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Abstract

This dissertation considers the use of optimal control theory in population models for the

purpose of characterizing strategies of control which minimize an invasive or infected pop-

ulation with the least cost. Three different models and optimal control problems are pre-

sented. Each model describes population dynamics via a system of differential equations

and includes the effects of one or more control methods.

The first model is a system of two ordinary differential equations describing dynam-

ics between a native population and an invasive population. Population growth terms are

functions of the control, constructed so that the value of the control may affect each pop-

ulation differently. A novel existence result is presented for the case of quadratic growth

functions. With parameters chosen to mimic the competition between cottonwood and salt

cedar plants, optimal schedules of controlled flooding are displayed.

The second model, a system of six ordinary differential equations, describes the spread

of cholera in a human population through ingestion of Vibrio cholerae. Equations track

movement of susceptible individuals to either an asymptomatic infected class or a symp-

tomatic infected class through ingestion of bacteria, both in a hyperinfectious state and a

less-infectious state. Recovered individuals temporarily move to an immune class before

being placed back in the susceptible class. A new result quantifies contributions to the ba-

sic reproductive number from multiple infectious classes. Within the model, three control

functions represent rehydration and antibiotic treatment, vaccination, and sanitation. The

cost-effective balance of multiple cholera intervention methods is compared for two endemic

populations.

The third model describes the spread of disease in both time and space using a system of

v



three parabolic partial differential equations with convection-diffusion movement terms and

no-flux boundary conditions. A control function representing vaccination is incorporated.

State variables track the number of susceptible, infected, and immune individuals. Detailed

analysis for the characterization of the optimal control is provided. The model and optimal

control results are applied to the spread of rabies among raccoons with the control function

determining the timing and placement of oral vaccine baits. Results illustrate cost-effective

vaccine distribution strategies for both regular and irregular patterns of rabies propagation.
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Chapter 1

Introduction

1.1 Mathematical Models of Invasion

Mathematical models aid in understanding the dynamics and possible consequences of in-

teracting populations. Models are particularly useful in developing strategies for the control

of a harmful invasion. In the context of this dissertation, an invasion is perceived as an

intruding population competing for resources with a native population or as an infectious

disease permeating a susceptible population. Mathematical analysis, along with numerical

simulations, can evaluate consequences of intervention strategies that would be unethical

or cost-prohibitive to attempt under real world conditions.

To describe the interactions between population states, we use a system of either or-

dinary differential equations (ODEs) or partial differential equations (PDEs). Within the

system, methods of intervention are modeled as control functions. The value of the control

function affects the state differential equations and trajectories. We formulate an appropri-

ate goal which depends on the control(s) and corresponding solutions of our system. An

optimal control is one which achieves our goal.

In Chapter 2, the system of coupled ODEs
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dN1(t)
dt

= (Θ1(t, u(t))− a11N1(t)− a12N2(t))N1(t),

dN2(t)
dt

= (Θ2(t, u(t))− a21N1(t)− a22N2(t))N2(t)

describes dynamics between a native population, N1, and an invasive population, N2.

The control, u, appears within the growth function, Θi, of each species. A novel existence

result allows us to choose the growth functions as quadratic functions of u. Parameter

values for numerical simulations are chosen to represent the competition between the native

cottonwood tree and the invasive salt cedar shrub in the American southwest. Here, the

level of flooding permitted in nearby rivers is a control which affects each population’s

growth rate differently. The goal is to characterize the control schedule which minimizes

the invasive population and the cost of the control while maximizing the native population

at a final time.

In Chapter 3, the ODE system

dS

dt
= −

[
βL

BL(t)
κL +BL(t)

+ βH
BH(t)

κH +BH(t)
]
S(t) + ωR(t),

dIA
dt

= p
[
βL

BL(t)
κL +BL(t)

+ βH
BH(t)

κH +BH(t)
]
S(t)− (e1 + γ1)IA(t)

dIS
dt

= (1− p)
[
βL

BL(t)
κL +BL(t)

+ βH
BH(t)

κH +BH(t)
]
S(t)− (e2 + γ2)IS(t)

dR

dt
= γ1IA(t) + γ2IS(t)− ωR(t),

dBH
dt

= η1IA(t) + η2IS(t)− χBH(t),

dBL
dt

= χBH(t)− δBL(t)

is formulated to describe the spread of cholera within a human population. Population

states include susceptible (S), asymptomatic infected (IA), symptomatic infected (IS), and

recovered or immune (R) individuals. In addition, states (BH and BL) are added to track

2



the concentration of hyperinfectious and less-infectious bacteria within the environment.

The environmental supply of bacteria is linked to the disease transmission terms within the

human state equations. We extend the above model to include the effects of three controls

(vaccination, sanitation, and rehydration therapy combined with antibiotics). The goal is

to characterize the balance of the three controls which minimizes death due to disease and

the cost of intervention over a finite time period. We also investigate optimal applications

of one control.

In Chapter 4, we investigate a spatiotemporal model tracking the number of susceptible

(S), infected (I), and immune (R) individuals within a population. To do this, we use the

PDE system

L1S = b(S +R)− µ1S − βSI − avS,

L2I = βSI − µ2I,

L3R = −µ1R+ avS

where the operators Lk, k = 1, 2, 3 are defined as

Lku ≡
∂u

∂t
−

n∑
i,j=1

(akijuxi)xj +
n∑
i=1

(bki u)xi .

No-flux boundary conditions are also attached to the state system. The control v, considered

a rate of vaccination, moves individuals from the S class to the R class. This system allows

a more thorough investigation of disease dynamics by looking at both spatial and temporal

spread. The goal is to characterize the timing and location of vaccination which minimizes

the number of infected individuals and the cost of the control over a finite space and time

domain. For numerical simulations, parameters are chosen according to the spread of rabies

among a raccoon population. Here, vaccination is achieved through distribution of oral

vaccine baits over a large area. We investigate optimal vaccination distribution for both

regular and irregular patterns of disease propagation.

In designing the optimal control problem for all the scenarios described above, the
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goal is formulated as minimizing an integral expression called the objective functional. To

characterize the control(s) which minimize the objective functional, optimal control theory is

used. The following is an introduction to optimal control theory and includes fundamental

results regarding control of one state equation. Subsequential chapters provide detailed

proofs for our state systems and optimal controls. Because numerical simulations will

be used to approximate solutions and illustrate results, we also include a section in this

introductory chapter summarizing the employed numerical methods.

1.2 Optimal Control for Ordinary Differential Equations

Although the models presented in this dissertation will be systems of two or more differential

equations, we look first at optimal control of a single ODE. We denote u(t) as the control

and x(t) as the state. The state function, x(t), satisfies the ODE modeling the scenario.

The control affects the state ODE by

x′(t) = g(t, x(t), u(t)).

Both u(t) and x(t) affect the goal, represented by the objective functional. The objective

functional is typically an integral expression formulated terms of the state and control

variables. We seek to find an optimal control and corresponding state that achieve the

maximum (or minimum) of our objective functional.

The optimal control problem may be stated as

max
u∈U

∫ T

0
f(t, x(t), u(t))dt (1.1)

subject to

x′(t) = g(t, x(t), u(t)) (1.2)
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where x(0) = x0 and x(T ) is free. (1.3)

We assume our control set U to be Lebesgue measurable functions.

An optimal control, denoted by u∗(t), achieves the maximum. Assuming f and g are

continuously differentiable in their arguments, one can state the first order necessary condi-

tions in the simplest form by Pontryagin’s Maximum Principle [66]. Optimal control theory

for ODEs was developed by Pontryagin and his collaborators around 1950. They developed

the key idea of introducing the adjoint function to attach the differential equation to the

objective functional. For an introduction to optimal control theory, see [49].

Theorem 1. Pontryagin’s Maximum Principle If u∗(t) and x∗(t) are optimal for prob-

lem (1.1)-(1.3), then there exists adjoint variable λ(t) such that

H(t, x∗(t), u(t), λ(t)) ≤ H(t, x∗(t), u∗(t), λ(t)),

at each time, where the Hamiltonian H is defined by

H(t, x(t), u(t), λ(t)) = f(t, x(t), u(t)) + λ(t)g(t, x(t), u(t))

and

λ′(t) = −∂H(t, x(t), u(t), λ(t))
∂x

λ(T ) = 0.

The final time condition on the adjoint variable is called the transversality condition.

This principle converted the problem of finding a control which maximizes the objective

functional subject to the state ODE and initial condition to a the problem of optimizing

the Hamiltonian pointwise. As stated above, the Hamiltonian is defined by
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H(t, x, u, λ) = f(t, x, u) + λg(t, x, u)

= (integrand) + (adjoint)× (RHS of ODE).

One can generate the necessary conditions by maximizing H with respect to u at u∗.

They are

∂H

∂u
= 0⇒ fu + λgu = 0 (optimality equation),

λ′ = −∂H
∂x
⇒ λ′ = − (fx + λgx) (adjoint equation), and

λ(T ) = 0 (transversality condition).

We can also consider second order conditions. For maximization, we have

∂2H

∂u2
≤ 0 at u∗

and for minimization, we have

∂2H

∂u2
≥ 0 at u∗.

We started with two unknowns, u∗ and x∗, and we introduced an adjoint variable,

λ. Now we have three unknowns, u∗, x∗ and λ. Frequently, when the control enters

into the problem in a nonlinear way, we can set Hu|u=u∗ = 0 and solve for u∗. This

characterization of the optimal control will be in terms of x∗ and λ. In many biological or

physical problems, the controls will have bounds imposed due to the specific application.

Pontryagin’s Maximum Principle still holds when the controls are constrained within the

bounds

a ≤ u(t) ≤ b.
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We refer to the state and adjoint differential equations, along with control characteriza-

tion, as the optimality system. Often, solutions of the optimality system cannot be solved

explicitly, but can be approximated numerically. See Chapter 1.4 for a summary of the

numerical methods used in this dissertation to solve optimality systems.

1.3 Optimal Control for Partial Differential Equations

No full generalization of Pontryagin’s Maximum Principle has been made to infinite dimen-

sional systems. However, in a system governed by PDEs, the ideas of Pontryagin can be

used as an aid in characterizing an optimal control through an optimality system containing

state and adjoint equations. The following is an outline of the solution technique as applied

to the parabolic system in Chapter 4. See [51] for some specific results.

Let u(x, t) denote the control function and s(x, t) denote the state variable, both func-

tions of space and time. Consider the optimal control problem of finding u∗ such that

J(u∗) = inf
u∈U

J(u)

subject to

Ls = g(s, u)

where L is a known partial differential operator specific to the scenario and g is a continuous

function of s and u. The set of admissible controls, U , is considered L∞ functions of our

space-time domain. The objective functional, specified here by J , is an integral expression

containing a combination of both state and control variables.

To begin, the existence and uniqueness of the solution to the state equation are proven.

For our system in Chapter 4, we construct a proof via a contraction mapping. The exis-

tence of an optimal control is then obtained through a minimizing sequence argument and

continuous dependence of the states on the control. To obtain the necessary conditions for

the optimal control, the objective functional J is differentiated with respect to the control

u. Specifically, for u, h ∈ U , we take the Gateaux derivative of J with respect to u in the

direction h,
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lim
ε→0

J(u+ εh)− J(u)
ε

.

Since the objective functional usually contains the state variables, the states must first

be differentiated with respect to the control. These directional derivatives are shown to

converge to sensitivity functions. The sensitivities solve a linearized version of the state

equations. At this point, a priori estimates are needed for the existence of the state system,

the existence of an optimal control, and the convergence of the difference quotients to

sensitivities.

Finally, the adjoint of the operator of the linearized equations is introduced with a

final time condition and other appropriate boundary conditions. The components of the

right-hand side of the adjoint system are the derivatives of the integrand of the objective

functional with respect to each state.

Through standard optimality techniques, analyzing the objective functional and utilizing

relationships between the state and adjoint equations, a characterization of the control is

formulated. The optimality system consists of the state equations, adjoint equations, and

control characterization. In the parabolic case, uniqueness for the optimality system, which

characterizes the unique optimal control, holds only for sufficiently small time.

Next, we review the numerical scheme used to solve the optimality system.

1.4 Numerical Approximations to Solutions

It may not be possible to solve the optimality system analytically. Instead, we use numerical

methods to approximate solutions and display results. To solve the optimality system with

initial conditions for the states and final time conditions for the adjoints, an iterative scheme

will be used. For systems of ODEs, we use a Runge Kutta method of the fourth order within

the iterative scheme. For systems of PDEs, an explicit finite difference method accompanies

the iterative scheme. We generalize the iterative scheme below, but refer the reader to

Appendix A for details regarding the Runge Kutta and finite difference algorithms.

The iterative scheme can be generalized by the following steps.

8



1. Establish initial guess for control variable.

2. Given initial conditions for states, approximate solutions for state equations using

either Runge Kutta or finite difference forward sweep method.

3. Given the state solutions from previous step and the final time conditions for ad-

joints, approximate solutions for adjoint equations using either Runge Kutta or finite

difference backwards sweep method.

4. Update value of control variable by averaging the previous value and the new value

arising from the control characterization.

5. Repeat steps 1-4 until successive values of all states, adjoints, and control(s) are

sufficiently close.

The last step determining convergence requires the state, adjoint, and control values

from two successive iterations to satisfy the relation

‖v − oldv‖
‖v‖

≤ ε

where ε is the accepted tolerance, v is the vector (or matrix) of current values, oldv is the

vector (or matrix) from the previous iteration, and ‖ · ‖ refers to the sum of the absolute

value of the elements within v.
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Chapter 2

Optimal Control Applied to

Native-Invasive Population

Dynamics

2.1 Background

The problem of invasive, non-native species has become common in much of the world, in

large part due to the introduction of new species by human beings, albeit sometimes acci-

dentally. When developing successful plans for the eradication or control of invasives, the

resulting dynamics must be considered [53, 59, 75]. Human alterations to a local environ-

ment can alter the interactions between two competing species, and should be taken into

account when managing invasive species [64]. A natural disturbance in the environment,

such as fire or flood, is often detrimental to businesses, homes and agriculture. Therefore

such disturbance is often restricted or prevented. However, native species may depend on

this natural disturbance to grow and propagate.

An illustrative example of this occurs in the American southwest. Native cottonwood

trees (such as Populus deltoides) have to contend with a number of invasive species; among

the most prevalent are Tamarix ramosissima and several other members of the genus
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Tamarix, which are commonly known as tamarisks or salt cedars. Due to the low lev-

els of rainfall in much of the region, cottonwood forests tend to dominate naturally only

along rivers or other areas where there is surface water. Salt cedars, originally from central

Asia and western China, were introduced into New Mexico in the 19th century, and to

nearby regions at roughly the same time. Salt cedars were classified as an invasive species

by the mid-twentieth century [89]. They are more tolerant of drought, salinity, and fire

than cottonwoods, all of which can occur when overbank flooding is restricted or eliminated

[73]. Currently, salt cedars occupy nearly every drainage system in arid and semi-arid areas

west of the Great Plains, at minimum one million acres, and have been reported in about

half of the eastern states of the United States [89].

For many years, the number of young cottonwood trees along rivers in the desert south-

west has declined, with few if any young trees replacing the older ones. It has been suggested

that salt cedars may competitively exclude cottonwood. However recent studies have in-

dicated that densities of cottonwood are not affected by the presence of salt cedar unless

the densities of cottonwood are very low [72, 73, 74, 80]. While in many cases disturbance

of an ecosystem allows an invasive species to become established, flooding is critical to the

continuance of cottonwood forests. Current flood controls on large Southwest rivers, such

as the Rio Grande, have allowed for an opportunistic invasion of salt cedars, which are far

less affected by the conditions. Some studies have suggested that when the environment is

allowed to return to a more natural state (especially with regard to flood control), the two

species will co-exist, or the cottonwood will become the dominant species once again (see

Stromberg [80], and Sher et al. [72]).

Disturbances such as fire may be used to control an invasive species and to allow the

native species to flourish [16, 39, 65]. Unlike flooding, however, the timing and extent of

fire is not always as advantageous to the native species. In the case of frequent fires, an

invasive species can take advantage of an open space that fire can bring, and push out native

species. Prescribed burns may still be necessary to prevent wildfires, but consideration needs

to be taken so that the ecosystem does not respond in the same way when invasives are

present, and larger burns may now help invasive species substantially more than native

ones [16]. In other circumstances, a prescribed burn at an appropriate time of the year
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could be critical for preventing the spread of an invasive species, such as in Pollack and

Kan’s research on prescribed burns to control exotic annual grasses among native perennial

grasses in California [65]. Also see the works by Beckage et al. [8] for the responses of pine

savannas to fire disturbances, and by Bond et al. [13] documenting the importance of fire

in promoting the spread of grasslands and savannas.

We present a system of two ordinary differential equations (ODEs) to represent our com-

petition model with a control acting on the growth terms. A key point is that the control

affects each species differently. We note that ODE models can represent such competition

in plants or animals [24, 83, 85]. The primary goal here is to maximize the amount of the

native species by applying the control action at appropriate times of year, while minimizing

the “cost” of implementing the control. This “cost” may include the actual financial im-

pact to carry out the management plan but also may consider the negative impact on the

environment or economic development.

Motivated by the idea of “flooding,” which may be detrimental at low and high levels

and advantageous at medium levels, we consider growth functions which are quadratic in

the controls. A new control analysis result presented here develops the existence of an

optimal control in the case of quadratic functions of the control appearing in both ODEs,

under a restriction on the coefficients of the quadratics.

The model and optimal control formulation are introduced in the Section 2.2. We present

the existence of optimal control results in Section 2.3, along with the necessary conditions

for solving this optimal control problem. The optimal control is characterized in terms of

the adjoints and states. In the Section 2.4, we illustrate some numerical results for the

cottonwood-salt cedar scenario and other situations and include some concluding remarks.

2.2 Model Formulation

The state variables in this model represent the population densities (seedlings per unit of

area). The general model for the population dynamics is given by

12



dN1(t)
dt

= (Θ1(t, u(t))− a11N1(t)− a12N2(t))N1(t), (2.1)

dN2(t)
dt

= (Θ2(t, u(t))− a21N1(t)− a22N2(t))N2(t), (2.2)

N1(0) = G1, N2(0) = G2, (2.3)

where Θi(t, u(t)) are the intrinsic net growth rates (depending on the control u(·)), and

aij are the interaction coefficients indicating how species j affects species i. We are using

the convention that the N1 population is the (native) population that we want to grow

by applying the control. Population N2 is the competitor (perhaps invasive) population.

The initial population values G1 and G2 are known positive constants. The interaction

coefficients a11, a12, a21 and a22 are assumed to be positive.

The control variable u(t) represents the amount of intervention at time t (in years).

The control u has a pair of constraints. First, the control is scaled so that 0 ≤ u ≤ 1.

More notably, we only allow the control action to take place during certain times of the

year. Connecting back with our motivating example, we would only allow flooding during

the spring thaw when cottonwoods release their seeds. Starting the year in the spring, this

is taken to occur during the first tenth of each year. Similarly, prescribed burns may be

done in the late spring just before seed dispersal, or right after the start of seasonal rains.

For instance, Pollack and Kan [65] found that after carefully timed burns, medusahead, an

exotic grass present in California’s Central Valley, was dramatically reduced or eliminated

while native species returned to dominance in every site examined.

Thus we define our control set to be

U = {u : [0, T ]→ [0, 1]|u Lebesgue measurable},

and

13



Θ1(t, u) = (a1u
2 + b1u)IΩ(t) + c1,

Θ2(t, u) = (a2u
2 + b2u)IΩ(t) + c2.

Here, IΩ(·) is the characteristic function of the set Ω, which is given by Ω =
⋃T
i=1[σi, τi],

with T denoting the number of years of controls and interval [σi, τi] being in the i-th year.

Then we see that on the set [0, T ] \ Ω, the control does not appear in the state equation,

which amounts to saying that the control does not apply during those time intervals.

The growth rate parameters, a1, b1, c1, a2, b2 and c2, are chosen to fit a specific scenario.

In the cottonwood-salt cedar case, ecological research influences the choice of growth rates.

Tallent–Halsell and Walker [81] noted that both insufficient and excessive water levels can

severely affect the establishment rate of salt cedars. In spite of this, salt cedars are better

able to tolerate drought than cottonwoods; the population density still can increase without

excessive flooding, though it more likely comes from vegetative growth rather than seedlings.

Sher et al. [73, 74] found that flooding patterns similar to those present before the use of

damming and other controls increased the establishment of cottonwood seedlings. Thus,

the parameters are chosen so that with little or no flooding the salt cedar population, N2,

has a higher growth rate than the cottonwood population, N1.

It should be noted that for other scenarios, the choice of growth rate parameters may

be quite different. For instance, Brooks and Pyke [16] comment that regular, periodic fire

in some ecosystems may allow for invasive species to become dominant, even in cases where

fire is a natural occurrence and where native species are well-adapted to regular burns.

In this circumstance, the growth parameters would instead be chosen so that the native

population N1 has a higher growth rate in the absence of fire, but not for extensive burns.

Our objective functional to be maximized is given by:

J(u(·)) = AN1(T )−KN2(T )−
∫ T

0
[Bu(t) + εu2(t)]IΩ(t)dt (2.4)

where the native population is to be maximized at the final T subject to balancing the
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minimization of the second population and the cost of implementing the control. Many times

the cost of implementing a control would be nonlinear and as such a simple nonlinear case

is taken here. As mentioned, the costs can include funds needed for control implementation

as well as the negative financial impact on the environment. If one takes K = 0, then the

emphasis is to promote the first population without regard to the second population.

2.3 Existence and Optimality System

The nonlinear state system with measurable coefficients as controls has a solution N(·) ≡

(N1(·), N2(·)) taking values in R2
+ ≡ {(N1, N2) ∈ R2

∣∣ N1, N2 > 0}, due to a standard

result in Lukes [54], and a priori L∞ bounds hold for the states from the structure of the

system.

Because the growth functions, Θ1,Θ2, are quadratic in the control with a coefficient

restriction, we must do some analysis to get the existence of an optimal control. To begin

with, for any (t,N) ∈ [0, T ]×R2
+, let us denote

f(t,N, u) =

Θ1(t, u)N1

Θ2(t, u)N2

 , g(N) =

(a11N1 + a12N2)N1

(a21N1 + a22N2)N2

 ,

f0(t, u) = (εu2 +Bu)IΩ(t), g0(N) = AN1 −KN2.

Then the state equation reads

dN(t)
dt

= f(t,N(t), u(t))− g(N(t)),

and the payoff functional reads

J(u(·)) = g0(N(T ))−
∫ T

0
f0(t, u(t))dt.

Our main result of this section is the following theorem.
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Theorem 2. Suppose there exists a κ ≥ 0 such that

a1

a2

 = κ

b1
b2

 , Bκ− ε ≤ 0, (2.5)

then there exists an optimal control u∗ in U with corresponding states N∗1 , N
∗
2 that maximizes

the objective functional J(u) defined by (2.4).

Proof: For any (t,N) ∈ [0, T ]×R2
+, define

ε(t,N) =
{

(z0, z) ∈ R1+2
∣∣ z0 ≥ f0(t, u), z = f(t,N, u), for some u∈ [0, 1]

}
.

The proof consists of two steps. In Step 1, we will show that an optimal control exists if for

almost all t ∈ [0, T ] and each N∈ R2
+, the set ε(t,N) is convex and closed. In Step 2, we

will show that ε(t,N) is convex and closed.

Step 1: Let {un(·)}n≥1 be a maximizing sequence and Nn(·) be the state trajectory cor-

responding to un(·). We can show that the sequence {Nn(·)} is uniformly bounded and

equicontinuous. Thus, by the Ascoli-Arzela Theorem, we assume

Nn(·)→ N̄(·) uniformly on [0,T] for some N̄(·) ∈ C([0,T];R2
+).

By the definition of ε(t,N),

(z0
n(t), zn(t)) ≡ (f0(t, un(t)), f(t,Nn(t), un(t))) ∈ ε(t,Nn(t)) a.e. t ∈ [0, T ].

The uniform boundedness of Nn(·) leads to the uniform boundedness of (z0
n(·), zn(·)), thus

implying the L2(0, T ) weak convergence of (z0
n, zn) to some (z̄0, z̄).

By Mazur’s Theorem, there exists some function σ : N→ N and a sequence of sets of real

numbers {αij |i = j, ..., σ(j)}∞j=1 such that

αij ≥ 0,
σ(j)∑
i=j

αij = 1

and the sequence
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ϕj(·) ≡
σ(j)∑
i=j

αij(z0
i (t), zi(t))→ (z̄0(t), z̄(t)) strongly in L2(0, T ).

Therefore, we may assume that on a subsequence ϕj(·) → (z̄0(t), z̄(t)) pointwise almost

everywhere on [0,T]. By Egorov’s Theorem, we have for any ε > 0, there exists an Eε ⊆ [0, T ],

such that |Eε| > T − ε (where |Eε| is the Lebesgue measure of Eε) and

ϕj(·)→ (z̄0(t), z̄(t)) uniformly on Eε as j→∞,

Furthermore, because Nn(·) → N̄(·) uniformly on Eε and ε(t,N) is convex, we have that

for any δ > 0

ϕj(t) ∈ Nδ(ε(t, N̄(t))) for t ∈ Eε and j large,

where Nδ(A) is the δ-neighborhood of set A.

The closedness of ε(t,N) gives

(z̄0(t), z̄(t)) ∈
⋂
δ>0Nδ(ε(t, N̄(t))) = ε(t, N̄(t)) for t ∈ Eε.

Since ε > 0 is arbitrary, we obtain

(z̄0(t), z̄(t)) ∈ ε(t, N̄(t)) a.e. t ∈[0,T].

This means that there exists ū(·) such that

z̄0(t) ≥ f0(t, ū(t)), z̄(t) = f(t, N̄(t), ū(t)) a.e. t ∈[0,T].

By the definition of ε(t,N) we obtain

dN̄(t)
dt = z̄(t)− g(N̄(t)).

Thus N̄(·) is the state trajectory corresponding to the control ū(·).

The known convergence of Nn(T ) → N̄(T ) in R2
+ and (z0

n(t), zn(t)) → (z̄0, z̄) weakly in

L2(0, T ) gives
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sup
u(·)∈U

J(u(·)) = lim
n→∞

J(un(·))

= lim
n→∞

g0(Nn(T ))− lim
n→∞

∫ T

0
z0
n(t)dt

= g0(N̄(T ))−
∫ T

0
z̄0(t)dt

≤ g0(N̄(T ))−
∫ T

0
f0(t, ū(t))dt

= J(ū(·)).

Thus, ū(·) is an optimal control.

Step 2: The closed property is obvious since u 7→ (f0(t, u), f(t,N, u)) is continuous. For

the convexity, we note that (2.5) yields

f(t,N, u) = (κu2 + u)IΩ(t)

b1N1

b2N2

+

c1N1

c2N2

 .

Clearly, when t ∈ [0, T ] \ Ω,

ε(t,N) = [0,∞)×
{c1N1

c2N2

}

is trivially convex. Hence we now consider t ∈ Ω. Denote ϕ(u) = κu2 + u. Since κ ≥ 0,

ϕ′(u) = 2κu+ 1 ≥ 0, for u ∈ [0, 1]. Thus, ϕ(·) is convex, monotone increasing, and

ϕ([0, 1]) = [ϕ(0), ϕ(1)] = [0, κ+ 1], (2.6)

which is convex. Consequently, f(t,N, [0, 1]) is convex. Now, for any (z0, z), (ζ0, ζ) ∈ ε(t,N)

and λ ∈ (0, 1), we have some u, v ∈ [0, 1] such that
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z = f(t,N, u), z0 ≥ f0(t, u),

ζ = f(t,N, u), ζ0 ≥ f0(t, u)

By the convexity of ϕ(·) and (2.6), we can find some w ∈ [0, 1] such that

ϕ(λu+ (1− λ)v) ≤ λϕ(u) + (1− λ)ϕ(v) = ϕ(w) (2.7)

which leads to

λz + (1− λ)ζ ≡ λf(t,N, u) + (1− λ)f(t,N, v)

= [λϕ(u) + (1− λ)ϕ(v)]

b1N1

b2N2

+

c1N1

c2N2


= ϕ(w)

b1N1

b2N2

+

c1N1

c2N2


= f(t,N,w).

