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Abstract 

 

Oxidative protein surface mapping has gained popularity over recent years within the 

mass spectrometry (MS) community for gleaning information about the solvent accessibility of 

folded protein structures.  The hydroxyl radical targets a wide breadth of reactive amino acids 

with a stable mass tag that withstands subsequent MS analysis.  A variety of techniques exist for 

generating hydroxyl radicals, with most requiring sources of radiation or caustic oxidizing 

reagents.  The purpose of this research was to evaluate the novel use of electrochemistry for 

accomplishing a comparable probe of protein structure with a more accessible tool.  Two 

different working electrode types were tested across a range of experimental parameters, 

including voltage, flow rate, and solution electrolyte composition, to affect the extent of 

oxidation on intact proteins.  Results indicated that the boron-doped diamond electrode was most 

valuable for protein research due to its capacity to produce hydroxyl radicals and its relatively 

low adsorption profile.  Oxidized proteins were collected from the electrochemical cell for intact 

protein and peptide level MS analysis.  Peptide mass spectral data were searched by two different 

“hybrid” software packages that incorporate de novo elements into a database search to 

accommodate the challenge of searching for more than forty possible oxidative mass shifts.  

Preliminary data showed reasonable agreement between amino acid solvent accessibility and the 

resulting oxidation status of these residues in aqueous solution, while more buried residues were 

found to be oxidized in “non-native” solution.  Later experiments utilized higher flow rates to 

reduce protein residence time inside the electrochemical flow chamber, along with a different 

cell activation approach to improve controllability of the intact protein oxidation yield.  A 



 vi 

multidimensional chromatographic strategy was employed to improve dynamic range for 

detecting oxidation of lower reactivity residues.  Along with increased levels of oxidation around 

“reactive hotspot” sites, the enhanced sensitivity of these measurements uncovered a significant 

level of background oxidation in control proteins.  While further work is needed to determine the 

full utility that BDD electrochemistry can lend protein structural studies, the experimental 

refinements reported here pave the way for improvements that could lead to a high-throughput 

structural pipeline complementary to predictive modeling efforts.     
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1. Introduction to Oxidative Protein Surface Mapping 

1.1 Current State of Protein Structure Research  

Protein topology evokes function, thus spurring the development of experimental 

techniques to collect data at the level of atomic resolution for protein structure elucidation.  Two 

critical high resolution techniques are responsible for producing most of the detailed protein 

structures available: X-ray crystallography (XRC) and nuclear magnetic resonance (NMR) 

spectroscopy.[1]  High resolution structures (< 5 Å) are typically obtained by XRC through 

analysis of X-ray diffraction caused by electrons of atoms in crystallized proteins.[1]  Additional 

detail on hydrogen (2H) atoms can be determined by neutron protein crystallography, though 

fewer structures are generated by this method due to limited beam line accessibility and the need 

for larger (~1 mm3) protein crystals.[2]   Solution phase NMR spectroscopy can reveal dynamic 

details of single proteins or interacting complexes, though its current limitation is that their 

molecular masses do not exceed roughly 50 kDa.[3]  Cryogenic electron microscopy is also 

capable of producing structural details, although like crystallography techniques, high quality 

crystals must be produced.[4]  While very powerful, all of these techniques require milligram 

quantities of highly purified proteins, and factors such as conformational flexibility, post-

translational modification, and oligomerization often limit the amenability of proteins to these 

high resolution measurements.[5]  Additionally, high-energy electromagnetic or particle 

radiation sources are required, which reduces the general accessibility for a typical laboratory 

researcher.    

 



 

 

 
 
 

2 

In addition to the aforementioned high resolution techniques, a number of lower (> 10 Å) 

resolution techniques can provide important structural information.  These include small angle 

scattering (SAS) technologies employing either X-rays (SAXS) or neutrons (SANS), with the 

latter requiring deuterated proteins for analysis and both utilizing radiation sources.[6]  More 

accessible techniques can measure differential exposure to solvent among conformational states, 

including limited proteolysis [7, 8] and hydrogen-deuterium exchange (HDX).[9]  A few 

spectroscopic techniques for monitoring a change in protein conformation within a solution 

ensemble include fluorescence spectroscopy, which can detect aromatic (Trp) residues 

undergoing a change in their chemical environment,[10, 11] fluorescence resonance energy 

transfer (FRET), which gauges distance-dependent intensity changes between two spectrally 

overlapping fluorophores,[12]  and circular dichroism (CD), which measures secondary structure 

content.[13, 14]  All of these methods provide different types of information useful for 

evaluating protein structure.    

1.2 Computational Tools for Advancing Experimental Protein Structure Research 

While the atomic level resolution available through crystallographic snapshots or 

dynamic NMR models are generally regarded as the gold-standards for characterizing protein 

structures, computational approaches are being explored for proteins less amenable to 

experimental techniques.[15]  To keep pace with the rapid production of proteomic data enabled 

by genome sequencing, predictive modeling efforts within the realm of computational biology 

are aimed to fill the gap between these high throughput datasets and the steadily growing Protein 

Data Bank (PDB).[16]  Homology models can be built for unknown structures that share at least 
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30% sequence similarity with a resolved protein structure,[17] and protein threading utilizes 

sequence-based fold similarity to parse domains from existing structures in constructing a 

predictive model.[18]   Additionally, de novo structural predictions are gaining significant 

traction, as evidenced by the results of the Critical Assessment of Structure Prediction (CASP) 

competition.[19]  This contest invites researchers to submit structural predictions for a newly 

resolved protein structure that has not yet been publicly revealed, with predictions from the 

community showing increasing accuracy compared with the target structure.  While the chosen 

method will be determined by the level of existing structural knowledge, the resulting predictive 

model(s) could be evaluated and likely refined by experimental data that reflects the accuracy of 

each prediction.  One intriguing approach involves probing the solvent accessible surface area 

(SASA) of proteins with a low-selectivity reagent that fosters amino acid level resolution of 

exposure to solvent.  

Concurrent with advances in computational modeling for protein structure prediction, 

there is a need for experimental approaches that provide data for evaluating the validity of 

structural models.[20]  As discussed previously, a variety of prediction methods can be utilized 

to generate three-dimensional model structures in silico from a protein’s primary amino acid 

sequence.[18]  Among potentially thousands of predictive models, comparable α-carbon 

backbones differ in the manner of sidechain packing within the hydrophobic core.[21]  The 

significance of this rotamer variation is that the total exposed surface area of a predicted protein 

structure may be influenced or even controlled by a different subset of residues among 

computational models.  For example, a study performed in-house involved calculation of SASA 

using the probe radius of water (1.4 Å) to evaluate the solvent exposure of individual amino 
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acids across a series of models derived for a lysozyme NMR study (PDB 1E8L).  This exercise 

revealed variable SASA values (see Appendix Table A-7) for all residues along with significant 

fluctuations for some regions.  Similarly, conformational change within a protein structure may 

involve a SASA shift for various amino acids.  One example of this phenomenon is the pH-

sensitive exposure of a hydrophobic pocket in the case of β-lactoglobulins, which has been 

dynamically modeled in silico.[22]  Experimental identification of solvent accessible amino 

acids would be advantageous in culling candidate structures potentially representing true 

conformations of protein structure.  Paradoxically, the labeling accuracy of such experimental 

techniques should ideally first be verified on structurally characterized systems subjected to 

simulated solution-phase conditions.   

1.3 Molecular Dynamics Simulations for Evaluating Solvent Accessibility Probe Data 

Static crystal structures are used as initial coordinates in molecular dynamics (MD) 

simulations, wherein proteins are subjected to solution forces in silico over a period of time to 

reveal some insight into their true dynamic nature.[23]   Simulation software programs such as 

CHARMM [24] and NAMD [25] employ force fields, which involve the use of empirical energy 

functions to approximate forces that occur among atoms within the macromolecule over time.   

These force field equations include parameters to describe forces acting upon bonded atoms such 

as spring constants and torsion, in addition to those that can occur between non-bonded atoms 

over longer distances, namely electrostatic and van der Waals interactions.[26]  The limitations 

of this technique for simulating the dynamics of model proteins used in experimental 

demonstrations are highly dependent on the available computing power, but systems as large as 
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the ribosome complex (2.64 million atoms including solvent) have been modeled on 

supercomputers.[27]   

The use of SASA statistics from MD simulations should provide a better metric than 

values calculated from static structures for evaluating amino acid solvent accessibility probe 

results.  This may be particularly evident with the use of reagents that selectively target specific 

amino acids and thus require simpler data mining efforts relative to low-selectivity reagents.  

Average and maximum SASA values calculated for individual residues on the nanosecond 

timeframe in these relatively simple simulations may prove to be essential tools in evaluating 

oxidative mapping results.  When paired with techniques that provide a reliable gauge of SASA 

values, MD simulations could be performed using predictive computational models (ab initio, 

domain parsing, threading) to increase throughput of structural proteomics.   

1.4 Mass Spectrometry Analyses of Solvent Accessibility Labeling Techniques  

Mass spectrometry (MS) is a powerful experimental tool for probing higher order protein 

structure, in that this technique is very sensitive and can be used with protein mixtures.  One 

approach to harness this capacity for obtaining structural information is to employ covalent 

labeling of native proteins followed by high resolution MS characterization of modified amino 

acid residues.  Covalent labeling techniques place a stable mass tag on reactive, solvent 

accessible residues within the native protein structure that can be later identified by MS 

characterization of mass-shifted proteolytic peptides.  A variety of labeling reagents exist which 

vary in terms of their amino acid specificity, rate of reactivity, timescale for exposure to achieve 

sufficient labeling for detection, and some offer intrinsic opportunities for enrichment prior to 
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analysis.[28]  Danger lies in perturbation of native structure that can occur with even a single 

modification depending on the structural sensitivity of the site labeled.[29, 30]  Therefore, ideal 

conditions would include a relatively small tag and a gentle exposure to achieve only a few 

labeling events per molecule.  Additionally, a rapid exposure is critical to avoid labeling of 

perturbed structures that may result due to oxidation-induced unfolding.[31]  While there are a 

number of covalent labeling reagents that target specific types of amino acids,[28] the hydroxyl 

radical (•OH) is much less selective, smaller than a water molecule, highly reactive, and can be 

generated by a variety of methods.  While all of the techniques discussed below share the same 

reactive species, they vary significantly in nature of •OH generation, the flux of •OH achievable, 

the reaction timescale, and the experimental equipment required.   

1.5 Oxidative Mapping of Proteins with Hydroxyl Radicals 

The hydroxyl radical that wreaks havoc in vivo can provide structural insight when 

harnessed in vitro for controlled oxidation of target proteins.   The rapidly evolving field of 

oxidative surface mapping aims to combine computational protein structure prediction tools with 

experimental MS data, with the goal of gaining insight about the dynamic SASA values 

experienced by native solution-phase proteins.[32, 33]  Hydroxyl radicals have been used to 

probe the SASA in both conformational and liganded variants of single proteins,[34, 35] folding 

intermediates,[36] and protein complexes.[37-39]  The lifetime of the highly reactive •OH 

molecule is on the order of nanoseconds,[40] fostering a rapid reaction with susceptible sites 

within proteins.  The reaction of electrogenerated •OH with proteins passing over the electrode 

surfacedepend on a few physical parameters: the flux or concentration of •OH generated, the 
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mean free path of •OH, and the rate of its diffusion away from the electrode surface into the bulk 

solution.  While the •OH concentration might be indirectly measureable by a quenching or 

trapping assay, the latter two parameters are likely impacted by the rapid flow rate and solution 

turbulence inside the electrochemical flow chamber.  The electrophilic •OH targets a variety of 

amino acids, with the electron-rich aromatic and sulfur-containing residues being most reactive, 

followed by aliphatic, charged, and alcohol sidechains.[29]  These •OH-mediated modifications 

can occur by one of two mechanisms: the primary pathway involves electrophilic addition of 

•OH to an aromatic ring, while the less common reaction involves hydrogen abstraction from a 

sidechain by •OH, leaving a radical site that is effectively oxidized by molecular oxygen 

(O2).[41, 42]  A variety of methods exist for generating •OH from hydrogen peroxide, including 

photolysis by continuous ultraviolet (UV) light[43] or pulsed UV laser [44, 45], and iron-

catalyzed generation with Fenton’s reagent.[46]  The latter has been used with electrochemistry 

to mimic drug metabolism [47] and for herbicidal degradation.[48]  One caveat to these methods 

of •OH generation is that methionine has been shown to undergo secondary oxidation 

irrespective of solvent accessibility in the presence of peroxides.[46]  Other methods include 

radiolysis of water by controlled exposure to X-rays [49, 50] or gamma rays [35, 51, 52] in the 

presence of catalase to decompose peroxide and reportedly reclaim the utility of oxidized 

methionine.  Finally, the electrochemistry critical to electrospray ionization has been utilized at 

higher voltages and in the presence of an oxygen sheath gas to induce indirect oxidation of 

proteins as a “radical probe” of protein structure.[53-56]  Oxidative surface mapping continues to 

emerge as a widely desirable technique for protein inquiry, and could benefit from an approach 

that improves accessibility to the average researcher without excessive cost or danger.  
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1.6 Motivation for Development of Electrochemical Protein Oxidation Method 

Electrochemistry has been explored for decades as a tool for protein interrogation, since 

redox reactions can be achieved under physiologically relevant conditions that promote native 

structure.  Early electrochemical studies on proteins confirmed the electroactive nature of 

cysteine, tyrosine, tryptophan, methionine, and histidine residues oxidized directly by electron 

transfer reactions at graphite electrodes,[57, 58] but were not focused on interrogation of higher 

order protein structure.  Metal ions coordinated in the prosthetic groups of redox proteins, such 

as hemoglobin, catalase, or myriad cytochromes, are susceptible to direct oxidation.[59, 60]  

Metalloproteins can be interrogated for the location of their metal binding pockets by metal-

catalyzed cleavage of peroxides to yield irreversible oxidation of nearby amino acid 

residues.[61]  Similarly, electrochemical generation of reactive oxygen species generated during 

solution electrolysis can modify amino acids indirectly.  For example, peroxynitrite can 

selectively nitrate tyrosine residues,[62-64] while •OH can damage a wide range of 

biomolecules.[65, 66]  As mentioned previously, •OH has the capacity to attack  proteins by 

addition to aromatic ring systems or abstraction of hydrogens from aliphatic sidechains.[41, 42]  

Progression down either reaction pathway generally results in a discrete mass shift due to 

irreversible oxidation.  While electroactive residues can be oxidized both by direct 

(heterogeneous) electron transfer and indirectly mediated mechanisms, non-electroactive amino 

acids are presumably limited to indirect oxidation.   

Electrochemical protein oxidation is accomplished exclusively via direct electron transfer 

with most electrodes, but diamond electrodes are gaining popularity due to their capacity for 

generating •OH from the oxidation of water.[67]  Other advantages of these electrodes include a 
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wide potential range, with an inert surface and markedly reduced adsorption profile relative to 

other electrodes.[68]  Production of •OH is facilitated by the semiconductor qualities obtained 

through doping of diamond film with a trivalent atom such as boron to increase positive charge 

carrying capacity.[68]  Application of a sufficiently anodic voltage on a boron-doped diamond 

(BDD) working electrode causes electrons to be pulled from water to produce hydroxyl radicals 

by the following mechanism:  BDD + H2O � BDD(•OH) + e- + H+.[67]  Therefore, the only 

reagent necessary for generating •OH with the commercially available BDD electrode is an inert 

electrolyte to facilitate the flow of current and achievement of electrolytic voltages.  While the 

direct oxidation route may not be eliminated completely, the diffusion of •OH from the electrode 

surface into solution during electrolysis appears to be the primary oxidation pathway.[69]  

Interestingly, the potassium sulfate electrolyte originally chosen for its ionic strength, low 

ultraviolet absorbance, inorganic character and thus •OH inertness, may actually prove to be 

electrochemically reactive.  If this latter aspect is true, then the electrolyte could contribute 

oxidizing species to the oxidant pool via its direct oxidation to a sulfate radical anion that can 

similarly oxidize amino acids.[70, 71]  While studies on small molecules have yielded important 

results, determining the sites of oxidation within oxidized proteins is proving to be a more 

difficult task to unravel.  

1.7 Identification of Oxidized Sites from Mass Spectral Data 

Oxidized peptides can be formed in a staggering variety of combinations due to the sheer 

number of mass shifts possible for any given peptide.  The hydroxyl radical is a low selectivity 

probe that targets a wide breadth of amino acids, some with up to five known oxidized 
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variants.[72]  Therefore, even a single short peptide could theoretically become a complex 

mixture of peptides distributed from lightly to heavily oxidized if provided sufficient exposure to 

oxidizing conditions.  While the mass spectrometer has the ability to measure each unique 

combination if given the opportunity, those spectra can only be matched with their oxidized 

peptide identities if they can be accurately interpreted by software capable of exploring the 

possible variants, which is the focus of Chapter 5.   

Another confounding factor is that uniquely modified peptides may be present in 

remarkably low abundance, so dynamic range is a critical challenge to be surmounted.  Most 

oxidative mapping experiments are followed by reversed-phase separation of tryptic peptides 

since oxidation (when it involves incorporation of an oxygen atom) effectively decreases 

hydrophobicity, thus predictably reducing peptide retention time [32] as well as ionization 

efficiency.[73]  Because oxidation can also result in the loss of some charged functional groups 

(no incorporation of oxygen), net charge was exploited for increasing the overall peptide 

separation capacity.  The use of an abbreviated MudPIT [74, 75] chromatographic strategy 

(detailed in Chapter 2) was undertaken with the goal of increasing dynamic range to thoroughly 

interrogate oxidized samples.  Additionally, the extended analytical timeframe increases overall 

sampling and thus the potential for spectral redundancy to increase confidence in identifications.   

1.8 Scope of Dissertation Research Project  

In 2005, a new BDD electrode was being evaluated for a completely separate research 

project in our Mass Spectrometry group at Oak Ridge National Laboratory, namely 

electrochemical oxidation of small molecules (as performed by then post-doctoral researcher 
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Vilmos Kertesz).  Based on the electrochemical attributes described above, the BDD electrode 

appeared to be an attractive candidate for the development of a novel oxidative protein surface 

mapping approach that negated the use of harsh reagents or hazardous equipment.  While our 

initial work on protein surface mapping with hydroxyl radical chemistry had been focused on 

photolysis of hydrogen peroxide, we recognized the potential of electrochemical protein 

oxidation followed by MS detection at the intact protein and peptide levels.  The results of this 

research formed the basis of this dissertation, and are presented here.  Chapter 3 contains the 

demonstration of an electrochemical protein oxidation protocol published in 2008,[76] with a 

reporting of the superior BDD performance relative to a porous flow through (PFT) graphite 

electrode.  The oxidation of three model proteins in both non-native and physiologically relevant 

conditions was reported along with recovery issues posed primarily by the PFT electrode.  

Chapter 4 focuses on improvements to the electrochemical oxidation protocol that facilitated 

more rapid exposure of the same model proteins to oxidizing conditions, with the goal of 

minimizing protein-electrode interactions that would allow direct oxidation and possibly surface 

adsorption.  In these two chapters, InsPecT search software [77] was used to mine MS data for 

more than 40 possible oxidative modifications,[72] but over time, realization of the difficulties in 

identifying oxidation sites spurred the testing ByOnic [78] software with the goal of obtaining a 

set of peptide match results verified by two different software searches.  An overview of how 

each software works to identify oxidized peptides is presented in Chapter 2, followed by a 

comparison of electrochemically oxidized sites identified by InsPecT and ByOnic software 

packages in Chapter 5.   
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Preliminary results showed sites oxidized in native conditions were in reasonable 

agreement with SASA values calculated from static X-ray or NMR structures.  However, 

oxidation that had not been induced electrochemically became evident in more sensitive 

measurements of control samples, which presented a formidable challenge to interpretation of 

the search results.  Nevertheless, solution-phase proteins are not static, but rather an ensemble of 

highly dynamic macromolecules that sample a wide variety of subtly different conformations.  

Comparison of covalently mass-tagged sites detected by MS to SASA values calculated from 

static structures could generate misleading conclusions, either about the accuracy of the structure 

or the effectiveness of the labeling strategy employed.   Therefore, Chapter 5 includes some 

discussion of oxidative search results compared with SASA values obtained through MD 

simulations.  Regardless of the final site-specific interpretation for these particular experimental 

conditions, development of this methodology has laid the foundation for future improvements 

that could feasibly result in a high-throughput pipeline for structural proteomics.  Furthermore, 

this work imparts valuable technical detail about electrochemical protein oxidation to a research 

community that has been interested in such topics for more than 50 years.  
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2. Experimental Platform for Oxidative Mapping with Electrochemistry  

The experimental protocols described below were devised with the goal of oxidizing model 

proteins with •OH generated by electrochemistry.  This novel approach for oxidative mapping of 

proteins was developed to increase the accessibility and throughput of this technique.  

Adjustment of experimental parameters (current, flow rate, electrolyte and protein 

concentrations) allowed control over the resulting oxidation level as measured by intact protein 

MS.  The methods described below were chosen to enhance an experimental pipeline for the 

rapid oxidation of proteins, followed by sensitive detection of oxidized peptides to maximize 

identification of solvent accessible amino acids within native solution-phase protein structures.  

2.1 Materials 

All proteins, peptides, acetic acid (AA), dithiothreitol (DTT), and ammonium acetate 

were obtained from Sigma-Aldrich (St. Louis, MO) at the highest purity available.  All solvents 

(water, acetonitrile, methanol) were purchased from Burdick & Jackson (Muskegee, MI).  

Formic acid (FA) and potassium sulfate were obtained from EMD Chemicals (Darmstadt, 

Germany).  Sequencing-grade trypsin from Promega (Madison, WI) was used for proteolytic 

digestions.  Proteins and peptides were extracted from salt solutions with C4 or C18 reverse-phase 

standard bed ZipTips, respectively, acquired from Millipore (Billerica, MA).    

2.1.1 Secondary Oxidation Quenchers  

Small molecules and redox proteins have been shown to help circumvent problematic 

oxidation events for established surface mapping techniques.  The over-exposure to •OH after 
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the initial oxidation may cause partially unfolded conformations to be labeled during the 

experiment.  Moderately reactive radical scavengers like free glutamate have been used to better 

control the oxidant exposure.[44]  While seemingly sensible, this measure was not taken to avoid 

possible complications due to electrochemical adsorption.  Also, •OH may self-quench, 

coalescing into hydrogen peroxide that can oxidize methionine irrespective of SASA value.  

Inclusion of catalase tetramer in reaction solutions to decompose peroxide has been shown to 

recoup methionine utility in oxidative studies.[35]  This factor was also omitted not only to 

minimize a potential adsorption and/or oxidant flux problem, but also because catalase has a 

metal prosthetic group that could be directly oxidized.  Peptidyl hydroperoxides formed during 

oxidation of aliphatic sidechains can also oxidize methionine, so methionine amide can be used 

to dodge this source of uncontrolled protein oxidation.[79]  Again, concern over adsorption 

trumped these issues until the technique was established.  Of more concern was the background 

oxidation discussed in Chapter 4, so the use of DTT as an antioxidant was tested in some control 

experiments to test whether this phenomenon might be due to unexpected oxidant production 

during the digestion process.  Nitrogen gas was also used in these controls to displace oxygen in 

the head space atop the reaction solution.   

