 

by determining the time bin of the total correlation that contains the largest number of 

pulses.  The time limits of the peak time window are then set at ±2 ns from the peak.  For 

each detector, the total number of counts within the peak window is recorded.  In addition 
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to the total number of counts in the peak, the counts produced by directly transmitted 

neutrons are recorded. 

 Once the peak correlation window is determined, PoliMiPP applies an algorithm 

to eliminate counts in the total peak values produced by cross talk between detectors.  

This method follows the one applied in the NMIS data acquisition software.  If a single 

history produces more than one count in the peak correlation time window, only the one 

with the smallest interaction time is counted.  All others are considered to be produced by 

cross talk between detectors.  In the unlikely event that two events occur simultaneously 

(because of rounding of the interaction time in the .dat file) the one in the higher 

numbered detector cell is discarded.  Once these computations are completed, the number 

of total, direct, and no cross talk counts in the fast time correlation window are written 

out into a .peaks file.  The total NPS value is also written into the .peaks file for 

normalization purposes.   

For neutron radiography, the .peaks file is the final product of the post-processor 

program.  The .peaks file consists of seven columns.  The first column lists the detector 

cell numbers in ascending order.  The next two columns give the number of total 

correlations in the peak correlation window and the mean correlation time of the window.  

The fourth and fifth columns present the same information for directly transmitted 

neutrons, and the sixth and seventh give the no cross talk peak correlations and means.  

The first row of the output is a header row with labels for all columns except for the 

detector cell number column.  Instead of a label, the number of source histories is written 

above the detector column.  This value will be used for normalization in the 

ScatterSubtract code.  The .peaks file is used for reconstructing the attenuation maps 
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using the JoinSS, JoinPixels, and ScatterSubtract programs.  The data in the .peaks file 

will be used for extracting the PScFs in Chapter 5.  An example of a .peaks file is shown 

in Appendix D. 

 

4.3.3 The JoinSS and JoinPixels Codes 

Once all of the .dat files for a given pixel have been post-processed, the JoinSS 

program combines them into a single .peaks file that contains the entire transmission 

profile for that pixel across all subsamples.  The JoinSS code is launched from the 

command line with the syntax 

JoinSS <File Base> <# SS> <# Detectors> <First Detector #> <Source to Detector 

Distance> <Detector to Detector Distance>. 

 The File Base consists of the first two characters of the base input file name (from the 

MakeInp code) and the pixel number, e.g., vo4.  The next two values specify the number 

of subsamples and the number of detectors in the array.  The first detector number is the 

cell number of the lowest numbered detector cell in subsample 1, which will be the 

lowest for all subsamples.  This detector will have the most negative detector angle.  The 

source-to-detector distance and detector-to-detector distance are used to calculate the 

detector angles.  Detector-to-detector distance is the distance between the centers of 

adjacent detectors in the array. 

 JoinSS opens the .peaks files for each subsample and reads the detector call 

numbers, total correlations, direct correlations, and no cross talk correlations from each 

into an array.  Simultaneously, the angle of each detector position is computed.  The 

subsamples are interleaved in such a way that the detector positions are sorted by detector 
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angle.  Then, this interleaved array is written into a single .peaks file which contains all 

of the values for the pixel.  This .peaks file contains five columns.  The first is the 

detector angle in degrees.  The second is the detector cell number.  The third, fourth, and 

fifth columns contain the number of total, direct, and no cross talk correlations in the fast 

neutron peak.  The first row is a header row and, as with the original .peaks files, the NPS 

value is included in the first column of the header row. 

 Once the JoinSS program has rejoined all of the subsamples for each pixel, the 

JoinPixels program combines the output into a single file.  The JoinPixels program 

requires that all of the JoinSS files are in a single directory.  The post-processing batch 

file produced by the MakeInp code copies those files into the root directory of the 

simulation before launching the JoinPixels program.  The JoinPixels program is launched 

from a command line with the syntax 

JoinPixels <base file name> <number of pixels>. 

The base file name is the first two characters of the original MakeInp base input deck. 

 When the JoinPixels program is launched, it opens each of the pixel .peaks files 

and reads them into an array in memory.  It then writes the output into a single .peaks file 

for the simulation.  The output in the final .peaks file is divided into three groups of 

columns representing the total, direct, and no cross talk values.  Each group consists of a 

column with the detector angles, a column with the detector cell numbers, a column for 

each pixel, and a column with a total value which is the sum of all pixels.  One additional 

value contains the uncertainty of the total column.  The uncertainty is calculated 

assuming standard counting statistics by taking the square root of the total correlations.  

The final output file contains a header row with labels for each column except for the 
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first, which gives the NPS value for normalization.  This final .peaks file will be used in 

combination with one from a void measurement to calculate the attenuation profile using 

the ScatterSubtract code.  The source code for the JoinSS and JoinPixels programs is 

shown in Appendix E. 

 

4.3.4 The ScatterSubtract Code 

Once the final .peaks file for the simulation has been finished, the ScatterSubtract 

program implements the point scatter removal algorithm in order to remove the scattered 

component from the measured values.  The function of this program will be discussed in 

detail in Section 6.2 where the implementation of the PSRA is presented. 

 

 

 



 

5.  Modeling and Point Scatter Function Extraction 

The PScFs will be discussed in detail in this chapter.  In the first section the 

definition and mathematical description of the PScFs as used in this work will be 

discussed.  A definition from earlier work was provided in Chapter 2, but the function 

will be modified slightly to account for the geometry of the NMIS detector array.  In the 

second section, the models used to measure the PScFs and the scenarios which were 

modeled are described.  In the third section, the procedure for extracting the PScF 

parameters for each simulation is presented.  The parameterized PScFs will be compared 

to the elastic scattering calculations from Chapter 3 in the final section of this chapter.   

 

5.1 Description of the Point Scatter Functions 

Some previous work with PScFs was described in Chapter 2.  Those authors 

described the point scatter function in terms of the probability a neutron would arrive a 

given distance from its projected point on a 2D detector screen.  This work requires a 

somewhat modified definition of the PScF in order to account for the more complicated 

detector geometry and the finite detector volumes.  The definition of the PScF used here 

will be the number of additional fast neutron correlations due to scattering in the 

object being imaged recorded in a detector whose center is an angle, θ, away from 

the original detector the neutron was directed towards per uncollided neutron 

detected by the original detector in a void measurement.  Mathematically, this relation 

can be represented 

,
)(
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I
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          (5.1) 
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where ISO(θ) is the number of additional counts in the detector an angle θ away from the 

original detector as measured from the DT target spot and I0 is the number of DT 

neutrons detected in the original detector in the void measurement.  The PScF accounts 

for neutrons scattered at any position in the object along the original neutron path.  The 

PScF geometry is depicted in Figure 5-1. 

   Each detector will have its own PScF which describes the scattering contribution 

to all detectors (including itself) in the array produced by neutrons directed towards it.  

The total scattering contribution into each detector in the array would then be 

superposition of the PScFs from all detectors in the array.  The total object scattering 

contribution into a given detector can be written as a discrete summation of the 

contribution from all detectors.  This summation can be written 

      , 
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       (5.2) 

where i represents the position of the detector being scattered into, j represents the 

detector whose neutrons are contributing additional scattering, I0(j) is the directly 

transmitted neutrons directed towards detector j, n is the number of detectors in the array, 

and ω is the separation angle between adjacent detectors.  If the contributions from 

background and room return are negligible, the true attenuation measured by detector i 

can be written 
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Figure 5-1. The geometry of the NMIS PScF.  A total of I0 neutrons directed towards 
detector j would be detected in a void measurement.  Of those neutrons, ISO(θ) scatter in the 
object being imaged and are detected in detector i whose center is an angle, θ, away from 
the original detector.  Although a thin sample is shown for clarity, the PScF includes 
scattering from any position along the neutron track through the object, even if it is several 
MFP thick. 
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Because the I0 and ISO values cover an entire detector, the PScFs must be applied to each 

subsample individually.  Otherwise, the attenuation values will be overcorrected and the 

resulting attenuation values will be too high. 

 If all of the PScFs are known, the object scattering can be removed from the 

object measurement and the true attenuation profile of the object can be calculated.  

Unfortunately, the PScFs depend on the geometry and materials of the object so they will 

change each time a new object is imaged.  Calculating the exact PScFs each time would 

require an MCNP calculation using the correct object geometry and materials.  Since the 

goal of radiography is to measure those values, this approach is impractical.   

A more reasonable approach is to develop a library of generalized PScFs and 

apply the one that is the most applicable to a particular measurement.  The remainder of 

this work will focus on this technique.  The scattering calculations in Chapter 3 showed 

that the neutron scattering function changed with the scattering material and also with the 

distance between the object and the detector array.  In addition, the thickness of the 

object will play a large role in the size and shape of the PScFs.  In the remaining sections 

of this chapter, the focus will be on developing a library of PScFs that cover a broad 

range of object characteristics, and parameterizing them.  In Chapter 6, a method for 

selecting the best available PScFs for each detector position in a given object will be 

developed. 

 

5.2 Modeling and Simulation of the Point Scatter Functions 

MCNP-PoliMi simulations will be used to estimate the PScFs for a wide range of 

scenarios in order to build a library.  Because the post-processor reports the number of 
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correlations in the DT neutron peak for both directly transmitted and no cross talk values 

(which approximate measurements in the laboratory) the values of both the I0 and ISO can 

be calculated directly using the values in the .peaks files.  In order to measure these 

values, the source term needs to approximate the geometry shown in Figure 5-1.  In order 

to accomplish this, a pixel was centered on one of the detectors at the center of the array 

and then collimated horizontally through the use of a zero importance cell surrounding 

the neutron source.  The collimating cell had a slit in it that had the same horizontal 

angular width as the detector.  No vertical collimation was performed so that the section 

of the pixel had its full vertical extent.   This allows the simulations to account for 

neutrons directed directly above or below the scattering detector when computing the 

scattering.  The resulting neutron profile is a vertical fan which falls off as a COS2 

(cosine squared) shape toward the top and bottom edges.  Because the fan is at the center 

of the pixel, it matches the vertical profile of the overall fan (the sum of all pixels – see 

Section 3.1.5) very well.  This feature means that the PScFs derived here can translated to 

any detector in the array as the scattering detector. 

Although the possible object configurations and materials are infinite, the NMIS 

operator will have only a limited amount of information available to be used for 

computing the correct PScFs to use for a given image.  The exterior geometry of the 

object will be known.  This is typically the dimensions of the drum or canister whose 

contents are being imaged.  The location of the exterior with respect to the imaging array 

and source can easily be measured when setting up the measurement.   

To a certain degree, the composition of the outer layer of material in the object is 

also available to the NMIS operator.  Its composition can be estimated by looking at a 
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source-detector correlation curve for a detector located perpendicular to a pixel’s neutron 

cone passing tangentially through the outside of the drum.  Some specific nuclides, most 

notably hydrogen and low Z isotopes with widely spaced energy levels, can be identified 

by looking for peaks due to elastic and inelastic scattering.  The operator might also have 

knowledge of what the shielding is supposed to be based on the declared contents of the 

object being imaged.  For the purposes of this work, it will be assumed that only the 

composition of the outer layer of shielding can be determined and the PScF used will be 

based on this information.  In order to be as widely applicable as possible, the PScFs will 

be calculated using a homogenous layer of shielding.  During the validation phase, some 

work will be devoted to checking how well PScFs based on only the outer layer of 

material work with objects composed of more than one material. 

A final piece of information that is easily available from an NMIS measurement 

in the laboratory is the measured attenuation curve.  For each detector position, the best 

PScF can be selected based on the measured attenuation at that location and inputs from 

the operator about the shielding material and the object-to-detector distance.  The 

resulting PScFs can then be subtracted to produce the corrected curve and new PScF 

values can be selected based on the corrected attenuation values.  This iteration will be 

continued until the attenuation values converge at, ideally, the true attenuation curve.   

Taking the available information about the object being imaged into 

consideration, the three variables selected for generating the PScFs are the object-to-

detector distance, object material, and material thickness in attenuation lengths.  The 

object used is a homogenous cylindrical shell of material oriented vertically with its 

radius centered on the DT target spot.  This configuration gives the object a consistent 
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object-to-detector distance across the entire array removing possible variations in the 

profile of the resulting PScF created by the shape of the object.  The configuration of the 

source and target that will be used for these simulations is shown in Figure 5-2. 

Four different materials will be used for measuring the PScFs.  These are 

polyethylene, carbon (graphite), iron, and lead.  These materials cover a wide range of 

atomic masses and they are materials frequently used in shielding and structural 

applications.  Fourteen thicknesses of materials will be used ranging from 0.5 to 7.0 MFP 

by half-integer values.  Seven object-to-detector distances (measured from the outer 

surface of the object) ranging from 30 to 90 cm in 10 cm increments will be used for each 

material.  Because the source-to-detector distance is 110 cm and the DT generator tube 

has a radius of approximately 4 cm, some combinations of material, object-to-detector 

distance, and thickness were physically impossible and were omitted from these 

simulations.  In total, there are 300 allowable material, object-to-detector distance, and 

thickness combinations.  All of the configurations used in these simulations are presented 

in Table 5-1.   

Each of these simulations was given a unique identifier that consists of the first 

four letters of the material with a number appended to the end.  The number is the sum of 

the object-to-detector distance and the nominal thickness in MFP.  For example, 3 MFP 

of polyethylene at 50 cm from the detector is given the identifier Poly53. 

The total number of source particles used for each scenario was determined by 

making short runs and extrapolating the number needed to generate a sufficiently large 

.dat file to get good statistics on the number of scattered counts in each detector.  
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Figure 5-2. The configuration used for calculating the NMIS PScFs using MCNP-PoliMi 
simulations.    
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Table 5-1. The configurations simulated for the purpose of developing an NMIS PScF 
library. 
Object-to-Detector 
Distance  

Allowable Thicknesses by Material 

 Polyethylene Carbon Iron Lead 
30 cm 0.5-7.0 MFP 0.5-7.0 MFP 0.5-7.0 MFP 0.5-7.0 MFP 
40 cm 0.5-7.0 MFP 0.5-7.0 MFP 0.5-7.0 MFP 0.5-7.0 MFP 
50 cm 0.5-6.0 MFP 0.5-6.0 MFP 0.5-7.0 MFP 0.5-7.0 MFP 
60 cm 0.5-5.0 MFP 0.5-5.0 MFP 0.5-7.0 MFP 0.5-7.0 MFP 
70 cm 0.5-3.5 MFP 0.5-4.0 MFP 0.5-7.0 MFP 0.5-6.0 MFP 
80 cm 0.5-2.5 MFP 0.5-2.5 MFP 0.5-5.5 MFP 0.5-4.5 MFP 
90 cm 0.5-1.5 MFP 0.5-1.5 MFP 0.5-3.0 MFP 0.5-2.5 MFP 
 

The smallest .dat file size was just under 100 MB, and many .dat files exceeded 1 GB.  

The number of source neutrons used for each combination of material and thickness are 

given in Table 5-2.  The same values were used for all object-to-detector distances for a 

given material.  Note that the neutron source strengh is for the entire pixel, including the 

parts that were cut off by the zero importance collimating sphere.  The actual number of 

neutrons projected towards the object comprises only the portion of the pixel which 

passes through the slit in the collimator, but because this value scales linearly with the 

total source term, knowledge of its exact value is not required. 

In addition to these simulations, a void simulation was run.  The void simulation 

had a source strength of 4 × 107 neutrons.  It used the same geometry shown in Figure 5-2 

except that no object was present.  The void simulation will provide the I0 value that will 

be used to compute the PScF for each of the other simulations shown above. 
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Table 5-2. The source strength used for each of the PScF simulations. 
Thickness (MFP) Number of Source Neutrons (× 107) 
 Polyethylene Carbon Iron Lead 
1 4 4 4 4 
2 4 4 4 4 
3 10 4 4 4 
4 10 10 4 4 
5 10 10 4 4 
6 20 10 4 4 
7 20 10 4 4 
 

 

5.3 Parameterization of the NMIS Point Scatter Functions 

5.3.1 The Void Simulation 

The first task involved in parameterizing the PScFs was to run the void simulation 

and extract the results.  The .peaks file generated from the void simulation is shown in 

Figure 5-3.  The neutron fan was directed onto detector cell 461 in the center of the array.  

The Direct column of the .peaks files confirms that the only detector cell which recorded 

directly transmitted neutron correlations was detector 461.  The Total and No XTalk 

results for detector 461 are almost identical to the Direct value because the only possible 

source of additional counts would be a neutron that scattered off detector 461 into another 

detector cell and back into 461.   

Unlike the Direct column, the Total and No XTalk columns show a sizable 

number of correlations in the detectors surrounding 461.  Although this is expected for 

the Total column, it is somewhat surprising for the No XTalk one, because the only way 

for a neutron to reach a detector other than 461 in the void simulation is for it to scatter 

from 461.   
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Figure 5-3. The contents of the Void.peaks file. 
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If a neutron created a pulse in 461 and then scattered into another detector cell and 

created a pulse, the second pulse would be discarded as cross talk. 

The source of the scattering can be found by examining the equations for detector 

efficiency (Equation 3.19) and the Pulse Height Factor (Equation 3.21) in Section 3.2.2.  

In order to generate a detector pulse, an incoming neutron needs to generate enough light 

in the detector to overcome the threshold.  The results in Figure 5-3 were generated using 

the default neutron threshold of 1 MeV.  With that setting, only neutrons imparting more 

than 1 MeV to a hydrogen atom in the detector cell generated a pulse.  Neutrons 

scattering off a carbon atom or imparting less than 1 MeV to a hydrogen atom will not 

generate a pulse.  Since no pulse is generated in detector 461 by these types of scattering, 

if the neutron is subsequently detected in another cell, that pulse is not considered cross 

talk.   

In order to verify that the threshold is the cause of the scattering in the No XTalk 

column of Figure 5-3, the Void.peaks file was post-processed again using a detector 

threshold of 0.001 MeV.  The.peaks file generated using the 0.001 MeV detector 

threshold is shown in Figure 5-4.  At this low threshold value, the only counts in the No 

XTalk column outside of cell 461 are a small number of counts in cell 457.  These counts 

are a result of the logic the PoliMiPP code uses to determine which pulse is cross talk.  If 

two pulses for a given history have the same interaction time, the one in the higher 

numbered cell is discarded.  Because the time resolution in the .dat file is limited to 100 

ps, some small number of pulses will be misidentified in this manner.   
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Figure 5-4. The Void.peaks file post-processed using a detector threshold of 0.001 MeV. 
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This problem cannot be corrected without modifying the MCNP-PoliMi source code; 

however, because the time resolution means the two events large enough to generate a 

pulse must occur very close together, the effect will be exceedingly small at more 

realistic detector thresholds. 

The No XTalk values in Figure 5-3 indicate that even after the cross talk 

correction is made, there is a good deal of inter-array scattering that is not accounted for.  

Before the object scatter can be calculated, this scatter needs to be addressed.  If not, its 

presence will reduce the measured attenuation values.  This phenomenon will also 

present itself in the object simulations, creating a scattering effect caused by the directly 

transmitted neutrons in addition to that caused by scattering in the object.  Unless 

corrected, the inter-array scattering of directly transmitted neutrons will change the shape 

of the fitted PScFs. 

In order to address this problem, the scatter in the No XTalk column of Figure 5-3 

was used to define an inter-array scatter function (ISF).  The ISF is defined exactly the 

same way as the PScF except that the object scatter (ISO) in Equation 5.1 is replaced with 

the inter-array scatter (ISA).  The mathematical expression for the ISF is 

.
)(

)(
0I

I
ISF SA 

          (5.4) 

The first attempt to fit the ISF was made using a Gaussian of the form 
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22

I
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        (5.5) 

where ISFfit(θ) is the number of scattered counts at angle, θ, per directly transmitted 

neutron, A is the maximum of the Gaussian fit, S is the standard deviation of the fit, and 

88 



 

I0 is the number of directly transmitted neutrons detected in cell 461.  An iterative 

algorithm was used to find the best values of A and SSA which minimized the χ2 value 

between the fit and the data.  The χ2
 value is computed using the formula 
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       (5.6) 

The method used to find the fit is nearly identical to the one that will be used to fit the 

PScFs which will be described in the next section.  Because self scatter is almost 

nonexistent in the inter-array scatter, the detector at which the source neutrons were 

directed (cell 461) was not used to generate the fit.  That point will also be ignored when 

subtracting the inter-array scatter from measured values of I0.  Unfortunately, the actual 

ISF function proved to be too tail-heavy (high kurtosis) to be accurately represented by a 

Gaussian fit.  Although the Gaussian fit data within a few degrees of the detector very 

well, it fell far below the actual ISF values farther away.  Because the ISF contributions 

from each detector will be superimposed, this effect will be greatly magnified and will 

result in an undercorrection of the inter-array scattering.  A plot of the Gaussian fit of the 

inter-array scatter function along with the no cross talk values is given in Figure 5-5.  The 

total scattering is also shown for reference.   

 Using an exponential to fit the ISF resulted in the opposite problem – fit values in 

the tail region were too large.  A good fit in both the peak and the tails regions was 

developed using a combination of a Gaussian and an Exponential function.  This fit takes 

the form 
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     (5.7)  
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Figure 5-5. A comparison of the no cross talk inter-array scattering and the fitted ISF 
generated using a single Gaussian.  The single Gaussian fits the data poorly at scattering 
angles of greater than ~4°.  The Total scattering is shown for reference.  The center point of 
the fit curve is not used for removing the inter-array scattering and is shown only for 
reference. 
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where A and B are the magnitude of the Gaussian and the Exponential respectively, and S 

and T are the standard deviations of the Gaussian and the Exponential.  This dual fit 

lowered the χ2 value of the fit by more than an order of magnitude.  A plot of the new fit 

as well as the No XTalk and Total scattering values is presented in Figure 5-6.  The best 

fit parameters for the ISF are 

 A = 0.029698; B = 0.004047; S = 1.420884°; and T = 2.911001°. 

 

5.3.2 Extracting the Point Scatter Functions 

The point scatter function for each of the scenarios described in Section 5.2 was 

extracted using a program called GaussFit which was written for this purpose.  The 

source code for the program is shown in Appendix F.  The procedure this program uses to 

extract the PScFs will be described in this section. 

The GaussFit is launched from an MS-DOS command prompt using the syntax 

GaussFit <Object .peaks file> <Void .peaks file> <Object-to-detector Distance> 

<Attenuation>. 

The attenuation entered on the command line is the nominal attenuation of the object 

used when creating the PScF simulation.  The value is only used for assigning a name to 

the scenario.  The program then opens each of the .peaks files and reads them into an 

array.  The source term (NPS value) for each is read in so that it can be used for 

normalization purposes.  The angle of each detector position is calculated in terms of the 

angle between its center and the center of the detector (cell 461) into which the source 

neutrons were directed.  For the simulation geometry, the angle between adjacent detector 

centers was approximately 1.67°.   
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Figure 5-6. A comparison of the inter-array scatter values to the combination Gaussian-
Exponential Fit.  The Total scattering is shown for reference.  The center point of the fit 
curve is not used for removing the inter-array scattering and is shown only for reference. 
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While reading the correlation peak values in, the total number of scattered counts in each 

detector is determined by subtracting the number of correlations in the Direct column 

from the number in the No XTalk column. 

 Once the .peaks files are read in, the program calculates the true attenuation of the 

directly transmitted neutrons using the formula 

, ln
,0
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diewct

direct          (5.8) 

where NPSV and NPSO are the source values for the void and object simulations.  

Because the neutrons were only directed at a single detector, there is only a single 

attenuation value for each object simulation.  Initial guesses for the maximum and 

standard deviation of the PScF fits are then taken from the object data.  The initial guess 

for the maximum is the largest number of scattered counts in the array.  The initial guess 

for the standard deviation is the standard deviation of the scattering angle of the data, 

which is computed via the formula 
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        (5.9) 

These initial guesses are then passed into a subroutine that uses them along with the NPS 

values, the attenuation, and the data from the .peaks files to find the best fit for the PScF. 

 The fitting routine begins by subtracting the portion of the scattering attributable 

to inter-array scattering from the total scattering to determine the scattering that is due 

only to scattering in the object.  The form (Equation 5.7) and best fit values for the ISF 

were shown in Section 5.3.1.  Because by definition, the ISF is generated by unattenuated 
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neutrons reaching the detector array, its magnitude must, by definition, follow the 

exponential attenuation shown in Equation 5.8.  Thus, for the object measurement, the 

number of counts due to scattering in the array, CSA, at angle, θ, is 

   . exp)(0)(  
NPSO

NPSV
ISFCC directSA      (5.10) 

After subtracting the inter-array scattering values, the object scattering values are 

ready to be fit.  The fitting is accomplished by means of an iterative, mesh-based 

algorithm.  The procedure begins by assigning a range of possible maximum values 

between 0 and twice the initial guess; and a range or standard deviations between 0 and 

five times the initial standard deviation guess.  Each of these ranges is divided into 201 

equally spaced values.  The algorithm then computes a fit of the form 

  , 
2

exp
2

2

, 









U
MC fitSO

        (5.10) 

where CSO is the object scattering, M is the maximum value of the Gaussian fit function, 

and U is the standard deviation.  The χ2 goodness of fit is computed for each combination 

of M and U values.  The M and U values which result in the smallest χ2 are selected.  The 

range of possible maximums and standard deviations is then divided by 5 and the 

procedure is repeated.  The procedure is iterated 10 times to determine the best fitting 

parameters very accurately.  In order to prevent physically unrealistic scenarios, negative 

values of the maximum or standard deviation are rejected automatically.   

At the conclusion of the fitting algorithm, the resulting maximum is normalized to 

a per source neutron basis by dividing it by the number of direct correlations in the void 

measurement.  The normalized parameters are then output to a file along with the χ2 value 

94 



 

of the fit.  The fit values of the object scattering and inter-array scattering are also 

normalized and output to a file as is the total (inter-array + object) scattering and the 

actual object scattering data.  The data written to the output files is appended each time 

the GaussFit program is run, so that after running the code with each of the simulations 

shown in Section 5.2, all of the PScF parameters are in a single file.  This data will be 

used in Chapter 6 to develop fits for the PScF parameters which will become the point 

scatter function generating equations (PScFGEs).  The fit parameters for each simulation 

are listed in Appendix G. 

 

5.3.3 The Point Scatter Function Fits 

In this section the goodness of the Gaussian PScF fits will be examined and 

compared with the actual scattering values.  The distribution of the χ2 values for the PScF 

fits is shown in Figure 5-7.  This is an extremely skewed distribution with the majority of 

the values lying close to zero and a few vary large values.  The distribution has a mean χ2 

of 3771 and a median value of 564.   

A plot the χ2 values organized by material, then by the object-to-detector distance, 

and then by the attenuation is presented in Figure 5-8.  Organized in this manner, a clear 

cyclical pattern can be seen.  The worst fits (largest χ2 values) occur at the lowest 

attenuation value at each object-to-detector distance.  The fits are also worst at the 

smallest object-to-detector distances.  This is not unexpected because the χ2 tests weights 

each point by the inverse of the variance at each point, which is simply the number of 

scattered correlations at that location.   
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Figure 5-7. The distribution of the χ2 goodness of fit tests resulting from the Gaussian fits of 
the PScF functions. 
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Figure 5-8. A line graph of the results of the χ2

 goodness of test results for the PScF 
Gaussian functions.  The values are sorted by material, then by the object-to-detector 
distance, and finally by the object thickness. 
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Scenarios with lower attenuation values and those closer to the detector array tend to 

have more scattered counts and thus a lower variance.  This causes even very small 

deviations of the fit from the data to contribute a very large value to the goodness of fit 

test. 

The data in Figure 5-8 also shows a large isotopic variation of magnitude of the 

goodness of fit results.  Lead produced the largest χ2 values by far.  All of the fits with χ2 

values above 10,000 were from scenarios with a lead object.  Iron showed the next worst 

results, followed by polyethylene.  All carbon scenarios produced a very good fit.  The 

remainder of this section will focus on examining individual PScF fits. 

The fit of the Carb61 scenario is presented in Figure 5-9.  The original scattering 

data is shown as well as the PScF, ISF, and total (PScF+ISF) fit for the scenario.  This 

scenario represents one of the best fits with a χ2 value of only 70.  The total fit follows the 

data extremely well and almost no divergence between the fitted scattering and the data is 

visible.  This behavior can most likely be attributed to the fact that the carbon is 

composed of a single element whose scattering cross section is not heavily forward 

peaked and shows no significant diffraction pattern.  Thus, the scattering in the object 

follows a Gaussian distribution. 

 The fit for one of the worst fitting scenarios, Lead32, is shown in Figure 5-10.  

The χ2 value of the fit is 47,600.  The locations of the largest relative errors are at the 

center of the scattering function and the tails.  The source of this discrepancy is the 

diffraction pattern visible in the tails of the scattering data.   
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Figure 5-9. A comparison of the fit scattering functions to the scattering data for the Carb61 
scenario. 
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Figure 5-10. A comparison of the fit scattering functions to the scattering data for the 
Lead32 scenario. 
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These tails cause the fit function to be wider and, as a result, to underestimate the 

scattering in the center of the data.  The diffraction patterns are non-Gaussian, so even the 

wider Gaussian function falls below them.   

Another scenario with a lead object, Lead45, is shown in Figure 5-11.  This 

scenario has a much lower χ2 value, 5050, than the previous one; however, this can be 

attributed to the smaller number of scattered counts.  The relative errors of the fit 

scattering function are larger.  Although the diffraction pattern peaks are not visible, the 

non-Gaussian tails can be seen clearly.  These tails pull the Gaussian fit wider, resulting 

in an underestimate of the scattering in the center of the function. 

The fit for a polyethylene scenario, Poly63, is shown in Figure 5-12.  The fit of 

this scenario has a χ2 value of 692.  The fit generally follows the data very well.  There is 

some evidence of non-Gaussian behavior visible in two humps in the data near ±15°.  The 

source of these humps is likely the presence of both hydrogen and carbon in the 

polyethylene.  As shown in Section 3.2, these elements have different scattering functions 

and the resulting superposition is likely responsible for the humps.  The magnitude of the 

discrepancy is very small compared to the data, so it should have very little impact when 

applying the PSRA. 

The fit of the Iron31 scenario is illustrated in Figure 5-13.  The χ2 value of the fit 

is 9020, which is one of the largest values for any iron scenario.  Despite this large χ2 

value, the fit follows the data very well.  The iron cross section is somewhat forward 

peaked, which slightly widens and lowers the center of the fit.  The effect is very small 

compared to that caused by lead, so the fit remains very good.  
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Figure 5-11. A comparison of the fit scattering functions to the scattering data for the 
Lead45 scenario. 
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Figure 5-12. A comparison of the fit scattering functions to the scattering data for the 
Poly63 scenario. 
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Figure 5-13. A comparison of the fit scattering functions to the scattering data for the 
Iron31 scenario. 
 

These scenarios show a representative sample of the fits across the range of 

materials, object thicknesses, and object-to-detector distances modeled.  The carbon 

scenarios in particular are extremely well represented by a Gaussian fit.  The 

polyethylene and iron scenarios show a noticeable divergence from a Gaussian, but are 

still well characterized by the fit.  The lead data shows a fairly strong degree of non-

Gaussian behavior which results in a fairly large underestimation of the scattering in 

some scenarios.   

The behavior of the lead scattering would be better represented by a combination 

of functions (as with the ISF) or even Legendre polynomials.  However, the use of such 

functions might result in an overfitting of the data.  If the shape of the scattering function 

is altered markedly by the presence of geometric features in the object, the resulting fits 

might produce larger errors than the Gaussian one.  The shape would also be isotope 
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dependent, which could again create a larger error than the Gaussian if the lead data 

values were used for another heavy material, such as tungsten or depleted uranium.  In 

addition, one parameter that will be considered while developing the PScFGEs is the 

level of knowledge of the operator.  In cases where the operator is unsure of the exact 

shielding material, an approximation of the PScF using a combination of either the lead 

and iron or lead, iron, and carbon results will be used.   

This type of approximation is possible only if all of these materials use the same 

parameterization.  Therefore, this work will employ the Gaussian fits for lead, because 

even though they are not the ideal solution for that particular material they offer the best 

solution across the entire range of materials used here.  

 

5.4 Comparison of Point Scatter Functions to Elastic Scattering Calculations 

This section will compare the results of the elastic scattering calculations from 

Section 3.2.3 to the results of the PScF simulations.  The elastic scattering calculations 

were performed assuming a thin slab of material 3 MFP thick located at either 40 or 70 

cm from the detector array.  Those combinations of values were chosen because they are 

also used in the PScF calculations for the ease of comparison.  The materials used in the 

PScF simulations were also identical to the ones from the elastic scattering calculations 

with the exception hydrogen.  Polyethylene (CH2) was used instead of pure hydrogen 

which is a gas at room temperature. 

While the PScF simulations explicitly modeled the random walk of particles 

through the shielding material and into the detector cells using the Monte Carlo method, 

the elastic scattering calculations focused on the differences between scattering isotopes 
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by removing the physical geometry of the slab.  Thus, scatterings in the elastic model 

were all treated as if they occurred at the back edge (closest to the detector array) of the 

object while in the PScF simulations they were distributed throughout the material.  The 

elastic scattering calculations also assumed that all scattered neutrons approached the 

detectors perpendicular to their front face regardless of the scattering angle.  The elastic 

scattering calculations considered only one channel – single elastic scattering – 

contributing to the additional counts in the array.  In reality, many other possible channels 

exist including multiple elastic scattering, inelastic scattering, (n, 2n) reactions, and 

possibly even (n, γ) capture.  The relative size of these other contributions to the 

“scattered” signal, which the PScF simulations modeled explicitly, are nuclide specific.  

Finally, the elastic scattering calculations ignored the uncertainty in the arrival time of the 

neutrons to the detectors.  Accounting for this uncertainty requires the use of a wider 

correlation time bin to define directly transmitted neutrons, which allows a larger fraction 

of the scattered counts to be misidentified as directly transmitted.  Thus, while the elastic 

scattering calculations should be fairly similar to the MCNP PScFs, these factors will 

cause some divergence between the results.  

The elastic scattering calculation results for hydrogen and carbon are plotted with 

the simulation results for polyethylene at a 40 cm object-to-detector distance in Figure 

5-14.  The object scattering data was produced by subtracting the ISF values from the 

measured data.  The PScF fit is shown as well.  Because polyethylene is composed of two 

parts hydrogen and one part carbon, its elastic scattering value would be expected to lie 

somewhere between the values of those two pure isotopes.   
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Figure 5-14. A comparison of the PScF simulation results for polyethylene to the elastic 
scattering calculations for hydrogen and carbon.  The object-to-detector distance is 40 cm.  
The fit of the object scattering data is also shown for reference.  Note that the sharp peak in 
the center of the carbon elastic curve is due to interpolation of the differential scattering 
cross section file. 
 

The simulation curves are wider and less peaked because of the finite shield thickness, 

multiple scatterings, a larger correlation window, and other factors discussed in the 

previous paragraph. 

The comparison of the carbon, iron, and lead simulations to their respective 

elastic scattering calculations are presented in Figure 5-15 through Figure 5-17.  The 

maximum scattering value of the carbon simulation matches the elastic scattering result 

almost perfectly.  With iron and particularly with lead, the elastic calculations resulted in 

a larger peak than the simulation values.  In the MCNP data, multiple scatterings in the 

shield material tended to spread out the peaks and reduce the forward scattering effect to 

some degree.   
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Figure 5-15. A comparison of the PScF simulation results for carbon to the elastic scattering 
calculations.  The object-to-detector distance is 40 cm.  The fit of the object scattering data 
is also shown for reference.  Note that the sharp peak in the center of the elastic curve is due 
to interpolation of the differential scattering cross section file. 
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Figure 5-16. A comparison of the PScF simulation results for iron to the elastic scattering 
calculations.  The object-to-detector distance is 40 cm.  The fit of the object scattering data 
is also shown for reference.  Note that the sharp peak in the center of the elastic curve is due 
to interpolation of the differential scattering cross section file. 
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Figure 5-17. A comparison of the PScF simulation results for lead to the elastic scattering 
calculations.  The object-to-detector distance is 40 cm.  The fit of the object scattering data 
is also shown for reference. 
 

The diffraction pattern maxima visible in the tail region of the elastic scattering 

calculation are visible in the simulation data, but they are more widely spread due to the 

superposition of scatterings from all parts of the object. 

At a 70 cm object-to-detector distance, the width of the elastic scattering 

calculations more closely matches that of the simulation results because the widening due 

to the object thickness is not as pronounced at this larger distance.  As a result, the 

maximum values of the elastic calculations are also lower relative to the corresponding 

simulation results.  The comparisons of the elastic scattering calculations and the 

simulation results are shown in Figure 5-18 through Figure 5-21. 

The comparisons in this section show relatively good agreement between the 

simulation results and the elastic scattering calculations.  This provides validation that the 

elastic scattering calculations were performed correctly.   
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Figure 5-18. A comparison of the PScF simulation results for polyethylene to the elastic 
scattering calculations for hydrogen and carbon.  The object-to-detector distance is 70 cm.  
The fit of the object scattering data is also shown for reference.  Note that the sharp peak in 
the center of the carbon elastic curve is due to interpolation of the differential scattering 
cross section file. 
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Figure 5-19. A comparison of the PScF simulation results for carbon to the elastic scattering 
calculations.  The object-to-detector distance is 70 cm.  The fit of the object scattering data 
is also shown for reference.  Note that the sharp peak in the center of the elastic curve is due 
to interpolation of the differential scattering cross section file. 
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Figure 5-20. A comparison of the PScF simulation results for iron to the elastic scattering 
calculations.  The object-to-detector distance is 70 cm.  The fit of the object scattering data 
is also shown for reference.  Note that the sharp peak in the center of the elastic curve is due 
to interpolation of the differential scattering cross section file. 
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Figure 5-21. A comparison of the PScF simulation results for lead to the elastic scattering 
calculations.  The object-to-detector distance is 70 cm.  The fit of the object scattering data 
is also shown for reference. 
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They also show the same general trends as the simulation data indicating that the 

underlying physics of the scattering process is well understood.  Despite this, the 

divergence of the elastic scattering results from the simulation is still large enough that 

their use as PScFs would produce unsatisfactory results.  The sources of this divergence 

were discussed at the beginning of this section.  While some improvements could be 

made in the elastic scattering calculations to produce more accurate results, they would 

largely require knowledge of the internal geometry of the scattering object, which is 

generally unknown.  Thus, the choice to measure the PScFs with simulations rather than 

calculate them analytically is justified. 



 

6.  Final Form of the Parameterized Scatter Removal Algorithm 

With the PScFs extracted and fit with Gaussian functions, the next goal is to 

develop an algorithm which will automatically remove the scattering from a 

measurement using operator inputs and the measured attenuation values.  Because the 

library of materials, thicknesses, and distances from the detector array are necessarily 

limited, most real measurements will not correspond exactly to one of the cases modeled 

in the previous chapter.  This situation requires either choosing the PScF values which 

are most similar to the measurement from a library or fitting the parameters using 

multivariate methods.  The latter option is likely to produce better results if good fits can 

be developed.  In this chapter, these fits will be developed using the JMP 7 statistical 

software package [52] and then incorporated into the ScatterSubtract code which will 

subtract the scattering from measured attenuation values.  The methodology used to 

remove the scatter from the measurements will be discussed in detail. 

 

6.1 Fitting the Point Scatter Function Parameters 

6.1.1 Univariate PScF Parameter Fits 

As discussed in the previous chapter, the information available to the NMIS 

operator during a measurement typically consists of the distance between the object and 

the array, the measured attenuation, and to a certain extent, the material composition of 

the object.  The cases selected for developing the library of PScF fit parameters modeled 

a large sample of possible values.  Thus, the fits for the Gaussian parameters will be 

based on these three input variables.   
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Before attempting to generate a multivariate fit of the Gaussian PScF parameters 

using these variables, an analysis of the PScF parameter response to each individual 

variable is warranted.  This analysis will help determine the maximum order of the input 

variables to be used in the PScFGEs.  The individual fits will also help determine if any 

linearizing transforms of either the input variables or the parameter response are required. 

A simple line graph of the Maximum of the PScF function (M in Equation 5.10) 

for each of the scenarios modeled in Section 5.2 is shown in Figure 6-1.  The regions 

corresponding to each of the materials are indicated on the graph.  Moving from left to 

right within each material, the first scenarios have the smallest object-to-detector 

separation and within each separation value, the first objects have the smallest 

attenuation.  Thus, the scenarios are ordered Poly 30.5, Poly31, Poly31.5, …, Poly40.5, 

Poly41, etc.  The data in Figure 6-1 shows the clear cyclical nature of the Maximum.  

Scenarios with the object closer to the detectors produce a larger maximum and within 

each object-to-detector distance for a given material, the maximum peaks at an 

attenuation value of 1 MFP and then falls off.  Heavier isotopes also have larger 

maximum values than lighter ones. 

A line graph of the Gaussian Standard Deviation for each scenario is shown in 

Figure 6-2.  The cyclical pattern is evident on this plot as well.  In general, higher 

attenuations and larger object-to-detector distances produce larger fit Standard 

Deviations.  Polyethylene and carbon produce approximately the same standard 

deviations.  Iron and lead have smaller standard deviations due to their increasingly 

forward peaked scattering cross sections.   
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Figure 6-1. A line graph of the Maximum of the PScF Gaussian fit for each of the modeled 
scenarios.  The scenarios are ordered first by material, then by object-to-detector distance 
(D) from lowest to highest, and then by material thickness (τ). 
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Figure 6-2. A line graph of the Standard Deviation (in degrees) of the PScF Gaussian fit for 
each of the modeled scenarios.  The scenarios are ordered first by material, then by object-
to-detector distance (D) from lowest to highest, and then by material thickness (τ). 
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The dashed lines surrounding the values for each material are an attempt to line up 

similar object thicknesses.  The divergence of the line from the data points indicates some 

degree of non-linearity in the standard deviation values with respect to the object-to-

detector distances.  Within each object-to-detector distance, some degree of non-linearity 

is also visible, particularly in lead.  This will be examined in more detail later in this 

section. 

Oneway plots of the Maximum and Standard Deviation parameters for each 

material are presented in Figure 6-3.  The primary information that can be gleaned from 

this figure is that each material has a different distribution of Gaussian fitting parameters, 

confirming the need to account for each material separately in the multivariate fits. 

The Maximum versus object-to-detector distance (D) for 1.5 MFP of carbon is 

plotted in Figure 6-4.  The shape of the data suggests exponential decay.  Other 

combinations of material and thickness show a similar shape.  Direct polynomial fits of 

these data points produce poor results and diverge wildly from the exponential decay 

trend outside of the data region even at orders as high as 6.  In order to address this 

problem, a logarithmic transform is warranted.  A plot of ln(Max) versus D is presented 

in Figure 6-5.  Even after the transform, there is some degree of nonlinearity.  A third 

order polynomial fits the data almost perfectly (R2 = 0.999994) and maintains the same 

trend outside of the data region.  Higher order polynomial terms have p-values of greater 

than 0.1 when used to fit the data and are not useful for predicting the variation of 

ln(Max).  Thus, D will be allowed to enter the multivariate fit of ln(Max) up to an order 

of 3.
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Figure 6-3. Oneway plots of the Maximum (top) and Standard Deviation (bottom) of the 
PScF Gaussian fits grouped by material. 
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Figure 6-4. A plot of the Maximum of the PScF Gaussian fit by object-to-detector distance 
(D) in cm for 1.5 MFP of carbon. 
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Figure 6-5. A graph of ln(Max) of the PScF fit versus object-to-detector distance (D) in cm 
for 1.5 MFP of carbon.  A linear and 3rd order polynomial fit of the data is shown.  Asterisks 
in the “Prob>|t|” column indicate statistical significance at the p=0.05 level.  Other asterisks 
indicate multiplication.  The “^” symbol indicates exponentiation.  
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The Maximum versus thickness for carbon at D = 50 cm is plotted in Figure 6-6.  

Other combinations of material and object-to-detector distance generate a similar shape.  

