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Abstract

Various classes of multifractal processes, that is processes that display different properties at

different scales, are studied. Most of the processes examined in this work exhibit stable trends

at small scales and Gaussian trends at large scales, although the opposite can also occur.

Many natural phenomena exhibit a fractal structure depending on some scaling factor, such

as space or time. Thus, these types of processes have many useful modeling applications,

including Biology and Economics. First, generalized tempered stable processes are defined

and studied, following the original work on tempered stable processes by Jan Rosinski [16].

Generalized tempered stable processes encompass the modern variations on tempered stable

distributions that have been introduced in the field, including “Modified tempered stable

distributions [10],” “Layered stable distributions [8],” and “Lamperti stable processes [2].”

This work shows generalized tempered stable processes exhibit multifractal properties at

different scales in the space of cadlag functions equipped with the Skorokhod topology and

investigates other properties, such as series representations and absolute continuity. Next,

processes driven by generalized tempered stable processes involving a certain Volterra kernel

are defined and short and long term behavior is established, following the work of Houdré

and Kawai [7]. Finally, inspired by the work of Pipiras and Taqqu [13], the multifractal

behavior of more general infinitely divisible processes is established, based on the Lévy-Itô

representation of infinitely divisible processes. Numerous examples are given throughout the

entire text to exemplify the strong presence of processes of this type in current literature.
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Chapter 1

Introduction

This work is in the field of probability and involves modeling multifractal structures that

appear to have a normal distribution over large scales and a highly variable distribution over

small scales. Many natural phenomena exhibit a fractal structure that varies depending on

some scaling factor, such as space or time. For example, the edges of a cloud seem smooth

from a distance, but can be jagged if inspected closely. A wave hitting the sand may appear

to have a smooth structure if viewed from the air, but displays sharp, irregular patterns if

viewed from the beach. Internet traffic can display completely different patterns over short

periods of time than over long periods of time. A stock price can have dramatic changes by

day, but will tend to have a normal structure over years. Fractals are also helpful in modeling

flight turbulence, which exhibits sharp movements over small scales, and smooth movements

over large scales. Multifractal Lévy processes can be used to model some phenomena of this

type.

1.1 Background Information

“Stochastic processes are mathematical models of time evolution of random phenomena [19].”

Lévy processes are an important subclass of stochastic processes. Roughly speaking, they

are stochastic processes that have independent and stationary increments. Basic examples

of Lévy processes are Brownian motions and Poisson processes. Assume the existence of a

probability space (Ω,F , P ) on which all of the stochastic processes and random variables

throughout are defined. A process, {Xt : t ≥ 0}, has independent increments if for any

n ≥ 1 and any sequence of times, 0 ≤ t0 < t1 < t2 < . . . < tn, the random variables

Xt0 , Xt1−Xt0 , . . . , Xtn−Xtn−1 are independent. And, a process has stationary increments if
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the distribution of Xs+t −Xs does not depend on s. Below is a precise definition of a Lévy

process.

Definition 1.1.1. [19] A stochastic process, {Xt : t ≥ 0}, on Rd is called a Lévy process if

the following conditions hold:

1. The process has independent increments

2. The process has stationary increments

3. X0 = 0 a.s.

4. The process is stochastically continuous, that is for every t ≥ 0 and ε > 0,

lim
s→t

P [|Xs −Xt| > ε] = 0

5. There is an Ω0 ∈ F with P [Ω0] = 1 such that for every ω ∈ Ω0, Xt(ω) is right-

continuous in t ≥ 0 and has left limits in t > 0.

A Lévy process, {Xt : t ≥ 0}, has the basic property that for every t, the distribution of

Xt is infinitely divisible.

Definition 1.1.2. [19] A probability measure µ on Rd is infinitely divisible if for any positive

integer n, there is a probability measure µn on Rd such that µ = µnn.

In other words, a probability measure is infinitely divisible if it is possible to take an n-th

root of its characteristic function. Gaussian, Poisson, and stable distributions are examples

of infinitely divisible distributions, but uniform and binomial distributions are not infinitely

divisible.

There is an important known relationship between infinitely divisible distributions and

Lévy processes in law (“Lévy process in law” means that condition (5) is omitted). As was

mentioned before, if {Xt : t ≥ 0} is a Lévy process in law, then for any t ≥ 0, the distribution

of Xt is infinitely divisible. But a converse statement is also true. That is, if µ is an infinitely

divisible distribution, then there exists a Lévy process in law such that the distribution of

X1 equals µ (see Theorem 7.10 in [19]).

Another fundamental property of Lévy processes is that fact that, because of their inde-

pendent and stationary increments, they are characterized by their distributions at time 1.

That is if {Xt : t ≥ 0} and {X ′t : t ≥ 0} are Lévy processes in law such that the distribution

of X1 equals the distribution of X
′
1, then {Xt : t ≥ 0} and {X ′t : t ≥ 0} are identical in law

2



(meaning that their finite dimensional distributions are the same). This result is also found

in Theorem 7.10 of [19].

The Lévy-Khintchine formula gives a representation of the characteristic functions of

all infinitely divisible distributions. It states that if L(X) is infinitely divisible, then its

characteristic function is given by

E exp{i 〈u,X〉}

= exp

{
−1

2
〈u,Au〉+ i 〈γ, u〉+

∫
Rd

(
ei〈u,x〉 − 1− i 〈u, x〉 1‖x‖≤1(x)

)
ν(dx)

}
where u, γ ∈ Rd, A is a symmetric nonnegative-definite d x d matrix, and ν is a measure

satisfying

ν({0}) = 0 and

∫
Rd

(‖x‖2 ∧ 1)ν(dx) <∞

where throughout this paper, define a ∧ b := min{a, b} and a ∨ b := max{a, b}.
The parameter γ is called the drift, A is called the Gaussian covariance matrix, and

ν is called the Lévy measure. The generating triplet, (A, ν, γ) uniquely characterizes the

distribution. Moreover, note that if {Xt : t ≥ 0} is a Lévy process and L(X1) has generating

triplet (A, ν, γ), then for any t, L(Xt) has generating triplet (tA, tν, tγ). This follows from

the fact that Lévy processes are characterized by their distributions at time 1 (See Theorem

8.1 and Corollary 8.3 of [19]). If γ = 0, there is no “drift part.” If A = 0, “there is no

Gaussian part.” If ν = 0, there is no “jump component.”

This paper is primarily concerned with Lévy process with no Gaussian part, that is, the

processes that are characterized only by the parameters γ and ν. The parameter ν can be

most helpful in many applications varying from moment properties to convergence criteria.

For example, ∫
‖x‖>1

‖x‖ν(dx) <∞

if and only if Xt has finite first moment for any t and∫
‖x‖>1

‖x‖2ν(dx) <∞

if and only if Xt has finite second moment for any t (see Theorem 25.3 of [19]).

A Lévy process is a specific example of an infinitely divisible random measure, which will

be defined at this time. Let S be a set and S0 be a σ-ring of subsets of S.

3



Definition 1.1.3. [17] A stochastic process M = {M(A)}A∈S0 is called an infinitely divisible

random measure (IDRM) if

1. M(∅) = 0 a.s.

2. For every {Ai} ∈ S0, {M(Ai)} forms a sequence of independent random variables and

if
⋃n
i=1 Ai ∈ S0, then

M(
n⋃
i=1

Ai) =
n∑
i=1

M(Ai) a.s.

3. For every A ∈ S0, M(A) has in infinitely divisible distribution.

In particular, if the infinitely divisible distribution is a Poisson distribution, then M

is a Poisson random measure. And, if the infinitely divisible distribution is a Gaussian

distribution, then M is a Gaussian random measure. Also, a Lévy process can be viewed

as an IDRM where the indexing sets have the form A = (0, t] so that Xt = M((0, t]). See

Rosinski’s text [17] for a more through commentary on IDRM’s.

Definition 1.1.4. A process {Xt : t ∈ R} is an infinitely divisible stochastic process if for

any sequence of times, t1, . . . , tk ∈ R,

(Xt1 , . . . , Xtk)

has an infinitely divisible distribution.

The following is a powerful theorem that involves representing infinitely divisible pro-

cesses as stochastic integrals of deterministic functions with respect to Poisson random mea-

sures.

Theorem 1.1.5 (Generalized Lévy-Itô representation [17]). Let {Xt : t ∈ R} be a stochas-

tically continuous infinitely divisible process with no Gaussian or drift component. Let N be

a Poisson random measure on a measurable space (S,S) with intensity η. Then,

X
′

t =

∫
S

ft(s)

(
N(ds)− η(ds)

1 ∨ ‖ft(s)‖

)
is a version of {Xt : t ∈ R} where {ft(s)} are measurable deterministic functions in Rd.
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Corollary 1.1.6 (Lévy-Itô representation [17]). Let {Xt : t ∈ R} be a Lévy process with no

Gaussian or drift component. Let N be a Poisson random measure on a measurable space

(S,S) with intensity η. Then,

S = R× Rd, η(du, dw) = du ν(dw),

and

ft(u,w) = 1[0,t)(u)w

so

X
′

t =

∫
R×Rd

1[0,t)(u)w

(
N(ds)− du ν(dw)

1 ∨ ‖w‖1[0,t)(u)

)
is a version of {Xt : t ∈ R} where ν is the Lévy measure of X1.

Stochastic integrals of this type will be investigated later in this paper. Now, we turn

our focus to notions of convergence of stochastic processes. This turns out to much more

simple for Lévy processes because of their independent and stationary increments. The

following theorem relates convergence of Lévy processes in the space of cadlag functions

with convergence of the marginals at time 1.

Theorem 1.1.7 (Skorohod (Theorem 15.17 of [9])). Let X,X1, X2, . . . be Lévy processes in

Rd with Xn
1

d−→ X1. Then, there exist some processes Y n such that Xn = Y n in distribution

and sups≤t|Y n
s −Xn

s |
P−→ 0 for all t ≥ 0.

This means that in the special case of Lévy processes, in order to check the convergence

in the space of cadlag (right continuous with left limits existing) functions equipped with

the Skorokhod topology, one only needs to verify the convergence of the marginals at time

1. Note that convergence in this space makes sense for Lévy process since one can take a

version with cadlag paths by condition (5) of the definition of a Lévy process.

However, when the processes in question are not Lévy process, more work is needed to

investigate convergence. Suppose X and Xn are random processes. Denote convergence of

the finite-dimensional distributions as “
fdd−−→.” Thus, Xn fdd−−→ X means that

(Xn
t1
, . . . , Xn

tk
)
d−→ (Xt1 , . . . , Xtk) t1, . . . , tk ∈ R

where “
d−→” denotes convergence in distribution.

Now, for the process to convergence in the space of continuous functions, it first must

have continuous paths. Next, a criteria is presented that can be checked to determine if a

process has continuous paths.

5



Theorem 1.1.8 (Kolmogorov [9]). Let X be a process on Rd with values in a complete

metric space (S, ρ) and assume for some a, b > 0 that

E{ρ(Xs, Xt)}a ≤ C|s− t|d+b s, t ∈ Rd

for some finite constant C. Then, X has a continuous version, and for any c ∈ (0, b/a) the

latter is a.s. locally Hölder continuous with exponent c.

Now, let C[0, 1] be the space of continuous functions on [0, 1] with the metric given by

ρ(x, y) := sup
0≤t≤1

|x(t)− y(t)|.

To have weak convergence in this space, it is not enough to have convergence of the finite

dimensional distributions (see Example 2.5 of Billingsley [1] for a counterexample). But, as

is mentioned in Chapter 2 of Billingsley [1], “it does in the presence of relative compact-

ness.” And, tightness implies relative compactness by Prohorov’s Theorem. So, in summary,

to show weak convergence in the space of continuous functions, one needs to prove the con-

vergence of the finite dimensional distributions and the tightness of the sequence. Here is a

useful tool to verify if a sequence is tight.

Theorem 1.1.9 ([9]). Let X1, X2, X3, . . . be continuous processes on Rd with values in a

separable, complete metric space (S, ρ). Assume that {Xn
0 } is tight in S and that for some

constants a, b > 0

E{ρ(Xn
s , X

n
t )}a ≤ C|s− t|d+b s, t ∈ Rd, n ∈ N

uniformly in n. Then, {Xn} is tight in C(Rd, S), and for every c ∈ (0, b/a) the limiting

processes are a.s. locally Hölder continuous with exponent c.

Obtaining this upper bound is often more simple than proving tightness directly, which

makes this theorem quite useful in practice.

Series representations are another important tool used to investigate properties of stochas-

tic processes, as they lead to simulations of the processes. The idea is to take well known

random variables, such as gamma or uniform, that are easy to simulate. Then, take certain

combinations of them to approximate the new process in question. Rosinski’s “Series repre-

sentations of Lévy processes from the perspective of point processes [15]” provides a useful

and highly recognized general theory on series representations of Lévy processes. The main

theorem of the paper is described here.
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Let {Vi} be a sequence of random elements in a measurable space S with a common

distribution. Let {Γi} be a sequence of partial sums of exponential (1) random variables.

Assume {Vi} and {Γi} are independent and let H : (0,∞)×S → Rd be a measurable function

that is nonincreasing in r. Also, let

A(s) :=

∫ s

0

E(H(r, v))1|H(r,v)|≤1dr.

Theorem 1.1.10 ([15]).
∑∞

i=1H(Γi, Vi) converges a.s. if and only if

(i) ∫ ∞
0

E
(
|H(r, V )|2 ∧ 1

)
dr <∞

(ii)

a := lim
s→∞

A(s) exists.

Moreover,
∑∞

i=1H(Γi, Vi) has an infinitely divisible distribution with generating triplet (0, ν, a)

where

ν(B) =

∫ ∞
0

P (H(r, V ) ∈ B \ {0})dr.

This theorem proves the convergence of the sequence, but you must first know the proper

H function to use to get the desired infinitely divisible random variable with Lévy measure

ν. Methods to generate H are also described in [15]. Examples include LePage’s method

and the rejection method. A series representation may still be obtained even if condition

(ii) fails. In this case, one simply needs to introduce the correct centers to ensure proper

convergence. After introducing the centers, if necessary, the results extend easily to Lévy

processes on [0, T ] (see Theorem 5.1 of [15]).

This collection of background information relies heavily on known results and is not in-

tended to be exhaustive. The reader is encouraged to refer to Sato’s text [19] for extra

information on Lévy processes and infinitely divisible distributions and to refer to Billings-

ley’s text [1] for insight into convergence results for probability measures. Also, Kallenberg

[9] has written an excellent reference on topics in modern probability theory.

1.2 Motivation

Multifractal processes have been given much attention recently. Tempered stable processes

(TS processes) are a subclass of multifractal Lévy processes which have been heavily refer-

enced in Mathematics, Biology, and Economics. The processes are obtained by tilting the

7



Lévy measure associated with the process. The idea of tilting the Lévy measure corresponds

to the statistical notion of tilting a density. This is described in Rosinski’s paper on tempered

stable processes [16] and is summarized in the next few paragraphs.

Recall that if X is an infinitely divisible random variable with no Gaussian or drift term,

then its characteristic function is given by the Lévy-Khintchine formula:

Eei〈u,X〉 = exp

{∫
Rd

(
ei〈u,x〉 − 1− i 〈u, x〉 1‖x‖≤1(x)

)
ν(dx)

}
where ν is a Lévy measure satisfying:

ν({0}) = 0 and

∫
Rd

(‖x‖2 ∧ 1)ν(dx) <∞.

Suppose X is infinitely divisible on R and has a density, f . Also, suppose that X is nice

enough such that it can be expressed with the Laplace transform:

L(λ) := Ee−λx =

∫ ∞
0

e−λxf(x)dx = exp

{∫
Rd

(
e−λx − 1

)
ν(dx)

}
.

Now, consider a tilted density given by:

fθ(x) :=
1

L(θ)
e−θxf(x) for θ > 0.

Then, its Laplace transform is given by:

Lθ(λ) =

∫ ∞
0

e−λxfθ(x)dx =
1

L(θ)

∫ ∞
0

e−λxe−θxf(x)dx

=
1

L(θ)

∫ ∞
0

e−(λ+θ)xf(x)dx =
1

L(θ)
L(λ+ θ)

= exp

{
−
∫

Rd

(
e−θx − 1

)
ν(dx)

}
exp

{∫
Rd

(
e−(λ+θ)x − 1

)
ν(dx)

}
= exp

{
−
∫

Rd

(
e−θx − 1

)
ν(dx) +

∫
Rd

(
e−(λ+θ)x − 1

)
ν(dx)

}
= exp

{∫
Rd

(
e−λx − 1

)
e−θxν(dx)

}
.

So, it can be observed that tilting a density is analogous to tilting the Lévy measure in the

infinitely divisible case.
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This idea of tilting the Lévy measure can be extended to Lévy processes, which have in-

dependent and stationary increments and infinitely divisible laws. For example, in stochastic

finance, the CGMY [3] model is obtained by tilting the Lévy measure associated with stable

distributions (which exhibits infinite activity, but does not account for small jumps) and has

been used to model assets that exhibit both small and large jumps. The CGMY model is

the Lévy process, {XCGMY
t } with Lévy measure given by

ν(dx) = k(x)dx

where

k(x) =


Ce−G|x||x|−1−Y if x < 0

Ce−M |x||x|−1−Y if x > 0

The parameter C > 0 measures the overall activity and can provide control over kurtosis.

G ≥ 0 and M ≥ 0 control the rate of the exponential decay of the left and right tails,

respectively (skewness). And, Y , which in order for {XCGMY
t } to remain a Lévy process,

must satisfy Y < 2, is used to describe the fine structure of the process where activity

refers to the number of jumps in any given time interval. Y < 0 implies finite activity,

0 < Y < 1 implies infinite activity, but finite variance, and 1 < Y < 2 implies infinite

activity and infinite variance. And remember, this is simply one example of an application

of TS processes.

As was mentioned earlier, there are many variations of TS processes, which has motivated

this work to provide a generalization of TS processes. And, following the paths of others,

the next logical step is to study processes driven by this generalized TS processes. However,

this family of TS like processes are not the only processes that exhibit short and long term

behavior. There is a more general class of infinitely divisible processes that exemplify multi-

fractal short and long term behavior. That is, they tend to an infinite variance limit as the

scaling factor, β, goes to 0, and they tend to a Gaussian limit as β tends to ∞, which will

be examined in this work.

1.3 Overview

Chapter 2 is devoted to multidimensional GTS Lévy processes. This involves uniting all of

the variations of TS processes, thus creating a generalized tempered stable (GTS) process and

9



proving it displays multifractal properties at different scales in the space of cadlag functions

equipped with the Skorokhod topology. Conditions under which the process is absolutely

continuous with respect to the underlying stable process are of great interest, as are the

series representations that lead to simulations of the process.

As an analog of fractional Brownian motion, Houdré and Kawai have introduced “Frac-

tional tempered stable motion” [7] in their 2006 paper by taking the integral of a Volterra

kernel, KH,α(t, s), with respect to a TS process:

Xt :=

∫ t

0

KH,α(t, s)dXTS
s , t ≥ 0.

They showed that in short time, it is close to fractional stable Levy motion, but in the

long term is similar to fractional Brownian motion. In chapter 3, the short and long term

behavior of the processes driven by a GTS process are studied, which characterizes the class

of processes driven by the various TS modifications, that would previously have to be done

on a case by case basis.

Chapter 4 involves the generalization of a previous work by Pipiras and Taqqu [13] in

2006. In this paper, the authors examine processes with finite first moment given by the

integral representations:

Xt :=

∫
S

ft(s)N(ds), t ∈ R,

where N is a compensated Poisson random measure on a measurable space S. They describe

general conditions for the normalized and time-scaled process to converge to a limit. In

chapter 4 we remove the moment condition imposed on the original process and study the

short and long term behavior. Without the moment condition, every infinitely divisible

process without Gaussian component can be represented as a stochastic integral of this type.

Moreover, the results are enlarged to the multidimensional case. Thus, our work expands the

scope of applications of this limit theory to include all classes of multidimensional infinitely

divisible processes without Gaussian part.
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Chapter 2

Generalized tempered stable processes

Tempered stable processes (TS processes) were originally used as models in physics [12] and

and mathematical finance [3]. TS processes were studied rigorously by Koponen [11] and

Rosinski [16]. Recently, many new variations on TS distributions have been introduced in the

field, including “Modified tempered stable distributions [10],” “Layered stable distributions

[8],” and “Lamperti stable processes [2].” Each variation displays a different method of tilting

the stable distribution, but all exemplify multifractal short and long term behavior. That

is, they tend to an infinite variance limit as the scaling factor, β, goes to 0, and they tend

to a Gaussian limit as β → ∞. All of the modifications enjoy computable characteristics

and moment generating functions. This chapter involves uniting all of these variations, thus

creating a generalized tempered stable (GTS) process and proving it displays multifractal

properties at different scales in the space of cadlag functions equipped with the Skorokhod

topology. Conditions under which the process is absolutely continuous with respect to the

underlying stable process are given, as are the series representations that lead to simulations

of the process.

2.1 Preliminaries

Definition 2.1.1. A Lévy process is called a generalized tempered stable process if its Lévy

measure at time 1 is given in polar coordinates as

νGTS(B) =

∫
Sd−1

∫ ∞
0

1B(rξ) q(r, ξ) r−α−1 dr σ(dξ) (2.1)

where B is a Borel set in Rd
0, α ∈ (0, 2), σ is a finite measure on Sd−1, and q is a measurable

function from (0,∞)× Sd−1 to (0,∞) such that:

11



lim
r→0

q(r, ·) = c1(·) in L1(Sd−1, σ).

Note: We write νασ to denote an α-stable Lévy measure with spectral measure σ. Let

{Xα
t }t≥0 ∼ Sα(σ, η) denote a d-dimensional stable process with Lévy measure νασ at time

1 and drift η. And, let {XGTS
t }t≥0 ∼ GTSα(σ, q, η) denote a d-dimensional generalized

tempered stable process with Lévy measure νGTS at time 1 and drift η. Recall that “
d−→”

denotes convergence in the space of cadlag functions equipped with the Skorokhod topology.

Also, let

σ1(dξ) := c1(ξ)σ(dξ).