2.2 Electrochemistry 

Experiments were initially conducted with two different types of electrodes that utilized two 

different electrochemical cells.  Later studies employed only the BDD electrode in a flow-by 

electrochemical cell, with minor changes to the experimental setup involving a new potentiostat 

and use of a UV detector.  Electrochemical details are contained in the next five sections. 
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2.2.1 Electrode Descriptions 
 

The porous flow-through (PFT) graphite electrode was housed inside a three-electrode 

electrochemical cell (Model 5030, ESA, Inc., Chelmsford, MA).  As described previously by 

Van Berkel et al,[80] the PFT working electrode was composed of porous graphitic carbon 0.508 

mm diameter x 0.36 mm thick (40% total porosity, 99% open porosity with a nominal pore size 

of 0.8 µm, and 29 nL electrode volume); the inner dimensions of the electrode assembly 

provided a nominal swept volume of 100 nL and a calculated surface area of 170 mm2.   

The boron-doped diamond (BDD) electrode is a flat disc with 220 mm2 surface area, of 

which roughly 30 mm2 was accessible through an oval window in a thin Teflon® gasket adjacent 

to the electrode surface (Fig. 2-1).  The BDD working electrode was seated along with stainless 

steel counter/auxiliary and silver chloride (Ag/AgCl) reference electrodes inside a three-

electrode electrochemical flow-by cell (Model 5041, ESA, Inc.) shown in Fig. 2-1A.  Depending 

on which gasket thickness (25 or 50 µm) was used to separate the working and counter 

electrodes, the contact volume inside the flow cell was roughly 1-2 microliters.  

2.2.2 Operation of Electrochemical Cell for Protein Oxidation 
 

A CHI900 scanning electrochemical microscope (CH Instruments, Austin, TX) or a 

WaveNow potentiostat (Pine Instruments, Raleigh, NC) was used for anodic operation of the 

working electrode.  Early experiments utilized an experimental mode of controlled voltage, or 

chronoamperometry, which measures the current (in microamperes, µA) applied over time to 

maintain a positive voltage (in volts, V).  Later experiments utilized chronopotentiometry to 

measure the fluctuations in potential (voltage) that occurred during the sustained application of a  
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A B

C D

 

Figure 2-1: Boron-doped diamond working electrode configuration inside electrochemical flow-by cell.  
(A) Interior of electrochemical flow cell, with the BDD working electrode surface showing through the gasket 
window. (B) Schematic of the 50 µm gasket separating working and counter electrodes, with dimensions in red font 
used for calculating the flow chamber volume noted in black. (C and D) BDD contact assembly, showing small pin 
inside O-ring that contacts gold surface on back side of BDD electrode disc.  The longer pin at the end of the 
assembly is connected to the potentiostat during use of the electrochemical cell (taken from ESA, Inc. materials) 
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particular current.  The reason for this change is that •OH production is presumably governed by 

the current-dependent Nernst equation,[67] and that voltage readings can rise concomitant with 

insulation of the electrode surface for a set current.  Therefore, maintaining a set voltage could 

result in a reduced •OH production over time.       

2.2.3 Cyclic Voltammetry Experiments 
 

Cyclic voltammetry (CV) is commonly used to query a particular analyte for the 

electrochemical potentials at which it becomes oxidized or reduced.  In these experiments, the 

range of potentials from +1.0 V to -1.0 V was scanned at a rate of 100 mV/s, with three cycles 

used in each experiment.  The resulting data plots current versus voltage, allowing visualization 

of the current level required to hit the set voltage endpoints.  If a detectable change of the 

electrode surface had occurred during a protein oxidation experiment, comparison of the CV 

plots resulting from scans performed before (the pre-CV) and after (the post-CV) the protein 

experiment could provide two pieces of critical information.  The first was whether the current 

level at the voltage endpoints had changed in the first cycle, and the second was whether the 

change was resolved by subsequent cycles.  The first scenario suggests some level of protein 

adsorption had taken place.  The second situation provided a clue about whether the adsorption 

was reversible or irreversible.    

2.2.4 Open Circuit Potential Readings 
 

The open circuit voltage (OCV) reading can be elicited from the electrochemical 

assembly once the potentiostat has been properly connected to the working, counter, and 

reference electrodes. The OCV reading, also known as the resting potential, measures the resting 
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voltage between the anode and cathode in the circuit without an electrical load from the 

potentiostat.  This value can provide feedback on the resistance (or inversely the conductivity) 

between the electrodes.  This resistance is due to a number of factors, including the electrode 

surface areas exposed, the distance between the electrodes, and the ionic strength of the solution 

(also dielectric constant of the solvent) separating them.  An OCV value close to zero would 

imply low resistance and thus high conductivity (possibility of “short-circuiting” if electrode is 

activated), with the opposite true for large absolute values.  An increase in the absolute value 

may indicate a degree of insulation, or a value closer to zero suggests presence of an electrolyte 

species contamination.   

2.2.5 Instrument Configuration 
 

For experiments conducted off-line from MS, a protein solution was loaded into a 250 µL 

or 1 mL loop connected to a six-port injection valve (Model 7125, Rheodyne, Rohnert Park, CA) 

placed in-line between a Switchos HPLC pump (Dionex, Sunnyvale, CA) and the flow-by 

electrochemical cell.  All components were connected by 0.5 µm polyetheretherketone (PEEK) 

tubing (Upchurch Scientific, Oak Harbor, WA).   Some experiments involved use of an Ultimate 

(Dionex, Sunnyvale, CA) UV detector placed after the electrochemical cell to monitor  

absorption at 205 nm and 280 nm wavelengths, and Xcalibur software was used to 

simultaneously record the signal from each wavelength.  The 190-nL capacity of the ULT-UZ-

M10 flow cell accommodated flow rates of 10-100 µL/min.   

On-line experiments were performed using a similar configuration to that listed above, 

except that a stainless steel union was placed in-line between the electrochemical cell and the 
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floating electrospray ionization (ESI) source.  This permitted grounding of the ESI source 

housing to prevent current feedback to the electrochemical electronics through the conductive 

solution.   Conductivities for electrolyte solutions were calculated by an online tool available at 

http://www.lenntech.com/calculators.htm. 

2.3 Liquid Chromatography and Mass Spectrometry  

Liquid chromatography (LC) refers to the separation of solution-phase constituents 

dissolved in a mobile based on their differential affinity for a stationary phase material.  The 

most common type of LC is reversed-phase (RP), wherein saturated hydrocarbon chains are 

tethered to resin beads that are packed inside a column to facilitate separation of components by 

their hydrophobic character.  The high pressure utilized by pumps in high-performance LC 

(HPLC) is critical for performing separations “on-line” with mass spectrometry (MS) because it 

counters the high back-pressure that can accumulate with tightly packed columns.  This direct 

coupling of LC-MS instrumentation is highly compatible because the LC mobile phase contains 

elements necessary for both electrospray ionization (ESI) (volatile solvents, acidic electrolyte) 

and MS detection (preformed ions in primarily salt-free solution).  This technical union allows a 

more sensitive measurement relative to the simultaneous assessment that occurs with direct 

infusion, because MS detection is limited by dynamic range.  This means that the ability to detect 

the most miniscule species is governed by its relation the most abundant ion signal also present 

at that point in time.  Therefore, the advantage of LC is reduction in the peptide complexity at 

any given point over the LC timeframe, which effectively increases the dynamic range to allow 

detection of lower abundance species.[81] 
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Typically, peptide LC is performed on-line with a high-throughput instrument like a 

linear quadrupole [82] or three-dimensional (Paul) ion trap.[83]  The high duty cycle of these 

instruments fosters a rich MS data set, usually with options for data-dependent acquisition of 

tandem mass spectra (MS/MS).  These spectra provide peptide sequence information via 

collision-induced dissociation (CID) of an isolated parent ion within a narrow mass-to-charge 

(m/z) window.  While only some of the peptide LC-MS experiments utilized an Orbitrap for 

scans of the full mass range (MS1) normally from 400 to 1700 m/z, all of them employed a 

linear trapping quadrupole (LTQ) for the MS/MS resulting from fragmentation of an isolated 

parent ion detected in the MS1.  The Orbitrap mode for MS1 scanning requires more time (~1 

sec) than the LTQ (~200 ms), with the advantage of exceptional mass accuracy (< 5 ppm) to 

foster delineation between species that would appear isobaric (same mass) on a lower 

performance instrument.[84]  Another positive feature is its high resolution (30,000 full-width at 

half-maximum (30K FWHM) or better) to resolve peptides and notably proteins with higher 

charge states.  In contrast, the resolution of the LTQ is usually limited such that peptides of 

charge 2+ and 3+ are not clearly distinguished, so many search software algorithms routinely 

consider both charge states when computing a neutral parent ion mass.  This capacity for 

resolving highly charged biomolecules is shared by the Fourier transform ion cyclotron 

resonance (FTICR) mass spectrometer (Fig. 2-2), whose typically lower throughput is offset by 

its advantages of excellent mass accuracy (< 5 ppm), large dynamic range (10,000:1), high 

resolving power (often more than 100K FWHM), and wide mass-to-charge range (from <100 to 

2500 m/z).[85]   
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Figure 2-2:  Fourier transform ion cyclotron resonance (FTICR) mass spectrometer outfitted with a 9.4-Tesla 
actively shielded magnet and equipped with Z-spray electrospray ionization (ESI) source.   
The inset schematic depicts the transmission path for ions, which are preformed in acidic electrospray solvent and 
injected for spray desolvation at the ESI ion source.  Ions are accumulated in the hexapole for a user-defined 
duration, then shuttled to the analyzer cell inside the magnet which, along with an activation pulse, cause the ion 
packets to coherently cycle at a frequencies dependent on their mass-to-charge values.   
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2.3.1 Intact Protein Mass Spectrometry 

Intact proteins were measured by MS to evaluate the extent of oxidation resulting from 

electrochemical oxidation.  After extraction from the non-MS-friendly electrolyte solutions with 

a C4 standard bed ZipTip (Millipore, Billerica, MA), eluted protein solutions were then prepared 

for direct infusion in ACN/H2O/FA (50/50/0.1, v/v/v).  Electrospray-ready samples were infused 

at 2.5 µL/min by syringe pump (Harvard Apparatus, Holliston, MA) through PEEK tubing 

directly into the ESI source of a FTICR mass spectrometer (Varian Inc., Palo Alto, CA) outfitted 

with a 9.4 Tesla actively-shielded superconducting magnet (Cryomagnetics Inc., Oak Ridge, 

TN).  Time domain ion signals were acquired using 1024K data points, averaged over 5-50 

scans, and converted by fast Fourier transform (FFT) to the mass-to-charge (m/z) domain with 

application of a Hann apodization window using Omega software (Varian, Palo Alto, CA).  On-

line electrochemical experiments were performed in chromatogram mode by acquiring single 

full-scan 1024K transients without signal averaging. 

Oxidation has been shown to occur at the tip of corroded ESI sources resulting in corona 

discharge (IESI  > 1 µA).[86]  However, this process was not observed (IESI < 50 nA).  Control 

experiments were conducted by passing the protein through the inactive electrochemical cell and 

directly into the ESI source of the FTICR-MS.   The resulting mass spectra did not reveal 

oxidation of the intact native protein mass, but some of the commercially available proteins did 

show evidence of low-abundance satellite peaks, which is discussed in Section 4.7. 
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2.3.2 Proteolytic Digestion 
 

In order to analyze electrochemically oxidized proteins at the level of individual amino 

acids, it was necessary to cleave these large biomolecules into more tractable units measurable 

by MS.  An aliquot of extracted protein was taken for measurement of oxidation level by direct 

infusion MS, while the remaining eluant was subjected to proteolysis in a total volume of 250 

µL.  An aqueous-organic digestion protocol [87] was used to digest small quantities of protein 

rapidly (one hour, with additional time for disulfide reduction) with the benefit of loading 

peptides for LC-MS immediately after proteolysis.  This transition did not require a peptide 

extraction step after the proteolysis because sticky chaotropic salts (guanidine, urea) that are used 

to denature protein in other protocols were lacking from the reaction solution.  However, the low 

concentration of trypsin (~250 ng/100 µL) was still present, which may have contributed to 

peptide bias (discussed in Chapters 4 and 5) due to occupation of binding sites in the 

chromatographic resins used.  The extracted protein was calculated roughly based on maximum 

extraction values (~3-5 µg bound each time) reported by the manufacturer, since absorbance at 

280 nm was not useful for ubiquitin (no Trp) or oxidized proteins in general since Trp oxidation 

lowers its UV absorbance.   

For the proteolytic digestions, 50 µL of pure acetonitrile (ACN) containing eluted protein 

from 3-4 ZipTip extractions was added to 20 µL of 50 mM Tris-HCl/10 mM CaCl2.  Next, 

modified trypsin reconstituted in the Tris-CaCl2 solution was added in roughly 1:20 weight ratio 

to extracted protein, followed by addition of ACN to 60-80% of the total 250 µL volume.  

Digestions proceeded at 37 ºC with gentle mixing at 300 rpm in a Thermomixer® R (Eppendorf 
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AG, Hamburg, Germany), followed by a one hour reduction of disulfide-containing proteins in 

10 mM dithiothreitol (DTT) at 37ºC.  Trypsin was inactivated by addition of 2 µL formic acid 

before removing the organic solvent by lyophilization (Savant SpeedVac, Thermo Scientific, 

Waltham, MA).  Samples were dried from 250 µL to 20 µL, and then brought to 100 µL with 

HPLC-grade water to prepare them for binding C18 reversed-phase material.  Aliquots were 

allotted as follows: 10 µL for C18 peptide extraction followed by FTICR-MS analysis, and 90 µL 

available for up to three LC-MS/MS runs loading 25-µL for each experiment.   

2.3.3 Peptide LC-MS/MS Methods 
 

Peptide level MS analysis was necessary to identify oxidized peptides via mass-shifted 

parent ions, along with sequence information gained by the acquisition of MS/MS spectra.  

However, any MS measurement is limited by the dynamic range of abundances for components 

of the solution being measured, so sensitive detection of unique and/or less abundant constituents 

is enhanced by reducing the complexity at any given point in the analytical timeframe.  Peptides 

were separated prior to entering the mass spectrometer by either one-dimensional (1D) C18 

reversed-phase (RP) or two-dimensional (2D) “mini-MudPIT” strategy.  MudPIT [75] stands for 

Multidimensional Protein Identification Technology, which incorporates a split-phase back 

column with strong cation exchange (SCX) resin flanked by RP resin in both the back column 

and the analytical front column.  Proteolytic peptides were loaded onto a 100 µm inner diameter 

(ID) fused silica back column packed with appropriate resins.  The back column was then joined 

by a union filter assembly (UpChurch Scientific, Oak Harbor, WA) to the front column, which 
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consisted of a 100 µm ID fused silica PicoTip emitter (New Objective, Woburn, MA) packed 

with 15 cm Aqua C18 reversed-phase resin (Phenomenex, Torrance, CA).  

For 1D analysis, high pressure liquid chromatography (HPLC) was employed over a 60- 

or 120-min gradient from 100% solvent A (ACN/H2O/FA (5/95/0.1, v/v/v) to 100% solvent B 

(ACN/H2O/FA (70/30/0.1, v/v/v) with later experiments run over 120-min.  Eluting peptides 

were injected on-line by nano-ESI into the heated capillary of either a LTQ XL or LTQ-Orbitrap 

mass spectrometer (Thermo Scientific, Waltham, MA).  Peptide parent masses were measured in 

the Orbitrap at 30K resolution, while sequence information was obtained by MS/MS in data-

dependent mode in the LTQ with dynamic exclusion enabled to add parent ion masses to an 

exclusion list (for 30 sec duration) if they were sampled twice within a 30 sec span.  For 2D 

analysis, four gradients were run for a total of 5.5 hours instrument time.  The last three gradients 

began with a short pulse of ammonium acetate (25%, 50%, 100% of 500 mM NH4OAc), 

followed by a wash with 100% solvent A before starting the reversed-phase gradient. 

2.4 Informatics and Data Mining 

Interpretation of mass spectral fragmentation patterns by various search software 

packages tends to fall somewhere on a continuum (Fig. 2-3) from database protein sequence 

oriented to de novo extrapolation of peptide sequence directly from spectra without reliance on a 

database.  Hybrid approaches incorporate features of each.  Both InsPecT [77] and ByOnic [78] 

use hybrid strategies to accomplish database filtration, or whittling a large list of possible peptide 

matches down to those candidate sequences that are most likely to match the spectrum.   
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2.4.1 DBDigger Software 

DBDigger [88] is similar to SEQUEST [89] in its strict reliance on a database for spectral 

interpretation.  Peptide tandem mass spectra (MS/MS) were searched using DBDigger [88] 

software equipped with the MASPIC [90] scoring algorithm to evaluate sequence coverage of 

the normal, unoxidized protein against a forward-reversed concatenated database.  This database 

contained the aforementioned model proteins plus commonly sampled contaminant proteins such 

as keratins from human skin, as well as bogus proteins that should not be present, along with the 

reversal of every database entry for a total of 212 sequences.  This software was routinely used 

for non-PTM proteome searches in our lab, but was not designed to handle the large number of 

possible mass shifts that can occur due to oxidative modification.  For this reason, other software 

packages created for tackling this type of challenge were employed.   

 

●DBDigger  

Figure 2-3: Software currently available for searching MS/MS data is displayed on a continuum from total 
reliance on a database for spectral interpretation to pure de novo sequencing that does not access a database.   
Taken from reference [78] and modified to include DBDigger [88] software. 
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2.4.2 InsPecT Software 

Mass spectral data were initially searched using InsPecT [77] software for more than forty 

oxidative modifications (Table 2-1).  InsPecT does not explicitly limit any type or number of 

post-translational modification (PTM) mass shifts to be considered, which provides advantages 

for detecting oxidation-induced modifications.  Search input parameters for reported 

identifications were limited to a single modification per peptide to prohibit spurious matches of 

multiple mass shifts on a single residue and reduce overall false positives.  Searches of MS/MS 

data were initially conducted against a subdatabase containing six proteins (horse myoglobin, 

chicken lysozyme, porcine trypsin, bovine ubiquitin, bovine β-lactoglobulin A, and bovine α-

hemoglobin), along with their shuffled sequences.  Oxidized peptide matches were filtered by p-

value ≤ 0.01 and MQScore (liberal = 1.0; conservative = 3.5). 

InsPecT relies on local de novo sequencing of fragment ion peak patterns to produce three-

letter tags used that are used to filter candidate oxidized peptides from the database.  While the 

first study reported in Chapter 3 utilized a relatively small database of 12 sequences total (6 

forward plus 6 shuffled) for InsPecT searches, the software curators recommended using a 

database at least one megabyte in size to reduce false positives among candidate peptides.  This 

newer database contained more than 500 forward sequences, which comprised the model and 

contaminant proteins along with bogus microbial proteins that should not be present, and was 

concatenated with the same number of bogus reverse/shuffled sequences.  The scores associated 

with matches to bogus peptide sequences provide a mechanism for setting a filter level that 

should reduce false positives in forward matches.  However, when all oxidative modifications 

(Table 2-1) are considered on this larger database, the number of possible oxidized  
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Table 2-1: Mass Shifts of Oxidative Modifications Searched with Two Hybrid Software Packages 
 

Residues
C +31.99, +47.98, -15.98

M +15.99, +31.99, +33.97, -32.01, -48.00

W +3.99, +15.99, +19.99, +31.99, +47.98

F, Y +15.99, +31.99, +47.98

H +4.98, +15.99, -10.03, -22.03, -23.02

R +13.98, +15.99, -43.05

I, L, V, K, Q +13.98, +15.99

S, T +15.99, -2.02

P +13.98, +15.99, +31.99, -30.01

E +13.98, +15.99, -30.01

D +15.99, -30.01

N, A +15.99

Modifications (Da)

 

 

Figure 2-4:  Chemical structures for the five possible histidine oxidation mass shifts highlighted in Table 2-1. 
Structures taken from reference [72]; additional oxidized chemical structures are available in the Appendix 
materials; see review article for more detailed information. 
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peptide variants is exceedingly vast and should be investigated by a combinatorial expert to 

better understand the impact on algorithmic processing during software searches.  Consequently, 

some peptides from forward protein sequences that are clearly not present in the peptide mixture 

generate sufficiently high scores to pass filter levels, which provides a sense of the challenge in 

accurately determining false positives.    

2.4.3 ByOnic Software 

ByOnic [78, 91] emerged on the oxidative mapping scene in 2008 with a oxidation search 

module [92] that will eventually be available online at http://bio.parc.xerox.com.  In contrast to 

InsPecT, ByOnic computes spectrally-derived “lookup peak” pairs and compares these masses 

against a much smaller forward-only database to similarly form a candidate list from available 

sequences.  Both software packages can consider the liberal set of oxidized mass shifts (Table 2-

1) that represent oxidation events such as hydroxylation (+15.99 or +16 Da), but only InsPecT 

currently allows the user flexibility in defining input parameters such as number of modifications 

allowed per peptide (limit of one was recommended by the software curator) or reducing the 

breadth of mass shifts considered.  Furthermore, a ByOnic oxidative search is more liberal by 

virtue of placing minimal limitations on the number of modifications per peptide and considering 

additional mass shifts such as deamidation and sodiation.  While it was expected that the two 

searches would reveal different results based on these aspects alone, the method used by each 

software to filter peptide matches placed unavoidable discrimination on the outcome. 
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2.5 Metrics of MS Search Software Packages 

InsPecT first assigns match quality scores (MQScores) that take into account a variety of 

spectral characteristics (percentage of fragment ions present, peak intensities, signal-to-noise 

ratio, etc.) to evaluate the correctness of fit to a particular amino acid sequence.  This peptide can 

belong either to a real forward protein sequence or a bogus reversed/shuffled sequence.  Next, 

the resulting matches are assigned p-values based on how their composite scores compare 

against the distribution of scores for bogus matches.  The p-value is reportedly akin to a false 

discovery rate (FDR),[93] such that filtering on a p-value ≤ 0.01 would correlate to roughly a 1% 

FDR.  While this is the standard operating procedure for limited PTM searches on large 

proteomic datasets, it is unclear whether the same FDR would stand when considering many 

more PTMs on smaller datasets.  A simple thought experiment suggests that consideration of 

many possible mass shifts on a large number of protein sequences could produce a sizable set of 

spectra matching to bogus modified sequences by chance.  If so, this would cause sufficiently 

low p-values to be assigned only to the very best spectra while lesser quality yet informative 

spectra are eliminated by the conservative p-value threshold.  Empirically, an MQScore of 3.5 or 

better tended to indicate a good fit with a majority of fragment ions supporting the mass shift(s), 

and these scores were typically associated with a p-value far below the 0.01 cutoff.  However, 

some matches that passed the p-value filter were associated with MQScores below 3.5, so the 

confidence level of these matches may be questionable.  Similarly, ByOnic search results were 

not provided the same rigorous p-value treatment, but were filtered by an empirically derived 

score cutoff of 380 that has been observed by the software curator to give a FDR of roughly 5%.  
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In contrast with the ~1% FDR for InsPecT results (with the aforementioned caveats), the ByOnic 

results were filtered more liberally and thus showed more plentiful oxidation matches for both 

the control and experimental data, a subset of which may likely be attributable to false positives. 

