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Abstract

This dissertation focuses on the study of nonparametric quickest detection and its de-

centralized implementation in a distributed environment. Quickest detection schemes are

geared toward detecting a change in the state of a data stream or a real-time process.

Classical quickest detection schemes invariably assume knowledge of the pre-change and

post-change distributions that may not be available in many applications.

A distribution free nonparametric quickest detection procedure is presented based on

a novel distance measure, referred to as the Q-Q distance calculated from the Quantile-

Quantile plot. Theoretical analysis of the distance measure and detection procedure is

presented to justify the proposed algorithm and provide performance guarantees. The

Q-Q distance based detection procedure presents comparable performance compared to

classical parametric detection procedure and better performance than other nonparametric

procedures. The proposed procedure is most effective when detecting small changes.

As the technology advances, distributed sensing and detection become feasible. Existing

decentralized detection approaches are largely parametric. The decentralized realization of

Q-Q distance based nonparametric quickest detection scheme is further studied, where data

streams are simultaneously collected from multiple channels located distributively to jointly

reach a detection decision. Two implementation schemes, binary quickest detection and

local decision fusion, are described. Experimental results show that the proposed method

has a comparable performance to the benchmark parametric cumulative sum (CUSUM) test

in binary detection. Finally the dissertation concludes with a summary of the contributions

to the state of the art.
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Chapter 1

Introduction

1.1 Quickest Detection

Quickest detection refers to real-time version of abrupt change detection. Figure 1.1 and

1.2 show two examples of the “change” we are discussing. In Figure 1.1 the change occurs

on the mean value but the variance is unchanged. In Figure 1.2 the variance varies while

the mean keeps the same. The goal of quickest detection is to detect the changes as soon

as possible after they occur while keeping the false alarm rate below a given level. The

research of abrupt change detection dates back to 1930s when Shewhart [Shewhart, 1931]

first introduced this idea in manufacturing and business process quality control. It has

attracted attention in a wide variety of fields recently including applications in network

security, recognition-oriented signal processing, econometrics, environment modeling, fi-

nance, image analysis, medical diagnosis, fraud detection, counter-terrorism, and so on.

This research assumes that the properties or parameters describing the data are normally

constant or slowly time-varying in responding parametric models but these properties or

parameters are subject to abrupt changes at some unknown time instants. Since most of

the adaptive estimation algorithms are unable to catch the fast changes [Basseville and

Nikiforov, 1993], investigations of finding effective detect procedures to follow the abrupt

changes gets increasing attention.

The original formulation of the change detection problem is a single channel formulation,

in which there is a sequence of independent and identical distributed (i.i.d) observations.
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Figure 1.1: Change in mean value
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Figure 1.2: Change in variance
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The distribution of the sequence changes at some unknown point in time and the pre-change

and post-change distributions are assumed known.

On one hand, among those applications some only deal with off-line analysis to detect

changes in statistical behavior during a predefined frame of time or space; on the other,

many applications require on-line (i.e. real time) detection of such changes in a way that

minimizes the delay between the time change occurs and the time it is detected. This

on-line detection problem is known as the Quickest Detection problem. In other words,

quickest detection is to detect changes happening at unknown points in time, as rapidly as

possible, while maintaining the false alarm rate (FAR) at a given level.

The formulation of the quickest detection problem is based on the assumption that

the pre-change and post-change probability distributions of the data are known and the

classical detection schemes invariably assume knowledge of the distributions. We call those

detection procedures parametric quickest detection. However, in a variety of applications

such as surveillance or intrusion detection systems, the assumption is hardly true. In

such situations, an alternative to the existing schemes must be found. As the opposite

of parametric detection, nonparametric quickest detection does not depend on the data

fitting any parametrized distributions.

In this dissertation, the observations dealt with by quickest detection are referred as

data stream instead of data. The reasons are: 1. the observation set is not a static dataset

and the underlying process (distribution) that generates the data stream is changing over

time; 2. the observations are not to be examined all at the same time but one by one

by the detection scheme, observations generated after current detecting time will have no

impact onto the detecting result.

1.2 Applications

In this section, we describe some intensively investigated applications where quickest de-

tection problems occur.
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1.2.1 Intrusion Detection

The idea of intrusion detection appeared in 1980 [Anderson, 1980] and an early abstract

intrusion detection model was proposed in 1987 by Denning [Denning, 1987]. As a coun-

termeasure of the vast number of security incidents that occur on a network, network

intrusion detection systems (NIDSs), have become an important component in the security

infrastructure. NIDSs detect suspicious activities that may compromise networks security

and alert the networks administrator to respond to the threat. Based on the techniques

used, NIDSs can be classified as either signature detection systems or anomaly detection

systems. Signature detection recognizes an intrusion based on known intrusions or attack

characteristics or signatures. It identifies intruders who are trying to break in with some

known techniques. The detection decision is made based on the knowledge of the model

intrusive processes and what traces the detector should find in the observed system. On

the other hand, anomaly detection, which is based on the assumption that something ab-

normal is most likely to be an intrusion, identifies an intrusion by calculating a deviation

from normal system behavior.

The main references for intrusion detection applications include [Cardenas et al., 2004],

[Chang, 2002], [Kim et al., 2004], [Tartakovsky et al., 2006b] and [Tartakovsky et al.,

2006a].

1.2.2 Econometrics

To monitor the current and predict the future states of economy or business processes, some

leading economic indicators are used as stochastic and time-varying structural parameters

to build interdependent econometric models. By detecting the turning point time of these

parameters, one can better understand the future behavior of the economy.

The main references for econometrics applications include [Andersson et al., 2004],

[Andersson et al., 2006], [Andreou and Ghyels, 2004], [Andrews et al., 1996], [Berkes

et al., 2004], and [Brännäs and Westlund, 1980].
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1.2.3 Quality Control

The first application change detection dealt with was quality control and it is still an active

field of quickest detection research. Quality control is crucial in preventing product failures

or catastrophic events. During the detection procedure, real-time decisions which tell the

current state (in control or out of control) of a process are made sequentially in order to

guarantee the products or services meet industrial or customer requirements.

The main references for quality control applications include [Girshick and Rubin, 1952],

[Lai, 1995], [Basseville and Nikiforov, 1993], and [Yashchin, 1997].

1.3 Motivation

Quickest detection has received increasing attention in recent years. While the parametric

approaches are quite successful in solving problems with known pre-change and post-change

distributions, from a practical point of view, it is most interesting if both the pre-change

and post-change distributions are unknown but it is also most challenging area in quickest

detection research. Existing nonparametric methods such as rank-based approach [Gordon

and Pollak, 1994] and score function based approach [Tartakovsky et al., 2006b] only work

well in some predefined environment. Furthermore, in a distributed detection environment,

there is virtually no working nonparametric detection procedures and it is unclear how this

problem can be addressed. We need to find an effective scheme as well as its decentralized

implementation which makes no assumption about the distributions and is capable of

detecting a change only based on the data it examines.

1.4 State of the Art

Generally speaking, the research on quickest detection can be divided into four categories,

i.e., Bayesian framework, non-Bayesian framework, nonparametric detection, and decen-

tralized detection. In this section, we identify the current research on this topic and

highlight issues exist.
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1.4.1 Bayesian Formulation

Although the change detection problem was first introduced in the 1930s and early research

by Page [Page, 1954,Page, 1955], and Girshick and Rubin [Girshick and Rubin, 1952] was

published in the 1950s, the first precise mathematical formulation on quickest detection,

i.e., the Bayesian formulation, in which the unknown change point is assumed to have a ge-

ometric prior distribution, was proposed by Kolmogorov and Shiryaev [Shiryaev, 1963] in

the early 1960s. By optimizing the two performance indices, the mean detection delay and

the probability of false alarm, Bayesian procedure decides the change point at the first up-

crossing of a properly chosen threshold by the posterior probability of the change based on

the past and current observations. Under the Bayesian framework, different cost functions

for the optimization problem were also proposed such as by Pelkowitz [Pelkowitz, 1987] and

Poor [Poor, 1998] and they are essentially equivalent to the Shiryaev problem [Karatzas,

2003]. The solution to Bayesian formulation can be obtained through the Shiryaev test

[Shiryaev, 1963,Shiryaev, 1978] and it is proven to be optimal. However, the drawbacks of

the Bayesian formulation are that its assumption of a prior on the change point is some-

times not true. For example, in intrusion detection systems, there is no statistical model

for the starting time of attacks.

1.4.2 Non-Bayesian Formulation

Lorden [Lorden, 1971] proposed the first non-Bayesian (i.e., Minimax) formulation of

quickest detection, in which the change point is assumed to be a non-random quantity

but no prior knowledge of the change point is known. Lorden’s formulation optimizes the

worst case delay conditioned on previous observations while keeping the constraint of a

given average mean time between false alarms. Lorden, Moustakides [Moustakides, 1986],

and Ritov [Ritov, 1990] showed that Page’s CUSUM algorithm [Page, 1954] provides the

optimal stopping time to the Lorden problem. Pollak [Pollak, 1985] proposed another

widely used formulation in which the worst case delay is conditioned on the stopping

time happens after the change time. It shares the same false alarm constraint as the

Lorden formulation. The Shiryaev-Roberts (SR) test [Roberts, 1966] is considered the

optimal solution for the Pollak problem. Although both the Bayesian and non-Bayesian

7



formulations offer excellent ways to handle the quickest detection problem, they fail to deal

with the situations where the distributions of pre-change and post-change are unknown or

implicit.

1.4.3 Nonparametric Detection

Nonparametric detection remains one of the most challenging topics in quickest detection.

The majority of published studies try to construct a sequence of statistics to replace the

statistics of the CUSUM or SR procedures. We have identified three papers that represent

the state of the art.

