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Abstract

This dissertation addresses the question of realization of countable groups as funda-

mental groups of continuum.

In first chapter we discuss classical realizations in the category of CW complexes.

We introduce Eilenberg-Maclane spaces and their topological properties.

The second chapter provides recent developments on realization question such as

those of Shelah, Keesling, ...

The third chapter proves the realization theorem for countable groups. The re-

sulting space is compact path connected, connected subspace of four dimensional

Euclidean space.
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Chapter 1

Introduction

The fundamental group is one of the most important concepts in topology, whose

influence spread over other fields of mathematics, such as analysis, algebra, ... It was

proven to be a good invariant not only in algebraic topology, but in more general

aspect as well. As an example, it classifies all covering spaces in the category of semi-

locally simply connected spaces. A famous ”Poincaré conjecture” refers to similar

classification issue: is 3−sphere the only compact 3−dimensional manifold without

boundary with trivial fundamental group? Not surprisingly, a question of realization

of arbitrary groups was a natural one.

It has been long known that every group can be realized as a fundamental group

of two dimensional CW complex. The structure of CW complexes is excellent for im-

plementation of algebraic structure in topology. The concept developed to Eilenberg-

MacLane spaces which proved to be important spaces in research of homology, coho-

mology and spectral sequences.

While having nice algebraic properties, these spaces have less topological virtues.

In general, they are not metric, locally compact, ... The natural generalization of CW

realization would try to make realization nicer from the topological aspect. Surprising

result of this kind was published by Shelah (7). Using forcing he proved the following
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theorem.

Theorem 1. Let X be a compact metric space which is path connected and locally

path connected. If the fundamental group of X is not finitely generated, then it has

the power of continuum.

The same problem was studied by Pawlikowski (5) who also posed a question

wether every finitely generated group can be realized as a fundamental group of

continuum. In this dissertation we prove the following theorem.

Theorem 2. For any countable group G there is a compact path connected subspace

XG ⊂ R4 so that π1(XG, x0) = G.

The theorem answers the question of Pawlikowski in more general aspect. It also

greatly improves realizations of Keesling and Rudyak(4) and of Przeździecki (6) in

case of countable groups.
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Chapter 2

Algebraic Invariants in CW

Category

This chapter introduces CW complexes and provides some basic facts about realiza-

tions using CW complexes.

2.1 CW Complexes and their Fundamental Group

In homotopy theory, the class of primary interest consists of CW complexes.

Definition 3. A space X is called CW complex (or cell complex) if it is constructed

the following way:

1. Let X0 denote a discrete set of points.

2. Inductively define Xn := Xn−1
⋃

ϕ Sn
ϕ where every Sn

ϕ is an n−disc and ϕ : ∂Sn
ϕ →

Xn−1 is attaching map defined on it’s boundary. Equip Xn with quotient topol-

ogy. Hence Xn is obtained from Xn−1 by gluing discs Sn
ϕ to Xn−1 along attaching

maps.

3. Define X :=
⋃

n Xn and equip it with weak topology.
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The set Xn is called n−skeleton of X.

The points of X0 and sets ϕ(Sn
ϕ−∂Sn

ϕ) ⊂ X are called (open) cells and are usually

denoted by e. Their attaching maps are denoted by ϕe. Note that X is a disjoint union

of it’s open cells. Notation en means that cell is contained in Xn − Xn−1.

A closed subset L ⊂ K is a subcomplex of K if it is disjoint union of open cells

eϕ.

Remark. The structure of definition 3 has been generalized to m-stratified spaces

in (8).

The CW complexes proved to be an ideal class to study homotopy theory. Their

structure is flexible enough to be applied to most spaces of interest. Yet, their cell

structure allows strong control of it’s homotopy type. This structure motivated the

development of homology theory, cohomology theory and simplified study of mani-

folds. Here we list some basic properties of CW complexes.

Proposition 4. Let K be a CW complex.

1. Subset L ⊂ K is compact iff it is contained in a finite complex.

2. Complex K is compact iff it is finite.

3. If L ⊂ K is a subcomplex, then L →֒ K is a cofibration.

Some of the most important properties of CW complexes refer to algebraic struc-

tures, the most important of which is the fundamental group.

Definition 5. Let (X, x0) be a pointed topological space. The fundamental group

of X, denoted by π1(X, x0), is the class of homotopy types of maps (S1, 0) → (X, x0).

It is easy to see that this class of maps is a group indeed, group operation being

concatenation. The cell structure of CW complexes makes it easy to express their

fundamental group.
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Theorem 6. Let (K, x) be a pointed, path connected CW complex with K1 − K0 =

{e1
i }i and K2 − K1 = {e2

j}j. Then π1(K, x) = 〈{e1
i }i | {∂e2

j}j〉.

The proof of the theorem above uses cellular approximation theorem.

Definition 7. The map f : (K, x) → (L, y) between pointed CW complexes is cellu-

lar if f(Kn) ⊂ Ln, ∀n.

Theorem 8 (Cellular approximation theorem). Let f : (K, x) → (L, y) be a map

between pointed CW complexes. Then f is homotopic to a cellular map g.

Both theorems were generalized for all dimensions.

Definition 9. Let (X, x0) be a pointed topological space. The nth homotopy group

of X, denoted by πn(X, x0), is the class of homotopy types of maps (Sn, 0) → (X, x0).

For n > 1 homotopy groups πn are Abelian.

Theorem 10. Let (K, x) be a pointed, path connected CW complex. Then πn(K, x) =

πn(Kn+1, x).

2.2 Realizations of groups

Theorem 6 provides a fairly simple mechanism to construct spaces with prescribed

fundamental group. Using 10 and properties of wedge, Eilenberg-Maclane spaces were

introduced.