2.6 Protein Structure Evaluation  

Proteins oxidized by electrochemistry were analyzed for deviation from native structure 

primarily by the intact protein FTICR-MS, for the reasons described below.  Additionally, site-

specific oxidation events identified by both InsPecT and ByOnic were compared to SASA values 

calculated for either static or dynamic protein structures.  

2.6.1 Circular Dichroism Spectroscopy 

Circular dichroism (CD) spectra were acquired on a Jasco 810 spectrophotometer using 

1-mm path length quartz cuvette.  Anisotropy of a 250 µL solution ensemble was measured over 

the range of 190-250 nm.  Upon conversion of files to ASCII format, spectral data was submitted 

to the online tool DichroWeb [94] for analysis of secondary structure content.  Overlaid CD 

spectra were generated by Jasco software.  Due to evidence of adsorption posed by 

electrochemical experiments that likely altered protein concentration, this technique was not 

heavily relied upon due to its concentration dependence.[13]  Instead, the intact protein MS was 

utilized based on findings that structurally sound oxidation could be achieved and evaluated by 

this technique alone.[30]  
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2.6.2 Calculation of SASA from Crystal Structures and MD Simulation Results 
 

Oxidized peptide matches were filtered using empirical cutoffs for appropriate software-

specific parameters as discussed above (Section 2.4) and initially compared with SASA values 

calculated using GETAREA [95] using the 1.4 Å probe radius of water for X-ray and/or NMR 

structures of model proteins ubiquitin (1UBQ, 1D3Z), lysozyme (1AKI, 193L, 1E8L), and holo-

myoglobin (1WLA, 1AZI) from in the Protein Data Bank.[96]  Later studies employed an in-

house script executed by Visual Molecular Dynamics (VMD) software to calculate SASA values 

for individual amino acids in either static structures or across many structures generated by 

molecular dynamics (MD) simulations.  Three MD simulations were performed over a duration 

of 20 nanoseconds each in explicitly solvated conditions for the PDB structures 1UBQ 

(ubiquitin), 193L (lysozyme), and 1WLA (myoglobin).  Values for individual residue SASA 

(average, standard deviation, and maximum) at each 5 picosecond timestep over the duration 

were extracted using another in-house script. The “SASA factor” was calculated by first taking 

the average SASA for individual amino acid residues across the MD timestep structures and 

dividing this by the SASA value calculated for free amino acids that were each subjected to MD 

simulations for 500 ns in isolation.  This relative measurement of the surface area exposed by 

each residue in the protein structure relative to its unobstructed free form provides a basis for 

estimating the change in reactivity instigated by involvement in a protein structure.  Next, the 

relative SASA value was multiplied by the by the intrinsic free amino acid reactivity rate that 

was normalized against the most reactive residue present in the protein sequence.   
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2.6.3 Evaluation of Oxidation Site Solvent Accessibility by Molecular Dynamics 
 

Determination of solvent accessibility by any covalent probe approach is actually a 

measurement of the reactivity of the target amino acids.  Therefore, interpretation of 

experimental results can be convoluted by factors impacting the reactivity of susceptible sites.  

The intrinsic rate of amino acid oxidation by the hydroxyl radical reflects the reactivity of the 

free amino acid,[40] whereas only a fraction of the amino acid side chain is exposed to solvent 

from within the protein structure. Additionally, site-specific oxidation could be impacted by 

interference from highly reactive neighboring residues that could act as a kinetic sink for radical 

interception or otherwise inhibit reaction with an exposed reactive site.  In fact, leucine 

hydroxylation was shown to be inhibited as anion proximity increases in the primary 

sequence,[52] and it follows that spatial proximity of influential residue types in the secondary or 

tertiary structure could affect the modification of an otherwise exposed reactive site.  This may 

help explain why many solvent exposed, highly reactive residues are found in their native 

unoxidized form only.  This caveat is not accounted for within the SASA factor, as nearest 

neighbor spatial evaluation would require prior knowledge of the protein structure, which is 

contrary to the application goals for this methodology.   

The converse is also true, that seemingly buried residues occasionally turn up oxidized.  

This could be due to oxidation events occurring subsequent to oxidative-induced unfolding and 

may pose a more significant problem for less structurally resilient proteins.  If indeed the native 

structure is rapidly oxidized, residues which appear buried in the crystal structure may become 

oxidized if they experience transient solvent exposure during solution-phase dynamics within the 

reaction timeframe.  This possibility can be explored by running MD simulations and calculating 
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the SASA for individual amino acids at snapshot intervals over the duration to see whether 

sufficient exposure might occur.  The MD simulations performed for this study spanned 20 

nanoseconds, which is long enough to reveal dynamic features, although not sufficient for 

ascertaining conformational changes that occur on the microseconds to milliseconds timeframe.  

Statistics calculated from these simulations were used to formulate the aforementioned SASA 

factor that represents the relative exposure of each amino acid weighted by the intrinsic reactivity 

rate for each residue.  Both average (±standard deviation) and maximum SASA values were 

calculated for individual residues over thousands of transient structures sampled in silico during 

the MD duration.  These values were used to evaluate the site-specific oxidation results from 

searches of peptide tandem mass spectra discussed in Section 5.4.  One exception to this analysis 

is that methionine residues can be oxidized directly through electron transfer events catalyzed by 

electrode proximity, peptidyl hydroperoxides, or the presence of hydrogen peroxide formed by 

hydroxyl radical coalescence.  Therefore, no correlation of methionine oxidation with SASA 

values is expected since radical scavengers were not utilized for the aforementioned reasons.   
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3. Development of an Experimental Technique for Probing Higher Order Protein 

Structure with Electrochemical Oxidation and Mass Spectrometry 

 

This chapter is adapted from the following publication: 

McClintock, C., V. Kertesz, and R.L. Hettich.  Analytical Chemistry, 2008. 80(9): p. 3304-3317. 

 

This chapter presents the first demonstration of electrochemistry to generate covalent 

oxidative labels on intact proteins in both non-native and physiologically relevant solutions as a 

surface mapping probe of higher order protein structure.   Two different working electrode types 

were tested across a range of experimental parameters including voltage, flow rate, and solution 

electrolyte composition to affect the extent of oxidation on intact proteins, as measured both on-

line and off-line with mass spectrometry.  Oxidized proteins were collected off-line for 

proteolytic digestion followed by LC-MS/MS analysis.  Peptide MS/MS data were searched with 

the InsPecT scoring algorithm for forty-six oxidative mass shifts previously reported in the 

literature.  Preliminary data showed reasonable agreement between amino acid solvent 

accessibility and the resulting oxidation status of these residues in aqueous buffer, while more 

buried residues were found to be oxidized in non-native solution.  These results indicate that 

electrochemical oxidation using a boron-doped diamond electrode has the potential to become a 

useful and easily accessible tool for conducting oxidative surface mapping experiments. 
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3.1 Introduction  

In this study, two electrodes were selected for their previously characterized ability to 

generate oxidation products from biologically relevant analytes.   Each electrode operates with 

different mass transport kinetics to facilitate redox reactions at the electrode interface.   Porous 

flow-through (PFT) graphitic carbon electrodes have already been demonstrated to oxidize 

peptides and intact proteins.[97, 98]  Permentier et al developed a method for inducing on-line 

electrochemical protein proteolysis using PFT electrodes, wherein large peptides were generated 

by C-terminal cleavage at electroactive tyrosine and tryptophan residues.[98]   However, MS 

analysis showed a greater abundance of oxidized intact protein relative to peptides, sparking our 

interest in its potential ability to controllably oxidize solvent-exposed amino acids for structural 

studies.  Within the PFT electrode, solvent passes through microscopic pores to facilitate analyte 

mass transport to the electrode surface.  However, this route could exacerbate protein adsorption, 

which has been reported with other graphite electrodes,[99] possibly due to the adsorptive 

qualities of a few amino acids using various electrodes.[100-102]  The boron-doped diamond 

(BDD) electrode has been previously reported to suffer less adsorption of free L-cysteine relative 

to other carbon electrodes.[103]  The BDD electrode in our configuration is a smooth disc seated 

in an electrochemical flow-by cell, wherein a very thin layer of solvent flows over the working 

electrode surface.   BDD electrodes have been shown to oxidize organic material in wastewater, 

including benzene, phenol, and coumarin rings,[104-108] by attack of hydroxyl radicals 

generated at voltages sufficient for solution electrolysis.[109]  Evidence has been provided that 

both indirect and direct pathways contribute to oxidation using a BDD electrode, with the direct 

electron transfer mechanism decreasing at higher potentials.[69, 103]  While these studies 
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demonstrated the use of the BDD electrode for oxidizing small molecules, this electrode has not 

been evaluated with larger biomolecules, in particular proteins. 

Electrochemistry is harnessed herein to place a covalent mass tag on accessible and 

reactive amino acids within protein structures.  This is the first study that explores the capacity of 

electrochemistry to controllably oxidize intact model proteins for the purpose of mapping their 

surface residues.  This approach does not require the addition of chemical reagents or access to 

sophisticated equipment, and can be conducted under physiologically relevant conditions.  In 

addition to demonstrating the conditions for achieving electrochemical oxidation, some 

challenges of detecting oxidation products are discussed.   

3.2 Results 

The essential parameters to consider for electrochemical protein oxidation are applied 

voltage and duration, the current associated with the supplied voltage, and the solution 

conductivity.  The last factor is governed by the supporting electrolyte (type and concentration) 

and the dielectric constant of solvent.   Flow rate is also critical for controlling analyte residence 

time during which protein is exposed to the oxidizing environment.  Our initial experiments were 

conducted on-line so that intact protein mass spectra could be monitored for evidence of 

oxidation.  The advantage of this approach was real-time observation of the effects induced by 

modulating various parameters such as voltage or flow rate, so that oxidation benchmarks could 

be established.  However, efficient oxidation required flow rates unfavorable to maintain steady 

spray.  Also, oxidized protein could not be collected for subsequent peptide analysis.  Finally, the 

buffers that are generally accepted to promote native structure were necessarily excluded because 
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they suppress MS signal.  To circumvent these limitations, subsequent experiments were 

conducted off-line to enable a greater range of experimental variables to be tested.  In this case, 

fractions were collected upon exit from the electrochemical cell.  These fractions were desalted 

by solid phase extraction, followed by elution into electrospray solvent for both intact protein 

and peptide analysis.  For the purpose of succinct discussion, the solvents used herein fall into 

one of two categories: native and non-native.  While it is recognized that the truest “native” 

solution is cellular cytoplasm, a variety of physiologically relevant buffers are widely used for in 

vitro protein studies because they retain attributes necessary for proper protein folding.  In 

contrast, the “non-native” solutions presumably do not foster native structure due to low pH 

values and inclusion of organic solvent.     

Three model proteins with compact α-helical structures were chosen for experimentation: 

ubiquitin (8.6 kDa protein containing a single β-strand and lacking both cysteine and tryptophan 

residues), lysozyme (14.3 kDa protein tethered by four disulfide bonds), and apomyoglobin (16.9 

kDa protein lacking cysteine residues).   Ubiquitin is notoriously resistant to proteolysis in 

aqueous conditions, so a one-hour aqueous-organic tryptic digestion protocol was optimized for 

our studies to set the stage for high-throughput analysis.[87, 110]   Electrochemically oxidized 

proteins were generated by both electrodes, and tandem mass spectra (MS/MS) of proteolytic 

peptides were searched for fragment ions matching oxidation mass shifts by InsPecT software.  

Results for both intact protein oxidation and amino acid oxidation events detected from peptide 

fragmentation data are discussed below for each of the two working electrodes studied. 
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3.2.1 Results of Porous Flow-Through (PFT) Graphitic Carbon Electrode Experiments 

The large surface area afforded by the PFT electrode, in addition to its reported ability to 

oxidize a range of intact proteins,[97, 98] made it an attractive candidate for testing its surface 

mapping applicability.  The PFT electrode generated variable oxidation products for each of the 

three intact model proteins tested, although adsorption issues hindered optimal recovery of 

apomyoglobin and lysozyme.    

3.2.1.1 Oxidation of Intact Proteins 

Oxidation of intact ubiquitin could be achieved with a potential of +1.2V applied to the 

PFT electrode under “non-native” conditions (ACN/H2O/FA (50/50/1, v/v/v)) similar to those 

developed by Permentier et al [98] for on-line electrochemically-induced proteolysis.  The extent 

of oxidation was limited primarily to two +16 Da oxidation events, with the mono-oxidized 

species forming the base peak (Fig. 3-1).  As detailed in Table 3-1, the most common mass shift 

possible due to oxidation is +16 Da, followed by +14 Da and others limited to only a few 

residues.  Less common mass shifts occurring on only one or a few amino acids might be present 

in proportionally low abundance, but are difficult to resolve in the intact mass spectra when 

appearing near or between abundant peaks shifted by +16n Da (n is the number of oxygen 

additions).  Note the appearance of fragmented versions of ubiquitin with minor abundances in 

Fig. 3-1, as evidenced by m/z (817)8+ and (934)7+ ions in Fig. 3-1A which deconvolute to a 6,530 

Da neutral species, and (1111)6+ and (1333)5+ ions in Fig. 3-1B which deconvolute to a 6,661 Da 

neutral species.  The fragment ions observed in Fig. 3-1A match the probable “proline effect” 

y58 ion.[111]  The fragment ions appearing in Fig. 3-1B are likely due to either 
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electrochemically-induced fragmentation,[97, 98] or fragmentation within the mass spectrometer 

(possibly as an in-source MSAD [112] fragment ion caused by a high sample concentration).   

All mass spectra of oxidized intact proteins were examined for fragmentation.   In all cases, the 

major product observed after electrochemical oxidation was the oxidized intact protein, with 

very little evidence of fragmentation observed.   Selected ion monitoring (SIM) plots from on-

line experiments with lysozyme conducted in the same non-native conditions as ubiquitin 

revealed that mono-oxidation occurred during the application of +1.2V (Fig. 3-2).  

Representative SIMs illustrate our findings that the yield of mono-oxidized protein increased 

when the flow rate was lowered from 2.5 µL/min to 1 µL/min (Fig. 3-2), effectively increasing 

residence time of the analyte protein inside the electrochemical cell.    

3.2.1.2 Testing of Physiologically Relevant Buffers 

While the oxidation of intact proteins was initially achieved in non-native conditions, our 

goal was to evaluate this methodology for probing native protein structures.   The ideal solution 

for achieving electrochemical oxidation of natively folded proteins would preserve a 

physiological pH (7.0-7.5) with appropriate buffering capacity against electrogenerated H+ ions.   

Additionally, an ionic strength of at least 150 mM would be necessary to simulate the salinity of 

intra- or extra-cellular environments.[113]  Furthermore, an ideal ionic species would be 

electrochemically inert and exhibit low reactivity with hydroxyl radical.[40, 114]  Various 

aqueous buffers were tested to satisfy these experimental requirements for electrochemical 

oxidation of folded proteins.    
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Figure 3-1:  Intact protein FTICR-MS of ubiquitin before and after electrochemical oxidation.  
(A) Unoxidized form, with inset confirming normal (N) deconvoluted mass of 8565 Da. (B) Oxidized ubiquitin; 
inset shows three species: N = normal (unoxidized), +16 = mono-oxidized (base peak), +32 = di-oxidized. 
Experimental conditions: 50 µM ubiquitin in non-native solvent at flow rate of 1 µL/min using PFT electrode off-
line with +1.2 V potential applied.   
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Figure 3-2: SIM of the ubiquitin (A) and lysozyme (B) 9+ charge state, showing unoxidized (red) and mono-oxidized (blue) signals over time.   
Experimental conditions: 1 µM protein in non-native solvent at flow rate of 1 µL/min using PFT electrode (+1.2 V potential applied over 10 min) on-line with 
FTICR-MS .Note absolute intensity is commonly ~10-fold higher for ubiquitin relative to equimolar lysozyme. 
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The extent of electrochemical oxidation achieved on intact ubiquitin for each electrolyte 

tested was monitored by direct infusion ESI-FTICR-MS after reversed-phase extraction followed 

by elution into ESI solvent.  Initially, ammonium bicarbonate and ammonium acetate were tested 

but discarded as candidates due to low oxidation yields.  Excessive bubbling occurred with the 

bicarbonate solution presumably due to carbon dioxide release, while gentle bubbling observed 

in off-line non-native studies suggested that solvent electrolysis was induced by the applied 

voltage.  Further experimentation revealed that potassium sulfate is a good electrolyte for 

achieving electrochemical oxidation of proteins using both electrodes tested.  Both ions of this 

electrochemically inert salt are each only one step more chaotropic than those in the widely used 

sodium phosphate salts according to the Hofmeister series,[115] suggesting its potential for 

stabilizing native protein structure.  However, in our initial studies, we desired to more closely 

match the ionic conditions of these buffered solutions to those obtained for the non-native 

protein electrochemistry measurements.  Therefore, we utilized a simple potassium sulfate 

solution with higher ionic strength (250 mM) and lower pH (6.0) than the ideal physiological 

buffer described previously.  While this “native” solution is likely superior to the non-native 

solvent for promoting proper protein solvation and folding, it is still not optimum since the 

higher ionic strength may induce interferences with structurally important electrostatic 

interactions.[116] 

3.2.1.3 Protein Adsorption and Electrode Regeneration 

Electrochemical oxidation was tested in different aqueous buffers using the PFT 

electrode.  However, protein adsorption posed a significant recovery issue, and cleaning methods 
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had to be utilized to achieve reproducibility.  This adsorption phenomenon is illustrated in Fig. 3-

2 showing the SIM plots of the unoxidized (1590)9+ and mono-oxidized (1592)9+ lysozyme in 

non-native solvent.   MS signal intensity plummeted after the voltage application, presumably 

due to protein adsorption onto the porous graphite surface.  Lysozyme adsorption seemed to 

occur across the conditions tested, as evidenced by backpressure increases and/or sample losses.  

Experiments with lysozyme in the ammonium bicarbonate buffer (500 mM NH4HCO3, pH 9, 

61.7 mS/cm) often resulted in blockage of the electrode, and eventually protein precipitation in 

the collection tube revealed the source of electrode clogging.  Obstructions encountered while 

using the PFT electrode may be explainable in that the oxidation of lysozyme lowers its 

isoelectric point (pI),[62] thus enhancing insolubility at the alkaline pH of this ammonium 

bicarbonate solution.  In contrast, precipitate was not observed in experiments with potassium 

sulfate buffer (250 mM K2SO4, pH 6, 68.1 mS/cm), which facilitated oxidation for both ubiquitin 

and lysozyme.  However, only ubiquitin was recovered in sufficient quantity from this buffer for 

digestion and LC-MS/MS analysis.  Retention was distinctly less pronounced for ubiquitin, as 

illustrated by SIMs of the unoxidized and mono-oxidized ions in non-native conditions (Fig. 3-

2).  Importantly, consecutive experiments often showed a decline in the extent of oxidation 

products generated at the same voltages for which more extensive oxidation had occurred 

previously.  A return to the initially observed level of oxidation could be induced after an 

overnight wash in the reverse direction with 50%-100% ACN at a flow rate of 2 µL/min (data 

not shown) to effectively regenerate its oxidative capacity.  The appearance of contaminating 

protein from prior experiments occurred intermittently while using the PFT electrode, confirming 

the retention of protein within the electrode.  Cleaning procedures performed with organic 
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solvents and/or acids in a reverse flow direction occasionally desorbed protein from the PFT 

electrode.  Protein precipitate was observed during reversed passage of FA/H2O solution (10/90, 

v/v) at 2 µL/min, and centrifugation was employed to separate the insoluble fraction prior to 

tryptic digestion.   This observation may explain the 56% sequence coverage for peptides 

sampled from recovered apomyoglobin.  In contrast, all other MS/MS searches resulted in 90% 

or greater coverage of the functional protein sequence.    

 

Table 3-1: Oxidative Modifications for MS/MS Searches and Protein-Specific Identifications 
 
Ubiq Lyso Apo Residue EAa Modification typeb (nominal mass shift in Da) 

 ●  Ala (A)  Hydroxylation (+16) 
● ●  Arg (R)  Deguanidation (-43), Carbonylation (+14), Hydroxylation (+16) 
● ●  Asn (N)  Hydroxylation (+16) 
● ●  Asp (D)  Decarboxylation (-30), Hydroxylation (+16) 

× ● × Cys (C) Y 
"Serination" (-16), Hydroxylation (+16), Sulfinic acid (+32), Sulfonic 
acid (+48) 

● ● ● Glu (E)  Decarboxylation (-30), Carbonylation (+14), Hydroxylation (+16) 
● ● ● Gln (Q)  Carbonylation (+14), Hydroxylation (+16) 

● ●  His (H) Y 
Ring open: Asn (-23), Asp (-22), Aspartylurea (-10), Formyl-Asn (+5), 
Oxo-His (+16) 

● ● ● Ile (I)  Carbonylation (+14), Hydroxylation (+16) 
● ● ● Leu (L)  Carbonylation (+14), Hydroxylation (+16) 
● ● ● Lys (K)  Carbonylation (+14), Hydroxylation (+16) 
● ● ● Met (M) Y Aldehyde (-32), Sulfoxide (+16), Sulfone (+32) 
● ● ● Phe (F)  Hydroxylation (+16), Dihydroxylation (+32) 
● ●  Pro (P)  Carbonylation (+14), Hydroxylation (+16), Dihydroxylation (+32) 
● ●  Ser (S)  Carbonylation (-2), Hydroxylation (+16) 
●  ● Thr (T)  Carbonylation (-2), Hydroxylation (+16) 
× ● ● Trp (W) Y Hydroxylation (+16), N-Formylkynurenine (+32), Kynurenine (+4) 
●  ● Tyr (Y) Y Hydroxylation (+16), Dihydroxylation (+32) 
● ● ● Val (V)  Carbonylation (+14), Hydroxylation (+16) 

 
a EA = electroactivity status. bTaken from compilation published in reference [72].  Structures for these oxidative 
modifications can be found in the Appendix; see review article for more detailed information. “●” = identified as 
oxidized; “×” = not present in protein amino acid sequence.  Note Gly (G) oxidation was not included in search 
parameters, as oxidation of the α-carbon typically results in peptide backbone cleavage.  
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3.2.1.4 Peptide MS/MS Analysis 

Oxidized ubiquitin samples were collected off-line from both the non-native and buffered 

solutions after passage through the PFT electrode, and then were digested for MS/MS 

characterization.  Contained in Table 3-2 are only the ubiquitin residues which exhibited 

oxidative mass shifts (full survey in Appendix Table A-1); these occurred on a range of both 

electroactive and non-electroactive amino acids (classifications noted in Table 3-1).  Among the 

most commonly oxidized sites (by peptide spectral count [117, 118]) were solvent-exposed, 

electroactive amino acids Tyr59 (19) found in both solutions and His68 (9) identified in the 

buffer only.  High-scoring MS/MS matches for two different oxidative mass shifts (-22 Da, +5 

Da) on the exposed histidine (His68 ~ 80 Å2) within the same peptide sequence are shown in Fig. 