In order to show the trend at low material thicknesses, additional PScF simulations were 

performed in increments of 0.1 between 0.1 and 1.0 MFP for carbon at D=50.  The 

Maximum increases with the material thickness up to 1 MFP and then begins to drop off 

in an exponential fashion beyond that.  This behavior is expected since the average 

interaction depth in a material is 1 MFP.  At smaller thicknesses, fewer neutrons scatter 

in the object and at larger thicknesses, many of the neutrons that do scatter are absorbed 

or scattered away from the detectors before exiting. 

The shape of the data in Figure 6-6 corresponds with that of the function τEXP(-

τ).  A fit of the Maximum versus τEXP(-τ) is shown in Figure 6-7.  A linear fit shows an 

excellent correlation with an R2 value of 0.999925.  Thus, the use of τEXP(-τ) rather than 

τ is called for in the multivariate model.  However, since D required a logarithmic 

transform of the Maximum, the same transform needs to be applied to the attenuation.  In 

order to accomplish this, the variable β is defined, where  

     .lnexpln           (6.1) 

Two fits of ln(Max) versus β are shown in Figure 6-8.  A linear fit has an R2 value of 

0.999499.  There is also a slight nonlinearity, and a second order fit (not shown) produces 

a slightly higher R2 of 0.999859.  Third and higher order terms have p-values greater than 

0.1 and will not be considered in the multivariate fits.  

The Standard Deviation of the PScF fit versus thickness for carbon at D=50 is 

plotted in Figure 6-9.  Except in the very low attenuation range, a second order 

polynomial fit follows the data points extremely well (R2 = 0.999082).   
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Figure 6-6. A plot of the Maximum of the PScF Gaussian fit versus thickness (τ) for carbon 
at D = 50 cm. 
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Figure 6-7. A plot of the Maximum of the Gaussian PScF fit versus τEXP(-τ) for carbon at 
D = 50 cm.  A linear fit of the data is shown.  Asterisks in the “Prob>|t|” column indicate 
statistical significance at the p=0.05 level.  Other asterisks indicate multiplication.  The “^” 
symbol indicates exponentiation. 
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Figure 6-8. A plot of ln(Max) of the PScF Gaussian fit versus β for carbon at D = 50 cm.  A 
linear fit of the data is shown.  Equation 6.1 defines the variable β.  Asterisks in the 
“Prob>|t|” column indicate statistical significance at the p=0.05 level.  Other asterisks 
indicate multiplication. 
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Figure 6-9. A plot of the Standard Deviation of the PScF Gaussian fit versus thickness for 
carbon at D = 50 cm.  A second order polynomial fit is shown.  Asterisks in the “Prob>|t|” 
column indicate statistical significance at the p=0.05 level.  Other asterisks indicate 
multiplication.  The “^” symbol indicates exponentiation. 
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Even at the lowest attenuation value (τ = 0.1 MFP), the divergence of the data from the fit 

is less than 0.25°.  Thus, the second order polynomial explains the behavior of the model 

adequately, and the variable, τ, will be allowed to enter the multivariate model for the 

Standard Deviation fit up to a polynomial order of two. 

 A plot of the PScF Standard Deviation versus D for 1.5 MFP of carbon is 

presented in Figure 6-10.  Other combinations of material and thickness produce a similar 

shape.  As with the fit in Figure 6-9, a second order polynomial fit follows the data points 

extremely well (R2 = 0.999951).  Thus, D will be allowed to enter the multivariate model 

for the standard deviation fit up to a polynomial order of two. 

   

6.1.2 Multivariate PScF Fits 

Now that the univariate relationships between the input variables and the PScF 

parameters are determined, a multivariate model can be constructed.  Before this can 

proceed, one final issue needs to be addressed.  As discussed in the previous section, the 

distribution of Gaussian standard deviations and maximums are different for each 

material.  Because the material is a categorical variable, it is more difficult to use in a 

model than the continuous variables D and τ.   

In order to use the material variable in the multivariate model, a series of Boolean 

variables (e.g., Iron = 0 or 1) would have to be used separately and crossed with each of 

the continuous terms.  With n materials, this would multiply the number of (potential) 

terms in the model by n-1, resulting in a much more complicated fit equation.  With a 

large material library, the fit equations could become unmanageably large and statistical 

software like JMP 7 would have difficulty converging the solution.   
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Figure 6-10. A plot of the Standard Deviation of the PScF Gaussian fit versus object-to-
detector distance (D) for 1.5 MFP of carbon.  A second order polynomial fit is shown.  
Asterisks in the “Prob>|t|” column indicate statistical significance at the p=0.05 level.  Other 
asterisks indicate multiplication.  The “^” symbol indicates exponentiation. 

 

Instead, in this work each material will be fit separately.  This will give each material a 

unique set of coefficients.  The total number of coefficients will be approximately the 

same using this method, but the resulting fit equations (the PScFGEs) will be much 

simpler.   

Using this technique also allows for the averaging of materials (such as iron and 

lead) to provide for circumstances where the exact material composition of the object is 

unknown.  In addition to the four materials modeled in Section 5.2 (polyethylene, carbon, 

iron, and lead), two averaged fits will be developed to reflect a less than perfect level of 

operator knowledge.  In the first case, the PScF parameters of iron and lead will be 

averaged.  This average will be referred to as “material 5.”  In the second case, the PScF 

parameters of carbon, iron, and lead will be averaged and designated “material 6.” 

The allowable input variables for each model were determined based on the 

univariate models in the previous section.  In addition, each of the terms was allowed to 
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cross with the other terms up to one order less than the highest significant polynomial 

term in the univariate models.  For example, in the univariate fits of the PScF maximum, 

β was significant up to the second order and D was significant up to third order.  The 

allowable cross terms are βD and βD2.  The allowable terms for the fits of the PScF 

Maximums and Standard Deviations are given in Table 6-1.   

The multivariate fitting of PScFGEs for each of the materials was performed 

using a mixed stepwise model.  This method steps through the allowable terms and adds 

the one with the highest significance (lowest p-value) to the model as long as its p-value 

is below a preset threshold.  This process is continued and one term is added to the model 

with each iteration until there are no more with p-values below the threshold.  The 

process of adding terms to the model sequentially is known as a forward stepwise 

method.  In addition to this, the mixed stepwise method checks for the significance of the 

terms entered in the model after each iteration.  If the significance of one or more of them 

rises above a second preset threshold, the one with the highest p-value is removed.  For 

all models considered here, the thresholds for entry and removal from the model were set 

at p = 0.10.   

 

Table 6-1. A list of the terms allowed in the multivariate models for the Maximum and 
Standard Deviation of the PScF fits. 
Gaussian Parameter LN(Maximum) Standard Deviation 
Allowable Terms D 

D2 
D3 
β 
β2 
βD 
βD2 

D 
D2 
τ 
τ2 
τD 
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Once all of the significant terms are entered into the model, the PScF parameter was fit 

using a standard least squares method. 

The results of the ln(Max) fit for carbon are given in Figure 6-11.  All of the 

possible terms in Table 6-1 were significant for this model except for βD2.  Carbon will 

have a coefficient of 0 for that term in the PScFGEs.  The resulting model has an 

extremely high R2 value of 0.999599.  This R2 value is inflated because of the 

logarithmic transform of the Gaussian Maximum.  Nevertheless, it indicates that the 

model can predict the value of the Maximum with a high degree of accuracy.  The 

predicted values of the Maximum versus the actual values for each of the carbon 

scenarios are plotted in Figure 6-12.  A point lying on a line with a slope of 1 and an 

intercept of 0 indicates that the model has predicted its value exactly.  All of the points in 

Figure 6-12 lie very close to the line, confirming that the model predicts the behavior of 

the Maximum very well.  Fits of the other three materials produced similar results.  

The results of a fit of the Gaussian Standard Deviation for carbon are presented in 

Figure 6-13.  All of the allowable terms shown in Table 6-1 are significant in this model.  

The R2 value of 0.998776 shows that the model predicts the behavior of the PScF 

Standard Deviation very well.  Unlike the fit of ln(Max), this R2 value is not inflated.  A 

plot of the predicted Standard Deviation versus the actual one is shown in Figure 6-14.  

All of the data points lie very close to the line, confirming the model’s predictive ability. 

The predicted Maximum values and predicted Standard Deviations versus the 

actual values for all four of the object materials are plotted in Figure 6-15.  Each of the 

predicted values is using the material-specific coefficients and terms determined by the 

stepwise fitting procedure.   
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Figure 6-11. The resulting multivariate model of ln(Max) for carbon.  Asterisks in the 
“Prob>|t|” and “Prob > F” columns indicate statistical significance at the p=0.05 level.  All 
other asterisks indicate multiplication. 

123 



 

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

P
re

d.
 M

ax

0 0.001 0.002 0.003 0.004 0.005 0.006

Max

Linear Fit

Pred. Max = 0 + 1*Max

Linear Fit

Bivariate Fit of Pred. Max By Max

 
Figure 6-12. A graph of the predicted PScF Maximum values versus the actual values for 
carbon.  Points lying on the line correspond to predicted values which match the actual 
ones. 
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Figure 6-13. The resulting multivariate model for the PScF Standard Deviation for carbon.  
Asterisks in the “Prob>|t|” and “Prob > F” columns indicate statistical significance at the 
p=0.05 level.  Other asterisks indicate multiplication. 
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Figure 6-14. A graph of the predicted PScF Standard Deviation values versus the actual 
values for carbon.  Points lying on the line correspond to predicted values which match the 
actual ones. 
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Figure 6-15. Plots of the predicted values of the PScF Maximum versus the actual values 
(top) and the predicted values of the PScF Standard Deviation versus the actual values 
(bottom).  These plots show the values for polyethylene, carbon, iron, and lead using their 
individual fits. 
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All of the data points lie very close to the slope 1 line for both the Maximum and 

Standard Deviation of the Gaussian PScF fits, indicating the model is predicting the 

parameters very well for all nuclides. 

The results of the ln(Max) fits for materials 5 (average of iron and lead) and 6 

(average of carbon, iron, and lead) are presented in Figure 6-16.  The R2 values for these 

fits (0.960758 for 5 and 0.893104 for 6) are quite a bit lower than they were for the fits of 

individual materials.  The predicted values of the Gaussian Maximum versus the actual 

ones are plotted in Figure 6-17.  A clear grouping of the values by material can be seen in 

both plots.  The averaging tends to under predict the Maximum for the heavier materials 

being averaged and over predict it for lighter materials.  The divergence tends to increase 

with increasing values of the PScF Maximum.  The only material that follows the slope 1 

line closely is iron in material 6. 

The results for the model of the PScF Standard Deviation for materials 5 and 6 are 

shown in Figure 6-18.  As with the fits of ln(Max), these fits show much lower R2 values 

than the individual materials.  The predicted values versus the actual ones are plotted in 

Figure 6-19.  As with the Maximum, the averaged materials tend to group together and 

there is a significant deviation from the slope 1 line in most cases.  These results indicate 

that the averaged values may not produce acceptable results when subtracting the 

scattering from measured values.  These fits will be tested in the next chapter to 

determine their usefulness. 
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Figure 6-16. The resulting multivariate models for the natural logarithm of the Maximum 
of the PScF Gaussian fits for material 5 (left) and material 6 (right).  Asterisks in the 
“Prob>|t|” and “Prob > F” columns indicate statistical significance at the p=0.05 level.  
Other asterisks indicate multiplication. 
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Figure 6-17. Graphs of the predicted PScF Maximum values versus the actual values for 
material 5 (top) and material 6 (bottom).  Points lying on the line correspond to predicted 
values which match the actual ones.  Note the grouping of points that correspond to the 
individual materials which are being averaged in the definition of these two materials. 
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Figure 6-18. The resulting multivariate models for the Standard Deviation of the PScF 
Gaussian fits for material 5 (left) and material 6 (right).  Asterisks in the “Prob>|t|” and 
“Prob > F” columns indicate statistical significance at the p=0.05 level. 
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Figure 6-19. Graphs of the predicted PScF Standard Deviation values versus the actual 
values for material 5 (top) and material 6 (bottom).  Points lying on the line correspond to 
predicted values which match the actual ones.  Note the grouping of points that correspond 
to the individual materials which are being averaged in the definition of these two materials. 
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6.1.3 The Point Scatter Function Generating Equations 

With the multivariate fits completed, the final form of the PScFGEs can be 

developed.  The PScFGEs will allow the ScatterSubtract program (detailed in the next 

section) to determine the Gaussian Maximum (Max) and Standard Deviation (SD) for the 

PScF fits 

,
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2

2











SD
EXPMaxPScF

       (6.2) 

for any combination of material, object-to-detector distance (D), and attenuation (τ).  The 

forms of the PScFGEs are based on the terms used in the multivariate fits which are listed 

in Table 6-1.  At least one material used all of the possible terms in the model.  

Therefore, the PScFGEs are 

 
DbbbDbDbbSD

DaDaaaDaDaDaaEXPMax





5
2

43
2

210

2
76

2
54

3
3

2
210




. (6.3) 

 The coefficients of the two PScFGEs are dependent on the material of the object.  

The values of the Maximum and Standard Deviation coefficients for each of the six 

materials (and averaged materials) are listed in Table 6-2 and Table 6-3. 

 

6.2 Implementation of the Parameterized Scatter Removal Algorithm 

The PSRA is implemented in the ScatterSubtract code.  As discussed briefly in 

Section 4.3.4, the ScatterSubtract program calculates the corrected attenuation values for 

the correlation data in the void and object .peaks files.  The program first uses an iterative 

routine to remove the inter-array scatter from the void measurement.  



 

Table 6-2. Material specific coefficients for the Maximum PScF generating equation (Equation 6.3, top) 
a a a a aMaterial a0 1 2 3 4 5 a a6 7 

Poly -2.015225E+00 -7.679420E-02 5.112759E-04 -1.711049E-06 1.288199E+00 2.053442E-02 -2.418549E-03 0 

Carb -2.028606E+00 -7.184288E-02 4.461472E-04 -1.348499E-06 1.131994E+00 1.638951E-02 -1.976645E-03 0 

Iron -1.582257E+00 -8.241122E-02 6.540168E-04 -2.353720E-06 1.037106E+00 8.299626E-03 -2.858238E-03 1.541697E-05 

Lead -1.128685E+00 -6.752032E-02 4.280224E-04 -1.315156E-06 1.214529E+00 2.257471E-02 -2.402139E-03 0 

Mat. 5 -2.112510E+00 -4.644079E-02 1.537551E-04 0 9.314129E-01 0 0 0 

Mat. 6 -1.647906E+00 -7.204015E-02 3.299292E-04 0 1.077152E+00 0 -3.809334E-03 0 

 

Table 6-3. Material specific coefficients for the Standard Deviation PScF generating equation (Equation 6.3, bottom) 
b bMaterial b0 b1 b2 3 4 b5 

Poly 3.954940E+00 4.910408E-02 1.018272E-03 3.312332E-01 1.360807E-02 7.200204E-03 

Carb 2.199167E+00 1.227376E-01 4.967885E-04 6.212162E-01 3.649710E-02 4.528034E-03 

Iron 1.120331E+00 1.216453E-01 0 5.337523E-01 1.092541E-02 3.126423E-03 

Lead -5.296592E-01 1.124436E-01 -2.060663E-04 6.195354E-01 4.911718E-02 0 

Mat. 5 -1.590860E-01 1.125601E-01 0 9.099116E-01 0 0 

Mat. 6 1.889415E+00 1.123858E-01 0 7.124436E-01 0 0 
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It then uses the PScFGEs to remove the object scatter from the object measurement and 

find the corrected attenuation values using a second iterative routine.  The source code 

for the ScatterSubtract program can be found in Appendix H.  The remainder of this 

section will present the details of how the PSRA is implemented by ScatterSubtract. 

ScatterSubtract is launched from an MS-DOS command line using the syntax 

ScatterSubtract <Object .peaks file> <Void .peaks file> <Number of subsamples> 

<Number of detectors in the array> <Object-to-detector distance> <Material> 

<Level of Knowledge>. 

Acceptable entries for the material are Polyethylene, CH2, Carbon, C12, Iron, Fe, Lead, 

or Pb.  Only the first two letters are used by the program, so abbreviations such as Poly or 

even Po are also acceptable.  The level of knowledge (LOK) represents the operator’s 

knowledge about the shielding material.  This information is entered into the program 

using the number 1, 2, or 3.  The LOK value has no effect if the material is polyethylene.  

If the material is iron or lead and the LOK value is 2, the PScFGE coefficients for 

material 5 (average iron/lead values) are used.  Similarly, if the LOK value is 3 and the 

material is carbon, iron, or lead, the PScFGE coefficients for material 6 (average 

carbon/iron/lead values) are used. 

Once the input from the command line is read, the program opens the two .peaks 

files and begins reading them into memory.  First, the NPS values are read and stored for 

normalization purposes.  Then, the correlation peak values are read into the ObjPeaks and 

VoidPeaks arrays.  The dimensions of these two arrays are NumDets+1 rows by 6 

columns by NumSS panes where NumDets is the number of detectors in the array and 

NumSS is the number of subsamples.  These arrays are divided into subsamples because 
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the ISF and PScF is applied to each subsample separately.  The detector angle, total 

correlations, direct correlations, and no cross talk correlations are read into the first four 

columns of these arrays.  The no cross talk values are also written into the fifth column as 

the initial guess for the corrected values.  The sixth column is initially left empty, but it 

will be used later in the program.  The major arrays used in the ScatterSubtract program 

along with their dimensions and purposes are listed in Table 6-4.  All arrays are of the 

REAL (floating point) data type. 

Once the two peaks arrays have been filled, the program finds the corrected value 

of C0  by subtracting the ISFs from the measured values.  The purpose is to solve the 

equation 

      ,)(
1

,0,0,0 




n

ji
j

directmeascorr ijISFjCiCiC     (6.4) 

for each detector position where C0,corr is the corrected peak correlation value, C0,meas is 

the measured correlation value, C0, direct is the direct (true) neutron correlation value, and 

ISF(ji) is the number of additional correlations in detector i per directly transmitted 

neutron correlation in detector j.  This equation is applied separately to each subsample 

and the index n is the number of detectors in the array.  The ISF values are computed 

using Equation 5.7 and the best fit ISF parameters are given in Section 5.3.1.  The angle, 

θ, is the difference between the detector angles of i and j.  These values are stored in the 

ISF array.  The rows of the array represent the detector being scattered into (i) and the 

columns represent the detector, j, which is the source of the scatter. 
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Table 6-4. The main data arrays used in the ScatterSubtract program.  All arrays use the 
REAL data type.  
Array Name Array Dimensions Array Contents Column Contents 
ObjPeaks NumDets*+1 Rows 

× 6 Columns 
× NumSS† Panes 

Fast neutron peak 
correlation values 
for the object 
measurement. 

1 – Detector Angle 
2 – Total 
3 – Direct 
4 – No Cross Talk 
5 – Corrected 
6‡ – Fractional Error 
of Corrected Value 

VoidPeaks NumDets+1 Rows 
× 6 Columns 
× NumSS Panes 

Fast neutron peak 
correlation values 
for the void 
measurement. 

1 – Detector Angle 
2 – Total 
3 – Direct 
4 – No Cross Talk 
5 – Corrected 
6‡ – Fractional Error 
of Corrected Value 

Attenuation NumDets+1 Rows 
× 6 Columns 
× NumSS Panes 

Neutron 
attenuation values 
for each 
measurement. 

1 – Detector Angle 
2 – Total 
3 – Direct 
4 – No Cross Talk 
5 – Corrected 
6‡ – Fractional Error 
of Corrected Value 

ISF NumDets Rows 
× NumDets+1 Columns 
× NumSS Panes 

The number of 
additional counts 
in detector i (rows) 
per directly 
transmitted counts 
in detector j 
(columns) due to 
inter-array 
scattering. 

ISF of detector j 

PScF NumDets Rows 
× NumDets+1 Columns 
× NumSS Panes 

The number of 
additional counts 
in detector i (rows) 
per directly 
transmitted counts 
in detector j 
(columns) due to 
object scattering. 

PScF of detector j 

*NumDets is the number of detectors in the array. 
†NumSS is the number of subsamples in the measurement. 
‡This is the final value stored in this array.  It is used for other purposes during the course 
of the program. 
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Table 6-4 (continued) 
Array Name Array Dimensions Array Contents Column Contents 
Uncertainty NumDets* Rows 

× 5 Columns 
× NumSS† Panes 

Holds the 
uncertainty (1 σ) of 
the calculated 
attenuation values. 

1 – Angle 
2 – Total 
3 – Direct 
4 – No Cross Talk 
5 – Corrected 

Scatter NumDets Rows 
× 5 Columns 
× NumSS Panes 

Holds the fraction 
of each correlation 
value which was 
due to scattering 
rather than directly 
transmitted 
neutrons. 

1 – Angle 
2 – Total 
3 – Direct 
4 – No Cross Talk 
5 – Corrected 

ChiSq 3 Columns Hold the result of 
the χ2 goodness of 
fit test comparing 
the attenuation 
curve to the Direct 
(true) attenuation. 

1 – Total 
2 – No Cross Talk 
3 – Corrected 
 

*NumDets is the number of detectors in the array. 
†NumSS is the number of subsamples in the measurement. 
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Although the value of C0,direct is known for simulations, the PSRA is intended to 

be applied to laboratory measurements.  Therefore, the direct values will be assumed to 

be unknown.  ScatterSubtract will use those values only for checking the accuracy of the 

corrected values.  Without the direct values, the corrected void correlation values must be 

solved iteratively.  For each iteration, the equation 
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is solved, where the superscript l represents the iteration number.  When l = 1, the no 

cross talk correlation values are used as the initial guess.  With each iteration, the value of 

the summation in Equation 6.5 is calculated for each detector position and stored in the 

last column of the ISF array.  That value is then subtracted from the no cross talk value to 

generate the new corrected value, which is stored in the sixth column of the VoidPeaks 

array.  In the event that a correction results in a value less than 0, the corrected value is 

set to 0.  After each iteration, the sum of the corrected values is stored in the last 

row/pane of the array.  That value is compared to the sum of the previous iteration to 

check for convergence.  The convergence equation is 
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The corrected values are considered to be converged when ε ≤ 0.00001.  Once the 

corrected C0 values are found, they are stored in the fifth column of the VoidPeaks array.  

The fractional errors of the corrected values are calculated using the equation 
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         (6.7) 
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and stored in the sixth column of the VoidPeaks array. 

ScatterSubtract then solves for the corrected correlation peak values for the object 

measurement.  The purpose is to solve the equation 
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   (6.8) 

The ratios of the NPS values in this equation are for converting the C0 values to the 

object source strength.  Similar to Equation 6.4, this equation contains a value, τ, which 

depends on the corrected correlation value.  Therefore, the corrected object values must 

also be solved iteratively.  The iterative equation is 
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  (6.9) 

Before the iteration begins, the angles of the detectors are written into the first 

column of the Attenuation array.  The total, direct, and no cross talk attenuation values 

are calculated using the exponential attenuation formula (Equation 5.8) and stored in the 

second through fourth columns of the attenuation array.  The fifth column is used as the 

initial guess for the iterative procedure.  It is calculated using the measured (no cross talk) 

value of C and the corrected value of C0 found earlier. 

At the start of each iteration, the material, object-to-detector distance, difference 

between scattering and receiving detector angles, and the attenuation value of the 

previous iteration for each detector position are submitted to the PScFGE subroutine.  
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This subroutine determines the appropriate PScF parameters using the PScFGEs and 

coefficients from Section 6.1.3 and returns the appropriate PScF value using Equation 

5.10.  The structure of the PScF array is identical to that of the ISF array – rows represent 

the detector being scattered into and the columns represent the detector whose neutrons 

are responsible for the scattering.  Unlike the ISF values which are strictly a function of 

the detector geometry and materials, the PScF values must be recalculated with each 

iteration. 

After the individual PScF values are computed, the sum of object scattering to 

each detector (the last summation in Equation 6.9) is calculated and stored in the last 

column of the PScF array.  Simultaneously, the total inter-array scattering (the first 

summation in Equation 6.9) is calculated and stored in the last column of the ISF array.  

The corrected object correlation values are then computed by subtracting the scattering 

sums from the measured values.  The corrected values are then stored in the sixth column 

of the ObjPeaks array.  Using this value, the new attenuation values are calculated and 

stored in the sixth column of the Attenuation array.   

One possible problem that can occur during the first few PScF iterations is an 

overcorrection of the peaks value.  The overcorrection occurs because the measured 

attenuation values are lower than the true values.  If the measured attenuation is greater 

than 1, the resulting PScF maximum will be larger than the true value and the object 

peaks value will be overcorrected.  In most circumstances, this does not present a 

problem.  If the peaks value is overcorrected in one iteration, the resulting attenuation 

will be too high and it will be undercorrected on the next iteration.  In this case, the 

attenuation values should continue to oscillate around the true value, getting closer and 
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closer with each pass until they finally converge.  However, if the data is somewhat noisy 

an overcorrection could be larger than the total counts at one or more detector positions.  

If this occurs, the final results can converge to values far from the true ones.  In order to 

prevent this from occurring, the ScatterSubtract program under corrects the scattering for 

the first seven iterations.  This is accomplished by multiplying the PScF by a constant 

which increases gradually during the first few iterations.  The values of the constant for 

iterations one through seven are 0.2, 0.4, 0.6, 0.8, 0.85, 0.9, and 0.95.  Iterations eight and 

higher receive no adjustment. 

Another potential problem is values that fail to converge and cycle through a 

series of under and overcorrections about the true values.  This is especially likely to 

happen with noisy data.  In order to force convergence in this scenario, the corrected 

peaks values for each iteration after the tenth are averaged with the old ones.  This is 

accomplished by using a weighted sum of the form 

 
.

9

10 )()1(
)(







l

CCl
C

l
corr

l
corrl

corr        (6.10) 

The sum of the corrected correlation values is written in the last row/pane of the 

ObjPeaks array.  It is used for checking convergence via the equation 
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The values are considered to be converged when ε ≤ 0.00001.  Once the corrected values 

are converged, they are stored in the fifth column of the VoidPeaks array.  The corrected 

attenuation values are stored in the fifth column of the Attenuation arrays.  The sixth 
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column of these arrays is used to store the fractional errors that are computed in the same 

manner as Equation 6.7. 

ScatterSubtract then calculates the uncertainty of the total, direct, no cross talk, 

and corrected attenuation values.  These values are stored in the second through fifth 

columns, respectively, of the Uncertainty array.  The detector angles are copied into the 

first column from the Attenuation array.  The attenuation uncertainties are calculated 

using the formula 

,
11

0CC
         (6.12) 

which is derived by propagating the uncertainty of the exponential attenuation equation. 

Next, the program calculates the fraction of scattering in the total, no cross talk, 

and corrected object correlation values.  These values are stored in the Scatter array.  

Because scattering is the only source of error, the equation used to find them is identical 

to Equation 6.11, with the exception that either the total or no cross talk values are 

substituted for the corrected ones where appropriate. 

The last series of calculations performed in ScatterSubtract are χ2 goodness of fit 

tests on the total, no cross talk, and corrected attenuation values.  The form of the χ2 

equation is given in Equation 5.6.  The attenuation values are compared to the direct 

attenuation values.  The uncertainty for each detector position is the uncertainty of the 

direct attenuation which is stored in the Uncertainty array. 

Once all of the calculations are completed, the results are written out to text files.  

These text files can then be imported into a suitable analysis program such as Microsoft 
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Excel for further analysis and plotting as desired.  The program output files and their 

contents are listed in Table 6-5. 
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Table 6-5. The ScatterSubtract output files and their contents. 
File Name Contents 
Void.iter Records the corrected void peak values after each iteration.  

Primarily used for troubleshooting in the event of a convergence 
failure. 

Obj.iter Records the corrected object peak values after each PScF 
iteration.  Primarily used for troubleshooting in the event of a 
convergence failure. 

Atten.iter Records the corrected attenuation values after each iteration.  
Primarily used for troubleshooting in the event of a convergence 
failure. 

Void.out Records the final values of the void correlation peaks at each 
detector position.  Columns include detector angle, total 
correlations, direct correlations, no cross talk correlations, 
corrected correlations, and the fractional error of the corrected 
values. 

Object.out Records the final values of the object correlation peaks at each 
detector position.  Columns include detector angle, total 
correlations, direct correlations, no cross talk correlations, 
corrected correlations, and the fractional error of the corrected 
values. 

Attenuation.out Records the final attenuation values at each detector position.  
Columns include detector angle, total attenuation, direct 
attenuation, no cross talk attenuation, corrected attenuation, and 
the fractional error of the corrected values. 

Scatter.out Records the fraction of scatter in the total, no cross talk, and 
corrected object correlation values. 

ChiSq.out Records the results of the χ2 goodness of fit tests for the total, no 
cross talk, and corrected attenuation curves. 

 



 

7.  Testing of the Parameterized Scatter Removal Algorithm 

With the PSRA completed, the final step is to test it and modify it if necessary.  

This will be done using a large number of simulated and experimental NMIS imaging 

scenarios.  The PSRA will be applied to each of these measurements, and the resulting 

values will be compared to the true ones.  For simulated measurements, these values are 

computed by the PoliMiPP post-processor.  The values are recorded in the Direct column 

of the .peaks file.  The ScatterSubtract output includes these values for ease of comparing 

the corrected values to the true ones.  For experimental measurements, the true 

attenuation values will be calculated using MCNP-PoliMi simulations of the scenario.  In 

addition to the testing, the final section of this chapter will discuss a method for 

integrating a generalized form of the PSRA into future NMIS imaging measurements. 

 

7.1 Simulation Testing and Results 

The first series of tests conducted was a large number of MCNP-PoliMi 

simulations.  The methodology for simulating NMIS imaging measurements was 

presented in detail in Section 4.2 and the codes used were discussed in Sections 4.3 and 

6.2.  Unless noted otherwise, each simulated measurement consists of four subsamples 

and each subsample uses 2.5 × 107 source neutrons.  This value corresponds 

approximately to a measurement time of 15 minutes per subsample (60 minutes total) in 

the laboratory using the API-120 DT neutron generator running at an output of 4 × 107 

neutrons per second produced isotropically.  All simulations use a source-to-detector 
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distance of 110 cm and an array of 32 2.54 × 2.54 × 10.16 cm plastic scintillators with a 

center-to-center angular separation of approximately 1.67°. 

Only a small portion of the simulation results are presented in this section.  

Additional simulation results are shown in Appendix I.  A summary of the results for all 

simulations are presented in Section 7.1.3. 

 

7.1.1 Initial PSRA Testing 

The first series of test simulations uses the same cylindrically symmetric 

geometry used to calculate the PScFs in Section 5.2.  This geometry is useful for 

validating the PSRA methodology itself without any effects that might be caused by a 

different object geometry.  A total of four scenarios were chosen for testing.  Each 

scenario was based on one of the ones used for computing the PScFGEs.  Each uses a 

different material so that all four of the materials in the library are tested.  The scenarios 

also cover a wide range of χ2 values on the PScF fits.  Because these simulations use the 

PScF geometry, they will be used to adjust the PSRA algorithm if necessary.  These 

adjustments will be tested using other simulation geometries. 

The only change from the PScF modeling geometry is that the objects are 

complete cylinders instead of cylindrical arcs of material.  This change was necessitated 

by a bug in the simulation software.  In simulations run without the vertical collimator, 

no neutron collisions occurred while passing through the object initially.  The source of 

the bug is undetermined, but it is likely related to the fact that the planes used to define 

the arc in the PScF geometry passed through the source location.  Since the arcs used in 

the PScF simulations extended far beyond the angular borders of the detector arrays, the 
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use of a full cylinder will not produce any substantive changes and the problem was not 

pursued further.  An example of the modeled geometry is depicted in Figure 7-1.   

The first step of the PSRA corrects the inter-array scatter in the void 

measurement.  Since the same void output file is used with all other simulations for 

determining the attenuation curves, any error in the correction of these values will result 

in incorrect answers for all other simulations.  Thus, it is critical to ensure that the inter-

array scattering is being removed from the void simulation properly before testing the 

correction of attenuation values. 

The ScatterSubtract program outputs the corrected values for the void 

measurement in the Void.out file.  In addition, the corrected values after each iteration of 

the ISF correction are written into the Void.iter file.   

Source
Location

3 MFP Polyethylene

Detector
Array

 
Figure 7-1. The geometry used to simulate an NMIS imaging measurement of a 
cylindrically symmetric object.  The source-to-detector distance in all simulations is 110 cm. 
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The measured void correlation values and the values resulting from directly 

transmitted neutrons are shown in Figure 7-2.  The summation of the eight pixels 

produces a flat neutron profile, as expected from the calculations in Section 3.1.  Because 

the center of the pixels is offset -1.5°, the neutron correlations drop to zero at large 

positive detector angles while at large negative angles, the correlations drop to only 40% 

of the maximum value.  This fact will have some bearing on the calculated attenuation 

curves and will be discussed further in later sections.  For the uncorrected values, inter-

array scatter produces extra counts which result in a neutron correlation profile that is 

larger than the Direct values.  For this detector array geometry and the 1 MeV neutron 

energy threshold used during post-processing, the measured values are approximately 5% 

larger than the Direct ones. 
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Figure 7-2. A plot of the Void simulation neutron correlation as a function of detector angle.  
The Direct curve consists of only the directly transmitted DT neutron response while the 
Uncorrected curve includes neutrons scattered from one detector in the array to another. 
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The void correlation curves after each iteration of the ISF subtraction are plotted 

in Figure 7-3.  Note the scale on the vertical axis, which zooms in on the flat top of the 

neutron correlation profile.  The Iteration 0 curve is the uncorrected value taken directly 

from the .peaks file.  The Iteration 1 curve falls just below the direct values.  Iterations 2-

5 all overlap and are indistinguishable even with this vertical scaling.  The Iteration 5 

curve follows the Direct correlation curve extremely well and only very slight deviations 

of the two curves are visible.  The fractional errors of the corrected values (see Equation 

6.6) range between approximately 1 × 10-4 and 1 × 10-3.  These values are less than or 

equal to the fractional uncertainty of the correlation values.  Thus, the corrected 

correlation values are statistically identical to the Direct values. 

The first object simulation modeled was the Poly63 scenario.  The neutron 

correlation curve for each of the PScF subtraction iterations is plotted in Figure 7-4.  As 

discussed in Section 6.2, it is desirable to under correct the object scattering initially in 

order to prevent the possibility of the correlation curve converging to a value far from the 

true values.  This is evident in Iterations 1-3, which progressively drop closer to the 

Direct correlation curve as scattering is removed.  Note that the uncorrected value has a 

convex top resulting from the fact that the center detectors are receiving more scattering 

than those near the ends of the array.  In addition to the corrected values becoming 

smaller with each iteration, the curve loses the domed top and takes on the correct flat 

shape.  Iterations 8-12 were omitted for clarity.  Iteration 13 is the converged result, and 

thus, its value represents the final corrected value. 
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Figure 7-3. A plot of the Void neutron correlation curve for each of the ISF subtraction 
iterations and the Direct curve.  Note the vertical scale, which is zoomed in on the top of the 
correlation profile. 
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Figure 7-4. The neutron correlation curves for the Poly63 scenario.  The curve resulting 
from each iteration of the PScF correction is shown along with the Direct value which 
includes only correlations due to uncollided 14 MeV neutrons.  Iterations 8-12 are omitted 
for clarity. 
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The Poly63 correlation curves are plotted on a much narrower vertical scale in 

Figure 7-5.  Only the seventh and thirteenth (final) iterations are shown for clarity.  

Although the correlation curve of Iteration 13 generally falls within the statistical 

fluctuations of the Direct curve, it appears to be systematically lower, indicating a slight 

overcorrection.  The curve for Iteration 7 follows the Direct value much more closely and 

does not appear to be systematically biased in either direction.  The carbon PScF 

scenario, Carb61, shows the same result with Iteration 7 being very close to the Direct 

value and the final iteration being a slight overcorrection. 

The attenuation curves for the Poly63 scenario after each of the PScF subtraction 

iterations are shown in Figure 7-6 and Figure 7-7.  These curves are the results of using 

the exponential attenuation equation (Equation 1.1) with the corrected object correlation 

values after each iteration and the corrected void iteration values shown in Figure 7-3.  

As the object correlation values fall with each successive iteration, the resulting 

attenuation values rise.  The convex shapes visible in the first few iterations of Figure 7-4 

result in a concave attenuation curve in Figure 7-6.  Again, the Iteration 7 values appear 

to be very close to the Direct ones, while the final iteration (Iteration 13) appears to be a 

slight overcorrection.  Iteration 7 corresponds to a PScF correction of 95% of the value 

calculated using the PScFGEs.  This discrepancy is likely due to a slight non-Normality 

in the tails of the object scattering function.  Although the deviation is very small for any 

given detector, the superposition of many PScFs produces a small but noticeable 

overcorrection.  In order to account for this overcorrection, the ScatterSubtract code was 

modified to remove a maximum of 95% of the PScF maximum value from polyethylene 

or carbon objects.   
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Figure 7-5. The neutron correlation curves for the Poly63 scenario plotted on a narrower 
vertical scale.  The Iteration 7 curve represents a correction of 95% of the PScF maximum, 
and Iteration 13 is the final converged value.  Note that the Iteration 7 curve generally 
follows the Direct curve better. 
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Figure 7-6. A plot of the attenuation curves for the Poly63 scenario.  The Direct attenuation 
curve is shown along with the values after several of the scatter subtraction iterations.  
Iterations 6 and 8-12 are omitted for clarity.  The large peak in the circled region is caused 
by poor statistics in that region due to a small number of source neutrons. 
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Figure 7-7. A plot of the Poly63 attenuation curves on a narrower vertical scale.  As with the 
object correlation values, Iteration 7 matches the Direct values better than the final 
converged values corresponding to Iteration 13. 

 

Another feature visible in Figure 7-6 is the presence of a large peak in the 

attenuation curve at a detector angle of approximately +25°.  The peak corresponds to the 

region of the neutron correlation curve (see Figure 7-2) where the number of correlations 

has diminished to almost zero.  Because of the small number of counts and corresponding 

large statistical uncertainty in this region, the scatter correction can result in an extremely 

high corrected attenuation value.  Because of the small number of source neutrons, the 

peak has very little effect on the PSRA.  In general, this area should be avoided when 

placing an object to be imaged. 

The attenuation curves for the Iron76 and Lead32 scenarios, respectively, are 

shown in Figure 7-8 and Figure 7-9.   
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Figure 7-8. A plot of the attenuation curves for the Iron76 scenario.  Note that the Iteration 
7 curve is a slight undercorrection and the final converged values represented by the 
Iteration 21 curve are a slight overcorrection. 

 

1.90

1.95

2.00

2.05

2.10

-30 -20 -10 0 10 20 30

Iteration 7

Iteration 15

Direct

Detector Angle (Degrees)

A
tt

en
ua

tio
n

 (
M

F
P

)

 
Figure 7-9. A plot of the attenuation curves for the Lead32 scenario.  Note that even the 
final converged values represented by the Iteration 15 curve are a slight undercorrection. 
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For each, the Direct attenuation curve is shown along with the corrected attenuation 

values after Iteration 7 and the final iteration.  Because of the 6 MFP thickness, the 

Iron76 scenario used 1 × 108 source neutrons per simulation in order to reduce the 

statistical fluctuations in the results.  For the Iron76 attenuation curve, the Iteration 7 

curve appears to be a slight undercorrection while the final corrected curve (Iteration 21) 

appears to be a slight overcorrection.  With the Lead32 attenuation curve, even the final 

corrected curve (Iteration 15) is a slight undercorrection.  This increasing undercorrection 

with the heavier scattering nuclei is likely caused by the forward peaking of the elastic 

scattering cross section.  For lead in particular, the diffraction patterns in the elastic 

scattering cross section caused the Gaussian PScFs to fit somewhat poorly in the tail 

regions.  Although the discrepancy is fairly small for any single PScF, the superposition 

of many similar PScFs causes an undercorrection in the lead attenuation curve.   

To account for these results, iterations greater than 7 will subtract 97% of the 

PScF maximum for iron and 105% of the PScF maximum for lead.  The likely cause of 

these deviations is the forward peaking of the elastic scattering cross sections for these 

heavier nuclei.  As stated previously, the Gaussian PScF fits are not particularly good in 

the tails regions because of the diffraction patterns produced by higher order (p-wave and 

above) scattering.  In order to account for these features, a much more complex model 

using Legendre polynomials would be required.  Such a model would be much more 

computationally intensive than the Gaussian model and will not be explored in this work. 
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7.1.2 Other Simulation Results 

Now that the initial testing of the PSRA is complete, some additional simulation 

results will be presented in this section.  These simulations will test the PSRA algorithm 

and also the modifications made based on the results in the previous section.   

The first simulation used two different shell thicknesses of material in order to test the 

how well the PSRA performs when applied to multiple thicknesses of material.  The 

geometry used for this first simulation, titled C2C4, is depicted in Figure 7-10.  It consists 

of half shells of graphite 2 and 4 MFP thick.  The outer edge of the cylinder is located 40 

cm from the detector array.  The attenuation curves produced by the ScatterSubtract code 

are plotted in Figure 7-11.  The corrected attenuation values show that the scatter 

subtraction yields near-perfect results.  The corrected curve shows the proper horizontal 

profile in the two plateau regions and is indistinguishable from the Direct curve in most 

places.  The scatter correction also results in a much higher contrast between the two 

plateau regions.  The improved contrast will allow for the more accurate identification of 

features within the object being imaged. 

The next scenario use slabs of two different thicknesses joined vertically along the 

plane connecting the source location and the horizontal center of the detector array.  The 

two slabs have perpendicular thicknesses of 1 and 3 MFP.  The slabs used in this scenario 

are composed of carbon.  Figure 7-12 shows the geometry used for this scenario.   The 

resulting attenuation curves for the C13S scenario are shown in Figure 7-13.  The 

corrected attenuation curves for this simulation follow the Direct attenuation curves very 

well and only small deviations are visible.  The scatter correction also increases the 

contrast between the two slabs. 
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Figure 7-10. The geometry used to simulate two different thicknesses of object material.  
The object consists of two half shells of different thicknesses joined at the 0° and 180° 
positions.  The source-to-detector distance in all simulations is 110 cm. 
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Figure 7-11. The attenuation curves for the C2C4 scenario. 
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Figure 7-12. The geometry used for simulating measurements of slabs composed of two 
thicknesses of material.  The configuration shown is the C13S scenario. 

 

159 



 

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

-30 -20 -10 0 10 20 30

Direct

No XTalk

Corrected

Detector Angle (Degrees)

A
tte

nu
at

io
n 

(M
F

P
)

 
Figure 7-13. The attenuation curves for the C13S scenario. 
 

Another scenario used for testing the PSRA on a slab geometry employs a step 

wedge design.   The step wedge is a slab that increases its thickness in finite steps from 

one end to the other.  The step wedge modeled here has six thicknesses of iron ranging 

between 1 and 3.5 MFP in steps of 0.5 MFP.  Each step is 8 cm wide except for the first 

and last which are 34 cm wide.  These wide outer steps extend the step wedge well 

beyond the horizontal extent of the DT pixels.  The flat edge of the step is located 40 cm 

from the angular center of the detector array.  The geometry of the step wedge scenario is 

depicted in Figure 7-14. 

The attenuation curves for the step wedge scenario are plotted in Figure 7-15.  

The corrected attenuation values show excellent agreement with the Direct values except 

for a slight divergence at the two thickest steps.   
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Figure 7-14. The geometry of the step wedge scenario.  The source-to-detector distance is 
110 cm. 
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Figure 7-15. The attenuation curves for the Step Wedge scenario. 
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This scenario and the others presented in this section show that the PSRA can 

successfully correct the attenuation values for a slab geometry with a minor modification 

to account for the changing object-to-detector distance. 

The next object geometry to test is cylindrical geometry.  Unlike the PScF 

geometry, these cylindrical objects are not symmetric about the source location.  This 

geometry is frequently encountered in NMIS imaging in the form of a drum or barrel.  A 

barrel filled with steel beads, two iron pipes, a depleted uranium casting, and a 

polyethylene rod was modeled to simulate such an object.  The object in this scenario is a 

based on the object shown in Figure 1-5.  The barrel is located so that its center is exactly 

half way (55 cm) between the neutron source location and the center of the detector array.  