It is well known that the characteristic function of Xα
1 is given by

E exp{i 〈u,Xα
1 〉} =



exp
{∫

Rd0

(
ei〈u,x〉 − 1

)
νασ (dx)

}
if α ∈ (0, 1)

exp
{∫

Rd0

(
ei〈u,x〉 − 1− i 〈u, x〉 1‖x‖≤1(x)

)
ν1
σ(dx)

}
if α = 1

exp
{∫

Rd0

(
ei〈u,x〉 − 1− i 〈u, x〉

)
νασ (dx)

}
if α ∈ (1, 2).

The characteristic function of XGTS
1 is given by

E exp{i
〈
u,XGTS

1

〉
} = exp

{∫
Rd0

(
ei〈u,x〉 − 1− i 〈u, x〉 1‖x‖≤1(x)

)
νGTS(dx)

}
.

2.2 Examples

Example 2.2.1. (Tempered Stable Processes) A Lévy process is called a Tempered stable pro-

cess if its Lévy measure at time 1 is given in polar coordinates as equation 2.1 where B is

a Borel set in Rd
0, α ∈ (0, 2), σ is a finite measure on Sd−1, and q is a measurable function

from (0,∞) × Sd−1 to (0,∞) such that q(·, ξ) is completely monotone and q(∞, ξ) = 0 for

each ξ ∈ Sd−1. It is called proper if, in addition, q(0+, ξ) = 1 for each ξ ∈ Sd−1.

Complete monotonicity means that (−1)n dn

drn
q(r, ξ) > 0 for all r > 0, ξ ∈ Sd−1, and

n = 0, 1, 2, . . .. In particular, q(·, ξ) is strictly decreasing and convex. So, for example,

q(r, ξ) = e−r is the q-function of a Tempered stable process.
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Example 2.2.2. (Modified Tempered Stable (MTS) Distribution) An infinitely divisible distri-

bution is called a Modified tempered stable distribution if its Lévy measure is given in polar

coordinates as equation 2.1 where B is a Borel set in Rd
0, α ∈ (0, 2), σ is a finite measure on

Sd−1, and q is a measurable function from (0,∞)× Sd−1 to (0,∞) such that

q(r, ξ) =


2

1−α
2

(
Γ
(
α+1

2

))−1
(λ+r)

α+1
2 Kα+1

2
(λ+r) if ξ = 1

2
1−α

2

(
Γ
(
α+1

2

))−1
(λ−r)

α+1
2 Kα+1

2
(λ−r) if ξ = −1

where λ+, λ− > 0, α < 2, and Kp is the modified Bessel function of the second kind with an

integral representation given by

Kp(x) =
1

2

(x
2

)p ∫ ∞
0

e−t−
x2

4t t−p−1dt.

Example 2.2.3. (Lamperti Stable Processes) A Lévy process is called a Lamperti stable pro-

cess if its Lévy measure at time 1 is given in polar coordinates as equation 2.1 where B is

a Borel set in Rd
0, α ∈ (0, 2), σ is a finite measure on Sd−1, and q is a measurable function

from (0,∞)× Sd−1 to (0,∞) such that

q(r, ξ) =
erf(ξ)

(er − 1)α+1
rα+1

where f : Sd−1 → R is such that supξ∈Sd−1 f(ξ) < α + 1.

2.3 Long and short term behavior

In this section, the short and long term behavior of a GTS is studied. In small scales, the

process exhibits stable trends, while it exhibits Gaussian trends in large scales.

Theorem 2.3.1. Consider a generalized tempered stable process with no drift term, XGTS
t ∼

GTSα(σ, q, 0). And, let

nα :=



−
∫
{‖x‖≤1} x ν

GTS(dx) if α ∈ (0, 1)

0 if α = 1

∫
{‖x‖>1} x ν

GTS(dx) if α ∈ (1, 2)
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Then,

Case(i): (Small Scales) as h→ 0,

h−
1
α{XGTS

ht − ht nα}t≥0
d−→ {Xα

t }t≥0

where {Xα
t }t≥0 ∼ Sα(σ1, 0) is a stable process of index α.

Case(ii): (Large Scales) assuming additionally that∫
{‖x‖>1}

‖x‖2 νGTS(dx) <∞,

it follows that as h→∞,

h−
1
2{XGTS

ht − htnα}
d−→ {Bt}t≥0

where {Bt}t≥0 is a centered Brownian motion with covariance matrix∫
Rd0
xx′νGTS(dx).

Remark 2.3.2. The assumptions on the behavior of the q function near zero are inspired by

the behavior of the q function associated with layered stable processes. The assumptions

made in this paper appear weaker, however, there is a slight error in the assumptions made

in Theorem 3.1 [8] and a counterexample to is described after a brief review of layered stable

processes.

Now, A Lévy process is called a layered stable process if its Lévy measure at time 1 is

given by

νLAY (B) =

∫
Sd−1

∫ ∞
0

1B(rξ)q(r, ξ)r−α−1drσ(dξ)

where B is a Borel set in Rd
0 and σ is a finite positive measure on Sd−1 and q is a locally

integrable function from (0,∞)× Sd−1 to (0,∞) such that:

q(r, ξ) ∼ c1(ξ) as r → 0

and
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rβ−αq(r, ξ) ∼ c2(ξ) as r →∞

for σ-almost every ξ ∈ Sd−1 where c1 and c2 are positive integrable with respect to σ functions

on Sd−1 and α ∈ (0, 2) and β ∈ (0,∞). And, where f(x) ∼ g(x) as x0 → x0 means that

f(x)/g(x)→ 1 as x0 → x0 ∈ [−∞,∞].

Now, for σ-almost every ξ ∈ Sd−1, it is given that

q(r, ξ) ∼ c1(ξ) as r → 0

which is equivalent to

lim
r→0

q(r, ξ)

c1(ξ)
= 1.

And, this is equivalent to

lim
r→0

q(r, ξ) = c1(ξ)

for σ-almost every ξ ∈ Sd−1.

So, for the counterexample, take d = 2 so S1 = {ξ = eiθ : 0 ≤ θ < 2π} is a representation

of all the points on the unit circle. And, for any set B ∈ S1 of the form: {ξ = eiθ : 0 ≤ a ≤
θ ≤ b < 2π}, let σ(B) = b− a. Now, let

q(r, ξ) :=


1
r2

if θ ∈ (0, r]

1 else

So,

lim
r→0

q(r, ξ) = c1(ξ)

for σ-almost every ξ ∈ Sd−1 where c1(ξ) := 1 and q is locally integrable. But, in case (a) in

the proof of the small scales result, it is necessary to have:∫
Rd0
g(x)h(T

h−
1
α
νGTS)(dx)→

∫
Rd0
g(x) νασ1

(dx) as h→ 0.

But, taking g(x) := 1[ε,∞)(x), one can see that
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lim
h→0

∫
Rd0
g(x)h(T

h−
1
α
νGTS)(dx) = lim

h→0
h

∫
Sd−1

∫ ∞
ε

q(h
1
α r, ξ) (h

1
α r)−1−α d(h

1
α r)σ(dξ)

= lim
h→0

∫
Sd−1

∫ ∞
ε

q(h
1
α r, ξ) r−1−α dr σ(dξ)

= lim
h→0

∫ 2π

0

∫ ∞
ε

1

(h
1
α r)2

1
(0,h

1
α r]

(θ)r−α−1 dr dθ

which by simple calculation equals:

lim
h→0

1

h
1
α

∫ ∞
ε

r−2−αdr =∞.

Thus, an application of Lebesgue Dominated Convergence Theorem in the proof of layered

stable is not valid. This is precisely why convergence in L1 for small scales is assumed for

the q function associated with generalized tempered stable processes. Now, for the proof of

Theorem 1.

2.4 Proof of the main theorem

For convenience, define a transformation of a measure ρ by (Trρ)(B) = ρ(r−1B) for any

r > 0 and each Borel set B.

Case(i): Small Scales (h→ 0).

By a theorem of Skorokhod (see Theorem 15.17 of Kallenberg) we only need to check the

weak convergence of the marginals at time 1. Now, h−
1
α (XGTS

h −hnα) is an infinitely divisible

random variable with cumulant function given by:∫
Rd0

(
e
i
D
u,h−

1
α x
E
− 1− i

〈
u, h−

1
αx
〉

1‖x‖≤1(x)

)
h νGTS(dx)− i

〈
u, h1− 1

α nα

〉
=

∫
Rd0

(
e
i
D
u,(h−

1
α x)

E
− 1− i

〈
u, (h−

1
αx)
〉

1
‖h−

1
α x‖≤1

(h−
1
αx)

)
h νGTS(dx)− i

〈
u, h1− 1

α nα

〉
=

∫
Rd0

(
ei〈u,x〉 − 1− i 〈u, x〉 1‖x‖≤1(x)

)
h(T

h−
1
α
νGTS)(dx)− i

〈
u, h1− 1

α nα

〉
.
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Thus, h−
1
α (XGTS

h − hnα) is an infinitely divisible random variable with L evy measure

h(T
h−

1
α
νGTS), drift h1− 1

α nα, and no Gaussian part. Now, Theorem 15.14 of Kallenberg

states that we only need to check that for some k ∈ (0, 1), each of the following holds:

a) h(T
h−

1
α
νGTS) converges vaguely towards νασ1

on R̄
d
0 as h→ 0

b) akh :=

∫
‖x‖≤k

xx′ h(T
h−

1
α
νGTS)(dx)→

∫
‖x‖≤k

xx′ νασ1
(dx) as h→ 0

c) bkh := −
∫
k≤‖x‖≤1

xh(T
h−

1
α
νGTS)(dx)→ −

∫
k≤‖x‖≤1

x νασ1
(dx) as h→ 0.

For case (a), to show the vague convergence of measures, it is necessary to show∫
Rd0
g(x)h(T

h−
1
α
νGTS)(dx)→

∫
Rd0
g(x) νασ1

(dx) as h→ 0

where g : Rd
0 → R is any bounded continuous function vanishing in a neighborhood of the

origin with limn→∞ g(xn) existing for every {xn} in Rd
0 such that ‖xn‖ → ∞. Since g is

bounded and vanishes on a neighborhood near the origin, there exists a C and an ε > 0 such

that |g(x)| ≤ C <∞ for all x and g(x) = 0 on {x ∈ Rd
0 : ‖x‖ ≤ ε}. Now,

∫
Rd0
g(x)h(T

h−
1
α
νGTS)(dx) = h

∫
Sd−1

∫ ∞
ε

g(rξ) q(h
1
α r, ξ) (h

1
α r)−1−α d(h

1
α r)σ(dξ)

=

∫
Sd−1

∫ ∞
ε

g(rξ) q(h
1
α r, ξ) r−1−α dr σ(dξ),

which by a change of variable equals∫
Sd−1

∫ ∞
h

1
α ε

g(h−
1
α rξ) q(r, ξ) (h−

1
α r)−1−α d(h−

1
α r)σ(dξ)

= h

∫
Sd−1

∫ ∞
h

1
α ε

g(h−
1
α rξ) q(r, ξ) r−1−α dr σ(dξ)

= h

∫
Sd−1

∫ ε

h
1
α ε

g(h−
1
α rξ) q(r, ξ) r−1−α dr σ(dξ)

+ h

∫
Sd−1

∫ ∞
ε

g(h−
1
α rξ) q(r, ξ) r−1−α dr σ(dξ)
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And, we will consider each integral separately. Now, notice, the second integral is bounded

independently of h since,∫
Sd−1

∫ ∞
ε

|g(h−
1
α rξ)| q(r, ξ) r−1−α dr σ(dξ)

≤
∫
Sd−1

∫ ∞
ε

C q(r, ξ) r−1−α dr σ(dξ)

= C

∫
‖x‖>ε

νGTS(dx)

which is finite since νGTS is a Lévy measure. Thus, the second integral,

h

∫
Sd−1

∫ ∞
ε

g(h−
1
α rξ) q(r, ξ) r−1−α dr σ(dξ)→ 0 as h→ 0.

So, the second integral vanishes with the passage to the limit. Now, consider the first integral,

h

∫
Sd−1

∫ ε

h
1
α ε

g(h−
1
α rξ) q(r, ξ) r−1−α dr σ(dξ)

which, by change of variable, equals

h

∫
Sd−1

∫ h−
1
α ε

ε

g(rξ) q(h
1
α r, ξ) (h

1
α r)−1−α d(h

1
α r)σ(dξ)

and simplifies to ∫
Sd−1

∫ ∞
ε

g(rξ) q(h
1
α r, ξ) 1

{r≤h−
1
α ε}

(r) r−1−α dr σ(dξ)

which, by Fubini, is equal to∫ ∞
ε

{∫
Sd−1

g(rξ) q(h
1
α r, ξ) 1

{r≤h−
1
α ε}

(r)σ(dξ)

}
r−1−α dr

:=

∫ ∞
ε

Qh(r) r
−1−α dr.

Now, the goal is to use the Lebesgue Dominated Convergence Theorem to show the above

integral converges to ∫ ∞
ε

∫
Sd−1

g(rξ) c1(ξ) σ(dξ) r−1−α dr
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=

∫
Sd−1

∫ ∞
ε

g(rξ) r−1−α drσ1(dξ)

=

∫
Rd0
g(x)νασ1

(dx).

So, it is necessary to show the show that Qh(r) is bounded by an integrable function and

converges pointwise to ∫
Sd−1

g(rξ) c1(ξ) σ(dξ).

So, first, it is necessary to show there exists a function f : R+ → R such that

|Qh(r)| ≤ f(r) for all h > 0 and r > 0

and ∫ ∞
ε

|f(r)| r−1−α dr <∞.

To see this, notice that since∫
Sd−1

q(r, ξ)σ(dξ)→
∫
Sd−1

c1(ξ)σ(dξ) as r → 0,

there exists an r0 such that:

sup
r≤r0

∫
Sd−1

q(r, ξ)σ(dξ) = C1 <∞.

Now, we may assume r0 ≤ ε, so r ≤ εh−
1
α implies that h

1
α r ≤ ε ≤ r0. Hence,∫

Sd−1

q(r, ξ) 1
{r≤h−

1
α ε}

(r)σ(dξ) = C1 <∞

and this implies∣∣∣∣∫
Sd−1

g(rξ) q(r, ξ) 1
{r≤h−

1
α ε}

(r) σ(dξ)

∣∣∣∣ ≤ ∫
Sd−1

|g(rξ)| q(r, ξ) 1
{r≤h−

1
α ε}

(r) σ(dξ)

|g(rξ)|
∫
Sd−1

q(r, ξ) 1
{r≤h−

1
α ε}

(r) σ(dξ) ≤ CC1.

So, using f(r) := CC1, it follows that:∣∣∣∣∫ ∞
ε

{∫
Sd−1

g(rξ) q(h
1
α r, ξ) 1

{r≤h−
1
α ε}

(r)σ(dξ)

}
r−1−α dr

∣∣∣∣
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≤
∫ ∞
ε

|f(r)| r−1−α dr = CC1

∫ ∞
ε

r−1−α dr <∞.

Thus, it is clear that Q is dominated by an integrable function. And, now it is necessary to

show that for each ξ ∈ Sd−1,

Qh(r)→
∫
Sd−1

g(rξ) c1(ξ) σ(dξ) as h→ 0 for all r > 0.

Well, limr→0 q(r, ·) = c1(·) in L1(Sd−1, σ), implies that given any δ > 0, we can choose r0

such that:

sup
r≤r0

∫
Sd−1

|q(r, ξ)− c1(ξ)|σ(dξ) < δ.

And, for h ∈ (0, 1), we have h
1
α r ≤ h

1
α r0 ≤ r0. So,∫

Sd−1

|q(h
1
α r, ξ)− c1(ξ)| 1

{r≤h−
1
α ε}

(r)σ(dξ) < δ.

Thus, ∫
Sd−1

|g(rξ)q(h
1
α r, ξ)− g(rξ)c1(ξ)| 1

{r≤h−
1
α ε}

(r)σ(dξ)

≤ C

∫
Sd−1

|q(h
1
α r, ξ)− c1(ξ)| 1

{r≤h−
1
α ε}

(r)σ(dξ) ≤ δ

C

and since δ can be made arbitrarily small, it follows that limh→0 g(r, ·) q(h 1
α r, ·) = g(r, ·) c1(·)

in L1(Sd−1, σ). So,∫
Sd−1

g(rξ) q(h
1
α r, ξ)σ(dξ)→

∫
Sd−1

g(rξ) c1(ξ)σ(dξ) as h→ 0

and, so,

Qh(r)→
∫
Sd−1

g(rξ) c1(ξ)σ(dξ) =

∫
Rd0
g(x) νασ1

(dx) as h→ 0.
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For case (b), notice

akh =

∫
‖x‖≤k

xx′ h(T
h−

1
α
νGTS)(dx)

=h

∫
Sd−1

∫ k

0

r2 ξξ′ q(h
1
α r, ξ) (h

1
α r)−1−α d(h

1
α r)σ(dξ)

=

∫
Sd−1

∫ k

0

r2 ξξ′ q(h
1
α r, ξ) r−1−α dr σ(dξ)

=

∫ ∞
0

{∫
Sd−1

ξξ′ q(h
1
α r, ξ) 1{r≤k}(r)σ(dξ)

}
r1−α dr

:=

∫ ∞
0

Qh(r) r
1−α dr

And, with intent to use the Lebesgue Dominated Convergence Theorem again, it must be

shown that there exists a function f : R+ → R such that

|Qh(r)| ≤ f(r) for all h > 0 and r > 0

where ∫ ∞
0

|f(r)| r1−α dr <∞.

And,

Qh(r)→
∫
Sd−1

ξξ′ 1{r≤k}(r) c1(ξ) σ(dξ) as h→ 0 for all r > 0.

Well, to see that Qh(r) is bounded by an integrable function, notice

|Qh(r)| =
∣∣∣∣∫
Sd−1

ξξ′ q(h
1
α r, ξ) 1{r≤k}(r)σ(dξ)

∣∣∣∣
≤
∫
Sd−1

‖ξξ′‖ q(h
1
α r, ξ) 1{r≤k}(r)σ(dξ)

=

∫
Sd−1

q(h
1
α r, ξ) 1{r≤k}(r)σ(dξ).

And, as in case (a), there exists an r0 such that:

sup
r≤r0

∫
Sd−1

q(r, ξ)σ(dξ) = C1 <∞.
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Now, r ≤ k, implies h
1
α r ≤ h

1
αk, so, choose h small enough so that h

1
αk ≤ r0. Then, we have

|Qh(r)| ≤
∫
Sd−1

q(h
1
α r, ξ) 1{r≤k}(r)σ(dξ)

≤ C11{r≤k}(r) := f(r)

and ∫ ∞
0

f(r) r1−α dr =

∫ ∞
0

C11{r≤k}(r) r
1−α dr

= C1

∫ k

0

r1−α dr =
k2−α

2− α
<∞

since α ∈ (0, 2).

And, to see the pointwise convergence of Qh(r), recall limr→0 q(r, ·) = c1(·) in L1(Sd−1, σ),

which implies that given any δ > 0, we can choose r0 such that:

supr≤r0

∫
Sd−1

|q(r, ξ)− c1(ξ)|σ(dξ) < δ.

Now, choosing h small enough such that h
1
αk ≤ r0 implies∫

Sd−1

|q(h
1
α r, ξ)− c1(ξ)| 1{r≤k}(r)σ(dξ) < δ.

So, ∫
Sd−1

|ξξ′q(h
1
α r, ξ)− ξξ′c1(ξ)| 1{r≤k}(r)σ(dξ)

≤
∫
Sd−1

‖ξξ′‖ |q(h
1
α r, ξ)− c1(ξ)| 1{r≤k}(r)σ(dξ)

=

∫
Sd−1

|q(h
1
α r, ξ)− c1(ξ)| 1{r≤k}(r)σ(dξ) < δ

and since δ can be made arbitrarily small, it follows that limh→0 f(·) q(h 1
α r, ·) = f(·) c1(·) in

L1(Sd−1, σ) where f(ξ) = ξξ′. So,∫
Sd−1

ξξ′ q(h
1
α r, ξ)σ(dξ)→

∫
Sd−1

ξξ′ c1(ξ)σ(dξ) as h→ 0

and so,

Qh(r)→
∫
Sd−1

ξξ′ c1(ξ)σ(dξ) as h→ 0.
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For case (c), (α = 1 case only) we have:

bkh =

∫
k≤‖x‖≤1

xh(T
h−

1
α
νGTS)(dx)

=h

∫
Sd−1

∫ 1

k

r ξ q(h
1
α r, ξ) (h

1
α r)−1−α d(h

1
α r)σ(dξ)

=

∫
Sd−1

∫ 1

k

r ξ q(h
1
α r, ξ) r−1−α dr σ(dξ)

=

∫ ∞
0

{∫
Sd−1

ξ q(h
1
α r, ξ) 1{k≤r≤1}(r)σ(dξ)

}
r−α dr

:=

∫ ∞
0

Qh(r) r
−α dr

And, again to apply the Lebesgue Dominated Convergence Theorem, it must be shown that

there exists a function f : R+ → R such that

|Qh(r)| ≤ f(r) for all h > 0 and r > 0

where ∫ ∞
0

|f(r)| r1−α dr <∞.

And,

Qh(r)→
∫
Sd−1

ξξ′ 1{r≤k}(r) c1(ξ) σ(dξ) as h→ 0 for all r > 0.

Now, to see the boundedness by an integrable function, notice

|Qh(r)| =
∣∣∣∣∫
Sd−1

ξ q(h
1
α r, ξ) 1{k≤r≤1}(r)σ(dξ)

∣∣∣∣
≤
∫
Sd−1

‖ξ‖ q(h
1
α r, ξ) 1{k≤r≤1}(r)σ(dξ)

=

∫
Sd−1

q(h
1
α r, ξ) 1{k≤r≤1}(r)σ(dξ).

And, as in case (a), there exists an r0 such that:

sup
r≤r0

∫
Sd−1

q(r, ξ)σ(dξ) = C1 <∞.
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Now, r ≤ 1, implies h
1
α r ≤ h

1
α , so for h small enough so that h

1
α ≤ r0, we have

|Qh(r)| ≤
∫
Sd−1

q(h
1
α r, ξ) 1{k≤r≤1}(r)σ(dξ)

≤ C11{k≤r≤1}(r) := f(r)

and ∫ ∞
0

f(r) r−α dr =

∫ ∞
0

C11{k≤r≤1}(r) r
−α dr

= C1

∫ 1

k

r−α dr = C1

∫ 1

k

r−1 dr

= C1(− ln k) <∞.