Theorem 11. Given a group G and n ∈ N, Eilenberg-Maclane space K(G, n) is

any space with πnK(G, n) = G and πmK(G, n) = 0, ∀m 6= n.

In case n > 1 group G has to be Abelian for obvious reason. The theorem can

easily be generalized.
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Theorem 12. Given group G1 and Abelian groups {Gi}i≥2 there exists a space X

with πi(X) = Gi, ∀i.

Not surprisingly, all spaces that appear in such construction are CW complexes.

Another homotopy invariants that behave nice with respect to CW structure are the

homology groups. Imitating Eilenberg-Maclane spaces, Moore spaces arose as their

counterpart for homology groups.

Theorem 13. Given an Abelian group G and n ∈ N, Moore space M(G, n) is any

space with HnM(G, n) = G and HmM(G, n) = 0, ∀m 6= n.

Theorem 14. Given Abelian groups {Gi}i≥1 there exists a space X with Hi(X) =

Gi, ∀i.

Even though their definition and construction are almost the same as that of

Eilenberg-Maclane spaces, Moore spaces do not quite reach their importance as the

next theorem suggests. In particularly, homotopy classes of maps from a CW complex

to Eilenberg-Maclane spaces are closely connected with the cohomology groups of that

complex.

Theorem 15. For every Abelian group G, and every CW complex K, the set [K, K(G, n)]

of homotopy classes of maps from X to K(G,n) is in natural bijection with Hn(X, G).

Even though Eilenberg-Maclane spaces provide us realizations of groups as homo-

topy groups of spaces, they mostly fail to be metric or compact. The following two

theorems explain how realizations can be made metric.

Theorem 16. Every countable CW complex is homotopy equivalent to a locally finite

CW complex.

Theorem 17. Every countable locally finite CW complex is metrizable.
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In case of countable groups these theorems provide a metric realizations. How-

ever the realizations are not compact. In next chapter we will mention a procedure

introduced in (4) and (6) that provides us with compact realizations. However that

realization is not metric so the problem of realization of countable group by compact

metric space remains unsolved using these techniques.
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Chapter 3

Survey on Realization Results

In this chapter we present recent developments on the field of realizations. First we

discuss the theorems of Shelah (7) and (5) which state that the fundamental group

of mice spaces is either finitely generated or has the power of continuum. What

follows are results of Keesling, Rudyak (4) and Przeździecki (6) concerning compact

realizations.

3.1 Result of Shelah

Shelah proved the following result.

Theorem 18. Let X be a compact metric space which is path connected and locally

path connected. If the homotopy group of X is not finitely generated then it has the

power of the continuum (in fact there is a perfect set of non-homotopic loops in the

fundamental group).

In particularly, the fundamental group of compact metric path connected and

locally path connected space can’t be Q or any other countable group, that is not

finitely generated. This means that the realizations of such groups, if compact metric

path connected, can’t be locally path connected. Therefore the realizations of the
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theorem 39 will not be path connected. This certainly presents some difficulty when

calculating the fundamental group but can be bypassed using Peanification, as will

be presented in the next chapter.

How does Shelah prove his theorem? He considers the fundamental group of

compact metric space which is path connected and locally path connected. If it is

not finitely generated, then there is a point that contains arbitrarily small loops. The

set of such loops is subject to certain infinite product, that can be applied to certain

sequences of such loops. Using forcing, he then proves that such infinite product

provides a space with a perfect set of loops, which implies that their cardinality is

more that |N|.

Following his idea, Pawlikowski proved the same result without forcing. Also he

posed a question about the realization of finitely generated groups. The generalization

of his question is answered in affirmative way in the next chapter.

3.2 Result of Keesling and Rudyak

Another approach was presented by Keesling and Rudyak. Their goal was to realize

arbitrary groups with compact spaces. Their idea is to consider the path component

of the Stone-Čech compactification and prove that it’s fundamental group is the same

as that of the original space.

Theorem 19. If X is a path connected paracompact space of non-measurable cardi-

nality, then X is a path component of βX.

Theorem 20. Every group of non-measurable cardinality is the fundamental group

of a compact space.

Their ideas were studied by Przeździecki, who improved the realization result by

making the space path connected.

10



Theorem 21. Any group G of nonmeasurable cardinality is the fundamental group

of a path connected compact space Z.

Such realizations, however, arise from Stone-Čech compactifications and are hence

non-metrizable.

11



Chapter 4

Realization of Countable Groups

4.1 Introduction

In this section we deal with the problem of creating a compact space XG with a

given fundamental group G. That problem was discussed in papers (7), (5), and (4).

Shelah (7) proved G must be finitely generated if G is countable and XG is a Peano

continuum. An alternative proof of that result was presented by Pawlikowski (5) who

posed the reverse question:

Problem 22 (Pawlikowski). Given a finitely generated group G is there a continuum

XG such that π1(XG) = G.

Keesling and Rudyak (4) addressed the case of groups G for which XG can be

chosen as compact Hausdorff. Namely, every group of non-measurable cardinality is

the fundamental group of a compact space. However, their construction yields non-

metrizable and non-path connected spaces, so they posed the following question in

the electronic version of their paper:

Problem 23 (Keesling and Rudyak). For which groups G is there a path-connected

compact Hausdorff XG such that π1(XG) = G?

12



Adam Przeździecki (6) answered 23 in affirmative for any G of non-measurable

cardinality. Also, he announced an example of an abelian group of measurable cardi-

nality that is not the fundamental group of any compact space.