The barrel has thin steel walls approximately 1 mm thick and an outer radius of 17.88 cm.  

The geometry of the object and the detector array is presented in Figure 7-16.  The 

dimensions and cross sections of the materials inside the barrel are listed in Table 7-1.   

The attenuation curves for the barrel simulation are plotted in Figure 7-17.  The 

PSRA does an excellent job of removing the scatter from the measured values.  There is a 

slight deviation between the measured and Direct attenuation curves, but in general, the 

two follow each other very well.  The scatter correction also greatly increases the contrast 

between the two iron pipes (the double humped regions at approximately ±10°) and 

between the DU casting (large peaks at approximately ±5°) and the surrounding regions 

of air.  The presence of uranium and polyethylene in the object does not seem to 

negatively affect the results because they occupy a relatively small portion of the object. 
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Figure 7-16. The geometry used for simulating the Barrel measurement.  Dimensions for the 
barrel contents are listed in Table 7-1.  The source-to-detector distance is 110 cm. 
 

Table 7-1. The dimensions and cross sections of the materials inside of the barrel. 
Shell Material Inside  

Diameter (cm) 
Outside 
Diameter (cm) 

Cross section 
(cm-1) 

1 Polyethylene 0 2.54 0.11 
2 Air 2.54 8.89 0 
3 Depleted Uranium 8.89 12.70 0.28 
4 Air 12.70 15.24 0 
5 Iron Pipe 15.24 16.83 0.22 
6 Steel Beads 16.83 20.32 0.13 
7 Iron Pipe 20.32 21.91 0.22 
8 Steel Beads 21.91 35.56 0.13 
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Figure 7-17. The attenuation curves for the barrel scenario. 
 

Because the barrel and the objects inside are cylindrically symmetric, the 1D 

attenuation curve can be converted to a 2D attenuation map.  For NMIS imaging, the 

FBPGUI program performs this task using a filtered back projection (FBP).  For general 

object geometries, the program requires a series of projections taken at different angles 

through the object.  For a cylindrically symmetric object, the FBPGUI code uses a single 

projection and assumes that the same values are recorded all around the object.  In order 

to use this program, the void.out and object.out files produced by ScatterSubtract were 

converted to the custom comma separated variable (.csv) files used by FBPGUI using a 

small piece of Fortran-90 code.  This code extracts the Direct, corrected, and No XTalk 

(uncorrected) values and creates an FBPGUI input file for each.   

The 2D reconstructions of the uncorrected (left) and corrected (right) values for 

the barrel simulation are shown in Figure 7-18.   
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Figure 7-18. 2D Reconstructions of the barrel using uncorrected (left) and corrected (right) 
attenuation data. 
 

The input files contain the location of the center of the object so the reconstruction shows 

the x and y positions of the various centers, in cm, relative to the center of the object.  

The colors show the macroscopic cross section of the various regions in units of cm-1.  

The corrected image shows a much higher contrast between the steel beads, the iron 

pipes, and the depleted uranium casting.  The cross section values for the iron pipes and 

uranium in the corrected plot are much closer to their true values of 0.22 and 0.29 than in 

the imaged produced by the uncorrected data.  Since the goals of NMIS imaging 

measurements are to identify the shape and composition of the internal structure of the 

object, the closer the reconstructed cross section values match the real ones the more 

likely it is that the materials will be correctly identified. 

The reconstructions of the measured and corrected data on 3D axes are presented 

in Figure 7-19 and Figure 7-20.  Here, the cross section values are represented by both 

the color and the height of the various regions.   
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Figure 7-19. A 3D plot of the barrel reconstruction using the uncorrected attenuation 
values.  The z-axis and color mapping show the macroscopic cross section in each region. 
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Figure 7-20. A 3D plot of the barrel reconstruction using the corrected attenuation values.  
The z-axis and color mapping show the macroscopic cross section in each region. 
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The positions of the DU casting, the two iron pipes, and the steel shot in the 

image are noted in Figure 7-19.  In the uncorrected data, the cross section of the inner 

pipe shows a much lower value than the outer ones.  The apparent cross section of the 

DU casting shows up at about the same level as the outer pipe.  There is also a distinct 

concavity in the outer layer of steel beads as the cross section in that region drops as it 

nears the outer iron pipe.  The reconstruction in Figure 7-20 shows that these errors are 

almost entirely corrected by the PSRA.  The steel shot appears nearly flat from inside to 

out, the inner and outer pipes display approximately the same cross section, and the 

casting has a much higher value than any of the other materials.  

This scenario shows that the PSRA can accurately remove the scattering from a 

cylindrical object.  The corrected data produces a much more accurate mapping of the 

internal cross sections than the uncorrected data.  The corrected data also shows a much 

higher contrast between the different materials.  This will minimize the probability that 

regions of materials will mistakenly be combined into a single cell. 

In Chapter 6, two averaged materials were defined and PScFGE coefficients for 

these materials were coded into the ScatterSubtract program.  These two averaged 

materials were designated “material 5” (an average of iron and lead) and “material 6” (an 

average of carbon, iron, and lead).  The purpose of these two averaged materials is to test 

how well the PSRA can perform when the knowledge of the material composition of the 

object is less than perfect.   The attenuation curves using the material 5 coefficients in the 

ScatterSubtract program to correct the Iron76 and Lead32 scenarios are shown in Figure 

7-21 and Figure 7-22.  The use of the averaged material values overcorrects the scenario 

with iron and undercorrects the one with lead.   
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Figure 7-21. The attenuation curves for the Iron76 scenario.  The PSRA used material 5 
(average of iron and lead) PScF values to correct the scatter. 
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Figure 7-22. The attenuation curves for the Lead32 scenario.  The PSRA used material 5 
(average of iron and lead) PScF values to correct the scatter. 

 

168 



 

The corrected values diverge fairly significantly from the Direct values; however, the 

divergence of the scatter corrected values is much smaller than that of the uncorrected 

values and the overall shape is much more accurate. 

The simulated measurement scenarios presented thus far have all consisted of 

only a single material in order to test the function of the PSRA.  While this may 

accurately represent some real world scenarios (e.g., a radioactive source surrounded by a 

large quantity of homogeneous shielding material) most objects will be composed of 

more than one material.  The measurement of cylindrically symmetric shells consisting of 

two materials was simulated in order to test how well the PSRA performs when the 

scatter correction for a single material is applied.  Figure 7-23 shows the geometry used 

for one of this scenarios, the PbPo scenario, which consists of a 2 MFP layer of lead 

inside of a 2 MFP layer of polyethylene. 

The attenuation curves for the PbPo scenario generated by using the lead and 

polyethylene PScF values, respectively, to remove the scatter are plotted in Figure 7-24 

and Figure 7-25.  Using the lead coefficients results in a significant overcorrection of the 

attenuation values and using polyethylene results in a significant undercorrection.  The 

shapes of the corrected attenuation curves also differ markedly from the horizontal shape 

of the Direct curve.  Overall, the use of the PScF values for a single material produces 

poor results for this scenario.  In order to make the PSRA useful for a wide range of 

possible scenarios, this problem needs to be addressed.  Section 7.3 will revisit this issue 

for the purpose of developing a method which can use the coefficients for multiple 

materials when applying the PSRA. 
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Figure 7-23. The geometry used for simulating measurements of cylindrically symmetric 
shells consisting of more than one material.  The configuration shown here is the PbPo 
scenario. The source-to-detector distance in all simulations is 110 cm. 
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Figure 7-24. The attenuation curves for the PbPo scenario.  The PSRA used lead PScF 
values to correct the scatter. 
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Figure 7-25. The attenuation curves for the PbPo scenario.  The PSRA used polyethylene 
PScF values to correct the scatter. 
 

7.1.3 A Summary of the PSRA Performance with Simulated Measurements 

With a couple of exceptions (multiple materials and averaged materials), the 

scatter removal algorithm produced excellent results when applied to simulated scenarios.  

In Section 7.1.1, the PSRA produced near perfect results when removing the inter-array 

scatter from the void measurement.  Since all of the simulation scenarios used the same 

void simulation, the performance of the PSRA when removing scatter from the object 

measurement translates directly into the attenuation profile.  For this reason, the goodness 

of the scatter correction has been tested to this point by comparing the corrected and 

uncorrected attenuation curves to the Direct attenuation curve which is computed using 

only directly transmitted neutrons. 

In this final section reporting on the simulated results, the corrected and uncorrected 

attenuation values will be compared to the Direct data using a more quantitative 
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methodology.  As mentioned in Section 6.2, the ScatterSubtract program performs a χ2 

goodness of fit test comparing the corrected and uncorrected attenuation curves to the 

Direct one.  These values are recorded in the ChiSq.out text file.  The χ2 values for each 

of the scenarios tested are listed in Table 7-2.  The final column shows the ratio of the 

uncorrected value to the corrected value as a quantitative measure of the improvement 

realized by the scatter subtraction algorithm.  

The results in Table 7-2 show that with the exception of a single scenario (L1P3 

corrected as lead), the PSRA produced a more accurate attenuation curve than the 

uncorrected values.  The χ2 values represent the total number of variances (uncertainty 

squared) between the two curves being compared.  Since both the corrected and 

uncorrected tests used the variance of the direct data in the denominator, the ratio of the 

two is the ratio of the sums of their squared errors.  The square root of the ratio is, 

therefore, the ratio of the average deviation, e.g., a ratio of 100 indicates that the 

corrected values deviate from the Direct values 10 times less on average than the 

uncorrected values. 

The scenarios using objects composed of a single material, whose attenuation was 

corrected using the material-specific PScFGE coefficients, all resulted in ratios of greater 

than 60, which corresponds to a decrease in the average deviation by a factor of 7.75 or 

greater.  This indicates that the PSRA methodology is sound and that its use can greatly 

improves the accuracy of the attenuation values.  The use of the material-averaged 

PScFGE coefficients produced ratios which mostly lay in the 20 to 40 range.   These 

values still represent a fairly significant improvement in the accuracy of the attenuation 

curve, but the degree of accuracy depends on the actual material of the object.   
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Table 7-2. The χ2 goodness of fit results of the uncorrected and corrected attenuation curves 
for the simulation scenarios.  The ratio column is the ratio of the uncorrected value to the 
corrected value. 
Scenario Uncorrected χ2 Corrected χ2 Ratio 

Simple Cylindrically Symmetric Objects 
Poly63 6.579E+04 7.778E+01 845.8 
Carb61 8.382E+04 1.347E+03 62.20 
Iron76 2.076E+05 2.995E+02 693.1 
Lead32 1.032E+06 1.108E+03 931.5 

Cylindrically Symmetric Objects with More than One Material Thickness 
C2C4 2.980E+05 2.366E+02 1259 
L2L4 6.055E+05 1.939E+03 312.2 

Objects Corrected Using Material Averaged PScF Values 
Iron76 (Mat. 5) 2.076E+05 1.438E+03 144.3 
Lead32 (Mat. 5) 1.032E+06 2.935E+04 35.19 
Carb61 (Mat. 6) 8.382E+04 7.182E+03 11.67 
Iron76 (Mat. 6) 2.076E+05 1.200E+04 17.29 
Lead32 (Mat. 6) 1.032E+06 1.704E+04 60.59 
C2C4 (Mat. 6) 2.980E+05 4.111E+04 7.250 
L2L4 (Mat. 6) 6.055E+05 2.024E+04 29.91 

Objects Composed of Multiple Materials 
PbPo (as Lead) 1.571E+05 7.682E+04 2.045 
PbPo (as Poly) 1.571E+05 2.942E+04 5.339 
PoPb (as Lead) 1.842E+05 8.432E+04 2.186 
PoPb (as Poly) 1.842E+05 4.257E+04 4.328 
LPoL (as Lead) 6.453E+05 2.527E+05 2.554 
LPoL (as Poly) 6.453E+05 1.348E+05 4.784 
L1P3 (as Lead) 9.917E+04 1.470E+05 0.6744 
L1P3 (as Poly) 9.917E+04 6.876E+03 14.42 
L3P1 (as Lead) 2.373E+05 3.074E+04 7.721 
L3P1 (as Poly) 2.373E+05 7.289E+04 3.256 

Objects with a Slab Geometry 
CaSl 2.180E+05 3.071E+03 70.99 
LeSl 5.125E+05 2.423E+03 211.5 
C13S 2.125E+05 6.337E+02 335.4 
L13S 4.559E+05 8.530E+02 534.5 
Step Wedge 4.512E+05 8.661E+02 521.0 

Objects With a Cylindrical Geometry 
PoCy 7.338E+04 7.816E+02 93.89 
FeCy 8.307E+04 7.304E+02 113.7 
Barrel 1.782E+05 9.586E+02 185.9 
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Finally, most of the objects composed of multiple materials resulted in ratios below 10.  

While all but one of these scenarios did produce slightly better attenuation curves, they 

might not produce better results when determining the material composition of an object.  

Because the uncorrected attenuation values are systematically low, they provide a lower 

bound to material cross sections when the object is reconstructed.  If, for example, the 

uncorrected cross section values indicate a region with a cross section of 0.13 cm-1, 

polyethylene (0.11 cm-1) could almost certainly be ruled out.  If the scatter correction 

produces a modest overcorrection of the attenuation values, polyethylene might be 

incorrectly ruled out.  Section 7.3 will examine ways in which the scatter correction 

might be modified to improve its accuracy in a wider range of scenarios. 

 

7.2 Experimental Testing and Results 

Now that the PSRA methodology has been tested using simulated imaging 

measurements, the next step is to test it with experimental data.  One problematic aspect 

of NMIS measurements is that due to the constant research and development aimed at 

improving its performance, the configuration is in a constant state of change.  These 

configuration changes include items such as the radius of the detector arm, the alpha 

detector PMT and light guide, the configuration of the electronics, and updates to the 

NMIS software packages.  Because the PSRA is based on a given configuration, it is only 

applicable to measurements made with approximately the same setup.  Because of this 

restriction, only three measurements are available for testing.  While a greater number 

would be preferred, taking new data with this configuration is not feasible in the short 

term because of a planned series of measurements which have made the 110 cm radius 
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detector arm unavailable.  Despite this, the three measurements available should be 

sufficient to test the PSRA on measured data and determine if it is a viable option for 

removing the scatter from experimental imaging data. 

All experimental measurements were made were made using the 110 cm radius 

detector arm.  The arm has 32 2.54 × 2.54 × 10.16 cm plastic scintillators with an angular 

separation between adjacent detector centers of approximately 1.67°.  The API-120 was 

operated with an accelerator voltage of 87 kV and a current of 60 μA.  At these settings, 

the total neutron output is approximately 4 × 107 neutrons per second produced 

isotropically.  A bias of 1100 V was applied to the H8500 PMT attached to the alpha 

detector.  At this setting, each of the eight pixels counted approximately 30,000 alpha 

particles per second. 

 

7.2.1 Imaging Detector Efficiency 

Before any imaging measurements were performed, the neutron energy threshold 

of the imaging detectors was tested using a 252Cf spontaneous fission source.  The 252Cf 

source is mounted in an ion chamber which detects the heavy nuclides produced by each 

fission.  This signal is used to measure the time-of-flight of the fission neutrons to the 

imaging detectors.  Because the time-of-flight is a direct function of energy and the 

energy spectrum of 252Cf is well documented, this information can be used to determine 

the detector efficiency at various neutron energy levels.  The efficiency is reported as a 

percentage of neutrons that hit the front face of the detector which generate a count.  The 

lower energy limit where the neutron efficiency falls to zero is the detector neutron 

energy threshold.   
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The fitted efficiency curves for the 32 imaging detectors produced by the 

Integrated Sata and Analysis Software (IDAS) are plotted in Figure 7-26.  This data in 

this plot shows that the detector thresholds are all approximately 1.5 MeV.  Because the 

PScF and the ISF fits were calculated assuming a threshold of 1.0 MeV, an attempt was 

made to lower the detector thresholds to this level by increasing the PMT voltage and 

lowering the constant fraction discriminator (CFD) threshold.  However, due to the fact 

that the 32 detectors share a single four channel high voltage power supply, this failed.  

Either the maximum allowable PMT voltage or the minimum threshold was reached 

before the detector thresholds reached 1.0 MeV. 

In order to proceed, the experiments were conducted using a detector threshold of 

1.5 MeV.  In order to make the PSRA applicable to these measurements, it was necessary 

to calculate new PScF and ISF parameters for this threshold.  This was relatively easy to 

change using the results of the PScF simulations.  The .dat files were post-processed 

using a 1.5 MeV threshold, and the PScF and ISF coefficients were calculated using the 

method described in Chapters 5 and 6.  The resulting ISF coefficients for 1.5 MeV are 

A = 0.03117959; B = 0.004329379; S = 1.434710°; and T = 2.981670°. 

The PScF coefficients for polyethylene, carbon, iron, and lead are listed in Table 7-3 and 

Table 7-4.  Because the averaged material coefficients were not tested with the 

experimental data, they were not calculated for 1.5 MeV.  These coefficients were 

entered into the ScatterSubtract code and the program was recompiled for use with the 

experimental data. 
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Figure 7-26. The fitted detector efficiency curves for the 32 NMIS imaging detectors 
generated using a 252Cf spontaneous fission source. 
 

 



 

Table 7-3. The 1.5 MeV Coefficients for the Maximum PScFGE. 
a a aMaterial a0 1 2 3 a a a a4 5 6 7 

Poly -1.970022E+00 -7.738703E-02 5.142299E-04 -1.708127E-06 1.281804E+00 1.982459E-02 -2.419642E-03 0 

Carb -2.032200E+00 -7.164776E-02 4.372984E-04 -1.288139E-06 1.113186E+00 1.389208E-02 -1.996984E-03 0 

Iron -1.579900E+00 -8.245448E-02 6.539626E-04 -2.349230E-06 1.034258E+00 7.107147E-03 -2.915926E-03 1.579430E-05 

Lead -1.147211E+00 -6.694131E-02 4.203523E-04 -1.279453E-06 1.204600E+00 2.094446E-02 -2.373614E-03 0 

 

 

Table 7-4. The 1.5 MeV Coefficients for the Standard Deviation PScFGE. 
Material b0 b1 b2 b b b3 4 5 

Poly 3.993199E+00 4.843557E-02 1.056716E-03 3.282769E-01 1.245424E-02 7.561633E-03 

Carb 1.928307E+00 1.338948E-01 4.388464E-04 6.694405E-01 2.914982E-02 4.600967E-03 

Iron 1.128059E+00 1.220379E-01 0 5.138568E-01 9.921068E-03 3.294349E-03 

Lead -3.270967E-01 1.076363E-01 -1.807323E-04 5.710022E-01 5.119608E-02 6.383550E-04 
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7.2.2 Homogeneous Slabs 

The first two imaging measurements available are homogeneous slabs of material similar 

to those simulated in Section 7.1.6.  The first slab measurement used a polyethylene slab 

with dimensions 81.3 cm wide × 50.8 cm high × 11.8 cm thick.  The slab was composed 

of three identical sheets of polyethylene.  The second measurement used a slab of 

graphite measuring 45.7 cm wide × 45.7 cm high × 7.62 cm thick.  Both slabs were 

placed perpendicular to the line between the DT source location and the center of the 

imaging detector array with an object-to-detector distance of 60 cm.  Each measurement 

consisted of four subsamples.  Each subsample was measured for 10 minutes, resulting in 

a total measurement time of 40 minutes.  The void measurement used for computing 

attenuation values consisted of four subsamples of five minutes each. 

The attenuation curves for the polyethylene slab measurement are plotted in 

Figure 7-27.  The Direct curve was calculated by simulating the scenario with MCNP-

PoliMi.  A quick calculation using the 14.1 MeV cross section value for polyethylene 

predicts a thickness of 1.30 MFP through the center of the slab, which agrees well with 

the Direct attenuation curve.  The scatter correction produces an attenuation curve that is 

significantly closer to the Direct values than the measured data; however, the corrected 

values are still substantially under corrected. 

The attenuation curves for the graphite slab measurement are shown in Figure 

7-28.  As with the previous measurement, the scatter correction produces a more accurate 

attenuation curve, but the corrected values still fall well below the Direct curve. 
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Figure 7-27. The attenuation curves for the polyethylene slab measurement.  The Direct 
curve was generated by modeling the measurement with MCNP-PoliMi. 
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Figure 7-28. The attenuation curves for the graphite slab measurement.  The Direct curve 
was generated by modeling the measurement with MCNP-PoliMi. 
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7.2.3 The Barrel Measurement 

The final experimental imaging measurement uses the barrel configuration that 

was modeled in Section 7.1.2.  The geometry of this measurement is identical to that 

simulation with the exception of the location of the barrel center.  The barrel center was 

located at 58.3 cm from the center of the detector array. 

The barrel measurement consisted of four subsamples of 20 minutes each and the 

void measurement consisted of four subsamples of 5 minutes each.  The attenuation 

curves for the barrel measurement are plotted in Figure 7-29.  As with the two slab 

measurements, the corrected values are much closer to the Direct curve than the 

measured values, but they still represent a substantial undercorrection.  This systematic 

undercorrection, which was observed in all three experimental measurements, will be 

discussed in Section 7.2.4. 

2D image reconstructions of the uncorrected and corrected attenuation data, 

respectively, are shown in Figure 7-30 and Figure 7-31.  Both figures show the 

reconstruction using the Direct data (right) for reference.  All plots use the same color 

mapping for comparison purposes.  The uncorrected data shows almost no contrast 

between the steel beads and the iron pipes.  With the exception of the two regions of air, 

there is no contrast between different materials.  In the plot of the reconstructed data, the 

outer iron pipe is clearly visible and there is good contrast between it and the surrounding 

beads.  The DU casting shows a higher cross section value than either the beads or the 

iron pipe, which increases the likelihood that its material would be identified correctly.  

Due to its position, the inner pipe is difficult to detect and is not visible in either the 

corrected or uncorrected reconstruction. 
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Figure 7-29. The attenuation curves for the barrel slab measurement.  The Direct curve was 
generated by modeling the measurement with MCNP-PoliMi. 
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Figure 7-30. Filtered back projections of the barrel measurement generated using the 
measured (left) and Direct (right) data. 
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Figure 7-31. Filtered back projections of the barrel measurement generated using the 
corrected (left) and Direct (right) data. 
 

A 3D view of the image reconstruction for the uncorrected data is shown in 

Figure 7-32 where the z-axis represents the cross section of each region.  The color map 

scale has been changed from that in Figure 7-30 to enhance the contrast between 

materials.  This plot shows that the reconstructed attenuation value for the uranium is 

slightly lower than that of the outer pipe or the outer layer of steel beads.  The outer layer 

of beads also shows a distinct concavity and the inner pipe is not visible at all.  

A 3D view of the reconstruction using the corrected data is shown in Figure 7-33.  

Several improvements over the uncorrected view are visible.  First, the DU casting now 

shows a higher cross section than the rest of the material.  The outer pipe is higher than 

any of the surrounding beads, and the profile of the beads is almost flat.  In this view, the 

inner pipe is just visible as a slight rise at the inner edge of the inner layer of beads. 
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Figure 7-32. A 3D view of the barrel measurement generated using the measured data.  The 
z-axis and color mapping indicate the estimated material cross sections. 
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Figure 7-33. A 3D view of the barrel measurement generated using the corrected data.  The 
z-axis and color mapping indicate the estimated material cross sections. 
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The last step in the NMIS object reconstruction process is the fitting of shapes to 

the various regions in the 2D image reconstruction.  This procedure is performed by a 

MATLAB code named Fitting for NMIS measurements.  The code begins with an initial 

guess of the number of shells and the cross section of each using the FBP, such as the 

ones shown in Figure 7-31.  The new attenuation curve is compared to the old one and 

the difference between the two curves is used to adjust the initial guesses.  The new 

guesses are then entered into TAKE again.  This process continues until the new and old 

attenuation curves converge.  The final dimensions and cross section values are then 

returned to the operator. 

In order to test how much the PSRA correction improves the measurement results, 

the measured, corrected, and Direct filtered back projections were processed using the 

Fitting program.  Although the program can generate the initial guesses for the number 

and locations of the initial shells automatically, it has a strong tendency to over fit the 

data and produce too many shells.  Therefore, the standard procedure is for the user to 

enter the dimensions and cross section of each shell manually using the values seen on 

the FBP.  For this test, the true dimensions of the shells were entered as the initial guesses 

in order to maximize the accuracy of the fitted cross section values.  These fitted values 

can then be compared to the true values. 

The fitted cross section values for the measured, corrected, and Direct curves are 

listed in Table 7-5.  The fitted dimensions were all very close to the true values and were 

omitted for clarity.  The measured data produces very poor results.  In particular, the 

beads, the iron pipes, and the uranium all have approximately the same fitted cross 

section values, indicating very little contrast between these regions.   
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Table 7-5. Fitted cross section values for each of the eight regions of the barrel generated 
using the Fitting program.  The fitted values using measured, corrected, and Direct data are 
shown. 
Shell Name True Values Fitted Cross Section Values (cm-1) 
  I.D. (cm) O.D. (cm) Σ (cm-1) Measured Corrected Direct 

1 Poly 0 2.54 0.11 0.089 0.097 0.061 
2 Air 2.54 8.89 0 0.050 0.043 0.002 
3 DU 8.89 12.70 0.28 0.106 0.171 0.281 
4 Air 12.70 15.24 0 0.039 0.017 0.000 
5 Iron Pipe 15.24 16.83 0.22 0.098 0.134 0.212 
6 Iron Beads 16.83 20.32 0.13 0.108 0.130 0.130 
7 Iron Pipe 20.32 21.91 0.22 0.111 0.190 0.243 
8 Iron Beads 21.91 35.56 0.13 0.117 0.130 0.132 

 

The two layers of beads actually have higher fitted cross section values than the pipes 

inside them.  The corrected cross section fits show a greatly increased contrast between 

the outer iron pipe and the surrounding beads.  The DU casting value is also greatly 

increased and the cross section for the outer shell of air is greatly decreased.  The Direct 

cross section fit values represent a best case scenario.  In order to achieve better results, 

either the counting time or the angular resolution of the measurement would need to be 

increased.  The uranium value is almost perfect.  The two regions of beads and the inner 

iron pipe are very close to the true values and the cross section in the air regions is nearly 

zero.  Interestingly, the fit value for the outer iron pipe is slightly high. 

 

7.2.4 Examination of the PSRA Performance 

While the PSRA did produce a significant improvement over the measured 

attenuation values, it significantly undercorrected the data in all three scenarios.  All three 

experimental measurements were very similar to simulations where the scatter correction 

performed very well.  This leads to the conclusion that the source of the undercorrection 

lies in an underestimation of the scatter in the experimental measurements rather than a 
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failure of the PSRA itself.  The most likely source of this error is additional scattering 

produced by structures near the detector crystals such as the photomultiplier tubes, the 

detector mounting frame, the support arm, and the motor that controls the angular 

rotation of the arm. 

In the interest of developing a short-term solution to the undercorrection problem, 

an empirical correction is the best solution until a more rigorous solution can be 

developed.  As a first order approximation, both the ISF and PScF amplitudes were 

multiplied by a common factor greater than one.  This correction was predicated on the 

assumption that undercorrection was produced by an underestimation of the point scatter 

and inter-array scatter functions.  A multiplicative factor of 1.55 produced the best results 

for all three experimental measurements.  This would seem to indicate that the actual 

scattering fractions are 55% higher than the current PScF (and ISF) values taken from 

simulations.  

The attenuation curves for the three measurements after the empirical correction 

are plotted in Figure 7-34 through Figure 7-36.  The previous values without the 

correction are also shown for reference.  The new corrected values show a much better 

agreement with the Direct attenuation curve than the old ones.  For the polyethylene slab, 

the ratio of the corrected χ2 value and the measured χ2 value increased from 6.65 to 59.7.  

For the carbon slab, the value increased from 4.91 to 59.9.  The values for the barrel 

measurement increased more modestly from 4.32 to 7.19. 

The filtered back projection of the new corrected data (left) is shown in Figure 

7-37 along with the filtered back projection of the Direct data (right) for reference.   
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Figure 7-34. Attenuation curves for the polyethylene slab measurement.  Both the old and 
new (with empirical correction factor) corrected curves are shown for comparison. 
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Figure 7-35. Attenuation curves for the graphite slab measurement.  Both the old and new 
(with empirical correction factor) corrected curves are shown for comparison. 
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Figure 7-36. Attenuation curves for the barrel measurement.  Both the old and new (with 
empirical correction factor) corrected curves are shown for comparison. 
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Figure 7-37. Filtered back projection using the new corrected data with the empirical 
correction (left) for the barrel measurement.  The Direct filtered back projection (right) 
using simulated data is shown for comparison. 
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The cross sections for the outer iron pipe and the uranium casting show up significantly 

higher in this image than they did with the old corrected values (Figure 7-31).  Also, the 

inner pipe is barely discernible in this image while it was completely invisible before.  A 

3D view of the data with the cross section values on the z-axis is plotted in Figure 7-38. 

The results for the Fitting routine are presented in Table 7-6.  Both the old and 

new corrected cross section values are shown along with the measured values.  The cross 

section values for the air regions in the new corrected values are now very close to zero, 

and the cross section for the DU casting is much closer to its true value.  The values for 

the inner shell of beads and the outer pipe are slightly inflated.  While more work is 

required to produce a more exacting correction for experimental measurements, the 

PSRA with empirical correction factor produces very good results with experimental 

NMIS imaging measurements. 
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Figure 7-38. A 3D view of the new corrected filtered back projection.  Both the z-axis and 
color mapping indicate the cross section values. 
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Table 7-6. Fit results showing the cross section values calculated using the measured data 
and both the old and new corrected values. 
Shell Name True Values Fitted Cross section Values (cm-1) 
  I.D. (cm) O.D. (cm) Σ (cm-1) Measured Old New 

1 Poly 0 2.54 0.11 0.080 0.081 0.098 
2 Air 2.54 8.89 0 0.056 0.055 0.019 
3 DU 8.89 12.70 0.28 0.118 0.180 0.231 
4 Air 12.70 15.24 0 0.058 0.035 0.000 
5 Iron Pipe 15.24 16.83 0.22 0.107 0.167 0.169 
6 Iron Beads 16.83 20.32 0.13 0.104 0.132 0.152 
7 Iron Pipe 20.32 21.91 0.22 0.117 0.174 0.241 
8 Iron Beads 21.91 35.56 0.13 0.116 0.131 0.138 

 

7.3 A Method for Integrating a Generalized PSRA into NMIS Imaging 

In Section 7.1, the parameterized scatter removal algorithm produced excellent 

results when correcting scatter for objects consisting of a single known material.  Its 

performance was marginal if the material was unknown and averaged PScF coefficient 

values were used.  When objects consisting of multiple materials were imaged, the use of 

a single material’s PScF coefficients produced poor results which tended to strongly 

under or overcorrect the attenuation values.  In order to make the PSRA more useful, it 

needs to be modified to be able to deal with these scenarios properly. 

The first task is to devise a methodology for calculating the scatter produced by 

neutrons traversing multiple materials.  The current PSRA calculates the additional 

fraction of scattered neutrons that leave the outer surface of the object and reach the 

detectors.  This value is determined by the thickness of the object measured in attenuation 

lengths, the material, and the distance from the outer surface to the detector array.  For 

objects composed of multiple materials, each is generating its own scattering.   

An example of a simple case where a beam of neutrons is being transmitted 

through multiple shells of material is depicted in Figure 7-39.  
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Figure 7-39. The geometry of neutrons scattering in multiple layers of material.  Neutrons 
scattering in the first layer produce a characteristic PScF which is then further attenuated 
in the second layer.  Simultaneously, source neutrons attenuated in the first layer go on to 
produce a different PScF in the second layer. 
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The inner layer of material is lead with a thickness of τ1, so the neutrons passing through 

it will be attenuated by a factor of EXP(-τ1).  If there are no other layers present, those 

attenuated neutrons will produce a PScF for τ1 MFP of lead located a distance D1 from 

the detector array, PScF(Lead, τ1, D1).  There is, however, a layer of polyethylene behind 

the lead which will further attenuate the scattered neutrons.  If all of the attenuated 

neutrons are either absorbed or scattered in a way so that they do not produce additional 

fast neutron correlations in the peak region, the lead layer will contribute a scattering of 

EXP(-τ2)PScF(Lead, τ1, D1) to the detectors.  Simultaneously, the source neutrons were 

attenuated by a factor of EXP(-τ1) while passing through the lead layer will produce a 

scatter function in the polyethylene of EXP(-τ1)PScF(Poly, τ2, D2).  Thus, the total PScF 

for the two shells will be EXP(-τ2)PScF(Lead, τ1, D1)  +  EXP(-τ1)PScF(Poly, τ2, D2).  

For an object consisting of n shells with a total thickness τ, the total PScF can be written 

as a superposition of the PScFs for each layer attenuated by all other layers, 

.),,()(
1




n

i
iiii DmaterialPScFEXPPScF      (7.1) 

 This method for applying the PScF was tested using the lead and polyethylene 

scenarios from Section 7.1.2.  These scenarios present the simplest possible case for 

testing.  Unfortunately, there is no way to determine the relative thickness of each layer 

from the measurement data.  Therefore, the actual thickness of each layer was used when 

calculating the PScF values.  However, this was sufficient to test Equation 7.1.  Initial 

tests resulted in an undercorrection of the data using this method.  This undercorrection is 

undoubtedly due to the fact that some attenuated neutrons scatter back into the detectors.  
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Modifying the thicknesses by a factor of 0.9 seems to correct for this result.  Thus, the 

final equation entered into the ScatterSubtract program was 

    (7.2)   .),9.0,()(9.0
1




n

i
iiii DmaterialPScFEXPPScF 

 The attenuation curves for the PbPo, LPoL, and L1P3 scenarios using the 

superposition of PScFs are plotted in Figure 7-40, Figure 7-41, and Figure 7-42.  These 

scenarios represent a case where two layers are equally thick (in MFP), a case where two 

layers are different thicknesses, and a case where there are three layers of material.  In all 

three cases, the corrected attenuation curves show the proper horizontal shape and lie 

very close to the Direct values. 

The χ2 goodness of fit results for the corrected and uncorrected attenuation curves 

and the ratio between the two for the six scenarios are listed in Table 7-7.  All of these 

were tested previously except for the PoLP scenario.   
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Figure 7-40. The attenuation curves for the PbPo scenario using the superposition of 
polyethylene and lead PScFs. 
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Figure 7-41. The attenuation curves for the LPoL scenario using the superposition of 
polyethylene and lead PScFs. 
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Figure 7-42. The attenuation curves for the L1P3 scenario using the superposition of 
polyethylene and lead PScFs. 
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 Table 7-7. The χ2 goodness of fit results of the uncorrected and corrected attenuation 
curves for the lead and polyethylene scenarios using the superposition of PScFs. 
Scenario Uncorrected χ2 Corrected χ2 Ratio 
PbPo 1.571E+05 6.317E+02 248.7 
PoPb 1.842E+05 4.412E+02 417.7 
LPoL 6.453E+05 3.601E+03 179.2 
PoLP 6.423E+05 1.439E+03 446.2 
L1P3 9.917E+04 3.341E+02 296.8 
L3P1 2.373E+05 6.374E+02 372.4 

 

It consists of two 1 MFP layers of polyethylene surrounding a 2 MFP layer of lead.  

These results show that the superposition of PScFs produces excellent results with all six 

scenarios.  The ratios lie between 179 and 446, indicating that the corrected attenuation 

curves lie between approximately 13 and 21 times closer to the Direct values than the 

uncorrected curves.  While this is not a true test because the thickness of each material 

was selected a priori, it indicates that if a good estimation of the relative thickness of each 

layer can be determined, the PSRA can remove the scatter from the measured values and 

return an accurate estimate of the true values. 

 

7.4 Recommendations for Future Work 

While this work has shown that the PSRA methodology is sound, there are still 

some situations in which it performs poorly.  In order to apply the superposition of PScFs 

to a more generalized object where the scattering is not necessarily symmetric about the 

neutron path or where the object is composed of multiple materials, a more sophisticated 

method needs to be developed.  If an object is cylindrically symmetric, or if several 

different projections of the object are taken at different angles, the FBPGUI program can 

reconstruct a filtered back projection of the internal structure of the object using the 
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attenuation curves.  These values could be used to develop first order PScFs which could 

then be applied to the measured values to produce a correction.  The new values could 

then be used to generate another filtered back projection, from which new PScF values 

could be developed.  This process could be iterated until the filtered back projections 

converge to a final solution which will mirror the true internal structure of the object.  In 

order to accomplish this integration, some additional work is required.  Therefore, this 

section will recommend the direction in which future research efforts should proceed in 

order to create a general NMIS imaging solution which incorporates the PSRA. 

The first area that should be investigated is the detector model used for simulating 

the NMIS PScFs.  Experimental testing strongly suggests that the simulated PScFs 

presented in this work underestimated the scatter in laboratory measurements by a factor 

of approximately 55%.  While an empirical correction factor produced results comparable 

to those from simulations, this is not an ideal solution.  Therefore future work should 

focus on developing a PScF simulation that produces scattering similar to that 

encountered by experimental measurements.  The first area of focus should be the 

creation of a high fidelity model of the NMIS detector array since neutrons scattering in 

that region have a large impact on the total scattering signal received.   

Once the new PScF models are completed and the simulated PScFs match the 

experimental ones, the PScF scenarios can be rerun to generate new PScFGE coefficients 

for ScatterSubtract.  While these simulations are being rerun, additional materials may be 

added to the library.  The initial library was kept fairly limited since its purpose was to 

validate the PSRA methodology.  Ideally, the final library will include all materials 

which NMIS imaging measurements will likely encounter. 
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In addition to the PScF simulations with homogeneous shells of material, 

simulations with multiple layers materials need to be conducted.  These simulations 

should use the same source geometry as the ones used for extracting PScF parameters, 

but change the object geometry.  The purpose of these simulations will be to determine 

how the PScFs from multiple materials are superimposed to form a single PScF in an 

object composed of multiple layers.  Equation 7.3 produced good results when used for 

solving this problem, but a more thorough study is desirable.  In addition, these tests 

should examine scenarios where the object (or the material regions inside the object) is 

asymmetric.  Those simulations will test how the PScF contribution to individual 

detectors is modified as the scattered neutrons pass through different thicknesses of 

material.  A robust method for modifying the PScFs in these scenarios is needed before 

the PSRA can be fully integrated into NMIS imaging. 

The next area of research should focus on integrating the PSRA with the FBPGUI 

program.  The FBPGUI generates a filtered back projection of the object being imaged.  

The FBP creates a matrix of x and y pixels and assigns a cross section value to each.  

ScatterSubtract could then read these values in order to determine the best PScF to use 

for each detector position and the modifications that should be performed based on the 

neutron path to other detectors in the array.  Since FBPGUI is a GUI-based program and 

ScatterSubtract is executed from the command line, the most logical integration method 

would be for the FBPGUI code to write the FBP data to a file and call ScatterSubtract to 

read it each time it is needed. 

In order for the scattering subtraction to work properly, the correct PScFs need to 

be selected.  Integrating ScatterSubtract into FBPGUI allows for the possibility that the 
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operator can explicitly specify the material of each region based on prior knowledge, if 

available.  Even if a priori knowledge of the materials is not available, the FBP will give 

clues which can be used to select the best PScFs.  If the materials list is coupled with the 

nominal cross section of each material, then certain materials can be excluded if the FBP 

value is significantly greater the material cross section.  Based on the results of this 

comparison, the PScF parameters can be selected by choosing the one that produces the 

smallest correction to the data to avoid an overcorrection.  This correction will increase 

the FBP cross section values in the next iteration, which can eliminate more materials 

from consideration.  So long as these values are carefully chosen to avoid overcorrecting 

the data, the process should eventually converge.  Once the iterations converge to a final 

value, FBPGUI could tentatively identify each material based on the final PScF 

parameters that were used.  By assigning a material to each pixel, this procedure will 

have successfully completed its ultimate goal of NMIS imaging, which is to properly 

identify the material composition and geometry of the internal structure of the object. 

  



 

8.  Conclusions 

This work has presented the development of a parameterized scatter removal 

algorithm (PSRA) from initial theory all the way to its application to experimental 

measurements.  The PSRA is a completely new approach to removing the scattering 

component from NMIS imaging.  Earlier methods focused primarily on minimizing the 

number of scattered neutrons that were incorrectly identified as being directly 

transmitted.  The PSRA approaches the problem from a different direction by using 

Monte Carlo simulations to estimate how large the scattering contribution will be so that 

it can be subtracted from the measured values directly.  By parameterizing the scattering 

based on the location, thickness, and material of the object being imaged, the scatter 

correction can be applied to a much wider range of scenarios than those which were used 

for developing the PScFs. 

The PSRA performed extremely well when correcting the scatter in simulations of 

simple homogeneous targets of known material.  The PSRA reduced the value of the χ2 

goodness of fit test of the attenuation curve versus ideal values by a factor of 60 or more 

over the uncorrected results.  These results confirm that the methodology works and 

strongly suggest that it will be a powerful tool for improving the quality of imaging 

measurements when integrated into the NMIS software package.   

The simulation-derived PScFs initially underestimated the scatter in experimental 

measurements; however, an empirical correction factor improved the results significantly 

and χ2 values were reduced by a factor of 7 to 60.  These results strongly indicate that 

once the PScF simulations are improved to more accurately simulate the scattering in the 
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NMIS detector array, the PSRA will produce excellent results removing scatter from 

experimental measurements.    

By increasing the accuracy of the measured attenuation profile, these 

improvements promise to increase the contrast between regions of dissimilar materials 

and more accurately determine the cross section of each region.  More accurately 

measuring the cross sections will increase the likelihood that the materials can be 

correctly identified.  This will obviate the need for a more obtrusive method (such as 

opening the container) which can be expensive and hazardous. 

In addition to the PSRA, this work also led to the design of a completely new 

technique for simulating NMIS imaging measurements with a pixelated DT neutron 

beam.  While previous simulations used a uniform fan beam, the new models used 

individual pixel shapes which are based on both analytical calculations and experimental 

measurements.  In order to simulate measurements using these pixel models, a series of 

custom codes was written to automate the process.  These codes include programs to 

generate multiple MCNP-PoliMi input decks, a post-processor for extracting the 

correlation information from the output files, and a program for applying the scattering 

correction to the results.  Other codes were developed for converting NMIS measurement 

data into the format of simulation data and vice versa.  These codes will allow for a closer 

integration of simulations and experiments in the future. 

While this work has shown that the PSRA methodology can make substantial 

improvements in NMIS imaging measurements, some additional work is required before 

it can be integrated into the current NMIS software suite as a generalized imaging 
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solution.  Recommendations for future research directed towards this goal were presented 

at the end of the previous chapter.
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Appendix A – The MCPixelGeom Code 

PROGRAM MCPixelGeom 
IMPLICIT NONE 
 
REAL :: ThetaXY, ThetaXZ, x0, y0, z0, v, w, x1, y1, z1, r1, Omega, TargetRad 
REAL :: PhiXY, PhiXZ, PsiXY, PsiXZ, PixelDim, x2, y2, z2, x3, y3, z3 
REAL :: DetectorRad, DelPhiMax, Vn, Vcm, Valpha, Weight 
REAL :: PhiAvg, ThetaAvg, PsiAvg 
REAL, PARAMETER :: TwoPi = 6.2831853 
REAL, PARAMETER :: Pi = 3.1415927 
REAL, ALLOCATABLE :: Results(:,:,:), Results1D(:,:,:) 
INTEGER (KIND=4) :: I, J, K, M, N 
INTEGER :: NumPixels, HLimit, VLimit, MinHoriz, MaxHoriz 
INTEGER (KIND=4) :: NumSamples 
INTEGER (KIND=4), ALLOCATABLE :: PixelCounts(:) 
 
!Initialize the random seed 
CALL init_random_seed() 
 
! Define input variables 
! Positions are measured in cm from the target center 
DetectorRad = 110. 
TargetRad = 0.250 
PixelDim = 0.608 
NumPixels = 8 
NumSamples = 1000000000 
!Velocities, fraction of c 
Vn = 0.173015 
Vcm = 0.003306 
Valpha = 0.043564 
HLimit = 400 
VLimit = 80 
 
ALLOCATE(PixelCounts(NumPixels+1)) 
 
!Allocate Results matrix, which will hold the results.  Rows are bins for the 
horizontal 
!angle (*10) of the neutron, Columns are vertical angle, and Panes are the 
pixels.  The  
!penultimate pane will contain the sum of all pixels and the last contains the 
maximum 
!pixel value for that angle. 
ALLOCATE(Results(-HLimit:HLimit,-VLimit:VLimit,NumPixels+2)) 
 
! The 1D results matrix is similar, but contains the sum of +/- 0.6 degrees in 
! the vertical direction, which is ~ the detector height. 
ALLOCATE(Results1D(-HLimit:HLimit,NumPixels+1,2)) 
Results = 0. 
Results1D = 0. 
PixelCounts = 0 
 
PhiAvg = 0. 
ThetaAvg = 0. 
PsiAvg = 0. 
 