And for the pointwise convergence recall limr→0 q(r, ·) = c1(·) in L1(Sd−1, σ), which im-

plies that given any δ > 0, we can choose r0 such that:

sup
r≤r0

∫
Sd−1

|q(r, ξ)− c1(ξ)|σ(dξ) < δ.

which, if we choose h small enough such that h
1
α ≤ r0 , implies∫

Sd−1

|q(h
1
α r, ξ)− c1(ξ)| 1{k≤r≤1}(r)σ(dξ) < δ.

So, ∫
Sd−1

|ξq(h
1
α r, ξ)− ξc1(ξ)| 1{k≤r≤1}(r)σ(dξ)

≤
∫
Sd−1

‖ξ‖ |q(h
1
α r, ξ)− c1(ξ)| 1{k≤r≤1}(r)σ(dξ)

=

∫
Sd−1

|q(h
1
α r, ξ)− c1(ξ)| 1{k≤r≤1}(r)σ(dξ) < δ

and since δ can be made arbitrarily small, it follows that limh→0 f(·) q(h 1
α r, ·) = f(·) c1(·) in

L1(Sd−1, σ) where f(ξ) = ξ. So,∫
Sd−1

ξ q(h
1
α r, ξ)σ(dξ)→

∫
Sd−1

ξ c1(ξ)σ(dξ) as h→ 0

and, so,
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Qh(r)→
∫
Sd−1

ξ c1(ξ)σ(dξ) as h→ 0

as desired and the small scales case is, thus, proven.

Case (ii): Large Scales (h→∞).

Similarly to the proof of the small scales case we conclude, h−
1
2 (XGTS

h − hnα) is an in-

finitely divisible random variable with L evy measure h(T
h−

1
2
νGTS), drift h1− 1

2 nα, and no

Gaussian part. So, again by Theorem 15.14 of Kallenberg, it is only necessary to check the

following convergences:

a) h(T
h−

1
2
νGTS) converges vaguely towards 0 on R̄

d
0 as h→∞

b) akh :=

∫
‖x‖≤k

xx′ h(T
h−

1
2
νGTS)(dx)→

∫
Rd0
xx′ νGTS(dx) as h→∞ for some k ∈ (0, 1)

c) bkh := −
∫
k≤‖x‖≤1

xh(T
h−

1
2
νGTS)(dx)→ 0 as h→∞ for some k ∈ (0, 1)

where

h(T
h−

1
2
νGTS)(dx) = h q(h

1
2 r, ξ) (h

1
2 r)−1−α d(h

1
2 r)σ(dξ).

For case (a), let g : Rd
0 → R be a bounded continuous function vanishing in a neighbor-

hood of the origin. So there exists a C and an ε > 0 such that |g| ≤ C < ∞ and g(x) = 0

on {x ∈ Rd
0 : ‖x‖ ≤ ε}. Also, suppose that limn→∞ g(xn) exists for every {xn} in Rd

0 such

that ‖xn‖ → ∞.

Now, ∣∣∣∣∣
∫

Rd0
g(x)h(T

h−
1
2
νGTS)(dx)

∣∣∣∣∣ ≤
∫
‖x‖>ε

|g(x)| h(T
h−

1
2
νGTS)(dx)

≤ C

∫
‖x‖>ε

h
‖h 1

2x‖2

‖h 1
2x‖2

(T
h−

1
2
νGTS)(dx)

which equals

C

∫
‖x‖>ε

1

‖x‖2
‖h

1
2x‖2 (T

h−
1
2
νGTS)(dx)
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≤ C

∫
‖x‖>ε

1

ε2
‖h

1
2x‖2 (T

h−
1
2
νGTS)(dx),

which by change of variable equals

C

ε2

∫
‖x‖>h

1
2 ε

‖x‖2 νGTS(dx)

=
C

ε2

∫
Rd0

1
{‖x‖>h

1
2 ε}

(x)‖x‖2 νGTS(dx)

which goes to zero as h→∞ by the Lebesgue Dominated Convergence Theorem since∫
Rd0
‖x‖2 νGTS(dx) <∞

and 1
{‖x‖>h

1
2 ε}

(x)→ 0 as h→∞ for each x.

For case (b), the convergence of the Gaussian part, notice

akh =

∫
‖x‖≤k

xx′ h(T
h−

1
2
νGTS)(dx)

=

∫
‖x‖≤k

(h
1
2x)(h

1
2x)′ (T

h−
1
2
νGTS)(dx)

which by change of variables equals∫
‖x‖≤h

1
2 k

xx′ νGTS(dx)

=

∫
Rd0
xx′ 1

{‖x‖≤h
1
2 k}

(x) νGTS(dx)

→
∫

Rd0
xx′ νGTS(dx)

as h→∞ by the Lebesgue Dominated Convergence Theorem since∫
Rd0
‖x‖2 νGTS(dx) <∞

and 1
{‖x‖≤h

1
2 k}

(x)→ 1 as h→∞ for each x.
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And, lastly for part (c), the convergence of the drift term (α = 1 case only), we have

|bkh| =
∣∣∣∣−∫

k<‖x‖≤1

xh(T
h−

1
2
νGTS)(dx)

∣∣∣∣
≤
∫
k<‖x‖≤1

h‖x‖ (T
h−

1
2
νGTS)(dx)

=

∫
k<‖x‖≤1

h
1
2
‖h 1

2x‖
‖h 1

2x‖
‖h

1
2x‖ (T

h−
1
2
νGTS)(dx)

which by change of variables equals∫
k<‖x‖≤1

1

‖x‖
‖h

1
2x‖2 (T

h−
1
2
νGTS)(dx)

≤1

k

∫
k<‖x‖≤1

‖h
1
2x‖2 (T

h−
1
2
νGTS)(dx)

=
1

k

∫
h

1
2 k<‖x‖≤h

1
2

‖x‖2 νGTS(dx)

≤1

k

∫
Rd0

1
{‖x‖>h

1
2 k}

(x)‖x‖2 νGTS(dx)

which goes to zero as h→∞ by the Lebesgue Dominated Convergence Theorem since∫
Rd0
‖x‖2 νGTS(dx) <∞

and 1
{‖x‖>h

1
2 k}

(x)→ 0 as h→∞ for each x.

2.5 Absolute continuity with respect to a stable pro-

cess

In this section, absolute continuity of GTS processes with respect to the underlying stable

process is studied. This should be compared with the results of Rosinski [16] and Caballero,

Pardo, and Pérez [2].

Theorem 2.5.1. Let P and Q be two probability measures such that under P the canonical

process is a GTS process,{XGTS
t }t≥0 ∼ GTSα(σ, q, a), with spectral measure σ and drift a
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and under Q it is an α-stable process, {Xα
t }t≥0 ∼ Sα(σ1, b), with spectral measure σ1 and

drift b. Let {Ft} be the canonical filtration. Then, we have the absolute continuity iff both

of the following conditions hold:

i) ∫
Sd−1

∫ 1

0

(
q

1
2 (r, ξ)− c

1
2
1 (ξ)

)2

r−α−1 dr σ(dξ) <∞ (2.2)

ii)

a− b =



∫
‖x‖≤1

x νGTS(dx) if α ∈ (0, 1)

∫
‖x‖≤1

x (νGTS − ν1
σ1

)(dx) if α = 1

∫
‖x‖≤1

x (νGTS − νασ1
)(dx)−

∫
‖x‖>1

x νασ1
(dx) if α ∈ (1, 2)

Proof. Since, for every Borel set B, νGTS(B) is equal to

∫
Sd−1

∫ ∞
0

1B(rξ) q(r, ξ) r−α−1 dr σ(dξ) =

∫
Sd−1

∫ ∞
0

1B(rξ)
q(r, ξ)

c1(ξ)
r−α−1 dr c1(ξ)σ(dξ)

=

∫
Sd−1

∫ ∞
0

1B(rξ)
q(r, ξ)

c1(ξ)
r−α−1 dr σ1(dξ) = νασ1

(A),

so it follows that the Radon Nikodym derivative is

dνGTS

dνασ1

(x) =
q
(
‖x‖, x

‖x‖

)
c1

(
x
‖x‖

) .

And, by Theorem 33.1 in Sato [19], it is necessary to show:∫
Rd

(
eφ(x)/2 − 1

)2
νασ1

(dx) <∞
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where

φ(x) := log
q
(
‖x‖, x

‖x‖

)
c1

(
x
‖x‖

) .

Well, notice

∫
Rd

(
eφ(x)/2 − 1

)2
νασ1

(dx) =

∫
Sd−1

∫ ∞
0

((
q(r, ξ)

c1(ξ)

) 1
2

− 1

)2

r−α−1 dr σ1(dξ)

=

∫
Sd−1

∫ ∞
0

(
q

1
2 (r, ξ)− c

1
2
1 (ξ)

)2

r−α−1 dr σ(dξ)

=

∫
Sd−1

∫ 1

0

(
q

1
2 (r, ξ)− c

1
2
1 (ξ)

)2

r−α−1 dr σ(dξ)

+

∫
Sd−1

∫ ∞
1

(
q

1
2 (r, ξ)− c

1
2
1 (ξ)

)2

r−α−1 dr σ(dξ).

And the second integral is finite, since∫
Sd−1

∫ ∞
1

(
q

1
2 (r, ξ)− c

1
2
1 (ξ)

)2

r−α−1 dr σ(dξ)

≤
∫
Sd−1

∫ ∞
1

q(r, ξ) r−α−1 dr σ(dξ) +

∫
Sd−1

∫ ∞
1

c1(ξ) r−α−1 dr σ(dξ)

=

∫
‖x‖>1

νGTS(dx) +

∫
‖x‖>1

νασ1
(dx) <∞

as νGTS and νασ1
are Lévy measures. Thus,∫

Rd

(
eφ(x)/2 − 1

)2
νασ1

(dx) <∞

if and only if ∫
Sd−1

∫ 1

0

(
q

1
2 (r, ξ)− c

1
2
1 (ξ)

)2

r−α−1 dr σ(dξ) <∞,

which completes the proof of Part (i).

For part (ii), notice XGTS
1 has cumulant function given by∫

Rd0

(
ei〈u,x〉 − 1− i 〈u, x〉 1‖x‖≤1(x)

)
νGTS(dx) + i 〈u, a〉 .
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And, Xα
1 has cumulant function given by∫

Rd0

(
ei〈u,x〉 − 1− i 〈u, x〉 1‖x‖≤1(x)

)
νασ1

(dx) + i 〈u, b+ nα〉

where

nα =



∫
‖x‖≤1

x νασ1
(dx) if α ∈ (0, 1)

0 if α = 1

−
∫
‖x‖>1

x νασ1
(dx) if α ∈ (1, 2)

Now, by Theorem 33.1 of Sato [19], it is necessary to show

a− (b+ nα)−
∫
‖x‖≤1

x
(
νGTS − νασ1

)
(dx) = 0.

Well,

a− (b+ nα)−
∫
‖x‖≤1

x
(
νGTS − νασ1

)
(dx)

=



a− b−
∫
‖x‖≤1

x νασ1
(dx)−

∫
‖x‖≤1

x
(
νGTS − νασ1

)
(dx) if α ∈ (0, 1)

a− b−
∫
‖x‖≤1

x
(
νGTS − νασ1

)
(dx) if α = 1

a− b+

∫
‖x‖>1

x νασ1
(dx)−

∫
‖x‖≤1

x
(
νGTS − νασ1

)
(dx) if α ∈ (1, 2)

=



a− b−
∫
‖x‖≤1

x νGTS(dx) if α ∈ (0, 1)

a− b−
∫
‖x‖≤1

x (νGTS − ν1
σ1

)(dx) if α = 1

a− b−
∫
‖x‖≤1

x (νGTS − νασ1
)(dx) +

∫
‖x‖>1

x νασ1
(dx) if α ∈ (1, 2)

which, of course, equals 0 if and only if condition (ii) is satisfied. So, this concludes the
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proof of the theorem.

Remark 2.5.2. Rosinski [16] mentioned that the rate of convergence directly impacts whether

or not a tempered stable process is absolutely continuous with respect to the underlying

stable process. Here, an attempt is made to quantify this fact. The goal is to find some

easier condition to check in lieu of condition (i) (equation 2.2) in the previous theorem by

looking at the rate of convergence with respect to r
α
2 . The claim is that it would be enough

to calculate:

lim
r→0

|q 1
2 (r, ξ)− c

1
2
1 (ξ)|

r
α
2

+ε
:= C for each ξ ∈ Sd−1 and ε > 0.

Then, if C <∞ for some ε > 0 condition (i) is satisfied, that is,∫
Sd−1

∫ 1

0

(
q

1
2 (r, ξ)− c

1
2
1 (ξ)

)2

r−α−1 dr σ(dξ) <∞

and if C =∞ for all ε > 0 condition (i) is not satisfied since∫
Sd−1

∫ 1

0

(
q

1
2 (r, ξ)− c

1
2
1 (ξ)

)2

r−α−1 dr σ(dξ) =∞.

Proof. If C <∞, then there exists an r0 and a K such that

sup
r≤r0

|q 1
2 (r, ξ)− c

1
2
1 (ξ)|

r
α
2

+ε
≤ K <∞ for each ξ ∈ Sd−1.

Now, ∫
Sd−1

∫ 1

0

(
q

1
2 (r, ξ)− c

1
2
1 (ξ)

)2

r−α−1 dr σ(dξ)

equals ∫
Sd−1

∫ 1

0

(
q

1
2 (r, ξ)− c

1
2
1 (ξ)

r
α
2

+ε

)2

r2ε−1 dr σ(dξ)

which is less than or equal to

∫
Sd−1

∫ r0

0

K2 r2ε−1 dr σ(dξ) +

∫
Sd−1

∫ 1

r0

(
q

1
2 (r, ξ)− c

1
2
1 (ξ)

r
α
2

+ε

)2

r2ε−1 dr σ(dξ)
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= K2σ(Sd−1)

∫ r0

0

r2ε−1 dr +

∫
Sd−1

∫ 1

r0

(
q

1
2 (r, ξ)− c

1
2
1 (ξ)

)2

r−α−1 dr σ(dξ)

which equals

K2σ(Sd−1)
(r0)2ε

2ε
+

∫
Sd−1

∫ 1

r0

q(r, ξ) r−α−1 dr σ(dξ) +

∫
Sd−1

∫ 1

r0

c1(ξ) r−α−1 dr σ(dξ)

≤ K2σ(Sd−1)

2ε
+

∫
‖x‖>r0

νGTS(dx) +

∫
‖x‖>r0

νασ1
(dx)

which is finite since νGTS and νασ1
are Lévy measures and σ is a finite measure on Sd−1. Thus,

condition (i) is satisfied.

If C =∞, then there exists an K > 0 and an r0 such that

sup
r≤r0

|q 1
2 (r, ξ)− c

1
2
1 (ξ)|

r
α
2

+ε
> K for each ξ ∈ Sd−1

which implies

sup
r≤r0

|q 1
2 (r, ξ)− c

1
2
1 (ξ)|

r
α
2

> K for each ξ ∈ Sd−1

since r ≤ 1. And, ∫
Sd−1

∫ 1

0

(
q

1
2 (r, ξ)− c

1
2
1 (ξ)

)2

r−α−1 dr σ(dξ)

=

∫
Sd−1

∫ 1

0

(
q

1
2 (r, ξ)− c

1
2
1 (ξ)

r
α
2

)2

r−1 dr σ(dξ)

which is greater than or equal to

K2

∫
Sd−1

σ(dξ)

∫ r0

0

r−1 dr

= K2 σ(Sd−1)
[
ln r0 − lim

r→0
ln r

]
=∞.

Thus, condition (i) is not satisfied.

Remark 2.5.3. Of course this limit may not be easily computed. Actually, all that is really

needed for absolute continuity is to have an r0 and a positive integrable function k on Sd−1
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such that

sup
r≤r0

|q 1
2 (r, ξ)− c

1
2
1 (ξ)|

r
α
2

+ε
≤ k(ξ)

for each ξ ∈ Sd−1 and some ε > 0.

And, to show it is not absolutely continuous, it would be enough to show that there exists

an r0 and a positive integrable function k on Sd−1 such that

sup
r≤r0

|q 1
2 (r, ξ)− c

1
2
1 (ξ)|

r
α
2

> k(ξ) for each ξ ∈ Sd−1.

This is clear by inspection of the proof of the previous remark.

Example 2.5.1. (A Tempered Stable Process) Let q(r, ξ) = e−r, c1 = 1, and σ be any finite

measure on Sd−1. Then,

lim
r→0

q
1
2 (r, ξ)− c

1
2
1 (ξ)

r
α
2

+ε
= lim

r→0

√
e−r − 1

r
α
2

+ε

= lim
r→0

−1

α + 2ε
(e−r)

1
2 r1−(α

2
+ε) = 0

for any ε < 1 − α
2
. So, there is absolute continuity with respect to the underlying stable

process.

Example 2.5.2. (Another Tempered Stable Process) Let q(r, ξ) = e−r
β
, c1 = 1, and σ be any

finite measure on Sd−1 where 0 < β ≤ α
2
. Then,

lim
r→0

q
1
2 (r, ξ)− c

1
2
1 (ξ)

r
α
2

+ε
= lim

r→0

√
e−rβ − 1

r
α
2

+ε

= lim
r→0

−β
α + 2ε

(e−r
β

)
1
2 rβ−(α

2
+ε) =∞

for all ε > 0. So, there is no absolute continuity in this case.

Example 2.5.3. (Lamperti Stable Processes) Let

q(r, ξ) =
erf(ξ)

(er − 1)α+1
rα+1

where f : Sd−1 → R is such that supξ∈Sd−1 f(ξ) < α + 1. Then, it can be shown that

lim
r→0

q
1
2 (r, ξ)− c

1
2
1 (ξ)

r
α
2

+ε
= 0
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for some ε > 0 where c1 = 1. So, there is always absolute continuity of Lamperti stable

processes with respect to the underlying stable process.

2.6 Series representation

First, a series representation using LePage’s Method [15] is examined. It involves looking at

a decomposition of the Lévy measure of the form:

νGTS(A) =

∫
Sd−1

∫ ∞
0

1A(rξ) ρ∗(dr, ξ)σ∗(dξ)

where σ∗(dξ) := σ(dξ)/σ(Sd−1) := σ(dξ)/‖σ‖ is a probability measure on Sd−1 and ρ∗ is a

measure on R such that

ρ∗([x,∞), ξ) = ‖σ‖ ρ([x,∞), ξ)

where

ρ([x,∞), ξ) :=

∫ ∞
x

q(r, ξ) r−α−1 dr. (2.3)

LePage’s Method requires that ρ∗ be a Lévy measure on R for each ξ ∈ Sd−1, and it is, since:∫
Rd

(1 ∧ ‖x‖2)νGTS(dx) =

∫
Sd−1

∫ ∞
0

(1 ∧ r2) ρ∗(dr, ξ)σ∗(dξ) <∞

which implies that ∫ ∞
0

(1 ∧ r2)ρ∗(dr, ξ) <∞.

The inverse is defined as:

ρ−1
∗ (u, ξ) := inf{x > 0 : ρ∗([x,∞), ξ) < u}.

= inf{x > 0 : ρ([x,∞), ξ) <
u

‖σ‖
}

= ρ−1(u/‖σ‖, ξ).

Theorem 2.6.1. Let {Γi}i≥1 be a sequence of partial sums of iid exponential random vari-

ables (1). Let {Ui}i≥1 be a sequence of iid uniform random variables on [0, T ] and let {Vi}i≥1

be a sequence of random variables in Sd−1 with common distribution σ(dξ)/‖σ‖. Then,

∞∑
i=1

{
ρ−1

(
Γi
‖σ‖T

, Vi

)
Vi 1{Ui≤t} − ci

t

T

}
(2.4)
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converges uniformly a.s. to a process, {XGTS
t }t≥0 ∼ GTSα(σ, q, 0) where

ci =

∫ i

i−1

E

(
ρ−1

(
s

‖σ‖T
, V1

)
V11ρ−1( s

‖σ‖T ,V1)≤1

)
ds.

In particular, if there exists a function g on (0,∞) such that q(r, ξ) = g(r), then ρ−1 will

not depend on ξ and the above series representation is simplified to the following:

∞∑
i=1

{
ρ−1

(
Γi
‖σ‖T

)
Vi 1{Ui≤t} − ci

t

T

}
(2.5)

where

ci = E(V1)

∫ i

i−1

(
ρ−1

(
s

‖σ‖T

)
1ρ−1( s

‖σ‖T )≤1

)
ds.

Proof. A proof of this theorem is omitted, as it is merely a reformulation of the results

presented by Rosinski in [15]. The representation is generated by LePage’s method and the

series convergences by Rosinski.

Example 2.6.1. (Lamperti Stable Processes) It is possible to find the inverse in some cases.

For example, consider a Lamperti stable process with

q(r, ξ) =
erf(ξ)

(er − 1)α+1
rα+1

and f(ξ) := 1. Then,

ρ([x,∞), ξ) =

∫ ∞
x

erf(ξ)

(er − 1)α+1
rα+1 r−α−1 dr

=

∫ ∞
x

erf(ξ)

(er − 1)α+1
dr = α−1 (ex − 1)−α

which implies that

ρ−1(u, ξ) = ln
(

1 + (αu)−
1
α

)
.

Thus,
∞∑
i=1

{
ln

(
1 +

(
αΓi
‖σ‖T

)− 1
α

)
Vi 1{Ui≤t} − ci

t

T

}
(2.6)

converges to a Lamperti stable process with f(ξ) := 1.
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Example 2.6.2. (Stable Processes) Consider a stable process with

q(r, ξ) = 1.

Then,

ρ([x,∞), ξ) =

∫ ∞
x

r−α−1 dr

=
x−α

α

which implies that

ρ−1(u, ξ) = (αu)−
1
α .

Thus,
∞∑
i=1

{(
αΓi
‖σ‖T

)− 1
α

Vi 1{Ui≤t} − ci
t

T

}
(2.7)

where

ci = E(V1)

∫ i

i−1

((
αs

‖σ‖T

)− 1
α

1 αs
‖σ‖T ≤1

)
ds

converges to an α-stable process.