A natural idea when constructing a space with prescribed fundamental group G is

to realize it as a two dimensional CW complex KG. Theorem 6 provides a fairly simple

mechanism to construct space with prescribed fundamental group. In case of general

countable or even finitely generated group KG may not be metric or compact. In the

case of G being countable we plan to construct a compact metric space XG with the

fundamental group isomorphic to G. The idea is to replace 1−cells (using a variation

of smallness property (8)) by suitable spaces which will enable our construction to

take place in R4. Such replacement will allow us to make our space compact but we

will lose local path connectedness and universal property for extending maps that KG

has: any homomorphism G → π1(Y ) induces KG → Y for any space Y .

4.2 Harmonic Vase and Peanifications

The basic step in our construction is the Harmonic Vase. It replaces 1−cells in the

construction of KG. Definition 24 introduces HV as a subspace of R3. Later in 31

it will be redefined to be a subset of R4 to comply with the needs of construction of

realization.

Definition 24. The Harmonic Vase with parameters m, p ∈ R+ [notation: HV (m, p)]

is the subset of R3 defined as the union of two sets:

• the pedestal defined as B(3, 0) ∩ (R2 × {0}) = {(x, y, 0) ∈ R3, x2 + y2 ≤ 9} =

{r ≤ 3, z = 0}, and

13



• the wall W (m, p), parameterized as

z ∈ (0, m], ϕ ∈ [−π, π], r :=
|ϕ|

π
sin

πp

z
+ 2

where (r, ϕ) are polar coordinates in R2 × {0} ⊂ R3 and z is the coordinate of

{0}2 × R so that (r, ϕ, z) are cylindric coordinates in R3.

Figures 4.1, 4.2 and 4.3 provide visualization for Harmonic Vase. For the sake of

simplicity we will use the notation HV instead of HV (m, p) if the parameters don’t

play any crucial role.

Using cylindrical coordinates, we will always assume ϕ ∈ [−π, π]. To visualize the

wall of HV note that for any fixed a 6= 0, a ∈ [−π, π] the intersection of the wall and

halfplane ϕ = a in R3 is a reparameterized sin 1
x

curve. In case a = 0 we get a semi

open line segment.

The parameter m in HV (m, p) is the height of the Harmonic Vase, the parameter

p determines a parametrization of sin 1
x

curving of the wall. We will vary both of

these in our construction.

Proposition 25. Every HV is compact.

Proof. Take any Cauchy sequence S in HV . If S converges to a point in R3 with

z = 0 then that limit point is contained in the pedestal of HV . If S converges to a

point in R3 with z > 0 then we may assume that all points of S have z−coordinate

at least ε for some fixed ε > 0. Because HV ∩ {z ≥ ε} is compact (by the definition

it is the image of [ε, m]× [−π, π] under a continuous function) and contains S, it also

contains the limit point. �

When constructing the realization space XG, we will use HV ’s with various pa-

rameters. In order to combine them efficiently we have to introduce the notion of

inner-curves of HV (m, p).

14



Figure 4.1: Intersection of an HV with ϕ ∈ {0, π}.

Figure 4.2: Intersection of an HV with ϕ = ±π/2.

15



Figure 4.3: The wall of an HV drawn in Maple.
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Definition 26. The inner-heights of HV (m, p) are numbers {h ∈ R+ | sin(πp
h

) =

−1}. The inner-curves are simple closed curves S(m, p, c) := HV (m, p) ∩ {z = c}

where c ∈ (0, m] is any height.

For any fixed a ∈ (0, m] the orthogonal projection of the curve S(m, p, a) to

R2 × {0} is parameterized as

R =
|Φ|

π
sin

πp

a
+ 2, Φ ∈ [−π, π],

where (R, Φ) are polar coordinates in R2. For any two choices of a, these curves

are smooth topological circles that either have the only common point at Φ = 0 (in

which case one of the curves lies inside the set bounded by the other curve) or they

are same hence we can talk about some of these curves being inner or outer. The

meaning of inner-heights is to provide the set of heights, for which these projections

are inner-most curves.

As mentioned above, HV ’s replace S1 in the construction of CW countable group

realization. It is hence important to know it’s fundamental group. For this purpose

we recall the definition of the universal Peano space introduced in (1).

Definition 27. Let X be a path connected space. The universal Peano space

of X [notation: P (X)] is the set X equipped with a new topology, generated by all

path-components of all open subsets of the existing topology on X. The universal

Peano map is the natural bijection P (X) → X.

The name ”universal Peano map” refers to the universal map lifting property for

locally path connected spaces:

Proposition 28. Let Y be a locally path connected space. Then any map f : Y → X

uniquely lifts to a map g : Y → P (X).

17



P (X)

��
Y

g
<<

y

y

y

y

g
// X

Proof. The universal Peano map is a bijection which gives us an obvious unique lift.

To prove it is continuous take any y ∈ Y and assume V ⊂ P (X) is a path component

of an open subset W ⊂ X with f(y) ∈ V . Then there exists an open path connected

neighborhood U ⊂ Y of y so that f(U) ⊂ W , hence f(U) ⊂ V as f(U) is path

connected. Thus g is continuous. �

Note that if Y is locally path connected then so is Y × I (where I := [0, 1]) which

yields the following corollary.

Corollary 29. Let Y be locally path connected space and let X be path connected

space.

1. The set of homotopy classes of maps [Y, X] is in a natural bijection with [Y, P (X)].

2. The set of homotopy classes of maps [Y, X]• in the pointed category is in a

natural bijection with [Y, P (X)]•.

3. πk(X) = πk(P (X)), for all k ∈ Z+.

Using peanification one can easily compute the fundamental groups of HV .

Proposition 30. For every choice of parameters m, p one has π∗(HV (m, p)) =

π∗(S
1). Moreover, the inclusion of the top edge of HV into HV is a weak homo-

topy equivalence.