Gordon and Pollak [Gordon and Pollak, 1994] proposed a rank and sign based se-

quential likelihood ratio approach. They use a finite sequence of the likelihood ratio of

signs and ranks of absolute values, which is called nonparametric Shiryaev-Roberts statis-

tics (NPSR), to replace the likelihood ratios in a parametric SR procedure. Though its

detection statistic has an explicit form so the computation of such statistic is feasible, the

rank based method is not suitable for real-time applications because it has to estimate the

induced distributions of the pre-change and post-change of the signs and ranks of the ob-

servations at each time moment, which makes the distributions variant all the time. Also,

it requires symmetrical pre-change distribution which makes itself unavailable to many

applications.

Tartakovsky et al. [Tartakovsky et al., 2006b] offered an adaptive quickest detection.

They construct specified score functions for the changes they want to detect to replace the

log-likelihood ratios in CUSUM test. For example, if the mean value of a process is under

monitoring, the score function would include an estimated pre-change mean value and an

adaptively estimated future mean value. This method is efficient in some applications

such as detecting denial-of-service (DoS) attack in computer networks but it does not work

well for small changes. Furthermore, the performance largely depends on the estimated

parameters whose accuracies are hardly guaranteed.

Kifer et al. [Kifer et al., 2004] adopted the Vapnik-Chervonenkis theory to define an

A-distance which is used to measure the distance between two probability distributions

inferred from the pre-change and post-change observations. They statistically guarantee

8



the detection of real changes in high probabilities but they do not really apply this distance

measure into a quickest detection framework. Also, the A-distance has a loose bound

compared to the proposed Q-Q distance.

1.4.4 Decentralized Detection

Decentralized quickest detection problem draws increasing interest recently due to the fast

development of distributed systems. With the constraints on communication bandwidth

usage and power consumption, centralized schemes are no longer suitable for the detection

task in a distributed environment where a distributed L-sensor (monitoring channel) sys-

tem observes an L-component stochastic process. There are two main detecting scenarios

[Poor and Hadjiliadis, 2009], [Tartakovsky and Veeravalli, 2008] for decentralized quickest

detection. In the first scenario, each sensor sends a sequence of compressed or quantized

observations to a fusion center, where a detection procedure is carried out to determine the

true hypothesis. In the second scenario, detection procedure is performed at each sensor

and all local decisions are sent to the fusion center for integration.

Tenney and Sandell [Tenney and Sandell, 1981] are perhaps the first to introduce the

extensions from classical centralized framework to decentralized framework. They propose

a decentralized (binary) hypothesis test in the local channels and provide theoretic results

in decision fusion using an example of two Gaussian observations.

Veeravalli and Tartakovsky, among others [Veeravalli, 1999, Veeravalli, 2001], [Tar-

takovsky and Veeravalli, 2003,Tartakovsky and Kim, 2006,Tartakovsky and Polunchenko,

2008,Tartakovsky and Veeravalli, 2008] developed corresponding decentralized binary ver-

sions of classical Bayesian and minimax procedures. They also derive the optimal properties

of the quantizer and propose fusion rules. However, to date, no nonparametric binary de-

tection procedure has been successfully implemented. The binary scheme that we present

in the dissertation represents the first nonparametric binary quickest detection procedure.

There are also other formulations concerning the decentralized detection. For example,

Teneketzis and Varaiya [Teneketzis and Varaiya, 1984] formulated the detection of the

states of a Markov chain process and the decision fusion in a dynamic programming frame-

work. Raghavan and Veeravalli [Raghavan and Veeravalli, 2008] used a similar formulation

9



but assumed that each sensor’s observations may change at different points in time instead

of all at the same time.

1.5 Contributions

The algorithms we have developed extend the above state of the art. We have developed

an effective nonparametric quickest detection procedure that overcomes the drawbacks of

some existing nonparametric procedures. Our research contributions are listed as follows.

Distance Measure: The most significant contribution is the development of a novel

distance measure (Q-Q distance) for distributional change using the Quantile-Quantile

plot technique which compares the distributions inferred directly from data sets generated

from the distributions. To date, most nonparametric distance measures are derived from

estimated distributions and thus have errors embedded. The distance measure we defined

avoids the process of estimating distributions and comes from the data sets directly, which

is more suitable for the real world applications.

Nonparametric Detection: The second major contribution is the development of a

distribution free algorithm to perform quickest detection in data stream. With the new

defined distance measure replacing the likelihood ratio in the benchmark CUSUM proce-

dure, we present in this dissertation a novel nonparametric quickest detection procedure.

Our algorithm outperforms other popular nonparametric quickest detection procedures and

have comparable performance to the benchmark parametric CUSUM test.

Nonparametric Decentralized Detection: The third contribution is the develop-

ment of a binary nonparametric quickest detection scheme which sends binary version of

observations to the fusion center where the detection procedure is carried out. We also pro-

pose to perform quickest detection locally and send all local decisions to the fusion center

to aggregate the decisions. To the best of our knowledge, there has been no decentralized

nonparametric quickest detection procedures successfully implemented.

Performance Guarantee: The final distribution is the study of the optimality prop-

erty of our detection procedure. We show that our Q-Q distance converges to zero al-

most surely if the two distributions in question are actually identical, and we determine a

lower bound on the sample size using the Dvoretzky-Kiefer-Wolfowitz Inequality [Dvoret-
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zky et al., 1956].

1.6 Dissertation Organization

The remainder of this dissertation documents the details of our algorithms and the above

contributions. Chapter 2 reviews existing research work relevant to this dissertation, in-

cluding classical formulations, nonparametric quickest detection, and distributed quickest

detection. Then we describe our nonparametric detection algorithm for quickest detection

in Chapter 3. Chapter 4 gives theoretical analysis and mathematical guarantees for our

nonparametric detection algorithm. We present the decentralized quickest detection proce-

dures in Chapter 5. Chapter 6 shows all experiment results demonstrating the capabilities

of our algorithms. Finally, we conclude this dissertation with a summary of accomplished

and future work in Chapter 7.
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Chapter 2

Quickest Detection

2.1 Problem Description

Suppose there is a single channel data stream X(n), n ≥ 1, that is chosen for monitoring. At

an unknown point in time λ, (λ ≥ 1), a change happens and the distribution of the channel

is changed. All elements in the stream are assumed to be independent and identically

distributed (i.i.d) before and after the change.

Here we introduce the hypotheses H∞ : λ =∞ the change does not occur

Hk : λ = k the change occurs in a single channel at time λ = k
(2.1)

Let P∞ denote the probability measure when the change never happens (λ =∞), and

let Pλ denote the probability measure when the change happens at time λ. Correspondingly

E∞ and Eλ denote the expectations. Suppose the change happens at time k such that

λ = k and the observations {X(1),X(2), . . . ,X(k − 1)} follow a distribution F (0) with

a probability density function f (0), while the observations {X(k),X(k + 1), . . . } follow a

distribution F (1) with a probability density function f (1). The task is to locate the change

point as early as possible, while keeping the rate of false alarm under a given level. In the

quickest detection framework, the solutions of the quickest detection problem can be seen

as the results of optimizing the tradeoff between two performance criteria including the

detection delay, the time between a change occurs and it is detected, which measures the
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ability of the detection scheme to fire an alarm after a change actually happens; and the

probability of false alarm, which is related to the detection accuracy.

There are two major mathematical models, Gaussian and Minimax, for the change time

λ. Formulations based on these models will be introduced below.

2.2 Bayesian Formulation and Solution

In the Bayesian formulation, the change point λ is assumed to be a random variable with

a known probability distribution. Here we follow [Poor and Hadjiliadis, 2009]. Define the

sequence {πk} by

πk = P(λ ≤ k|FXk ), k = 0, 1, 2, . . . (2.2)

where FXk is the sigma-algebra generated by {X(1),X(2), . . . ,X(k)}. Also, define Pπ as

the average probability measure

Pπ(•) =
∞∑
k=0

Pk(•)πk (2.3)

and Eπ denotes the corresponding expectation.

It is a natural choice to adopt the expected delay, also called average detection delay

(ADD), as the performance measure of detection delay, which is:

ADDπ(τ) = Eπ(τ − λ+ 1)+ (2.4)

where τ is the stopping time and x+ = max{0, x}. Similarly, as a measure of false alarm

rate, the probability of false alarm (PFA) is adopted as:

PFAπ(τ) = Pπ(τ < λ) =
∞∑
k=0

Pk(τ < k)πk (2.5)

then the optimization problem can be formed as follow [Shiryaev, 1963]:

inf
τ∈T
{Pπ(τ < λ) + cEπ(τ − λ+ 1)+} (2.6)

where T denotes the set of all possible stopping times and c is a positive constant controlling
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the weight of the two performance measures.