DO I = 1, NumSamples 
  ! v, w are relative position on the pixel face (-0.5 < v,w < 0.5) 
  ! Omega, r1 are radial coordinates on target face. 
  CALL RandomSample(v,w,Omega,r1) 
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  ThetaXY = v 
  ThetaXZ = W 
 
  !Convert Omega, r1 to cartesian coordinates relative to target center 
  x2 = 0. 
  y2 = r1*SIN(Omega) 
  z2 = r1*COS(Omega) 
 
  !Now account for the 45 degree (xy) tilt of the target and convert 
  !x,y2 to absolute coordinates.  No change in z2. 
  x2 = y2*SIN(TwoPi/8.) 
  y2 = y2*SIN(TwoPi/8.)  
 
  !Calculate the Phi angles, alpha angle in the LAB CS. 
  PhiXY = ATAN((VAlpha*SIN(ThetaXY)+Vcm)/(VAlpha*COS(ThetaXY))) 
  PhiXZ = ThetaXZ 
 
  ! Find x1, y1, z1 where the alpha reaches the alpha detector plane 
  x1 = -5.7 
  y1 = y2 + ABS(x2-x1)*TAN(-PhiXY) 
  z1 = z2 + ABS(x2-x1)*TAN(-PhiXZ) 
 
  ! Determine which pixel (if any) the alpha strikes. 
  IF (ABS(z1) < PixelDim / 2.) THEN 
    K = INT(REAL(NumPixels) / 2. - y1/PixelDim + 1) 
    IF (K < 1 .OR. K > NumPixels) CYCLE 
    PixelCounts(K) = PixelCounts(K) + 1 
    PixelCounts(NumPixels+1) = PixelCounts(NumPixels+1) + 1 
  ELSE 
    CYCLE 
  END IF 
 
  !Now calculate neutron angle in the LAB coordinate system. 
  PsiXY = ATAN((Vn*SIN(ThetaXY)-Vcm)/(Vn*COS(ThetaXY))) 
  PsiXZ = PhiXZ 
 
  M = NINT(10.*PsiXY*360./TwoPi) 
  N = NINT(10.*PsiXZ*360./TwoPi) 
 
  IF (ABS(M) > HLimit .OR. ABS(N) > VLimit) THEN 
    PRINT *, "Array Bounds Exceeded" 
    CYCLE 
  END IF 
 
  Results(M,N,K) = Results(M,N,K) + 1 
 
  PhiAvg = PhiAvg + PhiXY 
  ThetaAvg = ThetaAvg + ThetaXY 
  PsiAvg = PsiAvg + PsiXY 
 
END DO 
 
PhiAvg = PhiAvg / REAL(NumSamples)*360./TwoPi 
ThetaAvg = ThetaAvg / REAL(NumSamples)*360./TwoPi 
PsiAvg = PsiAvg / REAL(NumSamples)*360./TwoPi 
 
 
DO I = -HLimit, HLimit, 1 
  DO J = -VLimit, VLimit, 1 
   DO K = 1, NumPixels 
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    Results(I,J,K) = Results(I,J,K) * NumPixels / PixelCounts(NumPixels+1) 
   END DO 
  END DO 
END DO 
 
DO K = 1, NumPixels+1 
   PRINT *, K, PixelCounts(K) 
END DO 
 
DO I = -HLimit, HLimit, 1 
  DO J = -VLimit, VLimit, 1 
    DO K = 1, NumPixels 
      Results(I,J,NumPixels+1) = Results(I,J,NumPixels+1) + Results(I,J,K) 
      IF(Results(I,J,K) > Results(I,J,NumPixels+2)) THEN 
        Results(I,J,NumPixels+2) = Results(I,J,K) 
      END IF 
      IF(ABS(J) <= 6) THEN 
        Results1D(I,K,1) = Results1D(I,K,1) + Results(I,J,K) 
        Results1D(I,NumPixels+1,1) = Results1D(I,NumPixels+1,1) + 
Results(I,J,K) 
      END IF 
    END DO 
  END DO 
END DO 
 
DO I = 1, NumPixels+1 
  DO J = -HLimit, HLimit, 1 
    MinHoriz = MAX(-HLimit,J-6) 
    MaxHoriz = MIN(HLimit,J+6) 
    DO K = MinHoriz, MaxHoriz 
      Results1D(J,I,2) = Results1D(J,I,2) + Results1D(K,I,1) 
    END DO 
  END DO 
END DO 
 
!Write results array to a file 
OPEN (UNIT=1, FILE="Results.txt", ACTION="WRITE", STATUS="REPLACE") 
DO I = 1,NumPixels+2 
  WRITE(1,'(A5,I3)') "Pixel", I 
  WRITE (1,'(A6)', ADVANCE="NO") "      " 
  DO K = -VLimit,VLimit,1 
    WRITE (1,'(F10.1)', ADVANCE="NO") REAL(K)/10. 
  END DO 
  WRITE (1,*) 
  DO J = -HLimit,HLimit,1 
      WRITE (1,'(F6.1)', ADVANCE="NO") REAL(J)/10. 
    DO K = -VLimit,VLimit,1 
      WRITE (1,'(F10.6)', ADVANCE="NO") Results(J,K,I) 
    END DO 
      WRITE (1,*) 
  END DO 
    WRITE (1,*) 
    WRITE (1,*) 
END DO 
 
CLOSE(UNIT=1) 
DEALLOCATE(Results) 
 
!Write 1D results array to a file 
OPEN (UNIT=2, FILE="Results1D.txt", ACTION="WRITE", STATUS="REPLACE") 
OPEN (UNIT=3, FILE="ResultsDet.txt", ACTION="WRITE", STATUS="REPLACE") 
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WRITE (2,'(A6)', ADVANCE="NO") "      " 
WRITE (3,'(A6)', ADVANCE="NO") "      " 
 
DO I = 1,NumPixels 
  WRITE(2,'(A7,I3)', ADVANCE="NO") "  Pixel", I 
  WRITE(3,'(A7,I3)', ADVANCE="NO") "  Pixel", I 
END DO 
 
WRITE(2,'(A10)') "Total" 
WRITE(3,'(A10)') "Total" 
 
DO I = -HLimit,HLimit,1 
  WRITE (2,'(F6.1)', ADVANCE="NO") REAL(I)/10. 
  WRITE (3,'(F6.1)', ADVANCE="NO") REAL(I)/10. 
  DO J = 1, NumPixels+1 
      WRITE (2,'(F10.6)', ADVANCE="NO") Results1D(I,J,1) 
      WRITE (3,'(F10.6)', ADVANCE="NO") Results1D(I,J,2) 
  END DO 
      WRITE (2,*) 
      WRITE (3,*) 
END DO 
 
CLOSE(UNIT=2) 
CLOSE(UNIT=3) 
DEALLOCATE(Results1D) 
 
CONTAINS 
 
! This subroutine generates the seed for the random number generator from the 
system clock. 
SUBROUTINE init_random_seed()  
INTEGER :: i, n, clock  
INTEGER, DIMENSION(:), ALLOCATABLE :: seed  
CALL RANDOM_SEED(size = n)  
ALLOCATE(seed(n))  
CALL SYSTEM_CLOCK(COUNT=clock)  
seed = clock + 37 * (/ (i - 1, i = 1, n) /)  
CALL RANDOM_SEED(PUT = seed)  
DEALLOCATE(seed)  
END SUBROUTINE  
 
! This subroutine generates pseudorandom numbers for the position on the alpha 
pixel and 
! the position on the target. 
SUBROUTINE RandomSample(zv,zw,zOmega,zr1) 
REAL, INTENT(OUT) :: zv, zw, zOmega, zr1 
REAL :: zzz 
 
CALL RANDOM_NUMBER(zzz) 
zv = (zzz - 0.5)*TwoPi/4. 
CALL RANDOM_NUMBER(zzz) 
zw = (zzz - 0.5)*16.*TwoPi/360. 
CALL RANDOM_NUMBER(zzz) 
zOmega = TwoPi*zzz 
CALL RANDOM_NUMBER(zzz) 
zr1 = TargetRad*SQRT(zzz) 
END SUBROUTINE 
 
END PROGRAM 

 



 

Appendix B – The Elastic Code 

PROGRAM Elastic 
!------------------------------------------------------------ 
! Written by Brandon R. Grogan 
! at the Oak Ridge National Laboratory 
! Last Modified 19 November 2009 
!------------------------------------------------------------ 
IMPLICIT NONE 
 
INTEGER :: A, I, J, K, ErrCode, NumLines, Angles, NumColumns 
! Distance Variables 
REAL(KIND=4) :: R, D, L, Dout, Lmax, DetFace 
! Energy and speed variables 
REAL(KIND=4) :: Ein, Eout, Ethresh, Vin, Vout, Alpha 
! Angle variables 
REAL(KIND=4) :: Theta, PhiLab, PhiCM, MaxTheta, Omega 
! Time variables 
REAL(KIND=4) :: tmin, tmax, tprime 
! Detector efficiency, pulse height factor, Response, and PScF 
REAL(KIND=4) :: DetEff, PHF, Response, PScF 
! Cross section variables 
REAL(KIND = 4) :: xs, SigmaS, SigmaT, MFP 
! Diff. Scattering Cross-Section Array 
REAL(KIND=4), ALLOCATABLE :: DiffXS(:,:) 
! Speed of Light (cm/ns) 
REAL(KIND = 4), PARAMETER :: c = 29.97925 
! Main OutPut Data Array 
REAL(KIND=4), ALLOCATABLE :: Output(:,:) 
REAL, PARAMETER :: TwoPi = 6.2831853 
! Text variables 
CHARACTER :: InpFile*80, DummyChar*1, OutFile*80 
 
! Initialize variables here 
R = 110. 
D = 40. 
L = 10.16 
DetFace = 2.54 
MaxTheta = 45. 
NumColumns = 11 
Ein = 14.051 
Ethresh = 1.0 
MFP = 3.0 
 
Vin = NeutronSpeed(Ein) 
tmin = R / (Vin * c) 
tmax = (R + L) / (Vin * c) 
 
 
 
!------------------------------------------------------------ 
! Get xs file name from the command prompt 
!------------------------------------------------------------ 
CALL GETARG(1, InpFile) 
 
!------------------------------------------------------------ 
! Open input file, read in A, and read in the xs data 
!------------------------------------------------------------ 
OPEN(UNIT=1, FILE=TRIM(InpFile), ACTION="READ", STATUS="OLD") 
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DO I = 1, 1000 
  READ(1, '(A)', IOSTAT=ErrCode) DummyChar 
  IF (ErrCode < 0) EXIT 
END DO 
 
NumLines = I - 2 
REWIND 1 
 
! First column = angle (degrees), second column = xs (b/Sr) 
ALLOCATE(DiffXS(NumLines,2)) 
 
READ(1, *) A, SigmaT 
WRITE(*,*) A, SigmaT 
DO I = 1, NumLines 
  READ(1, *) DiffXS(I,1), DiffXS(I,2) 
END DO 
 
CLOSE(UNIT=1) 
 
! Calculate the Alpha value using the atomic mass 
Alpha = (REAL(A-1)/REAL(A+1))**2 
 
Angles = 10*INT(MaxTheta) 
ALLOCATE(OutPut(0:Angles,NumColumns)) 
OutPut = 0. 
 
!------------------------------------------------------------ 
! Main Program Loop - Loops over Detector Angle 
!------------------------------------------------------------ 
DO I = 0, Angles 
  Theta = REAL(I)/10. 
  OutPut(I,1) = Theta 
  ! Convert Theta to Radians 
  Theta = Theta * TwoPi / 360. 
  ! Calculate D' 
  Dout = SQRT(R**2 + (R-D)**2 - 2.*R*(R-D)*COS(Theta)) 
 
  ! With D', can now compute PhiLAB and Omega, the detector solid angle 
  Omega = DetFace**2 / Dout**2 
  OutPut(I, 8) = Omega 
  PhiLab = ASIN(R * SIN(Theta) / Dout) 
  OutPut(I, 2) = PhiLab * 360. / TwoPi 
 
  ! Converts PhiLab to CM coordinates 
  CALL FindCM(PhiLab, PhiCM, A) 
  OutPut(I, 3) = PhiCM * 360. / TwoPi 
 
  ! Find Diff. Scattering Cross-Section 
  CALL FindDiffXS(PhiCM, DiffXS, xs) 
  OutPut(I,4) = xs 
 
  ! Now that the differential scattering cross-section and solid angle 
  ! are known, the total probability of scattering to angle theta can be 
  ! computed 
  SigmaS = xs * Omega 
  OutPut(I,9) = SigmaS / (SigmaT - SigmaS) * (EXP(-MFP*SigmaS/SigmaT)-EXP(-
MFP)) 
 
  ! Find (LAB) energy of the outgoing neutron 
  CALL NeutronEnergy(Ein, PhiCM, Alpha, Eout) 
  OutPut(I,5) = Eout 
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  ! Calculate the Pulse Height Factor 
  PHF = (Eout - Ethresh) / Ein 
  OutPut(I,7) = PHF 
 
  ! Find the time when the neutron arrives at the front face of the detector 
  Vout = NeutronSpeed(Eout) 
  tprime = (R - D) / (Vin * c) + Dout / (Vout * c) 
   
  ! Check to see if t' > tmax, and if so, end the loop 
  ! Might get bad results (e.g., negative efficiencies) otherwise. 
  IF (tprime > tmax) CYCLE 
 
  ! Find the maximum depth the neutron can penetrate into the detector 
  ! before the end of the correlation time window. 
  Lmax = Vout * c * (tmax - tprime)  
 
  ! Calculate detector efficiency 
  CALL DetectorEfficiency(Eout, Lmax, DetEff) 
  OutPut(I,6) = DetEff 
 
 
  ! Calculate the response function of theta - this is normalized to 
  ! per source neutron since flux is not included. 
  Response = OutPut(I,6) * OutPut(I,7) * OutPut(I,9) 
  OutPut(I,10) = Response 
 
  ! Lastly, find the Point Scatter Function 
  PScF = Response / (OutPut(0,6) * OutPut(0,7)) 
  OutPut(I,11) = PScF 
 
END DO ! Main I Loop 
 
!------------------------------------------------------------ 
! Write Output array to a file 
!------------------------------------------------------------ 
OutFile = InpFile(1:2) // ".out" 
OPEN(UNIT=2, FILE=TRIM(OutFile), ACTION="WRITE", STATUS="REPLACE") 
 
DO I = 0, Angles 
  DO J = 1, NumColumns 
    WRITE(2, '(ES14.6)', ADVANCE="NO") OutPut(I,J) 
  END DO 
  WRITE(2,*) 
END DO 
 
CLOSE(UNIT=2) 
 
 
CONTAINS 
 
!------------------------------------------------------------ 
! This function returns the neutron speed (as a fraction of 
! c) given the input energy (in MeV). 
!------------------------------------------------------------ 
FUNCTION NeutronSpeed(ZEin) 
REAL :: NeutronSpeed 
REAL(KIND=4), INTENT(IN) :: ZEin 
NeutronSpeed = SQRT(2. * ZEin / 939.5656) 
 
END FUNCTION 
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!------------------------------------------------------------ 
! This subroutine returns the neutron energy (in the LAB system) 
! after a collision, given the CM scattering angle and alpha. 
!------------------------------------------------------------ 
SubRoutine NeutronEnergy(ZEin, ZPhiCM, ZAlpha, ZEout) 
REAL(KIND=4), INTENT(IN) :: ZEin, ZPhiCM, ZAlpha 
REAL(KIND=4), INTENT(OUT) :: ZEout 
 
ZEout = ((1 + ZAlpha) + (1 - ZAlpha)*COS(ZPhiCM))*ZEin / 2. 
 
END SUBROUTINE 
 
 
!------------------------------------------------------------ 
! This subroutine converts the lab scattering angle to the COM 
! scattering angle through a brute force iteration. 
!------------------------------------------------------------ 
SUBROUTINE FindCM(ZLab, ZCM, ZA) 
REAL(KIND=4), INTENT(IN) :: ZLab 
REAL(KIND=4), INTENT(OUT) :: ZCM 
INTEGER, INTENT(IN) :: ZA 
REAL(KIND = 4) :: ZRange, ZMin, Z, ZTest, Delta, DeltaMin, ZBest 
 
ZRange = 2. * ZLab 
ZBest = ZLab 
ZMin = ZBest - ZRange 
 
DO J = 1, 12 
  DeltaMin = 10. 
  DO K = 0, 20 
    Z = ZMin + REAL(K)*ZRange/20. 
    ZTest = ATAN(SIN(Z) / (1/REAL(ZA) + COS(Z))) 
    Delta = ABS(ZLab - ZTest) 
    IF (Delta < DeltaMin) THEN 
      DeltaMin = Delta 
      ZBest = Z 
    END IF 
  END DO 
 
ZRange = ZRange / 5. 
ZMin = ZBest - ZRange/2. 
 
END DO 
 
ZCM = ZBest 
 
END SUBROUTINE 
 
!------------------------------------------------------------ 
! This Subroutine determines the differential scattering cross-section by 
! interpolating the values from the input file. 
!------------------------------------------------------------ 
SUBROUTINE FindDiffXS(ZPhiCM, ZDiffXS, Zxs) 
REAL(KIND=4), INTENT(IN) :: ZPhiCM, ZDiffXS(:,:) 
REAL(KIND=4), INTENT(OUT) :: Zxs 
REAL(KIND=4) :: ZAngle, ZAngleMin, ZAngleMax, ZxsMin, ZxsMax 
REAL(KIND=4) :: ZAngleDiff, ZxsDiff 
 
ZAngle = ZPhiCM * 360. / TwoPi 
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DO J = 1, NumLines 
  IF (ZDiffXS(J,1) > ZAngle) THEN 
    ZAngleMin = ZDiffXS(J-1,1) 
    ZAngleMax = ZDiffXS(J,1) 
    ZxsMin = ZDiffXS(J-1,2) 
    ZxsMax = ZDiffXS(J,2) 
    EXIT 
  END IF 
END DO 
 
ZAngleDiff = ZAngleMax - ZAngleMin 
ZxsDiff = ZxsMax - ZxsMin 
 
Zxs = ZxsMin + (ZAngle - ZAngleMin)/ZAngleDiff*ZxsDiff 
 
END SUBROUTINE 
 
!------------------------------------------------------------ 
! This Subroutine determines the intrinsic detector efficiency 
! using equation 15.8b from Knoll, 3rd Ed.  Fits for the hydrogen 
! cross-section are good for 1+ MeV.  The carbon fit is only accurate 
! over the range 8.5 MeV < E < 14.1 MeV. 
!------------------------------------------------------------ 
SUBROUTINE DetectorEfficiency(ZEout, ZLmax, ZEff) 
REAL(KIND=4), INTENT(IN) :: ZEout, ZLmax 
REAL(KIND=4), INTENT(OUT) :: ZEff 
REAL(KIND=4) :: SigH, SigC, NH, NC, Hxs, Cxs 
 
NH = 0.08397 * 1.023 * 0.6022 / 1. 
NC = 0.91603 * 1.023 * 0.6022 / 12. 
SigH = EXP(1.6431845 - 0.324906*ZEout + 0.021717*ZEout**2-0.000632*ZEout**3) 
SigC = 4.4929537 - 0.906192*ZEout + 0.0718101*ZEout**2 - 0.001809*ZEout**3 
Hxs = NH * SigH 
Cxs = NC * SigC 
 
ZEff = Hxs * (1 - EXP(-(Hxs + Cxs)*ZLmax)) / (Hxs + Cxs)  
 
END SUBROUTINE 
 
END PROGRAM 

 



 

Appendix C – The MakeInp Code and Supporting Files 

The MakeInp Code 

PROGRAM makeinp 
! Version 2.20 
! Written January 5th, 2009 
! By Brandon Grogan 
! At The Oak Ridge National Laboratory 
! Last Edited: January 24th, 2009 
 
IMPLICIT NONE 
REAL(KIND=4) :: face, Theta, phi, radius, offset, nu, Depth, x0, y0 
REAL(KIND=4) :: crys, rotate, xy, yx, phi2, zplane, detsep, FWHM, CorrFact  
REAL(KIND=4), ALLOCATABLE :: Detect(:,:,:), SDEF(:,:)  
REAL(KIND=4) :: pixangle, xcos, ycos, PDFSum, pixcenter 
REAL(KIND=4) :: threshold, deadtime, window 
INTEGER :: I, J, NumDet, FirstNum, DetMat, N, DetNum, P, NumPixels 
INTEGER :: ErrCode, NumLines, L, M, FancyDet, Q, NumSDEFCards, NumThisLine 
INTEGER(KIND=4) :: K, NPS 
!FileBase=User Input File Name; FileNme=PoliMi input file 
CHARACTER :: FileBase*8, FileNme*8, FileNum*2, Hist*16 
CHARACTER :: PixelNum*2, TxtOut*64, OutNme*8, DatNme*8 
CHARACTER :: FileNme3*16, ParamText*64, ThisLine*80 
CHARACTER(80) :: Inp(10000) 
 
CALL GetArg(1, ParamText) 
IF (LEN(TRIM(ParamText)) == 0) THEN 
  PRINT *, "Enter file name (8.3) of the parameter input file." 
  READ (*,*) ParamText 
END IF 
 
CALL ReadParams() 
 
!FileBase = "void.inp" 
!offset = -55. 
!radius = 110. 
!face = 3.0607 
!detsep = 3.20 
!crys = 2.54 
!Depth = 10.16 
!FirstNum = 401 
DetMat = FirstNum 
!N = 4 
!NPS = 12500000 
!NumPixels=16 
!FWHM=3.055 
!NumSDEFCards = 46 
!NumDet=32 
!zplane=117.5 
!FancyDet=1 
 
ALLOCATE(SDEF(NumSDEFCards,5)) 
 
phi = 2.*ATAN(detsep/radius/2.) 
 
!First Order of business: Calculate numbers for detector surfaces. 
!Calculations based on source at origin (transform from there). 
ALLOCATE(Detect(NumDet, 14, 5)) 
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nu = -(REAL(NumDet-1)/2.)*phi 
 
DO I = 0, NumDet-1 
  J = I + 1 
  ! Create the surface cards for the detector crystal 
  x0 = radius * cos(nu) 
  y0 = radius * sin(nu) 
  Detect(J, 1, 1) = FirstNum + I*N 
  Detect(J, 2, 1) = x0 + (crys/2.0) * sin(nu) 
  Detect(J, 3, 1) = y0 - (crys/2.0) * cos(nu) 
  Detect(J, 4, 1) = -crys/2.0 
  Detect(J, 5, 1) = -crys*sin(nu) 
  Detect(J, 6, 1) = crys*cos(nu) 
  Detect(J, 7, 1) = 0. 
  Detect(J, 8, 1) = Depth*cos(nu) 
  Detect(J, 9, 1) = Depth*sin(nu) 
  Detect(J, 10, 1) = 0. 
  Detect(J, 11, 1) = 0. 
  Detect(J, 12, 1) = 0. 
  Detect(J, 13, 1) = crys 
  Detect(J, 14, 1) = nu 
 
  ! Create the surface cards for the detector housing (inner surface) 
  x0 = (radius-0.0001) * cos(nu) 
  y0 = (radius-0.0001) * sin(nu) 
  Detect(J, 1, 2) = 1000 + FirstNum + I*N 
  Detect(J, 2, 2) = x0 + ((face-0.22)/2.0) * sin(nu) 
  Detect(J, 3, 2) = y0 - ((face-0.22)/2.0) * cos(nu) 
  Detect(J, 4, 2) = -(face-0.22)/2.0 
  Detect(J, 5, 2) = -(face-0.22)*sin(nu) 
  Detect(J, 6, 2) = (face-0.22)*cos(nu) 
  Detect(J, 7, 2) = 0. 
  Detect(J, 8, 2) = (Depth+1.17)*cos(nu) 
  Detect(J, 9, 2) = (Depth+1.17)*sin(nu) 
  Detect(J, 10, 2) = 0. 
  Detect(J, 11, 2) = 0. 
  Detect(J, 12, 2) = 0. 
  Detect(J, 13, 2) = (face-0.22) 
  Detect(J, 14, 2) = nu 
 
  ! Create the surface cards for the detector housing (outer surface) 
  x0 = (radius-0.1) * cos(nu) 
  y0 = (radius-0.1) * sin(nu) 
  Detect(J, 1, 3) = 2000 + FirstNum + I*N 
  Detect(J, 2, 3) = x0 + ((face-0.02)/2.0) * sin(nu) 
  Detect(J, 3, 3) = y0 - ((face-0.02)/2.0) * cos(nu) 
  Detect(J, 4, 3) = -(face-0.02)/2.0 
  Detect(J, 5, 3) = -(face-0.02)*sin(nu) 
  Detect(J, 6, 3) = (face-0.02)*cos(nu) 
  Detect(J, 7, 3) = 0. 
  Detect(J, 8, 3) = (Depth+1.37)*cos(nu) 
  Detect(J, 9, 3) = (Depth+1.37)*sin(nu) 
  Detect(J, 10, 3) = 0. 
  Detect(J, 11, 3) = 0. 
  Detect(J, 12, 3) = 0. 
  Detect(J, 13, 3) = (face-0.02) 
  Detect(J, 14, 3) = nu 
 
  ! Create the surface cards for the PMT housing (inner surface) 
  ! These values will define a right circular cylinder 
  ! Format: Surface# RCC Transform# x0 y0 z0  x y z  r 
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  ! Format: 1 RCC Transform# 2 3 4  8 9 10  13 
  ! x0, y0, z0 are coordinates to center of one of the bases 
  ! x, y, z is the vector to the center of the other bace 
  ! r is the radius 
  x0 = (radius+Depth+0.0001) * cos(nu) 
  y0 = (radius+Depth+0.0001) * sin(nu) 
  Detect(J, 1, 4) = 3000 + FirstNum + I*N 
  Detect(J, 2, 4) = x0 
  Detect(J, 3, 4) = y0  
  Detect(J, 4, 4) = 0. 
  Detect(J, 5, 4) = 0. 
  Detect(J, 6, 4) = 0. 
  Detect(J, 7, 4) = 0. 
  Detect(J, 8, 4) = 9.475*cos(nu) 
  Detect(J, 9, 4) = 9.475*sin(nu) 
  Detect(J, 10, 4) = 0. 
  Detect(J, 11, 4) = 0. 
  Detect(J, 12, 4) = 0. 
  Detect(J, 13, 4) = (face-0.12)/2 
  Detect(J, 14, 4) = nu 
 
  ! Create the surface cards for the PMT housing (outer surface) 
  ! Format: 1 RCC Transform# 2 3 4  8 9 10  13 
  x0 = (radius+Depth+0.0001) * cos(nu) 
  y0 = (radius+Depth+0.0001) * sin(nu) 
  Detect(J, 1, 5) = 4000 + FirstNum + I*N 
  Detect(J, 2, 5) = x0 
  Detect(J, 3, 5) = y0  
  Detect(J, 4, 5) = 0. 
  Detect(J, 5, 5) = 0. 
  Detect(J, 6, 5) = 0. 
  Detect(J, 7, 5) = 0. 
  Detect(J, 8, 5) = 9.525*cos(nu) 
  Detect(J, 9, 5) = 9.525*sin(nu) 
  Detect(J, 10, 5) = 0. 
  Detect(J, 11, 5) = 0. 
  Detect(J, 12, 5) = 0. 
  Detect(J, 13, 5) = (face-0.02)/2 
  Detect(J, 14, 5) = nu 
 
 
  nu = nu + phi 
END DO 
 
!Get the name of the input file and create a subdirectory based on the name. 
!CALL GETARG(1,FileBase) 
TxtOut = "md " // FileBase(1:4) 
CALL SYSTEM(TRIM(TxtOut)) 
 
!Open the input file and read it into the "Inp" array. 
OPEN (UNIT=66, File=TRIM(FileBase), STATUS="OLD", ACTION="READ") 
DO I = 1, 1000 
  READ (66, '(A)', IOSTAT=ErrCode) Inp(I) 
  IF (ErrCode < 0) EXIT 
END DO 
NumLines = I-1 
CLOSE (UNIT=66) 
 
TxtOut = FileBase(1:4) // ".bat" 
OPEN (UNIT=99, FILE=TRIM(TxtOut), STATUS = "REPLACE", ACTION = "WRITE") 
OPEN (UNIT=98, FILE="PP.bat", STATUS="REPLACE", ACTION="WRITE") 
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phi2 = phi * 360. / 6.283185307 
 
!The main loop of the program, loops over pixel number 
DO P = 1, NumPixels 
 
IF (P < 10) THEN 
  WRITE (PixelNum, '(I1)') P 
ELSE 
  WRITE (PixelNum, '(I2)') P 
END IF 
 
 
!Create the pixel subdirectory 
TxtOut = "md .\" // FileBase(1:4) // "\" // TRIM(PixelNum) 
CALL SYSTEM(TRIM(TxtOut)) 
 
FileNme3 = "Start" // TRIM(PixelNum) // ".sh" 
OPEN(UNIT=97, FILE=TRIM(FileNme3), STATUS = "REPLACE", ACTION = "WRITE") 
 
!Writes to the 2 .bat files 
WRITE (99, '(A)') "cd " // TRIM(PixelNum) 
WRITE (98, '(A)') "cd " // TRIM(PixelNum) 
 
 
WRITE (97, '(A)') "cd " // TRIM(PixelNum) 
WRITE (97, '(A)') "dos2unix *.*" 
 
!J loops the subsample number (it's actually J+1).  K gives the actual SS  
!number. 
DO J = 0, N-1 
K = J+1 
IF (K < 10) THEN 
  WRITE (FileNum, '(I1)') K 
ELSE 
  WRITE (FileNum, '(I2)') K 
END IF 
 
!PomiMi input file name 
FileNme = FileBase(1:2) // TRIM(PixelNum) // TRIM(FileNum) // ".i" 
!Output file name (PoliMi Output - shows subsample) 
OutNme = FileBase(1:2) // TRIM(PixelNum) // TRIM(FileNum) // ".o" 
!Dat file name 
DatNme = FileBase(1:2) // TRIM(PixelNum) // TRIM(FileNum) // ".d" 
 
!Write PoliMi execution statement to the batch file 
WRITE (97, '(A)') "mcnp-polimi inp=" // TRIM(FileNme) // " out=" // &  
& TRIM(OutNme) // " dumn1=" // TRIM(DatNme) 
 
WRITE(98, '(A, I12, I10, F10.0, F8.4)') "PoliMiPP " // DatNme // " 0 ", NPS, 
INT(window), & 
& deadtime, threshold 
 
WRITE (99, '(A)') "mcnp-polimi inp=" // TRIM(FileNme) // " out=" // &  
& TRIM(OutNme) // " dumn1=" // TRIM(DatNme) 
 
 
OPEN (UNIT=1, FILE = TRIM(FileNme), STATUS = "REPLACE", ACTION = "WRITE") 
 
DO L = 1, NumLines 
 
IF (TRIM(INP(L)) == "c 111111") THEN 
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! Put #det nums. here 
 
! Fancy Detectors 
IF (FancyDet == 1) THEN 
DO M = 3, 5, 2 
 WRITE(1, '(A)', ADVANCE="NO") "      " 
 DO I = 1, NumDet 
   DetNum = INT(Detect(I,1,M)) + J 
   WRITE (1, '(I5)', ADVANCE="NO") DetNum 
   IF (MOD(I,12) == 0 .AND. I .NE. NumDet) THEN 
     WRITE(1, *) 
     WRITE(1,'(A)', ADVANCE="NO") "      " 
   END IF 
 END DO 
 WRITE(1, *) 
END DO 
 
ELSE 
 WRITE(1, '(A)', ADVANCE="NO") "      " 
 DO I = 1, NumDet 
   DetNum = INT(Detect(I,1,1)) + J 
   WRITE (1, '(I5)', ADVANCE="NO") DetNum 
   IF (MOD(I,12) == 0 .AND. I .NE. NumDet) THEN 
     WRITE(1, *) 
     WRITE(1,'(A)', ADVANCE="NO") "      " 
   END IF 
 END DO 
 WRITE(1, *) 
 
END IF 
 
! Fancy Detectors 
 
IF (FancyDet == 1) THEN 
  WRITE (1, '(A)') "      #961 966 968" 
END IF 
 
WRITE (1, '(A)') "      imp:n,p=1" 
 
WRITE (1, '(A)') "c" 
WRITE (1, '(A)') "c Detectors" 
WRITE (1, '(A)') "c" 
 
!Detector Cell Cards 
DO I = 1, NumDet 
  DetNum = INT(Detect(I,1,1)) + J 
  WRITE (1, '(I3, I4, F9.4, I5, A, I2)') DetNum, FirstNum, -1.023, -DetNum,& 
  &" imp:n,p=1 $ detector ", I 
END DO 
 
! Fancy Detectors 
IF (FancyDet == 1) THEN 
 
WRITE (1, '(A)') "c" 
WRITE (1, '(A)') "c Detector Housing" 
WRITE (1, '(A)') "c" 
 
DO I = 1, NumDet 
  DetNum = INT(Detect(I,1,2)) + J 
  WRITE (1, '(I4, I4, A, 2I6, 2(A,I4) A, I2)') DetNum, 0, "         ", -
DetNum,& 
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  &DetNum-1000, " #", DetNum+2000, " #", DetNum+3000, " imp:n,p=1 $ detector ", 
I 
END DO 
 
WRITE (1, '(A)') "c" 
 
DO I = 1, NumDet 
  DetNum = INT(Detect(I,1,3)) + J 
  WRITE (1, '(I4, I4, F9.4, 2I6, 2(A,I4) A, I2)') DetNum, FirstNum+2, -2.70, -
DetNum,& 
  &DetNum-1000, " #", DetNum+1000, " #", DetNum+2000, " imp:n,p=1 $ detector ", 
I 
END DO 
 
WRITE (1, '(A)') "c" 
WRITE (1, '(A)') "c Photomultiplier Tubes" 
WRITE (1, '(A)') "c" 
 
DO I = 1, NumDet 
  DetNum = INT(Detect(I,1,4)) + J 
  WRITE (1, '(I4, I4, F9.4, I6, A, I2)') DetNum, FirstNum+3, -0.50, -DetNum,& 
  &"                   imp:n,p=1 $ detector ", I 
END DO 
 
WRITE (1, '(A)') "c" 
 
DO I = 1, NumDet 
  DetNum = INT(Detect(I,1,5)) + J 
  WRITE (1, '(I4, I4, F9.4, 2I6, A, I2)') DetNum, FirstNum+1, -8.75, -DetNum,& 
  &DetNum-1000, "             imp:n,p=1 $ detector ", I 
END DO 
 
END IF 
 
! Fancy Detectors 
IF (FancyDet == 1) THEN 
 
WRITE (1, '(A)') "c" 
WRITE (1, '(A)') "c Detector Frame and Mounting Arm" 
WRITE (1, '(A)') "c" 
 
! WRITE (1, '(I4, I4, F9.4, 6I6)') 951, FirstNum+2, -2.70, 951, -952,& 
! &953, -954, 957, -958 
! WRITE (1, '(A)') "      imp:n,p=1 $ detector frame upper" 
! WRITE (1, '(I4, I4, F9.4, 6I6)') 952, FirstNum+2, -2.70, 951, -952,& 
! &955, -956, 957, -958                       
! WRITE (1, '(A)') "      imp:n,p=1 $ detector frame lower" 
WRITE (1, '(I4, I4, F9.4, 2I6)') 961, FirstNum+2, -2.70, -961, 962 
WRITE (1, '(A)') "      imp:n,p=1 $ detector arm" 
! WRITE (1, '(I4, I4, F9.4, I6)') 963, FirstNum+2, -2.70, -963 
! WRITE (1, '(A)') "      imp:n,p=1 $ detector arm" 
! WRITE (1, '(I4, I4, F9.4, I6)') 964, FirstNum+2, -2.70, -964 
! WRITE (1, '(A)') "      imp:n,p=1 $ detector arm" 
 
WRITE (1, '(A)') "c" 
WRITE (1, '(A)') "c DT Generator Body"                                                        
WRITE (1, '(A)') "c" 
WRITE (1, '(I4, I4, F9.4, 2I6)') 966, FirstNum+4, -8.60, -966, 967   
WRITE (1, '(A)') "      imp:n,p=1 $ DT Generator Tube" 
WRITE (1, '(I4, I4, F9.4, 2I6)') 967, FirstNum+2, -2.70, -968, 969 
WRITE (1, '(A)') "      imp:n,p=1 $ PMT Housing" 
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WRITE (1, '(I4, A, I6)') 968,  "   0         ", -967 
WRITE (1, '(A)') "      imp:n,p=1 $ DT Generator Interior" 
WRITE (1, '(I4, I4, F9.4, 2I6)') 969, FirstNum+3, -0.50, -969, 966 
WRITE (1, '(A)') "      imp:n,p=1 $ PMT Interior" 
 
END IF 
 
CYCLE !Go read the next line of input 
!IF 111111 
END IF 
 
 
IF (TRIM(INP(L)) == "c 222222") THEN 
WRITE (1, '(A)') "c" 
WRITE (1, '(A)') "c Detectors" 
WRITE (1, '(A)') "c" 
 
! Detector surface cards go here 
DO I = 1, NumDet 
  DetNum = INT(Detect(I,1,1)) + J 
  WRITE (1, '(I3, I4, A5, 5F12.6)') DetNum,  J+FirstNum, " BOX ", 
Detect(I,2,1), Detect(I,3,1), &  
  &Detect(I,4,1), Detect(I,5,1), Detect(I,6,1) 
  WRITE (1, '(A6, 6F12.6)') "      ", Detect(I,7,1), Detect(I,8,1), 
Detect(I,9,1), & 
  &Detect(I,10,1), Detect(I,11,1), Detect(I,12,1) 
  Theta = Detect(I,14,1)*360/6.283185307 
  WRITE (1, '(A6, F12.6, A, F12.6)') "      ", Detect(I,13,1), " $ Angle = ", 
Theta 
END DO 
 
! Fancy Detectors 
IF (FancyDet == 1) THEN 
 
WRITE (1, '(A)') "c" 
WRITE (1, '(A)') "c Detector Housing" 
WRITE (1, '(A)') "c" 
 
DO M = 2,3 
 DO I = 1, NumDet 
   DetNum = INT(Detect(I,1,M)) + J 
   WRITE (1, '(I4, I4, A5, 5F12.6)') DetNum,  J+FirstNum, " BOX ", 
Detect(I,2,M), Detect(I,3,M), &  
   &Detect(I,4,M), Detect(I,5,M), Detect(I,6,M) 
   WRITE (1, '(A6, 6F12.6)') "      ", Detect(I,7,M), Detect(I,8,M), 
Detect(I,9,M), & 
   &Detect(I,10,M), Detect(I,11,M), Detect(I,12,M) 
   WRITE (1, '(A6, F12.6)') "      ", Detect(I,13,M) 
 END DO 
END DO 
 
! Fancy Detectors 
 
WRITE (1, '(A)') "c" 
WRITE (1, '(A)') "c Photomultiplier Tubes" 
WRITE (1, '(A)') "c" 
 
DO M = 4,5 
 DO I = 1, NumDet 
   DetNum = INT(Detect(I,1,M)) + J 
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   WRITE (1, '(I4, I4, A5, 3F12.6)') DetNum,  J+FirstNum, " RCC ", 
Detect(I,2,M), Detect(I,3,M), &  
   &Detect(I,4,M) 
   WRITE (1, '(A6, 6F12.6)') "      ", Detect(I,8,M), Detect(I,9,M), 
Detect(I,10,M), & 
   &Detect(I,13,M) 
 END DO 
END DO 
 
END IF 
 
! Fancy Detectors 
 
IF (FancyDet == 1) THEN 
 
WRITE (1, '(A)') "c" 
WRITE (1, '(A)') "c Detector Mount and Support Arm" 
WRITE (1, '(A)') "c" 
 
 
! WRITE (1, '(I4, I4, A5, F12.6)') 951, J+FirstNum, "  SO ", radius+4. 
! WRITE (1, '(I4, I4, A5, F12.6)') 952, J+FirstNum, "  SO ", radius+14. 
! WRITE (1, '(I4, I4, A5, F12.6)') 953, J+FirstNum, "  PZ ", -face/2. - 0.81 
! WRITE (1, '(I4, I4, A5, F12.6)') 954, J+FirstNum, "  PZ ", -face/2. - 0.01 
! WRITE (1, '(I4, I4, A5, F12.6)') 955, J+FirstNum, "  PZ ", face/2. + 0.01 
! WRITE (1, '(I4, I4, A5, F12.6)') 956, J+FirstNum, "  PZ ", face/2. + 0.81 
 
! Theta = REAL(NumDet+1)*phi/2. 
! WRITE (1, '(I4, I4, A, 3F12.6)') 957, J+FirstNum, "   P 0 0 0  0 0 100 ", 
radius, & 
! & radius*TAN(-Theta), 0. 
! WRITE (1, '(I4, I4, A, 3F12.6)') 958, J+FirstNum, "   P 0 0 0  0 0 100 ", 
radius, & 
! & radius*TAN(Theta), 0. 
 