Example 2.6.3. (A tempered stable process) Consider a simple tempered stable process with

q(r, ξ) = e−r.

Then,

ρ([x,∞), ξ) =

∫ ∞
x

e−r r−α−1 dr

which is not invertible, so we cannot get a closed form of the formula for ρ−1 in this case.

Remark 2.6.2. As Rosinski mentioned in [16], it is not always easy to find the inverse! In the

case when the q function is bounded, it may be advantageous to use the rejection method

to generate series representations.

Theorem 2.6.3. Let {Γi}i≥1 be a sequence of partial sums of iid exponential random vari-

ables (1). Let {Ui}i≥1 be a sequence of iid uniform random variables on [0, T ] and let {Vi}i≥1

be a sequence of random variables in Sd−1 with common distribution σ(dξ)/‖σ‖. Also, let

{Wi}i≥1 be a sequence of iid uniform random variables that is independent of the rest.
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Now, suppose there exists a function g on (0,∞) such that

(∗) supξ∈Sd−1 q(r, ξ) ≤ g(r) for each r ∈ (0,∞)

And, let

∞∑
i=1

{
ρ−1

(
Γi
‖σ‖T

)
Vi 1{Ui≤t} − ci

t

T

}
where

ci = E(V1)

∫ i

i−1

E

(
ρ−1

(
s

‖σ‖T

)
1ρ−1( s

‖σ‖T )≤1

)
ds

be the series representation of the process with Lévy measure

ν0(B) =

∫
Sd−1

∫ ∞
0

1B(rξ) g(r) r−α−1 dr σ(dξ)

for each Borel set B in Rd
0.

Now, let J0
i := ρ−1

(
Γi
‖σ‖T

)
and

βi :=


1 if f (J0

i ) ≥ Wi

0 else

where f(x) = q(‖x‖, x
‖x‖)/g(‖x‖). Then,

∞∑
i=1

{
βi ρ

−1

(
Γi
‖σ‖T

)
Vi 1{Ui≤t} − ci

t

T

}
t∈[0,T ]

(2.8)

converges uniformly a.s. to a process, {XGTS
t }t≥0 ∼ GTSα(σ, q, 0) where

ci = E(V1)

∫ i

i−1

E

(
ρ−1

(
s

‖σ‖T

)
1ρ−1( s

‖σ‖T )≤1

)
ds.

Proof. A proof of this theorem is also omitted, as it is merely a reformulation of the results

presented by Rosinski in [15]. It is based on the rejection method from [15] and relies on the

fact that if

sup
ξ∈Sd−1

q(r, ξ) ≤ g(r) for each r ∈ (0,∞)

then
dνGTS

dν0
(r, ξ) =

q(r, ξ)

g(r)
≤ 1.
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Remark 2.6.4. This theorem is useful when ρ is not invertible, but the q function is bounded

by a g function that does have an invertible ρ.

Example 2.6.4. (Tempered Stable Processes) Consider any proper tempered stable process.

Then we have that

sup
ξ∈Sd−1

q(r, ξ) ≤ 1

so we can use the series representation in Theorem 2.6.3 with g(r) = 1. Thus,

∞∑
i=1

{
βi

(
αΓi
‖σ‖T

)− 1
α

Vi 1{Ui≤t} − ci
t

T

}
(2.9)

where

ci = E(V1)

∫ i

i−1

((
αs

‖σ‖T

)− 1
α

1 αs
‖σ‖T ≤1

)
ds

converges to a tempered stable process where the βi’s are given by

βi :=


1 if f (J0

i ) ≥ Wi

0 else

where f(x) = q(‖x‖, x
‖x‖)/g(‖x‖) = q(‖x‖, x

‖x‖). So, they are given by

βi :=


1 if q(‖yi‖, yi

‖yi‖) ≥ Wi

0 else

where

yi := J0
i = ρ−1

(
Γi
‖σ‖T

)
=

(
αΓi
‖σ‖T

)− 1
α

.

Note: this is analogous to rejecting terms from a stable process.

Example 2.6.5. (Lamperti Stable Processes) Again, consider a Lamperti stable process with

q(r, ξ) =
erf(ξ)

(er − 1)α+1
rα+1
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with f(ξ) = 1. Then,

ρ−1(u, ξ) = ρ−1(u) = ln
(

1 + (αu)−
1
α

)
.

Now, assume only that f(ξ) ≤ 1. Since

q(r, ξ) =
erf(ξ)

(er − 1)α+1
rα+1 ≤ er

(er − 1)α+1
rα+1

we can use

g(r) =
er

(er − 1)α+1
rα+1

and get that
∞∑
i=1

{
βi ln

(
1 +

(
αΓi
‖σ‖T

)− 1
α

)
Vi 1{Ui≤t} − ci

t

T

}
(2.10)

converges to a Lamperti stable process with f(ξ) ≤ 1 where the βi’s are given by

βi :=


1 if f∗ (J0

i ) ≥ Wi

0 else

where f∗(x) = q(‖x‖, x
‖x‖)/g(‖x‖). Now,

q(r, ξ) =
erf(ξ)

(er − 1)α+1
rα+1 and g(r) =

er

(er − 1)α+1
rα+1

imply that
q

g
(r, ξ) =

erf(ξ)

er
= er(f(ξ)−1).

So,
q

g
(x) = e‖x‖(f(

x
‖x‖)−1).

And,

ρ−1(u) = ln
(

1 + (αu)−
1
α

)
implies that

J0
i := ρ−1

(
Γi
‖σ‖T

)
= ln

(
1 +

(
αΓi
‖σ‖T

)− 1
α

)
.

So,

f∗(J
0
i ) = e

‖ ln yi‖
“
f
“

ln yi
‖ ln yi‖

”
−1
”
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where yi := 1 +
(

αΓi
‖σ‖T

)− 1
α
. Thus,

βi :=


1 if ‖ ln yi‖

(
f
(

ln yi
‖ ln yi‖

)
− 1
)
≥ ln Wi

0 else

where yi := 1 +
(

αΓi
‖σ‖T

)− 1
α
.

Note that in [2], an explicit representation was only given for the case f(ξ) = 1. Here, an

explicit representation is given when f(ξ) ≤ 1. But, in general, the f function in Lamperti

stable processes satisfies supξ∈Sd−1f(ξ) := γ < α + 1.

Example 2.6.6. (Modified Tempered Stable Distribution (MTS distribution)) Consider an

MTS distribution with

q(r, ξ) =


2

1−α
2

(
Γ
(
α+1

2

))−1
(λ+r)

α+1
2 Kα+1

2
(λ+r) if ξ = 1

2
1−α

2

(
Γ
(
α+1

2

))−1
(λ−r)

α+1
2 Kα+1

2
(λ−r) if ξ = −1

where λ+, λ− > 0, α < 2, and Kp is the modified Bessel function of the second kind which

is defined by

Kp(x) =
π

2 sin(pπ)

(
∞∑
k=0

(x/2)2k−p

k! Γ(k − p+ 1)
−
∞∑
k=0

(x/2)2k+p

k! Γ(k + p+ 1)

)
and has an integral representation given by

Kp(x) =
1

2

(x
2

)p ∫ ∞
0

e−t−
x2

4t t−p−1dt.

This Bessel function satisfies

Kp(x) ∼ Γ(p)

2

(
2

x

)p
as x→ 0+ and p > 0

and

Kp(x) ∼ e−x
√

π

2x
as x→∞ and p ≥ 0.

It also satisfies the property that

Kp(x) = K−p(x)
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since

Kp(x) =
π

2 sin(pπ)

(
∞∑
k=0

(x/2)2k−p

k! Γ(k − p+ 1)
−
∞∑
k=0

(x/2)2k+p

k! Γ(k + p+ 1)

)

=
π

2(− sin(pπ))

(
∞∑
k=0

(x/2)2k+p

k! Γ(k + p+ 1)
−
∞∑
k=0

(x/2)2k−p

k! Γ(k − p+ 1)

)

=
π

2 sin((−p)π)

(
∞∑
k=0

(x/2)2k−(−p)

k! Γ(k − (−p) + 1)
−
∞∑
k=0

(x/2)2k+(−p)

k! Γ(k + (−p) + 1)

)
=K−p(x)

since sin(x) is an odd function. And, notice that

Kp(x) ≤ Γ(p)

2

(
2

x

)p
since

Kp(x) =K−p(x)

=
1

2

(x
2

)−p ∫ ∞
0

e−t−
x2

4t tp−1dt

=
1

2

(x
2

)−p ∫ ∞
0

e−
x2

4t e−ttp−1dt

≤ 1

2

(
2

x

)p ∫ ∞
0

e−ttp−1dt

=
Γ(p)

2

(
2

x

)p
.

Thus,

Kα+1
2

(λr) ≤
Γ(α+1

2
)

2

(
2

λr

)α+1
2

.
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Now, let λ := max{λ+, λ−} and λ∗ := min{λ+, λ−}. Then, we have

supξ∈Sd−1 q(r, ξ) ≤ 2
1−α

2

(
Γ

(
α + 1

2

))−1

(λr)
α+1

2 Kα+1
2

(λ∗r)

≤ 2
1−α

2

(
Γ

(
α + 1

2

))−1

(λr)
α+1

2
Γ(α+1

2
)

2

(
2

λ∗r

)α+1
2

= 2
1−α

2 (λ)
α+1

2
1

2

(
2

λ∗

)α+1
2

=

(
λ

λ∗

)α+1
2

and we set this equal to g(r) (although it does not depend on r). Then, we look at the series

representation associated with g and then reject appropriate terms from it. Now,

ρ([x,∞), ξ) =

∫ ∞
x

g(r) r−α−1 dr

=

(
λ

λ∗

)α+1
2 x−α

α

which implies that

ρ−1(u, ξ) = ρ−1(u) =

((
λ∗

λ

)α+1
2

αu

)− 1
α

.

Then,

∞∑
i=1

βi
((

λ∗

λ

)α+1
2
(
αΓi
‖σ‖T

))− 1
α

Vi 1{Ui≤t} − ci
t

T


t∈[0,T ]

(2.11)

converges uniformly a.s. to an MTS process where

βi :=


1 if f (J0

i ) ≥ Wi

0 else

and f(x) = q(‖x‖, x
‖x‖)/g(‖x‖). And, lastly, the βi’s are computed explicitly below.

f(r, ξ) =
q(r, ξ)

g(r)
=
q

g
(r, ξ) =

(
λ∗

λ

)α+1
2

q(r, ξ)
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=

(
λ∗

λ

)α+1
2


2

1−α
2

(
Γ
(
α+1

2

))−1
(λ+r)

α+1
2 Kα+1

2
(λ+r) if ξ = 1

2
1−α

2

(
Γ
(
α+1

2

))−1
(λ−r)

α+1
2 Kα+1

2
(λ−r) if ξ = −1

=


2

1−α
2

(
Γ
(
α+1

2

))−1
(λ−1λ∗λ+r)

α+1
2 Kα+1

2
(λ+r) if ξ = 1

2
1−α

2

(
Γ
(
α+1

2

))−1
(λ−1λ∗λ−r)

α+1
2 Kα+1

2
(λ−r) if ξ = −1

So,

f
(
J0
i

)
= f

(
ρ−1

(
Γi
‖σ‖T

))

= f

((
λ∗

λ

)α+1
−2α
(
αΓi
‖σ‖T

)− 1
α

)

= 2
1−α

2

(
Γ

(
α + 1

2

))−1

(λ−1λ∗λ+yi)
α+1

2 Kα+1
2

(λ+yi)

where

yi :=

(
λ∗

λ

)α+1
−2α
(
αΓi
‖σ‖T

)− 1
α

.

Thus,

βi :=


1 if (λ−1λ∗λ+yi)

α+1
2 Kα+1

2
(λ+yi) ≥ 2

2
1−α
(
Γ
(
α+1

2

))
Wi

0 else

and thus we have calculated the correct centers for the series representation of modified

tempered stable.

This chapter introduces GTS processes. As was mentioned before, the definition is con-

structed to describe the minimal necessary conditions for the short and long term behavior

to hold. The definition is a new result, to the best knowledge of the author, however the

short term behavior is similar to that of ”layered stable processes” [8]. But, due to the error

in their definition (described in a remark following the result) a slight modification using

convergence in L1 as opposed to pointwise convergence was necessary. After the definition

of GTS processes is stated, numerous example obtained from the literature in this area are

noted.

After establishing the definition of GTS processes, the main result of this section, the
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short and long term behavior is stated. The main result is a new advancement in this area

of research, as it displays that the short and long term behavior of these processes (which

has been investigated separately in the previous papers on variations of TS processes) still

holds under the minimal assumptions made by the definition of GTS processes. The result

is proven for the marginals at time 1 and then easily expands to convergence in the space of

continuous functions, as GTS processes are Lévy processes.

Next, the absolute continuity is studied, following the work of Jan Rosinksi in [16].

The absolute continuity condition is more complex in this case, as GTS processes are less

quantifiable than TS processes. In order to assist in this manner, a limit condition is stated

as an alternative to the integrability condition 2.2 and examples are presented to represent

its ease of use.

The final topic of investigation is series representation. The first series representation

given by equation 2.4 is based on LePage’s method and relies on the condition that the ρ-

function (2.3) is invertible. Of course, since there is not always an invertible ρ, so a different

series representation (equation 2.8) using the rejection method is offered and examples of

generating series representations are given, which can be used for simulation of GTS pro-

cesses. The examples presented exemplify how to generate series representations of GTS

processes, which are unique to each case and must be specified separately.
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Chapter 3

Fractional generalized tempered

stable motion

In 2006, Houdré and Kawai in [7] introduced fractional tempered stable motion by taking a

stochastic integral of a Volterra kernel, a deterministic function, with respect to a tempered

stable process which are described by Rosinski in [16]. They observed that the process

behaves as fractional Brownian motion in large scales and behaves as fractional stable motion

in small scales. In this chapter, fractional generalized tempered stable motion (fGTSm) is

defined and studied and the short and long term behavior is investigated and established,

following the work of Houdré and Kawai in [7].

3.1 Preliminaries

First, a review of GTS processes is given. Please note that this is the same as the definition

of GTS processes introduced in the previous chapter, except for the fact that we will always

assume square integrability in this chapter.

Definition 3.1.1. A Lévy process is called a generalized tempered stable process if its Lévy

measure at time 1 is given in polar coordinates as equation 2.1 where B is a Borel set in Rd
0,

α ∈ (0, 2), σ is a finite measure on Sd−1, and q is a measurable function from (0,∞)× Sd−1

to (0,∞) such that:

lim
r→0

q(r, ·) = c1(·) in L1(Sd−1, σ)
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and ∫
{‖x‖>1}

‖x‖2 νGTS(dx) <∞.

Also, assume that E(XGTS
t ) = 0 for any t ≥ 0.

Also, recall that the characteristic function of XGTS
1 is given by

E exp{i
〈
u,XGTS

1

〉
} = exp

{∫
Rd0

(
ei〈u,x〉 − 1− i 〈u, x〉 1‖x‖≤1(x)

)
νGTS(dx)

}
.

3.2 Definition of fractional GTS motion

Define the following Volterra Kernel, K : (R+,R+)→ R+ as

KH,α(t, s) := cH,α

{(
t

s

)H−1/α

(t− s)H−1/α

−
(
H − 1

α

)
s1/α−H

∫ t

s

uH−1/α−1(u− s)H−1/α du

}
1[0.t](s)

where H ∈ (1/α− 1/2, 1/α + 1/2) and

cH,α :=

(
G(1− 2G)Γ(1/2−G)

Γ(2− 2G)Γ(1/2 +G)

) 1
2

where G := H − 1/α + 1/2.

Below are some known properties of KH,α (see Houdré and Kawai [7]).

1. It is only defined on [0, t]

2. K1/α,α(t, s) = 1[0,t](s)

3. If H ∈ (1/α, 1/α + 1/2), then it may be simplified to

KH,α(t, s) = cH,α

(
H − 1

α

)
s1/α−H

∫ t

s

(u− s)H−1/α−1uH−1/α du 1[0,t](s)

4. (Square integrability) KH,α(t, ·) ∈ L2([0, t])

5. (Scaling property) For each h > 0, KH,α(ht, s) = hH−1/αKH,α(t, s/h)
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6. For t, s > 0, ∫ t∧s

0

KH,α(t, u)KH,α(s, u)du =
1

2

(
t2G + s2G − |t− s|2G

)
.

Definition 3.2.1. Define fractional GTS motion (fGTSm) in R as {Y H
t : t ≥ 0} where

Y H
t :=

∫ t

0

KH,α(t, s)dXGTS
s for t ≥ 0.

Let t1, . . . , tk be a finite nondecreasing sequence of times and let a1, . . . , ak be real numbers.

Then, the finite dimensional distributions of fGTSm are given by:

E[exp{iu
k∑
i=1

aiY
H
ti
}] =E[exp{iu

k∑
i=1

ai

(∫ ti

0

KH,α(ti, s)dX
GTS
s

)
}]

=E[exp{iu

(∫ tk

0

k∑
i=1

aiKH,α(ti, s)dX
GTS
s

)
}]

= exp

{∫ tk

0

ψ0(u
k∑
i=1

aiKH,α(ti, s))ds

}

where

ψ0(u) :=

∫
R0

(
eiux − 1− iux1|x|≤1(x)

)
νGTS(dx).

= exp

∫ tk

0

∫
R

(
exp

{
iu

k∑
i=1

aiKH,α(ti, s)x

}
− 1− iu

k∑
i=1

aiKH,α(ti, s)x1|x|≤1(x)

)
νGTS(dx) ds

Remark 3.2.2. Note that when H = 1/α, fGTSm is simply a GTS process since

K1/α,α(t, s) = 1[0,t](s)

implies that

Y
1/α
t =

∫ t

0

1[0,t](s)dX
GTS
s = XGTS

t for t ≥ 0.

Remark 3.2.3. As is mentioned in Houdré and Kawai [7], an advantage of using this Volterra

kernel as opposed to other kernels, such as the moving average kernel, is that it is only
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defined on [0, t]. So, while the moving average kernel has a more simple form, that is:

(t− s)H−1/α
+ − (−s)H−1/α

+

it has the disadvantage that it is defined on the whole real line.

3.3 Short and long term behavior

Some preliminaries are necessary before the main theorem of this section is stated. First, we

begin with a proposition that has been adapted from Houdré and Kawai [7].

Lemma 3.3.1. Let {Y H
t : t ≥ 0} be fGTSm in R. Then,

(a) {Y H
t : t ≥ 0} has covariance structure given by

Cov(Y H
t , Y

H
s ) =

1

2

(
t2G + s2G − |t− s|2G

)
E(XGTS

1 )2

where t, s ∈ R+.

(b) For each t > 0 and h > 0, fGTSm satisfies what Houdré and Kawai refer to as

“second-order self-similarity.” That is,

E(Y H
ht )2 = h2GE(Y H

t )2

(c) For each t > 0 and s > 0, fGTSm satisfies what Houdré and Kawai refer to as

“second-order stationary increments.” That is,

E(Y H
t − Y H

s )2 = |t− s|2GE(XGTS
1 )2 = E(Y H

|t−s|)
2

Proof. (b) and (c) follow directly from (a), so it is only necessary to prove (a). Now, notice

that since E(Y H
t ) = 0 for each t > 0, we have

Cov(Y H
t , Y

H
s ) =E(Y H

t Y
H
s )

=E

(∫ t

0

KH,α(t, u)dXGTS
u

∫ s

0

KH,α(s, u)dXGTS
u

)
=E(XGTS

1 )2E

(∫ t∧s

0

KH,α(t, u)KH,α(s, u)dXGTS
u

)
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by the Wiener-Ito isometry. And, by the properties of the Volterra kernel, the above is equal

to

1

2

(
t2G + s2G − |t− s|2G

)
E(XGTS

1 )2.

Thus, the lemma is proven.

Lemma 3.3.2. If H ∈ (1/α, 1/α + 1/2), then there exists a continuous version of {Y H
t :

t ≥ 0}. Moreover, for any c ∈ (0, H − 1/α), this continuous version is a.s. locally Hölder

continuous with exponent c.

Proof. Since

E|Y H
t − Y H

s |2 = |t− s|2GE(XGTS
1 )2,

there is a continuous version by Kolmogorov-Chentsov (see Theorem 3.23 in Kallenberg [9]).

And, the continuous version is a.s. locally Hölder continuous with exponent

c ∈
(

0,
2G− 1

2

)
=

(
0,

2(H − 1/α + 1/2)− 1

2

)
= (0, H − 1/α).

Now we define fractional Brownian motion and fractional stable motion since they arise

as limiting processes of fGTSm.

Definition 3.3.3. Fractional Brownian motion (fBm), {BG
t : t ∈ R} with G ∈ (0, 1] is a

centered Gaussian process with continuous paths and covariance given by:

Cov(BG
t , B

G
s ) =

1

2

(
t2G + s2G − |t− s|2G

)
where t, s ∈ R.

Definition 3.3.4. Fractional stable motion (fSm) in R is defined as

Y H,α
t :=

∫ t

0

KH,α(t, s)dXα
s for t ≥ 0
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where {Xα
t : t ≥ 0} is a stable process with characteristic function at time 1 given by:

E exp{iuXα
1 } =



exp
{∫

R0
(eiux − 1) νασ1

(dx)
}

if α ∈ (0, 1)

exp
{∫

R0

(
eiux − 1− iux1|x|≤1(x)

)
ν1
σ1

(dx)
}

if α = 1

exp
{∫

R0
(eiux − 1− iux) νασ1

(dx)
}

if α ∈ (1, 2).

Let t1, . . . , tk be a finite nondecreasing sequence of times and let a1, . . . , ak be real num-

bers. Then, the finite dimensional distributions of fractional stable motion are given by:

E[exp{iu
k∑
i=1

aiY
H,α
ti }] =E[exp{iu

k∑
i=1

ai

(∫ ti

0

KH,α(ti, s)dX
α
s

)
}]

=E[exp{iu

(∫ tk

0

k∑
i=1

aiKH,α(ti, s)dX
α
s

)
}]

= exp

{∫ tk

0

ψα(u
k∑
i=1

aiKH,α(ti, s))ds

}

where

ψα(u) :=



∫
R0

(eiux − 1) νGTS(dx) if α ∈ (0, 1)

∫
R0

(
eiux − 1− iux1|x|≤1(x)

)
νGTS(dx) if α = 1

∫
R0

(eiux − 1− iux) νGTS(dx) if α ∈ (1, 2).