Proof. To simplify the notation in this proof we will use notation HV instead of

HV (m, p).

18



The crucial step is to extract space P (HV ). We have to consider four different

types of points.

1. Every point of the wall of HV has arbitrarily small simply connected neighbor-

hood as the wall itself is homeomorphic to S1 × (0, 1]. Hence the topology of

P (HV ) at those points is no different from the topology in HV .

2. The point (z = 0, ϕ = 0, r = 2) (we will mark that point with x0) also has

arbitrarily small simply connected neighborhood, which is a bit harder to see.

Let ε > 0 be sufficiently small and consider neighborhood Uε of x0 in HV that

contains all points with z < ε, |ϕ| < ε, 2+ ε > r > 2− ε. We will show that any

point x ∈ Uε can be connected to x0 by a path which is enough for the proof of

our claim.

If the z−coordinate of x equals 0 then x can be connected to x0 because the

pedestal (that contains both x0 and x) is locally path connected.

If the z−coordinate of x equals h 6= 0 then Uε ∩ {z = h} is an open arc,

containing path from x to a point (z = h, ϕ = 0, r = 2). This point can be

connected to x0 in Hε by a straight line segment.

3. The points on pedestal with r > |ϕ|
π

+ 2 or r < − |ϕ|
π

+ 2 are not limit points of

the wall. Hence they all have arbitrarily small simply connected neighborhood.

4. The points on pedestal with |ϕ|
π

+ 2 ≥ r ≥ − |ϕ|
π

+ 2 are limit points of the wall.

But any point x, other that x0 has a neighborhood Ux small enough, so that

the path component of Ux containing x lies in the pedestal.

Summing up, the only change of topology happens at the points in (iv) which

become separated from the wall: they have neighborhoods contained only in the

pedestal. This means that P (HV ) is homeomorphic to a wedge B2 ∨
(

(S1 × (0, 1])∪

19



P

HV P (HV ) S1

≃

Figure 4.4: Schematic representation of Peanification and strong deformation retract.
Presented are the intersections with ϕ ∈ {0, π}.

{x0}
)

where B2 corresponds ti pedestal, wedge point represents x0 and S1 × (0, 1]

corresponds to the wall of HV . There is a strong deformation retraction P (HV ) →

S1. Using homotopic equivalence P (HV ) ≃ S1 as described by 29 and Figure 4.4 we

get π∗(HV ) ∼= π∗(S
1). �

4.3 Wedges and Braiding HV ’s

The next step is to take a countable union of Harmonic Vases, each of which will

correspond to one generator of the group G. While doing so we have to be careful

to maintain compactness, inner-heights of every HV and to avoid intersections of

different vases except at pedestal and at ϕ = 0. Compactness will be preserved by

decreasing the height of vases (namely decreasing m). Inner-heights will be different

for suitable choice of parameters p (namely they have to be algebraically independent

over Q). Intersections will be avoided using additional Euclidean dimension. Let us

first introduce the notation that will explain how HV ′s are embedded in R4.

Definition 31. Harmonic Vase with parameters m, p ∈ R+ and w : [−π, π] ×

20



(0, m] → R [notation: HV (m, p, w)] is the subset of R4 defined as the union of two

sets:

• the pedestal B(3, 0) ∩ (R2 × {0}2) = {(x, y, 0, 0) ∈ R4, x2 + y2 ≤ 9}, and

• the wall W (m, p, w), parameterized as

z ∈ (0, m], ϕ ∈ [−π, π], r :=
|ϕ|

π
sin

πp

z
+ 2, w := w(ϕ, z),

where (r, ϕ) are polar coordinates in R2 × {0}2 ⊂ R4, z is the coordinate rep-

resenting {0}2 × R × {0} so that (r, ϕ, z) are cylindric coordinates in R3 × {0}

and w is the fourth coordinate representing {0}3 × R.

We define Braided Harmonic Vase (BHV ) inductively. Let {pi}i∈Z+ be a sequence

of positive numbers that are pairwise algebraically independent over Q meaning that

pi and pj are algebraically independent over Q for every choice of i 6= j. To handle

the intersections let us describe them first. For j < i; j, i ∈ Z+ define

Hj
i := {x | W (

1

i
, pi) ∩ W (

1

j
, pj) ∩ (R2 × {x}) 6= 0}.

In other words, Hj
i is set of all heights where W (1

i
, pi) and W (1

j
, pj) intersect. Note

that each of these sets is discrete in (0, 1
i
]: algebraic independence guarantees that

no inner-height of W (1
i
, pi) is in Hj

i , inner-heights converge to 0 and there are only

finitely many elements of Hj
i between two any two inner-heights. Consequently the

finite union Hi := ∪j<iH
j
i is discrete. Hence there exist functions

wi : (0,
1

i
] → [0,

1

i
]

with the following properties:
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wi(x) < x ∀x; (4.1)

wi(x) 6= wj(x) ∀j < i, ∀x ∈ Hj
i ; (4.2)

wi ≡ 0 on some neighborhood of inner-heights. (4.3)

As we already mentioned, the first condition maintains compactness, the second

one allows us to avoid intersections and the third one preserves neighborhoods of

inner-curves in R3.

Definition 32. Let {pi}i∈Z+ be a sequence of positive numbers that are pairwise alge-

braically independent over Q and let wi : (0, 1
i
] → [0, 1

i
] be a set of functions satisfying

(4.1) and (4.3). Braided Harmonic Vase with parameters {pi, wi}i [notation:

BHV ({pi, wi}i)] is
⋃

i∈Z+

HV (
1

i
, pi, |ϕ|wi).

The wall of BHV is union of the walls of Braided HV ′s. The pedestal of BHV is

the pedestal of any (every) Braided HV ′s.