3-3.  This example demonstrates that detection of various electrochemically-induced oxidation 

events on the same amino acid increases confidence in the site-specific identification.  The only 

methionine present in ubiquitin exhibited two different mass shifts, as identified by two MS/MS 

spectra showing mono-oxidation (+16 Da) in the non-native solvent, and oxidative loss (-32 Da) 

in the buffer.  Many non-electroactive residues (I, L, K, R, P, S, T, Q, E, D, N) were also found 

to be oxidized, albeit at lower abundances reflected by fewer peptide spectral counts.  According 

to calculated SASA values, 22 residues are buried in the ubiquitin structure.  Mass shifts were 

detected for three of these amino acids from proteins oxidized in non-native solution (Leu15, 

Lys27, Ile61), while only two sites were found among peptides derived from the buffer solution 

(Ile3, Leu15).  Leu15 was identified as both carbonylated (+14 Da) and hydroxylated (+16 Da) 

in both non-native and buffered solutions.    
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Table 3-2: Modified Amino Acid Sites Identified from Electrochemically-Oxidized Ubiquitin 
 

Ubiquitina SASA (Å2) PFT Oxidation BDD Oxidation Control 

Residue # 
X-ray 
1UBQ 

NMR 
1D3Z 

Non-Native 
1.2V ∆M(#) 

Buffer   
1.2V ∆M(#) 

Non-Native 
3.0V ∆M(#) 

Buffer     
2.1V ∆M(#) 

Buffer 
∆M(#) 

MET 1 19.5 23.6 16(1) -32(1)   16(3) 16(1) 

ILE 3 0.0 0.0   16(1)       

LYS 6 98.3 83.4   14(2)   14(1)   

THR 7 15.1 14.0   -2(1)       

LEU 8 106.7 81.6   16(1)       

THR 12 41.9 39.6   -2(1)   -2(1)   

THR 14 58.2 53.8 16(1)   16(2) 16(1)   

LEU 15 3.1 0.6 14(1); 16(1) 14(1); 16(1) 16(1) 16(3)   

GLU 18 100.5 96.5     14(1)     

PRO 19 52.3 65.7   14(2) 32(2) 14(2)   

VAL 26 0.0 0.0     14(2)     

LYS 27 16.1 8.0 14(1)   14(3)     

LYS 33 81.3 82.6   14(2) 16(2)     

ILE 36 27.3 32.3     14(3) 14(2)   

PRO 37 56.9 67.2     14(3) 14(1)   

PRO 38 48.6 36.5   16(1); 32(1) 14(12); 32(2) 14(2)   

GLN 41 0.0 0.0     14(1)     

ARG 42 81.3 88.7   14(1) 14(10)     

PHE 45 38.3 39.9   32(3)   

LYS 48 92.2 100.6   14(3) 16(1) 14(1)   

GLN 49 80.7 86.9         14(1) 

THR 55 34.3 31.9 -2(1)         

SER 57 46.1 43.3 -2(4); 16(1) -2(1)       

ASP 58 46.3 52.7 16(1)         

TYR 59 24.9 31.5 16(5); 32(1) 16(13) 16(18); 32(3) 16(1)   

ASN 60 102.1 100.9 16(1)   16(1)     

ILE 61 0.0 0.0 16(2)         

LYS 63 122.2 144.2 16(2)         

GLU 64 81.3 108.2 -30(1)         

THR 66 42.6 38.5 16(1)         

HIS 68 75.8 89.8   -22(2); 5(7)   
-23(1);-22(3); 

5(4)   

LEU 69 0.4 0.6     16(1)     

ARG 72 106.1 93.0     -43(1)     

ARG 74 169.0 171.4 14(1)         

 
aMatches meeting filter criteria reported with mass shifts and peptide spectral counts (in parentheses).  SASA 
calculated by GETAREA;[95] rows shaded gray indicate SASA ≤ 10 Å2 for at least one of the two structures.  
Patterned cells denote residues within peptides missing from MS/MS protein sequence coverage.   
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Figure 3-3: Representative MS/MS spectra show two different modifications on the same histidine residue. 
A) 64–ESTLH(+5)LVLR–72  B) 64–ESTLH(-22)LVLR–72.  Induced modifications were achieved by both BDD 
and PFT electrochemical oxidation of ubiquitin in potassium sulfate buffer.  Chemical structures were taken from 
Xu et al, 2007  
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Apomyoglobin lacks cysteines but contains two methionines, both of which were 

identified as oxidized (+32 Da) within the protein recovered from the PFT electrode (Tables 3-3 

and A-2).   Search results revealed oxidation of electroactive tyrosine (Tyr146), as well as three 

non-electroactive residues (Thr132, Lys133, and Leu149).  The latter three modifications suggest 

contribution by an indirect mechanism of oxidation, although threonine and lysine are C-terminal 

neighbors to a highly reactive methionine (131-MTK-133).  These residues are less reactive than 

methionine, which may be solvent-exposed in the non-native solvent, so MS/MS spectra were 

manually evaluated to confirm diagnostic fragment ions showing oxidation at these sites.    

Table 3-3: Modified Amino Acid Sites Identified from Electrochemically-Oxidized Apomyoglobin 
 

Apo-Myoglobina SASA (Å2) PFT BDD 

Residue # X-ray 1WLA X-ray 1AZI 
Desorbedb    
0V ∆M(#) 

Non-Native  
3.0V ∆M(#) 

TRP 7 14.8 19.0   32(2) 

GLN 8 114.6 120.3   16(1) 

TRP 14 4.1 3.3   16(1); 32(1) 

LYS 16 38.3 47.8   16(1) 

GLU 18 64.4 75.2   14(1) 

GLU 27 48.5 54.1   16(1) 

LEU 32 8.6 8.0   14(2) 

MET 55 6.2 7.3 32(1)   

LYS 56 80.6 84.2   16(2) 

VAL 67 86.2 84.2   14(1) 

LEU 69 2.4 3.4   16(1) 

ILE 107 22.8 22.5   14(1) 

MET 131 0.1 0.2 32(2) 16(6) 

THR 132 48.6 52.3 16(1) 16(1) 

LYS 133 69.6 82.6 16(3) 16(4) 

LYS 145 52.6 40.4   16(1) 

TYR 146 8.0 6.5 16(1); 32(1)   

LEU 149 47.4 56.6 16(1)   

PHE 151 22.99 19.63 32(1)  

 
aMatches meeting filter criteria reported with mass shifts and peptide spectral counts (in parentheses).  SASA 
calculated by GETAREA;[95] rows shaded gray indicate SASA ≤ 10 Å2 for at least one of the two structures.  
Patterned cells denote residues within peptides missing from MS/MS protein sequence coverage.  bFormic acid wash 
used for protein desorption not favorable for native structure. 
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3.2.2 Results of Boron-Doped Diamond (BDD) Electrode Experiments 

An attractive feature of the BDD electrode was its smooth surface that seemed promising 

for efficient recovery of oxidized protein.  This was especially important in light of the 

adsorption problems encountered with the PFT electrode.  An aqueous electrolyte solution is all 

that is needed for a BDD electrode to generate hydroxyl radicals,[109] which are capable of 

rapid reactions with a wide range of amino acids.  This highly reactive species contributed to the 

oxidation of all three intact model proteins tested in this study, based on matches in the peptide 

MS/MS data discussed further below.    

3.2.2.1 Oxidation of Peptide and Intact Proteins 

Our initial BDD experiments conducted on-line with 5 µM methionine enkephalin (1-

YGGFM-5) in non-native conditions (ACN/H2O/FA (50/50/1, v/v/v)) showed that a minimum of 

+2.0V was necessary to achieve oxidation products at flow rates of 2-5 µL/min.  In this case, we 

utilized flow rates that achieved steady ion current in the ESI source, with the oxidized yield 

increasing with lower flow rates (data not shown).  Spectra scanning the entire mass range were 

acquired in chromatogram mode to allow selected ion monitoring (SIM) of unmodified and 

oxidized species.  The unmodified parent ion (574.26 m/z) remained abundant at these flow rates, 

with minor (< 10% base peak) oxidation products at 590.25 (+16), 606.25 (+32), and 654.36 

(+80).  This mixture of products could result (in order of reactivity [51]) from oxidation of 

methionine to its sulfoxide (+16) or sulfone (+32) forms, and mono- or di-hydroxylation (+16 or 

+32) of tyrosine or phenylalanine.  The presence of a bimodal distribution representing light and 

heavy oxidation products is not too surprising, as this phenomenon has been observed in our 
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protein over-oxidation experiments (data not shown).  Rather than a smooth, linear increase in 

oxidation level, it is possible that initial oxidation events may enhance the efficient generation of 

a heavily oxidized species, thereby even skipping medium oxidation levels.  Thus, it will be 

important to keep the total oxidation level in proteins to a reasonably low level.  Given the 

observed trend in these on-line experiments that lower flow rates produced greater oxidation 

yields, subsequent experiments on intact proteins were conducted at flow rates of 2 µL/min or 

less. 

Based on these initial peptide oxidation measurements, subsequent experiments were 

conducted off-line with 50 µM ubiquitin in the standard non-native solution.  Potentials were 

varied in 0.5V steps from +2.0V to +3.0V, and three consecutive 20 minute fractions (0-20, 20-

40, 40-60 min) were collected during each hour-long voltage application.  Fig. 3-4 illustrates the 

mono-oxidized protein yield from the fractions collected within the voltage application window 

over incrementally increasing working electrode potentials.  It is not yet clear why the oxidation 

level increases over time as illustrated in the fractions collected using the BDD electrode at 

+3.0V in Fig. 3-4.  It is possible that mixing within the volume of the electrochemical cell allows 

sampling of an increasingly oxidized protein population over time.  In later experiments (data not 

shown), the flow rate was lowered from 2 µL/min to 1 µL/min to effectively increase residence 

time of both solution and analyte inside the electrochemical cell while decreasing turbulence of 

the flowing solution.  Intact mass spectra from these experiments showed that mono-oxidized 

ubiquitin or di-oxidized apomyoglobin formed the base peak among proteins collected in the first 

20-minute fraction.  However, this was not the case with lysozyme, as the unoxidized species 

retained base peak status with two abundant +16 Da mass shifts.   
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Figure 3-4: Mass spectra from three separate experiments showing increasing abundance of mono-oxidized ubiquitin relative to the unoxidized protein. 
Experimental conditions: 50 µM ubiquitin in non-native solvent at flow rate of 2 µL/min using BDD electrode off-line with range of potential applied (+2.0 to 
+3.0 V).   
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3.2.2.2 Oxidation in Physiologically Relevant Buffer 

Electrochemical testing of the potassium sulfate buffer using the BDD electrode showed 

that application of at least +2.0V generated light bubbling in the collection tube indicative of 

solution electrolysis.  Experiments with proteins in this buffer revealed a moderately increased 

level of oxidation, as shown in Fig. 3-5 for both ubiquitin and lysozyme relative to levels 

observed in non-native solvent.  While unoxidized lysozyme formed the base peak in the intact 

mass spectra from proteins exposed to the electrochemical conditions generated by +2.05V at the 

BDD working electrode (Fig. 3-5B), mono-oxidized lysozyme was the most abundant species in 

the +2.10V collection (data not shown).  Both of these samples showed a decreasing abundance 

(after the base peak) of increasingly oxidized protein; populations representing up to six +16 Da 

modifications on intact lysozyme were visible for collections from each voltage. 

3.2.2.3 Peptide MS/MS Analysis   

Overall, the BDD electrode exhibited a slightly lower number of detectable oxidation 

mass shifts relative to the PFT electrode for oxidized ubiquitin, based on high-scoring matches of 

singly-modified tryptic peptides contained in Table 3-2.  Only the residues which underwent 

oxidative mass shifts are reported here (Table A-1 is unabridged), in addition to sulfur-

containing residues Cys and Met regardless of their oxidation status.  While electroactive 

tyrosine (Tyr59) claimed the highest peptide spectral count (21) among residues oxidized in the 

non-native solvent using the BDD electrode, its modification was detected only once among 

peptides derived from ubiquitin oxidation in the buffered solution.  Three MS/MS spectra 

indicated hydroxylation (+16 Da) of the solvent-exposed methionine in the buffered solution,  
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Figure 3-5: Mass spectra of proteins electrochemically oxidized in physiologically relevant solution.   
A) Ubiquitin inset shows mono-oxidized base peak with multiple mass shifts at higher m/z values; normal (N) 
unoxidized peak is absent. B) Lysozyme m/z values for unoxidized charge states are shown above each 
heterogeneous peak.  Experimental conditions: 50 µM protein in 250 mM potassium sulfate solution at flow rate of 
1 µL/min using BDD electrode off-line with +2.1 V potential applied.   
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while none reflected its oxidation in the non-native solvent.  Three different modifications (+5 

Da, -22 Da, -23 Da) occurred on His68 when electrochemically oxidized in the buffered solution, 

two of which are illustrated in aforementioned Fig. 3-3.  Additionally, a +5 Da shift was found 

on a different tryptic peptide (55-TLSDYNIQKESTLH(+5)LVLR-72), further corroborating 

His68 oxidation in this sample.  A survey of total peptide spectral counts for oxidation events 

among non-electroactive residues of proteins oxidized in both solutions showed that proline (24) 

and arginine (11) residues ranked highest.  These were followed by fewer MS/MS spectra 

pinpointing oxidative mass shifts on a range of other residues (F, I, L, K, V, T, Q, E, N).  A total 

of five buried residues belonging to the non-electroactive subset were oxidized in the non-native 

solvent (Leu 15, Val26, Lys27, Gln41, Leu69), compared with only one buried residue (Leu15) 

hydroxylated (+16 Da) in the buffered solution.  This site was found to be oxidized in both non-

native and buffered solutions using both the PFT and BDD electrodes.  Interestingly, its 

neighboring residues are calculated to be solvent-exposed.   

Apomyoglobin oxidized in non-native solvent using the BDD electrode with +3.0V 

applied resulted in oxidation events summarized in Table 3-3 (see Table A-2 for unabridged 

version).  Only one of two methionines was identified as oxidized, while oxidative mass shifts 

occurred on both tryptophans.  Neither of the two tyrosines nor any of the eleven histidine 

residues was found to be oxidized.  Given that two oxidations could occur on a single peptide 

based on the intact MS, searches were conducted that allowed two modifications per peptide 

(data not shown).  This resulted in several high-scoring histidine oxidations with coincidental 

modification of a nearby residue.  Additionally, these search results indicated that tyrosine 

hydroxylation (103-Y(+16)L(+14)EFISDAIIHVLHSK-118) occurred adjacent to a carbonylated 
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leucine.  Singly-oxidized peptide matches passing stringent filters revealed oxidation events on a 

range of non-electroactive residues (W, L, I, V, K, T, Q, E) with low peptide spectral counts.    

Lysozyme was collected after electrochemical oxidation using the BDD electrode in two 

different solutions: non-native (ACN/H2O/FA (50/50/1, v/v/v)) and buffered (250 mM K2SO4) at 

two different electrode voltages.  The search results indicative of high-scoring singly-oxidized 

peptide matches are summarized in Table 3-4; only the modified residues are reported here (see 

Appendix Table A-3 for complete survey).  Both methionines were identified as oxidized with 

+16 Da mass shifts in the non-native solvent, while neither was found to be modified in the 

control digest or after oxidation in the buffer solution.  Oxidative modification was detected for 

three of the eight disulfide-bonded cysteines in non-native solvent; all three are calculated to be 

buried according to high resolution structures.  The only exposed cysteine (Cys6 ~ 40 Å2) was 

not detected as oxidized in the non-native solvent, but underwent singly- and doubly-oxidized 

mass shifts in the samples electrochemically oxidized in buffered solution.  All residues found 

oxidized in the buffered samples exhibit solvent-exposed sidechains based on SASA calculations 

of high resolution lysozyme structures, with no oxidation of buried sites observed. 

3.2.3 Interpreting Oxidation Search Results 

Though the analytical details discussed thus far are important for conducting 

electrochemical oxidation experiments, interpretation of the data gathered is a crucial process 

and can be rather laborious for a number of reasons.   First, the extensive list of modifications 

(Table 3-1) that were included in the MS/MS search parameters poses a formidable 

combinatorial challenge even when only one protein is involved, as database search space
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Table 3-4: Modified Amino Acid Sites Identified from Electrochemically-Oxidized Lysozyme 
 

Lysozymea SASA (Å2) BDD Oxidation Results Control 

Residue # 
XRC 
1AKI 

NMR 
1E8L 

Non-Native  
3.0V ∆M(#) 

Buffer        
2.05V ∆M(#) 

Buffer         
2.10V ∆M(#) 

Tryptic Digest 
60%ACN ∆M(#) 

CYS 6 42.6 37.5   -16(1);32(1) 32(1) 48(1) 

ALA 11 6.2 17.4 16(1)       

MET 12 0.1 0.3 16(3)       

LYS 13 63.7 89.2 16(2) 16(1)     

ARG 14 129.4 159.3 16(4) 16(1) 16(2)   

HIS 15 38.8 34.5 16(1)       

ASN 27 15.2 10.2 16(1)       

TRP 28 0.0 0.0 4(1);16(1);32(1)       

CYS 30 1.1 0.1 -16(2)       

LYS 33 59.3 44.2 16(1)       

GLN 41 94.3 84.2 14(1)       

ARG 45 116.3 132.5 14(1)       

TRP 63 30.1 35.9 32(1)       

PRO 79 77.9 67.6     14(1)   

CYS 94 0.5 0.0 -16(1)       

SER 100 22.7 28.6 -2(1)       

ASP 101 70.8 79.3 16(1)       

MET 105 0.0 0.0 16(3)       

ASN 106 33.2 58.7 16(2)       

ALA 107 16.6 18.8 16(1)       

TRP 108 6.4 7.5 16(1); 32(1)       

TRP 111 10.8 28.7 32(2)       

ARG 112 90.5 101.3       16(1) 

ARG 114 109.9 128.2     14(1)   

CYS 115 0.0 1.1 -16(3)       

LYS 116 100.8 107.3 14(1)   14(1)   

TRP 123 49.0 75.9 4(1); 32(4) 4(1);32(1) 32(2)   

ARG 125 115.4 168.9 16(1)   16(1)   
 

aMatches meeting filter criteria reported with mass shifts and peptide spectral counts (in parentheses).  SASA 
calculated by GETAREA;[95] rows shaded gray indicate SASA ≤ 10 Å2 for at least one of the two structures.  
Patterned cells denote residues within peptides missing from MS/MS protein sequence coverage.   
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expands significantly with each additional mass shift.  The InsPecT software used to search 

MS/MS data in this study was critical for handling so many modifications.  Searches of MS/MS 

data conducted in our lab typically use the SEQUEST algorithm,[89] which limits searches to a 

maximum of three PTMs (static or dynamic), and DBDigger,[88] which performs well for non-

PTM proteome searches but has been reported to suffer high false discovery rates when multiple 

modifications are considered.[119]  InsPecT allows all PTMs to be considered simultaneously, 

so allowance of more than one modification per peptide requires extensive manual evaluation to 

counter increased false positives, evidenced by several instances of multiple mass shifts on a 

single residue.  Therefore, only singly-modified peptide results are confidently reported in this 

study.  Stringent filters were established to maximize confidence in oxidized matches, with the 

tradeoff that potentially informative spectra were disregarded.  For this reason, both analytical 

and technical replicates should be acquired to increase the likelihood of obtaining high-scoring 

peptides representing each oxidized residue.    

Another challenge lies in the potential for co-eluting oxidized peptide isomers that are 

isolated and fragmented together due to having isobaric parent ion masses, which can result in 

the loss of site-specific oxidation data.  Generation of shorter peptides by a less specific protease 

like pepsin could be advantageous in producing a more heterogeneous peptide mixture to 

decrease the likelihood of peptides with identical or overlapping retention times.  Shorter 

peptides would also minimize the number of reactive residues contained in a single peptide to 

better match the single modification per peptide limit imposed on the data reported here.  The 

unfiltered search output includes all of the abovementioned characteristics used to rank peptide 

matches, and alternate matches to the top-scoring oxidized peptides can be accessed to manually 
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evaluate the possibility that multiple species were fragmented in a single MS/MS scan.   While 

this interpretation process may appear computationally cumbersome, such exercises can provide 

critical structural information in a relatively swift manner.    

3.3 Discussion 

The goal of this study was to evaluate the efficacy of using electrochemically-generated 

hydroxyl radicals to oxidize model proteins maintained in buffered, physiologically relevant 

conditions.  Both electrodes investigated in this study were useful for the generation of oxidized 

intact protein with characteristic oxidative modifications identified on the peptide level.   

However, significant sample losses concomitant with pressure spikes that required cleaning 

procedures suggest the PFT electrode is subject to hysteresis, in which past events collectively 

affect subsequent performance.  Collection of insufficient protein yield from the electrochemical 

cell prohibited further analysis of PFT-oxidized lysozyme.  This observation might be 

attributable to its potentially adsorptive cysteine residues, which are absent from the other two 

proteins tested.   As expected due to the non-porous electrode surface, significantly higher yields 

of oxidized proteins were observed using the BDD electrode relative to the PFT electrode.   This 

is almost certainly due to less efficient mass transport of the protein to the BDD electrode 

surface, facilitating recovery and peptide MS/MS analysis for all three oxidized lysozyme 

samples.  Although significant sample losses indicative of irreversible adsorption are not 

observed with this electrode, we cannot rule out the possibility that some reversible adsorption 

may occur.  However, the BDD electrode generates copious amounts of hydroxyl radicals, so it 

seems likely that oxidation reactions with analyte protein would occur primarily in solution.    
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This study demonstrated that the BDD electrode could potentially be useful in protein 

structure studies, with less protein adsorption problems than the PFT.  It should be noted that 

some reactive residues calculated to be solvent-exposed were not identified as oxidized in this 

preliminary study.  While this could be attributable to the imposed search constraints of a single 

modification per peptide, false negatives such as these could be evaluated by extensive 

electrochemical oxidation of intact proteins to obtain a comprehensive list of vulnerable sites.  

These would be used for comparison with results from modest oxidation of folded proteins, 

which is important because even exposed reactive residues could be kinetically occluded by 

neighboring residues.  Note that a balance must be achieved between false positive and false 

negative levels.  On one extreme end, very light protein oxidation will likely ensure that native 

protein structure is retained, but may not provide extensive enough coverage to ascertain much 

information about the protein structure.  At the other extreme, very extensive protein oxidation 

will undoubtedly label most of the reactive sites, while providing less useful information with 

respect to protein structure determinations.  The key aspect here is to conduct moderate oxidation 

that enables fairly detailed labeling representative of true solvent accessibility in the folded 

protein.  Fortunately, a simple change of the working electrode potential can directly alter the 

extent of oxidation observed on the intact protein.  Additionally, use of a less conductive solution 

that is more favorable for promoting native protein structure may allow further fine-tuning of the 

electrochemical conditions.  Even under optimal conditions, the false positives (i.e. buried sites 

that are oxidized) may not be completely zero; thus, it is important to empirically determine 

appropriate experimental oxidation conditions and proper filters on search results to minimize 

the false positives.  These purported false positives, such as the labeling of Leu15 in buffered 
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solutions of ubiquitin using both the PFT and BDD working electrodes, may serve as an 

indicator of either extended oxidative damage or dynamic protein flexibility in solution. 