By the monotonicity of u 7→ ϕ(u), we have from the inequality in (2.7) that

λu+ (1− λ)v ≤ w. (2.8)

Further, from the equality in (2.7), we see that

κ[λu2 + (1− λ)v2 − w2] + λu+ (1− λ)v − w = 0. (2.9)

Hence, in the case that κ > 0, (2.9), (2.5) and (2.8) imply
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λz0 + (1− λ)ζ0 − f0(t, w) ≥ λf0(t, u) + (1− λ)f0(t, v)− f0(t, w)

= ε[λu2 + (1− λ)v2 − w2] +B[λu+ (1− λ)v − w]

= (B − ε

κ
)[λu+ (1− λ)v − w]

≥ 0.

In the case that κ = 0, (2.9) becomes

w = λu+ (1− λ)v.

By the above equality and the convexity of u 7→ u2, we have

λz0 + (1− λ)ζ0 − f0(t, w) ≥ λf0(t, u) + (1− λ)f0(t, v)− f0(t, w)

= ε(λu2 + (1− λ)v2 − w2) +B(λu+ (1− λ)v − w)

= ε(λu2 + (1− λ)v2 − [λu+ (1− λ)v]2)

≥ 0.

Hence, we obtain

λ(z0, z) + (1− λ)(ζ0, ζ) ∈ ε(t,N),

proving the convexity of ε(t,N).

We now use Pontryagin’s Maximum Principle [66] to find the optimal control. Formu-

lated from the cost functional (2.4) and the governing dynamics (2.1),(2.2), the Hamiltonian

is
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H = −Bu− εu2 + λ1(Θ1(u)− a11N1 − a12N2)N1

+ λ2(Θ2(u)− a21N1 − a22N2)N2 (2.10)

where λ1 and λ2 are the associated adjoints for states N1 and N2 respectively. The adjoint

variables will be needed to calculate the optimal control. The system of equations is found

by taking the appropriate partial derivatives of the Hamiltonian (2.10) with respect to the

associated state variable.

Theorem 3. Suppose (2.5) holds with Bκ − ε < 0. Given an optimal control u∗ and

corresponding states N∗1 , N∗2 , there exist adjoint functions satisfying

λ′1 = λ1(−Θ1(u∗) + 2a11N
∗
1 + a12N

∗
2 ) + λ2a21N

∗
2 (2.11)

λ′2 = λ2(−Θ2(u∗) + 2a22N
∗
2 + a21N

∗
1 ) + λ1a12N

∗
1 (2.12)

with transversality conditions

λ1(T ) = A, λ2(T ) = −K. (2.13)

Furthermore, the optimal control is characterized by

u∗(t) = min
[
1,max(0,

−B + b1λ1(t)N∗1 (t) + b2λ2(t)N∗2 (t)
2ε− 2a1λ1(t)N∗1 (t)− 2a2λ2(t)N∗2 (t)

)
]

(2.14)

for 0 ≤ t ≤ T such that ε− a1λ1(t)N∗1 (t)− a2λ2(t)N∗2 (t) 6= 0.

If there exists 0 ≤ t̄ ≤ T such that ε− a1λ1(t̄)N∗1 (t̄)− a2λ2(t̄)N∗2 (t̄) = 0, then u∗(t̄) = 1.

Proof: To calculate the adjoint differential equations (3.18) and (3.19), we use

λ′1 = − ∂H
∂N1

λ′2 = − ∂H
∂N2

.
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Final time values in (2.13) are derived from the transversality conditions

d(AN1(T ))
dN1(T )

= λ1(T ),

d(−KN2(T ))
dN2(T )

= λ2(T ).

On the set of all 0 ≤ t ≤ T such that ε− a1λ1(t)N∗1 (t)− a2λ2(t)N∗2 (t) 6= 0, the Hamiltonian

(2.10) is quadratic in the control, u. Because of the bounds on the control, we consider

three cases in the characterization of the control.

1. On the set {t|0 < u∗(t) < 1}, we have

0 =
∂H

∂u
|u∗

= −B +−2εu∗ + 2a1u
∗λ1N

∗
1 + b1λ1N

∗
1 + 2a2u

∗λ2N
∗
2 + b2λ2N

∗
2 .

Solving the above for u∗ yields

u∗(t) =
−B + b1λ1(t)N∗1 (t) + b2λ2(t)N∗2 (t)
2ε− 2a1λ1(t)N∗1 (t)− 2a2λ2(t)N∗2 (t)

.

2. On the set {t|u∗(t) = 0}, we have

0 ≥ ∂H

∂u
|u∗

= −B + b1λ1N
∗
1 + b2λ2N

∗
2 . (2.15)

Multiplying the above inequality by −κ and using relationships in (2.5) yields

0 ≤ κB − κb1λ1N
∗
1 − κb2λ2N

∗
2

≤ ε− a1λ1N
∗
1 − a2λ2N

∗
2 (2.16)
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The two inequalities (2.15),(2.16) force

−B + b1λ1(t)N∗1 (t) + b2λ2(t)N∗2 (t)
2ε− 2a1λ1(t)N∗1 (t)− 2a2λ2(t)N∗2 (t)

≤ 0

and therefore the characterization

u∗(t) = max(0,
−B + b1λ1(t)N∗1 (t) + b2λ2(t)N∗2 (t)
2ε− 2a1λ1(t)N∗1 (t)− 2a2λ2(t)N∗2 (t)

)

holds on this set.

3. On the set {t|u∗(t) = 1}, we have

0 ≤ ∂H

∂u
|u∗

= −B +−2ε+ 2a1λ1N
∗
1 + b1λ1N

∗
1 + 2a2λ2N

∗
2 + b2λ2N

∗
2 .

Rearranging the inequality gives

2ε− 2a1λ1N
∗
1 − 2a2λ2N

∗
2 ≤ −B + b1λ1N

∗
1 + b2λ2N

∗
2 . (2.17)

Because 0 ≥ ∂2H
∂u2 |u∗= −2ε + 2a1λ1N

∗
1 + 2a2λ2N

∗
2 and because 2(ε − a1λ1N

∗
1 −

a2λ2N
∗
2 ) 6= 0 on this set, the left hand side of (2.17) is positive and therefore the right-

hand side is also positive. Dividing both sides of (2.17) by 2ε− 2a1λ1N
∗
1 − 2a2λ2N

∗
2

gives

1 ≤ −B + b1λ1(t)N∗1 (t) + b2λ2(t)N∗2 (t)
2ε− 2a1λ1(t)N∗1 (t)− 2a2λ2(t)N∗2 (t)

and therefore the characterization

u∗(t) = min(1,
−B + b1λ1(t)N∗1 (t) + b2λ2(t)N∗2 (t)
2ε− 2a1λ1(t)N∗1 (t)− 2a2λ2(t)N∗2 (t)

)

holds on this set.
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Considering these three cases we obtain the desired characterization,

u∗(t) = min[1,max(0,
−B + b1λ1(t)N∗1 (t) + b2λ2(t)N∗2 (t)
2ε− 2a1λ1(t)N∗1 (t)− 2a2λ2(t)N∗2 (t)

)].

If there exists 0 ≤ t̄ ≤ T such that

ε− a1λ1(t̄)N∗1 (t̄)− a2λ2(t̄)N∗2 (t̄) = 0, (2.18)

the Hamiltonian (2.10) becomes linear in the control. At t = t̄ the coefficient of u in the

Hamiltonian is

Ψ = −B + b1λ1(t̄)N1(t̄) + b2λ2(t̄)N2(t̄).

Due to (2.18) and the assumption that Bκ− ε < 0, we have

−κΨ = κB − κb1λ1(t̄)N1(t̄)− κb2λ2(t̄)N2(t̄)

= κB − a1λ1(t̄)N1(t̄)− a2λ2(t̄)N2(t̄)

= κB − ε

< 0.

By definition, κ is non-negative. The strict inequality above implies κ > 0 and Ψ > 0. With

Ψ > 0, we take u∗(t̄) = 1.

Thus the optimality system consists of the state system (2.1)-(2.3), together with the ad-

joint system (2.11),(2.12) and associated transversality boundary conditions (2.13), coupled

with the characterization of the optimal control (2.14). We now examine the population

changes for a variety of parameter values and growth functions, including our cottonwood-

salt cedar scenario.

2.4 Numerical Simulations

Solutions to the optimality system are computed numerically for a variety of parameter

values and growth functions (Θ1,Θ2), including those modeling the cottonwood-salt cedar
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case. For the numerical simulations, we use an iterative scheme employing a Runge Kutta

method of the fourth order. See Chapter 1 and Appendix A for details.

2.4.1 Quadratic Growth Functions

In the cottonwood-salt cedar scenario, quadratic growth functions can represent reasonable

qualitative behavior for newly established seedling communities. The interaction coeffi-

cients, aij , express how species j affects species i. Sher et al. [74] found that during natural

conditions, cottonwood density affects the population of both species (in a negative fashion)

more than the salt cedar density. In fact, salt cedar density does not seem to affect the

population size of cottonwoods except when the cottonwood density is much smaller than

the salt cedar density. Thus we choose coefficients so that a12 is very small and a21 > a22.

For the numerical illustration, the interaction parameter values are:

a11 = .01, a12 = .0001, a21 = .15, a22 = .01.

To model the cottonwood-salt cedar scenario, we choose Θ1 < Θ2 when u = 0 and we use

our quadratic growth functions,

Θ1 = .5u2 + .5u

Θ2 = −.1u2 − .1u+ .2. (2.19)

With the above interaction parameters and growth functions, if u = 0 (i.e. no flooding), we

find that as t→∞, the native population N1 becomes extinct and the invasive population

N2 approaches a positive carrying capacity. However, for mid values of u (i.e. natural

flooding conditions), we find that as t→∞, the native population N1 approaches a positive

carrying capacity and the invasive population N2 becomes extinct.

For appropriate initial conditions, we scale the population densities to match the ratio

suggested by Sher et al. [74]. Because the mass difference between a newly germinated

cottonwood and salt cedar is five-fold, all experimental densities in [74] include five salt
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Figure 2.1: N1 (solid) and N2 (dotted) densities without control

cedars for every one cottonwood. This seedling density ratio is also comparable to that

found in field situations [82]. Accordingly, we assume that the two seedling populations

start with densities (seedlings per unit area) scaled so that G1 = 1, G2 = 5. When u = 0,

the growth functions are 0 and .2 respectively. The cottonwood density decreases, while the

salt cedar density increases without any flooding; see Figure 2.1.

Consider the case A = 9, B = 2.5, ε = 7, and K = 0, in which we are concentrating on

the cottonwood population and our goal does not directly involve the salt cedar population.

To correspond with the spring thaw, flooding is only allowed during the first one-tenth of

the year for a period of three years. In Figure 2.2, the optimal control does not get close to

the maximum u value, due to the cost of implementing the control. If we decrease the cost

coefficients, B and ε, the optimal control values are greater. The optimal control allows for

a moderate increase in the cottonwood density.

Because of the lifespan of such trees, controlled flooding may need to be implemented for

a much longer time period in order to achieve desired results. Consider the optimal flooding

schedule for thirty years in Figure 2.3. Here, we again see increasing amounts of flooding

until year 6, at which time we have reached maximum levels. The optimal strategy suggests

continuing max flooding until year 18, at which time we discontinue flooding due to the

associated costs. With 18 consecutive years of flooding in the spring, cottonwoods are able

to dominate salt cedars. Taylor et al. [82] show that under such conditions, the cottonwoods
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Figure 2.2: Left: Optimal Control Schedule for T = 3 years, Right: Corresponding N1

(solid) and N2 (dotted) densities
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Figure 2.3: Left: Optimal Control Schedule for T = 30 years, Right: Corresponding N1

(solid) and N2 (dotted) densities
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will continue to dominate beyond the sapling stage, thereby forming a dominant canopy

species. A dominant cottonwood canopy should further limit the growth rate of the salt

cedar.

2.4.2 Quadratic Growth Functions: Alternative Scenario

We now consider the case of two competing populations with equal initial densities. Again

N2 is considered a population which is typically dominated by the N1 population, but

because of the absence of some control, N1 has diminished and N2 has increased. In contrast

to the cottonwood-salt cedar case, we letN2 have a competitive advantage overN1, meaning,

a12 > a21. Our interaction parameters are:

a11 = .01, a12 = .02, a21 = .01, a22 = .01.

We choose the same quadratic growth functions as that in Section 2.4.1. The initial

population densities are scaled so that G1 = G2 = 1. With no control, the growth rates of

N1 and N2 are 0 and .2 respectively. See Figure 2.4 for populations without control.

In Section 2.4.1, we allowed the control to be applied for one-tenth of a year. However,

the control may have longer lasting effects. Suppose the control is applied during the first

one-fourth of each year for three years. Let A = 10, B = 0,K = 1, ε = 12. The numerical

results are displayed in Figure 2.5. The presence of the control significantly increases the

N1 growth rate, and promotes a reasonable proportion between the two populations.

2.4.3 Linear Growth Functions

For some scenarios, linear growth functions may be a better representation. We consider

a situation similar to that of the cottonwood (N1) and salt cedars (N2), but now assume

flooding at higher levels has negative effects on the growth rate of the N2 population. We

choose linear growth functions such that Θ1 < Θ2 when u = 0. Furthermore, Θ1 is an

increasing function of u and Θ2 is a decreasing function of u which becomes negative for

larger values of u.

We assume a lack of control has allowed N2 to become the dominant species. The
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Figure 2.4: N1 (solid) and N2 (dotted) densities without control

Figure 2.5: Left: Optimal Control Schedule, Right: Corresponding N1 (solid) and N2

(dotted) densities
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interaction coefficients are the same as presented in Section 2.4.1. The initial conditions

and growth rates are

G1 = 1,G2 = 2 (2.20)

Θ1 = u

Θ2 = −u+ .2. (2.21)

Without control, N2 increases and N1 decreases; see Figure 2.6.

Because minimizing N2(T ) is an important part of our goal, we allow K > 0. We use

the parameters

A = .2, B = 1,K = 1, ε = .5, T = 3.

Here we assume the control affects both species during the first one fourth of each year.

This could correspond to flooding during the spring thaw but it assumes that such action

affects the species’ growth rates for several months.

The optimal control and corresponding states are displayed in Figure 2.7. After three

years of control, N1 is clearly the dominating species once again. Because we allow Θ2 to

take negative values for larger values of u, we are able to see a decrease in the N2 population.

This is essential if one not only wants to control an invasive species, but ultimately eliminate

the species from the area.

2.5 Concluding Remarks and New Contributions

This work demonstrates that optimal control theory can be an appropriate tool for designing

intervention strategies to control an invasive species. An interesting feature of our optimal

control problem is that controls act in only part of each year. We proved existence results

for an optimal control in certain cases of quadratic growth functions. In those cases, as

well as cases for linear growth functions, numerical solutions illustrate optimal intervention

for various scenarios with different interaction coefficients. In particular, we illustrate how
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Figure 2.6: N1 (solid) and N2 (dotted) densities without control

Figure 2.7: Left: Optimal Control Schedule, Right: Corresponding N1 (solid) and N2

(dotted) densities
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optimal flooding regimes can aid cottonwood growth in the presence of a competing popu-

lation, such as the salt cedar. Other forms of interaction terms (not involving the controls)

may be used, including those for predator-prey scenarios and various functional responses.

We have obtained novel existence results of optimal controls for certain structures of

growth functions. Difficulty in proving existence results arises in the quadratic terms in the

ODEs involving the controls, due to the fact that maximizing sequences of controls only

converge weakly. In the future, we may continue to explore what forms of growth functions

will give further existence results.
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Chapter 3

Optimal Intervention Strategies for

a Cholera Outbreak

3.1 Background

Cholera is a diarrheal illness caused by infection of the intestine with the bacterium Vibrio

cholerae. While cholera has been a recognized disease for about two hundred years, control-

ling deadly outbreaks remains a challange. In fact, incidence has increased in recent years

causing enormous loss of life and financial devastation to families and health care systems.

In 2007, over 200,000 cases of cholera worldwide were reported [93]. Recent focus on cholera

is attributed to a deadly outbreak in South Africa. In December of 2008, the Ministry of

Health in Zimbabwe reported a total of 11,735 cholera cases with 484 deaths since August

2008 [92]. However, cholera incidence may in fact be far higher because fear of economic

and social losses from an outbreak becoming known often cause countries to underreport

outbreaks.

Populations lacking prior immunity to the organism can be devastated by the disease

in a matter of weeks [56]. Transmission to humans occurs through eating food or drinking

water contaminated with V. cholerae from other cholera patients. In the most severe cases

dramatic fluid loss from the continuous diarrhea causes dehydration, leading to shock and

death within hours [91]. The severity of the symptoms depend on the dose of bacteria
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ingested by the infected individual. Outbreaks can be quite hard to predict because a

large proportion of infected individuals do not exhibit symptoms or only experience mild

symptoms. Although their infection may be inapparent, these individuals still contribute

vibrios to environmental sources of bacteria [20, 50].

How does one treat this effectively? Oral rehydration therapy is a simple, cheap, and

effective treatment for dehydration associated with mild cases of cholera. The solution

consists of salts and sugars and is administered orally. Oral rehydration therapy greatly

reduces the death toll from cholera when implemented in frequent small doses. It prevents

dehydration from killing an individual with mild cholera symptoms before the disease runs

its course [60]. For severe cases, effective treatment requires intravenous rehydration and is

often administered in combination with antibiotics. Antibiotics decrease both the duration

and volume of diarrhea caused by cholera [36, 86]. There are concerns related to antibiotics’

effectiveness and side-effects and to their creation of drug-resistant organisms. In many

areas, tetracycline and doxycycline are not used as a prophylactic treatment but as effective

and low-cost treatment of individuals with severe cholera symptoms [1, 91].

Presently there is a two-dose oral cholera vaccine (OCV) consisting of killed whole-cell

Vibrio cholerae that has received World Health Organization prequalification, and several

other oral vaccines are under development or have limited availability [93]. The two-dose

OCV provides 85-90% protection for adults for the first six months after administration [93],

but there are logistical constraints in giving the OCV that limit its success in addressing

emergency outbreaks. For example, the bulkiness of the vaccine and buffer solution required

for a successful vaccination campaing can complicate shipment to refugee camps and storage

at vaccine site [48]. In addition, it is not possible to administer the vaccine to children

under the age of two, and its efficacy for older children is not known [93]. Thus, while OCV

implementations would most likely be a part of any mitigation strategy, they are unable to

address all of the complexities found in varied forms of cholera outbreaks.

Because the vibrios are mostly spread through contaminated water, an obvious strategy

would be to address the sanitation of water supplies. This includes the sterilization of

cooking, washing, and drinking water by means of boiling or use of cloth filters. It also

includes treatment of general sewage water before it enters water supplies. However, there
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have been many recent examples of humanitarian crises in which sanitation efforts could

not be implemented. For example, in May 2004 the UN found that of the internationally

displaced persons in Darfur, Sudan, only 20% had access to adequate water and only 5% had

adequate sanitation [93]. More than a year later, approximately half still lacked an adequate

water supply and one-fourth lacked adequate sanitation [93]. Thus, even an internationally-

recognized crisis area may be unable to receive the needed intervention to provide a safe

water supply for its inhabitants [22, 48, 60, 93].

The World Health Organization believes that the balance between OCV administration

and water sanitation to achieve an effective mitigation strategy will depend largely on pa-

rameters specific to individual populations [93]. In determining strategies, it is important to

note the epidemiologic differences in cholera in different settings. For example, in endemic

situations, case fatality rates are fairly low and a large proportion of children become ill. On

the other hand, in epidemic situations there will be a high case fatality rate unless rehydra-

tion facilities are available [84]. In refugee camps, it is suggested that provision of purified

water, suitable defaecation facilities, rehydration therapy, and case management should be

able to reduce the case fatality rate dramatically [60]. It has traditionally been thought that

antibiotic treatment and vaccination therapies are not effective for such settings [60, 93].

In contrast, for settings in which cholera has become endemic, such as in Bangladesh, there

have been studies suggesting that strategic vaccinations are practical and can infer “herd

immunity” wherein nonvaccinated individuals receive indirect protection [2].

A complex system of interactions occurs between the human host, pathogen, and the en-

vironment, and the potential control mechanisms are strongly influenced by socio-economic

pressures and realities. Our objective is to formulate a model for cholera that includes

relevant biological detail, accounts for multiple intervention strategies, and allows optimal

control methods to be applied. We begin by formulating an ODE model which incorpo-

rates the dynamics of the susceptible, infected, and recovered human classes and accounts

for the vibrio concentrations in drinking water. For our compartment model, the basic

reproduction number is calculated. A new result quantifies contributions to the reproduc-

tive number from both asymptomatic and symptomatic infections. The ODE system is

extended to include the effects of the several controls mentioned above. We use optimal
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control theory, parameter sensitivity analysis, and numerical simulations to illustrate the

intervention strategies that minimize death due to disease and the cost of treatment during

a cholera outbreak. Our mathematical results provide a design for cost-effective strategies

of cholera control and provide a framework for control of diseases with multiple intervention

methods.

3.2 Modeling the Spread of Cholera

Before formulating our cholera model, we present several previously proposed cholera models

and discuss the importance of each in Section 3.2.1. We then present our model formulation

in Section 3.2.2 and calculate the basic reproduction number in Section 3.2.3. Because

several parameters in our model are difficult to determine or have shown to vary between

populations, we conduct a sensitivity analysis in Section 3.2.4 to illustrate which parameters

are most influential in determining the severity of a cholera outbreak.

3.2.1 A Brief History of Cholera Models

In 2001, Codeço proposed a model which explicitly accounts for the concentration of V.

cholerae in the water supply [20]. She models the population sizes of the susceptible (S)

and infectious (I) individuals, and the concentration of vibrios (B) by

dS

dt
= n(H − S)− βλ(B)S,

dI

dt
= βλ(B)S − rI,

dB

dt
= B(nb−mb) + ηI.

In the system above, H is a constant denoting the size of the total human population, n is

the human birth rate, r is a recovery rate, and nb and mb are rates of vibrio growth and

loss respectively. The parameter η measures contribution from an infected individual to the

vibrio reservoir through excretion and β is the ingestion rate of untreated water, measured

in liters per day. The incidence βλ(B)S is such that

36



λ(B) =
B

K +B
,

where K is a half saturation constant. Thus, when the concentration of vibrios B = K

and consumption of untreated water is β = 1 liter per day, the probability of an exposed

susceptible individual becoming infected is 1
2 .

A term in the model that is difficult to quantify is the contribution of infected individuals

to the concentration of V. cholerae in the environment. One can imagine that the volume of

untreated water varies greatly in different environments and also the lack of sanitary latrines

differs. In addition, water supplies are not well-mixed so a contribution of V. cholerae to the

water would not be evenly distributed. Thus, while there is strong data quantifying the vol-

ume of fecal matter for infected individuals and the concentration of V. cholerae therein, it

is problematic to suggest the correlation of this output to the contamination of the drinking

water. Codeço conducted an equilibrium analysis to suggest the correlation between values

of β and η which would lead to a cholera outbreak in a hypothetical community. While this

approach may be too simple to yield quantitative predictions, the qualitative understanding

of model outcomes as values of η change provide interesting dynamics. For example, envi-

ronmental changes can increase or decrease (perhaps periodically) the parameters β and η

and one can observe their impact on an outbreak.

In 2002, Pascual, Bouma, and Dobson [62] published the first of several extensions of

the work by Codeço. Pascual et al. added a class that tracks the water volume, suggesting

a strategy to quantify the relationship between vibrio concentration and the water volume

that changes seasonally. The model accounted for precipitation, stream flow, and drainage,

and the infectivity was modeled in a way that considers the community volume of water.

This structure provided an alternate suggestion for how to show the influence of climatic

effects on a cholera outbreak in a model that considers vibrio-to-human transmission.

In 2005, Koelle, Pascual, and Yunus suggested an SIRS ODE model for a disease with a

seasonal driver that affects the transmission rate of the pathogen [44]. Separately, Koelle,

Rodó, Pascual, Yunus, and Mostofa considered a difference equation model with a different
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seasonal driver [45]. Both models considered all disease transmission to be human-to-

human. The latter model included both a seasonal and a long-term transmission component,

and the former model analyzed a trade-off between climate sensitivity and the maximum

transmission rate.

In 2006, Hartley, Morris, and Smith [37] reconsidered the model posed by Codeço in

2001, adding a hyperinfectious (HI) state of the V. cholerae to the model. In a letter to

Nature in 2002, Merrell et al. reported the results of a study in which it was found that

freshly shed V. cholerae from human intestines outcompeted other V. cholerae by as much

as 700-fold for at least the first 5 hours in the environment [55]. The model by Hartley et

al. was similar to Codeço’s with the exception of an additional state to account for the HI

vibrio concentration. It is emphasized that the additional HI state provides a basis for the

transmission pathway known as ‘human to human’. The model follows the movement of

susceptible individuals (S) to an infected class (I) through interaction with a sufficiently

large concentration of vibrios, both in a non-HI state (BL) and an HI state (BH). The

infectious individuals add to the concentration of HI vibrios in the drinking water, which

transform to less-infectious in a matter of hours. In a number of days, infected individuals

recover and move to the removed state (R). A diagram illustrating the dynamics of the

Hartley et al. model is seen in Figure B.1.

Hartley et al. compute the basic reproductive number for this model, R0 = ξN
γ+b

(
βH
κHχ

+ βL
κLδL

)
.

In this quantity, N is total population, b is the birth rate, γ is the recovery rate, ξ is the

vibrio shedding rate, χ is the vibrio transition rate, δ is the vibrio death rate and κH and

κL are half saturation constants for the HI and non-HI vibrios respectively. Of all the

parameters, the HI and non-HI vibrio ingestion rates, βH and βL, are the most important

for control and the least well known. The authors’ analysis suggests that the HI state is

extremely important in the transmission of epidemic cholera and responsible for ‘explosive’

outbreaks. When ‘human to human’ transmission is dominant (i.e. βH >> βL), Hartley et

al. estimate R0 ≈ 18. In such a case, interventions should be targeted toward minimizing

risk of transmission of the HI vibrios to have maximal impact on limiting spread of cholera.

Shortly afterwards, in June 2006, Pascual et al. comment in PLoS Medicine [63] that

the formula for R0 given by Hartley et al. is an overestimation of reproductive number for
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cholera. A model incorporating ’human to human’ transmission fitted with data collected

from Matlab, Bangladesh indicates a more appropriate value is R0 ≈ 3. Pascual et al. also

point out that while an epidemic declines from a depletion of susceptibles in Hartley et

al.’s model, the seasonal outbreaks observed in Matlab are curtailed prior to a significant

depletion of susceptibles indicating the presence of an environmental factor. The dynamics

of vibrio-specific phage predation are a likely mechanism for the observed reduction in

cholera transmission rate at the end of a seasonal outbreak. Despite discrepancies in the

models of Pascual et al. and Hartley et al., both accentuate the need to include some variant

of ‘human to human’ transmission to explain cholera dynamics.

Recently, in August 2008, King, Ionides, Pascual and Bouma propose three mechanistic

models of the SIRS form for cholera. The authors investigate the models’ ability to explain

monthly cholera death counts in the twenty-six districts of the former British East Indian

province of Bengal during the period 1891 - 1940 [42]. Figure B.2 in Appendix B is from

King et al. and displays the twenty-six districts. The models incorporate both transmission

due to human prevalence via a mass action term and transmission from an environmental

reservoir. One of the three models proposed is a two-path model (Figure B.3) which includes

a class for severe infections as well as a class for mild, inapparent infections. In the two-

path model, infected individuals with the mild symptoms experience short-term immunity

to severe cholera infection and negligible death due to disease. The periodic force of infection

depends on a seasonal component as well as the proportion of the population with severe

infections.