For every stopping time τ , the following equality holds:

Pπ(τ < λ) = Eπ{1(τ<λ)} = Eπ(1− πτ ) (2.7)

and by [Poor and Hadjiliadis, 2009],

Eπ(τ − λ+ 1)+ = Eπ

(
τ∑

m=0

πm

)
(2.8)

then Eq. 2.6 can be rewritten as:

inf
τ∈T

Eπ

{
1− πτ + c

τ∑
m=0

πm

}
(2.9)

In [Shiryaev, 1963,Shiryaev, 1978], Shiryaev proved that given a prior distribution on

the change point λ geometric, that is

P(λ = k) =

 π if k = 0

(1− π)ρ(1− ρ)k−1 if k = 1, 2, . . .
(2.10)

and an appropriately chosen threshold π∗ ∈ [0, 1], the optimal solution to Eq. 2.9 is:

τopt = inf{k ≥ 0 | πk ≥ π∗} (2.11)

Based on the results above, we can see the optimal stopping time is the first time

when the sequence {πk} reaches a suitable threshold. There comes the Shiryaev detection

procedure. Let

pn = P(λ ≤ n|X(n)), n = 0, 1, 2, . . . (2.12)

be the posterior probability that in the i -th channel a change happens before time n. The

optimal detection procedure is

ν(A) = min{n ≥ 1 : pn ≥ A} (2.13)

where the threshold A should be chosen in such a way that PFAπ(ν) ≤ α, which is the
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prescribed false alarm rate, and setting A = 1− α guarantees the inequality. 1

2.3 Minimax Formulations and Solutions

In Bayesian quickest detection, the unknown change point is assumed to be a random

variable with a prior distribution. However, there are many applications in which the

assumption of a prior on the change point is hardly true. For example, in network intrusion

detection system, there is no pre-existing statistical model for the normal online behavior

and intrusions. An alternative for Bayesian method, the Minimax formulation was first

proposed by Lordon [Lorden, 1971]. In the Minimax formulation, the change point λ is

assumed to be a fixed but unknown non-random quantity that can be any value in the

positive integers.

Consider a measurable space (Ω,F) with sample space Ω and a σ-field F of events 2.

The stopping variable τ is considered for all possible stopping with respect to the observed

data stream. The event {τ = n}, which denotes the alarm triggered after observing

{X(1),X(2), . . . ,X(n)}, is determined by the smallest σ-field {Fn;n ≥ 0} generated by

{X(1),X(2), . . . ,X(n)}. Let Pλ, (λ = 1, 2, . . . ) be the distribution of the data stream

{X(1),X(2), . . . } under which X(λ) is the first term with distribution function F (1) and

Eλ be the expectation under Pλ.

In the Minimax formulation, instead of an average expected value, which requires a

distribution of the time of change, the worst case detection delay is adopted as a measure

of the detection lag, conditioned on the observations before the change time λ, which is:

WDD(τ) = sup
λ≥1

ess sup Eλ{(τ − λ+ 1)+|X(1), . . . ,X(λ− 1)} (2.14)

Note that WDDλ(τ) = ess sup Eλ{(τ − λ + 1)+|X(1), . . . ,X(λ − 1)} is the worst case

average delay under Pλ, 3 and the worst case is taken over all observations before time λ.
1In defining the detection procedure stopping time in Eq. 2.13, we use min instead of inf as in Eq. 2.11.

The difference is the minimum (maximum) of a set must be in the set while the infimum (supremum) does
not have to be in the set.

2In mathematics, a σ-algebra over a set X is a nonempty collection Σ of subsets of X (including X
itself) that is closed under complementation and countable unions of its members. The pair (X,Σ) is called
σ-field.

3In defining the worst case detection delay in Eq. 2.14, we use the essential supremum of the random
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Meanwhile, the probability of false alarm can be measured by the average run length

(ARL) to false alarm or the false alarm rate (FAR) :

ARL(τ) = E∞(τ) (2.15)

and

FAR = 1/ARL = 1/E∞(τ) (2.16)

so the objective function can be given by:

inf
τ∈T

WDD(τ) subject to ARL(τ) ≥ γ, (2.17)

where γ is a prescribed positive and finite constant. Lorden used Page’s CUSUM test [Page,

1954] to examine the solution to Eq. 2.17 but its optimality was not fully understood until

Moustakides [Moustakides, 1986] proved that for h ≥ 0, the CUSUM stopping time

τc(h) = min{n ≥ 1 | Sn ≥ h} (2.18)

where

Sn = max
1≤k≤n

Zk(n) (2.19)

is optimal for all finite γ and

Zk(n) =
n∑
j=k

ln
f (1)(X(j))
f (0)(X(j))

(2.20)

is the log-likelihood ratio (LLR) between the hypotheses H∞ and Hk.

Eq. 2.19 can be regarded as a maximum likelihood ratio of the unknown change point

and for computational purposes, Sn can be written in a recursive form

Sn =

(
Sn−1 + ln

f (1)(X(n))
f (0)(X(n))

)+

(2.21)

variable. The essential supremum of a random variable is related to the notion of supremun but often deals
with statements which are not valid everywhere. As defined in [Poor and Hadjiliadis, 2009], it is the least
upper bound of the set of constants that bound the random variable with probability one.
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with S0 = 0.

Another Minimax formulation was proposed by Pollak [Pollak, 1985]. In this formu-

lation, worst case average detection delay (WADD) conditioned on the stopping time τ

happens after the change time λ, is used as the measure of detection delay. That is

WADD(τ) = sup
1≤λ<∞

Eλ(τ − λ | τ ≥ λ) (2.22)

Both formulations have the same measure of FAR as Eq. 2.15 stated. so the objective

function is

inf
τ∈T

WADD(τ) subject to ARL(τ) ≥ γ, (2.23)

The Shiryaev-Roberts (SR) detection procedure is optimal with respect to the Minimax

expected detection delay, and the stopping time is given as

τsr(h) = min{n ≥ 1 | Rn ≥ h} (2.24)

where

Rn =
n∑

m=1

f (1)(X(m),X(m+ 1), . . . ,X(n))
f (0)(X(m),X(m+ 1), . . . ,X(n))

=
n∑

m=1

n∏
n=m

f (1)(X(n))
f (0)(X(n))

(2.25)

Or it can be written recursively as

Rn = (1 +Rn−1)
f (1)(X(n))
f (0)(X(n))

(2.26)

with with R0 = 0.

As we mentioned before, there are two performance indices: the detection delay and

the false alarm rate. Both indices are related to the choice of threshold in a detection

procedure.

Let

I =
∫

ln
f (1)(x)
f (0)(x)

f (1)(x)dx (2.27)

be the Kullback-Leibler divergence between the distributions f (1)(x) and f (0)(x). For both

Minimax formulations, the detection delays
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D(τ ch) ∼ h

I
and WADD(τ srh ) ∼ h

I
(2.28)

are linear to the threshold.

Choosing h = ln γ guarantees

FAR(τ ch) ≤ 1/γ and FAR(τ srh ) ≤ 1/γ (2.29)

See [Lorden, 1971], [Pollak, 1985], [Tartakovsky et al., 2006b] and [Tartakovsky and

Veeravalli, 2008].

2.4 Nonparametric Quickest Detection

From a practical point of view, it is most interesting if both the pre-change and post-change

distributions are unknown but it is also most challenging in quickest detection research.

In some applications the pre-change distribution can be estimated but is difficult to be

accurately expressed in an explicit form which makes it impossible to be applied to those

classical (parametric) detection procedures previously mentioned. To address this prob-

lem, distribution free methods have been proposed during the research on nonparametric

quickest detection procedures.

Gordon and Pollak [Gordon and Pollak, 1994] proposed a rank and sign based like-

lihood ratio sequential detection approach. Consider a sequence of independent samples

X(1), X(2), . . . , X(n), recall the Shiryaev-Roberts procedure, we rewrite Eq. 2.25 as

Rn =
n∑
i=1

f (1)(X(i), X(i+ 1), . . . , X(n))
f (0)(X(i), X(i+ 1), . . . , X(n))

(2.30)

Define

ρ(i, n) =
n∑
j=1

I{|Xj |≤|Xi|} and σi = I{X(i)>0} (2.31)

where I is the indicator function. ρ(i, n) denotes the rank of the absolute value of the i -th

observation among the first n samples and σi gives the sign of the i -th observation. Let

Y (i) = (ρ(i, n), σi) (2.32)
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so we get Y (1), Y (2), . . . , Y (n) as first n observations’ signs and ranks of absolute values.

By replacing the likelihood ratio using nonparametric likelihood ratio based on signs

and ranked absolute values, we can get the nonparametric analogs to the SR statistics

[Gordon and Pollak, 1994] by

Rn =
n∑
i=1

p(1)(Y (i), Y (i+ 1), . . . , Y (n))
p(0)(Y (i), Y (i+ 1), . . . , Y (n))

(2.33)

where p(0) and p(1) represent the pre-change and post-change distributions of the signs

and ranks of absolute values. By choosing appropriate parameters and using the result of

Savage [Savage, 1956], both p(1)(Y (i), Y (i+1), . . . , Y (n)) and p(0)(Y (i), Y (i+1), . . . , Y (n))

have explicit forms so Eq. 2.33 is well defined.

However, in online quickest detection applications, those observations to be ranked

might not be available at the time when the detection procedure is taken place so this

method only works well in an off-line environment because it requires a large number of

observations to be ranked.

Tartakovsky [Tartakovsky et al., 2006b] suggested replacing the log-likelihood ratio

with specified score function gi in a CUSUM test to monitor specified parameters such as

mean or variance of unknown distributions since the log-likelihood ratio in Eq. 2.19 cannot

be calculated. Score functions can be chosen in many ways depending on what we plan to

detect. For example, in the case of detecting changes in mean values, one could use the

score function below

gi,m = Xi(m)− µi − εθi (2.34)

where µi is the estimated pre-change mean, θi is the estimated post-change mean, ε ∈ (0, 1)

is the tuning parameter. And without loss of generality, we let µi < θi. Sometimes θi is

difficult to accurately estimate in an online environment, it is better to treat it as a positive

constant. That is, εθi = ci. Thus the equivalent recursive representation can be written as

Sgn =
(
Sgn−1 +Xi(n)− µi − ci

)+ (2.35)
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with S0 = 0. And the detection procedure is

τg(h) = min{n ≥ 1 | Sgn ≥ h} (2.36)

The performance indices, average detection delay and false alarm rate, can be approx-

imated as

ADD(τ ch) ∼ h

qi
and FAR(τ ch) ≤ C1e

−C2h (2.37)

where qi, C1 and C2 are constants. These constants are difficult to compute so the ADD

and FAR need to be evaluated experimentally.