Some additional factors will need careful consideration as electrochemistry is further 

evaluated and optimized for surface mapping applications.  As mentioned previously, 

complications such as low abundances across a range of different oxidized peptides, a wide 

variety of possible mass shifts, and fragmentation of co-eluting oxidized peptide isoforms pose 

challenges to data interpretation.  The utilization of multidimensional chromatography [120] in 

addition to longer aqueous-organic gradients could minimize these potential problems while 

increasing the dynamic range to allow identification of more low-abundance species relative to 

one-dimensional results.  Also, secondary oxidation events occurring after exposure to the 

controlled electrochemical environment due to lingering ROS could be avoided by the 

incorporation of peroxidases and/or hydroxyl radical scavengers.[121]  We omitted these 

reagents to avoid adding variables to an already complex scenario.  Clearly, additional work is 

needed to more fully optimize the buffered conditions (ionic strength, pH, etc.) to ensure native 

protein structure.  Furthermore, as electrochemical oxidation is optimized in future studies under 

more native conditions, use of spectroscopic methods to monitor alteration of secondary 

structure as a function of oxidation yield will facilitate understanding how oxidation level may 

distort native conformations.  Nonetheless, our focused preliminary experiments demonstrate a 

clear potential for this method to evaluate a wide range of solvent accessible amino acid residues 

differentially labeled between native and non-native protein conformations. 
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3.4 Conclusions 

Electrochemical oxidation has been shown to generate useful oxidative labels on intact 

proteins, in both non-native and buffered solutions.  Also, the extent of oxidation can be 

systematically regulated by adjusting experimental parameters including the solution flow rate, 

applied working electrode voltage, and solution composition.  Digestion of the oxidized proteins 

collected during off-line experiments allowed identification of oxidation sites using MS/MS 

analysis and evaluation against calculated SASA values.  We observed electrochemical oxidation 

of a wide range of amino acids far beyond the electroactive subset.  Additionally, search results 

showed agreement between solvent accessibility and the oxidation status of many ubiquitin 

residues oxidized in buffered solution.  This provides encouragement that electrochemistry could 

be used for oxidative surface mapping experiments to evaluate the solvent accessibility of amino 

acids in a natively folded protein structure.  Further optimization and extensive testing of 

electrochemical oxidation using the BDD electrode on more model proteins will facilitate wider 

application of this mass spectrometry-based approach in protein structure research.   
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4. An Electrochemistry-Based Pipeline to Probe Solution-Phase Protein Dynamics with 

Rapid Oxidation Exposure and Multidimensional Peptide Separations 

 

This manuscript will be submitted to Analytical Chemistry with the following author list: 

McClintock, C.; Parks, J.M.; Ghatty, P.K.; Kertesz, V.; Hettich, R.L. 

4.1 Introduction 

While a range of techniques are currently practiced for generating hydroxyl radicals 

(•OH) for SASA probe experiments, most involve highly regulated and costly equipment that is 

not readily accessible to many researchers.  The goal of this work was to develop a method that 

accomplished comparable research objectives using a BDD electrode, whose basic operation was 

demonstrated in Chapter 3.  A large body of literature describes the capacity of the BDD thin 

film electrode to generate •OH from water, thus allowing indirect oxidation events while 

negating the use of harsh oxidizing reagents.  However, like all other electrodes, the BDD can 

also achieve oxidation by a direct pathway, which would involve physical interaction with the 

analyte protein that could potentially distort native structure.   

Key adjustments were made to the previously reported electrochemical protein oxidation 

protocol.[76]  The changes involve a different cell activation approach for more constant •OH 

production, and a reduced flow rate for more rapid exposure to the oxidizing environment inside 

the electrochemical flow cell chamber.  Additionally, concentrations of both electrolyte and 

analyte protein were altered to better match oxidant flux, allowing improved regulation by the 

user.  These changes facilitate a quick oxidation of proteins in a more physiologically relevant 
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ionic strength salt solution, with a dramatically shorter residence time during which adsorption 

could occur.  While this may not be the ideal timescale to match the dynamic movements of 

solution-phase proteins, these findings have laid the groundwork for potential improvements.   

The goal of this work is to establish an experimental “pipeline” for electrochemical 

surface mapping of proteins that could prove to be a burgeoning conduit for high-throughput 

structural proteomics screening.  In this scenario, proteins would be rapidly oxidized, extracted 

for intact protein MS analysis while most of the oxidized protein undergoes a quick one-hour 

proteolytic digestion, followed by peptide level MS analysis via two chromatographic 

approaches.  The first separation would allow a fast survey of oxidized sites, while a second, 

more sensitive approach would permit a deeper probe of oxidized sites.  With this arrangement, 

all data for an experiment could be acquired in under 8 hours, provided the instrumentation is 

available.  The most time-intensive aspect of this pipeline would be searching the tandem mass 

spectral data for oxidized sites, depending on the size of the database employed, the oxidative 

mass shifts considered, and the number of spectra to be interpreted.  These informatic challenges 

are discussed in Chapter 5.  

This chapter is focused on an optimized approach for achieving electrochemical 

oxidation of structurally robust model proteins ubiquitin, lysozyme, and apomyoglobin, with the 

latter presenting the case for an unresolved protein structure.  The purpose for conducting 

extensive studies using model proteins is to foster a clearer understanding of residue-specific 

labeling patterns in relatively simple and well-characterized systems, with two of the three 

devoid of the highly reactive and often disulfide-bonded cysteines.  The dynamic range challenge 

in detecting uniquely modified peptides within an oxidized protein sample was addressed by 
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separating the mixture according to electrostatic charge (strong cation exchange) in addition to 

the standard characteristic of hydrophobicity (reversed-phase).  Oxidation sites mined by the 

InsPecT software package with updated input parameters are reported for both previously 

described and newly acquired MS data, with accurate detection of oxidized peptides continuing 

to present a complicated issue.   

4.2 Experimental Refinement of Electrochemical Parameters 

Previously we reported a method for the surface mapping of proteins utilizing 

electrochemistry to achieve oxidation in a physiologically relevant salt solution.[76]  While 

sufficient to demonstrate the application potential, the experimental conditions were not optimal 

for a rapid oxidation reaction favoring the indirect •OH-mediated route instead of a direct 

(heterogeneous) electron transfer event which could involve interaction with the electrode 

surface.   Both mechanisms are possible, with contribution from the indirect route increasing 

with voltage.[69]  A dramatic reduction in the time that protein resides inside the electrochemical 

cell was achieved by a 100-fold increase in flow rate.  The electrochemical compartment 

contains a volume of approximately 1 µL between the working and counter electrodes when 

separated by a 50 um gasket, so the residence time was lowered from 1 min at 1 µL/min to 1.2 

seconds at a flow rate of 100 µL/min.  The rapid flow rate virtually eliminated the voltage 

oscillation attributable to the nucleation of electrolytic bubbles on the BDD surface by hastening 

their exit from the cell – a change that could extend the useful lifetime of the BDD electrode.  

Bubble formation can damage the BDD film by gradually decreasing the electrode surface area 

contacted by solvent, which threatens the dwindling interface area with a rapidly increasing 
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current density.  The performance of the BDD electrode used in the previous report declined over 

the course of one year, likely due to a combination of damage caused by bubble accumulation at 

low flow rates and fouling that occurred during testing of different electrolytes in addition to 

large cysteine-containing proteins.   Observations discussed below suggest that a moderate 

hysteresis effect may contribute to increasing voltages with the application of same current level 

over subsequent runs, whether due to adsorption of electrolyte, protein, or both.   

The use of a new BDD electrode allowed us to achieve oxidation of lower micromolar 

concentrations (1-10 µM) of protein that appeared to better match oxidant flux.  This was 

accomplished in half the previously used concentration of inorganic salt, 125 mM potassium 

sulfate (pH 6.0), which remains a physiologically relevant concentration of a weakly buffered 

electrolyte that absorbs minimal ultraviolet (UV) light.[122]  An interesting consideration about 

this electrolyte is whether the sulfate anion could become radicalized (SO4
2- 
� e- + •OSO3

-) by 

direct oxidation and either attack proteins directly or coalesce into peroxydisulfate (S2O8
2-) 

whose reactivity is similar to hydrogen peroxide.[123]  If so, this reactivity reportedly could 

confer advantages to protein studies,[71] with the same cautions that generally apply to 

peroxides.  The oxidation-reduction potential of peroxydisulfate is +2.1 V, which directly 

corroborates the only CV peak observed with potassium sulfate solution alone inside the 

electrochemical flow cell, as shown in Fig. 4-1.  Additionally, this has been empirically 

identified as the potential that most often results in moderate protein oxidation.  Interestingly, the 

final reaction product would effectively mirror the most common oxidative mass shift for 

hydroxyl radical labeling (typically +16 Da), because the protein-attached potassium sulfate 

(KSO4, +135 Da) would only be an intermediate state that is then converted to an alcohol (Fig. 4-
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1 inset).[124]  While the reaction components shown on the inset were not explicitly added to the 

solution, the pathway evokes contemplation for what could be taking place within the activated 

electrochemical cell. 

Changes in electrochemical parameters included a decrease in applied current from 500 

µA (+2.1V with older BDD) to 100-300 µA, which produced a potential ranging from +1.35 V to 

+2.10 V under these experimental conditions with the new BDD electrode.  All three model 

proteins were reproducibly oxidized at variable levels depending on the controlled flow rate or 

electrode current employed, while occasionally producing some evidence of interaction with the 

electrode surface. 

4.3 Protein-Electrode Interaction Studies 

Factors which may influence the propensity of a protein to interact with an electrode surface 

include net charge, cysteine content, and hydrophobicity.  A number of electrochemical studies 

have documented the adsorption of free cysteine to various electrode surfaces;[101, 102] 

however, BDD electrodes were shown to perform much better than glassy carbon electrodes 

because they did not suffer the same measurable adsorption of this sulfur-containing 

residue.[103]  If either cysteine or the disulfide-bonded cystine indeed contributes any tendency 

bind the BDD surface, then proteins containing more of these residues would adsorb more 

readily.  Other features that could affect adsorption include both the isoelectric point (pI) and the 

hydropathicity index (GRAVY),[125] which are unique to each protein based on the amino acid 

composition. Proteins retain a net charge when the solution pH differs from the pI value, so the 

likelihood of electrostatic interaction between protein and electrode increases with stronger net  
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Figure 4-1:  Electrochemical detection of oxidation-reduction potential for potassium sulfate solution.   
The cyclic voltammogram shows the current required to scan the voltage range of -1.5 V to +3.0 V over three 
cycles.  During the rising phase of each cycle, an anodic potential pulls electrons onto the BDD electrode, resulting 
in oxidation of nearby solution components.  The inflection suggests oxidation of the sulfate anion (EO = +2.12 V).
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charge in pH 6.0 potassium sulfate solution (Table 4-1).  Oxidation can alter the intrinsic protein 

pI by causing loss of charged functional groups, in addition to increasing surface electron density 

through the addition of electronegative oxygen atoms via hydroxyl or carbonyl groups.[72]  The 

GRAVY value indicates greater hydrophilicity with increasingly negative values, so 

apomyoglobin would be most likely to experience hydrophobic interaction of the three model 

proteins tested.   

Proteins exiting the electrochemical cell were measured by a dual-wavelength (205 / 280 

nm) ultraviolet absorbance monitor in an effort to detect changes in protein concentration that 

would indicate adsorption of protein during electrolysis (Fig. 4-2).  Absorbance at 205 nm 

indicates presence of the peptide bond, while 280 nm signifies primarily tryptophan, with minor 

contributions from tyrosine and disulfide bonds.[122]  Controls with potassium sulfate solution 

showed an increase of 15-30 mAU at 205 nm (< 2 mAU at 280 nm) due to activation of the 

electrochemical cell alone.  Comparable increases are seen during electrolysis of protein solution 

at a 10-30% increase from baseline protein UV absorbance.  However, a drop below the protein 

signal can be seen upon electrode activation and/or deactivation with some proteins.  Ubiquitin 

showed an initial drop in 205 nm absorbance of roughly 3% relative to the total protein signal 

(2.5 µM ~ 250 mAU) just as the BDD was activated (data not shown).  Lysozyme did not appear  

 
Table 4-1: Physical features of model proteins subjected to electrochemical oxidation 

 
Protein MW pI GRAVY Met Cys Trp Ext-Coeff

Ubiquitin 8565 6.6 -0.489 1 0 0 1490

Apomyoglobin 16951 7.4 -0.396 2 0 2 13980

Lysozyme 14306 9.3 -0.472 2 8 6 37470  
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to suffer the initial drop, but showed a dip of about 5% relative to the protein signal (5 µM ~ 690 

mAU) upon BDD deactivation before returning to the baseline protein UV absorbance (Fig. 4-2).  

This discrepancy in the timing of absorbance changes occurring early versus late is speculated to 

provide a clue about the physical property that most strongly confers adsorption propensity.  

These drops are not observed in control experiments of BDD activation alone, suggesting there 

may be a change in protein concentration during the electrolysis timeframe.  These potential 

losses do not hinder recovery for further analysis even at the low micromolar concentrations 

tested, but any change in protein concentration could impact oxidation kinetics due to altered 

match with flux of hydroxyl radicals over the experimental timeframe.[126]   

 Interrogation of the BDD electrode conductivity as a measure of surface integrity was 

gauged by open circuit voltage (OCV) readings and cyclic voltammetry (CV) cleaning 

procedures conducted between protein oxidation experiments.  Details about each of these 

methods are outlined in Chapter 2.  Immediately following activation of the electrode with a 

positive voltage, the OCV reading would fall rapidly from a positive reading back to a negative 

potential, then decay slowly to resting potential.  With the new BDD electrode, resting OCV 

readings in potassium sulfate solution were in the range of -150 mV to -250 mV and did not 

deviate significantly over the course of one year.  It is not well-defined what level of insulation 

would cause a gradual drop of 100 mV during this time.  Conversely, decreases in current 

magnitude at voltage endpoints in CV plots were occasionally noted after a protein experiment 

relative to the one acquired just prior to it, which suggested some level of adsorption had 

occurred to insulate the electrode surface.  Evidence of this phenomenon is visible in Fig. 4-3, 

wherein the CV current endpoints changed after the experiment from near ±5.0 closer to ±2.5. 
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Figure 4-2: Workflow for monitoring protein concentration with the UV detector to detect any change during electrode activation.   
Baseline absorption of potassium sulfate solution is obtained prior to injecting protein solution into the electrochemical cell flow chamber over 20 min duration.  
During the protein injection, the BDD electrode is activated (noted in red), and oxidized protein samples are collected once a steady state is reached, as evidenced 
by a voltage plateau in the chronopotentiogram at top right.  Samples are analyzed by FTICR-MS for extent of oxidation revealed by expansion of mass/charge 
region near native protein peaks, as shown in MS inset at bottom right. 
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Figure 4-3:  Monitoring electrode changes with CVs performed before and after protein oxidation.   
Relative to CV scans performed prior to extended activation of the BDD electrode in the presence of protein, 
the decreases observed in current magnitude at the voltage endpoints (-1.0 V and +1.0 V) as noted in black 
text above suggests that some level of adsorption has occurred for both apomyoglobin and lysozyme.  Relative 
to the first cycle, apomyoglobin CV shows little change across successive CV cycles while lysozyme appears to 
show some resolution with subsequent CV voltage cycling. 
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This suggested that the electrode became insulated after an experiment with apomyoglobin, and 

was relatively unchanged by three cycles of voltage oscillation from -1.0 V to +1.0 V.  In 

contrast, only the first cycle after a lysozyme experiment reveals evidence of any change to the 

electrode surface and subsequent cycles appear to restore the electrode to its prior condition.  

These suggested that a fraction of the apomyoglobin was irreversibly adsorbed onto an electrode, 

and that perhaps lysozyme is reversibly adsorbed to some extent.  Because these proteins are 

both positively charged at pH 6.0, it stands to reason that they interact with the negatively 

charged cathode instead of the BDD anode. However, the pI of apomyoglobin is much closer to 

the solution pH, so its postulated interaction may be more hydrophobic than electrostatic.  

Over time it was observed that the voltage produced by a specified current level was consistently 

increasing, albeit in small increments of roughly 100 mV per experiment.  This is thought to be 

due to some insulation of the electrode surface after its activation, despite whether the 

experiment involved protein or electrolyte only.  For this reason, radical scavengers that are 

commonly used by other oxidative mapping groups to prevent spurious methionine oxidation 

events were not used in these experiments to circumvent possible electrochemical complications 

due to small molecule adsorption.  The same rationale was applied in the decision not to use 

glutamate to reduce the likelihood of proteins encountering hydroxyl radicals after potential 

oxidation-induced unfolding.[44]  Moreover, two of these model proteins were already shown to 

be structurally resilient to oxidative damage by circular dichroism (CD) measurements and intact 

protein mass spectrometry.[30]  This latter metric was used for gauging structural integrity since 

CD is sensitive to any change in protein concentration which would interfere with structural 

interpretation of results.[13, 14]  For example, apomyoglobin (5 µm ~ 0.08 mg/mL) stock was 
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measured by CD in 125 mM potassium sulfate, which was calculated by DichroWeb [94] to 

contain 45% α-helix and 0% β-strand secondary structures.  A sample volume collected during 

the application of 200 µA current at a flow rate of 50 µL/min produced a spectrum that was 

calculated to contain only 23% helical structure along with a surprising 8% strand signal.  The 

raw CD spectra are shown overlaid in Fig. 4-4.  The table embedded in this figure reveals that by 

setting the input protein concentration incrementally lower, the helical percentage interpreted 

from the oxidized spectrum increased while the strand content decreased.  In fact, half the 

original concentration (0.04 mg/mL) gave very similar values to the stock solution.  The protein 

concentration was not reliably measurable by 280 nm absorbance since tryptophan is a highly 

reactive target and its oxidation products have shifted UV absorbance profiles.[127]  

Examination of the intact mass spectrum revealed a primarily unimodal distribution of 

predominantly native, singly, and doubly oxidized species that was shifted toward the unoxidized 

form.  It seems more likely that this sample suffered some decrease in concentration rather than a 

striking deviation from its native helical structure.  However, there was very slight evidence of 

bimodality along with oxidation of satellite peaks, so the conclusion remains ambiguous as to the 

degree of CD signal change caused by either altered concentration or structure.   

4.4 Mass Spectrometry Analysis of Intact Protein Oxidation 

After passage through the activated electrochemical cell, proteins were measured by ESI-

FTICR-MS for oxidation level as function of voltage-dependent •OH flux and exposure time.  

Intact proteins consistently showed an increase in overall number of oxidation events when 

either flow rate or protein concentration was decreased, or when current magnitude was
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2.5 µM native: 125 mM K2SO4

5 µM oxidized: 200 µA @ 50 µL/min

5 µM native: 125 mM K2SO4

Concentration Helix (%) Strand (%) Disorder (%)

80 µµµµg/mL 44.5 0.0 20.3
80 µg/mL 23.1 7.7 26.4

70 µg/mL 26.5 6.2 26.7

60 µg/mL 32.6 2.7 23.7

50 µg/mL 39.7 2.1 21.0

40 µg/mL 48.6 0.9 20.4
30 µg/mL 57.9 -1.2 15.0

Mass/Charge

N

+16
+32

 

Figure 4-4:  Monitoring change in protein structure and/or concentration with CD data for unoxidized and electrochemically oxidized apomyoglobin.   
The color-coded raw CD spectra show a strong α-helix signal for all three cases, while intensity for the oxidized sample most resembles the unoxidized or 
“native” sample at half the original concentration.  Spectral data was submitted to DichroWeb for analysis of secondary structure content, and as shown in the top 
right table, the results for apomyoglobin oxidized at 5 µM (80 µg/mL) concentration are most consistent with the results of the 2.5 µM (40 µg/mL) unoxidized 
form.  The mass spectrum on bottom right depicts oxidized apomyoglobin, with the inset 17+ charge state revealing at least two +16 Da oxidation products.

α-helix 
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increased.  Exposure to moderate oxidizing conditions usually resulted in a unimodal distribution 

of intact protein oxidation products, while more extreme oxidizing conditions typically produced 

a multimodal distribution (Figs. 4-5, 4-6, and 4-7).  Such multiple distributions in oxidized 

samples are thought to be representative of different folded conformations.[30]  A singly 

oxidized protein suggests the oxidation occurred within one snapshot of its dynamic solution-

phase behavior, without additional events that may have occurred after some oxidation-induced 

structural change.    

Ubiquitin revealed a bias toward the mono-oxidized form in a variety of experimental 

conditions, which remained the base peak upon over-oxidation (Fig. 4-5).  However, even a 

sample that appears primarily mono-oxidized may contain an ensemble of over-oxidized 

proteins, as the most relatively abundant mono-oxidized form may be masking all other species 

present.  The N-terminal methionine is the solitary sulfur-containing residue present in ubiquitin, 

and its sulfoxide form may account for a large proportion of the mono-oxidized protein signal 

intensity.  Likewise, apomyoglobin shows a unimodal distribution in the moderately oxidized 

sample (300 µA at 50 µL/min) centered around +16 Da with flanking peaks representing the 

native and di-oxidized forms (Fig. 4-6).  With heavier oxidation, additional distributions appear 

starting at greater masses than the di-oxidized species, suggesting the presence of partially 

unfolded conformers that expose more reactive sites.  Lysozyme has ten sulfur-containing 

residues, including eight cysteines which can each be triply oxidized (+48 Da), so this mono- or 

di-oxidized phenomenon is not readily observable due to the large number of mass shifts 

possible (28 events of +16 Da each) on these residues alone (Fig. 4-7).  It is possible that use of 

scavenger small molecules could result in oxidation product distributions for ubiquitin and  
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Figure 4-5: Native (N) and oxidized protein FTICR-MS showing oxidation level induced by the experimental conditions reported below each spectrum.   
Each spectrum zooms into the 10+ charge state of ubiquitin around mass-to-charge 857.  Adjustable parameters include current (•OH concentration) and flow 
rate (residence time for protein inside electrochemical flow chamber).  Peaks occurring at higher mass-to-charge are +16 Da heavier than the native molecular 
mass (8565 Da).  Note the bimodal distribution apparent in the over-oxidized sample at far right, suggesting that the portion of the ubiquitin ensemble with more 
than one oxidation event has undergone structural changes relative to the mono-oxidized form.  
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Figure 4-6:  Native (N) and oxidized protein FTICR-MS showing oxidation level induced by the experimental conditions reported below each spectrum.   
Each spectrum zooms into the 17+ charge state of apomyoglobin around mass-to-charge 998.  Adjustable parameters include current (•OH concentration) and 
flow rate (residence time for protein inside electrochemical flow chamber).  Resolvable peaks occurring at higher mass-to-charge are +16 Da heavier than the 
native molecular mass (16951 Da).  Note satellite peak present in control spectrum that accumulates oxidation with increased exposure.  
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Figure 4-7:  Native (N) and oxidized protein FTICR-MS showing oxidation level induced by the experimental conditions reported below each spectrum.   
Each spectrum zooms into the 11+ charge state of lysozyme around mass-to-charge 1301.  Adjustable parameters include current (•OH concentration) and flow 
rate (residence time for protein inside electrochemical flow chamber).  Peaks occurring at higher mass-to-charge are +16 Da heavier than the native molecular 
mass (14306 Da), which comprises four disulfide bonds.  Note satellite peak present in control spectrum that accumulates oxidation with increased exposure.  
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apomyoglobin that show less agreement with the number of sulfur-containing residues and more 

compliance with first-order kinetics dependent on exposure to oxidizing conditions.  However, 

these electroactive residues may be targeted by both indirect (peptidyl hydroperoxide or radical 

mediated) and direct (electron transfer) oxidation mechanisms.    