Figure 4.5 gives the sketch of BHV . Note that the function |ϕ|wi allows us to

avoid intersections between HV ′s except at ϕ = 0. We now need to prove that every

BHV is compact and calculate its fundamental group.

Proposition 33. Every BHV is compact.

Proof. Take any Cauchy sequence S in BHV . If S converges to a point in R4 with

z = 0 then because w < z (the fourth coordinate is less that the third one by (4.1))

that limit point is contained in pedestal of HV . If S converges to a point in R4 with

z > 0 then we can assume that all points of S have z−coordinate at least ε for some
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Figure 4.5: Schematic representation of two incorporated HV ’s in BHV intersected
with {ϕ = π}. Intersections are avoided using w−coordinate.

fixed ε > 0. Because HV ∩ {z ≥ ε} is compact (by the definition it is finite union of

images of [ε, 1
i
]× [−π, π] as the heights of braided HV ′s are decreasing) and contains

S, it also contains the limit point. �

Remark. Note that BHV and HV are intersections of decreasing sequence of com-

pacts, namely their closed 1/i−neighborhoods. This fact gives alternative proof of

compactness.

At this point we should emphasize the difference between a weak wedge and a

metric wedge. Suppose (Xi, xi, di)i∈Z+ is a countable collection of pointed metric

spaces with xi ∈ Xi. Their weak wedge ∨Z+Xi is quotient space obtained by

identifying all points xi. Their metric wedge ∨m
Z+Xi is a metric space obtained by

identifying all points xi and defining the metric d∨ in the following way:

• if x, y ∈ Xj ⊂ ∨m
Z+Xi for some j ∈ Z+ then d∨(x, y) := dj(x, y);

• else d∨(x, y) := dj(x, xj) + dk(y, xk) where x ∈ Xj ⊂ ∨m
Z+Xi, y ∈ Xk ⊂ ∨m

Z+Xi.

The definition makes sense as ∨m
Z+Xi is pointwise union of sets Xi. It is easy to prove

that d∨ is indeed a metric.
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In general ∨Z+Xi will almost never be metric because of the topology at the wedge

point. However, the topologies on natural subspaces Xi are preserved by both wedges.

Lemma 36 proves that in many cases the homotopy types of maps from compact space

to both wedges coincide.

Definition 34. Suppose (X, x0) is a pointed metric space. A strong deformation

contraction of X to x0, is a continuous map H : X × I → X so that

1. H|X×{0} = 1|X;

2. H(X × {1}) = H({x0} × I) = x0;

3. d(H(x, t), H(y, t)) ≤ d(x, y), ∀t ≥ 0.

Remark. The use of this definition will be demonstrated in the proof of 36 as the

metric wedge of strong deformation contractions is automatically continuous strong

deformation contraction. Note that metric wedge of strong deformation retractions

needs not be a continuous map, it may fail to be continuous at the wedge point.

Lemma 35. Suppose that Ri : Xi → {xi} are strong deformation contractions of

pointed metric spaces (Xi, xi). Then the naturally defined map R := ∨iRi : ∨m
i Xi →

∨m
i {xi} on a metric wedge is strong deformation contraction.

Proof. We only need to show continuouity of R. Let {yi}i = {(pi, ti)}i be a Cauchy

sequence of points in ∨m
i Xi × I with limit y = (p, t). If y ∈ Xk − {xk} × I for some

k then limi→∞ R(yi) = R(y) as R restricts to continuous Rk. If y ∈ ∨m
i {xi} × I then

by definition 34

d(D(yi), D(y)) = d(D(pi, ti), D(∨m
i {xi}, ti)) ≤ d(pi,∨

m
i {xi}) →i→∞ 0.

Hence D is continuous. �
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Lemma 36. Let r > 0 and suppose that for each i ∈ Z+ the r−neighborhood Ui ⊂ Xi

of point xi ∈ Xi in a metric space (Xi, di) retracts to xi via strong deformation con-

traction Ri. Then for each pointed compact space (K, k0) there is a natural bijection

of homotopy classes of pointed maps [K,∨Z+Xi] = [K,∨m
Z+Xi].

Proof. The natural map ∨Z+Xi → ∨m
Z+Xi is continuous hence we have a natural

inclusion of the sets of maps C(K,∨Z+Xi) ⊂ C(K,∨m
Z+Xi) and C(K × I,∨Z+Xi) ⊂

C(K × I,∨m
Z+Xi) which induce a well defined map [K,∨Z+Xi] → [K,∨m

Z+Xi]. We will

show that this map is a bijection.

First we prove that every map f : (K, k0) → (∨m
Z+Xi, x0) is homotopic rel k0 to

a map g : (K, k0) → (∨m
S Xi, x0) ⊂ (∨m

Z+Xi, x0) for some finite subset S ⊂ Z+. The

finite metric and weak wedges coincide hence g can naturally be considered as a map

to ∨Z+Xi.