This method is efficient in some applications including detecting intrusions such as

DoS attacks. However, it assumes the monitored parameters have detectable differences

between the pre- and post-change distributions which might not always be true. Also,

the performance degrades when the estimated parameters (θi in detecting mean or σi in

detecting variance) vary significantly during the process.

2.5 Decentralized Quickest Detection

Decentralized quickest detection problem draws increasing interest recently due to the fast

development of distributed systems. With the constraints on communication bandwidth

usage and power consumption, centralized schemes are no longer suitable for the detec-

tion task in a distributed environment where a distributed L-sensor (monitoring channel)

system observe a L-component stochastic process. There are two main detecting scenarios

[Poor and Hadjiliadis, 2009], [Tartakovsky and Veeravalli, 2008] for decentralized quickest

detection. In the first scenario, each sensor sends a sequence of compressed or quantized

observations to a fusion center, where a detection procedure is carried out to determine the

true hypothesis. In the second scenario, detection procedure is performed at each sensor

and all local decisions are sent to the fusion center for combining.

2.5.1 Decentralized Detection with Quantized Observations

There are a number of information structures for the decentralized configuration depending

on how feedback and sensed information is used at the sensors. In this section, we only con-
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sider the simplest information structure where only current observation Xi(n) is available

at time n. Since all observations by the i -th sensor are assumed i.i.d., it is natural to use

certain stationary quantizer φi, which does not depend on n to quantize the observations.

So we can write the quantization as

Bi(n) = φi(Xi(n)). (2.38)

Let p(j)
i denote the probability mass function induced on Bi(n) when the observation

Xi(n) is distributed as f (j)
i , j = 0, 1. With the induced probability mass functions, the

log-likelihood ratio between the hypotheses Hi,k and Hi,∞ is given by

Zqi (k, n) =
n∑
j=k

ln
p(1)(B(j))
p(0)(B(j))

, (2.39)

and the CUSUM and SR procedures can be executed. The quantized version of detection

statistics are given by

Sq(n) =

(
Sq(n− 1) +

L∑
i=1

ln
p
(1)
i (Bi(n))

p
(0)
i (Bi(n))

)+

(2.40)

with Sq(0) = 0, and

Rq(n) = [(1 +Rq(n− 1)] exp

{
L∑
i=1

p
(1)
i (Bi(n))

p
(0)
i (Bi(n))

}
(2.41)

with Rq(0) = 0.

The stopping times of the CUSUM and SR detection procedures at the fusion center

are, respectively, given by

τ qc = inf{n ≥ q | Sq(n) ≥ h} (2.42)

and

τ qsr = inf{n ≥ 1 | Rq(n) ≥ h} (2.43)

Let Iqi denote the K-L divergence between the induced p(1)
i and p(0)

i in the i -th sensor,
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and let Iqtot =
∑L

i=1 I
q
i be the total K-L divergence through all L sensors. It is asymptoti-

cally optimum (as γ →∞) for all sensors at time n if the quantization process maximizes

Iqtot and

ADD(τ qc ) ∼ ADD(τ qsr) ∼
log γ
Iqtot

, as γ →∞. (2.44)

2.5.2 Decentralized Detection with Local Decisions

In this section, we introduce several detection schemes that perform local detection in the

sensors and transmit only the binary local decisions to the fusion center for the global

decision.

We follow Veeravalli and Tartakovsky and others [Veeravalli, 1999, Veeravalli, 2001],

[Tartakovsky and Veeravalli, 2003,Tartakovsky and Kim, 2006,Tartakovsky and Polunchenko,

2008,Tartakovsky and Veeravalli, 2008].

2.5.2.1 Minimax Setting

In the Minimax setting, we can use CUSUM (or SR) tests at the sensors. Recall CUSUM

statistic in the i -th sensor

Si(n) =

(
Si(n− 1) + ln

f
(1)
i (Xi(n))

f
(0)
i (Xi(n))

)+

(2.45)

with Si(0) = 0. And let the binary decisions

Ui(n) =

 1 Si(n) ≥ ωih

0 otherwise
(2.46)

where ωi is the weight and h is the threshold. The local stopping time in the i -th sensor is

τi(h) = inf{n ≥ 1 | Si(n) ≥ ωih} (2.47)

There are three popular fusion rules. The first fusion rule is defined as

τall(h) = min{n ≥ 1 | min
1≤i≤N

(Si(n)/ωi) ≥ h} (2.48)

In this fusion scheme, binary local decisions are sent to the center and the global decision

22



in favor of the hypothesis of change is reached at the first time when Ui(n) = 1 for all

sensors. Mei [Mei, 2005] shows that τall is globally asymptotically optimal if h = ln γ and

γ →∞.

The second fusion rule is defined as

τmax = max
1≤i≤N

τi (2.49)

which means the global decision in favor of the hypothesis of change is reached after all

local decisions support the hypothesis of change.

The third fusion rule is defined as

τmin = min
1≤i≤N

τi (2.50)

which means the global decision of change is declared at the first time any local decision

is in favor of the change.

2.5.2.2 Bayesian Setting

In the Bayesian setting, we consider the SR statistic in the i -th sensor

Ri(n) = [(1 +Ri(n− 1)] exp

{
f

(1)
i (Xi(n))

f
(0)
i (Xi(n))

}
(2.51)

with Ri(0) = 0. And the local stopping time in the i -th sensor is

τ̂i(h) = inf{n ≥ 1 | Ri(n) ≥ ωih}. (2.52)

Similarly, we can define three fusion procedures as in the Minimax setting, τ̂all, τ̂max,

and τ̂min. Unlike in the Minimax setting where only τall has the first order asymptotic per-

formance, in the Bayesian setting τ̂all and τ̂max are both globally asymptotically optimum

[Tartakovsky and Veeravalli, 2008].
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Chapter 3

Nonparametric Quickest Detection

In this chapter, a nonparametric method based on Quantile-Quantile (Q-Q) plot is pro-

posed here. This method requires no prior assumptions on the nature of the underlying

distributions that generate the data stream except for keeping the i.i.d. assumption. In our

nonparametric approach, we are not interested in what the real underlying distributions

are but how big the difference is between the distributions.

3.1 Quantile-Quantile Plot

The Quantile-Quantile plot, or Q-Q plot, is a technique for comparing the distributions

inferred directly from two data sets generated from two distributions. It draws the quantiles

of the first data set against the quantiles of the second data set. For any probability

distribution function F , the associated quantile function Q is essentially the inverse of

F [Gilchrist, 2000], which is defined as

Q(t) = F−1(t) = inf{x : F (x) ≥ t}, 0 < t < 1. (3.1)

Suppose x and y are two batches of observations which do not need to have the same

size. As shown in Figure 3.1, there are two cumulative distribution functions CDFx and

CDFy. At any ordinate value t there are two corresponding quantiles Qx(t) and Qy(t). A

Q-Q plot of x and y is actually a plot of Qy(t) vs. Qx(t) for an increasing t. “Q-Q plot

tends to emphasize the comparative structure in the tails and to blur the distinctions in
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the middle where the density are high” [Wilk and Gnanadesikan, 1968]. The reason is the

quantile (Q(t)) is a rapidly changing function of t when the density is low (in the tails)

and a slowly changing function of t when the density is high (in the middle).

The Q-Q plot can be generated following the procedures below:

1. choose the smaller sample size of x and y as the number of quantiles,

2. sort and percentilize x and y,

3. plot x-quantiles vs. y-quantiles,

4. draw the reference line based on the 25% and 75% quantiles.

Since in our work we are only interested in finding if two distributions are identical, we

can always set the reference line as y = x. Examples of Q-Q plot with respect to different

combinations of two distributions are given in Figures 3.2 to 3.5. The 45◦ reference line is

also plotted for comparison purpose. If the two batches of data come from a population

with the same distribution family, the points should fall approximately along a straight

line, as shown in Figure 3.2 where both distributions are Gaussian but with different means

and variances. When two streams are identically distributed, the Q-Q plot is roughly a

straight line with a slope 1, as shown in Figure 3.3. Figure 3.4 and Figure 3.5 show the

plots of standard Gaussian vs. Uniform and Gamma distributions, respectively. From these

figures we can see that the greater the plot departures from the reference line, the greater

the chance that the two data sets come from populations with different distributions.

3.1.1 Q-Q Distance

In order to quantify the difference between two distributions, that is, the distance be-

tween the Q-Q plot and the reference line, we define the Q-Q distance. Consider two

data sequences v0 and v1 of size s, respectively. On their Q-Q plot, for the j -th point,

(Qv1( js), Qv0( js)), the distance from this point to the 45◦ reference line is
√

2
2 · |Qv1( js) −

Qv0( js)|, as shown in Figure 3.6. The Q-Q distance between these two finite sequences can

thus be defined as

dqq(v0, v1) =
1
s
·

s∑
j=1

√
2

2

∣∣∣∣Qv1(
j

s
)−Qv0(

j

s
)
∣∣∣∣ (3.2)

where Qvi , i ∈ {0, 1} is the quantile of data stream vi.

In the following, we provide the proof that dqq is indeed a distance metric because it
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Figure 3.1: Illustration for Q-Q plot: Cumulative distribution functions with quantiles
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Figure 3.2: Q-Q plot: Standard normal, N(0, 1), vs. Standard Normal N(0, 1)
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Figure 3.3: Q-Q plot: Standard normal, N(0, 1), vs. Non-Standard normal, N(0, 2)
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Figure 3.4: Q-Q plot: Standard normal N(0, 1), vs. Uniform, U(−1.5, 1.5)
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Figure 3.5: Q-Q plot: Standard normal N(0, 1), vs. Gamma(1, 1)
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Figure 3.6: Demonstration of the Q-Q distance
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satisfies the three conditions, i.e.,

• It is nonnegative: dqq(v0, v1) ≥ 0 and the equality holds if and only if v0 = v1.