4.5 Peptide Separation Strategies 

Most amino acids are susceptible to oxidation by the hydroxyl radical, and often multiple 

mass shifts are possible for any particular residue representing different oxidation products.[72]  

Tryptic peptides typically contain more than one reactive amino acid, so this means that an 

oxidation experiment on a pure single protein suddenly becomes a complex mixture when all the 

reactive sites are considered in many different combinations.  Peptides are typically sampled 

proportional to their relative abundance,[118] creating a dynamic range problem for detection of 

peptides modified at less reactive sites and in unique mass shift combinations.  Of particular 

interest to this experimental consideration is the fact that reactivity rates measured for free amino 

acids span four orders of magnitude, from the most reactive (Cys ~ 3.5 x 1010 reactions per mole 

per second) to the least reactive (Gly ~ 1.7 x 107 reactions per mole per second).[72]  The 

significance of this observation is that while less reactive residues should be oxidized less 

frequently than more reactive sites, the information is no less important to mapping solvent 

accessibility.  Therefore, a two-dimensional (2D) miniature MudPIT [74] chromatographic 

strategy was employed over a longer experimental timescale with the goal of increasing the 

breadth of peptide sampling relative to a simple reversed-phase (1D) separation.  Oxidation 

events typically increase peptide polarity, resulting in a reduced affinity for reversed-phase resin 



 

 

 
 
 

81 

and thus a lower chromatographic retention time.  Oxidation can also change peptide 

electrostatic nature by causing the loss of both acidic (decarboxylation, D/E -30 Da) and basic 

(deguanidation, R -43 Da) functional groups,[72] which may alter peptide charge and/or length 

due to missed proteolytic sites.  It has been found that hydrophobic interactions between peptides 

and strong cation exchange (SCX) resin are remedied by the addition of acetonitrile to the 

mobile phase,[127] so this phase is separating primarily on affinity for an ion exchange resin.  

Derivatization of oxidation sites with a cationic adduct could dramatically increase the 

effectiveness of this additional chromatographic dimension, in addition to facilitating the 

enrichment of oxidized peptides.[128, 129]   

Both 1D- and 2D-LC approaches have strengths and weaknesses, with potentially biased 

tendencies in peptide sampling.  The 1D approach separates peptides based on a single 

characteristic, requires a reasonable amount (1-3 hours) of instrument time per sample, and 

produces a single chromatogram that makes relative quantification of peptide peak elution areas 

a rather straightforward task.  However, the smaller chromatographic timeframe and limited 

separative capacity hinder the dynamic range of 1D analysis, which impacts finding uniquely 

modified peptides within the complex oxidized mixture.  The 2D approach offers separation 

based on two orthogonal physical properties, hydrophobicity and electrostatic charge, to 

theoretically reduce the overall complexity of peptides eluting at any given retention time and 

increase the chances for detecting uniquely modified peptides that are likely present in very low 

abundance. The longer 2D experimental timeframe (5-10 hours) offers more measurements thus 

higher peptide spectral counts to gauge statistically relevant estimation of abundance relative to 

unoxidized counterparts.  One caveat to the 2D approach is that with a deeper probe of the 
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sample contents, more oxidations are identified in tryptic digestion controls that are not 

ordinarily measured from the same sample in 1D analysis.  Potential causes of and remedies for 

these background oxidation events are discussed below and warrant consideration relative to 

oxidation events identified from experimental samples.   

The widely accepted method of relative quantitation for oxidative mapping involves 

integration of native and oxidized peptide peak intensities with selected ion chromatograms 

(SIC) to achieve a relative measurement.[33]  There are three major drawbacks to this approach:  

the first is that SICs provide information at the peptide level rather than for individual amino 

acids, which is the purported strength of oxidative mapping over HDX in addition to its critical 

covalent mass tag which does not suffer from back-exchange.  This means that parent ion SIC 

cannot discriminate between differentially oxidized versions of the same peptide whether they 

coelute or vary in their retention times, so the tandem mass spectra must be relied upon for site 

identification if this information is desired.  Secondly, an overwhelming number of possible 

mass shifts make an exhaustive analysis cumbersome, so just the most common mass shifts 

(+16n Da) are typically considered.  One solution used to counter these issues involves 

monitoring depletion of the unoxidized form in the experimental sample relative to the control 

digest against the relative intensity of an internal standard.[36]  It is not clear whether this 

approach took into account the possibility of a decrease in unmodified form within the oxidized 

peptide mixture simply due to cleavage sites missed during proteolysis.  Interestingly, these 

researchers used the mono-oxidized value as the “unoxidized” form when the myoglobin-derived 

peptides contained methionines (< 10 Å2 exposed) due to minuscule levels of the native isoform, 

despite using glutamine scavenger during the experiment.  These chromatographic extraction 
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methods were not performed in our study as the goal was a high-throughput pipeline that relied 

on spectral counts for estimating relative abundance.  However, the most effective strategy may 

involve optimizing a shorter 2D approach based on the elution profile of the peptides in the 

control digest and building this into a single instrument method for ease of quantifying 

disappearance of the native peptide peak relative to a spiked internal control.  This would allow a 

metric for comparing oxidized amino acid statistics derived from tandem mass spectra within 

specific peptides to the parent ion peak intensities measured from full scan mass spectra, which 

are not subject to the sampling directives introduced by dynamic exclusion as discussed in the 

following section.  

4.6 Entry Points for Bias in Data Acquisition 

Experimental variables can impact the actual measurement of peptides containing 

oxidized sites, which would affect the resulting tandem mass spectra available for oxidative data 

mining discussed in the next chapter.  These parameters include the experimental methods used 

to handle protein or peptide solutions, as well as instrumentation options utilized to acquire 

spectra in a data-dependent fashion.  Examination of these entry points for sampling bias could 

lead to protocol improvements that allow for impartial peptide sampling frequencies. 

4.6.1 Liquid Chromatography Strategy  

The increased overall sampling inherent in 2D analysis relative to 1D could foster a semi-

quantitative approach for calculating the occurrence of oxidation events at specific sites as a ratio 

of modified spectral counts to the total observed for any given peptide.  However, search results 

showed a significant discrepancy in spectral counts among tryptic peptides in 2D experiments.  
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While it is common to see small hydrophilic peptides missing from the sequence coverage, some 

peptides present in 1D were either overwhelmingly represented or noticeably lacking in the 2D 

results.  For example, one abundant ubiquitin peptide (12-TITLEVEPSDTIENVK-27) had a 

relatively tight peak elution profile (~2 min) in 1D that was found with similar retention 

characteristics (~32-37% solvent B) in all three salt pulses.  The first two salt pulses were 

followed by a slower gradient of 5 to 50% solvent B, in contrast to the 5 to 100% gradient used 

in both 1D experiments and after the last 2D salt pulse.  Consequently, this peptide experienced a 

ten-fold increase in sampling (from ~20 to over 200) with the 2D strategy and novel sites of 

modification were detected in control samples, as discussed below (Section 5.7).  In contrast, the 

N-terminal neighboring tryptic peptides (1-MQIFVKTLTGK-11) from the same protein were 

typically sampled less than 15 times in control 2D samples, and InsPecT reported them absent 

altogether from the experimental 2D samples.  Since no extraction step was performed before 

proteolytic peptides were loaded onto the analytical column, it stands to reason that this apparent 

sampling bias could be due to differential desorption from the chromatographic resin within the 

split-phase column.  In other words, irreversible adsorption of some peptides to either of the 

solid phase resins employed may have occurred.  Another possibility is that some peptides 

adhered to walls of the reaction tube, resulting in variable abundances present in the final 

mixture.  This might be attributed to the acidification step to quench the enzymatic activity of 

trypsin prior to lyophilization, wherein some peptides may become insoluble upon hitting their 

isoelectric points during the rapid pH drop.  Due to the small volumes and low concentrations 

used, such a phenomenon might not visible to the naked eye.  Peptide FTICR-MS scans of a 

control ubiquitin tryptic digest reveals that the monoisotopic peak at (894.5)2+ is the most 
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abundant ion and thus the base peak of the spectrum, which corresponds to the neutral mass of 

the aforementioned “TITLE” peptide at 1787 Da.  However, the proteolytic mixture was 

extracted by C18 ZipTip prior to mass spectrometric analysis, so this measurement was also 

subject to potential retention bias posed by reversed-phase material.  Nevertheless, increased 

sampling of this abundant peptide along with its oxidized products has revealed interesting 

information about oxidation events detected in both control and electrochemically oxidized 

samples, as described below (Sections 4.8 and 5.4).   

4.6.2 Mass Spectrometry Approach 

Dynamic exclusion (DE) is a powerful feature of data-dependent acquisition of mass 

spectra, wherein scans of the full mass range (MS1) are referenced to direct the subsequent 

isolation and fragmentation (MS2) of the most abundant parent ions.  After measurement of a 

particular parent ion mass a certain number of times (repeat count) within a particular timeframe 

(repeat duration), this value is added to an exclusion list to avoid excessive sampling of abundant 

ions.  Enabling DE has been shown to positively impact detection of low abundance species from 

proteomic peptide mixtures, with an optimal exclusion duration of roughly 90 seconds.[130]  

Optimization of this data acquisition feature is critical because oxidized peptides can occur in 

many different varieties, so each version is typically present in very low abundance.  

Additionally, the most common oxidation event involves incorporation of an oxygen atom (+16 

Da), effectively increasing the peptide polarity and thus hydrophilicity.  While this predictably 

reduces affinity for reversed–phase resin, it also results in localization of oxidized species to the 

interior of electrosprayed droplets which suppresses their ionization, thereby resulting in lower 
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intensity parent ions.[73]  With all of this considered, oxidative experiments were run with DE 

set to add a given parent ion mass to the exclusion list for 30 sec if it was sampled twice within a 

30-sec repeat duration.  A shorter exclusion duration was chosen (relative to the abovementioned 

proteomic study) to avoid temporarily excluding all peptide signals resulting in isolation of noise 

peaks, since the oxidized mixture is complex but not to the level contained in a proteome 

analysis.  The reason for setting the repeat count to two was to facilitate redundant measurements 

of low abundance oxidized species for improved confidence in oxidation site identifications 

relative to single spectral count matches.  However, it could be argued that the repeat count 

should be set to one with a shorter exclusion duration in order to speed the subtraction of more 

abundant species and rapidly dive down to sampling lower intensity parent ions.   

4.7 Importance of Control Measurements 

All experiments benefit from control measurements to delineate features intrinsic to the 

subject of interest versus those introduced by steps in the experimental protocol.  In the case of 

oxidative mapping, it is important to identify any endogenous oxidation events to avoid false 

positives, and would be ideal to flag all possible oxidation sites to minimize false negatives.  

Controls for the proteolytic digestion can help the experimentalist identify problem areas when 

peptides are found missing or large sampling discrepancies exist, since oxidation of basic sites 

can remove the charged functional groups[72] resulting in missed cleavage sites.  Additionally, 

control data on the LC-MS/MS strategy allows gradient optimization for measuring 

chromatographically unique peptides from the protein of interest.  Finally, tandem mass spectra 

of unoxidized peptides allows manual evaluation of peptide-specific (length, hydrophobicity, etc) 
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scoring in determining appropriate spectral quality filter levels, with the caveat that oxidized 

peptide dissociation may result in variable intensities of resulting fragment ions relative to their 

unoxidized counterparts.[131]  The most reliable filter is manual evaluation for all peptide 

matches, but this labor intensive task for 1D data would be even more burdensome for routine 

2D data analysis, especially if replicate measurements are obtained.  Therefore it may be 

advantageous to combine the unmodified SIC depletion metrics with statistically relevant results 

of tandem mass spectral searches filtered based on manually evaluated peptide-specific score 

thresholds from the native digest for a relative comparison of site-specific oxidation extent in 

experimental samples.  While in retrospect the proposed strategy may be very effective, this 

study focused only on comparing peptide spectral counts for the two chromatographic 

approaches.   

4.7.1 Negative Control to Identify Background Oxidation 

It is critical that search results of tandem mass spectra from oxidative mapping 

experiments are compared against those from a control unoxidized proteolytic digestion, as 

oxidation may unintentionally occur at some point in the process.  The first potential source of 

this so called “background” oxidation is during preparation of commercially available purified 

proteins.  Commercial hemoglobin was found to contain multiple oxidation events (+16 and +32 

Da) on primarily methionine-containing peptides, but the authors conceded that additional 

modification types must exist since α-globin (single Met) showed a +48 Da signal, albeit 

weakly.[132]  Lower abundance non-Met oxidized peptides were not measured by tandem mass 

spectrometry of the course of a 60-min reversed-phase gradient, though this detail might have 
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been resolved with a longer gradient and/or multidimensional separations.  It is not surprising 

that hemoglobin proteins would show some level of endogenous oxidation since binding and 

transporting O2 is their primary function.  However, multiple oligomeric and oxidized species 

were observed for commercial hemoglobin that were not found in the much cleaner spectrum 

from freshly purified hemoglobin.  After lyophilization followed by reconstitution and freezing, 

the thawed sample of freshly purified hemoglobin mirrored the commercial stock.  Similar to 

hemoglobin, the presence of the iron-containing heme prosthetic group in apomyoglobin may 

have contributed to the background oxidation prior to its ejection. 

In the case of oxidation appearing in commercial proteins, the intact protein mass 

spectrum should reveal measurable satellite peaks aside from the expected native protein signal 

near average molecular mass.  However, if very concentrated samples are tested, or long 

collection times are allowed in the ion trap, then the native species could be overly abundant.  In 

either case, the resulting measurement could suffer from dynamic range limitations such that 

lower abundance modified protein satellite peaks are not visible relative to the overwhelming 

native signal.  Additionally, oxidized species are more polar and thus may not ionize as well as 

their unoxidized counterparts.[133]  Satellite peaks were present for the proteins tested in this 

study, but the peaks observed are typically ~100 Da heavier, as in the case of lysozyme (Fig. 4-8) 

and apomyoglobin.  Low abundance (< 5% intensity) peaks near the primary satellite peak have 

occasionally been observed that appear to be in increments of +16 Da.  One exception to this is 

the appearance of a low level of mono-oxidized ubiquitin can be seen in Fig. 4-5, just to the right  
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Figure 4-8: Lysozyme FTICR-MS from freshly prepared, commercially-purified stock protein with satellite peaks showing oxidation signature.  
Inset zooms into a closer view of peaks that appear to be oxidation events present on the +300 Da species, which is an unknown modification but presumably an 
isoform of lysozyme since the satellite peak is present for the most abundant unoxidized charge states.   
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of the native species.  However, this could be an artifact of the charge balancing redox that 

occurs during electrospray ionization from a metal capillary,[86] likely resulting in the direct 

oxidation of methionine on a small fraction of proteins.  

Another potential source of oxidation is exposure to oxidants is during proteolysis.  One 

method to reduce the content of molecular oxygen (O2) is by sparging the reaction solution with 

an inert gas such as nitrogen or argon.  While it is not known whether radicals (hydroxyl, 

superoxide, etc.) are present in solution during the digestion process, the use of a radical-

scavenging antioxidant such as dithiothreitol, glutathione, or free methionine could counter this 

minor threat.  Hydrogen peroxide formed by collision of two hydroxyl radicals can be 

decomposed to water and molecular oxygen by the catalase enzyme.  Peroxides reportedly cause 

two-electron oxidation of methionine independent of solvent exposure, and can be cleaved into 

hydroxyl radicals either by trace iron present in solution or ultraviolet light emitted by indoor 

fluorescent bulbs.[134]  Furthermore, the tryptophan oxidation product kynurenine can act as an 

oxidative photosensitizer when bound to protein and exposed to far-UV wavelengths, catalyzing 

the oxidation of tyrosine to crosslinked dityrosine and 3,4-dihydroxyphenylalanine.[135]  A third 

possible source of background oxidation mentioned previously is the charge-balancing 

electrochemical redox reactions that occur during electrospray ionization.  However, this seems 

less plausible in nanospray LC-MS/MS analysis since peptides do not pass over the gold working 

electrode on their way to the mass spectrometer through fused silica tubing, not a metal capillary. 

The appearance of oxidation events in the control digestions could be taken as false 

positives since they were not induced and thus were not expected to be found at significant 

levels.  One seemingly reasonable option for subtracting background oxidation from 



 

 

 
 
 

91 

experimental results is to filter peptide matches based on the scores for oxidized peptides 

appearing in the control sample.  However, this is effective only if the assumption is true that 

background oxidation in the control sample is false.  In the case that background oxidation is 

real, then the assumption is false, and good match quality spectra would be discarded with such 

conservative filters.  This perspective is supported by the finding of oxidized methionine and 

tyrosine at significant levels, as well as a few spectra showing hydroxyproline,[78] in the well-

known ISB (Institute for Systems Biology) data set containing tryptic peptides of commercially 

available reference proteins.[136]  For the abovementioned reasons, spectra matching peptides 

for both control and experimental samples were filtered by the same criteria, as discussed in 

detail within Chapter 5.  By subjecting control digestions to 2D measurements and oxidative 

searches with InsPecT software, a survey of background oxidation either already present in 

commercially available proteins or induced by sample preparation steps is reported below.      

4.7.2 Positive Control to Obtain List of All Oxidation-Sensitive Sites 

In theory, generous exposure of protein to oxidizing conditions would promote oxidized-

induced unfolding, resulting in protein denaturation and all susceptible amino acids would 

become oxidized.  Consequently, sites that are resistant to hydroxyl radical attack would emerge 

as potential false negatives in moderately oxidized samples in the absence of the positive control.  

However, there are difficulties with this approach that are discussed in greater detail within 

Chapter 5.  Briefly, these challenges include increased false positives concomitant with an 

extreme expansion of database search space, and confident identification of oxidized species  
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when modification occurs near peptide endpoints or more than once on a single peptide.  Finally, 

over-oxidation could primarily target sulfur-containing and aromatic residues once exposed due 

to oxidation-induced unfolding, leaving other reactive residues unmodified.  

4.8 Survey of Modified Sites in Control and Oxidized Proteins 

A survey of oxidized sites was obtained with the use of InsPecT [77] software to search 

for more than forty oxidation mass shifts (Table 3-1).  The overall assessment was similar to the 

one performed in Chapter 3, except that an even more extensive mass shift list was employed 

(Table 2-1) along with a larger database based on advice from the software curators.  This broad 

interrogation mirrored the oxidative modification list developed for ByOnic software, which was 

recently used in another oxidative mapping study.[92]  A few caveats to this comparison of 

InsPecT results include the number of modifications allowed per peptide and the size of the 

databases employed for each search.  The earlier study allowed only one mass shift based on 

cautious advice from InsPecT curators, while the later search allowed three to emulate the more 

liberal ByOnic settings.  Additionally, there is a significant difference in the size of the databases 

referenced by each InsPecT search, from twelve initially to over one thousand sequences in order 

to facilitate improved p-value assignments.  Admittedly, a fairer comparison would involve 

changing only one parameter at a time, for instance, using the same small database for both 

searches while expanding the mass list for only one of the two searches.  Post-processing and 

preparation of search results is a fairly work intensive process, involving a variety of script-based 

commands for each experiment, followed by extraction of spectral counts into a table format.   
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These searches were conducted based on advice received from InsPecT curators for future 

publication purposes with the comparison of results for the previously published data set as an 

afterthought, but a discussion of these results is nevertheless relevant to the reasons for exploring 

ByOnic software.  This comparative discussion is followed by a general analysis of oxidation 

sites identified by InsPecT for control versus electrochemically oxidized proteins followed by 2D 

separations of tryptic peptides.  

These newer search results showed a markedly changed oxidation report for the same 1D 

data on searched in Chapter 3.  In contrast to the ubiquitin oxidation sites reported in Table 3-2, 

recent search results (Table A-4) show additional modification sites at Phe4, Ile13, Ile30, Gln31, 

while no oxidation was reported on either Thr12 or Pro19.  Residues identified in both searches 

include Met1, Thr14, Leu15, Ile36, Pro37, Pro38, Lys48, Tyr59, and His68, although spectral 

counts tended to be lower in the new search.  The new search conditions turned up more 

modified sites in the 1D lysozyme data (Table A-5), for both the +2.05 V and +2.10 V 

experiments, while only two residues were consistently found modified in both experimental 

conditions reported: Cys6 and Trp123.  In the +2.05 V results, new sites included Arg5, Glu7, 

Ser24, Trp28, Cys30, Ser91, Cys94, and Trp108.  In the +2.10 V results, new modification sites 

were revealed with single spectral counts for Phe3, Ala11, Phe34, Glu35, and Cys115, along 

with 3-5 spectral counts for Asn106, Trp108, and Trp111.  Some of these sites are considered 

buried in the static structures, but as discussed in the next chapter, these may be explained either 

by transient solvent exposure during solution-phase dynamics, or perhaps by virtue of challenges 

inherent in mining oxidation sites from mass spectrometry data. 
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There are also distinct differences in the reports obtained for control and oxidized 

proteins, which show that electrochemical oxidation under the new experimental conditions still 

generated modifications on a breadth of non-electroactive residues within the proteins of interest.  

The 2D approach produced significantly higher spectral counts (contained below in parentheses) 

for some peptides, which often fostered detection of more oxidized sites in those more abundant 

peptides.  For example, the longest tryptic peptide in ubiquitin registered some background 

oxidation at Ile13 (1), Thr14 (1), Leu15 (2), Glu16 (1), Glu18 (1), and Lys27 (4).  Theoretically, 

the amino acid sites identified as oxidized in the control should also be found in the deliberately 

oxidized sample.  Oxidation events detected in the experimental (300 µA at 25 µL/min) 

counterpart to the aforementioned control do in fact include the same sites in addition to new 

ones: Thr12 (3), Ile13 (5), Thr14 (3), Leu15 (7), Glu16 (1), Glu18 (4), Ser20 (1), Thr22 (2), 

Val26 (3), and Lys27 (2).  In contrast, the same peptide from a lighter oxidation exposure (150 

µA at 50 µL/min) and run three months later on the same instrument revealed oxidation at a 

unique blend of some of those residues in addition to two new sites:  Ile13 (1), Glu18 (2), Ser20 

(2), Glu24 (1), Asn25 (1), and Val26 (1).  Different protein stocks were used between the earlier 

and later experiments, so it is not surprising that this oxidized subset does not fully comprise the 

abovementioned control subset.  This type of differential reporting illustrates the need for 

controls to be run with every experiment.  Additionally, the variable results realized by these 

different searches run on the same data sets corroborated empirical findings that tyrosine-only 

versus liberal oxidative searches performed on bovine serum albumin (BSA), which was labeled 

by either tyrosine-selective or oxidative experiments, yielded different results about the 

frequency of tyrosine oxidation.  However, this latter observation could be due to the assignment 



 

 

 
 
 

95 

of oxidized sites to tyrosine when in fact a neighboring site was modified, such that peptide 

fragment ions matched this “next best” oxidized version well enough.  Nevertheless, it was 

admitted by the previous InsPecT curator that their software was designed to accommodate 

significantly fewer modifications than the complete oxidation set, so another software was 

utilized for comparison.  ByOnic was a natural choice due to its presence in the field, so a more 

comprehensive view of the search results from both software packages are reported along with a 

discussion of informatic challenges in Chapter 5.  Those results comprise experiments performed 

using the more recently developed electrochemical conditions discussed above.  