Log-likelhood estimates were generated using the 1900’s mortality data and indicate

that six of the twenty-six districts are well-described by the two-path model. Maximum

likelihood estimates for the six districts are displayed in Table B.1. Estimates for the

six districts indicate considerable variation in parameter values between populations. For

example, the percent of cholera infections resulting in inapparent symptoms ranges from

70 to 99 between populations. Variation is also observed in recovery rates, cholera-related

death rates, and rates of waning immunity. A noteworthy prediction of these estimates is

that immunity must wane on a timescale of weeks to months as opposed to the previously

suspected timescale of 3-10 years [42].
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3.2.2 Model Formulation

The inclusion of hyperinfectious V. cholerae, inapparent human infections, and waning

immunity are essential in modeling the spread of cholera. Previously, no one cholera model

contained all of these features. We formulate an S-I-R type model to include the following

key components:

• Hyperinfectious (HI) and less-infectious (non-HI) vibrios. To capture both

‘human-to-human’ and ‘environment-to-human’ pathways of transmission, we acknowl-

edge and differentiate between the concentration of HI vibrios (class BH) and the

concentration of less-infectious or non-HI vibrios (class BL) in drinking water. The

rate at which a susceptible individual ingests water recently contaminated with HI

vibrios, perhaps by an infected member of the same or nearby household, is denoted

by βH . The rate at which a susceptible individual ingests water contaminated with

non-HI vibrios, perhaps from an environmental reservoir, is denoted by βL. As done in

Hartley et al. [37], half saturation constants for the vibrio concentrations are denoted

as κH and κL.

• A class of asymptomatic infecteds. Strategies for the control of cholera outbreaks

must address severe infections as well as mild, inapparent infections. Individuals with

severe infections are classified as symptomatic infecteds (class IS) and those with

mild or inapparent infections are classified as asymptomatic infecteds (class IA) in

our model. The proportion infections resulting in mild or inapparent symptoms is

denoted by p and the proportion resulting in severe symptoms is denoted by 1 − p.

Both infected classes actively shed HI vibrios, contributing to the source of infection.

For the asymptomatic and symptomatic infected classes respectively, e1 and e2 are

cholera-related death rates, γ1 and γ2 are rates of recovery from cholera, and η1 and

η2 are vibrio shedding rates.

• Waning immunity. We assume that the time an individual spends in the immune

class (class R) is exponentially distributed with an average length of 1
ω days. Once

their immunity has waned, individuals re-enter the susceptible population (class S).
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Summarized in Figure 3.1, state variables track susceptible, asymptomatic infected,

symptomatic infected, and recovered human populations as well as HI and non-HI vibrio

concentrations. The system of six ODEs describing the dynamics between states S, IA, IS ,

R, BH , and BL are

dS

dt
= −

[
βL

BL(t)
κL +BL(t)

+ βH
BH(t)

κH +BH(t)
]
S(t) + ωR(t), (3.1)

dIA
dt

= p
[
βL

BL(t)
κL +BL(t)

+ βH
BH(t)

κH +BH(t)
]
S(t)− (e1 + γ1)IA(t), (3.2)

dIS
dt

= (1− p)
[
βL

BL(t)
κL +BL(t)

+ βH
BH(t)

κH +BH(t)
]
S(t)− (e2 + γ2)IS(t), (3.3)

dR

dt
= γ1IA(t) + γ2IS(t)− ωR(t), (3.4)

dBH
dt

= η1IA(t) + η2IS(t)− χBH(t), (3.5)

dBL
dt

= χBH(t)− δBL(t), (3.6)

with initial conditions

S(0) = S0, IA(0) = IA0, IS(0) = IS0, R(0) = R0, BL(0) = BL0, BH(0) = BH0. (3.7)

Parameter notation, descriptions, and units are displayed in Table 3.1. Because we

are interested in short-term analysis (less than 1 year), natural birth and death terms are

excluded from our model. It should be noted that disease spread can occur during certain

funeral rituals. In this model, we do not account for contamination of water supplies from

vibrios of deceased individuals.
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Figure 3.1: Diagram of our model following the movement of susceptible individuals (S)
to either an asymptomatic infected class (IA) or a symptomatic infected class (IS) through
interaction with a sufficiently large concentration of vibrios, both in a non-HI state (BL)
and an HI state (BH). Individuals in the recovered class (R) lose immunity over time and
move back to the susceptible class.

Table 3.1: Summary of model notation and units

Notation Description Units

S(t) Number of susceptible humans on day t humans

IA(t) Number of asymptomatic infected humans on day t humans

IS(t) Number of symptomatic infected humans on day t humans

R(t) Number of recovered or immune humans on day t humans

BL(t) Concentration of non-HI vibrio population in drinking water on day t cells/ml

BH(t) Concentration of HI vibrio population in drinking water on day t cells/ml

p Probability of infected individual being asymptomatic none

βL Rate of drinking non-HI vibrios in untreated water day−1

βH Rate of drinking HI vibrios in untreated water day−1

κL Half saturation constant of non-HI vibrios cells/ml

κH Half saturation constant of HI vibrios cells/ml

e1 Cholera-related death rate for asymptomatic infecteds day−1

e2 Cholera-related death rate for symptomatic infecteds day−1

γ1 Cholera recovery rate for asymptomatic infecteds day−1

γ2 Cholera recovery rate for symptomatic infecteds day−1

ω Rate of waning cholera immunity day−1

η1 Rate of contribution to HI vibrios in environment by asymptomatic infecteds cells
ml-day-human

η2 Rate of contribution to HI vibrios in environment by symptomatic infecteds cells
ml-day-human

χ Transition rate of vibrios from HI to non-HI state day−1

δ Death rate of vibrios in the environment day−1
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3.2.3 The Basic Reproduction Number, R0

The basic reproduction number, R0, is the expected number of secondary cases produced

in a completely susceptible population by a typical infected individual. If R0 < 1, then

an average infected individual produces less than one new infection over the course of its

infectious period and the infection cannot grow. Conversely, if R0 > 1, then an average

infected individual produces more than one new infection and the disease can invade the

population. For cholera, a disease characterized by hidden infections, determining the

appropriate value of R0 is challenging, but essential for developing methods of control.

To determine the basic reproduction number for our compartmental model, we use

methods set forth by van den Driessche and Watmough [27]. For only the calculations done

in this section, consider the system to be ordered such that x = (IA, IS , BH , BL, R, S). Let

N denote the total number of human individuals in a disease-free population. The disease-

free equilibrium (DFE) is x0 = (0, 0, 0, 0, 0, N). New infections occur in compartments 1

and 2 only. Compartment 3 and 4 are classified as infectious compartments, but vibrios in

these compartments are not considered to be new infections. For 1 ≤ i ≤ 6, let Fi(x) be the

rate of new infections in compartment i, V +
i (x) be the rate of transfer of humans or vibrios

into compartment i by all other means, and V +
− (x) be the rate of transfer of humans or

vibrios out of compartment i. Setting Vi(x) = V −i (x) − V +
i (x), we have the following two

vectors.

F =



p
[
βL

BL
κL+BL

+ βH
BH

κH+BH

]
S

(1− p)
[
βL

BL
κL+BL

+ βH
BH

κH+BH

]
S

0

0

0

0
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V =



(e1 + γ1)IA

(e2 + γ2)IS

χBH − η1IA − η2IS

δBL − χBH

ωR− γ1IA − γ2IS(
βL

BL
κL+BL

+ βH
BH

κH+BH

]
S − ωR


Compartments 1 through 4 are considered to be the infectious compartments. As done

in [27], we define F =
[
∂Fi
∂xj

(x0)
]

and V =
[
∂Vi
∂xj

(x0)
]

for 1 ≤ i, j ≤ 4.

F =



0 0 pN βH
κH

pN βL
κL

0 0 (1− p)N βH
κH

(1− p)N βL
κL

0 0 0 0

0 0 0 0



V =



e1 + γ1 0 0 0

0 e2 + γ2 0 0

−η1 −η2 χ 0

0 0 −χ δ


We then proceed to calculate V−1 and find

V−1 =



1
e1+γ1

0 0 0

0 1
e2+γ2

0 0

η1

(e1+γ1)χ
η2

(e2+γ2)χ
1
χ 0

η1

(e1+γ1)δ
η2

(e2+γ2)δ
1
δ

1
δ


.
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The product FV−1 is

FV−1 =0BBBBBBB@

pN η1
(e1+γ1)

“
βL
δκL

+ βH
χκH

”
pN η2

(e2+γ2)

“
βL
δκL

+ βH
χκH

”
pN
“
βL
δκL

+ βH
χκH

”
pN βL

κLδ

(1− p)N η1
(e1+γ1)

“
βL
δκL

+ βH
χκH

”
(1− p)N η2

(e2+γ2)

“
βL
δκL

+ βH
χκH

”
(1− p)N

“
βL
δκL

+ βH
χκH

”
(1− p)N βL

κLδ

0 0 0 0

0 0 0 0

1CCCCCCCA
.

Van den Driessche and Watmough call FV−1 the next generation matrix. To interpret

the entries of FV−1, consider the fate of an infectious human or vibrio introduced into

compartment k of a disease-free population. The (j, k) entry of V−1 is the average length

of time this human or vibrio spends in compartment j during its lifetime, assuming the

population remains near the DFE x0 = (0, 0, 0, 0, 0, N) and barring reinfection. The (i, j)

entry of F is the rate at which an infectious human or vibrio in compartment j produces new

infections in compartment i. Hence, the (i, k) entry of the product FV −1 is the expected

number of new infections in compartment i produced by the infectious human or vibrio

originally introduced into compartment k.

The basic reproduction number is defined to be

R0 = ρ(FV−1) (3.8)

where ρ(A) denotes the spectral radius of a matrix A. Van den Driessche and Watmough

show that R0 defined by (3.8) is a threshold parameter for the stability of the disease-free

equilibrium. The following theorem summarizes this concept.

Theorem 4. Consider the disease transmission model given by (3.1)-(3.6). If x0 is a

disease-free equilibrium of the model, then x0 is locally asymptotically stable if R0 < 1, but

unstable if R0 > 1, where R0 is defined by (3.8).

See [27] for the proof. After calculating the eigenvalues of FV−1 above, we find the

reproduction number for our cholera model to be
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R0 = ρ(FV−1) = pN
η1

(e1 + γ1)

(
βL
δκL

+
βH
χκH

)
+ (1− p)N η2

(e2 + γ2)

(
βL
δκL

+
βH
χκH

)
.

(3.9)

Unlike previous estimates ofR0 for cholera [37, 42, 63], the expression above is a measure

of all secondary infections, asymptomatic or symptomatic, generated by an average infected

individual in a population of N susceptibles. Thus, we expect values of R0 based on

our derivation to exceed those estimated from models or data which do not account for

asymptomatic cholera infections.

The expression in (3.9) is a weighted average of the basic reproductive number gener-

ated from each of the asymptomatic and symptomatic infected classes. Seen within each

component of the sum, the expressions βH
κH

and βL
κL

are the number of new cases generated

in terms of the HI and non-HI vibrios, respectively, per unit time as measured by the con-

centrations. The terms 1
χ and 1

δ are the expected times vibrios remain in the HI and non-HI

states before decaying or dying. To ultimately reduce a populations R0, our result in (3.9)

echos the importance of accelerating recovery from cholera (γ1, γ2) and reducing shedding

rates (η1, η2) in both infected classes as well as reducing the populations rates of vibrio

ingestion (βH , βL).

3.2.4 Parameter Sensitivity Analysis

Cholera-related parameters values can be difficult to determine and can vary considerably

between populations [37, 42]. A sensitivity analysis is conducted to determine the impact of

several parameters in our model on various output measures. Three outputs are chosen as

measures of outbreak severity. Over the total time period of the model, outbreak severity is

measured by (1) the maximum and (2) the total size of the symptomatic infected class and

(3) the total size of the combined infected classes. For the sensitivity analysis, we employ a

Latin Hypercube Sampling (LHS) scheme and calculate partial rank correlation coefficients

(PRCC) and p-values corresponding to each parameter and output measure. For detailed

methodology, see [11] or [43]. The p-value is used to determine if a PRCC is significantly
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Table 3.2: Parameters used in sensitivity analysis. Lower and upper bounds for
sampled ranges are displayed. All values are in units day−1.

Description Lower Upper Ref.

p Proportion of infections that are asymptomatic 0.70 0.99 [42]

r Multiplicative factor determining βH , where βH = rβL 0.01 1.0 [20, 37]

ω Rate of waning immunity 0.0005 0.005 [42]

e2 Cholera-related death rate of symptomatic infected 0.0005 0.02 [42]

γ1 Cholera recovery rate for asymptomatic infected 0.1 0.2 [38]

γ2 Cholera recovery rate for symptomatic infected 0.02 0.14 [42]

η1 Vibrio shedding rate for asymptomatic infected 0.05 1.0 [20, 50]

s Multiplicative factor determining η2, where η2 = sη1 1 100 [20, 50]

different from zero. A statistically significant PRCC value near -1 or 1 suggests that changes

in the input parameter influence change in the outcome measure. Specifically, a negative

(positive) PRCC indicates that an increase in the input parameter decreases (increases) the

output measure.

Each parameter of interest is sampled using a uniform distribution over a range of

biologically realistic values. See Table 3.2 for a summary of parameter descriptions and

sampled ranges. Using equations (3.1)-(3.6), n model simulations over a period of 100 days

are performed by randomly pairing sampled values for all LHS parameters. The outcome

measures are checked to be monotone with respect to each input parameter. We apply the

MATLAB ‘regress’ function to each column-pair of ranked input parameters and outcome

measures and then apply the MATLAB ‘corr’ function to the linear regression residuals,

which calculates the PRCCs and corresponding p-values. See Table 3.3 for the PRCC and

p-value results. An output is assumed sensitive to an input if the corresponding PRCC is

less than -0.50 or greater than 0.50, and the corresponding p-value is less than 0.05.

Results of the sensitivity analysis suggest that all outcome measures are sensitive to

changes in p, r, η1, and s. Since the parameter p measures the proportion of infected who

are asymptomatic, the significance in determining the maximum and total number of symp-

tomatic infecteds is not surprising. The effect of p on the third outcome measure suggests

a more subtle dynamic. As the proportion of infected who are asymptomatic increases, the
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Table 3.3: Sensitivity analysis results For each parameter, the PRCC corresponding
to each of the three measures of outbreak severity is displayed. Statistical significance of
associated p-value is indicated with astericks ( * p-value < 0.05, ** p-value < 0.01, ***
p-value < 0.001).

Parameter Maximum IS Total IS Total (IA + IS)
p -0.95 *** -0.97 *** -0.59 ***
r 0.68 *** 0.41 *** -0.53 ***
ω 0.11 * 0.35 *** 0.59 ***
e2 -0.22 *** -0.18 *** -0.11 *
γ1 -0.13 * -0.08 0.10
γ2 -0.76 *** -0.28 *** -0.42 ***
η1 0.67 *** 0.59 *** 0.70 ***
s 0.62 *** 0.58 *** 0.69 ***

total size of the combined infected populations over the entire outbreak decreases. The de-

crease in this measure of outbreak severity is due to the decreased concentration of vibrios in

drinking water, a result of fewer symptomatic infecteds. The parameter r measures the in-

gestion rate of hyperinfectious vibrios relative to the ingestion rate of less-infectious vibrios

(βH = rβL). This parameter most influences the maximum size of symptomatic popula-

tion during the outbreak. The importance of parameters η1 and s to all outcome measures

is not surprising as the parameters measure the contribution of asymptomatic individu-

als to the environmental bacteria concentration and increased contribution of symptomatic

individuals, respectively.

In addition, the maximum size of the symptomatic infected population is significantly

affected by the rate of recovery of symptomatic infecteds, γ2, and variation in the total

number of infected individuals is influenced by the rate of waning immunity, ω. We further

conclude that, with ranges as suggested in the literature, the parameters e2 and γ1 account

for little variation in the outcome measures and exact estimates or control measures affecting

these parameters have little contribution to the predicted outcome of a cholera outbreak.
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3.3 Optimal Control Problem with Multiple Controls

3.3.1 Introduction of Controls and Objective Functional

Several cholera treatment and prevention options do exist. Mild and moderate cases can be

successfully treated with oral rehydration salts alone. This cheap and effective treatment

can be implemented in homes without professional assistance, and thus we do not consider

treatment of asymptomatic infections as a control with trade offs. We extend our model

described by system (3.1) - (3.6) to include the effects of following three cholera controls.

The controls are expressed as Lebesgue measurable functions of time. The notation for each

control as well as the notation for each set of admissable controls is defined.

• Rehydration Therapy combined with Antibiotic Treatment. Classified as

symptomatic infected in our model, individuals with severe infections require rehy-

dration with intravenous fluids and antibiotics. Rehydration therapy can considerably

reduce the chance of death due to cholera and, when combined with antibiotics, the

time spent in the infected class. Thus, those receiving this combined treatment are

assumed to have an increased rate of recovery (γ3 > γ2) and a decreased rate of death

due to cholera (e3 < e2). We denote the proportion of symptomatic infecteds who

receive rehydration and antibiotic treatment as u(t). The set of admissible controls

representing this treatment is

U = {0 ≤ u(t) ≤ umax < 1|u Lebesgue measurable}.

• Vaccination. The rate at which individuals gain immunity through vaccination is

denoted by v(t). Because asymptomatic infecteds may not be aware of their infec-

tion, we assume susceptibles and asymptomatic infecteds are indistinguishable with

respect to vaccination. Vaccinated susceptibles move to the immune class. Vaccinat-

ing asymptomatic infected individuals has no effect, but still implies a cost. Natural

immunity and immunity gained from vaccination are assumed to wane at the same
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rate, ω. The set of admissible vaccination controls is

V = {0 ≤ v(t) ≤ vmax|v Lebesgue measurable}.

• Sanitation. We let m(t) denote the level of sanitation efforts, scaled so that 0 ≤

m(t) ≤ mmax ≤ 1. Sanitation efforts include the sterilization of cooking, washing,

and drinking water by means of boiling or use of cloth filters. It also includes treatment

of general sewage water before it enters water supplies. The effect of sanitation efforts

is modeled as a reduction in vibrio ingestion rates. The level of sanitation decreases

the transmission rate of the hyperinfectious vibrios (βH) and the transmission rate of

the less infectious vibrios (βL) as reflected by the terms (1−m(t))βL and (1−m(t))βH

respectively. The set of admissible sanitation controls is

M = {0 ≤ m(t) ≤ mmax ≤ 1|m Lebesgue measurable}.

For simplicity, we will denote a control triple by ū = (u, v,m) and define the set of

admissible controls as Ū = U × V ×M . Presented in (3.10)-(3.15) is the system of six

state differential equations extended to include the effects of the three controls. Controls

u, v, and m are functions of time and emphasized in bold. Table 3.4 displays additional

parameter notation, descriptions and units for the model with control. All other parameters

are the same as described in Table 3.1.

The system of state equations with controls is

dS

dt
= −(1−m(t))

[
βL

BL(t)
κL +BL(t)

+ βH
BH(t)

κH +BH(t)
]
S(t) + ωR(t)− v(t)S(t), (3.10)

dIA
dt

= p(1−m(t))
[
βL

BL(t)
κL +BL(t)

+ βH
BH(t)

κH +BH(t)
]
S(t)− (e1 + γ1)IA(t), (3.11)
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Table 3.4: Additional notation for model with control

Notation Description Units

u(t) Proportion of symptomatic infecteds receiving
rehydration and antibiotics on day t none

umax Upper bound for proportion of symptomatic infecteds receiving
rehydration and antibiotics none

v(t) Rate at which susceptibles and asymptomatic infecteds
are vaccinated on day t day−1

vmax Upper bound for vaccination rate day−1

m(t) Sanitation level on day t none

mmax Upper bound for sanitation level none

e3 Cholera-related death rate for symptomatic infecteds receiving
rehydration and antibiotics day−1

γ3 Cholera recovery rate for symptomatic infecteds with
rehydration and antibiotics day−1

dIS
dt

= (1− p)(1−m(t))
[
βL

BL(t)
κL +BL(t)

+ βH
BH(t)

κH +BH(t)
]
S(t)

− (e2 + γ2)(1− u(t))IS(t)− (e3 + γ3)u(t)IS(t), (3.12)

dR

dt
= γ1IA(t) + γ2(1− u(t))IS(t) + γ3u(t)IS(t)− ωR(t) + v(t)S(t), (3.13)

dBH
dt

= η1IA(t) + η2IS(t)− χBH(t), (3.14)

dBL
dt

= χBH(t)− δBL(t), (3.15)

with initial conditions

S(0) = S0, IA(0) = IA0, IS(0) = IS0, R(0) = R0, BL(0) = BL0, BH(0) = BH0.

(3.16)

A short-term analysis for optimal intervention strategies is practical because the dy-

namics and parameter values of the model will change over a period of time. One may want
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to reassess the situation at a later time and compute the optimal strategy given the current

scenario. Because we investigate intervention strategies over a period of 100 days in this

chapter, we exclude natural birth and death rates. The model could easily be modified to

include a recruitment term to signify an influx of individuals that might be seen in a refugee

camp and/or to include population growth dynamics.

A successful mitigation scheme is one which minimizes both the number of deaths due

to disease and the cost of the controls until the final time, T . In computing the cost of

vaccinating, we assume that asymptomatic infecteds are indistinguishable from susceptibles

with respect to vaccination, thus incurring costs.

A control scheme ū is considered optimal if it minimizes the objective functional defined

as

J(ū) =
∫ T

0

[
A (e1IA(t) + e2(1− u(t))IS(t) + e3u(t)IS(t)) +B1m(t) + C1m(t)2 +B2u(t)IS(t)

+ C2u(t)2 +B3v(t)(S(t) + IA(t)) + C3v
2(t)
]
dt (3.17)

where A,B1, B2, B3, C1, C2, C3 are positive balancing coefficients which transform the in-

tegrand into units of dollars. The first sum, multiplied by A, is the cost of death due to

cholera and the remaining expressions are costs for implementation of the three controls.

Quadratic expressions of the controls are included to indicate non-linear costs potentially

arising at high intervention levels.

The optimal control problem is stated as

min
ū∈Ū

J(ū)

subject to the state system (3.10)-(3.15) and initial conditions (3.16).
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3.3.2 Existence and Optimality System

The existence of the optimal control triple can be obtained using a result by Fleming and

Rishel ([34], Theorem 4.1, pp 68-69). We first show that the set of all feasible solutions to

the control problem is non-empty.

Theorem 5. Given ū ∈ Ū there exists a bounded solution (S, IA, IS , R,BH , BL) to the

initial value problem defined in (3.10)-(3.16).

Proof: The solutions to (3.10)-(3.15) are bounded below by the trivial solution. An

upper bound can be proven using the fact that a supersolution (S̄, ĪA, ĪS , R̄, B̄H , B̄L) satis-

fying

dS̄

dt
= ωR̄(t),

dĪA
dt

= (βL + βH)S̄(t),

dĪS
dt

= (βL + βH)S̄(t),

dR̄

dt
= γ1ĪA(t) + (γ2 + γ3)ĪS(t),

dB̄H
dt

= η1ĪA(t) + η2ĪS(t),

dB̄L
dt

= χB̄H(t),

is bounded on a finite time interval. Standard results in [54] give existence of a solution to

(3.10)-(3.15), a nonlinear system with measurable coefficients.

Theorem 6. There exist an optimal triple ū∗ = (u∗, v∗,m∗) ∈ Ū with corresponding states

(S∗, I∗A, I
∗
S , R

∗, B∗H , B
∗
L) that minimizes the objective functional J(ū) defined by (3.17).

Proof: Verifying the conditions needed for the result in [34], we note that the right-hand

sides of the differential equations (3.10)-(3.15) are linear in each of the controls and can be

written as f̄(t, x̄, ū) = ᾱ(t, x̄) + β̄(t, x̄)ū where x̄ = (S, IA, IS , R,BH , BL). The boundedness

of solutions gives |f̄(t, x̄, ū)| ≤ C̄(1 + |x̄| + |ū|) for 0 ≤ t ≤ T . Furthermore, Ū is a closed,

convex set. The integrand of our objective functional,
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L(t, x̄, ·) =
[
A (e1IA(t) + e2(1− u(t))IS(t) + e3u(t)IS(t)) +B1m(t) + C1m(t)2

+B2u(t)IS(t) + C2u(t)2 +B3v(t)(S(t) + IA(t)) + C3v
2(t)
]
,

is convex on Ū . We must verify the last condition by showing there exists δ1, δ2, β > 0

such that

L(t, x̄, ū) ≥ δ1|ū|β − δ2.

However, this holds for any δ2 > 0 if we assume δ1 = min{C1, C2, C3} and β = 2. Using

the existence result in [34], we conclude there exists an optimal triple ū∗ ∈ Ū .

We use Pontryagin’s Maximum Principle [66] to characterize the controls. Forming the

Hamiltonian, we have

H = A(e1IA + e2(1− u)IS + e3uIS)

+B1m+ C1m
2 +B2uIS + C2u

2 +B3v(S + IA) + C3v
2

+ λS

(
−(1−m)

[
βL

BL
κL +BL

+ βH
BH

κH +BH

]
S + ωR− vS

)
+ λIA

(
p(1−m)

[
βL

BL
κL +BL

+ βH
BH

κH +BH

]
S − (e1 + γ1)IA

)
+ λIS

(
(1− p)(1−m)

[
βL

BL
κL +BL

+ βH
BH

κH +BH

]
S

− (e2 + γ2)(1− u)IS − (e3 + γ3)uIS
)

+ λR (γ1IA + γ2(1− u)IS + γ3uIS − ωR+ vS)

+ λBH (η1IA + η2IS − χBH) + λBL (χBH − δLBL)

where λS , λIA , λIS , λR, λBH , λBL are the adjoint variables associated with their respective

states.

Theorem 7. Given an optimal triple ū∗ = (u∗, v∗,m∗) ∈ Ū and corresponding states

(S∗, I∗A, I
∗
S , R

∗, B∗H , B
∗
L), there exist adjoint functions satisfying
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dλS
dt

= v(λS − λR −B3)

+ (1−m)
[
βL

BL
κL +BL

+ βH
BH

κH +BH

]
(λs − pλIA − (1− p)λIS ), (3.18)

dλIA
dt

= −Ae1 −B3v + e1λIA + γ1 (λIA − λR)− η1λBH , (3.19)

dλIS
dt

= −A(e2(1− u) + e3u)−B2u+ λIS (e2(1− u) + e3u)

+ (λIS − λR)(γ2(1− u) + γ3u)− η2λBH , (3.20)

dλR
dt

= ω(λR − λS), (3.21)

dλBH
dt

= (1−m)βH
κH

(κH +BH)2
S(λS − pλIA − (1− p)λIS ) + χ(λBH − λBL), (3.22)

dλBL
dt

= (1−m)βL
κL

(κH +BL)2
S(λS − pλIA − (1− p)λIS ) + λBLδ, (3.23)

with transversality conditions

λS(T ) = 0, λIA(T ) = 0, λIS (T ) = 0, λR(T ) = 0, λBH (T ) = 0, λBL(T ) = 0.

Furthermore, the optimal controls are characterized by

u∗(t) =

max
(

0,min
(

(−Ae2 +Ae3 +B2)IS + ISλIS (e2 − e3 + γ2 − γ3) + λRIS(γ3 − γ2)
−2C2

, umax

))
,

v∗(t) = max
(

0,min
(

(λR − λS)S +B3(IA + S)
−2C3

, vmax

))
,

and

m∗(t) = max

(
0,min

(
B1 + (λS − pλIA − (1− p)λIS

[
βL

BL
κL+BL

+ βH
BH

κH+BH

]
S

−2C1
,mmax

))
.
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Proof: The differential equations for the adjoints are standard results from Pontryagin’s

Maximum Principle [66]. The right-hand sides of the differential equations can be easily

computed by

dλS
dt

=
−∂H
∂S

,

dλIA
dt

=
−∂H
∂IA

,

dλIS
dt

=
−∂H
∂IS

,

dλR
dt

=
−∂H
∂R

,

dλBH
dt

=
−∂H
∂BH

,

dλBL
dt

=
−∂H
∂BL

.

The final time conditions are due to the transversality conditions. Because there is no

salvage term in the objective functional, the final time conditions are zero.

In characterizing each control, we consider three cases concerning the control bounds.