• It is symmetric. dqq(v0, v1) = dqq(v1, v0).

• It follows the triangle inequality. dqq(v0, v2) ≤ dqq(v0, v1) + dqq(v1, v2)

The first two conditions are easy to verify by the definition in Equation 3.2. Let us

look at the condition of triangle inequality.

dqq(v0, v1) + dqq(v1, v2) =
1
s
·

s∑
j=1

√
2

2

∣∣∣∣Qv1(
j

s
)−Qv0(

j

s
)
∣∣∣∣+

1
s
·

s∑
j=1

√
2

2

∣∣∣∣Qv2(
j

s
)−Qv1(

j

s
)
∣∣∣∣

=
1
s
·

s∑
j=1

√
2

2

{∣∣∣∣Qv1(
j

s
)−Qv0(

j

s
)
∣∣∣∣+
∣∣∣∣Qv2(

j

s
)−Qv1(

j

s
)
∣∣∣∣}

≥ 1
s
·

s∑
j=1

√
2

2

{∣∣∣∣Qv1(
j

s
)−Qv0(

j

s
) +Qv2(

j

s
)−Qv1(

j

s
)
∣∣∣∣}

= dqq(v0, v2) (3.3)

There are also other ways to define the Q-Q distance. For example, using the L2-norm

instead of the L1-norm:

d̂qq(v0, v1) =
√

2
2s
·

√√√√ s∑
j=1

(
Qv1(

j

s
)−Qv0(

j

s
)
)2

(3.4)

The L2-norm distance can be interpreted as a least square approach measuring the

error between two quantile functions. Similarly, the Lp-norm can also be defined. Both

dqq and d̂qq have almost the same performance in detecting changes. In the rest of this

dissertation, we only use the L1-norm distance as the distance measure.

3.1.2 The Detection Algorithm

In this section we describe our Q-Q distance based nonparametric detection algorithm

for quickest detection in data stream. Let f1 and f0 denote the densities when a change
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happens and when there is no change. When both f1 and f0 are unknown, the LLR

Zk(n) =
n∑
j=k

ln
f (1)(X(j))
f (0)(X(j))

and so the CUSUM’s statistic

Sn = max
1≤k≤n

Zk(n)

are also unknown. We want to replace the detection statistic with an appropriate distance

function which remains close to zero in no change situation and starts drifting upward

until it crosses a threshold after a change happens. The Q-Q distance previously defined

is perfect for this role. We will provide theoretical proof to justify this statement in the

next chapter.

As a result, the stopping time of the detection procedure can be defined as

τqq(h) = min{n ≥ 1 | dqq ≥ h} (3.5)

where n represents time and h is the prescribed threshold. The proposed algorithm is

described in Algorithm 1.

Algorithm 1 Q-Q Distance Based Quickest Detection

1: WindowOne← first s0 observations
2: WindowTwo← first s1 observations
3: while There are incoming observations do
4: Slide WindowTwo forward by 1 sample
5: Draw Q-Q plot of WindowOne and WindowTwo
6: Calculate the distance dqq between the plot and the 45◦ reference line
7: if dqq > h then
8: Alarm triggered
9: Break

10: end if
11: end while

The Q-Q distance based nonparametric detection algorithm transforms the problem

from sequential detection into the problem of comparing two static sequences. The detec-

tion procedure involves creating two windows of fixed sizes, where Window One is station-

ary serving as a reference to the pre-change distribution, Window Two is a moving window
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always containing the latest observations. At any moment a new observation appears on

the data stream, Window Two is slided one step forward and the Q-Q distance of these two

windows is then updated. Whenever the distance reaches the threshold we fire an alarm.

Figure 3.7 shows the detection statistic for a particular run of a simulated change.

Window One in most cases is fixed so it always maintains the same reference as the pre-

change distribution. It also can be a moving window. For example, when the pre-change

distribution is slowly time-varying and the task is to detect dramatic change from recent

observations. In that case, Window One has to be moving forward to catch up with recent

distribution. Since the estimation of pre-change distribution is relatively easy even in a

nonparametric detection application, one can remove outliers, if there is any, from Window

One to keep the reference accurate.

Another crucial parameter in the algorithm is the size of Window Two. Large size

window can detect small changes but tends to have large detection delay and small size

window can have fast detection but the false alarm rate may be higher. In the next chapter,

we will give a lower bound for window size selection.

3.2 Summary

In this chapter, we have examined the problem of nonparametric quickest detection where

the pre-change and post-change distributions are not known exactly. By defining and using

a novel distance measure we were able to construct a detection procedure which merely

relies on its observations.
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Figure 3.7: An illustration of the behavior of the detection statistic for one particular run
of a simulated N(0, 1) to U(0, 1) change
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Chapter 4

Performance Guarantee

In Chapter 3, we considered a nonparametric quickest detection procedure based on Q-Q

distance. This procedure is essentially a two-sample comparison. Our goal is to design an

algorithm which decides whether these two distributions where the two samples are drawn,

are the same. In other words, we try to find the distributional difference between two finite

data sequences. In this chapter, we theoretically analyze of the Q-Q distance and provide

performance guarantee for the Q-Q distance based detection algorithm.

Suppose two datasets v0 and v1 with size m, are generated by two probability distri-

butions F (0) and F (1). Based on the samples from v0 and v1, can we decide whether the

two datasets were generated by the same distribution, i.e., F (0) = F (1)? Or, is it the case

that F (0) 6= F (1)?

Usually, in a parametric framework, the distance between F (0) and F (1) can be calcu-

lated using the Kullback-Leibler (K-L) divergence (distance)

Dkl(f (0)‖f (1)) =
∑
j

f (0)(j) log
f (0)(j)
f (1)(j)

(4.1)

where f (0) and f (1) are the corresponding probability density functions, or the total vari-

ation which is defined by

η =
∑
x

∣∣∣F (0)(x)− F (1)(x)
∣∣∣ . (4.2)

However, without the knowledge of the distributions, both the K-L distance and total

variation are nowhere to be found. A distance measure solely based on the finite data
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samples has to be defined and this distance measure must truly quantify the discrepancy

between those two underlying distributions.

We have defined the Q-Q distance, the distributional distance between two finite data

sequences, as

dqq(v0, v1) =
1
m
·
m∑
j=1

√
2

2

∣∣∣∣Qv1(
j

m
)−Qv0(

j

m
)
∣∣∣∣ (4.3)

where Qvi , i ∈ {0, 1} is the quantile of data stream vi.

The analytical study of the proposed distance measure is two-folded. On one hand,

we expect dqq to be very small when v0 and v1 are from the same distribution and if they

are from two different distributions, dqq should be larger than some positive number with

high probability. On the other hand, we intend to determine certain lower bound on the

sample size such that there is a large enough number of elements in the sample to ensure

the detectable discrepancy.

Das and Resnick [Das and Resnick, 2008] applied Fell topology on closed sets to show

that Q-Q plot converges to the 45◦ straight line in probability when the two distributions

are the same but they did not provide the convergence rate as the number of samples grow.

We first introduce some technical preliminaries.

4.1 Preliminaries

Our basic tool for sample based estimation of the Q-Q distance between probability dis-

tributions is based on the Dvoretzky-Kiefer-Wolfowitz Inequality [Dvoretzky et al., 1956],

[Massart, 1990] but we will also introduce a looser bound based on Vapnik-Chervonenkis

Theory [Vapnik and Chervonenkis, 1971], [Vapnik, 1998]. Let us first establish some basic

definitions.

Definition 4.1.1. A distribution function F is a monotone non-decreasing and right con-

tinuous function on R, with

lim
x→−∞

F (x) = 0

and

lim
x→+∞

F (x) = 1.
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Definition 4.1.2. For any distribution function F (x), the quantile function Q(t) is the

inverse of F , which is

Q(t) = F−1(t) = inf{x : F (x) ≥ t}, 0 < t < 1. (4.4)

Definition 4.1.3. Let X1, X2, . . . , Xm, m ≥ 1, be i.i.d. real random variables with distri-

bution F . The empirical distribution function Fm is a step function defined as

Fm(x) =
1
m

m∑
i=1

I(Xi ≤ x). (4.5)

where I is the indicator function.

Definition 4.1.4. If we re-order X1, X2, . . . , Xm such that

X(1) ≤ X(2) ≤ · · · ≤ X(m),

the empirical quantile function Qm(t) can then be defined as

Qm(t) =


X(j) if j−1

m < t ≤ j
m , j = 1, 2, . . . ,m

X(1) if t = 0.
(4.6)

and obviously Qm(t) = F−1
m (t).

The following theorem, known as Convergence in Quantile, states the equivalence of

convergence in distribution and convergence in quantile.

Theorem 4.1.5. [Shorack, 2000] Let Q be the quantile function associated with a distri-

bution function F , and Qm be the empirical quantile function associated with the empirical

distribution function Fm. Fm converges to F in probability, that is Fm → F , if and only if

Qm → Q.

The proof of this theorem is attached in the Appendix.

Theorem 4.1.6. (Glivenko-Cantelli)

sup
x∈R
|Fm(x)− F (x)| a.s.−−→ 0 (4.7)
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From Theorem 4.1.5 we know that convergence in distribution is equal to convergence in

quantile. By the Glivenko-Cantelli theorem, which determines the asymptotic behavior of

the empirical distribution function as the number of i.i.d. observations grows, the empirical

distribution function is almost surely convergent to the true distribution for every x, so the

empirical quantile function will also almost surely converge 1 to the true quantile function.