4.9 Conclusions 

The protocol first published in 2008 for conducting protein electrochemical oxidation 

was refined for a more rapid exposure to oxidizing conditions and better controllability of the 

resulting oxidation level.  While some evidence of adsorption was reported above, this 

technology still holds some promise for mapping the dynamic surface of solution-phase proteins.  

Examination of the oxidized sites by multiple search softwares and evaluation of these results by 

molecular dynamics, as discussed in the next chapter, may shed light on whether a sufficiently 

deep probe of surface residues was accomplished.  Regardless of this outcome, valuable data on 

control protein digestions revealed the need to use freshly purified protein to minimize 

background oxidation and increase likelihood of labeling native structure.  However, any in vitro 

sample processing, including purification, lyophilization, and freezing, could impact structural 

studies since they may further the tendency for background oxidation to occur regardless of 

attempts to counteract such events.  The benefit of increasing dynamic range with 2D 
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chromatography was demonstrated, albeit with room for protein-specific gradient optimization, 

by the identification of considerably more low-abundance oxidized peptide spectra relative to 1D 

measurement.  Improvements in the overall methodology for electrochemical protein oxidation 

have furthered the potential for its use in oxidative surface mapping experiments, and generally 

expanded knowledge of how the BDD electrode may become valuable to future protein research.    
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5. Mining Oxidative Modifications from Multidimensional LC-MS Data for Increased 

Dynamic Range in Electrochemical Mapping of Protein Dynamics 

 
 
This manuscript will be submitted to Journal of Proteome Research with the following authors: 

McClintock, C.; Parks, J.M.; Ghatty, P.K.; Bern, M.; Kertesz, V.; Hettich, R.L. 

 

5.1 Introduction 

Mass spectrometry has become the lynchpin technology for the characterization of 

complex protein mixtures, such as proteomes identified from genomic sequence data.  Proteomic 

studies seek to assess the host of proteins present in a particular sample by measurement of 

constituent peptides found within a database of protein sequences.  Depending on the 

experimental design, protein abundance can arguably be estimated by a relative isotopic labeling 

approach [137] or by utilizing an absolute peptide spectral counting strategy.[138]  Either of 

these quantification tactics would suffer from a pure database search due to the presence of 

PTMs, because a covalent modification of any given peptide produces a mass shift in many of 

the resulting fragment ions.  Therefore, PTMs can impact the number of peptide tandem mass 

spectra that match the protein database, although their abundance may be relatively low.  

Because this biologically relevant information impacts overall protein identifications as well as 

quantification efforts, the mining of PTMs from proteomic data has taken center stage in recent 

years.[119]  
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A number of computational algorithms have been developed to tackle the challenge of 

detecting both expected and unanticipated PTMs, while also handling the intrinsic variability 

among peptide mass spectra.  Oxidative mapping presents a unique challenge to the 

computational strategies developed for mining PTMs, not only due to the large number of 

possible mass shifts, but because uniquely oxidized peptide variants are generated at low 

abundances.  Therefore, peptide mixtures were separated by either reversed-phase only (1D)  or a 

split-phase MudPIT column (2D) for increased dynamic range and thus measurement 

sensitivity.[139]  Mass spectral data were searched by two different software packages, InsPecT 

and ByOnic, for a suite of possible oxidative modifications.  By using resolved crystal structures 

as templates for molecular dynamics (MD) simulations, we gained insight about transient solvent 

exposure for some buried sites in the static crystal structures.  Oxidative modifications mined by 

both the InsPecT and ByOnic software packages are reported and compared with both average 

and maximum SASA values obtained from MD trajectories, as accurate detection of oxidized 

peptides continues to present a formidable combinatorial challenge.   

5.2 Interpreting Tandem Mass Spectra of Native and Oxidized Peptides 

Collision-induced dissociation (CID) of a parent ion typically produces a tandem mass 

spectrum (MS/MS or MS2) containing positively charged fragment ions from both the positively 

charged N-terminus (b-ions) and the C-terminus (y-ions).[140]   Fragmentation by CID occurs at 

the weakest link (O=C—N) adjacent to the peptide bond, producing b-ions that contain the 

amino group and y-ions that often include a basic site (K/R) due to the cleavage specificity of 

trypsin.[141]  The peak intensity pattern of CID fragments tends to favor a bell-shaped Gaussian 
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distribution, wherein mid-range fragment ions are most intense while outermost ions typically 

contribute much lower signals that may become obstructed by spectral noise.  Consequently, 

both low and high indices (i) for both bi- and yi -ions may be difficult to interpret.  For this 

reason, oxidized peptides with modification sites located on or near the peptide endpoints may 

produce spectra with residual uncertainty about the specific amino acid site affected.   

5.3 Potential Sources of Information Loss 

During the course of searching mass spectra for oxidative modifications, there are some 

pitfalls that can impact peptide identifications.  These include the challenges with interpretation 

of spectra that involve multiple oxidation sites on the same peptide, unexpected modifications, 

and mixtures of more than one version of an oxidized peptide.  Recognition of these difficulties 

does not imply they have been resolved, only that the results of any oxidative search should be 

viewed with these caveats in mind. 

5.3.1 Multiply Oxidized Peptides  

Identifying a singly modified peptide is a reasonable challenge, because the modified 

position is reflected by mass-shifted fragment ions along with their unmodified complementary 

ions from either terminus.  For instance, the spectrum from an octopeptide (1-PEPTIDEX-8) 

modified at the 4th position (T+16) would theoretically show unmodified native masses for b1-b3 

and y1-y4 ions, with masses shifted by +16 Da for b4-b8 and y5-y8 ions.  In this case, the 

diagnostic mass-shifted fragment ions and their unmodified complements (b3/y5 [+16], b4 

[+16]/y4) should show the transition to a shifted mass occurring at the 4th position. However, the 

situation becomes much more complicated when more than one mass shift occurs in a given 
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peptide.  For example, when both peptide ends are modified, then oxidized fragment ions no 

longer correspond to an unmodified complement.  Since the protein sequence is known, the 

primary challenge lies in the many possible combinations of mass shifts that can coincide among 

various reactive sites on the same peptide.  One example of a triply oxidized ubiquitin peptide 

shown in Fig. 5-1 illustrates the need for allowing more than one modification per peptide to 

fully interrogate the oxidized peptide mixture.  Interestingly, this spectrum appears to be 

correctly identified as the first two ubiquitin peptides M(+16)QIFVK(+14)TL(+14)TGK by 

InsPecT, but ByOnic matched this spectrum in a regular oxidative search to a low-scoring 

(below filter level) bogus myoglobin peptide: LFTGHP [+16]ET [+22]LEK.  ByOnic uncovered 

the correct mass shifts as M(+16)QIFVK(+28)TLTGK with a high score in a blind search, but 

assigned both +14 Da modifications to Lys6.  This presumably is an example of the differences 

among search algorithms, as “lookup peaks” were admitted by the authors to be less proficient in 

identifying peptides modified at or near both endpoints.[78]    

5.3.2 Unanticipated Oxidation Events  

Any modification that results in a stable mass shift for which provisions are not explicitly 

included in the search parameters will result in a fraction of missed peptide identifications.  For 

example, ByOnic peptide match results commonly showed evidence of sodiation (+22 Da), 

which is a mass shift that was not considered in InsPecT searches.  The use of a more 

conservative list generated by cutting less common mass shifts or less reactive residues may 

result in faster searches and fewer false positives.  However, if these are excluded from search 

parameters when the modifications actually exist, the result will be lower peptide spectral counts 
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Figure 5-1: Triply oxidized ubiquitin peptide 1-M(+16)QIFVK(+14)TL(+14)TGK-11 identified by InsPecT.  
This tandem mass spectrum was correctly matched by InsPecT software with MQScore of 3.46 and p-value < 0.01, 
highlighting the need for relatively liberal search constraints that allow more than one modification per peptide.  
Experimental conditions: 150 µA current at solution flow rate of 50 µL/min. 
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and false negatives that would skew information about reactivity and thus solvent accessibility.  

The flip side of this issue is that imposition of more modifications than the software can 

effectively handle may prove detrimental to reporting of true matches, in addition to requiring 

extensive processing time to run searches.  With some oxidative studies it may be advantageous 

to conduct unrestrictive searches, as in the case of glycosylated proteins where polysaccharide 

mass shifts are often unpredictable.[142, 143]  So called “blind” searches of eye lens proteomic 

data have yielded interesting discoveries about PTM relevance in crystallin proteins and founded 

speculation about the role of oxidation in cataract formation.[144, 145] 

5.3.3 Coeluting Oxidized Peptide Isoforms 

One potential complication inherent in oxidative experiments is the coexistence of the 

same peptide sequence with differentially oxidized sites.  These oxidized isomers or 

“oxidisomers” have the same parent ion mass (isobaric) and similar affinities for reversed-phase 

resin.  In this case, it may not be possible to chromatographically resolve oxidisomers such that 

the coeluting parent ions are fragmented simultaneously, producing a mixture spectrum like the 

one shown in Fig. 5-2.  It is not known how often these isomers occur, as software search results 

report only one match per spectrum and second-best matches must be manually investigated on 

an individual basis.  However, analysis of one electrochemically oxidized ubiquitin data set (5 

µM ubiquitin exposed to 300 µA at 25 µL/min) by the ByOnic curator revealed that over 30% of 

matched peptide spectra may be some mixture of cofragmented species (unpublished work by 

Bern et al), while nearly 50% of identifications may register some residual level of uncertainty.  

Resolving oxidisomers chromatographically was one goal of the 2D approach, but due to the 
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difficulty in reliably detecting their frequency of occurrence, it remains unclear whether a 

significant impact was made relative to 1D measurements.   

5.4 Peptides Identified from Oxidized Proteins by Two Software Packages  

With growing awareness of the complexity in mining MS data for oxidative modifications, 

an evolution occurred in the choice of software used to undertake this challenge.  Early studies 

utilized DBDigger to search for +16 Da mass shifts on a modest set including the most reactive 

amino acids.  Later the InsPecT software package was utilized for its ability to dynamically 

accommodate an unlimited set of user-defined modifications.  The publication of the results 

reported in Chapter 3 highlighted the need for more broad-based search capabilities to 

adequately match the number of possible oxidative mass shifts.  Another oxidative study 

followed which showcased ByOnic software for this purpose and reported a wide range of 

modifications in addition to the +16 Da shift most commonly observed.    

Peptide tandem mass spectra were searched for the liberal list of oxidative modifications 

designated by the ByOnic oxidation module and listed in Table 2-1.  For InsPecT searches, 

peptides were allowed up to three oxidation events and a conservative threshold (p-value ≤ 0.01) 

was used to filter the resulting matches.  These results are contrasted with those from ByOnic, 

which does not strictly demarcate the number of modifications that can occur on the same 

peptide, and has a p-value mechanism built into the quality calculation (Score ≥ 380) upon which 

matches were filtered.  The following sections include a discussion of amino acid level oxidation 

events identified on peptides from control unoxidized and electrochemically oxidized model 
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Figure 5-2: Mixture “oxidisomer” tandem mass spectrum from electrochemically oxidized apomyoglobin.  
Color-coded fragment ions belong to the matching oxidized parent ions shown at top left.  This tandem mass 
spectrum was identified as containing two differentially oxidized peptides during investigation performed by curator 
of ByOnic software as discussed in Section 5.3.  Search results reveal a list of interpreted spectra with each 
matching a single peptide identity, so this example illustrates the existence of a richer set of information beneath the 
best scoring oxidized peptide matches typically reported.  Experimental conditions: 300 µA current at solution flow 
rate of 25 µL/min. 
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proteins ubiquitin, lysozyme, and apomyoglobin.  Results from both search software packages 

are discussed in light of known secondary structural features, as well as SASA factors, whose 

calculation is detailed in Section 2.6.2.   

Overall, ByOnic tended to register higher peptide spectral counts for both total (oxidized 

+ unoxidized) and oxidized peptide variants, which could be attributed to filtering at a 5% false 

discovery rate (FDR) relative to the 1% used by InsPecT.  However, confidence about such FDR 

distinctions should be guarded for the previously discussed (Section 2.4) differences in 

algorithmic strategy and input parameters, along with the inherent challenge in defining false 

positives within oxidative search results.  Results from both software searches turned up a 

surprising number of background oxidation events in control experiments, with a troublesome 

level detected in lysozyme and especially apomyoglobin.  As mentioned earlier, both InsPecT 

and ByOnic identified unexpected oxidation events on tyrosine and proline within the ISB 

reference protein digest data set, while oxidized methionine was not unforeseen.  Oxidation was 

often found on these three residues in 1D controls, but a significantly wider breadth of residues 

appeared to be affected with the increased sensitivity in 2D sampling.   

One solution to coping with background oxidation events is to compare the ratio of 

oxidized to total peptide matches for both the control and experimental samples to obtain a 

relative change in oxidation percentage.  However, excessive background oxidation may suggest 

that some structural perturbation was present in a fraction of the intact protein ensemble prior to 

electrochemical oxidation.  For this reason, protein FTICR-MS scans should be carefully 

conducted (low ion trap accumulation times and multiple scans for adequate signal averaging) to 

maximize accurate detection of satellite peaks.  While ubiquitin appeared to exhibit less 
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contamination by satellite peaks, the intact protein mass spectra for both lysozyme and 

apomyoglobin suggest the presence of a modified form that may be more vulnerable to 

oxidation.  This speculation arises from the observation that the oxidative +16 Da signature 

appears on the satellite peak for each protein, with the satellite distribution of products leaning 

toward more the heavily “decorated” variety.  Therefore, a detailed interpretation of ubiquitin 

oxidation events is highlighted with the expectation that native structure should have been 

labeled, with less emphasis on the other two proteins.  Based on satellite peaks observed from 

intact protein mass spectra, it seems likely that some uncharacterized species within lysozyme 

and apomyoglobin solutions were electrochemically oxidized and thus contribute oxidized 

peptides to the final tally of site-specific labeling.   

5.4.1 Ubiquitin 

Ubiquitin is a small (8.5 kDa) protein conserved throughout evolution, as its covalent 

linkage at Lys48 to other proteins targets them for destruction by the proteasome.[146]  Its 

secondary structure consists primarily of β-strands, along with one long α-helix and two smaller 

helices.  While informally known as a “rock” due to its proteolytic resistance in aqueous 

conditions, peptides were readily generated in the organic-aqueous digestion solution employed 

by these studies.  Ubiquitin was chosen for these studies for a variety of reasons, including its 

commercial availability at high purity (>98%) and the limitation of sulfur-containing residues to 

its single methionine.  Because of its small size and rigid structure that has been shown to resist 

oxidation-induced unfolding, it was thought that this protein should show good correlation with 

SASA values under optimal oxidative labeling conditions.   
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Proteolytic sequence coverage was typically 72-100%, and interestingly the lower 

coverages were affiliated with 2D experiments.  Missing tryptic peptides typically included a 

rather polar peptide from the middle (28-AKIQDK-33), and four residues at the C-terminal end 

of the protein (72-LRGG-76).  Semi-tryptic peptides measured by 2D and identified by InsPecT 

revealed backbone cleavage which can be induced by oxidative damage.[72]  This empirical 

finding suggests that MS search parameters in oxidative studies should routinely include 

provision for this non-specific cleavage event, albeit at a cost in terms of processing time due to 

a spike in the number of different peptides.  The N-terminal peptide with a missed cleavage site 

(1-MQIFVKTLTGK-11) is lacking primarily from the 2D results for InsPecT, but ByOnic 

tended to find spectra matching one or both of these two short tryptic peptides.  Interestingly, 

neither of the two short peptides comprising this longer fragment is sampled in isolation, but the 

latter tryptic sequence (TLTGK) is occasionally found attached to the longest peptide (12-

TITLEVEPSDTIENVK-27) which is also the most commonly identified. This “TITLE” peptide 

was sampled most heavily in 2D experiments, with a large discrepancy of usually more than two 

hundred peptide spectral counts relative to less than forty for most other tryptic peptides.  The 

second ranked peptide in terms of 2D sampling is 55-TLSDYNIQK-63, with nearly a hundred 

spectral counts in some measurements.   

While the reason for the large discrepancy in peptide sampling frequencies remains 

unclear, the advantage of increased overall spectral counts in 2D experiments allowed closer 

examination of oxidative labeling patterns.  Oxidation sites found by both softwares in two 

different control 1D samples include Met1, Phe4, and Tyr59; while additional oxidation events 

appeared to be centered around Pro37/38 and scattered throughout the TITLE peptide most 
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heavily on the N-terminal end from Ile13 to Pro19.  The 2D results also showed a background 

oxidation “hotspot” around Pro19 that was shifted more toward the middle and C-terminal end of 

the 16-residue peptide.  This hotspot includes an indication of a likely modification at Glu18, 

with at least one spectral count matched by both softwares in both 2D controls.  The 2D control 

results corroborated the 1D finding of significant oxidation at Tyr59 and likely oxidation of 

Met1, which along with multiple Pro sites comprise those residue types identified as oxidized in 

the ISB data set.  Finally, ByOnic results suggested that both Phe45 and His68 suffered some 

level of background oxidation.   

In the previous publication, it was noted that the solvent-excluded or “buried” Leu15 

residue was found oxidized by 1D analysis in both non-native and native solution conditions, as 

well as the control experiment.  Here we found that Leu15 was indeed oxidized in a 2D control 

sample (2.2%, 2 of 92 peptide spectral counts) and oxidized to a slightly larger extent (+0.8%) in 

the experimental 2D counterpart (3.0%, 7 of 235), according to InsPecT (results refer to Table A-

6 columns “2D Control B” and “2D Expt B” with EC conditions of 300 µA at 25 µL/min).  

ByOnic showed lower level of control oxidation (0.7%, 1 of 135) for a greater change (+1.6%) 

relative to the experimental (2.3%, 12 of 422).  This subtle change reported by both softwares 

suggested that Leu15 was sufficiently exposed during the experimental timeframe for a small 

fraction of ubiquitin proteins to become oxidized at this site.  This residue is one of those 

considered buried in the crystal and NMR structures, which also has a low average SASA value 

of almost 4 Å2 in MD simulations (SASA factor = 0.3).  However, this residue became 

transiently exposed during MD simulations (Fig. 5-3) to nearly 30 Å2, which corresponds to 

roughly 17% of the area maximally exposed in the free amino acid (max SASA factor = 2.4).   
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25.5 25.5 ÅÅ22

 

Figure 5-3:  Plot of SASA values for ubiquitin Leu15 over MD simulation timeframe.  Inset ubiquitin structure shows the Leu15 sidechain in the presence of 
water molecules during the second-highest exposure at 25.5 Å2.  Line roughly shows average SASA value of 2.9 Å2.  SASA factors: Average = 0.3, Max = 2.4. 
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Another example of this phenomenon is found in the same control and experimental 

samples with nearby Ile13, which appears buried with only 1.5 Å2 exposed in the crystal 

structure and 13 Å2 dynamically exposed in one NMR model.  The fact that this residue shows a 

distinct increase in labeling from the control (ByOnic – 0%; InsPecT – 1.1%) to the oxidized 

form (ByOnic – 5.2%; InsPecT – 2.1%) is supported by the insight provided by the SASA factor 

of 0.9, three times the factor of Leu15.  This aliphatic sidechain frequently samples more than 20 

Å2 with spikes up to 52.5 Å2, which is more than 30% of the SASA maximally exposed in the 

free amino acid (max SASA factor = 4.3).  For perspective, the highest SASA factor of 21.2 

(max SASA factor = 36.4) is assigned to the most reactive ubiquitin residue Tyr59.   

ByOnic reported a significantly higher level of induced oxidation in the TITLE peptide 

center loop that connects the N-terminal β-strand to the C-terminal α-helix, which is not 

unexpected considering the greater flexibility of loop regions.  Lower levels in the InsPecT 

results are primarily clustered on the N-terminal end of this peptide, which is calculated to be 

relatively more exposed and reactive.  Both software results showed that ubiquitin generally 

undergoes a distinct increase in oxidation events upon exposure to 300 µA current at a flow rate 

of 25 µL/min.  Intact scans showed primarily mono-oxidized (+16 Da) protein signal that 

appeared to severely overwhelm less abundant peaks around +32 and +48 Da.  These 

experimental conditions may have over-oxidized the protein as evidenced by complete 

disappearance of the native unoxidized peak, leaving the number of modified forms a mystery 

shrouded by the dynamic range limitation.  In this case, it is not surprising that the oxidized 

spectral counts do not seem to correlate strongly with solvent accessibility, but more so with 

reactivity alone as experimental counts increased at or near control hotspots (Pro19, Tyr59, 
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His68).  The SASA factors for highly reactive residues overshadow the reactivity of neighboring 

residues regardless of their solvent accessibility.  Somewhat better agreement is realized when 

search results are compared with SASA factors in peptides that lack these highly reactive 

residues (Fig. 5-4).  The TITLE peptide illustrates the more sensitive evaluation that can be 

accomplished without the interference by reactive hotspots.  Additionally, the likelihood of a 

lower reactivity residue becoming oxidized while a nearby hotspot remains unoxidized is 

doubtful, so accurate detection of oxidation at these sites will depend on the ability of the search 

software to interpret spectra for which multiple modifications occur on a single peptide.   

Moderate oxidation induced by 150 µA current at a flow rate of 50 µL/min (labeled “2D 

Expt C” in Table A-6) registered a similarly modest level of site-specific oxidation events.  

Comparison of the ByOnic 2D ratios for sites corroborated by InsPecT showed that the moderate 

(150-50) and more heavily (300-25) oxidized samples revealed less modification in the lighter 

exposure for Ile13 (0.6% vs 5.2%), Glu18 (3.5% vs. 6.9%), Ser20 (10.4% vs. 12.8%), and Tyr59 

(10.3% vs. 19.0%).  In contrast, both software results reported increased labeling of His68 

(92.9% vs. 28.7%) in the less oxidized sample, which might be an artifact of the challenges 

posed by multiply modified peptides present in the more oxidized sample.  This experimental 2D 

sample was also run twice by 1D to gauge reproducibility in peptide spectral counts and 

detection of oxidized sites.  Some peptides showed significant variability in total spectral counts, 

and there appeared to be more overlap in ByOnic oxidation sites relative to the spottier and less 

consistent InsPecT identifications.  Overall, the results for this relatively simple protein are not 

consistent enough with solvent accessibility to make any solid interpretations without prior 

knowledge of the protein structure.   
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Figure 5-4:  SASA factors for the ubiquitin TITLE peptide, which illustrates a relatively level playing field due to its absence of high-reactivity residues.  
Orange bars show average SASA factors, with error bars indicating the maximum SASA factors. Yellow bars represent the background oxidation in a control 
sample and blue bars reflect the oxidation in an electrochemically oxidized sample; percentages are the ratio of oxidized to total (unoxidized + oxidized) peptide 
spectral counts identified by ByOnic software.  
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5.4.2 Lysozyme 

Lysozyme is a 14.3 kDa enzymatic protein that catalyzes the degradation of bacterial cell 

wall peptidoglycans, making it an effective antimicrobial agent.  This important protein is 

abundant in egg white and can be found in many immunological defense fluids, including tears, 

mucus, saliva, and milk for the developing infant.[147]  For this reason, it has been the focus of 

much research, and a multitude of its structures have been deposited in the Protein Data Bank.  