We show this in detail for the characterization of u∗.

1. On the set {t|0 < u∗(t) < umax}, we have

0 =
∂H

∂u

∣∣∣∣
u∗

= (−Ae2 +Ae3 +B2)IS + 2C2u
∗ + ISλIS (e2 − e3 + γ2 − γ3) + λRIS(γ3 − γ2).

Solving the above for u∗ yields

u∗(t) =
(−Ae2 +Ae3 +B2)IS + ISλIS (e2 − e3 + γ2 − γ3) + λRIS(γ3 − γ2)

−2C2
.

2. On the set {t|u∗(t) = 0}, we have
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0 =
∂H

∂u

∣∣∣∣
u∗

= (−Ae2 +Ae3 +B2)IS + 2C2u
∗ + ISλIS (e2 − e3 + γ2 − γ3) + λRIS(γ3 − γ2).

Since −2C2 < 0, we have

0 ≥ (−Ae2 +Ae3 +B2)IS + ISλIS (e2 − e3 + γ2 − γ3) + λRIS(γ3 − γ2)
−2C2

and thus

u∗ = max
(

0,
(−Ae2 +Ae3 +B2)IS + ISλIS (e2 − e3 + γ2 − γ3) + λRIS(γ3 − γ2)

−2C2

)

holds on this set.

3. On the set {t|u∗(t) = umax}, we have

0 ≥ ∂H

∂u

∣∣∣∣
u∗

= (−Ae2 +Ae3 +B2)IS + 2C2umax + ISλIS (e2 − e3 + γ2 − γ3) + λRIS(γ3 − γ2)

or equivalently,

−2C2umax ≥ (−Ae2 +Ae3 +B2)IS + ISλIS (e2 − e3 + γ2 − γ3) + λRIS(γ3 − γ2).

Dividing both sides by the negative quantity −2C2 we have

umax ≤
(−Ae2 +Ae3 +B2)IS + ISλIS (e2 − e3 + γ2 − γ3) + λRIS(γ3 − γ2)

−2C2
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and thus

u∗ = min
(

(−Ae2 +Ae3 +B2)IS + ISλIS (e2 − e3 + γ2 − γ3) + λRIS(γ3 − γ2)
−2C2

, umax

)

holds on this set.

After examining these three cases, we characterize the optimal rehydration control as

u∗(t) = max
(

0,min
(

(−Ae2 +Ae3 +B2)IS + ISλIS (e2 − e3 + γ2 − γ3) + λRIS(γ3 − γ2)
−2C2

, umax

))
.

Similar three-step arguments hold for characterizing the optimal vaccination schedule, v∗,

and the optimal sanitation schedule, m∗.

We also note that ∂2H
∂u2 |u∗= 2C2 > 0, ∂2H

∂v2 |v∗= 2C3 > 0, and ∂2H
∂m2 |m∗= 2C1 > 0,

indicating that the optimal controls minimize the Hamiltonian.

3.4 Population-Specific Strategies of Cholera Control

In this section, we use our model to project cholera outbreaks for two endemic populations

with diverse parameter values. In all numerical simulations, we use an iterative scheme

employing a Runge Kutta method of the fourth order. See Chapter 1 and Appendix A

for details. Parameter values for the two populations are presented in Section 3.4.1. Out-

break dynamics in the absence of control are displayed and compared in Section 3.4.2. For

both populations, optimal strategies of multiple controls are computed and displayed in

Section 3.4.3. We also investigate optimal strategies of one control and present results in

Section 3.4.4. Lastly, we conduct a sensitivity analysis of our model with constant control

parameters in Section 3.4.5.
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3.4.1 Parameter Values

For population-specific parameters, we refer to King et al. [42] and the log-likelihood

estimates for the two-path model. Displayed in Table B.1, estimates are based on monthly

cholera mortality data from Bengal districts in the early 1900’s. The effects of vaccination,

antibiotics, and modern sanitation are not evident in the values. For our two populations,

we choose the Calcutta district and the Bogra district primarily because of their diverse

values of p, the proportion of infections which are asymptomatic. In Bogra, it is estimated

that 76% of infections are asymptomatic. In contrast, Calcutta estimates indicate nearly

99% of infections are asymptomatic. The two districts also differ considerably in their

estimated rates of waning immunity, cholera-related death, and cholera recovery.

For parameter values concerning the vibrios, we use estimates consistent with Hartley et

al. [37] and Codeço [20]. The half saturation constant (or infectious dose ID50) for non-HI

vibrios is estimated to be KL = 106 cells/ml. Laboratory experiments demonstrate that

when inoculated into the intestines of mice, freshly shed Vibrio cholerae greatly outcompete

bacteria grown in vitro, by as much as 700-fold [55]. Thus, for HI vibrios, it is estimated

that KH = 106

700 cells/ml [37]. The HI advantage is temporary. Average time spent in the HI

state is estimated to be 1
χ ≈ 5 hours. Average lifespan of the non-HI vibrios is estimated

to be 1
δ ≈ 30 days [41].

All individuals with cholera actively shed vibrios [20, 50]. As found in a study by Levine

et al., symptomatic infecteds shed as much as 103 more vibrios than asymptomatic infecteds

during their infectious period [50]. Based on the findings in this study and the results of a

sensitivity analysis for our model, we let η1 = 0.5 cells
ml-day-human and η2 = 50 cells

ml-day-human
as the vibrio shedding rates for asymptomatic and symptomatic infecteds respectively.

Ingestion of HI vibrios occurs at the rate βH while ingestion of non-HI vibrios occurs at

the rate βL. Little is known about exact values of βL and βH , but it is clear that they play

an important role in controlling cholera. Consistent with Hartley et al. [37], we assume

βL = 0.215 per day in both populations and allow βH to vary. Figure 3.2 illustrates how

varying the values of βH can impact the explosiveness of the outbreak. Because the HI
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Figure 3.2: Simulation of three cholera outbreaks using system (3.1)-(3.6). All parameter
values remain the same between simulations with the exception of βH , the ingestion rate
of HI vibrios. Red curves indicate an explosive outbreak resulting from βH = βL. Such a
relationship may be representative of a a highly populated city or refugee camp in which
human-to-human transmission is frequent. The green curves represent the outbreak for the
decreased value βH = βL

5 . Lastly, the blue curves represent the least explosive outbreak
occurring when βH = βL

10 and may be representative of a rural community in which human-
to-human transmission plays a lesser role in disease spread. Here, the environment-to-
human route is dominant.
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vibrio state is short-lived, the ingestion rate of HI vibrios has been associated with human-

to-human transmission of cholera [37]. Areas more densely populated are likely to have

higher rates βH than areas less densely populated.

The district of Calcutta (currently renamed Kolkata) is a small district containing the

city, also named Calcutta, and its surrounding area. The city of Calcutta served as the the

capital of West Bengal during the early 1900’s. During this time, its population exceeded

1 million people [70]. Presently, it is the third largest Indian city. In contrast, the district

of Bogra is much larger in land area and less populated. The 1901 census revealed the

total population of the Bogra district was less than 900,000 and no town within the district

exceeded 10,000 inhabitants [12]. Because of the difference in the two districts’ population

densities, we assume different amounts of human-to-human transmission and choose the

values of βH accordingly. We let βH = βL for the Calcutta population and βH = βL
10 for the

Bogra population.

Values of parameters associated with the controls are chosen to reflect the appropriate

consequences [91]. That is, a symptomatic infected receiving rehydration treatment experi-

ences a 90% decrease in the rate of death due to disease, i.e. e3 = 0.1e2. These individuals

also experience an increased recovery rate such that the average time spent in the IS class

is halved, i.e. γ3 = 2γ2.

Displayed in Table 3.5 are the parameter values used in all numerical simulation for the

Bogra and Calcutta populations.

3.4.2 Cholera Outbreaks in the Absence of Intervention

Equations (3.1)-(3.6) with population-specific parameter values in Table 3.5 are used to

simulate cholera outbreak dynamics in the absence of intervention. At the initial time,

the two populations each consist of 100 infected individuals and 10,000 susceptibles indi-

viduals. The initial ratio of asymptomatic to symptomatic infecteds is chosen to reflect

the population-specific value of p. The initial HI and non-HI vibrio concentrations are

1
10κH cells/ml and 1

10κL cells/ml respectively. Initial positive concentration of vibrios are

indicative of endemic areas such as the Calcutta and Bogra districts.
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Table 3.5: Population-specific parameter values

Parameter Bogra Calcutta Ref.

Initial number of susceptibles S0 10,000 10,000

Initial number of asymptomatic infecteds IA0 76 99

Initial number of symptomatic infecteds IS0 24 1

Initial number of recovered individuals R0 0 0

Initial concentration of HI vibrios BH0
κH
10

κH
10

Initial concentration of Non-HI vibrios BL0
κL
10

κL
10

Proportion of infections being asymptomatic p 0.76 0.9895 [42]

Ingestion rate of non-HI vibrios βL 0.215 day−1 0.215 day−1 [20]

Ingestion rate of non-HI vibrios βH 0.0215 day−1 0.215 day−1

Non-HI saturation constant κL 106 cells/ml 106 cells/ml [37]

HI saturation constant κH
106

700
cells/ml 106

700
cells/ml [37]

Cholera-related death rate
(asymptomatic) e1 0 day−1 0 day−1 [42]

Cholera-related death rate
(symptomatic) e2 0.00065753 day−1 .0128 day−1 [42]

Cholera-related death rate
(symptomatic with treatment) e3 0.000065753 day−1 .00128 day−1

Cholera recovery rate
(asymptomatic) γ1 0.15 day−1 0.15 day−1 [38]

Cholera recovery rate
(symptomatic) γ2 0.0592 day−1 .0310 day−1 [42]

Cholera recovery rate
(symptomatic with treatment) γ3 0.1184 day−1 .0620 day−1

Rate of waning immunity ω 0.0011 day−1 .00192 day−1 [42]

Vibrio shedding rate (asymptomatic) η1 0.5 cells
ml-day-human

0.5 cells
ml-day-human

[50]

Vibrio shedding rate (symptomatic) η2 50 cells
ml-day-human

50 cells
ml-day-human

[50]

Vibrio transition rate χ 5 day−1 5 day−1 [37]

Vibrio death rate δ 1
30

day−1 1
30

day−1 [37]

62



Displayed in Figure 3.3 are the susceptible and recovered human classes during an

outbreak. Figure 3.4 displays the two infected classes and Figure 3.5 displays the vibrio

concentrations. Cholera sweeps through both populations within weeks of introduction.

Our model projects an approximate 2:1 ratio of asymptomatic to symptomatic infections at

the peak of the outbreak for the Bogra population, while the Calcutta population represents

one with fewer severe infections and an approximate 50:1 ratio.

At their maximum values on days 18 and 23 respectively, the Bogra asymptomatic

infected class contains 1677 individuals and the symptomatic infected class contains 986

individuals. The HI and non-HI classes reach their maximum concentrations on days 23

and 42 with 10,011 cells/ml and 894,600 cells/ml respectively. For the Calcutta population,

the class of asymptomatic infecteds reaches its maximum on day 14 with 2428 individuals.

The maximum number of symptomatic infecteds is 52 and attained on day 21. The HI and

non-HI vibrio concentrations attain maximums on days 17 and 28 with concentrations of

740 cells/ml and 93,181 cells/ml respectively. Despite the different dynamics, the estimates

indicate the two populations are affected similarly in terms of cholera-related deaths. During

the 100-day period, the model projects a total of 28 deaths for the Bogra population and

31 deaths for the Calcutta population.

3.4.3 Optimal Strategies of Multiple Controls

The cost-effective balance of multiple controls can differ between two populations. To illus-

trate, cost coefficients are fixed within objective functional (3.17) and the optimal schedule

of the three controls is simulated for the Bogra population as well as the Calcutta popula-

tion.

We bound u(t) above so that we effectively treat no more than 70% of symptomatic

infections at any time. Daily vaccination rate is bounded above so that no more than

5% of the combined susceptible and aymptomatic infected classes are vaccinated per day.

Sanitation efforts are modeled as a reduction in the population’s bacterial ingestion rates

and are bounded above so that a 40% reduction is maximal.

The cost of cholera vaccine was estimated to range between US $0.50 - $1.00 per dose

in 1995 [60]. More recently, trials of a cholera vaccine manufactured in Vietnam at a cost
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Figure 3.3: Susceptible and recovered human classes during cholera outbreak using system
(3.1)-(3.6). Curves reflect outbreak dynamics in the absence of intervention.
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Figure 3.4: Asymptomatic and symptomatic infected human classes during cholera outbreak
using system (3.1)-(3.6).
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Figure 3.5: Hyperinfectious and less-infectious vibrio concentrations during cholera out-
break using system (3.1)-(3.6).
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of only about US $0.20 per dose have produced encouraging results. Both require multiple

doses for an effective vaccination. These estimates are for the vaccine itself and do not

include any cost for facilities usage or professional administration of the drug. We fix the

cost coefficient for the linear component within the vaccine term as B3 = $6.00. The cost

coefficient for the linear rehydration and antibiotic component is fixed as B2 = $2.00, im-

plying a cost of $2.00 per day for one symptomatic infected to receive professional cholera

treatment. Thus, it is assumed that after 3 days of rehydration and antibiotic treatment,

one symptomatic infected costs more to treat than it would cost to have vaccinated him

or her prior to infection. Estimating the cost of sanitation efforts is not as straightfor-

ward. Sanitation effort may be in the form of increasing public awareness and education or

providing families with saris and demonstrations of filtering. It is clear that the cost per

unit of effort in reducing transmission in the total population is much greater than the per

person cost of rehydration and antibiotic treatment or vaccination. The linear coefficient of

sanitation cost is fixed as B1 = $100.00. The quadratic cost coefficients for each of the three

controls are assumed equal, i.e., C1 = C2 = C3. In the cost representations of each control

within the objective functional, the linear terms dominate while quadratic terms add small

additional costs associated with higher levels of treatment. The cost of human death, A, is

fixed large enough to ensure minimizing death due to disease is a primary goal. The fixed

cost coefficients and control bounds used in all simulations with control are displayed in

Table 3.6.

Given the fixed costs in Table 3.6 and population-specific parameters in Table 3.5, the

optimal balance of the three controls for the Bogra population (blue) and Calcutta popula-

tion (red) are displayed in Figure 3.6. The corresponding human population dynamics are

displayed as solid lines in Figure 3.7 and Figure 3.8. Solid lines in Figure 3.9 illustrate the

corresponding vibrio concentrations. In all figures, dotted lines recall dynamics in absence

of control.

Optimal control results provide clearly different strategies for relative application of

sanitation efforts and treatment of symptomatic infecteds for the two populations. For the

Bogra population, the optimal balance of rehydration and antibiotic treatment starts at the

introduction of disease with two individuals receiving treatment, then increases according
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Table 3.6: Fixed cost coefficients and control bounds

Parameter Notation Value

Cost coefficient (Infecteds) A 3000 dollars per human

Cost coefficient (Sanitation) B1 100.00 dollars per unit effort

Cost coefficient (Rehydration and Antibiotics) B2 2.00 dollars per human

Cost coefficient (Vaccine) B3 6.00 dollars per human/day

Quadratic cost coefficient (Sanitation) C1 10 dollars per effort2

Quadratic cost coefficient (Rehydration and Antibiotics) C2 10 dollars

Quadratic cost coefficient (Vaccine) C3 10 dollars per 1/day2

Maximum rate of vaccination vmax 0.05 day−1

Maximum proportion of symptomatic infecteds receiving
rehydration and antibiotic treatment umax 0.7

Maximum sanitation effort mmax 0.4 unit effort
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Figure 3.6: After fixing cost coefficients, the optimal balance of the three controls for the
two diverse populations, Bogra (Blue) and Calcutta (Red) are displayed. Results indicate
clearly different strategies for the relative application of sanitation efforts and treatment of
symptomatic infecteds, but similar high levels of initial vaccination.
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Figure 3.7: Solid lines indicate susceptible and recovered human classes during cholera
outbreak using system (3.10)-(3.15) and given the population-specific optimal strategy of
multiple controls in Figure 3.6. Dotted lines indicate population dynamics in absence of
control.
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Figure 3.8: Solid lines indicate asymptomatic and symptomatic infected human classes
during cholera outbreak using system (3.10)-(3.15) and population-specific optimal strategy
of multiple controls in Figure 3.6. Dotted lines indicate population dynamics in absence of
control.
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Figure 3.9: Solid lines indicate hyperinfectious and less-infectious vibrio concentrations
using system (3.10)-(3.15) and population-specific optimal strategy of multiple controls in
Figure 3.6. Dotted lines indicate population dynamics in absence of control.
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to the increase in symptomatic infecteds. At its maximum quantity on day 14, a total

of 150 symptomatic infecteds receive rehydration and antibiotic treatment. Afterwards,

a decline in the number treated occurs and this particular control is ended on day 93.

Consequentially, fewer funds are allocated for sanitation efforts in the optimal scheme;

however, temporary maximum sanitation treatment is advantageous at the onset of infection

until day 28. In combination with other controls, high levels of sanitation are most beneficial

at the beginning of an outbreak to decrease the explosiveness of infection, providing more

time to effectively implement the other treatments.

For the Calcutta population, far fewer rehydration and antibiotic supplies are necessary

and instead, results suggest funding maximum sanitation for nearly the entire duration of

infection. The optimal balance of rehydration and antibiotic treatment begins with one

symptomatic infected at the start of an outbreak and increases until day 19, at which

time 11 symptomatic infecteds receive treatment. A decline in the number of individuals

receiving treatment occurs after day 11. After day 85, the number of symptomatic infecteds

receiving treatment remains steadily at four for the remaining time. Sanitation efforts are

applied at the maximum level initially and continue at this level for 85 days. No gradual

decline in effort is visible and the optimal schedule suggests terminating sanitation efforts

on day 85.

The optimal control strategies show that vaccinating at maximum rates initially is op-

timal in preventing deaths regardless of the populations ratio of asymptomatic to symp-

tomatic infections. Bogra and Calcutta results both indicate that vaccination is crucial to

apply during the first few weeks of disease detection. Vaccination of 500 individuals per day

is initially optimal for both populations, but followed by a decreasing daily rate. For the

Bogra population, the decline is such that on day 31, 150 individuals are vaccinated per day.

The vaccination regime continues until termination on day 37 at which time 100 individuals

per day are vaccinated. For the Calcutta population, a sharper decline is indicated due to

the decreasing size of the susceptible class. The decline is such that on day 11 the optimal

vaccination rate is 275 individuals per day. After day 11, no further vaccination is optimal.

Our model indicates similar and significant reductions in both populations’ death toll

and infectious classes given the optimal intervention. For the Bogra population, cholera
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related deaths are reduced reduced by 89% from 28 to 3 deaths over the 100-day period.

With the optimal intervention, the Bogra asymptomatic infected class attains its maximum

on day 12 with 528 individuals and symptomatic class on day 15 with 218 individuals. These

numbers indicate a 68% and 77% reduction in the maximum number of asymptomatic and

symptomatic infecteds, respectively.

The optimal intervention yields 5 cholera-related deaths over the 100-day period for

the Calcutta population, an 84% reduction from the projected 31 deaths in the absence

of intervention. With the intervention, the Calcutta outbreak is less severe with a maxi-

mum number of 750 asymptomatic infecteds and 15 symptomatic infecteds on days 13 and

25 respectively. These values indicate a 66% and 60% reduction in maximum number of

symptomatic and asymptomatic infecteds, respectively.

Both populations, with their respective optimal strategy, experience similar, significant

reductions in vibrio concentrations because of the reduced number of infected individuals.

By the final time, an increased supply of susceptible individuals is visible in both populations

due to the controls. The susceptible population is heightened more for Calcutta because of

less movement from the susceptible class to the recovered class via vaccination. This is also

reflected in the size of each population’s recovered classes. By the final time, a decreased

supply of recovered individuals exists in each population, more noticeably so in Calcutta.

Although the balancing coefficients in the objective functional are not meant to be

accurate estimates of all costs associated with control implementation, we use the value of

the objective functional to assess the relative costs of the two optimal strategies. For the

optimal allocation of controls in the Bogra population, the objective functional in (3.17) is

estimated at $64,645.00 ($2,585.80 per life saved). For the optimal application of controls

in the Calcutta population, the objective functional in (3.17) is estimated at $43,748.00

($1,682.60 per life saved). The increased cost of the Bogra strategy is largely due to the

increased treatment of symptomatic infecteds.

73



3.4.4 Optimal Strategies of Single Control

To assess the benefit gained from strategies comprised of multiple controls, we simulate

optimal applications of one control alone and the corresponding population dynamics. As-

suming only one of the controls is feasible, we can reformulate our optimal control problem

by setting the remaining two controls to identically zero in system (3.10)-(3.15) and ob-

jective functional (3.17). Fixing cost coefficients and control bounds as in Table 3.6, we

simulate the optimal schedule of each intervention method. Here, we display results for the

Calcutta population.

Figures 3.10 (a) - (c) display the optimal schedule of each control when applied in

absence of the other two. In Figure 3.11, the asymptomatic and symptomatic populations

corresponding to each of the optimal stratgies of one control are displayed. For comparison,

we also display the corresponding population dynamics for the optimal strategy of all three

controls.

Recall that in the absence of all controls, our model projects 31 cholera-related deaths

for the Calcutta population over a 100-day period. Comparing the optimal strategies for

each single control, the strategy comprised of only rehydration and antibiotic treatment is

most effective in reducing the death toll. With the optimal treatment in Figure 3.10 (a), our

model projects 10 cholera-related deaths. However, this optimal intervention does the least

to reduce the total number infected during the outbreak. On the other hand, the initial high

rate of vaccination in Figure 3.10 (b) effectively decreases the size of both infected classes

while also modestly reducing the death toll. The optimal vaccination schedule reduces

cholera-related deaths to 20 over the 100-day period. In the absence of the other two

controls, sanitation does little to reduce the death due to cholera. Our model projects 28

deaths with the optimal schedule in Figure 3.10 (c). However, sanitation does dampen the

explosiveness of the outbreak.

Although not displayed here, optimal applications of one control were also simulated

for the Bogra population. For both populations, the optimal strategy balancing the three

controls is considerably more effective in reducing both cholera-related death and total

infections than any of the optimal strategies of one intervention method.
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Figure 3.10: Optimal applications of one intervention method for Calcutta population. (a)
In absence of sanitation and vaccination, the optimal number of symptomatic infecteds
receiving rehydration and antibiotics treatment during the outbreak increases. (b) In ab-
sence of rehydration/antibiotic treatment and sanitation, initial high rates of vaccination
remain optimal for a short time. (c) In absence of rehydration/antibiotic treatment and
vaccination, maximum levels of sanitation throughout the outbreak period remain optimal.
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Figure 3.11: Dynamics of two infected classes for optimal strategies of one control and
multiple controls. The optimal strategy balancing the the three controls is more effective in
reducing both cholera-related death and total infections than any of the optimal strategies
of one control.
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3.4.5 Sensitivity Analysis of Control-Related Parameters

Lastly, a sensitivity analysis for each population is conducted using equations (3.10)-(3.15).

For the analysis, we assume control functions are constant functions of time (u(t) = u,

v(t) = v, m(t) = m) and compare the ability of parameters u, v,m, γ3 to affect change in

the three outcomes measuring outbreak severity. Over the total time period of the model,

outbreak severity is again measured by (1) the maximum and (2) the total size of the

symptomatic infected class and (3) the total size of the combined infected classes. The

three most influential parameters from the sensitivity analysis in Section 3.2.4 are also

included in the analysis. The remaining parameters are fixed according to the population-

specific values given in Table 3.5. A summary of the parameters used in the LHS and the

ranges over which they were sampled is displayed in Table 3.7.

Results of the sensitivity analysis are displayed in Table 3.8 for the Bogra population

and in Table 3.9 for the Calcutta population. The results indicate that each of the three

controls are key in reducing the severity of an outbreak, but population-specific parameters

influence which controls are more important. The results suggest that, in both populations,

vaccination is the most effective control in decreasing the number of individuals who become

infected during an outbreak. Reducing the maximum number of symptomatic infecteds

during an outbreak can be addressed with all three controls. Results for both districts attest

that rehydration and antibiotic treatment can have the greatest impact of the three controls

in reducing the maximum number of symptomatic infected individuals during an outbreak.

For Calcutta, sanitation effort can strongly influence the total number of individuals who

become infected during an outbreak, while in Bogra the effect of sanitation is marginal.

The population-specific results of the sensitivity analysis reiterate the key conclusion of

our optimal control simulations. Strategies of multiple controls can have dramatic effects

in reducing the severity of a cholera outbreak. However, the optimal balance of multiple

intervention methods can vary between populations.
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Table 3.7: Parameters used in sensitivity analysis with controls. Upper and lower bounds
for sampled ranges are displayed. All values are in units day−1.

Description Lower Upper

r Multiplicative factor determining βH , where βH = rβL 0.01 1.0

η1 Vibrio shedding rate for asymptomatic infected 0.05 1.0

s Multiplicative factor determining η2, where η2 = sη1 1 100

m Constant level of sanitation effort 0.001 0.40

u Constant proportion of symptomatic infecteds receiving
rehydration and antibiotic treatment 0.001 0.70

v Constant rate of vaccination 0.001 0.05

γ3 Recovery rate for symptomatic infected with treatment 0.05 0.3

Table 3.8: Sensitivity analysis results for Bogra. For each parameter, the PRCC correspond-
ing to each of the three measures of outbreak severity is displayed. Statistical significance
of associated p-value is indicated with astericks ( * p-value < 0.05, ** p-value < 0.01,
***p-value < 0.001).

Parameter Maximum IS Total IS Total (IA + IS)
r 0.85 *** 0.79 *** 0.79 ***
η1 0.73 *** 0.74 *** 0.74 ***
s 0.74 *** 0.75 *** 0.75 ***
m -0.52 *** -0.46 -0.46 ***
u -0.54 *** -0.20 *** -0.19 ***
v -0.51 *** -0.83 *** -0.83 ***
γ3 -0.61 *** -0.21*** -0.21 ***
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Table 3.9: Sensitivity analysis results for Calcutta. For each parameter, the PRCC cor-
responding to each of the three measures of outbreak severity is displayed. Statistical
significance of associated p-value is indicated with astericks ( * p-value < 0.05, ** p-value
< 0.01, ***p-value < 0.001).

Parameter Maximum IS Total IS Total (IA + IS)
r 0.71 *** 0.81 *** 0.81 ***
η1 0.57 *** 0.80 *** 0.80 ***
s 0.51 *** 0.73 *** 0.73 ***
m -0.43 *** -0.63 *** -0.64 ***
u -0.78 *** -0.36 *** -0.37 ***
v -0.27 *** -0.85 *** -0.86 ***
γ3 -0.74 *** -0.32 *** -0.32 ***
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3.5 Concluding Remarks and New Contributions

This work presents a new mathematical model for the spread of cholera that incorporates

both mild and severe human infections, both hyperinfectious and less-infectious bacteria,

and waning immunity. A new interpretation of the basic reproductive number arises from

our model and provides a measure of all secondary infections (mild and severe).

Our work also presents the first application of optimal control theory to a cholera model.

The model formulation, sensitivity analyses, optimal control problem, and associated solu-

tion provide a new methodology to evaluate trade-offs in multiple intervention schemes and

assess which are most effective. An important result of this analysis is that a cost-effective

balance of prevention and treatment methods can successfully control a cholera outbreak,

but that the balance of treatment is specific to the population. A one-size-fits-all approach

is inappropriate. Strategies of multiple controls are shown to be more effective in reducing

the death toll and severity of an outbreak than any strategy consisting of one control alone.