Remark 3.3.5. In [7], Houdré and Kawai claim that fSm has stationary increments. That is,

for any t > s,

LH,αt − LH,αs
d
=LH,αt−s .

But, as is mentioned by Pipiras and Taqqu in [13], this is not true.

Proof. To see this, let t := 2 and s := 1. Then,

E[exp{iθ(LH,αt − LH,αs )}] = E[exp{iθ
(∫ 2

0

KH,α(2, u)dXα
u −

∫ 1

0

KH,α(1, u)dXα
u

)
}]
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= E[exp{iθ
(∫ 2

0

(KH,α(2, u)−KH,α(1, u)) dXα
u

)
}],

which is not equal to

E[exp{iθ
(∫ 1

0

KH,α(1, u)dXα
u

)
}],

which is the same as

E[exp{iθ(LH,αt−s )}].

This is due to the fact (letting α := 1) that∫ 2

0

|KH,1(2, u)−KH,1(1, u)|α du 6=
∫ 1

0

KH,1(1, u)du.

To see this, consider H ∈ (1/α, 1/α + 1/2). Then the kernel may be simplified to

KH,α(t, u) = cH,α

(
H − 1

α

)
u1/α−H

∫ t

u

(w − u)H−1/α−1wH−1/α dw 1[0,t](u),

which is positive (since H > 1/α) and increasing in t. Thus, KH,1(2, u)−KH,1(1, u) ≥ 0 and∫ 2

0

|KH,1(2, u)−KH,1(1, u)|α du =

∫ 2

0

(KH,1(2, u)−KH,1(1, u)) du.

Now,

KH,α(2, u)−KH,α(1, u)

= K u1/α−H
{∫ 2

u

(w − u)H−1/α−1wH−1/α dw 1[0,2](u)

−
∫ 1

u

(w − u)H−1/α−1wH−1/α dw 1[0,1](u)

}
for some constant K. And, this is equal to

K u1/α−H
{∫ 2

1

(w − u)H−1/α−1wH−1/α dw 1[0,1)(u)
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+

∫ 2

u

(w − u)H−1/α−1wH−1/α dw 1[1,2](u)

}

= K u1/α−H
∫ 2

1

(w − u)H−1/α−1wH−1/α dw 1[0,1)(u)

+K u1/α−H
∫ 2

u

(w − u)H−1/α−1wH−1/α dw 1[1,2](u)

:= A+B.

Now, consider the expression involving A. We have,

K u1/α−H
∫ 2

0

Adu

= K

∫ 2

0

u1/α−H
∫ 2

1

(w − u)H−1/α−1wH−1/α dw 1[0,1)(u) du

= K

∫ 1

0

∫ 2

1

(
u1/α−H(w − u)H−1/α−1wH−1/α

)
dw du := I.

And, for the B component, notice

K u1/α−H
∫ 2

0

B du

= K

∫ 2

0

∫ 2

u

u1/α−H(w − u)H−1/α−1wH−1/α dw 1[1,2](u) du

= K

∫ 2

1

∫ 2

u

(
u1/α−H(w − u)H−1/α−1wH−1/α

)
dw du := II.

And,

KH,α(1, u) = K u1/α−H
∫ 1

u

(w − u)H−1/α−1wH−1/α dw 1[0,1](u) := C.

Now, ∫ 1

0

C du = K

∫ 1

0

u1/α−H
∫ 1

u

(w − u)H−1/α−1wH−1/α dw 1[0,1](u) du
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= K

∫ 1

0

∫ 1

u

(
u1/α−H(w − u)H−1/α−1wH−1/α

)
dw du := III.

And, I − II 6= III, thus,

E[exp{iθ(LH,αt − LH,αs )}] 6= E[exp{iθ(LH,αt−s )}],

so fSm does not have stationary increments.

Now, we are in a position to state the main theorem of this section.

Theorem 3.3.6. Consider a fractional GTS motion with no drift term. Let

kt :=

∫ t

0

KH,α(t, s)ds

and

nα :=



−
∫
{|x|≤1} x ν

GTS(dx) if α ∈ (0, 1)

0 if α = 1

∫
{|x|>1} x ν

GTS(dx) if α ∈ (1, 2).

(a) Then,

Case(i): (Small Scales) as h→ 0,

{h−HY H
ht − h1−1/α nαkt}t≥0

fdd−−→ {Y H,α
t }t≥0

where {Y H,α
t }t≥0 is a fractional stable motion of index α.

Case(ii): (Large Scales) as h→∞,

{h−GY H
ht }

fdd−−→ {BG
t }t≥0

where {BG
t }t≥0 a centered fractional Brownian motion with G := H − 1/α + 1/2.

(b) Moreover, for H ∈ (1/α, 1/α+ 1/2), the convergence results in case (ii) can be strength-

ened to weak convergence in the space C([0,∞),R).
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Proof. Part (a) Case(i): (Small Scales) Let

Zh
t := h−H(Y H

ht )− h1−1/α nαkt.

Then, we need to show that when t1, . . . , tk is a finite nondecreasing sequence of times

and a1, . . . , ak is a sequence of real numbers, we have that
∑k

i=1 aiZ
h
ti

converges in law to∑k
i=1 aiY

H,α
ti as h→ 0. So, first notice that

Zh
t = h−H(Y H

ht )− h1−1/α nαkt =

∫ t

0

(
h−HKH,α(ht, s)

)
dXGTS

s − h1−1/α nαkt,

which, by the scaling property equals∫ t

0

(
h−HhH−1/αKH,α(t, s/h)

)
dXGTS

s − h1−1/α nαkt

=

∫ t

0

h−1/αKH,α(t, s/h)dXGTS
s −

−h1−1/α
∫ t

0

∫
{|x|≤1} xKH,α(t, s) νGTS(dx) ds if α ∈ (0, 1)

0 if α = 1

h1−1/α
∫ t

0

∫
{|x|>1} xKH,α(t, s) νGTS(dx) ds if α ∈ (1, 2).

Thus, the finite dimensional characteristic function of Zh
t = h−H(Y H

ht )−h1−1/αt nαkt is given

by

exp

{∫ tk

0

ψ0(uh−1/α

k∑
i=1

aiKH,α(ti, s/h))ds− h1−1/αu

k∑
i=1

ai nαkt

}

= exp

{∫ tk

0

hψ0(uh−1/α

k∑
i=1

aiKH,α(ti, s))ds− h1−1/αu

k∑
i=1

ai nαkt

}
which equals

exp

{∫ tk

0

hψ(uh−1/α

k∑
i=1

aiKH,α(ti, s))ds

}
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where

ψ(u) :=



∫
R0

(eiux − 1) νGTS(dx) if α ∈ (0, 1)

∫
R0

(
eiux − 1− iux1|x|≤1(x)

)
νGTS(dx) if α = 1

∫
R0

(eiux − 1− iux) νGTS(dx) if α ∈ (1, 2).

For case (i), we need to show

exp

{∫ tk

0

hψ(uh−1/α

k∑
i=1

aiKH,α(ti, s))ds

}
→ exp

{∫ tk

0

ψα(u
k∑
i=1

aiKH,α(ti, s))ds

}

as h→ 0 where

ψα :=



∫
R0

(eiux − 1) νασ1
(dx) if α ∈ (0, 1)

∫
R0

(
eiux − 1− iux1|x|≤1(x)

)
νασ1

(dx) if α = 1

∫
R0

(eiux − 1− iux) νασ1
(dx) if α ∈ (1, 2).

Observe that

hψ(uh−1/α

k∑
i=1

aiKH,α(ti, s))→ ψα(u
k∑
i=1

aiKH,α(ti, s))

as h→ 0. To see this, consider α = 1 and, for simplicity, let K :=
∑k

i=1 aiKH,α(ti, s). Then,

hψ(uh−1/α

k∑
i=1

aiKH,α(ti, s))

=

∫
R0

(
eiuh

−1/αKx − 1− iuh−1/αKx1|x|≤1(x)
)
hνGTS(dx)

which equals ∫
R0

(
eiuKh

−1/αx − 1− iuKh−1/αx1|h−1/αx|≤1(h−1/αx)
)
hνGTS(dx)
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=

∫
R0

(
eiuKx − 1− iuKx1|x|≤1(x)

)
h(νGTS ◦ φh)(dx)

where

φh(x) := h1/αx.

So,

h(νGTS ◦ φh)(dx) = h νGTS(d(h1/αr), dξ)

equals

h q(h1/αr) (h1/αr)−α−1 d(h1/αr)σ(dξ)

= q(h1/αr) r−α−1 dr σ(dξ).

Now, since

limh→0q(h
1/αr, ·) = c1(·) in L1(Sd−1, σ),

and since c1(ξ)σ(dξ) := σ1(dξ), we have∫
R0

(
eiuKx − 1− iuKx1|x|≤1(x)

)
h(ν ◦ φh)GTS(dx)

→
∫

R0

(
eiuKx − 1− iuKx1|x|≤1(x)

)
νασ1

(dx)

as h → 0. And, the Lebesgue Dominated Convergence Theorem applies by the known

inequality ∣∣eit − 1− it1|t|≤1(t)
∣∣ ≤ 2{1 ∧ |t|2}

since ∫ tk

0

∫
R0

∣∣eiuKx − 1− iuKx1|x|≤1(x)
∣∣h(νGTS ◦ φh)(dx)ds

=

∫ tk

0

∫
S

∫ ∞
0

∣∣eiuKrξ − 1− iuKrξ1|r|≤1(rξ)
∣∣ q(h1/αr, ξ)r−α−1drσ(dξ)ds

is less than or equal to∫ tk

0

∫
S

∫ ∞
0

2{1 ∧ |uKrξ|2}q(h1/αr, ξ)r−α−1drσ(dξ)ds

≤ 2

∫ tk

0

1 ∨ |uK|2 ds
∫
S

∫ ∞
0

{1 ∧ r2}q(h1/αr, ξ)r−α−1drσ(dξ)
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= 2

∫ tk

0

1 ∨ |uK|2 ds
∫ ∞

0

{1 ∧ r2}
[∫

S

q(h1/αr, ξ)σ(dξ)

]
r−α−1dr

And, notice that since∫
Sd−1

q(r, ξ)σ(dξ)→
∫
Sd−1

c1(ξ)σ(dξ) as r → 0,

there exists an r0 such that:

sup
r≤r0

∫
Sd−1

q(r, ξ)σ(dξ) <∞.

So, we can choose h small enough such that∫
S

q(h1/αr, ξ)σ(dξ) = C <∞.

Thus,

2

∫ tk

0

1 ∨ |uK|2 ds
∫ ∞

0

{1 ∧ r2}
[∫

S

q(h1/αr, ξ)σ(dξ)

]
r−α−1dr

is less than or equal to

2C

∫ tk

0

1 ∨ |uK|2 ds
∫ ∞

0

{1 ∧ r2}r−α−1dr <∞

= 2C

∫ tk

0

1 ∨

∣∣∣∣∣u
k∑
i=1

aiKH,α(ti, s)

∣∣∣∣∣
2

ds

∫ ∞
0

{1 ∧ r2}r−α−1dr <∞

since KH,α(ti, ·) ∈ L2([0, tk]) and
∣∣∣∑k

i=1 aiKH,α(ti, s)
∣∣∣2 ≤ k

∑k
i=1(aiKH,α(ti, s))

2.

Part (a) Case(ii): (Large Scales) Let

Zh
t := h−GY H

ht − h1−1/2nαkt.

Let t1, . . . , tk be a finite nondecreasing sequence of times and a1, . . . , ak be a sequence of real

numbers. Now, notice that

Zh
t = h−GY H

ht =

∫ t

0

(
h−GKH,α(ht, s)

)
dXGTS

s
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which, by the scaling property equals∫ t

0

(
h−GhH−1/αKH,α(t, s/h)

)
dXGTS

s =

∫ t

0

(
h−(H−1/α+1/2)hH−1/αKH,α(t, s/h)

)
dXGTS

s

=

∫ t

0

(
h−1/2KH,α(t, s/h)

)
dXGTS

s

=

∫ t

0

h−1/2KH,α(t, s/h)dXGTS
s

Thus, the finite dimensional characteristic function of Zh
t = h−GY H

ht is given by

exp

{∫ tk

0

ψ0(uh−1/2

k∑
i=1

aiKH,α(ti, s/h))ds

}

= exp

{∫ tk

0

hψ0(uh−1/2

k∑
i=1

aiKH,α(ti, s))ds

}
where

ψ0(u) :=

∫
R0

(
eiux − 1− iux1|x|≤1(x)

)
νGTS(dx).

Now, it is known that there exists a constant C such that∣∣∣∣eit − 1− it1|t|≤1(t) +
t2

2

∣∣∣∣ ≤ C|t|3

Now, letting K :=
∑k

i=1 aiKH,α(ti, s) we see that∣∣∣∣eiuh−1/2Kx − 1− iuh−1/2Kx1|x|≤1(x)− (uh−1/2Kx)2

2

∣∣∣∣
is less than or equal to

Ch|uh−1/2Kx|3

= h−1/2 · C|uKH,α(ti, s)x|3 → 0 as h→∞

Thus,

hf(uh−1/2

k∑
i=1

aiKH,α(ti, s))→ −
1

2

(
u

k∑
i=1

aiKH,α(ti, s)x

)2

as h→∞.
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where

f(x) := eiux − 1− iux1|x|≤1(x).

And, the Lebesgue Dominated Convergence Theorem applies since

∣∣eit − 1− it1|t|≤1(t)
∣∣ ≤ 2|t|2

implies ∫ tk

0

∫
R0

∣∣∣∣∣hψ0(uh−1/2

k∑
i=1

aiKH,α(ti, s))

∣∣∣∣∣ νGTS(dx)ds

=

∫ tk

0

∫
R0

∣∣∣eiuh−1/2Kx − 1− iuh−1/2Kx1|x|≤1(x)
∣∣∣hνGTS(dx)ds

is less than or equal to ∫ tk

0

∫
R0

2
∣∣uh−1/2Kx

∣∣2 hνGTS(dx)ds

which equals ∫ tk

0

∫
R0

2

∣∣∣∣∣u
k∑
i=1

aiKH,α(ti, s)x

∣∣∣∣∣
2

νGTS(dx)ds

= 2u2

∫ tk

0

(
k∑
i=1

aiKH,α(ti, s)

)2

ds

∫
R0

|x|2 νGTS(dx)

which is finite since
∫

R0
|x|2 νGTS(dx) <∞ and since KH,α(ti, ·) ∈ L2([0, tk]).

Now, the finite dimensional characteristic function of the limiting process is:

∫ tk

0

∫
R0

−1

2

(
u

k∑
i=1

aiKH,α(ti, s)x

)2

νGTS(dx)ds.

And, the marginal characteristic function of the limiting process is:∫ t

0

∫
R0

−1

2
(uKH,α(t, s)x)2 νGTS(dx)ds

which equals

−1

2
u2

∫
R0

x2νGTS(dx)

∫ t

0

(KH,α(t, s))2 ds

= −1

2
t2Gcu2

using property (6) of the Volterra kernel and letting c :=
∫

R0
x2νGTS(dx) <∞.
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Part (b) Case(ii) We will show the tightness of the sequence {h−GY H
ht } using Corollary

16.9 of Kallenberg [9]. Since,

E(Y H
t − Y H

s )2 = |t− s|2GE(XGTS
1 )2

we have that

E|h−GY H
ht − h−GY H

hs |2 = h−2G |ht− hs|2GE(XGTS
1 )2

= |t− s|2GE(XGTS
1 )2.

Thus, the sequence is tight in C([0,∞),R) and convergence in the space C([0,∞),R) follows

immediately.

Remark 3.3.7. Beware of the typo in the convergence result in Houdré and Kawai [7]. They

claim that the limit in the Gaussian case is fBm with exponent H − 1/2 + 1/α, which is

incorrect. The correct exponent is H − 1/α + 1/2, as is stated in this theorem.

Remark 3.3.8. Recall that when H = 1/α, fGTSm is a GTS process, and the above results

are analogous to the short and long term behavior of GTS processes. Notice that the short

time limiting process is a stable process and the long time limiting process is actually a

Brownian motion when H = 1/α.

The purpose of this chapter is to examine processes driven by GTS processes, just as

Houdré and Kawai studied processes driven by TS processes in “On fractional tempered

stable motion” in 2006. Houdré and Kawai introduced fractional tempered stable motion

(fTSm) as an analog of fractional Brownian motion (fBm). As is discussed in [7], the light

tails of fBm are often inadequate for modeling phenomena with higher variability. On the

other hand, stable generalizations have infinite second moments. So they proposed fTSm as

an alternative, since it possesses properties of both fBm and stable generalizations. They

found that fTSm has the same covariance structure as fBm. Also, in the long term it behaves

as a fBm while behaving like fractional stable motion in the short term. This chapter

establishes the appropriate analog definition of fGTSm and establishes the corresponding

short and long term behavior. And, please note that the convergence results obtained in this

chapter required more work to prove than the convergence results for GTS processes. This
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is due to the fact that GTS processes are Lévy processes, but fGTSm is not necessarily a

Lévy process.
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Chapter 4

Multifractal infinitely divisible

processes

In their 2007 paper “Small and large scale asymptotics of some Lévy stochastic integrals,”

Vladas Pipiras of University of North Carolina at Chapel Hill and Murad S. Taqqu of Boston

University described general conditions for normalized, time-scaled stochastic integrals of

independently scattered Levy random measures to converge to a limit [13]. The idea is to

provide general conditions to bypass the use of characteristic functions, which can sometimes

have tedious calculations, to simplify and shorten the proofs of convergence of infinitely

divisible processes, which have previously been done on a case by case basis. It is of particular

interest to study both small and large scale asymptotics, since there are many applications,

such as modeling internet traffic. The purpose of this chapter is to generalize these results to

the greater class of all stochastically continuous (or, more generally, separable in probability)

infinitely divisible processes with no Gaussian part and to expand the results to the multi-

dimensional case. There are some interesting examples where rescaling towards a small

time scale yields an infinite variance limit and rescaling towards a large time scale yields a

Gaussian limit. These examples are presented at the end of the chapter.

4.1 Preliminaries

Let X be a d-dimensional stochastically continuous infinitely divisible processes, without

Gaussian component and drift. All such processes have an integral representation given by

Xt =

∫
S

ft(s)

(
N(ds)− ν(ds)

1 ∨ ‖ft(s)‖

)
(4.1)
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where (S, S ) is a measurable space, {ft(s)} are measurable deterministic functions in Rd and

N(ds) is a Poisson random measure on (S, S ) with intensity measure ν(ds).

It is known by Theorem 2.7 of Rajput and Rosinski [14] that the integrals exist if and

only if ∫
S

1 ∧ ‖ft(s)‖2ν(ds) <∞. (4.2)

The process X has finite-dimensional characteristic function given by

E exp{i
n∑
j=1

〈
θj, Xtj

〉
} = exp

{∫
S

(
exp{i

n∑
j=1

〈
θj, ftj(s)

〉
} − 1− i

n∑
j=1

〈
θj, ftj(s)

〉
1 ∨ ‖ftj(s)‖

)
ν(ds)

}
.

for θj ∈ Rd, tj ∈ R.

4.2 Lemmas

We will need the following technical lemmas in the proof of the main theorem. Please

understand that we are not making any assumptions about integrability yet, we merely need

these inequalities to hold true so they may be used later.

Lemma 4.2.1. Let

E :=

∣∣∣∣∣∣exp{i
n∑
j=1

〈θj, xj〉} − 1− i
n∑
j=1

〈θj, xj〉
1 ∨ ‖xj‖

+
1

2

(
n∑
j=1

〈θj, xj〉

)2
∣∣∣∣∣∣ .

where xj, θj ∈ Rd. Then,

E ≤ C

(
n∑
j=1

‖xj‖

)3

for some constant C depending only on n and θ1, . . . , θn.

Proof. First, notice that E is equal to∣∣∣∣∣∣exp{i
n∑
j=1

〈θj, xj〉} − 1− i
n∑
j=1

〈θj, xj〉
1 ∨ ‖xj‖

+
1

2

(
n∑
j=1

〈θj, xj〉

)2
∣∣∣∣∣∣

≤

∣∣∣∣∣∣exp{i
n∑
j=1

〈θj, xj〉} − 1− i
n∑
j=1

〈θj, xj〉+
1

2

(
n∑
j=1

〈θj, xj〉

)2
∣∣∣∣∣∣
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+

∣∣∣∣∣
n∑
j=1

〈θj, xj〉 −
n∑
j=1

〈θj, xj〉
1 ∨ ‖xj‖

∣∣∣∣∣
:= E1 + E2.

Now, for E1, we will use the inequality:∣∣∣∣exp{it} − 1− it+
t2

2

∣∣∣∣ ≤ 1

6
|t|3,

which is true for any value t ∈ R (not to be confused, of course, with the time variable). So,

we have,

E1 =

∣∣∣∣∣∣exp{i
n∑
j=1

〈θj, xj〉} − 1− i
n∑
j=1

〈θj, xj〉+
1

2

(
n∑
j=1

〈θj, xj〉

)2
∣∣∣∣∣∣

≤ 1

6

∣∣∣∣∣
n∑
j=1

〈θj, xj〉

∣∣∣∣∣
3

≤

(
n∑
j=1

|〈θj, xj〉|

)3

by the triangle inequality and the fact that f(x) := x3 is increasing for x ≥ 0 (and, of course

the fact that 1
6
≤ 1). Now,(

n∑
j=1

|〈θj, xj〉|

)3

≤

(
n∑
j=1

‖θj‖ · ‖xj‖

)3

by the Cauchy-Schwarz inequality. And, if we let θ∗ := max{‖θ1‖, . . . , ‖θn‖}, then(
n∑
j=1

‖θj‖ · ‖xj‖

)3

≤ (θ∗)3

(
n∑
j=1

‖xj‖

)3

.