Let f : (K, k0) → (∨m
Z+Xi, x0) be a map. The sets Xi−Ui ⊂ ∨m

Z+Xi are 2r disjoint

hence there exists n ∈ N so that compact f(K) has empty intersection with Xi − Ui

for all i ≥ n. Let D be naturally defined homotopy on metric wedge

X1 ∨ X2 ∨ . . . ∨ Xn−1 ∨ Un ∨ Un+1 ∨ . . . ⊂ ∨m
Z+Xi

so that D(x, t) := x, ∀x ∈ X1∨X2∨. . .∨Xn−1 and D(x, t) := Ri(x, t) for all x ∈ Ui, i ≥

n. Note that map (x, t) 7→ D(f(x), t) defined on K × I is a homotopy rel k0 between

f and the map g whose image is contained in ∨i<nXi. Hence g can be considered

as a representative of [f ] in [K,∨Z+Xi] which means that [K,∨Z+Xi] → [K,∨m
Z+Xi]

is surjective. Using the same argument for space K × I we also see that ∨Z+Xi →

∨m
Z+Xi implies surjection on homotopies which means that [K,∨Z+Xi] → [K,∨m

Z+Xi]

is injection hence bijection is proved. �

Proposition 37. π∗(BHV ) = π∗(∨Z+S1).
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Proof. Again the crucial step is to extract the space P (BHV ). The proof is almost

the same as that of 30

1. Every point of the wall of BHV has arbitrarily small simply connected neigh-

borhood as the wall itself is homeomorphic to a countable union (in R4) of

S1 × (0, 1] with common line {1× I}. Hence the topology of P (BHV ) at those

points is no different from the topology in BHV .

2. The point (z = 0, ϕ = 0, r = 2, w = 0) (we will mark that point with x0) also

has arbitrarily small simply connected neighborhood. Let ε > 0 be very small

and consider neighborhood Uε of x0 in BHV that contains all points with z < ε,

|ϕ| < ε, 2+ε > r > 2−ε. We will show that any point x ∈ Uε can be connected

to x0 by a path which is enough for the proof of our claim.

If the z−coordinate of x equals 0 then x can be connected to x0 because the

pedestal (that contains both x0 and x) is locally simply connected.

If the z−coordinate of x equals h 6= 0 then Uε ∩ {z = h} is a finite wedge of

open arcs, containing path from x to a point (z = zh, ϕ = 0, r = 2). This point

can be connected to x0 in Hε by a straight line segment.

3. The points on pedestal with r > |ϕ|
π

+ 2 or r < − |ϕ|
π

+ 2 are not limit points of

the wall. Hence they all have arbitrarily small simply connected neighborhood.

4. The points on pedestal with |ϕ|
π

+ 2 ≥ r ≥ − |ϕ|
π

+ 2 are limit points of the wall.

But any point x, other that x0 has a neighborhood Ux small enough, so that

the path component of Ux containing x lies in the pedestal.

Summing up, the only change of topology happens at the points in (iv) which

become separated from the wall: they have neighborhoods contained only in the

pedestal. This means that P (BHV ) is homeomorphic to a wedge B2 ∨ (∪i∈Z+Wi ∪
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{x0}) where B2 represents pedestal, wedge point represents x0 and (∪i∈Z+Wi) is the

wall of BHV (each Wi represents the wall of some HV braided in BHV ). Such space

is represented by Figure 4.6.

Notice that the family {Wi}i is locally finite everywhere except at x0. The union

∪iWi in P (BHV ) can be replaced by a homeomorphic space: union of semi-open

lateral sides of cylinders of increasing radius and decreasing height. To make the

notation formal let S(r, h) ⊂ R3 be semi-open lateral side of cylinder of radius r,

height h based at (r, 0, 0) ∈ R3 :

S(r, h) = {(x, y, z) ∈ R3 | z ∈ (0, h]; dR2((x, y), (r, 0)) = r}.

Using this notation

P (BHV ) ∼=
(

B2 ∨ (∪i∈Z+S(2 −
1

i
,
1

i
) ∪ {x0})

)

where naturally x0 = (0, 0, 0) ∈ R3.

Using the obvious strong deformation retraction we see that

P (BHV ) ≃ V := ∪i{(x, y) ∈ R2 | dR2((x, y), (2−
1

i
, 0)) = 2 −

1

i
}.

Using 36 we get a natural bijection of homotopy classes of maps [K, V ] = [K,∨Z+S1]

for any compact space K. This bijection and 29 imply π∗(BHV ) ∼= π∗(∨Z+S1). �

Remark. Note that the space V is not homeomorphic to a countable wedge of circles,

it is homeomorphic to countable metric wedge of circles as the topology is not second

countable.
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. . .

...x0

Figure 4.6: P (BHV ).

4.4 Attaching the Relations

We have constructed a compact metric space BHV so that π1(BHV ) = 〈g1, g2, . . .〉.

In this subsection we will attach a disc B2 to a space BHV so that compactness

will be preserved and the fundamental group will change to 〈g1, g2, . . . | r1〉. The

following lemma explains how to attach a disc B2 to BHV at a certain ”height” so

that BHV ∪ B2 remains a subspace of R4. Recall that (z, w) stands for the pair of

third and fourth Cartesian coordinates in R4 respectively.

Notation. For every x, y ∈ R+ define:

• zx := (r = 2, ϕ = 0, z = x, w = 0);

• γx is the linear path from x0 = z0 to zx;

• γx
y is the linear path from zy to zx.

We will consider fundamental groups of HV ′s and BHV based at various points zh.

All the isomorphisms between differently based fundamental groups will be induced

by paths γ∗ and γ∗
∗ .
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Lemma 38. Suppose H = ∪i∈Z+HVi is a Braided Harmonic Vase where HVi are

naturally incorporated Harmonic Vases. Let h ∈ R+ and r = [g1g2 . . . gk] ∈ π1(H, zh)

where each [gi] denotes one of two generators of some [γh]−1 ∗ π1(HVj(i), x0) ∗ [γh].

Then there exists l ∈ R+ and an open topological 2−disc D so that:

1. D ⊂ {h ≥ z ≥ l} ⊂ R4

2. H ∩ D = ∅;

3. H ∪ D ⊂ R4 is naturally homeomorphic to H ∪r B2.

Remark. Parameters h and l allow us to attach B2 to desired relation on H as low

(in terms of positive z−coordinate) as necessary. For this purpose the loop g1g2 . . . gk

is based at zh as the loop along which we attach the disc should be contained in

{h ≥ z ≥ l}.