4.2 Statistical Guarantees

So far we have accomplished the first task by showing that dqq will be small if and only if

F (0) = F (1) given a large enough sample size m. Next we want to study the relationship

between the samples size and the detection accuracy. That is, how close is F (0) to F (1)

and how close is Q(0) to Q(1)?

One of the methods to analyze the sample based Q-Q distance between probability

distributions is the Vapnik-Chervonenkis theory. Here we follow the work by Wasserman

[Wasserman, 2005].

Definition 4.2.1. Consider a probability space (Ω,A, P ). Let X1, X2, . . . , Xm ∼ P , m ≥

1, be i.i.d. real samples from a probability measure P . For A ∈ A, the empirical probability

Pm is defined by

Pm(A) =
1
m

m∑
i=1

I(Xi ∈ A). (4.8)

Given a finite set R = {x1, x2, . . . , xm}. Let S be a subset of R. We say A picks out S

if

A
⋂
R = S for some A ∈ A.

Let NA(R) be the number of subsets of R picked out by A as

NA(R) = ]
{
A
⋂
R : A ∈ A

}
. (4.9)

Definition 4.2.2. If NA(R) = 2m, where n is the number of elements in R, we say that R

is shattered by A. Let Rm denote all finite sets with m elements. The shatter coefficient
1In probability theory, convergence almost surely (a.s.) means the convergence happens with probabil-

ity one while convergence in probability is a weaker convergence meaning as the sequence progresses the
probability of no convergence becomes smaller and smaller towards zero.
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is defined by

s(A,m) = max
R∈Rm

NA(R) (4.10)

Definition 4.2.3. The Vapnik-Chervonenkis dimension of A is defined by

V C(A) = max {m : s(A,m) = 2m} (4.11)

Theorem 4.2.4. (Vapnik-Chervonenkis Theory) Suppose A has finite VC dimension d.

For all n ≥ d,

s(A,m) ≤ md + 1 (4.12)

and

P

(
sup
A∈A
|Pm(A)− P (A)| > ε

)
≤ 8(md + 1)e−mε

2/32 (4.13)

In this work, we wish to bound P (supx∈R |Fm(x)− F (x)| > ε). Let A = {(−∞, x);x ∈

R} and A = (−∞, x]. Since P ((−∞, x)) = F (x) and Pm((−∞, x)) = Fm(x), and V C(A) =

1, we can get

P

(
sup
x∈R
|Fm(x)− F (x)| > ε

)
= P

(
sup
A∈A
|Pm(A)− P (A)| > ε

)
≤ 8(m+ 1)e−mε

2/32 (4.14)

In fact, there is a tighter bound by applying the Dvoretzky-Kiefer-Wolfowitz (DKW)

inequality to the difference in distributions.

Theorem 4.2.5. (Dvoretzky-Kiefer-Wolfowitz Inequality) For any ε > 0,

P

(
sup
x∈R
|Fm(x)− F (x)| > ε

)
≤ 2e−2mε2 (4.15)

The DKW Inequality predicts how quickly an empirical distribution, Fm, will converge

to the true distribution F from which the empirical samples are drawn. This strengthens

the Glivenko-Cantelli theorem by quantifying the rate of convergence.

Now, We intend to determine certain lower bound on the sample size such that there

is a large enough number of elements in the sample to ensure the detectable discrepancy.
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That is, we would like a bound of the form

P (|Qn(t)−Q(t)| > ε) ≤ something small

and the following theorem will do the work.

Theorem 4.2.6. [Shao, 2003] Let F (xt + ε) > t for any ε > 0 and m ≥ 1.

P (|Qm(t)−Q(t)| > ε) ≤ 4e−2mδ2ε (4.16)

where δε = min(F (xt + ε)− t, t− F (xt − ε)).

The proof of this theorem is attached in the Appendix.

Given FAR = γ,

4e−2mδ2ε ≤ γ ⇔ ln 4− 2mδ2ε ≤ ln γ ⇔ ln 4− ln γ
2δ2ε

≤ m (4.17)

When ε is small, we consider δε u ε.

Theorem 4.2.6 gives a lower bound on the size of the second window in our Q-Q distance

based quickest detection algorithm, while keeping the false alarm rate at a given level. Let

us see an example:

Suppose we need to ensure that the distance between our empirical quantile function

Qn and the true quantile function Q on the real line is less than or equal to ε = 0.1, with

a false alarm rate no more than 0.05. According to Eq. 4.17,

ln 4− ln 0.05
2(0.1)2

≤ m⇒ m ≥ 219.1 (4.18)

a samples size of m = 220 would be large enough to detect if the distance between two

quantile functions is larger than 0.1 while keeping the false alarm rate below 5%.

4.3 Limitations of Q-Q Distance

We have proved the convergence of our Q-Q distance and provided a tight bound of the

window size for our detection algorithm. However, the Q-Q distance has two limitations
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which need to be improved in the future.

The first limitation is the computational cost due to the embedded sorting algorithm,

especially when the window size is big. Nevertheless, it may be improved by developing

fast sorting method. For Q-Q distance based binary detection, which we will show in the

next chapter, the sorting can actually be avoided by summing the quantized stream.

The second limitation is the incapability when the properties or parameters defining the

stream are fast time-varying, such as in detecting or predicting the turns of stock exchange

index. One possible solution is to combine Q-Q distance with some density estimation

method to timely update the latest distribution in the moving reference window. This

needs additional future research.
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Chapter 5

Decentralized Quickest Detection

Consider a distributed sensing environment with L geographically deployed sensors. Let

X(n), n ≥ 1, again be the L-dimensional data collected that is chosen for monitoring,

but the component Xi(n) represent the i -th channel of the data stream. At an unknown

point in time, λ (λ ≥ 1), a change happens and the distributions of all channels change

accordingly. All channels are assumed to be independent and the observations in each

channel are independent and identically distributed (i.i.d.).

While a great deal of research has been done in applying quickest detection techniques

to distributed systems, to the best of our knowledge, there has been no decentralized

nonparametric quickest detection procedures successfully implemented. For example, the

score function based nonparametric detection method [Tartakovsky et al., 2006b] works

well in centralized detection but would fail in binary detection when the sum of the mean

values of the induced distributions is larger than 1. More detailed explanation is provided

in Section 5.1. Here we show how Q-Q distance based nonparametric detection can be

deployed in a decentralized fashion using two schemes, binary detection and decision fusion.

5.1 Quantized Quickest Detection

We have examined the binary quickest detection for parametric detection algorithms. As

discussed in Section 2.5.1, binary quickest detection looks for an optimal quantizer such that

the original observation data can be coded as binary streams, which are then transmitted
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as the compressed representation of data to a processing center for detection. However,

currently there is no quantized nonparametric detection procedure. Rank based and score

function based detection procedures are unable to be implemented for quantized stream.

The difficulty lies in the way that quantization of the stream will not change the fact

that both the pre-change and post-change distributions are still unknown. In this section,

we present the binary detection implementation for Q-Q distance based nonparametric

algorithm, which, to our best knowledge, has never been implemented.

In parametric binary detection procedures with known distributions, the optimal quan-

tizer is the one that maximizes the K-L information distance of the induced distributions.

However, in nonparametric detection the computation of the quantization threshold is not

feasible. Instead, we use a fixed stationary sensor quantizer, e.g., the estimated pre-change

mean, as the threshold.

5.1.1 The Detection Algorithm

Let mi be the estimated mean of the observations under distribution f (0)
i which we use as

the quantization threshold. We first quantize Xi(n) as

Bi(n) =


1 Xi(n) ≥ mi

0 Xi(n) < mi

(5.1)

resulting in a Bernoulli sequence, where {Bi(1),Bi(2), . . . ,Bi(k − 1)} has the induced

probability mass function p
(0)
i and {Bi(k),Bi(k + 1), . . . } has p(1)

i . If we draw the Q-Q

plot of the two segments, all drawings fall in only four possible spots, (0,0), (1,1), (0,1) and

(1,0). It is easy to see that the greater the difference between p(0) and p(1), the more points

fall in (0,1) or (1,0), and the bigger the distance dqq. See Fig. 5.1 for a comparison of Q-Q

plots generated using the original observations and the quantized Bernoulli streams with

the pre-change distribution being a standard Gaussian and the post-change distribution a

uniform from 0 to 3.

This binary detection procedure sometimes requires training for particular situations

or unknown anomalies. For example, when the induced distributions p(0)
i and p

(1)
i are

the same or close, as shown in Fig. 5.2 with the before-change distribution a zero-mean
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Figure 5.1: Q-Q plots of two sequences before and after quantization
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Figure 5.2: The choice of quantization threshold
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Gaussian and the after-change distribution a zero-mean Uniform, then using the mean as

the threshold to quantize the stream cannot really differentiate the segments. So another

quantization threshold which can amplify the distance, -1 in this case, could be used.

The stopping time of the binary detection procedure at the processing center can then

be defined as

τqb(h) = min{n ≥ 1 |
L∑
i=1

dqq,i ≥ h} (5.2)

and dqq,i is the Q-Q distance in the i -th channel.

The binary detection algorithm is described in Algorithm 2 and is slightly different

from Algorithm 1 .

Algorithm 2 Q-Q Distance Based Binary Quickest Detection

1: for i = 1 to L do
2: Quantize the stream
3: WindowOne← first s0 quantized observations in the i -th channel
4: WindowTwo← first s1 quantized observations in the i -th channel
5: while There are incoming observations do
6: Slide WindowTwo forward by 1 sample
7: Count 1’s in WindowOne and WindowTwo, respectively
8: Calculate the distance dqq,i using the counts of 1’s
9: end while

10: end for
11: if

∑
dqq,i > h then

12: Alarm triggered
13: Break
14: end if

5.1.2 Remarks

In Q-Q distance based quantized quickest detection, depending on the application, the

original data stream can be quantized into multiple discrete values, not just only binary

stream. In this dissertation we only use the simplest binary data stream to show the

concepts and detection process.