Optimal control theory in our cholera model is a starting point for more elaborate

models which can include spatial and/or age dependence and can provide insight in deter-

mining which age groups or locales should be given priority for various treatments. Our

results broaden the application of optimal control theory to disease dynamics and provide a

framework for designing cost effective treatment strategies for diseases other than cholera.
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Chapter 4

Optimal Control of a

Spatiotemporal Epidemic Model

and Application to Rabies

4.1 Background

In the past, diffusive spatiotemporal models have been used to study the spread of epidemics

among a population of susceptible (S), infected (I), and recovered (R) individuals. In 1981,

Webb [88] analyzed the following coupled system of nonlinear PDE’s with prescribed initial

values and no-flux boundary values:

St(x, t) = Sxx(x, t)− aS(x, t)I(x, t), t ≥ 0, −L ≤ x ≤ L, (4.1)

It(x, t) = Ixx(x, t) + aS(x, t)I(x, t)− λI(x, t), (4.2)

Rt(x, t) = Rxx(x, t) + λI(x, t), (4.3)

Sx(±L, t) = Ix(±L, t) = Rx(±L, t) = 0, t ≥ 0, (4.4)
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S(x, 0) = S0(x), I(x, 0) = I0(x), R(x, 0) = R0(x) − L ≤ x ≤ L. (4.5)

The infection rate a and removal rate λ are given positive constants and initial populations

S0(x), I0(x), R0(x) are assumed to be nonnegative and continuous on [−L,L]. Webb showed

that for system (4.1)-(4.5) there exists a unique classical solution defined for all t ≥ 0 and

as t → ∞, S(x, t) converges uniformly in x to S∞ and I(x, t) converges uniformly in x to

I∞(x), where S∞ is a positive constant function on [−L,L] and I∞ = 0 on [−L,L]. Thus,

the infection dies out as t→∞, but not for lack of susceptible individuals, some of whom

never contract the disease. In 1987, Fitzgibbon and Morgan [33] extended this model to

bounded domains of arbitrary dimension and proved asymptotic results similar to that of

Webb.

In this chapter of the dissertation we seek weak solutions [31] to epidemic models with

reaction-diffusion equations that include transport effects and no-flux boundary conditions.

In 2002, Bendahmane, et al. [9] proved the existence of at least one weak solution for a

nonlinear reaction-diffusion system of partial differential equations with L1 data and no-flux

boundary conditions. We formulate an S-I-R model similar to that of Bendahmane, et al.

with L∞ data and include the effects of vaccinating as a control variable. After designing

an objective functional, we use the principles of optimal control theory to characterize the

optimal strategy of vaccination. We illustrate results with numerical approximations to the

optimality system.

For the numerical results, parameter values are chosen to model the spread of rabies

and raccoons. It was Murray et al. who first used partial differential equations to study

the spatial spread of rabies within fox populations [40, 57, 58]. Using the model from [58],

Evans and Pritchard [32] applied control of initial conditions in culling and quarantine to

drive the population to a desired profile. Other extensions of Murray’s work incorporate

environmental and habitat heterogeneity [69, 78, 79]. Our goal is to investigate optimal

vaccination regimes in both homogeneous and heterogeneous spatial domains and address

how long distance raccoon translocation may affect optimal strategies.
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4.2 Model Formulation and Optimal Control Problem

We formulate a spatiotemporal S-I-R model as follows. Let S, I, R represent either the

density or size of the susceptible, infected, and immune classes of a population at a given

location and time. Let Ω be an open and bounded subset of Rn. Set Q = Ω × (0, T )

for some fixed time T > 0. Given a control v(x, t), the corresponding state variables

(S, I,R) = (S, I,R)(v) satisfy the system

L1S = b(S +R)− µ1S − βSI − avS, for (x, t) ∈ Q,

L2I = βSI − µ2I, (4.6)

L3R = −µ1R+ avS

where the operators Lk, k = 1, 2, 3 are defined as

Lku ≡
∂u

∂t
−

n∑
i,j=1

(akijuxi)xj +
n∑
i=1

(bki u)xi .

Initial conditions and no-flux boundary conditions are given by

S(x, 0) = S0(x), I(x, 0) = I0(x), R(x, 0) = R0(x) for x ∈ Ω, (4.7)

∂S

∂ν
= 0,

∂I

∂ν
= 0,

∂R

∂ν
= 0 on ∂Ω× (0, T ). (4.8)

We assume only the S and R populations give birth. The parameter b is the birth rate, µ1

is a natural death rate, and µ2 is an increased death rate due to disease. The horizontal

incidence term βIS represents the infection rate of susceptibles. We assume the simple mass

action law applies with β as the mass action coefficient. The control function v represents

the vaccination rate of the susceptible population. The rate at which susceptibles are
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effectively vaccinated is assumed to be proportional to the total susceptible population size.

The proportionality constant is taken to be av for some a > 0. The boundary conditions

imply that the population does not diffuse across the boundary. Denote the outward normal

vector on ∂Ω by η. Then ν is the conormal outward vector with components νi =
n∑
j=1

aijηj .

We define the class of admissible controls as

U = {v ∈ L∞(Q) |v : Q→ [0, vmax]}

for some positive constant vmax. The best strategy for controlling an epidemic outbreak

during a time period of length T may be one which minimizes the number of individuals

who become infected and the cost of vaccination during the time period. It may also be of

importance to sustain a sizable susceptible population. Therefore, we seek to minimize the

objective functional

J(v) =
∫
Q

(AI −BS + C(v))dxdt

where A, B are constant weights and C(·) is a lower semi-continuous convex function repre-

senting the cost of vaccination. For example, one may take C(v) = c1v
2 or C(v) = c2v+c3v

2

with positive constants c1, c2, and c3.

Throughout this chapter we will make the following assumptions:

1. a, vmax ∈ R+,

2. S0(x), I0(x), R0(x) ∈ L∞(Ω) and S0(x) > 0, I0(x) > 0, R0(x) ≥ 0,

3. b, µ1, µ2 ∈ L∞(Q) and b ≥ 0, µ1 ≥ 0, µ2 ≥ 0,

4. akij , b
k
i ∈ C1(Q̄) and akij = akji for k = 1, 2, 3,

5.
n∑

i,j=1

akijξiξj ≥ θ
n∑
i=1

ξ2
i , k = 1, 2, 3, where θ > 0.

Define the space V = L2(0, T ;H1(Ω)) and the bilinear forms
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Bk[t, u, φ] =
∫

Ω

n∑
i,j=1

akij(x, t)uxiφxjdxdt+
∫

Ω

n∑
i=1

(bki (x, t)u)xiφdxdt

for u, φ ∈ V and k = 1, 2, 3.

Definition 8. For the system (4.6)-(4.8), a weak solution (S, I,R) ∈ V 3 with St, It, Rt ∈

L2(0, T ;H1(Ω)∗) must be nonnegative and satisfy (4.7),(4.8) and the following variational

formulation of (4.6)

∫ T

0
〈St, φ1〉dt+

∫ T

0
B1[t, S, φ1]dt =

∫
Q
b(S +R)φ1dxdt−

∫
Q
βSIφ1dxdt−

∫
Q

(µ1 − av)Sφ1dxdt∫ T

0
〈It, φ2〉dt+

∫ T

0
B2[t, I, φ2]dt =

∫
Q
βSIφ2dxdt−

∫
Q
µ2Iφ2dxdt (4.9)∫ T

0
〈Rt, φ3〉dt+

∫ T

0
B3[t, R, φ3]dt =

∫
Q
avSφ3dxdt−

∫
Q
µ1Rφ3dxdt

for all φ1, φ2, φ3 ∈ V where 〈 , 〉 inner product is the duality between H1(Ω)∗ and H1(Ω).

Remark 9. Due to results in Evans [31], S, I,R ∈ C([0, T ];L2(Ω)). Thus, initial conditions

S0(x), I0(x), R0(x) ∈ L∞(Ω) are both biologically and mathematically appropriate.

Remark 10. To make sense of terms such as
∫
Q
βSIφdxdt in (4.9), we seek L∞(Q) bounds

on the state variables in Theorem 11.

Throughout the following sections of results, similar estimation techniques are used

within the proofs. Because of their frequency, we display them here and reference them as

necessary. Four useful inequalities and equalities follow.

1. For u ∈ V and s ∈ (0, T ], we have

∫
Ω×(0,s)

utudxdt =
1
2

∫
Ω×(0,s)

(u2)tdxdt

=
1
2

∫
Ω
u2(x, s)− u2(x, 0)dx. (4.10)
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2. For u, v ∈ V Cauchy’s Inequality with ε > 0 states

∫
Q
uvdxdt ≤ ε

∫
Q
u2dxdt+

1
4ε

∫
Q
v2dxdt. (4.11)

3. For k = 1, 2, 3 and u ∈ V , an application of Cauchy’s Inequality with ε gives

|
∫
Q

n∑
i=1

(bki u)xiu|dxdt ≤
θ

2

∫
Q
| 5 u|2dxdt+ C

∫
Q
|u|2dxdt (4.12)

where C depends on θ and the bounds on the coefficients bki and (bki )xi .

4. For u, ū, v, v̄ ∈ V , we can write

vu− v̄ū = v(u− ū) + ū(v − v̄). (4.13)

4.3 Existence and Optimality System

4.3.1 Existence of State Solution and Optimal Control

We start by proving existence of a solution to the state system given a control v ∈ U . Then

we will show that an optimal control does exist.

Theorem 11. For T sufficiently small, given v(x, t) ∈ U , there exists a unique nonnegative

solution (S, I,R) ∈ V 3 satisfying (4.7), (4.8), and (4.9). Furthermore, 0 ≤ S(x, t) ≤ C,

0 ≤ I(x, t) ≤ C, and 0 ≤ R(x, t) ≤ C a.e. (x, t) ∈ Q for some constant C.

Proof: We use Banach’s fixed point theorem which states that if given a Banach space X

and a nonlinear mapping A : X → X such that ‖A(u)− A(û)‖ ≤ γ‖u− û‖ for all u,û ∈ X

and some γ < 1 then A has a unique fixed point.

For a solution (S, I,R) ∈ V 3, results in Evans [31] indicate S ∈ C([0, T ];L2(Ω)), I ∈

C([0, T ];L2(Ω)), and R ∈ C([0, T ];L2(Ω)). In addition, we desire L∞(Q) bounds on S, I,

and R. Because of this, we apply Banach’s fixed point theorem in the Banach space X3

where

86



X = C([0, T ];L2(Ω))
⋂
{u ∈ L∞(Q)|0 ≤ u ≤M a.e.(x, t) ∈ Q}

for fixed

M ≥ 2 max{‖S0‖L∞(Ω), ‖I0‖L∞(Ω), ‖R0‖L∞(Ω)}.

We use the norm

‖u1, u2, u3‖X3 = (‖u1‖X + ‖u2‖X + ‖u3‖X)

where

‖u‖X = sup
0≤t≤T

‖u(t)‖L2(Ω).

Assume v ∈ U . We transform our state equations by a change of functions. Let w =

e−λtS, y = e−λtI, and z = e−λtR. The equations satisfied by these functions are

L̂1w = b(w + z)− µ1w − eλtβwy − avw,

L̂2y = eλtβwy − µ2y, (4.14)

L̂3z = −µ1z + avw a.e. (x, t) ∈ Q

where

L̂ku ≡
∂u

∂t
−

n∑
i,j=1

(akijuxi)xj +
n∑
i=1

bki uxi +

(
n∑
i=1

(bki )xi + λ

)
u

for k = 1, 2, 3. The system has initial conditions
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w(x, 0) = S0(x), y(x, 0) = I0(x), z(x, 0) = R0(x) for x ∈ Ω (4.15)

and boundary conditions

∂w

∂ν
(x, t) = 0,

∂y

∂ν
(x, t) = 0,

∂z

∂ν
(x, t) = 0 for all x ∈ ∂Ω, t ∈ (0, T ). (4.16)

Let (h1, h2, h3) ∈ X3. Consider the system of linear parabolic PDEs

L̂1w = b(w + h3)− µ1w − eλtβwh2 − avw,

L̂2y = eλtβh1y − µ2y, (4.17)

L̂3z = −µ1z + avh1 a.e. (x, t) ∈ Q

with initial conditions

w(x, 0) = S0(x), y(x, 0) = I0(x), z(x, 0) = R0(x) for x ∈ Ω (4.18)

and boundary conditions

∂w

∂ν
(x, t) = 0,

∂y

∂ν
(x, t) = 0,

∂z

∂ν
(x, t) = 0 for all x ∈ ∂Ω, t ∈ (0, T ). (4.19)

Given (h1, h2, h3) ∈ X3, the system of linear equations (4.17)-(4.19) has a unique weak

solution solution (w, y, z) ∈ V 3 [31]. We will show that the solution (w, y, z) ∈ X3 as

well. By results in Evans [31], we know w ∈ C([0, T ];L2(Ω)), y ∈ C([0, T ];L2(Ω)), and

z ∈ C([0, T ];L2(Ω)). We must show that 0 ≤ w(x, t) ≤ M , 0 ≤ y(x, t) ≤ M , and 0 ≤

z(x, t) ≤ M a.e. (x, t) ∈ Q to conclude (w, y, z) ∈ X3. First, we show the lower bounds
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hold.

Rearranging (4.17) we find

L̂1w + (−b+ µ1 + eλtβh2 + av)w = bh3 ≥ 0,

L̂2y + (−eλtβh1 + µ2)y = 0, (4.20)

L̂3z + µ1z = avh1 ≥ 0 a.e. (x, t) ∈ Q

since 0 ≤ b, 0 ≤ av, 0 ≤ h1, 0 ≤ h3 a.e. (x, t) ∈ Q. Noting that (bki )xi , b, µ1, µ2, β, av ∈

L∞(Q), we can first choose λ sufficiently large and then choose T sufficiently small so that

λ+
n∑
i=1

(b1i )xi − b+ µ1 + eλtβh2 + av ≥ 0,

λ+
n∑
i=1

(b2i )xi − eλtβh1 + µ2 ≥ 0, (4.21)

λ+
n∑
i=1

(b3i )xi + µ1 ≥ 0 a.e. (x, t) ∈ Q.

Thus, the extension of the Parabolic Maximum Principle to weak solutions [46] gives us

0 ≤ w(x, t),

0 ≤ y(x, t),

0 ≤ z(x, t) a.e. (x, t) ∈ Q.

Second, we show the upper bound holds. That is, w(x, t) ≤ M , y(x, t) ≤ M , and

z(x, t) ≤M a.e. (x, t) ∈ Q. There exists a positive constant C = ĈM such that |bh3| ≤ C,

|avh1| ≤ C a.e. (x, t) ∈ Q and Ĉ depends only on the L∞(Q) bounds on b and av. Therefore,

an upper bound on the right hand sides of (4.20) is such that
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L̂1w + (−b+ µ1 + eλtβh2 + av)w ≤ C,

L̂2y + (−eλtβh1 + µ2)y ≤ C, (4.22)

L̂3z + (µ1)z ≤ C a.e. (x, t) ∈ Q.

Consider the functions W (x, t) = w(x, t) − Ct, Y (x, t) = y(x, t) − Ct and Z(x, t) =

z(x, t)− Ct. We have

L̂1W + (−b+ µ1 + eλtβh2 + av)W = L̂1w + (−b+ µ1 + eλtβh2 + av)w

− L̂1(Ct)− (−b+ µ1 + eλtβh2 + av)Ct

= L̂1w + (−b+ µ1 + eλtβh2 + av)w − C

−

(
λ+

n∑
i=1

(b1i )xi

)
Ct− (−b+ µ1 + eλtβh2 + av)Ct

≤ −

(
λ+

n∑
i=1

(b1i )xi − b+ µ1 + eλtβh2 + av

)
Ct

≤ 0

because of inequality (4.22) and the first choice of λ large and second choice of T sufficiently

small so that (4.21) holds. Similarly, we also have

L̂2Y + (−eλtβh1 + µ2)Y ≤ 0

L̂3Z + µ1Z ≤ 0

along with initial conditions

W (x, 0) = S0(x), Y (x, 0) = I0(x), Z(x, 0) = R0(x) for x ∈ Ω
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and boundary conditions

∂W

∂ν
= 0,

∂Y

∂ν
= 0,

∂Z

∂ν
= 0 for t ∈ (0, T ), x ∈ ∂Ω.

Again recalling the extension of the Maximum Principle to weak solutions [46], we conclude

W (x, t) ≤ ‖S0(x)‖L∞(Ω), Y (x, t) ≤ ‖I0(x)‖L∞(Ω), Z(x, t) ≤ ‖R0(x)‖L∞(Ω) a.e. (x, t) ∈ Q.

Equivalently, we have

w(x, t) ≤ ‖S0(x)‖L∞(Ω) + Ct,

y(x, t) ≤ ‖I0(x)‖L∞(Ω) + Ct,

z(x, t) ≤ ‖R0(x)‖L∞(Ω) + Ct a.e. (x, t) ∈ Q.

For T ≤ M
2C , we have

w(x, t) ≤ ‖S0(x)‖L∞(Ω) +
M

2

≤ max{‖S0(x)‖L∞(Ω), ‖I0(x)‖L∞(Ω), ‖R0(x)‖L∞(Ω)) +
M

2

≤ M

2
+
M

2

= M a.e. (x, t) ∈ Q

and similarly

y(x, t) ≤M and z(x, t) ≤M a.e. (x, t) ∈ Q.

Thus we have shown for (h1, h2, h3) ∈ X3, the solution (w, y, z) ∈ V 3 to (4.17)-(4.19) is also

in X3.

Define the map A : X3 → X3 such that A(h1, h2, h3) = (w, y, z). We now show A is

a strict contraction. Choose (h1, h2, h3), (h̄1, h̄2, h̄3) ∈ X3. Define (w, y, z) = A(h1, h2, h3)
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and (w̄, ȳ, z̄) = A(h̄1, h̄2, h̄3). Consider the differences (w − w̄), (y − ȳ), and (z − z̄). The

PDEs satisfied by these differences are

∂(w − w̄)
∂t

+ λ(w − w̄)−
n∑

i,j=1

(a1
ij(w − w̄)xi)xj +

n∑
i=1

(b1i (w − w̄))xi = b(w − w̄) + b(h3 − h̄3)

− µ1(w − w̄)− eλtβ(wh2 − w̄h̄)− av(w − w̄),

∂(y − ȳ)
∂t

+ λ(y − ȳ)−
n∑

i,j=1

(a2
ij(y − ȳ)xi)xj +

n∑
i=1

(b2i (y − ȳ))xi = eλtβ(h1y − h̄1ȳ)− µ2(y − ȳ),

∂(z − z̄)
∂t

+ λ(z − z̄)−
n∑

i,j=1

(a3
ij(z − z̄)xi)xj +

n∑
i=1

(b3i (z − z̄))xi = −µ1(z − z̄) + av(h1 − h̄1)

a.e. (x, t) ∈ Q with initial conditions

(w − w̄)(x, 0) = 0, (y − ȳ)(x, 0) = 0, (z − z̄)(x, 0) = 0 for x ∈ Ω

and boundary conditions

∂(w − w̄)
∂ν

= 0,
∂(y − ȳ)
∂ν

= 0,
∂(z − z̄)
∂ν

= 0 for all t ∈ (0, T ), x ∈ ∂Ω.

We multiply the PDEs satisfied by (w− w̄), (y− ȳ), and (z − z̄) by test functions (w− w̄),

(y− ȳ), and (z− z̄) respectively and integrate over the domain Qs = Ω× (0, s) for arbitrary

s ∈ (0, T ). After integrating by parts on the aij terms, we have

Z
Qs

(w − w̄)t(w − w̄)dxdt+ λ

Z
Qs

(w − w̄)2dxdt+

Z
Qs

nX
i,j=1

a1
ij(w − w̄)xi(w − w̄)xjdxdt

+

Z
Qs

nX
i=1

(b1i (w − w̄))xi(w − w̄)dxdt =

Z
Qs

b(w − w̄)2dxdt+

Z
Qs

b(h3 − h̄3)(w − w̄)dxdt

−
Z
Qs

µ1(w − w̄)2dxdt−
Z
Qs

eλtβ(wh2 − w̄h̄2)(w − w̄)dxdt−
Z
Qs

av(w − w̄)2dxdt,
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Z
Qs

(y − ȳ)t(y − ȳ)dxdt+ λ

Z
Qs

(y − ȳ)2dxdt+

Z
Qs

nX
i,j=1

a2
ij(y − ȳ)xi(y − ȳ)xjdxdt

+

Z
Qs

nX
i=1

(b2i (y − ȳ))xi(y − ȳ)dxdt =

Z
Qs

eλtβ(h1y − h̄1ȳ)(y − ȳ)dxdt−
Z
Qs

µ2(y − ȳ)2dxdt,

Z
Qs

(z − z̄)t(z − z̄)dxdt+ λ

Z
Qs

(z − z̄)2dxdt+

Z
Qs

nX
i,j=1

a3
ij(z − z̄)xi(z − z̄)xjdxdt

+

Z
Qs

nX
i=1

(b3i (z − z̄))xi(z − z̄)dxdt =

Z
Qs

µ1(z − z̄)2dxdt+

Z
Qs

av(h1 − h̄1)(z − z̄)dxdt.

We use (4.10)-(4.12) and the ellipticity condition in assumption (4) to estimate several

terms on the left hand side of the above equations. Then summing our inequalities, we

obtain

1

2

Z
Ω

(w − w̄)2(x, s) + (y − ȳ)2(x, s) + (z − z̄)2(x, s)dx+ λ

Z
Qs

(w − w̄)2 + (y − ȳ)2 + (z − z̄)2dxdt

+ θ

Z
Qs

| 5 (w − w̄)|2 + | 5 (y − ȳ)|2 + | 5 (z − z̄)|2dxdt ≤ θ

2

Z
Qs

| 5 (w − w̄)|2 + | 5 (y − ȳ)|2

+ | 5 (z − z̄)|2dxdt+ C0

Z
Qs

(w − w̄)2 + (y − ȳ)2 + (z − z̄)2dxdt+

Z
Qs

b(w − w̄)2dxdt

+

Z
Qs

b(h3 − h̄3)(w − w̄)−
Z
Qs

µ1(w − w̄)2dxdt+

Z
Qs

eλtβ(wh2 − w̄h̄2)(w − w̄)dxdt (4.23)

−
Z
Qs

av(w − w̄)2dxdt+

Z
Qs

eλtβ(h1y − h̄1ȳ)(y − ȳ)dxdt−
Z
Qs

µ2(y − ȳ)2dxdt

+

Z
Qs

µ1(z − z̄)2dxdt+

Z
Qs

av(h1 − h̄1)(z − z̄)dxdt

where C0 is a constant which depends on θ and the bounds on the coefficients bki and

(bki )xi .

Next we use (4.11), (4.13), and the fact that eλt ≤ e2λt to estimate terms on the right

hand side of the above inequality. An example of such estimation is

∫
Qs

eλtβ(h1y − h̄1ȳ)(y − ȳ)dxdt =
∫
Qs

eλtβ
(
y(h1 − h̄1) + h̄1(y − ȳ)

)
(y − ȳ)dxdt

=
∫
Qs

eλtβy(h1 − h̄1)(y − ȳ)dxdt+
∫
Qs

eλtβh̄1(y − ȳ)2dxdt
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≤ 1
2

∫
Qs

e2λty2β2(y − ȳ)2dxdt+
1
2

∫
Qs

(h1 − h̄1)2dxdt

+
∫
Qs

eλtβh̄1(y − ȳ)2dxdt

≤ 1
2

∫
Qs

e2λty2β2(y − ȳ)2dxdt+
1
2

∫
Qs

(h1 − h̄1)2dxdt

+
∫
Qs

e2λtβh̄1(y − ȳ)2dxdt

≤ D0(M +M2)e2λT

∫
Qs

(y − ȳ)2dxdt+
1
2

∫
Qs

(h1 − h̄1)2dxdt

where D0 is a positive constant that depends only on the L∞(Q) bounds on β. After similar

estimates on terms in (4.23), we have

1

2

Z
Ω

(w − w̄)2(x, s) + (y − ȳ)2(x, s) + (z − z̄)2(x, s)dx+ λ

Z
Qs

(w − w̄)2 + (y − ȳ)2 + (z − z̄)2dxdt

+ θ

Z
Qs

| 5 (w − w̄)|2 + | 5 (y − ȳ)|2 + | 5 (z − z̄)|2dxdt ≤ θ

2

Z
Qs

| 5 (w − w̄)|2 + | 5 (y − ȳ)|2

+ | 5 (z − z̄)|2dxdt+ C0

Z
Qs

(w − w̄)2 + (y − ȳ)2 + (z − z̄)2dxdt+

Z
Qs

b(w − w̄)2dxdt

+
1

2

Z
Qs

(h3 − h̄3)2 +
1

2

Z
Qs

b2(w − w̄)2dxdt−
Z
Qs

µ1(w − w̄)2dxdt

+
1

2

Z
Qs

(h2 − h̄2)2dxdt+
1

2

Z
Qs

e2λtβ2w2(w − w̄)2dxdt+

Z
Qs

e2λtβh̄2(w − w̄)2dxdt

−
Z
Qs

av(w − w̄)2dxdt+
1

2

Z
Qs

(h1 − h̄1)2dxdt+
1

2

Z
Qs

e2λtβ2y2(y − ȳ)2dxdt

+

Z
Qs

e2λtβh̄1(y − ȳ)2dxdt−
Z
Qs

µ2(y − ȳ)2dxdt+

Z
Qs

µ1(z − z̄)2dxdt

+
1

2

Z
Qs

(h1 − h̄1)2dxdt+
1

2

Z
Qs

(av)2(z − z̄)2dxdt.

Noting the L∞(Q) bounds on the coefficients, the product av and the variables w̄, ȳ, z̄, h1, h2, h3,

we can bound several terms on the right hand side above by constants and combine similar

squared terms to get
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1

2

Z
Ω

(w − w̄)2(x, s) + (y − ȳ)2(x, s) + (z − z̄)2(x, s)dx+ (λ− C1 − C2(M +M2)e2λT )

Z
Qs

(w − w̄)2

+ (y − ȳ)2 + (z − z̄)2dxdt+
θ

2

Z
Qs

| 5 (w − w̄)|2 + | 5 (y − ȳ)|2 + | 5 (z − z̄)|2dxdt

≤
Z
Qs

(h1 − h̄1)2 + (h2 − h̄2)2 + (h3 − h̄3)2dxdt

where C1 and C2 are constants depending on the L∞(Q) bounds of the coefficients and

av only. Moreover, for λ first chosen large and then T chosen sufficiently small, we have

λ− C1 − C2(M +M2)e2λT > 0 and thus

∫
Ω

(w − w̄)2(s, x) + (y − ȳ)2(s, x) + (z − z̄)2(s, x)dx

≤ 2
∫
Qs

(h1 − h̄1)2 + (h2 − h̄2)2 + (h3 − h̄3)2dxdt. (4.24)

Estimating the right hand side of (4.24), we have

2
∫
Qs

(h1 − h̄1)2 + (h2 − h̄2)2 + (h3 − h̄3)2dxdt

≤ 2T

(
sup

0≤t≤T

∫
Ω

(h1 − h̄1)2dx+ sup
0≤t≤T

∫
Ω

(h2 − h̄2)2dx+ sup
0≤t≤T

∫
Ω

(h3 − h̄3)2dx

)
.

(4.25)

Thus, (4.24) together with (4.25) yields

Z
Ω

(w − w̄)2(s, x)dx ≤ 2T
“

sup
0≤t≤T

Z
Ω

(h1 − h̄1)2dx+ sup
0≤t≤T

Z
Ω

(h2 − h̄2)2dx+ sup
0≤t≤T

Z
Ω

(h3 − h̄3)2dx
”
,Z

Ω

(y − ȳ)2(s, x)dx ≤ 2T
“

sup
0≤t≤T

Z
Ω

(h1 − h̄1)2dx+ sup
0≤t≤T

Z
Ω

(h2 − h̄2)2dx+ sup
0≤t≤T

Z
Ω

(h3 − h̄3)2dx
”
,Z

Ω

(z − z̄)2(s, x)dx ≤ 2T
“

sup
0≤t≤T

Z
Ω

(h1 − h̄1)2dx+ sup
0≤t≤T

Z
Ω

(h2 − h̄2)2dx+ sup
0≤t≤T

Z
Ω

(h3 − h̄3)2dx
”
.