Proof. First we will define a path α in H ∩ {h ≥ z ≥ l} so that:

• α(0) := zh;

• α(1) = zl for some 0 < l ≤ h;

• [α ∗ γh
l ] = r ∈ π1(H, zh).

The construction of α is essentially a concatenation of two types of paths: vertical

paths γ∗
∗ (changing only the z−coordinate) and generators of π1(Wi) near inner-

heights.

Constructing the path

Define α(0) := zh and let a1 < h be an inner-height of HVj(1). Define α1(t) :=

γzh

za1
(1 − t). Note that the image of α1 is contained in H . Appropriate orientation of

a topological circle HVj(1) ∩{z = a1} based at za1
is a loop that represents [γh

za1
∗ g1 ∗
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(γh
za1

)−1] ∈ π1(H, za1
). Let β ′

1 denote such loop based at za1
, i.e. [β ′

1] = [γh
za1

∗ g1 ∗

(γh
za1

)−1] ∈ π1(H, za1
).

We still want to do a small correction of β ′
1. We want the function t 7→ πz(β

′
1(t))

to be decreasing where πz is projection to z−axis. The meaning of this condition

will be explained later. Recall the meaning of the function wj(1) from the definition

of BHV 32. The function wj(1) equals 0 on a neighborhood U1 of a1 ∈ R. It is not

hard to see that we can homotope β ′
1 to another path (denote it by β1) in HVj(1)

just by slightly changing z−coordinates within U1 (decrease z along β ′
1) so that we

preserve starting point β ′
1(0) = β1(0), make t 7→ πz(β1(t)) decreasing function and

[β ′
1] = [β1γ

a1

β1(1)
] ∈ π1(H, a1).

We proceed by induction: let a2 < β1(1) be an inner-height of HVj(2). Define path

α2(t) := γ
β1(1)
za2

(1− t). The correct orientation of the topological circle HVj(2)∩ {z =

a2} based at za2
represents [γh

za2
∗ g2 ∗ (γh

za2
)−1] ∈ π1(H, za2

). Let β ′
2 denote such loop

based at za2
. Again we perturb β ′

2 to path β2 so that t 7→ πz(β2(t)) is decreasing and

β ′
2(0) = β2(0).

Having defined paths αi (connecting paths) and βi (paths that represent ri) for

every i ∈ {1, . . . , k} we concatenate them to get α:

α := α1 ∗ β1 ∗ α2 ∗ β2 ∗ . . . ∗ αk ∗ βk

Note that such defined α satisfies required conditions: α(0) := zh, α(1) = zl for some

0 < l := βk(1) and [α ∗ γh
l ] = r ∈ π1(H, zh) by the construction. Also the map

t 7→ πz(α(t)) is decreasing.

Attaching the disc

We will now attach a disc B2 to H along α (hence it’s boundary will correspond

to r) so that the resulting space will still be embedded in R4. First we define a map

f : ∂I2 → H .
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Define f |{0}×[1,1/2] to be path α so that f(0, 0) = zh, define f |{0}×[1/2,1] to be path

γh
l so that f(0, 1) = zh and synchronize both parameterizations so that both paths

are injective and πzf(0, 1/2 − t) = πzf(0, 1/2 + t), ∀t ∈ [0, 1/2]. For every choice of

t ∈ [0, 1] define f(1, t) := (r = 0, z = πz(f(0, t)), w = 0). Restating the definition, left

side of ∂I2 is path αγzh

zl
and right side is the projection of αγzh

zl
to axis {r = 0, w = 0}.

Define the map f on the lower half of I2 via straight line segments:

f(s, t) := s(f(1, t)) + (1 − s)f(0, t) s ∈ (0, 1), t ∈ [0, 1/2].

Note that f(I×{s}) ⊂ {z = πz(f(0, s))} for any s ∈ [0, 1/2]. Because t 7→ πz(α(t))

is decreasing this means that f |I×[1,1/2] is injective.

We will use similar construction for the upper half of I2 but we do want f |(0,1)2 to be

injective. In order to ensure this we will use fourth dimension w. Let g : I× [1/2, 1] →

I be a map with the following properties:

• g(∂(I × [1/2, 1])) = 0;

• g(Int(I × [1/2, 1])) > 0,;

• g(x, y) < πz(f(1, y)), ∀x, y.

The first condition will be required for the continuouity of f , the second allows

f to be injective on (0, 1)2, and the third one is necessary to maintain compactness

of final construction. Define map f on upper half of I2 with perturbed straight line

segments:

f(s, t) := s(f(1, t)) + (1 − s)f(0, t) + g(s, t)W s ∈ (0, 1), t ∈ [1/2, 1],

where W is unit vector along w−axis. The Figure 4.7 visualizes the map f defined

in such a manner.
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α

γzh

zl
πz(γ

h
l )

πz(α) = πz

(

(γh
l )−1

)

Straight line segments

Straight line segments
perturbed in w

f(I × {1})

f(I × {0}) = f(I × {1})

Figure 4.7: Definition of a map f when attaching the disc.

Note that f |(0,1)2 is injective. As mentioned above f |I×[1,1/2] is injective due to

the map t 7→ πz(α(t)) being decreasing. Also f(I × [0, 1/2]) ⊂ {w = 0} = R3 × {0}

while all the points of f((0, 1)× (1/2, 1)) have nontrivial w−coordinate by definition

hence f |(0,1)2 is injective. Furthermore f((0, 1] × [0, 1]) ∩ H = ∅. To see it let us

analyze line segments f(I × {t}). If the ϕ−coordinate f((0, t)) equals zero then

f((0, 1] × {t}) ∩ H = ∅ which can be easily seen from Figure 4.1. On other levels

f((0, t)) is very close to an inner-height where by the definition f((0, t)) is the point

with smallest r−coordinate in H with given (ϕ, z)−coordinates. As the line segment

ends in the point (r = 0, z = t, w = 0) (so all the points of f((0, 1] × {t}) have even

smaller r−coordinate) we see that f((0, 1] × {t}) ∩ H = ∅.