Its secondary structure is mostly α-helical with requisite loops, turns, and intermittent β-strands.   

Proteolytic sequence coverages for lysozyme ranged from 67-100%, with the lower 

coverages due to the almost complete disappearance of the longest tryptic peptide (74-97) from 

an entire batch of samples.  Interestingly, a few spectral counts measuring this peptide were 

obtained in 1D analysis.  Regardless, most other tryptic peptides are measured in significant 

quantities, and often more frequently in oxidized samples.  One hypothesis for this phenomenon 

is that oxidation typically diminishes peptide affinity for reversed-phase resin, thus reducing the 

incidence of irreversible adsorption.  Background oxidation was rampant in control 2D samples, 

most commonly affecting the usual suspects: Cys, Met, Trp, Tyr, and Pro residues.  However, 

background events were also identified by both softwares for a wide breadth of less reactive 

residues albeit with lower spectral counts.  Interestingly, the active site residues Glu35 and 

Asp52 were modified in at least one of two 2D controls according to InsPecT, though not to the 

extent of the Asp101 substrate binding site (4/210 ~1.9% and 10/93 ~10.8%) as ByOnic reported 

for both controls.  Such modifications would likely impact the results of functional enzymatic 

assays that were considered as a test of structural integrity.  A reduction in the percent oxidation 

level was achieved at most sites with the early addition of antioxidant DTT along with bubbling 
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nitrogen gas in the digestion solution prior to capping for the incubation period.  However, 

background oxidation levels were still clearly non-zero and these steps were not performed for 

most samples that were generated prior to these exploratory tests.   

Lysozyme (5 µM) was subjected to 200 µA current at three different flow rates (25, 50, 

and 100 µL/min) with each doubling correlated to a halving of the residence time (exposure 

duration of 4, 2, and 1 seconds) inside the electrochemical cell.  In general, oxidized peptide 

spectral counts tended to dwindle as residence time increased, which is counterintuitive to logic 

as well as the intact mass spectra showing increased oxidized variants.  Therefore, two theories 

are presented to cope with this observation.  The first is that longer residence times lead to 

oxidative unfolding, allowing oxidation events to pool in the most reactive residues regardless of 

solvent accessibility.  This theory is supported by a large increase in Met oxidation according to 

ByOnic (from 176/453 ~ 38% at 100 µL/min to 426/528 ~81% at 25 µL/min).  The second 

theory involves the likelihood that multiply oxidized peptides were causing difficulties in 

achieving proper oxidative annotations and sufficiently high scores, which resulted in diminished 

oxidation reporting.  The truth probably employs both factors to some degree, along with the 

reality that a number of buried sites with less than compelling maximum SASA values were 

significantly labeled according to these search results. 

5.4.3 Apomyoglobin 

Much like hemoglobin, myoglobin is a critical carrier for molecular oxygen in muscle 

tissues.  Its structure consists of eight helices connected by loops to form a hydrophobic pocket 

surrounding the doubly His-linked heme prosthetic group.  This physiologically important 
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protein is widely studied as a model protein in its “apo” form, wherein the heme group has been 

removed.  Some deviation from the holo-myoglobin structure is expected with heme removal, 

but currently no high resolution structures exist for this isoform.  In addition to insights gleaned 

from its folding kinetics, the study of this protein structure may provide clues about other 

proteins that bind prosthetic groups or more transitory ligands.  

Apomyoglobin peptide sequence coverage ranged from 64-100%, with most oxidized 

samples lacking peptides sporadically from two residue spans: 43-87 and 97-118.  A relatively 

high frequency of basic sites, especially in the first region, can result in shorter tryptic peptides 

that were apparently lost at some point for most of the oxidized samples and two of the four 2D 

controls tested.  Interestingly, these were all analyzed by the same instrument (LTQ2), but the 

two control 2D samples that were analyzed by the high-performance Orbitrap-LTQ, which has a 

different type of LC system, only suffered loss of the 103-118 peptide.  A 1D control run on the 

Orbitrap-LTQ from the same digest revealed this missing peptide present in the mixture with 

almost 30 peptide spectral counts according to ByOnic and around 6 spectral counts identified by 

InsPecT.  This peptide appears in only one other sample from apomyoglobin oxidized by 250 µA 

at 50 µL/min.  While this region (residues 97-118) only registered two single-count oxidation 

events in the InsPecT search, it was interesting to note that this peptide suddenly appeared with 

over 30 counts by both software accounts in the second run from the same sample.  In other 

words, two consecutive 2D analyses revealed the appearance of a missing peptide after the 

sample had already been exposed to the analytical reversed-phase front column, which implies 

this peptide was irreversibly adsorbed on the first pass.  This also happened with residues 63-87, 

which were altogether absent from the first 2D run and then present with over 200 spectral 
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counts (tryptic 64-77 peptide) in the second run.  These observations spark concerns about 

reproducibility among replicate measurements, and whether steps like column pre-conditioning 

can be systematically taken to minimize adsorption.   

Replicate 2D controls that varied only in loading volumes allowed examination of the 

Orbitrap-LTQ measurement reproducibility with only a change in peptide concentration.  Parent 

ions are measured in the Orbitrap with high resolution and mass accuracy; parent ion mass error 

based on the latter metric is utilized along with spectral features to evaluate the correctness of 

peptide matches.  These controls provide a compelling account of the reason why many 

oxidative mapping studies, which typically employ only 1D peptide separation on lower 

performance instruments, do not report significant background oxidation events.  The 

consistently more conservative InsPecT results detected oxidation at 15 sites in the control 

protein by 1D analysis, but only 3 of these (Trp7, Trp14, and Met131) received more than a 

single InsPecT spectral count along with ByOnic confirmation.  The increased sampling 

provided by 2D analysis revealed a plethora of background oxidation, with validation of the 1D 

sites in addition to more than 50 new ones.  Of these, 40 were corroborated by InsPecT results 

from both controls, with 34 of the doubly reported sites registering more than one spectral count 

in both reports, and 26 of those sites confirmed with ByOnic results.  Both Trp7 and Trp14 

registered at least 50 spectral counts in both controls, with ByOnic counts topping out at 118 

(13%) for Trp7 and 245 (39%) for Trp 14.  While these two amino acids display an extreme level 

of background oxidation, similarly problematic scenarios appear to be scattered throughout the 

stock protein on Tyr, Phe, His, Leu, Ile, Val, and Gln residues.   
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While the change in oxidation ratios can be compared among differentially oxidized 

samples, it is unclear what advantage that offers when the background levels are so high.  This 

phenomenon could be due to sample processing artifacts, but intact scans show satellite peaks 

that may be responsible for some fraction of the modifications reported.  In this case, native 

structures might have been labeled for say four-fifths of the solution ensemble, but it is not 

distinguishable at the peptide-level which identifications can be attributed to either native or non-

native structure.  Such a distinction could theoretically be made with expensive isotopic labeling 

experiments as discussed in Chapter 6, but the combinatorial challenge of considering two 

oxygen isotopes in searches of tandem mass spectra may prove to be computationally intractable. 

5.5 Conclusions 

The challenge in properly acquiring and interpreting oxidative mapping data remains 

daunting.  It is not surprising that 1D-LC does not provide the sensitivity that 2D-LC offers with 

its increased dynamic range and longer analytical timeframe.  However, 1D analysis appears to 

suffer less from missing sequence coverage while detecting many of the most commonly 

modified residues at comparable ratios. Although background protein oxidation is not desirable, 

it cannot be ignored since this would compromise structural integrity for a fraction of the 

solution ensemble undergoing experimentation.  Differences in software algorithms and input 

parameters can influence reporting of oxidized sites, and it is likely that the overall strategy 

employed with InsPecT searches may be too conservative while ByOnic searches could be 

overly liberal.  Their different approaches to searching mass spectra lend increased confidence in 

peptide matches which are identified as oxidized by both algorithms, while those sites uniquely 
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reported by each were often fruitful upon spectral evaluation.  This is especially important given 

all the factors that may convolute spectral interpretation, since a reliable calculation of false 

positive rates does not appear to be well-established for oxidative mapping studies.   While it 

remains unclear whether electrochemical oxidation was performed under optimal conditions for 

surface mapping applications, it should be recognized that the accurate detection of oxidized 

sites is essentially a discovery process without a pre-defined set of modifications.  Even model 

proteins contain a variety of factors that can impact amino acid reactivity and thus may preclude 

a strong correlation between mass spectral search results and solvent accessibility.    
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6. Conclusions  

This dissertation research has demonstrated that proteins can be controllably oxidized 

with electrochemistry by exploiting the differential reactivity of amino acids to probe their 

solvent accessibilities within folded proteins.  The combination of this covalent labeling 

approach with high performance mass spectrometry has revealed a new experimental approach 

for oxidative characterization of protein structures.  While the electrochemical technique will 

require further development and optimization, the work to date has established a solid platform 

for oxidative labeling, deep MS measurement, and computational extraction of surface mapping 

information. 

Several attributes of the boron-doped diamond (BDD) are particularly attractive for this 

work, including its smooth surface and low cell volume for a relatively low adsorption profile 

which might be further reduced with higher flow rates.  Its flow-by design is highly compatible 

with increasingly rapid exposures of analyte protein to the oxidizing environment inside the flow 

chamber.  Importantly, the BDD showcases a documented ability to produce •OH directly from 

water within its wide working potential window.  The additional contribution to the oxidant flux 

from sulfate radical may offer an interesting advantage for surface mapping with BDD 

electrochemistry when properly harnessed.   

The computational search results of BDD electrochemical oxidation data provide 

evidence that a wide breadth of amino acid residue types can be labeled.  However, more effort 

will be required to counter the challenges that remain in successfully mining MS data for myriad 

oxidized sites with reliable filter levels to minimize false positives.  Reliance on distinct and 
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complementary software approaches appears to be a viable strategy for identifying highly probed 

sites.  For example, the two algorithms utilized here for searching MS data each presented a 

hybrid approach, with de novo spectral interpretation factors designed to cope with the 

possibilities posed by a multitude of oxidative mass shifts that can occur in any combination.  

The identification of reactive hotspots within the interrogated protein structures by oxidized sites 

reported by both algorithms shows reasonable agreement with the calculated SASA factor, which 

encompasses both the intrinsic reactivity of free amino acids weighted by the relative solvent 

accessibility of their dynamically exposed side chains.  It is not surprising that the most reactive 

residues form the majority of these hotspots that are most often identified with typical reversed-

phase LC-MS/MS analysis.  However, the orders of magnitude spanned by differential rates of 

amino acid reactivity seem to be more effectively accommodated with increasingly sensitive 

measurements that allowed detection of less reactive sites.  When considering whether analysis 

of lower reactivity sites is worth pursuing, it is important to remember that fewer spectral counts 

is a reflection of the lower reactivity, not the lesser importance of the information revealed.   

Detection of the less reactive subset of amino acids, relative to those easily targeted by 

either direct or indirect oxidation mechanisms, is greatly enhanced by the increased dynamic 

range of 2D chromatography paired with high performance mass spectrometry.  The 

multidimensional separation of peptides offers the critical advantage of decreasing the peptide 

complexity over the analytical timeframe to allow sampling of oxidized peptide variants present 

in low abundance.  When this advanced technique is paired with the technological benefit of 

highly accurate parent ion masses and charge states scanned in the Orbitrap, the overall effect is 
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a vital enhancement of measurement sensitivity with availability of key metrics to improve the 

compilation of candidate peptide matches.   

Another challenge lies in conquering background oxidation that interferes with data 

analysis and may jeopardize the structural integrity of the solution ensemble experimented upon.  

However, these issues do not overshadow the fact that proteins have been successfully oxidized 

by the BDD electrode, whose utility in protein structure research remains to fully realized.  The 

demonstrated refinement of experimental parameters for more rapid exposure has shown that 

further improvements could make this methodology compatible with a more ideal reaction 

timescale.  Finally, the proposed pipeline provides foresight in moving toward a high-throughput 

method for gleaning structural information from protein mixtures.  

6.1 Next-Generation Optimization of Electrochemical Surface Mapping 

The experimental parameters optimized as part of this dissertation research allowed 

achievement of predictably controllable oxidation signatures that were unique to the protein of 

study, which was likely dependent on the number of highly reactive residues.  Therefore, 

knowledge of the number of aromatic and sulfur-containing residues in the protein structure can 

provide guidelines for gauging moderate versus heavy oxidation conditions.  However, watching 

for a unimodal distribution on this experimental timeframe may not be sufficient to successfully 

label only native structures, due to the threat posed by oxidation-induced unfolding.  While two 

of these model proteins have been shown to be structurally resilient under a moderate oxidation 

load,[30] other proteins of interest might not benefit from this comfort.  Therefore, a necessary 

improvement would be an increase in the flow rate to further reduce the protein residence time 
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inside the electrochemical flow chamber.  Ideally, proteins would be oxidized on the 

microsecond timescale or less, so efforts should be made to determine whether this feat is 

achievable.  Due to the current design of this chamber wherein protein solution is forced to 

undergo a 90° change in direction twice before exiting the cell, fluidic turbulence may produce 

backpressure at higher flow rates and cause leakage within the cell assembly.  Evidence of this 

possibility was observed with minor leakage beyond the gasket window at 100 µL/min.  In order 

to accommodate higher flow rates, a linear flow cell design that facilitates laminar flow would be 

desirable for achieving a significantly more rapid exposure.  

Reactive hotspots tended to reside in the center of tryptic peptides, while similarly reactive 

residues were also present near peptide ends delimited by tryptic cleavage sites.  However, the 

analytical difficulty with pinpointing these sites was described in the previous chapter, wherein 

the tendency for peak intensities to trickle off at the low and high ends of the mass-to-charge 

range reduced the presence of fragment ions to specifically diagnose oxidation occurring near 

peptide ends.  Therefore, in order to expand the range of easily detectable sites, it would be 

advantageous to explore proteases with variable cleavage specificity to overlap regions that 

occur near tryptic endpoints and thus provide fairer sampling across the primary sequence.  This 

approach may also provide insight into peptide bias, which may result from a variety of factors, 

including length, hydrophobicity, and charge. 

Upon examination of the ion chromatograms resulting from the higher concentration salt 

pulses in 2D LC-MS/MS experiments, it appeared that fewer peaks eluted relative to the first 

pulse.  This implies that there may be room for improvement on the 2D methodology to 

maximize separations, perhaps with the use of more salt pulses and/or varied increments like 
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10%, 40%, 75%, and 100% of 500 mM ammonium acetate instead of the 25%, 50%, and 100% 

scheme used in these studies.  Finer tuning of salt pulse strengths utilized in multidimensional 

chromatography may be further benefited by reversed-phase gradient optimization.  The 

observation that most ubiquitin peptides eluted before the solvent B contribution reached the 

50% mark during a 25 to 75% ramp spurred an experiment with a slower 25 to 50% ramp.  

While the new gradient produced more variation in total spectral counts among tryptic peptides, 

more oxidized spectral counts were detected at low abundance within the control protein.   

6.2 Specific Research Targets for Optimization 

Based on findings of extensive background oxidation in commercially available proteins, 

it is advised that future work to demonstrate the application of electrochemical protein oxidation 

focus on solving (or minimizing) this issue.  This problem may be especially pronounced in 

proteins exposed to oxidizing environments, such as blood proteins that are chronically exposed 

to oxygen.  Along these lines, some proteins may be structurally sensitive to oxidative damage, 

such as β-lactoglobulin A which reportedly unfolds with even a single oxidation event.  (Sharp, 

J.S., presented at ASMS Covalent Labeling Workshop in 2008)  Therefore, care should be taken 

to sensitively measure the intact protein ensemble for structural integrity prior to oxidative 

experimentation.  With respect to MS measurements, the intact protein solution should be 

screened at relatively low concentrations to avoid overwhelming the dynamic range, in order to 

detect lower abundance satellite peaks.  This also means that attention should be given to 

minimal loading of the ion trap during MS analysis.  However, based on the analysis of 

ubiquitin, it appears that a significant portion of the background oxidation may be accumulated 
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during sample handling, so efforts should be made to minimize the chance for oxidation to occur.  

These endeavors include using antioxidants in the reaction solution, degassing the solution with 

an inert gas prior to proteolytic digestion, and minimizing exposure to fluorescent lighting.  One 

last concern with commercially available stock proteins is that some are produced by pooling 

samples from various donor sources, such as the serum albumins whose variants are evident with 

intact MS screening.  Experiments with similar protein stocks would likely suffer informatically 

from sequence variants that are not contained in the reference database, as well as PTMs such as 

glycosylation that may occur in vivo.  

Other concerns involve the experimental design for further investigation about the utility 

of the BDD electrode for surface mapping applications.  Ideally, instead of a single structure, an 

oxidative mapping experiment would involve a relative measurement for two structures for the 

same protein.  For example, oxidative labeling could be performed on protein in the presence of 

its ligand, with comparison of its site-specific labels to the “apo” form.  This experimental 

scenario may suffer from contamination by unbound forms due to dissociation kinetics unless the 

ligand has an extremely high affinity for its binding site.  Another possibility is labeling 

structures before and after a pH-induced conformational change like that of β-lactoglobulin A, 

which does not require a binding event to occur.  Apart from of these possibilities for expanding 

the application, the next efforts to validate this approach should involve reducing the reaction 

timescale by increasing the flow rate and lowering the protein concentration.  Success could be 

measured with site-specific labeling of a structurally solid protein like ubiquitin in relatively 

good agreement with SASA values calculated from MD simulations  
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6.3 Outlook 

One method that may be fruitful in uncovering the source of background oxidation is 

differential isotopic labeling with normal 16O and heavy 18O oxygen isotopes.  This approach 

may be complicated by virtue of the multiple reaction routes by which oxidation can proceed, 

such that a thorough investigation would require the use of both heavy isotope water and oxygen 

gas.  By isolating use of the heavy isotope to either the electrochemical cell exposure or the 

proteolytic digestion in different experiments (with controls), it may be possible to delineate the 

source of induced and background oxidation.  If successful, this approach also could be 

advantageous for development of an experimental strategy that combines over-oxidation of a 

denatured “control” sample (heavy – 18O water/gas) along with a moderately labeled 

“experimental” sample (light – 16O water/gas).  When paired with informatic support capable of 

handling the combinatorial load imposed by two isotopes, analysis of these samples combined at 

1:1 in solution would provide an intriguing relative comparison.  In this situation, natively 

exposed residues would appear as a doublet while buried sites would appear as a heavy singlet 

within the MS1 scans.  If perfected, this could provide an accounting of all “oxidizable” residues 

to reduce false negatives that can be combined 1:1 for a relative measurement of experimental 

versus control.   

Further exploration of the BDD [•OH] production capabilities might also be 

accomplished with oxygen isotopes for defining its utility for oxidative surface mapping.  While 

the flux of •OH production can reportedly be measured by decrease in absorbance of Alexa Fluor 

488,[72] it is possible that this molecule could be oxidized directly and may adsorb to the 

electrode surface.  Alternatively, the use of only 18O water labeling could be used in spin-
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trapping experiments, wherein the small molecule DMPO should undergo a +18 Da shift if it is 

modified by •OH attack, or a +16 Da shift if it is directly oxidized electrochemically followed by 

O2 resolution.  

Other notable areas for experimental investigation include clarification of analytical 

issues used to measure peptides.  The increase in dynamic range afforded by 2D versus 1D could 

be estimated by spiking known concentrations (high/low) of two peptides in the sample volume 

to be loaded.  Potential problems may arise from peptide sequence variation that imparts 

differential hydrophobicity, which could impact ionization efficiency and column binding 

affinity.  The reason for the observed bias in peptide sampling that was reported here should be 

examined by testing digestion procedures different from the organic-aqueous protocol used in 

these studies and subjecting the resulting peptides to the same LC-MS methods.  Attention 

should be paid to minimizing the surfaces touched by peptides to reduce losses due to adsorption.  

The use of multiple proteases on the same oxidized sample may provide better coverage of the 

protein sequence and increased confidence in oxidized sites due to measurement of overlapping 

peptides.  However, the software used to search MS data should be equipped to handle this 

change in proteolytic cleavage specificity.  Closer examination at the intact protein level by 

separation of oxidation products by top-down mass spectrometry could result in the detection of 

lower abundance oxidized products to improve integration with bottom-up searches in efforts to 

counter the vast combinatorial challenge posed by oxidative labeling.  Finally, alternate peptide 

parent ion fragmentation methods should be explored, such as electron-transfer dissociation 

(ETD), which has been shown to improve detection of oxidized sites. [148-150]   
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6.4 Perspective 

The research presented here is the first to describe use of electrochemistry for the purpose 

of indirectly oxidizing proteins with the goal of mapping their dynamically exposed surfaces.  

Among multiple sources of hydroxyl radicals used for this purpose, the BDD electrode arguably 

offers the most approachable means to achieve controlled protein oxidation.  The initial steps 

were taken here toward optimizing the utility of the BDD electrode for the purpose of rapid 

oxidative labeling.  Elucidation of potential drawbacks to its usage has provided a springboard to 

promptly steer future experimentation toward success.  In addition, the overall challenges in 

detection and reporting of oxidized sites were evaluated in undertaking paired chromatographic 

and informatic approaches.  Dynamic simulations of solution-phase behavior for resolved protein 

structures revealed insight about transient solvent exposures, which may further improve the 

correlation with reactivity of amino acids within freshly purified proteins.  In general, every 

stride toward the complete analysis of oxidative surface mapping results will advance the field, 

which may soon include in its toolbox the promising BDD electrode.   
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Amino Acid Oxidation Rates and Mechanisms 

The following table and figures were taken directly from Xu, G. and M.R. Chance, 
Hydroxyl radical-mediated modification of proteins as probes for structural proteomics. Chem 
Rev, 2007. 107(8): p. 3514-43. [72]  Please refer to this critical review article for a detailed 
discussion of the protein oxidation chemistry depicted below.  General mechanism schemes are 
followed by specific amino acid oxidation schemes in order of increasing •OH reactivity. 
 

Table A-9. Rate Constants for Reaction of 
Free Amino Acids with Hydroxyl Radical
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Scheme A-1: General Mechanism for Oxidation of Hydrocarbon Side Chains 

 

 

Scheme A-2:  Oxidative Peptide Backbone Cleavage and Side Chain Oxidation Products 
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Scheme A-3:  Glutamic Acid Oxidation Products 

 

 

Scheme A-4:  Proline Oxidation Products  
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Scheme A-5:  Arginine Oxidation Products 

 

 

Scheme A-6:  Histidine Oxidation Products  
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Scheme A-7:  Phenylalanine Oxidation Products  

 

 

Scheme A-8:  Methionine Oxidation Products  
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Scheme A-9:  Tyrosine Oxidation Products  

 

 

Scheme A-10:  Tryptophan Oxidation Products  
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Scheme A-11:  Cysteine Oxidation Products  

 

Scheme A-12:  Disulfide Oxidation Products  
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