WRITE (1, '(A)') "c" 
WRITE (1, '(I4, I4, A5, 3F12.6, A)') 961,  FirstNum-1, " BOX ", radius+1., -
82.5, &  
&face/2. + 6., " 10.16 0 0  0 165 0  0 0 11.113" 
 
WRITE (1, '(I4, I4, A5, 3F12.6, A)') 962,  FirstNum-1, " BOX ", radius+1.32, -
82.5, &  
&face/2. + 7.27, "  9.52 0 0  0 165 0  0 0  9.52" 
 
! WRITE (1, '(I4, I4, A5, 3F12.6, A)') 963, FirstNum-1, " RCC ", radius+6.08, -
20., & 
! &face/2. + 0.81, " 0 0 5.19 1.5"  
! WRITE (1, '(I4, I4, A5, 3F12.6, A)') 964, FirstNum-1, " RCC ", radius+6.08,  
20., & 
! &face/2. + 0.81, " 0 0 5.19 1.5"  
 
 
WRITE (1, '(A)') "c" 
WRITE (1, '(A)') "c DT Generator Body"                                                        
WRITE (1, '(A)') "c" 
WRITE (1, '(I4, I4, A)') 966, FirstNum-1, " RCC  0 -30.48 0   0    90.54 0   
3.81"                                        
WRITE (1, '(I4, I4, A)') 967, FirstNum-1, " RCC  0 -30.28 0   0    90.14 0   
3.61"                                         
WRITE (1, '(I4, I4, A)') 968, FirstNum-1, " RCC -15   0   0  11.18  0    0   
3.81"                                         
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WRITE (1, '(I4, I4, A)') 969, FirstNum-1, " RCC -14.4 0   0   9.98  0    0   
3.61" 
 
END IF !Fancy Detectors 
 
CYCLE !Go read the next line of input 
!IF 222222 
END IF 
 
IF (TRIM(INP(L)) == "c 333333") THEN 
! Detector Material Specification 
WRITE (1, '(A,I3,A)') "m", FirstNum, " NLIB=60C $ organic scintillator" 
WRITE (1, '(A)') "      6000 10" 
WRITE (1, '(A)') "      1001 11" 
 
! Fancy Detectors 
 
IF (FancyDet == 1) THEN 
 
WRITE (1, '(A,I3,A)') "m", FirstNum+1, " NLIB=70C $ Mu Metal, rho = 8.75 g/cm3" 
WRITE (1, '(A)') "      6000   -0.000200" 
WRITE (1, '(A)') "      14028  -0.003228     14029  -0.000163" 
WRITE (1, '(A)') "      14030  -0.000109     25055  -0.005000" 
WRITE (1, '(A)') "      26054  -0.008734     26056  -0.136983" 
WRITE (1, '(A)') "      26057  -0.003165     26058  -0.000418" 
WRITE (1, '(A)') "      28058  -0.544640     28060  -0.209760" 
WRITE (1, '(A)') "      28061  -0.009120     28062  -0.029040" 
WRITE (1, '(A)') "      28064  -0.007440" 
WRITE (1, '(A)') "      42092  -0.006233" 
WRITE (1, '(A)') "      42094  -0.003885     42095  -0.006686" 
WRITE (1, '(A)') "      42096  -0.007006     42097  -0.004011" 
WRITE (1, '(A)') "      42098  -0.010135     42100  -0.004044" 
 
WRITE (1, '(A,I3,A)') "m", FirstNum+2, " NLIB=70C $ Aluminum 6061-T6, rho=2.70 
g/cm3" 
WRITE (1, '(A)') "      12024  -0.007899     12025  -0.001000" 
WRITE (1, '(A)') "      12026  -0.001101     13027  -0.980000" 
WRITE (1, '(A)') "      14028  -0.005534     14029  -0.000280" 
WRITE (1, '(A)') "      14030  -0.000186" 
WRITE (1, '(A)') "      24050  -0.000087     24052  -0.001676" 
WRITE (1, '(A)') "      24053  -0.000190     24054  -0.000047" 
WRITE (1, '(A)') "      29063  -0.001383     29065  -0.000617" 
 
WRITE (1, '(A,I3,A)') "m", FirstNum+3, " NLIB=70C $ Photomultiplier Tube volume 
average, rho ~ 0.5 g/cm3" 
WRITE (1, '(A)') "      1001   -0.051892     1002   -0.000008" 
WRITE (1, '(A)') "      6000   -0.303200" 
WRITE (1, '(A)') "      8016   -0.096600     9019   -0.076000" 
WRITE (1, '(A)') "      13027  -0.150000" 
WRITE (1, '(A)') "      14028  -0.112797     14029  -0.005712" 
WRITE (1, '(A)') "      14030  -0.003791" 
WRITE (1, '(A)') "      29063  -0.138340     29065  -0.061660" 
 
WRITE (1, '(A,I3,A)') "m", FirstNum+4, " NLIB=70C $ Common Brass, rho = 8.6 
g/cm3" 
WRITE (1, '(A)') "      29063  -0.435771     29065  -0.194229"                                
WRITE (1, '(A)') "      30000  -0.370000" 
END IF 
 
 
WRITE (1, '(A, I3, F8.2, A, F8.2)') "*TR", FirstNum-1, offset, " 0 ", zplane  
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! Detector Transforms go here 
DO I = 1, 2*N-1, 2 
K = FirstNum + (I+1)/2 - 1 
  rotate = phi*360*REAL(I-N)/REAL(N)/6.283185307/2. 
  xy = 90.-rotate 
  yx = 90.+rotate 
    WRITE (1, '(A, I3, F8.2, A, 3F10.6, A, 2F10.6, A)') "*TR", K, offset, " 0 
", zplane, -rotate, xy 
    WRITE (1, '(A, 2F10.6, A)')  "       90 ", yx, -rotate, " 90 90 90 0" 
END DO 
 
WRITE (1, '(A,F8.2,A)') "*TR999", offset, " 0 0" 
 
! Calculate the angle to the center of the pixel 
!IF (NumPixels == 8) THEN 
!  pixangle = -29.03 + 6.11*REAL(P) 
!ELSE IF (NumPixels == 16) THEN 
!  pixangle = -25.975 + 3.055*REAL(P) 
!ELSE 
!  PRINT *, "Unknown pixel configuration" 
!  PRINT *, "Only 8 or 16 pixels are supported." 
!  STOP 
!END IF 
pixangle = pixcenter - (REAL(NumPixels + 1)/2. - REAL(P))*FWHM 
 
! Now compute the values for the SI & SP cards for the SDEF 
! CorrFact is a correction factor that narrows the pixel slightly. 
! This correction is necessary to account for the fact that the SDEF card is a 
! discrete function.  Without it, the pixels will be slightly more tail heavy 
! than expected and produce a 'wavy' void measurement. 
CorrFact = REAL(NumSDEFCards - 2) / REAL(NumSDEFCards - 1) 
PDFSum = 0. 
DO Q = 1, NumSDEFCards 
  SDEF(Q, 1) = REAL(Q-1) * 90. / REAL(NumSDEFCards-1) 
  SDEF(Q, 2) = COS(FWHM*SDEF(Q,1)/90.*6.283185307/360.*CorrFact) 
  SDEF(Q, 3) = (COS(SDEF(Q,1)*6.283185307/360.)) ** 2 
  SDEF(Q, 4) = REAL(Q**2 - (Q-1)**2) 
  PDFSum = PDFSum + SDEF(Q,3) * SDEF(Q,4) 
END DO 
 
DO Q = 1, NumSDEFCards 
  SDEF(Q, 5) = SDEF(Q, 3) * SDEF(Q, 4) / PDFSum 
END DO 
 
xcos = COS(pixangle*6.283185307/360.) 
ycos = COS((90.-pixangle)*6.283185307/360.) 
WRITE (1, '(A,F8.2,A,F8.2,A)') "SDEF pos=", offset, " 0 ", zplane," ERG=14.100 
DIR=d1 "  
WRITE (1, '(A, 2F10.6, A)') "      PAR=1 VEC=", xcos, ycos, " 0" 
 
! Write out the SI Card 
WRITE(1, '(A,4F12.8)') "SI1    -1         ", SDEF(NumSDEFCards,2), 
SDEF(NumSDEFCards-1,2), & 
& SDEF(NumSDEFCards-2,2), SDEF(NumSDEFCards-3,2) 
WRITE(1, '(A)', ADVANCE="NO") "      " 
NumThisLine = 0 
DO Q = NumSDEFCards-4, 1, -1 
  WRITE(1, '(F12.8)', ADVANCE="NO") SDEF(Q,2) 
  NumThisLine = NumThisLine + 1 
  IF (NumThisLine == 5 .AND. Q /= 1) THEN 
    NumThisLine = 0 
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    WRITE(1, *) 
    WRITE(1, '(A)', ADVANCE="NO") "      " 
  END IF 
END DO 
WRITE(1, *) 
 
! Now write the SP Card 
WRITE(1, '(A,4F12.8)') "SP1     0         ", SDEF(NumSDEFCards,5), 
SDEF(NumSDEFCards-1,5), & 
& SDEF(NumSDEFCards-2,5), SDEF(NumSDEFCards-3,5) 
WRITE(1, '(A)', ADVANCE="NO") "      " 
NumThisLine = 0 
DO Q = NumSDEFCards-4, 1, -1 
  WRITE(1, '(F12.8)', ADVANCE="NO") SDEF(Q,5) 
  NumThisLine = NumThisLine + 1 
  IF (NumThisLine == 5 .AND. Q /= 1) THEN 
    NumThisLine = 0 
    WRITE(1, *) 
    WRITE(1, '(A)', ADVANCE="NO") "      " 
  END IF 
END DO 
 
WRITE(1, *) 
WRITE (1, '(A)') "phys:n J 20."                                                               
WRITE (1, '(A)') "phys:p 0 1 1"                                                              
WRITE (1, '(A,F12.4)') "cut:n ", window*0.1                                                   
WRITE (1, '(A,F12.4,A)') "cut:p ", window*0.1," J 0"                                          
WRITE (1, '(A)') "rdum 0.000150 0.001000" 
! IDUM Card 
WRITE (1, '(A, I3)') "idum 0 1 2 1 J 1 ", NumDet 
WRITE (1, '(A)', Advance="NO") "      " 
DO I = 1, NumDet 
  DetNum = INT(Detect(I,1,1)) + J 
  WRITE (1, '(I4)', ADVANCE="NO") DetNum 
  IF (MOD(I,10) == 0) THEN 
    WRITE(1, *) 
    IF(I .NE. NumDet) WRITE(1,'(A)', ADVANCE="NO") "      " 
  ELSEIF (I == NumDet) THEN 
    WRITE(1,*) 
  END IF 
END DO 
! DBCN Card 
WRITE (1, '(A)', ADVANCE="NO") "DBCN 74822145211985 6J " 
K = 1 + NPS * J * P 
WRITE (Hist, '(I12)') K 
Hist = TRIM(Hist) 
! PRINT *, Hist 
WRITE (1, '(A)', ADVANCE="NO") Hist 
WRITE (1, '(A)') " 4J 12851" 
WRITE (1, '(A,I12)') "nps ", NPS                                                              
WRITE (1, '(A)') "FILES 21 DUMN1" 
 
CYCLE 
!IF 333333 
END IF 
 
WRITE (1, '(A)') Inp(L) 
 
!End of L Loop (L = Line of input deck) 
END DO 
CLOSE (UNIT=1) 
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TxtOut = "move " // TRIM(FileNme) // " .\" // FileBase(1:4) & 
& // "\" // TRIM(PixelNum) 
CALL SYSTEM(TRIM(TxtOut)) 
 
 
!End of J (subsample) loop 
END DO 
 
WRITE (97, '(A)') "rm -f runtp*" 
CLOSE(UNIT=97) 
TxtOut = "move " // TRIM(FileNme3) // " .\" // FileBase(1:4) 
CALL SYSTEM(TRIM(TxtOut)) 
 
WRITE (98, '(A, 3I4, 2F10.5)') "JoinSS " // FileBase(1:2) // TRIM(PixelNum), N, 
NumDet, & 
& FirstNum, radius, DetSep 
WRITE (98, '(A)') "copy " // FileBase(1:2) // TRIM(PixelNum) & 
& // ".peaks .." 
WRITE (98, '(A)') "cd .." 
 
WRITE (99, '(A)') "cd .." 
 
!End P (pixels) loop 
END DO 
 
WRITE (98, '(A, I4)') "JoinPixels " // FileBase(1:2) , NumPixels 
WRITE (98, '(A)') "pause" 
CLOSE(UNIT=98) 
 
WRITE (99, '(A)') "pause" 
CLOSE(UNIT=99) 
 
 
 
TxtOut = "move " // FileBase(1:4) // ".bat .\" // FileBase(1:4) 
CALL SYSTEM(TRIM(TxtOut)) 
TxtOut = "move PP.bat .\" // FileBase(1:4) 
CALL SYSTEM(TRIM(TxtOut)) 
 
CONTAINS 
 
SUBROUTINE ReadParams() 
 
OPEN(UNIT=101, FILE=TRIM(ParamText), ACTION="READ", STATUS="OLD", 
IOSTAT=ErrCode) 
IF (ErrCode > 0) STOP "Could not find specified input parameter file." 
 
DO I = 1, 10000 
  READ(101, '(A)', IOSTAT=ErrCode) ThisLine 
  IF (ErrCode < 0) EXIT !End of parameter file 
 
  IF (ThisLine(1:4) == "BASE") THEN 
  DO J = 5, 80 
    IF (ThisLine(J:J) /= " ") THEN 
      FileBase = TRIM(ThisLine(J:80)) 
      EXIT 
    END IF 
  END DO 
  ELSE IF (ThisLine(1:3) == "NPS") THEN  
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    READ(ThisLine(4:80), '(I11)') NPS 
  ELSE IF (ThisLine(1:5) == "NUMSS") THEN  
    READ(ThisLine(6:80), '(I11)') N 
  ELSE IF (ThisLine(1:4) == "SRCX") THEN  
    READ(ThisLine(5:80), '(F16.8)') offset 
  ELSE IF (ThisLine(1:6) == "ZPLANE") THEN  
    READ(ThisLine(7:80), '(F16.8)') zplane 
  ELSE IF (ThisLine(1:6) == "STODET") THEN  
    READ(ThisLine(7:80), '(F16.8)') radius 
  ELSE IF (ThisLine(1:6) == "NUMDET") THEN  
    READ(ThisLine(7:80), '(I11)') NumDet 
  ELSE IF (ThisLine(1:6) == "1STDET") THEN  
    READ(ThisLine(7:80), '(I11)') FirstNum 
  ELSE IF (ThisLine(1:6) == "DETDIM") THEN  
    READ(ThisLine(7:80), '(F16.8)') crys 
  ELSE IF (ThisLine(1:6) == "DETDEP") THEN  
    READ(ThisLine(7:80), '(F16.8)') Depth 
  ELSE IF (ThisLine(1:4) == "FACE") THEN  
    READ(ThisLine(5:80), '(F16.8)') face 
  ELSE IF (ThisLine(1:6) == "DETSEP") THEN  
    READ(ThisLine(7:80), '(F16.8)') detsep 
  ELSE IF (ThisLine(1:5) == "FANCY") THEN  
    READ(ThisLine(6:80), '(I11)') FancyDet 
  ELSE IF (ThisLine(1:6) == "NUMPIX") THEN  
    READ(ThisLine(7:80), '(I11)') NumPixels 
  ELSE IF (ThisLine(1:6) == "PIXCEN") THEN  
    READ(ThisLine(7:80), '(F16.8)') pixcenter 
  ELSE IF (ThisLine(1:4) == "FWHM") THEN  
    READ(ThisLine(5:80), '(F16.8)') FWHM 
  ELSE IF (ThisLine(1:6) == "SIBINS") THEN  
    READ(ThisLine(7:80), '(I11)') NumSDEFCards 
  ELSE IF (ThisLine(1:6) == "WINDOW") THEN  
    READ(ThisLine(7:80), '(F16.8)') window 
  ELSE IF (ThisLine(1:6) == "DEADTM") THEN  
    READ(ThisLine(7:80), '(F16.8)') deadtime 
  ELSE IF (ThisLine(1:6) == "THRESH") THEN  
    READ(ThisLine(7:80), '(F16.8)') threshold 
  END IF 
END DO 
 
CLOSE(UNIT=101) 
 
END SUBROUTINE ReadParams 
 
END PROGRAM makeinp 

 

A Sample Parameters File 

-! The input name of the base MCNP deck 
BASE Barr.inp 
! The number of source particles 
NPS 25000000 
! The number of subsamples 
NUMSS 4 
 
! The x position of the source, in cm.   
SRCX  -55.0 
! The z position of the source and the detector array 
ZPLANE 0. 
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! The source to detector distance.  Standard NMIS distances are 85, 110, 
! and 217.17 cm. 
STODET 110.0 
 
! The number of imaging detectors in the array 
NUMDET 32 
! The cell number of the first imaging detector.  1STDET + NUMSS * NUMDET must 
! be < 1000 or the resulting decks crash. 
1STDET 401 
! The size of the front face of the plastic scintillator crystal. 
! Only crystals with a square face are supported at this time. 
DETDIM 2.54 
! The depth (long dimension) of the scintillator crystal 
DETDEP 10.16 
! The dimension of the front face of the detector housing. 
! Only square facess are supported. 
FACE 3.0607 
! The separation between adjacent detector centers, in cm. 
! DETSEP =~ STODET * TAN(Angle between detector centers) 
DETSEP 3.20 
! Setting FANCY to 1 will generate detectors with housings and photo-multiplier 
! tubes.  Setting it to 0 omits these.  The RSICC version of mcnp-polimi will 
! probably not be able to handle FANCY=1 with > 16 detectors. 
FANCY 0 
 
! The number of DT Generator Pixels 
NUMPIX 8 
! The offset of the center of the pixels from the center of the detector array. 
PIXCEN -1.535 
! The full width at half maximum of the pixels. 
FWHM 6.11 
! The number of bins that will be used on the SI and SP cards to define the  
! initial neutron directions.  More bins will more closely approximate a  
! continuous function.  
SIBINS 46 
 
! The size of the correlation window, in ns.   
WINDOW 256. 
! The detector deadtime, in ns. 
DEADTM 35. 
The neutron threshold of the array detectors, in MeV. 
THRESH 1.0 

 

An Example Base Input Deck 

Barrel Simulation Base File                              
C                                                                                
C       CELL CARDS ************************************************************  
c                                                                                
c                                                                                
c Object being scanned - Barrel with iron pipes and steel shot                   
c                                                                                
101    3 -7.86       -101 102                                        IMP:N,P=1   
102    0             -102 #111 #121 #131 #141 #151                   IMP:N,P=1   
103    6 -0.25       -103  104                                       IMP:N,P=1   
104    0             -104                                            IMP:N,P=1   
111    2 -0.95       -102 -111 -152                                  IMP:N,P=1   
121    5 -18.90      -102  121 -122 -152                             IMP:N,P=1   
131    3 -7.86       -102  131 -132 -153                             IMP:N,P=1   
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141    3 -7.86       -102  141 -142 -153                             IMP:N,P=1   
151    3 -4.75       -102  132 -151 #141                             IMP:N,P=1   
c                                                                                
c 
c Problem boundary and 'everything else' cell                                    
c                                                                                
99     0              99                                             imp:n,p=0   
98     0   -99 101 103                                                    
c 111111 
                                                                                 
C       BLANK LINE DELIMITER --------------------------------------------------  
C                                                                                
C       SURFACE CARDS *********************************************************  
C                                                                                
c                                                                                
c Problem Boundary                                                               
99    BOX    -400 -400 -100 800 0 0 0 800 0 0 0 400                              
c                                                                                
c                                                                                
c Object Being Scanned - Barrel with iron pipes and steel shot                   
c                                                                                
101 3 RCC  0 0 10.0   0 0 47.00  17.88                                           
102 3 RCC  0 0 10.1   0 0 46.80  17.78                                           
103 3 RCC  0 0 0      0 0 10     16.88                                           
104 3 RCC  0 0 0      0 0 10     6.72                                            
c                                                                                
111 3 CZ   1.27                                                                  
121 3 CZ   4.445                                                                 
122 3 CZ   6.35                                                                  
131 3 CZ   7.62                                                                  
132 3 CZ   8.41375                                                               
141 3 CZ   10.16                                                                 
142 3 CZ   10.95375                                                              
151 3 PZ   23                                                                    
152 3 PZ   25.24                                                                 
153 3 PZ   28.0                                                                  
c                                                                                
c 222222 
                                                                                 
C       BLANK LINE DELIMITER --------------------------------------------------  
C                                                                                
C                                                                                
C       DATA CARDS ************************************************************  
C                                                                                
MODE n p                                                                         
c                                                                                
c Geometric Transforms                                                           
c 
*TR3  0 0 -17   0.000000 90.000000 90  90.000000  0.000000 90 90 90 0             
TR201  -55.00 0   0                                                              
C                                                                                
C MATERIALS                                                                      
C                                                                                
c                                                                                
c Polyethylene, Rho=0.95 g/cc                                                    
c                                                                                
M1    NLIB=60c                                                                   
      6000   2                                                                   
      1001   4                                                                   
c                                                                                
c Graphite, Rho = 2.20 g/cc                                                      
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c                                                                                
M2    NLIB=60c                                                                   
      6000   1                                                                   
c                                                                                
c Elemental Iron, Rho = 7.86 g/cc                                                
c                                                                                
M3    NLIB=60c                                                                   
      26054  -0.058500                                                           
      26056  -0.917500                                                           
      26057  -0.021200                                                           
      26058  -0.002800                                                           
c                                                                                
c Elemental Lead, Rho = 11.6 g/cc                                                
c                                                                                
M4    NLIB=60c                                                                   
      82206    -0.244400                                                         
      82207    -0.224100                                                         
      82208    -0.531500                                                         
c                                                                                
c Depleted Uranium, Rho = 18.9                                                   
c                                                                                
M5    NLIB=60c                                                                 
       92235   -0.002                                                            
       92238   -0.998                                                            
c                                                                                
c Cellulose (Wood)                                                               
c                                                                                
M6    NLIB=70c                                                                 
        1001   0.499925                                                          
        1002   0.000075                                                          
        6000   0.25                                                              
        8016   0.25                                                              
c                                                                                
c 333333 

 

A Sample MCNP Input Deck Created by MakeInp 

Barrel Simulation Base File                              
C                                                                                
C       CELL CARDS ************************************************************  
c                                                                                
c                                                                                
c Object being scanned - Barrel with iron pipes and steel shot                   
c                                                                                
101    3 -7.86       -101 102                                        IMP:N,P=1   
102    0             -102 #111 #121 #131 #141 #151                   IMP:N,P=1   
103    6 -0.25       -103  104                                       IMP:N,P=1   
104    0             -104                                            IMP:N,P=1   
111    2 -0.95       -102 -111 -152                                  IMP:N,P=1   
121    5 -18.90      -102  121 -122 -152                             IMP:N,P=1   
131    3 -7.86       -102  131 -132 -153                             IMP:N,P=1   
141    3 -7.86       -102  141 -142 -153                             IMP:N,P=1   
151    3 -4.75       -102  132 -151 #141                             IMP:N,P=1   
c                                                                                
c                                                                                
c Problem boundary and 'everything else' cell                                    
c                                                                                
99     0              99                                             imp:n,p=0   
98     0   -99 101 103                                                           
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        401  405  409  413  417  421  425  429  433  437  441  445 
        449  453  457  461  465  469  473  477  481  485  489  493 
        497  501  505  509  513  517  521  525 
      imp:n,p=1 
c 
c Detectors 
c 
401 401  -1.0230 -401 imp:n,p=1 $ detector  1 
405 401  -1.0230 -405 imp:n,p=1 $ detector  2 
409 401  -1.0230 -409 imp:n,p=1 $ detector  3 
413 401  -1.0230 -413 imp:n,p=1 $ detector  4 
417 401  -1.0230 -417 imp:n,p=1 $ detector  5 
421 401  -1.0230 -421 imp:n,p=1 $ detector  6 
425 401  -1.0230 -425 imp:n,p=1 $ detector  7 
429 401  -1.0230 -429 imp:n,p=1 $ detector  8 
433 401  -1.0230 -433 imp:n,p=1 $ detector  9 
437 401  -1.0230 -437 imp:n,p=1 $ detector 10 
441 401  -1.0230 -441 imp:n,p=1 $ detector 11 
445 401  -1.0230 -445 imp:n,p=1 $ detector 12 
449 401  -1.0230 -449 imp:n,p=1 $ detector 13 
453 401  -1.0230 -453 imp:n,p=1 $ detector 14 
457 401  -1.0230 -457 imp:n,p=1 $ detector 15 
461 401  -1.0230 -461 imp:n,p=1 $ detector 16 
465 401  -1.0230 -465 imp:n,p=1 $ detector 17 
469 401  -1.0230 -469 imp:n,p=1 $ detector 18 
473 401  -1.0230 -473 imp:n,p=1 $ detector 19 
477 401  -1.0230 -477 imp:n,p=1 $ detector 20 
481 401  -1.0230 -481 imp:n,p=1 $ detector 21 
485 401  -1.0230 -485 imp:n,p=1 $ detector 22 
489 401  -1.0230 -489 imp:n,p=1 $ detector 23 
493 401  -1.0230 -493 imp:n,p=1 $ detector 24 
497 401  -1.0230 -497 imp:n,p=1 $ detector 25 
501 401  -1.0230 -501 imp:n,p=1 $ detector 26 
505 401  -1.0230 -505 imp:n,p=1 $ detector 27 
509 401  -1.0230 -509 imp:n,p=1 $ detector 28 
513 401  -1.0230 -513 imp:n,p=1 $ detector 29 
517 401  -1.0230 -517 imp:n,p=1 $ detector 30 
521 401  -1.0230 -521 imp:n,p=1 $ detector 31 
525 401  -1.0230 -525 imp:n,p=1 $ detector 32 
                                                                                 
C       BLANK LINE DELIMITER --------------------------------------------------  
C                                                                                
C       SURFACE CARDS *********************************************************  
C                                                                                
c                                                                                
c Problem Boundary                                                               
99    BOX    -400 -400 -100 800 0 0 0 800 0 0 0 400                              
c                                                                                
c                                                                                
c Object Being Scanned - Barrel with iron pipes and steel shot                   
c                                                                                
101 3 RCC  0 0 10.0   0 0 47.00  17.88                                           
102 3 RCC  0 0 10.1   0 0 46.80  17.78                                           
103 3 RCC  0 0 0      0 0 10     16.88                                           
104 3 RCC  0 0 0      0 0 10     6.72                                            
c                                                                                
111 3 CZ   1.27                                                                  
121 3 CZ   4.445                                                                 
122 3 CZ   6.35                                                                  
131 3 CZ   7.62                                                                  
132 3 CZ   8.41375                                                               

235 



 

141 3 CZ   10.16                                                                 
142 3 CZ   10.95375                                                              
151 3 PZ   23                                                                    
152 3 PZ   25.24                                                                 
153 3 PZ   28.0                                                                  
c                                                                                
c 
c Detectors 
c 
401 401 BOX    98.453758  -49.076168   -1.270000    1.106819    2.286165 
          0.000000    9.144662   -4.427274    0.000000    0.000000    0.000000 
          2.540000 $ Angle =   -25.833366 
405 401 BOX    99.839478  -46.191906   -1.270000    1.039858    2.317390 
          0.000000    9.269559   -4.159431    0.000000    0.000000    0.000000 
          2.540000 $ Angle =   -24.166698 
409 401 BOX   101.140717  -43.268559   -1.270000    0.972017    2.346653 
          0.000000    9.386614   -3.888068    0.000000    0.000000    0.000000 
          2.540000 $ Angle =   -22.500029 
413 401 BOX   102.356384  -40.308598   -1.270000    0.903354    2.373932 
          0.000000    9.495727   -3.613416    0.000000    0.000000    0.000000 
          2.540000 $ Angle =   -20.833361 
417 401 BOX   103.485451  -37.314537   -1.270000    0.833927    2.399201 
          0.000000    9.596805   -3.335707    0.000000    0.000000    0.000000 
          2.540000 $ Angle =   -19.166693 
421 401 BOX   104.526955  -34.288902   -1.270000    0.763794    2.422441 
          0.000000    9.689763   -3.055175    0.000000    0.000000    0.000000 
          2.540000 $ Angle =   -17.500023 
425 401 BOX   105.480019  -31.234255   -1.270000    0.693015    2.443631 
          0.000000    9.774523   -2.772058    0.000000    0.000000    0.000000 
          2.540000 $ Angle =   -15.833355 
429 401 BOX   106.343842  -28.153181   -1.270000    0.621649    2.462753 
          0.000000    9.851012   -2.486596    0.000000    0.000000    0.000000 
          2.540000 $ Angle =   -14.166686 
433 401 BOX   107.117676  -25.048288   -1.270000    0.549757    2.479792 
          0.000000    9.919167   -2.199029    0.000000    0.000000    0.000000 
          2.540000 $ Angle =   -12.500018 
437 401 BOX   107.800880  -21.922199   -1.270000    0.477401    2.494732 
          0.000000    9.978929   -1.909603    0.000000    0.000000    0.000000 
          2.540000 $ Angle =   -10.833349 
441 401 BOX   108.392883  -18.777563   -1.270000    0.404640    2.507562 
          0.000000   10.030248   -1.618560    0.000000    0.000000    0.000000 
          2.540000 $ Angle =    -9.166680 
445 401 BOX   108.893158  -15.617040   -1.270000    0.331537    2.518270 
          0.000000   10.073079   -1.326148    0.000000    0.000000    0.000000 
          2.540000 $ Angle =    -7.500012 
449 401 BOX   109.301315  -12.443302   -1.270000    0.258154    2.526847 
          0.000000   10.107388   -1.032614    0.000000    0.000000    0.000000 
          2.540000 $ Angle =    -5.833344 
453 401 BOX   109.616982   -9.259036   -1.270000    0.184552    2.533287 
          0.000000   10.133146   -0.738206    0.000000    0.000000    0.000000 
          2.540000 $ Angle =    -4.166675 
457 401 BOX   109.839905   -6.066936   -1.270000    0.110794    2.537582 
          0.000000   10.150330   -0.443174    0.000000    0.000000    0.000000 
          2.540000 $ Angle =    -2.500006 
461 401 BOX   109.969894   -2.869702   -1.270000    0.036942    2.539731 
          0.000000   10.158925   -0.147767    0.000000    0.000000    0.000000 
          2.540000 $ Angle =    -0.833337 
465 401 BOX   110.006836    0.329960   -1.270000   -0.036941    2.539731 
          0.000000   10.158925    0.147766    0.000000    0.000000    0.000000 
          2.540000 $ Angle =     0.833332 
469 401 BOX   109.950699    3.529342   -1.270000   -0.110793    2.537582 
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          0.000000   10.150330    0.443173    0.000000    0.000000    0.000000 
          2.540000 $ Angle =     2.500000 
473 401 BOX   109.801537    6.725738   -1.270000   -0.184551    2.533287 
          0.000000   10.133146    0.738205    0.000000    0.000000    0.000000 
          2.540000 $ Angle =     4.166669 
477 401 BOX   109.559464    9.916443   -1.270000   -0.258153    2.526847 
          0.000000   10.107388    1.032613    0.000000    0.000000    0.000000 
          2.540000 $ Angle =     5.833337 
481 401 BOX   109.224701   13.098758   -1.270000   -0.331537    2.518270 
          0.000000   10.073079    1.326147    0.000000    0.000000    0.000000 
          2.540000 $ Angle =     7.500006 
485 401 BOX   108.797516   16.269991   -1.270000   -0.404640    2.507562 
          0.000000   10.030248    1.618559    0.000000    0.000000    0.000000 
          2.540000 $ Angle =     9.166675 
489 401 BOX   108.278282   19.427456   -1.270000   -0.477400    2.494732 
          0.000000    9.978929    1.909602    0.000000    0.000000    0.000000 
          2.540000 $ Angle =    10.833344 
493 401 BOX   107.667435   22.568483   -1.270000   -0.549757    2.479792 
          0.000000    9.919167    2.199028    0.000000    0.000000    0.000000 
          2.540000 $ Angle =    12.500011 
497 401 BOX   106.965485   25.690416   -1.270000   -0.621649    2.462753 
          0.000000    9.851012    2.486595    0.000000    0.000000    0.000000 
          2.540000 $ Angle =    14.166680 
501 401 BOX   106.173035   28.790615   -1.270000   -0.693014    2.443631 
          0.000000    9.774523    2.772057    0.000000    0.000000    0.000000 
          2.540000 $ Angle =    15.833349 
505 401 BOX   105.290749   31.866451   -1.270000   -0.763794    2.422441 
          0.000000    9.689763    3.055174    0.000000    0.000000    0.000000 
          2.540000 $ Angle =    17.500019 
509 401 BOX   104.319374   34.915325   -1.270000   -0.833926    2.399201 
          0.000000    9.596805    3.335706    0.000000    0.000000    0.000000 
          2.540000 $ Angle =    19.166687 
513 401 BOX   103.259743   37.934658   -1.270000   -0.903354    2.373932 
          0.000000    9.495727    3.613415    0.000000    0.000000    0.000000 
          2.540000 $ Angle =    20.833355 
517 401 BOX   102.112740   40.921894   -1.270000   -0.972017    2.346653 
          0.000000    9.386614    3.888068    0.000000    0.000000    0.000000 
          2.540000 $ Angle =    22.500025 
521 401 BOX   100.879333   43.874504   -1.270000   -1.039858    2.317390 
          0.000000    9.269560    4.159430    0.000000    0.000000    0.000000 
          2.540000 $ Angle =    24.166693 
525 401 BOX    99.560577   46.789997   -1.270000   -1.106818    2.286165 
          0.000000    9.144662    4.427273    0.000000    0.000000    0.000000 
          2.540000 $ Angle =    25.833361 
                                                                                 
C       BLANK LINE DELIMITER --------------------------------------------------  
C                                                                                
C                                                                                
C       DATA CARDS ************************************************************  
C                                                                                
MODE n p                                                                         
c                                                                                
c Geometric Transforms                                                           
c                                                                                
*TR3  0 0 -17   0.000000 90.000000 90  90.000000  0.000000 90 90 90 0            
TR201  -55.00 0   0                                                              
C                                                                                
C MATERIALS                                                                      
C                                                                                
c                                                                                
c Polyethylene, Rho=0.95 g/cc                                                    
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c                                                                                
M1    NLIB=60c                                                                   
      6000   2                                                                   
      1001   4                                                                   
c                                                                                
c Graphite, Rho = 2.20 g/cc                                                      
c                                                                                
M2    NLIB=60c                                                                   
      6000   1                                                                   
c                                                                                
c Elemental Iron, Rho = 7.86 g/cc                                                
c                                                                                
M3    NLIB=60c                                                                   
      26054  -0.058500                                                           
      26056  -0.917500                                                           
      26057  -0.021200                                                           
      26058  -0.002800                                                           
c                                                                                
c Elemental Lead, Rho = 11.6 g/cc                                                
c                                                                                
M4    NLIB=60c                                                                   
      82206    -0.244400                                                         
      82207    -0.224100                                                         
      82208    -0.531500                                                         
c                                                                                
c Depleted Uranium, Rho = 18.9                                                   
c                                                                                
M5    NLIB=60c                                                                   
       92235   -0.002                                                            
       92238   -0.998                                                            
c                                                                                
c Cellulose (Wood)                                                               
c                                                                                
M6    NLIB=70c                                                                   
        1001   0.499925                                                          
        1002   0.000075                                                          
        6000   0.25                                                              
        8016   0.25                                                              
c                                                                                
m401 NLIB=60C $ organic scintillator 
      6000 10 
      1001 11 
*TR400  -55.00 0     0.00 
*TR401  -55.00 0   0.000000  0.625001 90.625000 
       90  89.375000  0.625001 90 90 90 0 
*TR402  -55.00 0   0.000000  0.208334 90.208336 
       90  89.791664  0.208334 90 90 90 0 
*TR403  -55.00 0   0.000000 -0.208334 89.791664 
       90  90.208336 -0.208334 90 90 90 0 
*TR404  -55.00 0   0.000000 -0.625001 89.375000 
       90  90.625000 -0.625001 90 90 90 0 
*TR999  -55.00 0 0 
SDEF pos=  -55.00 0     0.00 ERG=14.100 DIR=d1  
      PAR=1 VEC=  0.921050 -0.389445 0 
SI1    -1           0.99456882  0.99480730  0.99504048  0.99526829 
        0.99549073  0.99570787  0.99591964  0.99612612  0.99632716 
        0.99652290  0.99671328  0.99689835  0.99707800  0.99725235 
        0.99742132  0.99758494  0.99774319  0.99789608  0.99804366 
        0.99818581  0.99832267  0.99845415  0.99858022  0.99870098 
        0.99881637  0.99892640  0.99903107  0.99913037  0.99922431 
        0.99931288  0.99939603  0.99947387  0.99954635  0.99961346 
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        0.99967521  0.99973154  0.99978256  0.99982822  0.99986845 
        0.99990338  0.99993289  0.99995703  0.99997586  0.99998927 
        0.99999732  1.00000000 
SP1     0           0.00000000  0.00017344  0.00067736  0.00148600 
        0.00257230  0.00390802  0.00546408  0.00721063  0.00911736 
        0.01115372  0.01328905  0.01549287  0.01773509  0.01998616 
        0.02221729  0.02440068  0.02650962  0.02851873  0.03040410 
        0.03214340  0.03371609  0.03510346  0.03628879  0.03725742 
        0.03799684  0.03849673  0.03874905  0.03874798  0.03849005 
        0.03797406  0.03720104  0.03617428  0.03489926  0.03338354 
        0.03163673  0.02967037  0.02749782  0.02513415  0.02259600 
        0.01990143  0.01706977  0.01412148  0.01107793  0.00796129 
        0.00479429  0.00160004 
phys:n J 20. 
phys:p 0 1 1 
cut:n      25.6000 
cut:p      25.6000 J 0 
rdum 0.000150 0.001000 
idum 0 1 2 1 J 1  32 
       401 405 409 413 417 421 425 429 433 437 
       441 445 449 453 457 461 465 469 473 477 
       481 485 489 493 497 501 505 509 513 517 
       521 525 
DBCN 74822145211985 6J            1     4J 12851 
nps     25000000 
FILES 21 DUMN1 

 



 

Appendix D – The PoliMiPP Code and Supporting Files 

The PoliMiPP Code 

PROGRAM PoliMiPP 
! Version 3.00 
! Written January 7th, 2009 
! By Brandon Grogan 
! At The Oak Ridge National Laboratory 
! Last Edited: December 21st, 2009 
 
!==============================================================================
============ 
! Variable declaration 
!==============================================================================
============ 
 
IMPLICIT NONE 
 
TYPE DatFile 
  INTEGER(KIND=4) Col1, Col2, Col3, Col4, Col5, Col6 
  REAL(KIND=4) Col7, Col8, Col9, Col10, Col11, Col12 
  INTEGER(KIND=4) Col13, Col14, Col15 
  ! REAL(KIND=4) Col16 
END TYPE DatFile 
 
TYPE DetectorPulse 
  INTEGER(KIND=4) HistNo, DetNo, ParNo, Direct, SubHist, XTalk 
  REAL(KIND=4) :: Time, PulseHeight 
END TYPE DetectorPulse 
 
TYPE PeaksFile 
  INTEGER(Kind=4) DetNo, TotalPeak 
  REAL(KIND=4) TotalMean 
  INTEGER(KIND=4) DirectPeak 
  REAL(KIND=4) DirectMean 
  INTEGER(KIND=4) XTPeak 
  REAL(KIND=4) XTMean 
END TYPE PeaksFile 
 
! Removed - qqqqq 
! The DatFile array holds all of the data from the PoliMi .DAT file 
! It's dimensions will be the number of rows in the .DAT file x the number of 
columns 
! in the PoliMi output (16). 
! REAL, ALLOCATABLE :: DatFile(:,:) 
 
TYPE(DatFile), ALLOCATABLE :: ThisHist(:) 
TYPE(DatFile) :: HistSwap, TestInput 
 
TYPE(DetectorPulse), ALLOCATABLE :: TempPulses(:), Pulses(:) 
INTEGER(KIND=4) :: NumPulses 
 
! This array will temporarily store the data on the starting histories until 
the total 
! number of histories in the .DAT file is known, at which time the data will be 
moved 
! to the (smaller) DatHist array. 
INTEGER(KIND=4), ALLOCATABLE :: TempHist(:,:) 
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! The DatHist array contains the history the history number, starting line 
number (in the 
! DatFile array) of each history number, and the number of events for that 
history. 
INTEGER(KIND=4), ALLOCATABLE :: DatHist(:,:), PulseHist(:,:) 
 
! Records the number of detectors (NumDet) and detector cell numbers found in 
the .DAT file. 
! CurrentDet holds the cell number of the detector in the current history that 
is being  
! manipulated by the program. 
INTEGER(KIND=4) :: NumDet, Detector(50), CurrentDet 
! NewDet indicates whether a detector cell number has been seen in the .DAT 
file previously. 
LOGICAL :: NewDet 
 
! Integer variables used for DO loops and swapping 
INTEGER(KIND=4) :: I, J, K, L, SwapInt, SubHistNo, NumSubHist 
REAL(KIND=4) :: MinTime 
 
! NumEvents is the number of rows in the .DAT file.  NumHist is the number of 
histories 
! in the .DAT file.  MaxEvt is the maximum number of events recorded for a 
single history. 
! MaxEvtHist is the history number with the maximum number of events. 
INTEGER(KIND=4) :: NumEvents, NumHist, MaxEvt, MaxEvtHist, NumHistP, MaxPulse, 
MaxPulseHist 
 
! This variable is used to sort the events in a history by interaction time. 
INTEGER(KIND=4) :: MinRowLoc(1) 
 
! 'History' holds the history number of the line currently being read in the 
.DAT file. 
! 'OldHistory' holds the history number of the previous line 
INTEGER(KIND=4) :: History, OldHistory 
 
! 'InputStatus' holds the IO status of a file read.  IO status < 0 indicates 
end of file. 
INTEGER :: InputStatus, FileBaseSize 
CHARACTER :: DatName*64, FileBase*64, DetectName*4, NPSText*11, OneLetter*1 
CHARACTER :: CorrWindowText*11, DeadTimeText*11, DatFormatText*128, 
nThreshText*11 
 
! These variables store the time at the beginning and end of the program in 
order to  
! measure the execution time of the program. 
REAL(Kind = 4) :: StartTime, FinishTime 
 
! Dummy Variables 
INTEGER(KIND=4) :: DummyInt 
REAL(KIND=4) :: DummyReal 
 
! DeadStart records the time that the detector deadtime window opens.  
PulseStart records 
! the time the pulse generation window opens.  PHThisEvent is the total light 
output 
! attributed to a particular event in the .DAT file.  PHTotal is the total 
light output 
! generated during the pulse generation window so far. 
REAL(Kind = 4) :: DeadStart, PulseStart, PHThisEvent 
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REAL(KIND=4), ALLOCATABLE :: PHTotal(:) 
 
! Input parameters.  These are currently hard-coded, but may be placed off-line 
later. 
! Pulse generation time.  This is the amount of time it takes the detector to 
generate a  
! pulse once the initial energy is deposited in the detector cell.  If two 
events occur 
! within pgentime of each other, their light output will combine. 
REAL :: pgentime = 10.0 
! The time after a pulse in a detector in which all further events are lost. 
! REAL, PARAMETER :: deadtime = 80.0 
REAL :: deadtime 
! The light output (in MeVee) required to produce a pulse in the detector. 
REAL :: threshold, nthresh 
! INTEGER, PARAMETER :: CorrWindow = 1024 
INTEGER(KIND=4) :: CorrWindow 
! The cell number of the start detector which will be used for cross-
correlation 
! calculations 
INTEGER :: StartDet, StartDetRow, StopDetRow 
 
! Used to hold the integer (rather than real) pulse time. 
INTEGER :: IntTime, StopIntTime, TimeLag, CorrWindowOverflow 
 
! Arrays used to hold the program output. 
INTEGER(KIND=4), ALLOCATABLE :: Correlation(:,:,:), CrossCorr(:,:,:) 
 
! Variables used for calculating multiplicities 
! qqqqq - Made this a command line input for now. 
! INTEGER(KIND=4), PARAMETER :: nps = 18600000 
INTEGER(KIND=4) :: nps 
INTEGER(KIND=4) :: TotalMult, TotalNeutronMult 
INTEGER(KIND=4), ALLOCATABLE :: Multiplicity(:,:) 
 
TYPE(PeaksFile), ALLOCATABLE :: Peaks(:) 
INTEGER, PARAMETER :: PeakWidth = 5 
INTEGER(KIND=4) :: PeakSumTotal, PeakSumDirect, PeakSumNoXT, PeakStart, PeakOld 
 
! PH Spectrum parameters 
REAL, PARAMETER :: PHSIncrement = 0.05, PHSMax = 10.00 
INTEGER :: PHSNumBins, PHSBin 
INTEGER(KIND=4), ALLOCATABLE :: PHSpectrum(:,:,:) 
 
INTEGER :: NumNeutronPulses 
 
! Variables Used for assigning the minimum particle number and subhist to a 
pulse if 
! it is the aggregation of more than 1 event 
INTEGER(KIND=4) :: MinParNo, MinSubHist, MinCollisions, MinGen, MinCode 
REAL :: MinWeight 
 
! These values are used to control the maximum number of lines and histories 
the program 
! will read from the .DAT files.  If these values are too small, the entire 
.DAT file 
! will not be processed.  If they are set too large, a huge .DAT file may 
overflow  
! system memory and cause a crash.  Values as large as MaxHist = 10000000 and  
! MaxLines = 24000000 have been tested. 
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INTEGER(KIND=4) :: MaxHist, MaxLines 
MaxHist = 20000000 
MaxLines = 40000000 
 
!==============================================================================
============ 
! Read variables from command line, open .DAT file, initialize variables 
!==============================================================================
============ 
 
CALL CPU_TIME(StartTime) 
 
 
PRINT *, "PolimiPP, Version 3.00" 
PRINT *, "Modified 26 October 2009" 
 
 
! Reads the .DAT filename from the command line 
CALL GetArg(1, DatName) 
CALL GetArg(2, DetectName) 
CALL GetArg(3, NPSText) 
CALL GetArg(4, CorrWindowText) 
CALL GetArg(5, DeadTimeText) 
CALL GetArg(6, nThreshText) 
 
IF (LEN(TRIM(DatName)) == 0) THEN 
 Print *, "PoliMiPP Syntax:" 
 PRINT *, 
 PRINT *, "PoliMiPP <.dat Filename> <Start Det Cell #> <nps> <Correlation 
Window Size>," 
 PRINT *, "<Detector Dead Time>, <Neutron Threshold>" 
 STOP 
END IF 
 
READ (DetectName, '(I4)') StartDet 
IF (LEN(TRIM(NPSText)) > 0) THEN 
  READ (NPSText, '(I11)') nps 
ELSE 
  nps = 1 
END IF 
 
IF (LEN(TRIM(CorrWindowText)) > 0) THEN 
  READ (CorrWindowText, '(I11)') CorrWindow 
ELSE 
  CorrWindow = 256 
END IF 
 
IF (CorrWindow > 2048) THEN 
  PRINT *, "Correlation Window exceeds maximum value of 2048 ns.  Correlation 
Window size, dead time, " 
  PRINT *, "and pulse generation time will be converted to microseconds by 
dividing by 1000." 
END IF 
 
! qqqqq 
!PRINT *, CorrWindow 
 
IF (LEN(TRIM(DeadTimeText)) > 0) THEN 
  READ (DeadTimeText, '(F11.0)') deadtime 
ELSE 
  deadtime = 35.0 

243 



 

END IF 
 
IF (LEN(TRIM(nThreshText)) > 0) THEN 
  READ (nThreshText, '(F11.0)') nthresh 
ELSE 
  nthresh = 1.0 
END IF 
 
threshold = 0.0364*nthresh**2 + 0.125*nthresh 
 
 
! qqqqq 
!PRINT *, deadtime 
 
FileBase = " " 
 
J = ICHAR(".") 
DO I = 1,LEN(TRIM(DatName)) 
  IF (DatName(I:I) == ".") THEN 
    EXIT 
  ELSE  
    OneLetter = DatName(I:I) 
    FileBase(I:I) = OneLetter 
  END IF 
END DO 
 
! qqqqq 
!PRINT *, TRIM(FileBase) 
 
!FileBase = DatName(1:4) 
 
! Opens .DAT file 
OPEN(UNIT=1, FILE=TRIM(DatName), ACTION="READ", STATUS="OLD", 
POSITION="REWIND", IOSTAT = InputStatus) 
IF (InputStatus > 0) STOP "Error opening specified .DAT file" 
 
NumHist = 0 
OldHistory = 0 
NumDet = 0 
Detector = 0 
 
! TempHist will record history numbers and starting line of all histories in 
the .DAT file. 
! Because the number of histories will not be known until after all of the 
histories are 
! read in, it must be allocated with more rows than the maximum number of 
histories any 
! reasonably (< 2 GB) sized .DAT file could contain. 
ALLOCATE(TempHist(MaxHist,2)) 
 
 
!==============================================================================
============ 
! Step 1 : Process the raw .DAT file 
!==============================================================================
============ 
 
!120 FORMAT(I11, I5, I3, I5, I6, I4) 
 
! This loop runs through the .DAT file to record the number of events and 
histories. 
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! The loop will terminate when the end of the file is reached. 
DO I=1,MaxLines 
   
  NewDet = .TRUE. 
  ! Reads the history number of each line 
  READ(1,*, IOSTAT=InputStatus) History, DummyInt, DummyInt, DummyInt, 
DummyInt, CurrentDet 
 
  ! Terminates the loop once the end of the .DAT file is reached. 
  IF (InputStatus < 0) THEN 
   PRINT *, "Last History in .DAT file: ", History 
   EXIT 
  END IF 
  ! Stops the program if the .DAT file cannot be read. 
  IF (InputStatus > 0) STOP "*** Error Reading DAT file ***  Unrecognized .DAT 
file format" 
 
  IF(I == MaxLines) THEN 
    PRINT *, "Warning, .DAT file is too large.  Only histories up to number " 
    PRINT *,  TempHist(NumHist, 1), " were processed." 
 