We take the square root of both sides in each inequality. Then, we bound the right hand

side above by recognizing
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(
2T
(

sup
0≤t≤T

∫
Ω

(h1 − h̄1)2dx+ sup
0≤t≤T

∫
Ω

(h2 − h̄2)2dx+ sup
0≤t≤T

∫
Ω

(h3 − h̄3)2dx
))1/2

≤ (2T )1/2
((

sup
0≤t≤T

∫
Ω

(h1 − h̄1)2dx

)1/2

+

(
sup

0≤t≤T

∫
Ω

(h2 − h̄2)2dx

)1/2

+

(
sup

0≤t≤T

∫
Ω

(h3 − h̄3)2dx

)1/2 )
= (2T )1/2

(
sup

0≤t≤T

(∫
Ω

(h1 − h̄1)2dx

)1/2

+ sup
0≤t≤T

(∫
Ω

(h2 − h̄2)2dx

)1/2

+ sup
0≤t≤T

(∫
Ω

(h3 − h̄3)2dx

)1/2 )
= (2T )1/2 (‖h1 − h̄1‖X + ‖h2 − h̄2‖X + ‖h3 − h̄3‖X

)
.

This allows us to write

(∫
Ω

(w − w̄)2(s, x)dx
)1/2

≤ (2T )1/2 (‖h1 − h̄1‖X + ‖h2 − h̄2‖X + ‖h3 − h̄3‖X
)
,(∫

Ω
(y − ȳ)2(s, x)dx

)1/2

≤ (2T )1/2 (‖h1 − h̄1‖X + ‖h2 − h̄2‖X + ‖h3 − h̄3‖X
)
,(∫

Ω
(z − z̄)2(s, x)dx

)1/2

≤ (2T )1/2 (‖h1 − h̄1‖X + ‖h2 − h̄2‖X + ‖h3 − h̄3‖X
)
.

Taking the supremum over 0 ≤ s ≤ T on both sides, we obtain

‖w − w̄‖X + ‖y − ȳ‖X + ‖z − z̄‖X ≤ 3 (2T )1/2 (‖h1 − h̄1‖X + ‖h2 − h̄2‖X + ‖h3 − h̄3‖X
)
.

We must choose T sufficiently small because of previous assumptions, but we can also ensure

that T is small enough so that 3 (2T )1/2 < 1. In doing so, we obtain the desired inequality
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‖w − w̄‖X + ‖y − ȳ‖X + ‖z − z̄‖X = ‖A(h1, h2, h3)−A(h̄1, h̄2, h̄3)‖X3

≤ γ
(
‖h1 − h̄1‖X + ‖h2 − h̄2‖X + ‖h3 − h̄3‖X

)
for some γ < 1. Thus, the mapping A is a strict contraction. By Banach’s fixed point

theorem, there exists a unique solution (w, y, z) ∈ V 3
⋂
X3 to the PDE system (4.14)-

(4.16).

It follows that for sufficiently small T , there exists an unique nonnegative solution

(S, I,R) ∈ V 3 satisfying (4.7), (4.8), and (4.9). Furthermore, 0 ≤ S(x, t) ≤ eλTM ,

0 ≤ I(x, t) ≤ eλTM , and 0 ≤ R(x, t) ≤ eλTM a.e. (x, t) ∈ Q.

By use of a time interval stacking methods, an extension of this existence result can be

done to overcome the restriction of T being sufficiently small. First, select T1 > 0 such that

the conditions in the proof are met. Apply Banach’s fixed point theorem to find a solution

existing on the interval [0, T1]. Then repeat the argument to extend the solution to [T1, T2]

for some T2 > 0. This process can be repeated numerous times. It should be noted that

uniqueness of the optimal control is proven in Theorem 15 for only sufficiently small T .

Theorem 12. There exists an optimal control v∗ ∈ U that minimizes the functional J(v).

Proof: The control variable v is uniformly bounded in Q and by Theorem 11 the state

variables S, I, and R are also uniformly bounded in Q. Therefore

inf
v∈U

J(v) = inf
v∈U

∫
Q

(AI −BS + C(v))dxdt > −∞

and there exists a minimizing sequence vn ∈ U such that

lim
n→∞

J(vn) = inf
v∈U

J(v).

Because of Theorem 11, we can define

(Sn, In, Rn) = (S, I,R)(vn) for each n.
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We proceed to obtain uniform bounds on ‖Sn‖V , ‖In‖V , and ‖Rn‖V for all n. Multiply the

PDEs satisfied by Sn, In, and Rn by the test functions Sn, In, and Rn respectively and

integrate over the domain Qs = Ω × (0, s) for arbitrary s ∈ (0, T ]. Integration by parts is

used on the aij terms and the integral equations are summed. For any n and s ∈ (0, T ], we

have

∫
Qs

(Snt S
n + Int I

n +Rnt R
n)dxdt+

∫ s

0
B1[·, Sn, Sn] +B2[·, In, In] +B3[·, Rn, Rn]dt

(4.26)

=
∫
Qs

b(Sn)2 +
∫
Qs

bRnSn −
∫
Qs

µ1(Sn)2dxdt−
∫
Qs

βIn(Sn)2dxdt

−
∫
Qs

avn(Sn)2dxdt+
∫
Qs

βSn(In)2dxdt−
∫
Qs

µ2(In)2dxdt

−
∫
Qs

µ1(Rn)2dxdt+
∫
Qs

avnSnRndxdt.

Using (4.10)-(4.11) to estimate terms in (4.26), we have

1
2

∫
Ω

(Sn)2(x, s) + (In)2(x, s) + (Rn)2(x, s)dx+ θ

∫
Qs

(
| 5 Sn|2 + | 5 In|2 + | 5Rn|2

)
dxdt

≤ 1
2

∫
Ω

(S0)2 + (I0)2 + (R0)2dx+
θ

2

∫
Qs

| 5 Sn|2 + | 5 In|2 + | 5Rn|2dxdt (4.27)

+ C

∫
Qs

|Sn|2 + |In|2 + |Rn|2dxdt+
∫
Qs

b(Sn)2dxdt+
1
2

∫
Qs

b2(Rn)2dxdt

+
1
2

∫
Qs

(Sn)2dxdt−
∫
Qs

µ1(Sn)2dxdt−
∫
Qs

βIn(Sn)2dxdt

−
∫
Qs

avn(Sn)2dxdt+
∫
Qs

βSn(In)2dxdt−
∫
Qs

µ2(In)2dxdt−
∫
Qs

µ1(Rn)2dxdt

+
1
2

∫
Qs

(avn)2(Sn)2dxdt+
1
2

∫
Qs

(Rn)2dxdt

where C is a new positive constant that depends on θ and the bounds on the bki and (bki )xi

coefficients. Noting that our state variables, control variable, and coefficients are uniformly

bounded in Q, we collect similar squared terms to transform (4.27) into
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∫
Ω

(Sn)2(x, s) + (In)2(x, s) + (Rn)2(x, s)dx+ θ

∫
Qs

(| 5 Sn|2 + | 5 In|2 + | 5Rn|2)dxdt

(4.28)

≤
∫

Ω
(S0)2 + (I0)2 + (R0)2dx+ Ĉ

∫
Qs

|Sn|2 + |In|2 + |Rn|2dxdt

where Ĉ is a positive constant which depends on θ and the L∞(Q) bounds on the coefficients,

control variable, and state variables. In particular, we have

∫
Ω

(Sn)2(x, s) + (In)2(x, s) + (Rn)2(x, s)dx ≤
∫

Ω
(S0)2 + (I0)2 + (R0)2dx

+ Ĉ

∫
Qs

|Sn|2 + |In|2 + |Rn|2dxdt.

An application of Gronwall’s Inequality to the above line yields

∫
Ω

(Sn)2(x, s) + (In)2(x, s) + (Rn)2(x, s)dx ≤
(

1 + ĈseĈs
)∫

Ω
(S0)2 + (I0)2 + (R0)2dx

implying

∫
Q
|Sn|2 + |In|2 + |Rn|2dxdt ≤ T

(
1 + ĈTeĈT

)∫
Ω

(S0)2 + (I0)2 + (R0)2dx. (4.29)

Thus, (4.29) together with (4.28) gives

sup
s∈(0,T )

(∫
Ω

(Sn)2(x, s) + (In)2(x, s) + (Rn)2(x, s)dx
)

+ θ

∫
Q

(| 5 Sn|2 + | 5 In|2 + | 5Rn|2)dxdt

≤ C1

∫
Ω

(S0)2 + (I0)2 + (R0)2dx

where C1 depends on T , θ, and L∞(Q) bounds on the states, control and coefficients. From
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this, we can conclude that

‖Sn‖V , ‖In‖V , ‖Rn‖V are uniformly bounded independent of n. (4.30)

From the PDE system and (4.30), we have

‖Snt ‖, ‖Int ‖, ‖Rnt ‖ are uniformly bounded in L2(0, T ;H1(Ω)∗) independent of n. (4.31)

In light of (4.30) and (4.31) and because vn ∈ L∞(Q), there exists subsequences Sn, In, Rn

and vn such that

Sn ⇀ S∗ weakly in V, Snt ⇀ S∗t weakly in L2(0, T ;H1(Ω)∗)

In ⇀ I∗ weakly in V, Int ⇀ I∗t weakly in L2(0, T ;H1(Ω)∗)

Rn ⇀ R∗ weakly in V, Rnt ⇀ R∗t weakly in L2(0, T ;H1(Ω)∗)

vn ⇀ v∗ weakly in L2(Q).

We must show that S∗, I∗, R∗ are the states associated with the optimal control v∗. The

variational formulation of system (4.6) satisfied by Sn, In, Rn and test functions φ1, φ2,

φ3 ∈ V is

∫ T

0
〈Snt , φ1〉dt+

∫ T

0
B1[t, Sn, φ1]dt =

∫
Q
b(Sn +Rn)φ1dxdt−

∫
Q
βSnInφ1dxdt

−
∫
Q

(µ1 + avn)Snφ1dxdt∫ T

0
〈Int , φ2〉dt+

∫ T

0
B2[t, In, φ2]dt =

∫
Q
βSnInφ2dxdt−

∫
Q
µ2I

nφ2dxdt (4.32)∫ T

0
〈Rnt , φ3〉dt+

∫ T

0
B3[t, Rn, φ3]dt =

∫
Q
avnSnφ3dxdt−

∫
Q
µ1R

nφ3dxdt.

To pass the limit in the above system, we need stronger convergence results. Using the
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compactness result in Corollary 4 of Theorem 5 in [76], we have

Sn → S∗ strongly in L2(Q) (4.33)

In → I∗ strongly in L2(Q) (4.34)

Rn → R∗ strongly in L2(Q). (4.35)

This gives sufficient convergence results for passing the limit in (4.32) as n→∞. We con-

clude (S∗, I∗, R∗) = (S, I,R)(v∗). To finish the proof, recall C(·) is a lower semi-continuous

convex function in the objective functional. Because every lower semi-continuous convex

function of a real vector space remains lower semi-continuous when supplied with the weak

topology [30], we have

∫
Q
C(v∗)dxdt ≤ lim inf

n→∞

∫
Q
C(vn)dxdt.

This property gives us

J(v∗) =
∫
Q
AI∗ −BS∗ + C(v∗)dxdt

≤ lim inf
n→∞

∫
Q
AIn −BSn + C(vn)dxdt

and because we chose vn to be a minimizing sequence, we have

= lim
n→∞

∫
Q
AIn −BSn + C(vn)dxdt

= inf
v∈U

J(v).

Thus, v∗ is the optimal control which minimizes the objective functional, i.e.

J(v∗) = min
v∈U

J(v).
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4.3.2 Optimality System and Uniqueness

To characterize the optimal control, we will take Gateaux derivative of J with respect to

v in the direction h, i.e. limε→0
J(v+εh)−J(v)

ε . Because the objective functional J contains

the state variables, we also differentiate the maps v → S = S(v), v → I = I(v), and

v → R = R(v). These derivatives are called the sensitivities.

Theorem 13. (Sensitivities) The mapping v ∈ U → (S, I,R) ∈ V 3 is differentiable in the

sense that there exists Ψ1, Ψ2, Ψ3 ∈ V such that

S(v + εh)− S(v)
ε

⇀ Ψ1

I(v + εh)− I(v)
ε

⇀ Ψ2

R(v + εh)−R(v)
ε

⇀ Ψ3

in V as ε → 0 for any v ∈ U and h ∈ L∞(Q) such that v + εh ∈ U for ε small. Also Ψ1,

Ψ2, Ψ3 satisfy

L1Ψ1 = b(Ψ1 + Ψ3)− µ1Ψ1 − βΨ1I − βΨ2S − avΨ1 − ahS, for (x, t) ∈ Q

L2Ψ2 = βΨ1I + βΨ2S − µ2Ψ2, (4.36)

L3Ψ3 = −µ1Ψ3 + avΨ1 + ahS,

Ψ1(x, 0) = Ψ2(x, 0) = Ψ3(x, 0) = 0 for x ∈ Ω (4.37)

∂Ψ1

∂ν
=
∂Ψ2

∂ν
=
∂Ψ3

∂ν
= 0 on ∂Ω× (0, T ). (4.38)

Proof: Choose h ∈ L∞(Q), v ∈ U such that (v+ εh) ∈ U for ε small. Define (Sε, Iε, Rε) =

(S, I,R)(v + εh). The equations satisfied by the quotients (S
ε−S
ε ), ( I

ε−I
ε ), and (R

ε−R
ε ) are
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∂(S
ε−S
ε

)

∂t
−

nX
i,j=1

(a1
ij(
Sε − S
ε

)xi)xj +

nX
i=1

(b1i (
Sε − S
ε

))xi = b((
Sε − S
ε

) + (
Rε −R

ε
))− µ1(

Sε − S
ε

)

− β(
SεIε − SI

ε
)−

“a(v + εh)Sε − avS
ε

”
, (4.39)

∂( I
ε−I
ε

)

∂t
−

nX
i,j=1

(a2
ij(
Iε − I
ε

)xi)xj +

nX
i=1

(b2i (
Iε − I
ε

))xi = β(
SεIε − SI

ε
)− µ2(

Iε − I
ε

),

∂(S
ε−S
ε

)

∂t
−

nX
i,j=1

(a3
ij(
Rε −R

ε
)xi)xj +

nX
i=1

(b3i (
Rε −R

ε
))xi = −µ1(

Rε −R
ε

) +
“a(v + εh)Sε − avS

ε

”
.

The initial and boundary conditions satisfied by the quotients are

(
Sε − S
ε

)(x, 0) = 0, (
Iε − I
ε

)(x, 0) = 0, (
Rε −R

ε
)(x, 0) = 0 for x ∈ Ω,

∂(S
ε−S
ε )

∂ν
= 0,

∂( I
ε−I
ε )

∂ν
= 0,

∂(R
ε−R
ε )

∂ν
= 0 on ∂Ω× (0, T ).

In system (4.39), we use (4.13) to rewrite terms like a(v+εh)Sε−avS
ε as

a(v + εh)Sε − avS
ε

= ahSε +
Sε − S
ε

av.

As in the proof of Theorem 12, we multiple each equation by the appropriate test

function, integrate over Qs = Ω × (0, s) for arbitrary s ∈ (0, T ], and sum the equations.

Noting the state variables and control are bounded in L∞(Q) independent of ε and using

the estimation techniques as before, we find that for any s ∈ (0, T ]

∫
Ω

(
Sε − S
ε

)2(x, s) + (
Iε − I
ε

)2(x, s) + (
Rε −R

ε
)2(x, s)dx

+ θ

∫
Qs

| 5 (
Sε − S
ε

)|2 + | 5 (
Iε − I
ε

)|2 + | 5 (
Rε −R

ε
)|2dxdt

≤ Ĉ
∫
Qs

(
Sε − S
ε

)2 + (
Iε − I
ε

)2 + (
Rε −R

ε
)2dxdt+ C̄

∫
Qs

(ah)2dxdt

where Ĉ depends on θ and the L∞(Q) bounds on the states, control, and coefficients. After

an application of Gronwall’s inequality and simplification, we have
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sup
s∈(0,T ]

(∫
Ω

(
Sε − S
ε

)2(x, s) + (
Iε − I
ε

)2(x, s) + (
Rε −R

ε
)2(x, s)dx

)
+ θ

∫
Q
| 5 (

Sε − S
ε

)|2 + | 5 (
Iε − I
ε

)|2 + | 5 (
Rε −R

ε
)|2dxdt

≤ C̄
∫
Q

(ah)2dxdt. (4.40)

Thus, the right hand side of (4.40) is bounded independent of ε. We can conclude that

‖(Sε−Sε )‖V , ‖( I
ε−I
ε )‖V , ‖(R

ε−R
ε )‖V are uniformly bounded for ε small. These bounds justify

the existence of Ψ1, Ψ2 and Ψ3 ∈ V and the convergence of the S, I, R quotients,

(
Sε − S
ε

) ⇀ Ψ1, (
Iε − I
ε

) ⇀ Ψ2, (
Rε −R

ε
) ⇀ Ψ3 in V.

As in the previous proof, we can also conclude

(
Sε − S
ε

)t ⇀ (Ψ1)t, (
Iε − I
ε

)t ⇀ (Ψ2)t, (
Rε −R

ε
)t ⇀ (Ψ3)t in L2(0, T ;H1(Ω)∗)

and

(
Sε − S
ε

)→ Ψ1, (
Iε − I
ε

)→ Ψ2, (
Rε −R

ε
)→ Ψ3 in L2(Q).

These convergences justify that Ψ1,Ψ2,Ψ3 solve system (4.36) with initial conditions (4.37)

and boundary conditions (4.38).

The sensitivities Ψ1, Ψ2, and Ψ3 solve a linearized version of the state PDEs. We can

rewrite (4.36) in terms of the linear operator L such that

L


Ψ1

Ψ2

Ψ3

 =


−ahS

0

ahS

 ,
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where

L


Ψ1

Ψ2

Ψ3

 =


L1Ψ1

L2Ψ2

L3Ψ3

+M


Ψ1

Ψ2

Ψ3


and

M =


−b+ µ1 + βI βS + av −b

−βI −βS + µ2 0

−av 0 µ1

 .

We now find the adjoint of the operator L. For (p1, p2, p3) ∈ V 3 we must have

∫
Q

(p1, p2, p3)
(
L


Ψ1

Ψ2

Ψ3


)
dxdt =

∫
Q

(Ψ1,Ψ2,Ψ3)
(
L∗


p1

p2

p3


)
dxdt

in the appropriate weak sense.

We refer to p1, p2, and p3 as adjoint variables and define the adjoint PDEs as

L∗


p1

p2

p3

 =


−B

A

0

 (4.41)

where

L∗


p1

p2

p3

 =


L∗1p1

L∗2p2

L∗3p3

+MT


p1

p2

p3


and the adjoint operators L∗k, k = 1, 2, 3 are defined as

L∗kpk = −∂pk
∂t
−

n∑
i,j=1

(akij(x, t)(pk)xi)xj −
n∑
i=1

bki (x, t)(pk)xi .

The right hand side of equation (4.41) is the derivative of the integrand in J(v) with respect

to the S,I, and R state variables respectively. We must also attach appropriate boundary
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conditions to the adjoint PDEs (4.41) to form the adjoint system.

Theorem 14. Given an optimal control v∗ and corresponding state solution (S∗, I∗, R∗),

there exists a weak solution (p1, p2, p3) ∈ V 3 satisfying the adjoint system (4.41) and bound-

ary conditions

pk(x, T ) = 0 for x ∈ Ω, (4.42)

∂pk
∂ν

+ (
n∑
i=1

bki · ηi)pk = 0 on ∂Ω× (0, T ) (4.43)

for k = 1, 2, 3.

Furthermore, in the case where C(v) = cv2 for some c > 0 the optimal control is character-

ized by

v∗ = min
(((p1 − p3)aS

2c

)+
, vmax

)
. (4.44)

Proof: Suppose v∗ is an optimal control and (S∗, I∗, R∗) = (S, I,R)(v∗) are the corre-

sponding state variables. The adjoint system becomes

L∗1p1 = −B + bp1 − µ1p1 − βI∗p1 + βI∗p2 + av∗p3,

L∗2p2 = A− βS∗p1 − av∗p1 + βS∗p2 − µ2p2, (4.45)

L∗3p3 = bp1 − µ1p3,

p1(x, T ) = 0, p2(x, T ) = 0, p3(x, T ) = 0 for x ∈ Ω, (4.46)

∂p1

∂ν
+ (

n∑
i=1

b1i · ηi)p1 = 0,
∂p2

∂ν
+ (

n∑
i=1

b2i · ηi)p2 = 0,
∂p3

∂ν
+ (

n∑
i=1

b3i · ηi)p3 = 0, on ∂Ω× (0, T ).

(4.47)

Because the system is linear in the adjoint variables, there exists (p1, p2, p3) satisfying
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(4.45)-(4.47). To characterize the control, we differentiate the map from the control to

the objective functional. Consider vε ≡ v∗ + εh ∈ U and corresponding state solution

(Sε, Iε, Rε) = (S, I,R)(vε). Since the minimum of the objective functional is attained at v∗,

we have

0 ≤ lim
ε→0+

J(v∗ + εh)− J(v∗)
ε

= lim
ε→0+

∫
Q

(
A
(Iε − I∗

ε

)
−B

(Sε − S∗
ε

)
+
c(vε)2 − c(v∗)2

ε

)
dxdt

which in light of (4.13) can be written as

= lim
ε→0+

∫
Q

(
A
(Iε − I∗

ε

)
−B

(Sε − S∗
ε

)
+ c
(vε − v∗

ε

)
(vε + v∗)

)
dxdt

=
∫
Q

(AΨ2 −BΨ1 + 2chv∗)dxdt

=
∫
Q

(
(Ψ1,Ψ2,Ψ3)


−B

A

0

+ 2chv∗
)
dxdt

=
∫
Q

(
(Ψ1,Ψ2,Ψ3)L∗


p1

p2

p3

+ 2chv∗
)
dxdt

and in the appropriate weak sense, we have

=
∫
Q

(
(p1, p2, p3)L


Ψ1

Ψ2

Ψ3

+ 2chv∗
)
dxdt
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=
∫
Q

(
(p1, p2, p3)


−ahS∗

0

ahS∗

+ 2chv∗
)
dxdt

=
∫
Q

(−hp1aS
∗ + hp3aS

∗ + 2chv∗)dxdt

=
∫
Q
h(2cv∗ − p1aS

∗ + p3aS
∗)dxdt.

The last line in the above inequalities simplifies to

0 ≤
∫
Q
h(2cv∗ − ap1S

∗ + ap3S
∗)dxdt

To characterize v∗, we consider three cases:

• On the set {(x, t) ∈ Q|v∗(x, t) = 0}, we choose nonnegative h with support on this

set. Therefore, 0 ≤ 2cv∗ + (p3 − p1)aS∗ or 0 = v∗ ≥ (p1−p3)aS∗

2c .

• On the set {(x, t) ∈ Q|0 < v∗(x, t) < vmax}, we can choose h with arbitrary sign and

support on this set. Therefore 0 = 2cv∗ + (p3 − p1)aS∗ or v∗ = (p1−p3)aS∗

2c .

• On the set {(x, t) ∈ Q|v∗(x, t) = vmax}, we choose nonpositive h. Therefore, 0 ≥

2cv∗ + (p3 − p1)aS∗ or vmax = v∗ ≤ (p1−p3)aS∗

2c .

Considering these three cases, the appropriate characterization of v∗ is

v∗ = min
(((p1 − p3)aS∗

2c

)+
, vmax

)
.

The optimality system consists of the state system (4.6)-(4.8), the adjoint system (4.41)-

(4.43), and the characterization of the control (4.44). For the case where C(v) = cv2 for

some c > 0, we have the following uniqueness result.

Theorem 15. When T is sufficiently small, the solution of the optimality system is unique.
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Proof: Suppose (S, I,R),(p1, p2, p3) and (S̄, Ī, R̄), (p̄1, p̄2, p̄3) are two solutions of (4.6)-

(4.8),(4.41)-(4.43). The associated control characterizations are

v = min

((
(p1 − p3)aS

2c

)+

, vmax

)
, v̄ = min

((
(p̄1 − p̄3)aS̄

2c

)+

, vmax

)
.

Through a change of functions, let

w = e−λtS, y = e−λtI, z = e−λtR, q1 = eλtp1, q2 = eλtp2, q3 = eλtp3,

w̄ = e−λtS̄, ȳ = e−λtĪ , z̄ = e−λtR̄, q̄1 = eλtp̄1, q̄2 = eλtp̄2, q̄3 = eλtp̄3.

We consider the differences w − w̄, y − ȳ, z − z̄, q1 − q̄1, q2 − q̄2, and q3 − q̄3. The PDEs

satisfied by the differences are

∂(w − w̄)

∂t
+ λ(w − w̄)−

nX
i,j=1

(a1
ij(w − w̄)xi)xj +

nX
i=1

(b1i (w − w̄))xi = b((w − w̄) + (z − z̄))− µ1(w − w̄)

− eλtβ(wy − w̄ȳ)− (avw − av̄w̄),

∂(y − ȳ)

∂t
+ λ(y − ȳ)−

nX
i,j=1

(a2
ij(y − ȳ)xi)xj +

nX
i=1

(b2i (y − ȳ))xi = eλtβ(wy − w̄ȳ)− µ2(y − ȳ),

∂(z − z̄)
∂t

+ λ(z − z̄)−
nX

i,j=1

(a3
ij(z − z̄)xi)xj +

nX
i=1

(b3i (z − z̄))xi = µ1(z − z̄) + (avz − av̄z̄),

−∂(q1 − q̄1)

∂t
+ λ(q1 − q̄1)−

nX
i,j=1

(a1
ij(q1 − q̄1)xi)xj −

nX
i=1

b1i (q1 − q̄1)xi = b(q1 − q̄1)− µ1(q1 − q̄1)

− eλtβ(yq1 − ȳq̄1) + eλtβ(yq2 − ȳq̄2) + (avq3 − av̄q̄3),

−∂(q2 − q̄2)

∂t
+ λ(q2 − q̄2)−

nX
i,j=1

(a2
ij(q2 − q̄2)xi)xj −

nX
i=1

b2i (q2 − q̄2)xi = −eλtβ(wq1 − w̄q̄1)

− (avq1 − av̄q̄1) + eλtβ(wq2 − w̄q̄2)− µ2(q2 − q̄2),

−∂(q3 − q̄3)

∂t
+ λ(q3 − q̄3)−

nX
i,j=1

(a3
ij(q3 − q̄3)xi)xj −

nX
i=1

b3i (q3 − q̄3)xi = b(q1 − q̄1)− µ1(q3 − q̄3)

with initial and final time conditions
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(w − w̄)(0, x) = (y − ȳ)(0, x) = (z − z̄)(0, x) = 0,

(q1 − q̄1)(T, x) = (q2 − q̄2)(T, x) = (q3 − q̄3)(T, x) = 0 for all x ∈ Ω,

and boundary conditions

∂(q1 − q̄1)
∂ν

+ (
n∑
i=1

b1i ηi)(q1 − q̄1) = 0,

∂(q2 − q̄2)
∂ν

+ (
n∑
i=1

b2i ηi)(q2 − q̄2) = 0,

∂(q3 − q̄3)
∂ν

+ (
n∑
i=1

b3i ηi)(q3 − q̄3) = 0,

∂(w − w̄)
∂ν

=
∂(y − ȳ)
∂ν

=
∂(z − z̄)
∂ν

= 0 for all t ∈ [0, T ], x ∈ ∂Ω.