As we mentioned earlier, in binary detection, if the score function based procedure is

used, then Equation 2.35 would be rewritten as

Sgn =
(
Sgn−1 + Bi(n)− p(0) − p(1)

)+
. (5.3)
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If the sum of induced distributions p(0) and p(1) is larger than 1, the output of Eq. 5.3 will

remain at 0, causing the procedure to fail for detecting any changes.

5.2 Decision-based Fusion

Another decentralized detection scenario is to perform quickest detection locally at each

sensor and only send local decisions to the processing center for decision fusion. When

parametric detection procedures, such as CUSUM tests, are performed at local sensors,

three popular fusion rules [Tartakovsky and Veeravalli, 2008] have been adopted to generate

the global decision. Suppose τi = min{n ≥ 1 | Sn,i ≥ ωih} is the local stopping time of the

i -th sensor, where ωi is the weight of the threshold. At the fusion center, the first fusion

rule is to choose the stopping time as

τmax = max
1≤i≤N

τi (5.4)

which takes the largest τi as the global decision (stopping time), indicating that a change

is declared only when all the local sensors have voted for a change.

The second rule is to choose τmin,

τmin = min
1≤i≤N

τi (5.5)

such that the global decision of change is declared at the first time any local decision is in

favor of the change.

The stopping time τall in the third fusion rule is defined as

τall = min{n ≥ 1 | min
1≤i≤N

(Sn,i/ωi) ≥ h} (5.6)

By this rule, a change is declared at the first time when all sensors send 1’s to the fusion

center.

The fusion rules above are widely used in asymptotic performance analysis [Mei, 2005],

[Moustakides, 2006], [Tartakovsky and Veeravalli, 2008] but these rules actually do not con-

sider the highly possible sensor/channel failures that may lead to incorrect local decisions
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being transmitted to the fusion center. For example, a malfunctioning sensor with stuck-at

faults can continuously report “no change” to the fusion center irrespective of the fact

that a change has occurred. This faulty sensor would cause a complete failure of detection

when the τall or τmax rule is adopted. It is desired that the errors or uncertainty in some

sensors can be corrected by other sensors. Here we use majority voting [Lam and Suen,

1997] to aggregate the local decisions generated by the Q-Q distance-based procedure in

real time. Majority voting is one of the simplest fusion methods for decision fusion tasks

and is as effective as the other more complicated schemes [Lam and Suen, 1997]. Assume

each sensor reports a local decision

ψn,i =


1 if dqq,i ≥ ωih

0 otherwise
(5.7)

to the center at every time interval n. The stopping time at the center is defined as

τv = min{n ≥ 1 |
L∑
i=1

ψn,i > N/2} (5.8)

which means a change is declared the first time when more than half of the sensors agree.
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Chapter 6

Experimental Evaluation

This chapter presents the experiment results of the algorithms proposed in this dissertation.

We begin with results from the Q-Q plot based nonparametric quickest detection in Section

6.1. This section demonstrates the overall detectability of our algorithm. Comparisons

between the proposed algorithm and the classical parametric and other nonparametric

detection algorithms are made. In Section 6.2, we show the performance of our binary

detection algorithm, as well as the decision fusion. Then, in Section 6.3, we investigate

the computational cost of our proposed algorithm by comparing its actual computation

time with other existing detection algorithms. Finally, in Section 6.4, we apply both our

Q-Q distance based detection algorithm and the score function based algorithm to the real

intrusion detection application. These four sections serve as the successful evidence of our

Q-Q distance based algorithms.

6.1 Nonparametric Quickest Detection

We compare the Q-Q distance based detection procedure with the benchmark CUSUM

detection (parametric) and the score function based (nonparametric) detection schemes.

We present the results of Monte Carlo simulations with 104 replications which are suffi-

cient for estimating ADD and FAR. The plot of ADD vs. -log(FAR) is used to show the

performance of different detection procedures. The lower the FAR requirement, the longer

the delay. In addition, a shorter performance curve would indicate the detection failure at
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low false alarm rates. We perform two sets of experiments to show the effectiveness of the

Q-Q distance-based nonparametric detection scheme in both single channel environment

and the multi-channel distributed environment.

6.1.1 Single Channel Detection

We compare the detection capability of the three approaches in identifying changes among

three different combinations of distributions, including Gaussian changed to uniform dis-

tribution, Gaussian changed to another Gaussian with a different variance, and Gaussian

changed to another Gaussian with a different mean. The degree of changes is the smallest

in the last combination.

Change detection - from Gaussian to Uniform. In this experiment, the distri-

bution changes from a standard Normal distribution to a Uniform distribution between 0

and 1. Fig. 6.1 shows the operating characteristics. With known information of the dis-

tributions, the CUSUM test yields the best detection performance with the shortest delay

and lowest FAR. Although the Q-Q distance-based method shows higher ADD compared

to the score function based procedure, its performance curve is longer, indicating that it

survives lower FAR better than the score function based scheme.

Small change detection - from Gaussian to Gaussian of different variance. In

this experiment, the pre-change distribution remains as the standard Gaussian with vari-

ance, 1, but the post-change distribution becomes a Gaussian as well just with a slightly

higher variance, 1.5. Figure 6.2 shows that the CUSUM test still performs the best provid-

ing the shortest delay and the lowest false alarm rate. However, the Q-Q distance-based

procedure outperforms the score function based procedure across the entire range of false

alarm rate. In addition, the performance curve from the score function based scheme is a

lot shorter than the other two schemes indicating the procedure fails at low FAR.
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Figure 6.1: ADD vs. FAR (Change from Normal(0,1) to Uniform(0,1))
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Figure 6.2: ADD vs. FAR (Small Change from Normal(0,1) to Normal(0,1.5))

Small change detection - from Gaussian to Gaussian of different mean. In

this experiment, the distributions still change from Gaussian to Gaussian but with even

smaller scale, from zero-mean (pre-change) to a mean of 0.5, 0.3, and 0.2 (post-change),

respectively. The score function based procedure presents almost the same performance

as the CUSUM test when the false alarm rate is relatively high but fails with low FARs,

indicating its inability of detecting small changes. As we observe from Figs. 6.3-6.5, as the

degree of changes in distributions becomes smaller and smaller, the Q-Q distance-based
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detection procedure still succeeds in the detection alongside the CUSUM test although

both experience larger delays, showing the merit of the proposed detection scheme in

the identification of small changes. When the change is even smaller, for example, small

change from Normal(0,1) to Normal(0.1,1), both the Q-Q distance-based and the CUSUM

procedures will fail to detect the change.

6.1.2 Detection with Different Window Sizes

In this section, we compare the impact of window sizes. We use three window sizes of 200,

400, and 600 observations to detect a change from N(0, 1) to N(0, 1.5). As we can see in

Figure 6.6, larger window size has bigger detection delay and lower false alarm rate while

smaller window size has short delay but higher false alarm rate.

6.2 Decentralized Nonparametric Quickest Detection

For decentralized detection, we conduct two experiments that evaluate binary detection

and decision-based fusion. We simulate 6 independent channels which have distribution

changes at exact the same time. From channel 1 to channel 6, the changes are Uni-

form(0,1) to Uniform(0,5), Uniform(-1,1) to Uniform(-1,4), Normal(0,1) to Normal(2,1),

Normal(0,1) to Uniform(0,2), Poisson distributions with mean of 8 to 10, and Normal(0,1)

to Normal(0.5,1).

6.2.1 Binary Quickest Detection

In the first experiment, we compare the performance of binary detection using the Q-Q

distance-based nonparametric scheme and the benchmark parametric CUSUM detection

scheme. Fig. 6.7 shows the operating characteristics. With complete information of the

original and induced distributions, the CUSUM scheme outperforms the Q-Q distance-

based scheme which is within expectation. However, the Q-Q distance-based scheme still

shows acceptable performance in a sense of small detection delay and low false alarm rate.

To the best of our knowledge, this is the first success implementation of nonparametric

detection procedure using decentralized binary detection.
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Figure 6.3: ADD vs. FAR (Small Change from Normal(0,1) to Normal(0.5,1))
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Figure 6.4: ADD vs. FAR (Small Change from Normal(0,1) to Normal(0.3,1))
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Figure 6.5: ADD vs. FAR (Small Change from Normal(0,1) to Normal(0.2,1))
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Figure 6.6: ADD vs. FAR with different window sizes
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Figure 6.7: Operating characteristics of binary detection procedures
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Table 6.1: Decision fusion results
Rules τmin τmax τall τv τqb

Average Delay -89 156 157 69 48
Variance 252.5 41.0 40.1 17.2 12.2

Minimum Delay -2071 65 65 28 8
Maximum Delay 42 299 299 133 81

6.2.2 Decision Fusion

In the second experiment, we compare the performance of the four decision-based fusion

rules, τmin, τmax, τall, and τv, as well as the result from binary detection, τ qbh , as defined in

Eq. 5.2. Note that only the Q-Q distance-based detection procedure is applied. We observe

from Fig. 6.8 that the τmin rule yields an average stopping time before the real change time

with big variance which means it produces lots of false alarms and the performance is very

unstable or unpredictable. The τmax and τall rules generate similar results and introduce

fewer false alarms but give much longer delays than the others. τv from the majority voting

gives the smallest detection delay with the smallest variance among the four decision-based

fusion rules, showing its effectiveness in producing more accurate and reliable results. τ qbh is

the average delay from the Q-Q distance-based binary detection. It yields an even smaller

delay and variance compared to the τv rule, which is consistent with our previous discussion

that although decision-based fusion provides the most effective usage of communication

bandwidth and energy, it experiences a little bit degradation in performance in terms of

delay and stability because only local decisions are fused. However, the τv-based fusion

still shows very close performance to binary detection. The data of the fusion results are

also tabulated in Table 6.2.