  END IF 
 
  IF (MOD(I, 1000000)==0) PRINT *, I, " lines read" 
 
 
  DO J = 1, NumDet 
    IF (CurrentDet == Detector(J)) THEN 
      NewDet = .FALSE. 
      EXIT       
    END IF 
  END DO 
 
  IF (NewDet .EQV. .TRUE.) THEN 
    NumDet = NumDet + 1 
    Detector(NumDet) = CurrentDet 
  END IF 
 
 
  ! Checks to see if this is a new history number.  If so, NumHist is increased 
by 
  ! one and this history number becomes the 'OldHistory'. 
  IF (History == OldHistory) THEN 
    CYCLE 
  ELSE 
    NumHist = NumHist + 1 
      ! Check to see if the maximum number of histories has been exceeded.  If 
so, 
      ! stop processing and  
      IF (NumHist > MaxHist) THEN 
        NumHist = MaxHist 
        PRINT *, "Warning, .DAT file too large.  Maximum history number 
processed" 
        PRINT *, "is number ", TempHist(NumHist, 1) 
        EXIT 
      END IF 
    OldHistory = History 
    TempHist(NumHist,1) = History 
    TempHist(NumHist,2) = I 
  END IF 
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END DO 
 
NumEvents = I-1 
 
 
DO I = 1, NumDet-1 
  MinRowLoc = I + MINLOC(Detector(I+1:NumDet)) 
  IF (Detector(I) .GT. Detector(MinRowLoc(1))) THEN 
    SwapInt = Detector(I) 
    Detector(I) = Detector(MinRowLoc(1)) 
    Detector(MinRowLoc(1)) = SwapInt 
  END IF 
END DO 
 
StartDetRow = 0 
DO I = 1, NumDet 
  IF (Detector(I) == StartDet) StartDetRow = I 
END DO 
 
 
IF (StartDetRow == 0) THEN 
  PRINT *, "Starting Detector Cell not found in .DAT file.  Detector-detector 
cross-& 
  &correlations will not be computed for this file." 
END IF 
 
! Allocates the arrays now that the number of events and histories is known 
! Removed DatFile array - qqqqq 
! ALLOCATE(DatFile(NumEvents,16)) 
ALLOCATE(DatHist(NumHist,3)) 
 
MaxEvt = 0 
 
! This loop writes the data stored in the TempHist array into the DatHist 
array.   
! TempHist is (probably much) larger than DatHist because it could not be 
allocated 
! with the correct number of histories until after the entire DAT file had been 
read. 
DO I = 1, NumHist 
  DatHist(I,1) = TempHist(I,1) 
  DatHist(I,2) = TempHist(I,2) 
  IF (I < NumHist) THEN 
    DatHist(I,3) = TempHist(I+1,2) - TempHist(I,2) 
  ELSE 
    DatHist(I,3) = NumEvents+1 - TempHist(I,2) 
  END IF 
  IF (DatHist(I,3) > MaxEvt) THEN 
    MaxEvt = DatHist(I,3) 
    MaxEvtHist = DatHist(I,1) 
  END IF 
END DO 
 
! Now that the data has been written to the smaller DatHist array, this array 
is 
! no longer needed. 
DEALLOCATE(TempHist) 
 
! 
! Used for testing - qqqqq 
! 
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!OPEN(UNIT=2, FILE="TEST.OUT", ACTION="WRITE", STATUS="REPLACE") 
!DO I = 1, NumHist 
!  WRITE (2, '(3I13)') DatHist (I,1), DatHist(I,2), DatHist(I,3) 
!END DO 
!CLOSE(UNIT=2) 
 
 
!==============================================================================
============ 
! Step 2 : Extract pulses for each history 
!==============================================================================
============ 
 
! Return to the start of the .DAT file 
REWIND 1 
 
110 FORMAT(I11,I5,I3,I5,I6,I4,F10.5,F10.3,F9.2,F8.2,F8.2,F7.3,I5,I6,I4) 
130 FORMAT(I11, I4, I5, I4, I5, I3, F10.3, F8.3) 
 
ALLOCATE(TempPulses(NumEvents)) 
ALLOCATE(ThisHist(MaxEvt)) 
ALLOCATE(PHTotal(MaxEvt)) 
PHTotal = 0. 
 
NumPulses = 0 
 
! Convert deadtime and pgentime to microseconds if necessary. 
IF (CorrWindow > 2048) THEN 
  deadtime = deadtime / 1000. 
  pgentime = pgentime / 1000. 
END IF 
 
 
! qqqqq 
! OPEN(UNIT=8, FILE="mlge.dat", ACTION="WRITE", STATUS="REPLACE") 
 
! Loop through the history file.   
DO I = 1, NumHist 
  ! Reads all of the events for history 'I' into the ThisHist array. 
  DO J = 1, DatHist(I,3) 
    READ (1, *) ThisHist(J)%Col1, ThisHist(J)%Col2, ThisHist(J)%Col3, 
ThisHist(J)%Col4, & 
    & ThisHist(J)%Col5, ThisHist(J)%Col6, ThisHist(J)%Col7, ThisHist(J)%Col8, & 
    & ThisHist(J)%Col9, ThisHist(J)%Col10, ThisHist(J)%Col11, 
ThisHist(J)%Col12, & 
    & ThisHist(J)%Col13, ThisHist(J)%Col14, ThisHist(J)%Col15  
 
    
!==============================================================================
======= 
    ! Converts the time from shakes (10^-8 s.) to ns if CorrWindow is <= 2048. 
    ! If CorrWindow > 2048, converts the time to microseconds instead. 
 
    IF (CorrWindow <= 2048) THEN 
      ThisHist(J)%Col8 = 10. * ThisHist(J)%Col8 
    ELSE 
      ThisHist(J)%Col8 = ThisHist(J)%Col8 / 100. 
    END IF 
 
    ! qqqqq 
    ! IF (ThisHist(J)%Col1 == 31461277) WRITE(8,110) ThisHist(j) 
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  END DO 
 
  
!==============================================================================
============ 
  ! Step ?? : Sort Histories ascending by detector cell and then by time within 
the detector 
  ! cell.  If there is a tie for both detector cell and time, the event with 
the lowest 
  ! collision number and then code is brought up.  
  
!==============================================================================
============ 
 
  IF(DatHist(I,3) > 1) THEN 
  DO J = 1, DatHist(I,3)-1 
    DO K = J, DatHist(I,3) 
     IF (ThisHist(J)%Col6 > ThisHist(K)%Col6) THEN 
       HistSwap = ThisHist(J) 
       ThisHist(J) = ThisHist(K) 
       ThisHist(K) = HistSwap 
     ELSEIF(ThisHist(J)%Col6 == ThisHist(K)%Col6 .AND. & 
     & ThisHist(J)%Col8 > ThisHist(K)%Col8) THEN 
       HistSwap = ThisHist(J) 
       ThisHist(J) = ThisHist(K) 
       ThisHist(K) = HistSwap 
     ELSEIF(ThisHist(J)%Col6 == ThisHist(K)%Col6 .AND. & 
     & ThisHist(J)%Col8 == ThisHist(K)%Col8 .AND. ThisHist(J)%Col14 > 
ThisHist(K)%Col14) THEN 
       HistSwap = ThisHist(J) 
       ThisHist(J) = ThisHist(K) 
       ThisHist(K) = HistSwap 
     ELSEIF(ThisHist(J)%Col6 == ThisHist(K)%Col6 .AND. & 
     & ThisHist(J)%Col8 == ThisHist(K)%Col8 .AND. ThisHist(J)%Col14 == 
ThisHist(K)%Col14 & 
     & .AND. ThisHist(J)%Col15 > ThisHist(K)%Col15) THEN 
       HistSwap = ThisHist(J) 
       ThisHist(J) = ThisHist(K) 
       ThisHist(K) = HistSwap 
     END IF 
    END DO 
  END DO 
  END IF 
 
 
 
  DO J = 1, DatHist(I,3) 
    CALL PulseHeight(ThisHist(J)%Col3, ThisHist(J)%Col4, ThisHist(J)%Col5, 
ThisHist(J)%Col7, PHThisEvent) 
    PHTotal(J) = PHThisEvent 
 
    ! qqqqq 
    ! PRINT '(I11,F10.5)', ThisHist(J)%Col1, PHTotal(J) 
    ! IF (DatHist(I,3) > 1) PRINT 110, ThisHist(J) 
    ! qqqqq 
    ! Used for splitting up big .DAT files 
    ! IF (I <= 50000) WRITE (8, 110) ThisHist(J) 
 
 
  END DO 
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  CurrentDet = 0 
 
  DO J = 1, DatHist(I,3) 
 
    IF (ThisHist(J)%Col6 /= CurrentDet) THEN 
      ! Set the start of the deadtime and pulse generation time to a negative 
number large 
      ! enough that the first event will not be in either window. 
      DeadStart = -2.*deadtime 
      PulseStart = -2.*pgentime 
      CurrentDet = ThisHist(J)%Col6 
    END IF 
 
 
 
    IF (ThisHist(J)%Col8 < DeadStart + deadtime) CYCLE 
 
    IF (PHTotal(J) >= threshold) THEN 
      NumPulses = NumPulses + 1 
      TempPulses(NumPulses)%HistNo = ThisHist(J)%Col1 
      TempPulses(NumPulses)%DetNo = ThisHist(J)%Col6 
      TempPulses(NumPulses)%ParNo = ThisHist(J)%Col3 
      TempPulses(NumPulses)%Time = ThisHist(J)%Col8 
      TempPulses(NumPulses)%PulseHeight = PHTotal(J) 
      TempPulses(NumPulses)%SubHist = ThisHist(J)%Col2 
 
 
      ! Check to see if the event that generated the pulse was a directly 
transmitted DT neutron. 
      ! SubHistory = 1, Particle Type = 1 (neutron), Weight > 0.95, Generation 
= 0,  
      ! # Collisions = 0, Code = 0 
      IF(ThisHist(J)%Col2 == 1 .AND. ThisHist(J)%Col3 == 1 .AND. 
ThisHist(J)%Col12 >= 0.95 & 
      & .AND. ThisHist(J)%Col13 == 0 .AND. ThisHist(J)%Col14 == 0 .AND. 
ThisHist(J)%Col15 == 0) THEN 
        TempPulses(NumPulses)%Direct = 1 
      ELSE 
        TempPulses(NumPulses)%Direct = 0 
      END IF 
 
      DeadStart = ThisHist(J)%Col8 
      PulseStart = -2.*pgentime 
      CYCLE 
    ELSE 
      PulseStart = ThisHist(J)%Col8 
    END IF 
 
    DO K = J+1, DatHist(I,3) 
      IF (ThisHist(K)%Col6 /= CurrentDet) EXIT 
 
      ! qqqqq 
      !    PRINT *, "J= ", J, "K= ", K, "PHTotal= ", PHTotal(J) 
 
      IF (ThisHist(K)%Col8 < PulseStart + pgentime) THEN 
        PHTotal(J) = PHTotal(J) + PHTotal(K) 
      ELSE 
        EXIT  
      END IF 
 
      IF (PHTotal(J) >= threshold) THEN 
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        MinParNo = 99999 
        MinSubHist = 99999 
        MinCollisions = 99999 
        MinGen = 99999 
        MinCode = 99999 
        NumPulses = NumPulses + 1 
        TempPulses(NumPulses)%HistNo = ThisHist(J)%Col1 
        TempPulses(NumPulses)%DetNo = ThisHist(J)%Col6 
        TempPulses(NumPulses)%Time = ThisHist(J)%Col8 
        TempPulses(NumPulses)%PulseHeight = PHTotal(J) 
 
        DO L = J, K 
          IF (ThisHist(L)%Col2 <= MinSubHist .AND. ThisHist(L)%Col3 <= MinParNo 
.AND. & 
          & ThisHist(L)%Col13 <= MinGen .AND. ThisHist(L)%Col14 <= 
MinCollisions .AND. & 
          & ThisHist(L)%Col15 <= MinCode) THEN 
            MinSubHist = ThisHist(L)%Col2 
            MinParNo = ThisHist(L)%Col3 
            MinGen = ThisHist(L)%Col13 
            MinCollisions = ThisHist(L)%Col14 
            MinCode = ThisHist(L)%Col15 
            MinWeight = ThisHist(L)%Col12 
          END IF 
        END DO 
        TempPulses(NumPulses)%ParNo = MinParNo 
        TempPulses(NumPulses)%SubHist = MinSubHist 
 
        ! Check to see if the event that generated the pulse was a directly 
transmitted DT neutron. 
        IF(MinSubHist == 1 .AND. MinParNo == 1 .AND. MinWeight >= 0.95 & 
        & .AND. MinGen == 0 .AND. MinCollisions == 0 .AND. MinCode == 0) THEN 
          TempPulses(NumPulses)%Direct = 1 
        ELSE 
          TempPulses(NumPulses)%Direct = 0 
        END IF 
 
        DeadStart = ThisHist(J)%Col8 
        PulseStart = -2.*pgentime 
        EXIT 
      END IF 
    END DO 
  END DO 
 
  PHTotal = 0. 
 
END DO 
 
! Now convert CorrWindow to microseconds if need be. 
IF (CorrWindow > 2048) THEN 
  CorrWindow = CorrWindow / 1000 + 1 
END IF 
 
CLOSE(UNIT=1) 
! qqqqq 
! CLOSE(UNIT=8) 
 
ALLOCATE(Pulses(NumPulses)) 
 
DO I = 1, NumPulses 
  Pulses(I) = TempPulses(I) 
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  Pulses(I)%XTalk = 0 
  ! This loop changes the detector number value from the actual cell number to 
the line 
  ! referencing that cell number in the Detector() array.  This will make 
matching the  
  ! detector cell faster in the correlation section. 
  DO J = 1, NumDet 
    IF (Pulses(I)%DetNo == Detector(J)) THEN 
      Pulses(I)%DetNo = J 
      EXIT 
    END IF 
  END DO 
END DO 
 
! qqqqq 
! DO I = 1, MaxEvt 
!   WRITE (*, 110) ThisHist(I) 
! END DO 
 
! DO I = 1,NumDet 
!   PRINT *, Detector(I) 
! END DO 
 
 
DEALLOCATE(ThisHist) 
DEALLOCATE(PHTotal) 
DEALLOCATE(TempPulses) 
DEALLOCATE(DatHist) 
 
!==============================================================================
============ 
! Step 3 : Extract multiplicities and correlations from pulse data 
!==============================================================================
============ 
 
ALLOCATE(TempHist(NumPulses,2)) 
 
NumHistP = 0 
OldHistory = 0 
MaxPulse = 0 
 
PHSNumBins = INT(PHSMax/PHSIncrement) 
ALLOCATE(PHSpectrum(-1:PHSNumBins,0:NumDet,3)) 
PHSpectrum = 0 
 
DO I = 1, 3 
  PHSpectrum(-1,0,I) = nps 
  DO J = 1, NumDet 
    PHSpectrum(-1,J,I) = Detector(J) 
  END DO 
END DO 
 
DO I = 1, NumPulses 
 
PHSBin = INT(Pulses(I)%PulseHeight / PHSIncrement) 
IF (PHSBin > PHSNumBins) PHSBin = PHSNumBins 
PHSpectrum(PHSBin,Pulses(I)%DetNo,1) = PHSpectrum(PHSBin,Pulses(I)%DetNo,1) + 1 
IF (Pulses(I)%ParNo == 1) THEN 
  PHSpectrum(PHSBin,Pulses(I)%DetNo,2) = PHSpectrum(PHSBin,Pulses(I)%DetNo,2) + 
1  
ELSE IF (Pulses(I)%ParNo == 2) THEN 
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  PHSpectrum(PHSBin,Pulses(I)%DetNo,3) = PHSpectrum(PHSBin,Pulses(I)%DetNo,3) + 
1  
END IF 
 
! qqqqq 
! IF (Pulses(I)%Direct == 1 .AND. Pulses(I)%Time > 50) PRINT *, 
Pulses(I)%HistNo 
 
 
  IF (Pulses(I)%HistNo == OldHistory) CYCLE 
  OldHistory = Pulses(I)%HistNo 
  NumHistP = NumHistP + 1 
  TempHist(NumHistP,1) = Pulses(I)%HistNo 
  TempHist(NumHistP,2) = I 
END DO 
 
ALLOCATE(PulseHist(NumHistP,3)) 
 
DO I = 1, NumHistP 
  PulseHist(I,1) = TempHist(I,1) 
  PulseHist(I,2) = TempHist(I,2) 
  IF (I < NumHistP) THEN 
    PulseHist(I,3) = TempHist(I+1,2) - TempHist(I,2) 
  ELSE 
    PulseHist(I,3) = NumPulses+1 - TempHist(I,2) 
  END IF 
  IF (PulseHist(I,3) > MaxPulse) THEN 
    MaxPulse = PulseHist(I,3) 
    MaxPulseHist = PulseHist(I,1) 
  END IF 
END DO 
 
DEALLOCATE(TempHist) 
 
 
 
 
!==============================================================================
============ 
! Step 3a : Calculate multiplicities 
!==============================================================================
============ 
 
PRINT *, "Calculating Multiplicities" 
 
! Multiplicity structure: Rows = number of source triggered multiplicities; 
Columns -  
! Column 1 = total multiplicities; Column 2 = neutron multiplicities 
ALLOCATE(Multiplicity(0:MaxPulse,2)) 
Multiplicity = 0 
 
! Go through the pulse file and record the number of pulses created for each 
history in 
! the Multiplicity array. 
DO I = 1, NumHistP 
  Multiplicity(PulseHist(I,3),1) = Multiplicity(PulseHist(I,3),1) + 1 
   
  NumNeutronPulses = 0 
  DO J = 1, PulseHist(I,3) 
    IF (Pulses(PulseHist(I,2)+J-1)%ParNo == 1) NumNeutronPulses = 
NumNeutronPulses + 1 
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  END DO 
  Multiplicity(NumNeutronPulses, 2) = Multiplicity(NumNeutronPulses, 2) + 1 
 
END DO 
 
TotalMult = 0 
TotalNeutronMult = 0 
 
! Assigns to 'TotalMult' the total number of histories which have >= 1 pulse. 
DO I = 1, MaxPulse 
  TotalMult = TotalMult + Multiplicity(I, 1) 
  TotalNeutronMult = TotalNeutronMult + Multiplicity(I, 2)  
END DO 
 
! Total histories minus all histories with >= 1 pulse = no. of histories with 
no pulses. 
Multiplicity(0, 1) = nps - TotalMult 
Multiplicity(0, 2) = nps - TotalNeutronMult 
 
!==============================================================================
============ 
! Step 3b : Calculate source-detector correlations 
!  
! NOTE: If CorrWindow is still > 2048 then no correlations are computed 
!==============================================================================
============ 
 
! Begin CorrWindow IF Statement 
IF (CorrWindow <= 2048) THEN 
 
! Correlation Structure - Rows = Time, Columns = Det #, Panes = Total, n, 
gamma, direct, no x-talk 
ALLOCATE(Correlation(-1:CorrWindow,0:NumDet,5)) 
! CrossCorr Structure - Rows = Time Lag, Columns = Det #, Panes = Total, nn, 
gg, np, pn 
ALLOCATE(CrossCorr(-CorrWindow-1:CorrWindow,0:NumDet,5)) 
 
Correlation = 0 
CrossCorr=0 
 
! Input detector cell numbers and time steps into correlation arrays 
DO I = 1, 5 
  CrossCorr(-CorrWindow-1,0,I) = nps 
  DO J = 1, NumDet 
    CrossCorr(-CorrWindow-1,J,I) = Detector(J) 
  END DO 
  DO J = -CorrWindow,CorrWindow 
    CrossCorr(J,0,I) = J 
  END DO 
END DO 
 
DO I = 1, 5 
  Correlation(-1,0,I) = nps 
  DO J = 1, NumDet 
    Correlation(-1,J,I) = Detector(J) 
  END DO 
  DO J = 0, CorrWindow 
    Correlation(J,0,I) = J 
  END DO 
END DO 
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! qqqqq 
! OPEN (UNIT=99, FILE="error.out", STATUS="REPLACE", ACTION="WRITE") 
 
PRINT *, "Calculating Source-Detector Correlations" 
 
CorrWindowOverflow = 0 
 
! This is where the magic happens!!!!1111!!!  Correlations and cross-
correlations are  
! computed here. 
DO I = 1, NumHistP 
  DO J = 1, PulseHist(I,3) 
    IntTime = INT(Pulses(PulseHist(I,2)+J-1)%Time) 
    IF (ABS(IntTime) > CorrWindow) THEN 
      CorrWindowOverflow = CorrWindowOverflow + 1 
      CYCLE 
    END IF 
    CurrentDet = Pulses(PulseHist(I,2)+J-1)%DetNo 
    Correlation(IntTime,CurrentDet,1) = Correlation(IntTime,CurrentDet,1) + 1 
    IF (Pulses(PulseHist(I,2)+J-1)%Direct == 1) THEN 
      Correlation(IntTime,CurrentDet,4) = Correlation(IntTime,CurrentDet,4) + 1 
    END IF 
    IF (Pulses(PulseHist(I,2)+J-1)%ParNo == 1) THEN 
      Correlation(IntTime,CurrentDet,2) = Correlation(IntTime,CurrentDet,2) + 1 
    ELSE IF (Pulses(PulseHist(I,2)+J-1)%ParNo == 2) THEN 
      Correlation(IntTime,CurrentDet,3) = Correlation(IntTime,CurrentDet,3) + 1 
    ELSE 
      PRINT *, "Error!  Particle type other than a photon or a neutron 
encountered & 
      &in .DAT file, history number ", PulseHist(I,1), ".  Check .DAT file." 
      WRITE (*, 130) Pulses(PulseHist(I,2)+J-1) 
      STOP 
    END IF 
 
!==============================================================================
============ 
! Step 3c : Calculate detector-detector correlations if start detector is 
specified 
!==============================================================================
============ 
 
    ! Check cross-correlations and fill in the cross-correlation arrays. 
    IF (CurrentDet == StartDetRow) THEN 
      DO K = 1, PulseHist(I,3) 
        IF (K == J) CYCLE 
        StopDetRow = Pulses(PulseHist(I,2)+K-1)%DetNo 
        StopIntTime = NINT(Pulses(PulseHist(I,2)+K-1)%Time) 
        TimeLag = StopIntTime - IntTime 
        IF (ABS(TimeLag) > CorrWindow) THEN 
          PRINT *, "ERROR!! Start Time= ", IntTime, "Stop Time= ", StopIntTime, 
& 
          & "TimeLag= ", TimeLag 
          CYCLE 
        END IF 
        CrossCorr(TimeLag,StopDetRow,1) = CrossCorr(TimeLag,StopDetRow,1) + 1 
        ! qqqqq 
        ! IF (ABS(TimeLag) <= 5) WRITE(99,'(I11)') PulseHist(I,1) 
        IF (Pulses(PulseHist(I,2)+J-1)%ParNo == 1 .AND. & 
        & Pulses(PulseHist(I,2)+K-1)%ParNo == 1) THEN 
          CrossCorr(TimeLag,StopDetRow,2) = CrossCorr(TimeLag,StopDetRow,2) + 1 
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        ELSE IF (Pulses(PulseHist(I,2)+J-1)%ParNo == 2 .AND. & 
        & Pulses(PulseHist(I,2)+K-1)%ParNo == 2) THEN 
          CrossCorr(TimeLag,StopDetRow,3) = CrossCorr(TimeLag,StopDetRow,3) + 1 
        ELSE IF (Pulses(PulseHist(I,2)+J-1)%ParNo == 1 .AND. & 
        & Pulses(PulseHist(I,2)+K-1)%ParNo == 2) THEN 
          CrossCorr(TimeLag,StopDetRow,4) = CrossCorr(TimeLag,StopDetRow,4) + 1 
        ELSE IF (Pulses(PulseHist(I,2)+J-1)%ParNo == 2 .AND. & 
        & Pulses(PulseHist(I,2)+K-1)%ParNo == 1) THEN 
          CrossCorr(TimeLag,StopDetRow,5) = CrossCorr(TimeLag,StopDetRow,5) + 1 
        END IF 
        ! IF (ABS(TimeLag) < NINT(deadtime) .AND. ABS(TimeLag) > 0 .AND. & 
        !    & StopDetRow == StartDetRow) THEN 
        !  WRITE (99,'(4I11)') PulseHist(I,1), StopIntTime, IntTime, TimeLag 
        ! END IF 
      END DO 
    END IF 
  END DO 
END DO 
 
! qqqqq 
! CLOSE(UNIT=99) 
 
!==============================================================================
============ 
! Step ?? : Determine the Fast Neutron Time Window.  This is determined by 
finding the 
! largest source-detector correlations in the entire measurement.  All 
detectors have the 
! same time window. 
!==============================================================================
============ 
 
 
PRINT *, "Calculating Peak Values" 
 
ALLOCATE(Peaks(1:NumDet)) 
PeakOld = 0 
PeakStart = 0 
PeakSumTotal = 0 
 
DO I = 1, NumDet 
  Peaks(I)%DetNo = Detector(I) 
  DO J = 0, CorrWindow 
    PeakSumTotal = Correlation(J,I,1) 
    IF (PeakSumTotal >= PeakOld) THEN 
      PeakOld = PeakSumTotal 
      PeakStart = J 
    END IF 
  END DO 
END DO 
  PeakStart = PeakStart - PeakWidth / 2 
 
PRINT *, "Fast Neutron Time Window: ", PeakStart, " to ", PeakStart+Peakwidth-1 
 
!==============================================================================
============ 
! Step ?? : Now that the fast neutron time window is known, mark the cross talk 
between 
! detectors.  Pulses are sorted by detector and then by time, so if more than 
one  
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! correlation occurs in the fast time window for a given history, the one with 
the larger 
! time is marked as cross-talk regardless of detector cell. 
!==============================================================================
============ 
 
PRINT *, "Calculating Cross-Talk" 
 
DO I = 1, NumHistP 
  IF (PulseHist(I,3) == 1) THEN 
     IF (Pulses(PulseHist(I,2))%Time < REAL(PeakStart) .OR. & 
     & Pulses(PulseHist(I,2))%Time >= REAL(PeakStart + PeakWidth)) THEN 
        Pulses(PulseHist(I,2))%XTalk = 1 
     END IF 
     CYCLE 
  END IF 
  DO J = 1, PulseHist(I,3) 
    ! Cycle if Pulse J not in time window or if it has already been marked as 
XTalk 
    ! Note that the window is 1 smaller in integer math than in Real math 
because of  
    ! rounding. 
    IF (Pulses(PulseHist(I,2)+J-1)%Time < REAL(PeakStart) .OR. & 
    & Pulses(PulseHist(I,2)+J-1)%Time >= REAL(PeakStart + PeakWidth)) THEN 
      Pulses(PulseHist(I,2)+J-1)%XTalk = 1 
      CYCLE 
    END IF 
    IF (Pulses(PulseHist(I,2)+J-1)%XTalk == 1) CYCLE 
    DO K = J+1, PulseHist(I,3) 
      IF (Pulses(PulseHist(I,2)+K-1)%Time < REAL(PeakStart) .OR. & 
      & Pulses(PulseHist(I,2)+K-1)%Time >= REAL(PeakStart+PeakWidth)) CYCLE 
      ! If we have reached this point, both Pulse J and K are in the time 
window.  The 
      ! one with the higher time gets marked a XTalk.  PoliMi only gives time 
to 0.1 ns, 
      ! so it's possible (but very unlikely) the times could be equal.  If so, 
the  
      ! detector with the higher number gets counted as XTalk because of the 
order of 
      ! pulses in the array. 
      IF (Pulses(PulseHist(I,2)+J-1)%Time > Pulses(PulseHist(I,2)+K-1)%Time) 
THEN 
        Pulses(PulseHist(I,2)+J-1)%XTalk = 1 
      ELSE 
        Pulses(PulseHist(I,2)+K-1)%XTalk = 1 
      END IF 
    END DO 
  END DO 
END DO 
 
! Unfortunately, in order to find the fast neutron window to remove the cross-
talk, I had 
! to compute correlations and now I have to go through again to compute the no 
cross-talk 
! correlations.  These no cross-talk correlations should equal the directs plus 
scatter 
! in the object being imaged inside of the fast neutron window.  If other 
features are in 
! the geometry as well, such as the fancy detectors or the detector arm, 
scattered 
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! neutrons and induced gammas from those objects can contribute as well.  No 
cross-talk 
! is computed outside of the peaks window, so those values should be exactly 
the same 
! as the measured. 
 
DO I = 1, NumHistP 
  DO J = 1, PulseHist(I,3) 
    IntTime = INT(Pulses(PulseHist(I,2)+J-1)%Time) 
    IF (ABS(IntTime) > CorrWindow) CYCLE 
    CurrentDet = Pulses(PulseHist(I,2)+J-1)%DetNo 
    IF (Pulses(PulseHist(I,2)+J-1)%XTalk == 0) THEN 
      Correlation(IntTime,CurrentDet,5) = Correlation(IntTime,CurrentDet,5) + 1 
    END IF 
  END DO 
END DO 
 
PeakSumTotal = 0 
PeakSumDirect = 0 
PeakSumNoXT = 0 
 
DO I = 1, NumDet 
  DO J = PeakStart, PeakStart + PeakWidth - 1 
    PeakSumTotal = PeakSumTotal + Correlation(J,I,1) 
    PeakSumDirect = PeakSumDirect + Correlation(J,I,4) 
    PeakSumNoXT = PeakSumNoXT + Correlation(J,I,5) 
  END DO 
 
  Peaks(I)%TotalPeak = PeakSumTotal 
  Peaks(I)%DirectPeak = PeakSumDirect 
  Peaks(I)%XTPeak = PeakSumNoXT 
 
  Peaks(I)%TotalMean = 0. 
  Peaks(I)%DirectMean = 0. 
  Peaks(I)%XTMean = 0. 
 
  DO J = PeakStart, PeakStart + PeakWidth - 1 
 
    IF (PeakSumTotal > 0) THEN 
      Peaks(I)%TotalMean = Peaks(I)%TotalMean + REAL(J * Correlation(J,I,1)) 
    END IF 
 
    IF (PeakSumDirect > 0) THEN 
      Peaks(I)%DirectMean = Peaks(I)%DirectMean + REAL(J * Correlation(J,I,4)) 
    END IF 
 
    IF (PeakSumNoXT > 0) THEN 
      Peaks(I)%XTMean = Peaks(I)%XTMean + REAL(J * Correlation(J,I,5)) 
    END IF 
  END DO 
 
IF (PeakSumTotal > 0) THEN 
  Peaks(I)%TotalMean = Peaks(I)%TotalMean / REAL(Peaks(I)%TotalPeak) 
END IF 
IF (PeakSumDirect > 0) THEN 
  Peaks(I)%DirectMean = Peaks(I)%DirectMean / REAL(Peaks(I)%DirectPeak) 
END IF 
IF (PeakSumNoXT > 0) THEN 
  Peaks(I)%XTMean = Peaks(I)%XTMean / REAL(Peaks(I)%XTPeak) 
END IF 
 

257 



 

PeakSumTotal = 0 
PeakSumDirect = 0 
PeakSumNoXT = 0 
 
END DO 
 
 
! Outputs a list of pulses for debug purposes. 
! qqqqq 
! OPEN(UNIT=5, FILE="Pulses.out", STATUS="REPLACE", ACTION="WRITE") 
! DO I = 1, NumPulses 
!   WRITE (5,130) Pulses(I) 
! END DO 
! qqqqq 
! CLOSE(UNIT=5) 
 
! qqqqq 
! Outputs histories which contain 2 or more pulses for troubleshooting purposes 
! OPEN(UNIT=7, FILE="MultiPulse.out", ACTION="WRITE", STATUS="REPLACE") 
! DO I = 1, NumHistP 
!   IF (PulseHist(I,3) > 1) THEN 
!     DO J = 1, PulseHist(I,3) 
!       WRITE(7,130) Pulses(PulseHist(I,2)+J-1) 
!     END DO 
!   END IF 
! END DO 
! CLOSE(UNIT=7) 
 
 
 
DEALLOCATE(PulseHist) 
DEALLOCATE(Pulses) 
 
ELSE 
 PRINT *, "Correlation Window exceeds 2048 microseconds.  source-detector and 
detector-detector" 
 PRINT *, "correlations will not be calculated.  Lower correlation window size 
to 2,048,000 ns" 
 PRINT *, "or less if correlations are desired." 
! End CorrWindow IF Statement 
END IF 
 
!==============================================================================
============ 
! Step 4 : Print Output to screen and file(s). 
!==============================================================================
============ 
 
PRINT *, 
PRINT *, "The .DAT file contains ", NumEvents," lines and ", NumHist, " 
histories." 
PRINT *, 
PRINT *, "The largest history is number ", MaxEvtHist, ".  It has ", MaxEvt, " 
events." 
PRINT *,  
PRINT *, "The .DAT file has records for ", NumDet, " detectors." 
PRINT *, 
PRINT *, "A total of ", NumPulses, " pulses were recorded." 
PRINT *, 
PRINT *, "The largest history is number ", MaxPulseHist, ".  It has ", 
MaxPulse, " pulses." 
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PRINT *, 
IF (CorrWindowOverflow > 0) THEN 
  PRINT '(I10, A)', CorrWindowOverflow, " pulses were discarded because the 
correlation window & 
  &was too small.  Consider increasing the size of the window if these losses 
are large." 
  PRINT *, 
END IF 
 
 
! Begin CorrWindow IF Statement 
IF (CorrWindow <= 2048) THEN 
 
 
! Writes the correlation output to files. 
OPEN(UNIT=11, FILE=TRIM(FileBase)//".total.corr", STATUS="REPLACE", 
ACTION="WRITE") 
OPEN(UNIT=12, FILE=TRIM(FileBase)//".neutron.corr", STATUS="REPLACE", 
ACTION="WRITE") 
OPEN(UNIT=13, FILE=TRIM(FileBase)//".gamma.corr", STATUS="REPLACE", 
ACTION="WRITE") 
OPEN(UNIT=14, FILE=TRIM(FileBase)//".direct.corr", STATUS="REPLACE", 
ACTION="WRITE") 
OPEN(UNIT=15, FILE=TRIM(FileBase)//".noXT.corr", STATUS="REPLACE", 
ACTION="WRITE") 
DO I = -1, CorrWindow 
  DO J = 0, NumDet-1 
    WRITE(11,'(I10)', ADVANCE="NO") Correlation(I,J,1) 
    WRITE(12,'(I10)', ADVANCE="NO") Correlation(I,J,2) 
    WRITE(13,'(I10)', ADVANCE="NO") Correlation(I,J,3) 
    WRITE(14,'(I10)', ADVANCE="NO") Correlation(I,J,4) 
    WRITE(15,'(I10)', ADVANCE="NO") Correlation(I,J,5) 
  END DO 
  WRITE(11,'(I10)') Correlation(I,NumDet,1) 
  WRITE(12,'(I10)') Correlation(I,NumDet,2) 
  WRITE(13,'(I10)') Correlation(I,NumDet,3) 
  WRITE(14,'(I10)') Correlation(I,NumDet,4) 
  WRITE(15,'(I10)') Correlation(I,NumDet,5) 
END DO 
CLOSE(UNIT=11) 
CLOSE(UNIT=12) 
CLOSE(UNIT=13) 
CLOSE(UNIT=14) 
CLOSE(UNIT=15) 
 
IF (StartDetRow /= 0) THEN 
! Writes the cross-correlation output to files. 
OPEN(UNIT=21, FILE=TRIM(FileBase)//".total.cc", STATUS="REPLACE", 
ACTION="WRITE") 
OPEN(UNIT=22, FILE=TRIM(FileBase)//".nn.cc", STATUS="REPLACE", ACTION="WRITE") 
OPEN(UNIT=23, FILE=TRIM(FileBase)//".pp.cc", STATUS="REPLACE", ACTION="WRITE") 
OPEN(UNIT=24, FILE=TRIM(FileBase)//".np.cc", STATUS="REPLACE", ACTION="WRITE") 
OPEN(UNIT=25, FILE=TRIM(FileBase)//".pn.cc", STATUS="REPLACE", ACTION="WRITE") 
 
DO I = -CorrWindow - 1, CorrWindow 
  DO J = 0, NumDet - 1 
    WRITE(21,'(I10)', ADVANCE="NO") CrossCorr(I,J,1) 
    WRITE(22,'(I10)', ADVANCE="NO") CrossCorr(I,J,2) 
    WRITE(23,'(I10)', ADVANCE="NO") CrossCorr(I,J,3) 
    WRITE(24,'(I10)', ADVANCE="NO") CrossCorr(I,J,4) 
    WRITE(25,'(I10)', ADVANCE="NO") CrossCorr(I,J,5) 
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  END DO 
  WRITE(21,'(I10)') CrossCorr(I,NumDet,1) 
  WRITE(22,'(I10)') CrossCorr(I,NumDet,2) 
  WRITE(23,'(I10)') CrossCorr(I,NumDet,3) 
  WRITE(24,'(I10)') CrossCorr(I,NumDet,4) 
  WRITE(25,'(I10)') CrossCorr(I,NumDet,5) 
END DO 
 
CLOSE(UNIT=21) 
CLOSE(UNIT=22) 
CLOSE(UNIT=23) 
CLOSE(UNIT=24) 
CLOSE(UNIT=25) 
END IF 
 
! End CorrWindow IF Statement 
END IF 
 
 
! Writes the Multiplicity array to file. 
OPEN(UNIT=31, FILE=TRIM(FileBase)//".multip", STATUS="REPLACE", ACTION="WRITE") 
WRITE(31,'(A)') "  N      Total   Neutrons" 
DO I = 0, MaxPulse 
  WRITE (31, '(I3, 2I11)') I, Multiplicity(I,1), Multiplicity(I,2) 
END DO 
CLOSE(UNIT=31) 
 
OPEN(UNIT=41, FILE=TRIM(FileBase)//".peaks", STATUS="REPLACE", ACTION="WRITE") 
  WRITE (41,'(I12, A)') nps, "  Total       Mean(T)     Direct      Mean(D)     
No XTalk    Mean(N)" 
DO I = 1, NumDet 
  WRITE (41, '(2I12, ES12.4, I12, ES12.4, I12, ES12.4)') Peaks(I) 
END DO 
CLOSE(UNIT=41) 
 
OPEN(UNIT=51, FILE=TRIM(FileBase)//".total.ph", STATUS="REPLACE", 
ACTION="WRITE") 
OPEN(UNIT=52, FILE=TRIM(FileBase)//".neutron.ph", STATUS="REPLACE", 
ACTION="WRITE") 
OPEN(UNIT=53, FILE=TRIM(FileBase)//".gamma.ph", STATUS="REPLACE", 
ACTION="WRITE") 
 
DO I = 0, NumDet - 1 
  WRITE(51,'(I11)', ADVANCE="NO") PHSpectrum(-1,I,1) 
  WRITE(52,'(I11)', ADVANCE="NO") PHSpectrum(-1,I,2) 
  WRITE(53,'(I11)', ADVANCE="NO") PHSpectrum(-1,I,3) 
END DO 
  WRITE(51,'(I11)') PHSpectrum(-1,NumDet,1) 
  WRITE(52,'(I11)') PHSpectrum(-1,NumDet,2) 
  WRITE(53,'(I11)') PHSpectrum(-1,NumDet,3) 
 
DO I = 0, PHSNumBins 
  WRITE(51,'(F11.5)', ADVANCE="NO") REAL(I) * PHSIncrement 
  WRITE(52,'(F11.5)', ADVANCE="NO") REAL(I) * PHSIncrement 
  WRITE(53,'(F11.5)', ADVANCE="NO") REAL(I) * PHSIncrement 
  DO J = 1, NumDet - 1 
  WRITE(51,'(I11)', ADVANCE="NO") PHSpectrum(I,J,1) 
  WRITE(52,'(I11)', ADVANCE="NO") PHSpectrum(I,J,2) 
  WRITE(53,'(I11)', ADVANCE="NO") PHSpectrum(I,J,3) 
  END DO 
  WRITE(51,'(I11)') PHSpectrum(I,NumDet,1) 
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  WRITE(52,'(I11)') PHSpectrum(I,NumDet,2) 
  WRITE(53,'(I11)') PHSpectrum(I,NumDet,3) 
 
END DO 
 
CLOSE(UNIT=51) 
CLOSE(UNIT=52) 
CLOSE(UNIT=53) 
 
DEALLOCATE (Correlation, CrossCorr, Multiplicity, Peaks, PHSpectrum) 
 
CALL CPU_TIME(FinishTime) 
WRITE (*, '(A, F8.3, A)') " The program took ", FinishTime - StartTime, " 
seconds to finish." 
 