Multiplying each PDE by the appropriate test function in V and integrating over the domain

Q, we obtain

1
2

∫
Ω

(w − w̄)2(T, x)dx+ λ

∫
Q

(w − w̄)2dxdt+
∫
Q

n∑
i,j=1

a1
ij(w − w̄)xi(w − w̄)xjdxdt

+
∫
Q

n∑
i=1

(b1i (w − w̄))xi(w − w̄)dxdt =
∫
Q
b(w − w̄)2dxdt+

∫
Q
b(z − z̄)(w − w̄)dxdt

−
∫
Q
µ1(w − w̄)2dxdt−

∫
Q
eλtβ(wy − w̄ȳ)(w − w̄)dxdt−

∫
Q

(avw − av̄w̄)(w − w̄)dxdt,

1
2

∫
Ω

(y − ȳ)2(T, x)dx+ λ

∫
Q

(y − ȳ)2dxdt+
∫
Q

n∑
i,j=1

a2
ij(y − ȳ)xi(y − ȳ)xjdxdt

+
∫
Q

n∑
i=1

(b2i (y − ȳ))xi(y − ȳ)dxdt =
∫
Q
eλtβ(wy − w̄ȳ)(y − ȳ)dxdt−

∫
Q
µ2(y − ȳ)2dxdt,
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1
2

∫
Ω

(z − z̄)2(T, x)dx+ λ

∫
Q

(z − z̄)2dxdt+
∫
Q

n∑
i,j=1

a3
ij(z − z̄)xi(z − z̄)xj

+
∫
Q

n∑
i=1

(b3i (z − z̄))xi(z − z̄)dxdt =
∫
Q
µ1(z − z̄)2dxdt+

∫
Q

(avz − av̄z̄)(z − z̄)dxdt,

1
2

∫
Ω

(q1 − q̄1)2(0, x)dx+ λ

∫
Q

(q1 − q̄1)2dxdt+
∫
Q

n∑
i,j=1

a1
ij(q1 − q̄1)xi(q1 − q̄1)xjdxdt

+
∫
Q

n∑
i=1

b1i (q1 − q̄1)(q1 − q̄1)xidxdt =
∫
Q
b(q1 − q̄1)2dxdt−

∫
Q
µ1(q1 − q̄1)2dxdt

−
∫
Q
eλtβ(yq1 − ȳq̄1)(q1 − q̄1)dxdt+

∫
eλtβ(yq2 − ȳq̄2)(q1 − q̄1)dxdt

+
∫
Q

(avq3 − av̄q̄3)(q1 − q̄1)dxdt,

1
2

∫
Ω

(q2 − q̄2)2(0, x)dx+ λ

∫
Q

(q2 − q̄2)2dxdt+
∫
Q

n∑
i,j=1

a1
ij(q2 − q̄2)xi(q2 − q̄2)xjdxdt

+
∫
Q

n∑
i=1

b2i (q2 − q̄2)(q2 − q̄2)xidxdt = −
∫
Q
eλtβ(wq1 − w̄q̄1)(q2 − q̄2)dxdt

−
∫
Q

(avq1 − av̄q̄1)(q2 − q̄2)dxdt+
∫
Q
eλtβ(wq2 − w̄q̄2)(q2 − q̄2)dxdt−

∫
Q
µ2(q2 − q̄2)2dxdt,

1
2

∫
Ω

(q3 − q̄3)2(0, x)dx+ λ

∫
Q

(q3 − q̄3)2dxdt+
∫
Q

n∑
i,j=1

a3
ij(q3 − q̄3)xi(q3 − q̄3)xjdxdt

+
∫
Q

n∑
i=1

b3i (q3 − q̄3)(q3 − q̄3)xidxdt =
∫
Q
b(q1 − q̄1)(q3 − q̄3)dxdt−

∫
Q
µ1(q3 − q̄3)2dxdt.

Here we will use estimation techniques such as

|av − av̄| = |a

(
min

((
(q1 − q3)aw

2c

)+

, vmax

))
− a

(
min

((
(q̄1 − q̄3)aw̄

2c

)+

, vmax

))
|

≤ |a
(
a(q1 − q3)w − a(q̄1 − q̄3)w̄

2c

)
|

=
a2

2c
|q1(w − w̄) + w̄(q1 − q̄1)− q3(w − w̄)− w̄(q3 − q̄3)|.

This estimate, along with techniques in (4.10)-(4.13) can be combined to estimate terms

like
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|
∫
Q

(avz − av̄z̄)(z − z̄)dxdt| ≤
∫
Q
|(avz − av̄z̄)(z − z̄)|dxdt

=
∫
Q
|z(av − av̄)(z − z̄) + av̄(z − z̄)2|dxdt

≤
∫
Q

a2|z|
2c

(
|q1||w − w̄|+ |w̄||q1 − q̄1|+ |q3||w − w̄|

+ |w̄||q3 − q̄3|
)
|z − z̄|+ a|z − z̄|2dxdt

≤ C
∫
Q
|w − w̄|2 + |z − z̄|2 + |q1 − q̄1|2 + |q3 − q̄3|2dxdt

for some constant C which depends on the L∞(Q) bounds on the states and adjoints.

After summing the six integral equations and estimating several terms as in the example

above, we obtain

1
2

∫
Ω

(w − w̄)2(T, x) + (y − ȳ)2(T, x) + (z − z̄)2(T, x) + (q1 − q̄1)2(0, x) + (q2 − q̄2)2(0, x)

+ (q3 − q̄3)2(0, x)dx+ (λ− C1 − C2e
λT )

∫
Q
|w − w̄|2 + |y − ȳ|2 + |z − z̄|2 + |q1 − q̄1|2

+ |q2 − q̄2|2 + |q3 − q̄3|2dxdt+
θ

2

∫
Q
| 5 (w − w̄)|2 + | 5 (y − ȳ)|2 + | 5 (z − z̄)|2

+ | 5 (q1 − q̄1)|2 + | 5 (q2 − q̄2)|2 + | 5 (q3 − q̄3)|2dxdt ≤ 0.

If we choose λ sufficiently large and T sufficiently small so that λ − C1 − C2e
λT > 0, then

we must have w = w̄, y = ȳ, z = z̄, q1 = q̄1, q2 = q̄2, and q3 = q̄3. Therefore, S = S̄,

I = Ī,R = R̄,p1 = p̄1,p2 = p̄2, and p3 = p̄3. Finally, because the optimal control is

characterized in terms of the states and the adjoints, we have v = v̄.

The solutions to the optimality system are unique, implying an unique characterization

of the control.
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4.4 Application to Rabies and Raccoons

In this section, we provide numerical illustrations of our optimal spatiotemporal vaccination

strategies with parameter values chosen specifically for rabies and raccoons. Rabies, a viral

neuroinvasive disease, is transmitted through the bite of a rabid animal. In an effort to

eliminate rabies among raccoons, two types of oral rabies vaccine baits are distributed over

designated areas [77]. One type of bait is made of fish meal, a binder, and fish oil in the

form of a hard brown pellet about 1-1/4” square in size. Inside is a vaccine chamber, which

is filled with the rabies vaccine. These baits are placed by hand. The other type of bait

contains the same ingredients and is distributed by plane. The air-dropped baits are flat,

clear packets about 3/4” by 2” in size with an oily coating. After eating a bait, a healthy

raccoon will develop antibodies in two to three weeks that will protect it if exposed to an

infected raccoon.

Spatial heterogeneity and long-distance translocation (LDT) play important roles in

the spatiotemporal dynamics and management of rabies among raccoons. In 2002, Smith

et al. [78] incorporate spatial heterogeneity into a network model based on the adjacency of

Connecticut townships. In their model, the rate of disease spread into a township depends on

the fraction of adjacent townships that are experiencing rabies among raccoons. Smith et al.

utilize a spatiotemporal data set from the state of Connecticut in determining appropriate

rates of spread. Spanning over 50 months, the extensive data set indicates the month in

which the first case of raccoon rabies was reported within 168 Connecticut townships. Five

models were investigated, including one with a simple homogeneous rate of spread and four

others with rates of spread correlating to human density and/or separation of townships by

a river. All models incorporated LDT of raccoons by humans. The model accounting

for major rivers and constant LDT dispersal rates was shown to best fit the irregular

pattern of disease spread across the state. The authors found that large rivers act as semi-

permeable barriers, leading to a 7-fold reduction in the local rates of rabies propagation.

Human population density was weakly associated with the rate of local spread and rate of

translocation. In 2005, Smith et al. [79] use a similar network model to investigate the

role of LDT events in shaping the rabies epidemic in Connecticut. While LDT events are

113



common, only a few were shown to become new epidemic foci. In this work, the authors

revisit the idea of spatial heterogeneity and show the spread of rabies is associated with

forest cover. Analysis and comparison with the Connecticut data revealed that the spread

of rabies slowed substantially between townships that were lightly forested. In the best

model, rabies did not cross rivers separating heavily forested townships.

We confine our attention to the spread of rabies over a period of 52 weeks on a rectangular

domain, Ω ⊆ R2. We choose dimensions 30 km × 20 km, an area of suitable size for

investigating rabies spread over a period of 52 weeks. In agreement with the Connecticut

data set [78], infection starting in one corner of our domain can spread, possibly irregularly,

to the opposite corner within a 52-week period.

For this application, we simplify our original model to include only diffusive movement

in the x and y directions. Given a control v(x, y, t) representing the density of vaccine baits

at location (x, y) ∈ Ω on week t, the corresponding susceptible (S), infected (I), and immune

(R) raccoon population densities satisfy

∂S

∂t
(x, y, t) = a11(x, y)Sxx(x, y, t) + a22(x, y)Syy(x, y, t) + b(t)(S(x, y, t) +R(x, y, t))

− µ1S(x, y, t)− βS(x, y, t)I(x, y, t)− av(x, y, t)S(x, y, t), (4.48)

∂I

∂t
(x, y, t) = a11(x, y)Ixx(x, y, t) + a22Iyy(x, y, t) + βS(x, y, t)I(x, y, t)− µ2I(x, y, t),

(4.49)

∂R

∂t
(x, y, t) = a11(x, y)Rxx(x, y, t) + a22(x, y)Ryy(x, y, t)− µ1R(x, y, t) + av(x, y, t)S(x, y, t)

(4.50)

for all (x, y, t) ∈ Ω× [0, T ]. Initial conditions are specified by

S(x, y, 0) = S0(x, y), I(x, y, 0) = I0(x, y), R(x, y, 0) = R0(x, y) for (x, y) ∈ Ω (4.51)
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and no-flux boundary conditions are given by

∂S

∂x
= 0,

∂I

∂x
= 0,

∂R

∂x
= 0 on ({x = 0} ∪ {x = 30})× (0, T ), (4.52)

∂S

∂y
= 0,

∂I

∂y
= 0,

∂R

∂y
= 0 on ({y = 0} ∪ {y = 20})× (0, T ). (4.53)

Several rabies models include additional classes to track the exposed (infectious but

not infected) raccoons as well as the dynamics of the baits on the ground [19, 25, 26].

For simplicity, we classify a raccoon to be susceptible if not previously exposed to rabies,

infected if able to transmit rabies, or immune if vaccinated. Data and model predictions

indicate low levels of natural immunity (1 - 5%) within raccoon populations, suggesting

that raccoons develop little or no natural immunity to rabies [4]. Thus, we ignore natural

immunity in our model and assume all rabies immunity is gained through vaccination.

We refer to Coyne et al. [25] and Clayton et al. [19] for values of birth and death rates.

Raccoons give birth during the spring of each year, March 20 - June 21, an approximate 14

week period. Assuming a 50/50 sex rate within the population and that half the population

are mature females, a reproductive rate of 1.34 1
year is estimated [19, 25]. Dividing this

yearly rate by 14 week period, we find b(t) = 0.096 1
week for t within the birthing period.

When t is not within the birthing period, we let b(t) = 0 1
week. Without loss of generality,

we assume the birthing period to be weeks 13 through 27. The constant year-long natural

death rate, µ1 = 0.026 1
week, is calculated so that in absence of any disease or spatial spread,

the susceptible population at t = 0 weeks and t = 52 weeks are approximately equal [19].

Rabies-related death rate is estimated to be µ2 = 0.490 1
week [19, 25].

Rabies incidence is formulated as a mass action term, βSI. The rate of infection βI

is taken to be 0.03I [19, 78, 69]. The vaccine uptake rate a, a parameter with units

1
vaccine·week, is an indication of how successful the grounded baits are in vaccinating a

raccoon. That is, to successfully vaccinate a raccoon, a bait must be first found and then

eaten by a susceptible raccoon. This process can be inhibited by deterioration of the bait,

human removal of the bait, or consumption of the bait by an animal other than a susceptible

raccoon. The value of a is not straightforward and therefore we present results for a range
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of values, from a = 0.01 1
vaccine·week to a = 0.03 1

vaccine·week.

The set of admissible controls, denoted by U , will consist of all measurable functions

v(x, y, t) satisfying 0 ≤ v(x, y, t) ≤ vmax, for a.e. (x, y, t) ∈ Ω × [0, T ]. Here, vmax is a

large positive constant representing an upperbound on the density of baits placed at each

location. The optimal control problem under consideration can be stated as follows. Find

v∗(x, y, t) ∈ U which minimizes the objective functional

∫
Ω×[0,T ]

(I(x, y, t) + cv2(x, y, t))dxdydt

subject to system (4.48) -(4.53). Above, T is the number of weeks over which we apply

control and observe population dynamics. Note that we have simplified the original for-

mulation of the objective functional so that B = 0 and, without loss of generality, A = 1.

The cost of vaccination is expected to be a non-linear function of v. Here, we choose a

quadratic function indicating additional costs associated with high levels of vaccination.

The parameter c, with units raccoon/km2

vaccine2 , balances the squared cost of vaccine with the

cost associated with the infected population. Thus, an optimal control will be one which

minimizes both the cost of vaccination and infectious population over the spatial domain Ω

and a time period of length T weeks.

In our rabies S-I-R model, the diffusion coefficients and initial population sizes are

spatially dependent. This allows us to distinguish between areas with inhibited raccoon

movement and decreased raccoon densities (i.e. rivers, forests) as well areas with increased

density due to raccoon translocation. The boundary conditions of our model assume rac-

coons neither enter nor exit the domain. Our goals are to (1) explore patterns of optimal

vaccination in populations with simple, homogeneous rabies spread, (2) investigate how

spatial heterogeneity, such as a river or forest cover, may affect optimal vaccination, and

(3) address optimal allocation of vaccine given long-distance translocation of an infected

raccoon.

The following two sections of results are differentiated by their pattern of disease prop-

agation. In Section 4.4.1, we assume constant diffusion coefficients, a11 = a22 and an initial

homogeneous susceptible population. These assumptions yield a uniform wave of infection
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traveling at constant speed across our domain. In Section 4.4.2, we consider spatially depen-

dent diffusion coefficients, a11(x, y) and a22(x, y), and an initial heterogeneous susceptible

population. This combination produces an irregular pattern of disease propagation. Also

in this section, we incorporate LDT events within initial conditions. All numerical results

are placed in Appendix C.

4.4.1 Spatial Homogeneity and Rabies Spread

In this section, we assume constant diffusion coefficients (a11 = a22) and a homogeneous

initial susceptible population. See Figure C.1 for the growth and decline of the susceptible

population over a 52-week period in the absence of any infection. The changes in population

density in Figure C.1 are attributed to the natural birth and natural death of susceptible

raccoons.

Unless otherwise specified, we assume the infection is initiated at t = 0 week. Infection

first appears on our domain as 2 infected raccoons/km2 in 6 km2 within the southwestern

corner of our domain Ω. This site of initial infection is referred to as the subdomain ΩI .

See Figure 4.1 for it’s exact placement. Table 4.1 displays all parameter values used in

the homogeneous simulations. Constant diffusion coefficients, in combination with homoge-

neous initial conditions for the susceptible population, yield an expanding wave of infection,

propagating from one corner of our spatial grid the the opposite corner within the 52-week

time period. See Figure C.2 and Figure C.3 for six snapshots of the susceptible and infected

populations, respectively, during the 52-week period in absence of intervention.

If the initial infection is detected during the first few weeks, a quickly implemented

vaccination strategy should stop the spread of the infected population. To illustrate this,

we assign a value to the balancing coefficient, c = 0.10, and display the optimal 10-week

vaccination regime starting at t = 0 weeks in Figure C.4. Here, we have assumed a moderate

vaccine uptake rate, a = 0.02 1
vaccine·week. The optimal vaccination strategy in Figure C.4

recommends placing the highest amount of vaccine at the location where rabies is initally

detected with lesser amounts in all adjacent areas. Vaccination continues until t = 6 weeks,

at which time we see little to no vaccine baits present in our domain. The corresponding

susceptible, infected, and immune raccoon populations are displayed in Figure C.5, Figure
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Figure 4.1: Our spatial domain Ω (yellow) and subdomain ΩI (red). We assume infection
originates in ΩI .

Table 4.1: Parameters for homogeneous rabies spread and control

Parameter Notation Value
Spatial domain Ω 30 km × 20 km
Spatial subdomain (site of initial infection) ΩI 3 km × 2 km
Initial susceptible population S0(x, y) 30 raccoons/km2 for (x, y) ∈ Ω
Initial infected population I0(x, y) 2 raccoons/km2 for (x, y) ∈ ΩI

0 raccoons/km2 for (x, y) ∈ Ω\ΩI

Initial immune population R0(x, y) 0 raccoons/km2 for (x, y) ∈ Ω
Diffusion coefficient a11 0.2 km2/week
Diffusion coefficient a22 0.2 km2/week
Birth rate b(t) 0.096 week−1 for 13 ≤ t < 28

0 week−1 otherwise
Natural death rate µ1 0.026 week−1

Rabies related death rate µ2 0.490 week−1

Rabies transmission rate β 0.03 1

raccoon/km2
·week

Vaccine uptake rate a 0.01 - 0.03 1
vaccine·week

Balancing coefficient c 0.10 raccoon/km2

vaccine2
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C.6, and Figure C.7 respectively. Without any vaccination, the density of the infected class

at t = 10 weeks exceeded 4 raccoons/km2 in some areas. With the optimal distribution of

vaccine, the density of the infected class at t = 10 weeks is less than 1 raccoons/km2 at

all locations within our domain, thus we consider the infection successfully eliminated. By

implementing the optimal 10-week vaccination strategy upon detection of disease, rabies is

contained to the corner of our domain.

The timing of initial infection relative to the birth pulse can determine the intensity

of infection and therefore cause variation in the intensity and duration of optimal vaccine

allocation. To determine the significance of this variation, we now assume infection is

initiated at the end of the birth pulse, at t = 27 weeks. At this time, the disease-free

susceptible population is at its largest density, 55 raccoons/km2 for a.e.(x, y) ∈ Ω. Assuming

the initial infection (I0) occurs at t = 27 weeks, we compute the optimal 15-week vaccination

regime starting at t = 27 weeks. Figure C.8 displays the optimal vaccination and Figure C.9,

Figure C.10, and Figure C.11 display the corresponding susceptible, infected, and immune

raccoon populations, respectively. Comparing the vaccination regime in Figure C.8 with

that in Figure C.4, we find that an increased density of susceptible raccoons at the start of

vaccination necessitates an increased quantity of vaccine at the site of infection. Note the

increased upper bound in the color scale for Figure C.8. Both vaccination strategies end

after the sixth week. However, in the case of infection entering at the end of the birth pulse,

it is not until 15 weeks after the start of vaccination that we find a successfully eliminated

infected class; Figure C.10. Thus, the timing of initial infection and control implementation

in regards to the birth pulse should be considered when determining optimal strategies.

For the purpose of comparing strategies, we herein assume initial infection always occurs

at t = 0 weeks.

Realistically, immediate detection and action is not always possible. Assume infection

progresses according the expanding wave displayed in Figures C.2, C.3 and vaccination is

not implemented until t = 21 weeks. We use the spatial structure of our susceptible and

infected populations at t = 21 weeks as our initial conditions and compute the optimal

20-week vaccination strategy. We choose to look at intervention over a longer duration

(T = 20) because of the increased intensity of the infection at the start of intervention. We
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simulate two optimal 20-week strategies of vaccination, one for a = 0.01 1
vaccine·week and

another for a = 0.03 1
vaccine·week. Recall, the parameter a is an indicator of how successful

distributed baits are in vaccinating raccoons.

First, we assume a = 0.01 1
vaccine·week and display the optimal 20-week vaccination

strategy in Figure C.12. This strategy starts by placing the heaviest amount of vaccine east

of the infected population, i.e. in front of the infectious wave. Surrounding areas receive

a lesser amount of vaccine, while areas still further away from the infectious wave receive

no vaccine. As the weeks progress, the number of baits at each location decreases, but

the general pattern of distribution remains the same until t = 33 weeks at which time no

vaccine is present within the domain. Thus, the optimal vaccine regime lasts approximately

12 weeks. The susceptible, infected, and immune raccoon population densities during this

optimal vaccination are displayed in Figure C.13. Figure C.14 and Figure C.15 respectively.

It is not until t = 41 weeks that we see the infectious class eliminated from our domain, an

indication that the infection will not continue to spread.

Second, we assume a = 0.03 1
vaccine·week and display the optimal 20-week vaccination

strategy in Figure C.16. Here, the increased value of a produces a strategy focused on

initially placing the greatest quantity of vaccine at the location of the infected population

with less vaccine placed in surrounding areas. Instead of vaccinating in front of the infected

population as in Figure C.12, this strategy heavily vaccinates the area where infection re-

sides. This vaccination regime is shorter in duration than that in Figure C.12 by 4 weeks.

Corresponding susceptible, infected, and immune raccoon populations are displayed in Fig-

ure C.17, Figure C.18, and Figure C.19 respectively. As a consequence of the high volume

of baits and the increased value of parameter a, the size of the immune class within infected

areas quickly increases. With the successful vaccination of most susceptible raccoons at in-

fected locations, rabies has little opportunity to spread. By t = 33 weeks, just twelve weeks

after the start of intervention, the infected population is eliminated from our domain.

4.4.2 Spatial Heterogeneity and Rabies Spread

We now investigate the effects of spatial heterogeneity and long-distance translocation

(LDT) on our optimal strategies of vaccination. To do so, we assume that our domain
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encloses a river (running north-south) and that part of our domain is lightly forested. See

Figure 4.2 for the heterogeneous design of our spatial domain, Ω. Smith et al.’s analysis

of Connecticut data indicates rabies spread is substantially slower in lightly forested areas

and rivers can slow the spread by as much as 7-fold [78, 79]. For our parameters, we will

assume areas without rivers or forest cover have the greatest rates of diffusion, a11 = 0.50

km2/week and a22 = 0.50 km2/week. Areas with light forest cover will have decreased rates

of diffusion, a11 = 0.20 km2/week and a22 = 0.20 km2/week. Lastly, an area containing

the river will have the smallest rate of diffusion in the x-direction, a11 = 0.05 km2/week,

but have unobstructed diffusion in the y-direction. That is, a22 = 0.50 km2/week in areas

with a river and no forest cover and a22 = 0.20 km2/week in areas with a river and forest

cover. These parameters were chosen so that slow movement across the river is possible.

We further account for spatial heterogeneity in the initial density of susceptible raccoons.

Studies have shown that the density of raccoons in urban areas can be as much as 20-times

that of rural settings. Higher raccoon densities in urban areas are likely often related to

greater survivorship. Raccoon populations in urban areas are free from intense harvest pres-

sure and may also benefit from stable food and denning resources that mitigate the effects

of severe winter conditions. We assume the initial density of susceptible raccoons to be 0

raccoons/km2 in the areas containing the river, 10 raccoons/km2 in forested areas, and 30

raccoons/km2 in areas without forest or river [68]. Figure C.20 illustrates the dynamics of

the susceptible population over a 52-week period in the absence of infection. Here, changes

in the population density are attributed to natural birth and natural death of susceptible

raccoons as well as diffusive movement.

As done previously, we initiate infection in our domain at t = 0 weeks with 6 infected

raccoons uniformly distributed on the subdomain ΩI . Table 4.2 displays all parameter

values used for the heterogeneous simulations. We first simulate the disease dynamics on

our heterogeneous domain in the absence of intervention. Displayed in Figure C.21 and

Figure C.22 are eight snapshots of the susceptible and infected raccoon populations over a

52-week period. Additional frames are provided because of the complexity of the spatial

spread. As expected, the infection spreads in an irregular pattern within Ω due to the

varying rates of diffusion and the heterogeneous initial density of susceptible raccoons. We
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Figure 4.2: Spatial domain Ω is divided by areas with no forest cover (yellow), areas with
light forest cover (light blue), and areas containing a river (dark blue). Colors represent
initial density of susceptible raccoon population. Diffusive coefficients are chosen to that
movement in areas with no forest is greater than movement in lightly forested areas. Move-
ment up and down the river in unrestricted, but movement across the river is significantly
inhibited.

122



Table 4.2: Parameters for heterogeneous rabies spread and control

Parameter Notation Value

Initial susceptible population S0(x, y) 30 raccoons/km2

for (x, y) in areas with no forest, no river
10 raccoons/km2

for (x, y) in areas with forest, no river
0 raccoons/km2

for (x, y) in areas with river

Initial infected population I0(x, y) 2 raccoons/km2 for (x, y) ∈ ΩI
0 raccoons/km2 for (x, y) ∈ Ω\ΩI

Initial immune population R0(x, y) 0 raccoons/km2 for (x, y) ∈ Ω

Diffusion coefficient (no river, no forest) a11 0.50 km2/week

a22 0.50 km2/week

Diffusion coefficient (river, no forest) a11 0.05 km2/week

a22 0.50 km2/week

Diffusion coefficient (no river, forest) a11 0.20 km2/week

a22 0.20 km2/week

Diffusion coefficient (river, forest) a11 0.05 km2/week

a22 0.20 km2/week

Birth rate b(t) 0.096 week−1 for 13 ≤ t < 28
0 week−1 otherwise

Natural death rate µ1 0.026 week−1

Rabies related death rate µ2 0.490 week−1

Rabies transmission rate β 0.03 1

raccoon/km2
·week

Vaccine uptake rate a 0.01 - 0.02 1

vaccine·week

Balancing coefficient c 0.10 - 0.25
raccoons/km2

vaccine2
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find that, due to the forest cover and river placement, the infection spreads predominantly

northward during the first 30 weeks. By t = 30 weeks, we find the bulk of the infected

raccoons to be in the northwest corner of Ω. Over the next 7 weeks, the infected class

moves eastward, traveling above the river. At t = 44 weeks, the infected population mostly

resides in the northeast corner of our domain and by t = 52 weeks, the infected density is

declining, along with the susceptible population. Rabies does not appear to greatly affect

the forested area because of the decreased density of susceptible raccoons within this area.

As in the homogeneous case, if the initial infection is detected during the first few

weeks, an immediate vaccination regime should stop the spread of rabies. To illustrate

this, we assume the same balancing coefficient c = 0.10 within the objective functional and

display the optimal 10-week vaccination regime starting at t = 0 weeks in Figure C.23.

We assume a = 0.02 1
vaccine·week, as done in the corresponding homogeneous case (Figure

C.4). In comparing Figure C.23 with Figure C.4, we find that with the decreased density

and movement associated with the forest cover, the optimal initial quantity of vaccine is

reduced and the area over which it is spread is curtailed. The largest quantity of vaccine

is placed on the area of initial infection and reduced quantities are placed in adjacent

unforested areas. Vaccine is not placed on the forested areas. Vaccination continues until

t = 6 weeks, at which time we see no vaccine present in our domain. The corresponding

susceptible, infected, and immune raccoon populations are displayed in Figure C.24, Figure

C.25, and Figure C.26 respectively. By implementing the optimal vaccination strategy upon

detection of disease within our spatial domain, the density of infected raccoons is less than

1 raccoons/km2 by t = 10 weeks, indicating successful elimination.

We now consider the situation in which no intervention takes place before t = 21 weeks.

Using the raccoon densities resulting from Figures C.21, C.22 at t = 21 weeks as our

initial conditions, we simulate the optimal 20-week vaccination regime for the parameters

in Table 4.2 and a = 0.01 1
vaccine·week. See Figure C.27 for the optimal vaccine allocation.

Interestingly, we find that the river and forest cover aid the vaccination regime as a natural

cordon sanitaire, i.e. barrier against disease spread. In the corresponding homogenous

case (Figure C.16), vaccine is distributed in the shape of an arc complete from the vertical

axis to the horizontal axis of our spatial domain. Now, with the addition of the river and
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forest cover, the optimal vaccination regime is considerably curtailed, only forming a partial

arc and allowing the natural barriers to act in place of vaccination. We find that initially

fortifying the edges of forested areas and areas containing a river with small quantities of

vaccine is optimal in reducing spread of infection By t = 37 weeks, sixteen weeks after

the start of intervention, the optimal vaccination has ended and no vaccine appears on our

domain Ω. The corresponding susceptible, infected and removed populations are displayed

in Figure C.28, Figure C.29, and Figure C.30 respectively. The vaccination strategy utilizing

the river and forest cover as a cordon sanitaire is successful in restricting the infected

population to the west side of the river. By t = 41 weeks, we find no infectious raccoons

among our population and have prevented numerous raccoon deaths, as reflected in the

large immune and susceptible populations east of the river.