We now show that f induces a map f ′ on B2 so that [∂f ′] = [r]. Notice the equality

of restrictions f |I×{0} = f |I×{1}. Also synchronized parametrization of f |{0}×I implies

equality f(1, 1/2− t) = f(1, 1/2+ t), ∀t ∈ [0, 1/2]. Identifying (1, 1/2− t) ∼ (1, 1/2+

t), ∀t ∈ [0, 1/2] and (t, 0) ∼ (t, 1), ∀t ∈ I we obtain quotient space B2. It is easy to see

that f induces map f ′ : B2 → R4 with the property [∂f ′] = r : S1 → H . Also f ′|B2−S1
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is injective and because H is compact we obtain equality H ∪ f ′(B2) ∼= H ∪r B2. �

Remark. Notice that H is sufficiently nice to use Seifert Van-Kampfen theorem to

obtain π1(H ∪r B2, x0) = 〈g1, g2, . . . | r〉.

4.5 Final Construction

Fix a countable group G = 〈g1, g2, . . . | r1, r2, . . .〉. Inductive use of 38 will provide us

with a compact path connected subspace of R4 that has G as fundamental group.

Theorem 39. For any countable group G = 〈g1, g2, . . . | r1, r2, . . .〉 there is a compact

path connected subspace XG ⊂ R4 so that π1(XG, x0) = G.

Proof. We will define space XG inductively. Start with X0 := BHV and use 38 to

attach B2 to X0 via map r1 within {z ∈ (h1, 1)} for some h1 > 0 to get X1. Proceed

by induction: use 38 to attach B2 to Xk via map rk+1 within {z ∈ (hk+1, hk)} for

some hk+1 > 0 to get Xk+1. If there are only finitely many relations halt after finitely

many steps, otherwise proceed with infinitely many steps and define XG := ∪iXi.

Space XG is natural subspace of R4 and is path connected as every point of Xi

is path connected to x0 ∈ Xi, ∀i. To prove XG is compact take any Cauchy sequence

{yi}i in XG. If πz(yi) converge to yz > 0 then use the fact that XG ∩ {z ≥ yz/2} is

compact as according to the construction only finitely many walls of braided HV ′s in

X0 (heights of braided HV ′s are decreasing) and only finitely many attached closed

discs B2 (see (i) of 38) intersect {z ≥ yz/2} nontrivially. Both HV ′s and discs B2

are compact hence XG ∩ {z ≥ yz/2} is compact therefore {yi}i has a limit in XG.

If πz(yi) converge to 0 then note that r−coordinates of all elements are bounded by

3 and w−coordinates of all elements are bounded by their z− coordinates by the

definition hence w−coordinate of limit point is 0. Therefore the limit point of {yi}i
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is contained in {r ≤ 3, z = w = 0} which is the pedestal of BHV hence contained in

XG.

The only thing left is to calculate π1(XG, x0). Again we will consider Peanification.

Using the same argument as above (see 30,37) we see that Peanification of XG only

moves pedestal apart from the wall of H and relations, keeping it attached to the rest

of the space only at x0. Thus P (XG) is not compact. We will prove that [K, P (XG)] =

∪i[K, Xi], ∀K compact, where [K, Xi] ⊆ [K, P (XG)] is a subset of those homotopy

classes of maps K → P (XG) that have representative mapping K → Xi ⊂ P (XG).

This will mean [K, XG] = ∪i[K, Xi], ∀K and hence (substituting K for S1 or S1 × I)

π1(XG, x0) = 〈g1, g2, . . . | r1, r2, . . .〉 as every loop and every homotopy of π1(XG, x0)

will be generated by some loop or homotopy of some Xi. Notice that spaces Xi are

nice enough to use Seifert Van-Kampfen theorem and obtain π1(Xi, x0) = 〈g1, g2, . . . |

r1, r2, . . . , ri〉. Therefore the proof is concluded in the case of finitely many relations

in the representation of G.

To prove equality [K, P (XG)] = ∪i[K, Xi], ∀K for general countable group G take

any map f : K → P (XG) and consider P (XG) ∩ {r = ϕ = w = 0}. For every i ∈ Z+

fix a point xi ∈ Li := B2
i ∩ {r = ϕ = w = 0} ⊂ {z ∈ (hi+1, hi)}, where B2

i is B2

attached in ith step of construction of XG. Recall from the definition that every B2
i

intersects {r = ϕ = w = 0}. Because limk→∞ hk = 0 the points xi are converging

to {z = r = ϕ = w = 0} /∈ P (XG) hence f(K) can only hit finitely many points

xi which implies existence of j ∈ Z+ so that xi /∈ f(K), ∀i > j. Every point xi is

contained in the interior of B2
i and because discs are apart from each other (separated

by different zones of z−coordinate they occupy) there are natural strong deformation

retractions (B2
i − {xi}) → ∂B2

i ⊂ Xj, ∀i > j which induce homotopy of f to a map

f ′ : K → Xj. �
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[6] A. Przeździecki (2006): Measurable cardinals and fundamental groups of compact

spaces, Fund. Math. 192 (2006), no. 1, 87-92.

[7] S. Shelah (1988): Can the Fundamental (Homotopy) Group of a Space be the Ra-

tionals?, Proc. of the AMS, Vol. 103, No. 2, 627-632 .
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