CONTAINS 
 
!==============================================================================
============ 
! Subroutine PulseHeight converts the energy deposited in a collision (MeV) to 
light 
! output in the detector (in MeVee) 
!==============================================================================
============ 
SUBROUTINE PulseHeight(Zprojectile, ZRx, Ztarget, ZEin, Zpheight) 
 
INTEGER(KIND=4), INTENT(IN) :: Zprojectile, Ztarget, ZRx 
REAL(KIND=4), INTENT(IN) :: ZEin 
 
REAL(KIND=4), INTENT(OUT) :: Zpheight 
 
IF (Ztarget == 6000 .AND. Zprojectile == 1) THEN 
  Zpheight = 0.02 * ZEin 
  RETURN 
ELSEIF (Ztarget == 6 .AND. Zprojectile == 1) THEN 
  Zpheight = 0.02 * ZEin 
  RETURN 
ELSEIF (Zprojectile == 1 .AND. Ztarget == 1001 .AND. ZRx == -99) THEN 
  Zpheight = 0.0364 * ZEin ** 2 + 0.125 * ZEin 
  RETURN 
ELSEIF (Zprojectile == 1 .AND. Ztarget == 2003 .AND. ZRx == 0) THEN 
  Zpheight = ZEin 
  RETURN 
ELSEIF (Zprojectile == 2 .AND. Ztarget == 1) THEN 
  Zpheight = ZEin 
  RETURN 
ELSEIF (Zprojectile == 2 .AND. Ztarget == 6) THEN 
  Zpheight = ZEin 
  RETURN 
ELSE 
  Zpheight = 0 
  RETURN 
END IF 
 
END SUBROUTINE PulseHeight 
 
END PROGRAM 

 

A Sample .peaks File 
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   25000000       Total     Mean(T)      Direct     Mean(D)    No XTalk     Mean(N) 
         401        2249  2.2075E+01           0  0.0000E+00        2190  2.2055E+01 
         405        2648  2.2104E+01           0  0.0000E+00        2496  2.2039E+01 
         409        4072  2.2219E+01         221  2.1688E+01        3438  2.2065E+01 
         413       43140  2.1797E+01       37934  2.1740E+01       42054  2.1772E+01 
         417       66022  2.1774E+01       60767  2.1734E+01       64800  2.1755E+01 
         421       35946  2.1810E+01       30868  2.1732E+01       34763  2.1774E+01 
         425       22037  2.1820E+01       18115  2.1737E+01       21324  2.1785E+01 
         429       11670  2.1820E+01        8727  2.1730E+01       11287  2.1785E+01 
         433        4909  2.1900E+01        2671  2.1748E+01        4687  2.1851E+01 
         437        1832  2.2011E+01         150  2.1727E+01        1719  2.1955E+01 
         441        1303  2.2039E+01           0  0.0000E+00        1256  2.2018E+01 
         445         955  2.2134E+01           0  0.0000E+00         913  2.2102E+01 
         449         765  2.2207E+01           0  0.0000E+00         750  2.2188E+01 
         453         605  2.2326E+01           0  0.0000E+00         593  2.2314E+01 
         457         419  2.2456E+01           0  0.0000E+00         404  2.2441E+01 
         461         297  2.2572E+01           0  0.0000E+00         288  2.2542E+01 
         465         218  2.2674E+01           0  0.0000E+00         209  2.2641E+01 
         469         158  2.2759E+01           0  0.0000E+00         152  2.2730E+01 
         473         118  2.3000E+01           0  0.0000E+00         116  2.2991E+01 
         477          76  2.3145E+01           0  0.0000E+00          74  2.3135E+01 
         481          80  2.3237E+01           0  0.0000E+00          76  2.3224E+01 
         485          50  2.3380E+01           0  0.0000E+00          50  2.3380E+01 
         489          36  2.3639E+01           0  0.0000E+00          36  2.3639E+01 
         493          32  2.3281E+01           0  0.0000E+00          32  2.3281E+01 
         497          28  2.3464E+01           0  0.0000E+00          28  2.3464E+01 
         501          14  2.3643E+01           0  0.0000E+00          14  2.3643E+01 
         505          13  2.3538E+01           0  0.0000E+00          12  2.3500E+01 
         509           9  2.2778E+01           0  0.0000E+00           9  2.2778E+01 
         513           6  2.3000E+01           0  0.0000E+00           6  2.3000E+01 
         517           8  2.3750E+01           0  0.0000E+00           8  2.3750E+01 
         521           4  2.2250E+01           0  0.0000E+00           4  2.2250E+01 
         525           5  2.2800E+01           0  0.0000E+00           5  2.2800E+01 



 

Appendix E – The JoinSS and JoinPixels Codes 

The JoinSS Code 

PROGRAM JoinSS 
! Version 2.00 
! Written February 2nd, 2009 
! By Brandon Grogan 
! At The Oak Ridge National Laboratory 
! Last Edited: November 28th, 2009 
 
IMPLICIT NONE 
CHARACTER :: FileBase*8, NumSSTxt*4, DetsPerSSTxt*4, FirstDetTxt*4, 
FileNumTxt*2 
CHARACTER :: StoDetTxt*10, DetSepTxt*10 
INTEGER :: I, J 
INTEGER :: NumSS, DetsPerSS, FirstDet, TotalDet, DetNum 
INTEGER(KIND=4), ALLOCATABLE :: PeaksSS(:,:) 
INTEGER(KIND=4) :: nps 
REAL(KIND=4) :: DummyReal, StoDet, DetSep, Phi, AngleStart 
REAL(KIND=4), ALLOCATABLE :: Angles(:) 
INTEGER :: ErrorCode 
 
 
! Get input from the command line 
CALL GETARG(1, FileBase) 
CALL GETARG(2, NumSSTxt) 
CALL GETARG(3, DetsPerSSTxt) 
CALL GETARG(4, FirstDetTxt) 
CALL GETARG(5, StoDetTxt) 
CALL GETARG(6, DetSepTxt) 
 
READ (NumSSTxt, '(I4)') NumSS 
READ (DetsPerSSTxt, '(I4)') DetsPerSS 
READ (FirstDetTxt, '(I4)') FirstDet 
READ (StoDetTxt, '(F10.5)') StoDet 
READ (DetSepTxt, '(F10.5)') DetSep 
 
TotalDet = NumSS*DetsPerSS 
ALLOCATE(PeaksSS(FirstDet-1:FirstDet+TotalDet-1,4)) 
ALLOCATE(Angles(FirstDet:FirstDet+TotalDet-1)) 
PeaksSS = 0 
 
Phi = 2.*ATAN(DetSep/2./StoDet)*360./6.283185 
AngleStart = (-DetsPerSS/2. + 1/2./NumSS)*Phi 
 
DO I = FirstDet, FirstDet+TotalDet-1 
  PeaksSS(I,1) = I 
  Angles(I) = AngleStart + REAL(I-FirstDet)*Phi/REAL(NumSS) 
END DO 
 
DO I = 1, NumSS 
  IF (I < 10) THEN 
    WRITE(FileNumTxt, '(I1)') I 
  ELSE 
    WRITE(FileNumTxt, '(I2)') I 
  END IF 
  OPEN(UNIT = I, FILE=TRIM(FileBase) // TRIM(FileNumTxt) // ".peaks", 
ACTION="READ", & 
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  & STATUS="OLD", IOSTAT=ErrorCode) 
  IF (ErrorCode > 0) STOP "Error!  Cannot open .DAT file.  Check file name." 
  READ(I, '(I12)') nps 
  IF (I == 1) PeaksSS(FirstDet-1,1) = nps 
    DO J = 1, DetsPerSS 
      READ(I, '(I12)', ADVANCE="NO", IOSTAT=ErrorCode) DetNum 
      ! Exits the loop if the end of the peaks file is reached before DetsPerSS 
      IF (ErrorCode < 0) EXIT 
      IF (DetNum < FirstDet .OR. DetNum > FirstDet + TotalDet) THEN 
        PRINT *, "Error!  Unexpected detector cell number encountered in peaks 
file." 
        STOP 
      END IF 
      READ(I, '(I12, ES12.4, I12, ES12.4, I12)') PeaksSS(DetNum,2), DummyReal, 
&  
      & PeaksSS(DetNum,3), DummyReal, PeaksSS(DetNum,4) 
    END DO 
  CLOSE(UNIT=I) 
END DO 
 
 
OPEN(UNIT = 99, FILE=TRIM(FileBase) // ".peaks", STATUS="REPLACE", 
ACTION="WRITE") 
WRITE (99, '(I12,A)') PeaksSS(FirstDet-1,1), "    Detector       Total      
Direct   No X-Talk" 
DO I = FirstDet, FirstDet+TotalDet-1 
  WRITE(99, '(F12.6,4I12)') Angles(I), PeaksSS(I,1), PeaksSS(I,2), 
PeaksSS(I,3), PeaksSS(I,4) 
END DO   
CLOSE(UNIT=99) 
END PROGRAM 

 

The JoinPeaks Code 

PROGRAM JoinPixels 
! Version 2.00 
! Written February 2nd, 2009 
! By Brandon Grogan 
! At The Oak Ridge National Laboratory 
! Last Edited: November 28th, 2009 
 
IMPLICIT NONE 
 
INTEGER(KIND=4), ALLOCATABLE :: Peaks(:,:,:) 
CHARACTER :: FileBase*8, NumPixelsTxt*4, FileNumTxt*2 
INTEGER :: I, J, K, NumPixels, NumDets 
INTEGER :: ErrorCode 
INTEGER(KIND=4) :: DummyInt, nps, PeakSum 
REAL(KIND=4), ALLOCATABLE :: Angles(:) 
REAL(KIND=4) :: DummyReal 
 
CALL GETARG(1,FileBase) 
CALL GETARG(2,NumPixelsTxt) 
 
READ (NumPixelsTxt, '(I4)') NumPixels 
 
OPEN(UNIT=99, File=TRIM(FileBase) // "1.peaks", ACTION="READ", STATUS="OLD", & 
& IOSTAT=ErrorCode) 
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IF (ErrorCode > 0) STOP "Error!  Input file could not be read.  Check 
filename." 
DO I = 1, 1000 
  READ(99,'(I12)', IOSTAT=ErrorCode) DummyInt 
  IF (ErrorCode < 0) EXIT 
END DO 
CLOSE(UNIT=99) 
 
NumDets = I - 2 
 
ALLOCATE(Peaks(NumDets,0:NumPixels+1,3)) 
ALLOCATE(Angles(NumDets)) 
 
DO I = 1, NumPixels 
  IF (I < 10) THEN 
    WRITE(FileNumTxt, '(I1)') I 
  ELSE 
    WRITE(FileNumTxt, '(I2)') I 
  END IF 
 
  OPEN(UNIT=I, FILE=TRIM(FileBase) // TRIM(FileNumTxt) // ".peaks", 
STATUS="OLD", & 
  & ACTION="READ", POSITION="REWIND", IOSTAT=ErrorCode) 
  IF (ErrorCode > 0) STOP "Error! Missing one or more .peaks files." 
  READ (I, '(I12)') DummyInt 
  IF (I == 1) nps = DummyInt 
  DO J = 1, NumDets 
    READ (I, '(F12.6,4I12)') DummyReal, Peaks(J, 0, 1), Peaks(J, I, 1), & 
    & Peaks(J, I, 2), Peaks(J,I,3) 
    IF (I == 1) Angles(J) = DummyReal 
  END DO 
  CLOSE(UNIT=I) 
END DO 
 
DO I = 1,3 
  DO J = 1, NumDets 
    PeakSum = 0 
    DO K = 1, NumPixels 
      PeakSum = PeakSum + Peaks(J,K,I) 
    END DO 
    Peaks(J,NumPixels+1,I) = PeakSum 
  END DO 
END DO 
 
OPEN(UNIT=98, FILE=TRIM(FileBase) // ".peaks", STATUS="REPLACE", 
ACTION="WRITE") 
 
! Writes the header row into the output file 
DO I = 1,3 
  WRITE(98, '(I12, A)', ADVANCE="NO") nps, "    Detector" 
  DO J = 1, NumPixels 
    WRITE(98, '(A, I2)', ADVANCE="NO") "     Pixel", J 
  END DO 
  IF (I .LE. 2) THEN 
    WRITE(98, '(A)', ADVANCE="NO") "       Total  Unc. Total            " 
  ELSE 
    WRITE(98, '(A)') "       Total  Unc. Total" 
  END IF 
END DO 
 
DO J = 1, NumDets 
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  DO I = 1, 3 
    WRITE(98, '(F12.6)', ADVANCE="NO") Angles(J) 
    WRITE(98, '(I12)', ADVANCE="NO") Peaks(J,0,1) 
    DO K = 1, NumPixels 
      WRITE(98, '(I12)', ADVANCE="NO") Peaks(J,K,I) 
    END DO 
    WRITE(98, '(I12)', ADVANCE="NO") Peaks(J,NumPixels+1,I) 
    WRITE(98, '(ES12.4)', ADVANCE="NO") SQRT(REAL(Peaks(J,NumPixels+1,I))) 
    IF (I .LE. 2) THEN 
      WRITE(98, '(A)', ADVANCE="NO") "            " 
    ELSE 
      WRITE(98, *) 
    END IF 
  END DO 
END DO 
 
CLOSE(UNIT=98) 
 
END PROGRAM JoinPixels 

 



 

Appendix F – The GaussFit Code  

PROGRAM GaussFit 
! Version 1.00 
! By Brandon Grogan 
! At The Oak Ridge National Laboratory 
! Last Edited: January 24th, 2010 
 
IMPLICIT NONE 
 
INTEGER(KIND=4) :: I, J, K, L, M, NPSObject, NPSVoid 
REAL :: DummyReal 
! Peaks layout - Rows = detectors, Column 0 = angle, Col 1 = Total, Col 2 = 
Direct, Col 3 = 
! NoXTalk, Col 4 = Scattered, Col 5 = Fitted, Col6 = PScF, Col7 = Scatter in 
Array, 
! Col8 = Scatter in Object, Col9 = raw object scatter; Pane 1 = object, Pane 2 
= void 
REAL(KIND=4) :: Peaks(32,0:9,2) 
! Variables used for finding the Gaussian function 
REAL(KIND=4) :: FitMax1, FitSD1 
REAL(KIND=4) :: FitMax2, FitSD2, FitMax3, FitSD3 
REAL(KIND=4) :: VarSum, NumCounts, ChiSquared 
! The Measured Attenuation at the Center Detector 
REAL(KIND=4) :: MeasAtt 
CHARACTER :: ObjectFile*80, VoidFile*80, DummyChar*1, StoC*1, MFP*3, OutFile*80 
 
 
! Read the Object and Void .peaks File Names from the command line 
CALL GETARG(1, ObjectFile) 
CALL GETARG(2, VoidFile) 
 
! Read the Object to Center Distance and MFP of material 
CALL GETARG(3, StoC) 
CALL GETARG(4, MFP) 
 
! Open .peaks files and read the data into the .peaks array 
OPEN(UNIT=1, FILE=TRIM(ObjectFile), STATUS="OLD", ACTION="READ", 
POSITION="REWIND") 
OPEN(UNIT=2, FILE=TRIM(VoidFile), STATUS="OLD", ACTION="READ", 
POSITION="REWIND") 
 
! Reads the number of source histories from the .peaks files 
READ (1,*) NPSObject 
READ (2,*) NPSVoid 
 
! Read data from the .peaks files 
DO I = 1, 32 
 
  READ (1,*) DummyReal, Peaks(I,1,1), DummyReal, Peaks(I,2,1), DummyReal, 
Peaks(I,3,1) 
  ! Calculate the Detector Angle 
  Peaks(I,0,1) = -25.0005 + 1.6667 * REAL(I-1) 
  ! Calculate the Number of Scattered Counts in each detector 
  Peaks(I,4,1) = Peaks(I,3,1) - Peaks(I,2,1) 
 
  READ (2,*) DummyReal, Peaks(I,1,2), DummyReal, Peaks(I,2,2), DummyReal, 
Peaks(I,3,2) 
  ! Calculate the Detector Angle 
  Peaks(I,0,2) = -25.0005 + 1.6667 * REAL(I-1) 
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  ! Calculate the Number of Scattered Counts in each detector 
  Peaks(I,4,2) = Peaks(I,3,2) - Peaks(I,2,2) 
 
END DO 
 
 
CLOSE(UNIT=1) 
CLOSE(UNIT=2) 
 
! Calculate the true attenuation for the center detector.  This uses the  
MeasAtt = -LOG(Peaks(16,2,1) * NPSVoid / Peaks(16,2,2) / NPSObject) 
 
! Now Calculate the Maximum and std. deviation of the scattered column. 
! These values will be used as the initial guess of the fitted parameters 
 
FitMax1 = 0. 
FitMax2 = 0. 
NumCounts = 0. 
VarSum = 0. 
 
DO I = 1, 32 
 
  NumCounts = NumCounts + Peaks(I,4,1) 
  VarSum = VarSum + Peaks(I,4,1) * Peaks(I,0,1)**2 
  IF(Peaks(I,4,1) > FitMax1) FitMax1 = Peaks(I,4,1) 
 
END DO 
 
FitSD1 = SQRT(VarSum / NumCounts) 
 
! The values from the object fit are taken directly from a gaussian fit of 
! a void measurement. 
! 1 MeV Threshold Values 
FitSD2 = 1.420884 
FitMax2 = 0.02969844*Peaks(16,2,1) 
FitSD3 = 2.911001 
FitMax3 = 0.004047225*Peaks(16,2,1) 
 
! 1.5 MeV Threshold Values 
! FitSD2 = 1.434710 
! FitMax2 = 0.03117959*Peaks(16,2,1) 
! FitSD3 = 2.981670 
! FitMax3 = 0.004329379*Peaks(16,2,1) 
 
! This subroutine calculates the optimal parameters of a Gaussian fit using 
! an iterative least squares method. 
CALL DoFit(Peaks, FitMax1, FitMax2, FitMax3, FitSD1, FitSD2, FitSD3, & 
& ChiSquared, NPSObject, NPSVoid) 
 
 
! The output file contains the original .peaks data plus the scattered values, 
! the fit, and the PScF 
OutFile = ObjectFile(1:4) // StoC // TRIM(MFP) // ".peaks2" 
 
OPEN(UNIT=3, FILE=TRIM(OutFile), STATUS="REPLACE", ACTION="WRITE") 
OPEN(UNIT=4, FILE="Params.out", STATUS="UNKNOWN", ACTION="WRITE", 
POSITION="APPEND") 
 
WRITE(3, '(I16, 6A16)') NPSObject, "Total", "Direct", "No XTalk", "Scattered", 
& 
& "Fitted", "PScF" 

268 



 

DO I = 1, 32 
  DO J = 0, 6, 1 
    WRITE(3, '(F16.6)', ADVANCE="NO") Peaks(I,J,1) 
  END DO 
  WRITE(3,*) 
END DO 
 
WRITE(4, '(3A4, 8ES16.7)') ObjectFile(1:4), StoC // "0", TRIM(MFP), MeasAtt, 
FitMax1, & 
& FitSD1, FitMax2, FitSD2, FitMax3, FitSD3, ChiSquared 
 
CLOSE(UNIT=3) 
CLOSE(UNIT=4) 
 
OPEN(UNIT=5, FILE="PScF.out", STATUS="UNKNOWN", ACTION="WRITE", 
POSITION="APPEND") 
OPEN(UNIT=6, FILE="FittedTotal.out", STATUS="UNKNOWN", ACTION="WRITE", 
POSITION="APPEND") 
OPEN(UNIT=7, FILE="FittedArray.out", STATUS="UNKNOWN", ACTION="WRITE", 
POSITION="APPEND") 
OPEN(UNIT=8, FILE="FittedObject.out", STATUS="UNKNOWN", ACTION="WRITE", 
POSITION="APPEND") 
OPEN(UNIT=9, FILE="ObjectRaw.out", STATUS="UNKNOWN", ACTION="WRITE", 
POSITION="APPEND") 
 
WRITE (5, '(A9)', ADVANCE="NO") ObjectFile(1:4) // StoC // TRIM(MFP) 
WRITE (6, '(A9)', ADVANCE="NO") ObjectFile(1:4) // StoC // TRIM(MFP) 
WRITE (7, '(A9)', ADVANCE="NO") ObjectFile(1:4) // StoC // TRIM(MFP) 
WRITE (8, '(A9)', ADVANCE="NO") ObjectFile(1:4) // StoC // TRIM(MFP) 
WRITE (9, '(A9)', ADVANCE="NO") ObjectFile(1:4) // StoC // TRIM(MFP) 
 
DO I = 1, 32 
  WRITE (5, '(ES16.7)', ADVANCE="NO") 
Peaks(I,4,1)*REAL(NPSVoid)/Peaks(16,2,2)/REAL(NPSObject) 
  WRITE (6, '(ES16.7)', ADVANCE="NO") Peaks(I,6,1) 
  WRITE (7, '(ES16.7)', ADVANCE="NO") Peaks(I,7,1) 
  WRITE (8, '(ES16.7)', ADVANCE="NO") Peaks(I,8,1) 
  WRITE (9, '(ES16.7)', ADVANCE="NO") Peaks(I,9,1) 
END DO 
 
WRITE (5,*) 
WRITE (6,*) 
WRITE (7,*) 
WRITE (8,*) 
WRITE (9,*) 
 
CLOSE(UNIT=5) 
CLOSE(UNIT=6) 
CLOSE(UNIT=7) 
CLOSE(UNIT=8) 
CLOSE(UNIT=9) 
 
CONTAINS 
 
SUBROUTINE DoFit(ZPeaks, C, D, E, S, T, U, ChiSq, NPSO, NPSV) 
 
REAL(KIND=4), INTENT(INOUT) :: C, S, D, T, E, U, ChiSq, ZPeaks(32,0:9,2) 
INTEGER(KIND=4), INTENT(IN) :: NPSO, NPSV 
! The XTalk Scatter Array holds the part of the scattering from the object. 
! It needs to be identified separately in order to fit one Gaussian to the  
! XTalk and another to the Object Scatter. 
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REAL(KIND=4) :: ObjectScatter(32) 
REAL(KIND=4) :: RangeC, RangeS, ChiSqMin, CMin, SMin, CInit, SInit 
REAL(KIND=4) :: FofTheta 
! These variables are used for smoothing out the center of the scattered counts 
! to account for the fact that MCNP doesn't handle small angle scattering well. 
 
RangeC = 2.0 * C 
RangeS = 5.0 * S 
CInit = C 
SInit = 2.5*S 
ChiSq = 0. 
ChiSqMin = 1.0E+25 
 
PRINT *, C, S, D, T, E, U 
 
! Subtracts the Object Scatter Gaussian from the Total Scattering to leave only 
! the scattering due to cross-talk. 
  DO L = 1, 32 
    IF (L == 16) THEN 
     ObjectScatter(L) = ZPeaks(L,4,1) 
    ELSE 
     FofTheta = D*EXP(-ZPeaks(L,0,1)**2/(2.*T**2)) + E*EXP(-
ABS(ZPeaks(L,0,1))/U)  
     ObjectScatter(L) = ZPeaks(L,4,1) - FofTheta 
    END IF 
  END DO 
 
 
DO I = 1, 10 
 
  DO J = 0, 200, 1 
    C = (-0.5 + 0.005*REAL(J))*RangeC + CInit 
    IF (C <= 0.) CYCLE 
    DO K = 0, 200, 1 
     S = (-0.5 + 0.005*REAL(K))*RangeS + SInit 
     IF (S <= 0.) CYCLE 
     DO L = 1, 32 
      ! IF (L == 16) CYCLE 
      FofTheta = C*EXP(-ZPeaks(L,0,1)**2/(2.*S**2)) 
      ChiSq = ChiSq + ((ObjectScatter(L) - FofTheta) / SQRT(ZPeaks(L,4,1)))**2 
!      ChiSq = ChiSq + (ObjectScatter(L) - FofTheta)**2 
     END DO 
     IF (ChiSq < ChiSqMin) THEN 
      ChiSqMin = ChiSq 
      CMin = C 
      SMin = S 
     END IF 
    ChiSq = 0. 
    END DO ! K Loop 
  END DO ! J Loop 
 
 
  ChiSqMin = 1.0E+25 
 
 
RangeC = RangeC / 5.0 
RangeS = RangeS / 5.0 
C = CMin 
S = SMin 
CInit = C 
SInit = S 
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ChiSqMin = 1.0E+25 
 
WRITE (*,'(I2, 6F16.6)') I, C, S, D, T, E, U 
 
END DO ! I Loop 
 
 
DO L = 1, 32 
  IF (L == 16) THEN 
    FofTheta = C*EXP(-ZPeaks(L,0,1)**2/(2.*S**2)) 
  ELSE 
    FofTheta = C*EXP(-ZPeaks(L,0,1)**2/(2.*S**2)) + & 
    & D*EXP(-ZPeaks(L,0,1)**2/(2.*T**2)) + E*EXP(-ABS(ZPeaks(L,0,1))/U) 
  END IF 
    ZPeaks(L,5,1) = FofTheta 
    ZPeaks(L,6,1) = FofTheta * REAL(NPSV) / ZPeaks(16,2,2) / REAL(NPSO) 
    ZPeaks(L,9,1) = ObjectScatter(L) * REAL(NPSV) / ZPeaks(16,2,2) / REAL(NPSO) 
  ChiSq = ChiSq + ((ZPeaks(L,4,1) - FofTheta) / SQRT(ZPeaks(L,4,1)))**2 
!  ChiSq = ChiSq + (ZPeaks(L,4,1) - FofTheta)**2 
END DO 
 
! Convert magnitudes of the fits to a per source neutron basis. 
C = C * REAL(NPSV) / ZPeaks(16,2,2) / REAL(NPSO) 
D = D * REAL(NPSV) / ZPeaks(16,2,2) / REAL(NPSO) 
E = E * REAL(NPSV) / ZPeaks(16,2,2) / REAL(NPSO) 
 
 
DO L = 1, 32 
  ZPeaks(L,8,1) = C*EXP(-ZPeaks(L,0,1)**2/(2.*S**2)) 
  IF (L == 16) THEN 
    ZPeaks(L,7,1) = 0. 
    CYCLE 
  END IF 
  ZPeaks(L,7,1) = D*EXP(-ZPeaks(L,0,1)**2/(2.*T**2))+E*EXP(-
ABS(ZPeaks(L,0,1))/U) 
END DO 
 
END SUBROUTINE DoFit 
 
 
END PROGRAM GaussFit 

 

 



 

Appendix G – The PScF Parameters for a 1 MeV Detector Threshold 

Scenario Attenuation PScF Maximum PScF Standard Deviation 
Poly30.5 0.500 5.37E-03 6.511 
Poly31 0.999 6.17E-03 6.800 
Poly31.5 1.498 5.33E-03 7.107 
Poly32 1.997 4.11E-03 7.447 
Poly32.5 2.496 3.00E-03 7.763 
Poly33 2.995 2.10E-03 8.094 
Poly33.5 3.496 1.44E-03 8.403 
Poly34 3.996 9.69E-04 8.724 
Poly34.5 4.494 6.40E-04 9.090 
Poly35 4.989 4.21E-04 9.388 
Poly35.5 5.489 2.75E-04 9.731 
Poly36 5.991 1.77E-04 10.071 
Poly36.5 6.485 1.14E-04 10.479 
Poly37 6.985 7.35E-05 10.779 
Poly40.5 0.500 3.35E-03 7.931 
Poly41 0.999 3.88E-03 8.240 
Poly41.5 1.498 3.39E-03 8.571 
Poly42 1.997 2.65E-03 8.905 
Poly42.5 2.496 1.96E-03 9.236 
Poly43 2.995 1.39E-03 9.582 
Poly43.5 3.496 9.53E-04 9.937 
Poly44 3.996 6.45E-04 10.244 
Poly44.5 4.494 4.29E-04 10.640 
Poly45 4.989 2.85E-04 10.961 
Poly45.5 5.490 1.87E-04 11.358 
Poly46 5.992 1.21E-04 11.731 
Poly46.5 6.485 7.88E-05 12.128 
Poly47 6.986 5.07E-05 12.581 
Poly50.5 0.500 2.25E-03 9.429 
Poly51 0.999 2.64E-03 9.773 
Poly51.5 1.498 2.32E-03 10.116 
Poly52 1.997 1.83E-03 10.475 
Poly52.5 2.496 1.36E-03 10.835 
Poly53 2.995 9.68E-04 11.205 
Poly53.5 3.496 6.70E-04 11.590 
Poly54 3.996 4.57E-04 11.927 
Poly54.5 4.494 3.04E-04 12.436 
Poly55 4.989 2.05E-04 12.681 
Poly55.5 5.490 1.35E-04 13.191 
Poly56 5.992 8.85E-05 13.617 
Poly60.5 0.500 1.59E-03 11.052 
Poly61 0.999 1.88E-03 11.396 
Poly61.5 1.498 1.68E-03 11.746 
Poly62 1.997 1.33E-03 12.135 
Poly62.5 2.496 9.85E-04 12.581 
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Scenario Attenuation PScF Maximum PScF Standard Deviation 
Poly63 2.995 7.08E-04 12.979 
Poly63.5 3.496 4.94E-04 13.427 
Poly64 3.996 3.39E-04 13.847 
Poly64.5 4.494 2.30E-04 14.166 
Poly65 4.989 1.54E-04 14.650 
Poly70.5 0.500 1.18E-03 12.677 
Poly71 0.999 1.40E-03 13.068 
Poly71.5 1.498 1.25E-03 13.555 
Poly72 1.997 9.94E-04 13.962 
Poly72.5 2.496 7.45E-04 14.521 
Poly73 2.995 5.36E-04 14.981 
Poly73.5 3.496 3.75E-04 15.536 
Poly80.5 0.500 9.04E-04 14.613 
Poly81 0.999 1.07E-03 15.076 
Poly81.5 1.498 9.68E-04 15.547 
Poly82 1.997 7.71E-04 16.120 
Poly82.5 2.496 5.74E-04 16.883 
Poly90.5 0.500 6.99E-04 17.266 
Poly91 0.999 8.36E-04 17.907 
Poly91.5 1.498 7.57E-04 18.319 
Carb30.5 0.505 6.61E-03 6.693 
Carb31 1.009 7.72E-03 7.130 
Carb31.5 1.513 6.85E-03 7.568 
Carb32 2.016 5.41E-03 8.022 
Carb32.5 2.521 4.05E-03 8.495 
Carb33 3.024 2.92E-03 8.988 
Carb33.5 3.529 2.07E-03 9.475 
Carb34 4.034 1.44E-03 9.964 
Carb34.5 4.537 9.90E-04 10.522 
Carb35 5.037 6.75E-04 11.090 
Carb35.5 5.545 4.62E-04 11.656 
Carb36 6.051 3.12E-04 12.283 
Carb36.5 6.553 2.10E-04 13.026 
Carb37 7.055 1.42E-04 13.755 
Carb40.5 0.505 4.17E-03 8.267 
Carb41 1.009 4.95E-03 8.710 
Carb41.5 1.513 4.44E-03 9.162 
Carb42 2.017 3.54E-03 9.646 
Carb42.5 2.521 2.68E-03 10.124 
Carb43 3.024 1.96E-03 10.605 
Carb43.5 3.530 1.39E-03 11.120 
Carb44 4.035 9.72E-04 11.666 
Carb44.5 4.537 6.74E-04 12.209 
Carb45 5.037 4.61E-04 12.820 
Carb45.5 5.545 3.16E-04 13.390 
Carb46 6.050 2.14E-04 14.022 
Carb46.5 6.552 1.44E-04 14.665 
Carb47 7.054 9.85E-05 15.173 
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Scenario Attenuation PScF Maximum PScF Standard Deviation 
Carb50.1 0.101 8.28E-04 9.895 
Carb50.2 0.202 1.52E-03 9.829 
Carb50.3 0.303 2.07E-03 9.863 
Carb50.4 0.404 2.49E-03 9.930 
Carb50.5 0.505 2.81E-03 9.991 
Carb50.6 0.605 3.04E-03 10.081 
Carb50.7 0.706 3.21E-03 10.155 
Carb50.8 0.807 3.31E-03 10.261 
Carb50.9 0.908 3.37E-03 10.344 
Carb51 1.009 3.38E-03 10.434 
Carb51.5 1.513 3.06E-03 10.915 
Carb52 2.017 2.47E-03 11.412 
Carb52.5 2.521 1.87E-03 11.954 
Carb53 3.024 1.36E-03 12.499 
Carb53.5 3.530 9.80E-04 13.020 
Carb54 4.035 6.93E-04 13.540 
Carb54.5 4.537 4.82E-04 14.120 
Carb55 5.037 3.34E-04 14.721 
Carb55.5 5.545 2.30E-04 15.308 
Carb56 6.051 1.56E-04 15.962 
Carb60.5 0.505 2.00E-03 11.793 
Carb61 1.009 2.42E-03 12.273 
Carb61.5 1.513 2.20E-03 12.809 
Carb62 2.017 1.79E-03 13.358 
Carb62.5 2.521 1.36E-03 13.925 
Carb63 3.024 1.01E-03 14.445 
Carb63.5 3.530 7.26E-04 15.001 
Carb64 4.035 5.19E-04 15.565 
Carb64.5 4.969 2.37E-04 16.190 
Carb65 5.037 2.50E-04 17.078 
Carb70.5 0.505 1.47E-03 13.715 
Carb71 1.009 1.80E-03 14.175 
Carb71.5 1.513 1.66E-03 14.732 
Carb72 2.017 1.35E-03 15.378 
Carb72.5 2.521 1.04E-03 16.028 
Carb73 3.024 7.75E-04 16.492 
Carb73.5 3.530 5.63E-04 17.108 
Carb74 4.034 4.03E-04 17.744 
Carb80.5 0.505 1.13E-03 15.705 
Carb81 1.009 1.40E-03 16.083 
Carb81.5 1.513 1.29E-03 16.716 
Carb82 2.017 1.06E-03 17.454 
Carb82.5 2.521 8.22E-04 18.080 
Carb90.5 0.505 9.04E-04 17.700 
Carb91 1.009 1.12E-03 18.126 
Carb91.5 1.513 1.04E-03 18.880 
Iron30.5 0.505 9.53E-03 4.997 
Iron31 1.009 1.15E-02 5.314 
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Scenario Attenuation PScF Maximum PScF Standard Deviation 
Iron31.5 1.513 1.04E-02 5.666 
Iron32 2.016 8.40E-03 6.033 
Iron32.5 2.520 6.44E-03 6.380 
Iron33 3.023 4.72E-03 6.752 
Iron33.5 3.527 3.40E-03 7.136 
Iron34 4.031 2.39E-03 7.530 
Iron34.5 4.533 1.69E-03 7.899 
Iron35 5.032 1.17E-03 8.309 
Iron35.5 5.548 8.12E-04 8.687 
Iron36 6.056 5.63E-04 9.048 
Iron36.5 6.550 3.92E-04 9.361 
Iron37 7.048 2.69E-04 9.706 
Iron40.5 0.505 6.01E-03 6.320 
Iron41 1.009 7.32E-03 6.638 
Iron41.5 1.513 6.69E-03 7.001 
Iron42 2.016 5.44E-03 7.365 
Iron42.5 2.520 4.19E-03 7.721 
Iron43 3.023 3.11E-03 8.117 
Iron43.5 3.527 2.26E-03 8.472 
Iron44 4.031 1.61E-03 8.850 
Iron44.5 4.533 1.14E-03 9.229 
Iron45 5.032 7.98E-04 9.617 
Iron45.5 5.548 5.55E-04 10.037 
Iron46 6.057 3.82E-04 10.353 
Iron46.5 6.551 2.71E-04 10.637 
Iron47 7.050 1.86E-04 11.039 
Iron50.5 0.505 4.13E-03 7.645 
Iron51 1.009 5.07E-03 7.944 
Iron51.5 1.513 4.66E-03 8.310 
Iron52 2.016 3.81E-03 8.670 
Iron52.5 2.520 2.97E-03 9.018 
Iron53 3.023 2.21E-03 9.409 
Iron53.5 3.528 1.61E-03 9.766 
Iron54 4.031 1.15E-03 10.163 
Iron54.5 4.534 8.23E-04 10.575 
Iron55 5.033 5.80E-04 10.956 
Iron55.5 5.549 4.09E-04 11.336 
Iron56 6.058 2.82E-04 11.647 
Iron56.5 6.552 1.97E-04 12.053 
Iron57 7.051 1.36E-04 12.599 
Iron60.5 0.505 3.03E-03 8.864 
Iron61 1.009 3.72E-03 9.204 
Iron61.5 1.513 3.44E-03 9.555 
Iron62 2.016 2.83E-03 9.937 
Iron62.5 2.520 2.20E-03 10.311 
Iron63 3.023 1.65E-03 10.672 
Iron63.5 3.527 1.21E-03 11.064 
Iron64 4.031 8.68E-04 11.483 
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Scenario Attenuation PScF Maximum PScF Standard Deviation 
Iron64.5 4.534 6.17E-04 11.937 
Iron65 5.033 4.36E-04 12.441 
Iron65.5 5.549 3.08E-04 12.782 
Iron66 6.058 2.15E-04 13.068 
Iron66.5 6.553 1.49E-04 13.609 
Iron67 7.050 1.05E-04 14.080 
Iron70.5 0.505 2.31E-03 10.111 
Iron71 1.009 2.85E-03 10.414 
Iron71.5 1.513 2.65E-03 10.759 
Iron72 2.016 2.18E-03 11.175 
Iron72.5 2.520 1.70E-03 11.555 
Iron73 3.023 1.28E-03 11.938 
Iron73.5 3.527 9.41E-04 12.332 
Iron74 4.031 6.77E-04 12.800 
Iron74.5 4.533 4.83E-04 13.258 
Iron75 5.033 3.47E-04 13.622 
Iron75.5 5.549 2.43E-04 14.123 
Iron76 6.058 1.68E-04 14.688 
Iron76.5 6.552 1.17E-04 15.274 
Iron77 7.051 8.18E-05 15.469 
Iron80.5 0.505 1.81E-03 11.295 
Iron81 1.009 2.25E-03 11.634 
Iron81.5 1.513 2.09E-03 11.983 
Iron82 2.016 1.73E-03 12.403 
Iron82.5 2.520 1.35E-03 12.791 
Iron83 3.023 1.02E-03 13.251 
Iron83.5 3.527 7.48E-04 13.688 
Iron84 4.031 5.39E-04 14.202 
Iron84.5 4.534 3.84E-04 14.706 
Iron85 5.033 2.74E-04 15.232 
Iron85.5 5.549 1.94E-04 15.497 
Iron90.5 0.505 1.45E-03 12.561 
Iron91 1.009 1.81E-03 12.881 
Iron91.5 1.513 1.68E-03 13.265 
Iron92 2.016 1.40E-03 13.716 
Iron92.5 2.520 1.09E-03 14.130 
Iron93 3.023 8.28E-04 14.591 
Lead30.5 0.507 1.67E-02 3.269 
Lead31 1.014 1.97E-02 3.532 
Lead31.5 1.521 1.75E-02 3.815 
Lead32 2.027 1.38E-02 4.121 
Lead32.5 2.534 1.02E-02 4.454 
Lead33 3.040 7.27E-03 4.862 
Lead33.5 3.547 5.06E-03 5.294 
Lead34 4.053 3.41E-03 5.844 
Lead34.5 4.559 2.28E-03 6.464 
Lead35 5.062 1.52E-03 7.099 
Lead35.5 5.581 1.01E-03 7.782 
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Scenario Attenuation PScF Maximum PScF Standard Deviation 
Lead36 6.089 6.89E-04 8.273 
Lead36.5 6.588 4.70E-04 8.741 
Lead37 7.086 3.19E-04 9.305 
Lead40.5 0.507 1.11E-02 4.076 
Lead41 1.014 1.32E-02 4.372 
Lead41.5 1.521 1.17E-02 4.698 
Lead42 2.027 9.39E-03 5.012 
Lead42.5 2.534 7.00E-03 5.390 
Lead43 3.040 5.03E-03 5.815 
Lead43.5 3.547 3.51E-03 6.292 
Lead44 4.053 2.38E-03 6.903 
Lead44.5 4.559 1.61E-03 7.516 
Lead45 5.062 1.09E-03 8.170 
Lead45.5 5.580 7.36E-04 8.802 
Lead46 6.089 4.94E-04 9.418 
Lead46.5 6.587 3.41E-04 9.922 
Lead47 7.086 2.33E-04 10.471 
Lead50.5 0.507 7.82E-03 4.923 
Lead51 1.014 9.34E-03 5.244 
Lead51.5 1.521 8.37E-03 5.581 
Lead52 2.027 6.67E-03 5.962 
Lead52.5 2.535 5.02E-03 6.361 
Lead53 3.040 3.63E-03 6.826 
Lead53.5 3.547 2.54E-03 7.338 
Lead54 4.053 1.76E-03 7.901 
Lead54.5 4.559 1.20E-03 8.536 
Lead55 5.062 8.23E-04 9.137 
Lead55.5 5.580 5.59E-04 9.781 
Lead56 6.089 3.83E-04 10.238 
Lead56.5 6.588 2.63E-04 10.791 
Lead57 7.087 1.79E-04 11.393 
Lead60.5 0.507 5.77E-03 5.764 
Lead61 1.014 6.90E-03 6.133 
Lead61.5 1.521 6.20E-03 6.505 
Lead62 2.027 4.98E-03 6.880 
Lead62.5 2.534 3.78E-03 7.289 
Lead63 3.040 2.74E-03 7.791 
Lead63.5 3.547 1.95E-03 8.315 
Lead64 4.052 1.36E-03 8.866 
Lead64.5 4.559 9.49E-04 9.361 
Lead65 5.062 6.48E-04 9.971 
Lead65.5 5.580 4.44E-04 10.628 
Lead66 6.089 3.08E-04 10.996 
Lead66.5 6.587 2.12E-04 11.459 
Lead67 7.086 1.44E-04 12.313 
Lead70.5 0.507 4.41E-03 6.607 
Lead71 1.014 5.31E-03 6.976 
Lead71.5 1.521 4.79E-03 7.382 
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Scenario Attenuation PScF Maximum PScF Standard Deviation 
Lead72 2.027 3.87E-03 7.772 
Lead72.5 2.534 2.96E-03 8.192 
Lead73 3.040 2.16E-03 8.701 
Lead73.5 3.547 1.55E-03 9.206 
Lead74 4.052 1.09E-03 9.677 
Lead74.5 4.559 7.64E-04 10.220 
Lead75 5.062 5.29E-04 10.763 
Lead75.5 5.581 3.63E-04 11.320 
Lead76 6.090 2.55E-04 11.727 
Lead80.5 0.507 3.50E-03 7.404 
Lead81 1.014 4.22E-03 7.801 
Lead81.5 1.521 3.83E-03 8.220 
Lead82 2.027 3.10E-03 8.637 
Lead82.5 2.534 2.38E-03 9.042 
Lead83 3.040 1.75E-03 9.538 
Lead83.5 3.547 1.27E-03 9.983 
Lead84 4.052 9.00E-04 10.451 
Lead84.5 4.559 6.32E-04 10.955 
Lead90.5 0.507 2.83E-03 8.184 
Lead91 1.014 3.43E-03 8.599 
Lead91.5 1.521 3.13E-03 9.003 
Lead92 2.027 2.55E-03 9.418 
Lead92.5 2.534 1.97E-03 9.827 
 



 

Appendix H – The ScatterSubtract Code 

The ScatterSubtract Code 

PROGRAM ScatterSubtract 
!--------------------------------------------------------------------------- 
! Written by Brandon R. Grogan 
! at the Oak Ridge National Laboratory 
! Last Modified 13 January 2010 
!--------------------------------------------------------------------------- 
IMPLICIT NONE 
INTEGER(KIND=4) :: I, J, K, L, M, ErrorCode, NumDets, NumSS 
INTEGER(KIND=4) :: MatNum, LOK 
REAL(KIND=4) :: DR, NPSO, NPSV, ObjtoDet, ChiSq(3) 
REAL(KIND=4), ALLOCATABLE :: VoidPeaks(:,:,:), ObjPeaks(:,:,:) 
REAL(KIND=4), ALLOCATABLE :: ISF(:,:,:), Attenuation(:,:,:) 
REAL(KIND=4), ALLOCATABLE :: Uncertainty(:,:,:), Scatter(:,:,:) 
CHARACTER :: ObjFile*80, VoidFile*80, SSText*4, OtoDText*4, Material*16 
CHARACTER :: NumDetText*4, LOKText*1 
REAL(KIND=4) :: Epsilon 
 
Epsilon = 0.00001 
 
!--------------------------------------------------------------------------- 
! STEP 1: Read user input from the command line. 
! SYNTAX: ScatterSubtract <object .peaks file> <void .peaks file> <# SS> 
!         <# Detectors> <Object to Center Distance> <Material> 
!--------------------------------------------------------------------------- 
CALL GETARG(1, ObjFile) 
CALL GETARG(2, VoidFile) 
CALL GETARG(3, SSText) 
CALL GETARG(4, NumDetText) 
CALL GETARG(5, OtoDText) 
CALL GETARG(6, Material) 
CALL GETARG(7, LOKText) 
 
IF (LEN(TRIM(ObjFile)) == 0) THEN 
 Print *, "ScatterSubtract Syntax:" 
 PRINT *, 
 PRINT *, "ScatterSubtract <object .peaks file> <void .peaks file> <# SS>" 
 PRINT *, "<Object to Center Distance> <Material>" 
 STOP 
END IF 
 
 
READ(SSText, '(I4)') NumSS 
READ(NumDetText, '(I4)') NumDets 
READ(OtoDText, '(F4.0)') ObjtoDet 
READ(LOKText, '(I1)') LOK 
 
IF (Material(1:2) == "Po" .OR. Material(1:2) == "PO" .OR. &  
& Material(1:2) == "CH" .OR. Material(1:2) == "CH") THEN 
  MatNum = 1 
ELSEIF(LOK == 3) THEN 
  MatNum = 6 
ELSEIF (Material(1:1) == "C" .OR. Material(1:1) == "c") THEN 
  MatNum = 2 
ELSEIF(LOK == 2) THEN 
  MatNum = 5 
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ELSEIF (Material(1:2) == "Ir" .OR. Material(1:2) == "IR" .OR. & 
& Material(1:2) == "ir" .OR. Material(1:2) == "Fe") THEN 
  MatNum = 3 
ELSEIF (Material(1:2) == "Le" .OR. Material(1:2) == "LE" .OR. & 
& Material(1:2) == "le" .OR. Material(1:2) == "Pb") THEN 
  MatNum = 4 
ELSE 
  PRINT *, "Invalid Material!  Program Halted." 
  STOP 
END IF 
 
PRINT *, ObjtoDet, MatNum 
 
! Allocate and initialize arrays 
ALLOCATE(ObjPeaks(NumDets+1,6,NumSS)) 
ALLOCATE(VoidPeaks(NumDets+1,6,NumSS)) 
ALLOCATE(Attenuation(NumDets+1,6,NumSS)) 
ALLOCATE(ISF(NumDets,NumDets+1,NumSS)) 
ALLOCATE(Uncertainty(NumDets,5,NumSS)) 
ALLOCATE(Scatter(NumDets,5,NumSS)) 
 
ObjPeaks = 0. 
VoidPeaks = 0. 
Attenuation = 0. 
ISF = 0. 
Uncertainty = 0. 
 