So, we have an upper bound for E1. Now, we will turn our attention to E2. Observe that if

‖xj‖ ≤ 1 for all of the x′js then E2 would equal zero, since E2 would be equal to∣∣∣∣∣
n∑
j=1

〈θj, xj〉 −
n∑
j=1

〈θj, xj〉
1

∣∣∣∣∣ ,
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which indeed equals zero. So, in order for E2 to be nonzero, we must have ‖xj‖ > 1 for at

least one xj, or equivalently, maxj≤n ‖xj‖ > 1.

Now,

E2 =

∣∣∣∣∣
n∑
j=1

〈θj, xj〉 −
n∑
j=1

〈θj, xj〉
1 ∨ ‖xj‖

∣∣∣∣∣
=

∣∣∣∣∣
n∑
j=1

〈θj, xj〉
(

1− 1

1 ∨ ‖xj‖

)∣∣∣∣∣
≤

n∑
j=1

| 〈θj, xj〉 |

by the triangle inequality and the fact that∣∣∣∣1− 1

1 ∨ ‖xj‖

∣∣∣∣ ≤ 1

for any xj. And,

n∑
j=1

| 〈θj, xj〉 | ≤
n∑
j=1

‖θj‖ · ‖xj‖

by the Cauchy-Schwarz inequality. And, if we again let θ∗ := max{‖θ1‖, . . . , ‖θn‖}, then

n∑
j=1

| 〈θj, xj〉 | ≤
n∑
j=1

‖θj‖ · ‖xj‖ ≤ θ∗
n∑
j=1

‖xj‖.

Now, since maxj≤n ‖xj‖ > 1, it must be that
∑n

j=1 ‖xj‖ > 1, so

θ∗
n∑
j=1

‖xj‖ ≤ θ∗

(
n∑
j=1

‖xj‖

)3

since x ≤ x3 for any real number,x ≥ 1. So, we have an upper bound for E2.

Now, let C := 2 ·max{θ∗, (θ∗)3}. Then, we have,

E ≤ E1 + E2 ≤ C

(
n∑
j=1

‖xj‖

)3

which is the desired inequality.
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Lemma 4.2.2. Let

E :=

∣∣∣∣∣exp{i
n∑
j=1

〈θj, xj〉} − 1− i
n∑
j=1

〈θj, xj〉
1 ∨ ‖xj‖

∣∣∣∣∣
where xj, θj ∈ Rd. Then,

E ≤ C ·
n∑
j=1

{1 ∧ ‖xj‖2}

for some constant C (possibly different) depending only on n and θ1, . . . , θn.

Moreover, since

{1 ∧ ‖xj‖2} ≤ ‖xj‖2,

for each xj we can also conclude that

E ≤ C ·
n∑
j=1

‖xj‖2.

Proof. Notice

E ≤

∣∣∣∣∣exp{i
n∑
j=1

〈θj, xj〉} − 1− i
∑n

j=1 〈θj, xj〉
1 ∨ |

∑n
j=1 〈θj, xj〉 |

∣∣∣∣∣
+

∣∣∣∣∣
∑n

j=1 〈θj, xj〉
1 ∨ |

∑n
j=1 〈θj, xj〉 |

−
n∑
j=1

〈θj, xj〉
1 ∨ ‖xj‖

∣∣∣∣∣
:= E1 + E2.

First, we will find an upper bound for E1. To do this, we will need the following inequality,

which is true for any t ∈ R:∣∣∣∣exp{it} − 1− i t

1 ∨ |t|

∣∣∣∣ ≤ 3 · {|t|2 ∧ 1}.

To verify the inequality, we will consider 2 cases: |t| ≤ 1 and |t| > 1. If we assume first that

|t| ≤ 1, we get that the RHS of the inequality is equal to 3|t|2 and the LHS is equal to

|exp{it} − 1− it| ≤ |t|
2

2

≤ 3|t|2
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which is equal to the RHS of the inequality. And, for the case |t| > 1, notice that the RHS

of the inequality equals 3, while the LHS equals∣∣∣∣exp{it} − 1− i t
|t|

∣∣∣∣ ≤ | exp{it}|+ |1|+
∣∣∣∣i t|t|

∣∣∣∣
by the triangle inequality, and this is less than or equal to 1 + 1 + 1 = 3, which is the value

of the RHS of the inequality, so the inequality is verified.

Now,

E1 =

∣∣∣∣∣exp{i
n∑
j=1

〈θj, xj〉} − 1− i
∑n

j=1 〈θj, xj〉
1 ∨ |

∑n
j=1 〈θj, xj〉 |

∣∣∣∣∣
≤ 3 ·


∣∣∣∣∣
n∑
j=1

〈θj, xj〉

∣∣∣∣∣
2

∧ 1


≤ 3 ·


(

n∑
j=1

| 〈θj, xj〉 |

)2

∧ 1


by the triangle inequality and the fact that f(x) := x ∧ 1 and g(x) := x2 are both nonde-

creasing functions for x ≥ 0. Then, by Cauchy-Schwarz, we get that

3 ·


(

n∑
j=1

| 〈θj, xj〉 |

)2

∧ 1

 ≤ 3 ·


(

n∑
j=1

‖θj‖ · ‖xj‖

)2

∧ 1

 .

Now, once again letting θ∗ := max{‖θ1‖, . . . , ‖θn‖}, we obtain

3 ·


(

n∑
j=1

‖θj‖ · ‖xj‖

)2

∧ 1

 ≤ 3 ·


(θ∗)2

(
n∑
j=1

‖xj‖

)2
 ∧ 1


≤ 3 ·

{{
(θ∗)2n

n∑
j=1

‖xj‖2

}
∧ 1

}
using the fact that (

∑m
j=1 aj)

2 ≤ m
∑m

j=1 a
2
j for any aj. Now, notice that since f(x) := x∧ 1

is a nondecreasing function for x ≥ 0,

3 ·

{{
(θ∗)2n

n∑
j=1

‖xj‖2

}
∧ 1

}
≤ 3 ·

{
(θ∗)2n ∨ 1} ·

{
n∑
j=1

‖xj‖2 ∧ 1

}}
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≤ 3 ·

{
(θ∗)2n ∨ 1} ·

n∑
j=1

{‖xj‖2 ∧ 1}

}

:= C1 ·
n∑
j=1

{‖xj‖2 ∧ 1}

where C1 depends only on n and θ1, . . . , θn. So, we have proven that

E1 ≤ C1 ·
n∑
j=1

{‖xj‖2 ∧ 1}.

Now, we will shift our focus to E2, which you will recall is given by

E2 =

∣∣∣∣∣∣
∑n

j=1 〈θj, xj〉

1 ∨
∣∣∣∑n

j=1 〈θj, xj〉
∣∣∣ −

n∑
j=1

〈θj, xj〉
1 ∨ ‖xj‖

∣∣∣∣∣∣ .
First, it is necessary to observe that, under certain conditions, E2 = 0, so it is certainly

bounded. To see this, notice that if
∣∣∣∑n

j=1 〈θj, xj〉
∣∣∣ ≤ 1and ‖xj‖ ≤ 1, then

E2 =

∣∣∣∣∣
∑n

j=1 〈θj, xj〉
1

−
n∑
j=1

〈θj, xj〉
1

∣∣∣∣∣
which indeed equals zero.

Now, we must alter these conditions somewhat, to suit our purposes. So, let C0 :=

{1 ∧ 1
nθ∗
}, which is another constant from our point of view, since it only depends on n and

θ1, . . . , θn. Then, if we suppose that

max
j≤n
‖xj‖ ≤ C0,

this will imply that
∣∣∣∑n

j=1 〈θj, xj〉
∣∣∣ ≤ 1, since
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∣∣∣∣∣
n∑
j=1

〈θj, xj〉

∣∣∣∣∣ ≤
n∑
j=1

| 〈θj, xj〉 |

≤
n∑
j=1

‖θj‖ · ‖xj‖

≤θ∗
n∑
j=1

‖xj‖

≤θ∗ · n · C0

= 1

by the triangle inequality and Cauchy-Schwarz inequality. Also, this condition implies that

‖xj‖ ≤ 1 for each j since ‖xj‖ ≤ maxj≤n ‖xj‖ ≤ C0 ≤ 1. Thus, E2 can only be nonzero

when maxj≤n ‖xj‖ > C0. So, for the rest of the proof that E2 is bounded, we may assume

maxj≤n ‖xj‖ > C0.

Now,

E2 =

∣∣∣∣∣∣
∑n

j=1 〈θj, xj〉

1 ∨
∣∣∣∑n

j=1 〈θj, xj〉
∣∣∣ −

n∑
j=1

〈θj, xj〉
1 ∨ ‖xj‖

∣∣∣∣∣∣
≤

n∑
j=1

| 〈θj, xj〉 | ·

∣∣∣∣∣ 1

1 ∨ |
∑n

j=1 〈θj, xj〉 |
− 1

1 ∨ ‖xj‖

∣∣∣∣∣
≤

n∑
j=1

| 〈θj, xj〉 |

≤
n∑
j=1

‖θj‖ · ‖xj‖

≤

√√√√ n∑
j=1

‖θj‖2 ·

√√√√ n∑
j=1

‖xj‖2

by the Cauchy-Schwarz inequality. And,√√√√ n∑
j=1

‖θj‖2 ·

√√√√ n∑
j=1

‖xj‖2 ≤
√
nθ∗ ·

√√√√ n∑
j=1

‖xj‖2
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=
√
nθ∗C0 ·

√√√√ 1

C2
0

n∑
j=1

‖xj‖2.

Now, notice that maxj≤n ‖xj‖ > C0 implies that 1
C2

0

∑n
j=1 ‖xj‖2 > 1, so if we use the fact

that
√
x ≤ x for x ≥ 1 then we get that

√
nθ∗C0 ·

√√√√ 1

C2
0

n∑
j=1

‖xj‖2 ≤
√
nθ∗

1

C0

·
n∑
j=1

‖xj‖2

:= C∗
n∑
j=1

‖xj‖2

Now, if we could show that E2 ≤ C∗∗ for some constant C∗∗, then we could let C2 :=

{max{C∗, C∗∗}∨1} and we would have E2 ≤ C2

∑n
j=1 ‖xj‖2 and we would also have E2 ≤ C2

which would imply:

E2 ≤

{
C2 ∧ C2

n∑
j=1

‖xj‖2

}

≤ C2 ·

{
1 ∧

n∑
j=1

‖xj‖2

}
.

So, we need to show that E2 ≤ C∗∗ for some constant C∗∗.

To see this, notice

E2 =

∣∣∣∣∣∣
∑n

j=1 〈θj, xj〉

1 ∨
∣∣∣∑n

j=1 〈θj, xj〉
∣∣∣ −

n∑
j=1

〈θj, xj〉
1 ∨ ‖xj‖

∣∣∣∣∣∣
≤
|
∑n

j=1 〈θj, xj〉 |

1 ∨
∣∣∣∑n

j=1 〈θj, xj〉
∣∣∣ +

∣∣∣∣∣
n∑
j=1

〈θj, xj〉
1 ∨ ‖xj‖

∣∣∣∣∣
≤1 +

n∑
j=1

∣∣∣∣〈θj, xj
1 ∨ ‖xj‖

〉∣∣∣∣
≤1 +

n∑
j=1

‖θj‖ ·
‖xj‖

1 ∨ ‖xj‖

≤1 + nθ∗ := C∗∗.
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Thus, we have

E ≤ E1 + E2 ≤ C1 · {1 ∧
n∑
j=1

‖xj‖2}+ C2 · {1 ∧
n∑
j=1

‖xj‖2}

≤ C · {1 ∧
n∑
j=1

‖xj‖2}

where C := 2 ·max{C1, C2}. And,

C · {1 ∧
n∑
j=1

‖xj‖2} ≤ C ·
n∑
j=1

{1 ∧ ‖xj‖2}.

So, the lemma is proven.

4.3 Theorem

We now present the main theorem of this chapter, the short and long term behavior of

infinitely divisible processes.

Theorem 4.3.1. Suppose β is a positive parameter tending to some value β0. Also suppose

there are one to one invertible measurable maps φβ from S into S and normalizing sequences

nβ and mβ such that for any t ∈ R,

mβfβt(φβ(s))→ ht(s) a.e.− ν

‖mβfβt(φβ(s))‖ ≤ kt(s) a.e.− ν

d(ν ◦ φβ)

dν
(s)

(
nβ
mβ

)2

→ g(s) a.e.− ν

d(ν ◦ φβ)

dν
(s)

(
nβ
mβ

)2

≤ l(s) a.e.− ν

as β → β0 for some functions kt, ht, g and l on the space S. Let

cβ,t =

∫
S

(
nβfβt(s)

1 ∨ ‖nβfβt(s)‖
− nβfβt(s)

1 ∨ ‖fβt(s)‖

)
ν(ds).
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Then,

nβXβt − cβ,t → Yt

in the sense of finite dimensional distributions as β → β0 where Yt is characterized in the

following cases:

(i) If

nβ
mβ

→ 0

and

l · k2
t ∈ Lν(S)

then,

Yt =

∫
S

ht(s)Z(ds)

where Z is an independently scattered, Gaussian random measure with control measure g · ν.

(ii) If

mβ = nβ

and

l · {1 ∧ k2
t } ∈ Lν(S)

then,

Yt =

∫
S

ht(s)

(
M(ds)− g(s)ν(ds)

1 ∨ ‖ht(s)‖

)
where M is a Poisson random measure with intensity measure g · ν.

Proof. Notice that the ln of the finite dimensional characteristic function of nβXβt − cβ,t is

given by

lnE exp

{
i

n∑
j=1

〈
θj, nβXβtj − cβ,tj

〉}
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= lnE exp

{
i

n∑
j=1

(
〈
θj, nβXβtj

〉
−
〈
θj, cβ,tj

〉
)

}
which is equal to

lnE exp

{
i

n∑
j=1

〈
θj, nβXβtj

〉
− i

n∑
j=1

〈
θj, cβ,tj

〉}
and this equals

∫
S

(
exp

{
i

n∑
j=1

〈
θj, nβfβtj(s)

〉}
− 1− i

n∑
j=1

〈
θj, nβfβtj(s)

〉
1 ∨ ‖fβtj(s)‖

)
ν(ds)

−i
n∑
j=1

〈
θj,

∫
S

(
nβfβtj(s)

1 ∨ ‖nβfβtj(s)‖
−

nβfβtj(s)

1 ∨ ‖fβtj(s)‖

)
ν(ds)

〉

=

∫
S

(
exp

{
i

n∑
j=1

〈
θj, nβfβtj(s)

〉}
− 1− i

n∑
j=1

〈
θj, nβfβtj(s)

〉
1 ∨ ‖fβtj(s)‖

)
ν(ds)

−i
n∑
j=1

∫
S

〈
θj,

(
nβfβtj(s)

1 ∨ ‖nβfβtj(s)‖
−

nβfβtj(s)

1 ∨ ‖fβtj(s)‖

)〉
ν(ds)

=

∫
S

(
exp

{
i

n∑
j=1

〈
θj, nβfβtj(s)

〉}
− 1− i

n∑
j=1

〈
θj, nβfβtj(s)

〉
1 ∨ ‖fβtj(s)‖

)
ν(ds)

−i
n∑
j=1

∫
S

( 〈
θj, nβfβtj(s)

〉
1 ∨ ‖nβfβtj(s)‖

−
〈
θj, nβfβtj(s)

〉
1 ∨ ‖fβtj(s)‖

)
ν(ds)

=

∫
S

(
exp

{
i

n∑
j=1

〈
θj, nβfβtj(s)

〉}
− 1− i

n∑
j=1

〈
θj, nβfβtj(s)

〉
1 ∨ ‖nβfβtj(s)‖

)
ν(ds)

which is the same as∫
S

(
exp

{
i

n∑
j=1

〈
θj, nβfβtj(φβ(s))

〉}
− 1− i

n∑
j=1

〈
θj, nβfβtj(φβ(s))

〉
1 ∨ ‖nβfβtj(φβ(s))‖

)
dν ◦ φβ
dν

(s)ν(ds)

:=

∫
S

Fβ(s)ν(ds)

For case (i), observe that
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Fβ(s)→ −g(s)

2

(
n∑
j=1

〈
θj, htj(s)

〉)2

a.e.− ν

as β → β0 since ∣∣∣∣∣∣Fβ(s) +
1

2

dν ◦ φβ
dν

(s)

(
nβ
mβ

)2
(

n∑
j=1

〈
θj,mβfβtj(φβ(s))

〉)2
∣∣∣∣∣∣

=

∣∣∣∣
(

exp

{
i

n∑
j=1

〈
θj, nβfβtj(φβ(s))

〉}
− 1− i

n∑
j=1

〈
θj, nβfβtj(φβ(s))

〉
1 ∨ ‖nβfβtj(φβ(s))‖

)
dν ◦ φβ
dν

(s)

+
1

2

dν ◦ φβ
dν

(s)

(
n∑
j=1

〈
θj, nβfβtj(φβ(s))

〉)2 ∣∣∣∣
which is less than or equal to

dν ◦ φβ
dν

(s)

∣∣∣∣ exp

{
i

n∑
j=1

〈
θj, nβfβtj(φβ(s))

〉}
− 1− i

n∑
j=1

〈
θj, nβfβtj(φβ(s))

〉
1 ∨ ‖nβfβtj(φβ(s))‖

+
1

2

(
n∑
j=1

〈
θj, nβfβtj(φβ(s))

〉)2 ∣∣∣∣
≤ C · dν ◦ φβ

dν
(s)

(
n∑
j=1

‖nβfβtj(φβ(s))‖

)3

by Lemma 4.2.1. And this is equal to

C · dν ◦ φβ
dν

(s)

(
nβ
mβ

)2(
nβ
mβ

)( n∑
j=1

‖mβfβtj(φβ(s))‖

)3

→ C · g(s) · 0 ·

(
n∑
j=1

‖htj(s)‖

)3

= 0
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as β → β0. So, we have proven that

Fβ(s)→ −g(s)

2

(
n∑
j=1

〈
θj, htj(s)

〉)2

a.e.− ν

as β → β0. Now, to finish the proof, we would like to apply the Lebesgue Dominated

Convergence Theorem to ∫
S

Fβ(s)ν(ds).

So, it is necessary to prove that Fβ(s) is bounded by a function in Lν(S). To do this, notice,

|Fβ(s)| =

∣∣∣∣∣exp

{
i

n∑
j=1

〈
θj, nβfβtj(φβ(s))

〉}
− 1− i

n∑
j=1

〈
θj, nβfβtj(φβ(s))

〉
1 ∨ ‖nβfβtj(φβ(s))‖

∣∣∣∣∣ dν ◦ φβdν
(s)

≤ C · d(ν ◦ φβ)

dν
(s) ·

n∑
j=1

‖nβfβtj(φβ(s))‖2

by Lemma 4.2.2, and this is equal to

C · d(ν ◦ φβ)

dν
(s)

(
nβ
mβ

)2

·
n∑
j=1

‖mβfβtj(φβ(s))‖2

which is

≤ C ·
n∑
j=1

l(s) · ktj(s)2.

which is ∈ Lν(S) since l · k2
tj
∈ Lν(S) for each tj by the assumptions of the theorem, and

we are taking a finite sum of these functions in Lν and then multiplying them by a constant.

So, thus, Fβ(s) is in Lν(S).

So, we can apply the Lebesgue Dominated Convergence Theorem to get

∫
S

Fβ(s)ν(ds)→
∫
S

−g(s)

2

(
n∑
j=1

〈
θj, htj(s)

〉)2

ν(ds)

as β → β0. So, case (i) is proven.

For case (ii) observe that
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Fβ(s)→

(
exp

{
i

n∑
j=1

〈
θj, htj(s)

〉}
− 1− i

n∑
j=1

〈
θj, htj(s)

〉
1 ∨ ‖htj(s)‖

)
g(s) a.e.− ν

as β → β0.

Now, we would like to have Fβ(s) ∈ Lν(S) so we could apply the Lebesgue Dominated

Convergence Theorem to ∫
S

Fβ(s)ν(ds)

to get

∫
S

Fβ(s)ν(ds)→
∫
S

(
exp{i

n∑
j=1

〈
θj, htj(s)

〉
− 1− i

n∑
j=1

〈
θj, htj(s)

〉
1 ∨ ‖htj(s)‖

)
g(s)ν(ds)

as β → β0 and the result would be proven. So, it remains to be shown that Fβ(s) ∈ Lν(S).

To do this, notice

|Fβ(s)| =

∣∣∣∣∣exp

{
i

n∑
j=1

〈
θj, nβfβtj(φβ(s))

〉}
− 1− i

n∑
j=1

〈
θj, nβfβtj(φβ(s))

〉
1 ∨ ‖nβfβtj(φβ(s))‖

∣∣∣∣∣ dν ◦ φβdν
(s)

≤ C · dν ◦ φβ
dν

(s)
n∑
j=1

{1 ∧ ‖nβfβtj(φβtj(s))‖2}

by Lemma 2. And, this is

≤ C · l(s)
n∑
j=1

{1 ∧ ‖ktj‖2}

from the observation that ‖nβfβtj(φβtj(s))‖ ≤ ktj(s) and
dν◦φβ
dν

(s) ≤ l(s) by assumption (and,

again, using the fact that f(x) := x ∧ 1 is nondecreasing for x ≥ 0).

And, the above is equal to

C ·
n∑
j=1

l(s) · {1 ∧ ‖ktj‖2}

which is a constant times a finite sum of functions that are in Lν(S) by assumption. So, we

have proven Fβ(s) ∈ Lν(S), so we have proven case (ii) and, hence, the theorem.
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4.4 Corollaries

Corollary 4.4.1. Let X be a d-dimensional stochastic process given by

Xt =

∫
S

ft(s) (N(ds)− ν(ds)) . (4.3)

It is known by Theorem 2.7 of Rajput and Rosinski [14] that the integrals exist if and only if∫
S

‖ft(s)‖ ∧ ‖ft(s)‖2ν(ds) <∞. (4.4)

(i) Then, assuming the conditions of Theorem 4.3.1 case (i), we get

nβXβt → Yt =

∫
S

ht(s)Z(ds)

in the sense of finite-dimensional distributions as β → β0 where Z is an independently

scattered, Gaussian random measure with control measure g · ν.

(ii) Then, assuming the conditions of Theorem 4.3.1 case (ii) and assuming further

that l · {kt ∧ k2
t } ∈ Lν(S), we get

nβXβt → Yt =

∫
S

ht(s)(M(ds)− g(s)ν(ds))

in the sense of finite-dimensional distributions as β → β0 where M is a Poisson random

measure with intensity measure g · ν.