We now assess the influence of LDT in our optimal strategies of vaccination on a het-

erogeneous domain. LDT events are fairly common. Most are isolated events and do not

spread. However, a few LDT events do become new foci of epidemic spread [79] and this

is the case we consider. We assume that the infection originating in ΩI at t = 0 weeks

progresses without intervention until t = 21 weeks as in Figures C.21, C.22. At this time,

one additional infected raccoon appears in the northeast corner of our spatial domain, Ω.

In the continued absence of intervention, the existing epidemic and newly added epidemic

focus will progress as in Figure C.31 and Figure C.32. The LDT event produces a separate

expanding wave of disease. The two fronts converge by t = 37 weeks and all infection

appears to be subsiding at t = 41 weeks due to a diminishing susceptible population.

Using the parameters in Table 4.2 with a = 0.01, we simulate the optimal 20-week

vaccination regime beginning at t = 21 weeks, the time corresponding to the LDT event.

Optimal allocation of vaccine is displayed in Figure C.33. Even though the LDT is small,

i.e. one infected raccoon, it is an immediate concern. The optimal vaccination regime

immediately applies the largest concentration of vaccine on the site of the LDT. For our

objective functional and cost coefficients, it is cost-effective to prevent the new focus from

becoming a widespread epidemic while also vaccinating near the existing infectious wave.

Even with the intense local vaccination, the LDT event does produce several secondary

infections. See Figure C.35 for the infectious population dynamics during vaccination.
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However, with the two-part vaccination regime, the infectious wave produced by the LDT

is limited. Further, the existing outbreak is mitigated by the barrier created by the vaccine

in combination with the river and forest cover. By t = 41 weeks, successful elimination

of the infected class is visible and we have maintained a viable susceptible and immune

population. Corresponding susceptible and immune populations can be see in Figure C.34

and Figure C.36 respectively.

As a last exercise in addressing the role of LDT events in vaccination regimes, we

alter the value of c, the parameter in the objective functional balancing the squared cost

of vaccination with the cost associated with the size of the infectious population. In all

previous runs, we have assumed the balancing coefficient to be c = 0.10. Now we will

assume a higher cost associated with vaccination by taking c = 0.25. All other parameters

stay the same as in Table 4.2 with a = 0.01 and we again assume the LDT event occurs at

t = 21 weeks. The optimal 20-week vaccination regime starting at t = 21 weeks is displayed

in Figure C.37. Corresponding susceptible, infected, and immune raccoon populations are

displayed in Figure C.38, Figure C.39, and Figure C.40 respectively. We find that the

increased cost of vaccination significantly constrains the optimal amount of vaccine used.

However, the vaccine placement pattern in Figure C.37 is similar to that in Figure C.33.

With the higher cost, it remains optimal to place largest amount of vaccine on the LDT

event and place smaller quantities on the existing outbreak. However, with the reduced

amount of vaccine, the optimal strategy in Figure C.37 does not contain disease spread and

is unsuccessful in eliminating the infected population over the 20-week period. At t = 41

weeks, infected racoons still reside in the northeast corner of our domain. These results

suggest the existence of a threshold level of population immunity necessary to contain

rabies spread [68].

4.4.3 Conclusions of Numerical Simulations

General patterns of optimal vaccination are realized from the study of both homogeneous

and heterogenous spatial domains. In studying the simple homogeneous domain, our rabies

outbreak takes the form of a uniform infectious wave, expanding at a constant rate. The het-

erogeneous domain provides a more realistic scenario by including rivers and forest cover,

126



both of which inhibit a raccoon’s movement and are associated with decreased raccoon

density. On such a domain, disease spreads irregularly and at varying rates. Results for

both domain types indicate that early detection of rabies along with a quickly implemented

vaccination regime can prevent a large epidemic. Vaccination regimes implemented imme-

diately after the birth pulse should be heightened to accommodate the increased density of

susceptible raccoons.

Realistically, immediate detection and implementation are not always feasible. Vacci-

nation regimes that begin several months after infection enters the area may take different

forms depending on the vaccine uptake rate. In areas where baits are less likely to be re-

moved by humans or consumed by animals other than raccoons, we find it optimal to place

the heaviest amounts of vaccine on infected areas with decreased amounts nearby. In areas

assumed to have a decreased vaccine uptake rate, it becomes optimal to vaccinate in front

of the infectious wave. Rivers and forest cover, or any natural barrier inhibiting raccoon

movement and/or density, can aid in reducing the optimal amount of vaccine used. Acting

as a cordon sanitaire, forested areas and rivers fortified with small amounts of vaccine can

be as successful in preventing widespread outbreaks as would large amounts of vaccine in a

homogenous domain. Thus, in designing cost-effective strategies for intervention, heteroge-

neous domain characteristics that may influence movement and density should be regarded

as possible aids.

Long-distance raccoon translocation (LDT) can impact the shape and speed of an epi-

demic front. Although initially small in size, LDT events can become new epidemic foci

and their appearance should be incorporated into a vaccination plan. For best results, an

LDT event occurring at the beginning of vaccination should be addressed as an infection

separate from the existing infectious wave. Heavy amounts of vaccine placed on and around

the new focus can prevent a secondary infectious wave. At the same time, a separate vac-

cine regime should be implemented to contain the existing front. An increase in the cost

of control reduces the optimal quantity of vaccine present at any one location and time.

Results show that reduced quantities of vaccine may not be effective in containing disease

spread or eliminating the infected population.
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4.5 Concluding Remarks and New Contributions

In this chapter, we present the first application of optimal control theory to spatiotemporal

epidemic models described by a system of partial differential equations. We prove the

existence and uniqueness of the solutions to our parabolic state system as well as prove

the existence of an optimal control, sensitivity system, and adjoint system. For a given

objective functional, the optimal control is characterized in terms of the states and adjoint

variables. Lastly, uniqueness of the optimality system is shown for sufficiently small time.

We solve the optimality system numerically with parameters chosen to model the spread

of rabies within a raccoon population. Although partial differential equations have previ-

ously been used to model rabies spread among raccoons, optimal control theory was not

applied to these models. Our solutions indicate that the optimal timing and placement of

rabies vaccine baits can vary with the spatial structure of a domain. Natural land features

which deter raccoon movement (such as a river or forest cover) act as a barrier against the

spread of rabies. In our simulations, these barriers aided the optimal vaccination strategies

considerably. Vaccination regimes implemented immediately after the birth pulse should be

heightened to accommodate the increased density of susceptible raccoons. We also simulate

long distance translocation of an infected raccoon. Optimal vaccination strategies suggest

that a new epidemic focus resulting from translocation should be addressed immediately

with heavy amounts of vaccine. The methods we present in this chapter provide a new and

useful tool in addressing the control of disease spreading in both space and time. In the

future, we can consider similar results for systems of PDEs with alternative terms model-

ing disease incidence as well as results for systems which also include an additional state

equation describing control dynamics.
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Chapter 5

Summary and Future Directions

In summary, this dissertation contributes new results in the theory of optimal control as well

as advancements in mathematical modeling and applications of optimal control. A novel

existence result of an optimal control was proven in the case of ordinary differential state

equations containing quadratic expressions of the control variable. In the case of partial

differential state equations, we showed new existence results for both the state solutions and

the optimal control. Furthermore, in the PDE case, we derived the sensitivity and adjoint

systems and characterized a unique optimal control.

We applied our theoretical results to scenarios specific to the control of a harmful popu-

lation. From the numerical results, a new framework for the design of intervention policies

arises. In Chapter 2, we illustrated that our approach can be a useful tool to aid in the

management of native and invasive populations. In Chapter 3, we presented the first ap-

plication of optimal control theory to a cholera model. The model formulation, sensitivity

analyses, optimal control problem, and associated solution provide a new methodology to

evaluate trade-offs in multiple intervention schemes and assess which are most effective.

In Chapter 4, we introduced the first application of optimal control theory to a parabolic

PDE epidemic model. Numerical results illustrate this approach as an appropriate tool for

determining when and where to place oral rabies vaccine in order to successfully contain

the spread of rabies among raccoons.

Possible future work to be developed from Chapter 2 includes investigating and proving

other existence results for state systems containing non-linear expressions of the control
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variable. For the spatiotemporal epidemic model in Chapter 4, we will work to overcome

the restriction of T being sufficiently small by proving existence of the state solution for all

time T .

Epidemic models, including those for cholera, are constantly evolving. Thus, there is

continued need for optimal control theory in determining appropriate strategies of inter-

vention. The results presented in Chapter 3 will aid in formulating an age-structured or

spatially explicit cholera model. Applying optimal control to these extended models will

provide insight as to which age groups or locales should receive priority in treatment. Our

spatiotemporal epidemic model in Chapter 4 was simplified to accommodate the rabies and

raccoons example, but the inclusion of a different disease incidence term or a different vac-

cine uptake term can provide interesting dynamics applicable to other infectious diseases

and can lead to different optimal allocations of control. We continue to explore these pos-

sibilities and to make advancements in mathematical modeling and optimal control theory.
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Appendix A

Numerical Methods

Runge Kutta Method

Consider the problem of approximating the solution y(t) to the ordinary differential equation

and initial condition

dy

dt
= f(t, y) ∀t ∈ [0, T ] (A.1)

y(0) = y0 (A.2)

where f is a continuous function and y0 is a real number.

We partition our time domain [0, T ] into K equal intervals of length ∆t = T/K and

denote the approximate value of y at time step k as yk for 0 ≤ k ≤ K.

The Runge Kutta method of the fourth order determines the value of yk+1 by

yk+1 = yk +
1
6

∆t · (m1 + 2m2 + 2m3 +m4)
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where

m1 = f(k∆t, yk),

m2 = f(k∆t+
1
2

∆t, yk +
1
2

∆t ·m1),

m3 = f(k∆t+
1
2

∆t, yk +
1
2

∆t ·m2),

m4 = f((k + 1)∆t, yk + ∆t ·m3).

Thus, the value of yk+1 is determined by the present value yk plus the product of the size

of the interval ∆t and a weighted average of slopes, mi.

The following is an algorithm using the Runge Kutta method of the fourth order to

approximate the solution, y(t), to the boundary value problem in (A.1)-(A.2).

Algorithm 1 Runge Kutta 4 Method

Require: y0, T , K
Ensure: yk for 1 ≤ k ≤ K.

dt = T/K
tk = k ∗ dt

for k = 0 to K − 1 do
m1 = f(tk, yk)
m2 = f(tk + dt

2 , yk + m1
2 )

m3 = f(tk + dt
2 , yk + m2

2 )
m4 = f(tk+1, yk +m3)

yk+1 = yk + 1
6 ∗ dt ∗ (m1 + 2 ∗m2 + 2 ∗m3 +m4)

end for
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Finite Difference Method

Consider the problem of approximating the function u(x, t) satisfying

du

dt
− α∆u = f(x, y) ∀(x, y, t) ∈ Ω = (0, 1)× (0, 1)× (0, T ] (A.3)

du

dx
= 0,

du

dy
= 0 ∀(x, y, t) ∈ Ω̄ (A.4)

u(x, y, 0) = ū(x, y) (A.5)

where f and ū are smooth functions and ū satisfies the no-flux boundary conditions.

We discretize Ω such that there is an integer number of points in space and an integer

number of points in time at which we will calculate u. We assume equal grid spacing of

the variables so that ∆x = xm − xm−1 for 1 ≤ m ≤ M , ∆y = yn − yn−1 for 1 ≤ n ≤ N ,

and ∆t = tk − tk−1 for 1 ≤ k ≤ K. Approximate the functions u, f and ū by um,n,k =

u(xm, yn, tk), fm,n = f(xm, yn) and ūm,n = ū(xm, yn). Based on this discretization and

function approximations, we then write the following approximations of derivatives in time

and space

∂u

∂t
|xm,yn,tk ≈

um,n,k+1 − um,n,k
∆t

∂u

∂x
|xm,yn,tk ≈

um+1,n,k − um,n,k
∆x

∂u

∂y
|xm,yn,tk ≈

um,n+1,k − um,n,k
∆y

.

We can take the spatial derivatives one step further by taking the differences of the

derivative approximations to arrive at an approximation for the second derivatives

∂2u

∂x2
|xm,yn,tk ≈

um−1,n,k − 2um,n,k + um+1,n,k

(∆x)2
,

∂2u

∂y2
|xm,yn,tk ≈

um,n−1,k − 2um,n,k + um,n+1,k

(∆y)2
.
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Inserting the finite difference approximations into (A.3) and rearranging, we get

um,n,k+1 − um,n,k
∆t

= α(
um−1,n,k − 2um,n,k + um+1,n,k

(∆x)2

+
um,n−1,k − 2um,n,k + um,n+1,k

(∆y)2
) + fm,n.

Solving for um,n,k+1, we have

um,n,k+1 = um,n,k + ∆t(α(
um−1,n,k − 2um,n,k + um+1,n,k

(∆x)2

+
um,n−1,k − 2um,n,k + um,n+1,k

(∆y)2
) + fm,n). (A.6)

If we construct the 2D spatial mesh first, we can choose ∆t to satisfy the stability criterion

∆t ≤ (∆x)2+(∆y)2

8α . The following is an algorithm applying these techniques to approximate

the solution to (A.3) - (A.5).

Algorithm 2 Explicit Finite Difference Method

Require: α, M , N
Require: fm,n, um,n,0 for 0 ≤ m ≤M , 0 ≤ n ≤ N
Ensure: um,n,k for 0 ≤ m ≤M , 0 ≤ n ≤ N , 1 ≤ k ≤ K.

dx = 1/(M+1)
dy = 1/(N+1)
K = roundup((8Tα)/(dx2 + dy2))
dt = T/(K+1)
for k = 0 to K − 1 do

for n = 1 to N − 1 do
for m = 1 to M − 1 do

um,n,k+1 = um,n,k + dt ∗ (α ∗ ((um−1,n,k − 2um,n,k + um+1,n,k)/(dx2) + ...
(um,n−1,k − 2um,n,k + um,n+1,k)/(dy2)) + fm,n)

end for
end for

for m = 1 to M do
um,0,k+1 = um,1,k+1

um,N,k+1 = um,N−1,k+1

end for

for n = 1 to N do
u0,n,k+1 = u1,n,k+1

uM,n,k+1 = uM−1,n,k+1

end for
end for
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Appendix B

Previous Cholera Models

Figure B.1: Diagram illustrating the model of Hartley et al. [37] which distinguishes between
hyperinfectious vibrios (BH) and less-infectious vibrios (BL).
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Figure B.2: Map of Bengal Bay districts from King et al. [42]
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Figure B.3: Diagram illustrating the two-path model of King et al. [42] in which Y class
represents mild, asymptomatic infections. Infected individuals die at an excess rate m
year−1 and recover at a rate γ year−1. An individual remains immune to reinfection for
a duration gamma-distributed with mean 1/ε years and variance 1/kε2 years2. The mean
duration of short term immunity is 1/ρ years.

Table B.1: Maximum likelihood estimates for two-path model in King et al. [42] for k = 3.
Displayed are estimates for the six of the 26 Bengal districts which were best described by
the two-path model when compared to 3 other models. The units of γ, m, ε, and ρ are
year−1 and the other quantities are dimensionless.

District logL AICC R0 γ m ρ ε c

Bakergang -3656.3 7354.0 1.38 7.1 2.740 8.5 0.5 0.0088
Bogra -2837.5 5716.4 2.30 21.6 0.240 2.6 0.4 0.2400
Calcutta -3035.4 6112.3 1.27 11.3 4.662 5.6 0.7 0.0104
Noakhali -3471.7 6984.9 1.71 9.5 3.103 4.4 0.5 0.0108
Pabna -3283.8 6609.0 1.47 12.3 13.756 4.4 0.8 0.0059
Rangpur -3264.2 6569.8 1.55 17.3 0.134 14.0 1.4 0.3894

148



Appendix C

Rabies Simulations
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Figure C.1: Spatial Homogeneity: Susceptible population over 52 weeks in the absence
of any infection. Growth and decline of population indicate natural birth and death of
susceptible raccoons.
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Figure C.2: Spatial Homogeneity: Susceptible population over 52 weeks in absence of vac-
cination. Infection is initiated in southwest corner at t = 0 weeks.
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Figure C.3: Spatial Homogeneity: Infected population over 52 weeks in absence of vaccina-
tion. Infection is initiated in southwest corner at t = 0 weeks.
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Figure C.4: Spatial Homogeneity: Optimal 10-week vaccination schedule starting at t = 0
weeks. Vaccine uptake parameter is assumed to be a = 0.02.
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Figure C.5: Spatial Homogeneity: Susceptible population during optimal 10-week vaccina-
tion schedule starting at t = 0 week. Vaccine uptake parameter is assumed to be a = 0.02.

154



0 5 10 15 20 25 30
0

5

10

15

20
I at t = week 0 

East

No
rth

0 5 10 15 20 25 30
0

5

10

15

20
I at t = week 2 

East

No
rth

0 5 10 15 20 25 30
0

5

10

15

20
I at t = week 4 

East

No
rth

0 5 10 15 20 25 30
0

5

10

15

20
I at t = week 6 

East

No
rth

0 5 10 15 20 25 30
0

5

10

15

20
I at t = week 8 

East

No
rth

0 5 10 15 20 25 30
0

5

10

15

20  
I at t = week 10 

East

 

No
rth

0

2

4

6

8

10

Figure C.6: Spatial Homogeneity: Infected population during optimal 10-week vaccination
schedule starting at t = 0 week. Vaccine uptake parameter is assumed to be a = 0.02.

155



0 5 10 15 20 25 30
0

5

10

15

20
R at t = week 0 

East

No
rth

0 5 10 15 20 25 30
0

5

10

15

20
R at t = week 2 

East

No
rth

0 5 10 15 20 25 30
0

5

10

15

20
R at t = week 4 

East

No
rth

0 5 10 15 20 25 30
0

5

10

15

20
R at t = week 6 

East

No
rth

0 5 10 15 20 25 30
0

5

10

15

20
R at t = week 8 

East

No
rth

0 5 10 15 20 25 30
0

5

10

15

20  
R at t = week 10 

East

 

No
rth

0

2

4

6

8

10

Figure C.7: Spatial Homogeneity: Immune population during optimal 10-week vaccination
schedule starting at t = 0 week. Vaccine uptake parameter is assumed to be a = 0.02.
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Figure C.8: Spatial Homogeneity: Optimal 15-week vaccination schedule starting at the
end of the birth pulse, t = 27 week. Infection initiated at t = 27 week in southwest corner.
Vaccine uptake parameter is assumed to be a = 0.02.
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Figure C.9: Spatial Homogeneity: Susceptible population during optimal 15-week vacci-
nation schedule starting at t = 27 week. Infection initiated at t = 27 week in southwest
corner. Vaccine uptake parameter is assumed to be a = 0.02.
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Figure C.10: Spatial Homogeneity: Infected population during optimal 15-week vaccination
schedule starting at t = 27 week. Infection initiated at t = 27 week in southwest corner.
Vaccine uptake parameter is assumed to be a = 0.02.
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Figure C.11: Spatial Homogeneity: Immune population during optimal 15-week vaccination
schedule starting at t = 27 week. Infection initiated at t = 27 week in southwest corner.
Vaccine uptake parameter is assumed to be a = 0.02.
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Figure C.12: Spatial Homogeneity: Optimal 20-week vaccination schedule starting at t = 21
weeks. Infection initiated at t = 0 weeks in southwest corner. Vaccine uptake parameter is
assumed to be a = 0.01.
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Figure C.13: Spatial Homogeneity: Susceptible population during optimal 20-week vacci-
nation schedule starting at t = 21 weeks. Infection initiated at t = 0 weeks in southwest
corner. Vaccine uptake parameter is assumed to be a = 0.01.
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Figure C.14: Spatial Homogeneity: Infected population during optimal 20-week vaccination
schedule starting at t = 21 weeks. Infection initiated at t = 0 weeks in southwest corner.
Vaccine uptake parameter is assumed to be a = 0.01.
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Figure C.15: Spatial Homogeneity: Immune population during optimal 20-week vaccination
schedule starting at t = 21 weeks. Infection initiated at t = 0 week in southwest corner.
Vaccine uptake parameter is assumed to be a = 0.01.
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Figure C.16: Spatial Homogeneity: Optimal 20-week vaccination schedule starting at t = 21
weeks. Infection initiated at t = 0 weeks in southwest corner. Vaccine uptake parameter is
assumed to be a = 0.03.
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Figure C.17: Spatial Homogeneity: Susceptible population during optimal 20-week vacci-
nation schedule starting at t = 21 week. Infection initiated at t = 0 weeks in southwest
corner. Vaccine uptake parameter is assumed to be a = 0.03.
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Figure C.18: Spatial Homogeneity: Infected population during optimal 20-week vaccination
schedule starting at t = 21 week. Infection initiated at t = 0 weeks in southwest corner.
Vaccine uptake parameter is assumed to be a = 0.03.
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Figure C.19: Spatial Homogeneity: Immune population during optimal 20-week vaccination
schedule starting at t = 21 week. Infection initiated at t = 0 weeks in southwest corner.
Vaccine uptake parameter is assumed to be a = 0.03.
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Figure C.20: Spatial Heterogeneity: Susceptible population over 52 weeks in the absence
of any infection. Growth and decline of population indicate natural birth and death of
susceptible raccoons.
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Figure C.21: Spatial Heterogeneity: Susceptible population over 52 weeks, in absence of vac-
cination. Spatial heterogeneity includes decreased movement and decreased initial density
due to river and forest cover. Infection is initiated in southwest corner at t = 0 weeks.
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Figure C.22: Spatial Heterogeneity: Infected population over 52 weeks, in absence of vacci-
nation. Spatial heterogeneity includes decreased movement and decreased initial density of
susceptible raccoons due to river and forest cover. Infection is initiated in southwest corner
at t = 0 weeks.
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Figure C.23: Spatial Heterogeneity: Optimal 10-week vaccination schedule starting at t = 0
weeks. Infection is initiated at t = 0 weeks in southwest corner. Vaccine uptake is parameter
assumed to be a = 0.02.
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Figure C.24: Spatial Heterogeneity: Susceptible population during optimal 10-week vacci-
nation schedule starting at t = 0 weeks. Infection is initiated at t = 0 weeks in southwest
corner. Vaccine uptake parameter is assumed to be a = 0.02.
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Figure C.25: Spatial Heterogeneity: Infected population during optimal 10-week vaccination
schedule starting at t = 0 weeks. Infection is initiated at t = 0 weeks in southwest corner.
Vaccine uptake parameter is assumed to be a = 0.02.
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Figure C.26: Spatial Heterogeneity: Immune population during optimal 10-week vaccination
schedule starting at t = 0 weeks. Infection is initiated at t = 0 weeks in southwest corner.
Vaccine uptake parameter is assumed to be a = 0.02.
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Figure C.27: Spatial Heterogeneity: Optimal 20-week vaccination schedule starting at
t = 21 weeks. Infection is initiated at t = 0 weeks in southwest corner. Vaccine uptake
parameter is assumed to be a = 0.01
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Figure C.28: Spatial Heterogeneity: Susceptible population during optimal 20-week vacci-
nation schedule starting at t = 21 weeks. Infection is initiated at t = 0 weeks in southwest
corner. Vaccine uptake parameter is assumed to be a = 0.01.
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Figure C.29: Spatial Heterogeneity: Infected population during optimal 20-week vaccination
schedule starting at t = 21 weeks. Infection is initiated at t = 0 weeks in southwest corner.
Vaccine uptake parameter is assumed to be a = 0.01.
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Figure C.30: Spatial Heterogeneity: Immune population during optimal 20-week vaccination
schedule starting at t = 21 weeks. Infection is initiated at t = 0 weeks in southwest corner.
Vaccine uptake parameter is assumed to be a = 0.01.

179



0 5 10 15 20 25 30
0

5

10

15

20
S at t = week 21 

East

No
rth

0 5 10 15 20 25 30
0

5

10

15

20
S at t = week 25 

East

No
rth

0 5 10 15 20 25 30
0

5

10

15

20
S at t = week 29 

East

No
rth

0 5 10 15 20 25 30
0

5

10

15

20
S at t = week 33 

East

No
rth

0 5 10 15 20 25 30
0

5

10

15

20
S at t = week 37 

East

No
rth

0 5 10 15 20 25 30
0

5

10

15

20  
S at t = week 41 

East

 

No
rth

0

10

20

30

40

50

Figure C.31: Spatial Heterogeneity and LDT: Susceptible population starting at t = 21
weeks, in absence of vaccination. Infection initiated in bottom right corner at t = 0 weeks.
Spatial heterogeneity includes decreased movement and decreased initial density due to
river and forest cover. Long distance translocation of one infected raccoon appears in upper
right corner at t = 21 weeks.
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Figure C.32: Spatial Heterogeneity and LDT: Infected population starting at t = 21 weeks,
in absence of vaccination. Infection initiated in bottom right corner at t = 0 weeks. Spatial
heterogeneity includes decreased movement and decreased initial density due to river and
forest cover. Long distance translocation of one infected raccoon appears in upper right
corner at t = 21 weeks.
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Figure C.33: Spatial Heterogeneity and LDT: Optimal 20-week vaccination schedule begin-
ning on t = 21 weeks. Infection is initiated at t = 0 weeks in southwest corner and LDT
occurs at t = 21 weeks. Vaccine uptake parameter is assumed to be a = 0.01. Balancing
coefficient is assumed to be c = 0.10.
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Figure C.34: Spatial Heterogeneity and LDT: Susceptible population during optimal 20-
week vaccination schedule starting at t = 21 weeks. Infection is initiated at t = 0 weeks in
southwest corner and LDT occurs at t = 21 weeks. Vaccine uptake parameter is assumed
to be a = 0.01. Balancing coefficient is assumed to be c = 0.10.
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Figure C.35: Spatial Heterogeneity and LDT: Infected population during optimal 20-week
vaccination schedule starting at t = 21 weeks. Infection is initiated at t = 0 weeks in
southwest corner and LDT occurs at t = 21 weeks. Vaccine uptake parameter is assumed
to be a = 0.01. Balancing coefficient is assumed to be c = 0.10.
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Figure C.36: Spatial Heterogeneity and LDT: Immune population during optimal 20-week
vaccination schedule starting at t = 21 week. Infection is initiated at t = 0 weeks in
southwest corner and LDT occurs at t = 21 weeks. Vaccine uptake parameter is assumed
to be a = 0.01. Balancing coefficient is assumed to be c = 0.10.
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Figure C.37: Spatial Heterogeneity and LDT: Optimal 20-week vaccination schedule begin-
ning on t = 21 weeks. Infection is initiated at t = 0 weeks in southwest corner and LDT
occurs at t = 21 weeks. Vaccine uptake parameter is assumed to be a = 0.01. Balancing
coefficient is assumed to be c = 0.25.
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Figure C.38: Spatial Heterogeneity and LDT: Susceptible population during optimal 20-
week vaccination schedule starting at t = 21 weeks. Infection is initiated at t = 0 weeks in
southwest corner and LDT occurs at t = 21 weeks. Vaccine uptake parameter is assumed
to be a = 0.01. Balancing coefficient is assumed to be c = 0.25.
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Figure C.39: Spatial Heterogeneity and LDT: Infected population during optimal 20-week
vaccination schedule starting at t = 21 weeks. Infection is initiated at t = 0 weeks in
southwest corner and LDT occurs at t = 21 weeks. Vaccine uptake parameter is assumed
to be a = 0.01. Balancing coefficient is assumed to be c = 0.25.
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Figure C.40: Spatial Heterogeneity and LDT: Immune population during optimal 20-week
vaccination schedule starting at t = 21 weeks. Infection is initiated at t = 0 weeks in
southwest corner and LDT occurs at t = 21 weeks. Vaccine uptake parameter is assumed
to be a = 0.01. Balancing coefficient is assumed to be c = 0.25.
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