 
!--------------------------------------------------------------------------- 
! STEP 2: Read the .peaks files into memory. 
!--------------------------------------------------------------------------- 
 
OPEN(UNIT=1, FILE=TRIM(ObjFile), STATUS="OLD", ACTION="READ", IOSTAT=ErrorCode) 
OPEN(UNIT=2, FILE=TRIM(VoidFile), STATUS="OLD", ACTION="READ", 
IOSTAT=ErrorCode) 
 
READ(1, *) NPSO 
READ(2, *) NPSV 
 
DO I = 1, NumDets 
  DO K = 1, NumSS 
      READ(1, *) ObjPeaks(I,1,K), DR, DR, DR, DR, DR, DR, DR, DR, DR, & 
      & ObjPeaks(I,2,K), DR, DR, DR, DR, DR, DR, DR, DR, DR, DR, DR, & 
      & ObjPeaks(I,3,K), DR, DR, DR, DR, DR, DR, DR, DR, DR, DR, DR, & 
      & ObjPeaks(I,4,K) 
      READ(2, *) VoidPeaks(I,1,K), DR, DR, DR, DR, DR, DR, DR, DR, DR, & 
      & VoidPeaks(I,2,K), DR, DR, DR, DR, DR, DR, DR, DR, DR, DR, DR, & 
      & VoidPeaks(I,3,K), DR, DR, DR, DR, DR, DR, DR, DR, DR, DR, DR, & 
      & VoidPeaks(I,4,K) 
      VoidPeaks(I,5,K) = VoidPeaks(I,4,K) 
      ObjPeaks(I,5,K) = ObjPeaks(I,4,K) 
      Attenuation(I,1,K) = VoidPeaks(I,1,K) 
  END DO 
END DO 
 
CLOSE(UNIT=1) 
CLOSE(UNIT=2) 
 
PRINT *, NPSO, NPSV 
 
!--------------------------------------------------------------------------- 
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! STEP 3: Convert I0measured to I0corrected 
!--------------------------------------------------------------------------- 
 
CALL FindI0(VoidPeaks, ISF) 
 
! Now normalize the ISF Array to the object counts. 
 
DO K = 1, NumSS 
 DO I = 1, NumDets 
  DO J = 1, NumDets+1 
   ISF(I,J,K) = ISF(I,J,K) * NPSO / NPSV 
  END DO 
 END DO 
END DO 
 
!--------------------------------------------------------------------------- 
! STEP 4: Convert Imeasured to Icorrected and use it to find the corrected 
! attenuation. 
!--------------------------------------------------------------------------- 
 
CALL FindAttenuation(VoidPeaks, ObjPeaks, ISF, Attenuation, NPSO, NPSV, & 
& ObjtoDet, MatNum) 
 
!--------------------------------------------------------------------------- 
! STEP 5: Find the uncertainty on the attenuation values. 
!--------------------------------------------------------------------------- 
 
CALL FindUncertainty(VoidPeaks, ObjPeaks, Uncertainty) 
 
!--------------------------------------------------------------------------- 
! STEP 6: Find the fraction of scattering in the total, NoXTalk, and 
! corrected object transmission values. 
!--------------------------------------------------------------------------- 
 
CALL FindScattering(ObjPeaks,Scatter) 
 
!--------------------------------------------------------------------------- 
! STEP 7: Find the Chi-Squared goodness of fit values for the total, NoXtalk, 
! and Corrected attenuation values. 
!--------------------------------------------------------------------------- 
 
CALL FindChiSq(Attenuation, Uncertainty, ChiSq) 
 
!--------------------------------------------------------------------------- 
! STEP 8: Write Output to Files.  The 5 files are: 
! 
! (3) void.out - contains the void correlation values (incl. corrected) 
! (4) object.out - contains the object correlation values (incl. corrected) 
! (5) attenuation.out - contains the attenuation values 
! (6) scatter.out - contains the scatter fractions 
! (7) ChiSq.out - contains the chi squared goodness of fit results 
!--------------------------------------------------------------------------- 
 
OPEN(UNIT=3, FILE="Void.out", STATUS="REPLACE", ACTION="WRITE") 
OPEN(UNIT=4, FILE="Object.out", STATUS="REPLACE", ACTION="WRITE") 
OPEN(UNIT=5, FILE="Attenuation.out", STATUS="REPLACE", ACTION="WRITE") 
OPEN(UNIT=6, FILE="Scatter.out", STATUS="REPLACE", ACTION="WRITE") 
OPEN(UNIT=7, FILE="ChiSq.out", STATUS="REPLACE", ACTION="WRITE") 
 
WRITE(3, '(I16,5A16)') INT(NPSV),"Total","Direct","No XTalk","Corrected", & 
& "Frac. Error" 
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WRITE(4, '(I16,5A16)') INT(NPSO),"Total","Direct","No XTalk","Corrected", & 
& "Frac. Error" 
WRITE(5, '(7A16)', ADVANCE="NO") "Angle", "Total", "Direct", "No XTalk", &  
& "Corrected", "Frac. Error", " " 
WRITE(5, '(4A16)') "Total", "Direct", "No XTalk", "Corrected" 
WRITE(6, '(4A16)') "Angle", "Total", "No XTalk", "Corrected" 
WRITE(7, '(3A16)') "Total", "No XTalk", "Corrected" 
 
DO I = 1, NumDets 
  DO K = 1, NumSS 
   DO L = 1,6 
    WRITE(3, '(ES16.6)', ADVANCE="NO") VoidPeaks(I,L,K) 
    WRITE(4, '(ES16.6)', ADVANCE="NO") ObjPeaks(I,L,K) 
    WRITE(5, '(ES16.6)', ADVANCE="NO") Attenuation(I,L,K) 
    IF (L == 3) CYCLE 
    IF (L == 6) EXIT 
    WRITE(6, '(ES16.6)', ADVANCE="NO") Scatter(I,L,K) 
   END DO 
    WRITE(5, '(A16)', ADVANCE="NO") " " 
   DO L = 2,5 
    WRITE(5, '(ES16.6)', ADVANCE="NO") Uncertainty(I,L,K) 
   END DO 
 
    WRITE(3,*) 
    WRITE(4,*) 
    WRITE(5,*) 
    WRITE(6,*) 
  END DO 
END DO 
 
WRITE(7,'(3ES16.6)') ChiSq(1), ChiSq(2), ChiSq(3) 
 
CLOSE(UNIT=3) 
CLOSE(UNIT=4) 
CLOSE(UNIT=5) 
CLOSE(UNIT=6) 
CLOSE(UNIT=7) 
 
!--------------------------------------------------------------------------- 
! Subroutines  
!--------------------------------------------------------------------------- 
CONTAINS 
 
!--------------------------------------------------------------------------- 
! Subroutine FindI0 - This subroutine calculates the corrected values of I0 
! from the measured.  Reutrns the I0 values and the ISF. 
!--------------------------------------------------------------------------- 
SUBROUTINE FindI0(ZVoid, ISFCounts) 
REAL(KIND=4), INTENT(INOUT) :: ZVoid(NumDets+1,6,NumSS) 
REAL(KIND=4), INTENT(INOUT) :: ISFCounts(NumDets, NumDets+1,NumSS) 
REAL(KIND=4) :: ZISF(NumDets, NumDets+1, NumSS) 
REAL(KIND=4) :: ConvCheck 
 
OPEN(UNIT=99, FILE="Void.iter", STATUS="REPLACE", ACTION="WRITE") 
WRITE(99,'(A13)', ADVANCE="NO") "             " 
DO I = 1, NumDets 
  DO K = 1, NumSS 
    WRITE(99,'(F13.6)', ADVANCE="NO") ZVoid(I,1,K) 
  END DO ! K Loop 
END DO ! I Loop 
WRITE(99,*) 
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WRITE (99, '(A13)', ADVANCE="NO") "Iteration   0" 
DO I = 1, NumDets 
  DO K = 1, NumSS 
    WRITE(99,'(ES13.6)', ADVANCE="NO") ZVoid(I,5,K) 
  END DO ! K Loop 
END DO ! I Loop 
WRITE(99,*) 
 
 
 
! Find the normalized ISF Values (Scattered Counts in det. I per  
! direct count in det J. 
DO K = 1, NumSS 
  DO I = 1, NumDets 
    DO J = 1, NumDets 
     CALL GetISF(ZVoid(J,1,K), ZVoid(I,1,K), ZISF(I,J,K)) 
    END DO ! J Loop 
  END DO ! I Loop 
END DO ! K Loop 
 
! Maximum of 100 iterations, although convergence will probably come much 
faster. 
DO L = 1, 100 
  DO K = 1, NumSS 
   DO I = 1, NumDets 
    DO J = 1, NumDets 
 
     ! The actual number of scattered counts produced in I by det. J 
     ISFCounts(I,J,K) = ZISF(I,J,K) * ZVoid(J,5,K) 
 
     ! Total counts scattered into detector I 
     ISFCounts(I,NumDets+1,K) = ISFCounts(I,NumDets+1,K) + ISFCounts(I,J,K) 
 
    END DO ! J Loop 
   END DO ! I Loop 
  END DO ! K Loop 
 
  DO K = 1, NumSS 
   DO I = 1, NumDets 
 
    ZVoid(I,6,K) = ZVoid(I,4,K) - ISFCounts(I,NumDets+1,K) 
    IF (ZVoid(I,6,K) < 0.) ZVoid(I,6,K) = 0. 
 
    ! The sum of the difference in counts between iteration will be the  
    ! criterion used to determine convergence. 
    ZVoid(NumDets+1,6,NumSS) = ZVoid(NumDets+1,6,NumSS) + & 
    & ABS(ZVoid(I,4,K) - ZVoid(I,6,K)) 
 
   END DO ! I Loop 
  END DO ! K Loop 
 
 
WRITE (99, '(A9,I4)', ADVANCE="NO") "Iteration", L 
DO I = 1, NumDets 
  DO K = 1, NumSS 
    WRITE(99,'(ES13.6)', ADVANCE="NO") ZVoid(I,6,K) 
  END DO ! K Loop 
END DO ! I Loop 
WRITE(99,*) 
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  ! Now check for convergence. 
  ConvCheck = ABS((ZVoid(NumDets+1,6,NumSS)-ZVoid(NumDets+1,5,NumSS)) / & 
  & ZVoid(NumDets+1,5,NumSS)) 
 
  IF(ConvCheck < Epsilon) THEN 
 
   ! Get rid of the convergence testing values because they're not need any 
more. 
   ZVoid(NumDets+1,5,NumSS) = 0. 
   ZVoid(NumDets+1,6,NumSS) = 0. 
   DO K = 1, NumSS 
    DO I = 1, NumDets 
 
     ! Column 5 now becomes the corrected I0 values. 
     ZVoid(I,5,K) = ZVoid(I,6,K) 
 
     ! Column 6 will become the fractional error of the corrected values. 
     ZVoid(I,6,K) = (ZVoid(I,5,K)-ZVoid(I,3,K))/ZVoid(I,5,K) 
 
     ! This cell will hold the average fractional error for the entire 
     ! void run. 
     ZVoid(NumDets+1,6,NumSS) = ZVoid(NumDets+1,6,NumSS) + ZVoid(I,6,K) 
    END DO 
   END DO 
 
   ! Divide by total number of dets. to find average frac. error. 
   ZVoid(NumDets+1,6,NumSS) = ZVoid(NumDets+1,6,NumSS) / REAL(NumDets*NumSS) 
 
  WRITE (99, '(A13)', ADVANCE="NO") "Direct       " 
  DO I = 1, NumDets 
    DO K = 1, NumSS 
      WRITE(99,'(ES13.6)', ADVANCE="NO") ZVoid(I,3,K) 
    END DO ! K Loop 
  END DO ! I Loop 
  WRITE(99,*) 
 
 
    
   EXIT 
 
  ! If not converged, the values from column 6 (present iteration) are copied 
  ! into column 5 (old iteration) and column 6 is set to 0 for the next loop. 
  ELSE 
   ISFCounts = 0. 
   DO K = 1, NumSS 
    DO I = 1, NumDets+1 
     ZVoid(I,5,K) = ZVoid(I,6,K) 
     ZVoid(I,6,K) = 0. 
    END DO 
   END DO 
 
  WRITE(*, '(I6, 2ES16.6)') L, ZVoid(NumDets+1,5,NumSS), ConvCheck 
     
  END IF 
 
END DO ! L Loop 
 
CLOSE(UNIT=99) 
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END SUBROUTINE FindI0 
 
!--------------------------------------------------------------------------- 
! Subroutine GetISF - This subroutine returns the ISF scattering fraction 
! for a given combination of detector angles. 
!--------------------------------------------------------------------------- 
SUBROUTINE GetISF(ThetaFrom, ThetaTo, ISFVal) 
REAL(KIND=4), INTENT(IN) :: ThetaFrom, ThetaTo 
REAL(KIND=4), INTENT(OUT) :: ISFVal 
REAL(KIND=4) :: AngleDiff, ZIter 
 
  
AngleDiff = ThetaFrom - ThetaTo 
 
IF (ABS(AngleDiff) < 0.01) THEN 
  ISFVAL = 0. 
ELSE 
 ISFVal = 0.02969844 * EXP(-AngleDiff**2 / (2. * 1.420884**2)) + & 
 & 0.004047225 * EXP(-ABS(AngleDiff) / 2.911001) 
END IF 
 
END SUBROUTINE GetISF 
 
!--------------------------------------------------------------------------- 
! Subroutine FindAttenuation - This subroutine subtracts the object scatter  
! from I to find the corrected values and uses them to calculate the corrected 
! attenuation. 
!--------------------------------------------------------------------------- 
SUBROUTINE FindAttenuation(ZVoid, ZObj, ZISF, ZAtten, ZNPSO, ZNPSV, & 
& ZObjDet, ZMat) 
REAL(KIND=4), INTENT(IN) :: ZVoid(NumDets+1,6,NumSS) 
REAL(KIND=4), INTENT(INOUT) :: ZISF(NumDets,NumDets+1,NumSS) 
REAL(KIND=4), INTENT(INOUT) :: ZObj(NumDets+1,6,NumSS), 
ZAtten(NumDets+1,6,NumSS) 
REAL(KIND=4), INTENT(IN) :: ZNPSO, ZNPSV, ZObjDet 
INTEGER(KIND=4), INTENT(IN) :: ZMat 
REAL(KIND=4) :: ZPScF(NumDets, NumDets+1, NumSS), ConvCheck 
 
! Calculates the total, direct, and measured attenuation values. 
! Also calculates the first guess for corrected attenuation. 
DO K = 1, NumSS 
  DO I = 1, NumDets 
    ZAtten(I,2,K) = -LOG(ZObj(I,2,K)*ZNPSV/ZVoid(I,2,K)/ZNPSO) 
    IF(ZVoid(I,2,K) == 0. .OR. ZObj(I,2,K)==0.) ZAtten(I,2,K) = 0. 
    ZAtten(I,3,K) = -LOG(ZObj(I,3,K)*ZNPSV/ZVoid(I,3,K)/ZNPSO) 
    IF(ZVoid(I,3,K) == 0. .OR. ZObj(I,3,K)==0.) ZAtten(I,3,K) = 0. 
    ZAtten(I,4,K) = -LOG(ZObj(I,4,K)*ZNPSV/ZVoid(I,4,K)/ZNPSO) 
    IF(ZVoid(I,4,K) == 0. .OR. ZObj(I,4,K)==0.) ZAtten(I,4,K) = 0. 
    ZAtten(I,5,K) = -LOG(ZObj(I,5,K)*ZNPSV/ZVoid(I,5,K)/ZNPSO) 
    IF(ZVoid(I,5,K) == 0. .OR. ZObj(I,5,K)==0.) ZAtten(I,5,K) = 0. 
    ZObj(NumDets+1,5,NumSS) = ZObj(NumDets+1,5,NumSS) + ZObj(I,5,K) 
  END DO ! I Loop 
END DO ! K Loop 
 
 
OPEN(UNIT=99, FILE="Obj.iter", STATUS="REPLACE", ACTION="WRITE") 
OPEN(UNIT=98, FILE="Atten.iter", STATUS="REPLACE", ACTION="WRITE") 
 
WRITE(99,'(A13)', ADVANCE="NO") "             " 
WRITE(98,'(A13)', ADVANCE="NO") "             " 
DO I = 1, NumDets 

285 



 

  DO K = 1, NumSS 
    WRITE(99,'(F13.6)', ADVANCE="NO") ZObj(I,1,K) 
    WRITE(98,'(F13.6)', ADVANCE="NO") ZAtten(I,1,K) 
  END DO ! K Loop 
END DO ! I Loop 
WRITE(99,*) 
WRITE(98,*) 
 
WRITE (99, '(A13)', ADVANCE="NO") "Iteration   0" 
WRITE (98, '(A13)', ADVANCE="NO") "Iteration   0" 
DO I = 1, NumDets 
  DO K = 1, NumSS 
    WRITE(99,'(ES13.6)', ADVANCE="NO") ZObj(I,5,K) 
    WRITE(98,'(ES13.6)', ADVANCE="NO") ZAtten(I,5,K) 
  END DO ! K Loop 
END DO ! I Loop 
WRITE(99,*) 
WRITE(98,*) 
 
 
! Maximum of 100 iterations, although convergence will probably come much 
faster. 
DO L = 1, 100 
 
! After each 100 iterations, decrease convergence criteria by a factor of 10. 
! IF(MOD(L,100) == 0) Epsilon = 10. * Epsilon 
 
  ! Clear the PScF array at the beginning of each iteration. 
  ZPScF = 0. 
 
  DO K = 1, NumSS 
   DO I = 1, NumDets 
 
    ! Clear the last column of the ISF array so that it can hold the total  
    ! Inter-array scattering into that detector. 
    ISF(I,NumDets+1,K) = 0. 
     
    DO J = 1, NumDets 
 
     ! Get the PScF Values using the PScFGEs 
     CALL PScFGE(ZObj(J,1,K), ZObj(I,1,K), ZPScF(I,J,K), ZMat, ZObjDet, & 
     & ZAtten(J,5,K), L) 
 
     ! Convert the PScF value to counts and sum the total scattered  
     ! counts into each detector 
     ZPScF(I,J,K) = ZPScF(I,J,K) * ZVoid(J,5,K) * ZNPSO / ZNPSV 
     ZPScF(I,NumDets+1,K) = ZPScF(I,NumDets+1,K) + ZPScF(I,J,K) 
 
     ! ISF counts are summed across contributing detectors.  Each value is 
weighted 
     ! by the attenuation value from the previous iteration. 
     ZISF(I,NumDets+1,K) = ZISF(I,NumDets+1,K) + EXP(-
ZAtten(J,5,K))*ZISF(I,J,K) 
      
 
    END DO ! J Loop 
   END DO ! I Loop 
  END DO ! K Loop 
 
  DO K = 1, NumSS 
   DO I = 1, NumDets 
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    ! Find Icorr by subtracting the ISF and PScF 
    ZObj(I,6,K) = ZObj(I,4,K) - ZISF(I,NumDets+1,K) - ZPScF(I,NumDets+1,K) 
    IF(ZObj(I,6,K) <= 0.) ZObj(I,6,K) = 0. 
 
    ! This IF statement is used to force convergence by averaging the results 
    ! of each iteration past the 10th.  This is useful for getting measurements 
    ! with poor statistics to converge.  Otherwise, there is a tendancy to 
    ! oscillate between two values. 
    IF (L > 10) THEN 
     ZObj(I,6,K) = (ZObj(I,6,K) + REAL(L-10)*ZObj(I,5,K))/REAL(L-9) 
    END IF 
 
 
    ! Now calculate the new attenuation. 
    IF(ZObj(I,6,K) == 0. .OR. ZVoid(I,5,K) == 0.) THEN 
     ZAtten(I,6,K) = 0. 
    ELSE 
     ZAtten(I,6,K) = -LOG(ZObj(I,6,K)*ZNPSV/ZVoid(I,5,K)/ZNPSO) 
    END IF 
    IF(ZAtten(I,6,K) < 0.) ZAtten(I,6,K) = 0. 
 
    ! This value is the total object counts for the entire measurement.  It is 
used 
    ! for checking convergence. 
    ZObj(NumDets+1,6,NumSS) = ZObj(NumDets+1,6,NumSS) + ZObj(I,6,K) 
   END DO ! I Loop 
  END DO ! K Loop 
 
  ! Writes the corrected value for this iteration to a file. 
  WRITE (99, '(A9,I4)', ADVANCE="NO") "Iteration", L 
  WRITE (98, '(A9,I4)', ADVANCE="NO") "Iteration", L 
  DO I = 1, NumDets 
   DO K = 1, NumSS 
    WRITE(99,'(ES13.6)', ADVANCE="NO") ZObj(I,6,K) 
    WRITE(98,'(ES13.6)', ADVANCE="NO") ZAtten(I,6,K) 
   END DO ! K Loop 
  END DO ! I Loop 
  WRITE(99,*) 
  WRITE(98,*) 
 
 
  IF (L >= 5) THEN 
   ! Now check for convergence. 
   ConvCheck = ABS((ZObj(NumDets+1,6,NumSS)-ZObj(NumDets+1,5,NumSS)) / & 
  & ZObj(NumDets+1,5,NumSS)) 
  ELSE 
   ConvCheck = 1. 
  END IF 
 
  IF(ConvCheck < Epsilon) THEN 
 
   ! Get rid of the convergence testing values because they're not need any 
more. 
   ZObj(NumDets+1,5,NumSS) = 0. 
   ZObj(NumDets+1,6,NumSS) = 0. 
   DO K = 1, NumSS 
    DO I = 1, NumDets 
 
     ! Column 5 now becomes the corrected I values. 
     ZObj(I,5,K) = ZObj(I,6,K) 
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     ZAtten(I,5,K) = ZAtten(I,6,K) 
 
     ! Column 6 will become the fractional error of the corrected values. 
     IF (ZObj(I,5,K) == 0.) THEN 
      ZObj(I,6,K) = 0. 
      ZAtten(I,6,K) = 0. 
     ELSE 
      ZObj(I,6,K) = (ZObj(I,5,K)-ZObj(I,3,K))/ZObj(I,5,K) 
      ZAtten(I,6,K) = (ZAtten(I,5,K)-ZAtten(I,3,K))/ZAtten(I,5,K) 
     END IF 
 
     ! This cell will hold the average fractional error for the entire 
     ! void run. 
     ZAtten(NumDets+1,6,NumSS) = ZAtten(NumDets+1,6,NumSS) + ZAtten(I,6,K) 
    END DO 
   END DO 
 
   ! Divide by total number of dets. to find average frac. error. 
   ZObj(NumDets+1,6,NumSS) = ZObj(NumDets+1,6,NumSS) / REAL(NumDets*NumSS) 
 
   WRITE (99, '(A13)', ADVANCE="NO") "Direct       " 
   WRITE (98, '(A13)', ADVANCE="NO") "Direct       " 
   DO I = 1, NumDets 
    DO K = 1, NumSS 
      WRITE(99,'(ES13.6)', ADVANCE="NO") ZObj(I,3,K) 
      WRITE(98,'(ES13.6)', ADVANCE="NO") ZAtten(I,3,K) 
    END DO ! K Loop 
   END DO ! I Loop 
   WRITE(99,*) 
   WRITE(98,*) 
 
    
   EXIT 
 
  ! If not converged, the values from column 6 (present iteration) are copied 
  ! into column 5 (old iteration) and column 6 is set to 0 for the next loop. 
  ELSE 
   DO K = 1, NumSS 
    DO I = 1, NumDets+1 
     ZObj(I,5,K) = ZObj(I,6,K) 
     ZAtten(I,5,K) = ZAtten(I,6,K) 
     ZObj(I,6,K) = 0. 
    END DO 
   END DO 
 
  WRITE(*, '(I6, 2ES16.6)') L, ZObj(NumDets+1,5,NumSS), ConvCheck 
     
  END IF 
 
END DO ! L Loop 
 
CLOSE(UNIT=98) 
CLOSE(UNIT=99) 
 
END SUBROUTINE FindAttenuation 
 
!--------------------------------------------------------------------------- 
! Subroutine PScFGE - This subroutine returns the appropriate PScF value for 
! a given combination of material, Obj to Det distance, and detector angles. 
!--------------------------------------------------------------------------- 
SUBROUTINE PScFGE(ThetaFrom, ThetaTo, PScFVal, MatNo, ODD, Tau, ZIter) 
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REAL(KIND=4), INTENT(IN) :: ThetaFrom, ThetaTo, ODD, Tau 
REAL(KIND=4), INTENT(OUT) :: PScFVal 
INTEGER(KIND=4), INTENT(IN) :: MatNo, ZIter 
REAL(KIND=4) :: AngleDiff, PScFMax, PScFSD, Factor 
REAL(KIND=4) :: a0, a1, a2, a3, a4, a5, a6, a7 
REAL(KIND=4) :: b0, b1, b2, b3, b4, b5, Beta 
 
AngleDiff = ThetaFrom - ThetaTo 
 
IF (ZIter < 5) THEN 
 Factor = REAL(ZIter)/5. 
ELSEIF (ZIter < 8) THEN 
 Factor = 0.80 + 0.05*(REAL(ZIter-4)) 
END IF 
 
Beta = LOG(Tau) - Tau 
 
IF (MatNo == 1) THEN 
 
IF(ZIter >= 8) Factor = 0.95 
 
a0 = -2.015225E+00 
a1 = -7.679420E-02 
a2 = 5.112759E-04 
a3 = -1.711049E-06 
a4 = 1.288199E+00 
a5 = 2.053442E-02 
a6 = -2.418549E-03 
a7 = 0.000000E+00 
 
b0 = 3.954940E+00 
b1 = 4.910408E-02 
b2 = 1.018272E-03 
b3 = 3.312332E-01 
b4 = 1.360807E-02 
b5 = 7.200204E-03 
 
ELSEIF(MatNo == 2) THEN 
 
IF(ZIter >= 8) Factor = 0.95 
 
a0 = -2.028606E+00 
a1 = -7.184288E-02 
a2 = 4.461472E-04 
a3 = -1.348499E-06 
a4 = 1.131994E+00 
a5 = 1.638951E-02 
a6 = -1.976645E-03 
a7 = 0.000000E+00 
 
b0 = 2.199167E+00 
b1 = 1.227376E-01 
b2 = 4.967885E-04 
b3 = 6.212162E-01 
b4 = 3.649710E-02 
b5 = 4.528034E-03 
 
ELSEIF(MatNo == 3) THEN 
 
IF(ZIter >= 8) Factor = 0.97 
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a0 = -1.582257E+00 
a1 = -8.241122E-02 
a2 = 6.540168E-04 
a3 = -2.353720E-06 
a4 = 1.037106E+00 
a5 = 8.299626E-03 
a6 = -2.858238E-03 
a7 = 1.541697E-05 
 
b0 = 1.120331E+00 
b1 = 1.216453E-01 
b2 = 0.000000E+00 
b3 = 5.337523E-01 
b4 = 1.092541E-02 
b5 = 3.126423E-03 
 
ELSEIF(MatNo == 4) THEN 
 
IF(ZIter >= 8) Factor = 1.05 
 
a0 = -1.128685E+00 
a1 = -6.752032E-02 
a2 = 4.280224E-04 
a3 = -1.315156E-06 
a4 = 1.214529E+00 
a5 = 2.257471E-02 
a6 = -2.402139E-03 
a7 = 0.000000E+00 
 
b0 = -5.296592E-01 
b1 = 1.124436E-01 
b2 = -2.060663E-04 
b3 = 6.195354E-01 
b4 = 4.911718E-02 
b5 = 0.000000E+00 
 
ELSEIF(MatNo == 5) THEN 
 
IF(ZIter >= 8) Factor = 1.00 
 
a0 = -2.112510E+00 
a1 = -4.644079E-02 
a2 = 1.537551E-04 
a3 = 0.000000E+00 
a4 = 9.314129E-01 
a5 = 0.000000E+00 
a6 = 0.000000E+00 
a7 = 0.000000E+00 
 
b0 = -1.590860E-01 
b1 = 1.125601E-01 
b2 = 0.000000E+00 
b3 = 9.099116E-01 
b4 = 0.000000E+00 
b5 = 0.000000E+00 
 
ELSEIF(MatNo == 6) THEN 
 
IF(ZIter >= 8) Factor = 1.00 
 
a0 = -1.647906E+00 
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a1 = -7.204015E-02 
a2 = 3.299292E-04 
a3 = 0.000000E+00 
a4 = 1.077152E+00 
a5 = 0.000000E+00 
a6 = -3.809334E-03 
a7 = 0.000000E+00 
 
b0 = 1.889415E+00 
b1 = 1.123858E-01 
b2 = 0.000000E+00 
b3 = 7.124436E-01 
b4 = 0.000000E+00 
b5 = 0.000000E+00 
 
END IF 
 
 
IF(Tau < 0.1) THEN 
  PScFMax = 0. 
  PScFSD = 1.0 
ELSE 
  PScFMax = EXP(a0 + a1*ODD + a2*ODD**2 + a3*ODD**3 + a4*Beta + a5*Beta**2 + & 
  & a6*Beta*ODD + a7*Beta*ODD**2) 
  PScFSD = b0 + b1*ODD + b2*ODD**2 + b3*Tau + b4*Tau**2 + b5*Tau*ODD 
END IF 
 
! PRINT *, PScFMax, PScFSD 
 
PScFVal = Factor * PScFMax * EXP(-AngleDiff**2 / (2.*PScFSD**2)) 
 
END SUBROUTINE PScFGE 
 
!--------------------------------------------------------------------------- 
! Subroutine FindUncertainty - This subroutine calculates the uncertainty 
! in the total, direct, No XTalk, and Corrected attenuation values. 
!--------------------------------------------------------------------------- 
SUBROUTINE FindUncertainty(ZVoid, ZObj, ZUnc) 
REAL(KIND=4), INTENT(IN) :: ZVoid(NumDets+1,6,NumSS), ZObj(NumDets+1,6,NumSS) 
REAL(KIND=4), INTENT(INOUT) :: ZUnc(NumDets,5,NumSS) 
 
DO I = 1, NumDets 
  DO K = 1, NumSS 
    ZUnc(I,1,K) = ZObj(I,1,K) 
    DO J = 2, 5 
     IF(ZObj(I,J,K) <= 0. .OR. ZVoid(I,J,K) <= 0.) THEN 
      ZUnc(I,J,K) = 0. 
     ELSE 
      ZUnc(I,J,K) = SQRT(1./ZObj(I,J,K) + 1./ZVoid(I,J,K)) 
     END IF 
    END DO 
  END DO 
END DO 
 
END SUBROUTINE FindUncertainty 
 
!--------------------------------------------------------------------------- 
! Subroutine FindScattering - This subroutine calculates the fraction of 
! scattering in the total, direct, No XTalk, and Corrected object correlation 
! values.  Obviously, direct will be 0, but it's easier to just include it. 
!--------------------------------------------------------------------------- 
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SUBROUTINE FindScattering(ZObj, ZScat) 
REAL(KIND=4), INTENT(IN) :: ZObj(NumDets+1,6,NumSS) 
REAL(KIND=4), INTENT(INOUT) :: ZScat(NumDets,5,NumSS) 
 
DO I = 1, NumDets 
  DO K = 1, NumSS 
    ZScat(I,1,K) = ZObj(I,1,K) 
    DO J = 2, 5 
     IF(ZObj(I,J,K) <= 0.) THEN 
      ZScat(I,J,K) = 0. 
     ELSE 
      ZScat(I,J,K) = (ZObj(I,J,K)-ZObj(I,3,K)) / ZObj(I,J,K) 
     END IF 
    END DO 
  END DO 
END DO 
 
END SUBROUTINE FindScattering 
 
!--------------------------------------------------------------------------- 
! Subroutine FindScattering - This subroutine calculates the fraction of 
! scattering in the total, direct, No XTalk, and Corrected object correlation 
! values.  Obviously, direct will be 0, but it's easier to just include it. 
!--------------------------------------------------------------------------- 
SUBROUTINE FindChiSq(ZAtten, ZUnc, ZChi) 
REAL(KIND=4), INTENT(IN) :: ZAtten(NumDets+1,6,NumSS), ZUnc(NumDets,5,NumSS) 
REAL(KIND=4), INTENT(INOUT) :: ZChi(3) 
 
ZChi = 0. 
 
DO I = 1, NumDets 
  DO K = 1, NumSS 
   IF(ZUnc(I,3,K) == 0.) CYCLE 
   ZChi(1) = ZChi(1) + ((ZAtten(I,2,K) - ZAtten(I,3,K))/ZUnc(I,3,K))**2 
   ZChi(2) = ZChi(2) + ((ZAtten(I,4,K) - ZAtten(I,3,K))/ZUnc(I,3,K))**2 
   ZChi(3) = ZChi(3) + ((ZAtten(I,5,K) - ZAtten(I,3,K))/ZUnc(I,3,K))**2 
  END DO 
END DO 
 
END SUBROUTINE FindChiSq 
 
END PROGRAM ScatterSubtract 

 



 

Appendix I – Simulation Testing and Results 

The attenuation curves for a scenario consisting of 2 and 4 MFP of lead titled 

L2L4 are shown in Figure I-1.   

The attenuation curves for the Carb61, Iron76, and Lead32 scenarios using the 

material 6 PScFGE coefficients are shown in Figure I-2, Figure I-3, and Figure I-4.  The 

use of the averaged values results in an overcorrection for carbon and iron scenarios and 

an undercorrection for lead.  As with the material 5 results, there is a significant 

divergence from the Direct values, but the corrected values are still considerably closer 

than the uncorrected ones.  The shape of the attenuation curve is generally improved; 

however, there is some significant deviation from horizontal, particularly in the Lead32 

scenario. 
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Figure I-1. The attenuation curves for the L2L4 scenario. 
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Figure I-2. The attenuation curves for the Carb61 scenario.  The PSRA used material 6 
(average of carbon, iron, and lead) PScF values to correct the scatter. 
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Figure I-3. The attenuation curves for the Iron76 scenario.  The PSRA used material 6 
(average of carbon, iron, and lead) PScF values to correct the scatter. 
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Figure I-4. The attenuation curves for the Lead32 scenario.  The PSRA used material 6 
(average of carbon, iron, and lead) PScF values to correct the scatter. 
 

The attenuation curves resulting from the use of the material 6 coefficients to 

correct the C2C4 and L2L4 (two different thicknesses of carbon and lead, respectively) 

scenarios are presented in Figure I-5 and Figure I-6.  As before, the scenario with carbon 

is overcorrected and the scenario with lead is undercorrected.  Here, the scatter correction 

does a fairly poor job correcting the attenuation values, and the shape of the corrected 

curves differ significantly from the Direct curves, particularly in the higher attenuation 

areas.  Overall, the corrected values are only marginally better than the uncorrected ones 

particularly for carbon. 

The attenuation curves resulting from the use of lead and polyethylene PScF 

values, respectively, to correct the PoPb scenario are shown in Figure I-7 and Figure I-8.  

This scenario has 2 MFP of polyethylene on the inside 2 MFP of lead on the outside.   
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Figure I-5. The attenuation curves for the C2C4 scenario.  The PSRA used material 6 
(average of carbon, iron, and lead) PScF values to correct the scatter. 
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Figure I-6. The attenuation curves for the L2L4 scenario.  The PSRA used material 6 
(average of carbon, iron, and lead) PScF values to correct the scatter. 
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Figure I-7. The attenuation curves for the PoPb scenario.  The PSRA used lead PScF values 
to correct the scatter. 
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Figure I-8. The attenuation curves for the PoPb scenario.  The PSRA used polyethylene 
PScF values to correct the scatter. 
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As with the previous scenario, the use of a single material in the PSRA produces poor 

results when removing the scatter from the attenuation values. 

The next scenario simulated consisted of a 2 MFP thick layer of polyethylene 

sandwiched between two 1 MFP layers of lead.  This scenario was given the designation 

LPoL.  It was designed to test if the scattering in either the outer layers or the interior of 

the object dominates the other.  The attenuation curves resulting from using lead and 

polyethylene coefficients, respectively, when applying the PSRA are plotted in Figure I-9 

and Figure I-10.  As with the previous two scenarios, the correction produces poor results 

using both materials.  This indicates that scatter all through the object contributes 

significantly to the PScF and not just a single region. 

Another series of scenarios was used to test the effect of varying the relative amount of 

the two materials on the scatter correction.  The thicknesses of each material were 1, 2, or 

3 MFP while the total thickness of 4 MFP of material was kept constant.   The scenario 

designations indicate the thickness of each material, e.g., L1P3 has 1 MFP of lead inside 

3 MFP of polyethylene.  The L2P2 scenario is identical to the PbPo scenario.  It was 

renamed here for clarity.    

The attenuation curves resulting from using the lead and polyethylene 

coefficients, respectively, are shown in Figure I-11 and Figure I-12.  Note that although 

the Direct and uncorrected (No XTalk) values differ slightly between scenarios, only the 

values for the L2P2 scenario are shown for clarity.  These figures show that the corrected 

attenuation values improve as the fraction of the material used for the scatter correction 

increases.  However, even when the selected material comprises 75% of the object 

thickness, the result is rather poor. 
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Figure I-9. The attenuation curves for the LPoL scenario.  The PSRA used lead PScF values 
to correct the scatter. 
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Figure I-10. The attenuation curves for the LPoL scenario.  The PSRA used polyethylene 
PScF values to correct the scatter. 
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Figure I-11. Attenuation curves for the L1P3, L2P2, and L3P1 scenarios.  The PSRA used 
lead PScF values to correct the scatter for each scenario.  Note that the Direct and 
uncorrected (No XTalk) values differ slightly between scenarios, but only the L2P2 values 
are shown for clarity. 
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Figure I-12. Attenuation curves for the L1P3, L2P2, and L3P1 scenarios.  The PSRA used 
polyethylene PScF values to correct the scatter for each scenario.  Note that the Direct and 
uncorrected (No XTalk) values differ slightly between scenarios, but only the L2P2 values 
are shown for clarity. 
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 These two scenarios used a simple slab geometry.  Each slab had a perpendicular 

thickness of 3 MFP and horizontal and vertical dimensions of 1 m.  The slabs were 

located 50 cm from the center of the detector array.  At this distance, the edges of the 

slabs extend well outside the horizontal extent of the neutron pixels.  In the first scenario, 

designated CaSl, the slab is composed of carbon and in the second, LeSl, the slab is 

composed of lead.  The attenuation curves for the CaSl and LeSl scenarios are plotted in 

Figure I-13 and Figure I-14.  Note that, unlike the cylindrically symmetric geometry, the 

slab geometry produces a concave attenuation curve even after the scatter is removed.  

There is a very slight undercorrection at the center of the CaSl corrected attenuation 

curve, but otherwise the modified ScatterSubtract program does a very good job of 

removing the scatter. 

The next scenario uses slabs of two different thicknesses joined vertically along the plane 

connecting the source location and the horizontal center of the detector array.  The two 

slabs have perpendicular thicknesses of 1 and 3 MFP of lead.  The scenario is titled L13S.  

The resulting attenuation curves L13S scenario are shown in Figure I-15.  The corrected 

attenuation curves follow the Direct attenuation curves very well and only small 

deviations are visible.  The scatter correction also increases the contrast between the two 

slabs. 

The next scenario simulated a homogeneous polyethylene cylinder with a radius 
of 18.24 cm, which is approximately 2 MFP of material.  The cylinder is placed so that 
the minimum distance between its outer surface and the detector array is 40 cm.  
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Figure I-13. The attenuation curves for the CaSl scenario. 
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Figure I-14. The attenuation curves for the LeSl scenario. 
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Figure I-15. The attenuation curves for the L13S scenario. 
 

This distance was chosen so that the cylinder would cover the majority of the horizontal 

extent of the DT neutron cones, but not the regions beyond approximately ±24° where the 

correlation statistics are very poor.  The attenuation curves for this scenario, which has 

been designated PoCy, are shown in Figure I-16.  The scatter correction does an excellent 

job removing the scatter from the PoCy values.  There is a very slight undercorrection 

near the center of the cylinder, but otherwise the corrected attenuation curve matches the 

Direct values very well. 

The next scenario tested was a homogenous iron cylinder with a radius of 9.19 cm 

designated FeCy.  As with the PoCy scenario, the radius of the iron cylinder is equivalent 

to approximately 2 MFP of material.   
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Figure I-16. The attenuation curves for the PoCy scenario. 
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The outside surface of the cylinder is located 70 cm from the center of the detector array 

in order to cover the majority of the horizontal extent of the DT neutron pixels.  The 

attenuation curves for the FeCy scenario are plotted in Figure I-17.  As with the 

polyethylene cylinder, the PSRA does an excellent job of removing the scatter from the 

measured values.  There is a slight overcorrection at the center of the attenuation curve, 

but other than that the corrected values line up with the Direct attenuation curve very 

well.  
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Figure I-17. The attenuation curves for the FeCy scenario. 
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