Proof. First, write

Xt =

∫
S

ft(s)

(
N(ds)− ν(ds)

1 ∨ ‖ft(s)‖

)
−
∫
S

ft(s)

(
1− 1

1 ∨ ‖ft(s)‖

)
ν(ds)

:= X∗t − at

and note that at exists under the condition
∫
S
‖ft(s)‖ ∧ ‖ft(s)‖2ν(ds) <∞ since∫

S

∥∥∥∥ft(s)(1− 1

1 ∨ ‖ft(s)‖

)∥∥∥∥ ν(ds)
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=

∫
S

1‖ft(s)‖>1(s)‖ft(s)‖
∥∥∥∥(1− 1

‖ft(s)‖

)∥∥∥∥ ν(ds)

which is less than or equal to ∫
S

1‖ft(s)‖>1(s)‖ft(s)‖ν(ds)

≤
∫
S

‖ft(s)‖ ∧ ‖ft(s)‖2ν(ds)

since {1‖ft(s)‖>1‖ft(s)‖} ≤ {‖ft(s)‖ ∧ ‖ft(s)‖2}.
Now,

nβXβt = nβX
∗
βt − nβaβt

= (nβX
∗
βt − cβ,t) + (cβ,t − nβaβt)

and nβX
∗
βt− cβ,t converges in the sense of finite dimensional distributions to Y ∗t a.e.− ν as

β → β0 by Theorem 4.3.1. So, now we will characterize the limit in two cases.

In case (i),

Y ∗t =

∫
S

ht(s)Z(ds).

And, since we hope to prove that nβXβt converges to∫
S

ht(s)Z(ds),

we need cβ,t − nβaβt to converge to zero. To see this, notice cβ,t − nβaβt is equal to

∫
S

nβfβt(s)

1 ∨ ‖nβfβt(s)‖
− nβfβt(s)

1 ∨ ‖fβt(s)‖
ν(ds)−

∫
S

nβfβt(s)

(
1− 1

1 ∨ ‖fβt(s)‖

)
ν(ds)

and since the last two integrands are in Lν(S), they can be combined under one integral to

get ∫
S

(
nβfβt(s)

1 ∨ ‖nβfβt(s)‖
− nβfβt(s)

1 ∨ ‖fβt(s)‖
− nβfβt(s) +

nβfβt(s)

1 ∨ ‖fβt(s)‖

)
ν(ds)

which is equivalent to
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∫
S

(
nβfβt(s)

1 ∨ ‖nβfβt(s)‖
− nβfβt(s)

)
ν(ds)

=

∫
S

(
nβfβt(φβ(s))

1 ∨ ‖nβfβt(φβ(s))‖
− nβfβt(φβ(s))

)
d(ν ◦ φβ)

dν
(s)ν(ds)

And, we claim that this converges to zero. In order to prove this, we will use the Lebesgue

Dominated Convergence Theorem. So, first we will prove that the application of the Lebesgue

Dominated Convergence Theorem is valid. To see this, first notice that if ‖nβfβt(φβ(s))‖ ≤ 1,

then this integrand is zero, and hence integrable. Now, if ‖nβfβt(φβ(s))‖ > 1, then the norm

of the above integrand is equal to∥∥∥∥( nβfβt(φβ(s))

‖nβfβt(φβ(s))‖
− nβfβt(φβ(s))

)∥∥∥∥ d(ν ◦ φβ)

dν
(s)

≤ ‖nβfβt(φβ(s))‖
∥∥∥∥ 1

‖nβfβt(φβ(s)‖
− 1

∥∥∥∥ d(ν ◦ φβ)

dν
(s)

which is less than or equal to

‖nβfβt(φβ(s))‖ d(ν ◦ φβ)

dν
(s)

≤ ‖nβfβt(φβ(s))‖2 d(ν ◦ φβ)

dν
(s)

since ‖nβfβt(φβ(s))‖ > 1. And this is equal to

‖mβfβt(φβ(s))‖2

(
nβ
mβ

)2
d(ν ◦ φβ)

dν
(s)

≤ kt(s)
2 · l(s)

which is integrable with respect to ν by the assumptions of the theorem. So, an application

of the Lebesgue Dominated Convergence Theorem is valid.

Now, notice that the norm of the integrand is equal to∥∥∥∥ nβfβt(φβ(s))

1 ∨ ‖nβfβt(φβ(s))‖
− nβfβt(φβ(s))

∥∥∥∥ d(ν ◦ φβ)

dν
(s)

and, as in the proof that this is in Lν(S), notice that the above is only nonzero when

‖nβfβt(φβ(s))‖ > 1. And, from the proof that it is in Lν(S), we know that
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∥∥∥∥ nβfβt(φβ(s))

1 ∨ ‖nβfβt(φβ(s))‖
− nβfβt(φβ(s))

∥∥∥∥ d(ν ◦ φβ)

dν
(s)

≤ ‖nβfβt(φβ(s))‖ d(ν ◦ φβ)

dν
(s).

And since ‖nβfβt(φβ(s))‖ > 1, we get that ‖nβfβt(φβ(s))‖ ≤ ‖nβfβt(φβ(s))‖3, so

‖nβfβt(φβ(s))‖ d(ν ◦ φβ)

dν
(s) ≤ ‖nβfβt(φβ(s))‖3 d(ν ◦ φβ)

dν
(s).

And, this is equal to

nβ
mβ

‖mβfβt(φβ(s))‖3

(
nβ
mβ

)2
d(ν ◦ φβ)

dν
(s)

→ 0 · ht(s)3 · g(s) = 0

as β → β0. Then, we apply the Lebesgue Dominated Convergence Theorem to get that

cβ,t − nβaβt converges to zero.

Now, we have

nβXβt = (nβX
∗
βt − cβ,t) + (cβ,t − nβaβt)

→ Y ∗t + 0 a.e.− ν

as β → β0 by Slutsky’s Theorem. And this equals∫
S

ht(s)Z(ds).

So, we have proven case (i).

For case (ii), we know that the limit of nβX
∗
βt − cβ,t is

Y ∗t =

∫
S

ht(s)

(
M(ds)− g(s)µ(ds)

1 ∨ ‖ht(s)‖

)
a.e.− µ

by Theorem 4.3.1 case (ii).

So, we need to find a limit for cβ,t − nβaβt. Notice cβ,t − nβaβt is equal to
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=

∫
S

(
nβfβt(φβ(s))

1 ∨ ‖nβfβt(φβ(s))‖
− nβfβt(φβ(s))

)
d(ν ◦ φβ)

dµ
(s)µ(ds)

as in case (i). And this converges as β → β0 via the Lebesgue Dominated Convergence

Theorem to

bt :=

∫
S

(
ht(s)

1 ∨ ‖ht(s)‖
− ht(s)

)
g(s)µ(ds) a.e.− µ.

Note that the application of the Lebesgue Dominated Convergence Theorem is valid for∫
S

(
nβfβt(φβ(s))

1 ∨ ‖nβfβt(φβ(s))‖
− nβfβt(φβ(s))

)
d(ν ◦ φβ)

dµ
(s)µ(ds)

since ∥∥∥∥( nβfβt(φβ(s))

1 ∨ ‖nβfβt(φβ(s))‖
− nβfβt(φβ(s))

)∥∥∥∥ d(ν ◦ φβ)

dµ
(s)

=

∥∥∥∥1|nβfβt(φβ(s))‖>1(s)nβfβt(φβ(s))

(
1

‖nβfβt(φβ(s))‖
− 1

)∥∥∥∥ d(ν ◦ φβ)

dµ
(s)

which is less than or equal to

∥∥1‖nβfβt(φβ(s))‖>1(s)nβfβt(φβ(s))
∥∥ d(ν ◦ φβ)

dµ
(s)

≤ 1kt(s)>1(s)kt(s) · l(s)

≤ {kt(s) ∧ k2
t (s)} · l(s)

and l · {kt ∧ k2
t } ∈ Lµ(S) by assumption.

Now,

nβXβt = (nβX
∗
βt − cβ,t) + (cβ,t − nβaβt)

→ Y ∗t + bt a.e.− µ

as β → β0 in the sense of finite dimensional distributions by an application of Slutsky’s

Theorem. And, note that this limit is equal to
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∫
S

ht(s)

(
M(ds)− g(s)µ(ds)

1 ∨ ‖ht(s)‖

)
+

∫
S

ht(s)

(
g(s)

1 ∨ ‖ht(s)‖
− g(s)

)
µ(ds)

=

∫
S

ht(s)

(
M(ds)− g(s)µ(ds)

1 ∨ ‖ht(s)‖
+

g(s)µ(ds)

1 ∨ ‖ht(s)‖
− ht(s)g(s)µ(ds)

)

=

∫
S

ht(s) (M(ds)− g(s)µ(ds)) .

Thus, the result is proven using Theorem 4.3.1.

Corollary 4.4.2. Let X be a d-dimensional stochastic process given by

Xt =

∫
S

ft(s)N(ds). (4.5)

It is known by Theorem 2.7 of Rajput and Rosinski [14] that the integrals exist if and only if∫
S

(‖ft(s)‖ ∧ 1) ν(ds) <∞. (4.6)

(i) Then, assuming the conditions of Theorem 4.3.1 case (i), we get

nβXβt − bβ,t → Yt =

∫
S

ht(s)Z(ds)

in the sense of finite-dimensional distributions as β → β0 where Z is an independently

scattered, Gaussian random measure with control measure g · µ and

bβ,t :=

∫
S

nβfβt(s)

1 ∨ ‖nβfβt(s)‖
ν(ds).

(ii) Then, assuming the conditions of Theorem 4.3.1 case (ii) and assuming further

that l · {kt ∧ 1} ∈ Lµ(S), we get

nβXβt → Yt =

∫
S

ht(s)M(ds)

in the sense of finite-dimensional distributions as β → β0 where M is a Poisson random

measure with intensity measure g · µ.

Proof. First, write

Xt =

∫
S

ft(s)

(
N(ds)− ν(ds)

1 ∨ ‖ft(s)‖

)
+

∫
S

ft(s)

1 ∨ ‖ft(s)‖
ν(ds)
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:= X∗t + at

and note that at exists under the condition
∫
S

(‖ft(s)‖ ∧ 1) ν(ds) <∞ since∫
S

∥∥∥∥ ft(s)

1 ∨ ‖ft(s)‖

∥∥∥∥ ν(ds)

=

∫
S

(
‖ft(s)‖1‖ft(s)‖≤1 + 1 · 1‖ft(s)‖>1

)
ν(ds)

=

∫
S

(‖ft(s)‖ ∧ 1) ν(ds)

which is finite by assumption.

Now for case (i), notice

nβXβt − bβ,t = nβX
∗
βt + nβaβt − bβ,t

= (nβX
∗
βt − cβ,t) + (cβ,t + nβaβt − bβ,t)

and, notice cβ,t + nβaβt− bβ,t equals zero. To see this, observe that cβ,t + nβaβt− bβ,t is equal

to

=

∫
S

(
nβfβt(s)

1 ∨ ‖nβfβt(s)‖
− nβfβt(s)

1 ∨ ‖fβt(s)‖

)
ν(ds) +

∫
S

nβfβt(s)

1 ∨ ‖fβt(s)‖
ν(ds)

−
∫
S

nβfβt(s)

1 ∨ ‖nβfβt(s)‖
ν(ds)

and the three integrands can be combined into one since they are all in Lν(S) and there are

cancellations and the resulting integral equals zero. Thus, cβ,t + nβaβt − bβ,t equals zero.

So,

nβXβt − bβ,t = nβX
∗
βt − cβ,t

and by Theorem 1, nβX
∗
βt − cβ,t converges in the sense of finite dimensional distributions as

β → β0 to Yt where

Yt =

∫
S

ht(s)Z(ds).
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So, we get

nβXβt − bβ,t
fdd−−→

∫
S

ht(s)Z(ds),

as β → β0 as desired.

For case (ii),

nβXβt = nβX
∗
βt + nβaβt

= (nβX
∗
βt − cβ,t) + (cβ,t + nβaβt)

and nβXβt − cβ,t converges in the sense of finite dimensional distributions to Y ∗t where

Y ∗t =

∫
S

ht(s)

(
M(ds)− g(s)µ(ds)

1 ∨ ‖ht(s)‖

)
a.e.− µ

as β → β0 by Theorem 4.3.1. Now, it is necessary to determine the convergence of cβ,t+nβaβt.

Well, cβ,t + nβaβt

=

∫
S

(
nβfβt(s)

1 ∨ |nβfβt(s)|
− nβfβt(s)

1 ∨ ‖fβt(s)‖

)
ν(ds) +

∫
S

nβfβt(s)

1 ∨ ‖fβt(s)‖
ν(ds)

and the two integrands on the right can be combined into one since they are both in Lν(S).

Then, there is a cancellation and we arrive at∫
S

nβfβt(s)

1 ∨ ‖nβfβt(s)‖
ν(ds)

=

∫
S

nβfβt(φβ(s))

1 ∨ ‖nβfβt(φβ(s))‖
dν ◦ φβ
dµ

(s)µ(ds)

and this converges to

dt :=

∫
S

ht(s)

1 ∨ ‖ht(s)‖
g(s)µ(ds) a.e.− µ

as β → β0 by the Lebesgue Dominated Convergence Theorem since∥∥∥∥ nβfβt(φβ(s))

1 ∨ ‖nβfβt(φβ(s))‖

∥∥∥∥ d(ν ◦ φβ)

dµ
(s)

= {‖nβfβt(φβ(s))‖ ∧ 1} · d(ν ◦ φβ)

dµ
(s)
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≤ {kt ∧ 1} · l(s)

and {kt ∧ 1} · l(s) ∈ Lµ(S) by assumption.

So,

nβXβt = (nβX
∗
βt − cβ,t) + (cβ,t + nβaβt)

→ Y ∗t + dt

in the sense of finite dimensional distributions as β → β0 by Slutsky’s Theorem. And, note

that this limit is equal to∫
S

ht(s)

(
M(ds)− g(s)µ(ds)

1 ∨ ‖ht(s)‖

)
+

∫
S

ht(s)

1 ∨ ‖ht(s)‖
g(s)µ(ds)

=

∫
S

ht(s)M(ds)

and this concludes the proof.

4.5 Examples

Remark 4.5.1. Please recall that for the special case when the process is a Lévy process, it

has a version given by the integral representation:

Xt =

∫
R+×Rd

v1(0,t](u)

(
N(du, dv)− du η(dv)

1 ∨ ‖v1(0,t](u)‖

)
. (4.7)

Example 4.5.1 (Stable Lévy motions). Consider a SαS Lévy motion Xt,

Xt =

∫
S

ft(s)

(
N(ds)− ν(ds)

1 ∨ ‖ft(s)‖

)
,

where,

S = R× R, s = (u,w), ν(du, dw) = duc|w|−α−1dw,

and

ft(u,w) = 1[0,t)(u)w

such that c > 0 is a constant.
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Take φβ(u,w) := (βu, β
1
αw) and mβ = nβ := β−

1
α . Then, notice:

mβfβt(φβ(u,w)) = β−
1
α1[0,βt)(βu)β

1
αw = ft(u,w).

So, ht(s) = ft(s) and

dν ◦ φβ
dν

=
βduc|β 1

αw|−α−1β
1
αdw

duc|w|−α−1dw
= 1.

So, g(s) = 1.

Thus, by Theorem 4.3.1,

β−
1
αXβt − cβ,t

fdd−−→ Yt

where

Yt =

∫
S

ft(s)

(
M(ds)− ν(ds)

1 ∨ ‖ft(s)‖

)
and M is a Poisson random measure with intensity measure ν.

The purpose of the previous example is to illustrate how to use the main Theorem.

There is actually no convergence here, only equality. It is merely a reformulation of a scaling

property and holds for all β. Pipiras and Taqqu considered this example in the case α ∈ (1, 2)

only. Theorem 4.3.1 expands this result to all α such that α ∈ (0, 2).

The purpose of the next example is to illustrate the power of Theorem 4.3.1. The short

and long term behavior of tempered stable processes were considered by Rosinski in 2007.

The goal here is to prove Theorem 3.1 of [16] without the use of characteristic functions

and other calculations. This demonstrates the fact that we can use our Theorem to bypass

the use of characteristic functions to prove convergence. Also, it provides an example where

short and long term behavior yield different limits. Moreover, it provides another extension

of Pipiras and Taqqu from the case α ∈ (1, 2) to the case α ∈ (0, 2)

Example 4.5.2 (Tempered stable Lévy motions). Consider a tempered stable Lévy motion

Xt,

Xt =

∫
S

ft(s)

(
N(ds)− ν(ds)

1 ∨ |ft(s)|

)
,

where,

S = R+ × R, s = (u,w), ν(du, dw) = du αq|w||w|−α−1 dw,

and

ft(u,w) = 1[0,t)(u)w
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where q(w) is a positive, bounded function satisfying q(0+) = 1.

First, consider small scales, that is β → 0. Take φβ(u,w) := (βu, β
1
αw) and mβ = nβ :=

β−
1
α . Then, notice:

mβfβt(φβ(u,w)) = β−
1
α1[0,βt)(βu)β

1
αw = ft(u,w).

So, ht(s) = ft(s) and

dν ◦ φβ
dν

=
βdu αq|β 1

αw||β 1
αw|−α−1β

1
α dw

du αq|w||w|−α−1 dw

=
du αq|β 1

αw||w|−α−1 dw

du αq|w||w|−α−1 dw

=
q|β 1

αw|
q|w|

→ 1

q|w|
as β → 0.

So, g(s) = 1
q|w| .

Thus, by Theorem 4.3.1 case (ii),

β−
1
αXβt − cβ,t

fdd−−→ Yt

as β → 0 where

Yt =

∫
S

ft(s)

(
M(ds)− ν(ds)

1 ∨ |ft(s)|

)
and M is a Poisson random measure with intensity measure g(s)ν(ds) where

g(s)ν(ds) =
1

q|w|
ν(du, dw) =

1

q|w|
du αq|w||w|−α−1 dw = du α|w|−α−1 dw

So, the limit is a stable process at small scales.

Now, consider large scales: β → ∞. Take φβ(u,w) := (βu,w) and mβ := 1 and nβ :=

β−
1
2 . Then, we have

nβ
mβ

=
1

β
1
2

→ 0

as β →∞. Also,

mβfβt(φβ(u,w)) = 1[0,βt)(βu)w = ft(u,w)

so, ht(s) = ft(s). And,

dν ◦ φβ
dν

=
βdu αq(−w)|w|−α−1 dw

du αq(−w)|w|−α−1 dw
= β.
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So,
d(ν ◦ φβ)

dν
(s)

(
nβ
mβ

)2

= β(β−
1
2 )2 = 1.

Thus, g(s) = 1.

So, if we assume that ∫
R
‖w‖1−αq(w)dw <∞

then, by Theorem 4.3.1 case (i),

β−
1
2Xβt − cβ,t

fdd−−→ Yt =

∫
S

ft(s)Z(ds)

as β → ∞ where Z is an independently scattered, Gaussian random measure with control

measure ν.

Example 4.5.3 (Standard Poissonized Telecom process). This example is inspired by the

standard Poissonized telecom process studied by Pipiras and Taqqu in [13]. They consider

a Poissonized telecom process Xt, as originally described in [4], given by,

Xt =

∫
S

ft(s) (N(ds)− ν(ds)) ,

where,

S = (0,∞)× R× R s = (x, u, w) ν(dx, du, dw) = dx du
1{|w|<1}dw

|w|α+1

and

ft(x, u, w) =

(
[(t+ u) ∧ 0) + x]+ − [(u ∧ 0) + x]+

)
x−(1−k)− 1

αw

for α ∈ (1, 2) and k ∈ (0, 1− 1
α

) .

We wish to prove that as β → 0,

β−(k+ 1
α

)Xβt
fdd−−→ Yt

where Yt is given by ∫
S

ft(s) (M(ds)− µ(ds))

and

µ(ds) = µ(dx, du, dw) = dx du
dw

|w|α+1
.
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Here, we will take φβ(x, u, w) := (βx, βu, β
2
αw) and notice that this φβ satisfies the

conditions of the Theorem. It is necessary to choose the appropriate nβ to apply the Theorem.

It is obvious to choose

nβ := β−(k+ 1
α

).

We know that

nβfβt(x, u, w) = β−(k+ 1
α

)fβt(x, u, w)

and we wish that

nβfβt(φβ(x, u, w))→ ft(x, u, w)

as β → 0.

so we calculate

fβt(φβ(x, u, w)) = fβt(βx, βu, β
2
αw)

=

(
[(βt+ βu) ∧ 0) + βx]+ − [(βu ∧ 0) + βx]+

)
(βx)−(1−k)− 1

αβ
2
αw

= βk+ 1
α

(
[(t+ u) ∧ 0) + x]+ − [(u ∧ 0) + x]+

)
x−(1−k)− 1

αw

= βk+ 1
αft(x, u, w).

Thus,

nβfβt(φβ(x, u, w)) = β−(k+ 1
α

)βk+ 1
αft(x, u, w) = ft(x, u, w).

Now to check the conditions:

(∗) nβfβt(φβ(x, u, w))→ ft(x, u, w)

89



as β → 0 as before, and

(∗∗) dν ◦ φβ
dµ

=
βdx βdu 1

{|β
2
αw|<1}

β
2
α |β 2

αw|−α−1dw

dx du |w|−α−1dw

= βββ
2
αβ−2β−

2
α

dx du 1
{|β

2
αw|<1}

|w|−α−1dw

dx du |w|−α−1dw

= 1
{|w|<β−

2
α }
→ 1 as β → 0.

So,

g(s) = 1, ht(s) = ft(s), µ(ds) = µ(dx, du, dw) = dx du |w|−α−1dw.

Thus, by Corollary 4.4.1,

β−(k+ 1
α

)Xβt
fdd−−→ Yt

as β → 0 where

Yt =

∫
S

ft(s) (M(ds)− µ(ds))

and M is a Poisson random measure with intensity measure µ where µ(ds) = µ(dx, du, dw) =

dx du dw
|w|α+1 .