Experimental results with simulated data showed that this detection procedure is able

to detect the changes with comparable performance as the benchmark CUSUM detection

scheme. The majority voting decision fusion rule generates better detection decision than

other traditional rules from parametric detection.
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Figure 6.8: Results of decision fusion rules
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Table 6.2: Running time
Rules Q-Q CUSUM Score Function

Minimum running time (s) 0.1060 0.0024 1.8662e-004
Maximum running time (s) 0.1784 0.0622 6.6210e-004
Average running time (s) 1.1081 0.0025 1.9857e-004

6.3 Computational Efficiency

We now explore the computational efficiency of the proposed algorithm. The implemen-

tation for these results is in Matlab on a laptop computer with an Intel Core 2 Duo at

1.83GHz with 2GB memory. The table below shows the running time in seconds for a single

observation. The Q-Q distance based procedure runs the slowest compared to the CUSUM

test and the score function based procedure because there is an embedded sorting task.

The computational complexity of the proposed algorithm is O(n log n) while the other two

are essentially O(n).

6.4 Application to Intrusion Detection

Previous experiments show the success of Q-Q distance based algorithms in detecting

changes in synthetic data. Now we apply the nonparametric procedure to the real world

data. We adopt the KDD Cup 99 data [KDD, 1999] to conduct the experiments. The

KDD data is the data set used for the Third International Knowledge Discovery and Data

Mining Tools Competition. It has 41 features extracted from the DARPA Off-line Intrusion

Detection Evaluation [Lippmann et al., 2000]. Also, this data includes 38 different attack

types. Each of the 38 attack types falls into one of the four attack categories. They are:

• DOS: denial of service,

• U2R: unauthorized access to root privileges,

• R2L: unauthorized access to local from a remote machine,

• Probe: surveillance and port scan activities,

and when there was no attack, the observation was labeled as NORMAL.
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From the original data set, we choose a segment containing 8000 observations. The first

4000 observations are from the category of NORMAL, and the next 4000 are from DOS.

We assume that the distributions of some of the features change when an attack is under-

taken. Here we choose to detect the changes of two features “count” and “dst.host.count”.

Figures 6.9 and 6.11 are the real observations of the two features. Figures 6.10 and 6.12

show the detection results and the Q-Q distance based procedure clearly outperforms the

score function based procedure.

This chapter concludes our experimental results for the nonparametric quickest detec-

tion, binary detection, decision fusion, and real application. It documents the qualitative

and quantitative results of each algorithm. We now move to the final chapter of this disser-

tation, which is the conclusions that we draw from these experiments and some discussion

for the future research.
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Figure 6.9: The original observations of feature: count
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Figure 6.10: Detection of DoS attack
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Figure 6.11: The original observations of feature: dst.host.count
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Figure 6.12: Detection of DoS attack
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Chapter 7

Conclusions

In this dissertation, we have described a nonparametric quickest detection algorithm to

detect changes in data streams in cases where no prior knowledge on the probability dis-

tribution is at hand. We also extend this detection scheme into a distributed detection

environment where quickest detection with quantized data and decision-based fusion are

presented. In the previous chapters, we have reviewed other related research in the liter-

ature, and we have presented the theoretical analysis along with experimental results to

support our approach. We now conclude this dissertation with a brief summary of the

contributions and a short discussion of future research.

7.1 Summary of Contributions

The primary contribution of this research as described in this chapter is the creation of

the Q-Q distance and the Q-Q distance based detection algorithm. This algorithm extends

the state of the art in nonparametric quickest detection and decentralized nonparametric

quickest detection. In this dissertation, we offer four contributions as follows:

• Q-Q Distance. This contribution is a novel distance measure between distributions.

The advantage of this distance measure is that it calculates the distance between

distributions inferred directly from data sets generated from the distributions, thus no

prior knowledge of the distributions is needed and less estimation error is introduced.
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• Q-Q Distance Based Quickest Detection. This contribution is a novel non-

parametric quickest detection algorithm for the detection of distributional change in

data streams. The strength of this algorithm is its effectiveness of detecting changes,

especially small changes.

• Decentralized Nonparametric Quickest Detection. This contribution is mainly

a novel binary quickest detection algorithm for distributed detection. This algorithm

is an extension of our nonparametric quickest detection algorithm and seems to be

the first decentralized nonparametric quickest detection procedure.

• Performance Guarantee. This contribution is the supporting theories to our algo-

rithms. It proves the convergence of the Q-Q distance in high probability when there

is no change in the data stream and gives a lower bound on the choice of sample size.

For each of the contributions, we have presented both qualitative and quantitative

results to demonstrate their effectiveness. The Q-Q distance based quickest detection

algorithm is to appear in [Yang and Qi, 2010c]. We have submitted the decentralized

nonparametric quickest detection algorithm [Yang and Qi, 2010a] for review. Further, a

general overview paper with definition of the distance measure, the nonparametric quickest

detection algorithms, and the theoretical analysis will be submitted [Yang and Qi, 2010b]

for review. With this summary of the contributions, we now turn to the future directions

for this research.

7.2 Directions for Future Research

The ideas and concepts in this dissertation offer a great deal of possible future research

directions. We here identify the following areas as what we think the most important.

7.2.1 Automatic Threshold Selection

The first important area for future research is in automatic selection of the threshold(s).

We have shown that the threshold is approximately linearly related to the detection delay,

as the threshold goes to infinity. Although the detection procedure itself is not sensitive

to the threshold, by choosing the appropriate threshold, the detection procedure could
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produce better performance. Automatic threshold selection is not impossible but does

require additional research.

7.2.2 Detection with Dependent Observations

So far all our discussions are based on the assumption that all elements in the data stream

are independent of one another. However, there are situations where dependent elements

need to be monitored. In parametric detection, there have been discussions such as to

extend the optimality of the CUSUM to certain dependent situations, or to use some local

hypothesis approach [Poor and Hadjiliadis, 2009]. We believe similar methods could be

used to relax the assumption of independence among elements in nonparametric detection

research.

7.3 Closing Remarks

This whole work is based on the use of Q-Q plot which I accidentally found on the Internet

when I was looking for a better way to plot an empirical probability density function.

Its definition suggests that it can be adapted in quickest detection to differentiate the

distributions underlying the data streams but there are really few Q-Q plot applications

that we can refer to. We had to dig deeper to make it work in quickest detection. Further,

we have guaranteed the detection performance analytically and numerically. Obviously,

our implementation of a nonparametric quickest detection framework does not solve all the

problems in the quickest detection arena but hopefully it does provide a tiny step towards

extending the state of the art in quickest detection.

“I FIND THAT A GREAT PART OF THE INFORMATION I HAVE WAS

ACQUIRED BY LOOKING UP SOMETHING AND FINDING SOMETHING

ELSE ON THE WAY.” – FRANKLIN P. ADAMS

“ANYTHING ONE MAN CAN IMAGINE, OTHER MEN CAN MAKE

REAL.” – JULES VERNE
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Appendix

Proof of Theorem 4.1.5. Suppose Fm → F . Let F (x) = t, t ∈ (0, 1) and z ≡ F−1(t). x

is a continuity point of F .

When x < z, we have

F (x) < t ⇒ Fm(x) < t for m ≥Mx

⇒ F−1
m (t) ≥ x for m ≥Mx

⇒ lim
m→∞

F−1
m (t) ≥ x (1)

where Mx is some integer number. Since there are continuity points x closing in from the

left to z, we have

lim
m→∞

F−1
m (t) ≥ x⇒ lim

m→∞
F−1
m (t) ≥ z (2)

When x > z, we have

F (x) > t ⇒ Fm(x) > t for m ≥Mx

⇒ F−1
m (t) ≤ x for m ≥Mx

⇒ lim
m→∞

F−1
m (t) ≤ x (3)

Since there are continuity points x closing in from the right to z, we have

lim
m→∞

F−1
m (t) ≤ x⇒ lim

m→∞
F−1
m (t) ≤ z (4)

78



From Equation 2 and Equation 4,

lim
m→∞

F−1
m (t) = z

and

lim
m→∞

F−1
m (t) = F−1(t) (5)

That is, Qm(t) → Q(t) for all but at most a countable number of t’s. The proof of the

converse is similar.

Proof of Theorem 4.2.6. The left side of the inequality can be rewritten as follows,

P (|Qm(t)−Q(t)| > ε) = P (Qm(t) > Q(t) + ε) + P (Qm(t) < Q(t)− ε) (6)

From Equation 3.1, we can see that F (x) ≥ t if and only if x ≥ F−1(t) for any c.d.f. F

on R. So we have

P(Qm(t) > Q(t) + ε) = P(t > Fm(Q(t) + ε))

= P(F (Q(t) + ε)− Fm(Q(t) + ε) > F (Q(t) + ε)− t)

≤ P(sup
x∈R
|Fnm(x)− F (x)| > δε)

≤ 2e−2mδ2ε (7)

and

P(Qm(t) < Q(t)− ε) = P(t < Fm(Q(t)− ε))

= P(Fm(Q(t)− ε)− F (Q(t)− ε) > t− F (Q(t)− ε))

≤ P(sup
x∈R
|Fm(x)− F (x)| > δε)

≤ 2e−2mδ2ε (8)

This proves 4.16.
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