Now, for large scales (β → ∞), we can get a result where the limit is a Gaussian-type

ID process. So, we want to use the second part of the Theorem to prove:

β
1
α
−k−1Xβt

fdd−−→ Yt

as β →∞ where

Yt =

∫
S

ft(s)Z(ds)

and Z is an independently scattered, Gaussian random measure with control measure ν.

Here, we will take φβ(x, u, w) := (βx, βu, w) and notice that this φβ satisfies the con-

ditions of the Theorem (and is a multiplicative flow). Again, it is necessary to choose the

appropriate nβ and mβ to apply the Theorem. Recall that for the second part of the Theorem,

it is necessary for
nβ
mβ

→ 0 as β →∞

so this suggests setting

nβ := β
1
α
−k−1 and mβ := β

1
α
−k.

So, we calculate that mβfβt(φβ(x, u, w)) equals
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β
1
α
−k
(

[(βt+ βu) ∧ 0) + βx]+ − [(βu ∧ 0) + βx]+

)
(βx)−(1−k)− 1

αw

= β
1
α
−kβk−

1
α

(
[(t+ u) ∧ 0) + x]+ − [(u ∧ 0) + x]+

)
x−(1−k)− 1

αw

thus,

mβfβt(φβ(x, u, w)) = ft(x, u, w).

Now to check the conditions:

(∗) mβfβt(φβ(x, u, w))→ ft(x, u, w)

as β →∞ as before, and

dν ◦ φβ
dν

=
βdx βdu

1{|w|<1}dw

|w|α+1

dx du
1{|w|<1}dw

|w|α+1

= β2

So,

(∗∗) d(ν ◦ φβ)

dν
(s)

(
nβ
mβ

)2

= β2(β−1)2 = 1

and we get

g(s) = 1, ht(s) = ft(s), µ(ds) = µ(dx, du, dw) = dx du
1{|w|<1}dw

|w|α+1
.

Then, by Corollary 4.4.1,

β
1
α
−k−1Xβt

fdd−−→ Yt =

∫
S

ft(s)Z(ds)

as β → ∞ where Z is an independently scattered, Gaussian random measure with control

measure ν. So, the limit is a Gaussian-type ID process at large scales.

Example 4.5.4 (Layered Stable Processes).

Definition 4.5.2. A Lévy process is called a layered stable process if its Lévy measure at time

1 is given by

νLS(B) =

∫
Sd−1

∫ ∞
0

1B(rξ)q(r, ξ)drσ(dξ)
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where B is a Borel set in Rd
0 and σ is a finite positive measure on Sd−1 and q is a locally

integrable function from (0,∞)× Sd−1 to (0,∞) such that:

q(r, ξ) ∼ c1(ξ)r−α−1 as r → 0

and

q(r, ξ) ∼ c2(ξ)r−α1−1 as r →∞

for σ-almost every ξ ∈ Sd−1 where c1 and c2 are positive integrable with respect to σ functions

on Sd−1 and α ∈ (0, 2) and α1 ∈ (0,∞).

Remark 4.5.3. As was mentioned in Chapter 2, the assumptions on the behavior of the q

function near zero are incorrect. There is a slight error in the assumptions made in the layered

stable paper [8] and a counterexample is described in Chapter 2. The correct assumption is

the following:

lim
r→0

q(r, ·)
r−α−1

= c1(·) in L1(Sd−1, σ).

Notation: Notice that if q(r, ξ) = r−α−1, then we have an α-stable Lévy measure, so

Layered Stable is a generalization of α-stable. We write νασ to denote an α-stable Lévy

measure with spectral measure σ. Also, let

σ1(dξ) := c1(ξ)σ(dξ)

σ2(dξ) := c2(ξ)σ(dξ)

and let XLS
t ∼ LSα,α1(σ, q, η) denote a Layered Stable Process with Lévy measure νLS at

time 1 and drift η.

Consider a Layered Stable Process with the integral representation:

Xt =

∫
S

ft(s)

(
N(ds)− ν(ds)

1 ∨ ‖ft(s)‖

)
,

where

S = R+ × Rd, s = (u,w), ν(du, dw) = du νLS(dw),

and

ft(u,w) = 1[0,t)(u)w.
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Case(i): (Small Scales). As β → 0,

β−
1
αXβt − cβ,t

fdd−−→ Yt

where

Yt =

∫
S

ft(s)

(
M(ds)− g(s)ν(ds)

1 ∨ ‖ft(s)‖

)
=

∫
R+×Rd

w1(0,t](u)

(
M(du, dw)−

du νασ1
(dw)

1 ∨ ‖w1(0,t](u)‖

)
Case(ii): (Large Scales).

(a) If β ∈ (0, 2), then as β →∞,

β
− 1
α1Xβt − cβ,t

fdd−−→ Yt

where

Yt =

∫
S

ft(s)

(
M(ds)− g(s)ν(ds)

1 ∨ ‖ft(s)‖

)
=

∫
R+×Rd

w1(0,t](u)

(
M(du, dw)−

du να1
σ2

(dw)

1 ∨ ‖w1(0,t](u)‖

)
(b) If β ∈ (2,∞), then as β →∞,

β−
1
2Xβt − cβ,t

fdd−−→ Yt

where

Yt =

∫
S

ft(s)Z(ds)

and Z is an independently scattered Gaussian random measure with control measure νLS.

Case (i). Take φβ(u,w) := (βu, β
1
αw) and mβ = nβ := β−

1
α . Then, notice:

mβfβt(φβ(u,w)) = β−
1
α1[0,βt)(βu)β

1
αw = ft(u,w).

So, ht(s) = ft(s). And, ‖mβfβt(φβ(s))‖ ≤ kt(s) where kt(s) := ‖ft(s)‖.
And,

dν ◦ φβ
dν

(s)

(
nβ
mβ

)2

=
dν ◦ φβ
dν

(u,w) =
d(βu) νLS(d(β

1
αw))

du νLS(dw)

and letting r := ‖w‖ and ξ := w
‖w‖ we get that the above is equal to

93



β1+ 1
α
du q(β

1
α r, ξ) dr σ(dξ)

du νLS(dw)

= β1+ 1
α

du q(β
1
α r, ξ) dr σ(dξ)

du |r|−α−1 dr c1(ξ)σ(dξ)

(
du |r|−α−1 dr c1(ξ)σ(dξ)

du νLS(dw)

)
which equals (

du dr σ(dξ)

du dr σ(dξ)

)(
q(β

1
α r, ξ)

|β 1
α r|−α−1 c1(ξ)

)(
du |r|−α−1 dr c1(ξ)σ(dξ)

du νLS(dw)

)

→
(
du |r|−α−1 dr c1(ξ)σ(dξ)

du νLS(dw)

)
as β → 0, so

g(s) = g(u, r, ξ) =

(
du |r|−α−1 dr σ1(dξ)

du νLS(dw)

)
.

Which implies

g(s)ν(ds) = du |r|−α−1 dr σ1(dξ)

And,
dν ◦ φβ
dν

(s)

(
nβ
mβ

)2

≤ l(s)

where

l(s) = l(u, r, ξ) := β1+ 1
α

(
q(β

1
α r, ξ)

|r|−α−1 c1(ξ)

)(
du |r|−α−1 dr c1(ξ)σ(dξ)

du νLS(dw)

)

= β1+ 1
α
q(β

1
α r, ξ) dr σ(dξ)

νLS(dw)

Now, to have the Poissonian-type limit, we need to have

l · {1 ∧ k2
t } ∈ Lµ(S)

Well, ∥∥∥∥∫
R+×Rd

l · {1 ∧ k2
t }µ(du, dw)

∥∥∥∥
≤
∫

R+

∫
Sd−1×(0,∞)

β1+ 1
α
q(β

1
α r, ξ) dr σ(dξ)

νLS(dw)
{1 ∧ {r21[0,t)(u)}}du νLS(dw)
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which equals ∫ t

0

∫
Sd−1×(0,∞)

β1+ 1
α{1 ∧ r2} du q(β

1
α r, ξ) dr σ(dξ)

= t

∫
Sd−1×(0,∞)

β1+ 1
α{1 ∧ r2} q(β

1
α r, ξ) dr σ(dξ)

and is equivalent to

t

∫ ∞
0

β1+ 1
α{1 ∧ r2}

{∫
Sd−1

q(β
1
α r, ξ) σ(dξ)

}
dr

= t

∫ ∞
0

{1 ∧ r2}

{∫
Sd−1

q(β
1
α r, ξ)

(β
1
α r)−α−1

σ(dξ)

}
r−α−1dr.

And, for β sufficiently small, this is

≤ K t

∫ ∞
0

{1 ∧ r2} |r|−1−α dr <∞.

Thus, by Theorem 4.3.1, as β → 0,

β−
1
αXβt − cβ,t

fdd−−→ Yt

where

Yt =

∫
S

ft(s)

(
M(ds)− g(s)ν(ds)

1 ∨ ‖ft(s)‖

)
=

∫
R+×Rd

w1(0,t](u)

(
M(du, dw)−

du νασ1
(dw)

1 ∨ ‖w1(0,t](u)‖

)
which is a representation of an α-stable process.

Case (ii): Note that for part (a) since α1 ∈ (0, 2) we get a result similar to the result in case

(i) since we can take α1 = α and use the fact that

q(r, ξ) ∼ c2(ξ)r−α1−1 as r →∞

to see that as β →∞,

β
− 1
α1Xβt − cβ,t

fdd−−→ Yt
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where

Yt =

∫
S

ft(s)

(
M(ds)− g(s)ν(ds)

1 ∨ ‖ft(s)‖

)
=

∫
R+×Rd

w1(0,t](u)

(
M(du, dw)−

du να1
σ2

(dw)

1 ∨ ‖w1(0,t](u)‖

)
which is a representation of an α1-stable process since α1 ∈ (0, 2). Just look at the proof for

case (i) and substitute β →∞ for β → 0 and α1 for α.

But, for part (b) since α1 ∈ (2,∞), we have a different convergence result. To see this,

let nβ := β−
1
2 , mβ := 1, and φβ(s) = φβ(u,w) := (βu,w). Then, clearly

mβfβt(φβ(u,w)) = 1[0,βt)(βu)w = ft(u,w).

So, ht(s) = ft(s). And,

‖ft(s)‖ = ‖ft(u,w)‖ ≤ ‖w‖1[0,t)(u) := kt(u,w) = kt(s)

And,

d(ν ◦ φβ)

dν
(s)

(
nβ
mβ

)2

=
d(ν ◦ φβ)

dν
(u,w)

(
β−

1
2

1

)2

= β−1d(βu) νLS(dw)

du νLS(dw)
= 1.

So, g(s) = 1 and

d(ν ◦ φβ)

dν
(s)

(
nβ
mβ

)2

≤ 1 := l(s).

Now, to apply Theorem 4.3.1 case (i), we need to show that

nβ
mβ

→ 0

as β →∞ and

l · k2
t ∈ Lν(S).

Well,
nβ
mβ

= β−
1
2
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which clearly goes to zero as β →∞ and∫
S

l · k2
t µ(ds) =

∫
R+×Rd

‖w‖21(0,t](u) du νLS(dw)

= t

∫
Rd
‖w‖2 νLS(dw)

= t

∫
‖w‖≤1

‖w‖2 νLS(dw) + t

∫
‖w‖>1

‖w‖2 νLS(dw).

The first integral is obviously finite since νLS is a Lévy measure. So, we need only show

that the second integral is finite. Well, the second integral is equal to

t

∫
‖w‖>1

‖w‖2 νLS(dw) = t

∫
Sd−1

∫ ∞
1

r2 q(r, ξ) dr σ(dξ)

which equals

t

∫
Sd−1

∫ ∞
β
− 1
α1

(β
1
α1 r)2 q(β

1
α1 r, ξ) d(β

1
α1 r)σ(dξ)

And, for sufficiently large β, this is

≤ Kβt

∫
Sd−1

∫ ∞
β
− 1
α1

(β
1
α1 r)2 |β

1
α1 r|−α1−1c2(ξ) d(β

1
α1 r)σ(dξ)

≤ t

∫
Sd−1

∫ ∞
β
− 1
α1

(β
1
α1 r)1−α1c2(ξ) d(β

1
α1 r)σ(dξ)

which equals

t

∫
Sd−1

∫ ∞
1

r1−α1 dr c2(ξ)σ(dξ)

=
1

α− 2

∫
Sd−1

c2(ξ)σ(dξ)

which is finite since σ2 is integrable with respect to σ by assumption. Thus, by Theorem

4.3.1, as β →∞,

β−
1
2Xβt − cβ,t

fdd−−→ Yt

where

Yt =

∫
S

ft(s)Z(ds)

and Z is an independently scattered Gaussian random measure with control measure νLS.
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And, the result is proven.

As was mentioned previously, the work presented in this chapter is based on the work

of Pipiras and Taqqu in [13]. The short and long term behavior theorem, Theorem 4.3.1,

is the main result and is new to the best of the author’s knowledge. The most important

advancement made in this work is the removal of the moment condition imposed by the main

theorem of Pipiras and Taqqu. Their main theorem arises as a corollary to our main theo-

rem. However, Corollary 4.4.1 is still more general than their result, as it holds in multiple

dimensions and Corollary 4.4.2 is a new result. And, most of the examples investigated in

this chapter are obtained from the original paper, but are studied in more generality.
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Chapter 5

Summary

The purpose of this work is to unify the variations of multifractal processes and make general

statements in regards to their short and long term behavior. It is of particular interest to

study the small and large scale asymptotics of multifractal processes because of the many

modeling applications. This work addresses many known papers in this field and expands,

corrects, and exemplifies many previous results.

Since real life occurrences are not always describable by a normal distribution, stable

distributions were introduced as an alternative, since they allow for more extreme outliers to

occur because of their fat tails and since they have a desirable scaling property. But, stable

distributions are not practical in applications because of their infinite variance. As a result,

tempered stable distributions were introduced to tilt the tails of the stable distribution,

making it have finite variance, thus making it useful in applications, such as physics formulas.

Since then, many modifications of tempered stable distributions and their corresponding

Lévy processes have been introduced.

In an attempt to unify the many modifications of tempered stable processes, generalized

tempered stable processes are defined and studied in chapter 2. It is proven that the processes

display multifractal properties at different scales in the space of cadlag functions equipped

with the Skorokhod topology. Conditions under which the process is absolutely continuous

with respect to the underlying stable process are given. Also, the series representations that

lead to simulations of the process are discussed. This work unifies the area of tempered

stable processes by identifying the minimal conditions necessary for the short and long term

behavior.

In chapter 3, we take the integral of a Volterra kernel, KH,α(t, s), with respect to a

generalized tempered stable process:
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Xt :=

∫ t

0

KH,α(t, s)dXGTS
s , t ≥ 0.

In short time, it is close fractional stable Levy motion, but in the long term is similar

to fractional Brownian motion. The short and long term behavior of processes driven by

a generalized tempered stable process are considered so that it is not necessary to study

processes driven by the different variations of tempered stable processes separately. Also,

errors in the work of Houdré and Kawai in “Fractional tempered stable motion” [7] are

identified.

In chapter 4, a much more general class of infinitely divisible processes is considered. This

involves the generalization of a work by Pipiras and Taqqu [13] in 2006. As was mentioned

earlier, in their paper the authors examine processes with finite first moment given by the

integral representations:

Xt :=

∫
S

ft(s)N(ds), t ∈ R,

where N is a compensated Poisson random measure on a measurable space S. They describe

general conditions for the normalized and time-scaled process to converge to a limit. The

main advancement made in this chapter is the removal of the moment condition imposed on

the original work of Pipiras and Taqqu, thus expanding the results to include every infinitely

divisible process without Gaussian component, which can be represented as a stochastic

integral of this type. Also, the multidimensional case is considered, as the earlier result only

held in dimension one.

Please note that generalized tempered stable processes and fractional tempered stable

motion could be thought of as special cases of the infinitely divisible processes studied in

chapter 4. However, the short and long term behavior results obtained in chapter 4 in-

volve convergence of finite dimensional distributions only. In the case of Lévy processes,

convergence of finite dimensional distributions is enough to obtain convergence in the space

of cadlag functions equipped with the Skorokhod topology. However, fractional tempered

stable motion, which is considered in chapter 3, is not a Lévy process in general. So, more

work is needed to obtain convergence results in the space of cadlag functions. The large

scales case result is given and proven in this paper and the author is currently investigating

the short scales case. It is proving to be quite a challenge due to the fact that the limiting

processes do not actually have stationary increments as was earlier claimed by Houdré and

Kawai [7]. But, due to preliminary calculations, it appears that the short scales case will

hold in the space of cadlag functions.
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[2] M. Caballero, J. Pardo, and J. Pérez. On the lamperti stable processes. (to appear in)

Probability and Mathematical Statistics, 2009.

[3] P. Carr, H. Geman, D. Madan, and M. Yor. The fine structure of asset returns: An

empirical investigation. J. Business, 75, 2002.

[4] S. Cohen and M. Taqqu. Small and large scale behavior of the poissonized telecom

process. Methodology and Computing in Applied Probability, 2004.

[5] W. Feller. Introduction to Probability Theory and its Applications I. Wiley, second

edition, 1957.

[6] W. Feller. Introduction to Probability Theory and its Applications II. Wiley, second

edition, 1957.
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Appendix A

Simulations of standard Lamperti

stable processes

Some series representations using Example 2.6.1 are implemented in MATLAB in dimension

one and are shown here. The representations are adapted from a code given by Jan Rosinski

for stable processes. Recall that the series representation using LePage’s Method [15] was

modified to the case of GTS processes. It involves looking at a decomposition of the Lévy

measure of the form:

νGTS(A) =

∫
Sd−1

∫ ∞
0

1A(rξ) ρ∗(dr, ξ)σ∗(dξ)

where σ∗(dξ) := σ(dξ)/σ(Sd−1) := σ(dξ)/‖σ‖ is a probability measure on Sd−1 and ρ∗ is a

measure on R such that

ρ∗([x,∞), ξ) = ‖σ‖ ρ([x,∞), ξ)

where

ρ([x,∞), ξ) :=

∫ ∞
x

q(r, ξ) r−α−1 dr.

The inverse is defined as:

ρ−1
∗ (u, ξ) := inf{x > 0 : ρ∗([x,∞), ξ) < u}.

= inf{x > 0 : ρ([x,∞), ξ) <
u

‖σ‖
}

= ρ−1(u/‖σ‖, ξ).

But, a problem is that ρ is not always invertible. As is mentioned in Example 2.6.1, in

105



the special case of Lamperti stable processes when f = 1, this ρ-function is actually invert-

ible. So, we are able to present some sample simulations directly. Below is a sample code,

which produces Figure A.1. It considers the case α := .25, although other stable indices

can be obtained by simply changing this number. And, for convenience, the Lamperti stable

processes are referred to as ”standard” when f = 1.

a = .25; % stable index

T = 1; % time length

n = 2000; % number of simulations

m = 1000; % number of partitions of [0,T]

t = 0 : (T/m) : T ; % time goes from 0 to T with interval T/m

G =cumsum(-log(rand(1,n)));

% Gamma random variable: Sum of n exponential(1) random variables

U = T ∗rand(n,1); % times of jumps

V = 2∗(rand(1,n)<= 0.5) -ones(1,n); % random signs m

% rand(1,n) <= 0.5 gives 1 x n matrix of zeros or ones with probability 1/2

J = V.∗(log(repmat(1,1,n) +G. ∧ (−1/a)));

% Gives the jumps: Γ−1/α with random signs

clear G V;

X = J∗(repmat(U, 1,m+ 1) <= repmat(t, n, 1));

% repmat(U, 1,m+ 1) <= repmat(t, n, 1) produces 1uj≤t
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figure

plot(t,X,′ .r′, ’markersize’, 6); % graphs X

Various ranges of the parameter α are represented in the simulations. Notice that as α

increases, the frequency and size of large jumps decreases.
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Figure A.1: Lamperti Stable Process, α = .25, f ≡ 1
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Figure A.2: Lamperti Stable Process, α = .75, f ≡ 1
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Figure A.3: Lamperti Stable Process, α = 1.25, f ≡ 1
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Figure A.4: Lamperti Stable Process, α = 1.75, f ≡ 1
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Appendix B

Simulations of non-standard Lamperti

stable processes

Recall that in chapter 2 section 6, it was mentioned that Caballero, et. al. in [2] only con-

duct simulations of Lamperti stable processes in the case where f(ξ) ≡ 1. Here, simulations

where f 6≡ 1 are given using the series representation derived in Example 2.6.5 for various

ranges of α. This code works for any values of the function, as long as f ≤ 1.

a = .25; % stable index

T = 1; % time length

b = .5; % f(1) := .5

c = −.75; % f(−1) := −.75

n = 2000; % number of simulations

m = 1000; % number of partitions of [0,T]

t = 0 : (T/m) : T ; % time goes from 0 to T with interval T/m

G =cumsum(-log(rand(1,n)));

112



% Gamma random variable: Sum of n exponential(1) random variables

U = T ∗rand(n,1); % times of jumps

% gives an n x 1 matrix of random values from (0,1)

W = T ∗rand(1,n); % new uniform random variable

V = 2∗(rand(1,n)<= 0.5) -ones(1,n); % random signs m

% rand(1,n)<= 0.5 gives 1× n matrix of zeros or ones with probability 1/2

% produces one or negative one with probability 1/2

L =log(repmat(1,1,n) +G. ∧ (−1/a))

B =abs(log(L)).∗(((b)∗(sign(L) >= 0) +(c)∗(sign(L) <= 0)) -1)

% produces the Vi’s.

J = V.∗(L).∗(B >= log(W)); % jumps Γ−1/α with random signs and rejection term

% J =
∑n

j=1 εjΓ
−1/α
j

clear G V;

X = J∗(repmat(U, 1,m+ 1) <= repmat(t, n, 1));

% repmat(U, 1,m+ 1) <=repmat(t, n, 1) produces 1uj≤t

figure

plot(t,X,′ .r′, ’markersize’, 6); % graphs X
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Figure B.1: Lamperti Stable Process, α = .25, f 6≡ 1

114



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
!2

0

2

4

6

8

10

Figure B.2: Lamperti Stable Process, α = .75, f 6≡ 1
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Figure B.3: Lamperti Stable Process, α = 1.25, f 6≡ 1
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Figure B.4: Lamperti Stable Process, α = 1.75, f 6≡ 1
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